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1. Introduction

The ongoing and intensive consideration by the scientific community of the many
facets of precipitation science constitutes a broad recognition of the significance of this
indispensable component of the hydrologic cycle. The interest in the state-of-the-art
scientific investigations of precipitation is maintained and even rejuvenated by current
developments in the field, embracing the availability of new precipitation databases,
technological improvements and methodological advances.

This Special Issue comprises a collection of papers embracing a wide range of as-
pects of precipitation science. This volume hosts 25 papers devoted to remote sensing
applications in precipitation, which include studies on satellite precipitation retrievals
together with their corresponding methodologies, weather radar precipitation estimations,
the understanding of cloud and precipitation microphysical properties, precipitation down-
scaling, droplet size distribution, the performance of precipitation forecasts by numerical
weather prediction models, precipitation retrievals from global navigation satellite systems,
spatiotemporal precipitation distribution and its statistical characteristics, rain gauge- and
satellite-based precipitation products and their comparisons and spatiotemporal distribu-
tions of precipitation modeling.

The next section summarizes the individual articles hosted in this Special Issue in
alphabetical order based on the first author’s name.

2. Overview of Contributions

Aminyavari et al. [1] studied the performance of ensemble forecasts for precipitation
estimates by three numerical weather prediction models within THORPEX (The Observing
System Research and Predictability Experiment of the World Meteorological Organization),
as well as that of the IMERG (Integrated Multi-Satellite Retrievals for Global Precipitation
Measurement (GPM)), during severe floods in Iran over the period of March and April 2019.

In the paper by D’Adderio et al. [2], precipitation estimates derived from the Italian
ground radar network were used in conjunction with measurements from the Spinning En-
hanced Visible and InfraRed Imager (SEVIRI) to develop an operational-oriented algorithm
(RAdar INfrared Blending algorithm for Operational Weather monitoring—RAINBOW)
able to provide precipitation pattern and intensity. The algorithm evaluated surface precip-
itation over five geographical boxes in which the study area was divided.

In their study, Eldardiry and Habib [3] assessed the robustness of a probability
weighted regional spatial bootstrap approach to estimate precipitation frequencies us-
ing radar data. Using the regional spatial bootstrap technique, they investigated two main
issues that impact the use of radar-based Quantitative Precipitation Estimations (QPE)
in deriving precipitation frequency estimates: (1) the typically short historical records of
radar-based QPEs and (2) the effect of outliers in a precipitation maxima series that could
possibly cause unrealistic spatial gradients in intensity–duration–frequency relations.

Ghada et al. [4] contributed with an analysis of the relationship between Z–R (re-
flectivity and rain rate) parameters and weather types in Central Europe, based on a
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comprehensive regional dataset of rain microstructure measurements at ten sites in the
federal state of Bavaria, Germany. The authors investigated what the effect is of weather
types on rain microstructures and whether there is a consistent variation in the Z–R param-
eters between weather types that would suggest opportunities to improve the QPE with
radar-based methods.

The study by Giannaros et al. [5] presented the first attempt for introducing an assim-
ilation of zenith tropospheric delay, derived from more than 48 stations of the Hellenic
global navigation satellite systems network, into the operational Numerical Weather Pre-
diction System of the National Observatory of Athens in Greece, which is based on the
Mesoscale Weather Research and Forecasting model. The model was applied during seven
high-impact precipitation events covering the dry and wet seasons in 2018.

The main objective of the study by Huang et al. [6] was to evaluate the performance of
multiple Satellite Precipitation Products (SSPs) in depicting the spatiotemporal variations
of summer precipitation over Taiwan, using more than 400 local rain gauges for compari-
son. The authors examined the competence of SSPs in studying the summer connective
afternoon rainfall events, which constitute the most frequently observed weather patterns
in Taiwan. The analysis mainly focused on the time periods that overlap in all the data
investigated—that is, the summers of 2014–2017.

Precipitation measurements from a second-generation PARSIVEL disdrometer de-
ployed in Beijing, Northern China, were analyzed by Ji et al. [7] in order to investigate the
microphysical structure of raindrop size distribution and its implications on polarimetric
radar applications. Rainfall types were classified and analyzed in the domains of the
median volume diameter and the normalized intercept parameter.

Krietemeyer et al. [8] investigated the performance of the Precise Point Positioning
technique for the estimation of the zenith tropospheric delays by using a recently intro-
duced low-cost dual-frequency receiver connected to antennas of ranging quality with
and without applying relative antenna calibrations. Additionally, using Level 1 data, they
investigated how well the (un-)corrected single-frequency data from the dual-frequency
receiver can be used for meteorological applications.

Laverde-Barajas et al. [9] focused their research on a spatiotemporal object-based bias
correction method to reduce several systematic errors in storm events estimated by satellite.
The method, called Spatiotemporal Contiguous Object-based Rainfall Analysis for Bias
Correction, uses the main storm characteristics of the satellite and observed events detected
to remove errors due to displacement in space and time and volume. This method was
evaluated over the lower Mekong Basin in Thailand to correct several storm event types in
IMERG during the monsoon seasons from 2014 to 2017.

Le Coz et al. [10] proposed to gauge-adjust satellite-based estimates with respect to
position by using a morphing method. This approach takes both the position and the
intensity of a rain event into account, and its potential was investigated with two case
studies. In the first case, the rain events were synthetic, represented by elliptic shapes, while,
in the second case, use was made of real data from a rainfall event occurring during the
monsoon season in Southern Ghana. In the second case, the satellite-based estimate IMERG
was adjusted to gauge data from the Trans-African Hydro-Meteorological Observatory
(TAHMO) network.

In the framework of JAXA’s Global Satellite Mapping of Precipitation (GSMaP) project,
the GSMaP Near-Real-Time Precipitation Products were generated (GSMaP_Gauge_NRT),
aiming to improve the accuracy of the near-real-time product of GSMaP. Lu and Yong [11]
used GSMaP_Gauge_NRT to validate their performance by using gauge observations over
Mainland China.

Lu et al. [12] proposed a two-step framework to improve the accuracy of satellite pre-
cipitation estimates. The first step was data merging based on the optimum interpolation,
and the second step was downscaling based on geographically weighted regression. The
IMERG product was used to demonstrate the effectiveness of the above two-step procedure
in the Tianshan Mountains, China.
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The primary purpose of the study by Ma et al. [13] was to conduct a comprehensive
analysis of an extremely heavy rainfall event that hit Guangdong Province, China, from 27
August to 1 September 2018. Their analysis was based on various in situ and remote sensing
observations, including rain gauges, polarimetric radars, disdrometers and reanalysis data,
to gain a better understanding of the epic flood events. In particular, the study aimed to
explore the potential of polarimetric radars to resolve the microphysics and quantify the
precipitation.

Maghsood et al. [14] conducted a thorough validation of the IMERG product over
Iran. The study focused on investigating the performance of daily and monthly IMERG
products by comparing them with ground-based precipitation data at synoptic stations
throughout the country during 2014–2017. The spatial and temporal performance of the
IMERG was evaluated using eight statistical criteria.

Nawaz et al. [15] highlighted the performance evaluation of gauge-based and satellite-
based gridded precipitation products at the annual, winter and summer monsoon scales
by using a multiple statistical approach over Punjab Province, Pakistan. The results
revealed that the temporal magnitude of all the gridded precipitation products was different
and deviated up to 100–200 mm with the overall spatial pattern of underestimation and
overestimation from north to south.

Rahman et al. [16] assessed the performance of a soil moisture-to-rain algorithm
that can be used for direct precipitation estimation from in-situ and/or satellite-based
soil moisture observations. The algorithm makes use of the inverted soil water balance
equation. Their study covered four different climate regions of Pakistan using rain gauge
observations. The assessment was carried out on a daily scale in the period 2000–2015.

Retalis et al. [17] performed a comparative analysis of the IMERG high-resolution
product and Tropical Rainfall Measuring Mission (TRMM) 3B43 product. These satellite-
based precipitation fields were validated against rain gauges over the island of Cyprus for
the period from April 2014 to June 2018. Satellite precipitation estimates were compared
with the gauge records on a monthly and an annual basis.

In an effort to elucidate the strengths and weaknesses of recently released gridded
precipitation datasets, Sherifi et al. [18] conducted a comprehensive evaluation of the
performances of several such datasets at daily and monthly timescales. The study was
performed over Austria using a dense network of gauges of 882 stations. The evaluation
was carried out based on continuous and categorical statistical metrics for the period from
June 2014 to December 2015.

Sharma et al. [19] evaluated four precipitation datasets from the two satellite-based
precipitation products, namely IMERG (version 06B) and GSMaP (version 07), against
388 rain gauge observations concerning their spatial and seasonal accuracy over Nepal.
Their performances were analyzed for their tendencies and discrepancies depending on
the different elevation ranges and relative intensities on a daily and monthly timescale
from March 2014 to December 2016.

The study by Sokol et al. [20] focused on Linear Depolarization Ratio values derived
from vertically pointing cloud radars and the distribution of five hydrometeor species
during 38 days with thunderstorms that occurred in 2018 and 2019 in Central Europe
within the vicinity of the radar used in the study. The study showed improved algorithms
for de-aliasing, the derivation of vertical air velocity and the classification of hydrometeors
in clouds.

The main objectives of the contribution by Sun et al. [21] were (a) to investigate the
spatial distribution of precipitation changes using daily, daytime and nighttime records
from 2393 weather sites across China; (b) to study the quantification of the performances
of selected products in detecting precipitation trends on a sub-daily scale with different
validation metrics through a comparison with gauge observations and (c) to identify the
metric-based optimal products at a sub-daily scale.

In the research by Ullah et al. [22], a new downscaling methodology was developed
using the Digital Elevation Model to delineate into three geospatial predictors, i.e., elevation,

3
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longitude and latitude, in an empirical distribution-based framework (EDBF). Two different
satellite-based precipitation datasets, such as the GPM-based multitemporal precipitation
data for the prediction of high-resolution downscaled weighted precipitation from 0.1◦ to
0.05◦ > resolution, and the GPM and the TRMM datasets for the verification of proposed
methodology were used over the humid southern region of Mainland China.

In the study by Xie et al. [23], an OTT Parsivel-2 (Kempten, Germany) Disdrometer
was used to measure raindrop spectra from 10 August 2018 to 10 August 2019 at Yulin
Ecohydrological Station, Shaanxi Province, China. The precipitation events obtained were
classified as stratiform and convective, based on the rainfall intensity classifying process.
The Drop Size Distribution characteristics of Yulin Station were obtained, and the results
can help to understand the microphysical characteristics of precipitation and their impact
on the mechanism of soil erosivity in the semi-arid area.

The study by Yang et al. [24] aimed to evaluate the accuracy of the latest five GPM
and TRMM rainfall products across monthly, daily and hourly scales based on ground rain
gauge measurements between January 2009 and December 2017 in the Shuaishui River
Basin of Eastern-Central China. For the evaluation, a total of four continuous and three
categorical metrics were calculated based on satellite precipitation product (SPP) estimates
and historical rainfall records at 13 stations over a period of nine years from 2009 to 2017.

Zhang et al. [25] established a spatial and temporal distribution model of precipitation
in Hubei Province, China from 2006 to 2014 based on the data of 75 meteorological stations.
This paper applied a geographically and temporally weighted regression kriging model
to precipitation and assessed the effects of timescales and a time-weighted function on
precipitation interpolation.

3. Conclusions

This Special Issue aimed at enlightening and updating the scientific community
involved in precipitation science to the current progress in important areas of the remote
sensing of precipitation through the presentation of state-of-the-art data sources and
technological advances, as well as relevant methodological approaches. This collection of
papers aspires to stimulate further research in the remote sensing of precipitation.
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Abstract: Radar-based Quantitative Precipitation Estimates (QPE) provide rainfall products with
high temporal and spatial resolutions as opposed to sparse observations from rain gauges.
Radar-based QPE’s have been widely used in many hydrological and meteorological applications;
however, using these high-resolution products in the development of Precipitation Frequency
Estimates (PFE) is impeded by their typically short-record availability. The current study evaluates
the robustness of a spatial bootstrap regional approach, in comparison to a pixel-based (i.e., at site)
approach, to derive PFEs using hourly radar-based multi-sensor precipitation estimation (MPE)
product over the state of Louisiana in the US. The spatial bootstrap sampling technique augments the
local pixel sample by incorporating rainfall data from surrounding pixels with decreasing importance
when distance increases. We modeled extreme hourly rainfall data based on annual maximum series
(AMS) using the generalized extreme value statistical distribution. The results showed a reduction in
the uncertainty bounds of the PFEs when using the regional spatial bootstrap approach compared
to the pixel-based estimation, with an average reduction of 10% and 2% in the 2- and 5-year return
periods, respectively. Using gauge-based PFE’s as a reference, the spatial bootstrap regional approach
outperforms the pixel-based approach in terms of robustness to outliers identified in the radar-based
AMS of some pixels. However, the systematic bias inherent to radar-based QPE especially for extreme
rainfall cases, appear to cause considerable underestimation in PFEs in both the pixel-based and the
regional approaches.

Keywords: rainfall; radar; extreme precipitation; spatial bootstrap; Louisiana; annual maxima

1. Introduction

Rainfall plays a critical role in the earth’s water and energy cycle over a wide range of
spatiotemporal scales. Therefore, accurate quantitative estimation of rainfall is an important input for
engineering design applications where Precipitation Frequency Estimates (PFE) are highly sought [1].
The purpose of a precipitation frequency analysis is to determine the frequency at which certain
intensities or depths of precipitation are expected to occur. Probabilistic modeling and statistical
analysis techniques of extreme rainfall are used to provide PFE information and characterize
the relationships between three important precipitation variables: intensity (or depth), duration,
and frequency [2]. Such relationships are usually referred to as Intensity-Duration-Frequency (IDF) or
Depth-Duration-Frequency (DDF) curves. Statistics derived from IDF or DDF curves are typically used
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to develop design storms, which are then used as an input for a variety of engineering applications
such as design of dams, levees, reservoirs, and urban sewer systems [3].

Precipitation frequencies are typically estimated using sparse gauge observations. The evolution
of weather radars allows the spatially continuous estimation of rainfall at small temporal sampling
intervals, thereby filling the observational gap of rain gauges in space and time. Radar does not measure
surface rainfall directly; instead, it measures the backscattered power from the hydrometeors aloft and
the received power is then converted into rainfall estimates with inherent errors. The availability of
NEXRAD Quantitative Precipitation Estimates (QPE) in high temporal and spatial resolutions covering
the United States (US) has motivated researchers to study the applicability of the radar-based QPE in
deriving precipitation frequencies [4–8]. For instance, Overeem, et al. [8] used radar data covering the
entire land surface of the Netherlands for a 10-year period (1998–2008) to derive radar-based areal
reduction factors (ARFs), which were found comparable to those based on high-density rain gauge
networks and thus concluded that radar data, after careful quality control, are suitable to estimate
extreme areal rainfall depths.

For sites that sufficiently have long records with respect to the return period of the
extreme precipitation quantile of interest, at-site frequency analysis can be an adequate approach.
However, for un-gauged sites, or for sites with historical records that are too short to make a reliable
prediction of extreme quantiles, data augmentation from neighboring sites is needed. Thus, two main
approaches for the frequency analysis have been discussed in the literature. The first is an at-site
estimation approach, which simply uses data at each station, while the second method is a regional
estimation approach that makes use of observations from gauges sharing a homogenous region with
similar climatological and physical characteristics [9–14]. Svensson & Jones [13] reviewed the different
estimation methods of rainfall frequency analysis in nine countries and reported that, while each
country’s method is different, most of them use some form of regionalization to transfer information
from surrounding sites to the target location. A regionalization method combines a local estimate of an
index variable (typically the mean or median annual maximum rainfall) with a regionally derived
growth curve to obtain a design rainfall estimate. Naghavi & Yu [15] applied a regional frequency
approach to precipitation data in Louisiana using Annual Maximum Series (AMS) extracted from
25 synthesized stations with long periods of record. The results showed that the regional approach
can substantially reduce the relative root-mean-square error (RRMSE) and the relative bias (RBIAS) in
precipitation quantile prediction.

Although radar QPE can provide site (pixel)-specific PFEs with a high spatial resolution,
regionalization techniques could be advantageous to reduce the sampling variability in the radar
PFEs [4,6,16]. Eldardiry et al. [16] tested three regional estimation procedures and indicated
lower uncertainty bounds associated with regional approaches compared to pixel-based PFEs.
However, they also reported on the effect of the relatively short radar records on the uncertainty
associated with the radar-based quantiles. Using QPE data during 1993–2000 over the Arkansas-Red
Basin River Forecast Center (ABRFC), Durrans et al. [4] concluded that data heterogeneities and
the temporally-limited data records are major factors that hinder the development of depth-area
relationships using radar-rainfall data.

In this study, we assess the robustness of a probability weighted regional spatial bootstrap approach
to estimate precipitation frequencies using radar data. This method was proposed by Uboldi et al. [17]
as a resampling approach for estimation of parameters of rainfall annual maximum series statistical
distribution. Using the regional spatial bootstrap technique, we investigate two main issues that
impact the use of radar-based QPE in deriving precipitation frequency estimates: (1) the typically short
historical records of radar-based QPEs; and (2) the effect of outliers in precipitation maxima series that
could possibly cause unrealistic spatial gradients in IDF relations. We assess the utility of the spatial
bootstrap approach in alleviating such limitations and compare the PFEs from the regional bootstrap
approach against estimates derived using an at-site (pixel-based) method and PFEs reported in a US
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gauge-based Precipitation-Frequency Atlas [18]. The study is performed using radar-based QPEs over
the state of Louisiana, USA.

2. Datasets and Methods

2.1. Radar MPE Dataset

NEXRAD (Next-Generation Radar) is a network of more than 160 high-resolution S-band
Doppler weather radars operated by the US National Weather Service (NWS). The NEXRAD system
provides high-quality, high-resolution precipitation estimates for a wide range of hydro-meteorological
applications [19]. Starting in 2002, the NWS implemented a processing algorithm called the Multisensor
Precipitation Estimator (MPE) [1], which is currently used at the NWS River Forecast Centers (RFC)
to produce a set of regional rainfall products using single- or multi-sensor analysis techniques.
However, radar-based estimates can be highly uncertain due to a number of sampling and algorithm
factors e.g., [20–22]. Therefore, the MPE algorithm applies bias-correction and co-Kriging optimal
merging techniques using gauge reports [1,23].

The specific radar product used in this study is the operational product produced at the NWS
Lower Mississippi River Forecast Center (LMRFC). This product is developed using the MPE algorithm,
but also benefits from manual adjustments by human forecasters [22,24,25]. The MPE product has
an hourly resolution and projected spatially using the Hydrologic Rainfall Analysis Project (HRAP)
grid [26], with an approximate pixel size of 4-km x 4-km. The domain of the current study covers the
entire state of Louisiana in the south-central US. With proximity to the Gulf of Mexico, different synoptic
weather patterns are responsible for extreme events over Louisiana, including tropical storms, fronts,
and convective air mass thunderstorms [27]. For the purposes of this study, the radar pixels covering
Louisiana were extracted from the full LMRFC MPE product, resulting in a matrix with a total number
of pixels of (180 × 140). The dataset comprises a total of 11 years covering the period of 2002–2012.
To perform a precipitation frequency analysis, the annual maximum series (AMS) were extracted over
each of the (180 × 140) radar pixels, resulting in a sample composed of a spatial field of 11 maxima
representing the maximum hourly rainfall during 2002–2012 at each 4-km × 4-km pixel within the
study domain.

2.2. Estimation of Parameters of AMS Probability Distribution

Various distributions have been proposed for modeling extreme events, including the Generalized
Extreme Value distribution (GEV), Generalized Pareto distribution (GP), gamma distribution,
lognormal distribution, among others. The GEV distribution was recommended for flood frequency
analysis in the United Kingdom (UK) Flood Studies Report [28]. According to the gauge-based
Precipitation-Frequency Atlas of the US National Oceanic and Atmospheric Administration (NOAA)
Atlas 14 [18], the GEV distribution provided an acceptable fit to data more frequently than any other
distribution and was chosen to model the annual maximum series of all the stations covering
the US southeastern states (Alabama, Arkansas, Florida, Georgia, Louisiana and Mississippi).
These conclusions were obtained using a goodness-of-fit test based on L-moment statistics for
3-parameter distributions along with the results of χ2 and Kolmogorov-Smirnov tests and visual
inspection of probability plots. Naghavi & Yu [15] examined six different distributions for extreme
precipitation over Louisiana and concluded that GEV distribution outperforms other distributions.
Therefore, the GEV will be adopted in the current study to represent the AMS. The GEV distribution is
a three-parameter distribution developed within the extreme value theory and combines three different
models: Gumbel, Frechet and Weibull distributions, which are often referred to as Types (I), (II),
and (III) distributions, respectively. The probability density function of the GEV distribution, in terms
of its three parameters: Location (α), Scale (β), and Shape (κ � 0), can be formulated as follows:

fX(x) =
1
β
[1− κ

β
(x−α)](1/κ−1)

FX(x) (1)
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In this study, the method of linear moments is used for the estimation of the GEV distribution
parameters. The method of L-moments offers several advantages over other methods (e.g., method of
moments, and method of maximum likelihood), especially in the cases of small sample sizes [29,30].
The L-moment estimators for the GEV distribution parameters are given as follows:

κ̂ = 7.8590c + 2.9554c2 (2)

c =
2

(3 + τ̂ 3)
− log(2)

log(3)
(3)

α̂ = λ̂ 1 − β̂

κ̂
[1− Γ(1 + κ̂ )] (4)

β̂ =
λ̂ 2 κ̂

(1− 2− κ̂ )Γ(1 + κ̂ )
(5)

where τ3 (or L-skewness) is the ratio of the third and second L-moment (a measure of skewness), λ1 is
the first L-moment (measure of distribution mean), and λ2 is the second L-moment (measure of the
scale or dispersion). Accordingly, the quantiles corresponding to different return periods, T, (e.g., T = 5,
10, 50, 100 years) can be estimated as follows:

x(q) = α+
β̂

κ̂
[1−

(
− ln q)κ̂

]
(6)

where q is the cumulative probability of interest that can be related to the return period T as
(
q = 1− 1

T

)
.

2.3. At-Site and Regional PFE Estimation Methods

Two estimation approaches for the frequency analysis of extreme precipitation, at-site (or pixel-based)
and regional, are applied using the radar product and compared to each other. Uncertainties due to
sampling effects are quantified in terms of confidence bounds using the difference between the 95th and
5th percentiles. The results of each method will also be compared to the corresponding gauge-based
estimates that are reported in the NOAA Atlas 14 PFEs [18].

2.3.1. Pixel-Based Method

This approach is analogous to at-site frequency analysis of extreme precipitation from rain gauge
stations, which was originally applied by the NWS to establish the rainfall frequency isohyetal maps
for the US [31]. Treating each 4-km × 4-km HRAP radar pixel as a single station, this is equivalent
to considering the domain of study as a dense network of stations that are located 4 km apart from
each other. At each pixel, the AMS sample of hourly precipitation, constructed from the 11-year radar
dataset, is fitted to the GEV model and the parameters of the distribution are estimated at each pixel
using the L-moment method. The quantiles corresponding to different return periods (e.g., 5, 10,
25, 50, 100) can then be estimated at each pixel using the GEV parameters. Confidence intervals for
the pixel-based parameter and quantile estimates are constructed using the classical scalar bootstrap
procedure suggested by Efron [32]. The bootstrap procedure is used to generate a large number of
samples (500 in our case) for each individual pixel.

2.3.2. Regional Spatial Bootstrap Method

This is a probability weighted regional method that was originally proposed by Uboldi et al. [17]
as a resampling approach for estimation of parameters of the AMS distribution. This technique is based
on the generation of a regional sample at any desired location by taking into account data observed at
surrounding stations but with decreasing importance when distance increases. Thus, the probability of
contribution of a certain station decreases as it goes far away from the desired location. The probability
of sampling also takes into consideration the length of the time series at each station, and as such,
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the possibility of oversampling can be avoided, and the use of short time series is enabled. This method
is basically a spatial bootstrap technique in which a regional sample is generated repeatedly from the
surrounding locations (pixels in the case of radar data) based on the randomness produced from the
probability of data extracting. The procedure of this approach involves formation of a homogenous
region, construction of a regional sample, estimation of statistical distribution parameters, repeating the
regional sampling and parameter estimation several times as in any bootstrap technique, and finally
obtaining a distribution of estimates for each parameter.

The regional sample of size (N) is constructed by extracting (N) observations randomly from all of
the available data (M) in a homogenous region. The probability of extraction of each observation is
assumed to be proportional to a prescribed Gaussian function (γm) of the distance between the station
at the desired location (X) and any other station (Km). Using spatially continuous radar observations
(pixel resolution of ~4 km in the current study), the spatial bootstrap methodology is implemented
as follows. For each pixel at a desired location X, and by prescribing distance-dependent extraction
probabilities, observations from nearby pixels are selected more often than observations from pixels
located far away. The probability of extraction of the mth observation located at a pixel (Km) is given
by the following relation:

γm = exp

⎧⎪⎪⎨⎪⎪⎩−1
2

[
dh(X, km)

Dh

]2
⎫⎪⎪⎬⎪⎪⎭. exp

⎧⎪⎪⎨⎪⎪⎩−1
2

[
dv(X, km)

Dv

]2
⎫⎪⎪⎬⎪⎪⎭ (7)

where dh(X, Km) and dv(X, Km) are the horizontal and vertical distance between pixel Km and the pixel
at the desired location (X). The Dh and Dv are scale parameters that are selected to impose some degree
of smoothing and were chosen in this study to be equal to the standard deviation of the available
distances between (X) and (Km).

Normalized by the sum of probabilities of all the observations (M), the probability of extraction of
each observation from N set of available observations can be obtained as follows:

γ m =
γm

Γ
, Γ =

∑M

m = 1
γm (8)

By sorting the (M) observations in a descending order according to their probability of extraction
(γ m) and assigning each observation a number (m) from 1 to M, a series of sequential ordered dataset
is obtained. The cumulative normalized probability of extraction (γ m) of each observation ranges
between (0, 1) and the probability of extraction of this cumulative probability is assumed to be
uniformly distributed, i.e., (γ m)~U (0,1). A continuous random variable (ρ) is then used to implement
a random number generator for a discrete random variable (m) with any prescribed (non-uniform)
probability distribution on positive integers up to a generic M. By generating a random number (ρ),
the corresponding cumulative probability (γ m) is equal to the generated random number (ρ) and
realization number (m) is equal to the first observation that has cumulative probability greater than or
equal to the generated probability (ρ).

The spatial bootstrap regional approach requires the formation of a homogenous region
surrounding each pixel, from which a regional sample can be constructed. The identification of
homogenous regions is a non-trivial step in the regional frequency analysis, and it may require
subjective judgement [33]. A homogenous region is the area including a group of sites, or pixels as in
the case of radar fields, that share similar physical characteristics. The advantages of working with a
homogeneous region is that the historical data available within the region can be pooled to get an efficient
estimate of parameters and hence a more robust quantile estimate [34]. Hosking & Wallis [33] strongly
preferred to base the formation of homogenous regions on site characteristics (e.g., by using geographical
delineation, cluster analysis, or principle components analysis) and to use the at-site statistics only in
subsequent testing of the homogeneity of the proposed set of regions. Conventional regionalization
techniques identify a fixed set of sites to form a contiguous region, resulting in fixed-boundary regions
without smooth transitions.
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Burn [10] presented the Region of Influence (ROI) approach for defining homogenous region,
in which every site can have a potentially unique set of gauging stations to be used in the estimation
of at-site extremes. The ROI technique is recommended as it avoids the transition problems across
fixed boundaries by introducing smooth change in the estimates across the boundaries of the regions.
The selection of the radius of influence is a trade-off problem, in which a large radius R will increase the
number of sites included in each ROI, but at the expense of the homogeneity of the set of sites included.
Conversely, a small radius R will ensure the homogeneity of the sites included, but the information
transfer will be decreased due to the smaller number of sites. In this study, the ROI approach is applied
by using a square window with an area equivalent to (2R + 1)2 bounding the pixel of interest (R is the
radius of influence and is used here to refer to the number of pixels considered in the horizontal or
vertical directions between the central pixel and the edge of the square window). The window forms a
homogenous region and constructs the regional sample for the target pixel (central pixel) using the
pixels lying inside this window.

Since the choice of a homogenous region, or the window size, should be based on climatic and
physical characteristics, the US Climate Divisions are used in this study to provide an indication for
the reasonable range of the radius of influence (R). Louisiana has nine Climate Divisions (Figure 1)
and the average area of each climate division is approximately covering a window with side length of
about 31 pixels, which corresponds to R = 15 pixels.

Figure 1. (a) Spatial distribution of the hourly Mean Annual Maxima (MAM; in mm). (b) The average
month of AMS occurrence in each pixel. (c) The average 6-h of AMS occurrence in each pixel. Results are
based on the period of study (2002–2012).
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Therefore, we chose R = 15 as a threshold for identifying the homogenous regions to estimate
PFE. In this study, we tested different square windows ranging from R = 3 pixels to R = 15 pixels
(results are only shown for R = 5 and 10) to study the effect of the region size on the uncertainty of the
estimates. For example, increasing the window size to 21 × 21, by setting R = 10 pixels, allows for
many more pixels (M = 441 × 11; 441 pixels with AMS of 11 observations in each pixel) to be included
in the region of each target pixel. The scale parameters in Equation (7), i.e., Dh and Dv, are chosen to be
approximately equal to the standard deviation of each radius of influence (for R = 5, Dh = Dv = 1 pixel
and for R = 10, Dh = Dv = 3 pixels). The regional sample size is chosen to be the same as the actual
number of years available in the radar dataset, i.e., N = 11 (sampled out of the M observations).

In order to reduce the likelihood of extracting annual maxima that might come from the same
event, a constraint is added in such a way that the gap in the time stamp of any two annual maxima
extracted from two different pixels must be greater than 6 h. This criterion is evaluated using the
Julian Date in which the 6 h represent 0.25 day. For instance, if the extracted annual maximum occurs
in a certain Julian Date (JD), then any new annual maximum must have a new Julian Date greater
than (JD + 0.25) or smaller than (JD − 0.25). This restriction might not be necessary in the case of
gauge-based PFE analysis since the gauges are separated with relatively large distances, and therefore
it is less probable to have annual series in two gauges that share exactly the same events. On the
other hand, the application of this conditioned extracted annual maxima is critical to the radar-based
annual maxima, since they are provided on a uniform grid with high spatial resolution (4-km × 4-km
in our dataset).

3. Results

3.1. Characterization of Annual Maxima

Radar precipitation estimates provide new possibilities to investigate the climatology of extreme
rainfall at high spatial resolutions and over large areas [7]. Louisiana is considered one of the wettest
of the contiguous 48 US states with extreme events that are generated by various rainfall mechanisms.
Extreme events in the Southeastern US are typically generated from different synoptic weather patterns,
for example, tropical storms, fronts, and convective airmass thunderstorms [27]. Figure 1a shows the
Mean Annual Maxima (MAM) rainfall depth for each pixel in the domain of the study area. Most of
the maxima are in the range between 20 mm and 100 mm with a significant spatial increase towards the
gulf coastal zone. Figure 1b depicts the spatial distribution of average month of occurrence for annual
maximum rainfall and shows dominance of the summer season (June—July—August) throughout
most of the state. These results agree with Maddox et al. [35] who concluded that most of the extreme
events that cause flash floods are of convective nature with the predominance of events in the warm
season (April-September). The diurnal distribution of the annual maxima is illustrated by the average
6-h of annual maxima occurrence (Figure 1c). Most of the annual maxima occurred between 18:00 UTC
and 00:00 UTC, while fewer number of events occurred in the two intervals (00:00 UTC–06:00 UTC)
and (12:00 UTC–18:00 UTC).

3.2. Radar-Based PFE using Regional Sptail Bootstrap

Before presenting the results of PFEs using the spatial bootstrap technique, we first examine the
traditional at-site method (pixel-based in case of using radar datasets). The pixel-based estimation
procedure described in Section 2.3.1 was applied to the radar dataset to estimate the GEV distributional
parameters and the corresponding PFE for different return periods ranging from 2 to 100 years.
Confidence intervals for the estimated parameters and PFEs were also derived using classic scalar
bootstrap sampling at each pixel. The parameters and PFEs for each pixel are represented using the
mean of the 500 runs of bootstrap. The difference between the lower 5% and upper 95% quantiles of
the bootstrap samples are used to quantify the uncertainty in the estimates. The confidence intervals
are calculated using a non-parametric method, in which a probability is initially assigned to the sorted
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values of the sample ((0.5/n), (1.5/n), ([n—0.5]/n)), where n is the sample size (n = 500 bootstrap runs).
The quantiles are then computed by setting the probability to be equal to the confidence limit required,
e.g., 0.95, 0.90, 0.05, or 0.1. The first and last value in the bootstrap sample are assigned to the quantiles
for probabilities less than (0.5/n) and greater than ([n—0.5]/n), respectively. Figures 2 and 3 show the
GEV parameters estimated at each pixel using the pixel-based and regional spatial bootstrap methods,
respectively, over the domain of study covering Louisiana.

Figure 2. The GEV distribution parameters (shape, scale, and location parameters) from the pixel-based
approach. Left Panels: Mean of 500 bootstrap runs. Right Panels: The confidence width (95–5% percentiles).
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Figure 3. The GEV distribution parameters (shape, scale, and location parameters) from the
spatial bootstrap (region-based) approach. Left Panels: Mean of 500 bootstrap runs. Right Panels:
the confidence width (95–5% percentiles).

The shape parameter, estimated from the average of 500 bootstrap runs, varies between positive
and negative values mostly between [−0.5, 0.5]. The 5% and 95% confidence of the shape parameter
have values below −0.5 and above 1 due to the sampling variability. The scale parameter, in most
pixels, falls in the range between 5 and 20, with some subtle spatial patterns. The location parameter
has noticeable spatial gradients similar to those of the MAM (Figure 1a) where the location parameter
increases from north to the south and as we get closer to the Gulf boundary. The sampling effect on both
of the scale and location parameters is evident in the 5% and 95% confidence limits. The corresponding
PFEs are displayed for two representative return periods of 2 and 10 years (Figures 4 and 5). The PFE
results show significant variability in space with clear gradients from north to south. The uncertainty
associated with these estimates is fairly large, especially for large return periods, e.g., 50 and 100 years
(figures not shown). The spatial maps also show clear signs of irregularities and inconsistency in the
spatial variability of the estimated quantiles, which are mostly noticed for large return periods.
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Figure 4. The rainfall depth (in mm) and the confidence width (95–5% percentiles) corresponding to
2-year return period from the pixel-based (upper panels) and spatial bootstrap approaches (region-based)
(lower panels).

Figure 5. The rainfall depth (in mm) and the confidence width (95–5% percentiles) corresponding
to 10-year return period from the pixel-based (upper panels) and spatial bootstrap approaches
(region-based) (lower panels).
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The confidence limits are estimated using the spatial bootstrap technique for 500 runs using
a moving window of 11 × 11 pixels (R = 5). Compared to the pixel-based approach, the results
suggest that the spatial bootstrap approach reduced the estimated parameters and resulted in narrower
confidence intervals. For instance, the mean shape parameters, in most of the pixels, went down to the
range [−0.2, 0.2] with a noticeable reduction in the width of the uncertainty bounds. The reduction
in the dispersion of the estimated parameters is attributed to the gain from the repeated sampling
from the surrounding pixels, which is the main advantage of a regional estimation as opposed to
using information available at each pixel only. Sampling from a homogenous region resulted in
smoother fields of the GEV parameters with less sampling variability. Because of the short record
available in each pixel, only 11 years, the pixel-based estimation varies considerably from one pixel
to another, which was circumvented when using the regional spatial bootstrap estimation with the
moving window at each pixel. Increasing the size of the moving window to (21 × 21) or R = 10 pixels
resulted in lower variability and more smoothness for the estimates transition between the pixels
(figure not shown), but possibly at the expense of losing details in the spatial patterns.

Figures 4 and 5 display the PFEs using the GEV distribution parameters for return periods of
2 and 10 years. Improvements in the smoothness of the different PFEs can obviously be seen when
using the spatial bootstrap approach over the pixel-based approach. The smoothness in the PFEs
patterns by the spatial bootstrap resembles to a great extent the smoothing algorithm performed by
Durrans et al. [4] who used simple distance-weighted averaging procedures to spatially smooth the
estimates of sample L-moments. Their smoothing algorithm reduced the effects of sampling variations
caused by the short time series used, only eight years in their study.

3.3. Comparison Against Gauge-Based PFE

In this section, the NOAA Atlas 14 gauge-based PFEs [18] are contrasted against the corresponding
frequencies estimated using the two approaches presented earlier; pixel-based and spatial bootstrap
regional estimation methods. The gauge-based AMS used in the Atlas 14, as well the corresponding
PFEs with their 90% confidence intervals, were acquired from the NOAA’s Hydrometeorological Design
Studies Center (HDSC) web-based data server. We used the gauge-based PFE from the NOAA Atlas as
a reference to assess the robustness of the spatial bootstrap method when (a) estimating PFEs with short
radar samples, or (b) in cases of having outliers in the radar AMS sample. However, it is important to
note that this comparison does not imply that PFEs from gauges are the true estimates, simply because
they also have their own uncertainties caused by sampling variability and the estimation process
itself [36]. Nevertheless, the comparison will provide some insights into the performance of the regional
spatial bootstrap method in deriving PFEs using radar-based estimates.

The NOAA Atlas 14 applied a regional frequency analysis approach that is different from the
spatial bootstrap technique used in the current study. The main difference is in how the regional
sample is constructed from the homogenous region formed for each station. In the Atlas 14 method,
a homogeneous region is defined for each gauge by grouping the closest 10 stations. The 10 stations
are then added to or removed from the region based on factors such as distance from a target station,
elevation difference, difference in MAMs at various durations, and inspection of locations with respect
to mountain ridges. The AMS for a network of 33 hourly gauges in Louisiana is retrieved from the
HDSC and used in the current study to identify differences in the AMS constructed from the radar
QPE versus those from the gauges (Figure 6).
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Figure 6. (a) the mean annual maxima rainfall depth extracted from NOAA Atlas 14 gauges and
the corresponding radar-pixel (each color represents one of the 33 gauges in Louisiana retrieved
from NOAA HDSC web-based data server). (b) same as (a) but reporting the coefficient of variation.
(c) comparison of AMS from gauge data and radar-based estimates (for common period 2002–2010) at
the location of two example NOAA Atlas-14 gauges (indicated in Figure 1a).

Figure 6a shows that the radar-based QPE product has an overall lower value (AMS) than the
corresponding gauge-based AMS, with an average underestimation of 9 mm. Such underestimation of
radar-based precipitation can be partially attributed to the areal estimation of precipitation in case of
radar pixel as opposed to point gauge. However, given the high resolution of radar (4-km × 4-km),
the effect of point-area discrepancies is negligible for small areas. For instance, according to the values
given in TP-29 [37], the percent of area-to-point precipitation in case of hourly rainfall and for areas of
less than 16 km2 is higher than 95%. In terms of the variability of the AMS, 20 gauges experience higher
coefficient of variation (average = 0.34) compared to the corresponding radar pixels (average = 0.25).
A higher variability in the gauge-based AMS is attributed to longer record available (with an average
of 38 years for gauges in Louisiana) compared to only 11-years of radar-based AMS that are used in
this study.

Three representative gauges (from the NOAA Atlas 14), are selected for further comparison
analysis (Table 1).

Table 1. The NOAA Atlas 14 gauges selected in our study to evaluate the spatial bootstrap approach
when using radar-based precipitation estimates.

Gauge Latitude Longitude NOAA Atlas14 AMS Size

Gauge (1) 30.12◦ −93.23◦ 49 years

Gauge (2) 29.23◦ −90.00◦ 26 years

Gauge (3) 29.99◦ −90.25◦ 64 years

The three gauges are located in the southwest and southeast climate divisions of Louisiana
(Figure 1a). Figure 6c shows plots of the AMS extracted from gauge (1) and the coincident pixel for
9 years covering the common period (2002–2010). The gauge-based AMS is available for 49 years
from 1962 to 2010 which is a long record compared with the 11-year radar QPE data used in the
current study (2002–2012). It is noted that the 2003 annual maximum from the radar QPE is much
higher compared to that of the corresponding gauge, which suggests that this particular value might
be an outlier. The mean and standard deviation of the AMS for this pixel are 58 mm and 37 mm
respectively. When excluding the outlier observation, the standard deviation for the AMS is only
14 mm, which indicates the high variability that might result from this individual value. Moreover,
upon applying the Grubbs-Beck (GB) outlier detection test, this observation is considered an outlier at
a 5% level of significance.

Figure 7 shows the effect of including annual maxima events from neighboring cells by comparing
the range of AMS (minimum and maximum hourly precipitation in AMS sample) at the location of
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three gauges in Louisiana (indicated in Figure 1). Again, the outlier identified at the pixel coincides
gauge (1) is reflected in the range of AMS formed when using regional approach. In addition, it is very
evident in gauges (2) and (3) that sampling from neighboring cells, i.e., forming a regional sample,
can significantly increase the range of extreme precipitation events that are not captured in the 11-year
AMS sample of the pixel. For example, in case of gauge (3), the AMS sample from a region of R = 10 can
range between 16.8 mm and 109.5 mm, which covers the range of gauge-based AMS (between 28.4 and
102 mm). When using a pixel-based approach at the same gauge location, sampling from an 11-year
AMS can only ranges between 29.9 mm and 63.1 mm.

Figure 7. The range of AMS from gauge data, radar pixel, and radar-based regional sample considering
a radius of 5 and 10 pixels. Each bar ranges between the minimum and maximum value in AMS sample
extracted at the location of gauge (see Figure 1a for gauges locations).

To assess the impact of outliers, we estimated the PFE quantiles at the specific location of gauge
(1) using both the pixel-based and the spatial bootstrap methods. The unusually high radar AMS
value (in 2003) resulted in a rather higher mean PFEs and wider uncertainty bound when using the
pixel-based approach (Figure 8), while the spatial bootstrap technique was much less influenced by it.

Figure 8. Precipitation Frequency Estimates (PFE) and (95–5%) confidence limits using different
estimation approaches at the location of Gauge (1).
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For example, for 25-year return period, the pixel-based estimation resulted in a mean PFE of
120 mm compared to 96 mm and 82 mm estimated in Atlas 14 (using gauges) and spatial bootstrap
(using AMS from radar pixels with R = 5 pixels), respectively. The (95–5%) percentile difference of
25-year return period dropped down from 115.5 mm when using the pixel-based estimation to 68 mm
using spatial bootstrap with a radius of influence R = 5 pixels (compared to 51 mm from the regional
approach adopted in Atlas 14). Further reduction in mean PFEs and confidence limits are also noticed
in Figure 8 when using spatial bootstrap while augmenting the regional sample using a larger radius
of influence (e.g., R = 10). The reduced effect of possible outliers is one of the benefits of the spatial
bootstrap technique since the combined use of multiple pixels enables reducing the impact of such
very rare events (Uboldi, et al., 2014). Owing to longer records available for precipitation in most of the
gauges (49 years for Gauge 1), the gauge-based PFEs from Atlas 14 have narrower uncertainty bounds
for larger return periods (>10-year). Overall, the PFE results using the spatial bootstrap method are
closer to those of the Atlas 14 than the pixel-based approach. For example, the spatial bootstrap method
(with R = 5 pixels) resulted in an overall mean absolute percentage deviation (assuming Atlas 14 as
our reference) of 15% compared to 25% when using pixel-based approach. When compared to NOAA
Atlas 14 PFEs, the spatial bootstrap method resulted in smaller confidence intervals for shorter return
periods (less than 10 year-return period).

Gauge (2) represents an example where AMS sample is constructed for a different period
(1948–1981) compared to radar (2002–2012). Unlike gauge (1), the precipitation frequencies estimated
by the NOAA Atlas 14 approach are quite larger than those estimated by the radar QPE dataset when
using the pixel-based estimation. Figure 8 shows lower mean estimates for the quantiles and very
narrow confidence intervals in the pixel-based estimation compared to Atlas 14 regional estimation
method. For example, 5-year PFE using pixel-based estimation resulted in a confidence interval of
16 mm compared to 36 mm from gauged-based PFE. The lower quantiles estimates can be attributed
to an overall underestimation in radar-based AMS values as compared to those estimated by gauge
(average underestimation in mean annual maxima is 14.4 mm), while the less variability is due to the
small standard deviation of the AMS. This narrow confidence bounds discloses one of the limitations
of using the conventional bootstrap resampling with small sample sizes, since it will never generate an
observation either larger or smaller than the maximum or minimum AMS observation [38].

When applying the spatial bootstrap technique over Gauge (2), it resulted in lower PFEs estimates
compared to the NOAA Atlas 14 estimates. While the mean PFEs from both the pixel-based estimation
and the regional spatial bootstrap techniques are very comparable, the spatial bootstrap resulted in
wider confidence intervals. This is attributed to the addition of observations, other than those included
in the pixel sample (Figure 7), that introduced more variability to the quantile estimates in a way that
makes them closer to those derived by the gauge-based PFE from NOAA Atlas 14. Unlike the expected
reduced variability in regional-based approach, the variability increased with opening the moving
window to larger size (Figure 9; using R = 10) to take advantage from more pixels surrounding the pixel
that coincides with Gauge (2). For example, 50-year return period PFE has a higher (95–5%) confidence
width of 67 mm when using the spatial bootstrap (R = 10 pixels) compared to only 24.4 mm from
pixel-based estimation. An underestimation in radar-based PFEs can be attributed to the conditional
bias that is typically manifested in radar QPE products [16]. The conditional bias characterizes the
performance of QPE products at different ranges of the rainfall amount [39]. An increase in the QPE bias
at high rainfall rates [40] propagates in the radar-based PFE analysis regardless of the PFE estimation
method and results in an overall underestimation of the PFE quantiles as illustrated in Figure 9c.
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Figure 9. Precipitation Frequency Estimates (PFE) and (95–5%) confidence limits at the location of
Gauge (2) based on (a) NOAA-Atlas14, (b) pixel-based approach, and (c,d) regional spatial bootstrap
with a region of R = 5 pixels (c) and R = 10 pixels (d).

3.4. Effect of Regional Sample Size

In our analysis, we opted to use the same sample size of the radar record (11 years) to highlight the
differences in the estimation methods, i.e., pixel-based estimation vs. The spatial bootstrap approach.
However, since one of the advantages of the spatial bootstrap technique is the ability to incorporate
more information from neighboring pixels, it is important to assess the effect of the size of the regional
sample. Figure 10 compares the percentage change in the mean quantiles and the confidence interval
(95–5%) of PFEs when using pixel-based approach and regional spatial bootstrap methods as compared
to our reference (i.e., NOAA Atlas 14).

Figure 10. Percentage change in mean quantiles and confidence interval (95–5%) when using the spatial
bootstrap method with sample size of 11 and 30, compared to NOAA Atlas 14 gauge-based PFES
(only 10 and 25-year return periods are shown).

The results are presented at the locations of the three selected gauges in southern
Louisiana (indicated in Figure 1). The spatial bootstrap method produced lower mean quantiles
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(i.e., negative changes) for the three gauges with slight differences when increasing the regional sample
size. For example, at the location of gauge (2), a regional sample of size N = 11 would underestimate
(as compared to NOAA Atlas 14) the mean 10-year PFE by 28.4% (compared to 30.8% in case of N = 30).
Increasing the regional sample of the spatial bootstrap can improve the PFEs estimation in case of gauge
(3). The relative change in the mean 25-year quantile for the pixel coincides gauge (3) slightly reduced
from −38% (N = 11) to −37% (N = 30). In terms of uncertainty, increasing the regional sample size can
result in narrower confidence intervals as compared to gauged-based PFEs. For example, when using
a regional sample size of N = 30 at Gauge (3) location, 25-year PFE has a narrower confidence interval
with a reduction of −58.9% compared to the gauge-based PFEs (as opposed to a −40.8% reduction
when using a sample size of N = 11).

4. Discussion

Accurate information on PFEs are critically needed at high temporal and spatial resolutions to
serve in various water resources planning and design purposes. The estimation of PFEs becomes
challenging when dealing with short data records to derive precipitation frequencies for large return
periods [30]. Using a short sample size to fit the extreme value distributions results in large uncertainties
when estimating distribution parameters and quantiles, especially for short durations, e.g., hourly PFEs.
Therefore, implementing a regional frequency analysis is an effective means for trading space with
time. However, when using precipitation estimates from remote sensing data, e.g., radar or satellite
products, applying a robust regional frequency analysis is driven by: (1) accurate estimation of
extreme values; and (2) definition of a homogenous region. This study investigated the utility of
the spatial bootstrap technique as a potential regional approach to derive precipitation frequencies
using radar-based precipitation datasets that typically have short observational records. The spatial
bootstrap approach has the advantage over pixel-based estimation to augment the sample size by
sampling from a homogenous region surrounding the pixel of interest. Our results indicated that the
spatial bootstrap technique can provide spatially smoother distribution parameters and associated
quantiles compared to the pixel-based approach, which reduces the unrealistically high variations
between neighboring pixels over the fine-resolution radar grid (4-km × 4-km in the case of Stage IV).

Defining the spatial extent of a homogenous region is an important factor to consider when
using a spatial bootstrap technique. The selection of the region size is a trade-off problem, in which
larger regions will increase the number of pixels and the overall sample size, but at the expense of the
homogeneity of the pixels included in the analysis. A larger region will also result in a reduction of the
uncertainty of the PFEs (Figure 8). As recommended by [33], it is strongly prefered to base the formation
of homogenous regions on site characteristics, using for example geographical delineation, cluster
analysis, and principle components analysis. For example, a square region of pixels, as used in our
study, might not be appropriate in case of complex terrain. Therefore, in such cases, a careful selection
of a homogenous region should include different attributes of the study region such as physiographic
catchment characteristics, geographical location attributes, and meteorological factors [41]. At-site or
pixel-based statistics can be then used in subsequent testing of the homogeneity of the proposed set
of regions.

Our tests on the effect of the regional sample size showed that a longer sample size can significantly
reduce the uncertainty associated with large return periods, e.g., 10-year PFEs (Figure 10). When using
radar data for PFE analysis, the regional sample size could be increased beyond the actual record
length, but without significantly impacting the estimation of the mean PFEs. It is noted that the desired
increase of the regional sample size might lead to over-sampling by including observations of similar
events in the same synthetic sample; however, the spatial bootstrap method avoids such problems by
assigning distance-dependent probabilities to individual observations, rather than to specific pixel
sites. While our study focused on the frequency analysis of precipitation at hourly scale, the same
regional approach can be implemented at longer durations, e.g., 6-h and 24-h, to derive DDF or IDF
curves required for design purposes.
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The results of the radar-based PFE were assessed versus those from the NOAA Atlas 14 that
were developed using a gauge-based regional frequency analysis. The comparison indicated that
pixel-based approach was highly sensitive to observational and sampling variability, and as such
can yield much higher or lower PFE estimates compared to the gauge-based PFE. On the other hand,
region-based spatial bootstrap approach was less sensitive to sampling effects and short records of
radar data, thanks to its regional sampling mechanism. The spatial bootstrap technique provides more
realistic representation of the PFE confidence intervals and thus can be considered more reliable when
assessed against the reference NOAA Atlas 14 frequency estimates. Since spatial bootstrap technique is
less sensitive to outliers, it can be more robust when applied using data that typically contain outliers
in extreme precipitation, such as the case of most real-time radar products, including the Stage IV
product [25]. The spatial bootstrap approaches are still prone to the systematic biases that are inherent
to most radar-rainfall products. Conditional biases, which impact the extreme rainfall values and
propagate into the PFE estimation process, need to be adjusted at the radar-rainfall estimation phase
before being used for PFE applications. Isolating the effect of the inaccurate estimation of the extreme
values by the radar product from other factors, e.g., selection of homogenous region or sample size,
is beyond the scope of our study. A future work, e.g., through some simulation-based approach,
can quantify how the systematic biases in extreme value estimation can mix with other factors and
how they individually (and combined) affect the overall PFE results.

5. Conclusions

Traditionally, Precipitation Frequency Estimates (PFE) information is based on near-point
observations of sparsely distributed rain gauges. The limited spatial availability of rain gauge
stations, and their lack of areal representation, calls for exploring the utility of weather radar techniques
for PFE analysis. This study examined the applicability of a spatial bootstrap regional approach to
derive PFEs using radar-based Quantitative Precipitation Estimates (QPE). The focus was on whether
the spatial bootstrap regional method can address typical limitations in using short-record radar
datasets for PFE analysis. The analysis was performed over the domain of the state of Louisiana in
southcentral USA. The key conclusions of our study are as follows:

1. The spatial bootstrap as a regional method can successfully alleviate the effect of short record
availability in radar-based QPE (typically 10–20 years) by bootstrapping spatially from neighboring
pixels to gain more information from a climatologically homogenous region.

2. The use of the spatial bootstrap regional method resulted in PFE quantiles and distribution
parameter spatial fields that are smoother and less noisy compared to the pixel-based approach.
Spatial gradients in the PFE quantiles are distinctly evident across the domain of the entire state.

3. Augmenting the sample size and/or the region of influence in the spatial bootstrap showed a
significant reduction in the estimated uncertainty of the PFEs at different return periods.

4. Compared to a pixel-based approach, the spatial bootstrap technique is less sensitive to
observational and sampling variability and can provide more realistic representation of the
PFE confidence intervals. Thus, when compared with the gauge-based NOAA Atlas 14 frequency
estimates, PFEs from spatial bootstrap method can be considered more reliable than pixel-based
estimation. However, for some cases where QPE estimates have inherent systematic bias especially
for extreme rainfall, both of the spatial bootstrap and pixel-based estimation methods resulted in
considerable underestimation in PFEs.

The overall results of the current study indicate the potential power of regional spatial bootstrap
technique in deriving PFEs from radar-based QPE at high spatial and temporal resolutions. Given
the global coverage of satellite data at high spatiotemporal resolution, it is of interest, particularly in
regions with scarce in-situ data, to advocate the use of satellite-based PFEs in the design, operation,
and planning of infrastructure. Therefore, a robust regional approach, as the spatial bootstrap method,
can be very useful in reducing uncertainties associated with satellite-based PFEs. Future studies can
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also explore a viable approach that combines information from both radar and rain gauge sources to
capitalize on their respective strengths and improve the PFE estimation process. Such accurate and
regionally representative PFE information are critically needed for various water resources engineering
planning and hydrologic design applications.
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Abstract: Spatial and temporal precipitation data acquisition is highly important for hydro-meteorological
applications. Gridded precipitation products (GPPs) offer an opportunity to estimate precipitation
at different time and resolution. Though, the products have numerous discrepancies that need
to be evaluated against in-situ records. The present study is the first of its kind to highlight
the performance evaluation of gauge based (GB) and satellite based (SB) GPPs at annual, winter,
and summer monsoon scale by using multiple statistical approach during the period of 1979–2017
and 2003–2017, respectively. The result revealed that the temporal magnitude of all the GPPs was
different and deviate up to 100–200 mm with overall spatial pattern of underestimation (GB product)
and overestimation (SB product) from north to south gradient. The degree of accuracy of GB
products with observed precipitation decreases with the increase in the magnitude of precipitation
and vice versa for SB precipitation products. Furthermore, the observed precipitation revealed
the positive trend with multiple turning points during the period 1979–2005. However, the gentle
increase with no obvious break point has been detected during the period of 2005–2017. The large
inter-annual variability and trends slope of the reference data series were well captured by Global
Precipitation Climatology Centre (GPCC) and Tropical Rainfall Measuring Mission (TRMM) products
and outperformed the relative GPPs in terms of higher R2 values of ≥ 0.90 and lower values of
estimated RME ≤ 25% at annual and summer monsoon season. However, Climate Research Unit
(CRU) performed better during winter estimates as compared with in-situ records. In view of
significant error and discrepancies, regional correction factors for each GPPs were introduced that can
be useful for future concerned projects over the study region. The study highlights the importance of
evaluation by the careful selection of potential GPPs for the future hydro-climate studies over the
similar regions like Punjab Province.

Keywords: gridded precipitation products; abrupt changes; trends; statistical indicators;
agriculture; Pakistan
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1. Introduction

Accurate and reliable estimates of global climate patterns are directly associated with the regional
variation in precipitation [1]. The changes in amount and pattern of precipitation could directly influence
the water resources and agriculture of the concerned regions [2]. Therefore, understanding the
spatiotemporal variation in precipitation on the regional scales is of great importance in climate
monitoring and in hydro-climate studies [3]. Several researchers have reported the spatiotemporal
variations of precipitation for different regions of the world [4–7]. There is a growing agreement
that long term changes in precipitation could alter the ecological and hydrological processes [8] and
underpin our knowledge of global and regional climate change [9]. These accurate and reliable
precipitation records underpin our knowledge of regional and global climate change, as well as their
possible impacts on water resources [10,11].

In general, gauge measurements are the basic and reliable way of precipitation data
acquisition [12]. Unfortunately, scarce gauge records, irregular distribution, limited data access,
and poor spatial coverage hinder their use in conducting hydro-meteorological studies and climate
change assessments [13,14]. In recent decades, with the advancement in remote sensing and
geo-information technology, the gridded precipitation products (hereafter GPPs) has proven to be a
reliable and cost-effective way of retrieving gridded precipitation data at various spatial and temporal
scales across the globe [15]. These precipitation data either derived from satellite products or from
the nationwide meteorological stations by using different interpolated algorithms and computational
techniques by considering the physical characteristics (slope and elevation) of different regions.
These multi-source data products are often applied as climatological input for hydro-climate simulation
studies in data scarce extents to bridge the gap at regional scale [16] and there has been a considerable
increase in the use of these products, owing to their easy accessibility, spatiotemporal coverage, and fine
resolutions [17].

The evaluation of GPPs has also proved useful for different hydro-climate applications.
The precipitation variability in different Gridded Data Products (GDPs) has been quantified for
different regions across the globe [18–20]. Various studies were carried out in recent years to assess
the performance of GDPs, revealing considerable differences between the products at the regional
scale [21]. Furthermore, there are uncertainties that are associated with GPPs, because of the variability
in spatial and temporal coverage, lack of in-situ observations, relocation of gauges, and data processing
practices [22]. Thus, the reliability and accuracy of GPPs varies with time and regional climate [23].
Therefore, it is highly important to assess and evaluate the performance and capability of the GPPs at
regional scales, especially the arid and semi-arid regions that are more sensitive to insignificant changes
in climatic characteristics due to its fragile ecosystems [24]. Such regions are characterized by very
complex hydrological systems that often exhibit extreme behaviors, such as extended droughts due to
prolonged dry spell and floods due to high-intensity precipitation [25]. The predominantly arid and
semi-arid climate and geographical location in the fast temperature rising region have made Pakistan
one of the most vulnerable countries in the world to climate change [1]. Moreover, the natives of the
country are mostly engaged in agriculture, a highly susceptible sector to climate change, with limited
resources to adapt to changing circumstances [26].

Few studies were carried out in order to evaluate the performance of different GPPs against
the reference data, which mainly focused on the basin level or higher altitude sites of the country
and ignored the important segment of spatiotemporal precipitation variations in agricultural region
of the country. For instance, [27] assessed the precipitation distribution in the high altitude region
of Hindu-Kush-Himalaya basins by using different precipitation products. The study reported the
better performance of ECMWF Re-Analysis (ERA-Interim) product at high catchments as compared
with WATCH Forcing Data Methodology (WFDEI) and APHRODITE products. Using different
gridded precipitation products, [28,29] reported the significant errors in different gridded product;
however, Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA)
product performed better in the high catchments of the Indus basin. On the contrary, [30] reported
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the overestimation of TMPA products against reference data using the simple statistical metric
approach over the complex topography of Pakistan. The present study is first of its kind, which aims
to bridge the gap of knowledge with a detailed multiple-scale assessment of the spatiotemporal
uncertainties of selected global precipitation products that are generated by different sources by using
different statistical metrics, trends evaluation and comparison approach over the Punjab province,
Pakistan. It is worth mentioning that Punjab province is highly important in the perspective of
agriculture and irrigated farming as it produces major agriculture commodities of the country and
it is highly vulnerable to changes in most of meteorological parameters with high frequency events
and, hence. is highly prone to climate change [31]. In this study, we aim to assess the quality and
differences of the different GPPs generated from multiple sources, i.e., Gauge Based (GB) products,
Global Precipitation Climatology Centre (GPCC), Center for Climatic Research, University of Delaware
(UDel), Asian Precipitation—Highly-Resolved Observational Data Integration Towards Evaluation
(APHRODITE), Climate Prediction Centre (CPC), Climatic Research Unit, University of East Angelia
(CRU) and Satellite Based (SB) products, Tropical Rainfall Measuring Mission (TRMM, Precipitation
Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record
(PERSIANN-CDR), Precipitation Estimation from Remotely Sensed Information using Artificial Neural
Networks- Cloud Classification System (PERSIANN-CCS), Global Satellite Mapping of Precipitation
(GSMap) and Climate Hazard Group Infrared Precipitation with Station Data(CHIRPS) during the
period of 1979–2017 and 2003–2017, respectively, over the Punjab province in Pakistan. Secondly,
to evaluate and compare the changes in temporal trends and abrupt turning points in selected
GPPs against the reference data for the study region. We perceive the usefulness of this study as
multi-directional, because the findings of the study could be used as baseline for the selection of
potential GB and SB GPPs over multiple time scales for different hydro-meteorological studies.

2. Study Area

Pakistan is geographically located in southwest Asia with an area of 8 × 106 km2 between latitude
and longitude range of 24–37◦ N and 60–75◦ E (Figure 1). The country has diverse topography that
ranges from Karakoram and Himalayan mountains in the north and northwest to the agriculture
plains in the center and south of the Indus basin along the southern cost of the Arabian sea [32].
Pakistan is an agrarian country and Punjab is the second largest Province with geographical coordinates
of 31.17◦ N and 72.70◦ E. The Province has the largest population and producing more than 50% of
the country’s agricultural commodities [33]. The regional mean temperature varies from 23 to 26 ◦C,
with a Tmin of 16–19 ◦C and a Tmax of 29–33 ◦C. The northern part of the Province receiving more
precipitation than southern part with overall annual mean precipitation ranges from < 300 mm in
the southern part to > 800 mm in the northern part [34]. The two major seasons that dominates the
overall hydrology of the region, i.e., the summer monsoon (June–September) and winter monsoon
seasons (December–April) [35]. The maximum precipitation occurs during the summer monsoon
due to the monsoon system that originates from Bay of Bengal and enters in the country from east
and northeast [35]. The winter precipitation instigates from the Mediterranean Sea due to western
disturbances and enters in the country from southwest and northeast direction [35]. There is great
variation and extreme events during summer and winter monsoon precipitation seasons that make this
region a highly susceptible to climate change [36]. Due to highly vulnerable in precipitation changes,
the spatial and temporal evaluation of the GPPs is highly important for further application of these
products, including hydro-meteorological studies over the study region.
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Figure 1. Study area and meteorological stations.

3. Materials and Methods

3.1. In-Situ Records

The long term monthly precipitation data that were collected from 20 meteorological stations over
the Punjab region were acquired from Pakistan Meteorological Department (PMD) (Figure 1). The in-situ
records were investigated during the study periods from 1979 to 2017 and from 2003 to 2017 as reference
data for the assessment of GB and SB precipitation products, respectively. The selection of the gauges
depends on their maximum availability and completeness of data series. The GPPs were evaluated
against the in-situ records on an annual, winter, and summer monsoon season. The winter and summer
monsoon seasons are the primary drivers of the annual hydrological cycle with major influence of Asian
monsoon (summer monsoon season) over the study region [28]. The GB and SB GPPs were developed
while using quality-controlled procedures and algorithms. However, the stations data are generally
considered as standard measurements for the evaluation of GPPs [37,38]. Moreover, the standard
quality-controlled procedures were adopted for the better accuracy assessment of GB and SB GPPs.
For quality assurance, station data series were thoroughly checked and outliers were fixed with
neighboring gauge records [39]. Gaps were filled using a time-based interpolation approach [40].
Several post-processing techniques have been developed to identify the consistency and homogeneity’s
in the station records [41]. The double-mass curve was applied to observe the inhomogeneity in the
station records [42]. The curve of all the stations showed a straight line with no evident break points,
which confirms a temporal consistency and uniformity in the time series records.

After quality control process in the reference data series, the thin-plate splines (TPS) interpolation
method was introduced to convert the station data into products relative spatial grid sizes for the
assessment of GB and SB GPPs on spatial scale. The original TPS method is defined by [43], whereas [44]
provides a detailed description of its application for different climate indicators. The TPS scheme
is applicable and robust in regions where stations density is low and prior estimation of the spatial
auto-covariance is not required [44]. The time series autocorrelation method was applied prior to
estimate the trend significance, magnitude, and abrupt turning point to ensure the occurrence of
significant autocorrelation in the reference data series [1]. The presence of significant autocorrelation
in the reference data series could influence the outcome of Mann–Kendall (MK), Sen’s Slope (SS),
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and Mann–Kendall abrupt change analysis [45]. Therefore, the significance of autocorrelation should
be checked before applying the trend tests [46]. The analysis revealed no significant autocorrelation in
the reference data series of annual, winter, and summer monsoon seasons. Therefore, the in-situ records
are completely independent, and the MK test is applicable to the original gauge records. The detailed
description for autocorrelation method is reported by [47].

3.2. Gridded Precipitation Products (GPPs)

In this study, GB and SB GPPs (GPCC, UDel, APHRODITE, CPC, CRU, TRMM, PERSIANN-CDR,
PERSIANN-CCS, and CHIRPS, GSMap) were evaluated against the reference data (Table 1). Details of
the datasets are described below.

3.2.1. Gauge-Based GPPs

The Global Precipitation Climatology Centre (GPCC) obtained the primary data from
meteorological agencies at National level (NMAs), Food and Agriculture Organization (FAO),
Climate Research Unit, University of East Angelia (CRU), and Global historical climatology network
(GHCN) at the National Centers for Environmental Information [48]. The product covers the period
from 1891 to 2018. In this research, the monthly product of 0.5◦ spatial resolution is used from the
period 1979–2017. The product from University of Delaware, USA (UDel) acquired the primary data
from GHCN2, daily GHCN from National Centers for Environmental Information, National Center
Atmospheric Research (NCAR), Project Greenland of automatic meteorological stations, Data archives
of Nicholson for African continent, records of daily summary at the global level [49]. The product
covers the period from 1900 to 2017. The monthly precipitation data of 0.5◦ spatial resolution from
the period 1979–2017 is utilized in the study. The monthly product Climate Research Unit (CRU)
acquired the primary data from the World Meteorological Organization (WMO), Food and Agriculture
Organization (FAO), and National meteorological departments. The CRU product covers the period
from 1901 to 2019. The monthly precipitation data of 0.5◦ spatial resolution from the period 1979–2017
is used in the present study [50].

The daily Asian Precipitation-Highly Resolved Observational Data Integration towards Evaluation
of Water Resources (APHRODITE) product that was obtained the primary source data from
multiple Asian agencies including Global Telecommunication System (GTS), National weather
agencies, International Centre for Integrated Mountain Development (ICIMOD), International Water
Management Institute (IWMI) and other national and international projects on climate [51]. The product
covers the period from 1961 to 2015. The daily precipitation product of 0.5◦ spatial resolution was
accumulated into monthly time scale from the period 1979–2015 in the present study. The CPC is the
first product of Unified Precipitation Project at the National Oceanic and Atmospheric Administration
(NOAA). The product acquired the primary data from National weather agencies, quality controlled
station data from GTS, and Cooperative Observer Network [52]. The CPC product covers the period
from 1948 to 2018. The daily precipitation product of 0.5◦ spatial resolution was accumulated into
monthly time scale from the period 1979–2017 in the present study.

3.2.2. Satellite-Based GPPs

The TRMM satellite provides the continuous precipitation data (1998–present) which covers
the range from 50◦ N to 50◦ S over tropical to subtropical regions at 0.25◦ spatial resolution [53].
The TRMM Multi-satellite Precipitation Analysis (TMPA) used three basic instruments to record the
data, including Visible Infrared Scanner, Microwave Image and Radar Precipitation [30]. The TMPA
provides real time and post real time products. The post real time version 7 products have adjusted with
gauge data and proved higher accuracy than TMPA real time product [54]. The present study utilized
the higher accurate version 7 products with monthly temporal and 0.25◦ × 0.25◦ spatial resolution
during the study period 2003–2017.
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The Precipitation Estimation from Remotely Sensed Information using Artificial Neural
Networks-Climate Data Record (PERSIANN-CDR) provides longer gridded data (1983–present)
with spatial resolution of 0.25◦ × 0.25◦ at the daily timescale. The PERSIANN-CDR estimates the
rainfall rate from geostationary satellites by using infrared brightness temperature [55]. The stage
IV radar data from the National Centers for Environmental Prediction (NCEP) is used to train the
Artificial Neural Network (ANN) model. The high resolution precipitation estimates then attuned by
Global Precipitation Climatology project (GPCP) for bias correction [56]. The daily data aggregated
into monthly time scale for evaluation against reference data for the study period 2003–2017.

The Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-
Cloud Classification System (PERSIANN-CCS) provides the gridded precipitation data (2003–present)
at spatial resolution of (0.04◦ and 30 min.) by using Infrared brightness temperature derived from
geostationary satellites and continuously updating its parameter using Passive Microwave (PMW)
measurements from low earth orbit satellites. The regression and histogram matching are used
to draw fit curve plot between temperature brightness of pixel and rainfall rate to achieve rainfall
mapping of each classified cloud cluster [57]. The daily data aggregated into monthly time scale for
evaluation against reference data for the current study period 2003–2017. The CHIRPS precipitation
dataset is quasi land product belongs to Climate Hazard Group with a spatial resolution of 0.05 ◦s and
temporal daily scale derived from TRMM satellite, and several observed products such as NOAA, CPC,
National Climatic Data Center (NCDC) and Climate Forecast System version 2 (CFSv2). The product
algorithm is based on the concept of cold cloud duration (CCD), which is the duration of time of
pixel covered by IR brightness temperature. Precipitation estimates by using CCDs procedure by
incorporating TMPA3B42 product and merged with observed measurements using the Inverse Distance
Weighting (IDW) method to produce final product [58]. For the current study, the daily data aggregated
into monthly time scale during the study period 2003–2017. The recent GSMap project is launched
by Japan Aerospace Exploration Agency (JAXA) to monitor precipitation at higher spatial resolution
of 0.1◦ and one-hour temporal scale. The product input is based on multiple polar orbiting satellites
with adjusted accuracy of Kalman smoothing approach [59]. The product covers the range of latitude
and longitude from 60◦ N to 60◦ S and from 180◦ W to 180◦ E, respectively. For the present study,
the hourly data converted into monthly time series during the period 2003–2017.

Table 1. Information of gauge based (GB) and satellite based gridded data products (SB GPPs) used in
the study.

Datasets Resolution Frequency Coverage Study Period Reference

APHRODITE 0.5◦ Monthly Global land 1979–2015 [51]
CRU 0.5◦ Monthly Global land 1979–2015 [50]
CPC 0.5◦ Monthly Global land 1979–2015 [52]

GPCC 0.5◦ Monthly Global land 1979–2013 [48]
UDel 0.5◦ Monthly Global land 1979–2015 [49]

TRMM 0.25◦ Monthly Global land 2003–2017 [53]
GSMap 0.1◦ Monthly Global land 2003–2017 [59]
CHIRPS 0.05◦ Monthly Global land 2003–2017 [58]

PERSIANN-CDR 0.25◦ Monthly Global land 2003–2017 [55]
PERSIANN-CCS 0.04◦ Monthly Global land 2003–2017 [57]

3.3. Descriptive Methods

Here, we assess the spatial and temporal performance of each GPP against the in-situ records
using different statistical techniques. The quantitative statistical indicators, including the root mean
square error (RMSE), Pearson correlation coefficient (CC), and standard deviation were applied while
using a Taylor diagram, which is a precise technique of measuring the degree of accuracy between
GPPs and reference data [60]. The mean error (ME) and relative mean error (RME) were calculated
in order to indicate the systematic bias which determines the level of over-or under-estimation of
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GPPs against in-situ data. Furthermore, the scatter plots were also used to determine the quantitative
linear relationship between each GPP against the reference data. Furthermore, the detection and
comparison of trends in different GPPs data series were evaluated against the reference data using the
non-parametric Mann–Kendall (MK) test. The MK trend test is simple and it has been widely used
for the detection of significant trends in hydro-meteorological time series data [61,62]. The trend test
is robust against normal distribution, missing values, outliers and is less susceptible to the abrupt
change point [63].

Similarly, the Theil and Sen’s Slope (TSS) is non-parametric test, which can be used to quantify
the slope magnitude in linear trends [64]. The TSS has been widely acceptable and used by many
researchers to detect the significant trends in different climate indicators [19]. The test is based on least
square regression technique, which is commonly used to estimate the rate of slope in a given time
series data [65,66]. Moreover, the abrupt change analysis was performed using the Sequential Mann
Kendall (SQMK) test. The SQMK test was proposed by [67] and it has been widely used to identify the
abrupt change point in hydro-meteorological time series data [49]. The test sets up two temporal series
based on forward and backward process i.e., progressive series (PS) and retrograde series (RS). In this
test, the progressive series is a standardized variable with zero mean and unit standard deviation.
The nature of the progressive series is same as that of Z values, which range from the initial to last data
point. Similarly, the value of the retrograde series is computed backwards, starting from the end point
and finishing at the first point of the temporal series. The positive and negative change in time series
data indicate increasing and decreasing trends, respectively [67]. Details of the descriptive statistical
methods are discussed and reported by many research papers [68–71]

4. Results

4.1. Evaluation of Temporal and Spatial Dynamics

Annual and Seasonal Scale

The annual averages of precipitation, as estimated from reference and gridded data products
(GPPs) over Punjab region, are shown in Figure 2. The temporal trends indicated that the annual
precipitation amounts that were underestimated by the GPPs with the exception of TRMM and
PERSIANN-CDR products, which overestimated the magnitude as compared with the reference data.
The temporal magnitude in all the precipitation products was different and deviate up to 100–200 mm
as compared with in-situ measurements. However, the most identical temporal fluctuation pattern of
precipitation was observed in GPCC and TRMM products with the relative mean error of −16.59% and
2.88%, respectively. Figure 3 illustrates the spatial distribution of GPPs and observed annual average
precipitation. The results indicated that, the spatial configuration of GPPs exhibited the similar pattern
of precipitation as compared with observed estimates. Across all of the GPPs, the northern part of study
area received more amount of precipitation than southern part and exhibited the precipitation pattern
towards south to north gradient with the range of 15–1500 mm. In all GPPs, the spatial consistency was
observed with a major deviation in northern Punjab. However, the most accurate and consistent spatial
pattern was observed in GPCC and TRMM product and the lowest spatial accuracy was observed in
CPC following by UDel and PERSIANN-CCS products particularly in northern Punjab. These products
were relatively less accurate to capture the higher amount of precipitation distribution over the
northern part of the study region. In contrast, the APHRODITE product showed less precipitation
magnitude in the central and southern Punjab as compared with observed precipitation. The spatial
distribution of the APHRODITE product showed better results at high catchments of the study region
as compared with plain areas. These results are consistent with the findings of [27], who reported
the better performance of APHRODITE product as compared with reference data at high-altitude
catchments in Pakistan.
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Figure 2. Mean annual variation in GPPs and reference data.

 

Figure 3. Spatial distribution of annual average of (A) GB and (B) SB precipitation products during the
whole study periods.

The descriptive statistical measures divulge the characteristics of GPPs when compared with the
reference data. Figures 4–6 indicates the plots as A (GB) and B (SB) precipitation products against the
reference data during annual, winter, and summer monsoon, respectively. The result showed that, all the
selected GPPs underestimated the annual precipitation amount, except TRMM and PERSIANN-CDR
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product, which indicates the overestimation of precipitation over the study region. The highest accuracy
was observed in the GPCC and TRMM products with lowest mean error and higher R-squared value
with the magnitude of −76.35 (0.90) and 14.26 mm (0.90) respectively. These products are comparatively
better to capture the annual precipitation variability over the study region. However, the lowest
accuracy was observed in CPC and PERSIANN-CCS products with the magnitude of mean error−163.57
(−34.71%) and−16.08 mm (−3.23%), respectively. These datasets are relatively less accurate for capturing
the annual variability amount of precipitation during the whole study period. Moreover, the GSMap and
PERSIANN-CCS products overestimated the precipitation magnitude ≤ 500 mm and underestimated
the precipitation amounts, which are ≥ 500 mm. The inter-comparison of gridded products indicated
a similar consistency, except TRMM and PERSIANN-CDR products, which showed positive bias.
The underestimation was more conspicuous in GB products as compared with SB products. The SB
products showed lower bias and higher accuracy as compared with GB products, which could be due
to higher pixel resolution of SB products over the study region [28]. Overall, TRMM product indicated
better quantitative performance and showed reasonable consistency against reference precipitation
over the study region.

Figure 4. Statistical indicators for the assessment of (A) (GB) and (B) (SB) precipitation products against
reference data (Annual timescale).
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The GB and SB precipitation products were further evaluated during winter monsoon season.
All of the GB products underestimated the winter precipitation with the highest and lowest accuracy
being observed in CRU and CPC product with the estimated mean error of −25.08 (−20.49%) and
37.99 mm (−31.04%), respectively. In contrast, the SB products overestimated the precipitation
magnitude except CHIRPS product, which indicates the underestimation of precipitation amount over
the study region. The highest and lowest accuracy was observed in TRMM and GSMap products
with the estimated mean error of 24.06 (19.39%) and 80.66 mm (65.03%) respectively. The rest of the
precipitation products also showed better quantitative agreement with a higher range of deviation
from the mean observed precipitation. Overall, the performance of CRU and TRMM were consistent
and show relatively less error during the winter monsoon season.

 

Figure 5. Statistical indicators for the assessment of (A) (GB) and (B) (SB) precipitation products against
reference data (winter monsoon).

Furthermore, the evaluation of precipitation products during the summer monsoon season
indicated the similar pattern of statistical metrics as assessed during annual time scale. The summer
monsoon precipitation dominated the regional water balance and plays a significant role in annual
precipitation variability. All of the GB and SB products underestimated the observed precipitation.
The highest and lowest accuracy in GB products was observed in GPCC and CPC with the estimated
mean error of −50.03 (−16.17%) and −114.50 (−36.48%), respectively. Moreover, the TRMM and GSMap
showed the highest and lowest accuracy as compared with in-situ with the estimated mean error of
−15.18 (−4.48%) and −136.06 mm (−40.16%), respectively. The products underestimation was more
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conspicuous during winter monsoon period as compared with annual and summer monsoon season.
Moreover, all of the SB products showed less range of mean error during annual scale following by
summer and winter monsoon seasons. However, the GB products exhibited lower mean error in winter
following by annual and summer scale. Overall, the performance of GPCC and TRMM products
showed the best agreement with in-situ in terms of higher R2 values of ≥ 0.90 and lower values of
RME ≤ 25% during annual, winter, and summer monsoon seasons.

Figure 6. Statistical indicators for the assessment of (A) (GB) and (B) (SB) precipitation products against
reference data (summer monsoon).

In order to evaluate the temporal pattern variability of different GPPs against observation data,
Taylor diagrams were plotted [62] to quantify the precise agreement between the observation and
GPPs in terms of correlation coefficients (CC), standard deviation (SD), and root mean square deviation
(RMSD), which are shown in Figure 7 as A (GB) and B (SB) precipitation products during annual,
winter, and summer seasons. In the diagram, correlation coefficient (CC) is denoted by blue lines
adjoining perpendicular to the parabolic scale, standard deviation (SD) is denoted by radii of the
black cycles and root mean square deviation (RMSD) donated by the radii of the green cycles. In the
diagram, if the value of the GPPs is closer to the observation data, then it is considered to be a better
product. The diagram statistics provide the evaluation of the temporal pattern of the GPPs against
observed data.
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Figure 7. Statistical evaluation of (A) (GB) and (B) (SB) precipitation products against reference data by
using Taylor diagram.

The results indicated that the GPCC and TRMM precipitation products outperformed the other
products during the annual scale in terms of higher CC of around 95% and less value of the RMSD.
The GPCC and TRMM points marked closer to the reference point indicated that the products relatively
performed better and they are suitable for the study region. The rest of the precipitation products also
depicted good agreement with observed data over the study region, with notable mean error all the way.
These results are in agreement with the findings of [27,72] who reported the better performances of
TRMM and GPCC products. The range of agreement is different, which could be due to a difference in
region, study period and statistical metrics. Moreover, the Taylor analysis during winter precipitation
indicated the better performance of CRU and TRMM products as marked closer to the reference
data with relatively higher CC of around 97% and lower values of RMSD. The GPCC, APHRODITE,
and CHIRPS products also showed better efficiency in terms of high CC and lower RMSD values.
On the other hand, the evaluation of precipitation products during summer monsoon revealed the
better performance of GPCC and TRMM products, as indicated by a higher CC of around 98% and
lower RMSD values. These results are consistent with the outcomes of products evaluation during the
annual time scale over the study region. The efficiency of GPCC and TRMM precipitation products
during annual and summer season was found to be similar and consistent. The major influence of
annual precipitation variability depends upon the summer monsoon season, as it receives the major
amount of precipitation and main driver of annual hydrological cycle [73]. Overall, the performance of
GPCC and TRMM products were best during the annual and summer time scale over the study region.
However, CRU product shows relatively better performance during the winter monsoon period.

Figure 8 shows the spatial distribution of GB and SB precipitation products against reference data
in terms of spatial pattern of statistical indices (ME, RMSD and CC) over the Punjab region during the
whole study periods. The results indicated that all of the GB products underestimated the precipitation
amounts as compared with observed precipitation. The range of deviation was more conspicuous in
northern Punjab with the dominated pattern of underestimation from north to south gradient. In the
entire study period, the GPCC product exhibited best agreement, as indicated by the distribution of
higher CC and lower values of ME and RMSD. However, the accuracy of GPCC product was more
precise over northeast and southern part of Punjab. The inter-comparison of GB products indicated
the similar pattern of underestimation, except the UDel and CPC product, which indicated the higher

38



Remote Sens. 2020, 12, 3650

range of underestimation over the whole study region. Both of the products showed the lowest
agreement following by APHRODITE product as compared with the observed pattern of precipitation.
On the other hand, the SB precipitation products showed the visible pattern of overestimation over the
whole study region. However, the pattern was more conspicuous over the northern and eastern part
of the study region. Moreover, all of the products showed a similar pattern of underestimation over
south-west part of the study region. However, the pattern of underestimation was more noticeable
in PERSIANN products over south to south west gradient as compared with observed precipitation.
The statistical pattern of all the SB products pointed out the better performance of TRMM product in
terms of higher CC and lower ME and RMSD values. The TRMM product outperformed the rest of the
product by showing the lowest error and highest accuracy. However, the pattern of overestimation
was more noticeable over the northern region of the study area. The overestimation in these areas
could be related to the higher rate of evaporation. These results are consistent with the findings of [27],
who reported the higher overestimation of satellite products in the foothills of northern mountain
range of Hindukush, Karakoram and Himalaya (HKH in Pakistan. Generally, the GPCC and TRMM
products showed the better accuracy and consistency in terms of spatial distribution of statistical
metrics with higher values of CC and lower values of ME and RMSD.

 

Figure 8. Spatial statistical indicators for the assessment of (A) (GB) and (B) (SB) precipitation products
against reference data.
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Overall, the extent of under/over estimation of precipitation by GB and SB products suggests
the significance of data correction before their reliable utilization in climate and hydrological studies.
For the correction of precipitation products, we analyzed the estimated mean error in different data
products and introduce a correction factor of each GB and SB product for annual, winter, and summer
monsoon season over the Punjab region. The regional correction factor of each product for annual,
winter, and summer monsoon during the period of 1979–2017 and 2003–2017 for GB and SB precipitation
products are summarized in Table 2. The correction factor needs to be multiplied with the respective
data products in order to minimize the percentage of error over the target region. The corrected
product data could be directly used in climate modelling and other relevant studies [27].

Table 2. Annual and seasonal correction factors for each GPPs over Punjab region.

GPPs Annual Winter-Monsoon Summer-Monsoon

CRU 1.19 1.24 1.17
GPCC 1.18 1.31 1.15

APHRODITE 1.61 1.48 1.71
CPC 1.53 1.47 1.57
UDel 1.20 1.33 1.38

TRMM 0.99 0.84 1.06
CHIRPS 1.34 1.37 1.3
GSMap 1.05 0.61 2.33

PERSIANN-CDR 1.01 0.92 1.08
PERSIANN-CCS 1.01 0.72 1.79

4.2. Evaluation of Changing Trends and Abrupt Transition:

Figure 9 presents the annual trends of precipitation products and observed data for Punjab region
obtained by the MK and Theil–Sen approach. The trend plots are arranged as A and B with respect
to GB and SB products during the study periods 1979–2017 and 2003–2017, respectively. The results
indicated that, the annual observed precipitation revealed the insignificant positive trend during the
periods 1979–2017 and 2003–2017 with the rate of 1.12 and 5.5 mm/decade, respectively. All of the GB
and SB products exhibited the non-significant positive trend with the different scale of overestimation,
except for CRU, CPC, and UDel products, which indicates the insignificant trend with the magnitude
of 0.05, −1.38, and −0.06 mm/decade, respectively. These products are relatively less accurate to
detect the observed precipitation trend. Though, GPCC and TRMM products outperformed other
datasets in terms of trends magnitude with the rate of 1.29 and 5.53 mm/decade, which is quite
close to the magnitude of observed precipitation. The range of overestimation was higher in SB
products, which could be due to the shorter time period. The highest increasing trend was indicated by
APHRODITE product followed by GSMap and PERSIANN products as compared with the observed
precipitation trend. Overall, the performance of GPCC and TRMM precipitation products showed
better agreement in terms of trend detection when compared with the observed precipitation.
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Figure 9. Comparative trend assessment of (A) (GB) and (B) (SB) precipitation products and reference
data by using MK test (95% confidence Interval).

The abrupt changes in climate data series revealed the transition of climate from one state to
another due to some external factors, which activates a change to new state at a rate determined
by the climate system [74,75]. The Sequential Mann-Kendall (SQMK) test was applied for the
evaluation and comparison of different precipitation products with observed data over the Punjab
region. The retrograde and progressive series were attained at 0.05 significance level. The comparative
evaluation of GB and SB precipitation products with reference data using the SQMK test with the
confidence interval of 95% during the study periods 1979–2017 and 2003–2017 over the Punjab region
are shown in Figure 10. The results indicate that the GPCC and TRMM products exhibited a similar
pattern and mutation points as compared with reference data series. However, the other products
also showed the similar fluctuated pattern in progressive series as compared with the reference
data, yet they failed to capture the exact temporal mutation changes. The major fluctuations in the
reference data series were detected during the period of 1984–1985 (negative), 1988–1989 (positive),
1998–1999 (negative), and 2005–2006 (positive). Moreover, the reference data showed the multiple
turning points in progressive data series during the whole study Period. However, the gentle increase
in the precipitation trend has been observed with no significant breakpoint during the period 2005–2017.
All of the GB and SB products indicated the similar pattern of variability in progressive series.
However, the TRMM product showed the best agreement as compared with the reference data series
during this period over the Punjab region. The inter-annual and multi-decadal temporal abrupt
changes in precipitation data series depicted a large fluctuation in precipitation over the targeted
region during the whole study period. The major variabilities in the observed data series are well
covenant with the findings of [71,76], who reported the similar variability in precipitation over India
and Pakistan, respectively. Overall, the GPCC and TRMM precipitation products outperformed the
other products and revealed the best agreement when compared with reference data to capture the
temporal pattern and mutation points in the precipitation data series over the target region.
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Figure 10. Comparison of Abrupt change detection in (A) (GB) and (B) (SB) precipitation products and
reference data by using SQMK test (95% confidence Interval).

5. Discussion

Spatial and temporal precipitation data acquisition is highly important for the regional climate
studies as well as for the management of water resources and agriculture of the concerned regions.
With the advancement in geo-information and remote sensing technologies, this paves the way to
acquire gridded data free of cost on a different time and scale. However, the reliability and accuracy of
the data must be quantified against the in-situ records at the regional scale [77]. The current study
provides a comprehensive assessment of GB and SB precipitation products against the reference records
over the Punjab province during annual, winter, and summer monsoon from the period of 1979–2017
and 2003–2017, respectively. Moreover, the changes in trends and detection of abrupt turning point
in temporal data series of products were evaluated and compared with the reference data series.
In addition, the correction factor for each product was introduced to minimize the percentage of error
in the respective products.

The results indicate that the spatial and temporal performance of GPCC and TRMM precipitation
product outperformed the other corresponding products in terms of statistical measurements (high value
of CC and R2 with lower value of ME and RMSD) during the annual and summer monsoon season
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during 1979–2017 and 2003–2017, respectively. However, CRU performed better during winter estimates
when compared with reference data during the whole study period. Moreover, the range of deviation
among different precipitation products underestimated with different magnitude as compared with the
reference data. We found large uncertainties in the magnitude and temporal variability among different
products. The magnitude range of deviation was up 100–200 mm among different products within the
same category and with reference data. The results of deviation are associated with the findings of [48],
who reviewed the 22 global precipitation products and was reported the magnitude of deviation up
to 300 mm. All of the selected products estimated the higher amount of annual precipitation in the
northern Punjab and exhibited the similar pattern from north to south gradient with the range of
1500–15 mm. However, the spatial deviation was more pronounced in the northern side as compared
with the central and southern part of the study region. Moreover, the pattern of underestimation was
more pronounced in the GB products as compared with SB products. One of the possible explanations
of underestimation is due to lower pixel resolution of GB products over the study region [28].

Furthermore, the results showed that all of the GB products performed better in terms of lower
values of ME during winter following by annual and summer monsoon season. However, the SB
products showed better performance during annual scale following by summer and winter monsoon
period. Overall, the agreement of GB products with observed precipitation decreases with the increase
in the amount of precipitation and vice versa for SB precipitation products. The performance of
SB precipitation products is well concomitant with the findings of [28,78], who reported the better
performance of SB products to capture the higher magnitude of precipitation and less accurate for
low precipitation events over different regions of Pakistan. In contrast, [79] revealed the better
performance of SB products with less rainfall events over northwest Himalaya regions. The extent of
deviation in product similarity can possibly be attributed to multiple factors, which include difference
in study region, elevation, land use and land cover change [28]. The pattern similarity by using
Taylor diagram indicates the better performance of GPCC and TRMM products during annual and
summer monsoon seasons in terms of higher CC of around 95% during the whole study period.
The results are well associated with the findings of [27], who reported the better pattern similarity
performance of TRMM product in terms of higher CC of around 80% against other datasets during
annual time scale over the upper Indus basin. The spatial distribution of statistical metrics (ME, RMSD,
and CC) indicates the better performance of GPCC and TRMM products. However, the range of
deviation in GB and SB products were more obvious in the northern Punjab with the overall pattern of
underestimation (GB products) and overestimation (SB products) from the north to south gradient.
The possible explanation of estimated deviation in GB and SB products over the northern Punjab
could be due to wind induced errors and the presence of higher amount of aerosols in the atmosphere.
The higher amount of aerosols in the atmosphere intercepts with the precipitation that reduces the
efficiency of ground based meteorological stations [80]. Moreover, the wind induced errors can be
attributed to the efficacy of ground based stations [81] Similarly, the pattern of overestimation in SB
products particularly over northern Punjab could be associated with the higher rate of evaporation
in the lower reaches of the mountains. These results are well associated with the findings of [82],
who indicated the overestimation of SB products in the foothills of Himalaya mountain ranges over
northern Pakistan. Moreover, the deviation in accuracy of GB products over northern Punjab could be
due to inter-annual variability in weather, orographic effects and fewer gauges over the mountainous
region. Many studies reported such effects in different climate studies over the northern belt of
Pakistan [27,28,79]. Moreover, the fewer pixels of precipitation products also showed a weaker ability
to capture the accurate spatial pattern in the central and southern parts of the study area. The possible
explanation of accuracy deviation in these areas could be due the rapid extent of urban areas. Most of
the meteorological station installed in the non-urban domain which could not represent the exact
situation of climate variability in urban areas. Several studies documented the effect of urbanization
on climate variability at a spatial scale [83].
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The MK trends of observed precipitation indicate insignificant increasing trends during the period
1979–2017 and 2003–2017 with the rate of 1.12 and 5.5 mm/decade, respectively. The increasing trend
was faster during period 2003–17 as compared with the period 1979–2017. The MK trend of GB and SB
products showed the increasing trend with different magnitude of overestimation, except UDel and
CPC products, which indicates decreasing trend as compared with observed precipitation. Furthermore,
the abrupt transition analysis indicates the multiple turning points in precipitation data series during
the period 1980–2005 with major abrupt changes in progressive series were detected during the
period of 1984–1985 (negative), 1988–1989 (positive), 1998–1999 (negative), and 2005–2006 (positive).
Many studies over the Asian and Indian monsoon system exhibited similar kind of precipitation trends
over different timescales. [84–86]. The negative precipitation trend detected during the period of
1984–1985 and 1998–1999 could be due to major drought period over the whole country. The results
are consistent with the findings of [87,88], who reported the severe drought conditions in the country
during the mid-80s and late 90s. Moreover, the gentle increase with no obvious break point has been
detected in progressive data series during the period of 2005–2017. The large inter-annual variability in
reference data series were well captured by GPCC and TRMM products during the period 1979–2017
and 2003–2017, respectively.

In spite of the fact that the spatial and temporal performance of GPCC and TRMM products
outperformed the respective products in terms of lower values of ME, RMSD, and higher range of
CC against in-situ records during the period 1979–2017 and 2003–2017, respectively. However, it is
still uncertain to estimate the accurate amount of precipitation, as witnessed by the estimated mean
error in the precipitation products over the whole study region. In view of significant extent of biases
in the products, we determined the factor of correction of each product for their reliable utilization
in hydro-climate projects on annual, winter, and summer monsoon periods over the Punjab region.
The results of estimated correction factors of different precipitation products are well covenant with
the findings of [27,89], who estimated the adjustment factors of precipitation products for Upper Indus
Basin (UIB). However, the magnitude of the estimated correction factors is different due to different
study period and region.

The spatial and temporal performance of the products depend on a multiple factors, which are
intricate in the data algorithms of the products, e.g., sources of data, spatial and temporal resolution,
interpolation techniques, missing gaps in data and topography, etc. [50,90]. Similarly, the number of
stations, quality, and time scale of in-situ records used for the evaluation of global products are also
very important for the identification of potential product for the specific regions [72]. The detection
of autocorrelation in the datasets is also important for the accuracy of trends detection and abrupt
changes in the climate data series. However, the presence of autocorrelation was more significant
for precipitation products, particularly for high altitude regions above 4000 m [27]. The superior
performance of GPCC and TRMM precipitation products over the Punjab region might be due to their
better data processing procedures, number of gauge station into account, and interpolation techniques.

The precipitation products, even with their intrinsic biases and limitations, are still important for
providing valuable source of information related to precipitation variability on spatial and temporal
scale. The global precipitation products are also important for climate studies when there is a lack of
funding or resources to go into the field and record these types of observations. Caution must also
be exercised when comparing and using the GPPs; large uncertainty exists where gauge density is
low [91]. The present study highlights the potential products for precipitation over the Punjab province.
The evaluation results are beneficial for improving our understanding towards the use of products in
arid and semi-arid regions, like Punjab province. However, the spatial and temporal discrepancies
were also identified, which will be useful for the further use of these products in hydro-meteorological
applications. In view of large discrepancies among the products, future studies should focus on the
new methods for the better comparative accuracy and evaluation procedure of global climate products.
For instance, [92] introduce a new method of evaluation and decision making by using the fuzzy logic
procedure based on the integrated linguistic operated weighted average (ILOWA) method. The main
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advantage of this technique is to provide sustainable products by using different linguistic terms that
are primarily an easy approach for decision making. The products assessments based on integrated
models could increase the level of accuracy for the appropriate selection of potential products by
considering the statistical indicators.

6. Conclusions

In this study, the gridded precipitation products (GB and SB products) were evaluated against the
reference data during 1979–2017 and 2003–2017 periods on annual, winter, and summer monsoon scale
by using multiple statistical methods in order to gain an understanding for the potential of Gauge and
satellite based precipitation products over the Punjab province, Pakistan. The major outcomes of the
study can be summarized as follows.

The result indicated that the temporal magnitude in all of the precipitation products was different
and deviated up to 100–200 mm with overall spatial pattern of underestimation (GB products) and
overestimation (SB products) from north to south gradient as compared with in-situ measurements.
Though, the GPCC and TRMM products outperformed the relative GPPs and showed the best
agreement against the reference data in terms of higher R2 values of ≥ 0.90 and lower values of
estimated RME ≤ 25% at annual and summer monsoon seasons. However, CRU performed better
during winter monsoon season with the estimated ME of −25.08 (−20.49%) and R-squared value
of 0.91 as compared with the reference data during the period 1979–2017. All of the GB products
performed better in terms of lower values of estimated ME during winter following by annual and
summer monsoon season. However, SB products showed better performance during annual scale
following by summer and winter monsoon period. Overall, the degree of accuracy of GB products
with observed precipitation decreases with the increase in the magnitude of precipitation and vice
versa for SB precipitation products

The Mann–Kendall results indicated that, the annual observed precipitation revealed the
insignificant positive trend during the periods 1979–2017 and 2003–2017 with the rate of 1.12 and
5.5 mm/decade, respectively. However, the abrupt transition analysis indicates the multiple turning
points in the reference data series during the period 1980–2005 with major abrupt changes were
detected during the period of 1984–1985 (negative), 1988–1989 (positive), 1998–1999 (negative),
and 2005–2006 (positive). The large inter-annual variability in the reference data series were well
captured by GPCC and TRMM products during the period 1979–2017 and 2003–2017, respectively.
In view of significant extent of biases in the GPPs, the estimated correction factor during annual,
winter and summer monsoon seasons for each GPP can be useful for future hydro-climate projects
over the Punjab region. The range of discrepancies in precipitation products pointed out the further
improvement of GPPs for the enhancement of its accuracy over the arid and semi-arid regions,
like Punjab Province. Moreover, the degree of accuracy in precipitation products varies with time and
resolution; therefore, products should be assessed at different spatio-temporal scale.
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Abstract: Quantitative precipitation estimation (QPE) through remote sensing has to take rain
microstructure into consideration, because it influences the relationship between radar reflectivity
Z and rain intensity R. For this reason, separate equations are used to estimate rain intensity of
convective and stratiform rain types. Here, we investigate whether incorporating synoptic scale
meteorology could yield further QPE improvements. Depending on large-scale weather types,
variability in cloud condensation nuclei and the humidity content may lead to variation in rain
microstructure. In a case study for Bavaria, we measured rain microstructure at ten locations with
laser-based disdrometers, covering a combined 18,600 h of rain in a period of 36 months. Rain was
classified on a temporal scale of one minute into convective and stratiform based on a machine
learning model. Large-scale wind direction classes were on a daily scale to represent the synoptic
weather types. Significant variations in rain microstructure parameters were evident not only for
rain types, but also for wind direction classes. The main contrast was observed between westerly
and easterly circulations, with the latter characterized by smaller average size of drops and a higher
average concentration. This led to substantial variation in the parameters of the radar rain intensity
retrieval equation Z–R. The effect of wind direction on Z–R parameters was more pronounced for
stratiform than convective rain types. We conclude that building separate Z–R retrieval equations for
regional wind direction classes should improve radar-based QPE, especially for stratiform rain events.

Keywords: Thies; disdrometer; weather circulations; convective; stratiform; rain spectra;
radar reflectivity–rain rate relationship

1. Introduction

Understanding rain microstructure can provide us with an insight into the prevailing rain
formation processes leading to it. This understanding can be employed in improving quantitative
estimation of rain intensity using weather radar, especially in flat regions with high altitude values of
the zero degree isotherm [1–4]. Furthermore, the parametrization of the microphysical processes in
numerical weather and climate models can be improved [5,6]. Rain microstructure varies on different
spatial scales ranging from few meters [7], to few hundreds of meters [8], to regional [9,10] and global
extents [11,12]. This variation also occurs with seasons [13], rain types [14], and large-scale weather
types [15–17].
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A clear example of the different rain formation processes leading to variations in rain drop size
distribution is the discrepancy between convective and stratiform rain. This has been quantified in
a number of studies [5,14,18,19]. The reason for the difference is the relative importance of cold and
warm rain formation processes [20]. Stratiform rain is formed mainly by processes involving ice
crystals and interactions of ice with liquid water, while convective rain formation comprises both
warm and cold processes. Factors and processes that influence the rain drop size distribution as
observed on the ground include rimming and aggregation (above the 0 ◦C isotherm), condensation
(below the 0 ◦C isotherm), collision, coalescence, turbulence, cloud thickness, electric field, evaporation,
and drop fragmentation [21,22]. The difference in rain drop size distribution between convective rain
and stratiform rain has been used for the classification of both rain types on the ground. Most of
these methods use two rain drop size distribution parameters and a linear discrimination between
the regions of rain types [19,23–26]. Recent methods employed machine learning and reached higher
performance levels when using four rain drop size distribution parameters [27,28].

Large-scale weather types denote atmospheric conditions such as the high and low pressure
distribution, the position and paths of frontal zones, and the existence of cyclonic or anticyclonic
circulation types over a sequence of days [29]. Indirectly, they also influence stream flows [30],
floods [31–33], debris-flow events [34], forest fires [35,36], air quality, and pollen distribution [37–39].

Weather type classification is an important part of statistical climatology [40,41], because these
types explain many local weather phenomena. Weather types influence local near-surface temperatures
and precipitation [42–46]. They also affect the diurnal cycle of precipitation in terms of frequency
and amount [47–49], and they impact the occurrence and the magnitude of meteorological extreme
events [50–54]. Large-scale weather types may therefore also influence rain microstructure by different
rain formation processes being more prevalent under different synoptic scale conditions.

Quantifying rain microstructure under different large-scale weather types may have practical
applications for radar-based estimation of rain intensity, because the microstructure influences the
relationship between radar reflectivity Z and rain intensity R. For this reason, separate equations
are used to estimate rain intensity of convective and stratiform rain type [10,55], instead of using
one equation that fits both rain types. A similar improvement of the radar estimation of rain might
be possible when considering specific Z–R relations for each of the weather types. We previously
reported weather type specific Z–R models with lower errors in estimating rain intensity in Lausanne,
Switzerland [17]. Similarly, the influence of weather types on Z–R relationships was also reported for
the Cévennes-Vivarais Region, France [16]. However, parameterizing Z–R equations for many weather
types definitively requires large amounts of data to represent each class.

Here, we contribute an analysis of the relationship between Z–R parameters and weather types in
Central Europe, based on a comprehensive regional dataset of rain microstructure measurements at
ten sites in the federal state of Bavaria, Germany. We ask: (1) What is the effect of weather types on
rain microstructure, considering both types of rain? and (2) Is there consistent variation in the Z–R
parameters between weather types that would suggest opportunities to improve QPE with radar-based
methods? To address these questions, we investigate disdrometer records under different large-scale
wind direction patterns at a daily scale, and rain type classifications at one-minute intervals over a
period of three years.

2. Materials and Methods

2.1. Data Sources and Tools

We obtained raw rain drop size distribution measurements from the German Meteorological
Service (Deutscher Wetterdienst, DWD), operating a network of Thies disdrometers in Bavaria, in the
southeast of Germany (Figure 1). We analyzed measurements at ten sites spanning a period of three
years (January 2014–December 2016) with a temporal resolution of one minute. The disdrometers
locations cover a distance of 167 km from north to south and 185 km from east to west.

52



Remote Sens. 2020, 12, 3572

 
Figure 1. Disdrometer locations in Bavaria (SE Germany) that were used to measure rain microstructure,
covering a total of 18,600 h of rain in a period of 36 months.

Since raw disdrometer data requires some statistical data cleaning procedures to remove erroneous
readings, we followed the filtering procedure of Friedrich et al. [56] and the additional steps of Ghada
et al. [17] to remove unrealistically large particles, margin fallers, splashing effects, or readings of
insect and spider webs. The filtering procedure removed: (1) All measured particles with a diameter
larger than 8 mm; (2) All particles which had a falling velocity less than 60% or greater than 140%
of the terminal velocity associated with rain drops of the corresponding diameter [57,58] (Figure 2);
(3) Intervals marked by a damaged laser signal or as non-rain intervals by the disdrometer; (4) Intervals
which included large drops (D > 5 mm) with low velocities (V < 1 m/h) as an indicator of high wind
speed; (5) Intervals with rain intensity lower than 0.1 mm/h [59,60]; (6) Intervals with three or less
diameter bins to insure the existence of a drop size distribution. After filtering, the dataset contained a
total of 21,705 mm of accumulated rain over a period of 18,633 h.

 
Figure 2. Raindrop count in each diameter-velocity range after the filtering process. The dotted line
represents the terminal velocity of each diameter value. The solid lines represent the 60% and the 140%
of the terminal velocity.

The DWD classifies large-scale synoptic weather patterns into 40 classes of weather types.
The weather type is provided on a daily time scale and is applicable to all of Germany and its
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surroundings. The classification is based on an operational numerical weather prediction system,
i.e., modelling different atmospheric fields such as geopotential height, temperature, relative humidity,
and the zonal and meridional components of the wind for several elevations. A detailed explanation
of the classification procedure is available online [61], and the full record of weather types is provided
by the DWD [62]. Since this classification is performed on daily basis, it would be operationally
feasible to associate a separate configuration of the radar rain rate estimate for each weather type class.
However, in order to simplify the classification for the purpose of this exploratory case, we grouped all
possible classes according to their wind direction index. This index takes one of five possible values:
northeasterly (NE), southeasterly (SE), southwesterly (SW), northwesterly (NW), and no prevailing
direction (XX). Determining the specific wind direction is based on the number of grid points over
Germany with a specific wind direction which needs to exceed 2/3 of the total number of grid points.
In case this threshold was not exceeded, the wind direction index is assigned to XX.

For data filtering, analysis, and production of visual and statistical results, we used R [63],
RStudio [64], and the packages caret [65], e1071 [66], reshape2 [67], raster [68], Rmisc [69], ggplot2 [70],
and rnaturalearth [71].

2.2. Drop Size Distribution Parameters

Thies disdrometers are laser-based instruments that provide high temporal records of rain
microstructure. When a precipitation particle passes between the transmitter and the receiver,
the strength of the laser beam is reduced. Based on the magnitude and duration of this reduction, it is
possible to estimate the size and velocity of the passing precipitation particle. The Thies disdrometers
raw data output represents one-minute summaries of the number of particles in 22 non-linear size
classes and 20 non-linear velocity classes. From the raw output, a number of parameters can be
obtained. This study is focused particularly on rain intensity R, radar reflectivity Z, total number of
drop concentration N, and median volume drop diameter D0.

Rain rate R (mm/h) is given by

R =
6× 10−4 ×π

ΔT
×

i=22∑
i=1

j=20∑
j=1

⎛⎜⎜⎜⎜⎝xi, j
D3

i
Ai

⎞⎟⎟⎟⎟⎠ (1)

where

xi, j: Detected number of drops that fall in diameter range i and velocity range j,
ΔT (s): Temporal resolution (60 s in this case),

Ai (m2): Corrected detection area: Ai = 228×
(
20− Di

2

)
/106,

Di (mm): Mean diameter of drops that fall in diameter range i.

The radar reflectivity Z (dBZ) is calculated with the following expression:

Z = 10 ∗ log10

⎛⎜⎜⎜⎜⎜⎜⎝
i=22∑
i=1

j=20∑
j=1

⎛⎜⎜⎜⎜⎜⎜⎝xi, j
D6

i(
Ai Vj ΔT

)
⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠ (2)

where Vj (m/s) : Mean velocity of drops that fall in the velocity range j.
The total number of drops N (m−3) is computed according to

N =
i=22∑
i=1

j=20∑
j=1

( xi, j

Ai Vj Wi ΔT

)
(3)

where Wi (mm): the width of the diameter range i.
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The rain microstructure is assumed to follow a gamma distribution [72]:

N(D) = N0Dμe(−ΛD) (4)

where N(D) (mm−1m−3) is the number of drops for each diameter range per unit volume and unite size.
The intercept N0 (mm−1−μ m−3), the shape μ (-), and the slope Λ (mm−1) parameters are determined
by the moments method [73]. The nth moment of the raindrop size distribution Mn (mm−1−μ m−3) is
given by

Mn =

∫ Dmax

Dmin

DnN(D)dD (5)

and the three gamma parameters are

N0 =
Λμ+3M2

Γ(μ+ 3)
(6)

μ =
(7− 11η) −

[
(7− 11η)2 − 4(η− 1)(30η− 12)

]0.5

2(η− 1)
(7)

Λ =

[
(4 + μ)(3 + μ)M2

M4

]0.5

(8)

where

η =
M4

2

M2M6
(9)

The mass weighted mean diameter Dm (mm), the median volume diameter D0 (mm) and the
normalized intercept Nw (mm−1m−3) are calculated based on the parameters of gamma distribution:

Dm =
M4

M3
(10)

D0 =
Dm(μ+ 3.67)
μ+ 4

(11)

Nw =
44 M3

6 Dm4
(12)

Additionally, the classification of rain type into convective and stratiform requires the use of
the following parameters: sd_N_10, sd_D0_10, and sd_log10_R_10, where sd_XX_10 is the standard
deviation of the values of XX (XX being N, D0 and R, respectively) over a time window of ten minutes.

2.3. Rain Type Classification

Rain type classification was based on an ensemble classifier to predict stratiform versus convective
rain based on cloud type, rain intensity, and the standard deviation of rain intensities calculated over
the span of ten minutes.

To create a training set for the machine learning model that classifies rain type into convective
and stratiform, we obtained records of cloud genera from the DWD [74]. These ground observations
were available between July 2013 and August 2014 at Fürstenzell and between July 2013 and January
2014 at Regensburg.

A random forest classification model was trained on the available data from the two locations in
this dataset. A combination of two criteria was used for the prior classification, the observation of
cloud genus, and the values of R and its standard deviation over five minutes. The model was trained
based on the intervals where the prior classification was feasible. It was then used to classify rain in the
whole dataset. The spatial variability in rain properties might influence the quality of our classification
scheme, especially that the model was trained in only two out of the ten sites. However, the drop in
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quality on this scale when training in one location and testing in another was minor [28]. More details
about the classification procedure are given in Ghada et al [28].

2.4. Retrieving the Parameters of the Z–R Relation

Weather radars usually provide the reflectivity Z which is transformed into rain intensity R using
an exponential equation. In our case, R and Z are provided by the disdrometer; therefore, it is possible
to get the values of A and b by fitting a linear model to the values of log10(R) and Z.

The radar reflectivity Z is assumed to be related to rain intensity R by the power law:

Z = A×Rb (13)

In this equation, Z is expressed in mm6 m−3. However, Z is usually expressed in the unit decibel
relative to Z (dBZ):

Z[dBZ] = 10× log10
(
Z[mm6 m−3]

)
. (14)

By taking the log of Equation (13) and multiplying by 10:

10 × log10(Z) = 10 × log10(A) + 10 × b × log10(R) (15)

Moreover, based on Equation (14):

dBZ = 10 × log10(A) + 10 × b × log10(R) (16)

a simple linear model is fitted to the values of dBZ and log R which are calculated from the rain drop
size distribution. This linear model has the equation:

dBZ = intercept + slope× log10(R) (17)

thus, by comparing Equations (16) and (17) the A and b parameters can be readily found:

b =
slope
10

(18)

A = 10
intercept

10 (19)

Equations (13)–(19) represent the conventional way of retrieving A and b. An alternative method
is to consider R as the dependent variable [75]. This method is more appropriate because the main
purpose is to reduce errors in estimating R:

R = (1/A)1/b ×Z1/b (20)

By taking the log10 of both sides of Equation (20):

log10(R) =
1
b
× log10(Z) − 1

b
× log10(A) (21)

log10(R) =
dBZ

10× b
− log10(A)

b
(22)

log10(R) = intercept + slope× dBZ (23)

by comparing Equations (22) and (23):

b =
1

slope× 10
(24)

A = 10−b × intercept (25)
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Retrieval of A and b values was done for each event separately. Events with an accumulated rain
amount of less than 1 mm were excluded to limit their influence on the fitting process. Additionally, the
events were defined by a minimum interevent threshold of 15 min and a minimum duration of 15 min
as in Jaffrain and Berne [75]. To ensure clear classification of the rain type on the event level, the fitting
was restricted to events during which more than 60% of the event was convective, and events where all
intervals were classified as stratiform. The remaining 2449 events contain 9914 h of rain (see Table A1).

3. Results

3.1. Duration and Amount Variation With Rain Type and Wind Direction

During the 1096 days included in the study period, rain was recorded at least at one station on
515 days. The five wind directions had different frequencies and the most frequent wind directions
were the westerly circulations SW and NW with a total of 739 days or two thirds of the time (Figure 3).
More than half of these days included rain in at least one station. The easterly circulations accounted
for less than 12% of the total number of days. SE had the lowest occurrence and the lowest percentage
of rainy days. Both XX and NE had more than 40% rainy days.

Figure 3. Frequency of rainy days per year and per wind direction classes that represent large-scale
weather types. Rainy days are days on which at least one station recorded five minutes of rain with an
intensity of more than 0.2 mm/h. Error bars represent the 95% confidence intervals. Percentages above
the white columns represent the overall occurrence of each wind direction and percentages below the
columns represent the portion of rainy days in the total number of days within a specific wind direction.
The dashed line represents the mean number of rainy days per year.

When examining the accumulated rain amount and duration, westerly circulations were the
dominant wind directions with a contribution reaching 69% of the total rain duration (18,633 h)
and total rain amount (21,705 mm) accumulated over all stations (Figure 4). Easterly circulations
contributed less than 10% of both rain duration and amount. Convection contributed 36% of the
total rain amount and occupied only 8.5% of rain duration. Southerly circulations had the highest
proportion of convective rain with around 10% of the total rain duration and more than 40% of the
total rain amount, while northerly, and especially northeasterly circulations had a low proportion of
convective rain.
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(a) 

 
(b) 

Figure 4. Prevalence of convective and stratiform rain types. Accumulated rain duration (a), and rain
amount (b) per wind direction averaged over the stations and years. Error bars represent the 95%
confidence intervals. The percentages on top of each column represent the proportion of accumulated
rain within the respective wind direction to the accumulated rain in the whole year. The percentages
below the columns represent the proportion of convective rain to total rain within the respective
wind direction.

The mean stratiform rain intensity was 0.8 mm/h which only marginally varied with wind
direction. On the other hand, the mean convective rain intensity of ~5 mm/h considerably varied across
wind directions. The highest intensity was associated with SE circulations and the lowest with the NW
circulations. Statistical data for each wind direction and rain type including standard deviation (SD)
and standard error (SE) are summarized in Table 1.

Table 1. Summary of rain intensities (R) for wind directions in convective and stratiform rain.

Rain Type
Wind

Direction
Duration

(h)
Mean R
(mm/h)

Median R
(mm/h)

Standard
Deviation (mm/h)

Standard
Error (mm/h)

Convective

NE 82.5 4.51 3.65 4.90 0.070
SE 50.7 6.23 4.83 6.41 0.116
SW 645.6 5.11 3.72 6.09 0.031
NW 538.1 4.33 3.36 4.89 0.027
XX 269.6 5.80 4.54 5.79 0.046

Stratiform

NE 1191.9 0.79 0.50 0.79 0.003
SE 486.2 0.80 0.46 0.92 0.005
SW 5928.4 0.78 0.49 0.79 0.001
NW 5740.0 0.83 0.54 0.80 0.001
XX 3700.8 0.84 0.52 0.89 0.002

3.2. Rain Microstructure Variation With Rain Type and Wind Direction

Stratiform rain had smaller drops and lower drop concentrations compared to convective rain
(Figure 5). The average D0 for stratiform rain was 0.77 mm compared to 1.24 mm in convective
rain. Normalized drop concentration Nw in stratiform rain was around 2.24 × 104 mm−1 m−3,
while convective rain had an average of 1.4 × 104 mm−1 m−3. The overall average of D0 (0.81 mm) and
Nw (2.17 × 104 mm−1 m−3) were closer to the values of stratiform rain since most rain intervals were of
the stratiform type. The clusters in the values of D0 that appear in Figure 5 emerge from the combined
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effect of the diameter range bins of the disdrometer measurements, and the logarithmic scales on the
horizontal axis.

Figure 5. Scatter plot of D0 and (NW) for stratiform and convective rain. The vertical and horizontal
lines represent the mean values of D0 and NW.

The distributions of D0 and NW values within each wind direction and rain type are illustrated in
Figure 6. Similarly, the mean values of D0 and NW for different ranges of rain intensity within each
wind direction and rain type are provided in Figure 7.

For stratiform rain, westerly circulations had larger drops and lower drop concentrations compared
to easterly circulations. Especially SW had the largest mean D0 and the lowest NW. Easterly circulations
were clearly characterized by the smallest drops and the greatest NW. The same pattern was present
even when inspecting different classes of rain intensity within stratiform rain (Figure 7). With higher
rain intensity, D0 increased too while NW decreased.

For convective rain, only few differences in the previously described patterns were obvious
especially when examining the rain microstructure for different ranges of rain intensities. With the
exception of SE which had a limited number of convective intervals compared to the remaining wind
directions, the median diameter D0 was still the largest in SW and the smallest in NE, while NW

was the largest NE and the smallest in Sw. XX and NW had similar NW values but NW exhibited
larger drop sizes on average. The wind direction SE did not show any consistent pattern across rain
intensity ranges.

When fitting a gamma function to the average rain drop size distribution within each wind
direction in stratiform rain (Figure 8), easterly circulations had relatively lower concentrations of drops
with a D0 larger than 1 mm compared to westerly circulations. On the other hand, westerly circulations,
especially SW, had the lowest concentration of drops with D0 less than 1 mm. In convective rain,
northerly circulations exhibited higher proportion of small drops (D0 < 1 mm) and a smaller proportion
of large drops compared to southerly circulations. Fitting gamma distribution to rain microstructure
was also performed event by event. An example of the fitting for individual events is presented in
Figure A1, and the density plots of the gamma distribution parameters are provided in Figure A2.
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Figure 6. Probability density plots of log10(NW) and D0 for each rain type and wind direction.
Vertical thick lines show parameters averaged over all locations for convective (solid red line) and
stratiform (dashed thick blue) rain and light lines represent averages for individual locations.
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Figure 7. Rain microstructure for different rain intensities in stratiform and convective rain. Symbols on
each colored line represent summary statistics for a wind direction. Each symbol represents the average
median drop size D0 and the normalized drop concentration for a rain intensity range. The intervals
were chosen to represent six equal sample sizes and were colored by mean rain intensity. Selected
symbols that correspond to equal rain intensity were connected with differently dashed black lines
for comparison.
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Figure 8. Raindrop concentration per millimeter diameter and cubic meter for each wind direction
in stratiform rain and convective rain. Points represent the one-minute average concentrations for
each diameter range colored by wind direction. Colored lines represent the corresponding gamma
distribution fits.

3.3. Z–R Parameter Variation With Location, Rain Type and Wind Direction

To investigate the influence of rain microstructure variability per wind direction on the rain
intensity retrieval equation Z–R, the values of A and b were obtained for 2449 events (see Section 2.4).
A density plot of the R and dBZ values for all the 9914 h included in these events is provided in
Figure A3. An example of the Z–R equation fitting for one event using two methods is provided in
Figure A4.

The average value of the prefactor A was clearly larger in convective rain (309) than in stratiform
rain (239), while the exponent b value was similar for both rain types (1.53). The values of A and b
were averaged for each location (black points in Figure 9; Figure 10), for each wind direction (colored
points in Figure 9; Figure 10), and for each combination of location and wind direction (colored stars in
Figure 9; Figure 10) in order to demonstrate the variability of A and b with these factors.

In stratiform rain, the range of both mean A and b for each of the ten locations (the grey area in
Figure 9) is comparable to the range of the average values for the wind directions (the red rectangle in
Figure 9). However, A and b value are smaller in eastern circulation (NE, SE) compared to remaining
general wind directions, and they are outside of the range associated with the spatial variability.

In convective rain, no clear pattern was detected for the average values of A and b associated
with the five wind directions. The range of A and b values for the different locations is much larger
than the range associated with the five general wind directions, indicating a larger spatial variability
compared to the variability associated with general wind direction.

When averaging the values of A and b for each combination of location and wind direction,
a greater range is observed. In the case of stratiform rain, the pattern of these values is comparable
to the one observed for the five general wind directions; SW circulations have larger A values,
easterly circulations have smaller A values, while XX and NW circulations fall closely in between.
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The range of A and b values for each combination of the location and wind direction is larger in the
case of convective rain. However, the small number of convective events needs to be considered in this
case (see Table A1).

 
Figure 9. The parameters A and b of the radar rain intensity retrieval equation (Z = ARb) in both rain
types using the first method of fitting (Equations (13)–(19)). A and b values are averaged by location
(black dots), wind direction (colored circles), and the combination of both (colored stars). The grey area
represents the range of A and b for the ten locations. The red rectangle represents the range of A and b
for the five general wind directions.
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Figure 10. The parameters of the radar rain intensity retrieval equation (Z = ARb) in both rain types
using the second method of fitting (Equations (20)–(25)). A and b values are averaged by location
(black dots), wind direction (colored circles), and the combination of both (colored stars). The grey area
represents the range of A and b for the ten locations. The red rectangle represents the range of A and b
for the five general wind directions.
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4. Discussion

Our data indicate high frequency and high contribution of westerly and especially SW circulations
to the rainy days over Bavaria, Germany. Easterly circulations have the least frequency and especially
SE has the lowest share of rainy days. This is in agreement with the frequency of wind directions and
proportions of rainy days of long-term studies for Germany for the period between 1995 and 2017 [28].
The high frequency and high contribution of westerly and southwesterly circulations to the number of
rainy days is expected for this region since the main moisture flux is westerly [76].

Convection is responsible for 40% of rain amount in this region despite occupying only 10% of
rain duration. Similar contributions of convective rain were reported for the Czech Republic [77]
and in Switzerland [17]. Convective rain has typically higher rain rates and a distinct microstructure
compared to stratiform rain. It is therefore essential to separate convective and stratiform rain prior
to addressing rain microstructure, especially considering the variation in convective rain proportion
with wind directions [17]. Southerly circulations generally have a higher proportion of convective
rain compared to northerly circulations. A possible explanation is the strengthening and inhibition of
convection and radiative cooling under different wind directions, which in turn has a major influence
on the precipitation diurnal cycle over Germany [49]. Southerly circulations carry along warm air
masses which intensify convection in the afternoon and inhibit radiative cooling in the early morning.
Northerly circulations, in contrast, transport cold air masses, and therefore suppress convection and
intensify radiative cooling.

Westerly circulations need special attention when addressing rain and microstructure, especially
with the reported high contribution to rain duration and rain amount, and the expected increase in their
frequency over Europe [78,79]. Westerly circulations are associated with larger rain drops than easterly
circulations in stratiform rain, while easterly circulations have higher number of drops. This pattern is
consistent for both stratiform and convective rain and across the ranges of rain intensity, except for SE
circulations in convective rain, which was not well represented by data, accounting only for 0.6% of
convective rain amount observed in this study.

Rain microstructure dependence on synoptic weather patterns has previously been reported for
other locations in Europe. Northerly circulations in Leon, Spain, were associated with smaller drop
sizes, while westerly and southerly circulations had larger rain drops [15]. This pattern was explained
by the location of Leon to the south of the Cantabrian Mountains. Northerly circulation air masses
precipitate prior to reaching Leon, leaving less humidity, lower rain intensities and smaller drops.
Westerly and southerly circulations carry along higher humidity, leading to higher rain intensities
and larger drops. For the Cévennes-Vivarais region in France, easterly circulations were associated
with lower number of rain drops and larger drop size while most of the westerly circulations had the
opposite traits [16]. The associations of rain microstructure with large-scale weather patterns observed
in this and other studies are therefore not generally consistent, but region-specific. Different regions
have different associated general air-mass characteristics, for example influenced by proximity to the
sea or the presence of mountain massifs nearby. The origin of the air masses whether continental or
maritime influences the rain microstructure and eventually influences the estimation of precipitation by
radars [80,81]. Each class of wind direction used here has a mixture of both maritime and continental
origins. It is however assumed that westerly circulations have a larger proportion of air masses with a
maritime origin compared to easterly circulations.

The rain microstructure patterns in Bavaria have more in common with the patterns reported
for Lausanne, Switzerland. Despite using different disdrometer types, schemes for rain type
classification, and weather type classifications, and their different geographical locations in the
Alps, easterly circulations were associated with higher number of drops per interval and smaller drop
size compared to westerly circulations at both sites [17]. A plausible explanation for this is the variation
of humidity and aerosol content in air masses between these wind direction clusters. Aerosols are
particularly abundant in air masses which pass over Russia and Eastern Europe, especially over heavy
industrialized areas [82,83]. These aerosols act as cloud condensation nuclei [84]. High availability of
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cloud condensation nuclei increases the number of rain drops in the case of stratiform rain, increases the
size of drops in local convection, but has no significant influence on rain microstructure in organized
convection [85].

Differences in the load of cloud condensation nuclei under different circulations seem to be a
plausible explanation for the rain microstructure differences observed in this study, especially in
stratiform rain. The abundance of cloud condensation nuclei in easterly circulations in comparison
with westerly circulations leads to higher number of rain drops. This in combination with the high
(low) available humidity in westerly (easterly) circulations results in a larger (smaller) size of rain drops,
respectively. For convective rain, easterly circulations comprise two wind directions, NE which has the
smallest mean D0, and SE which has the largest mean D0. The larger size of raindrops in southerly
circulations indicates the intensification of convection when the warm air masses are transported from
the south, whereas northerly circulations bring colder airmasses. The rain type classification method
used in this study does not differentiate local and organized convection, which makes it impossible to
thoroughly compare with the findings of Cecchini et al. [85].

Our results may be useful for radar-based quantitative precipitation estimates (QPE), since Jaffrain
et al. [75] demonstrated that the variation of A and b values in the Z–R retrieval equation is an important
factor which should be accounted for. In their case study of Lausanne, Switzerland, spatial subgrid
variability of rain microstructure was observed, which considerably influenced the quality of the
estimation of rain rate. Using the same dataset, Ghada et al. [17] showed that the variability of A and b
was larger than the subgrid spatial variability (in an area less than 1 km2) when weather types are
considered. In our study, variation of rain microstructure parameters with wind directions in Bavaria
led to significant variation in the values of Z–R parameters. The variations in the prefactor A and
the exponent b by wind direction are of a similar magnitude as their spatial variations in the case
of stratiform rain, but smaller than the spatial variations in the case of convective rain. The same
patterns were obtained for the conventional and the alternative methods of Z–R parameters retrieval
despite the absolute differences in the values of A and b. These small differences occur because the
conventional method is more sensitive to the large values of Z while the alternative method is more
sensitive to the density of scatter points where R is below 2.5 mm/h [75]. This difference needs to
be addressed in future studies to quantify the exact influence on the estimation of rain intensity by
actual radar measurements. Alternatively, the least-rectangles linear regression could be applied as a
middle-ground solution.

Assessing potential benefits of considering the variations in Z–R parameters, Jaffrain and Berne [75]
concluded that the subgrid spatial variability in rain microstructure may account for errors in rain
estimates between −2% and +15%. Variability due to large-scale weather patterns in Z–R parameters is
likely to exceed their subgrid spatial variability [17], and based on our study, is comparable with the
spatial variability of Z–R parameters in stratiform rain on a regional scale. Consequently, the potential
for a significant improvement in rain estimation when accounting for rain microstructure variability
by wind direction is expected to be high for radar quantitative precipitation estimates based only on
radar reflectivity Z.

However, using only disdrometer data for this purpose would be insufficient because disdrometers
provide a direct measurement of rain microstructure, from which R and Z are calculated. These values
are accurate local measurements if we assume an accurate measurement of rain microstructure.
The next logical research step would be a proper assessment of the improvement potential. This should
include the integration of empirical data of radar-based rain intensity estimates validated by ground
observations within the different rain types, locations, and large-scale wind directions, as well as a
thorough rain type classification based on available instruments, especially considering the available
network of dual polarization Doppler radars across Germany. Even for precipitation estimates based
on a rain-gauge adjusted system as currently operated by DWD [86], improving the Z–R relation would
likely have a positive impact in the final quality of the product.
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5. Conclusions

This research demonstrated that rain microstructure varies significantly between weather types
in both stratiform and convective rain. Easterly circulations had the highest drop concentration
and the smallest drop size while westerly circulations were associated with large drops and low
drop concentration. A plausible explanation for these differences is the high humidity content in
westerly circulations and abundant cloud condensation nuclei concentration in easterly circulation.
These finding offer potential new applications for radar-based quantitative precipitation estimates.
Z–R parameters vary substantially with synoptic weather patterns effectively summarized by regional
wind direction classes. This variation in Z–R parameters with wind direction approximates their
station-to-station spatial variability for stratiform, but not for convective rain. We therefore conclude
that building separate Z–R retrieval equation for regional wind direction classes should improve
radar-based QPE, especially for stratiform rain events. This approach should be feasible for operational
level forecasts, especially since daily large-scale weather types can be predicted with high accuracy
several days in advance.
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Appendix A

Table A1. Summary of events selected for the fitting of Gamma distribution and the two methods of
R–Z parameters extraction (see Section 2.4).

Wind Direction Rain Type Duration (h) # Events Mean R (mm h−1) Mean dBZ

SW Convective 144.8 236 6.1 30.7
NW Convective 85.7 131 5.0 29.3
XX Convective 33.7 43 6.6 30.7
SE Convective 11.1 10 6.5 31.6
NE Convective 8.6 11 5.4 29.8
SW Stratiform 3553.1 828 0.9 20.7
NW Stratiform 3063.6 618 0.9 19.6
XX Stratiform 2056.0 373 0.9 20.2
NE Stratiform 598.8 140 0.9 18.5
SE Stratiform 358.8 59 0.9 18.5

Total 9914.1 2449
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Figure A1. Raindrop concentration per millimeter and cubic meter for a selection of ten events;
one event for each combination of wind direction and rain type. The points represent the event average
one-minute concentrations for each diameter range colored by the relevant wind directions. The colored
lines represent the fitted gamma distribution for these points.

Figure A2. Cont.
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Figure A2. The probability density of the fitted gamma parameters in stratiform and convective rain
colored by wind directions. The vertical lines represent the mean values of the three parameters based
on a selection of 2449 events (see Section 2.4).
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Figure A3. Density plot of reflectivity (dBZ) and rain intensity (R) for convective and stratiform rain.
This plot includes the 9914 h of rain within the selected 2449 events (see Section 2.4).
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Figure A4. The fitted Z–R lines for one event (start: 2014-09-20 08:48:30, duration: 54 min, rain type:
stratiform, wind direction: SW) using both the conventional method (black line) and the alternative
method (red line).
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Abstract: Advances in near real-time rainstorm prediction using remote sensing have offered
important opportunities for effective disaster management. However, this information is subject to
several sources of systematic errors that need to be corrected. Temporal and spatial characteristics of
both satellite and in-situ data can be combined to enhance the quality of storm estimates. In this study,
we present a spatiotemporal object-based method to bias correct two sources of systematic error
in satellites: displacement and volume. The method, Spatiotemporal Contiguous Object-based
Rainfall Analysis for Bias Correction (ST-CORAbico), uses the spatiotemporal rainfall analysis
ST-CORA incorporated with a multivariate kernel density storm segmentation for describing the
main storm event characteristics (duration, spatial extension, volume, maximum intensity, centroid).
Displacement and volume are corrected by adjusting the spatiotemporal structure and the intensity
distribution, respectively. ST-CORAbico was applied to correct the early version of the Integrated
Multi-satellite Retrievals for the Global Precipitation Mission (GPM-IMERG) over the Lower Mekong
basin in Thailand during the monsoon season from 2014 to 2017. The performance of ST-CORABico
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is compared against the Distribution Transformation (DT) and Gamma Quantile Mapping (GQM)
probabilistic methods. A total of 120 storm events identified over the study area were classified into
short and long-lived storms by using a k-means cluster analysis method. Examples for both storm
event types describe the error reduction due to location and magnitude by ST-CORAbico. The results
showed that the displacement and magnitude correction made by ST-CORAbico considerably reduced
RMSE and bias of GPM-IMERG. In both storm event types, this method showed a lower impact on
the spatial correlation of the storm event. In comparison with DT and GQM, ST-CORAbico showed a
superior performance, outperforming both approaches. This spatiotemporal bias correction method
offers a new approach to enhance the accuracy of satellite-derived information for near real-time
estimation of storm events.

Keywords: bias correction; satellite-based precipitation; spatiotemporal analysis; object-based
method; storm events

1. Introduction

Rainfall is a key component in the hydrological cycle and the primary source of freshwater in
many regions. However, climatic extremes, such as floods and landslides that are caused by heavy
rainfall events, pose a great threat to communities causing loss of life and damage to properties [1,2].
Flood monitoring and water management applications require a high accuracy representation of
rainfall in extreme conditions [3]. This is of particular importance in tropical monsoonal climates,
such as the Mekong basin region, where convective storm events are localised in space and time.

Traditionally, rain gauges and ground-based weather radar networks have provided the most
reliable precipitation data at the catchment scale [4]. However, in many areas around the world,
these data are either scarce or not available. An irregular distribution of these ground-based observation
stations makes it difficult to discern spatiotemporal features of convective storms and their associated
rainfall fields. Therefore, satellite-based remote sensing measurements have become an important
source of rainfall data e.g., [5–7]. These satellite-based measurements enable monitoring of storm
events at a quasi-global scale in near real-time. In comparison to other remote systems, such as
ground-based weather radar, satellite sensor observations provide a wider coverage, being able to
acquire data on storm systems in regions where topographic variations limit or obstruct weather
radars [8].

Satellite-based precipitation estimates are derived by combining visible to long-wave infrared
(VIS/IR) sensors from the Geosynchronous Earth Orbit (GEO) satellite with Passive Microwave (PMW)
sensors from the Low Earth Orbit (LEO) satellites. VIS/IR sensors are relevant to measure albedo
and cloud top temperature with a high temporal and spatial resolution [9,10]. On the other hand,
PMW sensors can penetrate clouds for measuring thermal emissions, which are attenuated by raindrops
with a 3-h interval [11,12]. Currently available and commonly used Satellite-based Precipitation
Products (SPP) include the Precipitation Estimation from Remotely Sensed Information using Artificial
Neural Networks (PERSIANN) [13], the NOAA Climate Prediction Center MORPHing technique
(CMORPH [14]), the Multi-satellite Precipitation Analysis from the Tropical Rainfall Measurement
Mission (TMPA) [15,16], and the Integrated Multi-satellitE Retrievals from the Global Precipitation
Measurement (GPM-IMERG) [17]. Sun et al. [18] details a comprehensive review of the main global
available satellite-based precipitation datasets.

Despite advances in the field of remote sensing, SPP information is subject to several
systematic and random errors that require correction e.g., [19–21]. A wide range of bias correction
methodologies has been developed to improve the performance of SPP, leveraging ground-based
observations. Several examples include linear scaling, local intensity scaling, the power and
distribution transformation methods, and Gamma Quantile mapping e.g., [8,22,23]. These methods all
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adjust SPP as function of rainfall intensity values, ignoring important systematic errors, such as those
that are caused by displacement and timing.

In the field of weather forecasting, displacement error in storm prediction has been taken using
spatial verification methods into account [24–26]. These “nontraditional” methods do not rely on
point-to-point matches between the observed and estimated fields for avoiding double penalties
(e.g., rainfall estimated but not observed and vice versa) that are commonly found in traditional
approaches. Methods can be broadly grouped into neighbour or fuzzy [27,28], scale separation [29–31],
object-based e.g., [24–26], and field transformation [32,33]. The first two categories can be described
as spatial filtering methods, in which the verification statistics are evaluated at coarser resolutions to
provide information about the scale of the performance. Object-based and field transformation are
considered as displacement verification methods when estimated rainfall fields, defined as an object,
are spatially manipulated (displacement, rotation, scaling, etc.) to try to fit the observed value.

Several studies have used spatial verification methods to analyse and correct systematic error
of SPP based on the characteristics of matched storm objects, such as location, rotation, intensity,
and shape [34–36]. For instance, Demaria et al. [37] used the object-based method, Contiguous
Rainfall Analysis (CRA, Ebert and McBride [24]), to correct the location error of CMORPH, PERSIANN,
and the TMPA datasets over the Plata basin. Recently, Le Coz et al. [38] used the field transformation
method, called Feature Calibration and Alignment technique (FCA), to correct the error due to location
in the GPM-IMERG late version over Sub-Saharan Africa. These methods have been useful for
correcting the displacement errors when the grid resolution is high and the storm event is small, while
preserving the higher spatial variability of SPP storm. However, these methodologies are constrained
by the two-dimensional analysis of the storm event.

The spatiotemporal analysis can provide a much deeper analysis on aspects of the entire life-cycle
of the storm event, including time span, speed, evolution, among others. In the literature, error
analysis using spatiotemporal approaches has been useful to evaluate the performance of several
spatial rainfall products. For example, Ref. [39,40] used the Object-Based Diagnostic Evaluation
time-domain (MODE-TD) that was proposed by Bullock [41] to evaluate the convection-allowing
forecast from the Weather Forecast Model over the United States. Recently, Laverde-Barajas et al. [42]
used the Spatiotemporal Contiguous Rainfall Analysis (ST-CORA; Laverde-Barajas et al. [43]) in the
Southeast region of Brazil for analysing the error composition of the CMORPH SPP and evaluated the
individual hydrological response of two systematic error sources: location and magnitude. This study
demonstrated the importance of spatial and temporal storm characteristics to analyse the main
systematic error sources in SPP.

Spatiotemporal storm analysis incorporated into bias correction methods is key to reduce
several sources of systematic error in SPP. In this study, we present a spatiotemporal object-based
bias correction method to reduce several systematic errors in storm events estimated by satellite.
The method, called Spatiotemporal Contiguous Object-based Rainfall Analysis for Bias Correction
(ST-CORAbico), uses the main storm characteristics of satellite and observed events detected by the
ST-CORA method to remove errors due to displacement in space and time and volume. This method
is evaluated over the lower Mekong Basin in Thailand to correct several storm event types in the
Integrated Multi-satellitE Retrievals for GPM (GPM-IMERG) early version during the monsoon season
from 2014 to 2017. The performance of ST-CORAbico is compared against two widely used probabilistic
methods—Distribution Transformation and Gamma Quantile Mapping. This manuscript is organised,
as follows: Section 2 describes the study and the rainfall data-sets; Section 3 details the methodology
of ST-CORAbico; Sections 4 and 5 contain the results and associated discussion; and finally, Section 6
presents the conclusions and future work.
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2. Study Area and Data

2.1. Study Area and Period

The study was conducted in Isan, in the northeastern region of Thailand (Figure 1). This region is
part of the Mekong-river basin, with an average discharge of 475 km3/year. The Mekong river basin
covers a total drainage area of 795.000 km2 and it is characteristically divided into the upper and lower
basins. The Lower Mekong river in Thailand is located in the Lower Mekong basin, covering 23% of
the total drainage area (184.000 km2) and representing 36% of the country (Figure 1).

Figure 1. Digital elevation of the Lower Mekong Basin in Thailand. Red rectangle corresponds to the
study area in the Isan region. Red dots represent the hourly rain gauge stations from www.thaiwater.net.
Blue line represents the Lower Mekong river network.

Heavy rainfall often occurs in the Lower Mekong river basin during the Asian monsoon period
between June to October. In this period, the covariability of the Indian summer monsoon and East
Asian summer monsoon impacts the Lower Mekong basin, causing high convective storm events that
are the main trigger for flash floods and landslides [44,45]. We focused on the wet months for the years
2014 to 2017, as these disasters are mostly occurring during the wet season.

2.2. Satellite-based Precipitation Data

ST-CORAbico was used to correct storm events detected by the Integrated Multi-satellitE
Retrievals for GPM (GPM-IMERG). GPM-IMERG is a high-resolution global precipitation product
produced by [17] from the NASA/JAXA Global Precipitation Measurement (GPM) mission.
The product combines information from multiple infrared, passive-microwave, and satellite-radar
sensors to provide rainfall estimations at 0.1-degree spatial resolution every half-hour. GPM-IMERG
computes Early, Late, and Final runs. The first two runs are near real-time versions of IMERG
and are available at six hours and 18 hours latency, respectively. In the Early version, rainfall
estimations are propagated forward while the Late has both forward and backward propagation
allowing the incorporation of climatological gauge data. The final version is obtained three months
after the measurements. In this run GPM-IMERG ingests the monthly rainfall analysis from the Global
Precipitation Climatology Centre (GPCC; Schneider et al. [46]). This version is used for scientific
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purposes, as it is considered to be the most reliable version [17]. In this study, we evaluated the early
run of GPM-IMERG at a half-hourly temporal resolution. This version was selected, given it is the
lowest latency data product available, a crucial aspect for operational applications.

2.3. In-Situ Ground-Based Rainfall Observations

Hourly rainfall data during the monsoon season from 2014 to 2017 were obtained from a dense
network of 138 rain gauge stations from the Thailand Integrated Water Resource Management System,
operated by the Hydro-Informatics Institute (HII) in Thailand (Figure 1). Data were quality controlled
by mirroring the density distribution functions of neighbouring stations to remove outlier values
considered as noise. These observations were then further interpolated using the Ordinary Kriging
interpolator from Golden Software [47] at 0.1 degrees for each hour to match the spatial and temporal
resolution of the GPM-IMERG data. This method was selected due to the moderated topographic
conditions of the study area and density of the rain gauge measurements. Raingauge data were
interpolated using an exponential variogram with a sill of 1.14 (mm2/h2), a range of 4.4 km and a
nugget of 0.66 (mm2/h2). It must be noted that interpolation methods for rainfall data are subject to
uncertainty e.g., [48,49]; however, in our case, a dense and optimal rain gauge distribution can reduce
the level of uncertainty from the interpolation method [50].

3. Methodology

ST-CORAbico was developed in order to analyse the spatiotemporal characteristics of storm events
and bias correct the main sources of systematic error in satellites. Figure 2 shows the methodology
of ST-CORAbico. In this section, we describe the elements for storm analysis and bias correction
in ST-CORAbico.

Figure 2. Diagram of the Spatiotemporal Contiguous Object-based Rainfall Analysis for bias correction
(ST-CORAbico) method. Grey boxes represent the input and output products while white boxes
describe the methodological process for storm analysis and bias correction components.
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3.1. Storm Analysis

In the storm analysis, ST-CORAbico uses ST-CORA to analyse the spatiotemporal characteristics
of the storm events observed and detected by satellites. This process requires the definition of the
spatial and temporal domain in order to reduce the computational time of ST-CORA. We applied a
spatiotemporal searching algorithm to predetermine the region of analysis in ST-CORA. This algorithm
uses the spatial searching algorithm concept that was proposed by Guttman [51] to index areas with
rainfall information in both datasets. The indexing is made in a two-dimensional space compressing
the latitude and longitude dimensions using a maximum intensity value as a reference. Once the
spatiotemporal domain is defined, we use ST-CORA in the observed and SPP dataset to identify storms
in the rainfall data. In this study, ST-CORA incorporates a multivariate kernel density function for
storm segmentation.

3.1.1. Storm Segmentation Using the Spatiotemporal Object-Based Rainfall Analysis with Multivariate
Kernel Density Segmentation

ST-CORA was applied to analyse the spatiotemporal characteristics of storm events at the
catchment scale (duration, spatial extent, magnitude, and centroid). This method enables the feature
extraction of different storm event types, classified based on hydrometeorological criteria. ST-CORA
uses a multidimensional connected labelling component algorithm to associate connected voxels in
space and time (a volume generalisation of pixels) into a disjoint object labelled with a unique classifier.
This operation is built upon binary information that was created by voxels, considered to be ‘effective
rainfall’. Effective rainfall voxels S[x,y,t] are defined according to rainfall voxels Rx,y,t above the rainfall
intensity threshold IT, as:

S[x,y,t] :=

{
1, if Rx,y,t ≥ IT.

0, otherwise.
(1)

where, IT is defined by the user and S[x,y,t] is defined in terms of 1 = “true” or 0 =”false”. In this study,
we used IT = 1mm/h to define effective rainfall [52]. Once binary voxels are created, the connected
labelling component algorithm scans all voxels in a neighbour system (from top to bottom and left to
right), assigning preliminary labels to S[x,y,t], as follows:

c(S[x,y,t]) =
{

N[x,y,t] ∈ αs : SCR = SN
}

(2)

where, c(S[x,y,t]) is a preliminary label, SCR, SN are properties of the voxel S[x,y,t] and its neighbours
N[x,y,t], respectively, while αs is the neighbour system in space and time. The labelling process c(S[x,y,t])

is repeated to resolve equivalence classes of the spatiotemporal object.
Bethel et al. [53] found that object segmentation, while using image thresholding, such as the

connected component labelling method, has limitations for edge detection in data with unknown
topology. In the original ST-CORA, a size-filtering algorithm and morphological closing method are
incorporated in order to remove both small noisy objects and a false merging effect, respectively.
However, this process is based on a binary object not taking into account the intensity value of voxels.
To overcome this limitation, we have incorporated a Multivariate Kernel Density Estimation (KDE)
approach to segment rainfall objects when considering their four dimensions. This method assumes a
non-parametric probability density distribution technique for d-dimensional data. Notably, KDE has
been widely used in many fields for image detection and object tracking, e.g., [54–58]. Multivariate
kernel density is estimated at point x from a random sample X1, X2, ...Xn from a density function, f ,

f̂K(x) =
1
n

n

∑
i=1

Kh (x − xi) (3)

where K corresponds to the kernel function and h is the bandwidth matrix. Choosing the bandwidth
matrix can be restricted to a class of positive diagonal matrices [59]. In the literature, there are several

82



Remote Sens. 2020, 12, 3538

bandwidth selection methods for kernel density estimation [59,60]. For this approach, we use the
normal reference rule-of-thumb proposed by Henderson and Parmeter [61]. This method estimates the
bandwidth while assuming that the density distribution function follows a Gaussian distribution.

The process of edge detection using KDE is based on the Edge Detection by Density method that
was developed by Pereira et al. [55]. This process evaluates the multivariate density distribution of
the density of a four-dimensional (4D) rainfall object (Figure 3), and segments the object based on
the density threshold, u. This threshold identifies the storm edges that are lower than a probability
percentage. This parameter is calculated by analysing the relationship between threshold delineation
and the connected intensity value. We found that the 25th distribution percentile for u threshold
showed good results for storm segmentation over the Lower Mekong Basin, especially for intense
storm events, which are characteristic of monsoon environments.

Rainfall Objects are considered to be storm based on the Critical Mass Threshold (CMT), which is
defined as the minimum volume of rainfall (km3) necessary to be considered as an extreme event [62].
The value of CMT is calculated locally based on the sensitivity between the spatial extent and the total
object volume [37,63]. In this analysis, we also incorporated the sensitivity of CMT to the maximum
intensity of the storm in order to evaluate the response of intense storm events in the study area.
Based on the sensitivity analysis of those parameters, we selected a CMT of 0.01 km3 for storm events
with a maximum intensity greater than 10 mm/h. In the study area, these events correspond to rainfall
objects bigger than 2000 km2.

Figure 3. Multivariable kernel density of a storm object in space and time. Example for the storm
event 2014-07.

3.1.2. Matching Process

As a result of ST-CORA, multiple storm events are identified in both observed and satellite data
sets. However, it is necessary to determine the observed and estimated storm matches. We used the
Intersection-over-Union measure (IoU) in order to evaluate the level of similarity between predicted
and observed data. IoU is defined as the ratio between the size of the intersection and the union of
both objects. This is represented by the following equation:

IoU =
TP

FP + TP + FN
(4)
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where, TP represents true positives and FP and FN are false positives and negatives, respectively.
The selection of the intersection rate value determines the level of matching between objects. If the
values are too low, multiple objects will be indexed with the same object. On the other hand, high
values indicate that the object does not have any match. We found the IoU value to be 30 percent in
the selected study area, which is a good balance for matching the observed and satellite storm events.

3.1.3. Storm Classification

Once all of the storm events are identified, ST-CORA classifies storm events into two types: small
convective systems with a short duration (short-lived) and long duration systems extended over large
areas (long-lived) [64,65]. We used an unsupervised K-means cluster analysis method to classify short-
and long-lived storm events based on the four main storm characteristics (duration, spatial extent,
maximum intensity, and total volume). This method divides n observations into k clusters in which
each observation is a member of the cluster that minimises the objective function J, as follows:

J =
k

∑
j=1

n

∑
i=1

‖X(x,y,z,c)
j
i
− Cj‖2 (5)

where, X is the storm with dimensions x, y, z, c corresponding to the storm characteristics duration,
spatial extent, maximum intensity and total volume, respectively. C is the centroid of the cluster k and
the absolute number represents the minimum Euclidean distance to C.

3.2. Bias Correction

Bias correction is the second component of the ST-CORAbico method. This component is based
on the systematic error source extraction for SPP that was proposed by Laverde-Barajas et al. [42].
Based on the error decomposition for storm estimation defined by Ebert and McBride [24], satellite
error is composed of systematic and aleatory errors due to displacement, volume, and pattern, as:

Etotal = Edisplacement + Evolume + Epattern (6)

where displacement and volume represent the systematic errors and pattern is the aleatory error
calculated as follows:

Edisplacement = Etotal − Eshi f ted (7)

Evolume = Etotal − Emagnitude (8)

Epattern = Eshi f ted − Evolume (9)

In Equations (7) and (8), location is the main source of error due to displacement, while the
magnitude is the corresponding source of error for volume. Using the error subtraction from
Laverde-Barajas et al. [42], ST-CORAbico corrects displacement and volume error using the
following process:

Displacement Correction

Displacement correction corresponds to removing the shifting effect of the estimated storm.
In this step, the Principal Component Analysis method (PCA, Johnson and Hebert [66]) is used in
order to obtain the weighted centroid and orthogonal variables (eigenvectors, eigenspace) of the
SPP storm and reference data (Figure 4a). Once the geometric properties of the objects are obtained,
the weighted centroid is matched and the object is rotated accordingly to fit the eigenvectors of the
reference storm data.
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Figure 4. ST-CORAbico systematic error subtraction. (a) In error correction, storm centroid and
eigenvectors derived from principal component of GPM-IMERG are fitted to the observed event;
and, (b) magnitude subtraction using both satellite and observed empirical distribution functions,
with respect to intensity.

Volume Correction

Volume correction corresponds to the subtraction of the magnitude source of error of the SPP.
Using the statistical Empirical Quantile Method (EQM) [67], magnitude error is subtracted by adjusting
all moments of the empirical cumulative distribution functions (ecd f s) of the SPP in terms of intensity,
with respect to the reference data (Figure 4b). EQM builds the ecd f for the observed (ecd fobs) and the
satellite (ecd fsat) while using the intensity storm distribution Is, as:

EQM = ecd f−1
obs (ecd fsat(Is)) (10)

3.3. Evaluation of ST-CORAbico

The evaluation was done by comparing the bias-corrected results with two widely used
probabilistic bias correction methods— the Distribution Transformation (DT) method and the Gamma
Quantile Mapping (GQM). The DT method was originally developed for the statistical downscaling
of climate model data [68]. The method corrects the mean and difference in variation of the SPP by
matching the satellite and the observed distribution based on Equation (11):

DT = (SAT(t)− μsat)DTτ + τsat × DTμ (11)

where, μ and τ are the mean and standard deviation of the observed and satellite, respectively. DTμ

and DTτ are the mean and standard deviation ratio between the observed and satellite data at time t.
The Gamma Quantile Mapping method uses the same methodology as the Empirical Quantile

mapping method (10), based on the assumption that both observed OBS and satellite SAT intensity
follows a gamma distribution [69]. DT and GQM are implemented for each time-step in order to
correct the storm event. The bias correction performance is evaluated based on three widely used error
metrics: the Root Mean Square Error (Equation (12)) for evaluating the magnitude error, the bias level
(Equation (13)) to evaluate the systematic bias, and the correlation coefficient (Equation (14)) in order
to analyse the linear correlation between the observed and the bias-corrected storm event.

RMSE =

√√√√ 1
N

N

∑
i=1

(OBSi − SATi)2 (12)
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Bias =

N
∑

i=1
(SATi − OBSi)

N
∑

i=1
(OBSi)

(13)

r =

N
∑

i=1
(SATi − SAT)(OBSi − OBS)√

N
∑

i=1
(SATi − SAT)2

√
N
∑

i=1
(OBSi − OBS)2

(14)

where, OBS represents the rainfall values of the reference rain gauge data and SAT are the satellite
and the bias-corrected storm obtained with each method.

4. Results

4.1. Storm Analysis

We identified 120 storm events observed and estimated by GPM-IMERG at an hourly scale for
the 2014–2017 monsoon seasons. Figure 5 shows the scatter plot of the main storm characteristics
(total volume, duration, spatial extent, and maximum intensity) and classification between short-
and long-lived storm events using the k-means cluster analysis. For all events, 68 storms (56%)
were classified as short-lived storms while 52 (44%) of storms were classified as long-lived events.
Short-lived events had a duration that ranged between three and 17 h, with a maximum spatial extent
of 42 thousand km2. Long-lived events had a duration ranging between 18 and 31 h and covered
between 54 and 110 thousand km2. In terms of total volume and maximum intensity, short-lived
events have a total volume of up to 0.15 km3 with low and intense storms ranging from 3 to 82 mm/h.
On the other hand, long-lived storms are comprised of medium and high-intensity events with a total
volume ranging from 0.27 to 0.65 km3. Table 1 describes the observed storm characteristics for short
and long-lived event types.

Figure 5. Short- and long-lived cluster analysis classification for observed events during monsoon
season 2014–2017.
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Table 1. Storm characteristics for short- and long-lived event types.

Storm Type Statistics Duration (h) Spatial Extent (km2) Maximum Intensity (mm/h) Total Volume (km3)

mean 9 15,097 33.0 0.04
Short-lived storm min 3 1900 3.6 0.01

max 17 42,300 82.0 0.15

mean 18 54,400 71.4 0.27
long-lived storm min 10 24,300 31.6 0.07

max 31 110,600 100.0 0.64

4.2. Results for Bias Correction

We selected a short-lived and a long-lived storm in order to describe the workflow for
displacement and volume correction made by ST-CORAbico. Figures 6 and 7 present the bias correction
steps for each storm event type. Panel (a) shows the spatial distribution of the observed and satellite
events as well as the bias-corrected satellite storm events that were obtained from the correction of
location and magnitude errors in ST-CORAbico. Panel (b) describes the displacement and volume
corrections. Panel (c) presents the four-dimensional (4D) spatiotemporal evolution of the observed and
satellite as well as the bias-corrected storm (time in the z-axis). Panel (d) shows the bias and RMSE
statistics as well the scatter and correlation between the observed storm and original and bias-corrected
satellite events.

Both examples (Figures 6 and 7) show the importance of bias correction. In both the short and
long-lived event scenarios, GPM-IMERG had a longer duration with a larger footprint. However,
the long-lived event presented a better spatial agreement than the short-lived event. In terms of
magnitude, GPM-IMERG considerably overestimated the total volume and rainfall intensity of the
storm. Overall, the performance of GPM-IMERG shows a positive bias and high RMSE, mostly being
caused by an excess of rainfall. The correlation coefficients for short- and long-lived event scenarios
were 0.7 and 0.5, respectively.

Figure 6. Performance of ST-CORAbico for a short-lived storm event (2014-08-27). (a) total events for
observed, satellite and ST-CORAbico; (b) volume, displacement correction maps; (c) four-dimensional
(4D) spatiotemporal evolution (lat, lon, time, intensity); and, (d) bias, RMSE statistics, and scatter and
correlation between observed and estimated rainfall values.

The corrections in displacement and volume made by ST-CORAbico displayed notable changes in
the satellite storm structure. In both scenarios, RMSE and bias were mostly reduced by correction due
to volume, contributing 40 to 60% of the RMSE reduction and around 70% of the total bias reduction
for both events. Displacement correction had an important impact on the reorientation of the satellite
storm. The individual correction contributed to 5% of the RMSE correction and 10% reduction of the
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total bias for the short-lived event. In the case of the long-lived scenario, displacement correction
contributed almost 15% of the RMSE reduction and 20% of the total bias reduction. In terms of the
correlation coefficient, displacement and volume correction that were made by ST-CORAbico showed
a marginal impact on the spatial correlation for the short-lived events. For the long-lived scenario,
this did not impact the spatial correlation.

Figure 7. Performance of ST-CORAbico for a long-lived storm event (2014-07-21). (a) total events for
observed, satellite and ST-CORAbico; (b) volume, displacement correction maps; (c) 4D spatiotemporal
evolution (lat, long, time, intensity); and, (d) bias, RMSE statistics and scatter and correlation between
observed and estimated rainfall values.

Figure 8 presents the performance of ST-CORAbico for short- and long-lived storm events.
This figure describes the density distribution of RMSE (a–b), bias (c–d), and correlation coefficient
(e–f) of the short- and long-lived storms estimated by GPM-IMERG, ST-CORAbico, and the individual
corrections due to displacement and volume. It was found that ST-CORAbico has a smaller error
distribution in RMSE and bias for short- and long-lived storm events when compared with the original
GPM-IMERG. This error reduction is mostly caused by the correction due to volume. Displacement
correction was an important factor in reducing the bias, especially for long-lived storm events.
The results from the correlation coefficient showed that ST-CORAbico had a marginal effect on the
spatial correlation of the storm event. Overall, it was found that ST-CORAbico considerably reduced
the systematic error of GPM-IMERG.

4.3. Model Comparison

ST-CORAbico was compared with the Distribution Transformation method (DT) and the Gamma
Quantile Mapping (GQM) method. Using the short- and long-lived storm scenarios that are presented
above, Figure 9 presents the spatial differences and linear correlation between the total observed storms
and the bias-corrected events obtained by ST-CORAbico, DT, and GQM. The results for both storm
event scenarios showed that ST-CORAbico had the lowest spatial difference among the evaluated
methods. For the short-lived storm scenario, ST-CORAbico displayed the highest correlation coefficient
(r: 0.41) and the lowest RMSE and bias (RMSE: 4.05 mm; bias: 0.74) when compared with DT (r: 0.40;
RMSE: 5.4 mm; bias: 1.17); and, GQM (r: 0.39 RMSE: 6.09mm and bias: 1.5). In the case of the long-lived
storm, ST-CORAbico and DT showed a notable error reduction in contrast to the GQM method that
showed the biggest differences. For this storm scenario, ST-CORAbico had the best performance (r: 0.71
RMSE: 18.02 mm; bias: 0.09), followed by DT (r: 0.68, RMSE: 23.0 mm; bias: 0.32), and finally GQM
(r: 0.62, RMSE: 43.77 mm; bias: 0.97).
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Figure 8. Satellite and bias corrected error distribution for short and long-lived events during monsoon
seasons 2014–2017: (a,b) RMSE; (c,d) bias; and, (e,f) correlation coefficient.

Figure 9. Comparison between ST-CORAbico vs Distribution Transformation (DT) and Gamma
Quantile Mapping (GQM).
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Figure 10 presents the comparison between ST-CORAbico, DT, and GQM for short- and long-lived
storm events. The boxplots show the distributions of the RMSE (Figure 10a,b), the bias (Figure 10c,d),
and the correlation coefficient (Figure 10d,f) between the 25% and 75% percentiles for the original
GPM-IMERG and the different bias correction methods. The dots represent the individual error for
each storm event. In comparison with the two probabilistic methods, we found that ST-CORAbico
consistently had the lowest RMSE as well as the lowest bias for both short- and long-lived storm
events. ST-CORAbico and DT had a lower impact on the correlation coefficient, especially for
short-lived events.

Figure 10. Comparison between the satellite GPM-IMERG (red), ST-CORAbico (blue), Distribution
Transformation (green) and Gamma Quantile Mapping (grey) error dispersion during monsoon seasons
2014–2017. (a,b) RMSE; (c,d) bias; and, (e,f) correlation coefficient.

5. Discussion

ST-CORAbico is a spatiotemporal object-based bias correction method that was designed to
reduce the displacement and volume systematic errors of storm events detected by SPP. In comparison
to spatial object-based bias correction methods e.g., [37,38], the inclusion of the temporal component of
the storm event reduced additional error effects due to timing and orientation, improving the efficiency
of the bias correction.

This research incorporated a multivariate kernel distribution algorithm into ST-CORA to segment
the storm event using the four dimensions of the storm event. In comparison to binary segmentation in
the previous version, ST-CORA with KDE segmentation was able to delineate intense storm events by
removing unreal storm configurations as a consequence of false merging and false separation of storms
due to the multidimensional connected labelling component algorithm. Based on the analysis of KDE
threshold delineation and the connected intensity, we found that storm events that were segmented by
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the 25th percentile of the distribution showed a good result for segmenting intense storms with strong
connection. However, further improvement is required.

The implementation of ST-CORAbico described the individual error correction due to
displacement and volume. Results in the Lower Mekong basin indicated that volume errors
were the main error correction, primarily resulting from the high overestimation of GPM-IMERG.
These results agreed with multiple findings regarding hourly GPM-IMERG in monsoonal areas [70,71].
Overall, volume and displacement errors effectively contributed to the reduction of bias and RMSE,
demonstrating the importance of reducing both of these systematic errors in satellite correction.

We acknowledge certain limitations of the study. Firstly, the uncertainty arising from the spatial
interpolation method that was used for rain gauge values was not fully addressed in this research.
Volume and especially displacement corrections in ST-CORAbico can be affected by the type of
interpolation methods used to represent the spatiotemporal distribution of the observed storm. A dense
rain gauge network can reduce the level of uncertainty; however, it is important to evaluate the impact
of the type of interpolation method on the performance of ST-CORAbico, as mentioned above. Another
limitation arises from the sensitivity of IoU percentage to match observed and estimated storm events.
Higher levels do not always correspond to similar events, which affects the bias correction. This process
required an in-depth sensitivity analysis of IoU in order to reduce the automatic storm matching.
Additional analysis is required in order to identify why there is a strong correlation between observed
and predicted storms in a spatiotemporal environment. In this study, we validated the performance of
ST-CORAbico by comparing its performance against two widely used probabilistic methods. However,
error metrics were calculated using the observed values, as there is no independent validation dataset
available. Further implementations should consider an independent dataset to validate the error
correction of the ST-CORAbico method.

This study was conducted in collaboration with the SERVIR-Mekong project and the Mekong
River Commissions (MRC). SERVIR-Mekong is harnessing space and geospatial technologies to
help decision-makers and key civil society groups to integrate geospatial information into their
decision-making, planning, and communication. The application of this methodology can be used
for various scientific purposes, including flood risk and water management. More specifically,
the methodology enhances the input rainfall data, which are a crucial component of flood and drought
early warning systems, landslide monitoring, as well as other water-related decision support systems.
Future work will include the integration of machine learning technologies for near real-time bias
correction of rainfall data when field data are scarce. In this regard, machine learning models will be
trained and optimised using legacy field data and deployed on a near real-time basis.

6. Conclusions

We proposed a new spatiotemporal bias correction method for storm prediction detected
by satellites. The method, called Spatiotemporal Contiguous Object-based Rainfall Analysis for
bias correction (ST-CORAbico), analyses the main spatiotemporal characteristics of the observed
and estimated storm events to correct systematic error sources due to displacement and volume.
This methodology has two main elements: storm analysis for the segmentation and classification of
storm event; and bias correction for correcting error due displacement and volume. In the storm
analysis, we applied the ST-CORA method with a multivariate kernel segmentation in order to identify
the spatiotemporal structure of the storm event. This method was applied over the Lower Mekong
basin in Thailand to correct the GPM-IMERG Early version during the monsoon seasons from 2014
to 2017. The performance of ST-CORAbico was evaluated against the Distribution Transformation
and the Gamma Quantile Mapping methods based on the reduction of RMSE, bias, and correlation
coefficient. The results were divided by classifying the storm events into short- and long-lived storm
events while using the k-means cluster analysis method.

We classified 68 storms (56%) as short-lived storms and 52 (44%) as long-lived events. The results
of both storm event types showed that ST-CORAbico reduced the RMSE and bias of GPM-IMERG.
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Volume correction was the major error source due to the overestimation present in GPM-IMERG.
Location error was most important in the reduction of the bias. ST-CORAbico displayed a marginal
impact on the spatial structure of the satellite-derived rainfall, showing the original structure of the
rainfall data.

The comparison of ST-CORAbico with the Distribution Transformation and the Gamma Quantile
Mapping methods showed that ST-CORAbico had the lowest RMSE as well as the lowest bias in both
short and long-lived events. In terms of the correlation coefficient, ST-CORAbico and DT had a lower
impact on the correlation coefficient, especially for short-lived events.

ST-CORAbico improves the accuracy of satellite-derived near real-time information on storm
events. It can be used in various flood monitoring and water management applications. Our future
studies will also incorporate machine learning methods and related technologies in order to correct
storm events in real-time, in situations where field observation data are scarce.
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Abstract: Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM
(IMERG) high-resolution product and Tropical Rainfall Measuring Mission (TRMM) 3B43 product
are validated against rain gauges over the island of Cyprus for the period from April 2014 to
June 2018. The comparison performed is twofold: firstly, the Satellite Precipitation (SP) estimates
are compared with the gauge stations’ records on a monthly basis and, secondly, on an annual
basis. The validation is based on ground data from a dense and well-maintained network of rain
gauges, available in high temporal (hourly) resolution. The results show high correlation coefficient
values, on average reaching 0.92 and 0.91 for monthly 3B43 and IMERG estimates, respectively,
although both IMERG and TRMM tend to underestimate precipitation (Bias values of −1.6 and
−3.0, respectively), especially during the rainy season. On an annual basis, both SP estimates are
underestimating precipitation, although IMERG estimates records (R = 0.82) are slightly closer to that
of the corresponding gauge station records than those of 3B43 (R = 0.81). Finally, the influence of
elevation of both SP estimates was considered by grouping rain gauge stations in three categories,
with respect to their elevation. Results indicated that both SP estimates underestimate precipitation
with increasing elevation and overestimate it at lower elevations.

Keywords: GPM; IMERG; TRMM; precipitation; Cyprus

1. Introduction

Satellite observations have been widely used during recent decades for several meteorological,
hydrological and climatological applications incorporating precipitation data worldwide [1–6]. In order
to fill in where ground observations are absent or sparse, satellite estimations have been evolving using
sophisticated algorithms that can identify rainfall, snow and/or other hydrometeors [7–11]. However,
although Satellite Precipitation (SP) products are able to, overall, capture the variability and magnitude
of rainfall, still they cannot accurately estimate the localized rainfall variations. Thus, validation of
satellite precipitation products is often needed against ground-based measurements.

The Tropical Rainfall Measuring Mission (TRMM) platform placed in orbit during the 1997–2015
period, provided reliable data of high spatial (≈25 km) and temporal resolution (3 h), at a geographical
coverage between 50◦ N and 50◦ S [12–17]. TRMM’s successor, namely, the Global Precipitation Mission
(GPM) has been in orbit since 2014, giving estimates at even higher resolutions (≈10 km; 30 min) and
geographical coverage from 60◦ S to 60◦N, making it available for a variety of applications, including the
assimilation of GPM data in numerical weather prediction models to improve model forecasting
skill [15,16], the monitoring of severe weather events [13,15–17], hydrological hazards [18,19], etc.
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Several studies attempted to demonstrate the accuracy of TRMM and GPM IMERG (Integrated
Multi-satellitE Retrievals) estimates in various geographical areas. In their study over mainland
China, Wu et al. [20] found that both SP products overestimate light rainfall. This is attributed to the
fact that hydrometeors detected by infrared and microwave sensors as well as precipitation radars
may partially or even totally evaporate before they are registered by the rain gauges. Furthermore,
these authors found an underestimation of moderate and heavy rainfall by both products. A slightly
better performance by GPM-IMERG, according to these authors, is attributed to the satellite overpasses
and sensor capabilities.

In a similar study over Pakistan, Anjum et al. [21] found a slight dominance of IMERG; however,
both products correlate well with the in situ measurements at a monthly scale, adequately following
the temporal pattern. Again, underestimation of moderate and heavy rainfall and overestimation of
light events was reported.

In their study regarding the area of Singapore, Tan and Duan [22] presented similar results,
showing good correlation on a monthly scale, with rain gauges for both products and moderate
correlation for daily values. The authors underlined that the better performance of IMERG was not
that notable and that the main advantage of the new product was mostly its finer resolution.

In a study over the Tibetan plateau (Hexi region), Wang et al. [23] found a better correlation
for IMERG, ascribed mostly to the ability to detect better moderate and heavy rainfall; however,
they concluded that the improvement was not significant.

In their study (China, 2015–2017), Chen et al. [24] evaluated the performance of IMERG (v5) and
TRMM 3B42 (v7) and found that, at monthly and annual scale, both datasets were highly correlated
with rain gauge observations. Considering daily values, satellite estimates overestimate precipitation
for intensities within the range 0 to 25 mm/day and underestimate precipitation for light and heavy
intensities. Considering various statistical scores, they found that IMERG, in general, performed better
in detecting the observed precipitation.

In a similar study (China, March 2014 to February 2017), Wei et al. [25] found severe underestimation
with high negative relative biases for both IMERG (v5) and TRMM products. However, IMERG product
performed better than TRMM 3B42 in the detection of precipitation events in terms of specific statistical
scores (i.e., probability of detection), over China and across most of the sub-regions.

Sunilkumar et al. [26] evaluated the GPM-IMERG (v5) final precipitation product against a
ground-based gridded data set over Japan, Nepal and the Philippines for two years (2014–2015).
Their results showed generally good performance (in terms of statistical scores, like correlation,
mean bias, root mean square error) of GPM-IMERG over three regions, although an underestimation
was noticed during heavy rainfall events. They also noticed that GPM-IMERG estimates improved its
capability in terms of detecting light and heavy precipitation events, although their performance was
found to be seasonally dependent.

A few studies with evaluation of satellite precipitation products over Cyprus are reported in the
literature. Retalis et al. [27] performed an analysis of precipitation data from satellite data TRMM 3B43
(versions 7 and 7A) over Cyprus and compared them with the corresponding gauge observations and
E-OBS gridded data (i.e., a European daily high-resolution gridded dataset of surface temperature and
precipitation to be used for validation of Regional Climate Models and for climate change studies) for
a 15-year period (1998–2012). They concluded that correlation between TRMM and E-OBS was higher
in summertime (≈0.97), but significantly lower in the winter period (≈0.60–0.74). It was noticed that
the annual correlation tends to decrease considerably with time. They also found that the coefficient of
determination between TRMM, E-OBS estimates and gauge data were relatively high (0.929 and 0.932,
respectively); however, the variations noticed were attributed to the elevation differences.

A study for a 30-year period (1981–2010) for the precipitation database Climate Hazards Group
Infrared Precipitation with Station data (CHIRPS) in Cyprus was presented by Katsanos et al. [28].
The CHIRPS database was evaluated against gauge stations data. Results showed good correlation
between monthly CHIRPS values and recorded precipitation with the correlation coefficients found
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to be around 0.85 and January the month with the highest correlation. The corresponding values for
the annual mean ranged between 0.70 and 0.74, with the mountainous stations showing a slightly
higher correlation.

In a later study, Katsanos et al. [29] examined the performance of several climatic indices for the
CHIRPS precipitation dataset and rain gauges records on high spatial (0.05◦) and temporal (daily)
resolution for a period of 30 years (1981–2010). Results indicates quite a promising performance
regarding indices related to daily precipitation thresholds, resulting in high correlation scores. However,
for indices referring to number of days, results showed medium or no correlation, probably due to the
criteria used for the identification of a wet (rainy) day on the CHIRPS dataset.

Furthermore, Retalis et al. [30], in their study on the accuracy of the GPM IMERG estimates over
Cyprus (April 2014 to February 2017), concluded that, overall, a very good agreement (based on the
statistical analysis) between monthly IMERG estimates and gauge data was established (coefficient of
determination r2 value ≈ 0.93), presenting a tendency of IMERG for underestimation when higher
elevation (>1000 m) was considered. They also examined the daily dependency of IMERG estimates
and gauge data, considering a series of extreme precipitation events, and they concluded that this is
case dependency, while elevation does not have an apparent effect.

The objective of this study is to evaluate statistically the performance and improvement of the
GPM IMERG product compared to TRMM 3B43V7 estimates, thus exploring, the continuity and
uniformity between IMERG and TRMM-era data sets over Cyprus so that they can be used in climate
studies as a combined and consistent dataset. The present research is a continuation and extension of
previous studies by the same authors.

The current research aims at comparing the two products, namely, GPM IMERG and TRMM 3B43,
in order to determine and highlight possible differences, advantages and disadvantages of each one of
them, based on the performance of several statistical skill scores, along with cross-evaluation against
the dense rain gauge dataset over Cyprus during the period from April 2014 to June 2018.

2. Study Area

Located in the north-eastern corner of the Mediterranean Sea, the island of Cyprus has a typical
eastern-Mediterranean climate. The major characteristic of this type of climate can be concisely
described by a bimodal seasonality with alternating relatively short wet winters and prolonged dry
summers. As can be seen from the geomorphological map in Figure 1, the island is transversed by two
mountain ranges: the high Troodos massif in the southwest with the highest peak, Olympus at 1951 m,
and the elongated east-west oriented narrow Pentadaktylos range, rising to 900 m which borders the
northern coast from east to west. Between the two mountain ranges, lies the central Mesaoria plain.
Narrow, relatively flat strips of land surround the island along its coast.

Figure 1. Geomorphology map of Cyprus highlighting the distribution of the dense gauge station
network grouped according to elevation.
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Most of the winter dynamic systems which affect Cyprus originate from the southwest to
west [31,32]; hence, the highest average annual precipitation values are recorded on the southern side
of the highest peaks of the Troodos mountain and the lowest over the rain-shadowed areas north of
Troodos and at coastal stations on the east part of the island [33].

3. Data and Methodology

3.1. In-Situ Rain Data

The in-situ meteorological stations of the very reliable [30] dense and well-distributed network
operated by the Cyprus Department of Meteorology were used for ground validation. Daily and
hourly complete data records from 136 rain gauges were used for the study period (see Figure 1).
These gauges are distributed in such a way so as to cover the whole study area, including not only
coastal, urban and agricultural areas, but also the hilly and mountainous areas. It is worth noting that
data underwent quality control prior to the present analysis.

The average annual total precipitation increases up the southwestern windward slopes from
450 mm to nearly 1100 mm at the top of the central massif. On the leeward slopes amounts decrease
steadily northwards and eastwards to between 300 and 350 mm in the central plain and the flat
southeastern parts of the island [34].

The annual average rainfall, covering the period 1951–1980, is 480 mm, exhibiting a decreasing
trend in the last 30 years [34]. Furthermore, rainfall in the warmer months contributes little or nothing
to the annual precipitation amounts.

It should be noted at this point that data from four meteorological stations are provided by the
Cyprus Department of Meteorology to be incorporated in the TRMM and GPM estimates. These four
stations are not representative of the country as a whole. Furthermore, they barely make up 3% of the
data used herein, hence, the are not expected to have an impact on the objectivity of the study.

3.2. IMERG Data

Global Precipitation Measurement (GPM) mission was launched on 27 February 2014, as a
successor of the Tropical Rainfall Measuring Mission (TRMM). GPM constellation incorporates passive
microwave (PMW) and infrared (IR) satellites, providing global precipitation measurements within
the range 60◦ N–60◦ S and better temporal and spatial analysis (see [25,35,36]).

GPM consists of one Core Observatory and approximately 10 constellation satellites. The Core
Observatory carries a Ku/Ka-band dual-frequency precipitation radar and a multi-channel GPM
microwave imager, extending the measurement range of TRMM instruments. GPM provides three
levels of precipitation-related products. The level-3 products are produced with the IMERG (Integrated
Multi-satellitE Retrievals for GPM) algorithm, which intercalibrates and merges precipitation estimates
from all constellation microwave sensors, microwave-calibrated infrared satellite estimates, and monthly
gauge precipitation data [37,38]. It is important here to comment on the PMW sensitivity of retrieved
rainfall, since the launch of GPM, the overland rainfall retrieval algorithm, is transitioning from an
inversion technique based on rainfall–brightness temperature scattering relationships to a Bayesian
framework consistent with the over-ocean algorithm [39]. GPM IMERG precipitation estimates are
available from 12 March 2014 to present. The GPM IMERG products offer a relatively fine spatial
resolution of 0.1◦ × 0.1◦ and high temporal resolution of 30 min, with a spatial coverage from 60◦ S to
60◦ N. The IMERG Final product [18] was chosen for our study and so, especially, was the IMERG
(v05B) data for the period from April 2014 to June 2018.

3.3. TRMM Data

The Tropical Rainfall Measuring Mission (TRMM), launched by NASA (National Aeronautics and
Space Administration) and JAXA (Japan Aerospace Exploration Agency) in 1997, provided precipitation
estimates within the latitude 50◦ S to 50◦ N (see [40,41]).
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The TRMM satellite carried several instruments to detect precipitation, including the Visible
Infrared Radiometer (VIRS), TRMM Microwave Imager (TMI), Cloud and Earth Radiant Energy
Sensor (CERES), Lightning Imaging Sensor (LIS) and the first spaceborne precipitation radar (PR).
Several precipitation retrieval algorithms have been developed based on observations from the
sensors on board the TRMM satellite such as the TMPA (TRMM Multi-satellite Precipitation Analysis).
The TMPA algorithm combines observations from satellite-based microwave and infrared sensors
and ground rainfall gauge analyses, and produces 3-hourly rainfall estimates at a spatial resolution
of 0.25◦ × 0.25◦ with a quasi-global coverage (50◦ N-S) [42]. In 2015, the TRMM mission came to an
end, with the instruments turned off and the spacecraft re-entering the Earth’s atmosphere. However,
the multi-satellite TMPA products continue to be produced using input data from other satellites in the
constellation. Indeed, the TMPA algorithms are still being run using other calibrators to produce data
in parallel with GPM IMERG [43].

The Level 3 TRMM 3B43 data, also called TMPA product, were chosen for our analysis [42].
In particular, TRMM 3B43 (v7) data for the period from April 2014 to June 2018 were used.

3.4. Methods

In order to perform the evaluation of IMERG and 3B43V7 products relative to the reference
rain gauges data, several indices including Pearson Correlation Coefficient (R), mean error (Bias),
relative Bias (rBias), Root Mean Square Error (RMSE) and mean absolute error (MAE) were computed
(see Table 1). Pearson correlation coefficient (R) is a dimensionless statistical index used to assess the
linear correlation between the reference ground-based data and the satellite precipitation estimates.
Mean error (Bias) represents the systematic error of satellite precipitation estimates, a measure
of the overestimation or underestimation of the gauge data. Relative Bias (rBias) estimates the
relative difference (in percentage) between the two data sources (satellite estimates and rain gauges).
RMSE quantifies the average error magnitude (mm/time) between the satellite estimates and the
rain gauge data. Mean absolute error (MAE) reflects the magnitude and extent of the mean error
of satellite precipitation estimates. For seasonal analysis, the year was divided into four seasons:
winter (December to February); spring (March to May); summer (June to September); and autumn
(October to November).

Table 1. Summary of statistical indices used to evaluate the satellite precipitation products (Si: satellite
estimates, Oi: observations).

Unit Equation

R (correlation coefficient) -
∑n

i=1(Oi−O)(Si−S)√∑n
i=1(Oi−O)

2
√∑n

i=1(Si−S)
2

Mean Error (Bias) mm
∑n

i=1(Si−Oi)
n

Relative Bias -
∑n

i=1(Si−Oi)∑n
i=1 Oi

(100)

RMSE mm
√∑n

i=1(Si−Oi)
2

n

Mean Absolute Error mm
∑n

i=1 |Si−Oi |
n

Figure 2 shows the number of stations that are distributed within the grid cells of each Satellite
Precipitation (SP) dataset. The number of grid cells for the study area was 19 for the TRMM 3B43 data
and 61 for IMERG data, respectively. On the one hand, the TRMM 3B43 grids show a notable variation
of the available number of gauge stations residing (e.g., from 1 to 23 stations per grid cell). It should be
also noted that 42% of the available gauge stations (57 of 136) were located within only three cells,
although these 3B43 cells are not the ones with the maximum correlation with the corresponding gauge
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values. We notice that the distribution of the available gauge station within each IMERG grid cell was
more balanced (1 to 5 stations per grid cell).

Figure 2. Distribution of rain gauge stations within Tropical Rainfall Measuring Mission (TRMM) 3B43
(a) and Integrated Multi-satellitE Retrievals (IMERG) (b) grids.

4. Results and Discussion

4.1. Monthly Validation

Mean monthly values for the study period were calculated for both the gauge stations (136 stations)
and the two satellite precipitation products (mean values of all available corresponding grid cells
within the study area). The results are illustrated in Figure 3. We notice that, overall, both IMERG
and TRMM data follow very well the “climatology” of the stations, although with an underestimation
during the rainy period, while IMERG is closer to the gauge values for almost the whole period
of study.

Figure 3. Average monthly values calculated for gauges (dark blue) TRMM 3B43 estimates (light blue)
and IMERG estimates (red line) for the period April 2014 to June 2018.

In order to highlight the performance of satellite precipitation (SP) products, we estimate their
average difference (of their monthly values) from the corresponding gauge stations data (see Figure 4).
We notice that, generally, IMERG monthly values present lower divergence than TRMM.

Next, IMERG and TRMM monthly estimates were compared to the corresponding gauge data
based on a grid-level approach. Thus, for each SP product, the mean gauge station value is calculated
for the comparison if more than one station was located within each SP grid.
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Figure 4. Average difference (monthly values) between gauge stations data from 3B43 (blue line) and
IMERG (red line) estimates, respectively.

The estimated correlation coefficient values between the monthly values of the gauge stations
and the SP data are presented in Figure 5. Correlation seems slightly better for TRMM 3B43 cells,
since there is a lower variation (minimum 0.84–maximum 0.96) than that corresponding to the IMERG
cells (minimum 0.78–maximum 0.96), with the average of all cells being 0.92 and 0.91, respectively.

Figure 5. Correlation coefficient at grid cell level between the gauge stations and the TRMM (a) and
IMERG (b) data.

Both IMERG and 3B43 products underestimate precipitation with Bias values of −1.6 mm/month
and−3.0 mm/month, respectively. IMERG showed better performance than 3B43 in terms of rBias values
(3.6 and −8.7, respectively), while presenting worst performance in terms of RMSE (23.8 mm/month
and 20.0 mm/month, respectively) and MAE (15.1 mm/month and 12.9 mm/month, respectively) values,
as presented in Table 2 (minimum and maximum respective values are provided in brackets).

Table 2. Performance evaluation metrics of monthly data from 3B43V7 and IMERG (the range of values
is given in parentheses).

TRMM 3B43 GPM IMERG

R (correlation coefficient) 0.92 (0.84–0.96) 0.91 (0.78–0.96)

Mean Error (Bias) −3.0 (−21.5–7.7) −1.6 (−31.8–13.0)

Relative Bias −3.0 (−38.6–35.0) 3.6 (−45.6–58.7)

RMSE 20.0 (11.6–37.2) 23.8 (14.7–55.0)

Mean Absolute Error 12.9 (8.7–24.3) 15.1 (10.2–35.5)
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4.2. Seasonal Validation

The results for the seasonal validation are summarized in Table 3. Both TRMM 3B43 and GPM
IMERG estimates presented high R values (0.91 and 0.90, respectively) in winter, which suggests a
good agreement with ground-based measurements on a seasonal scale. Similar results were found
for autumn (0.84 and 0.83, respectively) and spring (0.81 and 0.80, respectively), while the poorest
correlation (0.68 and 0.67, respectively) was established in summer.

Table 3. Performance evaluation metrics of seasonal data from 3B43V7 and IMERG (the range of values
is given in parentheses).

TRMM 3B43 GPM IMERG

MAM JJA SON DJF MAM JJA SON DJF

R (correlation coefficient) 0.81 0.68 0.84 0.91 0.80 0.67 0.83 0.90

Mean Error (Bias) 0.9 −1.3 0.3 −12.6 0.8 −1.8 2.6 −8.3

Relative Bias 15.0 440.7 6.4 −9.9 17.5 299.8 18.4 −1.1

RMSE 15.2 6.3 13.9 33.4 19.1 8.7 16.7 38.6

Mean Absolute Error 12.2 3.8 11.0 25.6 14.6 4.9 12.7 29.2

The BIAS for TRMM 3B43 and IMERG ranged from −12.6 to 0.9 and from −8.3 to 2.6, respectively,
in the four seasons. The 3B43 overestimated precipitation in spring (0.9) and autumn (0.3),
while underestimation is noticed in summer (−1.3) and is rather significant in winter (−12.6). Similar is
the pattern for IMERG, with overestimation in spring (0.8) and autumn (2.6), while underestimation is
noticed in summer (−1.8) and is rather significant in winter (−8.3).

In terms of rBias, 3B43 presented larger values than that of IMERG in spring (15.0 and 17.5,
respectively) and autumn (6.4 and 18.4, respectively), while IMERG showed better performance in
winter (−1.1 and −9.9, respectively). Both products displayed their worst values in summer (440.7 for
3B43 and 299.8 for IMERG, respectively).

Precipitation products displayed a similar trend for RMSE and MAE with higher values in winter,
spring and autumn and lower values in summer. For winter, spring and autumn, TRMM 3B43 had
RMSE values of 33.4, 15.2 and 13.9, which were slightly lower than those of IMERG, which were 38.6,
19.1 and 16.7, respectively. In summer, 3B43 had lower RMSE values, 6.3, compared to those of IMERG,
8.7, respectively. Similar results occurred for MAE values between 3B43 and IMERG, with larger
values noticed in winter (33.4 and 38.6, respectively) and lower in summer (3.8 and 4.9, respectively).
These results may indicate that both SP products exhibit a similar error level, on a seasonal scale.

4.3. Annual Validation

Mean annual values for the study period (see Figure 6) were calculated for both the set of 136
ground stations and the satellite precipitation products (mean values of the available corresponding
grid cells within the study area). It is found that, overall, both SP data exhibit an underestimation,
although it is lower for IMERG, with the exception of 2015, when a slight overestimation by the IMERG
product was noticed. It should be noted, however, that the available precipitation estimates for 2014
were limited to the period April to December, while for 2018 they were limited to January to June.
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Figure 6. Mean annual values of gauge stations and Satellite Precipitation (SP) data.

Figure 7 displays the variation of overestimation (>100%) or underestimation (<100%) of annual
precipitation values at each of the corresponding SP grid cell, between the SP estimated and calculated
mean annual gauge station records. We notice that, more or less, the SP estimates have the same behavior
regarding the overestimation/ underestimation of annual rainfall. Underestimation is more evident in
the central area of Cyprus (greater area of Troodos mountain range), where higher precipitation records
are generally noticed, highlighting the known limitations of satellite products regarding heavy rainfall,
while the overestimation is noticed in the coastal or rather flat areas, where again the estimation of
precipitation still remains a challenge due to the difficulty in distinguishing between rain and non-rain
pixels over a complex background [44]. Furthermore, there are no significant differences between the
years, since the cells that generally overestimate/underestimate rainfall have a similar performance
regardless of the year.

Figure 7. Cont.
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Figure 7. Underestimation/Overestimation of the annual satellite product estimates as compared
with gauge station records at the corresponding grid cell: (a) TRMM—2014 (April–December);
(b) GPM—2014 (April–December); (c) TRMM—2015; (d) GPM—2015; (e) TRMM—2016; (f) GPM—2016;
(g) TRMM—2017; (h) GPM—2017; (i) TRMM—2018 (January–June); (j) GPM—2018 (January–June).

The performance of the IMERG product was slightly better than 3B43V7 with an R higher value
(0.82 and 0.81, respectively), lower Bias values (−17.9 mm/month and −30.5 mm/month, respectively)
and rBias values (3.1 and −3.0, respectively), while presenting worst performance in terms of RMSE
(108.8 mm/month and 94.7 mm/month, respectively) and MAE (96.1 mm/month and 83.4 mm/month,
respectively) values, as presented in Table 4 (minimum and maximum respective values are provided
in brackets).
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Table 4. Performance evaluation metrics of annual data from 3B43V7 and IMERG and (the range of
values is given in parentheses).

TRMM 3B43 GPM IMERG

R (correlation coefficient) 0.81 (0.46–0.99) 0.82 (0.37–0.99)

Mean Error (Bias) −30.5 (−219.3–77.0) −17.9 (−324.4–132.2)

Relative Bias −3.0 (−38.6–35.0) 3.1 (−45.6–58.7)

RMSE 94.7 (37.5–234.8) 108.8 (32.3–335.0)

Mean Absolute Error 83.4 (30.2–219.3) 96.1 (25.2–324.4)

4.4. Influence of Elevation on Satellite Precipitation Products

To analyze further the influence of elevation and satellite precipitation products, we grouped all
the rain gauge stations into three categories according to their elevation (0–300 m, 300–600 m, >600 m),
and compared the evaluation metrics across the different elevation ranges. The annual rBias results
for the both GPM and TRMM products are presented in Tables 5 and 6, respectively. Minimum and
maximum respective values are provided in brackets along with the corresponding number of satellite
products cell for each elevation category.

Results as presented in Tables 5 and 6, respectively, portray that, on an annual scale, both of the
two SP products overestimate the precipitation below an altitude of 300 m, with IMERG presenting
the largest overestimation (mean annual RB values: RBIMERG = 123.8%, RB3B43 = 107.7%). On the
contrary, both SP products underestimate precipitation with increasing elevation, with 3B43v7
displaying a more apparent underestimation than IMERG, with RBIMERG = 93.0%, RB3B43 = 78.0%
and RBIMERG = 70.3%, RB3B43 = 65.6% for elevation ranges between 300 and 600 m and >600 m,
respectively. Regarding the Pearson correlation coefficient, the performance for 3B43 v7 was slightly
better than IMERG at all of the categories, with r values increasing with elevation.

Table 5. Annual rBias and Pearson correlation coefficient performance for GPM data according to
elevation (the range of values is given in parentheses).

All Annual 2014 2015 2016 2017 2018

% of gauge 123.8 133.8 133.8 127.3 118.1 119.6
(90.9–158.7) (93.6–234.0) (86.5–185.2) (79.7–175.1) (76.4–196.8) (77.7–200.2)

correlation
0.90 Elevation: 0–300 m (30 cells)

(0.78–0.95)

% of gauge 93.0 96.3 107.1 89.8 93.7 81.9
(68.5–131.1) (68.8–144.7) (74.5–145.2) (58.5–127.9) (68.5–145.4) (52.6–143.4)

correlation
0.91 Elevation: 300–600 m (19 cells)

(0.85–0.96)

% of gauge 70.3 77.9 82.7 65.8 68.8 58.3
(54.4–81.3) (61.8–109.4) (64.9–101.6) (50.3–92.9) (50.3–85.8) (44.0–72.8)

correlation
0.92 Elevation: >600 m (12 cells)

(0.88–0.94)
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Table 6. Annual rBias and Pearson correlation coefficient performance for TRMM data according to
elevation (the range of values is given in parentheses).

All Annual 2014 2015 2016 2017 2018

% of gauge 107.7 119.2 125.5 106.4 85.9 107.8
(85.9–135.0) (91.9–166.8) (86.7–182.6) (77.4–139.3) (61.6–131.8) (82.5–160.7)

correlation
0.92 Elevation: 0–300 m (13 cells)

(0.84–0.96)

% of gauge 78.0 83.1 99.3 74.8 68.1 60.6
(67.3–99.6) (73.8–102.6) (83.9–122.1) (61.1–106.9) (51.9–91.3) (52.6–66.7)

correlation
0.92 Elevation: 300–600 m (4 cells)

(0.88–0.94)

% of gauge 65.6 74.1 77.3 57.2 63.1 56.5
(61.4–69.8) (72.1–76.1) (75.9–78.7) (51.2–63.1) (57.2–69.0) (52.6–60.5)

correlation
0.94 Elevation: >600 m (2 cells)

(0.93–0.94)

More evaluation metrics (Bias, RMSE, MAE) were used to evaluate the performance of GPM
and TRMM monthly data according to elevation (Table 7). Overall, the performance of both satellite
products metrics (Bias, RMSE, MAE) were worst in higher altitude areas than in lower altitude areas.
Regarding Bias, findings established that TRMM performed better in the elevation range 0–300 m,
while GPM exhibited lower bias values in higher altitudes. TRMM exhibited lower RMSE and MAE
values than those of GPM in the elevation ranges 0–300 m and >600 m and higher values in the
elevation range 300–600 m.

Table 7. Metrics (Bias, RMSE, MAE) performance for GMP and TRMM monthly data according to
elevation (the range of values is given in parentheses).

Elevation (m) Bias (mm/month) RMSE (mm/month) MAE (mm/month)

GPM TRMM GPM TRMM GPM TRMM

0–300
5.8 1.5 19.6 17.2 13.2 11.0

(−5.2–13.0) (−5.8–7.7) (14.7–28.6) (11.6–25.1) (10.2–17.2) (9.0–14.3)

300–600
−3.9 −10.2 23.1 24.5 14.3 15.3

(−17.0–8.1) (−15.8—0.1) (15.4–42.1) (13.4–30.0) (10.3–21.8) (8.7–18.0)

>600
−16.5 −17.8 35.4 33.0 21.5 21.0

(−31.8—8.7) (−21.5—14.1) (23.2–55.0) (28.7–37.2) (15.0–35.5) (17.7–24.3)

The monthly and annual spatio-temporal variations of bias for both satellite precipitation products
for the study period are presented in Figures 8 and 9, respectively, while the corresponding seasonal
spatio-temporal variation is presented in Figure 10. It is clear that both SP products underestimate
precipitation in higher elevation areas and overestimate in areas with lower elevation fluctuations.
The underestimation is more evident in the winter.
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Figure 8. Monthly bias for both precipitation products for the study period: (a) TRMM and (b) GPM.

Figure 9. Annual bias for both precipitation products for the study period: (a) TRMM and (b) GPM.

Figure 10. Cont.
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Figure 10. Seasonal bias for both precipitation products for the study period: (a) TRMM for September,
October and November; (b) GPM for September, October and November; (c) TRMM for December,
January and February; (d) GPM for December, January and February; (e) TRMM for March, April and
May; (f) GPM for March, April and May; (g) TRMM for June, July and August; (h) GPM for June,
July and August.

These findings are in agreement with previous studies reported in the literature [45–50].
The performance of both SP products could be due to the products themselves and to topography.
Both satellite precipitation products combine data from both satellite sensors and ground gauges.
Since data from only one gauge station are used in mountainous areas in Cyprus, while three are located
in rather flat areas, the accuracy of satellite precipitation products may be affect. Chen and Li [51] and
Tang et al. [52] also reported that the accuracy of satellite precipitation products in high mountainous
areas in west China could be attributed to the sparse gauge network. Moreover, estimated differences
could be also attributed to the differences of the rainfall process, which is rather complicated in
mountainous areas than in low altitude areas due to the influence of topography.

5. Conclusions

An evaluation of the monthly and annual IMERG and TRMM 3B43 product estimates with
corresponding rain-gauges data over Cyprus for the period April 2014 to June 2018 was performed.
Based on the analysis presented, it is found that, overall, both monthly satellite product estimates and
rain gauge data presented a very good agreement; however, both IMERG and TRMM estimates tend
to underestimate precipitation, especially during the rainy season, although, IMERG and rain gauge
records seem to exhibit similar temporal patterns. Considering the annual values, we notice that both
SP estimates underestimate annual precipitation records, although IMERG estimates are much closer to
gauge station records. In terms of statistical scores analysis, it was found that on a monthly and annual
basis, a slightly better performance of IMERG for R, Bias and rBias values was noticed, while 3B43
product performed better in terms of RMSE and MAE values. Seasonal analysis showed that both
products exhibited a better performance during the rainy (winter) period, followed by autumn and
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spring seasons, while both products were able to detect the summer-time precipitation, although with
high uncertainty in terms of relative bias values.

In summary, we conclude that although satellite products could be considered as quite accurate
estimates of precipitation, indeed, their accuracy is not yet profound, and this issue is open to further
elaboration. Nonetheless, IMERG estimates, due to their superiority in terms of spatial and temporal
resolution, could serve as an alternative precipitation dataset, where in-situ precipitation records
are limited.

The influence of elevation of both SP estimates was considered by grouping rain gauge stations in
three categories, with respect to their elevation and it was found that both SP estimates underestimate
precipitation with increasing elevation and overestimate it at lower elevations. Thus, it is suggested
that one possible improvement would be the prospect of blending the SP data with more in situ data
from rain gauges that are distributed evenly over the geographical area of Cyprus and especially in
mountainous areas. Furthermore, it would be quite challenging to enhance the retrieval algorithms by
implementing elevation correction or adjustment.

Although the results derived from this study are site specific for Cyprus, the methodology
adopted could be “transferred” to other regions according to our understanding of how satellite-based
precipitation estimates perform over different regions. For example, for study areas with characteristics
similar to our area of study, in terms of geographic location, with no very complex topography,
the methodology could be applied directly. For other areas, with complex topography or with various
climatic zones the methodology should further consider these parameters.

The authors aim to expand their research in this field, by considering an evaluation over Cyprus of
the newly released version of IMERG data that expands the SP products into a uniformly processed data
set embracing the TRMM-era. The establishment of a uniform TRMM and GPM SP record will broaden
the scientific challenges for further research in several meteorological and hydrological applications.
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Abstract: To obtain the high-resolution multitemporal precipitation using spatial downscaling
technique on a precipitation dataset may provide a better representation of the spatial variability of
precipitation to be used for different purposes. In this research, a new downscaling methodology
such as the global precipitation mission (GPM)-based multitemporal weighted precipitation analysis
(GMWPA) at 0.05◦ resolution is developed and applied in the humid region of Mainland China
by employing the GPM dataset at 0.1◦ and the Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) 30 m DEM-based geospatial predictors, i.e., elevation, longitude,
and latitude in empirical distribution-based framework (EDBF) algorithm. The proposed methodology
is a two-stepped process in which a scale-dependent regression analysis between each individual
precipitation variable and the EDBF-based weighted precipitation with geospatial predictor(s), and to
downscale the predicted multitemporal weighted precipitation at a refined scale is developed for
the downscaling of GMWPA. While comparing results, it shows that the weighted precipitation
outperformed all precipitation variables in terms of the coefficient of determination (R2) value,
whereas they outperformed the annual precipitation variables and underperformed as compared to
the seasonal and the monthly variables in terms of the calculated root mean square error (RMSE)
value. Based on the achieved results, the weighted precipitation at the low-resolution (e.g., at 0.75◦
resolution) along-with the original resolution (e.g., at 0.1◦ resolution) is employed in the downscaling
process to predict the average multitemporal precipitation, the annual total precipitation for the year
2001 and 2004, and the average annual precipitation (2001–2015) at 0.05◦ resolution, respectively.
The downscaling approach resulting through proposed methodology captured the spatial patterns
with greater accuracy at higher spatial resolution. This work showed that it is feasible to increase
the spatial resolution of a precipitation variable(s) with greater accuracy on an annual basis or as
an average from the multitemporal precipitation dataset using a geospatial predictor as the proxy of
precipitation through the weighted precipitation in EDBF environment.
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1. Introduction

Precipitation is the major component of the global water cycle. It is a key parameter of the
ecological, hydrological, meteorological and agriculture systems [1,2]. It plays an important role in the
energy exchange and material circulation of the Earth surface system [3]. It is of significant importance
to understand the characteristics of precipitation, because it shows great variability both in space and
time as compared to other climatic variables. Therefore, its spatial and temporal variability greatly
influence vegetation distribution, soil moisture and surface runoff [4,5]. In addition, a high-quality
precipitation dataset is very important in the development of different ecological and hydrological
models at corresponding scales. On top of that, due to certain limiting factors, it is difficult to develop
such high-quality dataset(s) from point measurements based on the traditional precipitation, which are
as follows: first, the data derived from point measurements heavily depends on field observations [5,6].
Second, field observation stations are not uniformly distributed in space and limited mostly to low and
medium altitude areas, with the exception of a few precipitation stations at high altitudes. Moreover,
their operational capability is relative for a shorter period. Even if longer precipitation records
exist from ground-based stations, they are not sufficient to provide coverage for the global/regional
applications, due to deficiencies in reliability of the spatial distribution of precipitation [7], especially
over ocean, desert and mountainous areas. Third, a true spatial coverage of precipitation based on
the traditional rain gauge observations cannot be obtained [8], because many river basins around the
world are still poorly gauged [9], or ungauged [10]. Fourth, it is difficult to effectively reflect the spatial
variability of precipitation based on the observation from a finite number of rainfall stations, especially
in areas where rainfall stations are sparsely distributed [11–13]. Fifth, rain gauge observations can only
reflect the point rainfall within a radius around the location of instruments, and the effectiveness of
such data is often under question, and adequate validation is further needed [14,15].

Recently, the development in remote sensing and geographic information technology has given
a new dimension to present precipitation observations [16–18], almost at the global scale over a long
period, which also reflects the spatial patterns and temporal variability of precipitation [19]. In this
regard, various research institutions and government organizations have developed a series of
gridded global precipitation datasets, including Earth observations, in situ datasets and models at
both regional and global scales, i.e., the Global Precipitation Climatology Project (GPCP) [2,20–22],
the Global Satellite Mapping of Precipitation (GSMaP) project [23], the Multi-Source Weighted-Ensemble
Precipitation (MSWEP) [24], the Climate Hazards Group InfraRed Precipitation with Station data
(CHIRPS) [25], the Precipitation Estimation from Remotely-Sensed Information using Artificial
Neural Networks-Climate Record (PERSIANN-CDR) [26], the Tropical Rainfall Measuring Mission
(TRMM) [27–29], the TRMM Multi-satellite Precipitation Analysis (TMPA) [30], and the Global
Precipitation Mission (GPM) [31–33].

Spatial downscaling is a recently developed approach to obtain the high spatial resolution of
a variable based on conjugation between the variable at a coarse scale and geospatial predictor(s) at
the low resolution [34,35]. In this regard, using spatial downscaling techniques on a precipitation
dataset may provide a better representation of the spatial variability of precipitation to be used
for different purposes. Several authors have used downscaling methodologies to increase the
spatial resolution of satellite-based precipitation, often in combination with Earth observations
data available on hydro-meteorological variables related to precipitation, including normalized
difference vegetation index (NDVI) [30,35–42], digital elevation model [30,38,43,44], land surface
temperature [30], soil moisture [37], in situ rain gauged precipitation [37,38], slope [38], aspect [38],
and wind [31]. Moreover, few authors have used different satellite-based precipitation datasets for
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TRMM products [30,42]. Additionally, some studies used regression analysis with model parameters
spatially constant (multiple linear, polynomial, exponential, regression kriging, etc.), assuming a spatial
stationarity of the relationship between precipitation and the predicting variables [34,35,38,41,44–48].
On top of that, some studies limited their analysis only to satellite-based precipitation datasets and
did not take full advantage of all available data sources, combining remotely sensed and in situ
observations [42,49,50].

In this research work, a new downscaling methodology (Figure 1), based on the earlier work
of [3,38,39], such as the GMWPA is developed using DEM (Figure 2a) to delineate into three geospatial
predictors, i.e., elevation, longitude, and latitude [44], in EDBF algorithm. Two different satellite-based
precipitation datasets, such as the GPM-based multitemporal precipitation data (Figure 2b–i) for the
prediction of high-resolution downscaled weighted precipitation from 0.1◦ to 0.05◦ resolution, and the
GPM (Figure 2j,k) and the TRMM (Figure 2l–o) datasets for the verification of proposed methodology is
used over the humid (the Southern) region of Mainland China. During the execution, certain objectives
are set to achieve the required results, which are as follows [51]: to evaluate the multitemporal
precipitation (2001–2015) dataset through regression analysis, i.e., polynomial regression at different
upscaled resolutions, e.g., 0.25◦, 0.5◦, 0.75◦, 1.0◦, 1.25◦, 1.50◦; (2) based on the regression output, EDBF
algorithm is run to evaluate the multitemporal precipitation at each upscaled resolution by assigning
weight to each temporal component; (3) to verify the output of EDBF algorithm through the TRMM
and the GPM datasets; and (4) to generate the high-resolution downscaled weighted precipitation at
0.05◦ resolution based on the best performing upscaled resolution. This research can have practical
implications, particularly for climate change, drought assessment, and water resources planning, which
require long-term precipitation estimates at finer resolution.

 
Figure 1. Proposed methodology to predict the high-resolution downscaled weighted precipitation.
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Figure 2. The dataset required for downscaling of the multitemporal precipitation: (a) the DEM
of study area; (b) the GPM-based average winter precipitation; (c) the GPM-based average spring
precipitation; (d) the GPM-based average summer precipitation; (e) the GPM-based average autumn
precipitation; (f) the GPM-based average monthly precipitation; (g) the GPM-based average annual
(2001–2015) precipitation; (h) the GPM-based wet year (2004) precipitation; (i) the GPM-based dry year
(2001) precipitation, (j) the GPM-based annual (2006) precipitation; (k) the GPM-based annual (2012)
precipitation; (l) the TRMM-based annual (2001) precipitation; (m) the TRMM-based annual (2006)
precipitation; (n) the TRMM-based annual (2012) precipitation; (o) the TRMM-based average annual
(2001–2015) precipitation, respectively.

2. Materials and Methods

2.1. Study Area

This research is conducted over the Southern part of China, which in Chinese is simply referred to
as “the South”. The study area comprises of eight provinces (Anhui, Hunan, Hubei, Jiangxi, Jiangsu,
Zhejiang, Fujian, and Guangdong) and one municipality (Shanghai) (Figure 2a). It is approximately the
mega-region within China separated by the Qingling-Huaihe Line, which is a reference line used by
geographers to distinguish between the Northern and the Southern China, corresponding roughly to
33rd parallel [52]. From Qingling-Huaihe, “Qingling” refers to the Qingling Mountain, and “Huaihe”
refers to the Huai River, running from the Qingling Mountain in the West to the Huai River in the East.
It divides Eastern China into the North and the South regions, which differ from each other in climate,
demography and terrain. All major rivers of China flow across this region, e.g., the Yangtze River,
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the Huai River, the Han River, the Qu River, the Qiangtang River, the Ou River, the Gan River, the Min
River, the Xiang River, the Zi River, the Yuan River and the Lishui River. In addition, some major
lakes such as the Dongting Lake, the Tai Lake and the Chaozhou Lake are also located in this region.
Moreover, regions laying in the South of the line tend to be tropical and subtropical. Some major
mountainous series such as the Huangshan, the Dabie, the She, the Mufu, the Jiuling, the Luoxiao,
the Huaiyu, the Wuyi, the Jiulian, the Dayu, the Nong are also located in this region. The Southern
part is hotter and wetter than the Northern part. Normally, the weather conditions are with short,
cool, damp winters, and very hot, humid summers. The average temperature in winter and summer
remains between 3 °C to 9 °C and 27 °C to 30 °C, respectively. The average annual precipitation is
between 1200 to 1900 mm, much of it falling in the form of heavy rains occurring in late spring and
summer. In addition, half of the most developed tier 1 cities of China are located in the South.

2.2. Datasets

2.2.1. Global Precipitation Mission

During the execution of present study, the Integrated Multi-Satellite Retrievals for GPM (IMERG),
an algorithm that provides the multi-satellite precipitation for GPM users, is used to retrieve the required
GPM data [33]. Specifically, the daily rainfall (mm day−1) estimate from the GPM Level 3 IMERG
*Final* Daily 10 × 10 km Version 06 (GPM_3IMERGDF_V06) is used as primary data, moreover, which
is derived from half-hourly GPM_3IMERGHH available at https://giovanni.gsfc.nasa.gov/giovanni/
#dataKeyword=IMERGDF (Accessed on 20 June 2020). Besides, the derived result represents the
final estimate of the daily accumulated precipitation combined with microwave-infrared. The dataset
is produced at the National Aeronautics and Space Administration (NASA) [53], Goddard Earth
Sciences [10], Data and Information Services Center (DISC) by simply summing the valid precipitation
retrievals for the day in GPM_3IMERGHH and giving the result in (mm). The reason for selecting GPM
_IMERG is attributed to following reasons: (i) satellite rainfall estimates with finest gridded data @
0.1◦ × 0.1◦ spatial resolution, high temporal data supply, ranging from half-hourly to daily and monthly,
the GPM system provides almost near real-time data with spatial coverage (−180.0, −90.0, 180.0, 90.0)
and temporal coverage (2000–06–01 to 2020–03–01). Further details about the GPM _IMERGDF
can be found at https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDF_06/summary?keywords=GPM.
(Accessed on 20 June 2020). The daily GPM_3IMERGDF product from 2001 to 2015 is retrieved for the
study area into following multitemporal aggregates:

Average Seasonal Precipitation

The daily GPM_3IMERGDF product from 2001 to 2015 is aggregated into the average seasonal
precipitation @ 0.1◦ spatial resolution as shown in Figure 2b–e. The equation deriving the average
seasonal precipitation is as follows in Equation (1):

PGPM_S =

∑m
j=1

∑n
i=1 PGPMij

N
(1)

where PGPM_S is the average seasonal precipitation which individually corresponds to DJF (December,
January and February), MAM (March, April and May), JJA (June, July and August), and SON
(September, October and November), respectively. PGPMij is the daily GPM_3IMERGDF precipitation
for i-th day, i.e., DJF (n = 90), MAM (n = 92), JJA (n = 92), SON (n = 91) and j-th year (m = 15), and N is
the total number of observations. Hence, hereafter, the average winter precipitation for DJF, the average
spring precipitation for MAM, the average summer precipitation for JJA, and the average autumn
precipitation for SON will be used.
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Average Monthly, and Average Annual Precipitation

The daily GPM_3IMERGDF product from 2001 to 2015 is aggregated into the average monthly
and the average annual precipitation @ 0.1◦ spatial resolution as shown in Figure 2f,g, respectively.
The equation deriving the average monthly, and the average annual precipitation is as follows in
Equation (2):

PGPM_Avg =

∑m
j=1

∑n
i=1 PGPMij

N
(2)

where PGPM_Avg is the average monthly and the average annual precipitation for the study area, PGPMij

is the daily GPM_3IMERGDF precipitation for i-th day (n = 365) and j-th year (m = 15), and N is the
total number of observations (e.g., for the average monthly precipitation N = 180, and for the average
annual precipitation N = 15).

Annual Total Precipitation

The daily GPM_3IMERGDF product (365 days) is aggregated into the annual total precipitation for
the wet year (2004) and the dry year (2001), and also for the year 2006 and 2012 (i.e., for the verification)
@ 0.1◦ spatial resolution as shown in Figure 2h–k, respectively. The equation deriving the annual total
precipitation for the mentioned temporal periods is as follows in Equation (3):

PGPMi =
n∑

j=1

PGPMdaily− j (3)

where PGPMi is i-th annual precipitation (i.e., 2001, 2004, 2006 and 2012,) for the study area, PGPMdaily− j

is the daily GPM_3IMERGDF precipitation for j-th day (n = 365).

2.2.2. ASTER Global Digital Elevation Model (GDEM)

The ASTER GDEM is released by the Ministry of Economy, Trade and Industry [53] of Japan,
and the NASA [38,54]. The ASTER GDEM covers the land surface between 83◦N and 83◦S of the Earth,
which includes the entire area of Mainland China. The latest GDEM version 3 was released on August
5, 2019, which added additional stereo-pairs with improved coverage and reducing the occurrence of
artifacts. The refined production algorithm provides an improved spatial resolution, increased the
horizontal and vertical accuracy [53]. It provides the spatial resolution of one arc-second (approximately
30 m), and is used in this study as an influencing predictor on precipitation (Figure 2a). In addition to
the elevation data, two other terrain attributes, i.e., longitude and latitude, are also derived from the
ASTER GDEM. The ASTER GDEM data is available at https://search.earthdata.nasa.gov/search/granules
(Accessed on 20 June 2020).

2.2.3. Tropical Rainfall Measuring Mission

The Tropical Rainfall Monitoring Mission (TRMM) is a joint project between the NASA and
the Japan Aerospace Exploration Agency (JAXA). The TRMM was launched on 27th November,
1997 [20,29,55]. It provides measurement for the intensity and areal coverage (60◦S to 60◦N) of tropical
and subtropical precipitation, which covers about two third of the world’s rainfall [38]. There is a range
of orbital and gridded TRMM products available, i.e., 3B42RT and 3B43RT datasets [39]. Specifically,
the daily rainfall (mm day−1) estimate from the TRMM (TMPA-RT) Near Real-Time Precipitation
L3 1day 0.25◦ × 0.25◦ Version 7 (TRMM_3B42RT_Daily) is used as the primary dataset during the
verification process in the present study, moreover, which is derived from the original three-hour
averaged precipitation values available at https://giovanni.gsfc.nasa.gov/giovanni/#service=TmAvMp&
starttime=&endtime=&dataKeyword=TRMM (Accessed on 20 June 2020). Further details can be found
at https://disc.gsfc.nasa.gov/datasets/TRMM_3B42RT_Daily_7/summary (Accessed on 20 June 2020).
The daily TRMM_3B42RT product (365 days) is aggregated into the annual total precipitation for the
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year 2001, 2006 and 2012 (Figure 2l–n) and the average annual (2001–2015) precipitation (Figure 2o)
@ 0.25◦ spatial resolution, which is used during the verification process. The equation deriving the
annual total and the average annual precipitation is given in Equations (2) and (3), respectively.

2.3. Methodology

In this research, a new downscaling methodology (Figure 1) based on the weighted precipitation is
presented, at a regional scale, to downscale the multitemporal GPM data in the humid region of Mainland
China. To execute the proposed algorithm, a two-stepped methodology is developed to successfully
predict and downscale the investigated precipitation variables at a finer scale: first, to evaluate the
relationship between each individual precipitation variable and the EDBF-based weighted precipitation
with geospatial predictor(s) through regression models; and second, to downscale the predicted
multitemporal weighted precipitation at a refined scale.

2.3.1. Pre-Processing of DEM and GPM Datasets

Pre-processing is carried out by extracting geospatial variables, i.e., elevation, longitude,
and latitude at 30 m resolution and the GPM-derived precipitation variables, i.e., the average winter,
the average spring, the average summer, the average autumn, the average monthly, the average
annual (2001–2015), the wet year (2004), and the dry year (2001) precipitation at 0.1◦ resolution into six
different resolution scales (i.e., 0.25◦, 0.5◦, 0.75◦,1◦, 1.25◦and 1.50◦, respectively) by applying the pixel
averaging, e.g., the Nearest Neighbor Method. Onward, each scaled image is to be converted into
points (Figure S1) for further analysis.

2.3.2. Modeling and Prediction

Regression Analysis

A polynomial regression model is established at all six upscaled resolutions (i.e., also called the
low-resolution scales) using geospatial predictors to predict each individual precipitation variable.
The equation deriving the relationship between geospatial predictors and precipitation variables at
each low-resolution scale is as follows in Equation (4):

PD. GPMLR = p1.x3
DEMLR

+ p2.x2
DEMLR

+ p3.xDEMLR + p4 (4)

where PD.GPMLR is the predicted precipitation for each GPM variable at each low-resolution scale,
and p1, p2, p3 and p4 are polynomial coefficients, xi

DEMLR
is the low-resolution geospatial variable(s).

In addition, a linear regression model is established to evaluate the relationship between the
EDBF-based weighted precipitation and geospatial predictor, i.e., the latitude, which is as follows in
Equation (5):

PD.WTPRes = p1.xlatitude + p2 (5)

where PD.WTPRes is the predicted weighted precipitation at investigated resolution scale(s), e.g.,
the low-resolution (PD.WTPLRes) or the high-resolution (PD.WTPHRes), p1 and p2 are linear coefficients,
and xlatitude is the geospatial predictor.

Calculation of r Values

To execute EDBF algorithm for predicting the weighted precipitation from the multitemporal
precipitation variables, the generation of initial weight vector for each contributing precipitation
variable is a key process. In this regard, the r value is needed to formulate the initial weight vector for
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each contributing variable. The equation deriving r values at each low-resolution scale is given by
Equation (6):

r =
Cov

(
Pri, Prj

)
(
σPri × σPrj

) (6)

where Cov
(
Pri, Prj

)
is the covariance and σPri , σPrj is the standard deviation of predictors (i, j) at i-th

and j-th pixels, respectively. The equation deriving the covariance, the standard deviation and the
mean for each investigated predictor is given by Equations (7)–(9), respectively:

Cov
(
Pri, Prj

)
=

∑n
ij=1(Pri − μi)

(
Prj − μ j

)
N

(7)

σ =
(∑n

i=1
(Pri − μ)2

/
N

) 1
2

(8)

μ =

∑n
i=1 Pri

N
(9)

where Pri, Prj are the two investigated predictors; μi,μ j are the mean of investigated predictors,
respectively, and N is the total number of observations.

Chi-Square (χ2) Test

This is a non-parametric test, which is used for the purpose to check the significance of relationship
between each precipitation variable at each low-resolution scale for the assigned weighted values.
In this regard, the assumption is made to determine the association between precipitation variables
and the low-resolution scales.

The null and alternative hypothesis will be:
H0: There is a significant relationship between precipitation variables and upscaled resolutions.
H1: There is no significant relationship between precipitation variables and upscaled resolutions.
The equation deriving chi-square statistic [56], is given by Equation (10):

χ2 =
(∑n

i=1
(Oi − Ei)

2
/
Ei

)
(10)

where Oi represents the observed, and Ei represents the expected frequency.

Descriptive Statistics

Various statistical parameters are used to verify the proposed methodology by indicating the
perfect score and range for each statistical metric, i.e., R2, RMSE and the bias (B), which are expressed
in Equations (11) and (12):

RMSE =
(∑n

i
(Obi − Pri)

2
/
n
) 1

2
(11)

B =

∑n
i=1 Pri∑n
i=1 Obi

− 1 (12)

where Obi is the observed variable, Pri is the predicted variable, and n is the number of observations.

2.3.3. EDBF Algorithm

Based on polynomial regression outputs, the most influencing geospatial predictor that predicts
multitemporal precipitation variables at each low-resolution scale is considered for further evaluation
through EDBF algorithm. In this research, the developed methodology is based on the earlier work
of [57,58]. The execution of EDBF algorithm is shown in Figure S2. Based on calculated r values,
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the process starts through randomly generating initial weight vector W, which by substituting into
Equation (13) obtains WTP:

WTP = wM ×M+wAn ×An+wW ×W +wSp ×Sp+wSu ×Su+wAu ×Au+wWt ×Wt+wDr ×Dr (13)

where WTP is the weighted precipitation, W = {wM, wAn, wW , wSp, wSu, wAu, wWt, wDr } corresponds to
the weight values (Equation (14)), and vector M, An, W, Sp, Su, Au, Wt and Dr corresponds to each
of the eight precipitation variables, i.e., the average monthly, the average annual, the average winter,
the average spring, the average summer, the average autumn, the wet year (2004) and the dry year
(2001) precipitation, respectively. Additionally, vector Res0.25, Res0.75, Res0.50, Res1.0, Res1.25 and Res1.50

corresponds to each low-resolution scale, e.g., 0.25◦, 0.5◦, 0.75◦, 1.0◦, 1.25◦ and 1.50◦, respectively:

wM + wAn + wW + wSp + wSu + wAu + wWt + wDr = 1 (14)

Subsequently, the correlation coefficient RWTP−Res0.25 , RWTP−Res0.50 , RWTP−Res0.75 ,
RWTP−Res1.0 , RWTP−Res1.25 and RWTP−Res1.50 between the WTP and vector
Res0.25, Res0.50, Res0.75, Res1.0, Res1.25 and Res1.50 is calculated, respectively. In addition, EDBF
algorithm is run to iteratively optimize W to obtain an accurate weight vector Wt, where t represents
the number of iterations. Moreover, a relationship (Equation (5)) between WTP and geospatial
predictor at vector Res0.25, Res0.50, Res1.0, Res1.25 and Res1.50 is evaluated, respectively. Hereafter,
the best predicted resolution vector is used in the downscaling process. Similarly, using Equation (5),
the same process is repeated for the high-resolution vector Res0.05, i.e., 0.05◦ scale resolution.

3. Results

3.1. Evaluation of GPM-Based Multitemporal Precipitation

The execution of proposed downscaling methodology was first formulated through evaluating
the precipitation response, e.g., each GPM-based multitemporal precipitation variable with respect to
geospatial predictors at each low-resolution scale. Additionally, each investigated precipitation variable,
e.g., the average monthly, the average annual (2001–2015), the average winter, the average spring,
the average summer, the average autumn, the dry year (2001) and the wet year (2004) precipitation
was plotted against each geospatial predictor at each upscaled resolution. Demonstration through
scatter diagrams and polynomial regression (i.e., Figures S3–S5) described the relationship between
precipitation variables and geospatial predictors, i.e., elevation, longitude and latitude at upscaled
resolutions, respectively. Moreover, the R2 values are shown in Table 1, wherein all precipitation
variables showed strong response to latitude followed by longitude and elevation, respectively.
Furthermore, for the individual precipitation variables, the average spring followed by the dry year
(2001) and the wet year (2004) precipitation showed a higher relationship with geospatial predictors,
respectively. Apart from geospatial predictors, the highest R2 for upscaled resolutions was observed at
1.0◦ and 0.75◦, respectively.

123



Remote Sens. 2020, 12, 3162

Table 1. Output of model fitting between the multitemporal GPM variables and geospatial predictors.

SR GP Multitemporal Precipitation

M A Wn Sp Su Au Wet-y Dry-y

Elevation 0.0804 0.0805 0.0614 0.1636 0.0171 0.0407 0.0567 0.1052
Longitude 0.0641 0.0636 0.209 0.1473 0.0618 0.1792 0.0476 0.0768

0.25◦ Latitude 0.6692 0.6684 0.512 0.7974 0.5793 0.5262 0.7416 0.7672
Elevation 0.0906 0.0906 0.0573 0.1763 0.0166 0.0452 0.0686 0.1033
Longitude 0.0527 0.0527 0.1883 0.1314 0.0563 0.1855 0.0414 0.0716

0.50◦ Latitude 0.5658 0.6558 0.5023 0.786 0.5913 0.5188 0.7422 0.7648
Elevation 0.0516 0.0906 0.0516 0.1346 0.0069 0.0372 0.0343 0.0875
Longitude 0.05 0.05 0.205 0.1488 0.0377 0.1891 0.0358 0.0762

0.75◦ Latitude 0.6853 0.6853 0.5271 0.8097 0.6148 0.5432 0.7413 0.7848
Elevation 0.0579 0.0579 0.0517 0.1534 0.0128 0.041 0.0357 0.1066
Longitude 0.0722 0.0722 0.2006 0.1328 0.0825 0.1329 0.0686 0.0767

1.0◦ Latitude 0.6929 0.6929 0.5184 0.8197 0.6415 0.5206 0.7837 0.7848
Elevation 0.152 0.152 0.605 0.2963 0.0176 0.0257 0.1025 0.2255
Longitude 0.0554 0.0554 0.2227 0.1394 0.0708 0.2524 0.0369 0.0656

1.25◦ Latitude 0.6824 0.6824 0.532 0.8239 0.5685 0.493 0.7814 0.7802
Elevation 0.2056 0.2056 0.207 0.2507 0.0646 0.1363 0.1543 0.1867
Longitude 0.053 0.053 0.2133 0.1143 0.0694 0.24 0.0405 0.0682

1.50◦ Latitude 0.6179 0.6179 0.4778 0.7699 0.5392 0.5325 0.6889 0.7491
Note: SR stands for the scaled resolution, GP. for geospatial predictors, M for the average monthly, A for the average
annual (2001–2015), Wn for the average winter, Sp for the average spring, Su for the average summer, Au for the
average autumn, Wet-y for the wet year (2004), Dry-y for the dry year (2001) precipitation, respectively.

3.2. EDBF-Based Weighted Precipitation

3.2.1. Low-Resolution Weighted Precipitation

Based on initial regression analysis, the most influencing geospatial predictor, namely latitude,
was selected to predict the weighted precipitation from the multitemporal precipitation variables via
EDBF algorithm. In this regard, r values were calculated (Figure 3a), and used as the basis function to
randomly assign initial weight value to each precipitation variable. The reason for negative r values is
the existence of a negative relationship between latitude and precipitation variables. Subsequently,
the chi-square (χ2) test was employed to evaluate the relationship between precipitation variables
at each low-resolution scale for assigned weight values. The χ2

calculated and χ2
tabulated values with

35 degrees of freedom at the significance level (α = 0.05) were 5.267 and 49.802, respectively. Based on
statistical results, the χ2

calculated< χ
2
tabulated, thus, the null hypothesis was accepted and rejected the

alternative hypothesis. Moreover, it is stated that weight values assigned to precipitation variables
were significantly not different. The details can be found in Table S1.

Furthermore, the correlation between precipitation variables and the low-resolution scales was
analyzed and is shown in Figure 3b, wherein it showed that the dry year (2001) followed by the average
spring, the wet year (2004) and the average summer precipitation are the most influencing variables.
As far the scaled resolutions are concerned, 1.0◦ followed by 0.75◦ resolution had higher impacts.

Onward, the precipitation data was evaluated through EDBF algorithm, and the number of
iterations was set to 3 × 104. Figure 4 demonstrates the iteration wise statistics at each upscaled
resolution, in which Figure 4a,d,g,j,m,p show weight values, Figure 4b,e,h,k,n,q show r values,
and Figure 4c,f,i,l,o,r show the comparison between weight and r values which were iteratively
generated by the algorithm itself. To investigate weight values, it was observed that lots of discrepancies
exist in the convergence of investigated variables (e.g., Figure 4a,d,g,j,m,p), and the convergence
showed stabilization onward 2 × 104 iterations. In Figure 4a,d,g, the dry year (2001), the average
spring and the average autumn; Figure 4j, the dry year (2001), the average spring and the wet year
(2004); Figure 4m,p, the dry year (2001), the average autumn and the average spring, respectively,
showed higher weight values from the beginning until the last iteration. As far r values are concerned,
uncertainty in initial iterations was observed as shown in Figure 4b,e,h,k,n,q, and the convergence
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showed stabilization onward 1 × 104 iterations. Likewise, it was also observed that r values drastically
decreased before the stabilization of convergence.

Figure 3. Selection of initial input parameters for EDBF) algorithm to predict the weighted precipitation
(a) calculated r values, and (b) the correlation between precipitation variables and the low-resolution
scales for assigned weight values.

In addition, the weighted r value predicted by EDBF algorithm was higher as compared to the
calculated r value for each precipitation variable, as shown in Figure 4c,f,i,l,o,r. The highest weighted r
was predicted at 1.0◦ (−0.891) followed by 0.75◦ and 1.25◦ (−0.889), 0.25◦ (−0.880), and 0.50◦ and 1.50◦
(−0.867), respectively. Nevertheless, the final weight value predicted at all upscaled resolutions was
same, e.g., equal to 1, but weighted response towards precipitation variables was not similar. It can
clearly be observed that the highest weighted response was given to the dry year (2001) (Figure 4l,i,c,f,r,o)
followed by the average spring (Figure 4l,i,o,c,f,r), the average autumn (Figure 4f,r,o,c,i), and the
wet year (2004) (Figure 4l), respectively. Finally, the relationship between latitude and the weighted
precipitation predicted by EDBF algorithm was shown through scatter plots in Figure 5a–f. In contrast
to earlier plots, i.e., the exitance of polynomial relationship between precipitation variables and
geospatial predictors, here, the linear relationship was observed. Moreover, the R2 between latitude
and the weighted precipitation at each upscaled resolution was increased. The higher R2 was observed
at 1.0◦, 1.25◦,0.75◦ resolutions, respectively. Overall, R2 was higher than 0.75.
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Figure 4. Execution of EDBF algorithm at different low-resolution scales, (a,d,g,j,m,p) iteratively
estimated weighted values, (b,e,h,k,n,q) iteratively estimated r values, and (c,f,i,l,o,r) the comparison
between assigned weights and estimated r values at 0.25◦, 0.50◦, 0.75◦, 1.0◦, 1.25◦, 1.50◦
resolutions, respectively.
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Figure 5. Scaled wise relationship between the weighted precipitation and (a) latitude at 0.25◦ resolution;
(b) latitude at 0.50◦ resolution; (c) latitude at 0.75◦ resolution; (d) latitude at 1.0◦ resolution; (e) latitude
at 1.25◦ resolution; (f) latitude at 1.50◦ resolution; (g) the dry year (2001) precipitation at 0.75◦ resolution;
(h) the wet year (2006) precipitation at 0.75◦; and (i) the average annual (2001–2015) precipitation at
0.75◦, respectively.

3.2.2. High-Resolution Weighted Precipitation

To predict the weighted precipitation at 0.05◦ resolution by EDBF algorithm, the same process
was adopted as done for the low resolutions. In contrast to predict the low-resolution weighted
precipitation, here, the number of iterations was reduced and set to 1000. Figure 6 shows the iteration
wise statistics, wherein Figure 6a,b, respectively, show the iteration wise weight values for each
precipitation variable and r values. In both figures, the initial discrepancies were observed before the
stabilization of convergence onward 600 iterations. On top of that, during the prediction of weighted
precipitation, the higher weighted response (Figure 6a,d) was shown by the dry year (2001), the average
spring and the average autumn precipitation, respectively. The true picture of weight given to each
precipitation variable based on r value was cleared from Figure 6c, wherein it can clearly be observed
that the highest weighted response was given to the dry year (2001) (wDr = 0.507) followed by the
average spring (wSp = 0.220), the average autumn (wAu = 0.151), the average monthly (wM = 0.050),
the average summer (wSu = 0.046), the average winter (wW = 0.015), the wet year (2004) (wWt = 0.005)
and the average annual (2001–2015) precipitation (wAn = 0.002), respectively. Moreover, the comparison
between weight and r values are shown in Figure 6d, wherein it showed that the weighted r value
predicted by EDBF algorithm is higher as compared to the calculated r value for each precipitation
variable, which reflected that the weighted precipitation showed more consistency as compared to
individual precipitation variable. Finally, the relationship between the weighted precipitation predicted
by EDBF algorithm and latitude (Figure 6e) was shown through scatter plot, and the achieved R2 was
observed 0.7696.
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Figure 6. Execution of EBDF algorithm for predicting the high-resolution weighted precipitation at 0.05◦
resolution: (a) iteratively estimated weight values; (b) iteratively estimated r values; (c) the estimated
final weight values; (d) the comparison between the estimated weights and r values; and (e) the
relationship between the weighted precipitation and latitude, respectively.

3.3. Verification Process

3.3.1. Comparison between the Weighted and the Original Multitemporal Precipitation Variables

To compare the EDBF-based weighted precipitation with the GPM-based multitemporal
precipitation variables, a linear regression model was established at all upscaled resolutions, e.g., 0.25◦,
0.5◦, 0.75◦, 1.0◦, 1.25◦ and 1.50◦. The efficiency comparison was established using three statistical
metrics, i.e., R2, RMSE, and the bias (B). The results are shown in Table 2 (e.g., 0.75◦ resolution) and
Table S2 (0.25◦, 0.5◦, 1.0◦, 1.25◦ and 1.50◦), respectively. From the tabulated results, it was observed
that for the achieved R2 value, the weighted precipitation outperformed all multitemporal variables at
all upscaled resolutions. The highest R2 value of 0.794 was observed at 1.0◦ followed by 0.792 at 0.75◦
resolution, respectively. Also, for the achieved RMSE value, the weighted precipitation outperformed
the annual precipitation variables, such as the average annual (2001–2015), the wet year (2004) and the
dry year (2001) precipitation, whereas it underperformed compared to the seasonal, e.g., the average
winter, the average spring, the average summer and the average autumn precipitation, and the monthly
precipitation variables. The lowest RMSE value (i.e., at all upscaled resolutions) was observed for
the average monthly precipitation. Moreover, the observed bias for the two precipitation datasets,
e.g., the weighted precipitation and the multitemporal precipitation variables, was almost reaching
zero. In addition, both precipitation datasets were also compared at the original 0.1◦ resolution as
shown in Table 3. The tabulated results revealed the same outcome as in Table 2, wherein the best
correlation (R2) was observed between latitude and the weighted precipitation, and it outperformed
all multitemporal precipitation variables. Similarly, for the achieved RMSE value, it outperformed
the annual precipitation variables and underperformed compared to the seasonal and the monthly
variables. As a whole, the observed output at each statistical parameter for each precipitation variable
was slightly reduced from lower to higher (e.g., from Table 2 to Table 3) resolution.
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Table 2. Comparison between the weighted precipitation and the multitemporal precipitation variables
at 0.75◦ resolution.

Variables Statistical Parameters

R-Square Mean S. D. RMSE Bias

Weighted Ppt 0.792 897.680 295.860 135.005 −3.0E−06
Avg-Monthly 0.609 125.319 25.335 15.836 −3.6E−05
Avg-Annual 0.609 1503.828 304.016 190.043 2.8E−05
Avg-Winter 0.533 181.795 70.273 48.041 4.5E−05
Avg-Summer 0.426 617.508 123.003 93.165 8.1E−06
Avg-Spring 0.559 466.215 160.574 106.693 −0.00012
Avg-Autumn 0.333 241.951 47.712 38.959 −2.2E−05
Wet-Y (2004) 0.316 1308.082 258.892 214.166 1.9E−05
Dry-Y (2001) 0.781 1452.542 514.112 240.376 0.00010

Table 3. Comparison between the weighted precipitation and multitemporal precipitation variables
original 0.1◦ resolution.

Variables Statistical Parameters

R-Square Mean S. D. RMSE Bias

Weighted Ppt 0.772 920.915 295.731 141.113 8.89E−05
Avg-Monthly 0.591 124.681 25.084 16.044 2.17E−05
Avg-Annual 0.591 1496.164 301.015 192.537 3.3E−05
Avg-Winter 0.510 181.066 70.465 49.303 −0.00034
Avg-Summer 0.407 612.638 119.603 92.099 −5.1E−06
Avg-Spring 0.561 464.828 159.760 105.901 −5.2E−05
Avg-Autumn 0.299 241.260 49.556 38.979 3.78E−07
Wet-Y (2004) 0.307 1306.001 255.948 212.987 −3.2E−05
Dry-Y (2001) 0.766 1440.258 503.257 243.108 −5.7E−05

3.3.2. Verification of the Weighted Precipitation with Neutral Variables

The weighted precipitation was further evaluated by comparing with neutral variables which were
not used during the prediction of EDBF-based weighted precipitation. In this regard, the precipitation
variables from two different datasets, such as the TRMM and the GPM, were used for the verification
of weighted precipitation. The GPM dataset used during verification comprised of the annual 2006
(Figure 2j) and 2012 (Figure 2k) precipitation, whereas the TRMM dataset comprised of the annual 2001,
2006, 2012 and the average annual (2001–2015) (Figure 2l–o) precipitation, respectively. The verification
of weighted precipitation though the GPM data was evaluated by extracting precipitation at the
original 0.1◦ resolution, whereas through the TRMM data, it was evaluated at the original 0.25◦
resolution. The verification results are shown in Table 4. The weighted precipitation outperformed
both, as can be observed by comparing the datasets, by achieving a higher R2 value of 0.776 at 0.25◦
resolution and 0.772 at 0.1◦ resolution as compared to the TRMM and the GPM-based precipitation,
respectively. Subsequently, the weighted precipitation also produced lower RMSE, e.g., 133.37 (0.25◦
resolution) and 141.113 (0.1◦ resolution) as compared to the TRMM- and the GPM-based precipitation,
respectively. Apart from that, the observed bias almost reached zero for all variables, wherein the
weighted precipitation showed positive bias, while the TRMM and the GPM precipitation showed
negative bias.
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Table 4. Comparison between the weighted precipitation and neutral precipitation variables.

Variables Statistical Parameters

R-Square Mean S. D. RMSE Bias

Weighted Ppt @ 0.1◦ 0.772 920.915 295.731 141.113 8.8E−05
GPM (2006) 0.668 1555.048 463.560 267.117 −0.00013
GPM (2012) 0.391 1687.073 517.823 404.087 4.3E−05
Weighted Ppt @ 0.25◦ 0.776 868.975 281.890 133.377 9.5E−06
TRMM (2001) 0.599 1393.780 480.101 303.951 −1.8E−05
TRMM (2012) 0.318 1668.233 546.886 451.363 −1.1E−05
TRMM (2006) 0.473 1608.031 542.391 393.678 −2.1E−05
Avg-TRMM (01-15) 0.373 1534.130 374.400 296.581 −2.7E−05

3.4. Downscaling of the Weighted Precipitation

Based on the verification of EDBF results, the algorithm was employed in the downscaling
process. During the downscaling process, a distinction between the low-resolution (upscaling) and
the high-resolution (downscaling) was made by using Equation (5). By subtracting the weighted
precipitation PD.WTPLR (i.e., also called the low-resolution weighted precipitation) (Figure 7b) from the
original Avg_MTGPM precipitation (Figure 7a), the residuals

(
RWTPLR

)
of the regression model (i.e., also

called as the low-resolution weighted residuals) at 0.75◦ resolution were obtained as shown in Figure 7c,
which represents the amount of precipitation that could not be predicted by the weighted precipitation
via EDBF algorithm according to Equation (15). Subsequently, the generated residuals were interpolated
to 0.05◦ resolution (Figure 7d), also called the high-resolution weighted residuals (RWTPHR ), by applying
a spline tension interpolator [59]. Finally, the high-resolution weighted precipitation (PD.WTPHR ) at 0.05◦
resolution (Figure 7e) was obtained using Equation (5). Using Equation (16) to add the high-resolution
weighted precipitation to the high-resolution weighted residuals, the final downscaled high-resolution
weighted precipitation PDs.PWTPHR (Figure 7f) for the humid region of Mainland China was obtained:

RWTPLR = AvgGPM − PD.WTPLR (15)

PDs.PWTPHR = PD.WTPHR + RWTPHR (16)

Figure 7. Stepwise downscaling process to predict the high-resolution multitemporal weighted
precipitation: (a) the GPM-based average multitemporal precipitation at 0.75◦ resolution; (b) the
EDBF-based weighted precipitation at 0.75◦ resolution; (c) the low-resolution weighted residuals at
0.75◦ resolution generated from the difference between (a) and (b); (d) the high-resolution weighted
residuals at 0.05◦ resolution generated by interpolating (c) via Spline Interpolation; (e) the EDBF-based
high-resolution weighted precipitation at 0.05◦ resolution; and (f) the final high-resolution downscaled
multitemporal weighted precipitation, at 0.05◦ resolution, as a product of adding (d) into (e), respectively.
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4. Discussion

In this study, a new downscaling methodology, namely GMWPA at 0.05◦ resolution, was developed
and investigated in the humid region of Mainland China. A two-stepped procedure [38,39,41], based on
a scale-dependent regression analysis and downscaling of the predicted multitemporal weighted
precipitation at a refined scale, was adopted during the execution of proposed methodology. For this
purpose, the multitemporal GPM precipitation dataset (2001 to 2015) at 0.1◦ and ASTER 30 m DEM-based
geospatial predictors, i.e., elevation, longitude, and latitude were taken as input variables to predict
the low-resolution—for the residual generation at optimal resolution scale—and the high-resolution
weighted precipitation, and were used in the final downscaling process.

Furthermore, the regression analysis was performed in two phases. In the first phase,
each geospatial predicator was assessed through developing a relationship (Table 1) with each
individual precipitation variable via a fitting line—polynomial fit. Moreover, it was observed that
latitude showed the highest correlation with all precipitation variables and achieved the highest R2

value. Compared to previous studies [3,34,59] which used either one or two independent variables
(NDVI, elevation), the authors in [38] used several independent variables, i.e., latitude, longitude,
elevation, slope, aspect, NDVI, Max_NDVI, Range_NDVI, and Min_NDVI, to establish regression
models for deriving the annual precipitation over continental China. From the study, it was concluded
that, apart from latitude, all variables including NDVI showed relatively weak empirical relationships
with the observed precipitation, especially over the humid region of China. Specifically, for NDVI,
a possible reason may be that NDVI-related predictors are better indicator of precipitation in arid and
semi-arid areas. The NDVI values would not increase with the increased rainfall amount in humid
areas, which makes a relatively weak empirical relationship between precipitation and saturated NDVI.
Keeping in view, latitude was selected as the proxy of precipitation and employed in assigning initial
weight value (e.g., based on r value calculated for each precipitation variable with respect to latitude)
to each individual precipitation variable from the multitemporal precipitation dataset, and which was
then processed in EDBF algorithm [58] to predict the weighted precipitation.

Likewise, in the second phase, the output precipitation variable from EDBF, e.g., the weighted
precipitation was assessed via developing the relationship with latitude through linear fitting. Moreover,
the correlation between latitude and the weighted precipitation was increased for each of the
low-resolution scale, and the highest R2 was achieved at 100 km (e.g., between 0.75◦, 1.0◦, 1.25◦
resolutions), which showed that the weighted precipitation was well captured by latitude at 100 km
resolution. Although the highest correlation between latitude and the weighted precipitation was
achieved at 1.0◦ (100 km), but due to certain reasons, 0.75◦ resolution was selected as an optimal
low resolution (e.g., for the upscaling) during the downscaling process. First, there was not much
difference between the two resolution scales for the achieved R2, i.e., 0.75◦ (R2 = 0.7918) and 1.0◦
(R2 = 0.7977) resolution. Secondly, 0.75◦ resolution had more pixels, i.e., 195, as compared to 111 pixels
for 1.0◦ resolution to cover the whole study area. Considering, to convert points into pixels, the Spline
Interpolation method [51,60] was used, which estimates values using a mathematical function that
minimizes the overall surface curvature, resulting in a smooth surface that passes exactly through
a specified number of nearest input points while passing through the sample points. Thus, using
0.75◦ resolution, which had a closer specified number of nearest input points, i.e., 12 points, than 1.0◦
resolution, tends to produce a smoother surface by minimizing the surface curvature.

From the EDBF algorithm perspective, it is a general framework rather than a specific algorithm,
which is easy to implement and can easily accommodate any existing multi-parent crossover algorithms
(MCAs). Moreover, the existing MCA-based coefficients [61–63] follow a uniform distribution,
which also violates constraints, thus propagate error. Errors cascade exponentially, with even a slight
increase in the hybrid scale, which leads to the increase in time consumption. To address such problem,
EDBF is the best solution which takes multiple MCAs as its constituent members. In addition,
the number of iterations during the execution of EDBF algorithm at the low-resolution scale, i.e., 0.25◦,
0.50◦, 0.75◦, 1.0◦, 1.25◦ and 1.50◦ was set to 3 × 104 with the reason that a possible number of iterations
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be available for the stabilization of convergence before the ending of simulation process. Moreover,
the process was repeated for all the low resolutions. Though the convergence stabilized before a 3 × 104

number of iterations, still a slight improvement could be observed, and further improvement in the
regression value(s) could be expected. Instead, by terminating simulation during the execution, we let
simulation process to be completed until the last iteration. Owing to that, the number of iterations
was reduced during the simulation of high-resolution (i.e., 0.05◦ resolution) weighted precipitation,
and the convergence was well stabilized within the set number of iterations.

During the verification process, the weighted precipitation was first compared with its contributing
multitemporal precipitation variables at all the low and the original resolution scales. It outperformed
all input variables for the achieved R2 and outperformed the annual precipitation and underperformed
compared to the seasonal and the monthly precipitation variables for the achieved RMSE. Furthermore,
the weighted precipitation was compared with different classified precipitations, extracted either
as an individual or grouped variables from the original multitemporal precipitation dataset used
in the prediction of EDBF-based weighted precipitation at the original 0.1◦ resolution. The results
are shown in Table 5, in which the weighted precipitation showed the highest correlation with its
predictor (R2 = 0.772) as compared to other used variables. In addition, the weighted precipitation
had a lower RMSE value (e.g., RMSE = 141.113 mm) than the Avg-An (01–15) +Wet Ppt+ Dry Ppt,
Avg-An (01–15) + Dry Ppt, Avg-An (01–15) +Wet Ppt, Wet Ppt + Dry Ppt, Avg-An (01–15) and Avg-MT
(−01 & −04) Ppt with the observed RMSE value of 179.248, 206.353, 182.762, 178.025, 192.537 and
197.434 mm, respectively. Also, it had a higher RMSE than the Avg-MT Ppt variable, i.e., 135.370 mm.
The reason of low RMSE value for the average multitemporal GPM precipitation was that the average
output was equally contributed by each precipitation variable from the multitemporal dataset. Out
of the eight used variables from the multitemporal precipitation dataset, the five variables consisted
of the seasonal and the monthly precipitation, which had lower received pixel precipitation. Adding
to this, the number of days counted during each of the seasonal component (e.g., average 90 days)
is lower than the annual component (e.g., 365 days) and there is less probability of variation in the
seasonal precipitation than the annual precipitation. Despite lower R2 values, less variability from the
mean precipitation was observed in the seasonal and the monthly precipitation as compared to the
annual precipitation. On the contrary, the EDBF-based weighted precipitation was mainly predicted
on the basis of assigned weights via calculated r values. In this regard, higher the r value, the more
weight was assigned to that variable and more contribution from that variable in the prediction of
weighted precipitation. Additionally, it was compared with neutral variables, wherein it outperformed
all comparing variables for the achieved R2 and RMSE values.

Table 5. Comparison between the weighted precipitation and classified extracted precipitation variables.

Variables Statistical Parameters

R-Square Mean S. D. RMSE Bias

Weighted Ppt 0.772 920.915 295.731 141.113 8.8E−05
Avg-MT Ppt 0.708 1096.535 250.712 135.370 5.8E−06
Avg-An (01-15) +Wet + Dry Ppt 0.696 1414.141 325.185 179.248 −2.1E−05
Avg-An (01-15) + Dry Ppt 0.726 1468.211 394.319 206.353 −9.4E−05
Avg-An (01-15) +Wet Ppt 0.511 1401.083 261.236 182.762 1.2E−05
Wet + Dry Ppt 0.728 1373.130 341.383 178.025 1.2E−05
Avg-An (01-15) 0.591 1496.164 301.015 192.537 3.3E−05
Avg-MT (-01 & -04) Ppt 0.558 1515.092 297.221 197.434 −2.9E−05

Note: Avg-MT Ppt is the average multitemporal precipitation; Avg-An(01-15) + Wet + Dry Ppt is the average
precipitation as product of the average annual, the wet year (2004) and the dry year (2001) precipitation; Avg-An
+ Dry Ppt is the average precipitation as product of the average annual (2001–2015) and the dry year (2001)
precipitation; Avg-An(01-15) +Wet Ppt is the average precipitation as product of the average annual (2001–2015) and
the wet year (2004) precipitation; Wet + Dry Ppt is the average precipitation as product of the wet year (2004) and
the dry year (2001) precipitation; Avg-An (01-15) is the average annual (2001–2015) precipitation; Avg-MT(-01 & -04)
Ppt is the average multitemporal precipitation excluding the dry year (2001) and the wet year (2004) precipitations.
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The downscaling methodology applied in this study was mainly based on the work presented
in [39], where the basis function was selected at an optimum resolution and by interpolating the
residuals. After successfully applying the proposed methodology, the EDBF algorithm was employed in
downscaling of the dry year (2001), the wet year (2004) and the average annual (2001–2015) precipitation
at 0.05◦ resolution by following the same process as for downscaling the Avg_MTGPM precipitaiton.
Before downscaling, a graphical relationship between the weighted precipitiaon and the dry year
(2001), the wet year (2004) and the average annual (2001–2015) precipitation was developed through
a scatter plot as shown in Figure 5g–i, respectively. The weighted precipitation showed the highest
correlation with the dry year (2001) followed by the average annual (2001–2015) and the wet year
(2004) for the achieved R2 = 0.9869, 0.8929 and 0.4154, respectively.

Moreover, during downscaling, the low-resolution weighted residuals (Figure S6d–f) were
generated by subtracting the low-resolution weighted precipitation PD.WTPLR (Figure 7b) from the
original dry year (2001), the wet year (2004) and the average annual (2001–2015) precipitation
(Figure S6a–c) at 0.75◦ resolution, respectively. Afterward, the high-resolution weighted residuals
(Figure S6g–i) at 0.05◦ were obtained by interpolating the low-resolution residuals at 0.75◦ resolution.
Finally, by adding the obtained high-resolution interpolated residuals to the high-resolution weighted
precipitation (Figure 7e), the downscaled high-resolution weighted precipitation at 0.05◦ resolution for
the dry year (2001) (Figure 8d), the wet year (2004) (Figure 8e) and the average annual (2001–2015)
precipitation (Figure 8f) was obtained. From Figure 8, it shows that the high-resolution weighted
precipitation captured the same precipitation pattern as that of the original GPM dry year (2001),
the wet year (2004) and the average annual (2001–2015) precipitation at 0.1◦. Moreover, by analyzing
the class wise pattern (Table 6) for the obtained precipitation, the algorithm accurately captured the wet
year (2004) (Figure 8e) and the average annual (2001–2015) precipitation, whereas some classes, e.g.,
class 4 (gold color) and 5 (light green) were not very well captured during downscaling of the dry year
(2001) precipitation, such as between 111◦ to 115◦E and 25◦ to 27◦N, and 117◦ to 118◦E and 24◦ to 25◦N.

 

Figure 8. Comparison between the downscaled weighted precipitation at 0.05◦ resolution for (d–f) and
the original GPM precipitation at a nominal resolution of 0.1◦ for (a) the dry year (2001), (b) the wet
year (2004), and (c) the average annual (2001–2015), respectively.
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Table 6. Comparison of spatial pattern between GPM based precipitations with its corresponding
weighted precipitation for different precipitation classes.

Variables Precipitation Classes

540 801 1042 1283 1483 1684 1905 2166 2447 2728
801 1042 1283 1483 1684 1905 2166 2447 2728 3099

GPM 2001 261 241 241 200 201 221 261 281 281 371

586 837 1108 1359 1560 1750 1961 2232 2523 2804
837 1108 1359 1560 1750 1961 2232 2523 2804 3145

Weighted 2001 251 271 251 201 190 211 271 291 281 341

659 782 895 1023 1155 1269 1364 1451 1533 1620
782 895 1023 1155 1269 1364 1451 1533 1620 1820

GPM 2004 123 113 128 132 114 95 87 82 87 200

676 816 922 1047 1176 1283 1376 1465 1554 1643
816 922 1047 1176 1283 1376 1465 1554 1643 1813

Weighted 2004 140 106 125 129 107 93 89 89 89 170

787 944 1074 1199 1329 1465 1579 1682 1796 1921
944 1074 1199 1329 1465 1579 1682 1796 1921 2171

Avg-Annual (2001–2015) 157 130 125 130 136 114 103 114 125 250

805 958 1088 1212 1347 1488 1612 1725 1844 1973
958 1088 1212 1347 1488 1612 1725 1844 1973 2244Weighted Avg-Annual

(2001–2015) 153 130 124 135 141 124 113 119 129 271

Note: Green colored values show the average difference of less than 5 mm, Blue colored values show the average
difference of about 10 mm, Pink colored values show the average difference of about 20 mm, Red colored values
show the average difference of about 30 mm between the GMP and weighted precipitation at particular pattern
class, respectively.

Subsequently, to analyze difference in the range of precipitation classes (i.e., difference between
the upper and the lower boundary of captured precipitation pattern) between the original dry
year (2001), the wet year (2004) and the average annual (2001–2015) precipitation at 0.1◦ resolution,
their corresponding weighted precipitation at 0.05◦ resolution was found to be in close proximity with
the average difference of less than 5 mm for most classes. Apart from that, EDBF algorithm slightly
underpredicted extreme precipitation for the dry year (2001) and the wet year (2004) with the average
difference of 30 mm, and overpredicted the average annual (2001–2015) precipitation with a difference
of 20 mm. On the contrary, for low precipitation EDBF underpredicted the dry year (2001) and the
average annual (2001–2015), and overpredicted the wet year (2004) precipitation with the average
difference of 10, 4 and 23 mm, respectively. Similarly, considering the individual precipitation variable,
EDBF accurately predicted the wet year (2003) and the average annual (2001–2015) precipitation with
the average difference of less than 5 mm, whereas it slightly overpredicted the dry year (2001) with an
average difference of 10 mm between the original and the corresponding weighted precipitation.

5. Conclusions

This study investigated and developed a new downscaling methodology, such as GMWPA
at 0.05◦ resolution based on the multitemporal GPM precipitation dataset (2001 to 2015) at 0.1◦
and ASTER 30 m DEM-based geospatial predictors, i.e., elevation, longitude, and latitude in EDBF
algorithm. The proposed methodology is a two-stepped process: (i) to develop a scale dependent
relationship between precipitation variables, i.e., the multitemporal GPM precipitation and the
weighted precipitation, and geospatial predictors through regression analysis [45]; (ii) the downscaling
of EDBF-based multitemporal weighted precipitation at a refined scale. In addition, EDBF results
were validated using neutral variables, e.g., the GPM-based annual 2006 and 2012 precipitation,
the TRMM-based annual (2001, 2006 and 2012) and the average annual (2001–2015) precipitation.
The following conclusions are drawn from this work:

• Geospatial predictors were the proxy of precipitation and polynomial function best described
the relationship between the multitemporal precipitation variables and geospatial predictors, i.e.,
elevation, longitude, and latitude.
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• The correlation between the multitemporal GPM variables and geospatial predictors varies with
resolution, and the best correlation was found at a resolution of approximately 100 km (0.75◦–1.25◦).
The highest correlation between precipitation variables and geospatial predictors was observed
for the average spring followed by the dry year (2001) and the wet year (2004) precipitation,
respectively. The latitude showed to be the best geospatial predictor.

• The weighted r value predicted by EDBF algorithm was higher than the calculated r value for
each of the individual precipitation variables. The highest weighted r value was predicted at 1.0◦
(−0.891) followed by 0.75◦and 1.25◦ (−0.889), respectively. Besides, the highest weighted response
was observed for the dry year (2001), followed by the average spring, the average autumn and the
wet year (2004), respectively.

• In contrast to the priori polynomial relationship between the multitemporal precipitation variables
and geospatial predictors, a consistent linear relationship between the weighted precipitation and
latitude was observed with an R2 value of 0.7696, 0.7761, 0.7697, 0.7918, 0.7944, 0.7919 and 0.7517
at 0.05◦, 0.25◦, 0.50◦, 0.75◦, 1.0◦, 1.25◦ and 1. 50◦ resolution, respectively.

• In comparison with the multitemporal GPM variables, the weighted precipitation outperformed
all variables for the achieved R2 value, whereas it outperformed the annual precipitation variables
and underperformed compared to the seasonal and the monthly variables for the achieved RMSE
value. In addition, it outperformed all comparing variables during the verification process for the
achieved R2 and RMSE values.

• Based on achieved results, the downscaling process was carried out for the average multitemporal
precipitation, the multitemporal annual precipitation (2001 and 2004) and the average annual
precipitation (2001–2015).

• The proposed downscaling methodology was refined through earlier methodologies described
in [3,39,64] by selecting the basis function at an optimum resolution and by interpolating
the residuals.

• The downscaling approach resulted through the proposed methodology captured spatial patterns
with greater accuracy at higher spatial resolution.

• This work showed that it is feasible to increase the spatial resolution and accuracy of a precipitation
variable on an annual basis or as an average from the multitemporal precipitation dataset using
a geospatial predictor, i.e., latitude as the proxy of precipitation through the weighted precipitation.
Future work should focus on extending this procedure using the multitemporal precipitation
dataset from multi-satellites or a satellite combining rain gauge precipitation, also through
analyzing the combined effect of predictors (e.g., geospatial and environmental, etc.) as the proxy
of precipitation.

In conclusion, it is possible to accurately downscale the GPM-based multitemporal precipitation
using geospatial predictors in the humid region (Southern China) of Mainland China and that the
presented methodology is generic in nature and is applicable in all climatic conditions of the world.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/19/3162/s1,
Figure S1: Grids conversion into points located at the center of each pixel (a) 0.25◦ resolution, (b) 0.50◦ resolution,
(c) 0.75◦ resolution, (d) 1.0◦ resolution, (e) 1.25◦ resolution, (f) 1.50◦ resolution, respectively; Figure S2: Execution
of EDBF algorithm for estimating the weighted precipitation at different scaled resolutions; Figure S3: Per meter
elevation received precipitation at 0.25◦, 0.50◦, 0.75◦, 1.0◦, 1.25◦ and 1.50◦ resolution for (a) the average monthly,
(b) the average annual (2001–2015), (c) the average winter, (d) the average spring, (e) the average summer, (f) the
average autumn, (g) the dry-year (2001), (h) the wet-year (2004) precipitation, respectively; Figure S4: Per degree
longitude received precipitation at 0.25◦, 0.50◦, 0.75◦, 1.0◦, 1.25◦ and 1.50◦ resolution for (a) the average monthly,
(b) the average annual (2001–2015), (c) the average winter, (d) the average spring, (e) the average summer, (f) the
average autumn, (g) the dry-year (2001), (h) the wet-year (2004) precipitation, respectively; Figure S5: Per degree
latitude received precipitation at 0.25◦, 0.50◦, 0.75◦, 1.0◦, 1.25◦ and 1.50◦ resolution for (a) the average monthly,
(b) the average annual (2001–2015), (c) the average winter, (d) the average spring, (e) the average summer, (f) the
average autumn, (g) the dry-year (2001), (h) the wet-year (2004) precipitation, respectively; Figure S6: Generation of
the high-resolution weightged residuals (g)(h)(i) at 0.05◦ from the low-resolution weighted residuals (d–f) at 0.75◦
for, (a) the dry yar (2001), (b) the wet year (2005), and (c) the average annual (2001–2015) precipitatation at 0.75◦
resolution, respectively. Table S1: Data Summary for the calculation of Chi-square test value; Table S2: Comparison
between the weighted precipitation and the multitemporal precipitation variables at different resolution scales.
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Abstract: Despite numerous assessments of satellite-based and reanalysis precipitation across the
globe, few studies have been conducted based on the precipitation linear trend (LT), particularly
during daytime and nighttime, when there are different precipitation mechanisms. Herein, we first
examine LTs for the whole day (LTwd), daytime (LTd), and nighttime (LTn) over mainland China
(MC) in 2003–2017, with sub-daily observations from a dense rain gauge network. For MC and
ten Water Resources Regions (WRRs), annual and seasonal LTwd, LTd, and LTn were generally
positive but with evident regional differences. Subsequently, annual and seasonal LTs derived from
six satellite-based and six reanalysis popular precipitation products were evaluated using metrics
of correlation coefficient (CC), bias, root-mean-square-error (RMSE), and sign accuracy. Finally,
metric-based optimal products (OPs) were identified for MC and each WRR. Values of each metric for
annual and seasonal LTwd, LTd, or LTn differ among products; meanwhile, for any single product,
performance varied by season and time of day. Correspondingly, the metric-based OPs varied
among regions and seasons, and between daytime and nighttime, but were mainly characterized
by OPs of Tropical Rainfall Measuring Mission (TRMM) 3B42, ECMWF Reanalysis (ERA)-Interim,
and Modern Era Reanalysis for Research and Applications (MERRA)-2. In particular, the CC-based
(RMSE-based) OPs in southern and northern WRRs were generally TRMM3B42 and MERRA-2,
respectively. These findings imply that to investigate precipitation change and obtain robust related
conclusions using precipitation products, comprehensive evaluations are necessary, due to variation
in performance within one year, one day and among regions for different products. Additionally,
our study facilitates a valuable reference for product users seeking reliable precipitation estimates to
examine precipitation change across MC, and an insight (i.e., capacity in detecting LTs, including
daytime and nighttime) for developers improving algorithms.

Keywords: precipitation; reanalysis; satellite; linear trends; mainland China

1. Introduction

Precipitation is a critical hydrometeorogical variable that plays a key role in energy and water cycles,
and thus impacts the weather, climate, hydrology, ecosystem, and Earth system [1–3]. Precipitation
is closely bound to life on Earth, due to it being the major source of freshwater [4]. As a result,
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its measurement is the focus for various disciplines (e.g., atmospheric sciences, ecology, hydrology,
agriculture, and economy), in spite of their differences [2,5–7]. For instance, continuous and long-term
precipitation observations are necessary for scientific research, but also for informing policy-makers
of suitable measures to mitigate the adverse impacts of climate change, especially for droughts and
floods [8–12]. Despite its exceptional importance, there still exist great challenges related to obtaining
reliable precipitation observations with a long enough time span and large enough space coverage [13–15].

It is well-known that the most direct pathway to obtain precipitation data is through in situ
measurements with different gauges (e.g., tipping-bucket rain gauges; [16]). Gauge observations have
been extensively utilized by different sectors (e.g., agriculture, industry, and forestry), and have greatly
promoted precipitation-related scientific disciplines, e.g., climate studies [10,17,18]. Despite that,
we should note that gauges are related to high variability of the rain-bearing systems at different
spatio-temporal scales and have an uneven spatial distribution [19,20]. These factors limit the
representativeness of gauge precipitation observations to a large extent, and introduce uncertainty
into gauge data-based conclusions. With the development of radar technology over past decades,
technologically-sophisticated precipitation algorithms based on radar radiance signals have been
developed and various corresponding precipitation estimates have been proposed [21–23]. Radar-based
precipitation products undoubtedly have the potential to solve or at least reduce the limitations of
gauge measurements; for example, they have a more extensive coverage and higher spatio-temporal
resolution, which are critical for the analysis of hydrometeorological processes, especially extremes
such as flash floods and droughts [2,24]. However, considering the high installation and maintenance
costs of radars, the shorter time span of radar observations, and topography-induced radar blockage,
radar-based precipitation products are limited and unavailable for some regions, e.g., the nearly
negligible radar estimates overseas [14,22,25].

Recently, satellite technology and numerical models/reanalysis systems have developed
significantly; therefore, satellite-based precipitation retrievals and precipitation estimates from the
models/reanalysis systems have become increasingly attractive and available [3,5,26–31]. Satellite-based
precipitation data are derived using various statistical and/or physics-based retrieval algorithms with
the radiance information from the satellite-carried sensors, including VIS/IR sensors on geostationary
(GEO) and low Earth orbit (LEO) satellites, and passive (PMW) and active MW sensors on LEO satellites.
Satellite-based products generally include three types, i.e., VIS/IR- and MW-based estimates, and data
through combining the VIS/IR and MW information. Examples include the Tropical Rainfall Measuring
Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) from the National Aeronautics
and Space Administration (NASA) Goddard Space Flight Center (GSFC; [32]), the Precipitation
Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN; [33,34]),
the PERSIANN-Cloud Classification System (CCS; [13,35]), the PERSIANN-Climate Data Record
(CDR; [25]), the Global Satellite Mapping of Precipitation (GSMaP) Microwave-Infrared Combined
Reanalysis (RNL; [32,36]) of the Earth Observation Research Center (EORC) of the Japan Aerospace
Exploration Agency (JAXA), the National Oceanic and Atmospheric Administration (NOAA) Climate
Prediction Center (CPC) morphing technique (CMORPH; [37]), the Integrated Multi-satellite Retrievals
for Global Precipitation Measurement (IMERG; [38]), the Climate Hazards Group InfraRed Precipitation
with Station Data (CHIRPS; [39]), and a new global Multi-Source Weighted-Ensemble Precipitation
(MSEWP) rainfall dataset [40]. Notably, satellite-based precipitation products can only be dated back to
the beginning of the satellite era. As an important alternative, reanalysis precipitation data, which are
simulated using new atmospheric models combined with advanced data assimilation systems [41–45],
provide a means to fulfill the specific requirements (i.e., centennial and even longer precipitation
records) of the studies. Additionally, reanalysis systems provide the nearly realistic atmosphere
circulation fields, which makes it possible to do many things, including understanding precipitation
changes from the perspective of atmospheric dynamical mechanisms [46–48]. The most frequently
used reanalysis precipitation datasets include the National Centers for Environmental Prediction
reanalysis (NCEP1 and NCEP2; [42,43]), NCEP Climate Forecast System Reanalysis (CFSR; [49]),
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ECMWF Reanalysis-5 (ERA-5; [46]) and ERA-Interim [41], the Japanese 55-year Reanalysis Project
(JRA-55; [44]), and the National Aeronautics and Space Administration (NASA) Modern Era Reanalysis
for Research and Applications (e.g., MERRA-2; [45]).

Before using these products, it is of paramount importance to determine the reliability of the
precipitation products using dependable reference datasets, because the inherent uncertainties within
these products would likely affect final results, adversely impacting confidence levels [42,50–56].
In terms of a study’s specific needs and goals, the satellite-based and reanalysis precipitation datasets
have been widely evaluated at different spatio-temporal scales with a series of validation metrics
(e.g., [6,50,56–68]). For instance, Sun et al. [6] selected several continuous and categorical validation
statistics combined with bias and error decomposition techniques to assess the performance of
the PERSIANN-Climate Data Record (CDR) precipitation product in the Huai River Basin, China,
and pointed out that the daily, monthly and annual performance of this product varied in accordance
with obvious intra-annual cycles. Huang et al. [62] systematically assessed five satellite-based
precipitation products (CMORPH, PERSIANN and TRMM3B41RT, TRMM3B42RT, and TRMM3B42)
with observations at 2400 weather sites across China, and found that estimates generally captured the
overall spatial-temporal variation of precipitation, especially for warm seasons and humid regions.
Beck et al. [40] compared 22 gridded daily precipitation datasets across the globe during 2000—2016
with daily observations at 76086 gauges and hydrological modeling, and highlighted that there existed
large differences in the accuracy of precipitation estimates and more attention should be paid for
precipitation dataset selection in both research and operational applications. de Leeuw et al. [65] used
the daily precipitation observations from England and Wales to evaluate the ERA-Interim products,
and found that this dataset underestimated the observations on a daily scale, while it could capture
the statistics of extreme precipitation events. Lorenz and Kunstamann [67] analyzed the hydrological
cycle with three state-of-the-art reanalyses (ERA-Interim, MERRA-2, and CFSR), and demonstrated
that large differences existed between the reanalyses and the observations.

The previous evaluations have provided valuable information for the theoretical understanding
and improvement of satellite-retrieved algorithms and reanalysis systems. Nonetheless, most were
conducted using daily, monthly and annual reference precipitation data; thus, the information about the
capacity of the satellite-based and reanalysis precipitation is scarce on a sub-daily scale, especially for
China. In fact, there are evident differences in the mechanisms of precipitation within one day, which
are closely related to thermodynamic and dynamic processes of water and energy fluxes [3,69–74].
For example, results from Yu et al. [74] indicated that long-duration stratiform precipitation frequently
occurred in the early morning during the warm season over central-eastern China, while the late
afternoon experienced a higher frequency of short-duration convective precipitation. Therefore,
evaluating the multi-source precipitation products with sub-daily observations (daytime and nighttime
datasets at least) could provide more detailed information, e.g., flexibility for a precipitation product on
sub-daily scale. This is very useful to further improve satellite-based algorithms and models/reanalysis
systems from the perspective of sub-daily precipitation mechanisms, and even correct the precipitation
products using the sub-daily rather than daily measurements. Additionally, sub-daily precipitation
changes have become a hot topic in current research, and numerous studies have been conducted
(e.g., [71,75–82]). Cheng et al. [71] pointed out that on annual and seasonal scales (except during spring),
the majority of meteorological station records (1961–2006) of Southwest China displayed downward
trends for total, daytime, and nighttime precipitation. Lin et al. [80] analyzed characteristics of summer
precipitation diurnal variations during 2001–2014 in the Hubei Province of China, and suggested
that the diurnal variations existed obvious regional differences. Based on observational day and
night precipitation during 1961–2005 across Xinjiang, China, Han et al. [81] concluded that the annual
increasing trends of precipitation in the daytime and nighttime respectively accounted for 49% and
51% of the total increasing trend in annual precipitation. Liu et al. [82] found that with the CMORPH
dataset during 2008–2014, both the daytime and nighttime precipitation were detected to increase in
summer over the Qilian Mountains, China. Lenderink et al. [77] reported that hourly precipitation
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extremes have substantially increased in the last century over De Bilt, Netherlands, and Hong Kong,
China. Thus, an issue arises—can the existing precipitation products capture the linear trends on
a sub-daily scale based on different validation metrics? This question has been paid little attention
(e.g., [83]), despite the basis to examine precipitation trends with these datasets. Thus, assessments
regarding precipitation trends can provide fundamental information to select the reliable products
for exploring precipitation changes, particularly for regions with limited or even no observations
(e.g., West China in Figure 1).

Considering the gaps in the previous works of precipitation evaluations, we used China as an
example to examine the multi-source precipitation products’ capacity to detect precipitation linear trends
during daytime and nighttime. Thus, the main objectives of this work were to (1) investigate the spatial
distribution of precipitation changes using daily, daytime, and nighttime records from 2393 weather
sites across China; (2) to quantify the performance of selected products (i.e., six satellite-based and six
reanalysis datasets) in detecting precipitation trends on a sub-daily scale with different validation metrics
(correlation coefficient, bias, root mean square error, and sign accuracy) through a comparison with
gauge observations; and (3) to identify the metric-based optimal products at a sub-daily scale.

2. Data and Methodology

2.1. Data

2.1.1. Observed Precipitation

To evaluate the capabilities of various products in capturing precipitation changes, sub-daily
(i.e., daytime, Pd, 0000–1200 UTC; and nighttime, Pn, 1200–2400 UTC) accumulated precipitation data
observed from 2003 to 2017 at 2481 weather sites across China (Figure 1), including basic, benchmark,
and general meteorological stations, were collected from the China Meteorological Administration
(CMA). Although both datasets had undergone a series of quality control measures and homogenization,
e.g., outlier identification, internal consistency checks, and spatio-temporal consistency checks [84],
there were still missing values within the records. Therefore, to maximize the observational information,
we processed the datasets following the procedures described below. First, the number of daytime and
nighttime values was computed for each year at each site. If the days with missing values for daytime
or nighttime observations exceed 50 at a site, the site was removed. Secondly, for the remaining sites,
the bilinear interpolation method was employed to fill the missing values with the observations at the
two closest sites. There were 2393 sites remaining after this process (Figure 1), and the accumulative
precipitation for a whole day (abbreviated as Pwd) was then obtained as the sum of Pd and Pn.

 
Figure 1. Geographic distribution of the selected 2281 grids (0.25◦ × 0.25◦), at least corresponding to
a weather site. The digital elevation model (DEM) with a spatial resolution of 90 m is available at
http://srtm.csi.cgiar.org/. [85] Crosses and triangles correspond to 1 and more than 2 sites within a given
grid, respectively, followed by the percentage of grid shown in the bracket.

144



Remote Sens. 2020, 12, 2902

China is located in a typical monsoon region (i.e., the East Asian monsoon region), with evident
spatio-temporal variability of precipitation and the related mechanisms [86]. Mainland China (MC) is
divided into ten Water Resources Regions (WRRs, Figure 1), which is beneficial for examining regional
differences in the performance of each product to detect precipitation trends. We conducted annual and
seasonal evaluations of Pwd, Pd, and Pn trends during 2003–2017 on national and regional (i.e., MC and
WRR, respectively) scales. Here, spring, summer, autumn, and winter were specified as March–May,
June–August, September–November, and December–February, respectively.

2.1.2. Satellite-Based and Reanalysis Precipitation Datasets

In this study, considering the precipitation datasets availability and time span (study period of
2004–2017), we collected twelve sets of gridded precipitation data, including six satellite-based and six
reanalysis products, for evaluation. Detailed information of these datasets is shown in Table 1. Of the
selected satellite-based precipitation products, both the TRMM (i.e., TRMM3B42RT and TRMM3B42
adjusted with gauge observations), and the GSMaP (i.e., GSMaP-RNL and GSMaP-RNLG adjusted with
gauge observations) precipitation datasets are produced through merging VIS/IR and MW information
but are based on different algorithms [32,36]. In contrast, PERSIANN and PERSIANN-CCS belong to
the VIS/IR family of satellite-based precipitation products [13,33–35,87]. The main differences in the two
PERSIANN products are that the PERSIANN-CCS system enables the categorization of cloud-patch
features based on cloud height, areal extent, and variability of texture estimated from satellite imagery,
which is optimized for observing extreme precipitation, particularly at a very high spatial resolution.
The six reanalysis precipitation products include JRA-55, ERA-Interim, ERA-5, NCEP1, NCEP2,
and MERRA-2. These reanalysis products are produced based on different forecasting systems by
assimilating many of the basic surface and upper-atmospheric fields from multiple sources, e.g., the
surface humidity, radiosonde-based specific humidity, wind fields, and satellite-derived radiance.
Among them, different data assimilation techniques are employed. For example, the ERA-Interim,
ERA-5, and JRA-55 adopt four-dimensional variational (4D-VAR) data assimilation systems, whereas
the MERRA-2, NCEP1, and NECEP2 utilize 3D-VAR assimilation systems. For more details about
these datasets, the reader can refer to the product-specific user guide and the related literature.

Table 1. Summary of the selected satellite and reanalysis rainfall products.

Products
Spatial Resolution

and Space Span
Temporal Resolution

and Time Span
Bias Correction

Assimilation
System

References

TRMM-3B42RT (V7) 0.25◦ × 0.25◦,
50◦ S–50◦ N 2000 to present, 3-hourly No / [32]

TRMM-3B42 (V7) 0.25◦ × 0.25◦,
50◦ S–50◦ N 2000 to 2017, 3-hourly Corrected with GPCP,

and CAMS / [32]

PERSIANN 0.25◦ × 0.25◦,
60◦S–60◦N 2000 to present, 3-hourly No / [34]

PERSIANN-CCS 0.04◦ × 0.04◦,
60◦ S–60◦ N 2003 to present, 3-hourly No / [35]

GSMaP-RNL (V6) 0.1◦ × 0.1◦,
60◦ S–60◦ N 2000 to present, hourly No / [36]

GSMaP-RNLG (V6) 0.1◦ × 0.1◦,
60◦ S–60◦ N 2000 to present, hourly Corrected with CPCU / [36]

JRA-55 1.25◦ × 1.25◦,
Global 1958 to present, 3-hourly No 4D-VAR [44]

ERA-Interim 0.75◦ × 0.75◦,
Global 1979 to present, 3-hourly No 4D-VAR [49]

ERA-5 0.25◦ × 0.25◦,
Global 1979 to present, 3-hourly No 4D-VAR [46]

NCEP1 1.875◦ × 1.875◦,
Global 1948 to present, 6-hourly No 3D-VAR [42]

NCEP2 1.875◦ × 1.875◦,
Global 1979to present, 6-hourly No 3D-VAR [43]

MERRA-2 0.5◦ × 0.667◦,
Global 1980 to present, hourly Corrected with CPCU

or CMAP/GPCPv2.1 3D-VAR [45]

Note: CPCU: the NOAA Climate Prediction Center (CPC) Unified Gauge-Based Analysis of Global Daily Precipitation
(CPCU) product. CMAP/GPCPv2.1: the CPC Merged Analysis of Precipitation (CMAP)/Global Precipitation
Climatology Project product, version 2.2. GPCC: Global Precipitation Climatology Centre. CAMS: Climate Assessment
and Monitoring Systems.
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As shown in Table 1, datasets had different temporal and spatial resolutions, so it is necessary to
process them before evaluation. First, the satellite-based and reanalysis Pd and Pn were summed from
the 1-hourly, 3-hourly, or 6-hourly accumulated precipitation at product-specified grids. Then, based on
the bilinear interpolation method, the Pd and Pn for all products (except for TRMM-3B42RT, TRMM-3B42,
PERSIANN, and ERA-5) were resampled to the spatial resolution of 0.25◦. This was mainly because most
products correspond to a spatial resolution of 0.25◦ or higher, so the resampling-induced uncertainties
could be reduced to some extent. For Pwd, its values were obtained using the sum of Pd and Pn from the
resampled maps. The grids with at least one site were extracted to conduct performance evaluations. If
any grid included more than one site, the average precipitation value at these sites was calculated to
represent the final reference value of that grid.

2.2. Methodolody

The precipitation trends were calculated using

y = at + b (1)

where y is annual or seasonal accumulative precipitation; t refers to time; a represents the slope
coefficient, namely, linear trend; and b is the constant. Pearson’s correlation and the two-tailed
Student’s t test (i.e., p < 0.05) were applied to check for statistically significant relationships.

Satellite-based and reanalysis precipitation trends were quantitatively assessed with the metrics
of bias (B), which measured the trend differences between the products and the gauge observations;
root mean square error (RMSE), which represented the overall accuracy of the trends derived from the
products; the correlation coefficient (CC), which quantified the spatial consistency of the trends derived
from the products; and accuracy of sign (AS), which examined the degree of agreement between the
positive or negative sign of precipitation trends from the products and the observed data. These metrics
were calculated using the following equations:

B = aP − aO (2)

RMSE =

√
1
N

∑N

i=1
(aO,i − aP,i)

2 (3)

CC =

∑N
i=1(aO,i − aO)(aP,i − aP)√∑N

i=1(aO,i − aO)
2 ∑N

i=1(aP,i − aP)
2

(4)

AS =
nP
nG

(5)

where aP,i and aO,i represent the linear trends from a certain precipitation product and the gauge
observation at the ith grid, respectively; N is the number of the used grids for evaluation across MC or
each WRR; aP and aO represent the products and the observed trends averaged at the grids within MC
or a certain WRR, respectively; and nP is the number of the grids, where the examined products shows
the same sign of precipitation (e.g., Pwd, Pd or Pn) changes as the observed within a given region,
but nG indicates the total number of grids in the region.

Considering the co-variation of Pd and Pn, we defined a joint AS (JAS), which represented the
capacity of a given product to rightly detect the signs of both Pd and Pn changes relative to the observed
data. JAS can be calculated by

JAS =
nPco

nG
(6)

where nPco is the number of the grids in which the signs of both Pd and Pn changes derived from the
products are the same as those observed in a given region.
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3. Results

3.1. Gauge Precipitation Changes across MC

Figure 2(a1) depicts observed annual LTs for MC and ten WRRs during 2003–2017. For MC,
annual LTwd and LTd were 8.42 mm/yr (p < 0.05) and 4.96 mm/yr (p < 0.05), respectively, followed
by an insignificant LTn of 3.46 mm/yr. Comparing LTwd, LTd, or LTn (i.e., signs and magnitudes)
among WRRs, there were evident regional differences, while significant (p < 0.05) and larger increases
(>13 mm/yr, >8 mm/yr and >7 mm/yr for LTwd, LTd and LTn, respectively) were found in YZRB,
SERB, and PRB, followed by the largest reductions (–13.95 mm/yr for LTwd, −4.68 mm/yr for LTd and
−9.27 mm/yr for LTn) in HuRB. In spring (Figure 2(b1)), LTs for WRRs and MC were between −4 mm/yr
and 4 mm/yr, with the exceptions of SERB and PRB, which showed LTwd > 8 mm/yr, and LTd and LTn

> 4 mm/yr. During summer, MC LTwd and LTd (LTn) were positive (negative) with a rate <2 mm/yr
(Figure 2(c1)). Among ten WRRs, most exhibited smaller LTwd (LTd and LTn) in summer, generally
corresponding to between −3 mm/yr and 4 mm/yr (between −1.50 mm/yr and 2.50 mm/yr); however,
significant (p < 0.05) decreasing and increasing LTs were detected over HuRB and YZRB (excluding
LTn) and SERB, and the LTwd, LTd, and LTn were >6 mm/yr and > 4 mm/yr, respectively. As shown in
Figure 2(d1), MC LTwd and LTd (LTn) were 5.60 mm/yr (p < 0.05) and 2.80 mm/yr (p < 0.05), respectively.
Except for two WRRs (i.e., HaRB and YRB), autumn LTwd, LTd, and LTn were consistently positive from
2003 to 2017. However, magnitudes of autumn LTs differed among these WRRs, for which significant
(p < 0.05) and larger increases (>8 mm/yr for LTwd and 3.20 mm/yr for LTd and LTn) occurred in YZRB,
SERB, and PRB. Regarding winter precipitation (Figure 2(e1)), SERB and PRB exhibited the highest
LTwd (>2.80 mm/yr) and LTd and LTn > 0.90 mm/yr, followed by the remaining WRRs and MC with an
LTwd < 1.50 mm/yr (LTd and LTn < 0.70 mm/yr). Additionally, comparing signs and magnitudes of
LTd and LTn (Figure 2(a1–e1)), 10 and 15 of 55 cases (i.e., 11 (MC + 10 WRRs) × 5 (annual + seasonal
scales)) showed opposite signs and larger differences, with ratios between LTd and LTn > 2.00 and
< 0.50, respectively. These findings imply that LTd and LTn values were not consistent, possibly due to
the different precipitating mechanisms during daytime and nighttime, and thus further confirms the
necessity to evaluate various precipitation products at a sub-daily scale.

As shown in Table 2 and Figure 2(a2), 33% of grids had decreasing annual LTwd across MC,
generally in east LRB, HuRB, the YRB–YZRB border, and most of SWRB and NWRB. Moreover,
3% of grids in north-central HuRB showed significant (p < 0.05) negative annual LTwd with a rate of
−12 mm/yr. In contrast, 11% of grids had significantly (p < 0.05) increasing LTwd, mainly situated
in east SHRB, central YRB, northeast YZRB, north SERB, and middle PRB, for which LTwd over the
three latter regions exceeded 20 mm/yr. For both annual LTd and LTn (Table 2), negative values were
found in > 30% of grids, followed by < 4% of grids with significant (p < 0.05) values. Moreover,
in spite of smaller magnitudes of difference compared to annual LTwd, similar spatial distributions for
LTd and LTn were detected (Figure 2(a3,a4)). Figure 2(b2–b4,c2–c4,d2–d4,e2–e4) illustrate the spatial
distribution of seasonal LTwd, LTd, and LTn during 2003–2017. In broad terms, LTwd, LTd, or LTn

spatially differ during seasons, while in a given season, a generally similar spatial pattern is observed
among LTwd, LTd, and LTn, including for locations with significant (p < 0.05) LTs. For example, spring
LTwd, LTd, and LTn were negative at 30% of grids, primarily in NWR, SWRB, west YZRB, north HuRB,
and HaRB (Figure 2(b2–b4) and Table 2); moreover, 2% of grids with significant (p < 0.05) changes were
sporadically distributed, and larger reductions (–6 mm/yr for LTwd, but –2 mm/yr for LTd and LTn)
were in south SWRB. At the remaining grids, 60% of grids with larger increases for LTwd (12 mm/yr),
LTd and LTn (4 mm/yr) in spring for were mainly located in east YZRB, PRB, and SERB, and 5% of grids
with significant (p < 0.05) changes were generally in SHRB–LRB, YRB–YZRB borderlands, and east
PRB. As shown in Figure 2(c2–c4) and Table 2, 44% of grids with a negative summer LTwd, LTd, and
LTn were generally situated in central SHRB, LRB, HuRB, YRB–YZRB borderlands, west YZRB, PRB,
and north SWRB, and the largest and significant (p < 0.05) reductions (−10 mm/yr) in 5% of grids
were concentrated in HuRB. Of the remaining grids (>50%), the largest (10 mm/yr) and significant
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(p < 0.05) summer LTs were detected in 4% of grids mainly in northeast YZRB and north SERB.
In autumn (Figure 2(d2–d4) and Table 2), LTwd, LTd, and LTn were at least -6 mm/yr at 30% of grids
in south LRB, YRB–HaRB–HuRB and YRB–YZRB borderlands, central NWRB, and central SWRB.
Of the grids with increasing LTs, 14% of grids with large (10 mm/yr) and significant (p < 0.05) values
were situated in central SHRB, central PRB, east YZRB, parts of middle YZRB (i.e., Sichuan basin),
and SERB. During winter (Figure 2(e2–e4) and Table 2), there was an approximately equal balance
of grids with negative and positive LTwd, LTd, or LTn, which was generally 4mm/yr or −4mm/yr at
most grids; moreover, increasing LTs were widely distributed across east coastal WRRs, south SWR,
and central YRB. Furthermore, 2% of grids with significant (p < 0.05) increases in winter precipitation
were patchily distributed across MC.

 
Figure 2. Linear trends (LTs) for mainland China (MC), ten Water Resources Regions (WRRs), and 2281
grids during 2003–2017. Annual and seasonal LTs averaged over MC and ten WRRs are shown in (a1)
and (b1–e1), respectively, in which stars represent significant changes with p < 0.05. (a2) and (b1–e2)
show spatial distributions of annual and seasonal Pwd trends across MC, respectively, with the green
cross representing significant changes with p < 0.05. (a1–e3) and (a1–e4) are the same as (a1–e2), but
for Pd and Pn trends, respectively.

Table 2. Percentage of grids with increasing and decreasing LTs across MC for the whole day (LTwd),
daytime only (LTd), and nighttime only (LTn).

Annual Spring Summer Autumn Winter

LTwd LTd LTn LTwd LTd LTn LTwd LTd LTn LTwd LTd LTn LTwd LTd LTn

Significant Increase 67 69 61 51 52 54 55 56 51 74 76 71 51 52 54
(p < 0.05) Increase 11 11 9 6 6 5 6 6 4 17 14 17 3 2 3

Significant decrease 33 31 39 49 48 46 45 44 49 26 24 29 49 48 46
(p < 0.05) Decrease 3 1 4 3 3 2 7 5 6 0 0 0 3 3 2
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3.2. Evaluation Using Correlation Coefficient Metric

The CCs of LTs for the products and the observed values are depicted in Figure 3(a1–a5).
For annual LTs, the corresponding CCs for TRMM3B42RT, TRMM3B42, PERSIANN, PERSIANN-CCS,
and MERRA-2 were generally >0.40, suggesting that spatial distributions of annual LTs across MC
can be derived from these products (Figure 3(a1)), especially for TRMM3B42 and MERRA-2 with CCs
around 0.80. Besides, ERA-Interim, with an annual CC < 0.40, exhibited limited capacity in detecting
annual LTs in space. However, annual CCs for the remaining six products were all below 0.10 and some
were even negative, which indicates that these products are not able to capture the spatial distribution
of LTs across MC. Comparing CCs of annual LTd and LTn, CC-based performance for each precipitation
product differed over daytime and nighttime, especially PERSIANN-CCS and ERA-Interim, followed
by TRMM3B42RT and PERSIANN. In spring (Figure 3(a2)), GSMaP-RNL, GSMaP-RNLG, JRA-55,
ERA-55, NCEP1, and NCEP2 had negative CCs and therefore no ability to reflect the spatial distribution
of LTs; however, the other products, with CCs > 0.40, had good performances, of which TRMM3B42
showed the best performances (CCs around 0.80) and the next was in TRMM3B42RT, PERSIANN,
and MERRA-2 (CCs around 0.70). Furthermore, the spring CC-based performance of PERSIANN-CCS
exhibited differences > 0.10 between daytime and nighttime. During summer (Figure 3a3), TRMM3B42
with CCs around 0.80 showed the best performance, followed by TRMM3B42RT and MERRA-2 (CCs
around 0.70), ERA-Interim (CCs around 0.60), and PERSIANN and PERSIANN-CCS (CCs around
0.50). JRA-55, EAR-55, NCEP1, and NCEP2 with CCs < 0 indicated poor performance. Relative
to spring, the capacity of GSMaP-RNL and GSMaP-RNLG to reproduce LTs in space increased in
summer but was still limited, with CCs < 0.20. PERSIANN-CCS, GSMaP-RNL, and GSMaP-RNLG
showed the greatest differences (>0.10) in summer CCs between daytime and nighttime. In autumn
(Figure 3a4), the largest CCs (>0.80) were detected by TRMM3B42 and MERRA-2, while TRMM3B42RT,
PERSIANN, and ERA-Interim had CCs ranging from 0.60 to 0.80. PERSIANN-CCS, JRA-55, and ERA-4
had CCs around 0.40 and could capture summer LTs spatially, while the remaining four products
showed limited CC-based performance (CCs generally < 0.10). Comparisons of CCs for autumn LTd

and LTn indicated that larger differences (>0.10) existed in PERSIANN, PERSIAN-CCS, JRA-55, and
ERA-5, especially for the former three products with differences exceeding 0.20. Regarding winter CCs
(Figure 3(a5)), eight of the products had values below 0.20 or 0, indicating that they had limited or no
ability to capture winter LTs in space. Of the remaining products, the best product based on CC in
winter was MERRA-2 (CCs around 0.90), followed by TRMM3B42 (CCs around 0.70), TRMM3B42RT
(CCs around 0.50), and ERA-Interim (CCs < 0.40); no significant differences in CCs for LTd and LTn

existed among these products.
To identify the CC-based optimal products (OPs) of LTwd, LTd, and LTn, we compared CCs from

the 12 examined products. The results are depicted in Figure 3(b1–b5). For MC, the annual, spring,
summer, and autumn (excluding LTd) CC-based OP for the three LTs was TRMM3B42, and the winter
OP was MERRA-2. For annual cases (including the three LTs and ten WRRs), the CC-based OP for 17
of the 30 cases was MERRA-2, generally in northern WRRs, while 11 cases, including LTs for southern
WRRs (excluding YZRB) and LTd for LRB, HaRB, and YRB had an OP of TRMM3B42. In spring,
the OP for more than ten cases was TRMM3B42, generally in southern WRRs, while 15 cases with the
OP of MERRA-2 were in northern WRRs. With several exceptions (e.g., SHRB, HuRB, and NWRB)
showing the summer OP of MERRA-2, TRMM3B42 was the OP in 16 cases. In winter, the OP for the
overwhelming majority (27) of cases was MERRA-2, followed by three cases with ERA-Interim in
SERB. Notably, some cases had CCs below 0.40 for the identified OPs, e.g., for LTwd, LTd, and LTn in
LRB and NWRB; this indicates that using the so-called CC-based OPs to represent spatial distribution
of precipitation trends needs more caution in certain regions.
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Figure 3. Correlation coefficients (CCs) for LTs from the selected 12 precipitation products (a1–a5),
CC-based optimal products (OPs) for MC and ten WRRs (b1–b5), and number of cases corresponding
to OPs for an annual or seasonal scale in ten WRRs (c1–c5). In figures (b1–b5), the number of each box
represents the CC of the identified OP, which has been labelled with different colors. The number of
figures (c1–c5) indicates the amount of a certain OP.

3.3. Evaluation Using Bias Metric

Figure 4(a1–a5,b1–b5) depict the percentage of grids with negative and positive Bs of annual and
seasonal LTs across MC, respectively. For simplicity, we focused on analyses regarding negative Bs
in this paragraph. More than 50% of grids had negative annual Bs for PERSIANN, PERSIANN-CCS,
GSMaP-RNL, and GSMaP-RNLG products (Figure 4(a1)). In particular, PERSIANN LTwd and LTd

had negative Bs in >65% of grids. With several exceptions (i.e., TRMM3B42, JRA-55, and MERRA-2
for LTd; and NCEP1 for LTn), annual Bs for the remaining products were negative in <50% of grids,
and even TRMM3B42RT, ERA-Interim, and NCEP2 showed negative Bs in <35% of grids. As shown
in Figure 4(a2), most products had negative spring Bs for LTwd and LTd in >50% of grids, especially
for PERSIANN, ERA-Interim, and MERRA-2 with >65% of grids. However, six of the 12 products
underestimated LTn in around 50% of grids in spring, followed by the other six products with
overestimations in >50% of grids. Similar to spring, >50% of grids with negative Bs for summer LTwd

and LTd were detected by most of the products, of which PERSIANN, GSMaP-RNL, ERA-Interim,
and NCEP2 corresponded to >65% of grids (Figure 4(a3)). Except for PERSIANN, summer LTn was
underestimated in <50% of grids by the products, particularly for JRA-55, ERA-Interim, and ERA-5
with a grid percentage < 25%. In autumn (Figure 4(a4)), despite several exceptions, >50% of grids had
negative Bs for the three LTs, and the PERSIANN product had negative Bs in >70% of grids. Relative
to autumn cases, the opposite happened during winter (Figure 4(a5)), i.e., percentages of grids with
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negative Bs for LTwd, LTd, and LTn being generally <50%, in particular for JRA-55 and ERA-Interim.
In addition, based on percentages of grids with negative Bs for LTd and LTn (Figure 4(a1–a5)), differences
generally exceeding 10% were identified on both annual and seasonal scales for most of products,
particularly MERRA-2 and ERA-Interim with annual and summer differences around 40%, respectively.
This suggests that, in terms of grid percentages corresponding to underestimated and overestimated
precipitation LTs, the products’ performance varies at daytime and nighttime.

 
Figure 4. Grid percentages with negative (a1–a5) and positive biases (Bs; b1–b5) for annual and
seasonal LTs across MC.

Taking MC as a whole, regional mean Bs for LTwd, LTd and LTn derived from each product were
calculated and are shown in Figure 5(a1–a5). At the annual scale, five products exhibited positive Bs for
LTwd, with a range from 0.39 mm/yr for TRMM3B42 to 10.10 mm/yr for NCEP2, while four products
exhibited positive Bs for LTd, ranging from 1.44 mm/yr for TRMM3B42RT to 5.01 mm/yr for NCEP2.
Negative Bs were found for the remaining products, of which the lowest values of –7.88 mm/yr and
–4.98mm/yr for LTwd and LTd, respectively, were recorded for PERSIANN (Figure 5(a1)). In contrast,
seven products overestimated annual LTn, particularly ERA-Interim, NCEP2, and MERR-2 with Bs
> 5 mm/yr, while the other products’ Bs were all negative and generally <−3 mm/yr. Regarding the
spring LTs (Figure 5(a2)), TRMM3B42RT, TRMM3B42, and MERRA-2 had positive Bs < 1.40 mm/yr,
except for LTd. However, negative spring Bs were found in the remaining products, ranging from
−2.60 mm/yr (−1.61 mm/yr) for JRA-55 to −0.88 mm/yr (−0.51 mm/yr) for ERA-Interim for LTwd (LTd),
and from −1.52 mm/yr for NCEP1 to −0.31 mm/yr for PERSIANN-CCS for LTn. For summer LTwd and
LTn (Figure 5(a3)), most of the products exhibited positive Bs, while LTd was generally underestimated
by the products (excluding TRMM3B42RT and NCEP1). Despite that, summer Bs for LTs were generally
from −2 mm/yr to 2 mm/yr, except for TRMM3B42RT LTwd and LTn, and MERRA-2 LTn with Bs >
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2 mm/yr, and PERSIANN-CCS LTwd and LTd with Bs < −2 mm/yr. In autumn (Figure 5(a4)), absolute
values of Bs for LTs from TRMM3B42, TRMM3B42RT, and MERRA-2 were all < 0.60 mm/yr, but Bs
were generally < −1 mm/yr for the remaining products, and even some were lower than −4 mm/yr
(i.e., PERSIANN, and NCEP2 for LTwd). In contrast, the majority of products overestimated winter
LTwd, LTd, and LTn, and Bs were generally < 3 mm/yr, with exceptions of JRA-55, ERA-Interim,
and ERA-5 having Bs > 3 mm/yr (Figure 5(a5)). In terms of Bs for annual LTd and LTn (Figure 5(a1)),
there were differences for some products, i.e., TRMM3B42RT, PERSIANN-CCS, and ERA-Interim
with large differences > 2 mm/yr, and TRMM3B42, JRA-55, ERA-5, NCEP1, and MERRA-2 showing
different sign (positive/negative). Evident differences in Bs existed for some products in each season
(Figure 3(a2–a5)); in summer there were eight products with different signs of Bs and four products
with large differences (around ±1 mm/yr) but the same sign.

Figure 5. MC Bs derived from the selected 12 precipitation products (a1–a5), B-based optimal products
(OPs) for MC and ten WRRs (b1–b5), and number of cases corresponding to B-based OPs on an annual
or seasonal scale for ten WRRs (c1–c5). In figures (b1–b5), the number of each box represents grid
percentage (%) of OP, which has been labelled with different colors. The number of figures (c1–c5)
indicates the amount of a certain OP.

Considering offset effects of positive and negative Bs within MC and each WRR, we calculated the
percentage of grids with the minimum absolute B for each product, and B-based OPs were identified
as the product with the largest grid percentage (Figure 5(b1–b5,c1–c5)). Except for annual LTd and LTn

and summer LTwd and LTd, for which the OP was TRMM3B42, the OP for all other LTs was MERRA-2
for MC (Figure 5(b1–b5)). For annual cases of the ten WRRs (Figure 5(c1)), the OPs were TRMM3B42
and MERRA-2 in 14 and 12 cases, respectively. Furthermore, the OP for most WRRs was MERRA-2
for annual LTwd, and TRMM3B42 for both annual LTd and LTn (Figure 5(b1)). For B-based OPs of
spring and autumn LTwd (Figure 5(b2,b4)), the OP was MERRA-2 in most WRRs, while the OPs for
LTd and LTn in southern and northern WRRs differed and were mainly TRMM3B42RT and MERRA-2,
respectively. In summer (Figure 5(b3)), there were differences in OP for the three LTs, i.e., most WRRs
with OPs of TRMM3B42 and MERRA-2 for LTwd, TRMM3B42, MERRA-2, and ERA-Interim for LTd,
and ERA-Interim and TRMM3B42RT for LTn. During winter (Figure 5(b5)), with four exceptions,
all cases had an OP of MERRA-2. Overall, more than 20 cases had MERRA-2 as their OP for spring,
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autumn, and winter, while TRMM3B42 had fewer than six cases. For summer, the OP was TRMM3B42
for nine cases, ERA-Interim for eight cases, and MERRA-2 for seven cases (Figure 5(c2–c5)).

3.4. Evaluation Using Error Metric

The MC RMSEs for LTwd, LTd and LTn of each product are illustrated in Figure 6(a1–a5). For MC,
TRMM3B42, TRMM3B42RT, PERSIANN, PERSIANN-CCS, and MERRA-2, RMSEs for annual LTwd,
LTd and LTn were lowest (<20.00 mm/yr for LTwd; <10.00 mm/yr for LTd and LTn); this indicates that
the accuracy of the five products, especially TRMM3B42, in detecting annual LTs is better. Except
for PERSIANN-CCS and MERRA-2, the slightly smaller differences in annual RMSE for LTd and LTn

from the remaining products suggests a comparable accuracy at daytime and nighttime. For LTwd,
LTd, and LTn, the largest RMSEs for each product occurred in summer and the smallest occurred in
winter, due to their larger and smaller portion of annual MC precipitation, respectively. In each season,
the minimum RMSE of the three LTs generally came from TRMM3B42 and MERRA-2, however, larger
RMSEs were frequently found for GSMaP-RNL, GSMaP-RNLG, JRA-55, ERA-5, NCEP1, and NCEP2.
Comparing RMSEs of LTd and LTn for each product in each season, LTd for most of the products
exhibited larger and smaller values in summer and the other three seasons, respectively; it should be
noted that differences between LTd and LTn were not evident, excluding PERSIANN-CCS, which had
an absolute difference > 2 mm/yr in winter.

 
Figure 6. MC root mean square error (RMSE) derived from the selected 12 precipitation products
(a1–a5), RMSE-based optimal products (OPs) for MC and ten WRRs (b1–b5), and number of cases
corresponding to RMSE-based OPs for annual or seasonal scale in ten WRRs (c1–c5). In figures (b1–b5),
the number of each box represents RMSEs (mm/yr) of OP, which are labelled with different colors.
The number of figures (c1–c5) indicates the amount of a certain OP.

153



Remote Sens. 2020, 12, 2902

Figure 6(b1–b5) illustrate the RMSE-based OPs of LTs for MC and WRRs. In general, the MC
RMSE-based Ops for the three LTs for annual, spring (excluding LTwd) and summer were TRMM3B42,
while MERRA-2 was the autumn OP (excluding LTn) and winter OP. At the annual scale, 13 cases had
an RMSE-based OP of TRMM3B42, generally in southern WRRs, YRB, and HuRB; the remaining four
WRRs had MERRA-2 as their OP (Figure 6(b1,c1)). In spring, the RMSE-based OP for the three LTs in
northern WRRs and LTwd in southern WRRs was MERRA-2, corresponding to 21 cases; eight cases had
TRMM3B42 and PERSIANN as their OP, and these mainly appeared in LTd and LTn of southern WRRs
(Figure 6(b2,c2)). During summer (Figure 6(b3,c3)), with three exceptions, all cases had TRMM3B42
(19 cases) and MERRA-2 (eight cases) as their OPs. In autumn, TRMM3B42 was the OP in seven cases
mainly in southern WRRs (except for LTwd and LTd in YZRB and SERB), followed by MERRA-2, which
was the OP in 21 cases (Figure 6(b4,c4)). With the exceptions of LTwd and LTd in YZRB and LTwd in
SWRB, MERRA-2 was the OP in 27 cases in winter (Figure 6(b5,c5).

3.5. Evaluation Using Metric of Sign Accuracy

To examine the degree of agreement between the positive or negative sign of LTs from the products
and the observed values, metrics of AS and JAS were computed over MC and are illustrated in
Figure 7(a1–a5) and Figure 8(a1–a5), respectively. At the annual scale, MC AS values for LTwd, LTd,
and LTn from all products were > 50%. This suggests that the observed signs of LTs can be captured
by the products, among which TRMM3B42RT, TRMM3B42, and MERRA-2 showed AS values > 70%
for the three LTs, followed by PERSIANN, PERSIANN-CCS, ERA-Interim, and NCEP2 with values
> 60% (Figure 7(a1)). During each season (Figure 7(a2–a5)), TRMM3B42RT, TRMM3B42, PERSIANN,
PERSIANN-CCS, ERA-Interim, and MERRA-2 showed MC AS values > 60% for the three LTs, and
the largest percentage (>70%) was found for TRMM3B42RT (except in winter), TRMM3B42 (except in
winter), and MERRA-2. For the remaining six products, their AS-based performances differed among
seasons. For example, all of them corresponded to autumn AS values > 50% for the three LTs; however,
the values in the other seasons were generally < 50%. As shown in Figure 7(b1–b5), MC annual and
summer AS-based OPs were MERRA-2 for LTwd, but TRMM3B42 for LTd and LTn. For MC LTs in the
remaining three seasons, the AS-based OP was MERRA-2, except for spring LTd. Of the 30 annual cases
in ten WRRs, AS-based OPs were MERRA-2 in 13 cases, TRMM3B42 in six cases and TRMM3B42RT in
three cases, and there was more than one OP in five cases (Figure 7(b1–c1)). Among the ten WRRs,
there were five or more OPs for each of the three LTs, indicating obvious regional differences for
the products in detecting the same signs of LTs. In spring (Figure 7(b2–c2)), the AS-based OPs were
MERRA-2 (15 cases), TRMM3B42 (five cases), TRMM3B42RT (four cases), ERA-Interim (four cases),
and PERSIANN (two cases). Southern WRRs generally had OPs of TRMM3B42, TRMM3B42RT, and
PERSIANN, while the OPs for northern WRRs were MERRA-2 and ERA-Interim. During summer
(Figure 7(b3–c3)), AS-based OP was TRMM3B42 in 14 cases, mainly in southern WRRs, HaRB, YRB, and
HuRB; and the OP was MERRA-2 in nine cases primarily in SHRB, LRB and NWRB. Of the 30 cases in
autumn (Figure 7(b4–c4)), MERRA-2 was identified as the AS-based OP in 14 cases mainly in northern
WRRs (excluding YRB), however, in eight cases the OP was TRMM3B42 generally in YRB, YZRB, and
SWRB. Each of the six autumn cases in SERB and PRB had more than one OP. Regarding the 30 cases
in winter (Figure 7(b5–c5)), 26 cases had AS-based OPs of MERRA-2 (22 cases) and TRMM3B42RT
(four cases).
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Figure 7. MC accurate sign (AS) values derived from the selected 12 precipitation products (a1–a5),
AS-based optimal products (OPs) for MC and ten WRRs (b1–b5), and the number of cases corresponding
to AS-based OPs (c1–c5) for the annual or seasonal scales in ten WRRs. For figures (a1–a5), AS is
computed with Equation (5), indicating the degree of agreement between the positive or negative sign
of precipitation trends from the products and the observed data. In figures (b1–b5), the number in each
box represents AS values (%) of the OP, which have been labelled with different colors. The number of
figures (c1–c5) indicates the amount of a certain OP.

Except for TRMM3B42RT, TRMM3B42, and MERRA-2 with annual JAS values> 55% (Figure 8(a1)),
values of this metric were all below 50%, suggesting that these products have limited capacity to
detect the co-variations of daytime and nighttime precipitation, in spite of relatively large AS for LTs
(Figure 7(a1)). In spring (Figure 8(a2)), the best JAS-based performance was found in TRMM3B42
and MERRA-2 (with JAS around 60%), followed by TRMM3B42RT and ERA-Interim. Excluding
PERSIANN and PERSIANN-CCS, the other six products had spring JAS values < 25%. JRA-55 and
ERA-5 had JAS < 20%, which indicated that those six products could not capture the co-variations of
spring precipitation changes at daytime and nighttime. During summer (Figure 8(a3)), TRMM3B42RT,
TRMM3B42, and MERRA-2 performed the best (with JAS values > 53%), followed by PERSIANN,
PERSIANN-CCS, and ERA-Interim with the next best performance (with JAS around 45%), and the
remaining products (with JAS around 30%). For autumn (Figure 8(a4)), seven of the products
correctly detected the co-variations of daytime and nighttime precipitation changes in >50% grids
(i.e., JAS > 50%), particularly for TRMM3B42RT, TRMM3B42, ERA-Interim, and MERRA-2, which had
JAS values > 64%. GSMaP-RNL and NCEP1 had JAS values near to 40% and performed the worst.
Regarding winter JAS (Figure 8(a5)), values > 50% only appeared for MERRA-2, and the minima
(around 25%) were found in GSMaP-RNL, GSMaP-RNLG, and NCEP2. As depicted in Figure 8b,
MC annual and summer JAS-based OP was TRMM3B42, but for the other seasons the OP was MERRA-2.
Except for SHRB and NWRB, with MERRA-2 as their annual JAS-based OP, the remaining WRRs
generally had TRMM3B42 as the OP (Figure 8b). In southern WRRs, most had OPs of TRMM3B42 and
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PERSIANN in spring and summer but MERRA-2 and PERSIANN in autumn and winter. By contrast,
summer JAS-based OPs were MERRA-2 and TRMM3B42 in northern WRRs, while MERRA-2 was the
OP in most northern WRRs.

(a5)

Figure 8. MC joint AS (JAS) values derived from the selected 12 precipitation products (a1–a5), and
JAS-based optimal products (OPs) for MC and ten WRRs (b). For figures (a1–a5), JAS is computed with
Equation (6), indicating the capacity of a given product to rightly detect the signs of both Pd and Pn

changes relative to the observed data. In (b), the number in each box represents JAS values (%) of the
OP, which has been labelled with different colors.

4. Discussion

4.1. Possible Causes for Variation in Performance among Precipitation Products

In this study, we explored the reliability of the satellite-based and reanalysis products in capturing
precipitation linear trends across MC, and found that the performances of these products exhibited
clear differences. In general, TRMM3B42 and MERRA-2 showed the best overall performance.
There are several possible explanations for the performance variation, e.g., input data, onboard sensors,
and retrieval algorithm for the satellite-based products; and numerical models and their structures,
parameterizations (especially for schemes about precipitation processes), and assimilation systems for
the reanalysis products. Nonetheless, quantitatively identifying the impacts of these factors is difficult
and beyond the scope of this study. As a result, we would like to discuss the potential causes of different
performance among the precipitation products with the same retrieval algorithm or model structures,
i.e., TRMM3B42RT vs. TRMM3B42, PERSIANN vs. PERSIANN-CCS, GSMaP-RNL vs. GSMaP-RNLG,
ERA-Interim vs. ERA-5, and NCEP1 vs. NCEP2. It is evident that TRMM3B42 generally outperforms
TRMM3B42RT, could be attributed to the fact that the former incorporates rain gauge data (i.e., monthly
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GPCP and CAMS data; [32]) to adjust the precipitation estimates. In some WRRs, TRMM3B42RT
performed better or was the OP, implying that the TRMM3B42 precipitation trends were occasionally
overcorrected due to an inappropriate correction method (e.g., daily TRMM3B42RT adjusted with
monthly observation; [32]). For PERSIANN and PERSIANN-CCS, their major differences are that
the latter includes a cloud classification system based on cloud height, areal extent, and variability
of texture estimated from satellite imagery to more accurately describe the relationship between
precipitation rate and brightness temperature [35]. Despite that, the performance of PERSIANN
in detecting precipitation trends was better than PERSIANN-CCS across MC based on most of the
validation metrics. This indicates that the cloud classification system within PERSIANN-CCS has
limited effectiveness in improving the estimated precipitation trends, although PERSIANN-CCS has
been found to outperform PERSIANN in estimating precipitation amount over some regions of MC
and its sub-regions (e.g., Tibetan Plateau and Yangtze River Basin, [88–91]). For the bias metric,
PERSIANN-CCS performed better, mainly because, within a given region, the functions between
precipitation rate and brightness temperature are established for each categorization of cloud-patch,
and thus the regional biases are more likely to be offset. Relative to other satellite-based products,
the two GSMaP products had the worst performance in MC and ten WRRs, indicating that the algorithm
employed by GSMaP-RNL and GSMaP-RNLG may be problematic in capturing precipitation trends.
Meanwhile, some studies also found that the GSMaP products had very low performance in capturing
precipitation magnitudes and hydrological modeling over MC [92] and some Asian regions, such as
the VuGia–ThuBon River Basin of Vietnam [93], and Mekong River Basin [94]. Moreover, the worst
performance of GSMaP-RNLG in terms of specific validation metric suggests that its gauge-based
correction processes are not efficient to adjust the precipitation trend. Relative to ERA-Interim, ERA-5
had a more advanced assimilation system and more and newer observational inputs, and thus was
observed to have better performances (e.g., lower bias and root-mean squared error, and higher
correlation coefficient) to reproduce precipitation in some regions, [45,91,95]. However, we found that
in the study the ERA-5 precipitation trends poorly match the observations relative to the ERA-Interim.
These findings are consistent with the findings of Nogueira across the globe [96], who pointed out
that the trend of global-mean rainfall in ERA-Interim was closer to GPCP than ERA-5, and suggested
that the possible causes were associated with the global energy budget [97,98]. Due to NCEP2 with
new system components including simple precipitation assimilation over land surfaces for improved
soil wetness [43], NCEP2 precipitation agreed more closely with gauge measurements than NCEP1
data in China [99], USA [100], and Central Equatorial Africa [101]; by contrast, comparisons between
NCEP1 and NCEP2 in representing precipitation linear trends show that no obvious differences
existed. This may be related to significant time-varying jumps in the late 2000s within NCEP2, mainly
due to the changes in observing systems, such as the introduction of new data into the assimilation
systems [102,103]; this is also the possible cause of poor performance for JRA-55 [101]. The validation
metrics clearly show that, based on precipitation linear trends, MERRA-2 performed better than other
reanalysis products and even satellite-based precipitation products in MC. The better performances of
MEERA-2 for representing precipitation amount were also found in other regions (e.g., Nepal, and
the Pamir region of Tajikistan, [104,105]). Some scholars pointed that the possible causes are related
to the advanced data assimilation technique within MERRA-2 and the bias corrections of MERRA-2
precipitation [45]. We should note that for a given product there are differences in performance of
detecting precipitation trends within a day (e.g., daytime and nighttime annual correlation coefficients
for ERA-Interim) and among seasons (e.g., smaller winter correlation coefficient values for PERSIANN
but larger values in the other three seasons), mainly due to the different physical mechanisms
controlling precipitation processes [69–71,73,74]. For example, some studies stated that sea–land
breeze is closely associated with the diurnal cycle of precipitation in coastal areas, while topography
and mountain–valley breeze plays an important role in the interior [73,74]. Therefore, to increase the
accuracy of sub-daily and seasonal precipitation estimates, specific algorithms for the satellite-based
products and specific model structures for the reanalysis products should be developed.
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4.2. Uncertainties from Rain Gauge Data

We employed rain gauge data as a reference to validate the 12 precipitation products in detecting
precipitation trends at different time scales across MC. It should be noted that the inherent uncertainties
within the gauge data, which are related to flaws in calibration, wind-related under-catch, and wetting
and evaporation losses, could bias the gauge measurements from the real values and weaken the
robustness of the validation results (e.g., [106–109]). For example, Shedekar et al. [109] found that relative
to the actual rainfall depths, the precipitation measurements from three calibrated tipping-bucket rain
gauges were underestimations, particularly for heavy rainfall, and they highlighted that the biases
were closely associated with the gauge calibrations. When it is windy, gauge observations are often
impacted by wind-related under-catch effects through deflecting the flow and inducing eddies and
turbulence around the gauges [108–111]. In general, wind can cause some raindrops, especially smaller
ones, to miss the funnel or fall at an inclination, and finally impact the catch efficiency of the gauges.
To what extent wind influences the accuracy of the gauge measurements is dependent on ambient wind
speed, raindrop size distribution, and gauge design [110]. Sieck et al. [110] reported that, compared
to rainfall from collocated buried gauges, wind-exposed aboveground gauges would likely observe
about 2–10% less precipitation. Due to water adhering to the inside walls of the gauge and then
evaporating, the gauge-recorded precipitation is generally lower than the true value, and the biases
vary among gauge configurations (e.g., frequency of emptying) and precipitation types [106,112,113].
A Russian study revealed that, for each record of rainfall measurement, the mean average wetting
loss was 0.2 mm, but for both snow and mixed precipitation the value was 0.15 mm [112]. Due to
being exposed to the atmosphere, water within rain gauges is usually evaporated (i.e., evaporation
losses; [114–117]). It is reported that evaporation losses for gauged precipitation generally range
from 0.1 to 0.8 mm/day or from 0 to 1%; however, the magnitudes differ among gauge types, climate
backgrounds, and seasons [114]. The combined effects induced by the aforementioned factors on rain
gauge measurements are likely to underestimate the recorded precipitation [118], e.g., the bias-corrected
annual precipitation (removing the uncertainties within raw observations) being 30–330 mm or 10–65%
higher than the raw observations over Siberia.

Usually, the quality of precipitation observations is accompanied by an issue of standardization,
or lack of, which is mainly due to changes in gauge instruments, station relocation and environment,
etc. [119–122]. Moreover, these factors result in negative impacts on data quality, in particular for
climate researches using long-term time series (e.g., linear trend evaluation in this study). Before using
the gauged precipitation measurements, it is necessary to reduce and even remove the associated
uncertainties, e.g., adjust the raw records using metadata about gauges, and at least eliminating
sites with non-homogeneous measurements identified by some statistic methods. The Pettitt test has
been used to remove sites with non-homogenous measurements due to a lack of metadata for the
selected sites, but there is no guarantee that the remaining sites have no issues, which can weaken the
confidence level of the results. Besides, mismatches between representatives of gauge precipitation
(i.e., a point of space in time accumulation) and selected products (i.e., a snapshot of time in space
aggregation) are likely to have an effect on the accuracy and precision of qualitative and quantitative
assessments of various precipitation products [123–125]. For instance, the spatial resolution of all
the 12 products is generally lower than 0.25◦ × 0.25◦ (except for PERSIANN-CCS), across which the
estimated precipitation was averaged, while the spatial representation of a gauge is much smaller than
the coverage of the pixel of the 12 products. Considering the variability of precipitation over a small
spatial extent, a sparse gauge network may not identify meso-/micro-scale weather system-associated
precipitation (e.g., convective precipitation; [126–129]); thus, gauge precipitation measurements may
be smaller in magnitude and frequency than the ground-truthed values for a given pixel.

5. Conclusions

As important surrogate for precipitation estimates, various satellite-based and reanalysis
precipitation products need to be validated from different perspectives. Especially, the information
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about the capacity of the satellite-based and reanalysis precipitation is scarce on a sub-daily scale,
especially for China. However, the assessments regarding precipitation trends are fundamental for
selecting the reliable products to explore precipitation changes, particularly for regions with limited
or even no observations. Thus, with a motivation to explore twelve popular precipitation products
(i.e., six satellite-based and six reanalysis products) in detecting precipitation linear trends across MC,
we collected daytime and nighttime observations from a dense rain gauge network during 2003–2017,
and examined LTwd, LTd, and LTn across mainland China. We found that annual and seasonal LTwd,
LTd, and LTn for MC and most WRRs were positive but with regional differences. In terms of magnitude
and sign (i.e., decreasing and increasing), LTd and LTn in a certain region showed evident differences,
confirming the necessity to evaluate precipitation products at a sub-daily scale. Then, several statistical
metrics (i.e., CC, B, RMSE, AS, and JAS) were employed to identify the differences and agreements of
LTs for MC and ten WRRs between twelve precipitation products and gauge observations on sub-daily
scale. In general, values of a given metric for annual and seasonal LTwd, LTd, or LTn differed among
products. Meanwhile, performances for single product varied among seasons and between daytime
and nighttime. At last, the metric-based OPs were identified for MC and each WRR. The metric-based
OPs varied among regions and seasons, and between daytime and nighttime, but the most frequent
OPs were TRMM3B42, ERA-Interim, and MERRA-2.

The comparison of satellite-based and reanalysis products in ability to detect precipitation linear
trends in this study provides suggestions for developers and the potential users of these products
across mainland China. For a given product, varying performance for different validation metrics
at different timescales (between daytime and nighttime) suggests that the product’s group can try
to develop specific algorithms/models during a certain season (at a sub-daily scale) and correction
procedures to improve its capacity to reproduce precipitation trends. For the potential users who focus
on long-term precipitation changes across MC, this study provides necessary and detailed information
about the existing popular precipitation products’ performances in detecting linear trends, which is
fundamental to obtaining robust conclusions.
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Abstract: An extremely heavy rainfall event hit Guangdong province, China, from 27 August
to 1 September 2018. There were two different extreme rain regions, respectively, at the Pearl
River estuary and eastern Guangdong, and a record-breaking daily precipitation of 1056.7 mm
was observed at Gaotan station on 30 August. This paper utilizes a suite of observations from
soundings, a gauge network, disdrometers, and polarimetric radars to gain insights to the two rainfall
centers. The large-scale meteorological forcing, rainfall patterns, and microphysical processes, as
well as radar-based precipitation signatures are investigated. It is concluded that a west-moving
monsoon depression played a critical role in sustaining the moisture supply to the two extreme rain
regions, and the combined orographic enhancement further contributed to the torrential rainfall
over Gaotan station. The raindrop size distributions (DSD) observed at Zhuhai and Huidong
stations, as well as the observed polarimetric radar signatures indicate that the rainfall at Doumen
region was characterized by larger raindrops but a lower number concentration compared with
that at Gaotan region. In addition, the dual-polarization radars are used to quantify precipitation
intensity during this extreme event, providing timely information for flood warning and emergency
management decision-making.

Keywords: extreme rainfall; polarimetric radar signatures; quantitative precipitation estimation;
southern china

1. Introduction

Torrential rainfall events are one of the most severe disasters around the world [1,2]. The extreme
rainfall and induced floods, landslides, debris flows gravely threaten life and property. The precipitation
microphysics such as raindrop size distribution (DSD) serves as a fundamental bridge in deriving radar
quantitative precipitation estimation (QPE) algorithms, which is critical for improving the accuracy
of precipitation estimation and predictions [3,4]. Accurate precipitation estimates are also important
input to the flash flood guidance systems for flood forecast, as well as subsequent warning operations
and emergency management decision-making [5]. Therefore, a better understanding of precipitation
microphysics and accurate quantitative precipitation estimation for extreme rain are important for
flood warning and emergency management decision-making.
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Under the influence of the East Asian monsoon, the Indian monsoon, the western Pacific subtropical
high, as well as Tibetan Plateau, southern China is severely affected by heavy rain events during warm
seasons (May to September), which usually cause floods and landslides [6–8]. From 27 August to
1 September 2018, an extremely heavy rainfall occurred over Guangdong province, especially in the
south and east parts of Guangdong. There were two different extreme rainfall centers on 29 August
and 30 August, respectively: one was located around Doumen station in Zhuhai, and the other
was located at Gaotan station in Huidong. A record-breaking daily precipitation of 1056.7 mm was
observed at Gaotan station on 30 August. This heavy rainfall caused catastrophic floods in many cities
such as Huizhou, Shantou, Zhuhai, affecting more than 1 million people, causing directed financial
losses around USD 144 million (https://www.thepaper.cn/newsDetail_forward_2404157). Moreover,
a recent study has shown that extreme precipitation shows an increasing trend in south China during
the last several decades [9], which highlights the importance of accurate precipitation measurement
and modeling.

However, it is always a challenge to obtain accurate precipitation estimation. Gauges, weather
radars, and satellite-based sensors are three main methods to measure precipitation [10]. Gauges can
provide the most direct and precise precipitation observations. However, they are limited to fixed
locations, and the networks of gauges are sparse. Therefore, interpolation is required to produce areal
rainfall mapping and the interpolation method could lead to significant errors [11]. Satellite rainfall
data has the advantage of large-scale spatial coverage, so the derived spatial distribution of rainfall
is more complete. However, the satellite data also suffers from various sources of errors, including
systematic error, random error, etc. Additionally, the spatial and temporal resolutions are very low,
which has posed great difficulty in capturing the structure and evolution of small scale but strong
storms [12]. In such cases, the only practical way to achieve a comprehensive estimation of precipitation
is weather radar, which can provide real-time high-resolution monitoring over large areas [13,14].

Eight weather radars in the Guangdong area have completed dual-polarization upgrades in 2017
to improve disaster warning and forecasting capabilities. Compared to traditional single-polarization
radar, the dual-polarization radar can measure polarimetric parameters including differential reflectivity
Zdr, differential phase shift φdp, and co-polar correlation coefficient ρHV[14]. These parameters can be
used to reveal microphysical properties of different hydrometeors [15–18] and improve quantitative
precipitation estimation [14,19]. Meanwhile, several disdrometers have been installed in Guangdong
province. Though they provide point measurements, the accumulation of time decreases the spatial
variability of local precipitation microphysics [20]. Therefore, these disdrometers can provide detailed
knowledge of local DSD information, which is critical in understanding the microphysical characteristics
of precipitation and improving microphysical parameterization schemes in the numerical weather
prediction models [4,21].

The primary purpose of this study is to conduct a comprehensive analysis of this extreme event
from 27 August to 1 September 2018, based on various in situ and remote sensing observations
including rain gauges, polarimetric radars, disdrometers, and reanalysis data so as to gain a better
understanding of the epic flood events as such, especially to explore the potential of polarimetric
radars to resolve the microphysics and quantify the precipitation. This study is also part of our effort
in improving precipitation monitoring, forecast, and associated hydrologic responses in southern
China. The paper is organized as follows. The study domain and dataset are described in Section 2.
The synoptic environment of this extreme rainfall event is detailed in Section 3. The rainfall pattern
and microstructural characteristics of this rainstorm observed by gauge and disdrometers, as well as
the associated polarimetric radar signatures are detailed in Section 4. Section 5 summarizes the main
findings of this study and suggests future directions of this research.
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2. Data and Methodology

2.1. Data

The observational data used in this study include rainfall measurements from a dense gauge
network, two S-band polarimetric radars, and two second-generation Particle Size and Velocity
(Parsivel2) disdrometers in Guangdong. The instrument locations and the two special gauge stations
(Gaotan and Doumen) are shown in Figure 1. The National Centers for Environmental Prediction
(NCEP) final operational model global analysis data (NCEP-FNL) available every 6 h with a resolution
of 0.25◦ × 0.25◦ at 31 vertical levels (http://rda.ucar.edu/datasets/ds083.2//#!access) are used to resolve
the synoptic condition [22], along with the sounding data collected at 00:00 and 12:00 UTC at
Qingyuan (QY) and Shantou (ST) (No. 59280, and No. 59316 from the University of Wyoming:
http://weather.uwyo.edu/upperair/sounding.html).

Figure 1. The topography of Guangdong province and geographical locations of instruments used
in this study. The red circles are the 150-km coverage range rings from the radars. The red square,
triangle, star, and pentagon represent the locations of radar, disdrometer, special gauge, and sounding,
respectively. The small black circles stand for the gauges. The instrument names are abbreviated
version of location names: DM (Doumen), GT (Gaotan), HD (Huidong), QY (Qingyang), ST (Shantou),
ZH (Zhuhai).

2.2. Raindrop Size Distribution

In order to understand the microphysics of the extreme rain, two disdrometers nearest to Doumen
and Gaotan gauge stations are used to provide the DSD observation. These two disdrometers are
located at Zhuhai and Huidong, collocated with rain gauges within 20 m. Both disdrometers are
optical disdrometers with a 54 cm2 horizontal sample area and are configured with 1-min sampling
resolution to measure the DSD and fall velocity of raindrops [23,24]. The disdrometer performance has
been assessed and improved since it was invented, and many previous studies have been conducted
with this device [25–28]. In particular, the velocity and particle sizes are divided into 32 non-uniform
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bins, varying from 0.05 to 20.8 m s−1 for bin-center velocity and 0.062–24.5 mm for bin-center diameter
(for detailed information in the user manual, https://www.manualslib.com/products/Ott-Parsivel2-
5889584.html). The direct measurements from disdrometer are the number of raindrops at each velocity
(i) and diameter (j) bin. Here, we take the bin-center value of each bin as the corresponding value.
Several parameters used to describe the characteristics of DSD are calculated in the following.

The total number of raindrops can be calculated as follows:

Td =
∑32

i=1

∑32

j=1
ni, j, (1)

where ni, j is the number of drops at each bin.
The number concentration of raindrops per unit volume for the jth diameter bin N(Dj) can be

calculated as follows:
N(Dj) =

∑32

i=1

ni, j

A·Δt·Vi·ΔDj
, (2)

where N(Dj) is in m−3 mm−1; A is the sampling area in m2; Δt is the sampling time interval in s; A and
Δt are, respectively, 0.0054 m2 and 60 s in this study; ΔDj (mm) is the diameter interval from Dj to Dj+1

for the jth diameter bin; Vi (m s−1) is the fall speed for the ith velocity class. Due to the measurement
error, especially for larger size drops [23], the empirical terminal velocity–diameter (V – D) relation in
Atlas et al. [29] is adopted in this study:

V(Dj) = 9.65− 10.3 exp (−0.6Dj), (3)

The drops with velocity out the range of ±60% V(Dj) are removed from the analysis [30].
The total number concentration Nt (m−3), the mass weighted diameter Dm (mm), and normalized

intercept parameter Nw (m−3 mm−1) [14] are derived as:

Nt =
∑32

i=i

∑32

j=1

ni, j

A·Δt·Vi
, (4)

Dm =

∑32
j=1 N(Dj)·D4

j ·ΔDj∑32
j=1 N(Dj)·D3

j ·ΔDj
, (5)

Nw =
44

πρw

(
103W
D4

m

)
, (6)

Dm is closely related to the drop size; Nt and Nw are related to the number of raindrops. All these
parameters are important in representing the DSD characteristics.

The integral rainfall parameters including rain rate R (mm h−1) and liquid water content W (g m−3)
are calculated based on the following equations:

R =
6π

104ρw

∑32

j=1
V(Dj)Dj

3N(Dj)ΔDj, (7)

W =
πρw

6× 103

∑32

j=1
Dj

3N(Dj)ΔDj, (8)

where ρw is the water density (1.0 g cm−3).
Meanwhile, a series of polarimetric radar variables are simulated at S-band frequency based

on the DSD measurements using the T-matrix method [31–33], including horizontal reflectivity Zh
(mm6 m−3, or ZH in dBZ), differential reflectivity Zdr (dB), and specific differential phase Kdp(degree
km−1). The drop shape model used in the simulation is the one proposed by Thurai et al. [34] and
temperature is 20 °C. The canting angle is not taken into account (i.e., canting angle is 0) as the DSD
measurements are near ground.
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We also want to note that to minimize the measurement errors and improve data reliability,
several quality control procedures were applied on the 1-min DSD data. First, because of the low
signal-to-noise ratios, the first two diameter bins are always empty, so the data in first two bins are
eliminated in the analysis [23]. Second, the 1-min sample data with total raindrop number smaller
than 10 or the derived rain rate less than 0.1 mm h−1 are considered noise and removed [23]. Then,
if the continuous data satisfying the above conditions last less than 5 min, they will be ignored to avoid
the spurious and erratic measurements [25,35]. Additionally, threshold on simulated radar parameter
(i.e., ZH < 55 dBZ) is used to further guarantee the creditability of the measured DSD data. The DSDs
with the radar parameters out of the range are deleted to avoid mixed phase hydrometeors.

2.3. Radar Quantitative Precipitation Estimation

The two S-band radars are located at Guangzhou (hereafter referred as GZRD, 23.004◦N, 113.355◦ E,
179 m) and Meizhou (MZRD, 24.256◦ N, 115.975◦ E, 423 m). Both radars are configured with a 6-min
time resolution and 250-m range gate spacing, and have undergone rigorous quality control to ensure
the data quality [36]. These two radars are used to monitor the evolution of the storm system and
associated microphysical signatures. Moreover, these two radars are applied to estimate the rainfall to
show the great potential of radar quantitative precipitation estimation.

For polarimetric radar, R(ZH), R(Kdp), R(ZH, Zdr), R(Zdr, Kdp) are the four relations commonly
used to estimate rainfall [14]. The parameters (i.e., coefficients and exponents) in these relations are
determined by the local precipitation microphysics, and are usually derived from the in situ DSD data.
The representative of these parameters and how to combine different relations are the key issue in
deriving radar QPE [14].

In this study, four rainfall algorithms are applied to quantify the precipitation intensity and
amounts during this event. These algorithms belong to two categories: one is R(ZH) relation,
i.e., WRS-88D Z-R relationship [13] and localized Z-R relationship; another is a combination of the four
rainfall relations (i.e., R(ZH), R(Kdp), R(ZH, Zdr), R(Zdr, Kdp)), i.e., the “adapted algorithm” described
by Xia et al. [36] and the localized blended relation. Both Z-R relations are commonly used for
single-polarized radar. The “adapted algorithm” is derived from DSD data and adjusted based on
gauge observation and it has been demonstrated during several typhoon events in Southern China,
which showed great performance [36].

Based on the nonlinear least-square method with the DSD data from two stations, the localized
relations are fitted as follows:

R(ZH) = 0.06082 × 100.05709ZH , (9)

R(Kdp) = 40.4615K0.7703
dp (10)

R(ZH, Zdr) = 0.00632 × 100.09134ZH 10−0.3325Zdr (11)

R(Zdr, Kdp) = 84.4318K0.9377
DP 10−0.1588Zdr (12)

where Equation (9) is referred to as the localized Z-R relation, and the localized blended relation is a
combination of Equations (10)–(12), using the same logic described by Xia et al. [36].

3. Synoptic Environment during This Epic Rainfall Event

From 27 to 31 August 2018, a monsoon depression evolved, moving west from the East China
Sea. The resultant precipitation system was moving from west to east along the coast, causing heavy
precipitation nearly over the whole Guangdong province, especially in the south and southeast parts
of Guangdong on 29 and 30 August. The synoptic evolution of this precipitation system was analyzed
using the NCEP-FNL data at 12:00 UTC 29 August and 12:00 UTC 30 August (Figure 2). Additionally,
Figure 3 shows the stratification curve and convective available potential energy (CAPE) based on the
sounding data at QY and ST stations.

171



Remote Sens. 2020, 12, 2772

Figure 2. Geopotential height (gpm, solid blue lines at intervals of 10 gpm), winds (m s−1, black vector
arrows, vector scale at upper right), and vorticity (shaded, ×10−4 s−1) at 500 hPa (a) at 12:00 UTC
29 August, and (b) at 12:00 UTC 30 August. The red (blue) shadings in panels (a,b) indicate positive
(negative) vorticity. Geopotential height (gpm, solid blue lines at intervals of 10 gpm), winds (m s−1,
black vector arrows, vector scale at upper right), and the temperature advection (shaded, ×10−4 ◦C s−1)
at 850 hPa (c) at 12:00 UTC 29 August, and (d) at 12:00 UTC 30 August. The red (blue) shadings in
panels (c) and (d) indicate warm (cold) temperature advection. The 1000–300 hPa vertically integrated
water vapor transport (IVT, shaded, kg m−1s−1, also in black vector arrows, vector scale at upper right)
(e) at 12:00 UTC 29 August, and (f) at 12:00 UTC 30 August. The dashed red rectangle indicates the
area of the southeast of Guangdong province.
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Figure 3. The skew T-log10P sounding profiles at (a,b) QY station and (c,d) ST station at 1200 UTC
29 August (left) and 1200 UTC 30 August (right). The red dashed line and black and blue solid lines
represent the stratification curve, temperature profile, and dew point profile, respectively.

It can be seen that the entire region of southern China was under the influence of a monsoon
depression across the mid- and lower-troposphere on 29 August. The depression moved west,
bringing strong moistures transported to Guangdong province driven by the persistent south and
southwest wind (Figure 2a,b). In the coastal areas of Guangdong, warm advection from the ground
and lower troposphere continued to transport warm air to inland areas (Figure 2c,d). Due to the
combined evolution of depression and topography lifting effect, the precipitation system was further
strengthened on 30 August. The wind and temperature changes between Guangdong and the adjacent
South China Sea were more violent (Figure 2c,d). Meanwhile, the vertically integrated vapor transport
(IVT) over the coastal zone was much stronger on 30 August than that on 29 August (Figure 2e,f).

Figure 3a illustrates the sounding curves at 12:00 UTC 29 August at QY station. The large convective
available potential energy (CAPE, ≈860 J kg−1) and low level of free convection (LFC, ≈980 hPa)
suggested that the atmospheric environment was favorable for the development of convection [37].
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At 20:00 UTC 30 August, the CAPE became larger and LFC became lower, indicating that the convection
had further developed. The soundings at ST station also showed a conducive environment for
convection development though the CAPE decreased slightly from the 29th to 30th.

4. Precipitation Analysis Results and Discussion

4.1. Precipitation Pattern Observed by a Gauge Network

Figure 4 shows the spatial distribution of the cumulative rainfall in Guangdong during the period
from 00:00 UTC 27 August to 00:00 UTC 2 September based on the gauge hourly precipitation data using
Inverse Distance Weighted (IDW) interpolation method. This result was only used for visualization so
as to get a general sense of the geographic distribution of rainfall. Obviously, this rainstorm affected
most regions of Guangdong, with the extreme rainfall occurring at the southeast part and gradually
decreased to the northwest of Guangdong. The gauge maximum cumulative rainfall was 1394.6 mm
recorded at Gaotan station (23.1883 ◦N, 115.3044 ◦E), which set a new record of cumulative rainfall
during a single event in Guangdong. Meanwhile, the maximum daily rainfall of 1056.7mm was also
recorded at Gaotan station from 21:00 UTC 29 August to 21:00 UTC 30 August, which broke the
historical daily rainfall record of 924.3 mm on 17 August 2013 [7].

Figure 4. The spatial distribution of the accumulated rainfall from 27 August 2018 to 1 September
2018 of Guangdong province. The red squares and triangles represent the locations of radars and
disdrometers, respectively.

Figure 5 shows the distribution of the daily rainfall that exceeded 100 mm from 28 to 31 August.
It is clear that the rainfall is mainly concentrated on 29 and 30 August. There is a clear rain band along
the coast on 29 August, with a gradient of accumulated rainfall decreasing from the coast towards the
inland region, which can be partially attributed to the land-sea roughness contrasts [38]. On 30 August,
the rain band moved a little towards northeast and inland region, with extremely high accumulated
value (1041.1 mm) concentrated at Gaotan station, which could be due to the combined effect of terrain
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and evolved synoptic condition. To further reveal the two rainfall processes, Figure 6 shows the time
series of rainfall collected at two gauges where extreme daily rainfall concentrated on these two days.
One station is located at Doumen (22.1967 ◦N, 1153.1131 ◦E) in Zhuhai, representing the rainfall on
29 August, when the daily rainfall reached 458.6 mm. Another station is Gaotan station, representing
the most extreme rainfall pattern both for 30 August and the whole event.

Figure 5. Daily rainfall accumulation (in mm, a day is defined from 0000 UTC to 0000 UTC of the next
day) for (a) 28 August, (b) 29 August, (c) 30 August, (d) 31 August, (e) a zoomed area for 30 August,
(f) a zoomed area for 29 August. Each dot represents a gauge station with daily rainfall accumulation
exceeding 100 mm.
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Figure 6. Hourly and accumulated precipitation at (a) Doumen station, (b) Gaotan station from 00:00
UTC 29 August to 12:00 UTC 31 August.

The differences between the two stations are clear: Doumen station experienced heavy rainfall
mainly on 29 August, while Gaotan station experienced a heavier and longer rainfall from late 29 August
to early 31 August. Doumen station experienced three major rainfall stages on 29 August: first from
00:00 to 06:00 UTC, second from 06:00 to 14:00 UTC, and third from 14:00 to 23:00 UTC. The third
stage was longer and stronger than the first two stages, with a maximum hourly rainfall of 70.2 mm
from 1800 to 1900 UTC 29 August. After 0800 UTC 30 August, rainfall at Doumen station almost
disappeared. At Gaotan station, rainfall exhibited two major stages: first from 00:00 to 20:00 UTC on
29 August, then from 20:00 UTC 29 August to 08:00 UTC 31 August. The first stage, with only one
hourly rainfall exceeding 20 mm is much weaker than the second. During the second stage, the hourly
rainfall showed an increasing trend, and reached a maximum of 98.6 mm from 1900 to 2000 UTC
30 August. Moreover, the cumulative rainfall of the second stage (1206.6 mm) accounted for 87%
rainfall of the whole event at Gaotan station.

4.2. Raindrop Size Distribution

4.2.1. DSDs Time Series at Two Observation Stations

As there are no disdrometers deployed at the Doumen and Gaotan stations, two nearby Parsivel2

disdrometers were selected to analyze the raindrop size distribution from 00:00 UTC 29 August to
12:00 UTC 31 August. One disdrometer is located at Zhuhai (22.2750 ◦N, 113.5669 ◦E) near the Doumen
station (45 km away); the other is located at Huidong (23.0261 ◦N, 114.6681 ◦E) near the Gaotan
station (67 km away) (see Figure 1). The comparisons of hourly rainfall between the disdrometers
and the gauges at Zhuhai and Huidong stations (within 20 m for each pair) are shown in Figure 7.
Although the disdrometer might slightly underestimate the rainfall compared with gauge data because
of the absence of some records and the overlap of drops along the laser beam, overall, they captured
the rainfall pattern very well. As such, we ignored the impact on DSD observations in this study.
Moreover, the rainfall pattern at Zhuhai station is similar to that of Doumen station, and the rainfall
pattern of Huidong station is similar to Gaotan station. The similar patterns indicate that these two
disdrometers could, respectively, represent the DSD characteristic of Doumen and Gaotan stations.
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Figure 7. Hourly rainfall measured by gauges and collocated disdrometers: (a) Zhuhai station,
(b) Huidong station from 00:00 UTC 29 August to 12:00 UTC 31 August.

Figure 8 shows the time series of the drop size distribution (N(D): m−3 mm−1) in the logarithmic
scale from 00:00 UTC 29 August to 12:00 UTC 31 August, derived by the 1-min disdrometer observations
at the two stations. In line with the synoptic condition shown in Figure 2, it can be seen that the Zhuhai
station experienced stronger rainfall during 29 August, and it reached the maximum hourly rainfall
of about 40 mm (Figure 7). The maximum raindrops greater than 7 mm were recorded from 12:00
to 14:00 UTC 29 August. After that, rainfall at Zhuhai station began to weaken with the decreasing
number of raindrop concentration and size of raindrops, while that at Huidong station gradually
increased. After 23:00 UTC 29 August, this long-lasting storm disappeared at Zhuhai station following
with two short storms characterized with lower concentration but bigger raindrops around 04:00 UTC
30 August and around 11:00 UTC 31 August. The rain at Huidong station showed an increasing trend
from 13:00 UTC 29 August, and the number of raindrop concentration and size of raindrops also show
an increasing trend, and the hourly rainfall reached the highest from 18:00 to 19:00 UTC 30 August.
Compared to the extreme rainfall period at Zhuhai station, the number of large drops (D > 5 mm) at
Huidong station is much less during the strong rainfall period which we hypothesize is due to the
collision caused by sea-inland orographic effect [38–40].

4.2.2. The Distribution of Dm and Nw

Figure 9a shows the scatterplot of log10 Nw vs. Dm of the two stations. The maritime convective
clusters, continental convective clusters, and the stratiform rain line described in Bringi et al. [41] as
well as the convection-stratiform separation line suggested by Thompson et al. [42] are also shown
in Figure 9a. The scatter points of two stations show similar boundaries, of which there are both
convective rain and stratiform rain types. Meanwhile, there are more points classified as stratiform
rain by the classification suggested by Thompson et al. [42], and the averaged log10 Nw-Dm pairs of
two stations are close to the stratiform line described by Bringi et al. [41]. Moreover, for convective rain
type, there are more points located at the continental convective cluster rather than maritime cluster
for both stations. Compared with the DSD characteristics studied at Yangjiang from July to August by
Tang et al. [43], the log10 Nw of both two stations are smaller no matter what rain types, suggesting a
lower drop concentration of this rain system.
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Figure 8. Time series of raindrop size distributions (DSD) observed at (a) Zhuhai station, (b) Huidong
station from 00:00 UTC 29 August to 12:00 UTC 31 August. The color density in both (a) and (b)
represents the number concentration in logarithmic units of N(D)(m−3 mm−1).

Figure 9. (a) The scatterplots of log10 Nw vs. Dm; (b) probability density functions (PDFs) of Dm;
(c) PDFs of log10 Nw at Huidong and Zhuhai stations. Both data are from 00:00 UTC 29 August
to 12:00 UTC 31 August. The black dot and pink circle represent Zhuhai data and Huidong data,
respectively. The mean values of log10Nw and Dm are represented by circles (gray for Zhuhai and
red for Huidong). The two rectangles correspond to the maritime (cyan) and continental convective
(orange) clusters reported by Bringi et al. [41]. The black and purple dash-dot lines represent the
characteristics of stratiform rain described in Bringi et al. [41] and the convection/stratiform separation
line from Thompson et al. [42], respectively. The square symbols represent the average values of various
types of rain, from Tang et al. [43]. CV stands for convective rain, ST is stratiform rain. ZH is short for
Zhuhai, and HD is short for Huidong. It is the same in the following figures and tables.
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The probability density functions (PDFs) of Dm and log10 Nw with the mean values are presented
in Figure 9b,c. The PDF of Dm at Zhuhai station peaks around 1.25 mm while that at Huidong peaks
around at 1.75 mm. Additionally, the PDF of log10 Nw at Zhuhai station peaks around 3.25 while
that at Huidong peaks around at 3.75. This leads to a higher mean value of Dm (1.75 mm) and lower
mean value of log10 Nw (3.18) at Zhuhai station than those at Huidong station. This result indicates
that the rain at Zhuhai station has larger drops, but a lower drop number concentration compared to
Huidong station.

4.2.3. The DSD Spectra

The characteristics of DSD of this rain system are investigated to understand the precipitation
microphysical processes. To eliminate to the effect caused by rain rate and duration, the DSD
measurements are divided into six classes according to the associated rain rate (R): C1, 0.1 ≤ R < 1;
C2, 1 ≤ R < 5; C3, 5 ≤ R < 10; C4, 10 ≤ R < 25; C5, 25 ≤ R < 50 mm h−1. Such classification is
based on the rain rate distribution of this system, as well as several previous studies [25,35]. The DSD
sample relative frequency, rain rate statistics and mean DSD parameters for each class are summarized
in Tables 1 and 2. For lower rain rate classes (C1–C3), the rain rate of Huidong station is lower than
that of Zhuhai station. For C5, the rain rates of two stations are close to each other and for the other
two high rain rate classes (C4 and C6), the rain rate of Huidong station is higher than that of Zhuhai
station, which caused the higher hourly rainfall at from 18:00 to 19:00 UTC 30 August. However, due to
the lower relative frequency of high rain rate classes, the overall average rain rate of Huidong station
is smaller than that of Zhuhai station.

Table 1. Number and DSD retrieved rain rate statistics of each rain rate class for Zhuhai and Huidong
station data.

Classes
Rain Rate Threshold

(mm h−1)

Relative
Frequency

Mean
(mm h−1)

SD (mm h−1) Skewness

ZH HD ZH HD ZH HD ZH HD

C1 0.1 ≤ R < 1 0.32 0.32 0.52 0.48 0.25 0.26 0.05 0.27
C2 1 ≤ R < 5 0.35 0.37 2.66 2.30 1.10 1.04 0.28 0.82
C3 5 ≤ R < 10 0.09 0.11 7.41 7.07 1.45 1.44 0.17 0.32
C4 10 ≤ R < 25 0.12 0.11 15.72 16.46 4.09 4.16 0.31 0.32
C5 25 ≤ R < 50 0.09 0.06 35.41 35.38 6.85 7.30 0.25 0.34
C6 R ≥ 50 0.03 0.02 68.14 71.02 12.14 16.40 0.77 0.87

All data - 1 1 9.01 7.43 15.28 13.81 2.70 3.45

Table 2. Mean values DSD parameters for each rain rate class for Zhuhai and Huidong station data.

Classes
Dm (mm) Nt (m−3) log10Nw (m−3 mm−1) W (g m−3)

ZH HD ZH HD ZH HD ZH HD

C1 1.29 1.14 54.8 81.0 2.94 3.18 0.030 0.031
C2 1.66 1.43 139.6 200.5 3.19 3.42 0.132 0.127
C3 1.96 1.64 255.2 409.6 3.30 3.67 0.337 0.360
C4 2.18 1.96 429.8 548.5 3.44 3.66 0.682 0.748
C5 2.62 2.32 648.2 786.8 3.44 3.66 1.409 1.474
C6 2.80 2.48 1051.5 1369.3 3.57 3.82 2.616 2.863

All data 1.75 1.50 232.1 286.8 3.18 3.42 0.378 0.337

It can be shown from Figure 10 that the total averaged DSD of Zhuhai station has wider spread as
well as lower concentration at small and medium-sized drops (D < 2 mm) but higher concentration
at big and large drops (D > 2 mm) compared with that of Huidong station, which corresponds to a
larger Dm, more W, but a lower Nt for Zhuhai station compared with those for Huidong station (Table 2).
For the same rain class, the DSD of Huidong shows the same characteristics with higher concentration
at smaller drops as well as lower concentration at larger drops. Additionally, the diameters where the
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raindrop concentrations of two stations become larger as the rain classes increased, from 1.2 to 3.8 mm,
due to the higher the concentration of larger drops at higher rain rates for both stations.

Figure 10. Mean DSDs observed at Zhuhai and Huidong stations from 00:00 UTC 29 August to 12:00
UTC 31 August: (a) all DSD data, (b) DSD data classified by different rain rates. The solid and dashed
lines in (a) and (b) represent Zhuhai and Huidong stations, respectively. The dash-dot line in (b) shows
the DSD intersection of two stations for each rain rate class.

Table 3 summarizes the relative contributions of each size class to Nt, W, and R, which are obtained
through dividing the parameters calculated for the raindrops of each size class by the corresponding
parameters calculated for all the size classes. For both stations, the small raindrops (D < 1 mm)
have the highest concentration (51.99% and 57.92%) of the total data set and the second highest
relative frequency (Td 38.08% and 44.26%), but relatively low contributions to total water content
and rainfall. The contribution of small and medium-sized raindrops (D: 1–2 mm) to the total number
is the greatest, accounting for 47.48% (45.99%) at Zhuhai (Huidong) station. However, for Zhuhai
station, the middle-sized drops (D: 2–3 mm) accounts for the most rainfall (34.39%), while the small and
medium-sized raindrops (D: 1–2 mm) account for the most for Huidong station (40.50%). Moreover,
for Zhuhai station, the medium-sized and larger drops (D > 2 mm) account more for rainfall and water
content compared with Huidong station, as the higher relative frequency. This result is consistent
with the conclusion shown in Figures 8 and 9 that larger drops are less likely to occur at Huidong,
where complex topography could exacerbate the collision.

Table 3. Relative contributions of each size class to the total drop numbers Td, total drop concentration Nt,
liquid water content W, rain rate R. The bold number highlights the maximum.

D (mm)
Td (%) Nt (%) R (%) W (%)

ZH HD ZH HD ZH HD ZH HD

<1 38.08 44.26 51.99 57.92 3.91 6.30 7.79 11.69
1~2 47.48 45.99 39.54 36.60 30.70 40.50 37.01 45.65
2~3 11.67 8.41 7.03 4.82 34.39 34.00 31.33 28.83
3~4 2.24 1.16 1.18 0.58 19.22 13.80 15.25 10.16
>4 0.53 0.18 0.26 0.08 11.78 5.40 8.62 3.67

4.3. Polarimetric Radar Signatures and Rainfall Analysis

As the rain patterns of Zhuhai station and Huidong station are similar to that of Doumen station
and Gaotan station, the DSD characteristics of Zhuhai and Huidong areas can partly represent the
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microphysics of Doumen and Gaotan station, which suggests a high probability of a higher drop
concentration at Gaotan station and a larger drops at Doumen station. However, the total rainfall
difference between Huidong and Gaotan station is significant (≈400 mm vs. ≈1000 mm), which means
the DSD of Gaotan may be different and need more observation to supplement the current study. In the
following study, the dual-polarized radar observations are used to further understand the rainfall.

4.3.1. The Polarimetric Radar Signatures

To further understand the differences between the two rain patterns on 29 and 30 August,
the polarimetric radar fields over the two extreme stations are compared. Figure 11 shows the time
series of polarimetric variables over Doumen and Gaotan stations observed by GZRD and MZRD
0.5-degree sweeps, respectively. The size of radar pixel over Doumen (Gaotan) station is around
0.25× 1.49 km (0.25× 2.23 km), and the horizontal/vertical distances are 93 km/0.81 km (137 km/1.21 km)
between the radar pixel and the station. Generally speaking, Figure 11 shows that the timing changes
of radar variables are consistent with the rainfall changes at both stations (Figure 6). During the
extreme rainfall periods of Doumen station and Gaotan station, the mean values of ZH over both
stations are similar while the mean value of Zdr over Doumen station is higher than that over Gaotan
station, indicating that bigger drops are more likely to occur at Doumen station than Gaotan station,
which is similar to the DSD analysis of Zhuhai and Huidong.

Figure 11. Time series of different polarimetric radar variables over (a) Doumen station observed by
GZRD, (b) Gaotan station observed by MZRD from 00:00 UTC 29 August to 12:00 UTC 31 August.

To eliminate the random error of one radar pixel, two extreme regions were defined as circular
areas with a radius of 5 km centered on Doumen station and Gaotan station, respectively, hereafter
referred to Doumen rain region and Gaotan rain region. The polarimetric variables from 0.5-degree
sweep over these two regions from 00:00 UTC 29 August to 12:00 UTC 31 August were analyzed.
Figure 12 shows the joint frequency distributions of Zdr vs. ZH, Kdp vs. ZH, as well as log10 (Kdp/Zh)

vs. Zdr observed by radars over two regions as well as the simulated radar moments based on DSD
data at Zhuhai station and Huidong station. The frequency at each pair of data bin (e.g., the bin width
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is 1 dBZ for ZH and 0.1 dB for Zdr, 0.1 degree km−1 for Kdp, and 0.1 for log10(Kdp/Zh)) refers to the total
number of radar pixels with values of Zdr vs. ZH (Kdp vs. ZH or log10 (Kdp/Zh) vs. Zdr) falling into the
bins, and the frequency distribution is further normalized by dividing by the maximum frequency
among all the pairs of data bins.

Figure 12. Joint frequency distributions of polarimetric radar at (a,c,e) Doumen and (b,d,f) Gaotan areas
from 00:00 UTC 29 August to 00:00 UTC 31 August: (a,b) Zdr vs. ZH, (c,d) Kdp vs. ZH, (e,f) log10 (Kdp/Zh)

vs. Zdr. The black dots are the simulated radar moments based on DSD data at (a,c,e) Zhuhai station,
(b,d,f) Huidong station.

Frequencies for the observed ZH, Zdr at Doumen rain region peaked at approximately 28 dBZ,
and 0.3 dB, respectively. While at Gaotan rain region they peaked at high values, around 35 dBZ for
ZH and 0.8 dB for Zdr. The ZH maximum values with the 10% normalized frequency of two regions
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are similar around 52 dBZ, which are consistent with the extreme rainfall periods of two stations.
Meanwhile, the Zdr maximum values with the 10% normalized frequency at Gaotan rain region is
smaller (2.1 dB vs. 2.5 dB). Meanwhile, for the same ZH, the range and mean Zdr at Doumen rain
region is larger than that at Gaotan station, which indicates that larger drops more likely occurred
at Doumen compared with Gaotan. For both regions, the slope between ZH and Kdp shows a sharp
transition over sampling grids with ZH exceeding 40 dBZ, resulting in a rapid increase of Kdp along
with the increase of ZH. Although the peak frequencies for Kdp at two rain regions are similar around
0.1 degree km−1, Kdp increases faster as the ZH increases at Doumen rain region which indicates that
there are more relative larger drops at Doumen rain region. Then, considering the higher rain rate
and smaller raindrops at Gaotan station, the number concentration must be larger. The extreme lower
value of log10 (Kdp/Zh) could confirm this, which means the concentration of small drops at Gaotan is
higher than that at Doumen. It can be concluded from the polarimetric radar signatures that compared
with Doumen rain region, the raindrops at Gaotan rain region have higher concentration but smaller
drops, which is consistent with the DSD characteristic at Huidong station.

4.3.2. Radar-Based Quantitative Precipitation Estimation (QPE)

In this part, a set of various radar rainfall algorithms including the “adapted algorithm” [36],
the localized blended algorithm, the localized relation and WSR-88D Z-R relation [13], were applied to
quantify the precipitation intensity and amounts during this event. After estimating the instantaneous
rainfall rates using various radar rainfall algorithms, the rainfall accumulations were computed at
hourly scale. To quantify the performances of different algorithms, a set of metrics was computed,
including the bias (BIAS), normalized mean bias (NMB), normalized mean absolute error (NMAE),
Pearson’s correlation coefficients (CC), which are defined as follows:

BIAS =

∑M
N=1(RN − GN)

M
, (13)

NMB =
[
∑M

N=1(RN − GN)]/M

(
∑M

N=1 GN)/M
× 100%, (14)

NMAE =
(
∑M

N=1

∣∣∣RN − GN
∣∣∣)/M

(
∑M

N=1 GN)/M
× 100%, (15)

CC =

∑M
N=1(RN − RN)(GN − GN)√∑M

N=1 (RN − RN)
2 ∑M

N=1 (GN − GN)
2

, (16)

where RN and GN represent the radar estimates of different algorithms and the rain gauge measurements
at time frame N, respectively. M is the total sample number.

The comparison of estimates from different rainfall algorithms and rain gauge measurements at
Gaotan and Doumen station is shown in Figure 13 and the evaluation results are shown in Table 4.
As shown in Figure 13, all the algorithms have similar patterns to the rain gauge measurements,
while QPE results of the “adapted algorithm” is better than other algorithms with lowest BIAS,
NMB, NMAE and the highest CC (Table 4). This is in line with the findings during typhoon case
studies [36]. Nevertheless, we should note that all the algorithms are underestimating the rain rates
and accumulations during this flood event and the results still need to be optimized.
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Figure 13. The rain gauge measurements (red line) and estimates computed by various radar algorithms.
(a) Gaotan station, (b) Doumen station.

Table 4. Evaluation results of the various radar algorithms at Gaotan station and Doumen station.

Station Metrics

Algorithm

“Adapted
Algorithm”

Localized Blended
Rainfall Algorithm

Localized Z–R
Relation

WSR-88D Z-R
Relation

Gaotan

BIAS (mm) −6.61 −7.30 −13.17 −7.90

NMB (%) −25.37 −28.01 −50.56 −30.31

NMAE (%) 29.64 30.16 50.56 32.26

CC 0.95 0.94 0.93 0.93

Huidong

BIAS (mm) −3.65 −4.92 −7.03 −5.47

NMB (%) −34.39 −46.37 −66.29 −51.63

NMAE (%) 37.65 47.83 66.72 54.36

CC 0.96 0.93 0.91 0.91

To further analyze the QPE results of various radar rainfall algorithms, the scatter plots of radar
rainfall estimates versus gauge measurements at all rain gauge stations less than 100 km from the radars
are shown in Figure 14 and the evaluation results are shown in Table 5. Most of the hourly rainfall
rates are from 0 to 40 mm hr−1. Again, the adapted algorithm has the best performance, while all the
rainfall algorithms show underestimation compared to the gauge measurements, especially during
heavy rain periods.
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Figure 14. The scatter plots of radar estimated rainfall versus gauge measurements at gauge locations
less than 100 km from the radar: (a) the “adapted algorithm” [36]; (b) localized blended rainfall
algorithm; (c) localized Z–R relation; (d) WSR-88D Z-R relation [13]. The color density represents the
observation sample numbers in logarithmic unit.

Table 5. Evaluation results of the various radar algorithms compared with gauges within 100-km scale
of radars.

Metrics

Algorithm

“Adapted
Algorithm”

Localized Blended
Rainfall Algorithm

Localized Z–R
Relation

WSR-88D Z-R
Relation

BIAS (mm) −0.29 −0.90 −1.38 −1.09
NMB (%) −12.47 −39.21 −60.35 −47.70

NMAE (%) 39.93 46.38 63.24 53.76
CC 0.91 0.92 0.90 0.90

5. Discussion

Although the analysis of DSD and polarimetric radar signatures shows similar results, the relatively
long distances between disdrometers and the extreme rain centers might induce some uncertainty
in the representation of extreme rainfall DSD characteristics. As mentioned, the polarimetric radar
signatures at the two rainfall centers are quite different, even for the same precipitation system, which is
likely due to the complex falling processes as a result of orographic enhancement and dynamic cloud
microphysics involved in this extreme event [44]. More disdrometers and in situ measurements would
be required to fully resolve the three-dimensional structure of precipitation in such complex terrains.

In addition, although the polarimetric radars could provide more insights into the two extreme
rain regions, the precipitation estimated by the current radar algorithms underestimate the rainfall
compared to the ground gauges. The differences of sample areas between radars and gauges may be
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one reason, especially when the gauges are far from the radars. In such cases, a network of short-range
X-band polarimetric radars would be useful for better QPE. Additionally, the adapted algorithms have
relatively better performance mainly because they are derived using DSD and gauge data collected
during many storm events in Southern China [36]. However, at the same time, the DSD observed at
both Huidong and Zhuhai stations during this event showed a lower number concentration compared
with previous long-term studies in Yangjiang [43]. This reminds us that the rainfall algorithms should
be appropriately developed based on local rainfall characteristics, which is still under investigation.

6. Conclusions

An epic flood event occurred in southern China from 27 August to 1 September 2018, with a
maximum accumulative rainfall of 1394.6 mm recorded at Gaotan station. Multi-observations
including reanalysis data, soundings, gauges, disdrometers, and polarimetric radars were used to
comprehensively analyze this extreme precipitation event. Based on the reanalysis and gauge data,
the synoptic environment and precipitation pattern were investigated. The DSD time series, the mass
weighted diameter Dm, and normalized intercept parameter Nw of Huidong and Zhuhai stations
were derived to achieve a better understanding of the precipitation microphysics. It was found
that the depression coupled with land–sea interaction and orographic enhancement kept providing
moisture to Guangdong province, leading to the extreme rainfall on 29 at Doumen station and on
30 August at Gaotan station. Although both locations are under the same synoptic system, the DSD
observed at Huidong station showed a higher number concentration at smaller drop size and lower
number concentration at larger drop size compared with the Zhuhai station. This is likely due to the
stronger collision caused by sea–inland orographic effect near the Huidong station, which is similar to
the microphysical signatures observed by polarimetric radars at Gaotan and Doumen rain regions.
Future study is needed to reveal the mechanism of the sea–inland orographic effect on the precipitation
microphysics. In addition, the radar based QPE results show that the rainfall algorithms have great
influence on the accuracy. Extra work is required to improve local radar rainfall estimates in order to
further help with the severe weather warning operations.
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Abstract: High-resolution precipitation field has been widely used in hydrological and meteorological
modeling. This paper establishes the spatial and temporal distribution model of precipitation in
Hubei Province from 2006 through 2014, based on the data of 75 meteorological stations. This paper
applies a geographically and temporally weighted regression kriging (GTWRK) model to precipitation
and assesses the effects of timescales and a time-weighted function on precipitation interpolation.
This work’s results indicate that: (1) the optimal timescale of the geographically and temporally
weighted regression (GTWR) precipitation model is daily. The fitting accuracy is improved when the
timescale is converted from months and years to days. The average mean absolute error (MAE), mean
relative error (MRE), and the root mean square error (RMSE) decrease with scaling from monthly
to daily time steps by 36%, 56%, and 35%, respectively, and the same statistical indexes decrease
by 13%, 15%, and 14%, respectively, when scaling from annual to daily steps; (2) the time weight
function based on an exponential function improves the predictive skill of the GTWR model by 3%
when compared to geographically weighted regression (GWR) using a monthly time step; and (3) the
GTWRK has the highest accuracy, and improves the MAE, MRE and RMSE by 3%, 10% and 1% with
respect to monthly precipitation predictions, respectively, and by 3%, 10% and 5% concerning annual
precipitation predictions, respectively, compared with the GWR results.

Keywords: precipitation interpolation; geographically and temporally weighted regression; time
weight function; geographically and temporally weighted regression kriging

1. Introduction

Precipitation is a critical flux in the water cycle [1,2]. It is, for this reason, imperative to study
the spatial–temporal features of precipitation [3,4]. Precipitation data are usually derived from
meteorological sites with limited spatial coverage and sensor-gathered data, such as remote sensing
satellites and rainfall radars [5]. Meteorological site location observations yield local, discrete, and
limited spatial data points, which cannot account for the spatial precipitation variability accurately [6,7].
The general spatial resolution of remote sensing precipitation data products is generally low, which
does capture the precipitation distribution in small areas [8]. These problems constrain the application
of precipitation data for multiple practical purposes. Thus, there is a need for further study on how to
obtain continuous and accurate distributions of precipitation at regional scales.

Spatial interpolation of precipitation data falls into two categories: deterministic interpolation and
spatial–temporal interpolation. Deterministic interpolation is further divided into two categories: global
interpolation and local interpolation [9–11]. Spatial–temporal interpolation includes two categories:
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subtraction and extension [12]. Spatial–temporal interpolation methods for spatial–temporal irregular
dataset interpolation and missing data patching include the spatial–temporal inverse distance weighting
method, the spatial–temporal kriging method, and collaborative spatial-temporal kriging, among
the main ones [13–15]. It has become a common practice to explore the distribution of precipitation
employing spatial statistical analysis to cope with the spatial-temporal non-smoothness of precipitation.
The geographically weighted regression (GWR) model was proposed for the study of spatial relations
and spatial correlation, based on the common linear regression model by Fotheringham et al. [16].
The GWR model prescribes parameter estimation based on the location function expressing the
non-stationary spatial features of precipitation. The regression coefficients in the GWR model capture
the locational attribute. They can, therefore, take into account the influence of spatial heterogeneity,
thus significantly improving the ability to analyze the variation in spatiotemporal characteristics
of precipitation. This means the GWR model has attracted wide attention regarding quantitative
precipitation estimation, as well as other spatial variables [17,18]. However, the GWR model only
considers the spatial characteristics of precipitation data, while ignoring time characteristics of
precipitation. The geographically and temporally weighted regression (GTWR) model was proposed
in 2010 by Huang et al., and incorporates the time dimension into the model formulation [19]. On the
one hand, the GTWR model has the basic characteristics of a general variable coefficient model and
exhibits the high fitting skill of the local regression model, which captures the differences in spatial
position and takes into account the spatial heterogeneity of precipitation. On the other hand, the model
adds the time series traits, synthesizes the time dimension distribution information of the sample
points, and embeds the spatial–temporal characteristics into the model [20].

GTWR performs wells in predicting spatial–temporal heterogeneity, and many studies in a
variety of fields of science have proven the effectiveness of the GTWR model in spatial economic
analysis, atmospheric sciences, population analysis, and other social and economic fields. The GTWR
model was applied to model housing price data in London by Fotheringham et al. [21], which
validated the proposed method and its superiority over the traditional GWR method while highlighting
the importance of time explicit spatial modeling. The GTWR model was applied to assess the
spatial–temporal differences in the influence of each driving factor on the scale of carbon emissions
and the intensity of carbon emissions in China by Xiao et al. [22]. Liu et al. studied housing price
data and related factors in Beijing from 1980 to 2016 [23], to propose a calculation method for travel
distance, applying the GWR. The GTWR model was employed to study the influencing factors on
housing prices, and it was concluded that the GTWR model is suitable for identifying effective real
estate management policies. The fire record data from 2002 to 2010 in Hefei, China, was reviewed by
Song et al. [24], using the linear model (LM), GWR, and GTWR to model urban fire risk. The latter
authors concluded that road density and commercial spatial distribution have the most significant
influence on fire risk. GTWR can detect small changes in variable spatial–temporal heterogeneity
of diverse phenomena. The performance of the GTWR model was verified with particulate matter
≤2.5 μm (PM2.5) concentration data in the Xuzhou area, China, and compared with ordinary least
squares (OLS), GWR, and time-weighted regression (TWR) models by Bai et al. [25]. The results
indicate that the regression coefficient of the GTWR model was the highest, and its interpolation
skill was optimal. The GTWR model was applied to estimate the ground concentration of nitrogen
dioxide (NO2) in central China by Qin et al. [26], and cross-validation results proved that the fitting
results of the GTWR model were better than those of the OLS, GWR, and TWR models. Five models,
including GTWR, were implemented to analyze the relationships between PM2.5 and other criteria of
air pollutants by Wei et al. [27], and GTWR showed great advantages over the other three models in
terms of higher model R2 and more desirable model residuals, and only slightly less than TWR.

Precipitation has a high causal correlation both in space and time. Therefore, it is intuitively
logical to use the GTWR model to fit precipitation data. At present, the use of spatial statistical analysis
to fit precipitation interpolation is mainly represented by the GWR model. Brunsdon et al. [28] reported
a study of the relation between total annual precipitation and elevation in the UK by employing the
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GWR model. Their results revealed that the rate of precipitation increased with elevation, and that
the predicted sea level precipitation varied between 600 mm and 1250 mm. The precipitation data
from the Tropical Rainfall Measuring Mission (TRMM) 3B43 products were fitted with a multi-variable
GWR reduction method to obtain 1 km × 1 km precipitation data by Chen et al. [29]. The GWR method
was compared with two other downscaling methods (single variable regression (UR) and multivariate
regression (MR)). Chen et al. (29) concluded that the GWR method could predict annual and monthly
TRMM 1 km x 1 km precipitation with high precision. The accuracy of TRMM precipitation products
at the daily and monthly scales in the Qaidam Basin of China was evaluated by Lv et al. [30] with the
GWR model. Their results indicate that the precipitation GWR model based on ground and satellite
data reduced the error of TRMM products, which was of significance in the fields of hydrology and
climate change. The vegetation and climate data (Normalized Vegetation Difference Index (NVDI)
and rainfall) from 2002 through 2012 for the growing season (June–September) in the Sahel region
of Africa was relied upon in the GWR model by Georganos et al. [31]. The results showed that the
spatial pattern of the NDVI–rainfall relationship is characterized when selecting the appropriate scale.
Their GWR model performs better than the OLS in terms of predictive skill, accuracy, and residual
autocorrelations. With the further research of scholars, geographically weighted regression kriging
(GWRK) [32], as an extension of the GWR model, appears in the spatial interpolation of temperature
and soil properties. It has also been explored in the field of precipitation and prediction research,
achieving excellent results. The GWRK model combines the GWR with the kriging method, and
uses the kriging method to interpolate the residual part of the GWR model, which eliminates the
influence of the spatial correlation of the residual on the model fit, and shows that it is masked by
spatial non-stationary local variation.

The GTWR model focuses primarily on the time dimension, although it accounts for the
characterization of spatial heterogeneity [33]. At a particular timescale, the GTWR handles the
distribution of the time dimension in a manner dissimilar to that described by the first law of geography
(Tobler [34]), and, thus, it can be improved. Ge et al. proposed the seasonal differential geographically
and temporally weighted regression (seasonal-difference GTWR, SD-GTWR) [35]. The latter authors
applied the SD-GTWR model to data for hemorrhagic fever with renal syndromes from Hubei Province
to show that the SD-GTWR model is superior to the ordinary GTWR model. The SD-GTWR model
relied on the results of incremental spatial autocorrelation when balancing the roles of space and
time. Data from the Zhejiang coast (China) from 2012 through 2016 was employed by Du et al. [36] to
propose a geographical and periodic time-weighted regression model (GcTWR) that unifies spatial
distance and temporal distance. The results confirmed that the seasonal effects on coastal areas are
related to an interannual effect.

Although the GWR model performs well in the spatial interpolation, precipitation not only has
continuity in space, but also has strong continuity in time. However, few kinds of research have been
carried out on the spatial–temporal interpolation of precipitation. Fortunately, the application of the
GTWR model in different fields has gradually become mature, and it is possible to introduce it into
precipitation interpolation. Therefore, to better understand the temporal and spatial heterogeneity of
precipitation, this paper interpolates the spatial distribution from 2006 through 2014 of the monthly
and annual rainfall in Hubei Province, based on the GTWR model. Then, this work adjusts the spatial
and temporal weight, according to the temporal characteristics of precipitation. The Gaussian kernel
model is selected as the spatial weight, and the exponential function model is chosen as the temporal
weight. Meanwhile, this work introduces the kriging model to eliminate the influence of residual
spatial correlation on model fitting, which can improve the interpolation accuracy.
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2. Materials and Methods

2.1. Methodology

2.1.1. Geographically and Temporally Weighted Regression Model

The GTWR model is expressed as Equation (1) [19,37]:

yi = β0(ui, vi, ti) +
n∑

k=1

βk(ui, vi, ti)xik + εi, i = 1, 2, . . . , n (1)

where (ui, vi, ti) denotes the spatial–temporal coordinates of the observed location i, which contains
the location and temporal information; k denotes the index k = 1, 2 . . . n. βk(ui, vi, ti) represents a set of
values for the number n of parameters at point i, and εi represents the random error of the predicted
variable yi. The estimates of βk(ui, vi, ti) are given by Formula (2):

�
β k(ui, vi, ti) =

(
XTW(ui, vi, ti)X

)−1
XTW(ui, vi, ti)y (2)

The spatial–temporal weight matrix W(ui, vi, ti) is based on the definition of the spatial–temporal
distance and its decay functions. Generally, the weight functions include the distance threshold method,
distance inverse ratio method, Gaussian (Gauss) function method, and double square root (bi-square)
kernel function method. The Gaussian and bi-square kernel function methods are commonly used in
the GTWR model [38]. The Gaussian kernel function is given by Equation (3):

wij = exp(−(dST
ij /hST)

2
) (3)

where the element wij of the weighting matrix is determined by the spatial–temporal distance dST
ij

and spatial–temporal bandwidth hST. The GTWR model sets the spatial–temporal distance dST
ij as a

function of the temporal distance dT
ij and the spatial distance, dS

ij as expressed in Equation (4):

(
dST

ij

)2
= λ

(
dS

ij

)2
+ μ

(
dT

ij

)2
= λ

[(
ui − uj

)2
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(
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)2
]
+ μ

(
ti − tj

)2
(4)

λ and μ denote the spatial distance factor and the temporal distance factor, respectively, which
balance the effect of the space and time dimension on parameter estimation. The wij element of the
spatial–temporal weight matrix is expressed by Equation (5):

wij = exp
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(5)

It is seen in Equation (5) that the spatial–temporal element or kernel function wij equals the
spatial kernel function wS

ij multiplied by the temporal kernel function wT
ij. hS and hT are the spatial and

temporal bandwidths, respectively. One can determine the weight of the observed variable at a given
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location to the regressed variable at the same location at a specific time by the spatial–temporal kernel
function. The spatial bandwidth bS and temporal bandwidth bT are decided by cross-validation (CV),
and they are obtained by minimizing the expression on the right-hand side of Equation (6):

CV(bS, bT) =
1
n

n∑
i=1

[
yi −�y�i(bS, bT)

]2

(6)

when CV(λ,μ) is minimized, it yields the optimal spatial bandwidth and temporal bandwidth of
the model. A method for determining spatial and temporal bandwidth in steps was proposed by
Fotheringham et al. [21]. The principle of this method is that GTWR can be regarded as GWR for a
period of time. In each time period of data, the spatial bandwidth is determined by the GWR model by
minimizing CV(bS), and then determining the time bandwidth that minimizes CV (bS1, bS2, . . . , bSn, bT).

One obtains the optimal spatial bandwidth and temporal bandwidth when the CV is minimized.
This paper relies on a step-by-step approach [8] to calculate the bandwidth. This approach considers
the data at a specific time or a period at first. The GTWR became similar to the GWR model in this
manner. One minimize the spatial data CV(bS) of each period, and then obtain the appropriate time
bandwidth by minimizing the CV (bS1, bS2, . . . , bSn, bT).

2.1.2. Comparison Models with Different Spatial–Temporal Parameters

The spatial–temporal distance calculation method of the GTWR model is similar to the extension
method, which adds the temporal distance as the third dimension to the distance calculation. Previous
studies have generally neglected the shortcomings of the extension method, whereby the uncertainty
of the units (say, m or km for spatial units) introduces uncertainty of the spatial–temporal interpolation
results when calculating the spatial–temporal distance [13]. The calculated results differ substantially
depending on the adopted units, such as the unit of spatial distance being in meters or kilometers,
and the time unit being the year, month, day, minute, or second. This paper chooses km as the spatial
distance unit, whereas the timescale may be annual, monthly, and daily, according to the experimental
data scale.

The temporal weighting formulas may be inconsistent with the spatial weighting formulas
whenever the spatial–temporal weight is decomposed into the product of the spatial weight and the
temporal weight. This work proposes a time weight in the form of an exponential function, as shown
in Formula (7), in agreement with the last line on the right-hand side of Equation (5):

wT
ij
= exp(−dT

ij/hT) (7)

Furthermore, the distribution of variables or objects in the time dimension is not entirely governed
by the previously cited first law of geography. There are apparent cyclical changes in the four seasons
of the year. The physical characteristics of the climate at a location differ in the winter compared
with summer, but they have statistical similarities for the same season in different years. Concerning
monthly precipitation it is known that there may be statistical similarities between a given month’s
precipitation and non-adjacent month precipitation in the same quarter. Thus, it is necessary to improve
the calculation method of the spatial–temporal distance to capture such similarities. The temporal
distribution of precipitation exhibits periodicity, therefore, this paper relies on the sinusoidal function
to calculate the temporal distance. It selects the exponential function model as a temporal weight
formula. The calculation formula of the periodic temporal distance is given by Equation (8), where T
denotes the period of the function:

dT
ij = sin

⎛⎜⎜⎜⎜⎜⎜⎝
(
ti − tj

)
π

T

⎞⎟⎟⎟⎟⎟⎟⎠(ti − tj
)

(8)
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2.1.3. Geographically and Temporally Weighted Regression Kriging

It is a spatial interpolation method based on geostatistics of the kriging method which fully
considers the characteristics of the spatial variability of the sample points. It has the advantages of
strong applicability and high prediction accuracy, and is currently most widely used in the fields of
meteorology, ecology, and soil. The kriging algorithm can achieve optimal linear unbiased values,
improving the accuracy of estimation to a certain extent. Moreover, for regionalized variables, it reveals
its spatial structure well.

The GTWR model embeds temporal information and geographic location into the model, making
full use of the spatial and temporal characteristics of data, and has a useful application in regional
regression analysis. Geographically and temporally weighted regression kriging (GTWRK) is a hybrid
method based on the GTWR model. First, we use the GTWR method to establish the regression
relationship between precipitation and auxiliary information. Second, we use the kriging method to
interpolate the residuals ε of the GTWR model. Finally, we add the interpolation result of residuals
and the GTWR regression estimation value to obtain the GTWRK estimation result. Therefore, the
GTWRK method considers the relationship between precipitation and influencing factors and the
spatial autocorrelation of precipitation. The GTWR model is given by Equation (9):

∧
yGTWRK(ui, vi, ti) =

∧
yGTWR(ui, vi, ti) +

∧
εOK(ui, vi, ti) (9)

where:
∧
yGTWRK(ui, vi, ti) ŷGTWRK(ui, vi, ti) is the estimated value of GTWRK;

∧
yGTWR(ui, vi, ti) denotes

the estimated value of GTWR; and
∧
εOK(ui, vi, ti) represents the residual interpolation result of GTWR

regression obtained by ordinary kriging (OK) interpolation. The variogram must be selected when the
kriging method is used to interpolate the residuals. This work chooses an exponential variogram for
ordinary kriging interpolation based on exploratory analysis of the precipitation data.

The flow chart of the GTWRK model is shown in Figure 1.
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Figure 1. The flow chart of the geographically and temporally weighted regression kriging
(GTWRK) model.

2.1.4. Precision Evaluation

Because of the large amount of data generated in the interpolation comparison, it would be
burdensome to display all the results. The results corresponding to precipitation fitting in July 2008
and May 2013 are representative of the monthly scale data, and the results of precipitation fitting in
2010 and 2012 are representative of the annual scale data. The evaluation of the interpolation models
relied on several performance indices, namely the mean absolute error (MAE), mean relative error
(MRE), and the root mean square error (RMSE). The smaller the values of MAE, MRE, and RMSE, the
better the interpolation effect.

MAE =
1
n

n∑
i=1

∣∣∣Yi − Ŷi
∣∣∣ (10)
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MRE =
1
n

n∑
i=1

∣∣∣Yi − Ŷi
∣∣∣

Yi
(11)

RMSE =

√√
1
n

n∑
i=1

(
Yi − Ŷi

)2
(12)

in which n denotes the sample size, Yi represents the ith a sample value, Ŷi denots the sample estimates.

2.2. Study Area and Data

Hubei Province is located between northern latitudes 29◦05′ and 33◦20′ and eastern latitudes
108◦21′ and 116◦07′ within China. The province covers an area of 185,900 square kilometers, and
includes a variety of topographical regions, including mountains, plains, and transitional topographic
zones. The topography of Hubei Province exhibits the highest elevation of 3090 m in its western
region, and lowest towards its eastern area, with a lowest elevation of −142 m [39]. Hubei Province
lies within a north–south transitional climatic zone, belonging to the northeastern Asian monsoonal
region, except for the higher elevations of the western mountainous areas. Most of the province
features a subtropical monsoonal, humid climate. The warm temperature coincides with the rainy
period, providing abundant rainfall to support agroforest production [39]. The spatial distribution of
meteorological sites and the digital elevation model (DEM) are shown in Figure 2.

 

Figure 2. The spatial distribution of meteorological sites and digital elevation model (DEM)
data representation.

The Hubei Meteorological Bureau provided annual and monthly precipitation data from 75
meteorological stations from 2006 through 2014 in Hubei Province. Figure 3 displays the average
monthly precipitation distribution for the period of record.

  
Figure 3. Cont.

196



Remote Sens. 2020, 12, 2547

  

  

  

Figure 3. The monthly precipitation distribution from 2006 to 2014.

Many factors influence the spatial distribution of precipitation. Previous studies have
demonstrated that topographic characteristics are the main controlling factor [40,41]. The Normalized
Differential Vegetation Index (NDVI) is influenced by precipitation, and vice versa [42,43]. This work
employs the Digital Elevation Model (DEM) Shuttle Radar Topography Mission (SRTM) data with
90 m resolution. The NDVI data are the MODND1M for China with 500 m resolution NDVI monthly
synthesis products. All of the above data are available from the Geospatial Data Cloud website
(http://www.gscloud.cn).

2.3. Data Preprocessing

All data were consolidated under the WGS-84 geographic coordinate system. The grid resolution
employed was 0.1◦ × 0.1◦. Precipitation constitutes the dependent variable; longitude, latitude, DEM,
and the NDVI are the independent variables. The timescale of precipitation data is divided into
monthly and annual categories. The monthly data represent the time series data from January 2006
through December 2014. The yearly data denote the time series data from 2006 through 2014.
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The interpolation accuracy of the GTWR models was evaluated by cross-verification (CV). The 75
meteorological sites were randomly divided into 60 sites (80% of the total number of sites) as the
modeling set for interpolation; the remaining 15 sites (20% of the total number of sites) were chosen as
the validation set, which was used to evaluate the models’ accuracies. This paper employs the GTWR
models corresponding to several timescales listed in Table 1.

Table 1. Listing of the geographically and temporally weighted regression (GTWR) models.

Model Spatial Weight Time Weight Timescale
Calculation

Method
Residual

Processing

GTWR(Y) Gaussian Gaussian Year Subtraction None

GTWR(M) Gaussian Gaussian Month Subtraction None

GTWR(D) Gaussian Gaussian Day Subtraction None

GTWR(E) Gaussian Exponential Day Subtraction None

GTWR(C) Gaussian Exponential Day Sinusoidal None

GTWRK Gaussian Exponential Day Subtraction Kriging
interpolation

3. Results and Analysis

3.1. Monthly Data

The fitting interpolation distribution maps for July 2008 and May 2013 are shown in Figures 4
and 5, respectively.

Figure 4. The fitting interpolation distribution map for geographically weighted regression (GWR),
GTWR(M), GTWR(D), GTWR(E), and GTWR(C) corresponding to July 2008.
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Figure 5. The interpolation distribution maps for GWR, GTWR(M), GTWR(D), GTWR(E), and GTWR(C)
corresponding to May 2013.

The average error maps of MAE, MRE, and RMSE for monthly scale data are shown in Figure 6.

(a) MAE distribution chart of monthly scale data 

Figure 6. Cont.
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(b) MRE distribution chart of monthly scale data 

(c) RMSE distribution chart of monthly scale data 

Figure 6. The average error maps for monthly scale data from 2006 through 2014. (a–c) represent the
average distribution chart of mean average error (MAE), mean root error (MRE), and root mean square
error (RMSE), respectively.

It can be seen in Figure 6 and Table 2 that the optimal timescale of the GTWR model is daily for
the monthly scale data. The MAE, MRE, and RMSE decrease by 36%, 56%, and 35%, respectively, when
choosing GTWR(D) instead of GTWR(M). The GTWR(E) improves the accuracy of the results compared
to GTWR(D), by reducing the MAE, MRE, and RMSE by 0.7%, 1.1%, and 0.6%, respectively. The fitting
accuracy of GTWR(E) and GWR are similar, with a difference of about 3% for the monthly scale data
results shown in Table 2. The GTWR(C) has a lower accuracy compared with GWR, and increased
MAE, MRE, and RMSE by 25%, 45%, and 24%. The GTWRK has the highest accuracy compared with
GWR, and decreased MAE, MRE, and RMSE by 3%, 10%, and 1%, respectively.

Figure 7 shows the MAE, MRE, and RMSE of monthly GWR and GTWRK models in different
seasons. According to the character, the fitting accuracy of the GTWRK model is higher than that of
the GWR model as a whole, especially in spring, autumn, and winter.
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Table 2. The average MAE, MRE, and RMSE for the monthly scale data.

Model MAE (mm) MRE RMSE (mm)

GWR 20.36 0.29 25.80
GTWR(M) 33.08 0.69 40.90
GTWR(D) 21.09 0.31 26.57
GTWR(E) 20.92 0.30 26.40
GTWR(C) 25.54 0.42 31.88
GTWRK 19.77 0.26 25.47

(a) Comparison of evaluation indicators of GWR and GTWRK models in spring

(b) Comparison of evaluation indicators of GWR and GTWRK models in summer

(c) Comparison of evaluation indicators of GWR and GTWRK models in autumn

(d) Comparison of evaluation indicators of GWR and GTWRK models in winter

Figure 7. Applicability of GWR and GTWRK models in different seasons. (a–d) represent the
distribution chart of MAE (Units: mm), MRE, and RMSE (Units: mm) in the four seasons, respectively.

3.2. Annual Data

The interpolation distribution maps corresponding to 2010 and 2012 are shown in Figures 8
and 9, respectively.
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Figure 8. The interpolation distribution maps for GWR, GTWR(Y), GTWR(M), GTWR(D), and GTWR(E)
corresponding to 2010.

Figure 9. The interpolation distribution maps for GWR, GTWR(Y), GTWR(M), GTWR(D), and GTWR(E)
corresponding to 2012.

It is seen in Figure 10 and Table 3 that the optimal timescale of the GTWR model is daily for the
annual scale data. The MAE, MRE, RMSE decrease by 13%, 15%, and 14%, respectively, when choosing
the GTWR(Y) over the GTWR(D). In the results, the accuracy error of GTWR(E) can be reduced by
about 0.2%, compared to GTWR(D). When the GTWRK is compared to the GWR model, MAE, MRE,
and RMSE decrease by 3%, 10%, and 5%, respectively.
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Figure 10. The average error for annual data.

Table 3. The average MAE, MRE, and RMSE for the annual data.

Model MAE (mm) MRE RMSE (mm)

GWR 101.64 0.10 127.08
GTWR(Y) 116.04 0.12 147.94
GTWR(M) 107.93 0.11 137.69
GTWR(D) 101.41 0.10 127.57
GTWR(E) 101.17 0.10 128.01
GTWRK 98.27 0.09 120.60

4. Discussion

The performances of GWR and GTWR models are relatively similar at the annual and monthly
scales according to the reductions in average MAE, MRE, and RMSE. However the application of the
GTWR model is not effective with respect to all the indicators, which reflects the extreme uncertainties
of rainfall in time.

It is preferable to use a daily time scale to calculate spatial weights. Precipitation is formed
by precipitation processes, and the duration of each process is usually several days. Therefore, as
the timescale goes from yearly to daily the fine temporal details of precipitation gradually become
prominent. Figure 11 shows the precipitation process in August 2008. The average monthly precipitation
stands for the rainfall of the whole month. Consequently, the performance of the GTWR(D) model with
a daily time scale is much better than the GTWR(M) and GTWR(Y) models’ at the monthly (Table 2)
and annual (Table 3) scales.

The periodicity of precipitation has some impact on improving the accuracy of interpolation.
As shown in Figure 6 shows the GTWR(C) model performs better than GTWR(M). However, the
frequency and amplitude of each precipitation cycle are very different, as shown in Figures 3 and 11.
The calculation of the periodic function needs further study.

The introduction of kriging is reasonable in the improvement of interpolation accuracy. Table 4
shows the normality test of residuals between the results of the GTWR model and the actual precipitation.
The residuals of most months fitted normal distribution (significance > 0.05), while other months,
such as May, June, September, and December, fitted approximate normal distribution (kurtosis < 10
and skewness < 3). Compared with the GTWR model, the GTWRK model performed well in terms
of average MAE, MRE, and RMSE (Tables 2 and 3). The GTWRK model produces a more accurate
spatio-temporal precipitation. The GTWRK model’s performance varies performs through the seasons.
This work represent summer as June, July, and August. It seen in Table 4, the residuals in these months
all fitted the approximately normal distribution, which affects the accuracy of the GTWRK model to
some extent.
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(a) Average monthly precipitation from 2006 to 2014 (b) Monthly precipitation in 2008 

 
(c) the daily precipitation in August 2008 

Figure 11. The average precipitation of Hubei.

Table 4. The normality test of residuals between GTWR and the actual precipitation.

Month
Kolmogorov-Smirnova

Kurtosis Skewness Average Precipitation (mm)
df Sig.

January 60 0.200 * 0.674 0.553 53.99
February 60 0.200 * −0.424 −0.01 16.29

March 60 0.200 * 1.228 0.448 65.99
April 60 0.200 * 5.968 1.661 99.41
May 60 0.005 3.979 1.802 134.22
June 60 0.006 −0.139 0.844 130.83
July 60 0.059 0.95 0.939 255.36

August 60 0.054 0.922 0.886 266.10
September 60 0.039 0.342 0.626 46.81

October 60 0.200 * 0.965 0.273 111.70
November 60 0.200 * 0.471 −0.08 46.72
December 60 0 0.709 0.386 7.01

* This is a lower bound of the true significance; a. Lilliefors significance correction.

5. Conclusions

In this work, a GTWRK model combined with the GTWR and kriging model was introduced to
interpolate the spatial distribution of monthly and annual precipitation from 2006 through 2014 in
Hubei Province. The main conclusions are as follows:

(1) GTWRK obtains a better average interpolation accuracy, compared to the GWR model.
In the comparison between the GTWRK and GWR, the MAE decreased from 101.64 to 98.27.
Consequently, we conclude that it is an improvement to extend GTWR with kriging.

(2) The optimal timescale for interpolating precipitation data with the GTWR model is daily.
The fitting accuracy is improved when the timescale is converted from yearly to daily. Compared
with the GTWR(M) model, the average MAE, MRE, and RMSE of the monthly scale data decreased
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by 36%, 56%, and 35%, respectively, when using daily data. The same indices for the annual data
reduced by 13%, 15%, and 14% when using daily data, respectively.

(3) The temporal weight based on an exponential function improved the GTWR model at the monthly
and annual data. It reduced the accuracy difference of the monthly scale between GTWR and
GWR by about 3%. For the yearly scale data, the years with improved accuracy account for about
55%. Especially in 2008, 2009, 2010, 2011, and 2013, the accuracy was improved significantly.
Meanwhile, the GTWRK improves the accuracy as measured by the MAE, MRE, and RMSE by
3%, 10%, and 1%, respectively, of monthly precipitation prediction, and by 3%, 10%, and 5%,
respectively, of annual precipitation predictions.

(4) The proposed model could be applied to manage similar phenomena with a large historical
dataset. Meanwhile, the GTWR model takes into account the spatial and temporal heterogeneity
of precipitation and produces better estimates of the residuals.

(5) This work explored the annual, monthly, and daily scales to adjust the optimal time scale, while
other time scales should be explored in future work. Additionally, the influence of the periodic
characteristics of precipitation on the GTWR model needs further study.
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Abstract: In this paper, precipitation estimates derived from the Italian ground radar network (IT GR)
are used in conjunction with Spinning Enhanced Visible and InfraRed Imager (SEVIRI) measurements
to develop an operational oriented algorithm (RAdar INfrared Blending algorithm for Operational
Weather monitoring (RAINBOW)) able to provide precipitation pattern and intensity. The algorithm
evaluates surface precipitation over five geographical boxes (in which the study area is divided).
It is composed of two main modules that exploit a second-degree polynomial relationship between
the SEVIRI brightness temperature at 10.8 μm TB10.8 and the precipitation rate estimates from IT
GR. These relationships are applied to each acquisition of SEVIRI in order to provide a surface
precipitation map. The results, based on a number of case studies, show good performance of
RAINBOW when it is compared with ground reference (precipitation rate map from interpolated rain
gauge measurements), with high Probability of Detection (POD) and low False Alarm Ratio (FAR)
values, especially for light to moderate precipitation range. At the same time, the mean error (ME)
values are about 0 mmh−1, while root mean square error (RMSE) is about 2 mmh−1, highlighting
a limited variability of the RAINBOW estimations. The precipitation retrievals from RAINBOW
have been also compared with the European Organization for the Exploitation of Meteorological
Satellites (EUMETSAT) Satellite Application Facility on Support to Operational Hydrology and
Water Management (H SAF) official microwave (MW)/infrared (IR) combined product (P-IN-SEVIRI).
RAINBOW shows better performances than P-IN-SEVIRI, in terms of both detection and estimates of
precipitation fields when they are compared to the ground reference. RAINBOW has been designed as
an operational product, to provide complementary information to that of the national radar network
where the IT GR coverage is absent, or the quality (expressed in terms of Quality Index (QI)) of
the RAINBOW estimates is low. The aim of RAINBOW is to complement the radar and rain gauge
network supporting the operational precipitation monitoring.

Keywords: remote sensing; precipitation; SEVIRI; ground radar

1. Introduction

Accurate precipitation measurements are essential for the validation of global climate models
and for understanding the natural variability of the earth’s climate. Moreover, rainfall monitoring can
serve as an important element for risk management of severe precipitation events.

Although the importance of quantitative determination of rainfall is well recognized, reliable
retrieval of precipitation is often difficult. First, precipitation represents one of the most difficult
atmospheric variables to be accurately measured due to its high temporal and spatial variability.

Remote Sens. 2020, 12, 2444; doi:10.3390/rs12152444 www.mdpi.com/journal/remotesensing209



Remote Sens. 2020, 12, 2444

Furthermore, the only instruments that guarantee direct measurements of precipitation are rain gauges
and disdrometers. Both types of instruments, although, have a quite high temporal resolution,
and provide point-like measurements, ensuring a low spatial resolution. On the other hand,
ground-based radars provide measurements of rainfall with a relatively high spatial and temporal
resolution. Although they represent a valuable source of information, they provide an indirect
measurement of precipitation. In addition, radar observations are affected by several uncertainty
sources, including miscalibration, ground clutter, beam blocking, attenuation, Wireless Local Area
Network (W-LAN) interferences [1–4].

Space-borne monitoring of clouds and precipitation all around the globe has been gaining growing
interest from the international scientific community as a primary contribution to the improvement
of global precipitation measurement and to the determination and detection of the global climatic
changes. Most of the space-borne monitoring systems take advantage of passive instrumentation,
(e.g. radiometers), using both infrared (IR) and microwave (MW) emissions to retrieve cloud properties
and precipitation estimation. However, it is difficult to establish an exact quantitative relationship
between surface rain rate and the cloud physical quantities (e.g., brightness temperatures) measured
by the various sensors [5–8]).

IR-based estimates of rainfall exploit the sensitivity of the IR measurements to the uppermost layers
of clouds, but the measured cloud-top brightness temperatures do not provide sufficient information
to retrieve the actual intensity of surface rainfall with high reliability. However, the relevance of
IR estimates lie in the wide coverage of the earth at relatively high spatial and temporal resolution
provided by geosynchronous satellites [9–13]), being IR sensors, mainly mounted on geostationary
(GEO) satellites (e.g., the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard of Meteosat
Second Generation (MSG) and the Geostationary Operational Environmental Satellite (GOES) Imagers).

However, rainfall estimates based on IR and VIS measurements are constantly evolving thanks
also to the improved performance of the sensors. In this regard, it should be noted that the IR and
VIS based rainfall retrievals have obtained an important improvement by the exploitation of optical
and microphysical clouds parameters (e.g., optical thickness, particle radius), thanks to the higher
enhanced spectral resolution of the new generation of geostationary sensors (e.g., MSG SEVIRI and
GOES Imagers) [14–18]. In addition, the use of optical and microphysical cloud parameters, the use
of classification schemes of convective and stratiform precipitation areas has also contributed to
improving the accuracy of rainfall estimates [18,19]. Therefore, while the cloud-top temperature is a
primary reference to detect deep convection and precipitation, the use of microphysics parameters and
of the cloud classification schemes helps to solve the ambiguities in the retrieval and to identify more
accurately the rainy area at the ground [20]. It is also worth mentioning that the combined use of both
IR and VIS radiation to provide meteorological products supporting nowcasting activities has been
widely studied in the EUMETSAT program—Satellite Application Facilities on Support to Nowcasting
and Very Short Range Forecasting (NWC SAF) [20–22]. Furthermore, significant progresses are being
made in the field of hyperspectral IR detection and substantial impacts are expected on the Numerical
Weather Prediction (NWP) [23–25].

On the other hand, MW-based observations have the great advantage of providing a more
direct measurement of the precipitation due to the ability of MW radiation to penetrate precipitating
clouds and interact with its liquid and ice hydrometeors [26–30]). At the same time, they suffer of
the insufficient temporal frequency of Low Earth Orbit (LEO) satellite overpasses (which carry MW
instruments), with respect to the high variability of the precipitation in time and space.

To reduce the evidenced limitations and obtain satisfactory precipitation measurements in terms of
accuracy, spatial, and temporal resolution, researchers have increasingly moved to using combinations
of sensors. The joint use of MW and IR measurements has long been recognized as very effective as it
combines the accuracy of the instantaneous MW data and the repetition and coverage characteristics
of the IR geostationary measurements [12,31–34]).
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The higher number of LEO-GEO satellites orbiting around the globe has made available a
significant amount of precipitation estimates. The availability of these estimates are useful to build
accurate and reliable multi-satellite datasets. The goal is to provide products with the best short-range
estimates, called High Resolution Precipitation Products (HRPP). The Tropical Rainfall Measuring
Mission’s (TRMM) Multisatellite Precipitation Analysis (TMPA) was produced according to this
line, since it combines precipitation estimates from multiple satellites, as well as from rain gauges,
where feasible, to generate rainfall data [35,36].

The Climate Prediction Center morphing method (CMORPH) uses motion vectors from dynamic
GEO-IR images to fill the temporal gaps between two available Passive Microwave (PMW) rainfall
estimates [37]. The Japanese Global Precipitation Measurement (GPM) standard product Global
Satellite Mapping of Precipitation (GSMaP) is a PMW–IR precipitation product. The algorithm
integrates PMW data with infrared radiometer data to achieve high temporal and spatial resolution
global precipitation estimates [38]. The National Oceanic and Atmospheric Administration (NOAA)
Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR) algorithm estimates rainfall at a
fine temporal resolution using PMW (SSM/I—-Special Sensor Microwave/Imager) and GEO (GOES)
satellites. It uses SSM/I data for rain/no-rain pixels classification, and then GOES data to calibrate the
relationship between brightness temperature and rain rate via linear regression for the precipitating
pixels [39,40]. The PERSIANN (Precipitation Estimation from Remotely Sensed Information using
Artificial Neural Networks) algorithm of the Center for Hydrometeorology and Remote Sensing
(CHRS) is an adaptive, multi-platform precipitation estimation algorithm, based on an artificial neural
network approach. It merges high quality data from National Aeronautics and Space Administration
(NASA), National Oceanic and Atmospheric Administration (NOAA), and Defense Meteorological
Satellite Program (DMSP) low-altitude polar-orbit satellites with sampled data from geosynchronous
satellites [41–43]. The Integrated Multi-satellitE Retrievals for GPM (IMERG) is a merged precipitation
product developed by the US GPM science team. This algorithm is intended to produce fine time-
and space-scale estimates for the entire globe using inter-calibrated, merged, and interpolated data
from all available PMW satellites, together with microwave-calibrated infrared (IR) satellite estimates,
precipitation gauge analyses, and other precipitation estimators [44].

The combination of MW and IR measurements generally follows two main techniques—the so-called
“blended” or “microwave-calibrated” and “morphing”. The first one is based on a calibration of IR cloud
top temperatures measurements using the MW (namely Passive MW-PMW) precipitation estimates,
in order to generate local relationships between the IR and PMW observations [31,32,35,43,45–50]).
The derived relationships are then applied to the IR data, increasing the spatial and temporal extent
of the precipitation estimation with respect to the PMW overpasses. The “morphing” technique is
based on the evidence that IR data, locally updated using PMW-based rainfall measurements, can be
employed to measure cloud movement, propagating forward in time the rain field, between the
consecutive LEO PMW satellite overpasses [37,51–54]. Basically, this technique derives estimates of
precipitation from infrared data when passive microwave information is unavailable.

This paper describes an algorithm, named RAINBOW (RAdar INfrared Blending algorithm
for Operational Weather monitoring) combining the data collected by SEVIRI and by the Italian
ground-based radars network, coordinated by the Italian Department of Civil Protection (IT GR) to
provide precipitation estimation over Italy. The main objective of the algorithm is to provide rainfall
estimates from SEVIRI observations, by exploiting the portion of IT GR data with the highest quality.
The algorithm has been developed by using the “blended” approach taking using the Surface Rainfall
Intensity (SRI) composite product obtained by combining the measurements from all the radars of the
network. The Italian ground radar network represents a valuable monitoring system for the detection
and warning of severe weather and related hydro-geological risks. As a matter of fact, Italy, and more
generally the Mediterranean basin, is affected by severe weather events of different nature (e.g., deep
convective systems, cyclones, tropical-like cyclones, etc.) hitting coastal as well as inland areas, causing
serious damages and casualties [55–62]).
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The IT GR is also currently an important part of the ground reference system for the Precipitation
Product Validation Group of the EUMETSAT Satellite Application Facility for Support to Operational
Hydrology and Water Management project [63]. However, the spatial heterogeneity of the data quality,
related to orography and spatial coverage of the IT GR network, imposes the selection of the data to be
used for blending.

The RAINBOW algorithm presented in this paper has been developed within the agreement
between the Italian Department of Civil Protection and the Institute of Atmospheric Sciences and
Climate (ISAC) of the National Research Council of Italy (CNR). The concept is to design an operational
product to complement the radar monitoring of relevant precipitation events by covering both sea
areas (not covered by IT GR) and areas where the quality of IT GR data is lower due to limited coverage
and orographic obstruction. One of the request that has to be satisfied by RAINBOW is the as short as
possible running time in order to provide precipitation estimates as soon as the SEVIRI acquisition
is available.

This paper is organized as follows. Section 2 presents the instrumentation and methodology used
in the design of the algorithm. Section 3 reports the results obtained by the algorithm when it is applied
to selected case studies with the relative discussion. The conclusions are then reported in Section 4.

2. Instrumentation and Methods

Two-and-a-half years of data (from 1 July 2015 to 31 December 2017) collected by the IT GR network,
and by the SEVIRI radiometer, have been used to develop the RAINBOW algorithm. The algorithm
combines the SEVIRI brightness temperature and the precipitation rate estimated from the ground
radars (GRs) to derive a relationship between these two quantities to be applied to each SEVIRI
acquisition (i.e., every fifteen minutes). The area of interest is centered on the Italian peninsula, namely
between 36–48◦N and 6–20◦E.

2.1. IT GR Network

At the time of the work, the Italian ground radar (GR) network includes 20 C-band and 3
X-band radar, managed by 11 administrations. Moreover, 7 C-band and 3 X-band systems (all with
dual-polarization capability) are managed by the Department of Civil Protection (DPC), which is also
the developer and distributor of the national precipitation product. The spatial distribution of the IT
GR network with the associated Quality Index (QI) is depicted on Figure 1. The processing architecture
is basically composed of two main steps, where the radar measurements are first locally processed by a
unique software system, then all the products are centralized to generate the national level products.

There are different sources that can increase the uncertainty in the radar precipitation estimation [64].
The main errors can be identified by contamination by non-weather returns (clutter), partial beam
blocking, beam broadening at increasing distances, vertical variability of precipitation [32,65,66],
and rain path attenuation [1,67–69]. Due to the morphology of the Italian territory, the uncertainty
can be mainly associated to the orography-related effects, especially in southern Italy where the radar
coverage as well as the radar overlapping is poor [3,70]. Another error source is the Radio Local
Area Network (RLAN) interferences, which are properly dealt with and filtered out using an effective
algorithm based on a multi-parameter fuzzy logic approach that also make use of the Signal Quality
Index (SQI).
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Figure 1. Italian ground radar network (IT GR) spatial coverage and its associated Quality Index (QI).

The processing system aims at identifying most of the uncertainty sources in order to compensate
them, whenever it is possible, before estimating precipitation. As described in [71], the data quality
index results from the combination of the partial QIs associated to each identified error source.
A point-by-point description of the operational radar processing chain can be found in [72]. A sensitivity
analysis, previously conducted, compared hourly rain gauge and radar data for increasing QI values.
The results evidenced that the error (i.e., the difference between radar and rain gauges estimates) has
its minimum value for QI = 0.60. At higher QI values, the error increased because of the presence of
outliers together to a marked decrease of the sample size [72]. Following this analysis, only QI values
equal or greater than 0.60 are considered reliable and are used within RAINBOW algorithm.

Furthermore, a filtering process is applied to the GR data by comparing them with the data
collected by the Italian rain gauges network. The radar data showing marked differences with respect
to the rain gauges measurements are discarded. The analysis is based on the ratio between the
rain gauges and ground radars hourly cumulated data. Namely, the GR data are discarded if the
ratio is less than 0.1, being this value chosen because it is much smaller than the average value
that the ratio assumes close to the location of a calibrated polarimetric weather radar [73]. At the
end of this operational process chain, the Surface Rainfall Intensity (SRI) product is provided over
a 1 × 1 km2 grid with a temporal resolution of 10 min. The SRI is obtained taking into account the
orography (and the clutter associated), the technical characteristics of the radar (e.g., the various
elevation angles and the scanning time frequency, the correction of the partial beam blocking [74,75].
In particular, the single-site SRI is estimated considered the whole radar volume in polar coordinates,
then the national composite is computed in Cartesian coordinates. For a given geographical location,
the single site SRI is retrieved combining the radar observations at all elevation scans θk, through a
quality-weighted average [71,75,76]. Finally, the national SRI composite is built by combining the
single-radar rainfall maps through a quality-weighted approach. In case in a given geographical
location two or more radar SRI estimates are available, the one with the highest quality weights more.
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2.2. SEVIRI Radiometer

The Spinning Enhanced Visible and InfraRed Imager (SEVIRI) radiometer [77] is the main
instrument onboard of Meteosat Second Generation (MSG). The MSG is a geostationary satellite located
at about 36,000 km above the Earth surface at 0◦N, 0◦E. SEVIRI is a passive microwave instrument
collecting radiation from a target area and focusing it on detectors sensitive to 12 different bands of the
electromagnetic spectrum. The twelve channels are distributed among visible part of electromagnetic
spectrum (channels VIS 0.6 μm and VIS 0.8 μm), near-infrared (channel NIR 1.6 μm), infrared (channels
IR 3.9 to IR 13.4 μm—for a total of eight channels) and High Resolution Visible (channel HRV 0.75 μm).
The SEVIRI nominal time resolution is 15 min, of which twelve minutes are allocated to collect images,
while the remaining three minutes are used for calibration, retrace, and stabilization. The SEVIRI spatial
resolutions ranges from 1 km for the HRV channel to 3 km for VIS-NIR-IR channels at sub-satellite
point (i.e., at 0◦N, 0◦E). The spatial resolution decreases moving away from the sub-satellite point
(e.g., over the study area, the Italian peninsula, it is around 4 km for the VIS-NIR-IR channels).

SEVIRI measures the radiation emitted by a target located along the radiometer field of view
(i.e., the total radiation emitted by clouds). Depending on the considered channel, the amount of
measured radiation is representative of different cloud characteristics. While the measurement in
the VIS channels gives an indication about the optical depth of the cloud, the measurement in the IR
channels are generally indicative of different cloud properties. In this study, we focused only on three
IR channels, namely channels 5, 6, and 9. Channels 5 and 6 are centered in the emission spectrum of
the water vapor (WV) at wavelengths at 6.25 and 7.35 μm, respectively, giving an indication about the
cloud optical depth other than to determine the water vapor distribution in two distinct layers of the
atmosphere. The IR 10.8 μm channel provides continuous observation of the cloud top temperature.
For these channels, the final output of SEVIRI is the brightness temperature (TB) that is defined as the
temperature of a black body, which emits the same amount of radiation as observed.

2.3. P-IN-SEVIRI

P-IN-SEVIRI is a precipitation product developed in the Satellite Application Facility on Support
to Operational Hydrology and Water Management (H SAF) project [78], providing instantaneous
precipitation rate at spatial and temporal SEVIRI resolution. It is provided by EUMETSAT, and it is
based on an underlying collection of time and space overlapping overpasses from SEVIRI IR imagers
and surface rain rate estimates (through the use of algorithms based on Low Earth Orbit-Passive
Microwave (LEO PMW) radiometers), which constitutes a look up table of geo-located relationships
between rain rate and TB at 10.8 μm, updated as soon as new overlapping SEVIRI IR and LEO
PMW overpasses are available. The processing method is called “Rapid Update” (RU) blending
technique [79].

As new input datasets (MW and IR) are available in the processing chain, the MW-derived rain rat
(RR) pixels are paired with their time and space-coincident geostationary 10.8 μm IR TB data, using a
10-min maximum allowed time offset between the pixel acquisition times and a maximum space offset
of 10 km between the pixel coordinates. Each co-located data increments the histograms of TB and RR
within a latitude-longitude box 2.5◦ wide (i.e., a 2.5◦ × 2.5◦ box), as well as the eight surrounding boxes
(this overlap ensures a fairly smooth transition in the histogram shape between neighboring boxes).
The rationale behind these threshold values for time collocation and box size is discussed by [80].

In order to set-up a meaningful statistical ensemble, the method can look at older MW-IR slot
intersections (no older than 24 h), until a certain (75%) box coverage is reached and a minimum number
of coincident observations are gathered for a 2.5◦ × 2.5◦ region (at present 400 points, this is a tunable
parameter in the procedure). Thus, the RU technique requires an initial start-up time period (~24 h),
to allow for establishing meaningful, initial relationships all over the considered area.

As soon as a box is refreshed with new data, a probabilistic histogram matching relationship is
updated using the MW RR and IR TB probability distribution functions (PDF), and an updated lookup
table (histogram file) is created.
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2.4. GRISO

The Random Generator of Spatial Interpolation from uncertain Observations (GRISO) [81,82]
is an improved kriging-like technique implemented by the International Centre on Environmental
Monitoring (CIMA Research Foundation) to provide rainfall rate estimates. As input, GRISO uses the
data from the Italian rain gauge network composed by roughly 3000 tipping bucket gauges (the number
can change because of new instrument installation or malfunctioning of the available ones). While, in
general, the rain gauge temporal sampling can change, instrument-by-instrument, ranging between 1 to
60 min (the minimum sampling time for Italian rain gauges is set to 15 min), the minimum detectable
rain amount is equal to 0.2 mm. The GRISO technique preserves the rainfall rate values measured at
the gauge location, allowing for a dynamical definition of the covariance structure associated with each
rain gauge by the interpolation procedure. Each correlation structure depends both on the rain gauge
location and on the accumulation time considered. Furthermore, GRISO is adopted in the H SAF
validation procedure in comparison with European ground data [63] and respect to Dual-frequency
Precipitation Radar (DPR) precipitation product [72]. The GRISO data available are provided over a
regular grid (1 km × 1 km) with an hourly time step.

2.5. Parallax Correction

As highlighted in Sections 2.1 and 2.2, IT GR has higher spatial resolution than SEVIRI (i.e., 1 km
versus to 4 km). The first step to correctly match ground-based radar and satellite observation is the
upscale of the IT GR data to the SEVIRI resolution. Preliminarily, it has to be highlighted that satellite
observations of the top surface of clouds is affected by the parallax effect (parallax error), which results
in a dislocation of the ground mapped position. The parallax error is a function of three factors that is
latitude, longitude, and height of the cloud other than the radius of Earth. While latitude and longitude
of the cloud and radius of Earth are known, the height of the cloud has to be determined.

To this end, the TB measured by SEVIRI channel 9 (TB10.8) is matched with the vertical profiles of
temperature provided by European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis
(ERA-Interim) data [83–85]. The ERA-Interim data are provided on the same grid of SEVIRI over 37 not
equi-spaced pressure levels (from 10 to 1000 hPa corresponding to altitudes ranging from 0 to 16 km about
with spatial resolution between 240 and 1400 m about) with a time resolution of six hours (i.e., four runs
of the model per day). For each SEVIRI instantaneous field of view (IFOV), the TB10.8 is compared with
the corresponding and closest in time vertical profile of temperature provided by ERA-Interim in order
to estimate the cloud top height. At this point, the formula reported by Equation (1) can be applied to
quantify the parallax displacement as function of longitude and latitude:

Δγ(λ,φ) =
P·√1− cos2λ·cos2φ

P·cosλ·cosφ− 1
· h
R

(1)

where P = 1 + H
R with H distance between satellite and Earth surface (~36,000 km), R radius of Earth,

h height of cloud top, λ and φ longitude and latitude, respectively. Once that Δγ(λ,φ) is calculated,
it can be converted in number of SEVIRI IFOV displacement both in longitude and latitude. The cloud
is then moved to the correct position. The parallax displacement can be marked over the Mediterranean
area depending on the cloud top height.

Figure 2 shows the parallax displacement (in km) as function of latitude, longitude and cloud top
height. The parallax displacement for low clouds is almost constant around 2.3 km, regardless of the
coordinates (latitude, longitude) of the measurement point. For higher cloud top, the displacement
becomes significant (up to 15–20 km), depending also on the geographical position. The displacement
varies by about 5/6 km for cloud heights of 11/14 km moving from south to north (i.e., from 36◦N to
46◦N and at a given longitude). Moving from west to east (and, therefore, at the same latitude), the
variability of the parallax displacement is more limited (from about 1.5 to 2 km).
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Figure 2. Parallax displacement as function of latitude, longitude, and cloud top height.

2.6. RAINBOW Algorithm

The RAINBOW algorithm is composed by a static module, which has been developed using
historical data, and a dynamic module, which continuously updates the data to be used.

Both static and dynamic modules of RAINBOW have been developed for each of the five
geographical boxes in which the area of interest has been divided (Figure 3). The choice to divide
the area of study in geographical boxes is mainly related to the fact that precipitations with different
microphysics properties can occurred over the Italian territory (e.g., a precipitation over the Alps may
have different characteristics of a simultaneous precipitation over sea and/or in proximity of the coast).
In addition, the precipitation occurring at the same time in different locations could be at different stage
of its evolution. Dividing the area of study in geographical boxes mitigates the problems deriving from
the situations just above described. In general, the smaller the box the better is the characterization
of the precipitation. However, the box size has to be large enough to ensure an adequate number
of samples in order to perform a reliable calibration. At the same time, an excessive number of
geographical boxes can create discontinuities in the transition zones (i.e., on the line connecting two
adjacent boxes). It was found that a good trade-off for the Italian country was to divide the country in
five boxes.

Figure 3. Geographical boxes division of the area of study.
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The RAINBOW algorithm works with data at SEVIRI spatial and temporal resolution and
provides the output at the same spatial and temporal resolution. Thus, the first step is to downscale
the SRI data at SEVIRI resolution. The SRI pixels selected for each SEVIRI IFOV have to satisfy two
different thresholds:

The mean QI is calculated considering all the IT GR pixels within a SEVIRI IFOV. To consider the
IFOV useful, the mean QI has to be higher than 60%.

If the threshold of 60% for the mean QI is overcome, the mean SRI (i.e., the mean precipitation
rate for a SEVIRI IFOV) is calculated by considering only the pixel with QI ≥ 80%. The threshold at
80% allows to discard the pixels affected by any possible spurious signal (e.g., noise, beam blockage,
etc.). At the same time, the maximum SRI value is stored.

At this point, RAINBOW decides if to use the static or dynamic part of the algorithm. The decision
is based on the number of useful IFOVs in each geographical box (i.e., the IFOVs with both RR
and TB data) collected both in the last hour with respect to the running time and in the last SEVIRI
acquisition (we recall that GR data have higher temporal resolution than SEVIRI, ten versus 15 min,
respectively). In particular, if the number of useful IFOVs in the last hour is higher (or equal) than 50%
and, the number of useful IFOVs in the last acquisition is higher (or equal) than 10% or lower than
10% but the maximum RR exceed 3 mmh−1, the dynamic module of RAINBOW algorithm is applied.
On the other hand, if these conditions are not satisfied, the static module of RAINBOW algorithm
is used. The thresholds are defined through sensitivity tests changing both the percentage of useful
IFOVs and the maximum RR value. The final output of both dynamic and static part of RAINBOW is a
RR-TB10.8 relationship, for each geographical box, to be applied to the SEVIRI data in order to give
precipitation estimation. The main difference between the two modules is that the dynamic one updates
and changes the RR-TB10.8 relationship at each new SEVIRI acquisition, while the static one makes use
of RR-TB10.8 relationships obtained by considering the whole dataset available (i.e., from 1 July, 2015
to 31 December, 2017). Furthermore, a RR-TB10.8 relationship for each meteorological season is derived
in the static module. The RR-TB10.8 relationship is obtained by sampling the TB10.8 between 200 K
and 270 K in 35 bins 2 K width. For each bin, the mean rainfall rate and the mean of maxima rainfall
rates are calculated. More specifically, the TB10.8 spectrum is split in two parts, one between 200 K
and 220 K and one between 220 K and 270 K, and two RR-TB10.8 relationships are derived. A second
degree polynomial RR-TB10.8 relationship is derived for the first part of TB10.8 spectrum (200 ≤ TB10.8

≤ 220 K), while a first degree polynomial RR-TB10.8 relationship is derived for the first part of TB10.8

spectrum (220 < TB10.8 ≤ 270 K).
Figure 4 shows, as an example, the RR-TB10.8 relationship obtained from the whole dataset for each

season and each box used by the static module of the algorithm. It outlines how the higher rainfall rates
are associated to the lower TB10.8. Fall and summer (Figure 4a–d) are the seasons where this relationship
is more straightforward for all the considered geographical boxes. At the same time, winter (Figure 4b)
is the season with the lowest precipitation rate (as could be expected) and with a very light relationship
between RR and TB10.8. Together to the RR-TB10.8 relationship, the probability of precipitation (POP)
is calculated for each TB10.8 bin and the corresponding POP-TB10.8 relationship is derived. The POP
is defined as the ratio between the number of SEVIRI IFOVs with precipitation (RR ≥ 0.25 mmh−1)
and the number of SEVIRI IFOVs with no precipitation (RR < 0.25 mmh−1). As for the RR-TB10.8

relationship, the dynamic module of RAINBOW updates and changes the POP-TB10.8 relationship at
each SEVIRI acquisition, while the static module again takes advantages of the POP-TB10.8 relationship
(for each box and each season) built by using the whole available dataset.
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Figure 4. RR-TB10.8 relationship obtained from the whole dataset (i.e., from 1 July, 2015 to 31 December,
31, 2017) for each box for (a) fall, (b) winter, (c) spring, and (d) summer season, respectively.

Figure 5 reports the POP-TB10.8 relationships derived for each season and each box. The POP
clearly increases decreasing the TB10.8 during fall and summer season (Figure 5a–d), reaching the
100% for TB10.8 as low as 210 K (boxes 2 and 3 show a decrease of POP for TB10.8 < 210 K during
fall season—Figure 5a). Not as straightforward as for fall/summer is the POP-TB10.8 relationship for
spring/winter (Figure 5b–c). There is a sharp decrease of POP at TB10.8 higher than 255 K. At the same
time, POP increases decreasing TB10.8 up to 220 K about; then, the trend diversifies among the boxes,
with most of them showing a marked decrease of POP for TB10.8 lower than 220 K. Among these,
someone present a sharp increase when TB10.8 reaches values lower than 210K. The decrease of POP at
lower TB10.8 values is mainly related to the presence of cirrus clouds, which are no-precipitating clouds
with very low cloud top temperature. The occurrence of cirrus clouds reaches a maximum (minimum)
in winter (summer) [86]. This aspect is related to the lower temperature in the troposphere during
winter that favors both the formation and the maintenance of ice crystals, which are the constituents of
this type of clouds [87].

218



Remote Sens. 2020, 12, 2444

 

Figure 5. POP-TB10.8 relationship obtained from the whole dataset (i.e., from 1 July, 2015 to 31 December,
2017) for each box for (a) fall, (b) winter, (c) spring, and (d) summer season, respectively.

3. Results

The methodology described above has been applied to several case studies. The algorithm
performances were analyzed by comparing the RAINBOW precipitation retrievals with the outputs of
GRISO and P-IN-SEVIRI on a regular grid (0.25◦ × 0.25◦) for ten selected case studies (occurred in 2016
and 2017). Furthermore, the potentialities and limitations of RAINBOW are discussed for two outputs
of the algorithm considering two different case studies.

The first considered event occurred in the night between 9 and 10 September, 2017, causing a
flash flood which hit the coastal city of Livorno (43.5◦N, 10.3◦E), in the Tuscany region. In the area
around the city, three rain gauges measured more than 230 mm of accumulated precipitation in six
hours (00:00–06:00 UTC), with peaks of 150 mm h−1 registered between 01:00 and 03:00 UTC.

Regarding the event observed on 10 September 2017, Figure 6 shows the TB10.8 as measured by
SEVIRI (Figure 6a), the instantaneous rainfall rate as estimated by IT GR network at SEVIRI spatial
resolution (Figure 6b) and by RAINBOW (Figure 6c) at 01:12 UTC, respectively. The SEVIRI TB10.8

(Figure 6a) highlights the presence of a V-shaped thunderstorm hitting mainly the north part of Tuscany
region. The updraft core developed over sea, just offshore of the coastal line remained stationary
for several hours (roughly between 18:00 UTC of 9 September and the 03:00 UTC of 10 September).
Values of TB10.8 as low as about 210 K are measured in the updraft core corresponding to a cloud
top height around 12 km. The plot also outlines the presence of a storm line across the Sardinia
region. The IT GR network estimated rainfall rate values up to 50 mmh−1 (Figure 6b) within a SEVIRI
IFOV (i.e., round 4 km × 4 km). At the same time, the spatial extension of the storm is quite limited
both in terms of cloud and precipitation coverage. The same can be said for the precipitation across
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the Sardinia even if the estimated rainfall rates reach lower values up to 40 mmh−1. Finally, lighter
precipitation is detected in the northern part of Italy. The RAINBOW rainfall rate estimation (Figure 6c)
captures well the two most intense precipitation zones (i.e., the area around Livorno and over Sardinia)
but tends to detect precipitation over a larger area than radar. At the same time, the precipitation peak
is well identified in both location and intensity, with a slight underestimation of the most intense cells.

Figure 6. Snapshot relative to the 01:12 UTC of 10 September, 2017. Panel (a) shows the TB10.8 as
measured by Spinning Enhanced Visible and InfraRed Imager (SEVIRI), (b) the instantaneous rainfall
rate as estimated by Italian ground radar network (IT GR) network at SEVIRI spatial resolution and (c)
by RAdar INfrared Blending algorithm for Operational Weather monitoring (RAINBOW).

Figure 7 shows a snapshot relative to the 04:12 UTC for the case study of 14 October, 2016.
Although the storm involved the same region (at least at that time), different properties of RAINBOW
can be highlighted by the analysis if this case study. The case study reported in Figure 7 presents
different characteristics showing two convective cells, one between Tuscany and Emilia Romagna
regions, and one out of the Italian territory over south France (partially over sea and partially over
land). Both convective cells have bigger spatial extension and even colder TB10.8 values up to 205 K
about (Figure 7a). To the big cloud extension does not correspond an equal precipitation extension; in
fact, the IT GR network shows scattered and small precipitation clusters with a quite wide range of
intensity from few mmh−1 to almost 50 mmh−1 (Figure 7b). Analyzing the precipitation estimated by
RAINBOW, it is possible to note significant differences with respect to SRI (Figure 7c):

Figure 7. Snapshot relative to the 04:12 UTC of 14 October, 2016. Panel (a) shows the TB10.8 as measured
by SEVIRI, (b) the instantaneous rainfall rate as estimated by IT GR network at SEVIRI spatial resolution
and (c) by RAINBOW.

The rainfall rate peak estimated by RAINBOW is weaker than that estimated by IT GR, with
maximum values around 20 mmh−1. This can be mainly attributed to the limited number of IFOVs
with intense rainfall rate considered in the calibration process.

RAINBOW is able to estimate precipitation for the convective cell over France and for the small cell
on the border between Tuscany and Umbria region (red circle in Figure 7c). However, the precipitation
corresponding to this latter cell is slightly overestimated, in terms of spatial extension, by RAINBOW.
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On the other hand, the precipitation cluster centered on the coastal line of Tuscany is well detected by
RAINBOW. In the operational frame in which the algorithm is intended, this case study highlights
the potentialities of RAINBOW. The precipitation detection of the two cells can be considered as
warning of a possible event moving toward the Italian territory and as complementary to the SRI
estimation, respectively.

4. Discussion

The algorithm performances were assessed by comparing the RAINBOW outputs with the GRISO
data (taken as reference) on a regular 0.25◦ × 0.25◦ grid for 10 case studies. Since both RAINBOW
and GRISO are provided at higher but different spatial resolutions, they are up-scaled to a regular
0.25◦ × 0.25◦ grid. Both categorical scores (Probability of Detection (POD), False Alarm Ratio (FAR),
Heidke Skill Score (HSS)) and continuous scores (mean error (ME) and root mean square error (RMSE))
have been considered [88]. The analysis has been done on an hourly basis (mm of rain fell in this
time interval) considering the entire event of each case study. Furthermore, a minimum cumulative
hourly rainfall threshold of 0.25 mm and three different intervals of cumulated rain are considered:
light 0.25–1 mm, moderate 1–10 mm, and heavy 10–100 mm. The statistical scores above reported
have been calculated even between P-IN-SEVIRI and GRISO in order to compare the RAINBOW and
P-IN-SEVIRI performances.

The results shown in Figure 8 evidence excellent algorithm performance especially for moderate
and heavy precipitation intensity. The Probability of Detection (POD)—Figure 8a) ranges between
0.8 and 1, except for light precipitation (0.25–1 mm); the False Alarm Ratio (FAR)—Figure 8b) has a
specular trend with respect to the POD, with higher values for light precipitation and lower for the
other rain intervals, while the Heidke Skill Score (HSS)—Figure 8c) follows the trend of the POD with
values up to 0.8. It should be noted that the values of POD, FAR, and HSS are almost constant for all
10 case studies, underlining an excellent stability of the algorithm. In particular, HSS increases with
time, highlighting that the continuous update of DPR GR network plays a crucial role in the RAINBOW
performance by supplying ever-higher quality data input.

 

Figure 8. (a) Probability of Detection (POD), (b) False Alarm Ratio (FAR), and (c) Heidke Skill Score
(HSS) scores calculated by comparing the RAINBOW outputs with the Random Generator of Spatial
Interpolation from uncertain Observations (GRISO) data (taken as reference) on a regular 0.25◦ × 0.25◦
grid for 10 case studies. A minimum cumulated rain threshold is set at 0.25 mm and three different
intervals of cumulated rain are considered: light 0.25–1 mm, moderate 1–10 mm, and heavy 10–100 mm.

The algorithm error in estimating the precipitation rate is quantified with respect to GRISO by
calculating the mean error (ME) and the root mean square error (RMSE). Figure 9a shows that the ME
oscillates around 0 mm for all cases and for all precipitation intervals except for heavy intensity where
the values range between −7 and −9 mm indicating a clear underestimation of the higher intensities by
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the algorithm. The good results are confirmed by the RMSE (Figure 9b), which never exceeds 3 mm
except for intense rainfall.

Figure 9. (a) Mean error (ME) and (b) root mean square error (RMSE) scores calculated by comparing
the RAINBOW outputs with the GRISO data (taken as reference) on a regular 0.25◦ × 0.25◦ grid for 10
case studies. A minimum cumulated rain threshold is set at 0.25 mm and three different intervals of
cumulated rain are considered: light 0.25–1 mm, moderate 1–10 mm, and heavy 10–100 mm.

A sensitivity study has been conducted in order to evaluate the performance of RAINBOW as a
function of the resolution of the regular grid. To this end, four different grids have been chosen ranging
from 0.1◦ × 0.1◦ to 0.25◦ × 0.25◦. The analysis has been always done on an hourly basis considering
only the minimum cumulative hourly rainfall threshold of 0.25 mm.

The results shown in Figure 10 evidence very stable values for the categorical scores as a function
of the resolution of the grid. In particular, POD (Figure 10a) has constant values slightly higher than
0.8, while both FAR and HSS (Figure 10b,c, respectively) show a more irregular trend only for the
0.1◦ × 0.1◦ grid with higher and lower values, respectively, than the other grids.

 

Figure 10. (a) POD, (b) FAR, and (c) HSS scores calculated by comparing the RAINBOW outputs
with the GRISO data (taken as reference) on different regular grids for 10 case studies. A minimum
cumulated rain threshold is set at 0.25 mm.

The continuous scores in Figure 11 confirm the results shown in Figure 10. The ME (Figure 11a) is
always negative, around −0.4 mm, except for the first two case studies of 0.1◦ × 0.1◦ grid. On the other
hand, the RMSE (Figure 11b) has very limited variations around 3.2 (mm), while for 0.1◦ × 0.1◦ grid,
it shows an irregular trend with values dropping down up to 1.8 mm.
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Figure 11. (a) ME and (b) RMSE scores calculated by comparing the RAINBOW outputs with the
GRISO data (taken as reference) on different regular grids for 10 case studies. A minimum cumulated
rain threshold is set at 0.25 mm.

The same analyses, shown in Figures 8 and 9, have been carried out by comparing the statistical
scores calculated for RAINBOW with those one calculated for P-IN-SEVIRI product (always taking
GRISO as reference). The results are ported in Figures 10 and 11 for categorical and continuous
scores, respectively.

Figure 12 evidences the better performances of RAINBOW in detecting precipitation.
The PODRAINBOW is always higher than PODP-IN-SEVIRI (Figure 12a) regardless the intensity of
precipitation (different marker shape in the plot) and the different events (labeled by different colors).
For light precipitation (circle markers), the PODP-IN-SEVIRI does not exceed 0.3, while PODRAINBOW

ranges between 0.5 and 0.7. At moderate and heavy precipitation (and even not considering any
rain intervals), while PODRAINBOW is always above 0.8, PODP-IN-SEVIRI shows a wide range of values
between 0.2 and 1. At the same time, the FAR is very similar between the two algorithms with most of
the points on the one-to-one line and at values generally lower than 0.4 (Figure 12b). The combination
of POD and FAR results in constantly higher values oh HSSRAINBOW with respect to P-IN-SEVIRI
(Figure 12c). The very good performances of RAINBOW in detecting the precipitation are confirmed
by continuous scores, which refer to the precipitation rate estimation.

Figure 12. Comparison of (a) POD, (b) FAR, and (c) HSS scores calculated for RAINBOW and
P-IN-SEVIRI outputs with respect to the GRISO data (taken as reference) on a regular 0.25◦ × 0.25◦ grid
for 10 case studies. A minimum cumulated rain threshold is set at 0.25 mm and three different intervals
of cumulated rain are considered: light 0.25–1 mm, moderate 1–10 mm, and heavy 10–100 mm.

Figure 13a shows that MERAINBOW and MEP-IN-SEVIRI are very similar for heavier precipitation
intensity, while MERAINBOW and MEP-IN-SEVIRI assume values around 0 mm and slightly negative,
respectively, for light to moderate precipitation intensity. On the other hand, RMSERAINBOW is generally
lower than RMSEP-IN-SEVIRI regardless the precipitation rate (Figure 13b).
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Figure 13. Comparison of (a) ME and (b) RMSE scores calculated for RAINBOW and P-IN-SEVIRI
outputs with respect to the GRISO data (taken as reference) on a regular 0.25◦ × 0.25◦ grid for 10
case studies. A minimum cumulated rain threshold is set at 0.25 mm and three different intervals of
cumulated rain are considered: light 0.25–1 mm, moderate 1–10 mm, and heavy 10–100 mm.

5. Conclusions

A new algorithm (RAINBOW) based on the combination of the data collected by SEVIRI onboard
of MSG) and by the Italian ground-based radars network (IT GR) to provide precipitation estimation
over Italy has been described. The algorithm, consisting of two main modules and operating over five
geographical boxes in which the study area is divided, derives and updates (whenever it is possible)
second degree polynomial RR-TB10.8 relationships. These relationships are applied to each acquisition
of SEVIRI in order to provide a precipitation map. The results, based on a number of case studies,
show good performance of the algorithm when it is compared with ground reference (i.e., GRISO
precipitation pattern and intensity derived from rain gauge measurements), with high/low values for
POD/FAR especially for light to moderate precipitation range. At the same time, the ME values are
close to 0 mmh−1, while RMSE is about 2 mmh−1, highlighting a remarkable accuracy of RAINBOW
estimates, whereas the capability to detect the precipitation pattern and intensity decreases for severe
phenomena. It has to be remarked that severe events could be characterized by high spatial variability,
which cannot be accomplished by RAINBOW (due to the SEVIRI instrument characteristics). It is worth
noting that the performance of RAINBOW are quite constant through the different case studies with a
slight improvement of the performance over time. This is related to the fact that RAINBOW relies on
the high quality precipitation rate estimates from IT GR network, which are constantly maintained
and upgraded. Furthermore, RAINBOW shows better performance than P-IN-SEVIRI (i.e., the H SAF
product based on IR-derived precipitation estimation) when both products are compared to GRISO.

RAINBOW was conceived as an operational product to supply data where the IT GR coverage
is absent or it presents low QI values. In this regard, the main aim of RAINBOW is the detection of
extreme events that are barely observed by IT GR network in order to support the pre-alarm system for
the hydro-geological risks and the life threatening conditions related to the incoming extreme events.
Furthermore, the algorithm has to comply with short running time and with ease of management,
which are fundamental aspects in a pre-alarm system. RAINBOW ensures running time comparable
(or even shorter) with the IT GR running time and significantly shorter than P-IN-SEVIRI running time.

The next launch (scheduled in December 2021) of Flexible Combined Imager (FCI) on board of
Meteosat Third Generation (MTG), will be useful to further improve the performance of RAINBOW.
The higher number of channels available, the higher spatial and temporal resolution will provide
higher quality data to characterize, also, very local severe events.
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Abstract: The distribution of hydrometeors in thunderstorms is still under investigation as well as
the process of electrification in thunderclouds leading to lightning discharges. One indicator of cloud
electrification might be high values of the Linear Depolarization Ratio (LDR) at higher vertical levels.
This study focuses on LDR values derived from vertically pointing cloud radars and the distribution of
five hydrometeor species during 38 days with thunderstorms which occurred in 2018 and 2019 in Central
Europe, close to our radar site. The study shows improved algorithms for de-aliasing, the derivation of
vertical air velocity and the classification of hydrometeors in clouds using radar data. The comparison
of vertical profiles with observed lightning discharges in the vicinity of the radar site (≤1 km) suggested
that cloud radar data can indirectly identify “lightning” areas by high LDR values observed at higher
gates due to the alignment of ice crystals, likely because of an intensified electric field in thunderclouds.
Simultaneously, the results indicated that at higher gates, there is a mixture of several hydrometeor
species, which suggests a well-known electrification process by collisions of hydrometeors.

Keywords: cloud radar; thunderstorm; LDR; hydrometeor; hydrometeor classification; lightning;
discharge

1. Introduction

Investigation of atmospheric electricity and lightning has started several hundred years ago and
intense attention to processes of cloud electrification has been examined over the last several decades.
However, our knowledge is still not complete because of our limited abilities to measure and observe
processes, which occur in the atmosphere. It is supposed that the existence and development of electric
field in the atmosphere is related to cosmic rays [1,2] and synergy of hydrometeors in clouds [3].
Currently, it is widely accepted that the main process leading to cloud electrification and lightning
discharges is the process of riming electrification, often called the non-inductive charging [3–6]. In the
non-inductive charging, it is assumed that the charging occurs mainly due to collisions of hydrometeors;
between ice and graupel hydrometeors in particular [3,5].

Except for mathematical models, research data on electrification processes are available from
laboratory experiments [7,8] and field campaigns carried out in thunderclouds (e.g., balloon experiments,
aircraft data) [9–13] or they can be derived from satellite or radar observations [14–19]. Cloud radars
represent an important data source for estimation of distribution of hydrometeors and for derivation of
vertical air velocity. Thereby in thunderclouds, the cloud radars may provide necessary information for
the charging mechanism by collisions of hydrometeors. In addition, measurements from polarimetric
cloud radars can be used to indicate the electric field in cloud. Vonnegut [20] was the first, who described
that ice crystals align within the electrostatic field in thunderstorms. Since that time, there were other
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studies suggesting it as well [21–24]. This alignment of highly asymmetric ice particles is assumed to
be indicated by clearly higher values of depolarization [25–28].

In this paper, we study differences in distribution of hydrometeors and in values of Linear
Depolarization Ratio (LDR) in thunderclouds in dependence on whether a lightning discharge was
recorded in the vicinity of the radar site or not. Based on data from a vertically-oriented polarimetric
cloud radar, we estimate 5 hydrometeor species and we compare the identified hydrometeor species
together with LDR values with lightning observations recorded by EUCLID (European Cooperation
for Lightning Detection) network.

The paper is organized as follows. After this introductory section, Section 2 provides the reader
with description of the cloud radar and of algorithms, which we apply to derive vertical air velocity
(AV) and to classify hydrometeor species (Hclass). This section also provides an overview of analyzed
thunderstorms and describes methods of comparison between obtained or derived data from the cloud
radar and recorded lightning discharges near the radar site. Section 3 displays results; it details a
thunderstorm that occurred on 10 June 2019 from diverse perspectives and then it shows common
characteristics and average vertical profiles of LDR of (all) analyzed thunderstorms. Section 4 discusses
the obtained results, while Section 5 draws conclusions of this study.

2. Materials and Methods

2.1. Vertically-Oriented Cloud Radar

A vertically-oriented Ka-band cloud radar MIRA 35c manufactured by METEK Gmbh (http:
//metek.de/) was mounted at the top of Milešovka hill (837 m a. s. l.) at a meteorological observatory
(Figure 1) in Central Europe (northwestern Czechia; 50◦33′18” N and 13◦55′54” E) in March 2018.
The polarimetric cloud radar (i.e., cloud profiler) works at a frequency of 35 GHz. After calibration of
the instrument, the radar began operating in June 2018. Table 1 provides the reader with the technical
specifications of the radar.

Figure 1. Placement of the cloud radar MIRA35c at the Milešovka observatory situated at the top of
Milešovka hill (837 m a.s.l.) and its geographical location in Czechia in Central Europe.
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Table 1. Technical parameters of the cloud radar MIRA35c situated at the Milešovka hill.

Technical Parameter Cloud Radar MIRA 35c

Radar system Doppler polarimetric
Radar band Ka-band
Radar core Magnetron type

Antenna type Cassegrain
Transmitter frequency 35.12 GHz +/−0.1 GHz

Peak power 2.5 kW
Antenna diameter 1 m

Antenna gain 48.5 dB
Antenna beam width 0.6◦

Pulse repetition frequency 2.5–10 kHz
Pulse width min. 0.1 μs

max. 0.4 μs
Detection unambiguous velocity range (± VNyquist) ±10.65 m/s

Original measurements Doppler spectra

The cloud radar is equipped with an Interactive Data Language (IDL) software enabling the basic
processing and visualization of Doppler spectra (http://metek.de/product/mira-35c/). Doppler spectra
are obtained after averaging 40 consecutive values and after estimation of noise floor. Values below the
estimated noise floor are considered as NaN values (they have no signal). The IDL software calculates
three moments of averaged Doppler spectra such as radar reflectivity (Z), Doppler vertical velocity
(DV) and spectrum width (σ). Among derived quantities, one also obtains values of Signal-to-Noise
Ratio (SNR) and values of Linear Depolarization Ratio (LDR). Approximately, the radar records are
available every 2 s from 509 gates. Gates are denoted ig = 4, . . . , ig = 512 because the first three gates
(ig = 1, ig = 2, and ig = 3), which are closest to the ground, are not processed. The distance between
two consecutive gates is 28.8 m.

In this study, we use averaged noise-free Doppler spectra to estimate vertical air velocity (AV)
and derive five hydrometeor species. The algorithm deriving AV as well as the algorithm classifying
hydrometeors (Hclass) are described in Sections 2.2 and 2.3.

2.2. Calculation of AV

The calculation of AV is crucial for classification of hydrometeor species (Hclass, Section 2.3)
because the classification is mainly based on their terminal velocity (TV). The cloud radar measures
composed velocity (DV) of TV and air velocity (AV), such as DV = TV + AV. When calculating AV,
the AV is oriented towards the radar (downward) in accordance with basic processing of measured
data by the IDL software used by the radar manufacturer. At the end of our calculation of AV, however,
the AV orientation is reversed and we present all outputs of AV with upward orientation.

AV calculation is based on very small particles in Doppler spectra that are assumed to be so
light that their TV is very close to zero, i.e., they are carried solely by air, and thus their velocity
defines the AV. This is a common approach that was detailed by Kollias et al. [29], Gossard [30] and
Shupe et al. [31], and conducted by, e.g., Zheng et al. [32] or Sokol et al. [33]. In this study, we innovated
the algorithm used by Sokol et al. [33] to derive AV from variances caused by turbulence, wind shear,
particle size distribution, and finite radar beam width.

We found that the original algorithm used for AV calculation, which performs de-aliasing of the
Doppler spectra, can lead in some cases to significant and unrealistic temporal changes of AV, which
then result in erroneous hydrometeor classification. That is why our new de-aliasing algorithm uses
three methods of AV calculation, compares the result of each of them (AV1, AV2 and AV3) with the
result of the two others and also compares the three calculated AV with the AV calculated for the
previous cloud radar recording, i.e., 2 s back in time, approximately (AVL).

Any Doppler spectrum is stored for each gate in intervals beginning with a component ia and
ending with a component ib, where ia corresponds to lower speed and ib to higher speed. The intervals,
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which are identified by the algorithm of the manufacturer of the cloud radar, represent continuous parts
of a Doppler spectrum which are ordered from the lowest speeds. Note that for a gate, we can obtain
multiple intervals. Components, which are not part of any determined interval, are considered to have
zero amplitude. In this study, we consider not only the interval with the lowest magnitude of velocity
corresponding to ia in the first interval (Sokol, Z. et al. [33]), but also the ia from the second interval.

We assume that measured values might be aliased. Therefore, in addition to recorded values
Vori, we also consider Vori ± Vd values, where Vd = VNyquist + VNyquist (for VNyquist value see Table 1).
We use parameters qtol = 3 and qmax1 = 5 in the following calculations of AV. The calculations of AV
consist of steps provided below, which are performed for individual gates (ig) from the bottom (ig = 4)
to the top (ig = 512) because AV is not affected by aliasing in the lowest gates as updrafts cannot be
that strong (>VNyquist) near the ground. We calculate AV1, AV2, AV3 and AVL and assign the resulting
AV to the value (i.e., among AV1, AV2, AV3 and AVL) that best corresponds to conditions described in
the next paragraph. In the de-aliasing algorithm, we also use a reference value Vref, which is define in
steps 7, 8 and 9 in the procedure described below.

The procedure of AV calculation consists of following steps:

1. For an ig (ig = 4 at first), we define de-aliasing function (DAL) calculating velocity Vcor using
original and reference velocities Vori and Vref, respectively:

Vcor = DAL(Vori, Vref), (1)

where Vcor corresponds to one of the values (Vori, Vori + Vd or Vori − Vd) that is closest to the
value Vref.

2. AV1 is calculated in the same way as by Sokol et al. [33], i.e., we consider only those components
of Doppler spectra whose amplitude is at least 0.1% of the maximum Doppler spectra amplitude.

3. AV2 is calculated in the same way as in point 2 but without the mentioned condition concerning
the maximum Doppler spectra amplitude.

4. In addition to the (first) interval corresponding to the lowest speed, we also consider the (second)
interval corresponding to the second lowest speed. We determine AV3 as the most left point of
the second interval. The reason is that it can happen that the first interval containing the lowest
speed is very narrow and far from the second interval. A closer comparison commonly shows
that the first interval is likely an unremoved noise since its values are usually inconsistent with
values in a gate below and a gate above and these values are also inconsistent with the values
recorded in previous measurements. In such a case, it is evident that the second interval should
also be considered in AV calculation (AV3).

5. We take into account AV calculated for the same gate but in the previous recording (≈2 s prior to
the investigated recording) and we denote the resulting value AVL.

6. If AV(ig − 1) is available, then we calculate AV(ig) using the following:
AV1cor(ig) = DAL(AV1(ig), AV(ig − 1))
AV2cor(ig) = DAL(AV2(ig), AV(ig − 1))
AV3cor(ig) = DAL(AV3(ig), AV(ig − 1))
If |AV2cor(ig) − AV(ig − 1)| < qtol, then AV(ig) = AV2cor(ig), stop
If |AV1cor(ig) − AV(ig − 1)|, then AV(ig) = AV1cor(ig), stop
If |AV3cor(ig) − AV(ig − 1)|, then AV(ig) = AV3cor(ig), stop

7. If all the above given conditions (no. 6) are fulfilled, then AV(ig) is assigned according to the
nearest value among AV1cor(ig), AV2cor(ig) and AV3cor(ig) to Vref = AV(ig − 1) if AV(ig − 1)
is available.

8. If AV(ig − 1) is not available but AVL(ig) is available, then: Vref = AVL(ig) and AV(ig) =
DAL(AV2(ig), Vref(ig)).

9. If AVL(ig) is not available, which usually does not happen, then AV(ig) from more past recordings
is used as Vref.
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10. AV(ig = 4) is calculated using no. 7 and if AV(ig = 4) > qmax1, then AV(ig = 4) is set to AV(ig4) −Vd,
because we do not allow large positive values of AV.

11. We repeat the procedure from no. 1 to no. 9 for the next gate, i.e., one gate higher (ig = ig + 1).
12. The procedure finishes at the highest gate (ig = 512) or at the (highest) gate, where we still

recognize discrete intervals of Doppler spectra in the radar data.

It should be noted that the applied procedure determining AV based on very small particles
(tracers) is limited by how well very small particles are identified in the Doppler spectra. It may
happen, especially in the case of heavy rain, that smallest particles with negligible terminal velocity
are not detected anymore due to extinction or that in the radar volume of some gates, there are only
larger droplets likely due to size sorting. This is related to spots in thunderclouds with high LWC,
which make the larger droplets arrive earlier to lower gates. However, our experience suggests that
these are very rare cases and their effect is marginal.

Calculation of AV precedes the classification of hydrometeor species (Hclass) because AV cannot
be neglected in summer thunderstorms that are under investigation in this paper. Thunderstorms are
a convective phenomenon for which (strong) updrafts and downdrafts are typical.

2.3. Clasiffication of Hydrometeor Species—Hclass

Hclass performed in this paper is similar to Sokol et al. [33] and stands on the idea that the TV of
diverse hydrometeor species differs. It is natural that the existence of a hydrometeor species depends
on ambient air temperature and its shape can be identified by LDR (e.g., shape of ice crystals differs
from that of rain). In this paper, we define five hydrometeor species; cloud water (i.e., cloud droplets),
rain, graupel, hail, and ice and snow particles together. We merged ice and snow particles into one
group following the recommendations provided by Sokol et al. [33], where the algorithm was not able
to efficiently distinguish ice particles from snow.

Terminal velocity range of the 5 hydrometeor species between minimum terminal velocity
(TVmin) and maximum terminal velocity (TVmax) is provided in Table 2. Terminal velocity ranges of
hydrometeor species do not overlap and stem from values provided in COSMO numerical weather
prediction model. We use these values as “standard” values for hydrometeors whenever we make
model simulations over Czechia (e.g., Sokol et al. [34]). The actual TV of a target for any discrete
interval of Doppler spectra corresponds to the result of subtraction of AV from DV for a given peak of
the Doppler spectra.

Table 2. Terminal velocity range of hydrometeor species classified by Hclass.

Hydrometeor Specie Terminal Velocity Range

Cloud water (C) 0.0001–0.15433 m/s
Rain (R) 0.15433–6.3384 m/s

Ice & Snow (IS) 0.0290–1.3133 m/s
Graupel (G) 1.3133–7.7747 m/s

Hail (H) 7.7747–10.0253 m/s

We define the ambient air temperature (T [◦C]), which influences the presence of hydrometeor
species, from ERA5 reanalyses (www.ecmwf.int). Specifically, we take temperature profiles of a
grid point closest to the Milešovka observatory. ERA5 reanalyses provide us with hourly data at a
horizontal resolution of 0.25◦ (geographical latitude) × 0.25◦ (geographical longitude). The use of
ERA5 reanalyses differs from Sokol et al. [33], which used temperature profiles based on sounding
measurements from Praha/Libuš station situated 60 km southeast from the Milešovka observatory.
These sounding data are not only distant from the Milešovka observatory, which is a problem especially
when investigating thunderstorms, but they are also available only at 00, 06 and 12 UTC. On the other
hand, ERA5 reanalyses provide us with vertical profiles at a higher (i.e., hourly) temporal resolution
and from a location much closer to the radar site (12 km). Thus, we consider ERA5 reanalyses more
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suitable for this study. On the other hand, we are aware that the used temperature profiles are not
accurate because the ERA5 data have a low resolution to describe temperature profiles in convective
storms that differ from those of the surrounding air.

Similar to Sokol et al. [33], we use 0 ◦C as a temperature threshold in the Hclass algorithm
and as in Sokol et al. [33], if T > 0 ◦C, then the Hclass provides cloud water, rain, graupel or hail.
However, if T ≤ 0 ◦C, we determine the existence of supercooled water in the higher atmospheric (i.e.,
tropospheric) layers differently than Sokol et al. [33]. Sokol et al. [33] used a fixed threshold of −20 ◦C
below which the supercooled water could not exist although in the case of convective storms, it can
happen that the supercooled water is observed at much lower temperatures (even at −50 ◦C in some
cases) due to strong updrafts and lack of time to freeze. Therefore, we modified the Hclass provided by
Sokol et al. [33] and set that the supercooled cloud water can be found from 0 ◦C up to −40 ◦C (instead
of previous −20 ◦C), which corresponds to generally accepted temperature range for the existence of
supercooled water in mid-latitude summer thunderstorms. We define the existence of supercooled
cloud water within 0 to −40 ◦C only if a condition of AV is met: (i) AV > 1 m/s if T is between 0 ◦C
and −20 ◦C or (ii) AV(T) =1 − (T + 20)/5 if T is between −20 ◦C and −40 ◦C. The threshold for AV and
relationships determining supercooled cloud water were obtained empirically based on subjective
evaluation of their performance at various thunderstorms recorded by the cloud radar.

A limitation of our Hclass is that we did not have the means to objectively verify its results.
Since any Hclass depends on selected terminal velocity range of individual hydrometeors and real
measurements show ambiguity in the terminal velocity ranges, any change in terms of terminal
velocity range of any hydrometeor species will affect the results of all Hclasses. This is the key source
of uncertainty of Hclasses in general. Moreover, while fixing the values of given parameters (e.g.,
terminal velocity range), it is almost impossible to avoid subjectivity. Thus, we tested several values of
parameters, compared obtained results and fixed the parameters to values that provided results closest
to reality based on our experience and/or literature.

2.4. Analysed Data: Thunderstorms of 2018 and 2019

In this study, we used data of the cloud radar situated at the Milešovka observatory (Figure 1) such
as Z, LDR, derived AV (Section 2.2) and classified hydrometeor species (Section 2.3) during days with
lightning registered up to 20 km from the Milešovka observatory by the EUCLID network. The data
covered a period from June 2018 to September 2019. The dataset consisted of 38 days of thunderstorms
(Table 3). Continuous data records lasted at least 2 h and more than one thunderstorm could have
occurred during a single (analyzed) day.

For the dataset of 38 days of thunderstorms (Table 3), we dispose of ground-based observations of
lightning discharges by EUCLID network [35]. We obtained the data from Blitz Informationsdienst
von Siemens (BLIDS) [36], which provides it to EUCLID network, for the whole territory of Czechia
and its neighborhood. BLIDS uses the time of arrival (TOA) principle to locate lightning discharges.
TOA principle is based on assumption that the electromagnetic field induced by a lightning discharge
propagates at the speed of light from its origin in all directions. Individual receivers record TOA and
the difference in TOA among receivers defines the location of the discharge.

The lightning data include information on geographical coordinates of the discharge (in WGS84),
time of the discharge [ms], peak current [kA], polarity of the discharge, type of the discharge
(Cloud-to-Ground CG and Cloud-to-Cloud CC), and on quality of data (binary information). The spatial
accuracy of the lightning dataset was 0.6 km (median) at a confidence level of 95%, while the lightning
detection efficiency was about 100% [37]. All the data used in this study were of good quality according
to the binary information in the lightning dataset.

In addition, we obtained weather radar reflectivity factor data at various Constant Altitude Plan
Position Indicator (CAPPI) levels for the 38 days of thunderstorms (Table 3) from the Czech radar
network (CZRAD; Sokol et al. [38]) operated by the Czech Hydrometeorological Institute. CZRAD
network consists of two C-band weather radars recording measurements every 5 min at a horizontal
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resolution of 1 km. The closest radar is located 100 km southward from the Milešovka observatory.
Main product of the two C-band weather radars is the radar-derived rain rate (R [mm/h]), which
we calculate using the Z–R relationship, such as Z=200R1.6, where Z is the radar reflectivity factor
[mm6/m3] [39]. Furthermore, we had synoptic data from the Milešovka observatory at our disposal,
and in this study, we used rain gauge measurements with a temporal resolution of 1 min.

Table 3. Date of 38 days of thunderstorms with lightning discharges recorded up to 20 km from the
Milešovka observatory in 2018 (left panel) and 2019 (right panel).

Thunderstorms in 2018 Thunderstorms in 2019

2018-06-01 2019-05-20
2018-06-10 2019-05-25
2018-06-11 2019-06-06
2018-06-27 2019-06-10s
2018-06-28 2019-06-12
2018-07-05 2019-06-20
2018-07-21 2019-07-21
2018-07-28 2019-07-29
2018-08-02 2019-07-31
2018-08-03 2019-08-02
2018-08-04 2019-08-03
2018-08-08 2019-08-04
2018-08-13 2019-08-7
2018-08-17 2019-08-11
2018-08-24 2019-08-12
2018-09-21 2019-08-27

2019-08-29
2019-09-01

2.5. Methods of Comparison between Cloud Radar Data and Lightning Data

The comparison of cloud radar data with lightning data is not straightforward due to differences
in their location. The cloud radar is a profiler, i.e., it registers a vertical profile from a particular location
on the ground, whereas lightning data can be registered anywhere. Thus, in this study, we reduced the
lightning dataset to lightning discharges that were located within a circular area around the Milešovka
observatory, where the Milešovka observatory was situated in its centre. We considered several circular
areas (with a radius of 1, 2, 3, 5, 7, 10, and 20 km) around the Milešovka observatory.

We decided to divide storms above the radar into storms with lightning (denoted “near lightning”,
NL) and those without lightning (denoted “far lightning”, FL). After several testing, we selected 1 km
as the radius defining NL because we believe that this is the distance, which describes the condition of
a cloud above the Milešovka observatory, when the development of lightning (i.e., electrification) is
taking place or will soon take place over the Milešovka observatory (or its nearest vicinity). Contrary,
the FL (lightning registered at a distance of 10-20 km from the observatory) represent the condition
of a cloud above the Milešovka observatory, when no discharges were recorded in its direct vicinity.
In Section 3, we depict results for NL as compared to FL.

Another issue in comparing cloud radar data with lightning data is the difference in their temporal
resolution. Cloud radar data are recorded every 2 s approximately, while lightning data are registered
at a temporal resolution in the order of ms. However, this is not of high importance since based on our
experience the temporal variability of radar measurements is not very high, even in thunderstorms.

Being aware of the difference in temporal resolutions of radar and lightning data, we still decided
to consider cloud radar data registered just before and just after the time of any lightning discharge;
i.e., we considered two consecutive cloud radar recordings (distant by 2 s) that we coupled with a
lightning discharge. This way, we compared cloud radar data (vertical profiles of Hclass, AV and LDR)
with lightning data in circular areas around the Milešovka observatory (NL vs. FL) during the 38 days
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of thunderstorms (Table 3). Note that there were 990 lightning discharges observed up to 1 km from
the Milešovka observatory during the 38 days of thunderstorms and 171,754 FL discharges.

3. Results

This section is divided into two parts. The first part describes a particular thunderstorm that
occurred on 10 June 2019. We selected this thunderstorm because on that date, the observer recorded
a thunder less than 1 s after he saw the lightning flash at the Milešovka observatory. According to
geographical coordinates in EUCLID data, the lightning discharge occurred at a distance of only 65 m
from the observatory. This lightning discharge was the second closest in our dataset; on 1 June 2018,
there was a lightning detected directly at the observatory, which hit the observatory according to the
book of records written by observers. Nevertheless, we do not detail this thunderstorm (on 1 June 2018)
in this study since Sokol et al. [33] already studied it in detail.

Contrary to the first part of this section, which is dedicated to one particular thunderstorm,
the second part of this section presents common characteristics, including LDR, that were typical
throughout all thunderstorms that occurred in the 38 days in the dataset (Table 3). It presents results
from the comparison of cloud radar data with lightning data in dependence on the distance of lightning
discharge to the Milešovka observatory (i.e., NL vs. FL).

3.1. Thunderstorm on 10 June 2019

Figure 2 shows the temporal evolution of rain rates (as derived from C-band weather radar data,
Figure 2a) and lightning discharges (Figure 2b) during one hour of the thunderstorm on 10 June 2019,
when most lightning activity was observed close to the Milešovka hill. The temporal evolution is
displayed with a time step of 10 min. Based on rain rates (Figure 2a), it is clearly visible that the
thunderstorm was severe, at least within the central European context.

Figure 2 also shows that the lightning discharges occurred (horizontally) not only within the
precipitation areas but also outside of the precipitation cores; i.e., they may have originated in
non-precipitating parts of the thundercloud as well. As the system moved in time towards east-northeast,
CC flashes had a tendency to precede CG flashes, while lightning flashes (CC + CG together) tended to
occur not only during the period of intense rainfall, but also prior to intense rainfall. This has been
mentioned in other works as well, e.g., [40].

Figure 3 depicts precipitation totals with a time step of 1 min, as registered by a rain gauge with a
resolution of 0.1 mm at the Milešovka observatory between 21 and 22 h UTC on 10 June 2019. Note
that rain rates (i.e., precipitation intensities, Figure 2a) cannot be directly compared with recorded
precipitation totals (Figure 3) as they do not represent the same information. Figure 3 shows that the
highest 1-min precipitation total occurred between 21:39 and 21:40, while the closest lightning was
recorded at 21:37 and 50.341 s. This confirms that lightning flashes may occur prior to heavy rain. Here,
we note that measured precipitation totals by the rain gauge might be underestimated. The reason is
that at the top of Milešovka hill, strong winds frequently appear during storms, which may result in an
underestimation of rainfall totals due to the blowing away of the precipitation from the surface of the
rain gauge.
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(a) 

(b) 

Figure 2. Temporal evolution with a 10-min time step of (a) rain rates derived from C-band weather
radar data (radar circle domains having a radius of 250 km) and (b) lightning discharges between 21 and
22 h UTC as registered by EUCLID network on 10 June 2019. Note that in (b), blue symbols represent
Cloud-to-Cloud (CC) flashes while red symbols display Cloud-to-Ground (CG) flashes. The Milešovka
position is shown in Figure 1.

Concerning data of the cloud radar, Figure 4 displays radar reflectivity together with NL (i.e.,
lightning discharges that occurred not farther than 1 km from the Milešovka observatory). It is obvious
from the figure that NL were related to high reflectivity values, although high reflectivity values were
also typical for the melting layer and below (i.e., below 2.5 km approximately).
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Figure 3. Rainfall totals with a 1-min time step recorded by a rain gauge at the Milešovka observatory
from 21 to 22 h UTC on 10 June, 2019.

Figure 4. Temporal evolution of radar reflectivity factor (Z [dBZ]) of the cloud radar at the Milešovka
observatory during the thunderstorm on 10 June 2019 from 20 to 24 h UTC. Vertical magenta lines depict
CC near-lightning (NL) discharges, while vertical black lines display CG NL discharges. Note that
y-axis (z [m]) displays the height in meters above the cloud radar situated at an elevation of 837 m a.s.l.

It is worthy of note that between 21:30 and 21:40 approximately, there was a sudden decrease in
the vertical span of the thundercloud, according to the cloud radar data (Figure 4). This is the time
when most of rainfall was registered at the Milešovka observatory (Figure 3). This is probably caused
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by the fact that the received signal in the lowest gates was too strong due to heavy rain that the radar
was unable to capture signal from higher gates.

Furthermore, it is interesting to check the temporal evolution of LDR values during the
thunderstorm (Figure 5) that were not corrected using the integrated cross-polarization ratios [41].
In Figure 5, high values of LDR clearly show that the melting layer was around 2500 m above ground
in the thunderstorm. Another zone of high LDR values is visible from 21:30 to 21:50 at higher altitudes,
which is the time interval of intense rainfall (Figure 3) and lightning activity near the radar site
(Figure 4). Contrary to very high LDR values in the melting layer, which are commonly associated
with melting snow flakes, very high LDR values at higher altitudes, such as 4-7 km, can correspond to
non-spherical shape of graupel and/or hail or to aligned ice crystals due to a strong electric field if the
crystals are not aligned along with the co-channel, instead they are oriented at angle close to 45◦ with
both the co- and cross-channels [25,42,43]. It is worthy of note that the elevation around 4-7 km, where
we observed increased LDR, is also considered as the elevation where the main negatively charged
area appears [40]. We discuss this finding further below.

Figure 5. Temporal evolution of linear depolarization ratio (LDR) [dB] during the thunderstorm on
10 June 2019 from 20 to 24 h UTC at the Milešovka observatory. Vertical (black) lines depict CG NL
discharges and y-axis (z [m]) displays the height in meters above the cloud radar situated at an elevation
of 837 m a.s.l.

It should be noted that the LDR data are not available at all gates where we obtained radar
reflectivity factor data (for example, after 21:50). This is the consequence of the attenuation of the
signal received in the plane perpendicular to the transmission plane.

Figure 6 shows the evolution of hydrometeor distribution (resulting from Hclass, Section 2.3)
on 10 June 2019 from 21:00 to 21:59 UTC. Clearly, the lack of data in the vertical profiles between
approximately 21:30 and 21:40 makes the interpretation of the obtained results difficult, especially
because many NL discharges occurred at that time. Nevertheless, the majority of the ten closest
discharges (Figure 6) occurred after 21:40, when we had data again, covering almost all the troposphere.
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Figure 6. Hclass during the thunderstorm on 10 June 2019 from 21:00 to 21:59 UTC at the Milešovka
observatory. Vertical lines depict NL discharges; blue lines depict CC NL discharges, red lines the CG
NL discharges. Ten lightning discharges closest to the observatory are numbered in ascending order
starting from the closest discharge denoted no. 1. Dashed lines represent cases, when more CG/CC
discharges occurred around the same time (order of ms). Note that capital letters in the legend indicate
first letter of classified hydrometeors (Table 2) and y-axis (z [m]) displays the height in meters above
the cloud radar situated at an elevation of 837 m a.s.l.

The results of Hclass indicate that the highest LDR values at the elevation from 4 to 7 km (Figure 5)
correspond to a mixture of several hydrometeor species with a predominance of ice and snow particles
and graupel. These are the species which play major roles in the process of cloud electrification
by collisions of hydrometeors according to currently accepted theories [44]. The mixture of many
hydrometeor species is also evident during very close lightning activity (between 2400 s and almost
3000 s in Figure 6).

The electrification process by collisions of hydrometeors at an elevation of 4–7 km is also supported
by Figure 7, which presents values of the Doppler spectrum width (σ). High values of σ, i.e., large
variability of vertical velocities, just after 21:40 confirm the coexistence of various hydrometeors
and support the existence of collisions of hydrometeors (light species collide with heavier species
having larger terminal velocity). The obtained results of high LDR and sigma values together with the
presence of diverse hydrometeor species may bring us to the conclusion that around 21:40, collisions of
hydrometeors caused a strong electrification of the thundercloud near the radar site.

3.2. Common Characteristics of Analyzed Thunderstorms

This subsection focuses on results related tall thunderstorms in the dataset (Table 3). It shows
their common (different) features and compares them with recent knowledge on lightning processes.
Our intention was to compare NL with FL, when clouds were present above the observatory. Therefore,
in the statistical evaluation, we used data from only those gates, where Hclass identified at least one
hydrometeor species.
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Figure 7. Doppler spectrum width (σ [m/s]) during the thunderstorm on 10 June 2019 from 20 to 24 h
UTC at the Milešovka observatory. Note that the color bar is in logarithmic scale and that y-axis (z [m])
displays the height in meters above the cloud radar situated at an elevation of 837 m a.s.l.

Figure 8 summarizes the results throughout the analyzed thunderstorms at the Milešovka
observatory. It depicts radar-derived quantities for NL discharges compared to that for FL discharges.
It clearly shows that on average, hail, rain and graupel occurred in lower gates more frequently
during NL as compared to FL. For FL, rain and graupel were almost not detected at all. For NL, hail
concentration was higher at an elevation of 2000 to 2500 m above ground. This is the level which
roughly corresponds to the melting layer (Figure 4). Rain concentration was higher at lower elevations,
at 1800 m approximately. Thereby, it can be suggested that the closer the lightning, the higher the
concentration of rain and hail. This agrees with our previous results based on 10 thunderstorms [45].

In addition, Figure 8 displays the results of AV for NL vs. FL. It shows that in the case of NL,
the downward motion of the air substantially prevails at lower altitudes; from the ground to 1000 m
and from 2000 to 3000 m. The layer between 1000 and 2000 m above ground is characterized by
fluctuations in AV, which can be related to an interchange of up- and downdrafts. Updrafts mostly
dominate the elevation from 3000 m upwards. Slow updrafts are typical for very upper vertical levels
(above 9500 m).

Overall, AV seems to be quite low, which is caused by averaging. The variability in AV among
gates seems high for NL. This is caused by much lower number of NL discharges (990) as compared to
FL discharges (171,754), as shown in Figure 9. Concerning FL, AV does not fluctuate much on average
between neighboring gates, which is due to large number of processed data. Figure 8 also shows that
for FL, downward motion prevails from the ground up to 3000 m, while upward motion dominates
the layers above 3000 m on average.
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Figure 8. Vertical profile of the percentage ratio of the occurrence of hydrometeors (r [−]) during
analyzed thunderstorms for: NL discharges (left panel) and far-lightning (FL) discharges (middle
panel). Right panel depicts the vertical profile of air velocity (AV) oriented upwards from the cloud
radar during the thunderstorms: red curve displays averages for NL discharges, while blue curve the
averages for FL discharges. Note that y-axis (z [m]) represents the height in meters above the cloud
radar situated at an elevation of 837 m a.s.l.

Figure 9. Number of examined cases of NL (left) and FL (right) with available LDR at gates. Y-axis
represents the height [m] above the cloud radar situated at an elevation of 837 m a.s.l.

Taking into account the distance of the lightning from the observatory, we do not know whether
the radar measurements took place in the frontal or back side of the thunderstorms or on their lateral
sides. The placement within the thunderstorm may lead to diverse directions and values of AV, which
can be confirmed by high variability of AV (not depicted). In addition to the uncertainty regarding
the localization of measurements with respect to the movement and development of thunderstorms,
it should be emphasized that we present results and quantities that are derived indirectly (i.e., not
directly measured). Therefore, the results cannot be explicitly verified. However, we can state that
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the obtained results are in accordance with the general knowledge about thunderstorms. Therefore,
we believe that the technique used to calculate the vertical air velocity and to classify hydrometeors
give realistic results.

3.3. LDR during Analyzed Thunderstorms

Averages of LDR are depicted in Figure 10 for NL, as compared to FL. For both NL and FL,
the melting layer is not pronounced in LDR averages; there is no obvious increase in LDR averages
in lowest gates. This is very likely related to the fact that the height of the melting layer depends
on current atmospheric conditions, which change from one thunderstorm to another and might also
change during one particular thunderstorm. As a consequence, the height of the melting layer becomes
smooth in averaging, making it imperceptible in the figure.

Figure 10. Vertical profile of mean LDR during thunderstorms observed at the Milešovka observatory
for NL (red curve) as compared to FL (blue curve). Y-axis represents the height [m] above the cloud
radar situated at an elevation of 837 m a.s.l.

The character of the curves in Figure 10 (their oscillation) is influenced by the number of averaged
cases (Figure 9). This is especially true for the red curve representing NL discharges. The isolated
maxima of LDR averages are probably random. However, Figure 10 clearly depicts that at an elevation
of 4 to 6.5 km approximately, there are large LDR averages, which show little oscillations for NL, thus
they do not correspond to random processes. These averages are much larger than the LDR averages
for FL. As in Section 3.1, we attribute it to electrification by collisions and alignment of ice crystals.

To better assign the cause of increased LDR averages in the middle troposphere, Figure 11 shows
1 km layers of frequency of LDR in profiles with similar distribution of graupel and hail (i.e., rounded
hydrometeors). Because concentrations of graupel and hail are similar in both NL and FL (ice or
snow being present almost everywhere in these 1 km layers, Figure 8), it is obvious that there had
to be another process that made the higher LDR more frequent in the case of NL as compared to
FL. We suggest that the additional process could be the alignment of ice crystals observed by other
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researchers, e.g., by Melnikov et al. [25]. However, we are aware that this hypothesis cannot be
exactly verified.

Figure 11. Frequency of LDR (f[−]) at an elevation of: (a) 3–4 km, (b) 4–5 km, (c) 5–6 km and (d) 6–7 km
during thunderstorms observed at the Milešovka observatory for NL (red curve) as compared to FL
(blue curve), when taking into account similar vertical profiles of graupel and hail concentrations.
Y-axis represents the height [m] above the cloud radar situated at an elevation of 837 m a.s.l.

At an elevation between 8 and 9 km, significantly higher averages of LDR for NL, as compared to
FL, could be rather random because of high oscillations of that for NL. On the other hand, the high
oscillations of LDR averages for NL can also be related to the orientation of aligned ice crystals in an
electrified field. LDR can increase if the particles align at an angle close to 45◦ from both the co- and
cross-channels, while it can decrease if the particles align along with the co-channel (LDR reaches
large negative values). Thus, the LDR of non-spherical targets, such as ice crystals, can have strongly
different values (large and small) depending on the azimuth direction to the channels. Therefore,
the variability of LDR may be increased in the case of NL.

The results also suggest that the clouds producing lightning in the vicinity (NL) are vertically
massive and higher than clouds producing FL, at least in our dataset.

4. Discussion

The method we chose, to distinguish between NL and FL, was based on the distance of observed
lightning from the radar site. The results showed that the method can be applicable in general, however,
it would be better if we could also identify in which part of the storm the vertical radar measurements
are taken. We plan to focus on an analysis of the possibility to identify the position of radar within
storms in future. Specifically, our aim is to study whether the radar is located on the frontal or back side
of a storm or on its lateral sides. Such an analysis, however, needs a wider dataset of thunderstorms
registered close to the radar, which we expect to obtain in future.

At present, the amount of data during two years of radar operation that meet the condition for NL
is not sufficient to allow us to divide data into further subsets, which is necessary for the identification
of where—in the thunderstorm—the radar is located. The division of the current dataset into further
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subsets would not lead to sufficiently robust results. Moreover, determining the position of the radar
within a thunderstorm is not trivial and needs thorough investigations.

The distribution of data and the method of processing (averaging) inevitably led to a smoothing
of AV. This smoothing (averaging) of vertical velocity resulted in low values of AV, since the dataset
comprised both positive and negative velocities, which, after averaging, became naturally low.
Nevertheless, regardless of AV smoothing, the profiles of mean AV for NL as compared to that for
FL qualitatively correspond to our knowledge. During the mature state of a thunderstorm, (strong)
positive as well as negative vertical velocities are supposed to be observed.

The applied technique for the recognition of hydrometeors (Hclass) provides meaningful results,
although, of course, we cannot perform its exact verification. However, the structure of hydrometeors
seems right during the maximum activity of the thunderstorm on 10 June 2019 (around 21:40 and
later). At that time, there was a noticeable occurrence of all types of hydrometeors, including hail
and supercooled cloud water throughout the vertical profile. The results obtained by processing all
thunderstorms were also reasonable and explainable.

As far as the supercooled cloud water is concerned, there are no given rules on how to determine
it exactly. In this study, we used a simple algorithm that allows the supercooled water to occur up to
−40 ◦C under the condition that there are small values in the measured Doppler spectra and there is
an updraft of the air motion. We are aware that such an identification of supercooled cloud water is
burdened with uncertainties. However, we consider our results satisfying.

We studied how the LDR differs for stormy areas (NL) and non-stormy areas (FL) and in
our opinion, we showed, in agreement with other works e.g., [25], that a strong electric field in a
thundercloud can be identified by high LDR values. This opinion is based on the fact that the increased
averages of LDR at altitudes of 4 to 6.5 km were reflected for NL only. Our analysis showed that it is
unlikely that the increase in LDR would be solely related to the presence of hail or graupel. On the
contrary, we believe that two processes occur almost simultaneously: (i) electric field formation due to
collisions of graupel and ice particles and (ii) the alignment of ice particles in the electric field leading
to high LDR. It should be mentioned that aligned targets may cause characteristic signatures in the
differential phase between co- and cross-channel IQ signals, but the interpretation of these signatures
is difficult and we would like to address them in the future.

5. Conclusions

We investigated 38 days of thunderstorms when lightning discharges were detected in the vicinity
of the Milešovka observatory; the site of a vertically-oriented Ka-band cloud radar. We analyzed
vertical profiles of diverse cloud radar-derived quantities to find differences between characteristics
when a lightning discharge was recorded close to the radar site (≤1 km, NL) and characteristics when a
lightning discharge was observed from 10-20 km from the radar site, i.e., there was a non-thunderstorm
cloud above the radar (FL).

We concentrated on hydrometeor distribution, values of LDR and vertical air velocities (AV).
We are aware that in most cases, we worked with data that were not directly measured; instead,
we derived them (hydrometeor species, AV). The way we processed the data and derived the variables
may have affected our results. Nevertheless, we believe that the procedure we chose can contribute to
the current knowledge and/or the confirmation of the current knowledge on the occurrence of lightning
in the atmosphere.

We showed that our technique of classifying hydrometeors provides outputs that reasonably
describe thundercloud structures. Since the classification essentially depends on derived AV, our
results indirectly prove that the way we derive AV provides acceptable results, although we cannot
confirm it exactly.

The analysis of data characteristics of NL as compared to FL showed that:

• In the case of NL, the vertical profiles contain vertically-oriented areas with clearly high LDR,
likely caused by an intensified electric field, which makes the ice particles align. The areas
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with increased LDR are visible at an elevation from 4 to 6.5 km above the radar, approximately.
This finding confirms results published in other studies. Unlike other studies, which usually
analyze one single event, we processed 38 days of thunderstorms.

• The vertically-oriented areas with increased LDR comprise various hydrometeors, namely the
ice and snow particles, graupel, hail, and (supercooled) cloud water. These are the areas which
meet the condition for the development of electrification by the collision of hydrometeors. In our
opinion, electric field formation due to the collisions of graupel and ice particles is followed by the
alignment of ice particles in the electric field and both the processes contribute to increases in LDR.
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Abstract: The Global Precipitation Measurement (GPM) mission provides high-resolution
precipitation estimates globally. However, their accuracy needs to be accessed for algorithm
enhancement and hydro-meteorological applications. This study applies data from 388 gauges
in Nepal to evaluate the spatial-temporal patterns presented in recently-developed GPM-Era
satellite-based precipitation (SBP) products, i.e., the Integrated Multi-satellite Retrievals for GPM
(IMERG), satellite-only (IMERG-UC), the gauge-calibrated IMERG (IMERG-C), the Global Satellite
Mapping of Precipitation (GSMaP), satellite-only (GSMaP-MVK), and the gauge-calibrated GSMaP
(GSMaP-Gauge). The main results are as follows: (1) GSMaP-Gauge datasets is more reasonable to
represent the observed spatial distribution of precipitation, followed by IMERG-UC, GSMaP-MVK,
and IMERG-C. (2) The gauge-calibrated datasets are more consistent (in terms of relative root mean
square error (RRMSE) and correlation coefficient (R)) than the satellite-only datasets in representing
the seasonal dynamic range of precipitation. However, all four datasets can reproduce the seasonal
cycle of precipitation, which is predominately governed by the monsoon system. (3) Although all
four SBP products underestimate the monsoonal precipitation, the gauge-calibrated IMERG-C yields
smaller mean bias than GSMaP-Gauge, while GSMaP-Gauge shows the smaller RRMSE and higher
R-value; indicating IMERG-C is more reliable to estimate precipitation amount than GSMaP-Gauge,
whereas GSMaP-Gauge presents more reasonable spatial distribution than IMERG-C. Only IMERG-C
moderately reproduces the evident elevation-dependent pattern of precipitation revealed by gauge
observations, i.e., gradually increasing with elevation up to 2000 m and then decreasing; while
GSMaP-Gauge performs much better in representing the gauge observed spatial pattern than others.
(4) The GSMaP-Gauge calibrated based on the daily gauge analysis is more consistent with detecting
gauge observed precipitation events among the four datasets. The high-intensity related precipitation
extremes (95th percentile) are more intense in regions with an elevation below 2500 m; all four
SBP datasets have low accuracy (<30%) and mostly underestimated (by >40%) the frequency of
extreme events at most of the stations across the country. This work represents the quantification of
the new-generation SBP products on the southern slopes of the central Himalayas in Nepal.
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1. Introduction

Precipitation is a vital component of the water cycle, and understanding the characteristics of
precipitation is essential for hydro-meteorological applications [1,2]. In mountainous regions, water
resource management is further challenging due to the complex climate associated with topographic
variance [3]. In these regions, the occurrences of hydrological hazards such as floods, landslides
and soil erosion are very sensitive to precipitation amounts. Thus, reliable and precise estimates of
precipitation are a prerequisite for hydro-meteorological and natural disaster studies [4,5].

Nepal lies on the south-central part of the main Himalayan range, with more than 80% of
the country covered by mountains; in this environment, there is a high probability of landslides
and debris flows during the monsoon season. Precipitation in the country is extremely variable due to
the complex topography. The seasonal cycle is predominantly governed by the monsoon system [6,7]
with maximum (~80%) precipitation occurring in summer. Rain gauge-based measurements provide
relatively accurate measurements of precipitation on the ground surface [8,9]. These observations
developed by the Department of Hydrology and Meteorology (hereafter, DHM) in Nepal are relatively
dense in the lowlands but sparse in high mountain areas [10,11]. The scarcity of rain gauge observations
is a major challenge in hydro-meteorological studies and for effective water and disaster management.
This scarcity of measurements also limits knowledge of precipitation patterns across the country [12].
Fortunately, high-resolution satellite-based precipitation (hereafter, SBP) products provide potential
alternatives for monitoring precipitation on regular high-resolution grids, yielding unprecedented
levels of detail especially over remote areas and mountainous regions where stations are very sparse.
However, these estimates are indirect measurements and must be verified and calibrated using gauge
observations before further application [13,14].

SBP estimates are based on various remotely sensed characteristics of clouds, such as cloud-top
temperature (IR imagery), reflectivity (visible) or from the scattering effects of ice particles on passive
microwave (PMW) radiation [15–18]. In the post- Tropical Rainfall Measuring Mission (TRMM) era,
the Global Precipitation Measurement (GPM) Core Observatory spacecraft, equipped with advanced
sensors and channels, like the Dual-frequency Precipitation Radar (DPR) and the GPM Microwave
Imager (GMI) which had capabilities to sense light rain and snowfall, was launched on 27 February
2014 in a collaboration between NASA and the Japan Aerospace Exploration Agency (JAXA) [16]. New
SBP products were introduced after the GPM mission: the Integrated Multi-satellite Retrievals for
GPM (IMERG) [19,20]; meanwhile, JAXA updated to a newer version of the Global Satellite Mapping
of Precipitation (GSMaP) product (GSMaP Version 07) with orographic rainfall correction [21].

Several studies have already evaluated SBP products around the globe for different
hydro-meteorological applications [22–28]. They found that the new generation SBP products
(GPM-Era) were improved than their previous version (TRMM-Era). For example, [29–31] found
that the GPM-Era (IMERG-V3) precipitation product outperforms the TRMM-Era (TRMM 3B42V7,
TMPA-RT) precipitation products. Meanwhile, studies conducted in Myanmar found the GSMaP-V07
product had the lowest accuracy when compared with the IMERG-05B product [32]. Similarly,
Wang and Yong [33] also mentioned that IMERG-V05 performed better than GSMaP-V07, especially
in high-elevation areas. A study conducted in Northwestern China did not found any significant
difference in estimating the precipitation by IMERG-V06 and IMERG-V05 [34]. Nevertheless, several
studies have concluded that new generation SBPs products can represent either the spatial pattern
or the overall amount and general characteristics of extreme precipitation events over China [35,36],
Cyprus [37], Austria [38], Africa [39] and India [40].

Besides several global studies, only a few studies have evaluated the SBPs in a topographically
challenging region like Nepal. For example, the TRMM precipitation product shows negative bias
(underestimation) as compared to gauge observations over the Himalayan region of the country [41].
Similarly, Islam et al. [12] found comparable results for 15 stations across the country. In contrast,
Duncan and Biggs, [42] indicated that the TRMM product generally overestimated (positive
bias) the precipitation as compared to a gauge-based gridded product (the Asian Precipitation
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Highly Resolved Observational Data Integration Towards Evaluation: APHRODITE) over Nepal.
In mountainous regions the TRMM (3B43) precipitation product shows reasonable skill, while
the GSMaP, the Precipitation Estimation from Remotely Sensed Information using Artificial Neural
Network (PERSIANN), and the Climate Prediction Center Morphing Method (CMORPH) products
showed considerably weaker performances in reproducing gauge-observed precipitation amounts [6].
A study in a high-elevation area (Khumbu Himalayas) of Nepal compared seasonal and diurnal
variations of precipitation in TRMM (3B42), PERSIANN, CMORPH, and GSMaP products using
hourly gauge observed precipitation [43]. They found that GSMaP performed poorly, while TRMM,
PERSIANN and CMORPH had good agreement with rain-gauge data. Recently, Derin et al. [44]
evaluated the GPM-era SBP products over different complex terrain areas, including ten stations
from Nepal. They found that GSMaP-V07 was better for measuring the orographic precipitation
and precipitation amount as compared to IMERG-V06B after the orographic rainfall classification
ensemble in the GSMaP algorithm. The authors also noticed the better performance of IMERG-V05B to
capture the light and heavy precipitation amount as compared to IMERG-V06B for the evaluated regions.

Most of the past studies in Nepal were based on previous-generation satellite products, which
showed that errors in SBP estimates were partially related to the rugged topography as their algorithms
could not detect orographically-induced precipitation appropriately. Additionally, the local climate
and nature of the topography are some of the dominant factors to characterize the uncertainty of SBP
products [35,45–47]. However, a systematic evaluation of the new-generation SBP products, and a
intercomparison between these products, has not yet been performed at the national scale. Thus, in this
study, we aimed to comprehensively evaluate four precipitation datasets from the two SBP products,
i.e., GPM-era IMERG (V06B) and GSMaP (V07), against 388 gauge observations concerning their
spatial and seasonal accuracy over Nepal. Their performances are analyzed for their tendencies
and discrepancies depending on the different elevation range, and relative intensities on a daily
and monthly timescale from March 2014 to December 2016. Moreover, the accuracy of East to West
diversion of monsoon and extreme wet events on these SBP products are also analyzed. The result of
this study will help to provide critical scientific references to choose the appropriate product for future
scientific research.

2. Materials and Method

2.1. Study Area

Nepal is a country located on the southern slopes of the central Himalayas at 26.36◦–30.45◦N
latitude and 80.06◦–88.2◦E longitude (Figure 1). Approximately 80% of the country comprises hills
and mountains, and the remaining 20% is flatlands. The elevation of the country rises abruptly from
the southern lowlands to the higher Himalayas giving rise to complex topography, weather and climate.
Physiographically, the country is broadly classified into Terai (lowlands), hills and mountains [42,48].
The south Asian monsoon system and westerlies regulate the climatology of the country, with maximum
precipitation in summer season (80%, June–September) followed by spring (March–May), autumn
(October–November), and winter seasons (December–February) [49]. Usually, the monsoon advances
from the east of the country in early June and promotes rainfall to the whole country within ten
days [50]. During the winter, under the westerly-controlled climate in the western region, the country
only receives about 3% of its annual precipitation [51]. Pre- and post-monsoon seasons are generally
dry and hot, while the winter is cold and precipitation is generally in the form of snow, especially
in high-elevation mountain areas [52].
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2.2. Datasets

2.2.1. Rain Gauge Data

The daily precipitation dataset from 387 stations, between March 2014 and December 2016,
were obtained from DHM Nepal (https://www.dhm.gov.np/contents/resources). The DHM stations
provide daily datasets at 03 UTC. For the consistent measurement, DHM uses the same type of
the United States standard eight-inch diameter manual rain gauges [53]. In addition to DHM datasets,
data from a high-elevation Automatic Weather Station (AWS) located in the Everest region (27.95◦N to
86.20◦E, 5050 masl), Pyramid was also used.

Figure 1. The study region, Nepal is divided into three different regions and the meteorological stations
used are distributed from 60 m above sea level (masl) to 5050 masl. The extent of central Himalayas is
adapted from Nie et al. [54].

In total, 388 stations’ data were used for evaluation of SBP products (Figure 1), which were
further subjected to quality control. The remote location, unavailability of AWS, lack of regular
monitoring and maintenance of rain-gauge stations are the primary causes for discontinuities in the data
series. Data coverage (%) at each station between March 2014 and December 2016 is presented
in the Supplementary Materials (S1). The observations from 125 gauges were used in the development
of the Global Precipitation Climatology Centre (GPCC) product, which was, in turn, used to calibrate
IMERG precipitation totals [55]. About 54 stations also belonged to the Global Telecommunications
System (GTS) and were used for the National Oceanic and Atmospheric Administration (NOAA)/CPC
analysis, which was in turn used to calibrate the daily GSMaP-Gauge product [56]. Therefore, there is
a potential dependency problem between the gauge observed and gauge-corrected SBP product used
in this study. The mean precipitation (mm/day) at each rain-gauge station during the study period is
presented in Figure 3a.

2.2.2. Satellite Datasets

IMERG is NASA’s level-3 multi-satellite GPM product. After the GPM mission, four different
versions (V03, V04, V05, and V06) of the IMERG algorithm were developed. IMERG combines retrievals
from PMW and microwave-calibrated infrared (IR) to produce a high-resolution global SBP product.
Compared to earlier versions (V03 and V04), IMERG V05, and V06 inter-calibrate all individual PMW
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satellite estimates from Goddard PROFiling (GPROF2017) scheme [57]. Until V05B, the Lagrangian
time interpolation scheme was computed from IR data, while in V06, a new model-based morphing
scheme in which motion vectors are retrieved from Modern-Era Retrospective Reanalysis 2 (MERRA-2)
and Goddard Earth Observing System Model (GEOS) Forward Processing (FP) data using total column
water vapor (TQV) [58]. For the first time, IMERG V06 used Precipitation Retrieval and Profiling
Scheme (PRPS) Sounder for Atmospheric Profiling of Humidity in the Intertropics by Radiometry
(SAPHIR) only to the combined Ku-swath DPR/GMI product (CORRA) [20]. These intercalibrated
estimates were then merged into a single PMW SBP estimate and used to calibrate the IR-based
precipitation. IMERG uses a Kalman filter-based method to combine the observed PMW, propagated
Pulse Width Modulation (PWM), and IR estimates into a single, best estimate. IMERG provides three
different products, Early, Late and Final runs, with a latency of ~4 h, ~14 h, and ~3.5 months, respectively.
The only forward direction of the cloud motion vector propagation algorithm was adopted in the Early
run. In addition to Early, backward morphing was added in the Late run. Meanwhile, in the Final
run, climatological calibration coefficients were added on the basis of Late run [33]. The rain-gauge
data were not assimilated in Early and Late run, while the Final product was adjusted using 1◦ GPCC
gauge analysis which is interpolated to 0.1º and applied equally to every half hour in the month.
The Final run is mostly recommended for research purposes. IMERG applies the wind-loss correction
scheme [59] to the GPCC gauge analyses during the calibration process. The latest IMERG version 06
products were released to the public in March 2019. The Final version of the IMERG product includes
two precipitation fields, precipitationUncal and precipitationCal. The Early and Late precipitation
products are identical to the Final precipitationUncal since the gauge correction is only applied to
the precipitationCal field in the Final product. IMERG V6B had an upgrade of full intercalibration
to GPM combined instrument datasets (2BCMB), also in this version the input precipitation rates
were increased from 50 to 200 mm/h to adjust fractional coverage [44]. For this study, data from
precipitationUncal (hereafter IMERG-UC) and precipitationCal (hereafter IMERG-C) of 0.1◦ spatial
resolution from the Final run IMERG version 06B between March 2014 and December 2016 were
obtained from the PMM website (https://gpm.nasa.gov/data-access/downloads/gpm). A detailed
description of the IMERG algorithm can be found in Huffman et al. [60].

GSMaP is a SBP product developed by Japan Science and Technology (JST) under the Core
Research for Evolutional Science and Technology (CREST) program [61,62]. To provide
high-precision precipitation products, GSMaP combines various available PMW and IR sensors [63].
In the development of the GSMaP precipitation products, the instantaneous precipitation rate is first
archived from the PMW radiometers based on various satellite platforms, such as GMI, advanced
microwave sounding unit-A (AMSU-A), advanced microwave scanning radiometer-2 (AMSR-2),
TRMM Microwave Imager (TMI), microwave humidity sounder (MHS), and special sensor microwave
imager/sounder (SSMIS). Further, the gaps between the PMW-based estimates are propagated using
atmospheric moving vector (cloud motion vector) calculated from successive IR images. In addition,
a new Kalman filter model is applied to refine precipitation rates after the propagation [61]. Finally,
forward and backward propagated precipitation estimates are weighted and combined to produce
the GSMaP-MVK product. GSMaP-MVK also uses IR to correct satellite estimates but adopts different
PMW imagers and sounders. In addition to PMW and IR, GSMaP-MVK estimates are adjusted using
daily 0.5º NOAA/CPC gauge-based analysis to develop GSMaP-Gauge precipitation product; this
reduces precipitation biases and has a latency of 3 days [64]. In addition to the GPM/DPR database,
orographic rain correction classification also introduced in the algorithm of GSMaP-V07. In the current
study, the Version 07 satellite-only (GSMaP-MVK) and gauge adjusted (GSMaP-Gauge) hourly datasets
with a 0.1◦ spatial resolution were used. An overview of the selected datasets in the current study is
provided in Table 1.
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Table 1. Details of the datasets used in this study.

Datasets Temporal Range Spatial Resolution Period Coverage Corrected by Gauges

DHM 1 day 388 stations 2014–2016
IMERG-UC (V06B) 30 min 0.1º × 0.1º 2014–2016 90ºN–90ºS –
IMERG-C (V06B) 30 min 0.1º × 0.1º 2014–2016 90ºN–90ºS GPCC monthly

GSMaP-MVK (V07) 1 h 0.1º × 0.1º 2014–2016 60ºN–60ºS –
GSMaP-Gauge (V07) 1 h 0.1º × 0.1º 2014–2016 60ºN–60ºS CPC-daily

2.3. Methodology

2.3.1. Quality Control

All four SBP products are gridded datasets, and the gauge observed datasets are at the point
scale, i.e., fixed at a single location on the ground surface. Therefore, a point-to-pixel comparison
was performed to compare the point-based gauge observed data with the gridded precipitation
datasets [65–68]. We extracted SBP estimates for the station locations instead of interpolating
the gauge observations to avoid accumulating additional errors by gridding the observed data [69–71].
These SBP rates were first aggregated to obtain daily timescale records using DHM daily precipitation
measurement time windows (03 UTC). Some of the station data feature missing values, and quality
control was conducted for data consistency; if the gauge-observed daily data contained missing
values, then the corresponding daily SBP data were simultaneously considered to be a missing value.
The monthly data were computed when the station had more than 25 days of precipitation data available
in a month; otherwise, the precipitation in that month was considered as a missing value. Similarly,
the monthly SBP data were also considered a missing value for consistency if the corresponding
monthly data were missing from the gauge observed datasets.

Mean, and summer (JJAS) mean monsoonal precipitation of SBP and gauge observed datasets
during the study period were calculated for each station. Mean monthly regional datasets were
computed for three regions, with stations located at longitudes of 80–82◦E, 83–85◦E and 86–88◦E being
grouped together as the western, central, and eastern regions, respectively (Figure 1). The stations
were divided into three different physiographic regions (elevation intervals) to quantify the spatial
patterns of SBP products. All stations below 1500 m, between 1500 and 2500, and above 2500 m, were
aggregated into the low-elevation, mid-elevation, and high-elevation regions, respectively.

We also classified the gauge observed summer monsoon precipitation based on precipitation
rate; all stations with mean monsoonal precipitation rates of less than 10 mm/day, between 10
and 20 mm/day, and higher than 20 mm/day was assigned to be lower, moderate, and higher
precipitation zones, respectively. This allows analysis of SBP performances for different precipitation
rates. The high-intensity related extreme rainfall events in four SBP datasets exceeding the 95th
percentile (R95p) of observed precipitation was also examined. To do this, only those stations were
selected when daily observed data was available more than 90% per year. The overall processes
followed in the study is shown in Figure 2.

2.3.2. Statistical Analysis

Several statistical metrics were calculated to quantify the accuracy or differences between
observation and estimated precipitation from SBP products based on monthly scale data. The correlation
coefficient (R, Equation (1)) was used to measure the strength and direction of the linear association
between datasets. The Relative Root Mean square Error (RRMSE, Equation (2)) which reflects
the average magnitude of the deviation that a dataset will have from the gauge observed data;
and mean bias (MB, Equation (3)) and absolute relative error (RE, Equation (4)) which measure
any persistent tendency of a dataset to either overestimate or underestimate and the discrepancies
between the magnitude of the estimated precipitation and the gauge observed dataset. Graphical
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plots and different statistical measures were used to facilitate the inter-comparison between the SBP
and gauge observed datasets. The formulae for the statistical metrics are:
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where O is the gauge observation data, E is the estimated precipitation data using SBP products,
O and E denotes the average value of their respective datasets, and n is the sample size. The perfect

score for RRMSE, MB, and RE is ~0, while for R is 1.

Figure 2. The flowchart of the overall processes followed in the study.

Additionally, a daily performance assessment was calculated for all SBP data based on categorical
statistics. These statistics were computed for the individual stations to quantify the capacity to detect
daily precipitation events. The statistics are based on a contingency table (Table 2) with two possible
cases: a day with or without precipitation. In Table 2, a and d indicate the total events above 1 mm/day
recorded by both datasets (gauge observed and SPB), while c and d indicate the total events recorded
by both datasets below this threshold. This threshold value was selected to avoid the measurement
error from the manual gauge system for the light precipitation amount (less than 1 mm/day).
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Table 2. Contingency table to define daily precipitation based categorical scores for the evaluation of
SBP with gauge observation.

Gauge Observation

SBP
Precipitation

No-precipitation

Precipitation No-precipitation
a b
c d

In this study, three categorical indices were used for the assessment: the probability of detection
(POD, Equation (5))—SBP’s capacity to forecast the precipitation events accurately, and ranges from 0
to 1 (with 1 being an accurate score); False Alarm Ratio (FAR, Equation (6)), which represents how
often the SBP’s falsely detect a gauge observed precipitation event and ranges from 0 to 1 (with 0 being
a perfect score); and Accuracy (ACC, Equation (7)), which is the fraction of all SBP product-based
events that were correct, this has values ranging from 0 to 1, with 1 being a perfect score. All these
metrics were computed for individual stations using respective daily precipitation series for the study
period, with a threshold value of 1 mm/day to separate precipitation and no-precipitation events.
The formulas for these statistical metrics are as follows:

POD =
a

(a + c)
(5)

FAR =
b

(a + b)
(6)

ACC =
a + d

(a + b + c + d)
(7)

3. Results

3.1. Spatiotemporal Variability

3.1.1. The Spatial Pattern of Precipitation in Nepal

The spatial distributions of daily mean precipitation (mm/day) in observations and four different
SBP datasets during the study period are presented in Figure 3. The observed datasets show
large spatial variability of precipitation across the country. The highest mean precipitation amount
(>10 mm/day) was observed in the Lumle areas (28.3ºN, 84ºE), whereas the low amount (<2 mm/day)
in the high-elevation areas of central and western region (Figure 3a). Since the lowest precipitation
area is located in the high-elevation areas of the central region, the high mountains remarkably block
the atmospheric moisture from moving northward and considerably increase (decrease) precipitation
in the southern (northern) slope of the central region. In the comparison of observed spatial distribution
with the SBP datasets, all four SBP datasets generally showed the main characteristic, in which the high
precipitation occurs in central Nepal. However, they differed largely in precipitation totals and location
accuracy. The mean precipitation distribution from GSMaP-Gauge shows very similar characteristics,
with the maximum precipitation (approximately 10–12 mm/day) at 28.3ºN, 84ºE (Figure 3e), whereas
GSMaP-MVK shows the maximum precipitation (approximately 5–7 mm/day) at 28.5ºN, 84ºE (Figure 3c).
In contrast, the IMERG-UC shows the maximum precipitation (approximately 10–12 mm/day) at 27.9ºN,
84.8ºE (Figure 3b), while IMERG-C shows high precipitation (approximately 4–5 mm/day) at 28.2º N,
84ºE (Figure 3d). Another area (26.5ºN, 88ºE) of the highest rainfall in IMERG-C might be associated
with the monsoon trough as seen over the lower ranches of the eastern region (Figure 3d). Notably,
all four datasets are drier (<2 mm/day) in the high-elevation areas of central and western region
(Figure 3b–e). The large scale patterns of the precipitation such as heavier orographic precipitation along
with the southern slope of mountain ranges in the central region and lower precipitation (<2 mm/day)
over the northern slope of central and western region (rain-shadow areas) is also qualitatively captured
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by all four satellite precipitation datasets. It is worthy to note that, IMERG-UC showed better agreement
with the spatial pattern and amount of precipitation in the observations than the IMERG-C, whereas
GSMaP-Gauge showed significant improvement over the GSMaP-MVK. Moreover, all four SBP datasets
tend to underestimate the mean precipitation across the country. GSMaP-Gauge (Figure 3e) well
reproduces the overall spatial pattern of mean precipitation followed by IMERG-UC, GSMaP-MVK,
and IMERG-C, respectively. The results suggest that gauge correction scheme for IMERG product
requires further improvement in the study area.

Figure 3. Spatial distribution of mean precipitation (mm/day) estimated by (a) observations,
(b) IMERG-UC, (c) GSMaP-MVK, (d) IMERG-C and (e) GSMaP-Gauge averaged over March 2014 to
December 2016. The magenta and black dotted lines represent the national boundary of the country
and the three subregions, respectively.

3.1.2. Seasonal Pattern of Precipitation in Nepal

The annual cycles of precipitation in the gauge observed data, and all four SBP estimates
in the western, central, and eastern regions of Nepal from 2015 to 2016 (only a two-year was chosen
due to incomplete annual SBP datasets in 2014) are shown in Figure 4. High precipitation occurs from
June–September in all three regions (Figure 4).

Figure 4. Monthly variation in precipitation (mm/day) over the (a) western (80–82ºE), (b) central
(83–85ºE), and (c) eastern (86–88ºE) regions, derived from the gauge observed data and four SBP
products averaged over 2015 to 2016.

The mean precipitation in the winter (December to February) was heavier over the western
(0.74 mm/day) region than in the central (0.54 mm/day), and eastern regions (0.28 mm/day).
In contrast, western Nepal was drier (4.90 mm/day) than the central (7.02 mm/day) and eastern
regions (6.85 mm/day) during the other seasons (March to November) due to the influence of
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summer monsoon. The precipitation in winter is primarily influenced by the westerlies system
and is more pronounced in the western part of the country, while, moisture transfer from Bay of
Bengal (monsoon) produces the widespread precipitation during the monsoon season (JJAS) over
the country. All four SBP datasets show higher precipitation during the summer monsoon and lower
precipitation in winter, with the maximum in July except for GSMaP-MVK in the eastern region
(Figure 4c). The satellite-only datasets overestimated the precipitation during winter and pre-monsoon
season; however, after the gauge calibration, the positive bias was reduced and is more consistent
with observed datasets. Figure 4 indicates that among all four SBP datasets, the gauge calibrated
datasets (i.e., IMERG-C and GSMaP-Gauge) represent well the seasonal precipitation variation across
all three regions of Nepal, although they all yield underestimations. However, all four SBP datasets
well captured the seasonal precipitation dynamics across the country.

For a detailed analysis, the statistical metrics of the four SBP datasets from 2015 to 2016
were calculated against the station observations (Table 3). In the western region, IMERG-UC
and GSMaP-MVK showed smaller MBs than their gauge-calibrated datasets, i.e., IMERG-C
and GSMaP-Gauge, respectively. Nevertheless, both gauge-calibrated datasets showed better overall
performance as indicated by lower RRMSE and higher R-value (Table 3). For the central region,
IMERG-UC showed the smaller MBs of −0.93 mm/day than that of −1.48 mm/day in IMERG-C;
however, both have proximal RRMSE. Meanwhile, among all SBP, GSMaP-Gauge outperformed
GSMaP-MVK and both IMERG datasets as indicated by the lowest MBs and RRMSE (Table 3).
Both gauge-calibrated datasets showed very similar MBs with their corresponding satellite-only
in the eastern region, although gauge calibrated IMERG-C performed more consistently, with a smaller
RRMSE of 0.18, followed by GSMaP-Gauge. In the whole country, among all products, IMERG-UC
showed the smallest MB of −0.47 mm/day and IMERG-C showed the lowest RRMSE of 0.28. It is worth
noting that the positive bias in IMERG-UC and GSMaP-MVK between January and June later reduces
the negative bias during July to October and shows smaller MBs among the datasets (Figures 4a–c
and A1). The seasonal performances of all four SBP datasets were calculated to check the consistency
in different seasons and presented in Table A1. The seasonal performance also showed that gauge
calibrated datasets well represent the seasonal dynamics than satellite-only as indicated by lower
MBs, RRMSE and higher R-value in Table A1. In general, all four datasets generally exhibited high
correlations (R > 0.80), which indicate that the seasonal precipitation dynamics can be captured across
the country by all four datasets.

Table 3. Statistical metrics in the western, central, and eastern regions, as well as in the whole study
region, derived from the regional monthly mean precipitation (mm/day) from 2015 to 2016. Bold font
indicates the best performance for a given metric.

Regions Datasets Mean (mm/day) MB (mm/day) RRMSE R

Western
region

IMERG-UC 3.86 −0.03 0.50 0.92
IMERG-C 3.52 −0.31 0.14 1.00

GSMaP-MVK 3.51 −0.32 0.82 0.81
GSMaP-Gauge 2.97 −0.86 0.40 0.98

Central
region

IMERG-UC 4.57 −0.93 0.48 0.95
IMERG-C 4.02 −1.48 0.43 1.00

GSMaP-MVK 3.92 −2.58 0.84 0.80
GSMaP-Gauge 4.69 −0.82 0.33 0.98

Eastern
region

IMERG-UC 4.75 −0.47 0.41 0.94
IMERG-C 4.73 −0.46 0.18 1.00

GSMaP-MVK 3.71 −1.50 0.71 0.83
GSMaP-Gauge 3.64 −1.56 0.48 0.99

Whole
country

IMERG-UC 4.31 −0.47 0.44 0.95
IMERG-C 3.93 −0.86 0.28 1.00

GSMaP-MVK 3.73 −1.05 0.76 0.81
GSMaP-Gauge 3.86 −0.92 0.36 0.99
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3.1.3. Elevation Dependency

The knowledge of the elevation gradient of precipitation is vital for many hydro-meteorological
applications. As known that a larger portion of the precipitation occurs during the summer monsoon
season, thus the elevation dependency was investigated based on monthly data from the summer
monsoon season. The mean precipitation data from observed and four SBP were averaged over
summer monsoon at different elevation ranges in every 500 m from 60 m to below 3000 m during
the study period (Figure 5). The number of stations above 3000 m is very limited; thus, the elevation
dependency was only calculated below 3000 m. The gauge observations reveal an evident elevation
dependency of precipitation, as shown in Figure 5 for the monsoon period. Gauge observations show
that precipitation gradually increases with increasing elevation up to 2000 m, and then decreases
rapidly (black line, Figure 5a). The highest precipitation (approximately 13 mm/day) occurs in the range
1500–2000 m during the summer monsoon. These patterns are similar to the results revealed by
the previous study conducted using gauge observations [72]. IMERG-C moderately captured this
evident elevation-dependent pattern, with the highest precipitation (approximately 10 mm/day)
in the elevation range of 1500–2000 m. In contrast, other three SBP products failed to capture this
pattern; IMERG-UC and GSMaP-MVK showed the highest precipitation at the lowest elevation
(below 500 m), and GSMaP-Gauge shows the highest precipitation in the elevation range 500–1000 m.
In the higher elevation areas (above 3000 m) with limited stations (14), GSMaP-Gauge and both
IMERG datasets overestimated the observed precipitation (not shown in Figure 5). This could be
associated with the complex terrain and orographic effect [73,74]. It is worth to note that, orographic
rain corrected GSMaP-Gauge showed the variation in precipitation amount for different elevation
intervals (i.e., precipitation increase and decrease pattern) [75]. Additionally, we calculated the elevation
dependency of SBP datasets by averaging the precipitation across all grid boxes within different elevation
ranges (Figure 5b). The numbers of stations and grid boxes in different elevation ranges are listed
in Table 4. Grid-based elevation dependency of SBP showed a similar pattern to that of the point-pixel
results, but with slightly different precipitation amounts. Overall, both gauge satellite-only IMERG-UC
and GSMaP-MVK significantly underestimated the monsoonal precipitation amount. However, after
gauge correction, the precipitation estimates of gauge calibrated datasets were more consistent with
the gauge observation than the satellite-only datasets. Therefore, the procedure of calibrating SBP
products with rain gauge data is the reason for their increased accuracy.

Table 5 gives the statistical metrics of errors for the four SBP datasets across three different
geographic regions, based on summer monsoon mean values at each station. In lowland areas (below
1500 m) the error metrics indicate that IMERG-UC showed smallest MBs of −0.85 mm/day; indicating
the estimated precipitation amount was more consistent with the observed datasets; meanwhile,
GSMaP-Gauge showed better overall performance than other three datasets with lower RRMSE (0.45)
and a higher R-value (0.56). In the highest precipitating mid-elevation areas (between 1500 and 2500 m),
both gauges calibrated datasets showed a more consistent performance to observed datasets than
satellite-only datasets. IMERG-C showed the best performance to estimate the precipitation amount
with lowest MBs of −3.07 mm/day, while GSMaP-Gauge presented the evident lowest RRMSE
and higher R-value, indicating better performance in reproducing the spatial distribution of gauge
observed precipitation among all. However, all four datasets underestimated the monsoon precipitation
amount below 2500 m.
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Figure 5. Mean precipitation averaged over the summer monsoon season (mm/day) for the study
period, (a) in gauge observed and four SBP datasets at station locations, (b) in IMERG and GSMaP
product at each grid box averaged over different elevation ranges, respectively.

Table 4. Numbers of stations and grid boxes in different elevation ranges.

Elevation Range No. of Stations No. of Grids

Below 500 m 121 354
500–1000 56 173

1000–1500 90 185
1500–2000 67 126
2000–2500 27 98
2500–3000 13 79

Table 5. Statistical metrics in the station mean precipitation at different elevation intervals (below
1500 m, between 1500 and 2500 m and above 2500 m), as well as in the whole study region, derived
from the four SBP datasets and compared to the gauge observations during the summer monsoon for
the study period. Bold font indicates the dataset with the best performance for a given metric.

Regions Datasets Mean (mm/day) MB (mm/day) RRMSE R RE (%)

Below 1500 m
(267 stations)

IMERG-UC 10.67 −0.85 0.57 0.08 7.36
IMERG-C 9.73 −1.79 0.47 0.41 15.58

GSMaP-MVK 7.36 −4.16 0.58 0.36 36.08
GSMaP-Gauge 9.14 −2.38 0.45 0.56 20.66

Between 1500
and 2500 m
(95 stations)

IMERG-UC 7.11 −5.31 0.70 0.24 42.75
IMERG-C 9.34 −3.07 0.56 0.46 24.74

GSMaP-MVK 4.99 −7.42 0.78 0.49 59.82
GSMaP-Gauge 8.72 −3.69 0.53 0.63 29.72

Above 2500 m
(26 stations)

IMERG-UC 3.10 −2.18 1.15 0.42 41.28
IMERG-C 6.00 0.72 1.07 0.65 16.63

GSMaP–MVK 2.32 −2.96 1.16 0.59 56.07
GSMaP–Gauge 7.78 1.50 1.44 −0.02 28.48

Whole country
(388 stations)

IMERG-UC 9.29 −2.03 0.63 0.19 18.13
IMERG-C 9.38 −1.94 0.52 0.48 17.19

GSMaP-MVK 6.44 −4.88 0.66 0.40 43.10
GSMaP-Gauge 8.88 −2.44 0.51 0.55 21.56
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In high-elevation regions (above 2500 m), characterized by complex topography with low
precipitation, IMERG-C showed the best performance with smaller errors (MB and RRMSE) and higher
R than other datasets, demonstrating that the calibration based on GPCC data significantly improved
the IMERG product. Meanwhile, the GSMaP-Gauge product overestimated summer monsoon
precipitation and showed very poor correlation with the gauge observation. As mentioned
in Section 2.2.1, the GPCC data merged observations from 125 gauges in Nepal, while NOAA/CPC data
only merged observations from 54 gauges. Therefore, GPCC data may integrate more precipitation
information, especially in high elevation regions where gauge observations are very scarce than
NOAA/CPC data. This might be the reason for the improved performance of IMERG-C than
GSMaP-Gauge in high-elevation regions.

Overall, the gauge-calibrated products performed better than the satellite-only products on a
monthly scale. IMERG-C yielded smaller MBs than GSMaP-Gauge, while GSMaP-Gauge showed
the smaller RRMSE and higher R-value; indicating IMERG-C was more consistent to estimate
the precipitation amount than GSMaP-Gauge, whereas GSMaP-Gauge presented more reasonable
spatial distribution than IMERG-C.

3.2. Performance-Based on Daily Data

3.2.1. Statistical Scores

Figure 6 illustrates the spatial distributions of the POD, FAR and ACC values in the four SBP
datasets at each station across the country. These values were calculated based on daily precipitation
data. POD is above 70% at most of the stations in GSMaP-Gauge, followed by 40–80% in IMERG product,
and 40–60% in GSMaP-MVK. Therefore, the daily gauge-calibrated GSMaP-Gauge outperformed
the other three datasets to detect gauge precipitation events. It is worth noting that POD is higher
in GSMaP-Gauge compared to GSMaP-MVK, while similar performances are found in both IMERG
datasets. The GSMaP-Gauge datasets were calibrated based on daily scale NOAA/CPC data; therefore,
both the amount and the occurrence were corrected, while IMERG-C datasets were corrected based
on monthly scale GPCC data, thus only the precipitation amounts were adjusted. This may be
the reason for similar POD performance in two IMERG products. All four datasets showed similar FAR
distributions, with the best performance in mid-elevation areas and poor performance in high-elevation
areas, revealing that the error was lower when the precipitation amount was higher. ACC exceeded
70% in all four SBP datasets at most of the selected stations across the country (Figure 6).

POD, FAR, and ACC were also calculated for the three different elevation intervals (Table 6).
The daily gauge-calibrated GSMaP-Gauge performed fair well at detecting the gauge observed
precipitation events with PODs of 0.73, 0.71 and 0.66 for elevations below 1500 m, 1500–2500 m,
and above 2500 m, respectively. Notably, differences in the ACC and FAR scores were nominal (Table 6).
In general, all four datasets performed with acceptable scores (ACC higher than 0.70) in detecting both
the precipitation and no-precipitation events across the country.
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Figure 6. SBP performance at individual station measurements expressed in the form of the panel
(a) POD, panel (b) FAR, and panel (c) ACC in % at each station during the study period. The black
and blue lines show the national boundary and 3000 m elevation contour, respectively.

Table 6. Performances of the four SBP datasets expressed by POD, FAR and ACC at each station,
averaged over three elevation intervals (<1500 m, 1500–2500 m and > 2500 m), as well as for the whole
study region during the study period. A threshold value of 1 mm/day was selected to separate
precipitation and no-precipitation events. Bold font indicates the dataset with the best performance for
a given metric.

Regions Datasets POD FAR ACC

Below 1500 m

IMERG-UC 0.66 0.49 0.76
IMERG-C 0.69 0.48 0.77

GSMaP-MVK 0.60 0.52 0.75
GSMaP-Gauge 0.73 0.50 0.77

Between 1500 and 2500 m

IMERG-UC 0.59 0.42 0.74
IMERG-C 0.61 0.41 0.75

GSMaP-MVK 0.54 0.47 0.71
GSMaP-Gauge 0.71 0.41 0.76

Above 2500 m

IMERG-UC 0.49 0.55 0.73
IMERG-C 0.54 0.54 0.72

GSMaP-MVK 0.37 0.62 0.72
GSMaP-Gauge 0.66 0.57 0.70

Whole country

IMERG-UC 0.62 0.48 0.75
IMERG-C 0.64 0.47 0.76

GSMaP-MVK 0.57 0.52 0.74
GSMaP-Gauge 0.72 0.48 0.76
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3.2.2. Extreme Precipitation Events

The spatial patterns of extreme precipitation events identified by the four SBP datasets are
presented in Figure 7.

Figure 7. Spatial distribution of the daily precipitation 95th percentile from 2014 to 2015 in the four SBP
datasets. Figure (a,c,e,g) shows the accurately detected extreme precipitation events in (%), (b,d,f,h)
bias in extreme precipitation events for each station. The black and blue lines denotes the national
boundary of the country and 3000 masl elevation contour, respectively.
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Extreme precipitation events are defined as those exceeding the 95th percentile (high-intensity
extreme) values in gauge-observed datasets from 2015 to 2016 for each station. Extreme events were
calculated only for those stations with daily observation data available for more than 90% of the year.
Figure 7 shows the extreme events detected by SBP datasets on the same day as those in the gauge-
observed data sets (temporal accuracy) and the mean bias in the total number of extreme events at
each station across the country, respectively. GSMaP-Gauge has been moderately improved in contrast
with GSMaP-MVK, especially in central Nepal, where more precipitation was observed than in other
areas (Figure 7e,g). The spatial distribution of the extreme events suggests that all four SBP datasets
have low accuracy and mostly underestimate the frequency of extreme events over the study area
(Figure 7b,d,f,h).

Figure 8 shows the performances of the four SBP datasets in detecting extreme events
within the three elevation intervals. The statistics indicate that all four SBP datasets underestimated
the frequency of extreme events in regions below 2500 m, while the IMERG-C and GSMaP-Gauge
showed many more fake extreme events than the satellite-only products and thus overestimated
the frequency in regions above 2500 m. As shown in Figure 8a, the higher number of extreme events
were observed in regions below 2500 m (low and mid-elevation) than that for high elevation regions,
and most DHM gauge stations (96.5% of total) are also located in these regions. Therefore, the GPCC
analysis dataset interpolated from data of 125 DHM gauge stations and the NOAA/CPC dataset
interpolated from data of 54 DHM gauge stations, which were used to calibrate the IMERG and GSMaP
products respectively, may present fake high occurrence of extreme events in regions above 2500 m.
That is why the calibrated SBP products overestimated the frequency of extreme events in regions
above 2500 m. According to Figure 8, IMERG-UC performed much better in presenting the extreme
event occurrence than other products especially in regions below 1500 m, suggesting that sometimes
the calibration may skew some important signals contained in the satellite-only product. In general,
all four SBP products had low accuracy (Figure 8b) and underestimated the frequency of extreme
events (Figure 8a) across the country.

Figure 8. Bar charts showing extreme events (mean number of days) and RMSE (mean number
of days) in the gauge observed data and four SBP datasets from 2015 to 2016 for (a) low-elevation
(below 1500 m), (b) mid-elevation (between 1500 and 2500 m), (c) high-elevation (above 2500 m),
and (d) the whole region.
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4. Discussion

SBP products provide new alternatives for station observations; however, uncertainties are
associated with both gauge observations and SBP estimations. Unfortunately, these uncertainties are
difficult to quantify and may have influenced the above results.

Gauge instruments may suffer from systematic biases caused by wind-induced evaporation
loss and underestimation of trace values. These biases are more prominent during the winter due
to the lower precipitation totals and a higher prevalence of snow. Due to the lack of automatic
gauge stations in high-elevation areas, conventional rain gauges measure qualitative precipitation
amounts (rainfall + snowfall). Therefore, the evaluation of datasets during the summer is more reliable
than during the winter, and the evaluation in this study mainly focuses on the summer monsoon
season when the effect of evaporation loss in the observations is not significant due to the large
precipitation totals. It is worth noting that the gauge-observed datasets used in this study are not wind
corrected, due to the lack of wind speed data for the selected stations, but they were used to evaluate
the IMERG-gauge datasets which are calibrated by the wind-loss corrected GPCC gauge analyses.
This fact also weakened the certainty of the evaluation results in Section 3. Besides, among the DHM
stations used in this study, data from 125 stations were merged to produce the GPCC gauge analysis,
which was used to calibrate the GPM-IMERG product. Similarly, data from about 54 stations were
also merged to produce the NOAA/CPC gauge-based analysis, which was used to correct the GSMaP
product. The overlaps may lead to underestimation of the evaluation errors, which were not identified
due to lack of information.

Furthermore, previous studies revealed a quite large variability of precipitation
in the high-elevation areas of Nepal with the importance of nocturnal precipitation [43]. In these regions,
most of DHM gauge stations are located in valley bottoms [76,77], where the nocturnal precipitation
prevails. In such regions, the daily DHM gauge data do not capture the representative precipitation
variability and may leave a gap in the performance quantification of SBP products. On the other
hand, since the calibrated SBP products are corrected using the gauge-based analysis datasets, which
present finer spatial patterns than the natural pattern, especially in mountainous regions. However,
the calibrated SBP products may also smoothen the ture spatial pattern in mountainous regions,
and even skew some important signals contained in satellite-only products.

Several previous studies also mentioned that topographic nature and regional climate are some
dominant factors that influence the precipitation retrieval algorithm used in TRMM and GPM
precipitation datasets [78]. The accuracy of the SBP precipitation data depends on various factors, such
as regional effects and precipitation intensities. The scatter plot of precipitation rates between gauge
observed, and SBP products were drawn using monthly precipitation data during the summer monsoon
to quantify the performance of the SBP datasets for different precipitation intensities (Figure 9).

GSMaP-Gauge, IMERG-C, IMERG-UC and GSMaP-MVK performed better for low precipitation
rates (<10 mm/day) than for high precipitation rates (>10 mm/day), indicating that the SBP datasets
have difficulty in estimating heavy precipitation. These SBP datasets also overestimated the amount of
light rain and underestimated the amount of heavy rain. Such underestimation of heavy rain could be
the reason for underestimated high-intensity related gauge observed extreme events (Figures 7b and 8)
across the country. These discrepancies are primarily related to false precipitation in the form of light
rain or solid precipitation and underestimation of heavy precipitation, respectively. Also, complex
physiographic nature of the study region may have an effect on the upward microwave radiation,
which makes difficult for the satellite to resolve precipitation over areas with low precipitation amount,
especially in the mountainous region [79,80].

SBP datasets are indirect measurements that are based on satellite/sensor constellations, including
PMW and IR sensors onboard LEO and geostationary satellites. These datasets may not accurately
detect precipitation in high-elevation areas [81], especially in the winter season, when the ground
surface is covered with snow and ice [13]. The errors of precipitation estimated by PMW are mainly
based on scattering signal which cannot catch up warm/low-level precipitation frequently occurs
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in low-elevation areas and algorithm to interpolate finer time-scales, such as using cloud motion vector
by IR. Meanwhile, the used algorithm can not capture to interpolate finer time-scales, such as using
cloud motion vector by IR.

Figure 9. Scatter plot of differences in precipitation rates between gauge observed and SBP products,
derived from monthly mean precipitation averaged over the monsoon season (mm/day). All the units
of statistical metrics are in mm/day. Black, blue, and red colors indicate the performance statistics for
precipitation rates less than 10 mm/day, between 10 and 20 mm/day, and above 20 mm/day, respectively.
The continuous black and dotted black line represents the linear regression and 1:1 line, respectively.

To reduce such bias, satellite-only estimates were calibrated using gauge-based GPCC and CPC
datasets. The performances of the IMERG-C and GSMaP-Gauge datasets were also influenced by
the quality and temporal range of the calibrated gauge-based GPCC and CPC datasets, respectively.
Meanwhile, satellite-only datasets are only effectively adjusted for those areas where gauge data are
available. Our results showed a substantial improvement in gauge-calibrated SBP datasets, which are
more consistent than satellite-only datasets, due to the advantages of observed gauge adjustments.
This result is similar to studies conducted in Central Asia [82], China [64,83], East Africa [84]
and Ethiopia [85]. However, deterioration of IMERG-C in low-elevation areas (Figures 3 and 7
and Table 5) as compared to IMERG-UC, as well as deterioration of GSMaP-Gauge in high-elevation
areas (Figure 8c and Table 5) as compared to GSMaP-MVK, might be related to limitations of
adjusted relevant rain-gauge density (GPCC and CPC). Such discrepancies indicate that the IMERG-C
and GSMaP-Gauge retrieval algorithms need further improvements, particularly for mountainous
areas, such as Nepal. Additionally, both PMW and IR satellites have complication in detecting
shallow orographic precipitation [61,86,87]. We found that the local weather conditions and nature of
the topography also influence the rainfall capturing capacity of SBP product.
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5. Conclusions

This study attempted to evaluate the latest four SBP products in the southern slope of central
Himalayas, Nepal and compare both satellite-only (IMERG-UC and GSMaP-MVK) and gauge-
calibrated (IMERG-C and GSMaP-Gauge) products for their accuracy and discrepancies with 388 gauges
measurements from March 2014 to December 2016. Conventional statistical metrics and categorical
scores were used to quantify the performances of these SBP products.

Precipitation estimates differ widely between SBP products, depending on the season and location.
The GSMaP-Gauge dataset was more consistent at representing the spatial pattern of observed
precipitation followed by IMERG-UC, GSMaP-MVK, and IMERG-C. However, all four datasets
can capture the seasonal precipitation dynamics across the country. Among them, IMERG-C
and GSMaP-Gauge presented more consistent seasonal dynamics range (in terms of RRMSE and R)
with the gauge observations than the satellite-only datasets. Even though all four SBP products
underestimate the gauge-observed precipitation across Nepal; both gauge-calibrated SBP datasets
performed better (lower RRMSE, higher R) than the satellite-only datasets. IMERG-C and GSMaP-Gauge
showed similar errors (MB and RRMSE) in Nepal, although both had discrepancies in capturing
the precipitation patterns. For instance, GSMaP-Gauge presented a more reasonable spatial distribution,
while IMERG-C moderately reproduced the evident elevation-dependent pattern of precipitation as
revealed by gauge observations, i.e., increasing precipitation with an increasing elevation below 2000 m
and then decreasing above 2000 m.

When selecting 1 mm/day as the threshold defining a daily rainfall event, benefit from merging
daily gauge-based NOAA/CPC analysis data, GSMaP-Gauge performed best (with higher POD) for
detecting gauge observed precipitation events among four datasets. Gauge observations indicated that
more high-intensity precipitation extreme events (95th percentile) occur in regions with an elevation
below 2500 m. All four SBP datasets underestimated the total frequency of extreme precipitation
events across the country. It is worth noting that IMERG-UC performed much better in presenting
the occurrence of extreme events than other products especially in regions below 1500 m, suggesting
that sometimes the calibration may skew some important signals contained in the satellite-only product.

The present work addresses the lack of systematic evaluation of the latest two SBP products
in the southern slope of central Himalayas, Nepal. This evaluation provides a statistical basis and allows
rigorous data selection in meteorological, hydrological, glaciological, and disaster-related studies
within the study region. We recommend that further evaluation of SBP products based on the weather
characteristics over the complex terrain may provide useful information to algorithm developers
and data users.
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Appendix A

Table A1. Statistical metrics in the different seasons, derived from the monthly mean precipitation
(mm/day) from 2015 to 2016. Bold font indicates the best performance for a given metric.

Seasons Datasets Mean (mm/day) MB (mm/day) RRMSE R

Pre-monsoon
(March-May)

IMERG-UC 3.99 1.33 0.59 0.98
IMERG-C 2.18 −0.48 0.2 0.99

GSMaP-MVK 4.6 1.94 0.85 0.88
GSMaP-Gauge 2.45 −0.21 0.22 0.93

Monsoon
(June–September)

IMERG-UC 8.86 −2.58 0.29 0.9
IMERG-C 9.32 −2.11 0.2 1

GSMaP-MVK 6.5 −4.93 0.52 0.67
GSMaP-Gauge 8.94 −2.5 0.25 0.95

Post-monsoon
(October–November)

IMERG-UC 1.23 0.26 0.81 0.79
IMERG-C 0.82 −0.15 0.22 1

GSMaP-MVK 1.12 0.15 0.64 0.83
GSMaP-Gauge 0.99 0.02 0.08 1

Winter
(December–Feburary)

IMERG-UC 0.48 0.02 0.2 0.98
IMERG-C 0.42 −0.03 0.08 1

GSMaP-MVK 0.7 0.25 0.97 0.84
GSMaP-Gauge 0.32 −0.13 0.35 0.94

Figure A1. (a) The timeseries of monthly mean precipitation and (b) Bias between observed and four
SBP datasets averaged over the study area.
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Abstract: The recent release of consumer-grade dual-frequency receivers sparked scientific interest
into use of these cost-efficient devices for high precision positioning and tropospheric delay
estimations. Previous analyses with low-cost single-frequency receivers showed promising results
for the estimation of Zenith Tropospheric Delays (ZTDs). However, their application is limited
by the need to account for the ionospheric delay. In this paper we investigate the potential of a
low-cost dual-frequency receiver (U-blox ZED-F9P) in combination with a range of different quality
antennas. We show that the receiver itself is very well capable of achieving high-quality ZTD
estimations. The limiting factor is the quality of the receiving antenna. To improve the applicability
of mass-market antennas, a relative antenna calibration is performed, and new absolute Antenna
Exchange Format (ANTEX) entries are created using a geodetic antenna as base. The performance
of ZTD estimation with the tested antennas is evaluated, with and without antenna Phase Center
Variation (PCV) corrections, using Precise Point Positioning (PPP). Without applying PCVs for the
low-cost antennas, the Root Mean Square Errors (RMSE) of the estimated ZTDs are between 15 mm
and 24 mm. Using the newly generated PCVs, the RMSE is reduced significantly to about 4 mm,
a level that is excellent for meteorological applications. The standard U-blox ANN-MB-00 patch
antenna, with a circular ground plane, after correcting the phase pattern yields comparable results
(0.47 mm bias and 4.02 mm RMSE) to those from geodetic quality antennas, providing an all-round
low-cost solution. The relative antenna calibration method presented in this paper opens the way for
wide-spread application of low-cost receiver and antennas.

Keywords: GNSS; GNSS antenna; receiver antenna calibration; relative calibration; Phase Center
Variation; U-blox; goGPS; Zenith Tropospheric Delay; ZED-F9P

1. Introduction

The use of Global Navigation Satellite Systems (GNSS) data is well established for a range of
professional and scientific applications, including atmospheric research. Precipitable Water Vapor
(PWV) can be derived from radiosonde measurements, but also estimated with GNSS phase
measurements processing techniques [1]. Zenith Tropospheric Delays (ZTDs) are estimated along with
other parameters, such as the station position and receiver clock offset. The estimated ZTD is related
to the refractive index of air, it can be used directly in atmospheric models, or ZTD can be used to
estimate PWV. These values are of essential interest for accurate short-term weather forecasts.

The use of cost-efficient GNSS equipment is of great scientific interest to meteorology and
atmospheric research. Traditionally, atmospheric research and meteorology made use of already
existing GNSS infrastructures which were set-up for surveying and geodetic applications. Therefore,
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low-cost GNSS equipment can be a good solution for regions where (commercial) high grade equipment
is not readily available.

Analysing ZTDs or PWV from GNSS receivers has proven to be a valuable tool for analysing and
forecasting extreme rainfall events [2]. Nowadays Numerical Weather Prediction (NWP) models exist
that use these parameters in their data assimilation schemes to improve their rainfall predictions [3].
To estimate ZTD at existing GNSS receivers on the ground, numerous Analysis Centers (ACs) apply
techniques such as Double-Differenced (DD) processing of large GNSS networks, or, the stand-alone
Precise Point Positioning (PPP) technique [4]. In contrast to network or relative positioning strategies in
general, PPP uses undifferenced GNSS observations and relies on precise satellite clock and positions
to be available from the International GNSS Service (IGS). Dual-frequency observations are used
to form the ionosphere-free linear combination, which removes the majority of the error associated
with the delay in the ionosphere layer, but increases the noise by a factor of 3 [5]. In the past,
estimating ZTD for meteorological purposes using cost-efficient equipment was only possible with
single-frequency receivers, which required interpolation of the ionospheric delay from a network
of dual-frequency receivers (e.g., References [6,7]). Recently, also low-cost dual-frequency receivers
became available, which in combination with low-priced antennas, inspired the experiment in this
paper. This experiment aims to investigate the potential use of low-cost dual-frequency receivers
for ZTD estimation, something that was formerly only possible using expensive receiver equipment,
or relied on existing geodetic networks to perform corrections. For this experiment different quality
antennas, ranging from geodetic to mass-market, are deployed consecutively on a short-baseline.
The new low-cost design of the receiver supplemented by a low-cost antenna may enable the
cost-efficient estimation of high-quality tropospheric delays.

For high-precision applications, both satellite and receiver antenna corrections need to be
applied [8]. These corrections are not only frequency dependent, but they also depend on the azimuth
and elevation of the transmitting satellite. The delay caused by the antenna and the near field
environment is not the same in every direction. Neither is it possible to find, for a specific frequency,
a single point in the antenna for which the delay is the same for every direction. Therefore, a geometric
center is something that does not really exists, and concepts like Antenna Phase Center (APC) are only
approximate. These variations in antenna delay cause errors in the horizontal and vertical position,
but also in the ZTD estimation. In order to correct the carrier phase signals for this effect, antenna
calibrations are performed. The result of an antenna calibration is represented by a Phase Center Offset
(PCO) with respect to a chosen Antenna Reference Point (ARP), and azimuth- and elevation dependent
Phase Center Variations (PCV) with respect to the PCO. PCV and PCO corrections are provided per
frequency. They are not independent, and should always be used together in high-precision positioning
applications. Applications that require less precision can use only PCO values. On the other hand,
for ZTD estimation, the PCO values are not important, and only the PCV values matter.

To obtain PCO and PCV corrections, relative and absolute antenna calibrations can be used.
Absolute calibrations are typically expensive and involve sending the antenna to a calibration facility,
while a relative calibration can be performed more easily by yourself. The relative calibration is
performed over a short baseline, with on one side the antenna to be calibrated, and on the other side a
reference antenna that has already been calibrated before (see e.g., Reference [9]). Double-differenced
carrier phase residuals are used to compute the relative pattern between the antenna’s. It uses the
fact that over short baselines for DD observations most errors (e.g., satellite clock and atmospheric
delays) are eliminated. The drawback of this calibration method is that it is a relative calibration.
Since 2006 [10] it has been common for geodetic applications to use absolute antenna calibrations.
Therefore, to obtain an absolute calibration for our antenna, we must add the absolute calibration for
the reference antenna to the relative calibration. Absolute calibrations are typically obtained from
measurements in an anechoic chamber (see e.g., Reference [11] or Reference [12]) or robotic field
calibrations (see Reference [13]). Robotic calibrations have the advantage that they are not affected by
multipath effects as in a relative correction.
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While high quality geodetic antennas are typically manufactured with highest precision to enable
the repetition of phase patterns on the receiving phase center, this is only partially the case for low-cost
antennas. Companies specialized in antenna calibrations, such as Geo++ [14] in Germany, generate
individual absolute antenna calibrations for geodetic antennas. Absolute antenna calibrations are
typically supplied in an Antenna Exchange Format (ANTEX) file [15] that contains PCO as well
as azimuth- and elevation dependent PCV for different frequencies and satellite systems. Various
individual calibrations of the same antenna type are averaged to type mean calibrations and distributed,
such as by the IGS. Using these antenna patterns is a standard practice in geodesy and essential for
high precision positioning and also for tropospheric delay estimations. Several studies were performed
that compare the differences between type mean and individual antenna phase center calibrations for
example, by Araszkiewicz and Völksen (2016) [16], Schmid et al. 2005 [17] and Sidorov and Teferle
2016 [18]. They found a typical difference of only 2 mm horizontal and up to 4 mm vertical between
type mean and individual antenna calibrations. For one antenna an offset of up to 17 mm in the
vertical and 10 mm in the horizontal direction was observed. The vertical positioning performance
gives an indication about the accuracy of the troposphere estimations since both parameters are
correlated [19]. Only few studies were performed that analyze the impact of the antenna PCV on
tropospheric parameter estimations. Ejigu et al. 2018 [20] investigated the impact of individual and
type mean calibrations on Zenith Wet Delays (ZWDs) and tropospheric gradients [21]. They report a
mean ZWD bias of 1.8 mm. A study by Pacione et al. 2017 [22] demonstrate similar results with ZTD
errors in the mm range between utilizing individual and type mean calibrations.

The low-cost GNSS chips, being affordable and produced for the mass-market, are also of interest
for scientific applications, but this only makes sense if also a low-cost antenna can be used. Geodetic
antennas are generally characterized by special manufactured designs (e.g., choke ring) to suppress
multipath induced effects. With low-cost antennas this is typically not the case. An analysis of low-cost
antennas is especially important since they are expected to be particularly prone to multipath effects
that are reflected in the antenna phase patterns.

In this paper we investigate the PPP ZTD performance of a recently introduced low-cost
dual-frequency receiver connected to antennas of ranging quality (geodetic to mass-market) with
and without applying relative antenna calibrations. Additionally, using L1-only data we investigate
how well the (un-)corrected single-frequency data from the dual-frequency receiver can be used for
meteorological applications. This is achieved by trimming the original data to L1-only datasets and
generating a second frequency observation with the Satellite-specific Epoch-differenced Ionospheric
Delay (SEID) model which is adjusted to the ionospheric delay based on a surrounding dual-frequency
network. The paper is structured as follows—Section 2 describes the methodology, experimental setup
and data analysis, Section 3 illustrates the PPP-derived ZTD results, Section 4 the discussion and
Section 5 the conclusion.

2. Methods

Our experiment includes several steps to estimate the impact of different quality antennas on the
ZTD performance using a low-cost dual-frequency receiver. The fundamental step upon which our
investigation is based is a short-baseline analysis to perform a relative antenna calibration. Thereafter,
different relative antenna calibration results are evaluated using the ZTD from two different PPP
experiments. The experimental setup and overview of the data analysis procedure are described in
Sections 2.1 and 2.2. The antenna calibration procedure is explained in Section 2.3. Section 2.4 describes
the evaluation of the ZTD estimations with dual-frequency data in more detail. The antenna calibration
impact on single-frequency data is covered in Section 2.5.

2.1. Experimental Setup

This subsection describes the test site, instrument setup, data handling as well as the receivers
and antennas that were used in the experiment.
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Our experiment consists of a series of consecutive short-baseline experiments using the
International GNSS Service (IGS) station DLF1 as a base station and a U-blox ZED-F9P as rover.
The DLF1 station is located on the rooftop of the Nederlands Metrology institute (NMi) in Delft.
The station uses a Trimble NetR9 receiver, capable of tracking most GNSS signals, with a Leica
AR25.R3 (LEIAR25.R3) chokering antenna with LEIT radome. The antenna has been calibrated by
Geo++. The antenna is installed on the permanent marker with DOMES number 13502M009.

The rover receiver is an engineering sample of recently released low-cost dual-frequency receivers,
that was obtained from the manufacturer for testing purposes. It covers the following frequencies:
GPS L1C/A, L2C, GLONASS L1OF, L2OF, Galileo E1, E5b and BeiDou B1l, B2l and QZSS L1C/A,
L2C. Notably missing GNSS signals are GPS L2P/Y, GPS L5 and Galileo E6. However, with the
new generation GPS satellites, the L2C signal becomes rapidly available on almost all satellites and
enables obtaining dual-frequency measurements from an increasing number of available GPS satellites.
With up to 184 channels available, the receiver is capable of tracking two frequencies on each of the
described satellite constellations and is still able to receive correction service data from augmented
GNSS (e.g., Reference [23]).

The antennas of the rover are placed on a geodetic marker at a horizontal distance of approximately
10 m and 1.5 m height difference from DLF1. Different antenna types have been installed during
consecutive periods from 15 February 2019 onwards. The investigated rover antennas cover a range
of prices, starting with the lowest cost antennas U-blox ANN-MB-00 and Taoglas AQHA50 between
about 50 and 100 euros, the middle price segment antennas Trimble AV28 and Trimble GA530 and
antennas with a price of above 1000 euros, LEIAR25.R3 LEIT and TRM55971.00 NONE (also known as
Trimble Zephyr 2 Geodetic). For these antennas, the mount point DOMES 13502M003 (GPS Mark 15) is
used (Figure 1b). The antennas with hole-mount design (Trimble AV28) and without screw-hole at the
bottom (U-blox ANN-MB-00) are mounted on top of a metallic rectangular extension bracket and also
with a circular metallic ground plane with 10 cm diameter. For the other tested antennas, a tribrach
with an adjustable circular level is used. The receiver itself is placed in a pelican case in the proximity
and data logging is performed with a Raspberry Pi Zero on a local SD card (Figure 1a). Depending on
weather conditions and observation time, antennas are switched after at least having recorded three
full days of raw data. Data is transferred manually from the SD card for post-processing purposes.

The installation environment (regarding near-field effects and multipath) can be regarded as
relatively clean. Both antenna positions (DLF1 and GPS Mark 15) are characterized by an unobstructed
view over the full horizon. The time frame of antenna placements is depicted in Table 1. All antennas
are active and, depending on the type, require different voltage as input. The antennas GA530,
LEIAR25.R3 and TRM55971.00 require 12 V input voltage which cannot be supplied by the Raspberry
Pi. Instead, the antennas are powered by a Septentrio receiver and the antenna signal is split to the
U-blox ZED-F9P. The other antennas are working with voltage at or below 5 V that is supplied via the
USB port of the Raspberry Pi and is considered as stable.
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Figure 1. Waterproof pelican box rover equipment on the ground next to the marker (a). The pelican
box contains the U-blox ZED-F9P, a Raspberry Pi Zero for data logging, power and a Septentrio
receiver. The Septentrio receiver is used to provide power, through an antenna splitter, to the antennas:
LEIAR25.R3 (b), Zephyr2 (c) and GA530 (d). No data collection or processing is performed with
the Septentrio receiver. The verification setup is depicted in (b). It shows the baseline setup with
two LEIAR25.R3 LEIT antennas. The antenna in the foreground is at the marker that is used for
the investigation. In the background the radome and antenna of the base station DLF1 is visible.
Both antennas are oriented North. The subfigures (b–f) illustrate the marker used for the investigation
with different installed antennas. The antennas AV28 (e) and ANN-MB-00 (f) are depicted with a
circular plane.

Table 1. Time frame and antenna descriptions of the antenna placements on GPS Mark 15 for the
short-baseline experiments.

Start End DOYs Antenna, Description

15 February 2019 20 February 2019 046–051 Trimble AV28 (stacked patch), rectangular bracket
20 February 2019 26 February 2019 051–057 Taoglas AQHA50 (stacked patch), rectangular bracket
26 February 2019 5 March 2019 057–064 U-blox ANN-MB-00 (stacked patch), rectangular bracket
5 March 2019 19 March 2019 064–078 Trimble GA530 (radome)
19 March 2019 26 March 2019 078–085 LEIAR25.R3 LEIT (choke ring)
26 March 2019 2 April 2019 085–092 Trimble TRM55971.00 NONE (resistive plane)
11 October 2019 15 October 2019 284–288 Trimble AV28 (stacked patch), circular plane
15 October 2019 18 October 2019 288–291 U-blox ANN-MB-00 (stacked patch), circular plane

The GA530 lost satellite tracking on L1 on 15 March 2019 17.23 UTC and one day later also L2 data
was lost, presumably due to moisture in the antenna connector. Data from 15 March 2019 onwards
is therefore discarded from the GA530 observations. The AQHA50 data was not processed due to
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very low Signal-to-Noise (SNR) ratio, despite free-sky conditions, which we were unable to resolve.
After quick and uncomplicated communication with the manufacturer the antenna could be returned
and a replacement was provided. It was, however, not examined further in this experiment because of
time limitations and practical considerations. A power outage in the Delft region, in the morning of
Monday 25 March 2019, ended the data tracking for the LEIAR25.R3 antenna. Except for the AQHA50
antenna, sufficient data have been recorded for the remaining antennas for the analysis. Details about
the data logging and conversion can be found in Appendix A.

The data is analysed in post-processing, with DLF1 as base station, and the antennas under
investigation as rover. The rover data is available as 1-s daily RINEX 3 observation files. For the base
station data, high-rate (1 Hz) RINEX3 data from the IGS station DLF1 were downloaded. High-rate
15-min RINEX 3 DLF1 observations were merged into daily files. Broadcast navigation data from
the satellites were collected from the Crustal Dynamics Data Information System (CDDIS) [24].
For simplicity reasons and driven by the fact that most antenna calibrations are available for GPS,
we used GPS-only data for our analysis.

2.2. Antenna Calibration and ZTD Evaluation Procedure

This subsection aims to provide a general overview of the antenna calibration and ZTD evaluation
procedure. The experiment basically follows the steps illustrated in Figure 2. First, the antenna
calibration is performed by retrieving residuals in a short baseline experiment, for which errors caused
by the troposphere and ionosphere delays can be safely neglected. The original L1 + L2 RINEX data
of base and rover were processed in RTKLIB, in static mode, to obtain the carrier phase residuals
for each frequency, as well as azimuth (az) and elevation (el) angles of the corresponding satellites.
The residuals, that can be considered as relative PCVs, together with IGS ANTEX type mean PCVs of
the base station antenna (LEIAR25.R3 LEIT), were processed to create absolute PCVs which are saved
in new ANTEX entries for each rover antenna. Details on the antenna types used in the experiment are
provided in Table 1.

Short BaselineBase Rover

Antennas
LEIAR25.R3 LEIT
TRM55971.00 NONE
Trimble GA530
Trimble AV28
U-blox ANN-MB-00

Receiver
U-blox ZED-F9P

Antenna
LEIAR25.R3 LEIT (IGS DLF1)

Receiver
Trimble NetR9

IGS ANTEX
(LEIAR25.R3 LEIT)

USNO
(Bernese, PPP)

IGS ZTD
reference

RTKLIB
(static)

PCV corrections
(new ANTEX entries)

Residuals   (az,el)
(For all rover antennas)

goGPS
(PPP)

ZTD

�

ANTEX
(rover antennas)

ZTD
comparison

IGS ZTD
reference ZTD

ANTEX
(rover antennas)

Residuals  (az,el)
(For all rover antennas)

Figure 2. Steps in the Zenith Tropospheric Delay (ZTD) evaluation procedure. The top central box
illustrates the short baseline with base station (DLF1) on the left and rover on the right. The base station
DLF1 uses a Trimble NetR9 receiver and LEIAR25.R3 LEIT antenna, which did not change during the
time frame of our experiment. The rover is illustrated on the right, with an U-blox ZED-F9P receiver
and five antenna types applied consecutively.
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Subsequently, the L1 + L2 RINEX data from the rover antennas, with the new ANTEX entries,
were processed in goGPS (PPP-mode) to obtain absolute ZTD estimations. The obtained set of ZTD
estimations for the low-cost receiver and different antennas was compared against the IGS final ZTD
estimations by the US Naval Observatory (USNO) based on Bernese 5.2 in PPP mode from the IGS
station DLF1. Further details on the antenna calibration and ZTD estimation procedures can be found
in the following subsections.

2.3. Antenna Calibration and Retrieval of New ANTEX Entries

This subsection details the antenna calibration process. It is a fundamental step in our experiment
and consists of an elevation-only and an azimuth and elevation dependent correction.

Near-field, multipath and antenna PCVs, summed up as multipath, affect all estimated parameters
and residuals in the processing. Objects that are close to the antenna (near-field) affect the antenna
patterns especially in the antenna PCO and azimuth- and elevation dependent PCVs. This effect cannot
be covered in existing antenna calibrations without conducting the calibration procedure at the same
location where the observation is taking place.

The main part of the antenna calibration consists of obtaining satellite phase residuals and is
performed using RTKLIB. For each frequency, in our case GPS L1 and L2, the residuals are ‘stacked’
into elevation and azimuth bins. Two types approaches are used: (1) an elevation-only correction by
averaging over all azimuth directions and (2) an azimuth and elevation dependent correction.

The GNSS processing engine RTKLIB [25] is open source and contains a range of Application
Programs (APs) to perform real-time and post-processing precise positioning with GNSS data.
It employs an Extended Kalman Filter (EKF) to obtain final differential solutions. In our analysis,
the baseline processing was performed using the RTKLIB 2.4.3 Command-line User Interface (CLI)
RNX2RTKP. Its functions are equivalent to the Graphical User Interface (GUI) program RTKPOST.
In its standard configuration the program uses the highest elevation satellite as reference to obtain
DDs. The residuals are written to a file for each satellite in view, with a zero value for the reference
satellite, actually using a single difference (SD) format to store the DD residuals. For the analysis of the
phase center variation we need however SD residuals. To obtain the SD residuals the average of the
DD residuals (reference satellite included) must be subtracted from the DD residuals (again reference
satellite included). This is the same as using the average DD residuals as reference. In order to use
the average DD residuals as a reference, the source code was modified and recompiled. The observed
measurement errors now had an expected zero mean of all satellite residuals on each frequency and
not only for the highest elevation satellite. In our version the residuals were computed as in previous
(legacy) RTKLIB releases. To avoid unintended behavior, the changes were discussed and changed in
correspondence with the author of the package on github (see github issue: [26]).

Table 2 shows the processing settings used for the baseline analysis. Important processing options
are the positioning solution to static (-p 3), elevation cut-off 5 degrees (-m 5), AR fix-and-hold (-h)
and output residuals (-y 2). For Ambiguity Resolution (AR), the LAMBDA algorithm [27] is used
within RTKLIB. The basic strategy in RTKLIB is to fix the ambiguities to integer after a float solution
has been obtained. In our analysis we decided to use the fix-and-hold method. Further details on a
conducted sensitivity case study can be found in Appendix B. The static processing option will strictly
constrain the receiver movements for the observation period. It is preferred over a kinematic solution
for the residual analysis since the rover antenna position does not change and the measurement errors
should reflect this in the residuals and not in the estimated position. Driven by uncertainty about the
implementation of applying ANTEX PCV corrections in RTKLIB, the antenna calibrations were not
applied directly in the processing. Instead, their influence was analyzed separately. Each observation
file of each antenna was processed and the generated output consisted of East, North and Up (ENU)
components as well as frequency and azimuth and elevation dependent satellite residuals on code and
phase measurements. For the relative antenna calibration, only the phase residuals were utilized.
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Table 2. RTKLIB RNX2RTKP command line options

Option Command-Line Parameter

Positioning solution: static -p 3
Elevation cut-off: 5 degree -m 5
AR: fix-and-hold -h
AR validation threshold: 3 -v 3.0
Output: residuals -y 2
Output: East, North, Up baseline -a
Satellite systems: GPS-only -sys G
Time format: YYYY/MM/DD hh:mm:ss -t
Kalman filter: forward + backward -c

To reduce noise and avoid outliers in the data, the residuals of each antenna are stacked over
generally three selected DOYs (LEIAR25.R3: 79, 81, 83; TRM55971.00: 87, 88, 90; GA530: 65, 66, 70;
AV28 with rectangular bracket: 47, 48, 49; AV28 with circular plane: 285, 286, 287; ANN-MB with
rectangular bracket: 58, 61, 62) which were selected after a visible inspection. Only the ANN-MB-00
circular plane data is stacked over two days (DOYs 289 and 290) driven by the short observation period
and evident outliers in the observed residuals.

In the first approach, the elevation-only phase patterns are visualised based on a first stacking,
by taking the mean from all observations within 0.5 degree elevation bins. Afterwards, to correspond to
the ANTEX standard, the stacked elevation-only phase residuals were averaged to 5 degree elevation
bins using a moving-average filter. The resulting smoothed curve is shifted and start and end point
(5 and 85 degrees) are substituted with the fitted data from a 10th order polynomial that was fitted
over the 0.5 degree data. The resulting smoothed residual curve is the relative antenna calibration PCV
(see also Section 3.1).

For the second approach, the azimuth and elevation dependent calibration, the number of
residuals in each bin is not very large, and there will be many bins that are empty. To obtain meaningful
azimuthal PCVs one should typically use longer observation time spans and rotate the antenna during
the experiment in order to sample all azimuth directions. Since our experiment did not include rotating
the antenna, and the observation period is only a few days, we do not expect very reliable azimuth
corrections. To obtain azimuth dependent antenna patterns, the observed residuals were averaged
over 5 degree elevation and azimuth bins and stacked over selected days. Since these measurements
are generally noisy, the binned residuals are looped through the elevation bins and smoothed by fitting
a 10th order polynomial to the data. To avoid evident outliers by fitting a polynomial to the data, gaps
and missing data (especially in the North direction, see also Section 3.1) are filled by the nearest value
from the current elevation bin. The 5 degree binned data used for the PCV calibration are taken from
the resulting fitted polynomial curves.

For both approaches, to obtain absolute PCVs for each tested antenna, the estimated relative PCVs
(averaged residuals) must be added to the absolute PCV of the base station antenna. For the absolute
PCV of the base station antenna (LEIAR25.R3 LEIT) we used the IGS type mean azimuth and elevation
dependent PCVs. Equation (1) shows how the rover antenna PCV is created:

ϕr
i (az, el) = ϕb

i (az, el) + ϕ̃br
i (az, el). (1)

The superscripts b and r denote the base and rover, the subscript i the frequency, az and el
the azimuth and elevation angles. By adding the estimated relative PCV of the rover (ϕ̃br) to the
absolute base antenna PCV (ϕb), we obtained the absolute PCVs (ϕr) for the tested antenna. To use
the newly generated PCVs in PPP tests, a new entry for each antenna was added to, or replaced in,
the ANTEX file. Though individual calibrations are available for our base station antenna, we use the
IGS I14.ATX ANTEX file that contains type mean calibrations for the base antenna PCV. A recent study

282



Remote Sens. 2020, 12, 1393

by Araszkiewicz et al., 2019 [28] investigated the height variation on the LEIAR25.R3 antenna with
type mean and individual calibrations. They conclude that both methods show similar results.

For each approach (elevation-only and azimuth-elevation), a new ANTEX file is created with one
new entry for each antenna that can be used for ZTD estimation using PPP. In this way, the antenna
names given in the RINEX files do not have to be modified by instead supplying a respectively
differently generated ANTEX file.

2.4. Evaluation of ZTD Estimates from Dual-Frequency PPP

This subsection describes the PPP processing configuration and ZTD evaluation procedure with
dual-frequency GNSS measurements.

To estimate absolute ZTD values and to evaluate the newly obtained antenna PCVs, the open
source tool goGPS [29] was used. Its ZTD estimations are comparable to existing reference datasets [6,7].
The ZTD results are computed for all available DOYs and compared to IGS final ZTD estimations from
the IGS station DLF1 [24] in approximately 10 m distance. The closest available data point from the
high rate ZTD estimations was used to match the IGS reference (5-min) interval.

We used goGPS PPP with the same configuration for all runs but with different ANTEX file
configurations for the different antennas. The goGPS configuration used for our comparisons can be
found in Table 3. The concept of the ZTD evaluation is summarized in Figure 3.

For all goGPS ZTD estimations, data from GPS-only satellites were used. An elevation cutoff angle
of 10 degrees and ocean loading effects obtained from the FES2004 model [30] were applied. The IGS
antenna calibration, final orbits, 30-s satellite clocks and earth rotation products were used [31].

The ZTD analysis consisted of up to five different cases. Two of our tested rover antennas,
the LEIAR25.R3 LEIT and TRM55971.00 NONE, had already calibration entries in the IGS ANTEX
file. This provided another set of PCVs for testing with PPP and serves as a verification of our
estimations. The first case consists of the verification antennas (LEIAR25.R3 LEIT and TRM55971.00
NONE antennas). For this, a goGPS PPP run is performed using the original IGS I14.ATX ANTEX file.
To investigate the impact of not using an ANTEX file at all, another run without the ANTEX file was
performed in a second run. The third case applies only satellite PCO/PCV corrections by removing the
receiver antenna-specific entries. The last two cases evaluate the elevation-only and azimuth-elevation
corrected ANTEX entries obtained from the calibration step. One has to note that the full observation
period (up to ten days observed data) is used as RINEX input for the ZTD estimation, while only two
or three days are utilized to compute the PCVs.

Table 3. goGPS settings for Precise Point Positioning (PPP) ZTD estimation.

Type Parameter

Observations GPS-only
Elevation cutoff 10◦
Ocean loading FES2004
Observation weighting same weight for all observations
Code observation error threshold 30 m
Phase observation error threshold 0.05 m
Code least-squares estimation error st. dev. threshold 40 m
Clock & orbits IGS Final
Troposphere modeling Saastamoinen (with GPT model)
Troposphere mapping function GMF
Sampling interval 30-s
Antenna calibration IGS, own, none
Kalman filter reset no (seamless)
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IGS DLF1
(Trimble NetR9 receiver)

LEIAR25.R3 LEIT

USNO ZTD
(IGS reference)

Bernese 5.2 PPP
(US Naval Observatory)

GPS Mark #15
(U-blox ZED-F9P receiver)

LEIAR25.R3 LEIT
TRM55971.00 NONE

Trimble GA530
Trimble AV28

U-blox ANN-MB-00

ZTD

ZTD comparison

RINEX L1+L2

no ANTEX
satellite ANTEX-only

satellite + receiver ANTEX
(if available)

elevation-corrected
ANTEX

azimuth-elevation
corrected ANTEX

goGPS PPP
ANTEX file

Figure 3. PPP ZTD evaluation concept. Original dual-frequency RINEX files are utilized as file
input. Several runs with different antennas and ANTEX configurations are tested. The absolute ZTD
estimations are evaluated against International GNSS Service (IGS) final ZTD estimations from DLF1.

If one runs PPP software, for example, goGPS, over which one has full control, one can use the
newly generated ANTEX entries directly in the software. However, when PPP is performed in a server
environment, one does not have the possibility to modify the ANTEX files. In these cases it is more
convenient to correct the original RINEX phase data for the antenna patterns. To achieve this, we
corrected the original RINEX phase data for the PCV estimations retrieved from the calibration step by
the following formula:

L̃i = Li −
ϕr

i (el, az)
λi

, (2)

where L̃i is the corrected phase data on frequency i and Li the original RINEX phase observation.
ϕr

i (el, az) is the azimuth and elevation dependent antenna phase pattern on frequency i. λi denotes
the wavelength on each frequency. A comparison between ANTEX-corrected and RINEX-corrected
PPP ZTD comparisons resulted in no or negligible differences.

2.5. Evaluation of ZTD Estimates from Single-Frequency PPP

This subsection illustrates the single-frequency ZTD evaluation using the Satellite-specific
Epoch-differenced Ionospheric Delay model (SEID) from a surrounding dual-frequency network.
PPP uses the ionosphere-free linear combination to eliminate the first order effect of the ionospheric
delay error. The drawback of this method is that the errors and multipath on L1 is increased by a factor
2.546, and on L2 by a factor 1.546. The effect is that, when the errors are not correlated, the noise of the
ionosphere free linear combination is increased by a factor 3. Also for antennas that are sensitive to
multipath, or are placed in a multipath-prone environment, this effect may cause the performance to
decrease significantly. In these cases the performance of using L1-only measurements may outperform
the dual-frequency ionosphere-free linear combination results (see also Reference [32]).

Instead, the SEID algorithm [33], combined with L1 data, generates a synthesized L2 measurement
by utilizing data from a network of existing dual-frequency receivers. The synthesized signal contains
in principle the same information as L1 but is adjusted to the ionospheric delay on that frequency
based on the dual-frequency measurements from the surrounding network. This effectively reduces
the noise effect. As part of the evaluation, we apply the SEID model on L1-data using a network of
three receivers. By removing the second frequency observations from the RINEX data and correcting
the L1 data for elevation and azimuth-elevation patterns, we also investigate the performance of the
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SEID algorithm on L1-corrected data. Though stations in the close proximity to DLF1 are available,
the outside station network distances are chosen between 55 and 130 km to simulate a more realistic
scenario to densify existing networks. The SEID evaluation process is depicted in Figure 4.

GPS Mark #15
(U-blox ZED-F9P receiver)

LEIAR25.R3 LEIT
TRM55971.00 NONE

Trimble GA530
Trimble AV28

U-blox ANN-MB-00

elevation corrected
ANTEX file

azimuth-elevation corrected
ANTEX file

SEID reference stations

RINEX L1
correction

RINEX L1

SEID

ZTD

RINEX L1

RINEX L1+L2

USNO ZTD
(IGS reference)

ZTD comparison

modified ANTEX

APEL (NLD)
IJMU (NLD)
DENT (BEL)

goGPS PPP

IGS DLF1
(Trimble NetR9 receiver)

LEIAR25.R3 LEIT

Figure 4. Satellite-specific Epoch-differenced Ionospheric Delay model (SEID) PPP methods.
The original (dual-frequency) RINEX data is trimmed to L1-only observations and the RINEX correction
after Equation (2) is utilized. SEID is applied with the stations APEL, IJMU and DENT. The subsequent
PPP process is conducted once with the original I14.ATX file and once without the LEIAR25 and
TRM55971.00 entries, hence providing satellite Phase Center Offset (PCO)/Phase Center Variation
(PCV) corrections only. The resulting absolute ZTD estimations are evaluated against final IGS ZTD
estimations from DLF1.

The following section describes the results of the experiment by analyzing the satellite phase
residuals and ZTD estimations.

3. Results

3.1. Residuals Analysis and PCV Estimation to Obtain Corrected ANTEX Entries

First, we analyzed the residuals as a crucial step to correct for existing phase patterns caused by
the receiving antenna. The residuals are derived from the static RTKLIB solution. The RTKLIB output
contains the residuals for each satellite, epoch and frequency on code and phase. Table 4 shows the
mean residuals and their respective RMSE.

The LEIAR25.R3 LEIT antenna demonstrated the lowest phase RMSE on both frequencies. It is
also evident that the L2 phase residuals are generally higher than the L1 residuals for all antennas.
The Trimble AV28 and U-blox ANN-MB-00 show generally higher phase RMSE values on both
frequencies compared to the other antennas. The phase RMSE is considerably smaller when using
a circular metallic ground plane. The antennas in Table 4 are ordered by approximated acquisition
costs. A quality difference with generally lower phase residuals for the upper price category antennas
compared to the less expensive ones is evident. As known from GNSS basics, the code residuals have
higher deviations than the phase measurements. The mean code error is not zero because they are
less precise and the mean single-difference phase residuals are utilized as reference in computing the
double-differences. Though interesting, the code residuals are less important for the analysis because
precise applications employ phase measurements. L1 and L2 mean phase residuals averaged over the
elevation angle are shown in Figure 5.
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Table 4. Mean and Root Mean Square Errors (RMSE) of code and phase residuals from the static
solutions of the short baseline experiments. The phase mean is zero for all antennas since the
mean of the single-differenced residuals are used as reference for the DD analysis in the modified
RTKLIB application.

Antenna
Code RMSE (mm) Code mean error (mm) Phase RMSE (mm)

L1 L2 L1 L2 L1 L2

LEIAR25.R3 LEIT 508.36 522.46 −0.02 0.00 3.61 4.14
TRM55971.00 NONE 513.57 551.96 0.01 0.14 4.22 5.25
Trimble GA530 540.35 541.41 0.00 −0.02 3.99 5.42
Trimble AV28
(rectangular bracket) 644.51 578.63 0.08 0.11 7.70 8.93

Trimble AV28
(circular plane) 473.30 494.89 0.00 0.00 3.94 5.70

U-blox ANN-MB-00
(rectangular bracket) 632.60 599.06 -0.02 0.00 7.00 9.13

U-blox ANN-MB-00
(circular plane) 515.49 492.47 0.00 0.07 4.28 6.32

Figure 5. Elevation based antenna pattern on the phase residuals. L1 residuals are depicted left and
L2 on the right. The continuous lines (0.5◦∅) show the mean residual over 0.5 degree elevation bins,
the dotted lines (0.5◦σ) in the background its respective standard deviation and the dashed line (5◦∅)
the smoothed 5 degree bins corresponding to the ANTEX format.
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Figure 5 shows the averaged elevation-based pattern for L1 and L2 observations with all tested
antennas using a bin size of 0.5 degrees (continuous line), its standard deviations (thin dotted line
in the background) and the residuals smoothed over 5 degree bins to correspond to the ANTEX
format (thick dashed line). Generally apparent are higher variations at lower elevation angles for
all antennas and a higher standard deviation of L2 compared to L1. A clear signal is evident for the
Trimble AV28 and U-blox ANN-MB-00 antennas using the rectangular metal bracket as base. This effect
can be seen on L1 with satellites between 30 and 50 degrees and on L2 at about 25 and 40 degrees.
Since these results evoked further investigation, the experiment was repeated with a circular ground
plane. The identified pattern could be reduced when using a circular ground plane. However, on L2
the observed variations above 60 degrees are noticeable greater compared to the other antennas.
Evident is that both antennas, although being produced by a different manufacturer and having an
inherently different design, demonstrate a comparable elevation-based pattern. The reference antenna
LEIAR25.R3 LEIT demonstrated no clear elevation-based phase bias at any elevation angle since both,
base and rover antenna are of the same model and the resulting residual error in differential analysis
mostly cancels out. The antennas GA530 and TRM55971.00 also demonstrate a slightly visible mean
phase pattern.

Typically, azimuth dependent residuals are stacked over several weeks or months of data or over
several days by rotating the antenna by some degree. This was not performed in this study. Instead,
with the limited observation days available we stacked the azimuth and elevation dependent residuals
over the selected observation days. Since the antenna phase residuals of AV28 and ANN-MB-00
with different mountings evokes additional attention, Figure 6 compares the elevation and azimuth
dependent L1 and L2 phase residuals for the reference antenna LEIAR25.R3 LEIT and the antennas
Trimble AV28, U-blox ANN-MB-00 with rectangular bracket and circular plane.

Figure 6 demonstrates the performance of a reference antenna (LEIAR25.R3 LEIT) compared to
the two low-cost antennas Trimble AV28 and U-blox ANN-MB-00 with a rectangular bracket and a
circular plane as base. Note that the zenith angle is used instead of elevation angle to correspond
with the ANTEX format and more intuitive interpretation of the polar plots. Generally noteworthy
are the fewer satellite tracks on L2 which is caused by not all GPS satellites yet transmitting the L2C
signal. As previously illustrated in the elevation based residuals, the LEIAR25.R3 antenna (Figure 6a)
depicts generally low residuals over the full horizon with only a few higher values close to the ground.
The patterns from the antennas AV28 and ANN-MB-00 are characterized by negligible differences
between them. Noticeable differences are slightly lower residuals at low elevation in South-West (225◦)
direction on L1 for the AV28 (Figure 6b left) compared to the ANN-MB-00 (Figure 6d left) antenna using
a rectangular bracket. Evident are also the strong negative residuals on L1 at low elevation in North
(0◦) direction and the stronger positive residuals on L2 in the same direction. The described L1 pattern
at about 45 degree elevation (AV28 rectangular and ANN-MB-00 rectangular in Figure 5) is also visible
with the strongest signal in East and West direction. The errors using a circular plane are generally
smoother for both antennas. Regions with increased residuals are, however, still evident. For further
processing, the elevation and azimuth dependent residuals were averaged in 5 degree bins to comply
with the ANTEX standard. To overcome possible outliers in the data and since only limited observation
days were used, we also applied a polynomial fit over the azimuth dependent signal. Based on the base
antenna’s (LEIAR25.R3 LEIT) ANTEX PCV entries, the elevation and azimuth-elevation dependent
phase residuals were used to generate absolute PCVs to append or replace existing ANTEX entries for
the tested antennas.

287



Remote Sens. 2020, 12, 1393

(a) Satellite phase residuals on L1 (top left) and L2 (top right) for the reference antenna LEIAR25.R3 LEIT.

(b) AV28 L1 with a rectangular bracket (left) and a
circular plane (right)

(c) AV28 L2 with a rectangular bracket (left) and a
circular plane (right)

(d) ANN-MB-00 L1 with a rectangular bracket (left)
and a circular plane (right)

(e) ANN-MB-00 L2 with a rectangular bracket (left)
and a circular plane (right)

Figure 6. Satellite phase residuals on L1 (left) and L2 (right) for the selected antennas (a) LEIAR25.R3
LEIT (top frame), (b) AV28 L1, (c) AV28 L2, (d) ANN-MB-00 L1 and (e) ANN-MB-00 L2. The figures
(b–e) depict on the left the phase residuals using a rectangular metallic bracket as base and on the right
with a circular metallic plane of 10 cm diameter.

3.2. Evaluation of ZTD Estimates from Low-Cost Dual-Frequency Receiver and Different Quality Antennas

Table 5 shows the ZTD bias and RMSE values, computed without supplying an ANTEX file
(no ANTEX), applying only satellite PCO and PCV corrections (Only satellite PCO/PCV), using the
original IGS ANTEX entries (IGS ANTEX), elevation-only corrected ANTEX entries (El. Corrected)
and azimuth-elevation dependent corrected ANTEX entries (Az.-el. Corrected). For the latter two runs,
the existing ANTEX entries from the original IGS ANTEX file were removed and replaced with the
generated antenna corrections from our experiment. For all evaluations, the IGS final ZTD estimations
from the IGS station DLF1 located at approximately 10 m distance served as reference.
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Table 5. ZTD estimation based on antenna PCV corrections with no ANTEX corrections, only satellite
PCO/PCV corrections, original IGS type mean ANTEX, elevation corrected ANTEX and azimuth-
elevation corrected ANTEX entries on the reference antennas LEIAR25.R3 LEIT and TRM55971.00
NONE. Bias and RMSE refer to the PPP ZTD estimations compared to the IGS ZTD reference.

Antenna (mm)
No

ANTEX
Only Satellite

PCO/PCV
IGS

ANTEX
El.

Corrected
Az.-el.

Corrected

LEIAR25.R3 LEIT Bias 7.50 5.96 1.15 1.08 1.59
RMSE 15.86 8.02 4.77 4.67 4.64

TRM55971.00 NONE Bias −0.89 −1.30 −0.98 −1.17 −2.26
RMSE 14.20 3.83 3.58 3.59 3.85

The PPP runs without supplying an ANTEX file yielded high RMSE of about 15 mm for both
antennas and a bias of 7.5 mm for the LEIAR25.R3 LEIT antenna. No significant bias is evident for the
TRM55971.00 NONE antenna. Applying only the satellite PCO and PCV corrections, the bias of the
LEIAR25.R3 antenna slightly decreased to about 6 mm and the RMSE to about 8 mm. The bias of the
TRM55971.00 antenna remained at about the same level while the RMSE decreased drastically to about
4 mm which already agrees well with the expected standard deviation of about 4 mm from the official
IGS ZTD final product [3,34]. Both reference antennas performed well using the original IGS ANTEX
file resulting in no significant biases. The RMSE is in an expected range of about 4 mm. Replacing
the existing ANTEX entries with the generated ANTEX entries resulted in a similar performance
to the IGS reference results with RMSE values between 3 and 5 mm. Remarkably, compared to the
LEIAR25.R3 antenna, the bias of the TRM55971.00 antenna increased up to about −2.3 mm in the
azimuth- elevation corrected results.

The same evaluation is done for the antennas without official ANTEX entries, yet without the IGS
receiver antenna corrections that are unavailable for this case. Table 6 shows the results for the ANTEX
corrected PPP-based ZTD estimations with the antennas GA530, AV28 and ANN-MB-00.

Table 6. ZTD estimation based on antenna corrections with no ANTEX corrections, only satellite
PCO/PCV corrections, elevation corrected ANTEX and azimuth-elevation corrected ANTEX entries on
the antennas Trimble GA530, Trimble AV28 and U-blox ANN-MB-00. Bias and RMSE refer to the PPP
ZTD estimations compared to the IGS ZTD reference.

Antenna (mm)
No

ANTEX
Only Satellite

PCO/PCV
El-

Corrected
Az-el-

Corrected

Trimble GA530 Bias 3.65 −0.93 −2.21 −3.65
RMSE 13.79 5.05 4.31 5.06

Trimble AV 28
(rectangular bracket)

Bias −19.35 −24.04 −3.91 −2.86
RMSE 23.59 24.82 6.13 5.10

Trimble AV 28
(circular plane)

Bias 12.14 9.54 2.61 2.83
RMSE 18.02 10.86 5.01 4.79

U-blox ANN-MB-00
(rectangular bracket)

Bias −14.54 −19.55 −3.34 −3.58
RMSE 20.19 20.59 6.64 5.44

U-blox ANN-MB-00
(circular plane)

Bias 6.47 5.26 −0.47 −0.52
RMSE 15.32 7.23 4.02 3.77

By supplying no ANTEX file or only correcting for the satellite antenna PCO and PCV, the results
in Table 6 depict a generally better ZTD quality for the Trimble GA530 antenna compared to the
Trimble AV28 and U-blox ANN-MB-00 antennas. A considerable difference is evident when using a
circular ground plane and a rectangular bracket for the latter two. While the bias and RMSE of the
data with rectangular brackets remained at a constant high level (>20 mm), employing a circular plane
reduced the errors down to about 7 and 10 mm RMSE. Remarkably, applying the elevation-only or
azimuth-elevation dependent ANTEX entries for these antennas resulted in a significant improvement
for both antennas and mounting types. The offsets are lowered to between −0.47 and −3.91 mm and
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the ZTD RMSE are between 3.77 and 6.64 mm. Whilst the RMSE of the Trimble GA530 remained
at the same level of about 5 mm, the bias increased slightly compared to the satellite-only PCO and
PCV corrections.

3.3. ZTD Evaluation Using Single-Frequency PPP with SEID Modelling

Table 7 shows ZTD results using L1 data combined with SEID modelling of L2. The Table shows
results using the original RINEX L1 data, elevation-corrected L1 data and azimuth-elevation corrected
L1 data as input. The IGS ANTEX file is used to provide the satellite PCO/PCVs. In case of the original
RINEX L1 data, the receiver PCO/PCV is used as well in case there is an entry in the IGS ANTEX file.
In case of the elevation and/or azimuth corrected data the RINEX L1 data is modified for the L1 PCV
(no receiver entries from ANTEX are used).

Table 7. ZTD PPP results using original L1 data, elevation-corrected L1 data and azimuth-elevation
corrected L1 data together with the original IGS ANTEX type mean entries using SEID. For the reference
target antennas only satellite PCO/PCV ANTEX corrections were utilized. For the SEID processing, the
Dutch Permanent GNSS Array (DPGA) stations APEL (Apeldoorn, Netherlands) and IJMU (IJmuiden,
Netherlands) as well as the EUREF station DENT (Dentergem, Belgium) were used. The stations are
located approximately 110, 55 and 130 km from the experimental setup.

Antenna (mm)
Original L1 and

IGS ANTEX
El-Corrected L1 and

IGS ANTEX
Az-el-Corrected L1

and IGS ANTEX

LEIAR25.R3 LEIT Bias 2.20 2.22 2.67
RMSE 5.14 5.10 5.31

TRM55971.00 NONE Bias 1.72 1.69 1.69
RMSE 4.68 4.66 4.66

Trimble GA530 Bias 1.41 1.55 0.94
RMSE 4.08 4.13 3.91

Trimble AV 28
(rectangular bracket)

Bias −5.08 2.26 0.75
RMSE 7.58 5.96 5.42

Trimble AV 28
(circular plane)

Bias 3.38 3.85 2.89
RMSE 5.27 5.56 4.90

U-blox ANN-MB-00
(rectangular bracket)

Bias −6.02 −0.36 −1.84
RMSE 7.34 4.16 4.44

U-blox ANN-MB-00
(circular plane)

Bias −0.40 0.22 −0.78
RMSE 4.23 4.19 4.28

Applying SEID and using the original RINEX L1 data and IGS ANTEX file, the overall performance
of the geodetic quality antennas (LEIAR25.R3 LEIT and TRM55971.00 NONE) remained at a high
level. It is also evident that noise and bias were significantly decreased for the antennas Trimble
AV28 and U-blox ANN-MB-00 for both mounting types compared to the satellite-only PCO and PCV
corrected results from Table 6. The bias was almost zero for the U-blox ANN-MB-00 (circular plane)
and −6 mm for the rectangular bracket dataset. The AV28 data were slightly more biased with values
of about 3 mm for the circular plane data and −5 mm using the rectangular bracket. The RMSE values
were between about 4 mm and 7.5 mm. Notably, the ANN-MB-00 (circular plane) dataset is already
comparable to the reference results from Table 6. Applying elevation and azimuth-elevation dependent
corrections to the RINEX L1 observations further improved the results with biases between almost
zero and 4 mm and RMSE values of about 4 to 6 mm ZTD. The performance of the higher grade
antennas (LEIAR25.R3 LEIT, TRM55971.00 NONE and Trimble GA530) remained at a stable level
which is similar to the results from Table 6.

The results from all conducted evaluations are summarized in the boxplots shown in Figure 7.
The boxplots show the differences between the IGS ZTD reference data and the obtained goGPS PPP
ZTD estimations. The boxplots on the left depict the results using the original L1 + L2 RINEX data
with the original IGS ANTEX, without supplying ANTEX corrections and using only satellite PCO
and PCV. One should note that these graphs in the left box illustrate the ZTD results with the original
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recorded dual-frequency data and different IGS ANTEX constellations. It is evident that supplying
the original IGS ANTEX corrections resulted in the smallest errors, but these are not available for the
low cost antennas. It also shows that applying no ANTEX corrections to the data yield high standard
deviations and offsets in the ZTD estimations. Supplying only satellite PCO/PCV corrections provide
reasonable results for the antennas TRM55971.00 NONE and GA530. The antennas LEIAR25.R3 LEIT,
AV28 (circular) and ANN-MB-00 (circular) are at a comparable level. Although the standard deviation
decreased for the data from the ANN-MB-00 and AV28 antennas, a significant bias was still present for
the rectangular ground plate datasets.

Figure 7. Boxplots of goGPS PPP ZTD estimations against IGS reference data from DLF1. The figure on
the left depicts the combinations with the original dual-frequency RINEX data using the original IGS
ANTEX file, supplying no ANTEX file at all, or only satellite PCO/PCV corrections. The boxplots on
the right illustrate the references (original ANTEX, only satellite PCO/PCV), the results with original
RINEX L1 + L2 and modified ANTEX entries (elevation modified ANTEX, azimuth-elevation modified
ANTEX) and SEID results with original, elevation corrected and azimuth-elevation corrected L1 data.

The boxplots on the right in Figure 7 depict the reference data (original ANTEX and satellite
PCO/PCV) and summarize the results for the corrected datasets (the first four groups) and applied
SEID experiments (the rightmost three groups). One can note that the corrected data illustrate values in
the range between −30 and 20 mm compared to −70 and 45 mm when not using the IGS ANTEX file.
The presented results demonstrate a similar performance of all antennas with their most significant
differences being the biases. Notably, the biases of the rectangular and circular mounting types are of
opposite sign using only satellite PCO/PCV corrections. After correction, the biases are significantly
reduced for the LEIAR25.R3 LEIT antenna as well as for the low-cost antennas AV28 and ANN-MB-00
using both, rectangular bracket and circular plane. It also shows that results for the single-frequency
SEID experiments are comparable to the dual-frequency results.

4. Discussion

4.1. Residual Analysis

The presented residual analysis provides elevation- and azimuth-elevation phase patterns on
both frequencies for each rover antenna. The analysis proves that antenna dependent residual phase
patterns are present, and certain anomalies, for example, multipath signals presumably caused by the
rectangular plate (AV28 and ANN-MB-00), can be exposed. The phase patterns can be modelled to
provide corrections and/or a relative antenna calibration for our further investigations. The relative
calibrations can be turned into absolute antenna calibrations in the international ANTEX format
by averaging over 5 degree elevation and azimuth bins, and adding the relative calibration to the
absolute calibration of the reference antenna. An important point of discussion is whether the full
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azimuth-elevation pattern should be used, or the elevation only pattern. The elevation only pattern
is more robust and less sensitive to possible outliers than the azimuth-elevation pattern, it is also
computationally less expensive to compute. Three days of data is enough to compute the elevation
only pattern. To compute the azimuth-elevation pattern we advise to use more days, and/or rotate the
antenna, to fill the gaps in the azimuth patterns. Additional satellite tracks over the horizon can also be
obtained by utilizing multiple satellite constellations sharing the same center frequency (e.g., Galileo
E1 and GPS L1). However, it introduces additional unknowns (i.e., estimation of an additional clock
term) and, in the latitude of the executed experiment, still leaves the gap in the North. Consequently,
a carefully conducted rotation of the antenna and accounting for it during the processing can be used
to fill gaps in the azimuth pattern and at the same time average potential multipath effects. The result
we obtained for the elevation only patterns were comparable to our limited azimuth-elevation patters,
thus, for three days calibration time, we recommend to use the elevation only patterns. The procedure
for azimuth-elevation patterns needs some further investigation.

4.2. Absolute ZTD Estimations

In order to evaluate the performance of our antenna calibrations on the absolute ZTD estimation
several PPP computations were performed. The rover antennas were divided in two groups. The first
group is formed by the LEIAR25.R3 LEIT and TRM55971.00 NONE from which we know the antenna
patterns from existing type mean IGS ANTEX entries, and which provide an excellent reference for
our own calibrations, as well as scenarios in which no or satellite-only antenna calibrations would
be available. The results are summarized in Table 5 and Figure 7. Using no ANTEX file at all,
the ZTD RMSE compared to the IGS reference is about 15 mm for both antennas in contrast to about
4 mm with applying the IGS PCO and PCV corrections. Supplying only satellite antenna corrections
decreases the ZTD RMSE to 8 mm (LEIAR25.R3 LEIT) and to about 4 mm (TRM55971.00 NONE). It also
shows that the LEIAR25.R3 LEIT antenna, caused by the antenna design and radome, has a phase
pattern that deviates significantly from a sphere, resulting in a bias of about 6 mm when applying
only satellite antenna corrections (and ignoring the receiver corrections). This makes it particularly
important to correct for this error with this antenna type. The TRM55971.00 NONE antenna pattern
suggests to have only little impact on the ZTD estimation with almost identical results comparing
the original IGS ANTEX data results. It suggests that the PCV of this antenna has a spherical pattern.
Applying the antenna PCV corrections from the conducted short baseline analysis demonstrated
comparable results for the elevation-based ANTEX correction and slightly less precise results for the
azimuth-elevation corrections. Especially the bias increased which suggests that more outliers are
present in the azimuth analysis which is presumably caused by the lack of observing days to perform
an azimuthal correction with the utilized calibration method. Except for the minor bias, the ZTD
RMSE with self-calibrated antenna pattern entries are comparable to the results using the IGS ANTEX
calibrations, and comparable to the IGS reference ZTD estimations.

The second group of antennas consisted of the GA530, AV28 and ANN-MB-00. Since no official
antenna calibrations are available for these antennas, the performance could not be evaluated directly
against official calibrations. However, the IGS supplies official ZTD estimations from DLF1 to which
the results can be compared. Since the PPP processing scheme is not changed except for the supplied
ANTEX files, the results demonstrate the antenna phase variation impact on the tropospheric delay.
They are shown in Table 6 and Figure 7. The results of the GA530 antenna are comparable to the
performance of the LEIAR25.R3 and TRM55971.00 antennas. Supplying no ANTEX file at all, high ZTD
biases in the order of −20 mm and −15 mm for the AV28 and ANN-MB-00 antennas are evident with
the rectangular bracket. Using a circular plane reduced them to about 12 mm and 6.5 mm, respectively,
while maintaining similar RMSE. When applying satellite PCO and PCV corrections, the boxplots
in Figure 7 (Satellite PCO/PCV column) demonstrate that the standard deviation decreased notably.
The presented offsets and consequently RMSE values limit the application of the data for meteorological
purposes. After applying the elevation-only antenna corrections to the data, the bias and RMSE
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decreased significantly for the antennas AV28 and ANN-MB-00. Remarkably, the applied corrections
did not only increase the performance of the antennas with a circular plane, but also significantly
decreased the error from using the rectangular bracket as base. Applying the azimuth-elevation
dependent corrections to the data slightly increased the performance of the low-cost antennas. The bias
increased slightly for the GA530 antenna and is presumably caused by the short observation time
and outliers present in the residuals. The results are encouraging and demonstrate that the applied
corrections for low-cost antennas make the data more attractive for tropospheric analysis. Particularly,
the performance of the patch antenna ANN-MB-00 with a circular ground plane after correcting the
phase pattern yields comparable results (0.47 mm bias and 4.02 mm RMSE) to those from geodetic
quality antennas. To confirm these findings, longer observation times are recommended. The utilized
IGS I14.ATX ANTEX file consisting of the elevation-only calibrations (without PCO estimations) for
the antennas LEIAR25.R3 LEIT, TRM55971.00 NONE, Trimble GA530 and Trimble AV28 and U-blox
ANN-MB-00 using a circular plane is attached as Supplementary Material.

4.3. Dual- versus Single-Frequency

The ionosphere-free linear combination, which is applied to dual-frequency data in PPP to
eliminate the ionospheric delay, almost triples the noise in the data. Considering that noise in the data,
including the noise in the antenna calibrations, is the major contributor to the bias and RMSE in the
ZTD estimation, it can be useful to use L1 data only. Also, although this could change in the future,
single-frequency receivers are more readily available than cheap dual-frequency receivers. By applying
the SEID algorithm to L1-only observations, an artificial second frequency is generated from the L1
data using the interpolated ionospheric delay from a network of dual-frequency reference receivers.
We apply this method to investigate if L1-only measurements may be favorable for ZTD estimations.
The results are shown in Table 7. Using the original L1-only data and IGS ANTEX file, the SEID results
indicate a similar performance for the high-quality antennas LEIAR25.R3, TRM55971.00 and GA530
compared to the L1 + L2 processing using the original IGS ANTEX file (Tables 5 and 6). Compared
to results obtained using only satellite PCO/PCV corrections, the performance of the AV28 and
ANN-MB-00 antennas increased significantly after applying SEID on the original data. The lowest
bias (−0.40 mm) and RMSE (4.23 mm) is observed with the ANN-MB-00 using a circular plane as base.
The results with rectangular brackets demonstrate a ZTD RMSE of about 7 mm and a bias of −5 to
−6 mm. Especially the bias of the datasets with rectangular brackets could be reduced to −0.36 mm
(ANN-MB-00) and 2.26 mm (AV28) after applying elevation corrections to the L1 data. Applying the
azimuth-elevation dependent corrections to the L1 input data resulted in minor improvements for the
AV28 data and slight degradation of the ANN-MB-00 data.

These results suggests that the original L1 + L2 data is considerably affected by noise amplified
by the ionosphere-free linear combination. Provided that a network of high quality surrounding
stations exists, the approach demonstrates the strong advantage of the SEID algorithm to generate
L2, which drastically reduces the noise on the target receiver data. There is, however, a trade-off
between smoothing the true signal and the underlying noise. Utilizing this method almost eliminates
the ZTD bias that was present in the data and the RMSE decreased to a level that is comparable to
high-quality measurements which makes it attractive for meteorological applications such as water
vapor estimation.

5. Conclusions

In this paper we investigated the PPP ZTD performance of a recently introduced low-cost
dual-frequency receiver (U-blox ZED F9P) in combination with different antennas, ranging
from geodetic to mass-market devices, with and without applying relative antenna calibrations.
The conducted experiments demonstrated that the U-blox ZED-F9P dual-frequency receiver is very
well capable to produce high-quality results, with the limiting factor being the quality of the receiving
antenna. However, our results show that, using a simple-to-apply method to correct for the PCV
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of cost-efficient receiver antennas, high quality results are achievable even for low-cost antenna.
This is demonstrated by a field experiment, resulting in ZTD estimations of similar quality as with
high-grade antennas.

The phase residuals with different antenna types were analyzed over a short baseline. The aim
was to do a relative antenna calibration. The absolute antenna calibration pattern can then be computed
from the absolute antenna calibration of the reference antenna and the relative calibration result from
the short baseline experiment. For two of the tested antennas, the AV28 and ANN-MB-00 antennas,
when used with a rectangular bracket as mounting point, very prominent elevation-based patterns
were found (see Figure 5). These cases result in the highest RMSE phase residuals when compared to
other antennas. Figure 6 indicates azimuth dependent patterns with strongly fluctuating amplitudes.
The rectangular bracket presumably caused high residuals for L2 close to the horizon, but also in
East and West direction for L1. Smaller residuals were obtained after repeating the experiment
with a circular ground plane. These results showed that our approach is working, regardless of the
size of the residual patterns. This suggests that our approach is feasible for even more challenging,
multipath-prone environments. Additional uncertainty may be introduced by the smoothing technique
we used to obtain PCVs in the 5-degree bin size required by the ANTEX standard. A lower binning
size may further improve the results. Considering that only three days of data were used for the
calibration, and that the antenna was not rotated, many of the azimuth-elevation bins were without
data or had only few observations. For this reason the elevation-only based calibration is preferred
over the azimuth-elevation based calibration.

The impact of the different antenna PCV corrections on PPP ZTD estimations has been analyzed
for the tested antennas. Our results confirm that antenna pattern corrections are essential for PPP ZTD
estimations. Applying satellite PCO/PCV corrections significantly decreases the standard deviation in
the ZTD error compared to using no ANTEX corrections at all. Without applying receiver antenna
corrections, the ANN-MB-00 and Trimble AV28 antennas with a rectangular bracket, resulted in a
ZTD bias between −20 and −24 mm and similar standard deviations. With a circular plane the effect
could be partially mitigated, but biases in the order of about 9.5 mm and 5.3 mm remained. The results
suggest that a phase pattern is present for the low-cost antennas which we address by applying a
relative antenna calibration. Applying elevation or azimuth-elevation dependent corrections to the
data reduced the ZTD bias significantly and lowered the standard deviation. For example, when
using the azimuth-elevation dependent corrections on the ANN-MB-00 antenna, the bias in the ZTD
was reduced to −0.52 mm and an RMSE to only 3.77 mm. Results for the other antennas, and using
elevation only patterns, were similar. This shows that the ZTD estimations achieve an error level that
is comparable to high-grade antennas. Though the biases for ANN-MB-00 (rectangular bracket), AV28
(circular plane) and AV28 (rectangular bracket) could not be completely removed, they were reduced
significantly to a level that makes the observations useful for tropospheric analysis.

The ionosphere-free linear combination used by the PPP solutions is very noisy. The noise in the
L1 and L2 data, including the errors in the relative calibration, is basically tripled. For this reason
we also looked at only using the L1 data in combination with the SEID algorithm to generate L2
data from an existing network of geodetic-grade receivers. In case no PCV correction is done for the
receiving antenna, the bias and standard deviation in ZTD for the GA530, AV28 and ANN-MB-00
antennas, were smaller using L1 with SEID generated L2 data, than for the original dual-frequency
data. This is a clear indication that the ionosphere-free linear combination on the original L1 + L2
data is considerably amplifying the noise present in the datasets. Using SEID in combination with the
elevation or azimuth-elevation based L1 corrected data removed the biases almost entirely. The results
are of comparable quality to ZTD estimations derived from the dual-frequency results.

This experiment uses exclusively GPS observations. As many of the low-cost receivers can track
multiple GNSS systems, expanding the antenna calibrations to include multi-GNSS may further
increase the application of the presented approach. Another interesting experiment would be to
perform an absolute antenna calibration by a specialized company on low-cost antennas and compare
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their calibrations to our results. Further work is needed to investigate, if the observed pattern is
reproduced (or differs) from other antennas of the same model, so that the observed elevation-based
phase pattern of an antenna can be applied to other antennas of the same model. This will be subject
of future experiments.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/9/1393/s1.
The utilized IGS I14.ATX ANTEX file appended with the elevation-only calibrations (without PCO estimations) for
the antennas LEIAR25.R3 LEIT, TRM55971.00 NONE, Trimble GA530 and Trimble AV28 and U-blox ANN-MB-00
using a circular plane. The file (file extension .ATX) is a plain text file and a standard convention for GNSS antenna
calibrations. The format description can be found on the website of the IGS [35]. The file can be opened in every
classical text editor.
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Abbreviations

The following abbreviations are used in this manuscript:

ANTEX Antenna Exchange Format
AP Application Program
APC Antenna Phase Center
AR Ambiguity Resolution
CLI Command-line User Interface
DD Double Differences
DOY Day-Of-Year
DPGA Dutch Permanent GNSS Array
EKF Extended Kalman Filter
ENU East North Up
GMF Global Mapping Function
GNSS Global Navigation Satellite System
GPS Global Positioning System
GPT Global Pressure/Temperature
GUI Graphical User Interface
IGS International GNSS Service
LEIAR25.R3 Leica AR25.R3
NMi Nederlands Meetinstituut
PCO Phase Center Offset
PCV Phase Center Variation
PPP Precise Point Positioning
PWV Precipitable Water Vapor
RINEX Receiver Independent Exchange Format
RMSE Root Mean Square Error
SEID Satellite-specific and Epoch-differenced Ionospheric Delay
TRM55971.00 Trimble Zephyr 2 Geodetic
USNO US Naval Observatory
ZTD Zenith Tropospheric Delay
ZWD Zenith Wet Delay
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Appendix A. Data Storing and Conversion

Data were stored in the binary U-blox logging format (*.ubx) on a local SD card of the Raspberry
Pi. The logged files consisted of the UBX-RAWX messages which contained the raw measurements of
the receiver (pseudorange, carrierphase, doppler and SNR on all recorded frequencies and satellite
systems). The sampling interval was 1 Hz. Data were stored in 24 h batches of .ubx log files. For further
processing, the data were converted to daily, 1Hz RINEX3 files. This step was performed with a
combination of the RTKLIB application convbin (v. 2.4.3) and gfzrnx (v. 1.11) [36]. Figure A1 represents
the work flow of this process. Metadata, if available, were added to the generated data.

Figure A1. Sketch of *.ubx data format conversion to RINEX version 3.

Appendix B. Ambiguity Fixing Case Study

Since ambiguity fixing is essential to achieve highest accuracy results and RTKLIB offers
several methods, a brief sensitivity study was conducted utilizing the continuous, instantaneous
and fix-and-hold RTKLIB options with the same geodetic-grade antenna type on both, rover and base
station (LEIAR25.R3 LEIT). For the sensitivity case study, one day of data from the highest quality
antenna, LEIAR25.R3 LEIT was used. The continuous mode estimates phase biases over many epochs.
It provides less outliers but when erroneous data are fed into the EKF it may remain over several
epochs. The instantaneous method estimates integer ambiguities without constraining the previous
(successful) fixes epoch-by-epoch. Fix-and-hold works similar to the Continuous AR, but tightly
constrains the validated carrier-phase bias parameters in the next EKF update step. Further details can
be obtained from the RTKLIB manual [37]. The results of the RTKLIB processing scheme are shown in
Table A1. With 99.69% and 99.70% fixed solutions on L1 and L2 or only 2700 and 1614 float satellite
observations on L1 and L2, the fix-and-hold solution performed best in our scenario.

Table A1. Fix and float satellite residuals summary of the LEIAR25.R3 LEIT antenna on DOY 79.
For the fix-and-hold ambiguity solution, ’hold’ epochs are considered as fix (Q==1).

AR-Method Frequency N (Epochs) Fix N(%) Q==1 Float N(%) Q==2

Continuous L1 873,729 835,273 (95.60) 38,456 (4.40)
Continuous L2 531,297 508,782 (95.76) 22,515 (4.24)
Instantaneous L1 873,729 302,696 (34.64) 571,033 (65.36)
Instantaneous L2 531,297 189,191 (35.61) 342,106 (64.39)
Fix-and-hold L1 873,729 871,029 (99.69) 2700 (0.31)
Fix-and-hold L2 531,297 529,683 (99.70) 1614 (0.30)
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Abstract: Owing to their advantages of wide coverage and high spatiotemporal resolution, satellite
precipitation products (SPPs) have been increasingly used as surrogates for traditional ground
observations. In this study, we have evaluated the accuracy of the latest five GPM IMERG V6
and TRMM 3B42 V7 precipitation products across the monthly, daily, and hourly scale in the hilly
Shuaishui River Basin in East-Central China. For evaluation, a total of four continuous and three
categorical metrics have been calculated based on SPP estimates and historical rainfall records at
13 stations over a period of 9 years from 2009 to 2017. One-way analysis of variance (ANOVA)
and multiple posterior comparison tests are used to assess the significance of the difference in SPP
rainfall estimates. Our evaluation results have revealed a wide-ranging performance among the
SPPs in estimating rainfall at different time scales. Firstly, two post-time SPPs (IMERG_F and 3B42)
perform considerably better in estimating monthly rainfall. Secondly, with IMERG_F performing the
best, the GPM products generally produce better daily rainfall estimates than the TRMM products.
Thirdly, with their correlation coefficients all falling below 0.6, neither GPM nor TRMM products
could estimate hourly rainfall satisfactorily. In addition, topography tends to impose similar impact
on the performance of SPPs across different time scales, with more estimation deviations at high
altitude. In general, the post-time IMERG_F product may be considered as a reliable data source
of monthly or daily rainfall in the study region. Effective bias-correction algorithms incorporating
ground rainfall observations, however, are needed to further improve the hourly rainfall estimates of
the SPPs to ensure the validity of their usage in real-world applications.

Keywords: satellite precipitation products; evaluation; daily rainfall; hourly rainfall; GPM; TRMM

1. Introduction

Precipitation is an important component of the hydrological cycle [1,2]. Accurate and
high-resolution precipitation data are crucial in different fields such as weather forecast, disaster
preparation and prevention, and water resource management [3,4]. The quality and resolution of
precipitation inputs can also significantly affect the performance of various hydrological, climatic, and
atmospheric models [5].

However, obtaining suitable precipitation data could be challenging for researchers as well as
practitioners. Availability of traditional ground observations has been limited because of the inadequate
and uneven distribution of rain gauges, especially in developing countries, mountainous and remote
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areas, and over oceans [6]. On the other hand, although weather radar products can provide rainfall
observations over a wide region [7], they are subjected to both random and systematic errors [8–11].
Random errors could arise from the sub-grid horizontal and vertical variability of rainfall and the
noise of the radar hardware system, while systematic errors may originate from sources such as drifts
in radar calibration constant, systematic variations in the reflectivity–rain-rate relationship, and strong
gradients in the reflectivity profile [12]. The presence of complex topography may further amplify
some of the error sources [13].

In recent years, with the rapid development of remote sensing techniques, satellite precipitation
products (SPPs) have been increasingly applied in monitoring precipitation patterns [14–16]. Deriving
precipitation products through satellite remote sensing has the advantages of wide coverage and high
spatiotemporal resolution, which complement traditional ground gauge measurements. For example,
the Tropical Rainfall Measuring Mission (TRMM) satellite launched in 1997 has been extensively
used in hydrological modelling and climate change studies. Li et al. [17] found overall good linear
relationships between TRMM and ground rainfall observations at both daily and monthly time steps in
the Xinjiang catchment, China. Bharti and Singh [18] compared TRMM 3B42V7 with the gauge-based
measurements at different altitudes in the northwest Himalayan region. They found that the satellite
performed satisfactorily in the altitude range of 1000–2000 m, but poorly over higher-altitude regions
at a daily time step.

In 2014, the National Aeronautics and Space Administration (NASA) of U.S. and JAXA
(Japan Aerospace Exploration Agency) jointly developed a new generation of Global Precipitation
Measurement (GPM) satellites. In addition to inheriting the advantages of the TRMM satellites in
detecting precipitation in the tropics, GPM satellites provide global precipitation estimates for a wider
quasi-global coverage (60◦ N–60◦ S) at a much higher spatiotemporal resolution (0.1◦ × 0.1◦ and 30-min
interval). Much research has concluded that GPM products have improved in terms of both rainfall
observation accuracy and hydrological simulation performance compared to TRMM products. For
example, Tan et al. [19] and Sharifi et al. [20] compared the accuracy of rainfall observations between
IMERG (integrated multi-satellite retrievals for GPM) and TRMM in Singapore and India, respectively.
In both studies, all evaluation indices had indicated a better performance of IMERG than TRMM in
providing monthly and daily rainfall data. In China, Tang et al. [21] analyzed the errors of IMERG
and TRMM products in six sub-regions of Mainland China and found that IMERG had improved the
accuracy of precipitation observations in the mid-high latitude as well as arid regions. In addition, they
observed that IMERG could better reproduce the probability density function of rainfall, especially in
the range of lower rainfall intensity.

In June 2019, the IMERG product was upgraded from Version 5 (V5) to Version 6 (V6) by reducing
biases based on the new Global Precipitation Climatology Centre (GPCC) monthly precipitation records.
Meanwhile, TRMM data before 2014 have also been reprocessed with the latest algorithm of the IMERG
V6. Until now, few studies have been carried out to evaluate the performance of the latest IMERG and
TRMM products.

Furthermore, the majority of previous research has evaluated SPP products at the monthly or
daily scale, although both GPM and TRMM products contain hourly rainfall products. High quality
hourly rainfall data have been found to be valuable to various hydrological applications around the
world [22]. For example, Zhou and Wu [23] found that the precipitation intensity and distribution
characteristics of typhoons in China could be better analyzed with hourly precipitation than daily
observations at automatic weather stations. Yang et al. [24,25] found that the SWAT (Soil and Water
Assessment Tool) model built on hourly rainfall could yield much better performance in simulating
daily streamflow and monthly nutrient loads than the SWAT model built on daily rainfall in the Upper
Huai River basin of China. Boithias et al. [26] found that the SWAT model built on hourly rainfall
could better predict discharge over long periods of time than the MARINE model in the Mediterranean
coastal Têt River basin (Southwestern France).
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Compared to daily rainfall, hourly rainfall data are much more difficult to obtain because of
several reasons. Firstly, much fewer gauges can or will record the amount of rainfall at an hourly or
finer interval worldwide. Secondly, hourly rainfall data are generally not free to the public. Purchase
of hourly rainfall data might be too expensive for researchers or practitioners in some regional studies.
Finally, authorities in some regions may consider hourly rainfall records as sensitive data, thus denying
their access to the public citing security reasons. In view of the limited access to hourly rainfall data
globally, SPPs may provide a much-needed alternative for deriving such products. So far, few studies
have been carried out to evaluate the capability of SPPs in providing hourly rainfall estimates.

To fill in the gaps, this study aims to evaluate the accuracy of the latest GPM and TRMM rainfall
products across the monthly, daily, and hourly scales based on the ground rain gauge measurements
between January 2009 and December 2017 in the Shuaishui River Basin (SRB) of eastern Central China.
The Shuaishui River is the headwater tributary to the Qiantangjiang River, the main river flowing
across the Zhejiang Province of China. With water quality inferior to the Class III standard at 50.5% of
its total river length, the Qiantangjiang River Basin is faced with severe water security concerns [27,28].
As the critical ecological barrier to the Qiantangjiang River, the hydrological conditions of the SRB has
direct impact on the downstream ecological environment.

Essentially a hilly watershed, SRB is characterized with complex terrains and obvious vertical
height difference. Precipitation in the basin is abundant, but also highly seasonal. Steep slopes
combined with ample rainfall in summer have aggravated the risk of natural disasters such as floods
and mudslides [29]. The flood in June 2016 in the SRB, for instance, has affected 58,000 people with
a direct economic loss of 168 million RMB. SRB, therefore, presents an ideal referencing region for
evaluating the suitability of using SPPs in the sub-tropical hilly regions with large inter-annual and
intra-annual rainfall variabilities.

2. Study Area

Approximately 159 km in length, the Shuaishui River originates from the Hutou mountain ranges
and flows across the Xiuning County before pouring into the Xinanjiang River at the Tunxi district
of Huangshan City. The SRB (117◦39′–119◦26′ E and 29◦24′–31◦1′ N) has a total area of 1522 km2

(Figure 1). Dominated by a hilly terrain, more than 70% of the basin is at an altitude of above 500 m.
Land use and land cover in the basin is mainly forestland and cultivated land, which respectively
accounts for 78.9% and 14.6% of the total coverage.

Figure 1. Map of Shuaishui River Basin.
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Located in the subtropical monsoon climate zone, rainfall in the SRB is usually abundant. Between
2009 and 2017, mean annual rainfall observed by rain gauges in the basin ranges from 1747 mm in 2013
to 2700 mm in 2015 with an overall average of 2278 mm (Figure A1). Within each year, mean monthly
rainfall usually increases steadily from January to May and peaks in June. Precipitation in June alone
could account for more than one-fifth of annual total rainfall. After June, monthly rainfall falls sharply
and exhibits an overall decreasing trend till the end of the year (Figure A2).

3. Materials and Methods

3.1. Satellite Precipitation Products

The TRMM satellite was launched in 1997 through a joint space mission between the NASA of
U.S. and the National Space Development Agency of Japan [30]. TRMM carries five instruments,
including a suite of three rainfall sensors (Precipitation Radar (PR), TRMM Microwave Imager (TMI),
Visible and Infrared Sensor (VIRS)) and two related instruments (Lightening Imaging Sensor (LIS) and
Clouds and the Earth’s Radiant Energy System (CERES)). The TRMM Multi-satellite Precipitation
Analysis (TMPA) products combine infrared (IR) data from geostationary satellites, such as GOES-W,
GOES-E, GMS, Meteosat-5, Meteosat-7, and NOAA-12, with microwave (MW) data from multiple
satellites including TMI/TRMM (TRMM Microwave Imager), SSMI/DMSP (Special Sensor Microwave
Imager/Defense Meteorological Satellite Program), AMSU/NOAA (Advanced Microwave Sounding
Unit/National Oceanic and Atmospheric Administration), and AMSR-E (Advanced Microwave
Scanning Radiometer-EOS) [31]. The TMPA products are produced in the following four stages. First,
the MW precipitation estimates are calibrated and combined using algorithms such as sensor-specific
versions of the Goddard Profiling Algorithm (GPROF). Secondly, IR precipitation estimates are created
using the calibrated MW precipitation. Thirdly, the MW and IR precipitation estimates are combined.
Finally, rain gauge data are incorporated. Detailed descriptions of the algorithms and steps for
producing the TMPA products could be found in Huffman et al. (2007) [32] and Huffman et al.
(2018) [33].

In May 2012, the TMPA was upgraded from version 6 (V6) to version 7 (V7) by implementing the
latest version of re-calibration algorithm and using the new GPCC monthly precipitation products for
bias correction. The TMPA 3B42 consists of two products: the near-real-time product (3B42RT) and
the post-processed product (3B42). The 3B42RT product, which is released approximately 9 h after
real-time, spans the latitude belt from 50◦ N to 50◦ S. In contrast, with a more extensive coverage from
60◦ N to 60◦ S, the 3B42 product is released 10–15 days after each month when the bias correction has
been made based on ground gauge records.

As a global successor of TRMM, the GPM project is launched in 2014 to provide global precipitation
observations. The GPM satellite is equipped with an advanced Dual-frequency Precipitation Radar
(DRP) that observes the internal structure of storms within and under the clouds, and a GPM Microwave
Imager (GMI) that measures the type, size, and intensity of precipitation. The DPR is more sensitive
than its TRMM predecessor especially in the measurement of light rainfall and snowfall in high
latitude regions.

In March 2014, NASA released its first GPM-era global precipitation product–IMERG
(Integrated Multi-satellites Retrievals for GPM). The IMERG algorithm is designed to inter-calibrate,
interpolate, and merge all available satellite MW precipitation estimates, MW-calibrated IR satellite
estimates, gauge measurements, and other potential precipitation estimates at fine spatial and temporal
resolution worldwide. Its inter-calibration of available MW data is similar to TMPA, but further
interpolated and re-calibrated by the Climate Prediction Center (CPC) morphing Kalman Filter
technique and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural
Networks—Cloud Classification System (PERSIANN-CCS) [34,35].

IMERG includes three products with different latencies: the near-real-time ‘Early’ (near real-time
with a latency of 6 h) run (IMERG-E), the near-real-time ‘Late’ (reprocessed near real-time with a
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latency of 18 h) run (IMERG-L), and the post-real-time ‘Final’ (gauge-adjusted with a latency of four
months) run (IMERG-F). The algorithm for the IMERG was upgraded from Version 5 (V5) to Version 6
(V6) to reduce bias and improve consistency among different IMERG runs in June 2019. For example,
the ‘displacement vectors’ in V6 are computed using the Modern Era Retrospective Reanalysis 2
(MERRA-2) and Goddard Earth Observing System (GEOS) model Forward Processing (FP) data instead
of the previously used infrared data, which helps ensure consistency in the vectors between the Final
Run and the Early and Late Runs.

In this study, we aim to evaluate the performance of a total of five SPPs in the SRB, including
the Early, Late, and Final runs of the IMERG V6 products (0.1◦ × 0.1◦ and 30-min interval), and the
near-real-time and post-processed runs of the TMPA V7 products (0.25◦ × 0.25◦ and 3-hour interval).
The SPPs datasets are all downloaded from the NASA website (https://disc.gsfc.nasa.gov/). After being
downloaded, the SPPs datasets are adjusted to the local time, which is eight hours ahead of Coordinated
Universal Time (UTC). Since the IMERG V6 and TMPA V7 products respectively contain 30-min and
3-h rainfall estimates, they need to be processed before being evaluated at different temporal scales. At
the daily and monthly scale, both IMERG and TMPA data are directly aggregated to the corresponding
levels for comparison with ground measurements. For evaluation at the hourly scale, the TMPA hourly
rainfall estimates are obtained by assuming a constant rainfall intensity over the 3-hour period.

3.2. Ground Rainfall Measurements

Hourly and daily precipitation records from 2009 to 2017 at a total of 13 rainfall stations in the
SRB (Figure 1) are obtained from the hydrological yearbook series published by Ministry of Water
Resources of China. The rain gauges used at the rainfall stations are tipping buckets. All of the rainfall
data have gone through strict quality control following the relevant China’s industry standards such
as QX/T 118-2010 (quality control of surface meteorological observation data) before being published.
There are no rainfall data missing at the 13 stations. In the SRB, daily rainfall has been recorded
throughout the year, while hourly rainfall only documented for the relatively wet period from April to
October. Correspondingly, the monthly and daily estimates of the SPPs are evaluated throughout the
year, while their hourly estimates are only assessed within the seven months.

3.3. Evaluation Metrics

A total of four continuous metrics are used to evaluate the quality of satellite precipitation products
in the SRB. Correlation coefficient (CC) is used to quantify the linear correlation between satellite
precipitation estimates and ground measurements; it varies between −1 and 1, with a value close to
0 indicating little correlation. Root-mean-square error (RMSE) quantifies the degree of dispersion
between satellite precipitation and measured precipitation, which can reflect the overall error level
and accuracy of SPPs [36]; mean absolute difference (MAD) evaluates the magnitude of the average
difference between satellite precipitation and measured precipitation. Smaller values of RMSE and
MAD indicate a better performance of the SPPs. Relative bias (RB) measures the systematic bias
of satellite precipitation compared with gauge observations. A positive and negative RB indicates
overestimation and underestimation, respectively. As a rule of thumb, SPPs can be considered as
reliable when RB falls between −10% and 10% and CC exceeds 0.7 [37].

The four continuous metrics are calculated as [38–40]
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are the mean of the simulated and observed data, respectively.
Besides the continuous metrics, three categorical evaluation metrics are used to evaluate the

precipitation detection capability of the SPPs, which include probability of detection (POD), false alarm
rate (FAR), and critical success index (CSI). POD represents the ratio of correctly detected precipitation
occurrences by the SPPs to the total number of actual precipitation occurrences. With an optimal
value of 1, a higher POD indicates that the SPP is more capable of detecting the actual precipitation
occurrences. FAR calculates the ratio of falsely detected precipitation occurrences to the total number
of detected precipitation occurrences. With an optimal value of 0, a lower FAR indicates that the SPP
is less likely to yield false precipitation occurrences. CSI incorporates both missed events and false
detections in its calculation [41]. With an optimal value of 1, a higher CSI indicates a better performance
of the SPP with more correct detections as well as fewer false alarms of precipitation occurrences.
Based on the number of hits (H), false alarms (F), and misses (M) (Table 1), the three categorical metrics
are calculated as

POD =
H

H + M
(5)

FAR =
F

H + F
, (6)

CSI =
H

H + M + F
(7)

where S represents rain gauge observation; P represents satellite rainfall estimate; H (hits) represents
the number of cases when both the rain gauge and the satellite determine the rainfall to equal or exceed
the threshold; F (false alarms) represents the number of cases when the satellite determines the rainfall
to equal or exceed the threshold but not the rain gauge; M (misses) represents the number of cases
when the rain gauge determines the rainfall to equal or exceed the threshold but not the satellite; and Z
(correct negatives) represents the number of cases when both the rain gauge and the satellite determine
the rainfall to fall below the threshold.

Table 1. Contingency table between rain gauge observations and satellite precipitation estimates.

SPPs Estimates
Rain Gauge Observations

S ≥ Threshold S < Threshold

P ≥ Threshold H F
P < Threshold M Z

3.4. Analysis of Variance (ANOVA)

To evaluate the rainfall estimation performance of the five satellite precipitation products, four
continuous metrics (CC, RB, RMSE, and MAD) are respectively calculated at each of the 13 rainfall
stations across the monthly, daily, and hourly scales. Previous studies have mostly used the mean
values of the metrics over all rainfall stations to compare the rainfall estimation performance among
the SPPs. This simple averaging approach, however, does not account for the variability in the metrics
among the rainfall stations. Furthermore, it is incapable of determining the significance of the difference
between the SPPs.

In view of the deficiency, we adopt the one-way analysis of variance (ANOVA) to statistically
evaluate the difference in metrics between the SPPs. In the ANOVA, satellite precipitation product
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type is used to designate the five groups of metrics for comparison. If the ANOVA determines there is
some significant difference in the mean metrics among the SPPs, multiple commonly used posterior
comparison tests—including the Bonferroni, Sidak, Tukey, and Scheffe tests built in the Origin 2018
Statistical Package—are further used to identify the pairs of SPPs whose mean metrics are indeed
statistically different.

4. Results and Discussions

4.1. Evaluation at the Monthly Scale

4.1.1. Temporal Analysis

Figure 2 compares the mean of the observed monthly precipitation in the SRB with that of the five
SPPs from January 2009 to December 2017. Figure A3 compares the scatterplots between observed
and estimated monthly rainfall among the SPPs. In general, all five SPPs are capable of capturing the
overall trend of monthly precipitation variations. The annual CCs of the five SPPs are all above 0.85,
while those of IMERG_F and 3B42 even exceed 0.95. The IMERG products all exhibit a tendency of
underestimating rainfall, especially in wet months. In particular, for June, 2011 whose monthly rainfall
reached as high as 1109 mm, IMERG_E, IMERG_L, and IMERG_F give a low estimate of 608, 608, and
710 mm, respectively.

Figure 2. Comparison of mean monthly precipitation observations with the estimates of five SPPs from
2009 to 2017: (a) IMERG products; (b) TRMM products.

Table 2 compares the mean values of the four continuous evaluation metrics over the 13 rainfall
stations among the five SPPs both annually and seasonally. With the highest RMSE of 101.42 mm
and MAD of 65.72 mm, the 3B42RT product deviates the most from historical rainfall observations
annually. A closer examination of the seasonal changes in RMSE and MAD, however, have shown that
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its considerably larger deviation in summer is the main cause. In the three seasons other than summer,
3B42RT actually deviates less than the two near-real-time IMERG products (Table 2).

Table 2. Mean evaluation metrics of the SPPs at monthly scale.

Metrics
Temporal

Scale
IMERG_E IMERG_L IMERG_F 3B42 3B42RT

CC

Annual 0.86 0.86 0.97 0.95 0.89
Spring a 0.72 0.77 0.95 0.93 0.82

Summer a 0.89 0.90 0.95 0.93 0.89
Fall a 0.65 0.69 0.88 0.83 0.74

Winter a 0.69 0.70 0.98 0.97 0.81

RMSE (mm)

Annual 86.69 87.64 53.82 54.13 101.42
Spring 90.17 89.50 47.23 44.02 75.09

Summer 118.98 121.71 87.19 87.36 170.08
Fall 53.88 52.51 30.64 35.79 49.90

Winter 67.13 68.93 25.18 26.41 61.58

RB (%)

Annual −13.63 −16.80 −10.51 0.61 10.69
Spring −13.74 −19.33 −12.00 −0.02 −4.91

Summer −19.13 −22.71 −9.85 −1.48 25.77
Fall −11.20 −9.84 −6.35 0.12 −3.89

Winter 0.79 0.15 −11.88 9.68 19.06

MAD (mm)

Annual 61.59 61.77 35.79 37.07 65.72
Spring 71.80 70.72 37.99 34.34 60.64

Summer 84.78 87.90 65.17 65.30 118.77
Fall 43.50 41.97 23.17 28.40 40.75

Winter 46.28 46.48 16.83 20.25 42.74
a Spring extends from March to May; Summer extends from June to August; Fall extends from September to
November; Winter extends from December to the following February.

Annually, the three IMERG products tend to underestimate monthly precipitation, while the
two TMPA products behave the opposite. Seasonally, IMERG_F tend to underestimate monthly
precipitation throughout the year, while the other two IMERG products act the same except that they
tend to slightly overestimate in winter. In contrast, the RB of 3B42 remains close to zero all over the
year except it approaches 10% in winter. Meanwhile, the RB of 3B42RT fluctuates much more ranging
from -4.9% in spring to 25.8% in summer (Table 2). In terms of the other three continuous metrics,
the five SPPs have exhibited somewhat similar seasonal patterns of change. For example, the CCs of
the SPPs all reach or approach their peak values in summer, while decreasing to the bottom in fall.
Meanwhile, both the RMSEs and MADs of the SPPs all rise to the top in summer, drop to medium in
spring, and down to the lowest in fall and winter (Table 2). The seasonal changes in RMSEs and MADs
correspond closely to the changes in the magnitude of seasonal rainfall.

Except for RB, the two post-time products (IMERG_F and 3B42) perform significantly better than
the rest real-time or near real-time products both annually and seasonally, with a noticeably higher
value of CC (e.g., 0.97 and 0.95 annually) as well as considerably lower values of RMSE (e.g., 53.82 and
54.13 mm annually), and MAD (e.g., 35.79 and 37.07 mm annually) (Table 2). The findings of the overall
better performance of the two post-time SPPs products compared to the real-time or near real-time
products at the monthly time scale are not surprising, since both are generated after the adjustment of
real-time products based on monthly measurements of ground rain gauges [42], although which may
not include the 13 rain gauges covered in our study. With their annual CC and RB values exceeding
the good performance thresholds, both IMERG_F and 3B42 can be regarded as reliable sources of
monthly precipitation in the SRB. Similar to our study, previous studies have also observed satisfactory
performance of IMERG_F and 3B42 in monthly rainfall estimation [43,44].

306



Remote Sens. 2020, 12, 1042

4.1.2. Spatial Variation

Figure 3 compares the spatial distribution of the four annual continuous evaluation metrics among
the SPPs at the monthly scale. The spatial distributions of the CCs varies considerably among the
IMERG products, while staying similar between the TMPA products. Topography does not seem to be
a significant influencing factor of the CCs, although some stations at higher altitude (station 12 and
13) do have lower CCs in all five SPPs. In terms of RMSEs and MADs; however, topography plays a
more eminent role. For all five SPPs, both metrics tend to get larger at higher altitude. In particular,
RMSEs and MADs of three stations at high altitude (station 10, 12, and 13) consistently surpass those
of the rest stations. In addition, the RBs exhibit a similar spatial pattern among the IMERG products.
They all tend to underestimate monthly rainfall more severely at high altitude (e.g., stations 12 and 13).
However, for the TMPA products, no clear pattern in the spatial distribution of RB could be observed.

 
Figure 3. Spatial distribution of the annual continuous evaluation metrics at monthly scale: (a) CC;
(b) RMSE; (c) RB; and (d) MAD.

Similar to our study, Milewski et al. [45] also found that elevation was a key factor affecting the
accuracy of the TMPA products in Northern Morocco. The CCs of all four TMPA products at the
low elevation class (0–500 m) consistently surpassed those at the medium (500–1000 m) and high
(>1000 m) elevation classes. Contrary to the CCs, the normalized RMSEs at the low elevation class
were consistently smaller.

4.2. Evaluation at the Daily Scale

Figure A4 compares the scatterplots between observed and estimated daily rainfall among the
SPPs. Daily rainfall estimates by the IMERG_F cluster the closest around the 1:1 line, while 3B42RT
estimates deviating the largest with a strong tendency of overestimation. For the daily scale assessment
of SPPs, four continuous (CC, RMSE, RB, and MAD) and three categorical (POD, CSI, FAR) evaluation
metrics are calculated using daily rainfall records at the 13 rainfall stations and the corresponding SPP
estimates from 1 January 2009 to 31 December 2017.
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4.2.1. Continuous Evaluation Metrics

(1) Temporal Variation

Table 3 compares the mean values of the continuous evaluation metrics among the SPPs at the
daily scale. Annually, all four continuous evaluation metrics except RB have indicated a relatively
better performance by the IMERG products in estimating daily rainfall. For example, the annual
RMSEs of the IMERG products range from 9.66 mm/d (IMERG_F) to 11.30 mm/d (IMERG_E), while
those of the TMPA products both exceed 11.50 mm/d. Seasonally, however, while IMERG_F generally
remains the best product for estimating daily rainfall, the other two near-real-time IMERG products
tend to perform better than the TMPA products in spring and summer, but often worse in fall and
winter (except for RB).

Table 3. Mean continuous evaluation metrics of the SPPs at daily scale.

Metrics
Temporal

Scale
IMERG_E IMERG_L IMERG_F 3B42 3B42RT

CC

Annual 0.73 0.75 0.81 0.75 0.75
Spring a 0.71 0.77 0.79 0.74 0.73

Summer a 0.80 0.81 0.83 0.78 0.77
Fall a 0.64 0.65 0.73 0.70 0.68

Winter a 0.66 0.66 0.82 0.72 0.68

RMSE
(mm)

Annual 11.30 11.07 9.66 11.54 12.96
Spring 12.23 11.04 10.61 13.20 13.05

Summer 14.52 14.15 13.74 15.04 18.55
Fall 8.03 8.56 6.67 7.56 7.82

Winter 9.03 9.48 5.36 8.43 9.66

RB (%)

Annual −13.15 −16.33 −9.99 1.21 11.36
Spring −11.89 −17.62 −11.55 0.47 −4.43

Summer −16.96 −20.62 −7.51 −0.59 26.94
Fall −9.68 −8.06 −4.31 0.56 -3.47

Winter 2.98 2.23 −9.88 9.57 18.94

MAD
(mm)

Annual 4.52 4.19 4.00 4.77 5.21
Spring 5.45 4.81 4.90 5.81 5.71

Summer 6.72 6.27 6.37 7.12 8.53
Fall 2.93 2.85 2.60 2.91 2.98

Winter 2.98 2.85 2.19 3.19 3.55
a Spring extends from March to May; Summer extends from June to August; Fall extends from September to
November; Winter extends from December to the following February.

Within each SPP family, the order of the daily rainfall estimation accuracy is largely consistent,
i.e., IMERG_F > IMERG_L > IMERG_E (except for RB) and 3B42 > 3B42RT. Moreover, except for
RB, the five SPPs have exhibited rather similar seasonal patterns of change in their daily metrics.
For example, the CCs of the five SPPs all peak in summer and fall to the bottom in fall. The RMSEs
and MADs of the SPPs all tend to peak in summer, decline in spring, and down to the lowest in fall
and winter. Throughout the year, the Shuaishui River Basin is affected by different climatic systems.
Mainly under the influence of the high-altitude trough, precipitation in fall and winter is mostly
brought by stratiform clouds, which tends to be stable and therefore easier to measure. In spring and
summer, however, the convective component in the precipitation system increases due to the Meiyu
front and shear line system. Both thermal convection precipitation under the control of the Western
Pacific Subtropical High (WPSH) and rainstorms caused by the typhoon system increase the difficulty
of obtaining accurate measurement of rainfall because of their characteristics of short duration and
high spatial heterogeneity. The differences in climatic systems have led to different seasonal rainfall
characteristics, with more rainy days and higher rainfall intensity in spring and summer than in fall
and winter. Between 2009 and 2017, there have been 529 and 589 rainy days in spring and summer,

308



Remote Sens. 2020, 12, 1042

compared to 425 and 452 days in fall and winter. Days with precipitation < 1 mm account for 44.2%
and 41.8% in fall and winter, compared to 30.6% and 26.7% in spring and summer. Meanwhile, days
with precipitation > 50 mm account for 4.9% and 8.3% in spring and summer, compared to around 1.5%
in fall and winter. The CCs’ peaking in summer could be attributed to the season’s large variability
in daily rainfall, whose general pattern of change is relatively well captured by the SPPs. However,
because there are more days with heavy precipitation in summer, the absolute errors of SPP estimates
remain the largest in the season. Similarly, the lowest RMSEs and MADs in fall and winter are probably
owing to their dominance of days with lower precipitation.

Similar to our findings, Su et al. [46] concluded that the post-time IMERG-F product, with a CC of
0.79, RMSE of 6.31 mm/d, and RB of 9.04%, was the best IMERG product for estimating daily rainfall
in the Upper Huai River Basin of China. Meanwhile, Anjum et al. [43] found the post-time 3B42 V7
product, with a CC of 0.70 and RB of 14.77%, performed better than the real time 3B42RT product for
estimating daily rainfall in Pakistan.

Compared to those at the monthly scale, the CCs of all five SPPs have decreased considerably at
the daily scale. For instance, the annual CC of IMERG_F drops from 0.97 at the monthly scale to 0.81,
while the annual CCs of the other SPPs all drop further to around 0.75. In contrast to the CCs, the
RBs of the SPPs at the daily scale are more similar to those at the monthly scale in terms of both their
signs and magnitude. Annually, all three IMERG products tend to underestimate daily precipitation
with the lowest RB of −9.99%, while both TMPA products tend to overestimate with the lowest RB of
1.21%. Seasonally, the IMERG family products tend to underestimate daily rainfall in all four seasons
except the two near-real-time products in winter. In contrast, 3B42RT exhibits a strong tendency of
overestimation in summer and winter, while 3B42 only in winter.

(2) Statistical Performance Comparison among the SPPs

Figure 4 compares the boxplots of the four annual continuous evaluation metrics among the five
SPPs. For example, Figure 4a contains five boxplots, which respectively depict the distribution of
annual CCs of the five SPPs across the 13 rainfall stations. At the daily scale, the annual CCs of the
IMERG_F range from 0.79 to 0.82 among the 13 rainfall stations, compared to 0.71–0.75 for IMERG_E,
0.73–0.77 for IMERG_L and 3B42RT, and 0.74–0.77 for 3B42.

One-way ANOVA could be used to assess whether the mean values of the four continuous metrics
are significantly different among the five SPPs. One critical pre-condition of performing ANOVA
is to ensure the homogeneity of variance among the compared groups. In this study, we use the
Levene’s Test to compare the variance of the metrics among the five SPPs, which confirm that all four
metrics could meet the requirement of homogeneity of variance. The subsequent one-way ANOVA
has concluded that the mean values of all four metrics are significantly different among the SPPs at the
significance level (α) of 0.05 (Figure 4).

In view of the significant ANOVA results, multiple posterior comparison tests—including the
Bonferroni, Sidak, Tukey, and Scheffe tests—are further conducted to identify the pairs of SPPs whose
mean metrics are truly significantly different. In Figure 4, two SPPs are connected with a black dotted
line if posterior comparison tests have concluded a non-significant difference between their means at
the α level of 0.05. As shown in the figure, the mean values of CC are significantly different between
all pairs of SPPs except between IMERG_L and the two TMPA products as well as between the TMPA
products themselves; the mean values of RMSE are all significantly different except between 3B42 and
the two near real-time IMERG products as well as between the two near real-time IMERG products
themselves; the mean values of RB are all significantly different except between the three pairs of
IMERG products; the mean values of MAD are all significantly different except between IMERG_L and
the other two IMERG products as well as between IMERG_E and 3B42. It is worth noting that the
posterior comparison tests have shown that IMERG_F is the single IMERG product that is significantly
different from the TMPA products in terms of all four metrics.

309



Remote Sens. 2020, 12, 1042

Figure 4. Boxplots of the four annual continuous evaluation metrics of SPPs at daily scale: (a) Correlation
coefficient (CC) (Levene’s Test, p = 0.08; One-Way ANOVA, p = 0.0); (b) Root-mean-square error (RMSE)
(Levene’s Test, p = 0.16; One-Way ANOVA, p = 7.3 × 10−13); (c) Relative bias (RB) (Levene’s Test,
p = 0.78; One-Way ANOVA, p = 3.2 × 10−13); and (d) Mean absolute difference (MAD) (Levene’s Test,
p = 0.35; One-Way ANOVA, p = 3.0 × 10−15). Two SPPs are connected with a black dotted line if
posterior comparison tests have concluded a non-significant difference between their means at α = 0.05.
Each boxplot is used to depict the distribution, therefore the variation, of the continuous evaluation
metrics among the 13 rainfall stations. In each boxplot, the top and bottom of the box represent the first
and third quantiles. The whiskers extends to 1.5 times of the inter-quantile range. The horizontal line
inside the box represents the median. The ‘×’ inside the box represents the mean.

(3) Spatial Variation

Figure 5 compares the spatial distribution of the four annual continuous evaluation metrics at
the daily scale among the SPPs. The spatial distribution of the CCs varies considerably among the
IMERG products, while staying similar between the TMPA products. Topography does not seem to be
a significant influencing factor of the CCs, although all five SPPs have lower CCs at some stations of
higher altitude (station 12 and 13). In terms of RMSEs and MADs, however, topography plays a more
eminent role. For all five SPPs, both metrics tend to get larger at higher altitude. In particular, RMSEs
and MADs of three stations at high altitude (stations 10, 12, and 13) consistently surpass those of the
rest stations. In addition, topography seems to affect the RBs of the IMERG products considerably,
which tend to underestimate daily rainfall more seriously at high altitude. The impact of topography
on the RBs of the TMPA products, however, is rather mixed. The absolute RB of the 3B42RT product is
actually smaller at higher altitude. Similar to our study, Wang et al. (2019) [47] also observes more
serious underestimation of daily rainfall by the IMERG products at high altitude in the Hexi region
deep in the hinterland of the Eurasian continent. The underestimation of rainfall at high altitude by
the SPPs could owe to local precipitation augmentation induced by topographical lift.
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Figure 5. Spatial distribution of the annual continuous evaluation metrics at daily scale: (a) CC;
(b) RMSE; (c) RB; and (d) MAD.

4.2.2. Categorical Evaluation Metrics

(1) Temporal Variation

Besides the continuous metrics, three categorical metrics are used to assess the daily precipitation
detection capabilities of the SPPs. Table 4 compares the mean values of the categorical evaluation
metrics among the SPPs at the daily scale. A daily rainfall threshold of 1 mm/d is used in calculating
the metrics.

Table 4. Mean categorical evaluation metrics of the SPPs at daily scale.

Metrics
Temporal

Scale
IMERG_E IMERG_L IMERG_F 3B42 3B42RT

POD

Annual 0.76 0.75 0.78 0.70 0.70
Spring a 0.87 0.86 0.85 0.76 0.75

Summer a 0.82 0.79 0.83 0.82 0.82
Fall a 0.65 0.65 0.72 0.60 0.60

Winter a 0.65 0.66 0.67 0.44 0.41

FAR

Annual 0.27 0.22 0.23 0.21 0.23
Spring 0.23 0.17 0.19 0.12 0.12

Summer 0.32 0.27 0.29 0.24 0.24
Fall 0.31 0.27 0.28 0.21 0.21

Winter 0.24 0.19 0.17 0.09 0.12

CSI

Annual 0.59 0.62 0.63 0.59 0.58
Spring 0.69 0.73 0.71 0.69 0.68

Summer 0.59 0.61 0.62 0.65 0.65
Fall 0.50 0.52 0.56 0.52 0.52

Winter 0.54 0.57 0.59 0.42 0.39
a Spring extends from March to May; Summer extends from June to August; Fall extends from September to
November; Winter extends from December to the following February.
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In terms of POD, the IMERG products all tend to perform better than the TMPA products both
annually and seasonally except in summer, during which IMERG_L gives the poorest performance.
Seasonally, the PODs of the two family products exhibit a somewhat different pattern of change. The
PODs of the IMERG family products tend to peak (≥ 0.85) in spring, decline slightly to around 0.8
in summer, and further to around 0.67 in fall and winter. The PODs of the TMPA products peak in
summer, drop to around 0.75 in spring, and further down to 0.6 in fall and < 0.45 in winter. IMERG_F
has the highest POD throughout the year, except it is slightly less than the other two IMERG products
in spring (Table 4). The higher PODs in spring and summer indicate that the SPPs are poorer at
detecting light precipitation that is more dominant in fall and winter. Meanwhile, the much lower
PODs of the TMPA products in winter indicate that it is less capable of estimating solid precipitation
than the IMERG products.

Unlike POD, the IMERG products all tend to perform worse than the TMPA products in terms of
FAR. Meanwhile, the FARs of the five SPPs show a similar seasonal pattern of change, which peak in
summer, decrease slightly in fall, and drop further in spring and winter (Table 4).

Incorporating both correct rainfall detection and false alarm, CSI indicates a mixed performance
among the SPPs. Among the five SPPs, IMERG_F performs the best annually, as well as in fall and
winter. It performs slightly worse than both TMPA products in summer and IMERG_L in spring.
Seasonally, all five SPPs tend to perform the best in spring and then in summer. However, the IMERG
products tend to perform slightly better in winter than in fall, while the TMPA products perform
considerably worse in winter (Table 4).

Similar to our study, Xu et al. (2019) [48] concludes that IMERG_F performs better than 3B42 in
detecting precipitation events in the relatively flat Huang-Huai-Hai Plain of East Coastal China, with
an annual POD of 0.83 and CSI of 0.52. The PODs and CSIs of IMERG_F surpass those of 3B42 in all
seasons, especially in winter. This indicates that IMERG_F performs better in detecting precipitation
events, especially in capturing light or solid precipitation.

(2) Spatial Variation

Figure A5 compares the spatial distribution of the three annual categorical evaluation metrics
among the SPPs. Unlike the case of continuous metrics, topography does not seem to impose a
consistent impact on categorical metrics at the daily scale. For example, while most SPPs have lower
correct precipitation detection rates (PODs) at the two stations of high altitude (Station 12 and 13), they
also have lower false alarm rates (FARs) at the stations. The leads to no obvious pattern in the spatial
distribution of CSIs, with varied performance of stations at similar altitudes.

(3) Variation with Rainfall Thresholds

Figure 6 compares the performance of precipitation detection among the five SPPs by different
daily rainfall magnitude. Each of the three categorical metrics has been sequentially calculated
annually for the days when daily rainfall exceeds 1, 5, 10, 25, 50, 75, 100, and 150 mm/d. Similar daily
rainfall thresholds have been used in previous studies, such as Wu et al. [29], Anjum et al. [43], and
Tan et al. [49].

As seen from Figure 6a, the PODs of all five SPPs exhibit a largely decreasing trend with the
increase of daily rainfall threshold until hitting the bottom at the threshold of 100 mm/d. Afterwards,
the PODs of all SPPs bounce back substantially at the threshold of 150 mm/d. Interestingly, the PODs
of the two TMPA products have mostly surpassed those of the IMERG products, indicating their better
capabilities of correctly detecting daily rainfall occurrences.

However, as shown in Figure 6b, the FAR values of the TMPA products have also surpassed those
of the IMERG products, especially IMERG_F, at the majority of daily rainfall thresholds, indicating
their higher risk of falsely detecting daily rainfall occurrences. By incorporating the factors of both
false alarms and missed events, CSI provides a more comprehensive evaluation of precipitation rainfall
detection performance of the SPPs. As shown in Figure 6c, the IMERG_F has the highest CSI value at
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the daily rainfall thresholds of less than 100 mm/d, whereas it is caught up by the 3B42 at the threshold
of 100 mm/d and above.

Figure 6. Comparison of the changes in annual categorical evaluation metrics with daily rainfall
thresholds among five SPPs: (a) POD; (b) FAR; and (c) CSI.

4.2.3. Comparison with Previous Studies

Table 5 summarizes the performance of the SPPs in estimating daily rainfall in previous studies
worldwide. Previous studies have mostly assessed SPPs over approximately two years, compared
to nine years in this study. It needs to be noted that the table does not serve to rigorously compare
the relative performance of the SPPs in various regions, due to the differences in temporal frame,
geographical regions, as well as climatic regimes of the studies.

The CCs of both IMERG products and TMPA products in this study have surpassed those in all
previous studies except the one by Su et al. [46] conducted in the Upper Huai River Basin of China.
Unlike the CC, the values of the other continuous as well as categorical metrics in this study all lie at
the medium level among the previous studies. In addition, similar to our findings, many of previous
studies have concluded a moderately better performance of the IMERG products in estimating daily
rainfall than the TMPA products. However, the observed tendency of under-estimating daily rainfall
by the IMERG products and over-estimating by the TMPA products in this study is not consistent with
the findings of some previous studies.
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4.3. Evaluation at the Hourly Scale

Figure A6 compares the scatterplots between observed and estimated hourly rainfall among the
SPPs. Hourly rainfall estimates by all five SPPs are much scattered around the 1:1 line. Since hourly
rainfall is only recorded from April to October, we evaluate the performance of the SPPs at the hourly
scale for these seven months. Correspondingly, seasonal evaluation metrics are only calculated for
spring (April to May), summer (June to August), and fall (September to October).

4.3.1. Continuous Evaluation Metrics

(1) Temporal Variation

Table 6 compares the mean values of the four continuous (CC, RMSE, RB, and MAD) over the
seven months from April to October and seasonally (spring, summer, fall) among the SPPs at the
hourly scale. With their seven-month CC values all staying close to 0.5, SPPs have performed less
satisfactorily in estimating hourly rainfall in the SRB.

Table 6. Mean continuous evaluation metrics of the SPPs at hourly scale.

Metrics Temporal Scale IMERG_E IMERG_L IMERG_F 3B42 3B42RT

CC

Apr. to Oct. 0.47 0.51 0.51 0.48 0.48
Spring a 0.53 0.60 0.58 0.52 0.51

Summer a 0.46 0.49 0.49 0.47 0.48
Fall a 0.35 0.38 0.41 0.40 0.36

RMSE
(mm)

Apr. to Oct. 1.57 1.51 1.56 1.60 1.65
Spring 1.47 1.36 1.41 1.59 1.58

Summer 1.94 1.89 1.97 1.94 2.03
Fall 0.89 0.88 0.86 0.86 0.90

RB (%)

Apr. to Oct. −22.18 −25.06 −10.31 −1.85 10.16
Spring −21.33 −24.61 −12.27 0.11 1.42

Summer −22.98 −26.08 −9.26 −2.20 18.35
Fall −20.19 −20.94 −9.77 −5.06 −7.17

MAD(mm)

Apr. to Oct. 0.33 0.31 0.33 0.35 0.37
Spring 0.33 0.30 0.33 0.36 0.37

Summer 0.44 0.42 0.45 0.48 0.52
Fall 0.15 0.14 0.14 0.15 0.15

a Spring extends from April to May; Summer extends from June to August; Fall extends from September to October.

All IMERG products tend to underestimate hourly rainfall throughout the three seasons. The
absolute RBs of IMERG_F are all below 13%, while those of the near-real-time products remain above
20%. With the smallest absolute RB among the SPPs, 3B42 tends to slightly overestimate daily rainfall
in spring, but underestimate in summer and fall. Different from the other SPPs, 3B42RT shows a strong
tendency of overestimation in summer.

Except for RB, the five SPPs all exhibit similar season patterns of change. Seasonally, the CCs of
the SPPs all peak in spring followed by a continuous decline in summer and fall. Both the RMSEs and
MADs of the SPPs are the highest in summer, followed by spring and then fall. The observed seasonal
patterns at the hourly scale are quite similar to those observed at the daily scale.

Figure 7a to Figure 7l further examine the changes in mean continuous metrics over a diurnal
cycle in three seasons. Meanwhile, Figure 7m to Figure 7o compare the observed amount of average
hourly rainfall with the corresponding SPP estimates in the three seasons. The CCs of all five SPPs
have shown considerable diurnal variations in the three seasons. Despite the differences in amount,
the overall diurnal patterns of change in CCs are somewhat similar among the SPPs. In summer, for
example, the CCs of all SPPs tend to reach a high plateau between 3:00 a.m. and 12:00 p.m., followed
by a steady fall to the bottom at around 4:00 p.m. and a rebound afterwards. As shown in Figure 7n,
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mean hourly summer ground measurement peaks at 3:00 p.m. All SPPs, however, have exhibited a lag
of one or more hours in reaching the peak value, which may have caused their CCs all drop to the
lowest in the afternoon. The diurnal patterns of change in RMSE/MAD are even more similar among
the SPPs in all three seasons. Diurnal variations in both metrics are the highest in summer, followed
by spring and then fall, which are consistent with the three seasons’ relative magnitude of diurnal
changes in hourly precipitation (Figure 7m–o). In addition, the RMSEs and MADs of all five SPPs peak
at 5:00 a.m., 5:00 p.m., and 10:00–11:00 p.m. in spring, and at 3:00–4:00 p.m. in summer. As seen from
Figure 7m,n, hourly ground measurements also peak at these times.

 

Figure 7. Changes in mean continuous metrics over a diurnal cycle in three seasons: (a) CC in spring;
(b) CC in summer; (c) CC in fall; (d) RMSE in spring; (e) RMSE in summer; (f) RMSE in fall; (g) RB
in spring; (h) RB in summer; (i) RB in fall; (j) MAD in spring; (k) MAD in summer; (l) MAD in fall;
(m) average observed and estimated hourly rainfall in spring; (n) average observed and estimated
hourly rainfall in summer; and (o) average observed and estimated hourly rainfall in fall.
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The diurnal patterns of change in RB are more complex. Although differing much in their actual
amount, the RBs of the five SPPs seem to follow a somewhat similar trend of change throughout
the diurnal cycle, especially in summer. This is probably because rainfall estimates by the SPPs
all exhibit a largely similar hourly trend in each season, in spite of the differences in their actual
amount. Nevertheless, precisely because of the difference in their actual RB amount, the five SPPs
give quite different estimation performance across the diurnal cycle. For example, 3B42RT tend to
overestimate hourly rainfall most seriously at night (6:00 p.m. and 9:00–10:00 p.m.), while giving
the estimates with the least bias in the morning. In contrast, IMERG products tend to underestimate
rainfall mostly seriously in the morning (8:00–11:00 a.m.), but give the estimates with the least bias at
night (7:00–10:00 p.m.) (Figure 7).

In addition, the relative performance of the SPPs at the hourly scale is somewhat different from
that at the monthly and daily scales. In general, there is much less variability in the performance of the
SPPs at the hourly scale compared to that at the monthly and daily scales. Except for RB, only two
IMERG products (IMERG_F and IMERG_L) have slightly outperformed the TMPA products for most
of the time.

To date, only limited studies have evaluated the quality of the hourly rainfall estimates of the
SPPs. Similar to our study, they have mostly found that the performance of SPPs in estimating hourly
rainfall was less satisfactory. For example, Caracciolo et al. [53] calculated the CCs to be respectively
0.32 and 0.26 when using the IMERG_F V4 for estimating hourly rainfall in Sardinia and Sicily of Italy.
Li et al. [54] evaluated the performance of IMERG_F in estimating hourly rainfall in the Ganjiang River
Basin of China, and calculated its CC, RMSE, and RB to be 0.33, 1.72 mm/h, and 0.12%, respectively.
Yuan et al. [55] evaluated the 3-hour rainfall estimates by the three IMERG and two TMPA products in
the Chindwin River basin, Myanmar, and they found that IMERG_F performed best with a CC of 0.33
and RB of −6.8%. Meanwhile, the RMSEs of the SPPs were similar, ranging from 2.9 to 3.1 mm/h.

(2) Statistical Performance Comparison among the SPPs

Figure 8 compares the boxplots of the four continuous evaluation metrics (April to October) at
the hourly scale among the SPPs. For example, Figure 8b contains five boxplots, which respectively
characterize the distribution of RMSEs (April to October) of the five SPPs across the 13 rainfall stations.
The RMSEs of the IMERG_E range from 1.42 to 1.77 among the 13 rainfall stations, compared to
1.34–1.71 for IMERG_L, 1.45–1.74 for IMERG_F, 1.49–1.77 for 3B42, and 1.55–1.83 for 3B42RT.

Levene’s Test has confirmed that all four metrics could meet the pre-condition of homogeneity
of variance for conducting one-way ANOVA. The subsequent one-way ANOVA has concluded that
the mean values of all four metrics are significantly different among the SPPs at the significance
level (α) of 0.05. Further posterior comparison tests have shown that the CCs are significantly
different between most of the pairs of SPPs except four pairs (IMERG_L/IMERG_F; IMERG_E/3B42;
IMERG_E/3B42RT; and 3B42/3B42RT), while the RBs are significantly different except between two
pairs (IMERG_E/IMERG_L and IMERG_F/3B42). Unlike CC and RB, the RMSEs of the SPPs are only
significantly different between one pair (IMERG_L/3B42RT). Finally, the MADs are only significantly
different between 3B42RT and all IMERG products, as well as between 3B42 and IMERG_L (Figure 8).
It is worth noting that the posterior comparison tests have shown that IMERG_F is not significantly
different from the TMPA products in terms of all four metrics except CC.
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Figure 8. Boxplots of the four continuous evaluation metrics (April to October) of SPPs at hourly
scale: (a) correlation coefficient (CC) (Levene’s test, p = 0.77; one-way ANOVA, p = 3.0 × 10−13);
(b) root-mean-square error (RMSE) (Levene’s test, p = 0.63; one-way ANOVA, p = 0.03); (c) relative bias
(RB) (Levene’s test, p = 0.61; one-way ANOVA, p = 5.6 × 10−16); and (d) mean absolute difference (MAD)
(Levene’s test, p = 0.87; one-way ANOVA, p = 9.8 × 10−10). For CC and RB, two SPPs are connected with
a black dotted line if posterior comparison tests have indicated a non-significant difference between
their means at α = 0.05. For RMSE and MAD, two SPPs are connected with a red dotted line if posterior
comparison tests have indicated a significant difference between their means at α = 0.05. Each boxplot
is used to depict the distribution, therefore the variation, of the continuous evaluation metrics among
the 13 rainfall stations. In each boxplot, the top and bottom of the box represent the first and third
quantiles. The whiskers extends to 1.5 times of the inter-quantile range. The horizontal line inside the
box represents the median. The ‘×’ inside the box represents the mean.

(3) Spatial Variation

Figure 9 compares the spatial distribution of the four annual continuous evaluation metrics among
the SPPs. At the hourly scale, topography also does not seem to be a significant influencing factor
of the CCs, with lower CC values observed at stations of both low and high altitude. However, the
spatial distribution of the other three metrics does indicate a significant impact of topography on
the performance of the SPPs in estimating hourly rainfall. Both RMSEs and MADs exhibit similar
spatial patterns across the five SPPs, whose values at the three stations of high altitude (station 10, 12,
and 13) consistently stay at the top. As discussed above, the IMERG products tend to underestimate
hourly rainfall. As shown in Figure 9, underestimation by the IMERG products is especially severe at
higher altitude. Meanwhile, the 3B42 product also tends to underestimate hourly rainfall more at high
altitude. Different from the other SPPs, the 3B42RT product tends to overestimate hourly rainfall more
seriously at lower altitude.

318



Remote Sens. 2020, 12, 1042

 
Figure 9. Spatial distribution of the continuous evaluation metrics (April to October) at hourly scale:
(a) CC; (b) RMSE; (c) RB; and (d) MAD.

4.3.2. Categorical Evaluation Metrics

(1) Temporal Variation

Table 7 compares the mean values of the three categorical metrics (POD, FAR, and CSI) over the
seven months from April to October and seasonally (spring, summer, fall) among the SPPs at the hourly
scale. Similar to the daily scale, three categorical metrics are used to assess the hourly precipitation
detection capabilities of the SPPs. An hourly rainfall threshold of 0.1 mm/d is used in calculating the
metrics. As seen from the table, with lower PODs and CSIs, as well as higher FARs, all five SPPs are
poorer at detecting hourly rainfall than daily rainfall.

Table 7. Mean categorical evaluation metrics of the SPPs at hourly scale.

Metrics Temporal Scale IMERG_E IMERG_L IMERG_F 3B42 3B42RT

POD

Apr. to Oct. 0.63 0.66 0.67 0.65 0.65
Spring a 0.65 0.68 0.65 0.63 0.63

Summer a 0.66 0.69 0.71 0.71 0.71
Fall a 0.49 0.54 0.60 0.53 0.54

FAR

Apr. to Oct. 0.50 0.49 0.50 0.50 0.51
Spring 0.46 0.45 0.43 0.40 0.41

Summer 0.53 0.50 0.52 0.54 0.55
Fall 0.51 0.49 0.53 0.50 0.51

CSI

Apr. to Oct. 0.38 0.41 0.40 0.39 0.39
Spring 0.42 0.44 0.43 0.44 0.43

Summer 0.38 0.41 0.40 0.38 0.38
Fall 0.32 0.35 0.36 0.35 0.35

a Spring extends from April to May; Summer extends from June to August; Fall extends from September to October.

Seasonally, the five SPPs have exhibited somewhat similar patterns of change in hourly rainfall
detection performance. In summer, they all have the highest correct rainfall detection rates (PODs),
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but also the highest false alarm rates (FARs). Between the rest two seasons, all five SPPs have higher
PODs as well as lower FARs, therefore better rainfall detection performance, in spring. In fact, the
seasonal CSIs indicate that the overall rainfall detection performance of the SPPs all tops in spring,
followed by summer, and then winter.

Figure 10 further examines the changes in mean categorical metrics over a diurnal cycle in three
seasons. Among the three categorical metrics, PODs, especially those of IMERG_L and IMERG_F,
exhibit relatively less hourly variations through the diurnal cycle. The only discernible pattern in the
metric is that the IMERG products tend to have the highest correct rainfall detection rates (> 0.7) in
early evening, while the TMPA products have the lowest at midnight in spring. Unlike POD, FAR
exhibits more diurnal variations. In spring, FARs of all five SPPs tend to peak around noon. Whereas,
in summer and fall, they all tend to bottom in the morning and climb to the peak at around midnight.
Similar to FAR, CSI exhibits distinct diurnal variations. In spring, all SPPs have the lowest CSI, i.e.,
the poorest hourly rainfall detection performance at noon and midnight. In summer and fall, the
performance of the SPPs tends to peak in the morning, and bottom out around midnight.

 

Figure 10. Changes in mean categorical metrics over a diurnal cycle in three seasons: (a) POD in spring;
(b) POD in summer; (c) POD in fall; (d) FAR in spring; (e) FAR in summer; (f) FAR in fall; (g) CSI in
spring; (h) CSI in summer; and (i) CSI in fall.

Similar to the results of the continuous metrics at the hourly scale, the values of all three categorical
metrics are not much different among the SPPs, indicating the IMERG products are no longer superior
to the TMPA products in hourly rainfall detection.

The values of the categorical metrics obtained in this study lie at the medium level among those
obtained in previous limited studies. For example, Omranian and Sharif [56] evaluated the Early,
Late, and Final runs of IMERG products for May 2015 in the Lower Colorado River Basin of Texas in
U.S. At the hourly scale, they obtained a POD value of 0.74, a FAR value of 0.45 and a CSI value of
0.46. However, in their evaluation of the 3-hour daytime satellite rainfall estimates in the Chindwin
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River basin, Myanmar, Yuan et al. [55] obtained a POD value of <0.3 for all three IMERG and two
TMPA products.

(2) Spatial Variation

Figure A7 compares the spatial distribution of the three annual categorical evaluation metrics
among the SPPs. At the hourly scale, the spatial distribution of the categorical metrics exhibits a similar
pattern across the five SPPs. All five SPPs are poorer at detecting the actual precipitation occurrences
at high altitude. However, they also tend to yield more false alarms at low altitude. The conflicting
impacts of elevation on the PODs and FARs of the SPPs have led to lower CSI values, i.e., worse overall
hourly precipitation detection performance, at the lower altitude, especially at stations 1–3.

(3) Variation with Rainfall Thresholds

Figure 11 compares the performance of hourly precipitation detection among the five SPPs by
different rainfall magnitude. Each of the three categorical metrics has been sequentially calculated
when hourly rainfall exceeds 0.1, 1, 5, 10, and 15 mm. As seem from Figure 11a, the PODs of the five
SPPs have all decreased steadily with increasing hourly rainfall thresholds before plunging to nearly 0
at the threshold of 15 mm/hour. In general, the five SPPs do not differ much in their PODs across the
entire range of hourly rainfall thresholds. The PODs of the two near-real-time IMERG products are
consistently less than those of the TMPA products. The PODs of 3B42RT have actually remained at or
nearly the top across the rainfall thresholds.

Figure 11. Comparison of the changes in categorical evaluation metrics (April to October) with hourly
rainfall thresholds among five SPPs: (a) POD; (b) FAR; and (c) CSI.

As seem from Figure 11b, the FARs of all five SPPs tend to rise with increasing rainfall thresholds.
The TMPA products have consistently yielded higher FARs than the IMERG products over the entire
range of rainfall thresholds. The more comprehensive CSI values have concluded much similar hourly
rainfall detection performance among the SPPs across the rainfall thresholds, with IMERG_F staying at
or near the top most of the time (Figure 11c).
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5. Conclusions

SPPs have increasingly become an important data source for precipitation inputs in hydrological
modeling and other related studies worldwide. For local regions with scarce precipitation observations
or limited access to precipitation data, the latest GPM and TRMM products provide a valuable
alternative for obtaining the much-needed rainfall inputs for various regional hydrological applications.
However, the accuracy of their rainfall estimates should be systematically assessed before being utilized
in real world applications. In this study, we have assessed and compared the accuracy of the latest five
GPM IMERG V6 and TRMM 3B42 V7 precipitation products across the monthly, daily, and hourly
scales in a middle-sized hilly river basin in eastern central China. For evaluation, a total of four
continuous and three categorical metrics have been calculated based on SPP estimates and historical
rainfall records at 13 stations over a period of 9 years from 2009 to 2017. The evaluation results have
led to the following main conclusions:

(1) Rainfall estimates by all five SPPs could match ground observations best at the monthly scale,
followed by the daily and hourly scale. The annual CCs of the SPPs, for example, have fallen from
0.86 or above at the monthly scale to mostly around 0.75 at the daily scale, and sharply to less
than 0.6 (April to October) at the hourly scale. Topography tends to impose similar impact on the
performance of SPPs across various time scales, with more estimation deviations at high altitude.

(2) For estimating monthly rainfall, IMERG_F performs the best, closely followed by 3B42. These
two post-time SPPs produce considerably better monthly rainfall estimates than the rest real-time
or near-real-time SPPs. All three IMERG products tend to underestimate monthly rainfall except
a slight overestimation by the two near-real-time products in winter. Meanwhile, 3B42RT exhibits
a strong tendency to overestimate in summer and winter.

(3) For estimating daily rainfall, the IMERG products generally perform better than the TMPA
products, with IMERG_F performing the best. Similar to the monthly scale, the IMERG family
products tend to underestimate daily rainfall in all four seasons except the two near-real-time
products in winter. In contrast, 3B42RT exhibits a strong tendency of overestimation in summer
and winter. In terms of rainfall detection performance, the TMPA products are more capable
of correctly detecting daily rainfall occurrences, while the IMERG products contain fewer false
detections of rainfall occurrences.

(4) For estimating hourly rainfall, the performance of the SPPs is much more homogeneous. Two
IMERG products (IMERG_F and IMERG_L) have slightly outperformed the TMPA products
for most of the time. All IMERG products tend to underestimate hourly rainfall throughout
the three seasons between April and October. In contrast, 3B42RT shows a strong tendency of
overestimation in summer. In addition, the performances of hourly rainfall detection are quite
similar among the five SPPs.

In general, our nine-year systematic evaluation of the latest GPM IMERG V6 and TRMM 3B42
V7 precipitation products have shown that the SPPs, especially the post-time IMERG_F product,
could be considered as a reliable data source for providing monthly or daily rainfall data for regional
hydrological applications. However, great caution needs to be exerted to utilize the hourly rainfall
SPPs considering their overall weak correlations with ground rainfall observations, as well as the
consistent tendency of underestimation by the IMERG products.

Hourly rainfall datasets have been increasingly found to be valuable inputs to a variety of
hydrological applications. However, limited access to hourly rainfall datasets have restrained such
applications in many regions. Owing to their wide spatial coverage and open access, SPPs have great
potential to act as a useful alternative source for providing hourly rainfall data. Therefore, effective
bias-correction algorithms incorporating ground rainfall observations are needed to improve the quality
of hourly rainfall SPPs to safeguard the validity of their usage as ground measurement surrogates.
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Appendix A

Figure A1. Mean annual precipitation in the Shuaishui River Basin: 2009–2017. The error bar shows ±
one standard deviation of the annual average precipitation among the 13 rainfall stations.

Figure A2. Mean monthly precipitation in the Shuaishui River Basin: 2009–2017. The error bar shows
± one standard deviation of the monthly average precipitation among the 13 stations.
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Figure A3. Scatterplots between monthly rainfall gauge observations and satellite precipitation
product estimates.

Figure A4. Scatterplots between daily rainfall gauge observations and satellite precipitation
product estimates.
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Figure A5. Spatial distribution of the annual categorical evaluation metrics at daily scale: (a) POD; (b)
FAR; and (c) CSI.

Figure A6. Scatterplots between hourly rainfall gauge observations and satellite precipitation
product estimates.

 

Figure A7. Spatial distribution of the categorical evaluation metrics (April to October) at hourly scale:
(a) POD; (b) FAR; and (c) CSI.
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Abstract: Low accuracy and coarse spatial resolution are the two main drawbacks of satellite precipitation
products. Therefore, calibration and downscaling are necessary before these products are applied.
This study proposes a two-step framework to improve the accuracy of satellite precipitation estimates.
The first step is data merging based on optimum interpolation (OI), and the second step is downscaling
based on geographically weighted regression (GWR); therefore, the framework is called OI-GWR.
An Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) (IMERG) product
is used to demonstrate the effectiveness of OI-GWR in the Tianshan Mountains, China. First, the original
IMERG precipitation data (OIMERG) are merged with rain gauge data using the OI method to produce
corrected IMERG precipitation data (CIMERG). Then, using CIMERG as the first guess and the
normalized difference vegetation index (NDVI) as the auxiliary variable, GWR is utilized for spatial
downscaling. The two-step OI-GWR method is compared with several traditional methods, including
GWR downscaling (Ori_GWR) and spline interpolation. The cross-validation results show that (1) the
OI method noticeably improves the accuracy of OIMERG, and (2) the 1-km downscaled data obtained
using OI-GWR are much better than those obtained from Ori_GWR, spline interpolation, and OIMERG.
The proposed OI-GWR method can contribute to the development of high-resolution and high-accuracy
regional precipitation datasets. However, it should be noted that the method proposed in this study
cannot be applied in regions without any meteorological stations. In addition, further efforts will be
needed to achieve daily- or hourly-scale downscaling of precipitation.

Keywords: precipitation; IMERG; optimum interpolation; geographically weighted regression;
downscaling; Tianshan Mountains

1. Introduction

Precipitation is the main component of the global water cycle and plays a critical role in Earth’s energy
balance [1,2]. Therefore, accurate information on the spatial and temporal distribution of precipitation is
essential to improve our understanding of the Earth system and to better predict weather and climate
conditions and natural disasters. Ground observations are the most direct source of precipitation
data, but most stations are unevenly distributed in low-altitude zones, which makes it difficult to
capture the full distribution of large-scale precipitation. In contrast, satellite-retrieved precipitation
products have the unique advantages of global coverage and spatiotemporal continuity [3,4] and have
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consequently promoted a more complete understanding of the patterns of and changes in regional and
global precipitation.

However, because of instrument limitations and imperfect retrieval algorithms, satellite precipitation
products have drawbacks in terms of spatial resolution and data precision [5–9]. At present, because
of the coarse spatial resolution of satellite precipitation products, their application in hydrological and
climatic models at the watershed scale is restricted. For this reason, many researchers have focused
on developing statistical downscaling methods for satellite or reanalysis precipitation products [10–12].
These methods usually involve building a relationship between coarse-resolution precipitation data and
high-resolution variables to improve the spatial resolution of satellite precipitation data. For example,
Immerzeel et al. [13] established an exponential regression (ER) model by integrating 1-km normalized
difference vegetation index (NDVI) data with Tropical Rainfall Measuring Mission (TRMM) 3B43
precipitation data and obtained high-resolution annual precipitation data over the Iberian Peninsula.
Based on the method of Immerzeel, Jia et al. [14] established a functional relationship between 3B43
precipitation data and other variables (i.e., altitude and NDVI) using multiple linear regression (MLR)
and obtained downscaled annual data at a 1 km resolution for the Qaidam Basin in China. Duan
et al. [15] developed a further modified downscaling algorithm by introducing calibration methods
based on geographic difference analysis (GDA) and geographic ratio analysis (GRA) and obtained 1-km
monthly precipitation data over the Tana Lake Basin in Africa and the coast of the Caspian Sea in Asia.
Zhang et al. [16] applied the abovementioned methods in Xinjiang, China, and obtained 1-km annual
precipitation data. Considering the spatial variations exhibited by the relationship between precipitation
and environmental variables, geographically weighted regression (GWR) has been introduced into
precipitation analyses to achieve improved downscaling performance [17–20]. However, although
environmental variables play a vital role in the monthly or yearly downscaling of precipitation, they
have limited applicability in daily and hourly downscaling, which is more strongly reliant on cloud
properties. For example, Sharifi et al. [21] obtained 1-km daily precipitation data in northeast Austria
using MLR, artificial neural networks (ANNs) and spline interpolation based on 1-km cloud optical
thickness (COT), cloud effective radius (CER), and cloud water path (CWP) data. Ma et al. [22] obtained
1-km hourly precipitation data in the southeast coast region of China based on COT, CER, and cloud top
height (CTH) data from Himawari 8.

Traditional downscaling methods can improve the spatial resolution of satellite precipitation data.
Many studies have shown that the accuracy of the satellite precipitation products is the most important
factor affecting the quality of the downscaled estimates [13,14,17] if the environmental variables can
satisfactorily reproduce the pattern of the satellite precipitation data. However, all previous downscaling
methods have been applied to original satellite precipitation data, which contain large uncertainties that
limit the accuracy of the downscaled precipitation estimates. Correcting the original satellite products
before applying them in downscaling analyses can potentially contribute to the improvement of the
downscaled precipitation estimates. Nevertheless, to our knowledge, no such study has previously
been performed.

To address this gap, this study proposes a two-step merging and downscaling framework called
OI-GWR to improve the accuracy of downscaled precipitation estimates. The merging procedure is
based on optimum interpolation (OI), and the downscaling procedure is based on GWR. The remaining
sections of this paper are organized as follows: Section 2 introduces an overview of the study area;
Section 3 provides detailed information about the data and methods; Section 4 reports the results of OI
and GWR; and finally, a discussion and conclusions are presented in Sections 5 and 6, respectively.
The method proposed in this study will contribute to the production of high-quality and high-resolution
regional gridded precipitation datasets. In particular, the method can serve as a useful reference for
the development of grid data at the daily or hourly scale.
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2. Study Area

The Tianshan Mountains are the mountain system that is the farthest in the world from any ocean.
They are composed of a series of mountain ranges, intermountain basins, valleys, and piedmont plains,
with an area of approximately 570,000 km2 and an average altitude of 4000 m [4]. The precipitation
distribution shows large temporal and spatial variations, with most precipitation occurring in summer
and little occurring in winter. The Tianshan Mountains are also known as the water tower of central
Asia. Approximately 65% of the rivers in Xinjiang originate from this region. On northern slopes,
the annual average precipitation ranges between 500 and 700 mm, whereas the annual precipitation
over western windward slopes can reach 1000 mm [23–25].

3. Data and Methodology

3.1. Data

3.1.1. Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) (IMERG)
Satellite Precipitation Products

The Global Precipitation Measurement (GPM) mission is a satellite precipitation measurement
project initiated by the National Aeronautics and Space Administration (NASA) and the Japan Aerospace
Exploration Agency (JAXA). The goal of the GPM mission is to provide new-generation global satellite
precipitation products with high precision and resolution. The GPM mission has an extended TRMM
sensing load and an enhanced capacity for precipitation detection. The dual-frequency radar carried by
the GPM Core Observatory (GPMCO) operates in the Ku and Ka bands. In particular, in the Ka band,
it can operate in the high-sensitivity interleaved sampling mode. Meanwhile, the microwave radiometer
of the GPMCO operates in four bands with higher frequencies than that of the TRMM Microwave
Imager, which increases the observation capacity for light and solid precipitation. A comparison between
the Integrated Multisatellite Retrievals for GPM (IMERG) products and other commonly used satellite
precipitation datasets in Xinjiang has shown that IMERG exhibits the best performance [26–28]. Therefore,
the IMERG monthly precipitation data were utilized as the initial data in this study.

IMERG can provide quasi-global precipitation data with a temporal resolution of 30 min and
a spatial resolution of 0.1◦ × 0.1◦. According to the calibration methods and data sources used for
these precipitation data, the IMERG products can be divided into three types, namely, “Early-run”,
“Late-run”, and “Final-run” products. Among them, the “Early-run” and “Late-run” products are
quasi-real-time data in the sense that they are released 4 and 12 h after the observations, respectively,
while the “Final-run” products are post-real-time data with a time lag of 3.5 months. These products
are available at the Precipitation Measurement Missions (PMM) website (https://pmm.nasa.gov/data-
access/downloads/gpm). Specifically, the V06B IMERG “Final-run” product was selected for use in this
study because this product is subjected to gauge adjustment using monthly observation data from
the Global Precipitation Climatology Centre (GPCC) and offers higher precision than the “Early-run”
or “Late-run” products. There are only 9 Global Telecommunication System (GTS) stations used by
the GPCC in the Tianshan Mountains; these stations account for a very small proportion (<1%) of the
total AWSs in the region (1074) and were excluded in this study to ensure the independence of the
precipitation evaluation. Because the AWSs in the study area cannot measure snowfall during the cold
season, the study period was restricted to the warm seasons (May to September) from 2014 to 2018.

3.1.2. Observed Precipitation

Daily precipitation data were collected from 1065 AWSs in the Tianshan region and accumulated
to the monthly scale. The distribution of the stations is shown in Figure 1. The time range of these
precipitation observations was consistent with that of the IMERG precipitation data. To ensure the
independence of model training and validation, the 9 GTS stations in the study area were excluded
(Figure 1). The observed data were collected by the Information Center of the Xinjiang Meteorological
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Bureau, and the quality control procedures included a climatic extreme value test, a single-station
extreme value test, and a data consistency test. The data from September 2018 were excluded due to
missing records for a large number of regional stations. In addition, since retrospective IMERG data are
available from June 2000 to the present, a longer period of data was used to validate the effectiveness
of the OI-GWR method in Section 5.2.

 
Figure 1. Digital elevation model (DEM) and distribution of the observation stations on a map of the
Tianshan Mountains. The black dots and red flags represent automatic weather stations (AWSs) and
Global Telecommunication System (GTS) stations, respectively.

3.1.3. Environmental Variables

The introduction of environmental variables into a downscaling analysis can improve the quality
of satellite-retrieved precipitation data [13–20]. Therefore, environmental variables that are closely
related to satellite precipitation data, such as the slope (SLP), aspect (ASP), curvature (CVT), hillshade
(HSHD) [29,30], topographic wetness index (TWI) [31], and NDVI, were selected in this study. The NDVI
data were obtained from the 1-km MOD13A3 monthly average vegetation index provided by the
MODerate resolution Imaging Spectroradiometer (MODIS), and digital elevation model (DEM) data
were taken from the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital
Elevation Model (ASTER GDEM), with a native resolution of 30 m. To maintain consistency with the
NDVI data, the resolution was resampled to 1 km using the pixel averaging method, that is, the data
from all high-resolution pixels within a given coarse-resolution pixel were averaged to obtain the
corresponding coarse-resolution estimate. The topographic variables were obtained from the DEM data
using Geographic Information System (GIS) software.

For the selected environmental variables, such as the NDVI, DEM, ASP, SLP, HSHD, TRI, and CVT,
experiments were performed on each of the variables individually and on various combinations of
variables. Moreover, the variance inflation factor (VIF) method was utilized to prevent multicollinearity.
The VIF is a measure of the severity of multicollinearity in an MLR model, where multicollinearity refers
to linear correlations between independent variables. The VIF is calculated when filtering variables.
When the VIF value is closer to one, the multicollinearity is weaker, and vice versa. Specifically, when
performing the experiments, variables were added to the existing variable group one by one. If adding
a particular variable resulted in multicollinearity according to the VIF, that variable was deleted from
the variable group. The variables were then introduced into the GWR model separately or in various
combinations to obtain the downscaling outcomes. After a comparison of the results, the NDVI was
found to have the best downscaling effect and thus was selected as the final explanatory variable for
further study.
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3.2. Methodology

3.2.1. Overall Flow Chart of the Study

In this study, monthly IMERG precipitation data were used for downscaling. As shown in Figure 2,
first, the original IMERG precipitation data (OIMERG) and the observed precipitation data (OBS) were
merged using OI to obtain 10-km OI-corrected IMERG precipitation data (CIMERG). The OI technique
was originally developed by Eliassen [32] and Gandin [33]. In this study, OI was used to calibrate
and adjust the satellite precipitation data based on OBS; hence, the corrected results possessed the
combined advantages of satellite precipitation data and OBS (see Section 3.2.2 for details). Then, since it
was found that the NDVI showed the best performance among all considered environmental variables
(DEM, SLP, ASP, CVT, HSHD, TWI, and NDVI) in the downscaling of precipitation data, we included
only the NDVI variable in this study, which was resampled from its original 1 km resolution to a 10 km
resolution. With the 10-km NDVI as the independent variable, the spatial downscaling of CIMERG was
performed using GWR to obtain a 1-km monthly precipitation dataset (DS_CIMERG) for the Tianshan
Mountains. For comparison with previous methods, two additional sets of data were generated and
used for further validation: DS_OIMERG, obtained via GWR downscaling with OIMERG (the original
uncorrected IMERG precipitation data) as the dependent variable, and DS_Spline, obtained by using
the spline interpolation method for OIMERG precipitation downscaling. The steps highlighted in the
red dashed box in Figure 2 constitute the process of residual correction, which is necessary for the
verification of the downscaling method proposed in this study.

 
Figure 2. The flow chart of this study. The red dashed box indicates the residual correction process,
and the blue boxes represent the three categories of downscaling estimation data. OIMERG, original
Integrated Multi-satellitE Retrievals for GPM; OBS, observed precipitation data; OI, optimum interpolation;
NDVI, normalized difference vegetation index; CIMERG, OI-corrected IMERG precipitation data; GWR,
geographically weighted regression; DS_CIMERG, obtained via GWR downscaling with CIMERG;
DS_OIMERG, obtained via GWR downscaling with OIMERG; DS_Spline, obtained by using the spline
interpolation method for OIMERG precipitation downscaling.
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3.2.2. Optimum Interpolation (OI)

OI analysis requires an initial estimation field, such as a set of gridded satellite precipitation data.
By calculating the error weight function of the initial estimation field and the observation field point
by point, the target grid points for analysis can be corrected. Thus, when developing OI-based data
merging algorithms, the key is to quantify the error structure of the initial estimation field and the
observation field. Unlike other data-merging methods, OI considers not only the autocorrelation of
various errors but also the correlation between different observations. Moreover, OI involves solving
for the optimal value within a certain range of each analysis point and thus is particularly suitable for
the analysis of single variables with large spatiotemporal variability, such as precipitation [34]. In the
OI analysis conducted in this study, the OIMERG precipitation data were used as the initial estimation
field, and the station precipitation observations were used as the observation field. The final analysis
result for the precipitation value (Ak) at each grid point is equivalent to the first guess (Fk) at this grid
point plus the deviation between the observed value and the initial estimated value at the grid point.
This deviation is obtained through weighted estimation based on the deviations between the known
observed values (Oi) and initial estimated values (Fi) from n grid points within a certain range, and it
represents the maximum distance correlated with the target grid point. The formula is as follows:

Ak = Fk +
n∑

i=1

Wi(Oi − Fi) (1)

where k is the grid point to be analyzed, i is an index representing the “valid grid boxes” (boxes in
the satellite precipitation grid containing at least one gauge station), and Wi is a weight coefficient
assigned to the deviation between the observed value and the initial estimated value in the ith grid box
during estimation. Note that in an area with a sparse station network, the analysis radius should be
continuously adjusted to ensure that a sufficient number of valid grid boxes can be searched, from
which several valid grid boxes nearest to the target grid point are then selected for inclusion during OI.
In this study, the analysis radius was set to 100 km, and the 9 nearest valid grid boxes to the target grid
point were selected for OI [35].

In Equation (1), the weight coefficients (Wi) are determined by the variance in the minimum error
on the precipitation value (Ak) at the target point:

E2 = (AK − TK)
2 (2)

where TK represents the observed value at point k.
Based on the assumptions that the observation field and the initial estimation field are unbiased

and that the observation error is not related to the error of the initial estimation field, the weight
coefficients Wi in Equation (1) can be obtained by solving the following linear equation [34]:

n∑
j=1

(
μ

f
i j + μ

o
i jλiλ j

)
Wj = μ

f
ki (3)

whereμ f
i j represents the co-correlation of the initial estimation field error,μ0

i j represents the co-correlation
of the observation error, and λi is the ratio between the standard deviation of the observation error (σo

i )

and that of the initial estimation error (μo
i j) at point i. In OI, the calculation of the Wi requires that μ f

i j,

μo
i j, σ

o
i , and σ f

i are known values, which, in turn, requires the pre-estimation of the observation error
and the satellite-retrieved precipitation error as well as the correlation between these errors. Here,
the term “pre-estimation” means that these parameters need to be estimated in advance. In this study,
this pre-estimation was performed based on a statistical analysis of the sample data within the study
period [35].
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The weight coefficients (Wi) were determined based on Equation (3), and then, the final precipitation
values (Ak) were obtained based on Equation (1).

3.2.3. GWR Downscaling

Since the GWR model was first proposed by Brunsdon et al. [36] in 1996, it has been extensively
applied in research on spatial heterogeneity [17–20,37,38]. The basic idea of GWR is that the relationship
between variables varies with changes in spatial location; thus, a regression model can be established
by estimating the parameters of the correlated variables and explanatory variables at each given
location in the study area. Figure 3 shows the spatial distributions of the intercept, NDVI regression
coefficient, and local R2 obtained via GWR, and these values are in accordance with the definition.
These parameters exhibit significant spatial variations. The intercept ranges from -78.7 to 178.4,
the NDVI coefficient ranges from -123.3 to 203.4, and the local R2 ranges from 0.01 to 0.92.

Figure 3. The spatial distributions of the (a) intercept, (b) slope of the NDVI and, (c) local R2 in
July 2016.
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In this study, a GWR regression model was established based on the NDVI and the IMERG
precipitation data as follows:

Yj = β0
(
uj, vj

)
+

p∑
i=1

βi
(
uj, vj

)
Xij + ε j (4)

where Yj is the IMERG precipitation at point j; Xij is the NDVI at point i in the vicinity of point j;
β0

(
uj, vj

)
and βi

(
uj, vj

)
represent the intercept and slope, respectively, at point j;

(
uj, vj

)
represents

the two-dimensional coordinates of point j; and ε j is the residual error. Unlike traditional global
regression models, Equation (4) is based on the assumption that the shorter the distance between
the observation point and point j is, the greater the influence on point j will be, with the coefficient
acting as a damping function that depends on the distance from point j. This damping function can be
obtained in accordance with Equation (5):

β̂
(
uj, vj

)
=

(
XT

(
W

(
uj, vj

))
X
)−1

XTW
(
uj, vj

)
Y (5)

where β̂
(
uj, vj

)
represents the coefficient of point j; X and Y are the independent and dependent

variables, respectively; and W
(
uj, vj

)
is a weight matrix. This matrix ensures that the shorter the

distance between points i and j is, the greater the weight, and the elements of the matrix can be obtained
as follows:

wij =
[
1−

(
dij/b

)2
]2

when dij ≤ b

wij = 0 when dij > b
(6)

where dij is the distance of point j from the nearby observation point i, and b is a fixed threshold defined
in terms of a distance metric.

In detail, the following procedures were applied for GWR-based downscaling (Figure 2).
(1) To effectively establish the precipitation-NDVI model, anomalous NDVI areas corresponding

to snow and water bodies were removed from the high-spatial-resolution NDVI data [17,39].
(2) After the removal of outliers, the 1-km NDVI data were aggregated to a resolution of 10 km

by means of pixel averaging. Then, a GWR model of the 10-km IMERG data and the 10-km NDVI
data was established with the NDVI as the independent variable and the IMERG precipitation data as
the dependent variable. By introducing 1-km and 10-km grid point coordinates into the GWR model,
the constants and corresponding coefficients for the 1-km and 10-km NDVI were obtained, as shown
in Equation (4).

(3) The 10-km NDVI data were entered into the regression model to obtain NDVI-based
precipitation predictions with a 10 km resolution (Predicted Precipitation 10 km in Figure 2).

(4) The residual errors between the values predicted by the 10-km resolution model and the
original IMERG precipitation values were calculated (Residuals 10 km in Figure 2). The 10-km residuals
were then transformed into 1-km residuals through spline interpolation (Residuals 1 km in Figure 2).

(5) The 1-km NDVI data after anomalous data removal were used to force the regression model,
thus obtaining 1-km model-predicted precipitation values. Spline interpolation was then applied to fill
in the values missing after outlier removal to obtain downscaled data (DS_CIMERG in Figure 2).

(6) The 1-km model-predicted precipitation values and 1-km residual data were summed to obtain
post-residual-corrected 1-km downscaled precipitation data.

3.2.4. Validation

Station-measured data are the most direct observations of precipitation. In this study, 10-fold
cross-validation was used to validate the precision of the OI outcomes and downscaling products.
The observation stations were randomly divided into 10 groups. Nine groups (90%) were selected for
the OI-based merging of the IMERG precipitation data with the observation data and GWR-based
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downscaling. The remaining 10% constituted an independent dataset to validate the accuracy of the OI
results and downscaling products. This was repeated 10 times to guarantee an independent validation
for each station and to ensure the representativeness of the training samples and validation samples.
Three statistical indicators, namely, the mean absolute error (MAE), root-mean-square error (RMSE),
and correlation coefficient (CC), were utilized to validate the estimated values of the downscaled
product against the observed values. The formulas for these indicators are as follows:

MAE =
1
n

n∑
i=1

∣∣∣xi − yi
∣∣∣ (7)

RMSE =

√√
1
n

n∑
i=1

(xi − yi)
2 (8)

CC =

n∑
i=1

(xi − x)(yi − y)√
n∑

i=1
(xi − x)2 n∑

i=1
(yi − y)2

(9)

where x = 1
n

n∑
i=1

xi, y = 1
n

n∑
i=1

yi, n is the sample size, and xi and yi are the estimated values and station

observations of precipitation, respectively.
In addition, a statistical analysis showed that July 2016 was the month with the most precipitation

in the Tianshan Mountain area, while September 2017 was the month with the least precipitation.
Therefore, in addition to the 10-fold cross-validation, the data from these two months were used to
further validate the results of the proposed downscaling method in terms of their spatial distribution.

4. Results

4.1. Consistency Between the NDVI and Satellite Precipitation Data

To determine the delay in the response of the NDVI to precipitation, Table 1 presents the correlation
coefficients (CCs) between the NDVI and the observed precipitation at all stations in the study area
during the warm seasons from 2014 to 2018. The results showed that the highest correlations were
observed with no time lag. Figure 4 shows the distributions of the monthly average NDVI and
IMERG precipitation in the study area during the warm season of 2016. According to Figure 4b,
the Ili Valley was the area with the most abundant precipitation, while the eastern area received
the least precipitation. This is because the Ili Valley is surrounded by mountains to the north, east,
and south (Figure 1), which is beneficial for the collection of water vapor from the Atlantic Ocean to
the west, resulting in abundant precipitation in the piedmont zone. According to Figure 4a, there
was good consistency between the NDVI and IMERG precipitation data. The high resolution of the
NDVI revealed detailed spatial variations and contributed to the improvement of the downscaled
precipitation estimates.

Table 1. The correlation coefficients (CCs) with different delays between the NDVI and the observed
precipitation at all stations during the warm seasons from 2014 to 2018.

Lag (months) 0 1 2 3

CC 0.56 0.50 0.39 0.27
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Figure 4. (a) The monthly average NDVI and (b) the monthly average IMERG during the warm season
of 2016.

4.2. Improvement of the OIMERG Precipitation Data Achieved via OI

Figure 5 shows comparisons of the CC, MAE, and RMSE values calculated before and after the
OI-based merging of the OIMERG data and the observation data. After OI, the CC values increased
in almost all months; this effect was the most obvious for September 2017, with an increase of 0.27.
The CC was slightly worse after OI for only two months: by 0.01 for May 2014 and by 0.02 for August
2014. In addition, the RMSE generally decreased by 0.37–5.16 mm, with slight increases observed
for only two months (by 0.06 mm for September 2016 and by 0.23 mm for August 2014). The MAE
decreased in all months except August 2014, for which it increased by 0.17 mm. Overall, compared
with the OIMERG precipitation data, the CIMERG data obtained after OI showed improvements in
the mean CC, RMSE, and MAE values from 0.516, 28.83 mm, and 19.73 mm to 0.616, 26.56 mm, and
17.59 mm, respectively. Therefore, the OI processing of the OIMERG and observed precipitation data
greatly improved the precision of the original satellite precipitation product.
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Figure 5. Comparisons of the (a) CC, (b) mean absolute error (MAE) and (c) root-mean-square error
(RMSE) before and after OI processing for the warm seasons of 2014–2018.

4.3. Error Statistics of DS_Spline, DS_OIMERG, and DS_CIMERG

Based on the improvement in the quality of the satellite precipitation product after OI, the downscaling
effect of the GWR method was further validated. Figure 6 shows comparisons among the downscaled data
obtained with three different downscaling methods for May to September of 2014–2018. DS_CIMERG had
the highest CC values in 22 of the 24 months, with lower values than those of DS_Spline only in May and
August 2014. On average, the mean CC of DS_CIMERG was 10% higher than that of DS_Spline. Between
DS_Spline and DS_OIMERG, the CC values of DS_Spline were higher in 8 months and lower in 16 months,
suggesting that the quality of satellite precipitation data cannot be effectively improved by downscaling
with only the spatial interpolation technique. The RMSE and MAE values of DS_CIMERG were the lowest
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in almost all months. Furthermore, the mean CC, RMSE, and MAE values respectively improved from 0.616,
26.56 mm, and 17.59 mm for CIMERG to 0.635, 25.93 mm, and 17.15 mm for DS_CIMERG, respectively.

Figure 6. (a) The correlation coefficient (CC), (b) mean absolute error (MAE), and (c) root-mean-square
error (RMSE) values of downscaled precipitation estimates obtained using GWR based on OIMERG
(DS_OIMERG), GWR based on CIMERG (DS_CIMERG), and spline interpolation (DS_Spline) for the
Tianshan Mountains between May and September 2014–2018. Independent rain gauge observations
were used as benchmarks.
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4.4. Overall Assessment of the Two-Step Merging and Downscaling Method

Figure 7 presents scatter plots of OIMERG, CIMERG, and the three types of downscaled
precipitation data against all of the observation data from the study area. After the first and second
processing steps (i.e., OI and GWR), the CC was improved by 10% and 2%, respectively. As shown
in Figure 7e, DS_OIMERG showed slight improvements compared with OIMERG, while it was
less accurate than CIMERG and DS_CIMERG, indicating that direct downscaling based on original
satellite precipitation products may have a limited effect in improving the quality of downscaled
precipitation estimates.

Figure 7. Scatter diagrams of the (a) OIMERG, (b) CIMERG, (c) DS_Spline, (d) DS_CIMERG, and (e)
DS_OIMERG precipitation products against the observed precipitation during the warm seasons from
2014 to 2018. OIMERG, original IMERG precipitation data; CIMERG, OI-corrected IMERG precipitation
data; DS_Spline, obtained by using the spline interpolation method for OIMERG precipitation
downscaling; DS_CIMERG, obtained via GWR downscaling with CIMERG; DS_OIMERG, obtained via
GWR downscaling with OIMERG; OBS, observed precipitation data.

Figure 8 shows boxplots of the evaluation metrics for the five precipitation products. A boxplot
divides a dataset into four segments based on the maximum, minimum, median, and two quartiles
of the data. The middle horizontal line represents the median, which divides the statistical data into
two equal parts. As shown in Figure 8, the distributions of the CC, MAE, and RMSE were all uniform
and consistent. Among the five datasets, the best performance was observed for DS_CIMERG, whose
CC values were more concentrated in the upper region, while the MAE and RMSE values were more
concentrated in the lower region. In particular, the minimum and maximum MAE and RMSE were the
lowest for DS_CIMERG, followed by CIMERG. The metrics for OIMERG and DS_Spline were basically
the same, while those for DS_OIMERG were in agreement with the overall assessment results and
slightly better than those for OIMERG (Figure 7). In Figure 8, the small rectangular boxes represent
the distributions of the metric values around their averages. DS_CIMERG performed the best among
the five products, with CC, MAE, and RMSE values of 0.70, 17.29 mm, and 22.45 mm, respectively.
The overall evaluation results showed that the dataset generated using the OI-GWR method proposed
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in this study was notably superior to the datasets of the other two downscaling products as well as the
initial IMERG precipitation data.

Figure 8. Boxplots of the evaluation metrics (a, CC; b, MAE and c, RMSE) for the five precipitation
datasets for the warm seasons of 2014–2018. OIMERG, original IMERG precipitation data; CIMERG,
OI-corrected IMERG precipitation data; DS_Spline, obtained by using the spline interpolation method
for OIMERG precipitation downscaling; DS_CIMERG, obtained via GWR downscaling with CIMERG;
DS_OIMERG, obtained via GWR downscaling with OIMERG.

4.5. Spatial Distributions of Monthly Precipitation

Using July 2016 (the month with the maximum precipitation) and September 2017 (the month with
the minimum precipitation) as examples (Figures 9–12), the spatial distributions of the OBS, OIMERG,
CIMERG, DS_OIMERG, DS_Spline, and DS_CIMERG monthly precipitation data are shown in Figure 9;
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Figure 11. Furthermore, Figure 10; Figure 12 show the detailed distributions of the precipitation datasets
in the Ili Valley after image enlargement. Figure 9a shows the observed precipitation distribution in
July 2016. The Ili Valley was the region with the most abundant precipitation. The other five gridded
estimated precipitation datasets (OIMERG (Figure 9b), CIMERG (Figure 9c), DS_Spline (Figure 9d),
DS_CIMERG (Figure 9e), and DS_OIMERG (Figure 9f)) all exhibited the same spatial distribution
pattern as that of the OBS dataset. However, OIMERG underestimated the observed precipitation,
particularly in the Ili Valley area. In contrast, CIMERG, obtained by combining OIMERG and ground
observations using OI, showed a more reasonable precipitation distribution. Figure 10 shows a clearer
view of the patterns in this area. Since DS_Spline and DS_OIMERG were generated by downscaling
the original IMERG data, their performance was limited by the IMERG precipitation distribution,
which underestimated the observed precipitation. By contrast, after OI-GWR processing, DS_CIMERG
not only showed noticeably improved accuracy relative to the initial IMERG precipitation data but
also exhibited a precipitation distribution that was more detailed and consistent with the observed
precipitation, thus demonstrating the improved capabilities of the proposed downscaling method.
Figure 11 presents the spatial distributions of the precipitation data for September 2017 (the month
with the lowest precipitation). It can be seen that, during this time period, the precipitation was weak
throughout the Tianshan Mountain area (Figure 11a). Consistent with the results shown in Figure 9,
the DS_CIMERG dataset showed a distribution more similar to the observed precipitation distribution
(Figure 11e), while the distributions of DS_Spline (Figure 11d) and DS_OIMERG (Figure 11f) were
consistent with that of OIMERG.

 
Figure 9. The spatial distributions of the five estimated precipitation datasets and the observed
precipitation in July 2016. (a) OBS; (b) OIMERG; (c) CIMERG; (d) DS_Spline; (e) DS_CIMERG;
(f) DS_OIMERG.
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Figure 10. Enlarged views of the Ili Valley corresponding to Figure 9. (a) OBS; (b) OIMERG; (c) CIMERG;
(d) DS_Spline; (e) DS_CIMERG; (f) DS_OIMERG.

Figure 11. The spatial distributions of the five estimated precipitation datasets and the observed
precipitation in September 2017. (a) OBS; (b) OIMERG; (c) CIMERG; (d) DS_Spline; (e) DS_CIMERG;
(f) DS_OIMERG.
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Figure 12. Enlarged views of the Ili Valley corresponding to Figure 11. (a) OBS; (b) OIMERG; (c) CIMERG;
(d) DS_Spline; (e) DS_CIMERG; (f) DS_OIMERG.

4.6. Residual Correction

A series of improvements in downscaling methods for satellite precipitation products have been
achieved, from the original ER model proposed by Immerzeel et al. [13] and the MLR model proposed
by Jia et al. [14] to the GWR approach proposed by Xu et al. [17] and Chen et al. [20]. Residual correction
is a key step in both ER and MLR [17]. In this study, residual correction for GWR was analyzed in detail.

Using DS_CIMERG as an example, the residual correction processes for GWR downscaling in
July 2016 and September 2017 were analyzed, and the results are shown in Figure 13; Figure 14,
respectively. Figure 13a shows the CIMERG data before downscaling. Figure 13b shows the estimated
precipitation based on the low-resolution (10 km) regression coefficients (i.e., Predicted Precipitation
(10 km) in Figure 2). Figure 13c shows the 10-km residuals obtained by subtracting CIMERG from
the 10-km precipitation predictions. Figure 13d shows the 1-km residuals obtained after applying the
spline interpolation technique to the 10-km residuals. Figure 13e shows the DS_CIMERG precipitation
estimates, which are based on the high-resolution (1 km) regression coefficients. Finally, Figure 13f
presents the residual-corrected downscaling results obtained by summing the 1-km residuals and the
1-km precipitation estimates. As shown in this figure, the precipitation estimates (Figure 13b) obtained
with the low-resolution parameters already exhibited high consistency with CIMERG (Figure 13a), and
their residual values were generally small, ranging between -10 and 10 mm (Figure 13c), indicating
that the low-resolution estimated precipitation data obtained via the GWR method were close to the
initial precipitation data. In contrast, the high-resolution precipitation estimates obtained based on the
1-km regression coefficients (Figure 13e) not only were highly consistent with the initial precipitation
distribution but also reflected the detailed structure of the precipitation distribution. The results shown
in Figure 14 are similar to those in Figure 13, except that they correspond to a different month. Table 2
summarizes the detailed error statistics. The CC, RMSE, and MAE values after residual correction were
worse than those before residual correction. Therefore, the addition of residual correction to the GWR
model transferred the errors of the original IMERG precipitation data to the final downscaling outcomes,
thereby decreasing the reliability of the outcomes, as the residuals were obtained by subtracting the
10-km precipitation predictions from the original IMERG precipitation data.
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Figure 13. Comparison of the DS_CIMERG product in July 2016 before and after residual correction.
(a) CIMERG; (b) predicted precipitation (10 km); (c) residuals (10 km); (d) residuals (1 km); (e) DS_CIMERG;
(f) downscaled precipitation after residual correction.

Figure 14. Comparison of the DS_CIMERG product in September 2017 before and after residual
correction. (a) CIMERG; (b) predicted precipitation (10 km); (c) residuals (10 km); (d) residuals (1 km);
(e) DS_CIMERG; (f) downscaled precipitation after residual correction.

To further evaluate the results through additional validation tests, the data before and after
residual correction from 2010 to 2018 were also processed and evaluated. The results were consistent
with those presented in Table 2. The CC, RMSE, and MAE values respectively increased from 0.576,
26.92 mm, and 18.12 mm before residual correction to 0.59, 26.55 mm, and 17.63 mm after residual
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correction. Therefore, the residual correction step is not necessary in GWR downscaling; this conclusion
is consistent with the findings of Xu et al. [17].

Table 2. Comparison of evaluation metrics before and after residual correction.

Time Residual Correction CC RMSE (mm) MAE (mm)

07/2016 Before 0.718 33.03 23.82
After 0.695 34.11 24.59

09/2017 Before 0.435 11.54 7.80
After 0.425 11.90 7.91

5. Discussion

5.1. Limitations of GWR Downscaling

Previous studies have shown that, in the case that an established model can adequately estimate
precipitation, the quality of the initial satellite precipitation data becomes a critical factor in determining
the quality of the downscaling results [14,17]. In this study, the proposed two-step OI-GWR method
combining data merging and downscaling successfully solved this problem. Nevertheless, some
limitations of the GWR method were also found during this research. First, during the process of
variable selection for GWR, when the variables with the best global correlation with precipitation
were applied for GWR downscaling, the obtained results were not optimal. In addition, the inclusion
of more explanatory variables (e.g., DEM, SLP, ASP, CVT, HSHD, and/or TWI) did not yield better
results than those achieved using the single NDVI variable. Second, unlike the stepwise regression
method, GWR cannot automatically identify and eliminate variables that are not significantly related
to the dependent variables, which can be considered a shortcoming of the GWR method itself. Even
after stepwise regression was performed for variable screening and the selected variables were input
into the GWR model, the desired results were not obtained. Presumably, this can be explained by
the fact that stepwise regression is a global regression method, which therefore selects variables from
the perspective of global correlation, whereas the GWR method relies on point-by-point regression
and therefore focuses on local modeling. For this reason, variables selected on the basis of stepwise
regression or correlation analysis may not be suitable for GWR. Accordingly, further investigation will
be necessary to improve the process of variable selection for GWR.

5.2. Impact of the Gauge Density on OI-GWR

To further validate the performance of OI-GWR and its applicability in sparsely gauged regions,
we randomly selected 30% of the rain gauges for model training and used the remaining 70% of the rain
gauges for model validation. For this analysis, the study period was extended to 2010-2018. Figure 15
shows that even when using only 30% of the stations for training, a positive correction effect could
be obtained. However, since fewer rain gauges were used for training, the improvement was less
significant than that achieved using more rain gauges. An overall evaluation showed that after the two
steps of correction (i.e., OI and GWR), the CC increased from the initial value of 0.533 to values of 0.567
and 0.59, respectively; the RMSE decreased from the initial value of 27.08 mm to values of 26.84 and
26.55 mm, respectively; and the MAE decreased from the initial value of 18.3 mm to values of 17.76
and 17.63 mm, respectively. Therefore, the OI-GWR method proposed in this study can improve the
deficiencies of the previous downscaling method. Since OI-GWR works well even when the size of the
training dataset is reduced to 30%, the proposed method has great potential for application in sparsely
gauged regions.
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Figure 15. Scatter diagrams of OIMERG, CIMERG, and DS_CIMERG against the observed precipitation
during the warm seasons from 2010 to 2018.

6. Conclusions

In this study, a two-step merging and downscaling method (OI-GWR) was proposed and used to
downscale original IMERG precipitation data for the Tianshan Mountains from a resolution of ~10 to
1 km. First, the original IMERG precipitation data were merged with observed precipitation data using
the OI method (https://github.com/tgq14/GWR-OI). Then, downscaling was performed using the GWR
method, with the corrected CIMERG precipitation data as the initial values and the NDVI as an auxiliary
variable. The performance of OI-GWR was assessed based on rain gauge observations, and the results
were compared with those of other downscaling methods. The main conclusions include the following:

(1) The OI-based merging of the OIMERG data and the observed precipitation data greatly
improved the precision of the original satellite precipitation product. After OI, the CC, RMSE, and
MAE values for the OIMERG data were increased from 0.516, 28.83 mm, and 19.73 mm to 0.616,
26.56 mm, and 17.59 mm, respectively.

(2) An assessment of various downscaled datasets showed that the precision of DS_CIMERG
(based on OI-GWR) was much higher than that of DS_OIMERG (based on GWR), indicating that the
downscaling results for satellite precipitation data depend to a large extent on the quality of the initial
precipitation product.

(3) Residual correction is a key step in global regression downscaling methods, such as ER and
MLR. However, in the GWR method, residual correction tends to transfer the errors of the original
satellite precipitation data to the final downscaling results. The statistical evaluation metrics of the
GWR results obtained after residual correction were worse than those before residual correction,
indicating that residual correction is unnecessary in GWR-based downscaling.

By improving the precision of the original IMERG satellite precipitation products and then
downscaling the products thus obtained, the two-step OI-GWR method can serve as a more effective
approach for the generation of regional precipitation datasets. Further efforts will be needed to extend
the application of OI-GWR to the daily or hourly scale.
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Abstract: The derivation of global navigation satellite systems (GNSSs) tropospheric products is
nowadays a state-of-the-art technique that serves both research and operational needs in a broad range
of applications in meteorology. In particular, GNSS zenith tropospheric delay (ZTD) data assimilation
is widely applied in Europe to enhance numerical weather predictions (NWPs). The current study
presents the first attempt at introducing assimilation of ZTDs, derived from more than 48 stations
of the Hellenic GNSS network, into the operational NWP system of the National Observatory of
Athens (NOA) in Greece, which is based on the mesoscale Weather Research and Forecasting (WRF)
model. WRF was applied during seven high-impact precipitation events covering the dry and wet
season of 2018. The simulation employing the ZTD data assimilation reproduces more accurately,
compared to the control experiment, the observed heavy rainfall (especially for high precipitation
events, exceeding 20 mm in 24h) during both dry and wet periods. Assimilating ZTDs also improves
the simulation of intense (>20 mm) convective precipitation during the time window of its occurrence
in the dry season, and provides a beneficial influence during synoptic-scale events in the wet period.
The above results, which are statistically significant, highlight an important positive impact of ZTD
assimilation on the model’s precipitation forecast skill over Greece. Overall, the modelling system’s
configuration, including the assimilation of ZTD observations, satisfactorily captures the spatial and
temporal distribution of the observed rainfall and can therefore be used as the basis for examining
further improvements in the future.

Keywords: data assimilation; WRF model; high-impact rainfall events; GNSS ZTD; assessment

1. Introduction

The use of global navigation satellite systems (GNSSs) is essential in a variety of fields that require
precise location and time information, including aviation (e.g., Sabatini et al. [1]), transportation (e.g,
Kubo et al. [2]), search and rescue services (e.g, Molina et al. [3]), agriculture (e.g., Kahveci et al. [4]),
and maritime operations (e.g., Ostolaza et al. [5]). Additionally, remote sensing of atmospheric
constituents with the exploitation of GNSS signals is nowadays a well-established and widely applied
approach, which is referred to as GNSS meteorology [6]. The methodology is based on the fact
that the radio signals transmitted from the satellites to the receivers on the ground are delayed
when propagating through the troposphere due to the presence of dry gases and water vapor [7].
Advanced GNSS processing techniques produce various tropospheric products that are used in several
meteorological applications, including nowcasting and numerical weather prediction (NWP) [8–11],
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as well as weather monitoring, including extreme events [12–14]. Special meteorological interest derives
from the near-real time (NRT) ZTDs, which are estimated based on raw GNSS observations. The ZTD is
a standard GNSS product expressing the total signal delay in the zenith direction above a receiver [6,15].
This vertical lag contains information on the total columnar amount of water vapor [16].

In Europe, collaborative scientific efforts over the past two decades substantially contributed to
the development of networks and analysis centers collecting and processing, respectively, GNSS data to
compute tropospheric delays. The establishment of the European GNSS water vapor program
(E-GVAP; [17]) in 2005 allowed for the operational distribution of NRT ZTD estimates to the
meteorological community [6]. This service encouraged the implementation of precipitation forecast
impact studies involving the assimilation of NRT ZTD observations into NWP models. Poli et al. [18]
found an improvement in the prediction of precipitation patterns over France during spring and
summer when assimilating ZTD data into a global four-dimensional variational (4D-var) assimilation
and forecasting system. Positive impacts of ZTD data assimilation on precipitation forecasts of
convective-scale systems over France were also demonstrated by Yan et al. [19,20], using the
three-dimensional variational (3D-var) assimilation systems of AROME, ALADIN, and Meso-NH
(Mesoscale Non-Hydrostatic) atmospheric models. Eresmaa et al. [21] positively evaluated the
application of a bias correction algorithm in the ZTD observations prior to assimilating them into the
3D-var/HIRLAM (HIgh Resolution Limited Area Model) modeling system. In addition, their study
showed mixed results (positive/negative) concerning the impact of ZTD assimilation on the predicted
precipitation, which were dependent on the forecast lead-time. Similarly, Bennitt and Jupp [22],
and Schwitalla et al. [23], who performed numerical experiments over Europe with the United
Kingdom (UK) Meteorological Office 3D and 4D-var model, and the 3D-var/WRF model, respectively,
found no clear impact of ZTD assimilation on precipitation forecasts. Bennitt and Jupp [22] further
showed that 4D-var assimilation does not lead to better forecasts compared to the assimilation under
the 3D-var system. Boniface et al. [24] identified that the impact of ZTD assimilation in AROME
model depends on the rainfall synoptic conditions, while Arriola et al. [16] highlighted the importance
of ZTD observations processing before the assimilation application. More recent studies focused
on investigating different observational bias correction methods and on estimating spatiotemporal
correlations of observations errors for application on ZTD data used for data assimilation [25–27].

The literature review shows that improvements in the precipitation forecast skill may be gained
by assimilating ZTD observations into NWP models. However, regional studies using the WRF
modeling system are relatively rare (e.g., Rohm et al. [28]), while no research focusing on Greece has
ever been conducted. The present study aims to fill this knowledge gap by examining the impact of
GNSS ZTD data assimilation on the precipitation forecast skill of the 3D-var/WRF model. For that
reason, four dry and three wet period heavy precipitation events, observed in 2018 over Greece,
were selected to examine the model’s performance under different meteorological conditions. Prior to
assimilation, an integrated method was employed to process the ZTD observations in order to review
their quality, correct their systematic errors with respect to the model, and finally, to use those that
fulfilled specific selection criteria. The results of the numerical experiments are compared against
precipitation observations obtained from the network of surface meteorological stations operated by
NOA [29]. The applied model configuration is based on NOA’s operational weather forecasting system
in order to assess the GNSS ZTD data assimilation capacity in terms of supporting real-time weather
prediction applications.

2. Materials and Methods

2.1. Case Studies

The annual distribution of precipitation over Greece is characterized by significant spatial and
temporal variations. Following seasonal variability, a hydrological year in Greece can be divided
into a dry (summer) and wet (autumn, winter and spring) period with much greater precipitation
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amounts and resulting impacts occurring during the latter [30,31]. Rainfall during the dry period
of the year is primarily attributed to atmospheric instability, leading to convective storms [32,33].
Precipitation in autumn and winter is mainly related to intense cyclone activity [34,35], but also to less
intense cyclones with relatively long lasting embedded meso-scale convective systems that interact
with the complex topography [36]. Considering the spatiotemporal precipitation pattern described
above, four dry and three wet period rainfall events observed in 2018 were selected for the purposes of
the current study. The precipitation intensity was also taken into account by selecting high-impact
episodes, as summarized in Table 1.

Table 1. Synopsis of the 2018 selected case studies and their associated driving meteorological
mechanisms and impacts.

Period Case Study
Driving Meteorological

Mechanism
Maximum Total

Rainfall
Impacts

Dry May 10

Unstable atmospheric
conditions resulting in

strong convective
activity

74 mm in 1 h over
Thessaloniki

Flash flooding; houses,
monuments, electricity

supply and transportation
were affected

June 16

Unstable atmospheric
conditions resulting in

strong convective
activity

~ 65 mm in 1 h over
Skopelos island

Major damages in housing,
crops, rural roads and

electricity supply

July 26

Unstable atmospheric
conditions resulting in

strong convective
activity

> 100 mm in less than 2 h
over northern suburbs of

Athens

Flash flooding; houses,
vehicles and

transportation were
affected

August 27–28

Unstable atmospheric
conditions resulting in

strong convective
activity.

> 150 mm in 24 h over
northern Greece and >

90 mm in 24 h over
central Greece and Crete

Flash flooding; houses,
telecommunications,

electricity supply and
transportation were

affected

Wet September 29–30

Low-pressure system
with tropical

characteristics
(Medicane; [37,38])

~ 500 mm in 48 h over
Phiotis region

Floods and landslides; four
dead people; extensive

damages in buildings and
public infrastructures

November 18 Low-pressure system 133 mm in 24 h over
northern Greece

Flash flooding; crops and
road network were

affected

November 26–27 Low-pressure system 161 mm in 48 h over
northwest Greece

Floods and landslides;
housing, public

infrastructures and road
network were affected

2.2. The WRF NWP System

The modeling system used in the current work is WRF-ARW (advanced research WRF), version
4.0.2 [39], which is the core of the integrated HERMES modeling system that operates daily at NOA to
support operational weather forecasting and natural disaster early warnings [40,41].

The WRF setup was based on two 2-way nested modeling domains, as shown in Figure 1a.
The coarse domain (d01) was used to simulate the synoptic-scale atmospheric conditions with a spatial
resolution of 10 km (mesh size of 500 × 500), while the innermost domain (d02) focused on the study
area (Greece,) having a horizontal grid resolution of 2 km (mesh size of 551× 551). The vertical structure
of both domains included 41 unevenly spaced hybrid sigma-pressure layers up to 50 hPa. Initial and
boundary conditions were obtained from the Global Forecast System (GFS) operational surface and
upper air atmospheric analysis data at 0.25 × 0.25 spatial and 6 h temporal resolution, provided by the
National Center for Environmental Prediction (NCEP). The selected physics parameterizations are
presented in Table 2.
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Figure 1. (a) The applied WRF domains’ configuration and (b) study domain (d02) with the locations
of the GNSS stations (blue dots; the red dot highlights the AUT1 station used for examining the NRT
ZTDs’ accuracy) and ground-based meteorological sites (yellow dots) utilized for the November 27
precipitation event, and with identification of regions where high rainfall amounts were observed
during the examined episodes.

Table 2. Summary of the applied WRF model physics.

Physics Parameterization References

Microphysics Thompson Thompson et al. [42]

Convection 1 Kain-Fritsch Kain [43]

Planetary boundary layer Yonsei University Hong et al. [44]

Surface layer Revised MM5 Jiménez et al. [45]

Land surface Noah Tewari et al. [46]

Short- and long-wave radiation RRTMG Iacono et al. [47]
1 Convection parameterization was used only for domain d01.

2.2.1. Data Assimilation Scheme

The WRF data assimilation package provides various assimilation techniques, ranging from
empirical (e.g., nudging) and statistical (e.g., variational analysis) approaches, to advanced methods
(e.g., ensemble Kalman filter). In the variational scheme, the best possible estimate of the model’s initial
state (analysis) is determined by the minimization of a prescribed cost function, J(x), that combines
a background forecast (first-guess), observations and estimates of both modeling and observational error
covariances. 3D and 4D-var options are available in WRF [48,49]. The main difference between the two
implementations is that the observations in 4D-var/WRF model are integrated within an assimilation
window at the exact time of the observations. Consequently, greater computing resources compared to
3D-var assimilation are necessary [50]. Taking the possible application of GNSS ZTD data assimilation
in NOA’s operational forecasting system into account, without significantly altering the timeliness of
forecast delivery, the 3D-var option was employed in the present work.

According to Barker et al. [48], the cost function in WRF 3D-var operation can be written as:

J(x) =
1
2
(x− xb)

TB−1(x− xb) +
1
2
(H(x) − yo)TR−1(H(x) − yo)
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expressing the weighted distance of analysis, x, to first-guess, xb, and observations, yo. The contributions
of xb and yo to x are determined by the model background errors covariance matrix, B, and the
observations errors covariance matrix, R, respectively. The observations operator H is used to
transform the model’s analysis to observational space. The WRF first guess can be either the initial
analysis computed based on global fields (cold start) or a previous model forecast (cycling). In the
last-mentioned case, the observations are used to improve the current model state, ultimately resulting
in better analysis and prediction. The 3D-var/WRF system supports the assimilation of in-situ
conventional measurements, remotely sensed observations, and satellite radiances. Ground-based
GNSS ZTD data are included in the remote sensing observations category and they are handled by the
GPSPW operator [28,39].

The success of the 3D-var assimilation depends heavily on the accuracy with which the observations
and model background errors are specified. The R matrix is determined by instrument and
representation errors. The latter includes errors introduced by the observations pre-processing
and operator, as well as by the effect of unresolved scales in the model [51]. The observations
preprocessor (OBSPROC) in the 3D-var/WRF system defines the R matrix, based on pre-specified
observations errors. These error values had to be determined by the user for the case of GNSS ZTD
data. No correlation in space and time between the individual observation errors is assumed by the
OBSPROC package [39]. In the current study, the GNSS ZTD formal errors, derived during the GNSS
raw observations processing, were used in the 3D-var/WRF application. These errors are related to
uncertainties induced by satellite orbits, antennas, signals multipath, ionospheric delays, and the
applied mapping function. Hence, they are a measure of the ZTD estimation uncertainty that considers
both measurement and processing errors. The B matrix is considered static and its specification is
based on “climatological” estimates, assuming that the model background errors correlations are
homogeneous and isotropic. Its computation involves the application of the National Meteorological
Center (NMC) method [52], in which the covariances for a set of five independent control variables are
derived for a given domain by averaging the forecast differences between the 24 and 12 h prediction
lead time over a period of time [39,48]. In the present work, the B matrix was calculated for each rainfall
event, considering that the model background fields are different for each case study. In particular,
the B matrix was calculated based on a series of WRF simulations of 24 h duration for the domain of
interest (d02), which were initialized twice daily at 0000 UTC and 1200 UTC and covered a 10 day
period, starting thus 10 days before each episode occurrence. Similar approaches for computing the B
matrix have also been applied in previous studies [28,53].

2.2.2. Numerical Experiments

Figure 2 illustrates the flow diagrams of the numerical experiments implemented in the current
study. Two simulations were performed for each day of the examined events. The first one was carried
out without assimilation and refers to the control (CTL) experiment. The second simulation refers to
the GNSS ZTD observations assimilation (ZTD) experiment, in which the 3D-var/WRF system under
cycling mode was employed. The criterion for selecting the time of ZTD data assimilation for the
dry period events was mainly based on the approximate time of the actual start of the convective
precipitation and it was set 6 h prior to this time. Thus, data assimilation was applied at 0600 UTC for
the May and July cases (Figure 2b), and at 0000 UTC for the June and August cases. For the wet season
episodes, the 0000 UTC was chosen as the assimilation hour because the surface low-pressure systems
were well developed at that time (Figure 1a).
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Figure 2. Flow diagrams illustrating the performed WRF simulations without and with ZTD data
assimilation for (a) 24 h and (b) 18 h forecast and verification periods.

2.3. ZTD Observations

GNSS applications in meteorology require careful characterization and assessment of tropospheric
products derived from ground-based GNSS receivers. This is one of the key specialization areas
for the GNSS Quality Control (GNSS-QC) team of the Aristotle University of Thessaloniki (AUTh),
which processes and monitors a network of permanent GNSS stations located in Greece. The network
consists of over 90 GNSS reference stations deployed by both public and private organizations. Four out
of the 90 GNSS stations are included in the EUREF (European reference frame; [54]) permanent network
(EPN). The GNSS-QC group has contributed to the E-GVAP project since 2014, providing NRT ZTD
estimates to the European NWP centers [55–57].

In the current study, hourly ZTD observations, at 0000 UTC and 0600 UTC, of the AUTh GNSS-QC
network were used for the WRF data assimilation experiments. The data collection and analysis
were carried out for 2018 in the framework of BERTISS (Balkan-Mediterranean Real Time Severe
Weather Service) project. An automated NRT processing scheme was employed using the Bernese
software package, version 5.2 [58], and several coding scripts and algorithms for computations,
data management, quality control, and database upload [15,59].

Since the observations accuracy and their associated errors is crucial in improving the model
analysis, the quality control of the GNSS ZTD estimates and the appropriate treatment of ZTD formal
errors within the 3D-var/WRF system are necessary. For this, a thorough observations pre-processing
was applied in the present work to prepare the ZTD data for the assimilation process.

Data Pre-Processing

The accuracy of the NRT ZTDs, derived from the AUTh GNSS network, was examined by
comparing the data against high-quality reference ZTD data provided by EPN. Based on the availability
of the EPN weekly combined ZTD solutions, the validation was performed over the AUT1 station
(Figure 1b) using concurrent data of the 2018 dataset. Following previous studies [60–62], the accuracy
of the ZTD observations was defined as the standard deviation of the difference between the AUT1 and
EPN ZTDs. The analysis resulted in an accuracy of 7.6 mm, which is between the optimal (5 mm) and
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target (10 mm) accuracy value according to the E-GVAP standards for NRT ZTDs used in the NWP
models [63]. This outcome was a strong indication that the accuracy of the AUTh GNSS ZTD data was
sufficient to assimilate them into the WRF modeling system.

Further, the observations in the 3D-var system are considered to have unbiased errors with respect
to the WRF model. To meet this assumption, a statistical bias correction was applied to the ZTD data
for each studied precipitation episode. More specifically, the differences between the observed and
modeled ZTDs were computed for each GNSS receiver during a 10 day period prior to each event using
the WRF simulations conducted for the model background errors covariance matrix specification (see
Section 2.2.1). Then, the corrections were estimated as the mean values of the ZTD differences and they
were subtracted from the ZTD observations that were lined up for data assimilation. Even though this
method provides statistical corrections, this is a standard bias correction approach for ZTD data that
proved to be successful in reducing the observations-model divergences and capturing the systematic
errors between the ZTD observations and model forecasts [16,18–25,28]. The last stage of the ZTD data
pre-processing included a selection algorithm based on the following conditions: (a) The formal ZTD
error to be lower than the standard deviation of the difference between the observed and modeled
ZTD, (b) the ZTD difference between observations and model output to be lower than five times the
ZTD formal error, and (c) the difference between the receiver height and the model’s orography to be
below 100 m. Similar criteria have been applied in previous studies [19–25]. Based on data availability
and the above selection algorithm, the number of GNSS reference stations used per event ranged from
48 to 56. The assimilated ZTD observations had the same range, since assimilation was performed once
(at 0000 UTC or 0600 UTC) during the conducted experiments. The locations of the 55 stations used for
the event of 27 November 2019 are shown in Figure 1b, demonstrating a sufficient and homogeneous
spatial coverage of the Greek territory.

2.4. Evaluation Process

Hourly precipitation measurements covering the entire study area were used to evaluate the
model performance under both the CTL and ZTD numerical experiments. The data were collected
from a dense network of weather stations operated by NOA [29]. In terms of data availability, different
rain gauges were used for each case study. In total, 340 to 360 rain gauges were utilized for each
rainfall event (Figure 1b). The observed and modeled precipitation data were paired in time and
space, considering the nine nearest to the location of each rain gauge model grid points. The grid
point having the closest predicted value to the observed one was selected for evaluation in order
to avoid penalizing the model performance due to possible small spatial displacements of rainfall.
The evaluation was performed for the 24 h and 6 h accumulated precipitation at 0000 UTC, 0600 UTC,
1200 UTC, and 1800 UTC.

Using the observation-model pairs, qualitative statistical measures were computed on the basis
of a dichotomous application system (occurrence/no occurrence of precipitation) for six distinct rain
thresholds: above 0.2, 1, 2, 5, 10, and 20 mm. The computed scores included the probability of detection
(POD), the false alarm ratio (FAR), the equitable threat score (ETS), and the frequency bias (FBIAS).
POD shows the fraction of observed events that were correctly modeled and ranges from zero (0:
wrong forecast) to one (1: perfect forecast). FAR is the fraction of forecast events that were not observed
and spans from zero (0: perfect forecast) to one (1: wrong forecast). ETS measures the skill of a model
prediction considering the chance of randomly correct forecasts. ETS values close to unity (1) indicate
a high-accuracy forecast, whereas ETS values that are close to zero (0), or even negative, shows a poor
or random forecast quality. FBIAS is the ratio between the frequencies of forecasted and observed
events and indicates whether a model tends to underestimate (FBIAS < 1) or overestimate (FBIAS > 1)
the frequency of the occurrence of the observed events. To determine the statistical significance of
the qualitative score differences between the conducted experiments, a hypothesis test approach was
applied, using two confidence intervals: (i) 90% and (ii) 95%. The test was based on the construction of
a probability density function that was consistent with the assumption that there was no difference
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between the qualitative statistical measures computed using the CTL simulations and those calculated
based on the ZTD simulations. A brief description of the implemented method can be found in
Giannaros et al. [64]. Quantitative statistical measures were also calculated, namely the mean bias
(MB) and mean absolute error (MAE), for each precipitation threshold in order to account for the
magnitude of errors. MB is used as a measure of the model tendency of rain underestimation (MB > 0)
or overestimation (MB < 0), while MAE represents the absolute deviation between the observational
and modeled precipitation. Following Giannaros et al. [64], the statistical significance of the MAE
differences between the CTL and ZTD experiments was computed by applying the non-parametric
Wilcoxon signed-rank test at the 90% and 95% confidence intervals. In addition to the statistical
evaluation, the modeled differences concerning the rainfall distribution were thoroughly investigated
for two events representing different synoptic conditions.

3. Results

3.1. Statistical Evaluation

3.1.1. Daily Precipitation

Figure 3 presents the categorical scores for each 24 h accumulated precipitation threshold,
aggregated for the dry and wet season rainfall events for the CTL and ZTD numerical experiments.
Overall, the model performs adequately in capturing the occurrence (non-occurrence) of precipitation,
as indicated by the POD (FAR), which is higher (lower) than 0.57 (0.38) and 0.67 (0.26) for all thresholds
during the dry (Figure 3a) and wet (Figure 3b) period, respectively. The ETS values show a satisfying
precipitation forecast quality, especially for the wet season (Figure 3b), when they range from 0.53 to
0.88. During both periods, the FBIAS values demonstrate that the model underestimates the observed
frequency of higher than 20 mm daily precipitation, whereas it slightly overestimates the frequency of
the observed daily rainfall for the lower than 20 mm thresholds, except those that are greater than
2 mm (5 mm and 10 mm) during the CTL experiment in the wet (dry) season (Figure 3).

Assimilating ZTD observations into the 3D-var/WRF model leads to increased probability of
precipitation detection during the dry period (Figure 3a) across all rainfall thresholds. Especially for
the highest precipitation threshold (>20 mm), the ZTD assimilation induced relative improvement is
10.6% (statistically significant at the 95% confidence interval; Figure 3a). Concerning FBIAS, the ZTD
experiment leads to larger frequency biases compared to the CTL simulation, when precipitation is
lower than 20 mm in the dry period, reaching 10.3% relative difference for the above 10 mm rainfall
threshold (statistically significant at the 90% confidence interval; Figure 3a). FAR in the dry period
is also higher for the same threshold (>10 mm) during the ZTD experiment, whereas a decrease in
FAR is evident for greater than 20 mm 24 h precipitation when ZTD assimilation is applied (Figure 3a).
No marked differences between the CTL and ZTD experiments are evident during the dry season for
ETS, except from the considerable improvement by 11.4% (statistically significant at the 90% confidence
interval) provided by the ZTD assimilation for the highest precipitation threshold (Figure 3a). For the
same threshold, the ZTD experiment also leads to statistically significant improvements for all statistical
measures, except FBIAS during the wet season (Figure 3b). In particular, POD and ETS are increased
by 3.5% and 8.1% at the 95% confidence level, while FAR is reduced by 16.9% at the 90% confidence
interval (Figure 3b).
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Figure 3. Qualitative model performance statistics averaged for the (a) dry and (b) wet period
events for daily precipitation under six rainfall thresholds during the CTL and ZTD numerical
experiments. Percentages indicate the relative difference of the statistical measures between the
conducted experiments (one asterisk shows statistical significance at the 90% confidence interval,
while two asterisks show statistical significance at the 95% confidence interval).

In terms of quantitative statistics, the model overestimates, to a small extent, the 24 h accumulated
precipitation values that are lower than 10 mm (20 mm) during the dry (wet) period, whereas it
significantly underestimates the high rainfall accumulations for both dry and wet season events
(Figure 4). More specifically, the CTL and ZTD mean absolute errors exceed 15 mm for the larger
precipitation threshold, showing that both numerical experiments cannot capture the magnitude of
severe rainfall (Figure 4). A similar extent of errors for intense precipitation thresholds have also been
found in previous studies (e.g., see References [53,65,66]), showing that quantitative precipitation
forecasting (QPF) remains a challenge for regional NWP systems due to uncertainties associated
with physics parameterizations, primarily microphysics and convection, domain configuration (e.g.,
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resolution and size), and initial conditions [67,68]. The improvement of a model’s initial state through
data assimilation results in more accurate QPF. This is evident in the present study, as the ZTD
simulations reduce the deviations from the observations in the precipitation interval [20,...) mm by
~1.10 mm during both dry and wet periods (Figure 4). In the latter season, this reduction corresponds to
a 5.5% (statistically significant at the 95% confidence interval) relative improvement in MAE (Figure 4b).
For the rest of the rainfall thresholds, lower (higher) ZTD MAEs can be seen between 2 (0 mm) and
20 mm (2 mm) of precipitation during the wet (dry) period (Figure 4).

Figure 4. Quantitative model performance statistics averaged for the (a) dry and (b) wet period events
for daily precipitation under six rainfall intervals during the CTL and ZTD numerical experiments.
Percentages indicate the relative difference of the statistical measures between the conducted experiments
(one asterisk shows statistical significance at the 90% confidence interval, while two asterisks show
statistical significance at the 95% confidence interval).
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3.1.2. 6 h Accumulated Precipitation

Further, the 6 h accumulated precipitation forecasts have been also verified in order to assess the
impact of the ZTD data assimilation depending on the forecast lead time (Figures 5–10). The statistical
measures for the dry season were computed for the period between 0600 UTC and 1800 UTC. The periods
from 0000-0600 UTC and 1800-0000 UTC were discarded from the analysis because less precipitation
was observed and fewer observation-model pairs were available compared to the 0600–1800 UTC
time window. Figures 5 and 6 illustrate that the ZTD assimilation leads to a marked improvement
of the precipitation forecasting in the dry season by increasing the probability of detection and the
prediction quality. The improvement is more profound during the afternoon hours (12000–18000 UTC),
when statistically significant increases at the 95% confidence level are evident for POD and ETS,
which reach 27.8% for higher than 10 mm threshold and 21.4% for higher than 5 mm threshold,
respectively (Figure 5b). In the same 6 h interval, the ZTD experiment results in higher FBIAS values,
which are greater than 1 when rainfall is lower than 20 mm. This finding partially explains the overall
overestimation of the observed events frequency found for the below 20 mm 24 h precipitation in
the dry period (Figure 3a). FAR is mainly decreased during the ZTD experiment between 0600 and
1800 UTC in the dry period, especially for the higher rainfall threshold (Figure 5). This is also true
for MAE, as shown in Figure 6. In particular, statistically significant reductions of 13% (19.9%) at
the 95% (90%) confidence level are introduced by the ZTD simulation for precipitation above 20 mm
(between 5 and 10 mm) from 1200–1800 (0600–1200) UTC (Figure 6). Figure 6 also illustrates that,
when considering the lowest three rainfall thresholds (<5 mm), the WRF model mainly overestimates
the observed precipitation, whereas it underestimates the higher than 5 mm observed rainfall during
the examined forecast lead times. From 1200-1800 UTC, the model overestimation between 1 and 2 mm
of precipitation is higher by 57.4% (statistically significant at the 90% confidence interval) during the
ZTD simulation (Figure 6). The forecast errors for the rainfall thresholds up to 10 mm are smaller than
~9 mm for all 6 h intervals, while in contrast, they are greater than 19 mm for the highest precipitation
threshold (Figure 6).
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Figure 5. Qualitative model performance statistics averaged for the dry period events for precipitation
accumulations between (a) 0600–1200 UTC and (b) 1200–1800 UTC under six rainfall thresholds during
the CTL and ZTD numerical experiments. Percentages indicate the relative difference of the statistical
measures between the conducted experiments (one asterisk shows statistical significance at the 90%
confidence interval, while two asterisks show statistical significance at the 95% confidence interval).
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Figure 6. Quantitative model performance statistics averaged for the dry period events for precipitation
accumulations between (a) 0600-1200 UTC and (b) 1200-1800 UTC under six rainfall thresholds during
the CTL and ZTD numerical experiments. Percentages indicate the relative difference of the statistical
measures between the conducted experiments (one asterisk shows statistical significance at the 90%
confidence interval, while two asterisks show statistical significance at the 95% confidence interval).
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Figure 7. Qualitative model performance statistics averaged for the wet period events for precipitation
accumulations between (a) 0000–0600 UTC and (b) 0600–1200 UTC under six rainfall thresholds during
the CTL and ZTD numerical experiments. Percentages indicate the relative difference of the statistical
measures between the conducted experiments (one asterisk shows statistical significance at the 90%
confidence interval, while two asterisks show statistical significance at the 95% confidence interval).
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Figure 8. Qualitative model performance statistics averaged for the wet period events for precipitation
accumulations between (a) 1200–1800 UTC and (b) 1800–0000 UTC under six rainfall thresholds during
the CTL and ZTD numerical experiments. Percentages indicate the relative difference of the statistical
measures between the conducted experiments (one asterisk shows statistical significance at the 90%
confidence interval, while two asterisks show statistical significance at the 95% confidence interval).
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Figure 9. Quantitative model performance statistics averaged for the wet period events for precipitation
accumulations between (a) 0000–0600 UTC and (b) 0600–1200 UTC under six rainfall thresholds during
the CTL and ZTD numerical experiments. Percentages indicate the relative difference of the statistical
measures between the conducted experiments (one asterisk shows statistical significance at the 90%
confidence interval, while two asterisks show statistical significance at the 95% confidence interval).
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Figure 10. Quantitative model performance statistics averaged for the wet period events for precipitation
accumulations between (a) 1200–1800 UTC and (b) 1800–0000 UTC under six rainfall thresholds during
the CTL and ZTD numerical experiments. Percentages indicate the relative difference of the statistical
measures between the conducted experiments (one asterisk shows statistical significance at the 90%
confidence interval, while two asterisks show statistical significance at the 95% confidence interval).

During the wet season (Figures 7–10), the positive impact of ZTD assimilation on the 6 h
accumulated precipitation, especially when exceeding 20 mm, is clearly shown. More specifically,
during the first 6 h of the numerical forecasts, the FAR is decreased by 3.2% (statistically significant
at the 95% confidence interval) for the highest rainfall threshold when ZTD data are assimilated in
the WRF model (Figure 7a). For the same period and threshold, FBIAS is closer to 1 during the ZTD
experiment, whereas no significant divergences between the conducted simulations are found for POD
and ETS (Figure 7a). Marked differences are also not evident between 0600 UTC and 1200 UTC for all
qualitative statistical measures and precipitation thresholds, except for POD, which is higher by 2.3%
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(statistically significant at the 95% confidence interval) during the ZTD experiment, when rainfall is
above 5 mm (Figure 5b). From 1200-000 UTC, the POD and ETS scores are higher for the ZTD compared
to the CTL experiment for the majority of the precipitation thresholds. Especially for the greater rainfall
threshold, the improvement provided by the ZTD assimilation in POD and ETS is 10% in the intervals
1200-1800 UTC and 1800-0000 UTC, respectively (Figure 8). Additionally, a statistically significant (95%
confidence level) reduction of ETS by 11% is evident during the ZTD simulation for the higher than
10 mm precipitation threshold between 1200 UTC and 1800 UTC (Figure 8a). Concerning the categorical
statistical measures, the ZTD assimilation results in the increase of the MAE by ~1 mm (~12%) for the
highest rainfall threshold from 0000–0600 UTC (Figure 9a). Statistically significant reductions by 5.4%
(90% confidence level) and 8.5% (95% confidence level) provided by the ZTD experiment are found
for the precipitation intervals [2,5) and [10,20) from 0000–0600 UTC and 0600–1200 UTC, respectively
(Figure 9). MAE is also decreased by 8.4% (statistically significant at the 95% confidence interval)
during the ZTD simulation when rainfall is greater than 20 mm in the 6 h forecast from 1200–1800 UTC
(Figure 10a). For most of the lower than 20 mm precipitation thresholds, the ZTD simulation between
1200 and 0000 UTC provides improvement. The MB values show that the WRF model overestimates
the three lowest rainfall thresholds, with error magnitudes lower than ~4 mm for all 6 h intervals.
In contrast, the precipitation amounts that are higher than 5 mm are underestimated by the model and
the extent of under-prediction increases with the forecast lead time (Figures 9 and 10).

3.2. Analysis of Selected Case Studies

3.2.1. 10 May 2018

Figure 11a–b illustrate the atmospheric conditions at 0600 UTC, as simulated by the CTL experiment.
As seen in the 500 hPa geopotential height and wind (Figure 11a), Greece is affected by a cyclonic
atmospheric circulation in the middle troposphere, with a cut-off low over Western and central Greece.
The cold air pool aloft is accompanied by a surface low over the central part of the country (Figure 11b).
These synoptic conditions typically occur during late spring in Greece, producing strong atmospheric
instability, which in turn results in intense convective activity. Figure A1 shows that, when ZTD
data are assimilated into the WRF model, the modeled circulation pattern is the same as in the CTL
experiment (Figure 11a–b). However, a discrete displacement of the 500 hPa geopotential height and
sea level pressure gradients is evident, demonstrating the modification of the initial conditions by the
ZTD assimilation at the time of the ZTD experiment initialization (0600 UTC). Since ZTD is related to
precipitable water (PW), the initial conditions alteration at 0600 UTC is also evident for the modeled
PW, as shown in Figure 11c. The initial PW differences between the conducted experiments emerge in
locations where GNSS stations are situated (Figures 11c and 1b).
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Figure 11. (a) WRF CTL simulated 500 hPa geopotential height (shading and contours) and wind barbs,
(b) sea level pressure (contours) and 850 hPa equivalent potential temperature (shading) and wind
barbs, and (c) PW differences between the CTL and ZTD experiments on 10 May 2018 at 0600 UTC.

The modification of the initial conditions of the ZTD experiment, due to the ZTD data assimilation,
leads to differences in precipitation forecasts, as illustrated in Figure 12. In particular, the ZTD
simulation (Figure 12c) improves the reproduction of the observed daily precipitation (Figure 12a)
intensity and spatial distribution over the two high-rainfall regions, namely Thessaloniki and Magnesia.
As presented in Figure 12d, with the black circles, higher precipitation amounts are simulated by
the ZTD experiment over the city of Thessaloniki, as well as over the Western and Northern parts
of the region. The ZTD assimilation also leads to greater (lower) daily rainfall values that are closer
to the observations over the Northern (Southern) part of the Magnesia region (highlighted by the
black circle in Figure 12d). Moreover, the assimilation of ZTD data into the WRF model results in
the reduction of the significant precipitation overestimation produced by the CTL simulation over
Northeast Thrace (Figure 12d). However, the ZTD experiment simulates considerably higher daily
precipitation accumulations compared to the observations and CTL experiment over some regions,
such as those highlighted by red circles in Figure 12d (e.g., central Greece). Overall, the model performs
adequately in capturing the observed rainfall distribution over Greece, except the Zakynthos and
Athens regions (orange circles in Figure 12b–c), where both CTL and ZTD simulations fail to reproduce
the precipitation amounts, even though it is worth mentioning that the ZTD experiment reduces the
geographical extent of the false forecast over the Athens area. The improvement in the reproduction
of the observed rainfall when ZTD data are assimilated into the WRF model is also evident in the
diurnal precipitation cycle analysis. As indicatively shown in Figure A2, most of the daily rain over
the Thessaloniki region was observed between 0600 UTC and 1200 UTC, with the ZTD experiment

369



Remote Sens. 2020, 12, 383

simulating notably higher precipitation amounts (Figure A2d), which is in better agreement with the
observations (Figure A2a).

Figure 12. Daily (18 h) precipitation from (a) observations, (b) CTL and (c) ZTD simulation, and (d)
differences between the two experiments for the 10 May 2018 event.

3.2.2. 18 November 2018

During the selected wet period event, Greece was affected by a deep surface low-pressure system.
As shown in the sea-level pressure and 850 hPa equivalent potential temperature and wind fields
(Figure 13b), the surface low is located over the Southwest Ionian Sea at 0000 UTC on 18 November,
resulting in very strong Southerly winds. During the next hours, as the surface low is moving Northeast,
the Southwesterly flow advects warm and moist air over Greece (Figure A3a–b). As in the case of the
dry season event (see Section 3.2.1), both CTL and ZTD experiments simulate the same atmospheric
conditions with slight differences in the 500 hPa geopotential height and sea level pressure gradients
(Figure A4) at the ZTD experiment initialization time (0000 UTC). Again, the impact introduced by
the ZTD data assimilation is clearly evident in the initial PW field at 0000 UTC (Figure 13c). The PW
differences at 0000 UTC between the two experiments arise again over locations where GNSS stations
are found (Figure 1b), but a more complicated pattern is evident in this case study.
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Figure 13. (a) WRF CTL simulated 500 hPa geopotential height (shading and contours) and wind
barbs, (b) sea level pressure (contours) and 850 hPa equivalent potential temperature (shading) and
wind barbs, and (c) PW differences between the CTL and ZTD experiments on 18 November 2018 at
0000 UTC.

Similarly, the 24 h modeled precipitation differences between the CTL and ZTD simulations arising
from the modification of the initial conditions of the ZTD experiment due to the ZTD assimilation are
more complex and widespread during this event (Figure 14d). The most noticeable differences are found
over Western Greece, where the highest rainfall amounts were observed (Figure 14a). In particular,
as shown in Figure 14d with black circles, the ZTD experiment produces lower (higher) precipitation
over Kefalonia Island, the Aitolokarnania region, and central Peloponnese (the center of Zakynthos
island, and Southwest and Southeast Peloponnese) compared to the CTL simulation, more accurately
representing the observed rainfall. A more accurate reproduction of the precipitation observations by
the ZTD experiment is also evident in Northwest Peloponnese, while in contrast, the ZTD assimilation
leads to a more pronounced overestimation of the observed rainfall over central–North Peloponnese
and Kythera Island, as indicated by the red circles in Figure 14d. Mixed results are found over the
Epirus region, where the ZTD (CTL) experiment forecasts a rainfall pattern that is closer to the observed
one in the central and Northern (Southern) part of the area. Overall, the model lacks the ability to
capture the magnitude of observations, especially for intense precipitation, as shown by the notable
underestimation (overestimation) of the observed rainfall over the area denoted by the orange circle
in Chalkidiki (Magnesia) region in Figure 14b–c. However, the spatial distribution of the observed
precipitation is well captured by both CTL and ZTD simulations. The above findings are also evident
when examining the diurnal precipitation cycle in 6 h intervals and highlight the good performance of
the WRF model in reproducing the temporal distribution of the observed rainfall, especially during

371



Remote Sens. 2020, 12, 383

the ZTD experiment. Indicatively, both simulations (Figure A5b–c) adequately replicate the observed
spatial pattern of the precipitation between 0600 and 1200 UTC (Figure A5a), with the ZTD experiment
improving the rainfall amounts forecasts over North Epirus, Aitolokarnania and Peloponnese regions,
and Kefalonia and Zakynthos Islands (Figure A5d).

Figure 14. Daily (24 h) precipitation from (a) observations, (b) CTL and (c) ZTD simulation, and (d)
differences between the two experiments for the 18 November 2018 event.

4. Discussion

The results presented above demonstrate a beneficial impact of ZTD assimilation on the daily
precipitation forecasts over Greece during both dry and wet periods (Figures 3 and 4). This impact
is more profound for heavy precipitation (>20 mm), for which statistically significant (at least at the
90% confidence level) improvements are provided by the ZTD assimilation concerning the probability
of detection, the false alarm ratio, the quality of forecasts (ETS), and the magnitude of errors (MAE).
This finding is of great importance as higher rainfall amounts are associated with more severe impacts,
especially over the Mediterranean regions [20]. In general, the positive impacts of ZTD assimilation are
more evident during the dry period. However, notable and statistically significant enhancements in the
WRF model’s performance are also found during the ZTD experiment for both 24 h (Figures 3 and 4)
and 6 h precipitation (Figures 7–10). This fact reflects a significant added value of ZTD assimilation
during wet season rainfall events, in contrast with previous studies, which concluded that when the
atmospheric state is well described during large synoptic-scale cases, no further improvement of the
forecast accuracy can be achieved by assimilating ZTD observations (e.g., Boniface et al. [24]). Moreover,
the ZTD assimilation substantially advances the overall model performance in terms of qualitative
and quantitative rainfall forecasting between 0600 and 1800 UTC in the dry season (Figures 5 and 6).
Especially from 1200–1800 UTC, statistically significant (at the 95% confidence interval) higher POD,
ETS, and MAE values, compared to the CTL experiment, are found across all precipitation thresholds.
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This is a key outcome considering that convective precipitation in the dry season mainly occurs during
the examined time window and its forecasting is challenging, as NWP models lack the ability to resolve
small-scale convective circulation [68,69]. In contrast, NWP models are more capable in dealing with
large-scale dynamically-driven precipitation systems during the wet season [70]. This is evident in
the current study because the WRF model, overall, performs better in the wet compared to the dry
period. The case study analysis shows that ZTD assimilation provides a more accurate representation
of the observed precipitation geographical extent in terms of 24 h and 6 h rainfall (Figures 12 and A2
in the dry period and Figures 14 and A5 in the wet period). It also highlights that the overall WRF
performance improvement in rainfall forecasting under the ZTD experiment is due to the modification
of the model’s initial conditions at the time of the experiment’s initialization through the assimilation
of ZTD observations. The introduction of ZTD data assimilation especially affects the initial PW field,
leading to noticeable differences between the conducted experiments, which emerge in locations where
GNSS stations are found. This is evident in Figures 11c and 13c concerning the selected case studies,
as well as in Figures A6–A13, illustrating the PW differences between the CTL and ZTD simulations at
the ZTD experiment initialization time for each day of the rest of the rainfall events examined in the
present study.

5. Conclusions

The present work focuses on investigating the impact of assimilating GNSS ZTD observations on
the WRF model precipitation forecast skill. The conducted work is the first attempt at applying ZTD
data assimilation into a regional atmospheric model over Greece. The evaluation of the impact of ZTD
assimilation is performed for seven high-impact rainfall episodes that occurred during the dry (four
events) and wet period (three events) of 2018. A substantial effort was devoted to the pre-processing of
ZTD observations in order to qualify their adequacy for data assimilation. Then, two sets of model
experiments (CTL and ZTD) were performed and the model predicted rainfall was verified against
observations, which were collected from over 330 rain gauges provided by the weather monitoring
network of the National Observatory of Athens.

The qualitative and quantitative statistical evaluation provides substantial findings on how the
assimilation of ZTD observations into the WRF model affects its performance:

• The ZTD assimilation results into statistically significant (a)more accurate reproduction of the
occurrence of the observed precipitation (higher POD by 10.6% and 3.9% in the dry and wet
season, respectively), (b) reduction of the false forecasts (lower FAR by 7.7% and 16.9% in the
dry and wet season, respectively), (c) better prediction quality (greater ETS by 11.4% and 8.1% in
the dry and wet season, respectively), and (d) decrease in the magnitude of errors (lower MAE
by 6.3% and 5.5% in the dry and wet season, respectively), compared to the CTL configuration,
for intense rainfall (>20 mm). This outcome is of great importance when considering that heavy
precipitation amounts are associated with greater impacts and may be poorly forecasted.

• The overall model performance enhancement in rainfall forecasting during the ZTD experiment
is more evident in the dry season. However, the assimilation of ZTDs also leads to notable and
statistically significant improvements during the wet period, indicating, in contrast to past studies,
that it can provide a positive influence under large-scale synoptic conditions.

• The introduction of ZTDs into the WRF model induces statistically significant improvements in
precipitation forecasts, especially for above 20 mm 6 h accumulations, during the time window
(0600 to 1800 UTC) of convective rain occurrence in the dry season. This finding is essential
as correctly forecasting high precipitation convective events during the dry period is crucial in
issuing improved severe rainfall warnings.

The detailed presentation of two case studies (on 10 May and 18 November, 2018) show that the WRF
model is capable of satisfactorily capturing the spatial and temporal distribution of the observed rainfall,
with the ZTD simulation providing results that are closer to the observations. It also reveals that the
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precipitation forecast improvement under the ZTD experiment is induced by the initial conditions’
modification at the experiment’s initialization time, especially affecting the initial PW field, due to the
ZTD assimilation.

The above findings highlight the beneficial impact of assimilating ZTD observations into
high-resolution regional scale weather forecasting systems. It is the authors’ intention to investigate
the impact of variational ZTD bias correction techniques and of ZTD spatiotemporal error correlations
in the assimilation framework.
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Appendix A

Figure A1. As in Figure 11a,b, but for the ZTD experiment.
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Figure A2. As in Figure 12a–d, but for the 6-h accumulated precipitation at 10 May 2018 1200 UTC.

Figure A3. As in Figure 13a,b, but for 18 November 2018 (a,c) 0900UC and (b,d) 1500 UTC.
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Figure A4. As in Figure 13a,b, but for the ZTD experiment.

Figure A5. As in Figure 14a–d, but for the 6-h accumulated precipitation at 18 November 2018 1200 UTC.
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Figure A6. As in Figures 11c and 13c, but for 16 June 2018 0000 UTC.

Figure A7. As in Figures 11c and 13c, but for 26 July 2018 0600 UTC.
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Figure A8. As in Figures 11c and 13c, but for 27 August 2018 0000 UTC.

Figure A9. As in Figures 11c and 13c, but for 28 August 2018 0000 UTC.
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Figure A10. As in Figures 11c and 13c, but for 29 September 2018 0000 UTC.

Figure A11. As in Figures 11c and 13c, but for 30 September 2018 0000 UTC.
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Figure A12. As in Figures 11c and 13c, but for 26 November 2018 0000 UTC.

Figure A13. As in Figures 11c and 13c, but for 27 November 2018 0000 UTC.
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Abstract: In March 2019, Integrated Multi-satellitE Retrievals for Global Precipitation Measurement
(IMERG)-Final v6 (hereafter IMERG6) was released, with data concerning precipitation dating
back to June 2000. The National Aeronautics and Space Administration (NASA) has suggested
that researchers use IMERG6 to replace the frequently used Tropical Rainfall Measuring Mission
(TRMM)-3B42 v7 (hereafter TRMM7), which is expected to cease operation in December 2019. This
study aims to evaluate the performance of IMERG6 and TRMM7 in depicting the variations of
summer (June, July, and August) precipitation over Taiwan during the period 2000–2017. Data used
for the comparison also includes IMERG-Final v5 (hereafter IMERG5) and Global Satellite Mapping
of Precipitation for Global Precipitation Measurement (GSMaP)-Gauge v7 (hereafter GSMaP7) during
the summers of 2014–2017. Capabilities to apply the four satellite precipitation products (SPPs) in
studying summer connective afternoon rainfall (CAR) events, which are the most frequently observed
weather patterns in Taiwan, are also examined. Our analyses show that when using more than 400
local rain-gauge observations as a reference base for comparison, IMERG6 outperforms TRMM7
quantitatively and qualitatively, more accurately depicting the variations of the summer precipitation
over Taiwan at multiple timescales (including mean status, daily, interannual, and diurnal). IMERG6
also performs better than TRMM7 in capturing the characteristics of CAR activities in Taiwan. These
findings highlight that using IMERG6 to replace TRMM7 adds value in studying the spatial-temporal
variations of summer precipitation over Taiwan. Furthermore, the analyses also indicated that
IMERG6 outperforms IMERG5 and GSMaP7 in the examination of most of the features of summer
precipitation over Taiwan during 2014–2017.

Keywords: assessment; satellite precipitation; Taiwan

1. Introduction

The Tropical Rainfall Measuring Mission (TRMM) was launched in November 1997 [1], and its
most frequently used product, TRMM-3B42 v7 (hereafter TRMM7), is expected to cease in December
2019 (https://pmm.nasa.gov/data-access/downloads/trmm). As an extension and enhancements
on the TRMM data, the Global Precipitation Measurement (GPM) Core Satellite was launched
in February 2014 [2]. After that, the satellite precipitation products (hereafter SPPs) of the GPM
mission, including Integrated Multi-satellitE Retrievals for GPM (IMERG) [3] and Global Satellite
Mapping of Precipitation for GPM (GSMaP) [4], were provided by the National Aeronautics and
Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA), respectively.
In March 2019, NASA released the IMERG-Final v6 (hereafter IMERG6), which includes TRMM-era
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data dating back to June 2000 and suggested that researchers use this for most research purposes
(https://pmm.nasa.gov/data-access/downloads/trmm). However, the performance of these SPPs may
depend heavily on location and season [5–12]. Thus, it is important to clarify which SPP (e.g., IMERG
or GSMaP) is the most suitable product to replace TRMM7 for studies of precipitation changes over
various regions and during various seasons [13–15]. A better understanding of the performance of
SPPs [13–22] can benefit other studies where SPPs are required to examine issues that are related to
precipitation (e.g., moisture budget, speed of the hydrological cycle, etc.).

Located in Asia, Taiwan (119.9◦E–122.1◦E, 21.8◦N–25.5◦N) is an island that is known for its
complex terrain (Figure 1b). In view of earlier literature, few studies have evaluated the performance
of IMERG6 [15] or other SPPs over Taiwan [15,23–26]. Recently, Huang et al. [24] showed that
IMERG-Final v5 (hereafter IMERG5), which is the earlier version of IMERG6, can qualitatively illustrate
the multiple timescale variations in precipitation over Taiwan in a similar manner to the local rain-gauge
observations made during the period March 2014–February 2017, but the amount of the estimation is
lower than that seen in the gauge observations. However, Huang et al. [24] did not compare IMERG5
with the other SPPs used to investigate the precipitation around Taiwan. In addition, it should be
noted that a major change was made to the morphing scheme used in IMERG5 and IMERG6 [3]. In
versions of IMERG up to and including v5, the vectors used to describe cloud motion were computed
from geosynchronous infrared brightness temperatures. In contrast, the morphing algorithm used in
IMERG6 is modified to derive cloud motion vectors from variables in the Modern-Era Retrospective
Analysis for Research and Applications Version 2 (MERRA-2) reanalysis [27]. Tan and Huffman [28]
examined the global precipitation for August 2017 to October 2017 from IMERG5 and IMERG6, and
noticed that IMERG6 outperforms IMERG5. However, the possibility that IMERG6 outperforms
IMERG5 or any other SPPs with regards to precipitation over Taiwan has not been examined by Tan
and Huffman [28].

Figure 1. (a) Spatial distribution of summer mean precipitation over Taiwan, averaged during the
summers (June, July, and August; JJA) of 2014–2017; from left to right is estimations made using
Central Weather Bureau (CWB) data, Tropical Rainfall Measuring Mission-3B42 v7 (TRMM7), Integrated
Multi-satellitE Retrievals for Global Precipitation Measurement-Final v5 (IMERG5) and v6 (IMERG6),
and Global Satellite Mapping of Precipitation for Global Precipitation Measurement-Gauge v7 (GSMaP7).
(b) The geographic location and topography of Taiwan. (c) The spatial correlation (Scorr) and the
root mean square error (RMSE) for the comparison between the satellite precipitation products (SPPs)
and the CWB data in (a). Here, the sample size is 392 grid points for the land areas in (a). (d) The
estimations of the precipitation in (a), averaged by area at different altitudes. The color legends of
(c,d) are given in the right panel of (d).
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The GSMaP project, which was sponsored by Japan Science and Technology Agency during
2002–2007 and extended by JAXA, aims to develop microwave radiometer algorithms for producing
high resolution global precipitation maps [29]. After the GPM mission was launched, a new algorithm
was developed for the GSMaP project which included the GPM satellite data, producing GSMaP-Gauge
data from March 2014 [4]. Recently, Derin et al. [15] pointed out that GSMaP-Gauge v7 (hereafter
GSMaP7) and IMERG5 performed better than IMERG6 in depicting the precipitation formation
over multiple complex terrain regions, including western Taiwan, during the period 2014–2015.
However, only 34 gauges in western Taiwan and only two years of data from 2014–2015 were used
by Derin et al. [15] as the reference base for comparison. It should be noted that there are more than
400 rain gauges across the entirety of Taiwan [24] that can be used for a more detailed comparison
of SPPs starting from 2000. As the performance of SPPs might be location dependent and timing
dependent [24], it is important to examine the performance of SPPs over Taiwan using higher density
of rain gauges and longer time periods.

The main objective of this study was to evaluate the performance of multiple SPPs (including
TRMM7, IMERG5, IMERG6, and GSMaP7) in depicting the spatial-temporal variations of summer
(June, July, and August; JJA) precipitation over whole Taiwan, using more than 400 local rain gauges as
the reference base for comparison. The selection of GPM SPPs followed Derin et al. [15]. However,
in contrast to Derin et al. [15], who only performed the evaluation at daily and annual timescales,
we perform the evaluation of summer precipitation at mean status, daily, interannual and diurnal
timescales. In addition, we examine the capabilities to apply SPPs in studying the activities of summer
connective afternoon rainfall (CAR) event (Figure 7, explained later), which is the most frequently
observed weather pattern in Taiwan [30]. The analysis mainly focuses on the time periods that overlap
in all data investigated, that is, the summers of 2014–2017 (Table 1), with an additional comparison
between TRMM7 and IMERG6 for the summers of 2000–2017.

Table 1. Information about the satellite precipitation products (SPPs) used in this study.

TRMM7 IMERG5 IMERG6 GSMaP7

Spatial Resolution 0.25◦ × 0.25◦ 0.1◦ × 0.1◦ 0.1◦ × 0.1◦ 0.1◦ × 0.1◦
Temporal Resolution 3 Hour Half Hour Half Hour Hour

Coverage 50◦S–50◦N 60◦S–60◦N 60◦S–60◦N 60◦S–60◦N
Period 1998/1–2019/10 2014/3–2018/6 2000/6–present 2014/3–present

The remainder of this manuscript is arranged as follows. Information about the data and the
statistical methodology are introduced in Section 2. Section 3 documents the evaluation and application
of SPPs in studying the multiple timescale variations of summer precipitation over Taiwan. Discussions
are provided in Section 4. A summary is given in Section 5.

2. Data and Methods

2.1. Data

Following Huang et al. [24], the gridded hourly precipitation data produced from 436 rain-gauge
observations provided by the Central Weather Bureau (hereafter CWB data) in Taiwan was used as the
reference base for comparison. The Cressman scheme [31] was used to generate the gridded CWB data,
following the procedures described by Hong and Cao [32].

Table 1 documents the basic information about SPPs used in this study. To compare with hourly
CWB data, the 3-hourly TRMM7 were linearly interoperated into the hourly precipitation with a spatial
resolution of 0.1◦ × 0.1◦. Also, the two half-hourly IMERG estimations (unit: mm·h−1) were averaged
to obtain hourly data [24]. All the hourly data were then converted into the local timescale in Taiwan,
that is, universal time (UTC) + 8 hours.

The algorithms used by the four SPPs are briefly summarized below. According to Huffman
et al. [1], four stages are implemented for the production of TRMM7: (1) precipitation estimates
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from the microwave sensor are calibrated and combined; (2) the infrared precipitation estimates
are produced to extend the spatial coverage that the microwave observations do not cover; (3) the
microwave and infrared precipitation estimates are combined; and (4) the monthly Global Precipitation
Climatology Center (GPCC) gauge analysis product is used to climatologically adjust TRMM7 [1,5].
No gauge adjustment is required over the oceans. The TRMM7 data can be obtained from https:
//pmm.nasa.gov/data-access/downloads/trmm.

According to Huffman et al. [33], the precipitation estimates of IMERG5 are produced using the
following steps: (1) the individual satellite sensor data are gridded and calibrated to the combined
microwave-radar estimates; (2) the precipitation estimates are propagated forwards and backwards in
time using cloud motion vectors derived from infrared data; (3) the propagated precipitation estimates,
along with the infrared estimates, are merged based on Kalman weighting factors; and (4) a bias
correction is conducted using the monthly GPCC gauge analysis product. Unlike IMERG5, the cloud
motion vectors of IMERG6 are derived from MERRA-2 variables [3]. The data of IMERG5 and IMERG6
are available at https://pmm.nasa.gov/data-access/downloads/gpm.

According to Mega et al. [4], several steps are followed for the production of GSMaP7: (1) a
simplified and near real-time version of precipitation estimation is generated using fewer passive
microwave input streams and a forward-only cloud advection scheme [34]; (2) an improved version
of precipitation estimation is generated by applying the Kalman filter to assimilate and refine the
visible/infrared-based precipitation rates [29]; (3) both forwards and backwards morphing is applied
on the improved version of precipitation estimation to the area observed by the passive microwave
radiometer to be affected by precipitation; and (4) a bias correction is conducted using the CPC
unified gauge-based analysis of daily precipitation. The GSMaP7 data can be downloaded from
https://sharaku.eorc.jaxa.jp/GSMaP/.

2.2. Statistical Methods Applied for Comparison

In this study, the root mean square error (RMSE) for the comparison between the SPPs and the
CWB data is calculated based on Equation (1):

RMSE =
√∑

(SPPs−CWB data)2/(N − 1), (1)

where N is the sample size [35]. The temporal correlation (Tcorr) [35] and the spatial correlation
(Scorr) [35] between the SPPs and the CWB data are also calculated to evaluate the performance of SPPs.

Additionally, following the procedures in earlier literature [36–39], the frequently used threat
score (TS) and bias score (BS) are adopted for quantitative evaluation of the precipitation estimations
in Taiwan. The values of TS and BS are calculated based on Equations (2) and (3), respectively [36]:

TS = H/(O+F−H), (2)

BS = F/O, (3)

where O is the area (i.e., number of grid points) of precipitation depicted by the CWB data that exceeds
a given precipitation threshold, F is the area of precipitation depicted by the selected SPP that exceeds
the given precipitation threshold, and H is the intersection of O and F over a period of accumulation.
The worst and best possible values for TS are 0 and 1, respectively. BS can be described by any value
from 0 to infinity. As stated in Levizzani et al. [40], BS gives the ratio of the estimated rain area
(frequency) to the observed rain area (frequency), regardless of how well the rain patterns correspond
with each other. TS measures the fraction of all events estimated and/or observed that were correctly
diagnosed. For other details of TS and BS, please refer to Levizzani [40].

Moreover, to clarify the spatial-temporal characteristics of diurnal precipitation over Taiwan, we
applied the widely used empirical orthogonal function (EOF) analysis [41] on the variation of diurnal
precipitation. For more details of EOF analysis, please refer to Hannachi et al. [41].
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3. Results

3.1. Mean Status

Figure 1a shows the spatial distribution of precipitation over Taiwan, averaged from summers of
2014–2017. From the CWB data, it is noted that larger precipitation is observed in southwest Taiwan
than in the other sub-regions. This is due to the interaction between the prevailing southwesterly
summer monsoonal flow (not shown) and the local topography (Figure 1b), which can lead to more
precipitation occurring on the windward side of the mountains (i.e., southwest Taiwan) [30]. Visually,
all four of the SPPs can qualitatively depict the feature with more significant precipitation over
southwest Taiwan. However, GSMap7 seems better than the others in illustrating the location of
maximum precipitation. This might due to the inclusion of an orographic effect for additional upward
motion and moisture flux convergence in the GSMaP algorithm [29,42].

Also worth noting in Figure 1a, all four of the SPPs tend to underestimate the amount of
summer mean precipitation over most areas of Taiwan. This might be because that satellite methods
underestimate heavy precipitation associated with shallow orographic precipitation systems [42].
Despite the weakness in validating the magnitude of precipitation, a further comparison between
the values of precipitation area-averaged over Taiwan indicates that IMERG6 (~8.9 mm·d−1), relative
to the other SPPs (TRMM7~8.0, IMERG5~8.5, and GSMaP7~8.6 mm·d−1), is closer to the CWB data
(~11.0 mm·d−1).

Based on Figure 1a, the Scorr and the RMSE are then calculated for the comparison between
the SPPs and the CWB data. As seen in Figure 1c, TRMM7 has the largest RMSE and the smallest
Scorr. Compared to the performance of TRMM7 (i.e., Scorr = 0.53, RMSE = 15.5 mm·d−1), the Scorr of
IMERG6 (~0.73) is increased by approximately 37.7% [= (0.73 – 0.53)/0.53 × 100%] and the RMSE of
IMERG6 (~9.4 mm·d−1) is reduced by approximately 39.4% [= (15.5 – 9.4)/15.5 × 100%]. This suggests
that using IMERG6 to replace TRMM7 can increase the performance by approximately 35%~40% in
depicting the spatial distribution of summer mean precipitation over Taiwan.

In addition to IMERG6, IMERG5 (i.e., Scorr = 0.72, RMSE = 10.9 mm·d−1) and GSMaP7 (i.e.,
Scorr = 0.82, RMSE = 10.2 mm·d−1) also outperform TRMM7 in illustrating the spatial distribution
of summer mean precipitation over Taiwan (Figure 1c). Part of the reason for this might be that
the original spatial resolution of IMERG5, IMERG6, and GSMaP7 (0.1◦ × 0.1◦) is higher than that
of TRMM7 (0.25◦ × 0.25◦). Therefore, although TRMM7 has been re-gridded into the same spatial
resolution (0.1◦ × 0.1◦) for the comparison (see Section 2), the performance of TRMM7 is still worse
than the other higher resolution SPPs for depicting the precipitation that occurs over complex terrain.

To reveal whether the above suggestion is dependent on the altitude, we further compared the
performance of SPPs at different altitudes. Worth noting in Figure 1d, there is an obvious increase in
the difference between the SPPs and the CWB data, as the altitude increases. Among the four SPPs, the
performance of IMERG6 (GSMaP7) is closer to the CWB data at most altitudes below 1000 m (higher
than 1500 m), while TRMM7 has the largest bias over most altitudes. These features indicate again that
the new GPM SPPs (including IMERG5, IMERG6, and GSMaP7) outperform TRMM7 in depicting the
distribution of summer mean precipitation over Taiwan; this finding is not dependent on the altitude.

3.2. Day-to-Day and Interannual Variation

Figure 2a shows the time series of the 5-day running mean for the precipitation area-averaged
over Taiwan during the summers of 2014–2017. Using the time series in Figure 2a, two statistical scores,
Tcorr and RMSE, between the CWB data and the SPPs, were then calculated for providing evaluation
evidence. As seen in Figure 2b, all SPPs have similar values of Tcorr (~0.9), but the lowest RMSE is
observed in IMERG6 and the highest RMSE is observed in TRMM7. Overall, the RMSE of IMERG6
(~7.6 mm·d−1) is approximately 12.6% lower [= (8.7 − 7.6)/8.7 × 100%] than the RMSE of TRMM7
(~8.7 mm·d−1).
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.
Figure 2. (a) Time series of 5-day running averaged precipitation over Taiwan, during the summers of
2014–2017, extracted from the CWB data and the four SPPs. The color symbols are described in (b).
(b) Tcorr (i.e., temporal correlation) and RMSE between the time series of CWB data and SPPs in (a).
(c) Grid-to-grid Tcorr between the time series of CWB data and SPPs. (d) Grid-to-grid RMSE between
the time series of CWB data and SPPs. Here, the sample size for calculating Tcorr and RMSE is 368
days from summers of 2014–2017. In (c,d), the values pass the 99% significant test are marked by dots.

Additionally, as noted from Figure 2c, which shows the spatial distribution of grid-to-grid Tcorr
for the comparison between the SPPs and the CWB data, IMERG6 has more areas with larger values
of Tcorr (e.g., >0.8). Moreover, even though the related spatial distributions of grid-to-grid RMSE in
Figure 2d do not show too much difference among the performance of the four SPPs, IMERG6 is still
the one having more areas with smaller values of RMSE (e.g., <7.5 mm·d−1). These features suggest
that the performance of IMERG6 is overall better than the other SPPs in depicting the day-to-day
variations of precipitation over Taiwan.

Recall, Derin et al. [15] indicated that IMERG6 performed worse than GSMaP7 and IMERG5
in capturing the daily precipitation formation over western Taiwan during 2014–2015. Consistent
with Derin et al. [15], one can note from Figure 2c that GSMaP7 and IMERG5 did perform better than
IMERG6 in some coastal regions of southwest Taiwan, even though the time periods used for the
comparison are different in Figure 2c and Derin et al. [15]. However, in contrast to Derin et al. [15],
we would like to call attention that when focused on the daily precipitation formation over whole
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Taiwan during the summers of 2014–2017, the performance of IMERG6 is overall better than GSMaP7
and IMERG5.

Next, statistical evidence is provided for evaluating the capabilities of IMERG6 and TRMM7
to depict the variations of daily precipitation events during the summers of 2000–2017. Figure 3a
shows the distribution of the occurrence frequency of precipitation events at various ranges of intensity
(units: mm·d−1). From Figure 3a, we note that both TRMM7 and IMERG6 tend to underestimate the
occurrence frequency of precipitation events at most ranges of intensity. Despite that, the performance
of IMERG6 is overall better (i.e., more close to the CWB data) than TRMM7, in particularly for capturing
the occurrence frequency of light precipitation events (see right top panel of Figure 3a).

Figure 3. (a) Histograms of the frequency of occurrence as a function of daily precipitation intensity (bin
size is 1 mm·d−1) in Taiwan during the summers of 2000–2017. Inset plots represent the frequency (in %)
of light (0.1–5 mm·d−1), moderate (5–20 mm·d−1), and heavy precipitation (>20 mm·d−1) events. The
method used for generating (a) follows Sun et al. [43]. (b) and (c) is the value of TS and BS (explained
in Section 2), respectively, for the comparison between CWB data and two SPPs (IMERG6 and TRMM7)
during the summers of 2000–2017. The sample size used here is 92 (days per JJA) × 18 (JJAs) × 392
(grid points per day) = 649152 grid points.

Moreover, two other statistical scores, TS (i.e., threat score) and BS (i.e., bias score), are calculated
for representing the skill of SPPs in quantitative precipitation estimations. It can be noted in Figure 3b
that the value of TS in IMERG6 is higher than in TRMM7 over all ranges of precipitation threshold. As
higher TS values indicate better performance [36], Figure 3b again suggests that IMERG6 outperforms
TRMM7. On the other hand, both IMERG6 and TRMM7 have values of BS < 1 over all ranges of
precipitation threshold. This implies that precipitation events in both IMERG6 and TRMM7 occurred
less often than that in the CWB data [36]. However, relative to TRMM7, IMERG6 still has a BS value
closer to the ideal value of 1.

Figure 4a shows the interannual variation of summer precipitation, area-averaged over Taiwan,
estimated by the CWB data and the SPPs. Consistent with Figure 3a, the variations of IMERG6
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(TRMM7) is more (less) close to the CWB data during the summers of 2000–2017. The spatial
distribution of grid-to-grid Tcorr (RMSE) between the SPPs and the CWB data are further conducted in
Figure 4b (Figure 4c) for evaluating the performance of TRMM7 and IMERG6. It is noted that IMERG6
(TRMM7) has more (less) areas with Tcorr > 0.8 and RMSE < 5 mm·d−1, suggesting again that IMERG6
outperforms TRMM7.

Figure 4. (a) Time series of the mean precipitation for the summers of 2000–2017, area-averaged over
Taiwan, as estimated by the CWB data and SPPs. (b) and (c) is the related grid-to-grid Tcorr and RMSE,
respectively, between the CWB data and the selected SPPs: TRMM7 and IMERG6. Here, the sample
size for calculating Tcorr and RMSE is 18 JJAs. In (b,c), the values pass the 99% significant test are
marked by dots.

Also, for the performance of IMERG5 and GSMaP7 in illustrating the interannual variation of
summer precipitation over Taiwan, some information is given in Figure 4a. It was found that even
when focused on the summers of 2014–2017, IMERG6 (TRMM7) is still more (less) close to the CWB
data, as compared to the other SPPs.

3.3. Diurnal Variation

The summer precipitation over Taiwan also exhibits a clear diurnal feature in which the maximum
precipitation generally occurs in the afternoon [24,30]. To illustrate this feature, we apply an EOF
analysis on the variation of diurnal precipitation, averaged during the summers of 2014–2017. This
analysis method is frequently adopted by earlier studies in examining the characteristics of diurnal
variation of precipitation over East Asia [44–46]. Here, only the first mode of the EOF analysis is
presented in Figure 5, and several features noted from Figure 5 are summarized below:

1. The first EOF mode of the CWB data explains about 62.6% of the total variability of diurnal
precipitation. Among the four SPPs, IMERG6 (GSMaP7) has the number of percentage more (less)
close to the CWB data.

2. Spatially (Figure 5a), the first EOF mode of the CWB data shows two maximum centers: one in
central-west Taiwan and the other in northern Taiwan. For the SPPs, all of them are able to show
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two maximum centers in Figure 5a. However, the locations of the maximum centers in GSMaP7
are apparently shifted to the west compared to the CWB data.

3. Temporally (Figure 5b), the first EOF mode of the CWB data shows the timing of diurnal
precipitation maximum occurred between 15–18 h. For the SPPs, all of them are able to capture
similar feature in Figure 5b, even though their amplitudes of diurnal variation are weaker than
the CWB data. Among the four SPPs, GSMaP7 underestimates the most in the amplitude of
diurnal variation of precipitation.

 
Figure 5. The first empirical orthogonal function (EOF) mode of diurnal precipitation, averaged during
the summers of 2014–2017: (a) the normalized spatial patterns (i.e., eigen-vectors normalized to the
maximum precipitation), and (b) the temporal patterns (i.e., eigen-coefficients). The percentages (%) of
the total variability in hourly precipitation explained by the first EOF mode are added in (b).

Based on Figure 5, it seems that GSMaP7 performs worse than the other SPPs in illustrating the
diurnal variation of precipitation. Indeed, by calculating the Scorr (RMSE) between the SPPs and the
CWB data from Figure 5a, we note from Table 2 that GSMaP7 has the lowest (highest) value of Scorr
(RMSE), suggesting its spatial pattern is less similar to the CWB data. In addition, by calculating the
Tcorr (RMSE) between the SPPs and the CWB data from Figure 5b, we note from Table 2 that GSMaP7
has the lowest (highest) value of Tcorr (RMSE), suggesting its temporal pattern is also less similar to
the CWB data.

It is also apparent from Table 2 that IMERG6 has the smallest bias in capturing the spatial-temporal
characteristics of the diurnal precipitation over Taiwan. Tan et al. [47] examined the performance of
IMERG6 in capturing the diurnal cycle of precipitation over the southeastern United States also noted
that IMERG6 tends to underestimate the diurnal amplitude, but is capable of depicting the phase of
diurnal precipitation. However, why IMERG6 (GSMaP7) performs the best (worst) with regards to the
diurnal precipitation over Taiwan is unclear and requires further study.
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Table 2. Statistical values for the comparison between the CWB data and SPPs shown in Figure 5. The
unit of RMSE is mm·d−1. The lowest value of Scorr and Tcorr, as well as the highest value of RMSE,
are marked by *. The sample size of spatial variation is 392 grid points. The sample size of temporal
variation is 24 hours.

TRMM7 IMERG5 IMERG6 GSMaP7

Scorr for Figure 5a 0.83 0.88 0.89 0.74*
RMSE for Figure 5a 0.17 0.16 0.14 0.20*
Tcorr for Figure 5b 0.92 0.94 0.94 0.85*

RMSE for Figure 5b 0.26 0.24 0.23 0.35*

The performance of IMERG6 and TRMM7 in illustrating the variation of diurnal precipitation
area-averaged over Taiwan during the summers of 2000–2017 was further evaluated based on Figure 6.
The CWB data (Figure 6a) shows that all examined periods have maximum diurnal precipitation
occurred between 15-18 h. By comparing Figure 6a with Figure 6b,c, we note that both TRMM7 and
IMERG6 are able to show the temporal phase evolution similar to the CWB data, with the value of
Scorr between Figures 6a and 6b (Figure 6c) is about 0.91 (0.92). However, it is also apparent in Figure 6
that both TRMM7 and IMERG6 tend to underestimate the amplitude of diurnal precipitation for all
examined time periods, but TRMM7 (IMERG6) is less (more) close to the CWB data. All above features
revealed in Figure 6 are consistent with those suggested by Figure 5 and Table 2, suggesting again that
IMERG6 is better than TRMM7 in depicting the variation of diurnal precipitation over Taiwan.

Figure 6. Temporal evolution of the hourly precipitation area-averaged over Taiwan extracted from
the selected data for each specific summer during 2000–2017: (a) the CWB data, (b) TRMM7, and
(c) IMERG6.

3.4. Potential Applications

Based on findings of Sections 3.1–3.3, we then infer that applying IMERG6 to the study of summer
convective afternoon rainfall (CAR) events over Taiwan (e.g., Figure 7a), which generally includes
a diurnal precipitation maximum in the afternoon after the local thermal heating maximum (e.g.,
Figure 7b), can obtain results more similar to those seen in the CWB data. This inference will be clarified
by the examinations presented in this sub-section. Hereafter, the methods used for the identification
of CAR events follow Huang et al. [30], and are briefly summarized as follows: (1) a rainy day is
defined as a day with an accumulated precipitation of ≥ 0.1 mm; (2) the accumulated precipitation of a
rainy day during the time period 1200–2200 h is > 80% of the daily precipitation; (3) the accumulated
precipitation of a rainy day during the time period 0100–1100 h is < 10% of the daily precipitation; and
(4) days affected by other weather systems (e.g., typhoons and frontal systems) are excluded.

394



Remote Sens. 2020, 12, 347

Figure 7. (a) Infrared cloud image, obtained from Gridded Satellite B1 Observations (https://www.
ncdc.noaa.gov/gridsat/), for an example of convective afternoon rainfall (CAR) event that occurred
on 20 June 2016, 17 h (local time) in Taiwan. (b) Time series of hourly precipitation (bars) and surface
temperature (Ts, red line) averaged from local stations in Taiwan for the event shown in (a).

Figure 8 shows the spatial distribution for the contribution of CAR activities (including occurrence
frequency and precipitation amount) to the total summer precipitation events, averaged over the
summers of 2014–2017. In Figure 8a (Figure 8b), the CWB data shows that CAR events contribute more
than 40% (30%) of the occurrence frequency (precipitation amount) of the total precipitation events in
most areas of Taiwan. Furthermore, similar to Figure 5a, two maximum centers are revealed in the
CAR activities observed by the CWB data. Despite the location difference, all SPPs are able to show
two maximum centers in the CAR activities; however, GSMaP7 apparently underestimates the most in
the contribution of CAR activities to the total precipitation events.

Figure 8. Contribution of CAR events to total precipitation events during the summers of 2014–2017: (a)
frequency of occurrence, (b) amount of precipitation. In (a,b), contribution = CAR events

Total precipitation events × 100%.
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By comparing the CWB data with the four SPPs in Figure 8, two statistical scores (Scorr and
RMSE) were calculated and documented in Table 3. It can be noted in Table 3 that IMERG6 (with
the highest Scorr and the lowest RMSE) outperforms the other SPPs, while the greatest bias is seen
in GSMaP7. This is also consistent with what revealed in Table 2, suggesting that the higher (lower)
performance of IMERG6 (GSMaP7) in depicting CAR activities may be attributed to its higher (lower)
performance in illustrating the diurnal variation of precipitation over Taiwan.

Table 3. Statistical values for the comparison between the CWB data and SPPs shown in Figure 8. The
unit of RMSE is %. The lowest value of Scorr and the highest value of RMSE are marked by *. The
sample size is 392 grid points.

TRMM7 IMERG5 IMERG6 GSMaP7

Scorr for Figure 8a 0.78 0.82 0.84 0.54*
RMSE for Figure 8a 12.08 8.82 8.48 21.08*
Scorr for Figure 8b 0.74 0.79 0.83 0.69*

RMSE for Figure 8b 8.28 7.67 6.92 12.67*

Additionally, we examine the performance of TRMM7 and IMERG6 in depicting the interannual
variation of CAR activities area-averaged over Taiwan during the summers of 2000–2017. Figure 9a
shows that both TRMM7 and IMERG6 are capable of depicting the interannual variation of contribution
of CAR events to the total precipitation amount, similar to those seen in the CWB data. The Tcorr
between the time series of TRMM7 (IMERG6) and the CWB data in Figure 9a is approximately 0.73
(0.80), which passes the 99% significant test.

Figure 9. (a) The contribution of CAR events to the total precipitation amount that fell during the
summers of 2000–2017. (b) The contribution of CAR days to total rainy days. (c) The contribution of
CAR intensity (i.e., mean rain rate; unit: mm per event) to the intensity of total rainy events. In (a–c),
contribution = CAR events

Total precipitation events × 100%. In (d), the comparison of Tcorr and RMSE between time
series in (a–c) is given, using the CWB data as the reference base, and denoted a-b-c, respectively. In
(d), the purple color and blue color represents results related to TRMM7 and IMERG6, respectively.
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By separating the precipitation amount into the occurrence frequency and the intensity (i.e.,
precipitation amount = occurrence frequency × intensity), it is however noted from Figure 9b that
both IMERG6 and TRMM7 tend to underestimate the contribution of CAR events to the occurrence
frequency of total precipitation events, as compared to the CWB data. This might be because the
SPPs, which utilize precipitation estimation from infrared and passive microwave sensors, are poor at
retrieving local precipitation events over complex mountainous areas [42,48].

In contrast to Figure 9b, it can be noted in Figure 9c that both IMERG6 and TRMM7 tend to
overestimate the contribution of CAR events to the intensity of total precipitation events. This might
be because that satellite methods assume heavy precipitation results from deep clouds [42], and CAR
events in Taiwan are belong to local deep convections [30]. Despite the bias seen in Figure 9b,c, we
note from Figure 9d that IMERG6 (with higher Tcorr and lower RMSE) outperforms TRMM7 overall in
illustrating the interannual variations of CAR activities. Therefore, we suggest that using IMERG6 to
replace TRMM7 can benefit the researcher by obtaining more accurate characteristics of CAR in Taiwan.

4. Discussions

It was noted in Figure 1a that more (less) differences are observed between GSMaP7 (IMERG5 and
IMERG6) and TRMM7 concerning the distribution of maximum precipitation over Taiwan. This might
be because the land precipitation in GSMaP7 is adjusted using the CPC gauge-based analysis daily
precipitation, while the land precipitation in TRMM7 and the IMERG products are adjusted using the
GPCC gauge-based monthly precipitation [1,3,4]. In fact, by comparing the difference between the
mean status of GSMaP7 (IMERG5 and IMERG6) and TRMM7 over a larger domain averaged during
the summers of 2014–2017, we note that the difference between GSMaP7 and TRMM is also larger over
Indochina (see Figure 10). In contrast, over the ocean areas of the Asian domain, larger differences can
be found between IMERG5 and TRMM7.

Figure 10. (a) Mean seasonal precipitation averaged during the summers of 2014–2017, estimated by
TRMM7, over the Asian domain (60◦E–180◦, 10◦S–40◦N). (b) is related to (a), except for the difference
between IMERG5 and TRMM7. (c) is similar to (b), except for the difference between IMERG6 and
TRMM7. (d) is similar to (b), except for the difference between GSMaP7 and TRMM7.

Consistent with Figure 10, IMERG5 also has the daily variations in oceanic precipitation
area-averaged over the Asian domain, more different to TRMM7 (Figure 11b; 5 day running mean
applied). In contrast, for the daily variations in land-averaged precipitation, GSMaP7 appears to differ
the most from TRMM7 (Figure 11a; 5 day running mean applied). To support the above arguments, we
further calculate Tcorr and RMSE based on the time series given in Figure 11a,b and show the results
in Figure 11c. It is confirmed that: (1) GSMaP7 has a more clear difference to TRMM7 (i.e., smaller
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Tcorr and larger RMSE) over the land; and (2) IMERG5 has a more clear difference to TRMM7 over the
ocean. This information is particularly important for studies that tend to use GPM products to replace
TRMM7 for estimating the moisture budget over the Asian domain [49–52].

Figure 11. Time series of 5-day running averaged precipitation area-averaged over (a) the land and (b)
the ocean of the Asian domain (60◦E–180◦, 10◦S–40◦N). The time series covered is from 2014 to 2017
JJAs (i.e., 368 days). (c) is based on (a,b), except for the calculation of Tcorr and RMSE between TRMM7
and the selected SPPs, including IMERG5 (red), IMERG6 (blue), and GSMaP7 (green).

5. Conclusions

This study evaluated the performance of multiple SPPs (including TRMM7, IMERG5, IMERG6,
and GSMaP7) in depicting the variations of summer precipitation over Taiwan. The evaluations were
performed at mean status, daily, interannual, and diurnal timescales. The major goal was to clarify
whether IMERG6 is the best choice to replace TRMM7 for studying the summer precipitation variations
over Taiwan. In addition, capabilities to apply SPPs in studying the most frequently observed weather
pattern in Taiwan, that is, CAR event, is also examined. The performances of SPPs were evaluated
using more than 400 gauges (i.e., CWB data) in Taiwan as the reference base for comparison.

Our analyses show that IMERG6 overall outperforms the other SPPs for depicting the
spatial-temporal characteristics of summer precipitation over Taiwan varied at multiple timescales.
Among the four SPPs, IMERG6 also has the smallest bias in depicting the characteristics of CAR
activities in Taiwan. All the above findings suggest that more accurate results can be obtained if
IMERG6 is used to replace TRMM7 for studying issues that are related to the summer precipitation in
Taiwan. It is noted that above statement is true for the time period between 2000 and 2017. Further
studies are suggested to evaluate the performance of multiple SPPs in Taiwan during the dry seasons.

Additionally, when investigating the differences between TRMM7 and the other SPPs over the
Asian domain, we note that IMERG5 (GSMaP7) has the largest difference to TRMM7 over the ocean
(land). This finding provides useful information for future studies that tend to use GPM products to
replace TRMM7 for estimating the moisture budget over the Asian domain e.g., [49–52].
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Abstract: Raindrop size distributions (DSDs) are the microphysical characteristics of raindrop spectra.
Rainfall characterization is important to: (1) provide information on extreme rate, thus, it has an
impact on rainfall related hazard; (2) provide data for indirect observation, model and forecast;
(3) calibrate and validate the parameters in radar reflectivity-rainfall intensity (Z-R) relationships
(quantitative estimate precipitation, QPE) and the mechanism of precipitation erosivity. In this study,
the one-year datasets of raindrop spectra were measured by an OTT Parsivel-2 Disdrometer placed
in Yulin, Shaanxi Province, China. At the same time, four TE525MM Gauges were also used in the
same location to check the disdrometer-measured rainfall data. The theoretical formula of raindrop
kinetic energy-rainfall intensity (KE-R) relationships was derived based on the DSDs to characterize
the impact of precipitation characteristics and environmental conditions on KE-R relationships in
semi-arid areas. In addition, seasonal rainfall intensity curves observed by the disdrometer of the area
with application to erosion were characterized and estimated. The results showed that after quality
control (QC), the frequencies of raindrop spectra data in different seasons varied, and rainfalls with R
within 0.5–5 mm/h accounted for the largest proportion of rainfalls in each season. The parameters
in Z-R relationships (Z = aRb) were different for rainfall events of different seasons (a varies from
78.3–119.0, and b from 1.8–2.1), and the calculated KE-R relationships satisfied the form of power
function KE = ARm, in which A and m are parameters derived from rainfall shape factor μ. The
sensitivity analysis of parameter A with μ demonstrated the applicability of the KE-R formula to
different precipitation processes in the Yulin area.

Keywords: raindrop size distribution; radar reflectivity; raindrop spectrometer; semi-arid area

1. Introduction

Characteristics of precipitation show the impact of meteorological conditions [1], and the
measurement of quantitative distribution of precipitation is important for studying the mechanism
of global climate and environmental change [2]. Raindrop size distributions (DSDs) show the
microphysical properties of a rainfall event and vary with precipitation both in time and space. The
DSDs are of importance to enhance the accuracy of quantitative precipitation estimation (QPE) by
weather radar, and raindrop spectra have been used to calculate radar reflectivity factors in many
studies [3–6]. Thus, investigating the raindrop spectra is essential for providing information on the
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microphysical characteristics of different precipitation types, and improving the parameterizations of
different rainfall processes.

Raindrop spectra can be measured by many methods, e.g., as done by Das et al., Waldvogel et al.,
Schönhuber et al. and Liu et al. [3,7–9], and these different methods vary in measurement principles
and precision of data. In recent years, the raindrop disdrometer has been widely used to measure
raindrop spectra because of its high measurement accuracy and small-time interval for data acquisition.
Liu et al. [9] measured the precipitation in Nanjing, China and compared four different methods of
rainfall to conclude that the disdrometer and other methods are consistent within the range of medium
particle size. However, Zhang et al. [10] used three different methods to analyze the DSD characteristics
in Zhuhai, China and found that the disdrometer had limitations in measuring small raindrops when
compared to other methods. Raupach et al. [11] used a 2DVD device to correct the DSDs measured by
three disdrometers and the correction showed its general applicability under different climate types.
However, the study on the seasonal variation of rainfall characteristics in semi-arid areas of China
using a raindrop disdrometer is very limited.

The measured raindrop spectra can be used to calibrate and validate the parameters in radar
reflectivity-rainfall intensity (Z-R) relationships (quantitative estimate precipitation, QPE). Variability
of DSDs in different forms of precipitation impact the radar reflectivity-rainfall intensity relationships
(Z-R relationships, normally in the form of power function Z = aRb, in which a and b are parameters
derived from data fitting) [12,13], and the quantitative estimation of rainfall intensity (R) by Z-R
relationships can be further modified. Sulochana et al. [14] investigated the Z-R relationships over
a tropical station and concluded that the prefactor of Z-R relationships is larger for stratiform rain
than for convective rain, which was in agreement with the results reported from two other tropical
stations. Sulochana et al. also found that there were large variations in Z-R relationships in different
seasons. Das et al. [3] analyzed the impact of different precipitation types on Z-R relationships in
a hill station with a pronounced monsoon climate, and the results showed that the Z values of the
shallow-convective system are the lowest, compared to other precipitation types. Das et al. concluded
that the coefficient a is larger for stratiform rain than for convective and shallow-convective rain.
However, there remains very limited research on using disdrometers to investigate raindrop spectra in
semi-arid areas [15], and further research on the parameters in Z-R relationships is needed.

In addition, the measured raindrop spectra can be used to explore the mechanism of precipitation
erosivity. The relationship between rainfall kinetic energy (KE) and intensity (R) is a significant
approach to study the impact of precipitation on soil erosion [16], and a disdrometer can be deployed
to measure the rainfall kinetic energy and intensity [17]. Angulo-Martínez et al. [18] measured and
analyzed the uncertainty in KE-R relationships with five Parsivel disdrometers among three locations,
and found that the types, accuracy and location of the disdrometers and precipitation types influence
the estimation results of KE. Overestimation of the midsize raindrops led to a high estimation result
of KE. Moreover, Carollo et al. [19] concluded that KE/R depends on the median volume diameter
of precipitation events strictly, and this relationship does not rely on the locations of disdrometers.
There have also been studies investigating the KE-R relationships in arid and semi-arid areas, e.g.,
Meshesha et al. and Abd Elbasit et al. [20,21], and many KE-R relationships were derived with this
approach [22]. Nevertheless, many of the relationships vary greatly because of the different climate
conditions, and a general formula for KE-R relationships needs to be derived to be suitably utilized in
arid and semi-arid areas.

Yulin (in the northern region of Shaanxi Province, China) has a semi-arid climate, and the
precipitation in this area is not evenly distributed throughout different seasons of the year [23]. The
analysis of DSDs in different seasons is helpful to understand the variability of precipitation in this
semi-arid area. The objectives of this paper are: (1) to analyze the detailed statistical data of DSDs based
on the observation of a raindrop disdrometer located in Yulin, and collect data on the variability of
microphysical characteristics of precipitation in different seasons; (2) to investigate the Z-R relationships
in different seasons, and analyze the variability of the parameters in the Z-R relationships across
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different precipitation types; (3) to derive a theoretical formula for KE-R relationships and further
analyze the calculated results.

The following sections are organized below. Section 2 describes the research method, the datasets
of the research area, and the derivation processes of theoretical formula. Section 3 analyzes the observed
results statistically and presents the comparison of different precipitation periods in different seasons.
Section 4 presents a further discussion of the comparison of disdrometer- and gauges-measured rainfall
data, the comparison of different Z-R relationships and the theoretical formula of KE-R relationships
through sensitivity analysis. Section 5 gives the conclusion.

2. Materials and Methods

2.1. Observation Station and Disdrometer Datasets

Microphysical characteristics of different precipitation types were measured at Yulin
Ecohydrological Station (109◦28′2.7′′E, 38◦26′43.6′′N, 1236 m above sea level (a.s.l.), located in
Mu Us Sandy Land) in Shaanxi Province, China. Mu Us Sandy Land has a semi-arid climate type with
a low amount of precipitation [24]. The average annual precipitation in this area is 413 mm (from the
year 1951 to 2018, measured by Yulin Meteorological Station (109◦28′12′′E, 38◦9′36′′N, 936 m a.s.l.)).

Figure 1a shows the location of Yulin Ecohydrological Station and Yulin Meteorological Station.
One OTT Parsivel-2 Disdrometer was placed in Yulin Ecohydrological Station, and continuously
recorded data during a 1-year period between 10 August 2018 and 10 August 2019. There are also four
TE525MM rainfall gauges placed at the same location (shown in Figure 1b), and the specific placement
of the disdrometer and the four gauges is proposed by Xie et al. [25], providing a reference for the
measurement data by the disdrometer. Data were recorded every 30 min during the researching period,
with the four gauges recording data simultaneously and individually. The disdrometer conducted a
54 cm2 laser beam to record the rainfall spectrum every 1 min. The record of the disdrometer includes
two parts: raindrop diameters (D) and raindrop terminal velocity (v). When precipitation particles
pass the laser beam of the sensor, the beam is blocked off by the particles equal to the diameters, and
the output voltage will be reduced. If there is no particle passing through, the voltage will then be
recorded as maximum. The duration of the reducing signal will be used to determine the terminal
speed of a particle. Through the observation by the disdrometer, radar reflectivity (Z), rainfall intensity
(R) and kinetic energy (KE) are derived from D and v. Figure 2 summarizes how the materials and
methods and results are managed via a schematic.

2.2. Processing Microphysical Datasets from Disdrometer

In order to process the calculation of the characteristic variables of precipitation, the formulas are
derived as follows:

N(Di) =
32∑

j=1

nij

Vj·ΔDi
=

32∑
j=1

nij

A·Δt·vj·ΔDi
(1)

where N(Di) (mm−1 ·m−3) is the number concentration of raindrops per unit diameter interval for
raindrops per unit volume with the diameter equal to Di (the ith-bin of diameters of the spectra);
A = 5.4 × 10−4 m2 is the sampling area scanned by the laser beam; Δt = 60 s is the sampling time
interval; vj is the raindrop terminal velocity of the jth-bin of velocities of the spectra; ΔDi is the class
spread of the ith-bin of diameters of the spectra.
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Figure 1. (a) The location of Yulin Ecohydrological Station (green point) and the location of Yulin
Meteorological Station (blue point) and the DEM (Digital Elevation Model) characteristics around the
sites. The red rectangle in the China map highlights the location of Mu Us Sandy Land; (b) the OTT
Parsivel-2 disdrometer and the surrounding 4 TE525MM rain gauges in Yulin Ecohydrological Station;
(c) vegetation cover situation in Yulin Ecohydrological Station.

 
Figure 2. Schematic of the research technical route in this study.

The nth-moment of the DSD can be calculated as:

Mn =

∫ ∞

0
DnN(D)dD (2)

Moreover the 6th-moment of the DSD is equal to the radar reflectivity Z (mm6·m−3):

Z = M6 =

∫ ∞

0
D6N(D)dD =

32∑
i=3

D6
i N(Di)ΔDi (3)
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where the 1st-bin and the 2nd-bin of diameters are not evaluated in the measurements of the OTT
Parsivel-2 because these two bins are out of the measurement range of the disdrometer, thus i starts
from 3 to 32.

The Rtotal(i,j) (mm·h−1) is the total rainfall per unit time in the nij grid:

Rtotal(i,j) = vj·N(Di)·ΔDi·16πD3
i ·3600·10−6 =

3π
5000

vjD3
i N(Di)ΔDi (4)

The rainfall intensity R (mm·h−1) is the summation of Rtotal(i,j), and thus, can be calculated as:

R =
3π

5000

32∑
i=3

(
32∑

j=1

vjD3
i N(Di)ΔDi) (5)

The content of liquid raindrop W (g·m−3) is the mass of liquid raindrops per unit volume:

W =
π
6
·10−3·

∫ ∞

0
D3N(D)dD =

π
6
·10−3·

32∑
i=3

D3
i N(Di)ΔDi (6)

The gamma distribution of raindrop spectra is derived as:

N(D) = N0Dμ exp (−ΛD) (7)

where N0 (mm−1−μ·m−3) is the intercept parameter and varies in dozens of orders of magnitudes [26].
Thus, the normalized intercept parameter Nw (mm−1·m−3) is used by Testud et al. [27] to represent N0,
in order for the characteristics of the parameter of distribution of raindrop spectra can be calculated
without any assumption about the DSD shapes:

Nw =
44M5

3

6ρwM4
4

(8)

Nw is better than N0 for representing the raindrop concentration with certain raindrop sizes, as is
not dependent on parameter μ. The mass-weighted mean diameter Dm(mm), and the rainfall shape
parameter μ (dimensionless, related to rainfall types [28]), can be expressed as [29,30]:

Dm =
4 + μ

Λ
(9)

μ =
1

2
(
1− M3

4
M2

3M6

)
⎧⎪⎪⎪⎨⎪⎪⎪⎩11

M3
4

M2
3M6

+

⎡⎢⎢⎢⎢⎣ M3
4

M2
3M6

⎛⎜⎜⎜⎜⎝ M3
4

M2
3M6

+ 8

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦

1
2

− 8

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (10)

The slope parameter of gamma distribution Λ (mm −1) is dependent on parameter μ, and Seela
et al. [31] concluded that μ-Λ relationships vary with different precipitation types in different areas.
In this study, the Λ is expressed as a function of the 2nd and 4th-moment of the DSD and parameter
μ [32]:

Λ =

[
M2Γ(μ+ 5)
M4Γ(μ+ 3)

] 1
2

(11)

2.3. Precipitation Types and Quality Control (QC)

In this study, in order to analyze the characteristics of raindrop spectra in different precipitation
types, the precipitation data is classified into convective and stratiform rain based on the rainfall
intensity [14]. Quality control is carried out in this study because there are errors in the measurement
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of large diameters of raindrops using the disdrometer. In this study, raindrops larger than 6 mm in
diameter were considered to have crushed during falling [33]. Therefore, raindrops larger than 6 mm
in diameter are excluded in this study

Figure 3 illustrates the principle of classifying stratiform, convective, mixed-cloud rain and
non-rainfall events. In this study, the effective observation range of raindrop diameter is 0.25–6 mm.
Raindrop spectrum data with the total number of raindrops less than 10 or rain intensity less than
0.5 mm/h is regarded as noise [34,35].

Figure 3. Classifying stratiform, convective rain and non-rainfall events. This classification method is
derived by Li et al. [36] and used in Mt. Huangshan (118◦10′E, 30◦07′N, 1351 m a.s.l.), and is considered
valid in this study to classify stratiform/convective rain.

The quality control principle is similar to the method used by Li et al. [36]. For an instantaneous
moment tn during a rainfall event, if the rain intensity R within the time range [tn −Ns, tn + Ns] is >
5 mm/h and the standard deviation is >1.5 mm/h, the event is classified as a convective rainfall event; if
the rain intensity R within the time range [tn −Ns, tn + Ns] satisfies 0.5 < R < 5 mm/h and the standard
deviation is <1.5 mm/h, then the event is classified as a stratiform rainfall event. Other rainfall events
are classified as mixed-cloud rain [37].

2.4. Derivation of KE-R Relationships

Rainfall kinetic energy (KE) can be calculated from the raindrop disdrometer, rainfall terminal
velocity and raindrop size distribution. The total kinetic energy KE (J/(m3·s)) can be derived as [25,38]:

KE =
1

12
ρπa3N0

∫ ∞

0
Dμ+3+3be−ΛDdD (12)

where a = 3.78 and b = 0.67 are constant parameters [39]. In arid or semi-arid areas, most of the
precipitation is of weak or moderate levels and Marshall et al. [40] concluded that N0 in the expression
of N(D) is almost fixed to 0.08 cm−4. The parameter x is defined as:

x = μ+ 4 + 3b = μ+ 6.01 (13)

From Equations (12) and (13), the KE can be further expressed as:

KE =
ρπa3N0

12Λx

∫ ∞

0
tx−1e−tdt =

ρπa3N0Γ(x)
12Λx (14)

The expression of Λ is:
Λ = 4.1R−0.21 (15)
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which is commonly used in the calculation of KE-R relationships in many studies [41–43], and:

KE =
ρπa3N0Γ(x)

12·4.1x ·R0.21x (16)

The parameter η is defined as:

η =
ρπa3N0

12
(17)

and is constant. Then:

KE =
ηΓ(x)
4.1x ·R0.21x (18)

Therefore, the empirical formula of the relationship between KE and R with the variable parameter
x for the semi-arid area is derived.

3. Results

3.1. Data after Quality Control

In this study, 8184 records are selected as rainfall events, including 7388 stratiform and 796
convective data. The amount of observed mixed-cloud rain is zero. Figure 4 shows the frequency
accumulation curve of rainfall intensity recorded. The average R of the recorded data is 2.3 mm/h (the
calculated average R includes only rainy hours, as shown in Section 2.3), and the data with rainfall
intensity less than 5 mm/h is more than 90% of the total time of rainfall data.

Figure 4. Frequency distribution of rain rates calculated from the whole OTT Parsivel-2
disdrometer datasets.

A division of the rainfall data into different seasons (spring from March to May, Summer from
June to August, Autumn from September to November and Winter from December to February) and
rainfall types (stratiform and convective rain) acquired by the OTT Parsivel-2 is reported in Table 1.
The results shown in Table 1 reflect the trend of precipitation change in this region with different
seasons. The frequency of raindrop spectra data recorded in summer is the highest (with 7019 records),
followed by autumn (4230 records), spring (3387 records) and winter (only 116 records). In spring,
summer and autumn, the total time of stratiform rainfall events Ts is higher than the total time of
convective rainfall events Tc, which reflects the precipitation characteristics of semi-arid areas [44].
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The percentage of stratiform rain is from small to large summer (85.9%), spring (93.5%) and autumn
(95.5%). Winter is not considered when comparing the characteristics of different seasons due to too
few liquid precipitation data recorded. The percentage of convective rain, ordered from small to large,
is spring (4.5%), autumn (6.5%) and summer (14.1%). In summer the R varies most and has the highest
standard deviation of 2.8 mm/h. However, the percentage of rainfall time over the seasons is ordered
from small to large, are spring (1.4%), autumn (1.7%) and summer (3.0%).

Table 1. Disdrometer-measured data of different seasons: total time with recorded data, the percentage
of stratiform and convective rain and percentage of different ranges of rainfall intensity; maximum and
average rainfall intensity, and standard deviation of rainfall intensity.

Rainfall Characteristics
Spring

(March–May)
Summer

(June–August)

Autumn
(September–
November)

Winter
(December–
February)

Total time with data recorded Ttotal
(min) 3387 7019 4230 116

Total time of stratiform rain Ts (min) 1813 3431 2126 18
Total time of convective rain Tc

(min) 86 563 147 -

Percentage of stratiform rain
Ts/(Ts + TC) (%) 95.5 85.9 93.5 100

Percentage of convective rain
Tc/(Ts + Tc) (%) 4.5 14.1 6.5 -

Percentage of rainfall time over the
season (%) 1.4 3.0 1.7 ≈0

Maximum rainfall intensity
Rmax (mm·h−1)

12.6 33.7 21.2 1.1

Average R (mm·h−1) 2.0 2.6 2.0 0.7
Median Rm (mm·h−1) 1.9 1.9 1.6 0.7

Precipitation Accumulation Ptotal
(mm) 76.7 236.9 105.9 - *

Standard deviation of rainfall
intensity R (mm·h−1)

1.6 2.8 1.8 0.15

T0.5–2 mm·h−1 /(Ts + TC) (%) 60.3 58.8 66.4 100
T2–5 mm·h−1 /(Ts + TC) (%) 35.1 27.1 27.1 -
T5–10 mm·h−1 /(Ts + TC) (%) 4.2 11.3 6.0 -
T>10 mm·h−1 /(Ts + TC) (%) 0.4 2.8 0.5 -

* The rainfall accumulation is not calculated in winter because of the inclusion of solid precipitation (e.g., snow).

Weak and moderate rainfalls (with rainfall intensity satisfying 0.5 < R < 5 mm/h) account for
the largest proportion of rainfalls in each season, and data satisfying R > 5 mm/h in summer is of
the highest percentage of total rainfall time in the season (11.3%). The Rmax is 33.7 mm/h in summer,
21.2 mm/h in autumn and 12.6 mm/h in spring. The R and Ptotal in summer are also the highest
(2.6 mm/h and 236.9 mm, respectively), while the difference in R between spring (2.0 mm/h) and
autumn (2.0 mm/h) is not significant. The difference in Rm between spring (1.9 mm/h) and summer
(1.9 mm/h) is not significant.

3.2. Microphysical Characteristics of Precipitation in Different Seasons

Figure 5 is the distribution of different diameters with varying velocities obtained in different
seasons. In spring, summer and autumn, the majority of raindrop particles are in an area close to the
theoretical curve proposed by Beard [45]; in winter, the data is accumulated in low levels of both v and
D. Data are overall lying over the theoretical curve in spring, summer and autumn; in winter, however,
the velocities are underestimated compared to the theoretical curve in winter. This is because the type
of rainfalls during winter was mainly snow (regarded as solid rainfalls) and could cause deviation in
call speed, and the raindrop data with D > 6 mm are excluded as shown in Section 2.3.
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Figure 5. Plots of measured raindrop terminal velocity-diameter relationships in different seasons. The
red curve is derived by Beard [45] in 1976, giving the relationships between v and D, and used as the
reference line for the v-D distribution in each season (a) spring; (b) summer; (c) autumn; (d) winter.

Figure 6 shows the histogram of Dm and log10Nw in different seasons and precipitation types.
The yearly average Dm and log10Nw are 1.41 and 3.91 mm, respectively. The average Dm of stratiform
(convective) rain from small to large is 1.38 mm (1.46 mm) in summer, 1.46 mm (1.52 mm) in spring
and 1.51 mm (1.57 mm) in autumn. However, there is less variation in average log10Nw data among
the three seasons. The average log10Nw of stratiform rain from small to large is 3.88 mm in summer,
3.89 mm in autumn and 3.92 in spring. However, the maximum of the average log10Nw of convective
rain is 4.28 in summer. This reflects the micro-physical characteristics of rainfall in Yulin area: according
to the results shown in Section 3.1, the average rainfall intensity is larger in summer than in spring and
autumn. According to Equation (5), the rain intensity is related to raindrop diameter and DSD. The
average Dm of different precipitation types in different seasons shows that for stratiform rain, R is
affected more by the raindrop diameter; for convective rain, R is affected more by DSD. The average
value of Dm is slightly less than that of in southern China (1.46 mm) [10].

Besides the average value, standard deviation and skewness of different Dm and log10Nw were
also calculated. The standard deviation of Dm in stratiform and convective rain among different
seasons varies from 0.19 mm to 0.26 mm. The skewness of Dm and Nw in stratiform and convective
rain are less than 0 in spring and autumn, illustrating the frequency of the data below the Dm mean

(Nw mean) is less than data above the Dm mean (Nw mean). However, the skewness of Dm and Nw in
stratiform and convective rain in summer are larger than 0, illustrating the frequency of the data below
the Dm mean (Nw mean) is more than data above the Dm mean (Nw mean).
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Figure 6. Frequency histogram of mass-weighted median diameter Dm and the denary logarithm of
Nw in different precipitation types and different seasons calculated from the data measured by OTT
Parsivel-2. (a) Histogram in stratiform rain in spring; (b) Histogram in convective rain in spring;
(c) Histogram in stratiform rain in summer; (d) Histogram in convective rain in summer; (e) Histogram
in stratiform rain in autumn; (f) Histogram in convective rain in autumn. The average value, standard
deviation and skewness are also given for Dm and Nw in each plot.

Figure 7 shows the Nw-R relationships in different seasons and precipitation types. The base-10
logarithm of Nw is used to fit the relationship curves log10Nw = cRd, in which c and d are parameters
fitted by measured data. For the error bars in each panel, R in the range (0.5, 5) (for stratiform rain)
are divided into nine intervals evenly, and in the range (5, 35) (for convective rain) are divided into
five intervals (5 < R < 10, 10 < R < 15, 15 < R < 20, 20 < R < 25 and R >25 mm·h−1), and error bars
are used for each interval. The error bars for each interval are based on the mean value of R and
log10Nw, with the ±1 Stdev (standard deviation), respectively. A significance analysis of fitting results
is also proposed [46]. The p-values in each panel of Figure 7 are derived from the fitting tests of the
power function. The p-values show that the fits for stratiform rain are statistically relevant and sound
(shown in Figure 7a,c,e). When comparing the disparity in precipitation types, parameters c and d
have a smaller range in variability in different seasons. Figure 7a,c,e indicate that for stratiform rain,
the difference of parameter c among different seasons ranges in 3.73–3.79 (p < 0.05). However, the
parameter c for convective rain varies in a larger range of 3.86–4.14 (p < 0.1). For each season, the
parameter a of stratiform rain is smaller than that of convective rain. The difference in parameter d is
small among different seasons, and the d of stratiform rain is larger than that of convective rain.
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Figure 7. Nw-R relationships for different precipitation types in different seasons. The fitted power
formula based on the least-squares method is also shown in each plot: (a) stratiform rain in spring;
(b) convective rain in spring; (c) stratiform rain in summer; (d) convective rain in summer; (e) stratiform
rain in autumn (f) convective rain in autumn.

3.3. Z-R Relationships in Different Rainfall Events

Three rainfall events were selected to illustrate the differences between the data measured by OTT
Parsivel-2 Disdrometer and four TE525MM Rainfall Gauges. The three events are, respectively, chosen
from each season, regarding their representation of different levels of rainfall intensity (all of the three
events last for > 4h and include stratiform and convective records).
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Table 2 shows the precipitation characteristics of these rainfall events. S/C records show the
relative rates of amounts of the stratiform and the convective records during the selected rainfall
events, for which Event 1, 2 and 3 are 662%, 888% and 753%, respectively. The results correspond to
the average rainfall intensity R of each rainfall event. Event 2 is with the least R (2.42 mm·h−1), while
Event 1 is with the highest R (3.07 mm·h−1).

Table 2. Precipitation characteristics of selected three rainfall events.

Rainfall
Number

Rainfall Time Season Rd/(mm·h−1) * Rg/(mm·h−1) ** Duration S/C Records

Event 1 19–20 April 2019 Spring 3.36 3.51 4 h 30 min 225/34
Event 2 3 August 2019 Summer 1.65 1.78 12 h 30 min 897/101

Event 3 1 September
2018 Autumn 3.09 3.22 4 h 241/32

* Derived from disdrometer-measured raindrop spectra. See in Equation (5). ** Obtained by the four rainfall gauges
and averaged.

Figure 8 shows the difference in Z-R relationships of the three rainfall events of spring, summer
and autumn, and the results are Z = 109.6R2.1 (Event 1), Z = 119.0R1.8 (Event 2) and Z = 78.3R1.9

(Event 3). The parameter a of each of the three rainfall events is less than the parameter a of the default
Z-R relationship [47] (Z = 300R1.4, where parameter a is equal to 300). Parameter b in Z = aRb has
only slight difference among different rainfall events, and ranges in 1.8–2.1 (p < 0.05). This is consistent
with previous studies [48–51], that parameter b in Z = aRb varies in the range of 1–2.87 (p < 0.05). The
raindrop spectra have obvious changes for different precipitation types, causing the parameters of Z-R
relationships to vary. It is clear that the Z-R relationships of rainfall events vary depending on the
season and the precipitation types. The rainfall events with a higher S/C rate tend to have a higher
average rainfall intensity. Therefore, precipitation estimates for different types should be treated as
such. The results indicate that there is a need to utilize modified Z-R relationships in different seasons
when calculating the rainfall intensity by the QPE method.

3.4. KE-R Relationships

The rainfall kinetic energy KE and rainfall intensity R are calculated based on Equations (5) and
(18), respectively. The KE-R relationships of stratiform rain in different seasons are derived in the form
of a power function. The fitting results show the KE-R relationships satisfy the form of power function
KE = ARm, in which A and m are parameters.

Figure 9 shows that the stronger the rainfall intensity is, the faster the rainfall kinetic energy tends
to increase. The exponent of different power functions m varies from 1.45 to 1.82, in order from small
to large, spring < autumn < summer. Parameter A has similar values in spring (equal to 8.56) and in
summer (equal to 8.10), but in autumn the parameter A is 5.56. The value of the parameter A is closely
related to the raindrop spectra [52]. The parameter A is also related to the median rainfall intensity Rm,
which results in the decrease of A in autumn compared to spring and summer.
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Figure 8. Z-R relationships (Z = aRb) in three rainfall events. Each rainfall event is selected from
different seasons (spring, summer and autumn). (a) Z-R relationship of a rainfall event in spring, from
19 April to 20 April 2019; (b) Z-R relationship of a rainfall event in summer, on 3 August 2019; (c) Z-R
relationship of a rainfall event in autumn, on 1 September 2018; the fitted curves are derived based on
the power function, which are solid red curves in (a–c).

Figure 9. KE-R curves fitted in different seasons. Data of stratiform rain in spring, summer, and autumn
are analyzed. (a) KE-R relationship in spring; (b) KE-R relationship in summer; (c) KE-R relationship in
autumn. For the error bars in each panel, R in the range (0.5, 5) are divided into nine intervals evenly,
and error bars are used for each interval. The error bars for each interval are based on the mean value
of R and KE, with the ±1 Stdev (standard deviation), respectively.
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4. Discussion

4.1. Uncertainty Analysis of Disdrometer-Measured Data

Figure 10 shows the relationship between two different measurements on a daily scale. Each
point represents the total rainfall of a given day during the 1-year observation period. The abscissa is
the total measured rainfall of Parsivel-2, and the ordinate is the averaged total rainfall measured by
four TE525MM Gauges (data with both daily total rainfall greater than 1mm are taken for analysis).
The results show that the disdrometer-measured data demonstrates a good correlation with the
average rainfall gauge-measured data, and the deviation is mainly caused by the instrument theoretical
error in measurement of disdrometer and gauges (e.g., sampling error), which was concluded by
Tokay et al. [29]. The measured rainfall data of the disdrometer is suitable for this semi-arid area.

Figure 10. Scatter plot of gauge- and disdrometer-measured total rainfall on a daily scale. The results
obtained by the two measurement methods are compared with the scatter plot. The solid green line is
the fitted result.

Figure 11 shows the precipitation process of three rainfall events, with the calculated average
of the data measured by four rainfall gauges. The determinate coefficient R2 of a linear relationship
between Parsivel Disdrometer and TE525MM Gauges is 0.68 for (a), 0.83 for (b) and 0.96 for (c). The
standard deviations of disdrometer-measured (gauge-measured) rainfall intensity in (a), (b) and (c) are
1.37 mm/h (2.90 mm/h), 1.02 mm/h (1.43 mm/h) and 1.43 mm/h (2.46 mm/h), respectively. The standard
deviation of the disdrometer-measured data in each season is less than the gauge-measured data in the
corresponding season. In order to further compare the difference between disdrometer-measured and
gauges-measured data, the mean absolute error(MAE) and the root mean square error(RMSE) of the
events are also given. Event 3 has the smallest MAE (0.69 mm·h−1) and smallest RMSE (0.99 mm·h−1)
among the three events. This indicates that the disdrometer can potentially estimate the precipitation
with better performance during Event 3, according to the comparison with gauge-measured data.
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Figure 11. The comparison of measurement results of OTT Parsivel-2 (orange solid lines) and four
TE525MM gauges (green dotted lines, averaged) in 3 rainfall events. (a) a rainfall event in spring, from
19–20 April 2019; (b) a rainfall event in summer, on 3 August 2019; (c) a rainfall event in autumn, on
1 September 2018.

The measuring range of Parsivel-2 is 0.25–6 mm, and it has been proved that the disdrometer has
errors in measuring both smaller and larger diameters of raindrops in many studies [53,54], which
have more accuracy in measuring mid-level raindrops in the spectra. Liu et al. [54] further explained
the algorithm of the disdrometer and concluded that the differences can be attributed to a certain error
of rainfall amount accumulation. In all three measured events, when the TE525MM Gauges-measured
data reaches its peak (at 0:30 in (a), 19:00 in (b), and 18:30 in (c)), the data measured by gauges are all
more than the disdrometer-measured data; and when the TE525MM Gauges-measured data reaches its
minimum of the event (at 23:30 in (a), at 11:30 in (b) and 15:00 in (c)), the data measured by gauges
are all no more than the disdrometer-measured data. As raindrop spectra data larger than 6 mm are
treated as solid rainfall and eliminated, the peak value of the disdrometer is lessened. This is consistent
with the results in Section 3.3 that in Event 1 the disdrometer- and gauge-measured R data indicates a
significant gap (2.94 and 3.51 mm·h−1, respectively). Since the measured raindrop spectra data larger
than 6 mm have been removed, and raindrops of large diameter are often accompanied by heavy
rain [25], it is speculated that this is the reason why the peak of rainfall intensity obtained by the
raindrop disdrometer is smaller than the value measured by rain gauges.
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4.2. Comparison of Different Z-R Relationships

In this section, the Z-R relationships of different experiment areas are compared, as shown in
Table 3. The Z-R relationships calculated in different studies vary with different measurement methods,
different study areas and rainfall time and types. Previous studies have shown that parameter a has a
very wide range of values. This is consistent with Kang [55] that the range of parameter a is 10–1200.
The parameters a and b vary with different seasons and locations, as well as with the measurement
methods. It can be concluded that there is a great variation in the parameters a and b at different
places, and Z-R relationships should be determined according to different regions. The above analysis
also shows that it is of great significance to further improve the accuracy of radar rain measurement
inversion and to further study the microphysical characteristics of rainfall [56].

Table 3. Results of Z-R relationships in different study areas.

Reference [57–62]
Precipitation
Time/Season

Location
Measurement
Method

Z-R
relationships

Rainfall Type

Zhang et al., 1992 July in 1981 Jiangsu, Eastern
China Digital Radar Z = 60R2.3 Heavy rain

Marshall et al.,
1947 Summer in 1946 Canada MHF Radar Z = 190R1.72 Thunderstorm

Chen et al., 2008 15 July–7 August
in 2007

Leizhou Peninsula,
China

Parsivel
Disdrometer

Z = 269R1.54

Z = 178R1.58
Convective rain
Mixed-cloud rain

Marzuki et al., 2013 2006–2007 Kototabang, West
Sumatra, Indonesia

2D-Video
Disdrometer Z = 136R1.26 Stratiform rain

Hazenberg et al.,
2011 14 September 2006 Cévennes-Vivarais

region, France
OTT/Parsivel
Disdrometer Z = 79R1.52 Stratiform rain

Blanchard, 1953 October in 1951–
August in 1952 Hawaii, USA Filter-paper Z = 31R1.71 Thunderstorm

Sivaramakrishnan,
1961 November in 1958 India Filter-paper Z = 67.6R1.94 Thunderstorm

4.3. Sensitive Analysis of the Formula of KE-R Relationships

Many previous studies [22,52,63] have shown that parameters of the KE-R relationship are highly
sensitive to DSD, and for parameters closely related to DSD characteristics, such as μ, the change in
μ represents the difference in rainfall characteristics, which can affect the value of the parameters.
Equation (18) indicates the KE-R relationships under the impact of parameter x. The parameter A and
m are used to simplify the KE-R formula (expressed as Equation (18)) and are defined as:

A =
ηΓ(x)
4.1x (19)

m = 0.21x (20)

in which A and m are functions of parameter x, thus, A and m are affected by raindrop microphysical
characteristics and the environmental conditions. The parameter x (known as a linear variation with
the parameter μ according to the Equation (13)) varies differently due to the different regions, different
time periods. Therefore, sensitivity analysis is conducted on the parameters A and m with the change
of parameter x, in order to indicate the applicability of the KE-R relationships formula (derived as
Equation (18)) under different rainfall conditions. S1 and S2 were defined as the parameters to analyze
the sensitivity of A and m with the change of x, and the influence of change on parameter x on the
KE-R relationships is further shown. The definition of sensitive parameters S1 and S2 are derived in
Equations (21) and (22):

S1 = lim
Δx→0

(
ΔA/A
Δx/x

) =
dA
dx
· x
A

(21)

S2 = lim
Δx→0

(
Δm/m
Δx/x

) =
dm
dx
· x
m

= 1 (22)
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in which S1 (S2) is the ratio of the change rate of parameter A (parameter m) to the change rate of
parameter x. It is obvious from Equation (20) that the parameter m is proportional to parameter x,
thus, S2 is a constant, as shown in Equation (22). The sensitive parameter S1 is further calculated
of stratiform and convective rain obtained via disdrometer in different seasons, and the results are
summarized in Table 4.

Table 4. Sensitive analysis results for parameter A with x of different precipitation types in different
seasons and the total year.

Spring Summer Autumn Total Year

S1(Stratiform) 4.10 4.68 3.83 4.29
S1(Convective) 3.88 3.79 3.97 3.88

Table 4 shows the results of the sensitivity analysis for A with x of different precipitation types in
different seasons. The sensitivity of parameter A varies with different precipitation types and seasons.
In the whole-year scale, the S1 is 4.29 of stratiform rain and 3.88 of convective rain, which indicates the
parameter A of stratiform rain is more sensitive to the change of parameter x in the total year. The S1

of stratiform rain in spring and summer is also more than that of convective rain in corresponding
seasons. However, the S1 of stratiform rain (3.83) is less than that of convective rain (3.97) in autumn,
and the S1 reaches its lowest in autumn among three seasons. The parameter x is affected by changes
in environmental factors and rainfall types [64], and in autumn, the sensitivity of parameter A with the
change of x is lower than in spring or summer. This explains the obvious decrease of parameter A in
autumn compared with the other two seasons calculated in Section 3.4. For convective rain in different
seasons, the S1 from small to large is summer (3.79) < spring (3.88) < autumn (3.97).

According to Teng [65], the values of μ for raindrop spectra are between −1 and 4, and different μ
values correspond to different rainfall characteristics. The larger the μ, the more likely it is to cause
convective rain. In order to analyze the KE-R relationship when the rainfall shape parameter μ takes
different values, the KE-R relationship curve of different values of μ was therefore made based on
Equation (18), as shown in Figure 12a–f. The rule of this study is that both parameter A and m increase
with the increase of μ. Figure 12g further shows the relationship among KE-R-μ. At a certain R, KE
increases as μ increases. At the same rainfall intensity, the rainfall kinetic energy is also related to the
rainfall type: the more the rainfall type is inclined to convective rain, the greater the rainfall kinetic
energy will be, which can be explained by the Equation (18) and corresponds to the conclusions in
other studies [66,67]. KE-R relationship changes with the change of the parameter x, according to
Equation (18). From Equation (13), the parameter x can be calculated with a linear function from
parameter μ. As discussed in Section 2.2, the parameter μ is correlated with the rainfall types; thus,
the KE can be interpreted by the rainfall types according to Equation (18). In addition, different
fitted formulas obtained in previous studies can be approximated with Equation (18) by changing the
parameter μ (see Table A1), and the specific results can be approximated by Figure A1. This shows that
the derived theoretical formula (Equation (18)) in this study is universal in various regions; however,
whether the formula can be directly used to further analyze the KE-R relationship in other semi-arid
areas should be further discussed in the future.
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Figure 12. The R-KE relationships under different values of shape factors μ. The curves are derived
based on Equation (18). (a) KE-R relationship for μ = −1; (b) KE-R relationship for μ = 0; (c) KE-R
relationship for μ = 1; (d) KE-R relationship for μ = 2; (e) KE-R relationship for μ = 3; (f) KE-R
relationship for μ = 4; (g) KE-R-μ relationship.

5. Conclusions

Characteristics of raindrop size distributions (DSDs) are important for improving the accuracy
of radar reflectivity-rainfall intensity (Z-R) relationships in remote sensing (QPE) and the estimation
of soil erosivity. In this study, an OTT Parsivel-2 Disdrometer is used to measured raindrop spectra
from 10 August 2018 to 10 August 2019 in Yulin Ecohydrological Station, Shaanxi Province, China.
The precipitation events obtained are classified as stratiform and convective rain based on the rainfall
intensity classifying processes. The conclusions are summarized as follows.

(1) The characteristics of microphysical variables (the mass median diameter Dm and the raindrop
size distribution Nw) were analyzed. The average Dm of different precipitation types in different
seasons shows that for stratiform rain, rainfall intensity R is affected more by the average raindrop
diameter Dm; for convective rain, R is affected more by DSD. The yearly average Dm and log10Nw are
1.41 and 3.91 mm, respectively. The average Dm of stratiform (convective) rain from small to large is
1.38 mm (1.46 mm) in summer, 1.46 mm (1.52 mm) in spring and 1.51 mm (1.57 mm) in autumn. This
reflects the semi-arid climate rainfall characteristics in Yulin Station.

(2) The variances of rainfall microphysical characteristics in different precipitation types and
seasons are related. The distribution of rainfall terminal velocity-diameter (v-D) spectra of spring,
summer and autumn is concentrated near the theoretical curve derived by Beard [45]. The base-10
logarithm of Nw is used to fit the relationship curves log10Nw = cRd, in which c and d are parameters
fitted by measured data. The difference in parameter d is small among different seasons (0.07–0.08 for
stratiform rain and 0.02–0.04 for convective rain), and the d of stratiform rain is larger than that of
convective rain.

(3) The Z-R relationships of different rainfall events in spring, summer and autumn in this
semi-arid area are derived in this study. The parameter a is larger in stratiform rain than in convective
rain, while the parameter b is larger in convective rain, showing the impact of different rainfall types
on a and b. The results show that the estimation of different seasons should be treated, respectively.

(4) The theoretical formula of KE-R relationships for stratiform precipitation in semi-arid areas is

derived (KE =
ηΓ(x)
4.1x ·R0.21x, where the parameter η is constant and x = μ+ 6.01), which indicates the

characteristics of precipitation and environmental conditions represented by parameter μ. This formula
gives a general expression of the KE-R relationships and is simple to use because the parameters are all
derived from the parameter μ. The sensitivity analysis results show that the parameter A for stratiform
rain is more sensitive to the change of different precipitation types and environmental conditions in a
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total year. The closer the precipitation types are to convective rain, the larger the KE is at the same
level of R. By changing the parameter μ, different empirical formulas obtained in previous studies can
be approximated with the derived theoretical formula (Equation (18)).

In summary, the DSD characteristics of Yulin Station were obtained and the results can help
to understand the microphysical characteristics of precipitation and have a strong impact on the
mechanism of soil erosivity in the semi-arid area. Additionally, the formula of KE-R relationships
provides a convenient way to fit with different rainfall events in semi-arid areas by adjusting its
parameters. But the results are not conclusive because of the limited sample records of different rainfall
types. In this study, data in winter is not deeply investigated, e.g., the solid precipitation processes
should be further considered and analyzed. Moreover, the impact of environmental conditions on the
parameter A and m is still not well understood. In the future, the influence of environmental factors on
the parameters in Z-R relationships should be further discussed.
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Appendix A

Table A1 shows different fitting formulas of KE-R relationships in different research areas. KE-
R formulas obtained in different regions vary, including polynomial, exponential, logarithm and
other forms. In order to reflect the universality of the theoretical formulas introduced in this paper,
KE-R relationships are obtained by changing equations based on Equation (18) to approximate the
formulas given in different studies. The deterministic coefficient is used as the index to evaluate
the approximation results, and the fitting results ensure that the deterministic coefficient of the two
is greater than 0.99 for each reference listed in Table A1. The scatter points obtained by the KE-R
relationship obtained by Equation (18) are described, and then, the linear fitting is performed with
the points traced based on the original equation; results are shown in Figure A1. The abscissa is the
KE obtained by changing different equations in this paper, and the ordinate is the relation obtained
by different researchers. The red line is the fitting result. The rainfall intensity corresponding to
the horizontal and vertical coordinates of each point on the line is the same. Figure A1 shows that
the deterministic coefficients of different results are all above 0.99, indicating that Formula (18) can
approximate the KE-R results obtained in different studies by changing the parameter values. Since the
equation can be fixed only by determining the parameters, it has the value of further generalization.

Table A1. Different formulas of KE-R relationships.

References KE-R Relationships (Originally Derived) Form
KE-R Relationships

(Based on Equation (18))
μ

Carter et al., 1974 [68] KE = 11.32R + 0.5546R2−0.5009 ×
10−2R3 + 0.126 × 10−4R4 Polynomial KE = 4.38R1.49 1.09

McGregor et al., 1976 [69] KE=R(27.3 + 21.68e−0.048R − 41.26e−0.072R) Index KE = 4.86R1.53 1.30
Wischmeier et al, 1978 [70] KE = R(11.9 + 8.73logR) Logarithm KE = 4.62R1.51 1.20

Bollinne et al., 1984 [71] KE = 12.32·R + 0.56·R2 Polynomial KE = 4.79R1.53 1.27
Steiner et al., 2000 [67] KE = 11R1.25 Power KE = 4.86R1.53 1.30
Sanchez-Moreno et al.,

2012 [72] KE = (10.09 + 12 logR)·R Logarithm KE = 4.83R1.53 1.29
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Figure A1. The approximated results of KE-R relationships derived by different studies are as follows:
(a–f) are the linear relationships between KE-R obtained by this paper and KE-R obtained by different
studies shown in Table A1, respectively.
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Abstract: The near-real-time satellite-derived precipitation estimates are attractive for a wide
range of applications like extreme precipitation monitoring and natural hazard warning. Recently,
a gauge-adjusted near-real-time GSMaP precipitation estimate (GSMaP_Gauge_NRT) was produced
to improve the quality of the original GSMaP_NRT. In this study, efforts were taken to investigate and
validate the performance of the GSMaP_Gauge_NRT using gauge observations over Mainland China.
The analyses indicated that GSMaP_NRT generally overestimated the gauge precipitation in China.
After calibration, the GSMaP_Gauge_NRT effectively reduced this bias and was more consistent with
gauge observations. Results also showed that the correction scheme of GSMaP_Gauge_NRT mainly
acted on hit events and could hardly make up the miss events of the satellite precipitation estimates.
Finally, we extended the evaluation to the global scale for a broader view of GSMaP_Gauge_NRT.
The global comparisons exhibited that the GSMaP_Gauge_NRT was in good agreement with the
GSMaP_Gauge product. In conclusion, the GSMaP_Gauge_NRT had better performance than the
GSMaP_NRT and was a more reliable near-real-time satellite precipitation product.

Keywords: satellite precipitation; Mainland China; GSMaP_NRT; GSMaP_Gauge_NRT

1. Introduction

Reliable precipitation estimates are crucial because of their role in flood monitoring, crop
yield, and water resource management [1–3]. However, in many regions of Earth, like the oceans,
deserts, and mountains, ground-based observing networks from gauges and radars are sparse or
even nonexistent, which restricts our understanding of global water cycle and local hydrological
processes [4–6]. The recent development of precipitation-retrieval techniques from satellite-based
remote sensing makes it possible of measuring precipitation on the global scale. The remote sensing of
precipitation combines the advantage of the frequency sampling of infrared (IR) sensors derived from
geostationary (GEO) satellites and the superior accuracy (but poor sampling) of passive microwave
(PMW) sensors carried onboard the low earth orbiting (LEO) satellites, in an effort to produce
precipitation data with extensive spatial coverage and fine resolutions [7–9].

To date, various satellite precipitation missions have been implemented and their products
have been made available to the public. Previous satellite precipitation missions include the
NASA’s Tropical Rainfall Measuring Mission (TRMM [10]), NOAA’s Climate Prediction Center (CPC)
morphing technique (CMORPH [11]), JAXA’s Global Satellite Mapping of Precipitation (GSMaP [12]),
the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks
(PERSIANN [13]), the Climate Hazard Group InfraRed Precipitation (CHIRP [14]), and the successor
of TRMM: Global Precipitation Measurement (GPM [3]). These satellite precipitation missions and
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products have benefitted the hydrology and meteorology community in relevant researches and
applications. However, more recent studies have found that satellite precipitation products contain
considerable errors due to the indirect retrieval methods of remote sensing [15–23]. One of the most
effective strategies to diminish these errors is combining ground-based data to adjust the satellite
precipitation products. For example, the 3B42 product is one of the most popular gauge-adjusted
satellite precipitation products at the TRMM era, which incorporates the monthly Global Precipitation
Climatology Centre (GPCC) gauge data to increase the accuracy of its original satellite-only 3B42RT
product. Today, numerous studies have demonstrated that the 3B42 shows substantial improvement
than the 3B42RT, with lower bias and better detection skills [24–28]. However, the 3B42 data is not
available in real-time, and researchers must wait ~2.5 months after observation time, while the delay of
pure satellite-derived 3B42RT is only 8 h [29]. Obviously, traditional gauge-adjusted schemes depend
on the time availability of gauge data. Nevertheless, collecting and processing gauge data in real-time
is not possible on a global scale, especially in underdeveloped countries and areas, which delay the
availability of satellite precipitation products. The question of the availability exists widely in the
gauge-adjusted satellite precipitation products. For example, if someone want to use PERSIANN-CDR
or GSMaP_Gauge data, they must wait ~3 months or ~3 days after observation, respectively [21,30].

In some cases, the real-time availability precipitation data is more critical for applications like
rainstorm monitoring and flash flood warning, and it does not seem practical to use the traditionally
delayed gauge-adjusted satellite precipitation products [31,32]. Thus, it is important to reduce the
error of satellite precipitation estimates as much as possible without jeopardizing its near-real-time
availability. To this end, a climatological calibration algorithm (CCA) was proposed in the TRMM
Multisatellite Precipitation Analysis (TMPA) real-time system. This method utilizes climatological
gauge information to alleviate errors and keep the timeliness of 3B42RT itself [9]. Yong et al. [31]
initially investigated the performance of CCA in the 3B42RT precipitation estimates over two different
basins of China using a local dense rain gauge. The author found that the systematic errors in 3B42RT
were minimized overall after the CCA calibration. Nevertheless, the author also highlighted that the
performance of calibrated precipitation became worse in high-latitude areas, or areas beyond the 40◦
latitude belts. In addition, from a global map view of error analysis, Yong et al. [9] demonstrated that
the CCA calibrated 3B42RT precipitation has large bias in mountainous regions (especially over the
Tibetan Plateau). Theoretically, the CCA is used in the GPM near-real-time runs of the Integrated
Multisatellite Retrievals for GPM (IMERG) algorithm. However, considering the unstable performance
of CCA, the developers of the IMERG algorithm are re-evaluating the CCA calibration. Meantime, the
IMERG near-real-time products do not currently have climatological calibration.

As the Japanese counterpart of IMERG, the GSMaP is another mainstream satellite precipitation
product at GPM era, which was produced by reliable physical models and by distributing hourly global
precipitation map with 0.1◦ × 0.1◦ resolution [20,33,34]. To satisfy different application requirements,
there are two main groups of GSMaP products: Near-real-time and standard products. As the name
implies, the near-real-time product is intended to provide available satellite precipitation quickly, while
the standard product applies more PMW/IR sources to create relative accurate precipitation estimates.
Correspondingly, the near-real-time product has about a 3-h delay, and the standard product has a
large latency of about 3 d. To reduce bias on the satellite-derived GSMaP products, gauge-adjusted
GSMaP products are developed using ground-gauge measurement as a calibrator. The gauge-calibrated
product of standard GSMaP_MVK is GSMaP_Gauge, which adjusted by daily CPC gauge data. Many
studies have assessed and compared the performances of GSMaP_Gauge over the last few years and
have shown that GSMaP_Gauge is a satisfactory gauge-adjusted satellite precipitation estimation
around the world, especially over East Asia [34–38].

Recently, in the GSMaP project, the GSMaP_Gauge_NRT was produced by a GSMaP algorithm
team, aiming to improve the accuracy of near-real-time product of GSMaP (i.e., GSMaP_NRT) and
maintain its timeliness. Section 2.2 describes the calibration procedure of GSMaP_Gauge_NRT in detail.
Thus, it is crucial to understand the performance of new GSMaP_Gauge_NRT product timely. In the
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official document of GSMaP, the GSMaP developers eagerly encouraged people to evaluate and validate
the GSMaP_Gauge_NRT in different regions. Therefore, in this study, we systematically assessed
the performance of the GSMaP_Gauge_NRT precipitation estimates and the original uncalibrated
GSMaP_NRT over the Mainland China. The rest of this paper is organized as follows. In Section 2, we
describe the study area, the precipitation data and the error metrics. Then, a presentation of results
and discussion in this study are provided in Sections 3 and 4, respectively. Finally, the summary and
conclusions are given in Section 5.

2. Materials and Methods

2.1. Study Area

China, which covers an area of about 9.6 million km2, is located in the eastern Asia. The terrain of
China is complex and varied, with flat plains and hills in the east and high mountains and plateaus in
the west. The elevation of China has an overall descending tendency from west to the east. Specially,
the world’s “Third Pole”, the Tibetan Plateau (TP), is situated in southwest China. Generally, the climate
on the China features hot and rainy summers and cold and dry winters due to the effects of monsoon
system and topography. In addition, the annual precipitation in China varies greatly, with an obvious
gradient from southeast to northwest, except for some parts of northwestern Xinjiang. Over southeast
China, a huge amount of water vapor from the Pacific Ocean is brought by the Asian monsoon in the
summer, producing abundant precipitation (exceeding 800 mm/year). Over the inland areas of western
China, which are far from the ocean, monsoon precipitation becomes negligible and the continental
climate dominates (with annual precipitation less than 400 mm). Considering the diverse climate in
China, following Yong et al. [39], we separated mainland China into four representative climate regions
based on the annual precipitation (Figure 1a): (1) The humid region, mainly covering the southeast
of China and dominated by the subtropical monsoon with the average annual precipitation (AAP)
above 800 mm; (2) the semi-humid region (AAP between 400–800 mm), including northeast China,
North China, and southeast parts of TP; (3) the semi-arid region (AAP of 200–400 mm), which consists
of two parts, one region extending from the southwest TP into the North Inner Mongolia with a narrow
strip, and another region located in the Ili river valley; (4) the arid region (AAP < 200 mm), a main
desert areas in China, including the most of Xinjiang and western part of Inner Mongolia.

Figure 1. (a) Distribution of station density used in this study. Four climate regions ( 1�– 4�: Humid,
semi-humid, semi-arid, arid) are outlined in Mainland China. (b–d) Daily mean precipitation
over Mainland China during the period of September 2017–August 2019, from gauge observations,
GSMaP_NRT, and GSMaP_Gauge_NRT precipitations.
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2.2. Data Sources

2.2.1. Rain Gauge Data

A gridded precipitation product (0.25◦ × 0.25◦) of the China Gauge-Based Daily Precipitation
Analysis (CGDPA) was used as the ground reference dataset. This dataset was produced and is routinely
operated by the National Meteorological Information Center (NMIC) of the China Meteorological
Administration (CMA). Based on amassing ~2400 gauge stations across Mainland China, the NMIC
uses a modified interpolation method of climatology-based optimal interpolation (OI) proposed by
Xie et al. [40] to yield the daily gridded CGDPA product. All the gauge data inputted in the CGDPA are
manually recorded by bucket rain gauges and must pass a strict quality control procedure including the
extreme values’ check, internal consistency check, and spatial consistency check [41]. The validation
reports of Shen and Xiong [42] demonstrated that the CGDPA is a more reliable precipitation product
than other existing surface observation datasets over Mainland China, and the authors recommended it
as a reliable ground-based data to various meteorological and hydrological applications. At present, the
CGDPA is available as the official gridded daily precipitation dataset in the CMA website and can be
downloaded from http://data.cma.cn/site/index.html. Considering the ease of access and high-quality
of CGDPA, a large number of studies have used the CGDPA to assess the satellite precipitation products
over China [39,43–45]. Figure 1a shows the number of gauge stations in each 0.25◦ grid box of CGDPA.
Clearly, about 80% of the gauges are located in the eastern China with low elevations, while relatively
sparse gauges are distributed over the western mountains and deserts, especially over the TP.

2.2.2. GSMaP Near-Real-Time Precipitation Products

As one of Japanese GPM projects, GSMaP was implemented under the Japanese Precipitation
Measuring Mission (PMM) science team with the target of providing a global precipitation map with
high precision and high resolution [34]. The GSMaP algorithm uses various of PMW/IR sensors to
produce the “best” precipitation estimates through several steps. First, several PMW radiometers
carried by different satellites, such as the GPM microwave imager (GMI), TRMM microwave imager
(TMI), special sensor microwave imager/sounder (SSMIS), advanced microwave scanning radiometer
2 (AMSR2), advanced microwave sounding unit-A (AMSU-A), and microwave humidity sounder
(MHS), are used to retrieve quantitative precipitation estimates [33,46]. Then, it uses the cloud motion
vector derived from successive geo-IR images to propagate the precipitation area for filling the gaps
between PMW-based estimates, which is similar to CMORPH. In addition, a Kalman filter model is
applied to modify precipitation rates after propagation. Finally, the forward and backward propagated
precipitation estimates are weighted and combined to produce the standard GSMaP_MVK product. At
the beginning of design, the GSMaP algorithm developers did not consider near-real-time operation
and data availability. To meet this demand, a near-real-time product of the GSMaP (GSMaP_NRT)
with resolutions of 0.1◦ and 1 h was developed. Different from GSMaP_MVK, the GSMaP_NRT only
employs forward cloud movement to hold operability in near-real-time. The emergence of GSMaP_NRT
product attracts a lot of data users, owing to its short latency (~3 h after observation). To reduce the
bias in the GSMaP_NRT product, a new algorithm introducing gauge information to GSMaP_NRT
(i.e., GSMaP_Gauge_NRT) is currently under development. In the GSMaP_Gauge_NRT product, a
precipitation error parameters model was created based on the historical database of GSMaP_Gauge.
Then, these parameters were used to adjust the GSMaP_NRT estimation in near-real-time to improve
the precision of GSMaP_NRT. Considering that the GSMaP_Gauge_NRT product does not use the
gauge measurement directly, this makes the GSMaP_Gauge_NRT independent of the ground gauge
observations. Recently, the latest GSMaP algorithm upgraded to version 7, and its near-real-time
products were made available after 17 January 2017. In this study, the GSMaP_Gauge_NRT product
and the uncalibrated GSMaP_NRT product were investigated over a complete two-year period
(from September 2017 to August 2019). Both satellite precipitations were aggregated into daily
amounts, with a 0.25◦ × 0.25◦ resolution corresponding to the gauge data.
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2.3. Methods

In this study, we conducted the assessment and comparison of GSMaP precipitation based
on continuous statistical metrics and contingency table metrics. The continuous metrics included
correlation coefficient (CC), mean error (ME), root mean squared error (RMSE), and relative bias
(BIAS), which are widely used to quantitatively represent the degree of agreement and the error
between satellite precipitation and gauge observations. These continuous metrics were calculated by
the following equation:

CC =

∑n
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)(
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)
√∑n

i=1

(
Gi −G

)2·
√∑n

i=1

(
Si − S

)2
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BIAS =

∑n
i=1(Si −Gi)∑n

i=1 Gi
× 100% (4)

where Si and Gi are the precipitation values from satellite estimation and gauge data, respectively;
correspondingly, S and G are their mean precipitation, and n is the number of samples.

In addition, three contingency table metrics were adopted to evaluate the capability of satellite
precipitation in the detection of precipitation events. These categorical metrics were the probability
of detection (POD), false alarm ratio (FAR), and critical success index (CSI). POD is usually used to
represent the fraction of precipitation events that correctly detected by satellite among all the actual
precipitation events. FAR denotes the ratio of false alarm by satellite among the total satellite detected
events. The CSI, combining the correct hit, false alarm, and missed event, is a more comprehensive
score. The formulas of these contingency table metrics are listed below:

POD =
H

H + M
(5)

FAR =
F

H + F
(6)

CSI =
H

H + M + F
(7)

where H, M, and F are the numbers of different precipitation events: Hit (both satellite estimates and
gauge observations detect rain), miss (observed rain that is not detected by satellite), false (rain detected
but not observed). Here, a commonly used threshold of 1.0 mm/day was set to define the rain/no rain
event, as suggested by many previous studies [47–50].

For more detailed description of above continuous statistical metrics and contingency table
metrics, readers can refer to Yong et al. [25] and Lu et al. [30]. We need to point out that all metrics were
calculated in the 0.25◦ × 0.25◦ grid boxes with at least one gauge in order to ensure more convincing
results (gauge distribution shows in Figure 1a). However, we also calculated metric value in every
grid box to enable a visualization when presenting continuous spatial distribution (Figure 2).

431



Remote Sens. 2020, 12, 141

Figure 2. Spatial distribution of statistical indices derived from the GSMaP_NRT (left column) and
GSMaP_Gauge_NRT (right column) daily precipitation at 0.25◦ × 0.25◦ resolution over the Mainland
China: (a,b) Correlation coefficient (CC), (c,d) root mean square error (RMSE), and (e,f) probablility of
detection (POD).

3. Results

3.1. Daily Mean Precipitation

Figure 1b–d displays the spatial distributions of two-year daily mean precipitation for GSMaP
and CGDPA precipitation products. Generally speaking, the spatial distributions of GSMaP and
CGDPA precipitations were similar, showing a downward gradient from the southeast China to the
northwest China. However, a pronounced difference in the precipitation amount was found between
the gauge observations and GSMaP satellite precipitation products. For example, compared with
the CGDPA, the GSMaP_NRT tended to underestimate the gauge observations in the southeast and
overestimated them in the northwest. Impressively, the GSMaP_NRT significantly overestimated the
gauge precipitation in the Sichuan province due to the indirect retrieval of satellite precipitation. After
the parameterized gauge calibration, the errors in GSMaP_NRT were effectively suppressed, and the
GSMaP_Gauge_NRT had a more reliable performance than the GSMaP_NRT in capturing the spatial
patterns of precipitation over China. Therefore, the GSMaP_Gauge_NRT combined historical gauge
information to reduce biases, making it consistent with the ground measurements. This suggests
that the parameterized adjustment procedures can effectively enhance the quality of the original
GSMaP_NRT satellite precipitation estimates.
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3.2. Comparison and Validation of GSMaP_NRT and GSMaP_Gauge_NRT Products

Figure 2 shows the spatial maps of CC, RMSE, and POD, which were computed from two GSMaP
products against gauge observations over the Mainland China at the 0.25◦ × 0.25◦ resolution grid.
Generally speaking, the spatial distributions of GSMaP_Gauge_NRT exhibited a great improvement
compared to that of the GSMaP_NRT, with higher CC, lower RMSE, and slightly better POD values.
Over Mainland China, the CC increased from 0.58 with GSMaP_NRT to 0.67 with GSMaP_Gauge_NRT
and the RMSE dropped from 9.11 mm to 7.07, besides a small change of POD between GSMaP_NRT
(0.69) and GSMaP_Gauge_NRT (0.70). With respect to the spatial performance of error metrics, both
GSMaP_NRT and GSMaP_Gauge_NRT products exhibited similar features. That is, worse values
of CC and POD occurred in the northwest and improved toward the southeast, while higher RMSE
existed in the southeast. This phenomenon was reasonable because the RMSE value increased with
increasing precipitation amounts, and southeastern China has more precipitation than other areas in
China. Distributions of CC, RMSE, and POD indicate that GSMaP_Gauge_NRT performs better than
GSMaP_NRT over Mainland China, suggesting that the calibration in near-real-time can effectively
reduce the error and improve detectability of GSMaP_NRT.

We further inquired about the temporal behavior and the seasonal statistics of the GSMaP_NRT and
GSMaP_Gauge_NRT products over Mainland China. In order to ensure a more accurate comparison,
only those grids that contained at least one gauge were taken to compute the statistical indices. Figure 3
depicts the monthly precipitation and monthly variations of statistical metrics from gauges and
GSMaP precipitation products by calculating at daily scale. Table 1 summarizes the seasonal statistics
including spring (March–May), summer (June–August), autumn (September–November), and winter
(December–February). It can be see that both GSMaP_NRT and GSMaP_Gauge_NRT products can
generally capture the intra-annual and seasonal variation patterns of precipitation over China, with
the rainy summer and dry winter (Figure 3a). The GSMaP_NRT showed much more precipitation
than gauge observations in most months, and the GSMaP_Gauge_NRT reduced this overestimation,
which was more consistent with gauge observations. The time series of statistical indices clearly show
that the GSMaP_Gauge_NRT outperforms GSMaP_NRT with higher correlation, lower error, and
better detection (Figure 3b–d). This further confirms that the calibration in the GSMaP_Gauge_NRT
can substantially improve the quality of the original GSMaP_NRT precipitation product. However,
it is worth noting that the BIAS was increased in some months. This issue may be due to the fact
that the overestimation and underestimation at different regions could cancel each other out when
calculating the BIAS value. Focusing on the curves of CC and RMSE, we can conclude that the
GSMaP_Gauge_NRT had better agreement with gauge observations than the GSMaP_NRT products
over China. In addition, we note that the performance of satellite precipitation productions showed
obvious seasonally dependent variations, with better statistical indices in summer and worse in winter
(Table 1). Taking CC as an example, the value of CC decreased from 0.62 in summer to 0.41 in winter
for GSMaP_NRT and from 0.67 to 0.58 for GSMaP_Gauge_NRT. During the winter months, the snow
brought by the westerly winds was the main form of precipitation in the north and west regions of
China. However, the complex radiative properties of ice particles and snowflakes restricted the retrieval
capability of microwave radiation. On the one hand, the low-frequency channels of PMW sensors
contain limited snow detection information, but account for most of PMW channels and are traditionally
used to retrieve rain drops. On the other hand, more snow-related high-frequency channels will be
seriously interfered in the snow-covered background surfaces, which often present a similar passive
microwave signature as the falling snow [51]. Therefore, measuring solid precipitation and snow
is a challenging task for the satellite precipitation retrievals, which was pointed by many previous
studies [15,23,25,52]. The GSMaP_Gauge_NRT product can combine the gauge information to reduce
the precipitation error of GSMaP_NRT in winter, showing more consistency with gauge observations.
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Figure 3. (a) Time series of mean monthly precipitation and monthly variations of statistical indices
over grid boxes with at least one gauge in Mainland China: (b) Correlation coefficient (CC), (c) root
mean square error (RMSE), (d) relative bias (BIAS), and (e) probablility of detection (POD).

Table 1. Seasonal statistics of GSMaP_NRT and GSMaP_Gauge_NRT against ground observations
from selected 0.25◦ grid boxes over the Mainland China.

Season Product CC
ME

(mm)
BIAS
(%)

RMSE
(mm)

POD FAR CSI

Annual GSMaP_NRT 0.58 0.40 15.84 9.11 0.69 0.33 0.52
GSMaP_Gauge_NRT 0.67 0.11 4.46 7.07 0.70 0.35 0.51

Spring GSMaP_NRT 0.61 0.88 34.49 8.91 0.76 0.36 0.54
GSMaP_Gauge_NRT 0.68 −0.03 −1.23 6.29 0.74 0.34 0.53

Summer GSMaP_NRT 0.62 0.33 6.48 12.26 0.76 0.26 0.60
GSMaP_Gauge_NRT 0.67 0.01 0.27 10.59 0.76 0.24 0.61

Autumn GSMaP_NRT 0.48 0.32 16.15 8.71 0.67 0.36 0.48
GSMaP_Gauge_NRT 0.65 0.39 19.41 6.12 0.72 0.45 0.45

Winter GSMaP_NRT 0.41 0.06 7.07 6.15 0.42 0.41 0.32
GSMaP_Gauge_NRT 0.58 0.07 8.33 4.56 0.43 0.45 0.32

Considering the diverse climate of China, it was rational to subdivide national-scale evaluation
into regional analyses. Figure 4 shows the scatterplots of daily GSMaP_NRT and GSMaP_Gauge_NRT
against gauge observations for the selected grids over different climate regions. Clearly, over the four
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climate regions, all the scatterplots show that the scatter points of GSMaP_Gauge_NRT were clustered
closer to the 1:1 line than those of GSMaP_NRT estimates, meaning that the GSMaP_Gauge_NRT was
more in agreement with gauge observations. The GSMaP_NRT estimate significantly overestimated
the gauge precipitation with BIAS range from 0.82% to 149.08% (see left column in Figure 4).
After the calibration, these biases were effectively minimized in the GSMaP_Gauge_NRT product.
Correspondingly, the CC values increased from GSMaP_NRT to GSMaP_Gauge_NRT, and the RMSE
values showed an apparent downward trend. However, in terms of the contingency table statistics,
the improvements were not obvious. This suggests that the calibration can effectively reduce the bias
but is not good at improving the skill of detecting rainy events. Additionally, Figure 4 illustrates that
the two near-real-time GSMaP products had different performances at four climate regimes, with
better agreement from gauge observations over the humid region (Figure 4a,b) and an unsatisfactory
performance over the arid region (Figure 4g,h). This was likely caused by the different retrieval skills of
rainfall types over different climate regimes. The arid region, covered with desert and high mountains,
was dominated by short-lived convective precipitation and orographic precipitation. However, the
satellite-based precipitation retrieval had difficulty coping with these two precipitation conditions.
Moreover, the light rainfall and winter snow in arid region further imposed another challenge to the
satellite-based precipitation estimates. Consequently, the satellite precipitation products usually had
an unsatisfactory performance over the arid region in China, and this is consistent with the result of
Yong et al. [39] and Chen et al. [46]. Compared to GSMaP_NRT, the GSMaP_Gauge_NRT obviously
improved the data accuracy, but it had low CC (0.36) and BIAS (35.08%) values over the arid region.
Such results indicate that the current near-real-time gage calibration algorithm of GSMaP still have
significant room for further improving the data quality over the arid region.

Theoretically, a value of satellite precipitation can be divided into four categories based on its ability
to identify rain occurrences. A hit event means that both the satellite estimate and gauge reference
detected rain, while miss precipitation suggests that a rain event was reported by gauge observation
but not detected by satellite. In contrast, false precipitation means that precipitation was detected by
satellite but not observed by gauge, and the rest part of precipitation means that that both satellite and
gauge showed no rain. Based on the different precipitation events, we further computed the intensity
distributions of daily precipitation amount to look into the error characteristics of GSMaP products
(Figure 5). The rainfall intensity was binned with logarithmic scale across the range of 1–256 mm/day,
and the daily averaged precipitation accumulation of each bin was calculated on the y-axis. The intensity
distribution, which has different error components, can reveal detailed information on the error features
at the event scale. As shown in Figure 5, the intensity distributions of total precipitation were generally
similar to those of hit precipitation, suggesting that hit event was the dominate component of total
precipitation. However, over the arid region, the false precipitation also accounted for a considerable
proportion of the total precipitation. Considering that the false precipitation will amplify the total
precipitation amount of satellite, the obvious overestimation of two near-real-time GSMaP products
over the arid region was partly caused by the false rainy events. On the other hand, compared to
GSMaP_NRT, the intensity distributions of GSMaP_Gauge_NRT were closer to the gauge observations
(first column in Figure 5), which indicates that the GSMaP_Gauge_NRT has better performance than
the GSMaP_NRT. Additionally, it can be seen that the calibration of GSMaP_Gauge_NRT mainly
changed the intensity distributions at a moderate–high rain rate. For example, the GSMaP_NRT had
more precipitation amounts than gauge observations over the semi-humid region (Figure 5e). After the
calibration, the curve of GSMaP_Gauge_NRT descended and was more consist with the gauge. In the
third column of Figure 5, it was found that the GSMaP_NRT and GSMaP_Gauge_NRT showed basically
identical intensity distributions of miss precipitation over all four climate regions. This implies that the
GSMaP_Gauge_NRT failed to correct precipitation events undetected by the satellites in the calibration
process. Therefore, the future correction efforts of incorporating different precipitation component is
recommended to improve the precision of satellite precipitation.
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Figure 4. Scatterplots of the daily precipitation for GSMaP_NRT (left) and GSMaP_Gauge_NRT (right)
versus gauge observations at selected grid boxes over four climate regions: (a,b) Humid region;
(c,d) semi-humid region; (e,f) semi-arid region; (g,h) arid region.
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Figure 5. Daily intensity distribution of the total, hit, miss, and false precipitation over four climate
regions: (a–d) Humid region; (e–h) semi-humid region; (i–l) semi-arid region; and (m–p) arid region.
The total observed precipitation (black line) is also shown in the first two columns.

3.3. Global View of GSMaP_NRT and GSMaP_Gauge_NRT

In the previous section, we compared the GSMaP_NRT with GSMaP_Gauge_NRT satellite
precipitation products over the Mainland China. The results showed that the GSMaP_Gauge_NRT
effectively reduced the error in GSMaP_NRT and was more consistent with gauge observations. To
obtain a much broader view of GSMaP_Gauge_NRT at other regions, we extended the comparison to
the global scale. Operationally, it is usually difficult to validate the satellite precipitation products on
the global scale using gauge observations, due to the fact that the ground gauge networks are sparse
or nonexistent in many regions like oceans, deserts, and mountains. In order to provide a globally
consistent evaluation, we chose the GSMaP_Gauge product as the reference data for global comparison.
Figure 6 displays the spatial difference between the two near-real-time GSMaP products and the
standard GSMaP_Gauge product. It can be seen that the GSMaP_NRT underestimated the precipitation
in the southeastern China, which was consistent with the evaluation results when using CGDPA as a
reference. The calibrated GSMaP_Gauge_NRT substantially decreased this underestimation and was
closer to the GSMaP_Gauge. Globally, the GSMaP_NRT exhibited positive bias over most parts of
the world. Most notably, along the intertropical convergence zone (ITPC) extending toward Central
America, eastern United States, southern parts of South America, and West Africa, the GSMaP_NRT
tended to overestimate precipitation. After the real-time calibration, these positive biases were
effectively reduced. Besides, compared to the GSMaP_Gauge, the GSMaP_Gauge_NRT only had slight
underestimations over most parts of world, except for the ITPC, with an overestimation (Figure 6b).
Considering that the development of GSMaP_Gauge_NRT intended to make the GSMaP near-real-time
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products as close to the GSMaP_Gauge product as possible, we believe that the parameterized gauge
calibration effectively reduced the errors in GSMaP_NRT, and that the calibrated GSMaP_Gauge_NRT
is a better product than GSMaP_NRT.

Figure 6. Global map of mean daily precipitation difference between (a) GSMaP_NRT and
GSMaP_Gauge and (b) GSMaP_Gauge_NRT and GSMaP_Gauge.

4. Discussion

Remote sensing of precipitation provides an alternative source for precipitation data beyond
ground observations. To date, numerous studies have reported the performance of satellite precipitation
products in many areas around the world [20,53–58]. However, most of these evaluations focused
on the post-real-time products that are usually available after a few days or months [59–61]. The
near-real-time satellite precipitation products are more attractive for some application scenarios,
owing to their timeliness. To the best of our knowledge, our study is a first evaluation of the
gauge-adjusted near-real-time GSMaP precipitation estimate. The results in this study showed that the
GSMaP_Gauge_NRT has a more reliable performance than its original GSMaP_NRT over China. This
provides a positive feedback to the GSMaP algorithm team, as they expected. In the TRMM era, the
CCA was proposed to improve the accuracy of TMPA-RT. However, this climatological calibration is
not currently used in IMERG near-real-time products due to its poor performance at high latitudes
and altitudes [9,31]. In the GPM era, the GSMaP and IMERG were the most popular high-resolution
satellite precipitation products, and the GSMaP_NRT and IMERG-early were their near-real-time
products with latency periods of 3 h and 4 h, respectively. Therefore, when the CCA is applied in the
IMERG product, it is necessary to compare these two near-real-time products of GSMaP and IMERG,
and this work can be continued in the future.

As a preliminary assessment of the near-real-time GSMaP precipitation estimate, we performed
the validation at daily scale considering the availability of reference data. Previous studies found that
the performances of satellite precipitation products are sensitive to the spatiotemporal scale [62,63].
Such a resampling in this study may lose the potential characters of GSMaP products at their original
resolutions. However, our study mainly focused on the comparing of GSMaP_Gauge_NRT and
GSMaP_NRT. Thus, this modification of scale should not change the conclusions of our study. In the
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next work, we will investigate the performance of GSMaP_Gauge_NRT product in sub-daily or hourly
time scales.

The evaluation showed that the calibrated GSMaP_Gauge_NRT has better performance than
the original GSMaP_NRT. Thus, it is reasonable to choose the GSMaP_Gauge_NRT precipitation
product for users with their requirement of near-real-time data. Of course, more researches are needed
for knowing the application potentiality of GSMaP_Gauge_NRT. The performance of the IMERG
near-real-time products have been investigated in capturing extreme precipitation events [64,65]. The
results of these studies indicated that the IMERG has a promising potential for monitoring typhoon
rainfall. Considering the accuracy improvement of GSMaP_Gauge_NRT, further application researches,
like rainstorm monitoring and hydrological simulation, are encouraged. This will provide useful
feedbacks and insights about the GSMaP_Gauge_NRT to decision-makers and the scientific community.

5. Conclusions

Recently, the GSMaP algorithm developers proposed a parameterized gauge calibration method
to reduce the errors in GSMaP_NRT without jeopardizing its near-real-time availability. In this study,
we compared and validated the calibrated GSMaP_Gauge_NRT product with the original GSMaP_NRT
over the Mainland China, by using a high-quality ground gauge reference dataset.

Our analyses showed that the GSMaP_NRT product can well-capture spatial patterns of
precipitation across the China, but it significantly overestimates the reference precipitation with
BIAS of 15.84%. After bias adjustment, this overestimation was obviously reduced, with slight
overestimation for GSMaP_Gauge_NRT (4.46%). Correspondingly, the value of CC rose from 0.58
for GSMaP_NRT to 0.67 for GSMaP_Gauge_NRT, and the RMSE was reduced from 9.11 mm to
7.07 mm. This indicates that the parameterized calibration strategy can effectively decrease the bias
in the GSMaP_NRT, and that the calibrated GSMaP_Gauge_NRT has a better performance than the
original GSMaP_NRT.

In terms of the contingency table statistics, we found that the improvements in the contingency
table statistics were not obvious. This suggests that the calibration can effectively reduce the bias
but is not good at improving the skill of detecting precipitation events. When we decomposed
satellite precipitation into different rainy events, the results further validated that the correction
scheme mainly occurred in the hit event and could hardly make up the rainfall missed by the satellites.
Thus, we highlight that incorporation of precipitation components is of vital importance for future
calibration work.

Finally, our evaluation was extended to the global scale to examine the performance of
GSMaP_Gauge_NRT from a broader perspective. The global analysis showed that the bias in
GSMaP_ NRT was generally alleviated after gauge calibration and the calibrated GSMaP_Gauge_NRT
product was in good agreement with the GSMaP_Gauge product. Therefore, to summarize, all of
the results in this study suggest that GSMaP_Gauge_NRT can effectively reduce the uncertainties in
GSMaP_NRT after the calibration and that the GSMaP_Gauge_NRT is a more reliable near-real-time
satellite precipitation product than the original GSMaP_NRT. As a preliminary assessment of
GSMaP_Gauge_NRT product, we hope that this study provides useful information for algorithm
developers and product users. Considering the diverse nature of the world’s topography and
climate characteristics, future studies are encouraged to evaluate and validate the performance of
GSMaP_Gauge_NRT product in more regions using local density gauge networks.
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Abstract: Accurate estimation of precipitation is crucial for fundamental input to various
hydrometeorological applications. Ground-based precipitation data suffer limitations associated with
spatial resolution and coverage; hence, satellite precipitation products can be used to complement
traditional rain gauge systems. However, the satellite precipitation data need to be validated
before extensive use in the applications. Hence, we conducted a thorough validation of the Global
Precipitation Measurement (GPM) Integrated Multi-satellite Retrievals (IMERG) product for all
of Iran. The study focused on investigating the performance of daily and monthly GPM IMERG
(early, late, final, and monthly) products by comparing them with ground-based precipitation data at
synoptic stations throughout the country (2014–2017). The spatial and temporal performance of the
GPM IMERG was evaluated using eight statistical criteria considering the rainfall index at the country
level. The rainfall detection ability index (POD) showed that the best IMERG product’s performance
is for the spring season while the false alarm ratio (FAR) index indicated the inferior performance of
the IMERG products for the summer season. The performance of the products generally increased
from IMERG-Early to –Final according to the relative bias (rBIAS) results while, based on the
quantile-quantile (Q-Q) plots, the IMERG-Final could not be suggested for the applications relying on
extreme rainfall estimates compared to IMERG-Early and -Late. The results in this paper improve
the understanding of IMERG product’s performance and open a door to future studies regarding
hydrometeorological applications of these products in Iran.

Keywords: GPM IMERG; Iran; satellite precipitation; spatiotemporal analysis; statistical distribution;
validation

1. Introduction

Precipitation plays a crucial role in the Earth’s hydrological cycle and is a fundamental input to
a wide range of hydrological, meteorological, and climate model applications [1,2]. Thus, accurate
estimation of the precipitation amount and pattern is vital for improved prediction of water-related
processes as well as reducing uncertainties for effective water resource management practices [3,4].
To obtain precipitation amounts, ground-based measurements, i.e., rain gauges and weather radars,
are considered a reliable source mainly at the local scale. At the regional and global scale, however, there
are limitations for using ground-based measurements, particularly in most developing countries [5].
Radar networks are often available where there is a coverage by rain gauges. However, radars are
subject to different errors and uncertainties, such as ground clutter, anomalous propagation, signal
attenuation, beam blockage, and bright band contamination [6].
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Rain gauges are limited in describing the spatial distribution of precipitation depending on the
arrangement and density of the rain gauge network [7,8]. In order to spatially characterize precipitation,
gauge measurements are transformed to a gridded precipitation dataset. This is carried out through
interpolation of rain gauge measurements, using spatial interpolation and geo-statistical methods [9].
These may be prone to missing values, wind effects, insufficient numbers of rain gauges, and a sparse
network, especially in less accessible mountainous and oceanic areas [4].

In view of the above, the spatial limitations, resolution, and coverage of ground-based
measurements highlight the importance of satellite-based precipitation estimates at both the regional
and global scale. Satellite-based precipitation estimates are also subject to uncertainties through cloud
top reflectance, thermal radiance, infrequent satellite overpasses, and retrieval algorithm related to the
nature of indirect measurement [10]. Therefore, a thorough validation of satellite precipitation data in
any given area is necessary to achieve insight regarding is accuracy as well as identifying sources of
errors to improve algorithms and satellite sensor development. Further, accuracy assessment taking
into account the pros and cons of satellite precipitation estimates is imperative before using data in
hydrological modeling in any given region [11,12]. Such findings help in selecting a supportive product
for a special application under different circumstances [1].

Given the success of the Tropical Rainfall Measuring Mission (TRMM), the National Aeronautical
and Space Administration (NASA) and Japan Aerospace Exploratory Agency (JAXA) launched a
new generation Global Precipitation Measurement (GPM) mission in early 2014 to replace the TRMM
mission [13]. The GPM mission is expected to compensate the limitations of TRMM precipitation
products by providing higher resolution, larger spatial coverage, and more accurate global precipitation
estimates [14]. The GPM precipitation algorithm, Integrated Multi-satellite Retrievals for GPM (IMERG),
is based upon the experiences from the TRMM algorithm. As the spatiotemporal resolution and
coverage of GPM have been extended beyond the TRMM resolution and coverage, the performance of
the GPM IMERG products needs to be evaluated and validated globally.

Several studies have compared the GPM IMERG and TRMM products with ground-based
measurements, i.e., rain gauge and weather radar [4,6,10,15–19], considering their hydrological
applications [14,20–22]. Also, different GPM IMERG products regarding temporal resolutions have
been evaluated considering various climatic and topographic conditions using various statistical
measures across the world [5,23–30]. Although most of these studies confirmed the improvement of
the IMERG products relative to those of the TRMM Multi-satellite Precipitation Analysis (TMPA),
a more comprehensive investigation is still essential to better understand the IMERG performance
in various regions of the world taking into consideration different products’ versions and temporal
resolution. Countries in the Middle East suffer from acute hydrometeorological data shortage, both in
terms of quality and quantity [15], and Iran is not an exception. Rain gauges are sparse and unevenly
distributed throughout the country, particularly in remote areas of the center and eastern areas. Delays
in data processing and publishing for public access and scientific use and an absence of data sharing in
many trans-boundary basins constitute a main shortcoming for ground-based precipitation data in the
country [5]. To our knowledge, there are very few investigations of the IMERG products´ performance
over Iran on a basin scale [5,10]. There are no comprehensive studies that investigate the performance
of the IMERG product at the country level.

According to the above, the newly available IMERG products have not been thoroughly explored
for Iran as a whole. The country covers different climatic, geographic, and topographic features,
with respect to temporal and spatial particularities and different satellite products´ versions. This study
aimed to provide a better understanding of the IMERG product’s performance over the country
and open a door to future studies regarding hydrological and hydrometeorological applications of
these products at both the local and regional scale. Accordingly, we performed a comprehensive
evaluation of the performance of IMERG products considering three time-latencies, IMERG-Early,
IMERG-Late, and IMERG-Final, and two temporal resolutions, daily and monthly, based on eight
criteria indices. We examined these criteria in view of spatial and temporal patterns related to features,
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such as elevation, slope, latitude, and longitude, over the entire Iran. Also, the statistical distributions
of the precipitation products were compared to that of ground measurements for different seasons.

2. Materials and Methods

2.1. Study Area

Iran covers an area of about 1.648 million km2, located between 44–64◦ East and 25–40◦ North in
the eastern part of the Middle East [31]. The country is bordered by Azerbaijan, Armenia, Turkmenistan,
and the Caspian Sea to the north; Afghanistan and Pakistan to the east; Oman Sea and Persian Gulf
to the south; and Turkey and Iraq to the west (Figure 1a). The temporal and seasonal distribution of
precipitation is governed by the interaction of the tropical air mass from the Red Sea, the Mediterranean
low pressure, and the Siberian and western high pressures [31].

Figure 1. (a) Map of Iran and (b) distribution of rain gauges with altitude.

Half of Iran’s land surface is mountainous, a quarter is covered by fertile and productive plains,
and the final quarter by salty arid desert [32]. Zagros and Alborz are the two main mountainous areas,
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which are located along the western and northern borders of the country, respectively. These mountain
ranges prevent much of the available humidity, mostly initiating from the Mediterranean and Caspian
Sea in the West and North of the country, from reaching the interior parts, so singularly govern the
spatial patterns of precipitation across Iran [31,33] (Figure 1b). As a result, the central parts of the
country and the southwestern areas of the Caspian Sea receive an average of 100 and 1800 mm year-1,
respectively [31].

Iran encircles a variety of climates, which range from extremely to subtropical dry in the central to
eastern parts of the country, wet to extremely wet in the coastal plains of the Caspian Sea, relatively wet
in some western areas, and arid to semiarid zones in the rest of the country [34]. The Mediterranean
Synoptic System is the dominant weather system in the country, where the rainy season is from October
to April, with a peak in December. The driest month is July.

2.2. Datasets

2.2.1. Satellite-Based Precipitation (GPM IMERG)

The GPM mission was launched on 27 February 2014 by NASA and JAXA as an international
joint project for frequent measurements of near-global precipitation. Like the antecedent mission
TRMM, the GPM is a constellation of multiple satellites, which comprise the GPM Core Observatory
carrying combined passive/active sensors, and microwave measurements by partner satellites.
The Core Observatory information acts as a reference standard to combine other satellites’ microwave
precipitation measurements that orbit within the same constellation. The GPM Core Observatory
technically consists of two major sensors: GPM Microwave Imager (GMI) and Dual-frequency
Precipitation Radar (DPR). The GMI sensor measures precipitation characteristics, such as intensity,
type, and size, while DPR observes the internal structure of storms within and under the clouds and
measures precipitation in 3D throughout the atmospheric column and provides an insight into the
structure of rain drops [7].

The success of the GPM mission depends upon algorithm development that combines both
GMI and DPR observations and the partner satellites’ measurements. GPM data are available online
at three various processing levels, including geo-located and calibrated (Level 1), geophysical data
product derived from Level 1 data (Level 2), and a composite of Level 2 data products (Level 3) [35].
The GPM Level-3, namely IMERG, is derived from multiple satellites and available as three different
types of daily products consisting of early run (IMERG-Early), late run (IMERG-Late), and final
run (IMERG-Final), which are published with 4-h, 12-h, and 2.5-month latencies, respectively, and a
monthly product (IMERG-Monthly). These products are accessible at 0.1◦ × 0.1◦ spatial resolution
for regions between 60◦ S and 60◦ N globally and at several temporal resolutions, i.e., half-hourly,
3-hourly, daily, and monthly [15]. More detailed information and an algorithm description can be found
in [35]. While IMERG-Early provides a quick estimate with only a 3-h latency period, IMERG-Late
successively presents better estimates as data from more partner satellites is merged with a 12-h latency
period. IMERG-Final estimates are, however, presented after bias adjustment with monthly rain-gauge
measurements with a three-month latency. The IMERG-Early data can be used for potential flood
or landslide warnings while the IMERG-Late and Final data can be used in agricultural forecasting,
drought monitoring, and hydrological modeling [24].

It is noted that the IMERG-Final run algorithm provides two different types of precipitation
estimates, including precipitationCal (with rain gauge-adjusted processes) and precipitationUnCal
(without rain gauge-adjusted processes). Based on the literature, precipitationCal has indicated better
performance relative to ground-based measurements [25]. Therefore, this algorithm together with
the IMERG-Early, -Late, and -Monthly products from April 2014 until December 2017 were used in
this study.
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2.2.2. Ground-Based Precipitation

The ground-based precipitation data were obtained from the I.R. IRAN Meteorological
Organization (IRIMO). IRIMO is responsible for recording hourly and daily precipitation and quality
control is carried out before releasing recorded data to the user’s community across the country [33].
This dataset is considered as the most reliable precipitation data source in Iran [31].

Although these data are freely available for research purposes, the data are not available online
and should be obtained in person. In total, 403 meteorological synoptic stations were under operation
across the country, of which only 370 stations had at least one year of daily records and were selected
for this study. Perfectly, 368 and 349 of the selected stations had at least two and three years of
daily records for the studied period, respectively, between April 2014 and December 2017. While
GPM IMERG data were historically complete (without missing data), the selection of this period is
attributed to the availability of both satellite and rain gauge precipitation datasets. Figure 1b shows
the distribution of the synoptic stations throughout the country.

2.3. Evaluation Processes and Indices

2.3.1. Data Preparation

The GPM IMERG products that cover the entire country from 1 April 1 2014 to 31 December 2017
at daily and monthly time scales and 0.1◦ × 0.1◦ (about 11 km on the equator) resolution were acquired.
The RT-H5 file format, in which RT refers to real-time and H5 denotes an HDF5 file, was converted
to the ASCII format and all days were stacked by a written algorithm in R programming language.
The precipitation was converted to mm day−1 for all IMERG products for the purpose of consistency
with ground-based data. As for the point (rain-gauges) to pixel (IMERG products) comparison, each
IMERG pixel corresponding to single rain gauge locations was extracted. The extracted IMERG
data and the corresponding rain gauge data for daily and monthly time scales were then used in
the analyses.

2.3.2. Error Analysis of IMERG Products

To assess the performance of satellite-based precipitation products against measured precipitation
by rain gauges, widely applied evaluation indices, including the mean absolute error (MAE), Pearson
correlation coefficient (CC) [14], and relative bias (rBIAS) [36], were used. In this regard, MAE
(Equation (1)) indicates the error distribution and mean magnitude of errors without considering
direction. MAE has the same unit as the precipitation data (i.e., mm day−1). These criteria were
calculated for each grid covering the attributed rain gauges. Daily and monthly products were
separately analyzed, mainly due to the smooth nature of monthly data and superior performance
relative to daily products. The CC (Equation (2)) shows the agreement between the precipitation
estimated by the satellite and rain gauge measurements. CC is a dimensionless number, which varies
between −1 and 1, with CC equal to zero when there is no correlation. The rBIAS (Equation (3))
represents the size and direction of the difference between the two datasets. Positive and negative rBIAS
is an overall overestimation and underestimation of the satellite relative rain gauge measurements,
respectively [7]. MAE and rBIAS close to 0 and CC close to 1 display the best performance of the
IMERG products relative to the rain gauge measurements in this study:

MAE =

∑n
i=1|Si −Oi|

n
, (1)

CC =

∑n
i=1
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)(
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)
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)∑n
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rBIAS =

∑n
i=1(Si −Oi)∑n

i=1 Oi
or

S− O

O
, (3)

where Oi and Si are the observed rain gauge and satellite-based precipitation data, respectively,
O and S are the rainfall averages for pixel i associated to the rain gauge, and n is the total number of
satellite-gauge data pairs, which are being compared.

In addition, to investigate how often a significant over/under-estimation by the satellite takes place
regardless of the overall magnitude and direction of the errors, we introduced two new indices, named
over and under, based on introducing a preliminary index of equal, which stands for an insignificant
error. This corresponds to an error smaller than 10% as compared to measurements. However, errors
smaller than 0.25 mm day−1 were considered insignificant as well. The over, under, and equal indices
are presented as percentages.

Further, to quantify the precipitation detection ability of the satellite-based precipitation estimates
against the ground-based observations, two indices, including the probability of detection (POD) and
false alarm ratio (FAR) were calculated (Equations (4) and (5)). The POD expresses the ratio of the
correct precipitation detection of the satellite and FAR measures the proportion of no-rain events
that are recorded as rain by the satellite. The closest values to 100% and 0% display the best satellite
performance for POD and FAR, respectively [14]. The following equations define the POD and FAR:

POD =
n11

n11 + n10
× 100, (4)

FAR =
n01

n11 + n01
× 100, (5)

where n11 is the number of rainfall events that are observed by the rain gauge and detected by the
satellite, n10 is the number of rainfall events that are observed by the rain gauge but not detected by
the satellite, and n01 is the number of rainfall events that are detected by the satellite but not observed
by the rain gauge.

2.3.3. Analysis of Statistical Distribution

The statistical distribution of rainfall data is an important component of hydrological and
hydrometeorological studies, such as in intensity–duration–frequency (IDF) relationships and design
storms. The quantile-quantile (Q-Q) plot is a graphical tool for determining whether the two datasets,
i.e., ground- and satellite-based, have similar distributional shapes. The technique is conducted by
plotting quantiles (or percentiles) of the two datasets versus one another and comparing the plot with
a 45◦ reference line. Accordingly, the Q-Q plot is a scatter plot, with the points falling approximately
along the reference line standing for a common distribution for the two datasets. On the contrary,
the greater the departure from the reference line, the greater the evidence for refusing this assumption.
It is worth noting that the quantiles of a dataset are the points below which a certain proportion of the
data lies. For example, in a classic standard normal probability distribution with a mean of 0, the 0.5
quantile (or 50th percentile), 0 means that half the data are not exceeding 0.

There are also analytical methods, such as the chi-square and Kolmogorov–Smirnov 2-sample
tests, that are used for assessing if two sets of quantiles follow the same distribution. However, the Q-Q
plot is favorable as it provides more insight into the nature of the difference between two datasets than
analytical methods. Although the Q-Q plot is only a visual check rather than an air-tight proof, it helps
to observe if the assumption is plausible and, otherwise, which data points at which quantile cause the
violation of the assumption.

The Q-Q plot can easily show the under/overestimation of a dataset, i.e., satellite, compared to the
rain gauge, between percentiles of the datasets. Additionally, many distributional aspects, including
shifts in location, shifts in scale, change in symmetry, tail behavior, and the presence of outliers, can be
discerned. The behavior of the tail of the Q-Q plot can be important for extreme hydrology studies.
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The tail refers to data points associated to statistically rare incidents, such as values above the 95th or
99th percentile of the datasets.

2.3.4. Geospatial and Temporal Analysis

The difference between the IMERG products and rain gauge measurements may depend on
geospatial conditions, time of the year, and the rainfall nature at the different geospatial locations.
To investigate this dependency, the evaluation indices presented in Section 2.3.2 were calculated for
different categories of geospatial factors, such as the elevation, slope, latitude, and longitude of satellite
grids corresponding to rain gauges locations. The evaluation was carried out for additional factors,
including the average annual rainfall, mean dry period (intervals between rainfall events), and rainfall
index (average annual rainfall/mean dry period) for stations representative of the frequency and
amount of rainfall at a given location. For simplicity, a location with a lower or higher rainfall index is,
alternatively, mentioned as a dryer or wetter location, respectively.

We used box plots to illustrate the variation of the indices for 10 different categories of rain gauges.
These categories were based on selecting 11 range limits of a given geospatial factor so that an equal
number of rain gauges was placed into each category (37 rain gauges out of the selected 370 synoptic
stations). Therefore, the 1st and the 11th limits were the minimum and the maximum values of the
geospatial factor among the selected locations of the study.

Further, the spatiotemporal evaluations were separately reported for each month and season
using combined maps. That is, plotting the spatial variation of the indices, e.g., POD, and, at the same
time, the factors, e.g., topography, for a given month or season in a single map.

3. Results and Discussion

3.1. General Comparison of Precipitation Datasets

Monthly, seasonal, and annual average precipitation from daily IMERG-Early, -Late, -Final, and
-Monthly products together with the corresponding ground observations are shown in Figure 2,
Figure 3, and Figure 4. We defined the seasons as winter (Dec-Jan-Feb), spring (Mar-Apr-May), summer
(Jun-Jul-Aug), and fall (Sep-Oct-Nov). Figure 2 shows the monthly averages of daily products, including
IMERG-Early, -Late, -Final, and -Monthly, compared to rain gauge-measured precipitation during the
study period. It can be seen that the difference between IMERG-Early, -Late products, and observations
is maximum in April and May (Figure 2). The rain gauge corrected IMERG-Final and -Monthly
products showed good agreement with observations during these two months. The correlation
between IMERG-Early and -Late products and ground observations in Figure 2 is 0.93 and 0.99 for
IMERG-Final and -Monthly products, respectively. In other words, the IMERG-Early and -Late daily
products are generally less accurate in estimating the monthly average rainfall amounts as compared
to the IMERG-Final. Further, the comparison indicates that IMERG-Final and -Monthly are highly
correlated during all months and consistent with the rain gauge measurements.

According to Figure 3, the IMERG-Early and -Late slightly underestimated the measured
precipitation in winter (by −7% and −12%, respectively) and overestimated the measured precipitation
in the spring (by 33% and 25%, respectively). In contrary, the IMERG-Final and -Monthly overestimated
the rain gauge measurements in winter (by 6% and 12%, respectively) but adequately matched measured
precipitation in the spring (overestimation by ~5%). Considering summer and fall, all daily products
showed high performance for the entire country while the IMERG-Monthly product performed well
for spring, summer, and fall with overestimation in the winter. Overall, IMERG-Final and -Monthly
products showed high performance in estimating seasonal precipitation relative to measurements.

Average annual precipitation (Figure 4) showed no major discrepancy between the IMERG-Late and
-Final (overestimation by only 2% and 1%, respectively) products relative to rain gauge measurements,
but the IMERG-Early and -Monthly products overestimated by 7% and 5%, respectively, relative to
the measurements.
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Figure 2. Monthly averages of IMERG-Early, -Late, and -Final based on the daily time step and
-Monthly products compared to ground-based precipitation measurements (Observation).

Figure 3. Seasonal averages of monthly and daily precipitation products (IMERG-Early, -Late, and
-Final), compared to ground-based precipitation measurements (Observation).

Figure 4. Annual averages of monthly and daily precipitation products (IMERG-Early, -Late, and
-Final), and ground-based precipitation measurements (Observation).

3.2. Error Analyses of IMERG Products

A comparison of corresponding spatiotemporal rainfall data in the two datasets, i.e., satellite and
rain gauge from the same location and time, was carried out using the evaluation indices introduced
in Section 2.3.2. Table 1 presents these indices, including CC, MAE, rBIAS, POD, FAR, Equal, Over,
and Under for the daily (IMERG-Early, -Late, and –Final) and monthly (IMERG-Final) time scale over
the country. The indices were calculated based on the overlaid IMERG pixels and rain gauge data
coordinates during the 2014–2017 period. For the comparison purposes, the daily products were
accumulated for each month and presented in the monthly time scale, so all products can be compared
in a monthly time scale supported with different values for the criteria indices monthly time scale
presented in Table 1. It is noted that the algorithms used for producing the IMERG-Monthly product
are different from those of the IMERG-Final, although both are gauge-corrected products.
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Table 1. Error analyses for daily and monthly IMERG products vs. rain gauge measurements in both
monthly and daily time scales.

Criteria
IMERG-Monthly IMERG-Early IMERG-Late IMERG-Final

Monthly Monthly Daily Monthly Daily Monthly Daily

CC 0.68 0.49 0.41 0.50 0.41 0.65 0.47
MAE (mm day−1) 0.44 0.62 1.14 0.60 1.10 0.43 1.03

rBIAS 0.05 0.04 0.09 −0.01 0.03 −0.04 0.00
POD (%) 99.8 97.9 67.6 98.3 68.0 98.3 67.9
FAR (%) 22.7 14.6 60.1 15.5 59.9 15.5 59.6
Over (%) 34.9 38.7 46.2 35.6 44.9 31.1 46.1
Equal (%) 47.1 36.3 12.0 38.2 12.7 48.3 13.2
Under (%) 18.0 25.0 41.8 26.3 42.3 20.6 40.7

Generally, in the monthly time scale, the IMERG-Monthly product showed the best performance
in comparison to rain gauge measurements, in relation to the daily IMERG products, especially for
IMERG-Early and IMERG-Late. However, the IMERG-Final products indicated, generally, comparable
results and even, to some degree, outperformed the IMERG-Monthly product according to the MAE,
rBIAS, FAR, Over, and Equal criteria. The CC between monthly rainfall from gauges and satellite
products was the highest, 0.68 for the IMERG-Monthly, and the MAE was the lowest, yielding 0.43 mm
day−1 for the IMERG-Final. In the case of relative bias between rain gauges and satellite products,
the results were excellent, yielding less than ±5% except for IMERG-Early in the daily time scale.
The bias calculation showed that the IMERG-Early products slightly overestimated the rain gauge
measurements at the country level, but a substantial improvement regarding rBIAS can be seen from
IMERG-Early, 9% to Final, 0% in daily time scale (Table 1).

Generally, in the case of IMERG daily products, in the daily time scale, criteria indices for the three
products did not significantly differ from each other, but the performance of the daily IMERG products
relative to the rain gauge measurements improved from IMERG-Early to -Final. The IMERG-Final
showed the highest correlation with rain gauge measurements, with a CC value of 0.47, followed by
the IMERG-Late and -Early both yielding 0.41. The MAE and rBIAS decreased from the IMERG-Early
to -Final products, showing a better performance of the IMERG-Final product relative to –Early and
–Late in comparison with the rain gauge measurements in the daily time scale (Table 1).

The results were acceptable for the satellite precipitation detection ability in all daily IMERG
products: POD= 0.68% in the daily time scale and POD= 98%–100% in the monthly time scale. The POD
did not change from the IMERG-Early to -Final daily products, meaning that the satellite-gauge-adjusted
algorithm, used in the IMERG-Final product, did not help for the detection improvement of the
IMERG-Early and –Late products. As mentioned in Section 2.2.2, the GPM Core Observatory’s
temporal resolution is three hours, which results in no calibration of the precipitation observed by
the constellation satellites within this gap for a given area. However, this problem is resolved by
accumulating the daily into monthly precipitation (POD = 1). Similar results were achieved for FAR
calculations. The IMERG daily products showed low performance by having a false detection value of
0.6 while the monthly FAR was 0.23, indicating an acceptable rain detection ability at the monthly time
scale (Table 1).

At the daily time scale, in principal, no significant improvement in rainfall detection ability
regarding POD and FAR indices were observed. Further, no substantial differences between all three
daily products were observed, as the monthly product showed a better performance in the estimation
of precipitation considering MAE and rBIAS, and precipitation detection, POD, and FAR.

The over index did not change much from IMERG-Early to -Final and the under index decreased
slightly from IMERG-Early (42%) to -Final (41%) products. For the daily products, equal was much
smaller than both over and under, and over was 2% to 6% higher than under. However, for the monthly
product, equal was about 47%, and over was 17% higher than under (Table 1). The more smoothed
nature of the monthly data variation, as compared to daily, is a probable reason for the higher equal
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obtained for the monthly product. Also, the larger upper values as compared to under for all products
is in line with the overall overestimation shown by the positive rBIAS. However, the cause of a larger
difference between upper and under for the monthly product, compared to the daily ones, can be
explained under some circumstances. For instance, suppose a month with only one (or few) rainy day
is overestimated by the satellite. While, at a daily time scale, this will be counted as only one (a few)
day of overestimation in the calculation of over, at the monthly time scale, this would be counted as
one month as compared to the length of monthly data, which is almost 30 times shorter than the daily
ones, therefore, resulting in higher over.

3.3. Evaluation of Statistical Distribution of IMERG Products

Figure 5 displays the Q-Q plots for each IMERG daily product and different seasons,
including winter (December-February), spring (March-May), summer (June-August), and fall
(September-November). It should be noted that these plots are not showing data from the tails
of the distributions (close to the 100th percentile). For clarity, the Q-Q plots contain rainfall data
at least until the 95.5th percentile. As a result, only rainfall lower than 37 mm day−1 (typical high
rainfall amount for Iran) was taken into consideration, allowing a comparison between all Q-Q plots.
In addition, the exact location of some typical quantiles is depicted by an arrow and a percentile value
to better visualize the data distribution.

As an example, Figure 5a shows that the most obvious departures for the IMERG-Early product
in comparison to rain gauge observations in winter start above the 90th percentile of data (i.e.,
rainfall >3 mm day−1) in the form of an underestimation that gradually increased until the 97.5th
percentile (~14 mm day−1). This underestimation remained rather constant until the 99.5th percentile
(~36 mm day−1) by an amount of about 2.5 to 3 mm day−1 while there was a slight overestimation
for the more frequent rainfall events (lower than the 90th percentile), with rainfall amounts less than
1 mm day−1. Figure 5b shows that the IMERG-Late, to a lesser extent, overestimated low rainfall, but
larger underestimations are seen for higher rainfall compared to the IMERG-Early product. However,
as shown in Figure 5c, the higher accuracy of the IMERG-Final product leads to a significant reduction
of departures from the 45-degree line that is observed for the IMERG-Early and -Late products in
the form of underestimation. This result shows an acceptable fit for rainfall located approximately
between the 95th and 99th percentile (~6–24 mm day−1) while the overestimation extends up to the
95th percentile (i.e., rainfall <7 mm day−1). That could be the reason for the overestimated average
winter rainfall for the IMERG-Final product observed in Figure 3.

In Figure 5d, the scatter of points is linearly located to, and slightly above, the 45-degree line
for rainfall less than the 99.5th percentile. This can be seen as a shift in the location of the statistical
distribution of the IMERG-Early products in comparison to the distribution of rain gauge data. In other
words, the IMERG-Early overestimated daily rainfall for values less than 29 mm in spring by an
amount of about 1 to 1.5 mm. As seen in Figure 5e, the overestimation was reduced for the IMERG-Late
product such that the points between the 97.5th and the 99.5th percentiles nearly overlaid the 45-degree
line. On the other hand, as seen in Figure 5f, while the IMERG-Final product resulted in a better fit
for the more frequent daily rainfalls in spring (i.e., less than 11 mm), major departures for higher
values in the form of underestimation appear close to the 97.5th percentile. Therefore, a better fit for
frequent rainfall by IMERG-Final suggested by Figure 5f seems to be the reason for the best estimation
of average spring rainfall depicted in Figure 3. This product cannot be used as a firm reference dataset
for extreme rainfall studies. Instead, a corrected IMERG-Early or -Late product, by removing the shift
value for every data point, will be a better choice for the evaluation of extreme rainfall events in spring,
which recently caused severe flood events in the country [37].
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Figure 5. Q-Q plots of daily rainfall (IMERG and rain gauge) during 2014–2017: (a) IMERG-Early
for Winter, (b) IMERG-Late for Winter, (c) IMERG-Final for Winter, (d) IMERG-Early for Spring,
(e) IMERG-Late for Spring, (f) IMERG-Final for Spring, (g) IMERG-Early for Summer, (h) IMERG-Late
for Summer, (i) IMERG-Final for Summer, (j) IMERG-Early for Fall, (k) IMERG-Late for Fall, and (l)
IMERG-Final for Fall. The arrows and percentile values in red depict the location of quantiles.

The worst distributional fit between IMERG daily products and rain gauge observations is
observed for summer (Figure 5g–i). Among all daily products, the best fit with measurements in
summer for the data lower than the 99th percentile (~2 mm day−1) is observed for the IMERG-Final
(Figure 5i). However, the tail behavior for summer (>10 mm day−1) for the IMERG-Final indicates a
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large discrepancy relative to the other products (above 99.5th percentile). Finally, for the fall season
(Figure 5j–l), all products indicate an overestimation of daily rainfall less than the 95th percentile and an
underestimation of daily rainfall above the 95th percentile. However, the magnitude of overestimation
is slightly reduced for IMERG-Late and IMERG-Final relative to IMERG-Early. While the IMERG-Final
is the best product for fall daily rainfall lower than the 97.5th percentile, the underestimation deteriorates
for extreme rainfall (obviously, above the 99th percentile) (Figure 5l). As a common result, while the
bias-adjusted GPM IMERG products, which is the case for IMERG-Final datasets, resulted in better
match with the gauge measurements for more frequent rainfall events (lower amounts of rainfall),
uncorrected datasets of IMERG-Early and –Late products were shown to be more trusted related
to the extreme events (heavy rainfall and flooding), especially in spring, summer, and fall seasons,
as the bias-corrected data from the IMERG-Final product deteriorated underestimations observed for
extreme rainfalls.

Figure 6a–d show Q-Q plots for the IMERG-Monthly product relative to rain gauge measurements
for different seasons. The increasing underestimation from the 45-degree line for data above the 95th
percentile for all seasons indicates that the IMERG-Monthly product might not be the best choice for
the study of extreme monthly rainfall. It is noteworthy that the amount of extreme rainfall varies by
season. For example, the average rainfall for the 99.5th percentile based on rain gauge measurements
was about 4.3 and 13.5 mm day−1 for summer and fall, respectively. Based on the IMERG-Monthly
product, however, the equivalent values for these months were 2 and 7.8 mm day−1. This implies
an underestimation as big as 69 mm for summer and 171 mm for the fall months (considering a
30-day month) that can obviously bias extreme monthly rainfall study based on the IMERG-Monthly
product across the country. For more frequent rainfall (below the 95th percentile), especially in spring
(Figure 6b) and summer (Figure 6c), the distribution of monthly data from the IMERG-Monthly product
adequately fits the measurements, with an exception of overestimation for data lower than the 75th
percentile, especially for winter (Figure 6a), fall (Figure 6d), and spring (Figure 6b).

Figure 6. Q-Q plots of average monthly rainfall (IMERG and rain gauge data) during the 2014–2017
period for (a) winter, (b) spring, (c) summer, and (d) fall seasons. The arrows and percentile values in
red depict the location of quantiles.
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3.4. Temporal Performance of IMERG Products

To explore the temporal characteristics of the calculated criteria for daily and monthly IMERG
products, a monthly-based comparison was conducted using radar charts. It is noted that due to
the similarity of the results for IMERG-Final and -Monthly, the monthly radar charts are separately
displayed in the Supplementary Materials.

Figure 7a–h show a comparison of the eight criteria indices, including CC, rBIAS, MAE, FAR,
POD, Under, Equal, and Over for each month considering IMERG-Early, -Late, and -Final products.
The results show that, in general, there is a major temporal discrepancy in the criteria values obtained
for different months. In most of the calculated criteria indices, the IMERG-Final shows noticeable
improvements relative to IMERG-Early and -Late as compared to the rain gauge measurements.

Figure 7. Radar charts for criteria indices for IMERG daily products at the monthly time scale.

In the case of rBIAS (Figure 7a), it can be seen that the largest overestimation is in May
for IMERG-Early (1.07) and IMERG-Late (0.98) while the overestimation reduced to 0.13 for the
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IMERG-Final product. It seems that the applied corrected algorithm considerably reduced the bias for
the Final product relative to Early and Late products. All three products showed largest MAE in March
and the lowest MAE in July (Figure 7b). The lowest CC is observed for the summer months, June, July,
and August, for all products (Figure 7c) while the highest CC is obtained for February (0.49), December
(0.48), and October (0.46), which is consistent with the rBIAS results. The weak performance of the
IMERG products with regard to the detection ability of the satellite relative to gauges in the summer
months is noticeable in the POD and FAR indices (Figure 7d,e). The detectability of the satellite is the
highest from February to May, with POD between 0.68 and 0.82. The lowest FAR is obtained for the
same months, between 0.51 and 0.62 (Figure 7d,e). The under, equal, and over values show that from
IMERG-Early to -Final, the percentage of the under index increased from May to August for which the
over index decreased (Figure 7f–h). On the other hand, the under index decreased from November to
March while the over index increased.

3.5. Geospatial Performance of IMERG Products

Several studies have revealed the relationship between physical parameters, i.e., elevation, slope,
latitude, and longitude, temperature etc., and satellite observation error [36]. Some of the errors
are associated with the satellite sensor technology and applied algorithm while others are related to
physical parameters on the ground. In the following section, we discuss the most prominent results
obtained from the investigations of the relationships between rainfall index factors, introduced in
Section 2.3.4, with multiple statistical criteria (i.e., rBIAS, CC, POD, etc.) that can introduce errors
to the satellite data accuracy. The resulting boxplots for other geospatial factors can be found in the
Supplementary Materials.

Relation to Location-Specific Rainfall

The charts presented in Figure 8 display the variation of location-specific criteria indices of IMERG
daily products for different categories of stations based on the rainfall index factor, which, among all
factors, showed a significant relationship with criteria indices. For these boxplots, limits of the bins
(categories of rainfall index) are presented in the horizontal axis. For example, a hypothetical station
with an average annual rainfall of 200 mm and a mean dry period of 20 days (i.e., rainfall index of
200/20 = 10) is located in the third bin. Accordingly, an equal number of stations fall inside each bin.
The vertical axis shows the variation of a specific index, e.g., CC. Figure 9 represents the location map
of the stations in each category using different colors. As shown in this map, rain gauges with the
highest rainfall index are located in the northern regions, mostly adjacent to the Caspian Sea coastline,
as well as in the western regions. However, by moving from north and west to the central, eastern
and southern regions, the rainfall index generally decreases. This spatial pattern is mainly controlled
by the effect of two major mountain ranges in Iran (Alborz along the northern and Zagros along the
western borders).

In Figure 8a–h, there are three boxplots for each bin in blue, green, and red corresponding to the
IMERG-Early, -Late, and -Final product, respectively. According to the CC chart (Figure 8a), for instance,
the IMERG-Final showed a higher correlation with rain gauge measurements in comparison to both
IMERG-Early and –Late. These two displayed rather identical variation in each bin. Also, for the first
and the last bins, there is a tendency to a lower correlation in comparison to other categories although
the variation of CC in each bin is rather high. In general, the CC between the rain gauge data and
satellite products in the daily time scale varies between 0 and 0.9 for different stations in the country.

As seen in Figure 8b–d, generally, by increasing the rainfall index (i.e., for stations in wetter
locations), a lower frequency of overestimations (Figure 8b) and higher frequency of underestimations
(Figure 8d) appear for all products. However, no significant change is observed for the equal index
(i.e., negligible difference) at different bins (Figure 8c).

By comparing all three charts (Figure 8b–d), it appears that the frequency of overestimations
(over) for stations in the first bin (i.e., the driest locations) decreases accompanied by increase in the
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frequency of underestimations (under) and, to some degree, the frequency of negligible differences
(equal) of the IMERG-Final product compared to the other daily products. For stations in the last bin,
the condition for over and under was reversed while the frequency of negligible differences (equal)
increased again for the IMERG-Final product. It can be concluded that the correction process by the
IMERG-final product results in different changes in the frequency of over- and underestimations for
different locations in Iran while it provides an overall decrease in the error for a majority of locations.
The latter statement is confirmed by looking at Figure 8f,h as the alterations in the IMERG-Final
boxplots in each bin relative to the boxplots of two other products are mostly close to a reduced MAE,
as well as a reduced magnitude (absolute value) of rBIAS.

Figure 8. Box plots of the criteria indices for 10 rainfall index bins in blue, green, and red corresponding
to IMERG-Early, IMERG-Late, and IMERG-Final daily products, respectively. The horizontal line
in the boxes, and the upper and lower bounds of the boxes are the 50th, 75th, and 25th percentiles,
respectively. The red plus symbols denote the outlier data and the whiskers (dashed black lines) extend
to the most extreme data not considered as outliers.
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Figure 9. Spatial distribution of rain gauges colored differently for different categories of the rainfall
index on the map of digital elevation and average annual rainfall contour lines.

MAE is the average magnitude of individual errors, so smaller MAE is favorable. However, it can
result in a misleading interpretation. For example, at a dry location with zero rainfall for more than
90% of the entire length of the dataset, MAE will not reflect if there are a few major individual errors
related to the extreme events. On the other hand, rBIAS calculates the accumulated individual errors
(overall bias) relative to the accumulated observed rainfall during the period of comparison. Thus,
it represents both overall under and overestimations (according to the negative or positive sign) and a
comparable bias for different locations. As a result, the use of MAE together with rBIAS is essential.
While a small magnitude of both MAE and rBIAS indicates a high performance of the satellite products,
a combination of a large rBIAS with a low MAE for a location can be interpreted as a typical low
individual error. This situation is more likely to appear for dryer locations with a higher frequency of
smaller rainfall amounts. Also, a low rBIAS needs to be considered in the case of a large MAE value.
Figure 10 illustrates these statements using Q-Q plots for a few locations selected from the different
categories of the rainfall index.

In theory, a low rBIAS means that the total amount of rainfall observed at a location is accurately
estimated by the satellite during the period of comparison. In other words, the sum of the positive
individual errors is almost equal to the sum of the absolute values of the negative individual errors,
regardless of the magnitude of the individual errors. On the other hand, CC is an accuracy criterion
showing the degree of linear correlation between two datasets, thus it is not aimed to be an error index.
To be able to discuss how these indices may result in contradictory situations, Figure 11 shows Q-Q
plots for five other locations, with different combinations of CC, MAE, and rBIAS. It can be discerned
that at locations no. (1) and no. (2), deviations from the 45-degree line are smaller, compared to the
other locations, so the satellite product showed a better performance relative to location no. (3) and an
even higher performance relative to locations no. (4) and no. (5) in presenting the actual daily rainfall
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distribution. The correlation values for locations no. (1) and no. (2) are substantially different. On the
other hand, the performance of the IMERG-Early product for the locations no. (3) and no. (5) seems to
be completely different from each other while they both showed a high correlation (0.79) and a low
MAE (~0.7 mm day−1). Therefore, rBIAS could play a more discriminating role than a misleading CC
or MAE, in the comparison of satellite-gauge datasets for their statistical distribution.

Figure 10. Q-Q plots for comparing different combinations of rBIAS and MAE at different locations
with variable rainfall indices where lower values of MAE and lower absolute values of rBIAS are
favorable (the large circles’ center shows the position of the 95th percentile).

Figure 11. Q-Q plots comparing different combinations of CC, rBIAS, and MAE at five different
locations where very low values of rBIAS show better performance for different combinations of CC
and rBIAS (large circles’ center shows the position of the 95th percentile).
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To be able to evaluate the detection ability of the satellite products, the calculation of FAR and
POD criteria is necessary (Figure 8e,g). As seen in Figure 8e, generally, FAR values were reduced with
an increase of the rainfall index. The FAR values were higher for the majority of locations in the driest
category (the first bin) as compared to wetter locations. For example, a median value of FAR at about
75% for the first category means that 75% of the rainy days detected by the satellite were not observed
by the rain gauge. Also, the overall minimum value of FAR of around 35%, mostly, for the locations in
the wetter locations indicated that, at least, 35% of the rainfall events detected by the satellite were
not recorded by the rain gauges located within the corresponding satellite grids across the country.
Regardless of errors due to the interruption of the rain gauge measurements or false detection by the
satellite sensor, which are both possible, the increase of FAR for the dryer bins (Figure 8e) suggests that
local rainfall events are more likely to appear at dryer locations. For such conditions, a rainfall event
that partially affects a grid may not necessarily be observed by a rain gauge located in a dry part of
the grid. Conversely, the chance for this condition is reduced for the wetter location, where uniform
rainfall over a vast area is common.

According to Figure 8g, POD for different locations in Iran varied between 45% and 95% and
more frequently between 60% and 80%. The higher PODs were more frequent at dryer locations and
less frequent at wetter locations. POD indicates the chance for the satellite to detect a rainfall event,
which is observed by a rain gauge within the satellite grid. According to this definition, the POD is
not related to the spatial variability of rainfall in a grid. Instead, it indicates the sensor’s inability to
detect rainfall due to the temporal variability and the satellite visiting time. The variation of FAR
and POD was almost the same for different daily products of IMERG, hence the applied correction in
the IMERG-Final product did not account for the detection ability of the sensors. It appears that the
IMERG corrections to the final product are mostly targeting the bias in the satellite observation. There
is, however, some consistency in the results of different criteria. For example, the highest frequency of
underestimations (Figure 8d) and negative rBIAS values (Figure 8h) for the wettest locations (locations
in the last bin) can share common reasons related to the detection problems as the lowest values of
POD were observed for a majority of the locations located in the last bin (Figure 8g).

The boxplots comparing the IMERG-Monthly products’ performance for different categories
of location (based on rainfall index) showed similar trends in the variation of the criteria indices
for different categories of the rainfall index factor (Figure 12). The correlation for most of the
locations was above 0.7 (Figure 12a). The over generally indicated a decreasing trend with the rainfall
index (Figure 12b) similar to what was observed for the daily products while the frequencies of
negligible differences (equal) between the IMERG-Monthly product and the rain gauge measurements
showed a decreasing trend by the increase in the rainfall index (Figure 12c). The frequencies of the
underestimations also showed an increase by the rainfall index (Figure 12d). The FAR decreased
sharply compared to the daily FAR (Figure 12e). However, there are still considerable FAR values (i.e.,
above 40%) for the first three bins in Figure 12e (drier locations), which is related to local rainfall events
in summer months (when there are only a few rainy days). This implies that the rainfall events are not
uniformly distributed over a given satellite grid so the rain gauge located in the grid cannot, in some
months, record any rainfall, but the satellite sensor does. MAE in Figure 12f shows an increase in the
rainfall index, with a gentle slope compared to the increasing trend observed for the daily products
(Figure 8f), which can be due to the smoother nature of the monthly data compared to the more erratic
daily rainfall data. The POD for monthly data was close to 100% for almost all locations (Figure 12g),
because there is a high chance that both the rain gauge and satellite recorded at least a rainy day in
a given month. For the rBIAS, there is overestimation for almost all locations, with a rainfall index
between 0 and 87, while the satellite underestimated monthly rainfall for a majority of the location in
the 10th bin (the wettest category of locations) in Figure 12h.
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Figure 12. Box plots of the criteria indices for the 10 rainfall index bins for the IMERG-Monthly product.
The horizontal line in the boxes, and the upper and lower bounds of the boxes are the 50th, 75th,
and 25th percentiles, respectively. The red plus symbols denote the outlier data and the whiskers
(dashed black lines) extend to the most extreme rainfall data not considered outliers.

3.6. Spatiotemporal Distribution of Rainfall Detection Ability

According to the results discussed earlier, the error indices varied in different parts of Iran.
Since the variation of the error indices, such as rBIAS and MAE, can partly be explained by the
rainfall detection ability of the satellite sensors. In this section, the rainfall detection ability of the
satellite precipitation products are further assessed through spatial maps of POD and FAR. Figure 13
illustrates the spatial pattern of POD and FAR for four different seasons over the country. It is noted
that the three IMERG daily products exhibit a similar spatial pattern of criteria relative to the rain
gauge measurements with a slightly higher accuracy and lower bias for the IMERG-Final. Hence,
we only discuss the criteria indices obtained from the analyses of the IMERG-Final and rain gauge
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measurements in this section. These criteria indices were mapped using Kriging method in Arc GIS
10.4.1 environment.

According to the POD spatial map over the country (Figure 13), the satellite performance regarding
precipitation detection shows an acceptable performance in most parts of the country in spring,
followed by fall and winter (POD > 0.5). On the contrary, in the summer season, the southwestern
parts, which show the best POD in winter, spring, and fall, indicate a low performance of the satellite
in precipitation detection (POD < 0.4). It should be mentioned that the southern part of the country
receives the end of the monsoon during summer time, for which precipitation is characterized by
high intensity short-term rainfall [38]. Since the GPM constellation satellites revisit a given spot
approximately every three hours, there is a high possibility that some of these short-term events are
not observed by the satellite but by the rain gauges. As discussed in [1,39], higher POD is typically
observed in dryer areas, i.e., central deserts (Figure S8), and the lower POD are typical for coastal areas,
which is consistent with our findings, i.e., Persian Gulf and Caspian Sea coastal regions for summer
(Figure 13).

Figure 13. Spatial distribution of POD and FAR for different seasons during the 2014–2017 period.

According to the FAR spatial map of the country, the northwestern followed by the western
portion of the country shows lower FAR in winter, spring, and fall. Similar to the POD spatial map,
higher FAR is obtained in summer for these regions. In all seasons, the central part of the country
shows the highest FAR confirmed by a sparse rain gauge network (see Figure 1b) in the central deserts,
i.e., Kavir and Lut deserts that cover the dry and extremely dry zones (Figure S8). As mentioned before,
the FAR implies the ratio between the number of rain events that are observed by the satellite but not
recorded by the rain gauges.

4. Conclusions

In this study, the performance of IMERG GPM products was evaluated at a daily (Early, Late, and
Final) and monthly temporal resolution using a high-quality rain gauge network over Iran during
2014 to 2017. The study is one of the first IMERG GPM product assessments at a country level taking
into account temporal and geospatial properties. In this regard, the study used eight criteria indices,
including CC, MAE, rBIAS, POD, FAR, Under, Over, and Equal. Additional analyses were carried out
based on these indices taking into account temporal and geospatial features.

The general performance of IMERG products relative to the rain gauge measurements indicated a
major improvement in the IMERG accuracy from IMERG-Early to -Final products. However, the two
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indices of precipitation detection ability, POD and FAR, presented no major changes from Early to Final,
which means that the correction algorithms do not account for the temporal correction of the satellite
estimates. To evaluate the statistical distribution of rain gauge measurements versus satellite products,
the Q-Q plots conclude that the IMERG-Final is not the best choice in extreme rainfall studies, but the
IMERG-Early or Late can be used instead. Besides, the temporal performance of IMERG products,
as displayed in the radar charts, showed a reduction of rBIAS from IMERG-Early to –Final.

Regarding POD, the best and worst performances were found in the spring and summer seasons,
respectively. The FAR radar charts indicated an inferior performance of satellite products during the
summer season.

The investigation of the relationship between various physical factors and location-specific factors
of rainfall (rainfall index) with the eight mentioned criteria indices showed that CC varied for different
rainfall indices. It appears that lower CC values were achieved both in the wettest and the driest
locations. Further, by the increase of the rainfall index (from dryer to wetter locations), a lower and
higher frequency of overestimation and underestimation, respectively, was observed for all IMERG
products. Also, higher values of FAR were detected for the majority of the driest category of locations
relative to wetter locations. Higher values of POD were found to be more frequent at dryer locations.
As the POD investigated the spatial variability of rainfall within a particular grid, the results confirmed
the superior detection ability of satellite sensors relative to gauge measurements (point measurement).

In general, the performance of satellite products increased from IMERG-Early to -Final products
at the country level; however, these products need to be validated at the local scale and implemented
in various hydrological models for verification. Higher values of FAR in the central part of the country,
which is subjected to a sparse rain gauge network, require more caution when the IMERG data products
are to be implemented in local-scale studies. This study provides an insight regarding the performance
of the GPM IMERG products over all of Iran and can be used as a reference for further examination of
the IMERG products in various hydrometeorological and hydrological applications.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/1/48/s1,
Figure S1, Figure S2, Figure S3, Figure S4, Figure S5, and Figure S6. Box plots of the criteria indices corresponding
to the evaluation of IMERG-Early, IMERG-Late, and IMERG-Final products for the ten categories (bins) of location
based on average dry period (in days), average annual rainfall (in mm year−1), elevation (in meter), slope, latitude
(◦N), and longitude (◦E), respectively, Figure S7. Radar charts of criteria indices for IMERG-Monthly, and Figure S8.
Iran’s climate zones.
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Abstract: Precipitation monitoring and early warning systems are required to reduce negative flood
impacts. In this study, the performance of ensemble precipitation forecasts of three numerical weather
prediction (NWP) models within the THORPEX interactive grand global ensemble (TIGGE) as well as
the integrated multi-satellite retrievals for global precipitation measurement (GPM), namely IMERG,
for precipitation estimates were evaluated in recent severe floods in Iran over the March–April
2019 period. The evaluations were conducted in three aspects: spatial distribution of precipitation,
mean areal precipitation in three major basins hard hit by the floods, and the dichotomous evaluation
in four precipitation thresholds (25, 50, 75, and 100 mm per day). The results showed that the United
Kingdom Met Office (UKMO) model, in terms of spatial coverage and satellite estimates as well as the
precipitation amount, were closer to the observations. Moreover, with regard to mean precipitation at
the basin scale, UKMO and European Center for Medium-Range Weather Forecasts (ECMWF) models
in the Gorganrud Basin, ECMWF in the Karkheh Basin and UKMO in the Karun Basin performed
better than others in flood forecasting. The National Centers for Environmental Forecast (NCEP)
model performed well at low precipitation thresholds, while at high thresholds, its performance
decreased significantly. On the contrary, the accuracy of IMERG improved when the precipitation
threshold increased. The UKMO had better forecasts than the other models at the 100 mm/day
precipitation threshold, whereas the ECMWF had acceptable forecasts in all thresholds and was able
to forecast precipitation events with a lower false alarm ratio and better detection when compared to
other models.

Keywords: TIGGE; precipitation; numerical weather prediction; satellite; IMERG; flood; spring
2019; Iran

1. Introduction

In recent decades, observed climate trends have shown an increase in temperature worldwide so
that extreme precipitation has increased in some specific areas (e.g., eastern half of North America,
Eastern Europe, Asia, and South America) [1–5]. Due to rising temperatures, particularly over the
Arctic, the sea-ice retreat allows for increased transport of heat and momentum from the ocean up to
the tropo- and stratosphere. In the upper atmosphere, these waves deposit the momentum transported,
disturbing the stratospheric polar vortex, which can lead to a breakdown of this circulation with the
potential to also significantly impact the troposphere in mid- to late-winter and early spring [6,7].
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Iran’s climate is generally semi-arid and is subject to frequent flooding, causing major damage
to people and society. In spring 2019, major floods occurred almost concurrently in different parts
of the country. The first flood event occurred in late winter to early spring 2019 in the northeastern
provinces due to heavy precipitation over the March 17–22 period. In at least one station, over 280 mm
of precipitation was recorded over the six-day period. The subsequent second and third flood events
occurred in the March 24–26 and March 31–April 2 periods, respectively, where most of the precipitation
fell in the southwest, causing widespread damage to the people and infrastructure while filling/causing
an overflow of most reservoirs. The total economic cost of these floods is estimated to be $3.5 billion
U.S. dollars. Studies on the causes of the March–April 2019 severe floods are still ongoing, although
exceptional precipitation and climate change attribution are on the minds of most experts.

Given the heavy negative impacts imposed by the 2019 flood events, the monitoring and
forecasting of precipitation remain major challenges for hydrologists and reservoir managers.
The availability of global ensemble forecast models in the THORPEX Interactive Grand Global
Ensemble (TIGGE) database [8] as well as high-resolution satellite estimates creates new opportunities
for flood monitoring/forecasting. Extensive research has been conducted on the application of satellite
precipitation estimates for motoring purposes and numerical weather prediction (NWP) models for
forecast objectives. In terms of the latter, using TIGGE forecasts for a flood alarm system in China [9],
flood early warning with European Centre for Medium-Range Weather Forecasts (ECMWF) model
forecasts under Global Flood Awareness System (GLoFAS) in global scale, European Flood Awareness
System (EFAS) for Europe projects [10], and African Flood Forecasting System (AFFS) [11] are some
examples of NWP applications in flood forecasting.

Numerous studies have been conducted to evaluate the estimated precipitation from NWP models
and satellite-based precipitation estimates (SPEs). For example, the results of TIGGE precipitation
forecasting in flood-prone areas of China showed that the ensemble forecast model is more proficient
than the single forecast models [12]. He et al. [13] showed that TIGGE ensemble forecasts are suitable
for forecasting flood events. The rapid alert system was developed from four operational NWP models:
UKMO (United Kingdom Met Office), NCEP (National Centers for Environmental Forecast), ECMWF,
and JMA (Japan Meteorological Agency). The probability of severe weather events was forecasted
based on the climatological probability density function in each model. Numerous case studies have
shown that these products successfully forecasted severe events such as the Russian heat wave in 2010,
the Pakistan flood in 2010, and Hurricane Sandy in 2012 [14]. In West Africa, evaluating the forecasts of
seven TIGGE meteorological databases against the Tropical Precipitation Measuring Mission (TRMM)
Multi-satellite Precipitation Analysis (TMPA) product assumed as the observed precipitation over the
2008 to 2012 period showed that ECMWF and UKMO performed better than the other models [15].
In Iran, the forecasts of ECMWF, UKMO, and NCEP centers for thirteen synoptic stations in eight
different precipitation regions over a 1–3 day lead time over the 2008 to 2016 period showed that
ECMWF in most regions, UKMO in mountainous areas, and NCEP along the Persian Gulf coast
performed the best, while, as expected, the model skill decreased with increasing lead time [16].

The accuracy of SPEs is influenced by their spatiotemporal resolution, which in turn impacts
the prediction of natural hazards. Therefore, the assessment of new precipitation products is often
recommended before the product can be employed in research and decision-making. Several studies
have been conducted to evaluate the SPEs over Iran. Moazzami et al. [17] and Javanmard et al. [18]
examined different SPEs products at a daily time-scale over diverse climate conditions in Iran. Overall,
the results showed that 3B42V7 outperformed other SPEs. Sharifi et al. [19] evaluated the first version
of the integrated multi-satellite retrievals for global precipitation measurement (IMERG) version-03 in
comparison with the TMPA and ERA-Interim products across different parts of Iran and found that
IMERG generally outperformed the other products. They later improved the spatial resolution and
accuracy of the SPEs through downscaling and bias-correction techniques [20,21]. In another study,
Beck et al. [22] evaluated 26 precipitation datasets and compared them with gauge-radar data over
the United States. Among the gauge-corrected products, the best overall performance was obtained
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by Multi-Source Weighted-Ensemble Precipitation (MSWEP)-V2.2, followed by IMERGDF-V05 and
MERRA-2. However, IMERG real-time V05 performed substantially better than TMPA-3B42-real-time
V7 and ERA5-HRES, particularly, in regions dominated by convective storms. In another study,
Sharifi et al. [23] examined the accuracy of six SPEs and gridded precipitation models against a dense
network of 872 stations over Austria, in terms of extreme events and different altitude categories.
They also found that the latest version of IMERG-V06A performed better than the other products
(except MSWEP-2.2), which was consistent with the study results by Beck et al. [22]. With respect to
extreme precipitation events, Fang et al. indicated that although IMERG well captured the spatial
pattern of extreme precipitation over China, the topography and climate condition had a significant
influence on its performance [24]. In another study, Sunikumar et al. demonstrated the ability of
IMERG to follow the intraseasonal variability with minor differences observed in the maximum values
of precipitation during the rainy season over Japan, Philippines, and Nepal [25]. Mazzoglio et al.
improved an extreme precipitation detection system using IMERG data and stated that this product
guarantees good results when the precipitation aggregation interval is equal to or greater than 12 h [26].
However, no comparison has been made so far between the ensemble forecasts with IMERG product
for extreme flood events over Iran.

The purpose of this study was to evaluate the performance of ensemble precipitation forecasting
models and IMERG products for three severe 2019 flood events in Iran to determine whether these
products have potential in (major) flood warning applications over Iran. According to ground
precipitation data, the highest precipitation occurred in Gorganrud, Karkheh, and Karun Basins. These
three basins constitute the study area.

2. Data and Methods

Daily in situ accumulated precipitation data from 100 meteorological synoptic stations and
221 Ministry of Energy rain gauges between 15 March 2019 to 2 April 2019 were collected. The collected
data have been quality controlled by the respective organization. Ensemble precipitation forecasts of
three major global meteorological centers, namely ECMWF, NCEP and UKMO, were then extracted
from the TIGGE database in a 24-h lead time (https://confluence.ecmwf.int/display/TIGGE). TIGGE is
part of the THORPEX project, which includes ensemble forecasts of 11 NWP world centers. Ensemble
forecasts include multiple individual forecasts generated by different physical parameterizations
or different initial conditions. Based on the results of NWP evaluation in several studies, the three
selected models performed better than the others in different regions of Iran/the world [9,27]. As a
result, the NCEP, UKMO, and ECMWF models were evaluated as numerical forecasts in this study.
The NWP data are in the GRIB2 format with a resolution of 50 km. Furthermore, daily IMERG-V06B-RT
satellite estimates with an approximate 10-km spatial resolution for the whole of Iran were downloaded
in NetCDF format for the study time period. Figure 1 shows the spatial distribution of the in situ
observations overlaid on the elevation map. Table 1 shows the characteristics of the three NWP models
and IMERG product.
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Figure 1. The spatial distribution of in situ observations on the elevation map of Iran.

Table 1. Characteristics of the studied NWP models and IMERG satellite.

Products
Base Time

(UTC)
No. of Ensemble

Members
Spatial Resolution

Temporal
Resolution

Forecast
Length (day)

ECMWF 00/12 50 + 1 ~0.28◦ × (~0.56◦) 6 h 0–15
NCEP 00/06/12/18 20 + 1 1.0◦ × 1.0◦ 6 h 0–16
UKMO 00/12 17 + 1 0.83◦ × 0.56◦ 6 h 0–15
IMERG —- —- 0.1◦ × 0.1◦ 30 min —-

In this study, the evaluations were conducted in three steps. In the first step, the performance
of the three NWP models and SPEs in terms of capturing the spatial distribution of precipitation for
the three flood events (17–22 March, 24–26 March, and 31 March to 2 April 2019, respectively) were
compared. The numerical forecast and SPE data have a 50 × 50 km and ~10 × 10 km spatial resolution,
respectively. Therefore, spatial aggregation from 10 km to 50 km was performed using the cubic
convolution resampling method, which is based on the weighted average of 16 nearest neighboring
pixels [28]. An in situ observation map was also constructed using inverse distance weighting (IDW)
interpolation with a 50 × 50 km resolution. Moreover, for a more robust comparison of the spatial
distribution of precipitation, the isohyet contours over the three respective basins for all three flood
events were obtained.

For detailed insight into the second step, the mean, maximum, and minimum precipitation values
for each individual event were also determined.

In the third step, the NWP forecasts and satellite data were interpolated with the aim of a direct
comparison of precipitation with the in situ measurements. The IDW method used for interpolation
involved four grid-points around each station. Then the interpolated precipitation at each station was
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evaluated against the observation. The dichotomous (yes/no) evaluation of daily precipitation was
further examined. For this purpose, 25, 50, 75, and 100 mm/day thresholds were set and the number
of correct events determined by the satellite and NWP models in each threshold were compared.
Precipitation events were counted if at least one of the stations operating in each basin recorded
precipitation. Otherwise, if none of the stations recorded precipitation, a “no-precipitation” event was
assigned to the whole basin. Accordingly, the probability of detection (POD) and false alarm ratio
(FAR) as well as the equitable threat score (ETS) criterion were used to examine the capability of the
products to detect the precipitation events. POD and ETS values vary between 0 to 1, with 1 as a
perfect score, while the FAR perfect score is 0. In addition, the average results of the dichotomous
evaluation of the stations in each basin were calculated in four precipitation thresholds. Interested
readers are referred to Wilks (2011) for further detail on the dichotomous (yes/no) evaluation [29].
Table 2 indicates the metrics used to measure the effectiveness of precipitation estimations.

Table 2. Summary of the assessment criteria used in this study [27].

Verification Measure Formula Description Perfect/no Skill

Pearson’s correlation
coefficient CC =

∑
(F−F)(O−O)√∑

(F−F)
2
√∑

(O−O)
2

Linear dependency between
forecast and observation 1/0

Probability of detection
(Hit Rate) POD = A/(A + C)

What fraction of the observed
“yes” events were correctly

forecasted?
1/0

False alarm ratio FAR = B/(B + C)
What fraction of the predicted
“yes” events actually did not

occur
0/1

Equitable threat score
ETS = (A − Arandom)/(A + B

+ C − Arandom)
Arandom = (A + C)(A + B)/N

How well did the forecasted
“yes” events correspond to the

observed “yes” events?
1/0

Notes: F and O denote the forecast and corresponding observation, respectively. Similarly, F and O denote the
forecast average and observation average, respectively. A, B, C, and D were obtained from the contingency table.

It should be noted that the evaluations of the first and second step were based on the total
precipitation in each flood event. To clarify this, the first precipitation/flood event consisted of the
precipitation accumulation of six days from 17 March to 22 March 2019; the second event in three
days from 24 March to 26 March 2019; and the third event in three days from 31 March to 2 April
2019. A tertiary evaluation for the daily accumulation precipitations from 15 March to 2 April 2019
was conducted.

3. Results

By presenting the results, this section provides insights into where the model/satellite systematically
differ and discusses the possible causes.

Spatial distribution of precipitation accumulation during the flood days (15 March to 2 April 2019)
corresponding to the in situ observations, satellite, and three NWP models are shown in Figure 2.
It is clear that high precipitation areas extended from the northeast along the Alborz Mountains
to the southeastern Caspian Sea; and from the west to southwest along the Zagros Mountains.
Overall, the precipitation spatial patterns in all products were correctly captured, although there
were differences in the precipitation magnitude among the products. In more specific terms, IMERG
precipitation product (IMERG-RT V05) reasonably captured the precipitation distribution for most
parts of the country when compared with the in situ observations. Moreover, the in situ observations
highlighted four precipitation hotspots along the Zagros Mountain in the west of Iran with the
largest precipitation amount. IMERG outperformed the other products to capture these hotspots.
The remarkable precipitation gradients were well-captured by IMERG, possibly due to its native higher
spatial IMERG resolution (~10 km × ~10 km) when compared with those of the NWP models (50 km
× 50 km). Among the NWP models, the NCEP model forecasted much lower precipitation, while
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UKMO generally overestimated the in situ observations. In general, most of the precipitation products
could capture the basic precipitation characteristics in terms of the observed spatial pattern, however,
it is unknown as to whether the overestimation/underestimation was really derived by the product
structure or if it was due to lack of dense in situ observations. It should be noted that the mean of the
ensemble NWP forecasts was used in Figure 2.

 

Figure 2. Spatial distribution of accumulated precipitation (mm) from the observational, ECMWF,
NCEP, UKMO, and IMERG satellite for 19 precipitation days over Iran.

3.1. Spatial Distribution of Precipitation

In this section, the differences between the in situ observations and NWP/satellite are shown
with a 50 km spatial resolution in Figure 3. In the first flood event in northeastern Iran, the UKMO
model outperformed other models and indicated lower precipitation differences with the observations.
Moreover, the NCEP underestimated the extreme precipitation over the southeast of the Caspian Sea,
while IMERG displayed differences over the southeast and no difference over the southwest part of the
Caspian Sea. In the second flood event in western and southwestern Iran, the ECMWF outperformed
other products. The NCEP performed better in this flood event than it did in the first flood event.
However, all models/satellite, especially UKMO, generally overestimated the precipitation amount.
In the third flood event in western Iran, IMERG reasonably captured the spatial precipitation for most
parts of the region, except in a few pixels in the west. In addition, IMERG indicated a smoother trend
in precipitation differences from the northwest to the eastern part of Iran, while it is evident that other
products had larger errors in terms of the difference with the in situ observations.
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Figure 3. Differences between the accumulated precipitation in situ observations, NWP, and IMERG
satellite data.

Table 3 presents the quantitative evaluation of precipitation products. Based on this table, during
the first flood event, ECMWF and IMERG were closer to the in situ observation data with respect to
the Correlation Coefficient (CC) and maximum precipitation amount. Although the NCEP showed the
least correlation in the first event, this model indicated relatively close forecasts to the observations
for the second and third events. In general, the ECMWF showed slightly better skill in terms of the
correlation, min, and max values of precipitation in comparison with the other products (Table 3).

Table 3. Statistical characteristics of the observations, NWP, and IMERG satellite precipitation data.

MEAN (mm) MAX (mm) STD (mm) Correlation

Flood event 1

Observation 18.38 237 21.1 —
ECMWF 18.24 168 20.84 0.8
UKMO 18.02 177 22.1 0.77
NCEP 13.65 101 12.2 0.73

IMERG 15.34 191 20.68 0.73

Flood event 2

Observation 24.64 208 27.3 —
ECMWF 25.12 239 29.62 0.82
UKMO 26.13 298 38.16 0.72
NCEP 21.85 161 24.37 0.85

IMERG 31.6 240 30.73 0.79

Flood event 3

Observation 15.15 197 26.14 —
ECMWF 14.73 173 25.88 0.87
UKMO 15.53 194 27.13 0.78
NCEP 13.39 113 23.42 0.87

IMERG 20.67 298 31.77 0.85
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For a more in-depth evaluation of the spatial pattern, the isohyet contours indicate that for the
first flood event, which mostly impacted the Gorganrud Basin in northeast Iran, the UKMO and
ECMWF models performed similarly, whereas the UKMO model better forecasted the location of
heavy precipitation, followed by the satellite (IMERG). The NCEP model, although recognizing the
location of heavy precipitation, underestimated the amount of heavy precipitation (Figure 4).

 

Figure 4. Isohyet contours in the Gorganrud Basin during the first flood event.

According to Figure 5 for the second flood event, the UKMO in the Karkheh Basin yielded better
results in comparison with other products in the detection of heavy precipitation. In the Karun Basin,
although the UKMO and IMERG products overestimated precipitation, they generally demonstrated
better skills than the other two NWP models. The NCEP model in the southeast of the Karun Basin
better forecasted heavy precipitation than the other products. With respect to the third flood event in
the Karkheh Basin, the UKMO and IMERG showed better performance in the detection of the location
of heavy precipitation. In the Karun Basin, although all products showed acceptable performance,
the UKMO and ECMWF models outperformed the other products (Figure 6).
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Figure 5. Isohyet contours in the Karkheh (top) and Karun (bottom) Basins during the second
flood event.
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Karkheh Basin 

Karun Basin 

Figure 6. Isohyet contours in Karkheh (top) and the Karun (bottom) Basins during the third flood event.
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3.2. Mean, Minimum and Maximum Basin Precipitation

In order to compare the performances of the precipitation products in each individual basin within
the three flood events that occurred from March to April 2019, the mean, minimum, and maximum
precipitations were plotted, as shown in Figure 7. The first flood event occurred in the Gorganrud Basin
in northeastern Iran. As Figure 7a shows, in terms of mean, maximum, and minimum precipitation,
the ECMWF and UKMO models performed approximately the same and well forecasted the min, max,
and mean of precipitation. The NCEP model also forecasted less precipitation than the observations
with respect to mean precipitation. However, the maximum in situ observations in this basin was
higher than all the NWP and IMERG satellite products. Although all evaluated precipitation products
were rather close to the in situ measurements, it is evident that ECMWF and UKMO, followed by
IMERG, compared well with the corresponding in situ measurements in terms of mean precipitation
through the first event.

Figure 7b shows the mean, min, and max value of precipitation obtained from all products and
in situ observations over the southwest of Iran within the Karkheh and Karun Basins. The mean
precipitation values indicated that generally all of the models and satellite well estimated the mean
areal precipitation with a slight underestimation during this event over the Karkheh Basin. However,
in terms of maximum precipitation, the UKMO overestimated, while the satellite and other models
showed underestimation over the Karkheh Basin during the second flood event. This might be due to
high moisture in the atmosphere and the occurrence of small scale precipitation systems that were
dominant during this event [23]. Additionally, from the median and the 25th and 75th percentiles of
the box-plots, one can infer that the precipitation estimated by IMERG, followed by ECMWF, was more
accurate than the other products in both basins, while the UKMO whiskers extended to the highest
extreme data points in comparison to the other products.

According to Figure 7c, the mean areal precipitation values of all products were rather close to the
in situ observations over the Karkheh Basin, while the box-plots confirmed that the IMERG and NCEP
values were in a larger and smaller precipitation ranges in comparison to the in situ observations,
respectively. However, in the Karun Basin, the UKMO greatly overestimated the precipitation, while
IMERG, followed by NCEP, showed improvement in heavy daily precipitation in comparison with the
in situ observations.
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Figure 7. Mean, maximum, minimum precipitation amounts and box-plots in the (a) Gorganrud,
Karkheh, and Karun Basins for the a) first, (b) second, and (c) third flood events. The center-line of
each boxplot depicts the median value (50th percentile) and the box encompasses the 25th and 75th
percentiles of the sample data, while the whiskers represent the extreme values, respectively.
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3.3. Dichotomous Evaluation

With respect to dichotomous evaluation, Figure 8 compares the number of 24-h extreme
precipitation events recorded at all stations in different precipitation thresholds. As the main emphasis
of this study was on the evaluation of extreme events, the maximum of ensemble forecasts was carefully
determined. Based on Figure 8, at a threshold of 25 mm, NWP models estimated precipitation better
than IMERG, while among the NWP models, ECMWF was closer to in situ observations. However, all
products underestimated the number of events above 25 mm. At the 50 mm threshold, the UKMO
predictions of the number of events were closer to the observations. However, in terms of mean
ensemble forecast, IMERG estimated the number of events closer to the observations than the NWP
models. It is worth noting that the performance of the NCEP model decreased significantly with an
increase in the threshold. At the 75 mm threshold, UKMO was better than the other products, whereas
NCEP had difficulty in forecasting the precipitation amount at this threshold. From 15 March 2019
to 2 April 2019, precipitation amounts of over 100 mm were reported for a number of days. At this
threshold, in situ observations recorded 22 events, while NCEP detected none. However, the UKMO
and ECMWF maximum ensembles as well as IMERG detected 11, 10, and 4 events, respectively.

 

Figure 8. Comparison of the number of extreme events estimated by the NWP models and IMERG
satellite with observations in different precipitation thresholds.

The performance of all precipitation products was then evaluated using dichotomous evaluation
criteria (Figure 9). Based on the POD metric, which measures the percentage of the accurate detection
of events, the ECMWF in the 25 mm threshold and the UKMO in 50, 75, and 100 mm thresholds
showed the highest PODs over Iran. The decline in the performance of NCEP with an increase in the
threshold is clearly evident in this criterion. However, based on the FAR metric, which expresses the
percentage of false alarms, ECMWF obtained the lowest FAR in maximum ensemble forecasts within
all thresholds, although it did not perform well in high thresholds in the mean ensemble forecast mode.
Based on the ETS, which measures the forecast quality of detecting occurrence and non-occurrence
of an event, the mean ensemble forecast of the ECMWF model achieved the best score in the 25 mm
threshold. In the other thresholds, the maximum ensemble forecast of the ECMWF model achieved the
highest ETS scores.
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Figure 9. Verification statistics (POD, FAR, and ETS) between ECMWF, NCEP, UKMO, IMERG, and the
in situ observations for different thresholds over Iran for 15 March 2019 to 2 April 2019.

Finally, the evaluation with respect to the number of events estimated by the precipitation products
at different thresholds was conducted. According to Figure 10, in Gorganrud basin in 25 mm threshold,
both UKMO and ECMWF models performed well. Satellite (IMERG) and NCEP obtained rather
similar performances with the detection of seven events among the 13 events in these thresholds, while
the ECMWF and UKMO performances were more robust and closer to the in situ observations with
the detection of 12 events. In the 50 mm threshold, both ECMWF and UKMO still performed better
than the other products with the detection of seven events among the 11 events detected by the in
situ observations, while the skill of NCEP declined and IMERG showed an improvement with the
detection of two and six events, respectively. At a threshold of 75 mm, both ECMWF and UKMO
models performed well and could forecast almost 80% of events (five out of seven events) in the 75 mm
threshold. The NCEP model did not record any event and IMERG estimated only one event out of
seven events. In the 100 mm threshold, both ECMWF and UKMO forecasted five events out of six
events above 100 mm. The satellite and NCEP model were weak in this segment and did not estimate
any events in northeast Iran in the Gorganroud Basin.
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Figure 10. Comparison of the number of extreme events estimated by ECMWF, NCEP, UKMO, and
IMERG with in situ observations.

In the Karkheh Basin, the NCEP model performed well in the 25 mm threshold and was able to
estimate the number of events better than the other products. However, the performance of NCEP
decreased dramatically with an increase in the threshold (e.g., in the 75 mm (100 mm) threshold
only one (zero) event out of 15 (5) events were forecasted). Meanwhile, IMERG performed better
at higher thresholds. Generally, the ECMWF revealed better results than the other products in all
precipitation categories.

In Karun Basin, NCEP again performed better at lower thresholds than at higher thresholds,
whereas UKMO was slightly better than ECMWF. However, extreme precipitation greater than 100 mm
was only recorded once in this basin.
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4. Discussion

In this study, the evaluation of three precipitation forecast models, namely ECMWF, NCEP,
and UKMO as well as the IMERG-RT V05B satellite product provided new insight into how errors vary
with extreme precipitation events within different climate zones of Iran. Overall, the examined products
in this study sometimes agreed well with in situ observations while in some other instances, showed
significant differences. As far as possible causes for model performances, precipitation is a function of
available atmospheric moisture while derived from moisture convergence. Thus, the models need
to be correctly initialized and parameterized through several factors such as (i) gross condensation
rate, (ii) latent heat energy exchange within the atmosphere, and (iii) the microphysical behavior of
clouds [30]. However, individual clouds typically occur at subgrid scales and must be parameterized
based on resolved variables such as average humidity and temperature [31]. The parameterization
of cloud, and thus precipitation, continues to be one of the greatest sources of uncertainty in NWP
models [32].

Another is the significant differences in the detection of extreme precipitation amounts among the
products when compared with the in situ observations. Although, in general, the models captured the
spatial distribution of heavy precipitation events, the hot spots were not located in the correct area.
Moreover, orography and local effects can affect the accuracy of the products. These issues should be
addressed by improving the models’ algorithms [33].

Another factor in the interpretation of the differences between the model/satellite products
and in situ observations might be related to the precipitation thresholds. As such, overestimation or
underestimation in each precipitation threshold means that a given precipitation product was not able to
estimate/detect precipitation within that particular threshold, while they could have estimated/detected
the precipitation within a lower or higher threshold.

5. Conclusions

In this study, the performance of ensemble precipitation forecasts of three NWP models within
the TIGGE database, namely ECMWF, NCEP, and UKMO, and a satellite-based precipitation product,
IMERG, for three severe flood events in Iran in March–April 2019 period were evaluated. In the first
step, the performance of the precipitation products in capturing the spatial distribution of precipitation
was evaluated. The results showed that all of the products could generally capture the main features
of the precipitation system, including the spatial distribution, total accumulation, and extreme values
(Figure 2). In general, UKMO, followed by IMERG and ECMWF, showed better performance than other
products in capturing the spatial distribution of the accumulated precipitation during the 19 days of
extreme precipitation events over Iran. However, the in situ observations identified four precipitation
hotspots along the Zagros Mountain in western Iran with the largest precipitation amount; IMERG
outperformed other products to capture these hotspots.

In the second step, all of the products were examined in comparison with the in situ observations
in three major basins that were most affected by the floods. It was evident that ECMWF and UKMO,
followed by IMERG, compared well with the corresponding in situ measurements in terms of mean
precipitation through the first event in the Gorganrud Basin (Figure 7a). With respect to the second
flood event, the box-plots indicated that IMERG, followed by ECMWF, outperformed other products
in both the Karkheh and Karun Basins, while the UKMO whiskers extended to the most extreme data
points (Figure 7b). In the third flood event, the mean areal precipitation values of all products were
rather close to in situ observations over the Karkheh Basin, while box-plots confirmed that the IMERG
pixels were in a larger range in comparison with the observations. However, almost all products
overestimated the precipitation over the Karkheh and Karun Basins (Figure 7c).

In the third evaluation step, four daily precipitation thresholds of 25 mm, 50 mm, 75 mm,
and 100 mm were selected to evaluate the skill of the products in capturing precipitation within the
specified thresholds via dichotomous evaluation methods. The results showed that when the threshold
was increased, the performance of the NCEP model was greatly reduced, while the IMERG estimates
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improved at higher thresholds. At the 50 mm threshold, UKMO predicted a closer number of events in
comparison with the observations. At the 75 mm threshold, UKMO revealed better results than the
other products, whereas NCEP had difficulty in forecasting the precipitation amount at this threshold.
At the 100 mm threshold, the in situ observations recorded 22 events, while NCEP detected none.
The maximum ensemble forecasts of UKMO in higher thresholds could estimate a larger number of
precipitation events than other models and the satellite. As such, UKMO detected 11 out of 22 events
(Figure 8). However, in terms of the contingency table, ECMWF outperformed other products with a
higher POD and lower FAR (Figure 9).

Overall, the results of this study show that the IMERG precipitation estimates and NWP ensemble
forecasts performed well in the three major flood events in spring 2019 in Iran. Given the widespread
damage caused by the floods, the necessity of establishing an efficient flood warning system using the
best precipitation products is advised.

The overestimation/underestimation of precipitation by forecast models and satellite-based
precipitation products still remains a challenge, particularly for extreme precipitation events. Short-time
and extreme precipitation events are much more variable than moderate precipitation events. However,
studies on the impact of the uncertainty of precipitation products are needed to obtain a better
understanding of how and why precipitation products succeed or fail in the detection of heavy
precipitation. Moreover, it is important to note that this study was conducted based on a short period
of data (i.e., 19 precipitation days containing three severe flood events) limited to Iran. Thus, further
studies using a longer dataset at the global scale in different climate regimes/geophysical features is
essential to assess the impacts of the aforementioned limitations.
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Abstract: Rainfall estimates based on satellite data are subject to errors in the position of the rainfall
events in addition to errors in their intensity. This is especially true for localized rainfall events
such as the convective rainstorms that occur during the monsoon season in sub-Saharan Africa.
Many satellite-based estimates use gauge information for bias correction. However, bias adjustment
methods do not correct the position errors explicitly. We propose to gauge-adjust satellite-based
estimates with respect to the position using a morphing method. Image morphing transforms
an image, in our case a rainfall field, into another one, by applying a spatial transformation.
A benefit of this approach is that it can take both the position and the intensity of a rain event
into account. Its potential is investigated with two case studies. In the first case, the rain events are
synthetic, represented by elliptic shapes, while the second case uses real data from a rainfall event
occurring during the monsoon season in southern Ghana. In the second case, the satellite-based
estimate IMERG-Late (Integrated Multi-Satellite Retrievals for GPM ) is adjusted to gauge data
from the Trans-African Hydro-Meteorological Observatory (TAHMO) network. The results show
that the position errors can be corrected, while preserving the higher spatial variability of the
satellite-based estimate.

Keywords: precipitation estimation; satellite-based precipitation; gauge data; IMERG; TAHMO;
morphing; field displacement

1. Introduction

Precipitation is an important variable in weather and climate research and many other applications.
Precipitation data are needed as input for hydrological models, for flood and drought monitoring or for
water management in agriculture or power generation. However, estimating precipitation accurately
is difficult because of its high spatial and temporal variability. This is especially true for sub-Saharan
Africa, where most of the rainfall is produced during the monsoon season by convective rainstorms,
which are very localized [1,2].

Rain-gauges are the most direct way to measure precipitation. However, the gauge networks in
Africa are not dense enough to derive high resolution precipitation estimates. Indeed, the rain-gauge
distribution is sparse in many African regions and their number has been decreasing in recent
decades [3]. During the same period, many efforts have been made to derive precipitation estimates
from satellite data. Satellites do not measure precipitation directly but have the advantage of covering
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large areas. This is especially interesting for Africa where gauge networks are sparse and there are also
almost no radar observations available.

There is an increasing number of satellite-based rainfall products, providing rainfall estimates
at different spatial and temporal resolutions. Most rainfall products use additional sources of data,
such as gauge estimates, for bias correction. Bias correction methods focus on correcting the intensity.
However, the intensity is not the only possible error in precipitation. Rainfall events are coherent
moving systems and, in the case of convective rainstorms, they are also very localized. This can
lead to errors in the estimation of the position and shape of the rain events beside the errors in their
intensity. For some applications, such as hydrological modeling [4,5], flash flood warnings [6] or data
assimilation in a numerical weather model [7,8], detecting the correct location of the rain events can be
as important as their intensity.

The position errors in weather forecast models, including precipitation, have been taken into
account in the field of forecast verification. Several spatial verification approaches have been
developed [9,10]. They can be divided into four categories: neighborhood, scale-decomposition
(e.g., References [11–13]), object- (or feature-)based (e.g., References [14–16]) and field deformation.
In this study, we focus on a method belonging to the latter category. We now give an overview of
field deformation method used for weather-related variables. Field deformation methods are based
on a spatial mapping or displacement that makes a field (e.g., forecast) more similar to a target
field or observation. The deformation is determined by minimizing a cost function. The Feature
Calibration and Alignment technique (FCA [17–19]) is one of these methods. FCA has also been used for
correcting position errors in cloud or water vapor related fields in the framework of data assimilation.
For instance, References [18,20] corrected position error in a numerical weather model background
fields using integrated water vapor measurements from satellite. In Reference [21], the FCA is used as
a prepossessing step of an ensemble-based variational assimilation scheme for (satellite) brightness
temperature. Reference [22] tested this method with several types of observations—integrated
water vapor, lower level pressure, brightness temperature and simulated radar reflection. Other
feature alignment techniques have been developed and used in data assimilation schemes, such as
Reference [23] (for simulated radar observation), References [24,25] (for some idealized cases). The FCA
technique has been applied directly to rainfall data in Reference [19]. They corrected rainfall estimates
derived from SSM/I data with ground-based radar estimates. They illustrated the performance of their
approach for different types of rainfall events, such as Hurricane Andrew, a squall line in Oklahoma
and coastal rainfall in Australia.

Some field deformation methods for spatial verification originate from image processing, such as
the optical flow techniques developed in Reference [26,27] or in Reference [28] and evaluated in
References [29,30]. Image warping has also been used in data assimilation frameworks. Reference [31]
assimilated integrated water vapor from satellite to improve a numerical weather model forecast.
However, this method requires the manual selection of pairs of points to perform the image warping.
Reference [32] combined image morphing with an ensemble Kalman filter for a wild fire model.
They use an automatic registration technique that only requires two fields to derive the displacement
field, without any manual specification needed. Using the same morphing and registration method,
a morphing fast Fourier transform (FFT) EnKF for radar precipitation is described in Reference [33].
However, this morphing FFT EnKF is not implemented and applied to rainfall data.

This present study investigates the use of the morphing approach for the position correction of
rainfall estimates, using the approach proposed by References [32,33]. While the goal of Reference
[33] was to derive a method to assimilate radar precipitation into a numerical weather model, we aim
to correct the position error of satellite-based precipitation estimates using gauge measurements.
We apply the morphing approach to real precipitation data, namely the (non-gauge adjusted)
IMERG-Late estimates and the new Trans-African Hydro-Meteorological Observatory (TAHMO)
gauge network.
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The morphing and automatic registration methods, including the case of irregularly spaced
observations, are described in Section 2. The morphing approach is applied to two cases. The first case
uses synthetic rainfall events represented by ellipses (Section 3.1). The second case is a real rainfall
event occurring in southern Ghana during the monsoon season (Section 3.2). Both the convergence of
the automatic registration and the performance of the warping are examined in Section 4. The results
of the two cases are compared and discussed in Section 5, before the conclusion in Section 6.

2. Methodology

In this section, we define the image registration and morphing processes, before focusing on the
implementation of an automatic registration procedure. We use the framework described by Reference [33].

2.1. Definitions

Let u and v be two signals (or images) defined on a domain D ⊂ IR2 and T : (x, y) ∈ IR2 �→(
Tx(x, y), Ty(x, y)

) ∈ IR2 be a mapping function. The goal of image registration is to determine
a spatial mapping T such that, ∀(x, y) ∈ D,

v(x, y) ≈ u ◦ (I + T) (x, y) (1)

≈ u [(I + T) (x, y)]

≈ u
[
x + Tx(x, y), y + Ty(x, y)

]
where I is the identity function.

There can be several mappings T that meet the requirement v ≈ u ◦ (I + T). Especially in areas
without rainfall, the mapping T is not unique. We define three criteria to characterize one optimal mapping:

T ≈ 0 (2)

∇T ≈ 0 (3)

∇ · T ≈ 0 (4)

That is, the optimal mapping has to be as small, smooth and divergent-free (i.e., it is not shrinking
or expanding the field) as possible.

Several approaches have been used to define the optimality of the mapping. For the FCA method
applied to precipitation, Reference [19] use smoothness and barrier conditions. Contrary to our
condition on the magnitude (Equation (2)), their barrier does not impact small scale displacements.
Using the FCA for data assimilation, References [20,22] added two more constraints, one on the
magnitude and one on the divergent. Reference [25] did not use any magnitude or barrier approach
and only had constraints on the gradient and the divergence. Our constraints on the magnitude and
on the smoothness are the same as those used in Reference [32]. Constraints on the divergence were
used in several similar field distortion methods [20,22,25]. Thus, we also added a third constraint on
the divergence in order to observe its impact. A short sensitivity study on the impact of these three
coefficient is presented in Appendix B.

Image warping is the distortion of an image based on a spatial transformation of the domain.
Warping can be used to transform an image into another one by using the spatial mapping T obtained
from the registration method. The mapping T is gradually applied to the original image u as follows:

uwarp(λ) = u ◦ (I + λT) 0 ≤ λ ≤ 1 (5)

Warping works well when the residual v − u ◦ (I + T) is small, which is not the case when the
images u and v have different intensities for example. It is a spatial transformation. It only acts on the
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coordinates, it does not modify the intensity of the image u. On the other hand, Cross-dissolving only
acts on the intensity. It fades two images u and v into each other:

udiss(λ) = u + λ(v − u) 0 ≤ λ ≤ 1 (6)

Image morphing combines warping and cross-dissolving to account for both the spatial distortion
and the difference in intensity:

umorph(λ) = (u + λr) ◦ (I + λT) 0 ≤ λ ≤ 1 (7)

where r is the residual:

r = v ◦ (I + λT)−1 − u 0 ≤ λ ≤ 1 (8)

With this formula of uλ, we obtain umorph(0) = u and umorph(1) = v.

2.2. Automatic Registration

The spatial mapping T used for the image morphing is determined by the image registration.
Several registration methods are available. However, many of them require to define manually a set
of corresponding points from the images u and v. We are interested in an automatic registration
procedure that only needs the images u and v as inputs without any extra specifications. This requires
the images to be similar enough for the automatic registration procedure to work.

We use the method described by Reference [33] based on the minimization of a cost function J
with respect to the mapping T. The cost function can be divided in two terms (Equation (9)). The first
one (Jo) represents the mapping error between the displaced original signal u ◦ (I + T) and the target
signal v. The second one (Jb) is a background term that consists of the three criteria for ‘optimal’
mapping given in Equations (2)–(4). These three criteria are used as weak constraints.

J(T) = Jo(T) + Jb(T) (9)

Jo(T) = ‖v − u ◦ (I + T)‖
Jb(T) = C1‖T‖+ C2‖∇T‖+ C3‖∇ · T‖

where C1, C2 and C3 are three coefficients determined empirically and ‖.‖ is the L2−norm.
The minimization problem is solved iteratively, for T defined on increasingly fine grids.

The iterative approach has two advantages. It helps reduce the computational cost and avoids
the local minima problem (see below).

In our application, the domain D is rectangular. It can be represented by different uniform
grids. The regular nx × ny = n grid on which u, v and umorph(λ) are given is called the pixel grid Dn.
The mapping function T is defined on a set of coarser grids Di (i = 1, ..., I), called morphing grids.
It is then represented by two gridded arrays (one for Tx and one for Ty). The grids Di are uniform
(2i + 1)× (2i + 1) = mi grids (for i = 1, ..., I) covering the domain D. For i = 1, ..., I, the mapping T
discretized on Di is noted Ti.

The signals u and v, and so the observation term Jo of the cost function, are discretized on the
pixel grid Dn. The background term Jb is discretized on the morphing grid Di. We use the second
order central scheme except at the boundaries where the first order backward or forward schemes
are used. We use bilinear interpolation to estimate the value of u and v on the distorted grid (e.g.,
u ◦ (I + T)) and to interpolate T on the different morphing grids Di.

The finest morphing grid DI does not need to be the same as the pixel grid Dn. On the contrary, it is
computationally advantageous when the morphing grid DI has a much coarser resolution. When the
number of nodes mi of the morphing grids is much smaller than the number of nodes n of the pixel grid,
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solving the minimization problem on the set of morphing grids Di is less computationally expensive
than to solve it for T defined on the high resolution pixel grid Dn.

Algorithm

The algorithm iterates over the morphing grids Di (i = 1, ..., I), starting on the coarsest 3-by3
grid D1, until it reaches the finest morphing grid DI . For each iteration, the three main steps are similar
to those in Reference [32] and are illustrated in Figure 1.

1. Smoothing of the images u and v: the images are smoothed by convolution with a 2D-Gaussian

G2D (x, y) =
1

2πσ2 exp
(
− x2 + y2

2σ2

)
,

where σ = 0.05/
(
22i + 1

)
. The finer the grid Di is, the narrower the Gaussian is. Thus, for small

i, the fine features are ignored and the focus is given to the large-scale ones. When i increases,
more and more fine features are taken into account. This way, Ti for small i will make the larger
features match. Then, for increasing i, more and more detailed images are matched.

The cost function J is often non-convex with respect to T and so can have several local
minima. The smoothing combined with the hierarchy of grids reduce the local minima problem.
They ensure that the large-scale features are fitting first, hence avoiding local minima.

After the smoothing, the two fields are normalized such that their maximum is the same.
The images obtained after smoothing and normalization are noted as ũi and ṽi.

2. Initialization: solving the minimization problem on grid Di requires a first guess Tfg
i . For i = 1,

Tfg
1 is set to zeros, that is, no deformation. For i = 2, ..., I, the mapping T∗

i−1 obtained by solving
the minimization problem on grid Di−1 is interpolated into the grid Di and used as the first
guess T f g

i .
3. Optimization: The actual minimization problem to be solved is based on the smoothed fields,

that is, Jo(T) = ‖ṽi − ũi ◦ (I + T)‖. Contrary to Reference [32], we solved the minimization
problem for all the nodes at the same time.

There is a number of inequality constraints on this minimization problem, due to our requirements
of invertibility. An iterative barrier approach is used to transform this constrained minimization
problem into an unconstrained one [34,35]. In the barrier approach, the minimization is applied
to a penalized cost function Jp(T) = J(T) + β ∑h Ch(T), where Ch are the constraint functions
and β the barrier coefficient (over which we iterate when the constraints are not respected).
The constraints and the minimization method are described with more details in Appendix A.
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Figure 1. Algorithm for the automatic registration.
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The python scripts for the automatic registration and the morphing are available online
(Supplementary https://github.com/clecoz/precipitation-morphing.git). The scripts permit to
reproduce the results for the synthetic case described below.

2.3. Dealing with Irregularly Spaced Observations

The automatic registration algorithm described above assumes that both signals u and v are on
the same regular grid. However, in practice, one might deal with irregularly spaced observations,
such as rain-gauge data.

In such a case, the observations are interpolated on the same regular grid, using kriging (details
about the kriging are given in Section 3.2). In the remainder of the article, we will refer to the gauge
interpolation as “kriging”, while “interpolation” will refer to the bi-linear interpolation used in the
automatic registration and morphing. The cost function J fro Equation (9) is modified to take the
unequal coverage of the domain into account. A mask function M is added in the first term of J:

J(T) = ‖M · (v − u ◦ (I + T))‖+ C1‖T‖+ C2‖∇T‖+ C3‖∇ · T‖ (10)

were · is the element-wise matrix multiplication. The mask function is defined such that it is equal
to 1 in a given perimeter around the observations and zero everywhere else. So, the difference
v − u ◦ (I + T) for the grid points far from any observation does not weigh in the cost function J.

3. Study Cases

3.1. Synthetic Case for Algorithm’s Validation

A synthetic case is used to investigate the convergence of the automatic registration algorithm and
to validate the morphing. The synthetic precipitation fields are generated on a regular nx × ny grid,
with nx = ny = 65(= 26 + 1). The synthetic rainfall events are represented by ellipses and are added
to a zero precipitation field (Figure 2). The fields u and v have two rainfall events each. However,
they are at different positions. The distortion between the fields include both a rotation and a shear.
The events also differ by their intensity and shape. The event in the lower right corner has the same
shape in both fields u and v, but has a difference of intensity of 5 mm/h. The event in the upper-left
corner has the same intensity in both u and v, but the ellipse has a different inclination.

(a) (b)
Figure 2. Precipitation fields u and v for the synthetic case, shown respectively in (a) and (b).
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3.2. Southern Ghana Case

In this case, we apply the automatic registration and the warping to real precipitation data.
Our goal is to gauge-adjust a satellite-based estimate with respect to the location of the rain events.
We assume the gauge measurements to be more accurate, but the IMERG has a higher spatial variability
that the gauges cannot reproduce because of their network’s density. Thus, our goal is to keep the
spatial variability of IMERG, while correcting the position mismatch with respect to the gauge. For this
real case, we will only look at the warping for this case. The morphing would make the warped field
similar to the gauges, even in areas without gauges.

The study area is a square domain over southern Ghana encompassing the Ghanaian cocoa
region. This domain has been chosen because of the particular high density of the Trans-African
Hydro-Meteorological Observatory (TAHMO) network in this area (Figure 3).

Southern Ghana has two rainy seasons. The main one extends from March to mid-July and the
second one occurs during September and October. We chose a rainfall event during the main monsoon
season. More precisely, we selected one hour during this event (from 18:00 to 19:00 of 22 April 2018).
Given the spatial resolution of IMERG (0.1◦ lat/lon), hourly accumulation is in good agreement with
the rainfall spatial and temporal variability [5]. Longer time scale would make it more difficult to
identify the individual events and very few precipitation datasets are available at a sub-daily scale.

Figure 3. Study domain (red rectangle) and the TAHMOstations available within the domain (white dots).

3.2.1. Precipitation Datasets

IMERG (Integrated Multi-satellitE Retrievals for GPM) is a high resolution global precipitation
product produced by NASA as part of the Global Precipitation Measurement (GPM) mission [36–38].
IMERG merges several satellite estimates from infrared, passive-microwave and satellite-radar.
Three versions are available at half-hourly and 0.1◦ lat/lon resolution: the Early, Late and Final runs.
The Final run is gauge-adjusted at monthly scale with the GPCC (Global Precipitation Climatology
Centre) gauge product. This product is not available for the Early and Late runs, which have
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respectively 5 h and 15 h latency. Instead, they are climatologically adjusted to the Final run. So,
they indirectly incorporate past gauge data through this climatological adjustment, but are independent
of recent rainfall measurements. The warping will be applied to IMERG-Late run, on a 37 × 37 grid
points area corresponding to the study domain.

The Trans-African Hydro-Meteorological Observatory (TAHMO [39]) initiative aims to develop
a dense network of 20,000 hydro-meteorological stations in sub-Saharan Africa (equivalent to one
station each 30 km). These low-cost stations measure the standard meteorological variables, including
precipitation, at a high temporal resolution (5 min). The current TAHMO network contains over
500 stations, mainly in West and East Africa. Data from 66 TAHMO stations are available within the
study area for the selected hour.

IMERG-Late estimates and TAHMO measurements for the selected hour, i.e., for the 22 April 2018
between 18:00:00 and 19:00:00, can be seen in Figure 4. Both show one main rainfall event,
with a maximum of 45 mm/h according to IMERG-Late. TAHMO recorded a slightly higher maximum
of 53.45 mm/h at a gauge located South-West of IMERG’s peak.

Figure 4. IMERG-Late (background) and TAHMO (circles) accumulated rainfall between 18:00:00 and
19:00:00, within the study domain (dotted line).

3.2.2. Data Pre-Processing

TAHMO measurements are given on an irregular grid, while the automatic registration algorithm
assumes that all the data are defined on a regular grid. The TAHMO measurements were kriged on
the same 0.1◦ lat/lon grid as IMERG estimates (Figure 5). We used ordinary kriging with a square
root transform [40]. The ordinary kriging was done with PyKrige, a kriging toolkit for python (https:
//pypi.org/project/PyKrige/). We choose an exponential variogram with a sill of 1.0 (mm2/h2),
a range of 1.5◦ and a nugget of 0.01 (mm2/h2).

Contrary to the previous cases, this case uses real noisy data. Hence, some pre-processing
(beside the kriging) is necessary before applying the automatic registration. First, light precipitation
(<0.1 mm/h) is removed from both fields. Lighter precipitation is in general more difficult to detect,
hence subject to large uncertainties. Second, we add a zero-precipitation padding area around the study
domain. This area is added to avoid problems near the boundary due to the minimization constraints.
The extended domain corresponds to a nx × ny pixel grid, with nx = ny = 65. Finally, we normalized

497



Remote Sens. 2019, 11, 2557

the two fields such that the maximum rainfall is equal to 50 mm/h for both. Figure 6a,b show the
fields u (IMERG-Late) and v (TAHMO) after the three pre-processing steps described above. The study
domain is delimited by the dotted line, while the extended domain including the zero-padding area
is delimited by the solid line. The extended domain corresponds to a regular nx × ny grid, with
nx = ny = 65. These modified precipitation fields will be used as inputs for the automatic registration
procedure to find the mapping T. Once the mapping T is found, it will be applied to the original fields
u (Figure 4) on the extended domain.

Figure 5. TAHMO measurements (circles) and TAHMO kriged (background) within the study domain
(dotted line) for the selected event.
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(a) (b)
Figure 6. Fields u (IMERG-Late) and v (TAHMO) after pre-processing and used as inputs. The dotted
line delimits the study domain and the solid line the extended one, with the zero-padding area
in-between. (a) Field u (IMERG) after pre-processing. (b) Field v (TAHMO) after pre-processing.

4. Results

4.1. Synthetic Cases

The coefficients C1, C2 and C3 in the cost function J are set empirically to C1 = 1, C2 = C3 = 10.
We will first look at the convergence of the minimization problem on each domain Di for i = 1, ..., I,
with I = 5 (so that mI = 33 × 33 < n = nx × ny = 65 × 65, see Section 3). Then, we will look at the
performance of the automatic registration and morphing procedure.

The coefficients C1, C2 and C3 influence the value of the cost function, and so the convergence.
However, their impact on the mapped field is limited and mainly affect the area with no or low
precipitation. For example, multiplying the coefficients by two will give similar results in terms of
mean absolute error and root mean square error (see Appendix B).

4.1.1. Convergence

For each domain Di (i = 1, ..., 5), we investigate the convergence of both the inner loop (from the
barrier approach, that is, the iterations on the coefficient β) and of the outer loop (from the L-BFGS-B
minimization method) for the synthetic case (Figure 2).

The value of the cost function before and after minimization for each step i, as well as the number
of iterations needed by the L-BFGS-B method and the barrier approach to reach convergence, are shown
in Table 1. The iterations on the coefficient β are performed only if some constraints are violated. For
the ideal case described above, iterations over β are required for grids D2 and D5 (with a maximum of
3 iterations for D3). The number of iterations needed by the L-BFGS-B method varies depending on
the domain Di and the coefficient β. It is interesting to observe that less iterations are necessary for
increasing β. Domain D3 necessitates the highest number of iterations and D1 the lowest (1308 and
81 iterations respectively). These numbers are specific to this case and will vary depending on the
input fields u and v, and on the coefficients C1, C2 and C3. However, they show that convergence may
require a high number of iterations and that this number is difficult to predict.
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Table 1. Optimization results after each step i = 0, ..., 5 for the synthetic case. The number of iterations
needed for the barrier approach (β iterations) and for the L-BFGS-B method are given separately.
The total number of iterations correspond to the sum of the L-BFGS-B iterations for each β iteration.
The cost function Jp is evaluated before and after optimization (i.e., for the first guess Tfg

i and the
‘optimal’ grid T∗

i ). The latter is also separate into three terms, the mapping error (Jm), the background
error (Jb) and the penalization term (not shown here because of its value close to zero).

i 1 2 3 4 5

Number of iterations
- Total 81 996 1308 502 443
- β iter. 1 3 1 1 2
- L-BFGS-B iter. for each β 81, β = 1 956, β = 1

36, β = 10
4, β = 100

1308, β = 1 502, β = 1 263, β = 1
180, β = 10

Cost function

Jp(T
fg
i ) 213.169 54.722 40.568 24.278 16.371

Jp(T∗
i ) 30.058 18.408 19.193 14.790 13.191

Jo(T∗
i ) 27.552 16.352 17.847 13.399 11.734

Jb(T∗
i ) 2.507 2.056 1.345 1.391 1.457

The reduction of the cost function is more important on the coarser domains. It is divided by 7
on domain D1, by 3 on domain D2 and by 2 on domain D3 (Table 1). This is probably due to better
first guesses, since the displaced grid obtained on a domain Di is used to initialize the finer grid Di+1.
The observation error term Jo of the cost function is reduced greatly after optimization on the four
coarsest domains (from 27.552 after optimization on domain D1 to 13.399 on domain D4). However,
it increases from domain D2 to D3, before decreasing again on domain D4. This increase could be due
to the smoothing which is narrower for increasing i, making the position error more apparent in the
mapping error. This could also be due to the background error term (Jb), which larger decrease is also
from domain D2 to D3.

To investigate further the impact of each domain Di on the automatic registration procedure,
we examine the mean absolute error (MAE) of the morphed (umorph = umorph(λ=1)) and warped
(uwarp = uwarp(λ=1)) signals for different values of I (shown in Table 2). The MAE of the morphed
signal is divided by around 4.2 from I = 1 to I = 2 and by 2.6 from I = 2 to I = 3. Domains D4 and
D5 have a smaller impact on the MAE (MAE divided by around 1.3). Similar trend can be observed for
the MAE of the warped signal, but with a smaller decrease. The MAE is divided by 1.9 from I = 1
to I = 2 and from I = 2 to I = 3. Increasing I from 4 or 5 has only a minor effect on the MAE of the
warped signal.

Table 2. MAE (in mm/h) of the morphed (umorph) and warped (uwarp) signals obtained at different
steps i, for the synthetic case.

i 1 2 3 4 5

MAE
(

umorph − v
)

0.678 0.161 0.062 0.050 0.036
MAE

(
uwarp − v

)
0.531 0.281 0.147 0.137 0.133

The number of variables to optimize on a domain Di increases with increasing i. So, solving the
minimization problem becomes more computationally expensive. Moreover, we saw that domain D5 has
a smaller impact on the cost function and on the MAE of the morphed signals. Thus, in order to limit the
computational cost, the finer morphing grid will be set to I = 4 in the following validation section.
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4.1.2. Validation

In this subsection, we are looking at the performance of the automatic registration and of the
morphing procedure on the synthetic case for I = 4.

From the automatic registration procedure, we obtain a mapping function T that will be used to
distort the image in the morphing process. The mapping T is shown in Figure 7a. The corresponding
grid distortion is illustrated in Figure 7b which shows the regular nx × ny grid (on which u and v are
defined) before and after the mapping has been applied. By comparing with the signals u and v (in
Figure 2), one can see that the mapping was able to take into account both the rotation and the shear
between the events. The biggest distortions occur around the two rainy peaks, while the distorted
grid is more regular and closer to the original grid in the areas further away from the peaks. This is
due to the first regulation term of the cost functions ensuring that the transformation T is as “small”
as possible. The second regulation term is responsible for the smooth transition between these areas.
The impact of the third regulation term is more difficult to see directly. The third term penalizes grid
cell to shrinkage or expansion. Due to the locations of the rainfall events in the signals u and v, almost
the entire domain is influenced by the mapping T. Large distortions near the boundary can raise some
inconsistencies in the distorted grid, such as in the one in the lower-right corner in Figure 7b. A way to
avoid such discrepancies near the boundary would be to add a padding area around the domain filled
with zero precipitation.

(a) (b)
Figure 7. (a) Mapping T obtained from the automatic registration (with C1 = 0.1 and C2 = C3 = 1)
and (b) its effect on the pixel grid, for the synthetic case. (a) Mapping T. (b) Pixel grid Dn before (in
red) and after (in blue) distortion by the mapping T.

Once the mapping T is obtained, it can be applied to the signal u. One can see the impact of the
mapping by comparing the morphed signal umorph (Figure 8b) to the original signal u (Figure 8a).
The error between the morphed signal and the signal v is shown in Figure 8c. Figure 8c shows that
the absolute error is small compared to the intensity of the rain events. This is also reflected by the
low MAE in Table 1. Figure 8d shows that the errors have a clear delimitation, corresponding to the
rain events of the target field v. For this synthetic case, the center of the two events in umorph and v are
corresponding exactly with respect of the position.

It is interesting to note that, while the lower event had an error on the intensity and an error
on its location, the error of the morphed signal is lower around its peak than for the second (upper)
events. The error of the warped field is close to 5 mm/h near this peak (not shown here). This shows
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the advantage of morphing over warping when there is an intensity error. The upper event does
not have any intensity error, but it has a shape error (i.e., the ellipses have different inclinations).
The largest error in the morphed field umorph occurs around its peak. The top is underestimated,
while the surroundings are overestimated. This pattern would suggest an error due to the linear
interpolation used for the morphing. This underestimation is greatly reduced when using a 2d spline
instead of the current bi-linear interpolation (not shown here).

(a) (b)

(c) (d)
Figure 8. Morphing results: (a) original signal u, (b) morphed signal umorph, (c) absolute error between
the morphed signal and the target signal v and (d) error between the same two signals (using a different
scale). (a) u. (b) umorph. (c) |umorph − v|. (d) umorph − v.

4.2. Southern Ghana Case

The results described in this section are obtained for I = 4, with the regulation coefficients
empirically set to C1 = 0.1 and C2 = C3 = 1 (these coefficients are the same as for the synthetic
cases). We define the mask function M such that M = 1 at the grid points where the kriging variance
σkriging < 0.5 · sill = 0.5 mm2/h2 and M = 0 otherwise. The padding area is thus masked too.

4.2.1. Convergence

We first look at the convergence of the automatic registration procedure when applied to this real
(noisy) case. Table 3 shows the number of iterations (nit) needed by the L-BFGS-B method to converge
for each β, as well as the cost function before and after the minimization. Domain D4 (for β = 1)
necessitates the highest number of iterations and D1 the lowest (1463 and 10, respectively). Iterations
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on the coefficient β are preformed only on domain D4. Contrary to the synthetic case, the reduction
of the cost function is important on the finer morphing grid. It is divided by two on D2 and D3 and
by five on D4. In this case, the background term Jb is higher than the mapping error term Jm on all
domains Di. The cost function after optimization Jp(T∗

i ) increases from domain D1 to D4, mostly due
to the background term Jb. The important increase of the mapping error Jm(T∗

i ) on domain D4 is
mostly due to the smoothing that reveals sharper features.

Table 3. Optimization results after each step i = 0, ..., 4 for the southern Ghana case. The number
of iterations needed for the barrier approach (β iterations) and for the L-BFGS-B method are given
separately. The total number of iterations correspond to the sum of the L-BFGS-B iterations for each β

iterations. The cost function Jp is evaluated before and after optimization (i.e., for the first guess Tfg
i

and the ‘optimal’ grid T∗
i ). The latter has also been separated into three terms, the mapping error (Jm),

the background error (Jb) and the penalization term (not shown here because of its value close to zero).

i 1 2 3 4

Number of iterations
- Total 10 60 433 1463
- β iter. 1 1 1 5
- L-BFGS-B iter. for each β 10, β = 1 60, β = 1 433, β = 1 1430, β = 1

16, β = 10
9, β = 100
4, β = 1000
4, β = 10,000

Cost function

Jp(T
fg
i ) 0.0516 0.0938 0.1068 0.3602

Jp(T∗
i ) 0.0421 0.0424 0.0483 0.0679

Jm(T∗
i ) 0.0168 0.0058 0.0060 0.0252

Jb(T∗
i ) 0.0253 0.0376 0.0422 0.0427

4.2.2. Validation

The mapping T obtained from the automatic registration and its effect on the pixel grid Dn is
shown in Figure 9. The field is shifted toward the South-West. The deformations are more important in
the center and in the South of the domain, while being very small or null near the boundary. The area
near the boundary corresponds to the padding area which is filled with zeros. The regulation terms
are thus dominating the cost function in this area, especially the first one that ensure the mapping
to be as small as possible. In contrast, the first term of the cost function is dominant in the center of
the domain where the rainfall event is located. The second and third regulation terms ensure that the
transition between these two areas is smooth.

This mapping T is then applied to the field u, the satellite estimate from IMERG, to correct the
location of the rain event. Figure 10 shows the warped field uwarp and the TAHMO measurements.
One can see that the location of the rainfall event is corresponding more to the gauge data than
before the warping (Figure 4). We define the center of the event by the grid cell with the maximum
precipitation. Using the kriged gauge field v as the truth, we compute the position error of the event’s
center before and after the warping. It decreases from 55,365 km to 22,096 km. This remaining error of
22,096 km is due to an error in the longitude. Indeed, the maximum rainfall is at the correct latitude,
but is two grid cells to the East of the actual peak. This error in longitude can be explained by the
internal structure of the event. By comparing the pre-processed fields in Figure 6, one can see that the
peak is located in the eastern part of the event for IMERG (u), but in the West for the kriged gauge
(v). This difference could be due to the kriging and gauge network density (no gauge measurement is
available near the peak of the warped field).
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(a) (b)
Figure 9. (a) Mapping T obtained from the automatic registration (with C1 = 0.1 and C2 = C3 = 1)
and (b) its effect on the pixel grid, for the southern Ghana case. (a) Mapping T. (b) Pixel grid Dn before
(in red) and after (in blue) distortion by the mapping T.

Figure 10. Warped signal uwarp (background) and TAHMO measurements (circles).

To investigate further the automatic registration, we compute the MAE and RMSE between the
warped field and the target one, using the mappings Ti obtained at each step i (Table 4). Applying the
mapping T1, defined on the coarsest morphing grid, already greatly reduces the MAE and the RMSE
compared to the original errors. Increasing the resolution of the morphing grid, further decreases the
MAE and RMSE, except for the RMSE for i = 2. While the cost function is divided by five on domain
D4 (see Table 3), the reduction of the error from D3 to D4 is much smaller.

The target field v has been obtained by kriging the gauge data. Hence, some interpolation errors
were introduced, especially in the areas far from the gauges. Comparison to the whole field v is not
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representative, since it contains some large uncertainties. In the second part of Table 4, the warped
field uwarp is estimated at the station locations (shown in Figure 11 for T4) and is directly compared to
the gauge measurements. As previously, a large part of error reduction is occurring on domain D1.
In total (i.e., for i = I = 4), the RMSE has been divided by almost two, and the MAE by 1.5.

Table 4. MAE and RMSE of the warped (uwarp) signal compared to the kriged TAHMO field (v) and to
the gauge measurements, obtained at different steps i, for the southern Ghana case.

i Before 1 2 3 4

Kriged field
(
uwarp − v

)
- MAE (mm/h) 0.1748 0.0968 0.0936 0.0886 0.0865
- RMSE (mm/h) 1.6476 0.9171 0.9496 0.8976 0.8565

Gauge measurements
- MAE (mm/h) 2.0687 1.4365 1.4434 1.3849 1.3619
- RMSE (mm/h) 8.7053 5.5057 5.4984 4.9349 4.6690

Figure 11 shows the warped field at the station locations. The stations at which the gauge data
and the warped field disagree are numbered. At the other stations, both TAHMO and the warped
field estimate zero precipitation. The precipitation amounts at the 18 numbered stations according to
TAHMO, IMERG-Late (u), IMERG-Final and the warped field (uwarp) are shown in Figure 12. They are
ordered in decreasing order of precipitation with respect to TAHMO measurements. For stations 1
and 2 (with highest rainfall intensity), the warped signal is much closer to the measurements than
IMERG-Late and IMERG-Final. However, uwarp underestimates the intensity and estimates more
rainfall at station 2 than 1 (the opposite of TAHMO). This underestimation can be explained by two
factors. First, the maximum of IMERG-Late u on our domain (=45 mm/h) is lower than the one
recorded by TAHMO. Second, we used linear interpolation for the warping. The rainfall at station
3 is underestimated by the three satellite estimates. At the stations 4 and 5, both IMERG-Late and
IMERG-Final underestimate while uwarp overestimates. IMERG misses the precipitation at station 6,
while uwarp overestimates by almost a factor four. The remainder of the stations has very low or no
precipitation according to TAHMO. The three satellite estimates are similarly low (less than 1 mm/h)
at these stations, with a few exceptions: IMERG-Late and IMERG-Final at station 14 and uwarp at
stations 8 and 12. The overestimation by uwarp at station 8 corresponds to a second lower peak present
in the original field u but not in the target field v.

Figure 11. Warped signal uwarp at the stations location. The stations that differ from the TAHMO
measurements are numbered.
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Figure 12. Rainfall (in mm/h) at 18 TAHMO stations according to TAHMO, IMERG-Late, IMERG-Final
and the warped signal (uwarp).

5. Discussion

5.1. Convergence

The automatic registration algorithm converges for both the synthetic and the real (Southern
Ghana) case. However, some differences can be noticed when comparing the optimization results
shown in Tables 1 and 3.

The minimization method (L-BFGS-B) needs more iterations for the synthetic than for the real
case for all steps i except for i = 4. Iterations on the coefficient β were needed for step i = 2 and i = 5
for the synthetic case, while the real case needed it for its finer step i = 4. The real case is noisier than
the synthetic one, but the displacement between the field u and v is more straightforward. Indeed,
for the synthetic case, the mapping T has to describe both a rotation and a shear. For the real case,
the mapping T only has to represent a translation. On the coarser grids, the translation does not violate
the constraints on the barrier. On the other hand, a rotation is more likely to violate the constraints
and so to require iterations on β on coarser grids too. This shows that the number of iterations of both
the minimization and barrier method depends on the input fields u and v, especially on the mapping
complexity. It also depends on the coefficients C1, C2 and C3, but the influence of the chosen coefficient
values is limited (results not shown here).

For the synthetic case, the decrease in the cost function is more important for the first steps.
This can be explained by better first guesses for the finer grids. On the contrary, for the real case,
the decrease is more important in the last steps. While the events were identical in the synthetic
case, they have different shapes in the real one. On the coarser grid, these differences are masked by
the strong smoothing. They become more visible on the finer grid on which there is less smoothing.
The sharper features being more sensitive to small position errors results in a higher cost function.
The finer morphing grids allow the mapping to take the shape difference into account, on top of the
position error. The reduction of the cost function is thus becoming more important.

The intermediate mappings Ti give information about the impact of the steps i = 1, ..., I. They were
evaluated by looking at the MAE of the warped fields uwarp (Tables 2 and 4). In the real case, most
of the MAE decrease is reached after the first iteration (divided by around 2). The decrease after the
subsequent iterations is more marginal. The mapping on the coarser morphing grid D1 is already able
to capture reasonably well the displacement, that is, the translation toward the South-West. Thus,
the finer morphing grids induce less improvement. In the synthetic case, the MAE is improved greatly
after the first iteration too (divided by 7). However, the subsequent iterations continue to decrease the
MAE (divided by 3 after step 2 and by 2 after step 3). The first morphing grids are too coarse to describe
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accurately the complex displacement, which combine a rotation and a shear. Hence, increasing the
resolution of the morphing grids improves the mapping Ti and thus the MAE. The more complex the
displacement is, the finer the morphing grid needs to be and so the higher I has to be (i.e., the more
steps i we need).

The computational time increases exponentially with the number of steps i. All computations
shown here were done on a personal computer. For the synthetic case, the first four steps (i.e., i = 1, 2,
3 and 4) were completed in approximately 2 min, while the fifth iteration (i = 5) needed between 4 to
10 min (depending on the computer computational capacity). The real case requires fewer iterations
than the synthetic one and so a shorter computational time (∼1 min for I = 4 and ∼4 min for I = 5).

5.2. Validation

The automatic registration procedure converged, for both the synthetic and the real cases. It has
been shown that the error between the two original fields was considerably reduced by applying the
mapping T, even without bias adjustment (i.e., the warped field uwarp). An issue encountered in the
synthetic case was the grid distortion near the domain boundary (Figure 7). Some inconsistencies
can appear when the rainfall events are close to the boundary. This was solved in the real case by
adding a padding area, filled with zero precipitation, around the domain. This padding area enables
the mapping to have a smooth transition from the largest displacement near the events to (almost)
none near the new extended boundary (Figure 9a).

The automatic registration produced reasonable coordinate mapping in these two cases. However,
problems can arise if the dissimilarity between the two original fields are too strong. We do not have
a method to quantify this problem beforehand. However, there are some minimum conditions, such as
having the same number of events in both fields or the proximity of these events. The smoothing steps
of the registration algorithm can also be increased or decreased to allow the events to move further
or not. In this study, we did not push to the cases to the extreme to determine a feasibility threshold.
The goal of this article was to prove the applicability of registration and morphing to precipitation
data. A next step would be to apply it to other cases, including different rainfall regimes.

The warping succeeded in correcting the general position error between the fields u and v in both
cases. In the real case, the shape of the event is different in the original fields. One can notice that the
shape of the event is slightly altered by the mapping, but the internal structure stayed similar. The peak
(rainfall above 20 mm/h) is larger in the field u than in the target field v, but the event (rainfall above
1 mm/h) has a larger longitudinal spread according to v (see Figures 4 and 5). This can explain some
of the intensity differences at the station location (Figure 12). The stations 4 to 6 are in the center of the
event, the station 4 is especially very close to the peak (stations 1 and 2). The overestimation by the
warped field is related to the larger peak in the field u. Similarly, the underestimation at station 3 and
the overestimation at station 12 is due to their location near the edge of the event. Stations 3 and 12
are located close to the East edge and South edge of the event respectively and so are affected by the
spread difference of the event according to u and v.

The morphing has been evaluated only for the synthetic case. Table 2 shows the added advantages
of morphing over warping. The MAE of the warped signal is larger by factor 2 on domain D3 and by
a factor of 2.7 on domain D4 compared to the MAE of the morphed signal. This important difference is
due to the intensity difference between the lower event in u and the one in v. However, this advantage
decreases when the intensity difference decreases. When the intensity is the same for the two fields,
warping is more advantageous. Without difference in intensity, the residual r in the morphing formula
Equation (7) is unnecessary and only add numeric errors (because of the inverse transform (I + T)−1

and the extra linear interpolation). The morphing was not tested for the real case because of the
irregular nature of the observations. The uncertainty of the kriged field is high in large part of the
domain where no gauges are available. We made assumptions on the spatial mapping through the three
criteria for optimality. This allowed us to correct the position through the entire domain. However,
we can not make similar assumptions for the intensity.
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5.3. Applications

In this paper, we corrected a satellite-based precipitation estimate based on gauge measurements.
This position correction could be particularly useful to pre-process satellite rainfall data for applications
needing accurate rain event positioning. Image morphing can take both the position and the intensity
into account but we do not recommend to correct both at the same time. The morphed estimate
would then be comparable to the kriged gauge field, without any advantage of the more detailed
spatial structure of the satellite observations. A two-step approach is preferred, with first the position
correction using the warping and then a bias correction such as the additive-multiplicative one used
by IMERG-Final. Such position correction could be particularly beneficial as a pre-processing step for
hydrological modelling applications. Rainfall data is an important input for hydrological models and
can have a large impact on their accuracy [41,42]. The correct positioning of rainfall events can be as
crucial as their intensities, especially for the localized events.

The morphing can also be applied to rainfall fields from other sources, such as a numerical
model. It can then be used for data assimilation. Two approaches are possible. The position correction
can be applied as a first step before the usual data assimilation on the intensity [22,24]. It is also
possible to assimilate both intensity and distortion at the same time, represented respectively by
the residual r and the mapping T [32,33]. In the second case one can take full advantage of the
morphing formulation. In this paper, we did not perform data assimilation as it was described in
References [32,33]. Instead, we used a similar method to theirs to correct the position in a satellite-based
estimate using gauge data. There are three main differences between our method and the morphing
described in References [32,33]. First, they used two penalty terms to ensure the smoothness of the
displacement field (based on its magnitude and gradient), we add a third penalty term based on the
divergence. Second, they solved the minimization problem for one grid point at a time (i.e., they have
several 1D minimization problems), while we solve it for all the grid points together (i.e., we have one
multi-variable minimization problem). Finally, we extend the method to non-gridded observations.
Contrary to radar data, the gauge measurements used in our study case are irregularly spaced (i.e.,
non-gridded). In Reference [33], the framework for assimilating radar rainfall using morphing is
described but is not actually applied to real rainfall data.

The main limitation of image morphing is in fact the limitations of the automatic registration.
As discussed above, it can fail if the fields are too dissimilar. It is also influenced by the three
regulation coefficients C1, C2 and C3. For example, in the case of a low intensity event, the regulation
terms in Jb can dominate the cost function, not allowing the rain event to move. In this paper,
we explore the feasibility of image morphing for position correction in precipitation estimates.
However, we have not pushed to the extreme the cases to quantify its limits. This paper is meant as
a proof-of-concept. The next step will be to extend the study to other cases, involving different rainfall
regimes. Extreme cases should be included to determine the boundary within which the automatic
registration succeeds

6. Conclusions

We have investigated the use of a morphing approach for the gauge-adjustment of satellite-based
rainfall estimates with respect to position error. The morphing method, adapted from Reference [32],
has been applied to two cases. Synthetic rainfall events, represented by ellipses, have been used to
test the automatic registration and the morphing method. The second case, a convective rainfall event
in southern Ghana, showed the potential of the method when applied to real, noisy precipitation
data. We applied the position correction such that the gauge data were downscaled while keeping
the high spatial variability of the satellite-based product. The rain events estimated by IMERG-Late
were spatially shifted to match the gauge data. The morphing method can take both the intensity
and the position of the rain events into account. This is an advantage compared to the traditional
gauge-adjustment methods that are only looking at the intensity bias.
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The automatic registration is able to represent different types of distortions. However,
its performance of the registration depends on the degree of difference between the fields u and
v and on the regulation coefficients. The more complex the distortion between the fields is, the more
computationally expensive the registration is. For example, in the case of a simple distortion (such as
a translation), it is possible to choose a smaller number of steps I. The minimization method at each step
would also need fewer iterations. On the other hand, if the fields are too dissimilar, the registration can
fail. The regulation coefficients also influence both the convergence and the result of the registration.

This paper explores the use of an image morphing method to correct location errors in precipitation
estimates. The next step will be to extend the study to other case studies, including different rainfall
regimes. It should also be pushed to more extreme cases to determine the method’s limitations more
precisely. For example, the regulation coefficients have been chosen empirically in this study. A next
step will be to develop a more robust way to select them, for example by defining adaptive coefficients.

Supplementary Materials: The python scripts for the automatic registration and the morphing are available
online at https://github.com/clecoz/precipitation-morphing.git. The scripts permit to reproduce the synthetic
case shown in this article.
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Appendix A. Optimization Step of the Automatic Registration Algorithm

The automatic registration is based on the minimization of the cost function J given in Equation (9).
This is done in the third step of the algorithm (Figure 1). In this appendix, we give more information
about this important step of the algorithm, with a focus on the constraints (Appendix A.1) and on the
minimization method (Appendix A.2).

Appendix A.1. Constraints

This minimization problem include a certain number of constraints. These constraints
come from two requirements. First, we require that the nodes stay within the domain D (i.e.,
(I + T) (xk, yj) ∈ D ∀(xk, yj) ∈ Di. That is, the nodes on the boundary of the domain are allowed
to move inside the domain but no nodes are allowed to leave it. These constraints can be seen as
inequality constraints or as bounds. Second, the mapping I + T has to be invertible. Each node (xk, yj)

of the grid Di is constrained to the domain between the points (xk+1, yj), (xk, yj−1), (xk−1, yj) and
(xk, yj+1), in order to insure that the inverse mapping (I + T)−1 exists (see Reference [32]). This second
requirement translates as inequality constraints.

Since nodes on the boundary are allowed to move inside the domain, some computations will
need the value of an image outside the domain D (e.g., u ◦ (I + T)−1 on D or the smoothing of u
and v). To allow these computations, all the images are extended on IR2 by assuming that there is no
precipitation outside the domain, that is, ∀(x, y) �∈ D, u(x, y) = v(x, y) = 0.

Appendix A.2. Minimization Method

In Reference [32], the minimization problem was solved by optimizing Ti one node after each other
(for all nodes of the grid Di). For each node, the coordinates x and y were updated alternatively using

509



Remote Sens. 2019, 11, 2557

a 1-D constrained non-linear optimization function. We use a different approach and optimize all the nodes
at the same time. The solution does not depend on the order in which the nodes are optimized. However,
the number of variables to optimize (2 · (2i + 1)2 for grid Di) increases exponentially with i. Constrained
optimization algorithms become computationally expensive for such large numbers of independent
variables. Thus, for computation efficiency, we used an iterative barrier approach ([34,35]).

In the barrier approach, the inequality constraints are added to the cost function J as
penalization terms:

Jp(Ti) = J(Ti) + β ∑
h

Ch(Ti) (A1)

where Ch are constraint functions and β is the barrier coefficient. The constraints that cannot be written
as bounds are converted into constraint functions Ch , such that Ch(Ti) > 0 if the constraint is violated
and Ch(Ti) = 0 if it is respected.

This new minimization problem does not have inequality constraints, only bounds from our
first requirement. Here, we minimized the penalized cost function Jp using the limited-memory
quasi-Newton method for bound-constrained problems (L-BFGS-B) method (with the Python function
scipy.optimize.minimize).

As mentioned above, the barrier approach is iterative. First, the cost function Jp is minimized
using the L-BFGS-B method with β = 1. If all the constraints are respected, the procedure stops.
Otherwise, the iterations continue with β = 10 · β. The iterations continue until all the constraints are
respected or until one of the stopping criteria is reached. We set two stopping criteria: (1) the decrease
of the cost function P is smaller than < 10−5 and (2) the root mean square difference of the grids Di
before and after is smaller < 10−5.

Appendix B. Sensitivity Study for the Regulation Coefficients C1, C2 and C3

The automatic registration is based on the minimization of the cost function J, which is composed
of an observation term and a background term. The background term Jb consists of the three
criteria defining the ’optimal’ mapping T. The three criteria concern the magnitude (Equation (2)),
the smoothness (Equation (3)) and the divergent (Equation (4)) of T. These three criteria can be tuned
with the regulation coefficients C1, C2 and C3 respectively. In this section, we look at the influence of
these three coefficient on the automatic registration.

For this sensitivity study, we use the synthetic case described in Section 3.1. In the result section
(Section 4), we empirically set the coefficients to C1 = 0.1 ans C2 = C3 = 1. Here, we consider four
more cases. We first look at the impact of the individual coefficients, setting the two other to zeros.
Then we examine the influence of their intensity by multiplying them by five. The only difference
between the results shown here and the ones in Section 3.1 are the regulation coefficients.

The impact of the coefficients on the morphed and warped signals can be seen in Table A1.
It shows the mean absolute error (MAE) of both signals for the four cases described above and for the
original case from Section 3.1. The MAEs are staying similar. The three cases with only one coefficient
have a slightly higher MAE for the morphed signal than the original case, but slightly lower for the
warped signal. Multiplying the three coefficients by five have the inverse effect. The MAE of the
morphed signal is lower but that of the warped signal is slightly higher. The coefficients seem to have
a limited impact on the warped and morphed signal.
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Table A1. MAE of the warped (uwarp) and morphed umorp signals compared to the target field (v) for
the different sensitivity runs (for I = 4).

Original Only C1 Only C2 Only C3 All Coef. ×5

C1 0.1 0.1 0 0 0.5
C2 1 0 1 0 5
C3 1 0 0 1 5

- MAE umorph(mm/h) 0.0496 0.0520 0.0535 0.0515 0.0396
- MAE uwarp(mm/h) 0.1371 0.1363 0.1368 0.1366 0.1374

We now look at the impact of these coefficients on the mapping T. Figures A1–A4 show the
mapping T and the resulting grid deformation for the four new cases. They can be compare to
Figure 7 for the original case. The main differences occur in area without precipitation. Without the
smoothing constraints, larger distortion occurs near the boundary near the lower-right corner (visible
in Figures A1 and A3 but not in Figure A2). Similarly, the grid appears very stretched on the right
upper side. The case with only the magnitude constraint (C1 = 0.1) exhibit the smooth transformation
(Figure A1). The divergent-free condition favours rotation-like patterns, in order to conserve the grid
cell’s volume. The weight of the coefficient also have an impact on the mapping T. By comparing
Figures 7a and A4a, one can see that the distortion is similar over the rainy area, while the spatial
displacement is smaller over the non-rainy area. The distortion is smoother and very similar to the
regular one in the upper-left corner, i.e away from the rainy peak.

To summarize, without the three weak constraints the distorted grid shows unnatural distortion.
However, the regulation coefficients mainly affect the mapping T in areas without rainfall. This is
reflected in the small influence it has over the morphed or warped field (Table A1).

(a) (b)
Figure A1. Sensitivity study: C1 = 0.1 and C2 = C3 = 0. (a) Mapping T obtained from the automatic
registration and (b) its effect on the pixel grid. (a) Mapping T. (b) Pixel grid Dn before (in red) and
after (in blue) distortion by the mapping T.
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(a) (b)
Figure A2. Sensitivity study: C2 = 1 and C1 = C3 = 0. (a) Mapping T obtained from the automatic
registration and (b) its effect on the pixel grid. (a) Mapping T. ((b) Pixel grid Dn before (in red) and
after (in blue) distortion by the mapping T.).

(a) (b)
Figure A3. Sensitivity study: C3 = 1 and C1 = C2 = 0. (a) Mapping T obtained from the automatic
registration and (b) its effect on the pixel grid. (a) Mapping T. (b) Pixel grid Dn before (in red) and
after (in blue) distortion by the mapping T.
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(a) (b)
Figure A4. Sensitivity study: C1 = 0.5 and C1 = C2 = 5. (a) Mapping T obtained from the automatic
registration and (b) its effect on the pixel grid. (a) Mapping T. (b) Pixel grid Dn before (in red) and
after (in blue) distortion by the mapping T.
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Abstract: Accurate estimation of precipitation from satellite precipitation products (PPs) over the
complex topography and diverse climate of Pakistan with limited rain gauges (RGs) is an arduous
task. In the current study, we assessed the performance of two PPs estimated from soil moisture
(SM) using the SM2RAIN algorithm, SM2RAIN-CCI and SM2RAIN-ASCAT, on the daily scale across
Pakistan during the periods 2000–2015 and 2007–2015, respectively. Several statistical metrics, i.e., Bias,
unbiased root mean square error (ubRMSE), Theil’s U, and the modified Kling–Gupta efficiency (KGE)
score, and four categorical metrics, i.e., probability of detection (POD), false alarm ratio (FAR), critical
success index (CSI), and Bias score, were used to evaluate these two PPs against 102 RGs observations
across four distinct climate regions, i.e., glacial, humid, arid and hyper-arid regions. Total mean
square error (MSE) is decomposed into systematic (MSEs) and random (MSEr) error components.
Moreover, the Tropical Rainfall Measurement Mission Multi-Satellite Precipitation Analysis (TRMM
TMPA 3B42v7) was used to assess the performance of SM2RAIN-based products at 0.25◦ scale during
2007–2015. Results shows that SM2RAIN-based product highly underestimated precipitation in
north-east and hydraulically developed areas of the humid region. Maximum underestimation for
SM2RAIN-CCI and SM2RIAN-ASCAT were 58.04% and 42.36%, respectively. Precipitation was also
underestimated in mountainous areas of glacial and humid regions with maximum underestimations
of 43.16% and 34.60% for SM2RAIN-CCI. Precipitation was overestimated along the coast of Arabian
Sea in the hyper-arid region with maximum overestimations for SM2RAIN-CCI (SM2RAIN-ASCAT)
of 59.59% (52.35%). Higher ubRMSE was observed in the vicinity of hydraulically developed
areas. Theil’s U depicted higher accuracy in the arid region with values of 0.23 (SM2RAIN-CCI)
and 0.15 (SM2RAIN-ASCAT). Systematic error components have larger contribution than random
error components. Overall, SM2RAIN-ASCAT dominates SM2RAIN-CCI across all climate regions,
with average percentage improvements in bias (27.01% in humid, 5.94% in arid, and 6.05% in
hyper-arid), ubRMSE (19.61% in humid, 20.16% in arid, and 25.56% in hyper-arid), Theil’s U (9.80% in
humid, 28.80% in arid, and 26.83% in hyper-arid), MSEs (24.55% in humid, 13.83% in arid, and 8.22% in
hyper-arid), MSEr (19.41% in humid, 29.20% in arid, and 24.14% in hyper-arid) and KGE score (5.26%
in humid, 28.12% in arid, and 24.72% in hyper-arid). Higher uncertainties were depicted in heavy and
intense precipitation seasons, i.e., monsoon and pre-monsoon. Average values of statistical metrics
during monsoon season for SM2RAIN-CCI (SM2RAIN-ASCAT) were 20.90% (17.82%), 10.52 mm/day
(8.61 mm/day), 0.47 (0.43), and 0.47 (0.55) for bias, ubRMSE, Theil’s U, and KGE score, respectively.
TMPA outperformed SM2RAIN-based products across all climate regions. SM2RAIN-based datasets
are recommended for agricultural water management, irrigation scheduling, flood simulation and
early flood warning system (EFWS), drought monitoring, groundwater modeling, and rainwater
harvesting, and vegetation and crop monitoring in plain areas of the arid region.
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1. Introduction

Precipitation is one of the most critical components of global energy and water cycles and ranked
first by the Global Climate Observing System (GCOS) [1,2]. Reliable long-term temporal precipitation
records at fine spatiotemporal (<20 km at daily and sub-daily scales) resolution is crucial for planning
and managing water resources, drought assessment, flood forecasting, assessment of crop water
requirements, hydrometeorology, and climate studies [3–7]. Precipitation also plays an important role
in weather prediction, agricultural management, vector and water-borne diseases [8].

Precipitation is highly erratic spatiotemporally, which makes its estimation challenging both with
ground observation (rain gauges and meteorological radars) and satellite precipitation products (PPs).
The complex topography, varying climate, dense vegetation, and coastal regions attribute to further
complexity in precipitation estimation [9,10]. Ground-based rain gauges (RGs) provide accurate local
precipitation estimates [11], and are considered as the most reliable precipitation record source for
hydrological modeling and monitoring purposes. However, their non-homogeneous coverage, limited
spatial representativeness, and high maintenance cost restrain their global scale application [12].

Meteorological models, such as reanalysis products, are alternatively used to estimate precipitation,
especially in regions with scarce RGs and reliable ground observations [13]. The uncertainties associated
with these estimates in areas with scarce RGs can be substantial [14]. Therefore, in the past 30 years,
different remote sensing techniques have been developed to improve the precipitation estimations
and provide full regional and global spatial coverage [15]. The standard precipitation measurement
methods are based on instantaneous precipitation measurements from space retrieved from microwave
radiometers, radars, and infrared sensors [16]. These methods invert the atmospheric signals reflected
or radiated by hydrometeors and known as the “top-down” approach [9].

PPs estimate precipitation from thermal infrared sensors onboard geosynchronous earth orbit
(GEO), and microwave sensors (both passive and active) onboard low-earth orbit (LEO) satellites [10,17].
Some PPs combine infrared- and microwave-based estimates by utilizing high temporal resolution
infrared platforms and shows high precision in precipitation estimation of microwave sensors [18].
Such PPs include the most recently developed PPs with high spatial (0.1◦) and temporal (30 minutes)
resolution, i.e., Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG) of
the Global Precipitation Measurement (GPM) mission [15], near-real-time and post real versions of the
Tropical Rainfall Measurement Mission Multi-Satellite Precipitation Analysis (TRMM TMPA 3B42RT,
3B42V6/V7) [19], the Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) [20],
Climate Prediction Center (CPC) Morphing (CMORPH) [21], Precipitation Estimation from Remotely
Sensed Information using Artificial Neural Networks (PERSIANN) [22,23], Global Satellite Mapping
of Precipitation (GSMaP) [24] and many more.

Soil Moisture (SM) TO RAIN (SM2RAIN) is an algorithm based on approaches provided by
Crow et al. [25] and Pellarin et al. [26] and further developed by Brocca et al. [27], which can be used
for direct precipitation estimation from in-situ and/or satellite-based SM observations. The method
provides daily precipitation estimates on a global scale and has been successfully applied to satellite
SM data [9,28,29]. SM2RAIN approach is appropriate for accumulated precipitation estimates and has
been verified against in-situ SM data and single-sensor SM products [30,31] providing reliable results
at the regional scale [32–34].

SM2RAIN is based on the “bottom-up” approach that estimates precipitation from various
single-sensors surface soil moisture (SSM), as opposed to “top-down” approach of other PPs [27,30,
35,36]. The bottom-up approach differs from top-down approach in such a way that the bottom-up
approach considers accumulated precipitation while the top-down approach is based on instantaneous
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precipitation rate. The bottom-up approach has an edge over top-down when accumulated precipitation
(e.g., daily precipitation) estimates are desirable as this approach requires a limited number of satellite
sensors and measurements. On the other hand, the limitations of the bottom-up approach are its
dependence on topography (low accuracy over complex topography) and land use (low accuracy
over dense vegetation), unable to estimate precipitation in over-saturated soil, and applicable only to
terrestrial rainfall [9].

The bottom-up approach has been extensively validated over extended-spectrum of spatial
scales, including global [9,25,37], continental [35,38], and regional [32,39–42] scales. Different SM
PPs are considered, such as SMOS (Soil Moisture Ocean Salinity Mission, [35]), ASCAT (Advanced
SCATterometer, [43]), AMSR-E (Advanced Microwave Scanning Radiometer, [44]), and SMAP (Soil
Moisture Active and Passive, [28,29]). Recently, a number of studies have employed precipitation
estimates from satellites obtained through the bottom-up approach in hydrological and water resources
applications [3,17,31,45]. These studies demonstrated the potential benefits and main limitations of the
bottom-up approach in estimating precipitation from space. The accuracy of the bottom-up approach
is strongly influenced by the accuracy and temporal resolution of satellite SM products [46].

The objectives of this study were two-fold, i.e., to assess the performance of SM2RAIN-CCI
and SM2RAIN-ASCAT for the first time in Pakistan, a country with a complex topography and
diverse climate, and to evaluate the performance of SM2RAIN-derived products against extensively
evaluated PP in Pakistan (TRMM TMPA 3B42v7, hereinafter referred as TMPA). The analysis was
performed in four climate regions of Pakistan, i.e., glacial, humid, arid and hyper-arid regions, during
the period 2000-2015. This study is the first of its kind that evaluates the quality of SM2RAIN-based
precipitation datasets across Pakistan. This study can be used as a reference for hydrological modeling,
water resources management, and agricultural water management practices. Moreover, there are very
limited studies on integrated performance evaluation of SM2RAIN-based precipitation datasets in
regions with complex topography and diverse climate, especially in Pakistan.

Pakistan is a developing country that has very limited/scarce rain gauges (RGs), which are
non-homogenously distributed. Even with a significant increase in the number of RGs over the
last few decades, their density does not meet scientific and practical requirements. To overcome
the current scenario, Pakistan needs the application of advanced remote sensing techniques for
hydrological and meteorological applications, climate change studies, agricultural water management,
and water resources management. This study evaluated the soil moisture-based precipitation datasets,
which will be a useful alternative to conventional precipitation products for different hydrological and
meteorological applications and will address the data scarcity problems in Pakistan.

The significance of the current study is: (1) This study demonstrates the worth/quality of
SM2RAIN-based datasets by evaluation on spatial and temporal scales, (2) the spatial and temporal
evaluation helps us to understand where, when and how these precipitation products might be used,
(3) better performance of these products in the arid (and semi-arid regions), i.e., Punjab province
of Pakistan considered as agricultural hub of the country, illustrates the potential application of
SM2RAIN-based datasets for agriculture (vegetation and crop growth monitoring) and agricultural
water management, and much more.

2. Materials and Methods

2.1. Study Area

Pakistan lies between latitude 23.5◦–37.5◦N and longitude 62◦–75◦E in the western region of
South-Asia with an area of 803,940 km2 (Figure 1a). Pakistan is bounded by China at its north, Iran and
Afghanistan at the west, India at the east, and the Arabian Sea at the south. The study area has complex
topography with a diverse climate. Elevation of Pakistan ranges from 8600 m (at Hindukush-Himalaya
mountain ranges) at the extreme north to 0 m (at the coast of Arabian Sea) [47]. The climate of Pakistan
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changes abruptly, ranging from glacial to humid, arid and hyper-arid regions. According to climate
variability, the study area is divided into glacial, humid, arid and hyper-arid climate regions (Figure 1b).

Figure 1. Study area and geographical location of rain gauges (RGs). (a) The elevation map of Pakistan
derived from Shuttle Radar Topography Model (SRTM), (b) The four climate regions considered in
this study.

The glacial region, situated in the extreme north of Pakistan, is characterized by permanent
glaciers and snow cover. Mean elevation of the glacial region is 4158 m, with the mean annual
precipitation of 348 mm. Snow and glaciers from the glacial region melt in summer and feed the
Indus river and its branches. Water from snowmelt is the primary source of agricultural, domestic,
and industrial water use in Pakistan. Moreover, the country is threatened by excessive snow and glacier
melt that causes acute flooding, such as the 2010 flood which severely damaged the infrastructure,
the country’s economy and took thousands of lives. The glacial region is located between 34◦N to
38◦N and comprised of the world-famous mountains of Hindukush Himalayas, which are famous for
snow after the polar regions.

The humid region consists of mountains ranges of Hindukush–Karakoram–Himalaya (HKH)
ranges, and all of the main rivers originating from these mountains, including Indus, Kabul, Gilgit,
Hunza, Swat, Panjkora, Kurram, and Jhelum rivers. Mean elevation and mean annual precipitation of
the humid region is 1286 m and 852 mm, respectively. The humid region is the hydraulically developed
region of the country which consists of the largest dam, Tarebla dam, and Mangla dam. The Tarbela
dam, constructed on the Indus river, has 3500 MW of capacity, while the Mangla dam constructed on
Jhelum river has 1000 MW hydropower capacity [48]. Moreover, the humid region is built up with
extensive barrages, headworks, and a developed integrated irrigation canal system. The secondary
purpose of the hydraulic structures is to support the agriculture sector of the country by meeting the
extensive irrigation water requirements [48].

The arid region is mostly comprised of the major agricultural regions of Punjab province. The Indus
river and other rivers flowing through this region are the primary sources of water for agricultural,
domestic, and industrial purposes. Mean elevation of the arid region is 663 m with mean annual
precipitation of 322 mm. Extreme west (elevated mountainous areas) of this region is cold in winter
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(with snowfall in December and January) and hot in the summer seasons. The remaining of the arid
zone is dry and hot in nature where maximum temperatures are recorded in Sibbi and Jacobabad.
The area is plain with some area included in the famous Thar Desert [49].

Sindh and Balochistan provinces and the south part of the Punjab province of Pakistan lie
in the hyper-arid region. Most of the hyper-arid region is comprised of deserts, plateaus, barren
lands, dry mountains, and coastal region along the Arabian Sea. Mean elevation and mean annual
precipitation in the hyper-arid region are 444 m and 133 mm, respectively.

Precipitation in Pakistan is spatially varying from the maximum of 1500 mm/a in the north to a
minimum of 100 mm/a in the south. Monsoon and winter (western disturbance) are the dominant
seasons where maximum rainfall occurs [50]. Monsoon (July to September) precipitation in Pakistan
commences from the Bay of Bengal entering Pakistan from northeast and east sides. Heavy and intense
precipitation accounting 55%–60% of precipitation per annum occurs in Pakistan during the monsoon
season [51]. Winter (December to March) precipitation originating from the Mediterranean Sea enters
Pakistan through Afghanistan and Iran. Only 30% of total precipitation (moderate magnitude) occurs
during winter. Precipitation across Pakistan varies spatially in magnitude; low precipitation in
the glacial region from 34 to 36◦ N (<100 mm/month), high in the humid region from 29 to 33◦ N
(>700 mm/month in North-East) and low again in the hyper-arid region from 24 to 28◦ N (around
100 mm) [47].

2.2. Ground-Based Precipitation Data

Rain gauges (RGs) are considered as standard sources of precipitation estimates that are used for
satellite precipitation calibration and validation processes. The Pakistan Meteorology Department
(PMD) and the Snow and Ice Hydrology Project (SIHP) of Water And Power Development Authority
(WAPDA) own the climate and hydrological data in Pakistan. SIHP operates the meteorological
stations at high elevation mostly located in glacial and humid regions. For the current study,
daily precipitation records from 102 meteorological stations for the period 2000–2015 were collected
from both organizations, where precipitation records of 79 RGs were collected from PMD and 23 from
WAPDA. The location of meteorological stations across Pakistan is shown in Figure 1b. RGs in the
current studies are named with respect to each climate region, i.e., RGs in glacial, humid, arid and
hyper-arid regions are represented as GRG, HRG, ARG, and HARG, respectively. Main features and
number of RGs in selected climate regions are presented in Table 1.

Table 1. Main features of the selected four climate regions.

Climate Region
Area

(km2)
Mean

Elevation (m)
Mean Annual

Precipitation (mm)
Meteorological

Stations

Glacial 72,774 4158 348 19
Humid 137,753 1286 852 39

Arid 270,484 633 322 19
Hyper-Arid 322,929 444 133 25

The data obtained from PMD and WAPDA were manually collected, and consequently might
be subjected to personal and instrumental errors. Besides, the stations located at high elevation
may also be subjected to splashing and wind errors. These associated errors affect the quality of the
data. Therefore, PMD and WAPDA correct the RGs precipitation following the World Meteorology
Organization’s standard code (WMO-N). Moreover, the quality of the data was tested using skewness
and kurtosis methods, and missing data was filled using the zero-order method [47].

521



Remote Sens. 2019, 11, 2040

2.3. Satellite-Based Precipitation Products

2.3.1. SM2RAIN-CCI

The European Space Agency Climate Change Initiative (ESA-CCI) released the ESA CCI SM (Soil
Moisture) v3.2 datasets in early 2017. SM retrievals from active and passive microwave instruments
onboard different satellite platforms were merged to develop the dataset, which provides global
daily SM estimates with 0.25◦ spatial resolution from 1978–2015 [52–54]. Accumulated precipitation
estimates between 00:00 to 23:59 UTC are obtained from an application of a weighted average-based
integration procedure. Quality flag provided within the raw SM observations (i.e., EA CCI SM v3.2) is
used to remove the low-quality data and observations distinguished by retrieval issues (e.g., glacial
regions, frozen soil, complex topography, and dense vegetation). The SM2RAIN algorithm was
calibrated on a pixel-by-pixel basis during the periods of 1998–2001, 2002–2006, and 2007–2013 against
Global Precipitation Climatology Centre Full Daily Data (GPCC-FDD) [37]. These different calibration
periods are dependent on types of data and sensors that have been utilized in developing the active
and passive SM datasets.

The SM2RAIN algorithm, a novel approach, estimates precipitation from SM using the inverted
soil water balance equation [9]. The basic assumption of the SM2RAIN algorithm is that surface runoff
and evapotranspiration rate are insignificant during the precipitation event [9,32]. The simple form of
soil–water balance equation can be illustrated as

p(t) = Z∗
ds(t)

dt
+ a · s(t)b (1)

where p(t) is precipitation rate [L/T], Z*=nZ is soil water capacity [L] in the soil layer with a depth
of Z and porosity of n, s(t) represents relative soil saturation, t is time [T], and the two parameters a
and b represent the nonlinearity between drainage and soil saturation. The parameters Z*, a, and b
are calculated through calibration analysis [37]. The main limitation of the SM2RAIN algorithm is
that it is not able to estimate the precipitation when the soil is saturated or nearly saturated, because
the SM algorithm is unable to derive SM variation as the SM approaches saturation [30]. A more
detailed description of SM2RAIN algorithm can be found in [32]. In the current study, v2.0 of the
SM2RAIN-CCI product, available from 1 January 1998 to 31 December 2015 (released in July 2018)
with 0.25◦ spatial and daily temporal resolutions, is used.

2.3.2. SM2RAIN-ASCAT

The SM2RAIN algorithm was applied to three surface SM products obtained from Advanced
Microwave Scanning Radiometer for Earth Observing (AMSR-E), Soil Moisture and Ocean Salinity
(SMOS), and Advanced SCATterometer (ASCAT) to develop the SM2RAIN-ASCAT dataset [9]. ASCAT
is a scatterometer and consists of the space segment of the EUMETSAT Polar System (EPS), operating at
5.255 GHz (C-band VV polarization) onboard MetOp A, B, and C satellites [55]. The spatial resolution
of SM2RAIN-ASCAT is the same as the parent ASCAT SM dataset (previously developed datasets
were resampled to spatial resolutions of 0.5◦ and 1◦). SM2RAIN-ASCAT has 12.5 km spatial and daily
temporal resolutions available for the period 2007–2018 [46]. The SM2RAIN-ASCAT showed more
accuracy when evaluated on the basis of root mean square error (RMSE), Pearson correlation coefficient
(R), and detection of precipitation [9].

The main differences between SM2RAIN-CCI and SM2RAIN-ASCAT datasets are the input SM
datasets (input products for SM2RAIN-CCI are the ESA CCI SM product [56], and the time span of
SM2RAIN-CCI that is available, namely, the period of 1998–2015). Moreover, the SM2RAIN-ASCAT
is bias-corrected and calibrated against the Medium-Range Weather Forecasts (ERA5) instead of
GPCC-FDD as SM2RAIN-CCI [43,46]. In the current study, version 1.0 of SM2RAIN-ASCAT, released
in March 2019, is used.

522



Remote Sens. 2019, 11, 2040

2.3.3. TRMM TMPA

TRMM TMPA 3B42 v7 (hereinafter TMPA) was established by the joint efforts of the National
Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) and the Japan
Aerospace Exploration Agency (JAXA). TMPA has 0.25◦ (~25 km at the equator) spatial resolution
ranging from 50◦ S and 50◦ N bands with 3 hours temporal resolution available from January 1998
to the present. Precipitation estimation is based on the observations in infrared and microwave
bands obtained by satellites. Re-analyzed precipitation data from the GPCC-FDD dataset was used to
compute these multi-satellite precipitation estimates [57,58]. The complete description of TMPA is
provided by reference [19]. The motivation behind the selection of TMPA is the fact that it has been
evaluated comprehensively by many studies and is reported for its supremacy in comparison to other
datasets [47,59].

2.4. Methods

Figure 2 represents the flow chart of the proposed methodology applied in the current study.
SM2RAIN-CCI is compared and evaluated against the RGs during 2000–2015; while, SM2RAIN-ASCAT
is evaluated during 2007–2015. Moreover, due to the difference in time duration of the considered
PPs, the performance of each dataset is compared with TMPA during the shared period from 2007
to 2015. To ascertain the impartial inter-comparison of SM2RAIN-ASCAT with SM2RAIN-CCI and
TMPA, SM2RAIN-ASCAT has been re-gridded using nearest neighbor algorithm at 0.25◦ spatial
resolution. Figure 2 shows that inter-comparison of daily precipitation estimates from SM2RAIN-CCI,
SM2RAIN-ASCAT, and TMPA with RGs is conducted to assess the spatial consistency of precipitation
datasets over Pakistan. Further, the performance of precipitation datasets is also assessed based on
precipitation topography and seasonal time scale using continuous and categorical metrics. Finally,
systematic and random error components of SM2RAIN-CCI and SM2RAIN-ASCAT are also assessed
utilizing a decomposition method (the final step in Figure 2).

Figure 2. A general framework for the proposed methodology.
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Three continuous metrics were used to assess the performance of SM2RAIN-CCI and
SM2RAIN-ASCAT against the RGs. These metrics were based on inter-comparison of precipitation
estimates from each product with precipitation records from RGs on a pixel scale. The Bias (B), unbiased
root mean square error (ubRMSE), and Theil’s U coefficient (U) are considered in this study (Table 2).
B is used to estimate the over/under-estimation of precipitation by each product, where positive
values indicate overestimation and negative values underestimation. ubRMSE measures the difference
between estimated and observed precipitation values. ubRMSE attain only positive values where
minimum values indicate better performance. Theil’s U predicts the forecasting accuracy of PPs with
respect to RGs. The lower bound of Theil’s U is zero, indicating the perfect forecast; the value of 1
indicates that PPs forecast the same error as the naïve no-change extrapolation. A value greater than 1
indicates the worst forecasting and has to be rejected [60].

Table 2. Statistical metrics used to assess the performance of SM2RAIN-CCI and SM2RAIN-ASCAT. E is
the estimated precipitation (PPs), O is the observed precipitation records from RGs, n is the total number
of data points, E is the average of estimated precipitation, and O is the average of observed precipitation.

Statistical Metrics Formula Perfect Value

Bias B =
∑n

i=1(Ei−Oi)∑n
i=1 Oi

0

Root Mean Square Error RMSE =

√
1
n

n∑
i=1

(Ei −Oi)
2 0

Unbiased root mean square error ubRMSE =
√

RMSE2 − B2 0

Theil’s U U =

√∑n
i=1(Ei−Oi)

2∑n
i=1 E2

i
. 0

Moreover, the method developed by AghaKouchak, et al. [61] is used to decompose the total mean
square error (MSE) in PPs into random (MSEr) and systematic (MSEs) errors, which are presented as

MSE = MSEr + MSEs (2)

MSEr =
1
n

n∑
i=1

(
Ei − E∗i

)2
(3)

MSEs =
1
n

n∑
i=1

(
E∗i −Oi

)2
(4)

E∗i = a×Oi + b (5)

E∗i (mm/day) in Equations (3)–(5) is calculated on the daily scale by least squared linearly regressing
the PPs estimates against the RGs at each pixel. Therefore, a and b in Equation (5) are offset and scale
parameters [62].

In addition, the performance of PPs was also assessed using the modified Kling–Gupta efficiency
(KGE) score. KGE combines correlation coefficient (r), bias ratio (β) and variability ratio (γ) [63],
which is represented as follows:

KGE = 1−
√
(r− 1)2 + (β− 1)2 + (γ− 1)2 (6)

r =

∑n
i=1

(
Ei − E

)(
Oi −O

)
√∑n

i=1

(
Ei − E

)2
√∑n

i=1

(
O−O

)2
(7)

β =
E

O
(8)
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γ =
(CV)E

(CV)O
, (CV)E =

√√
1
n

n∑
i=1

(
Ei − E

)2
/E, (CV)O =

√√
1
n

n∑
i=1

(
Oi −O

)2
/O (9)

where CV denotes the coefficient of variation. The perfect values of KGE, β and γ are all 1.
The precipitation detection competences of SM2RAIN-CCI and SM2RAIN-ASCAT are examined

using four categorical metrics (Table 3), including the probability of detection (POD), false alarm ratio
(FAR), critical success index (CSI), and Bias score (BS). POD represents the capability of PPs to detect
precipitation events. A threshold of 1 mm is considered to distinguish precipitation from dry days (no
precipitation) at any time scale [64]. FAR indicates the fraction of predicted precipitation event that
did not occur. POD and FAR ranges between 0–1 with a perfect values of 1 and 0, respectively [62].
CSI is a fraction of precipitation events correctly detected by PPs. The CSI value ranges between 0 to 1,
with the perfect value of 1 [65]. BS represents the fraction of all PPs precipitation events that were
correctly predicted. The range of BS values is 0 to 1 with perfect score equal to 1.

Table 3. Categorical metrics, where hit indicates the number of precipitation events correctly detected
both by PPs and RGs, miss indicates the number of precipitation events not detected by PPs but recorded
by RGs, false_alarm is number of precipitation events detected by PPs while no precipitation records are
available at RGs, and N is the total number of events.

Statistical Metric Formula Perfect Score

Probability of Detection POD = hit
hit+miss 1

False_alarm_ratio FAR =
f alse_alarm

hit+ f alse_alarm
0

Critical-Success-Index CSI = hit
N 1

Bias score BS =
hit+ f alse_alarm

hit+miss
1

3. Results

3.1. Regional Evaluation of SM2RAIN-CCI Dataset

Accuracy of daily precipitation estimates from the SM2RAIN-CCI and SM2RAIN-ASCAT were
assessed using the RGs data as a benchmark for each climate region during the period 2000–2015 and
2007–2015, respectively. The continuous metrics (listed in Table 2) values are statistical quantification of
variations in the amount of precipitation from SM2RAIN-CCI/ASCAT datasets from the RGs data at the
pixel scale (considered only the common pixels). The ordinary kriging method is used to interpolate
the pixel base data over entire Pakistan (climate regions) to comprehensively understand the spatial
distribution trend of error characteristics.

Figure 3 shows the spatial distribution of statistical metrics of SM2RAIN-CCI over four distinct
climate regions, i.e., glacial, humid, arid and hyper-arid regions in Pakistan. Precipitation data for
SM2RAIN-CCI is not available in the glacial region and high elevated areas of humid region due
to masking, i.e., precipitation data of SM2RAIN-CCI is masked out in frozen soil, snow-dominated
regions and complex topography.

Figure 3a represents the spatial distribution of SM2RAIN-CCI biases (B) across Pakistan in
comparison with RG observations for the study period (2000–2015) on a daily temporal scale. In the
humid region, larger negative biases (underestimation) are evident over north-east of the humid region
but decreases gradually towards the west (slightly overestimated). The north-east of humid region
consists of the Mangla dam, barrages, headworks and an extensively developed integrated irrigation
canal system (comprised of 12 interlink canals and 43 independent irrigation canals commands) of the
country (hereinafter called hydraulically developed areas), which results in the groundwater level
rise in the vicinity of these structures and the soil water saturation in irrigated land after irrigation.
Besides, the area is also subjected to heavy and intense precipitation that may saturate the soil in a
quick span of time. Since the SM2RAIN-based products work on the principles of soil–water balance,
the excessive precipitation cannot be considered when the soil gets saturated, and hence resulting in
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higher biases (higher underestimation). The sign of biases shows an interesting feature along the west
of arid region indicating a considerable underestimation of precipitation. Western side of arid regions is
comprised of mild elevated mountainous ranges (i.e., Koh-e-Suleman, Koh-e-Chiltan, Koh-e-Murdaar,
and Koh-e-Takatu) having cold weather in winter and hot in summer with mean annual precipitation
of 317 mm [47]. Precipitation is underestimated in this region due to the low infiltration capacity (the
area is mostly covered with rocks) and also due to the snow factor in the winter season. However,
precipitation is overestimated in the plain agricultural areas of the arid region (east and south-east).
Hyper-arid region is the hottest region located at the coast of the Arabian Sea and experience mean
annual precipitation of 133 mm. Precipitation is overestimated in the region by SM2RAIN-CCI,
which may be due to seawater intrusion from the Arabian Sea [66]. High overestimation is observed in
the south-east coastal area which gradually decreases towards the west.

Figure 3b presents the spatial distribution of ubRMSE over different climate regions of Pakistan.
A common trend of lower ubRMSE towards the west in comparison to the east of each climate region
is observed in the figure. Higher ubRMSE is observed in the hydraulically developed areas in the
north-east of humid region. Lower ubRMSE is observed in the hyper-arid region, most specifically
near the coast of the Arabian Sea. The hyper-arid region is a precipitation deficit region where there is
plenty of time for precipitation to infiltrate and saturate the soil. The reason for lower ubRMSE in the
hyper-arid region is low intensity and low magnitude precipitation. Higher ubRMSE was observed at
HRG23 (12.44 mm/day) while minimum at HARG8 (1.83 mm/day).

Figure 3c depicts the distribution of Theil’s U coefficient that shows the accuracy of SM2RAIN-CCI
to accurately detect a precipitation event. Smaller values (close to zero) represent better forecasting
accuracy, while values closer to 1 depicts poor forecasting. The figure reveals better forecasting
accuracies at ARG16 (0.24) and ARG8 (0.23), with poor forecasting accuracies in north-east of humid
region, more specifically at HRG23 (0.66) and HRG24 (0.69), respectively. Locations of high accuracies
(minimum Theil’s U) in the arid region are in the vicinity of the agricultural region (ARG9) and the
Thar desert (ARG16) where soil is mostly unsaturated. The only source of water for agriculture is
irrigation water. Agriculture in the location helps to preserve the water in the soil. Beside the arid
region, moderate accuracy is depicted in south-east of the hyper-arid region near HARG18, HARG19,
HARG20, and HARG21. The average values of Theil’s U in the humid, arid and hyper-arid regions
were 0.51, 0.40, and 0.42, and the median values were 0.53, 0.43, and 0.41, respectively.

Spatial distributions of mean square error components, i.e., random and systematic errors,
in SM2RAIN-CCI across Pakistan are presented in Figure 3d,e. Before the integration of any PP in the
hydrological application, the knowledge about systematic and random errors for implementation of
any statistical adjustment and bias correction is extremely vital [61]. In comparison with the random
error component, systematic errors have larger contributions over Pakistan. The analysis depicts
that SM2RAIN-CCI needs proper adjustments in biases before assimilating into any hydrological
application. Larger systematic errors are observed in the hyper-arid and downstream portion of arid
regions while minimum values are in the humid region.

Figure 3f presents the spatial distribution of KGE score for the SM2RAIN-CCI product as
compared to RGs observation. Results shows smaller KGE scores in the humid region, which increases
to maximum values in the middle of the arid region, then decreasing at the end of the arid region.
Smaller KGE scores in north-east of the humid region might be due to the relatively poor performance
of SM2RAIN-CCI in the hydraulically developed areas. Besides that, the uncertainties in gauge-based
estimates associated with sparse gauge density also play a vital role. The highest KGE scores were
observed at ARG3 (0.78), HRG11 (0.74), and ARG15 (0.73). The minimum KGE score was observed at
HRG24 (0.13).
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Figure 3. Spatial distribution of bias (a), ubRMSE (b), Theil’s U coefficient (c), systematic error (d),
random error (e), and KGE score (f) based on a daily scale across Pakistan from SM2RAIN-CCI
compared to RGs data for the period of 2000–2015.

527



Remote Sens. 2019, 11, 2040

3.2. Regional Evaluation of SM2RAIN-ASCAT Dataset

Figure 4 shows the spatial distribution of statistical metrics of SM2RAIN-ASCAT. The bias of
SM2RAIN-ASCAT (Figure 4a) shows an almost similar trend compared to SM2RAIN-CCI (Figure 3a).
However, the magnitude of biases at each RG is significantly reduced when compared to SM2RAIN-CCI.
Precipitation is highly underestimated at the north-east sides of the glacial and humid regions of the
country, which gradually decreases towards the west of the regions. The reason for high underestimation
might be the abundant water availability in the specific region due to dams, barrages, headworks,
and well-developed irrigation systems. Besides, snowmelt and high precipitation events that saturate
the soil also contribute to an underestimation of precipitation in high elevated regions (i.e., the glacial
region and upstream areas of the humid regions). SM2RAIN-ASCAT highly overestimated precipitation
in the south-east of the hyper-arid region. The average (median) values of bias in the glacial, humid,
arid and hyper-arid regions were −28.76% (−29.25%), −29.86% (−23.31%), −6.18% (−12.68%) and
34.87% (27.66%), respectively.

SM2RAIN-ASCAT depicts an improved performance in comparison with SM2RAIN-CCI
considering ubRMSE (Figure 4b). ubRMSE shows the same spatial trend as compared to SM2RAIN-CCI
with maximum and minimum values in the humid and hyper-arid regions, respectively. The regional
average (median) ubRMSE values were 3.73 mm/day (3.57 mm/day) in glacial, 7.87 mm/day
(7.54 mm/day) in humid, 4.83 mm/day (4.32 mm/day) in humid and 2.21 mm/day (2.19 mm/day) in
hyper-arid regions. Maximum and minimum ubRMSE values were depicted by HRG12 (9.91 mm/day)
and HARG8 (1.21 mm/day).

SM2RAIN-ASCAT shows high forecasting accuracy at the south-east of the arid region while
moderate accuracies in extreme south of hyper-arid region (Figure 4c). Lower accuracies are depicted
in humid region mostly in the vicinity of hydraulically developed areas. The regional average (median)
values of Theil’s U coefficient were 0.40 (0.39) in glacial, 0.46 (0.48) in humid, 0.25 (0.19) in arid, and 0.30
(0.28) in hyper-arid regions. The maximum and minimum of Theil’s U values were 0.59 (HRG39) and
0.12 (ARG10).

The comparison reveals that SM2RAIN-ASCAT dominates the SM2RAIN-CCI across all climate
regions. The average percentage improvements in humid, arid and hyper-arid regions were: Bias
(27.01%), ubRMSE (19.61%), Theil’s U (9.80%), MSEs (24.55%), MSEr (19.41%), and KGE (5.26%) in
the humid region; Bias (5.94%), ubRMSE (20.16%), Theil’s U (28.20%), MSEs (13.83%), MSEr (29.20%),
and KGE (28.12%) in the arid region; and Bias (6.05%), ubRMSE (25.56%), Theil’s U (26.83%),
MSEs (8.22%), MSEr (24.14%), and KGE (24.72%) in the hyper-arid region.

Figure 4d,e represents the spatial distribution of systematic and random errors of SM2RAIN-ASCAT
over four climate regions of Pakistan. Higher random errors were observed in the humid region,
which decreases towards the arid and hyper-arid regions. The regional average (median) random
errors were 15.41% (13.81%), 57.12% (59.87%), 22.81% (21.97%), and 6.04% (6.75%) in glacial, humid,
arid and hyper-arid regions, respectively. Overall the random error average across Pakistan was
25.35%. On the other hand, systematic errors were larger than a random error with an average of
74.65% across the whole of Pakistan. Maximum systematic errors were depicted in hyper-arid (average:
93.96%, median: 93.25%) and glacial (average: 84.76%, median: 86.20%) followed by arid (average:
77.19%, median: 78.03%) and humid (average: 41.59%, median: 40.13%) regions.

Figure 4f displays the spatial distribution of KGE score compared with RG observations. Maximum
KGE is observed in the hyper-arid region showing a high performance of SM2RAIN-ASCAT in the
region. Smaller KGE scores are observed in the humid and glacial regions depicting poor performance
in those mentioned climate regions. However, the KGE score illustrates moderate performance in the
arid region. Average (median) KGE scores in glacial, humid, arid and hyper-arid regions were 0.36
(0.34), 0.38 (0.41), 0.64 (0.64), and 0.72 (0.77), respectively.
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Figure 4. Spatial distribution of bias (a), ubRMSE (b), Theil’s U coefficient (c), systematic error (d),
random error (e), and KGE score (f) based on a daily scale across Pakistan from SM2RAIN-ASCAT
compared to RGs data for the period of 2007–2015.
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3.3. Seasonal Evaluation of SM2RAIN-CCI and SM2RAIN-ASCAT

SM2RAIN-CCI and SM2RAIN-ASCAT are compared during four seasons, i.e., pre-monsoon
from April to June (A-M-J), monsoon from July to September (J-A-S), post-monsoon from October
to November (O-N), and winter from December to March (D-J-F-M) [47,67] for a common period of
2007–2015. Table 4 shows the statistical evaluation of SM2RAIN-CCI in four seasons across Pakistan.
The analysis shows poor performance of the precipitation products with an increase in precipitation
magnitude and intensity, i.e., monsoon and pre-monsoon seasons. Table 4 shows higher KGE scores in
winter season with maximum and minimum values of 0.75 and 0.49, depicting better performance in
winter while poor performance in monsoon season (KGE scores ranged between 0.53 (maximum) to
0.19 (minimum)). Similarly, lower biases, ubRMSE, and Theil’s U values were observed in winter and
post-monsoon seasons. It is concluded from the results that SM2RAIN-CCI shows higher performance
in winter followed by post-monsoon season.

Table 4. Seasonal evaluation of SM2RAIN-CCI across Pakistan during 2007-2015.

Season Statistics Bias (%) ubRMSE (mm/Day) Theil’s U KGE Score

Pre-monsoon (A-M-J)

Maximum 68.21 9.81 0.63 0.59
Minimum −36.12 0.73 0.20 0.31
Average 16.80 4.65 0.45 0.58
Median 16.19 4.28 0.44 0.56

Monsoon (J-A-S)

Maximum 79.53 19.69 0.68 0.53
Minimum −40.44 1.16 0.23 0.19
Average 20.90 10.52 0.47 0.47
Median 22.01 10.27 0.48 0.48

Post-monsoon (O-N)

Maximum 56.43 7.45 0.57 0.68
Minimum −32.28 0.56 0.18 0.42
Average 13.76 2.65 0.38 0.65
Median 14.59 2.12 0.38 0.63

Winter (D-J-F-M)

Maximum 53.88 6.96 0.47 0.75
Minimum −33.22 0.39 0.15 0.49
Average 11.45 3.39 0.34 0.69
Median 10.98 3.85 0.33 0.67

Table 5 represents the seasonal evaluation of SM2RAIN-ASCAT. SM2RAIN-ASCAT also depicts
poor performance in heavy and intense precipitation seasons such as the monsoon and pre-monsoon.
Lowest biases and ubRMSE values are observed during the winter season. Theil’s U also depicts
better performance of SM2RAIN-ASCAT during the winter and post-monsoon seasons. Moreover,
similar to SM2RAIN-CCI, the highest KGE scores are observed in winter and post-monsoon seasons
while the lowest score in the monsoon season, depicting better performance during low precipitation
seasons. Overall, high performances are depicted in winter and post-monsoon seasons. However,
SM2RAIN-ASCAT outperformed SM2RAIN-CCI in all four seasons.

3.4. Performance of SM2RAIN-CCI and SM2RAIN-ASCAT in Detecting Precipitation Events

Table 6 shows the daily scale averaged regional categorical metrics of SM2RAIN-CCI and
SM2RAIN-ASCAT during a common period of 2007–2015. The categorical metrics are calculated by
using a threshold of 1 mm/day. Higher POD (lower FAR) values were detected in the hyper-arid region.
The humid region has a lower POD (higher FAR) because of high precipitation magnitude and intensity
in the region. Moreover, saturated soil and water storage in hydraulic structures might be the cause of
lower POD (higher FAR) in the humid region. Similarly, CSI and the bias score (BS) was also higher in
the hyper-arid region and lower in humid region. About the skill of detecting precipitation events,
SM2RAIN-ASCAT outperformed SM2RAIN-CCI across three climate regions of Pakistan. In terms of
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POD (FAR), SM2RAIN-ASCAT improved the precipitation detection capability by 11.94% (15%) in
humid, 10.67% (14.28%) in arid and 8.53% (19.05%) in hyper-arid regions.

Table 5. Seasonal evaluation of SM2RAIN-ASCAT across Pakistan during 2007-2015.

Season Statistics Bias (%) ubRMSE (mm/day) Theil’s U KGE Score

Pre-monsoon
(A-M-J)

Maximum 61.72 8.23 0.54 0.70
Minimum −33.20 0.56 0.16 0.42
Average 11.20 3.97 0.38 0.61
Median 12.29 4.02 0.40 0.60

Monsoon
(J-A-S)

Maximum 71.38 17.94 0.59 0.62
Minimum −47.03 0.82 0.20 0.26
Average 17.82 8.61 0.43 0.55
Median 17.31 8.47 0.42 0.53

Post-monsoon
(O-N)

Maximum 49.21 6.38 0.52 0.78
Minimum −29.09 0.52 0.15 0.49
Average 12.32 2.39 0.36 0.65
Median 12.62 2.31 0.33 0.66

Winter
(D-J-F-M)

Maximum 43.29 5.91 0.44 0.84
Minimum −25.90 0.44 0.12 0.55
Average 8.59 2.04 0.29 0.71
Median 8.55 1.97 0.28 0.70

Table 6. Daily scale averaged regional categorical metrics of SM2RAIN-CCI (SM2RAIN-ASCAT)
during 2007–2015.

Climate Region Statistics POD FAR CSI Bias Score

Humid
Average 0.59 (0.67) 0.40 (0.34) 0.57 (0.63) 0.67 (0.73)
Median 0.62 (0.69) 0.39 (0.35) 0.56 (0.65) 0.72 (0.74)

Arid
Average 0.67 (0.75) 0.28 (0.24) 0.72 (0.79) 0.76 (0.81)
Median 0.69 (0.73) 0.24 (0.23) 0.71 (0.77) 0.77 (0.84)

Hyper-Arid Average 0.75 (0.82) 0.21 (0.17) 0.81 (0.90) 0.82 (0.88)
Median 0.75 (0.81) 0.18 (0.14) 0.82 (0.89) 0.80 (0.89)

3.5. Evaluation of SM2RAIN-CCI/ASCAT against TMPA

Previous studies [47,59,67] reported the better performance of TMPA across Pakistan than other PPs,
including TRMM-3B42RT, PERSIANN-CDR, PERSIANN-CCS, and CMORPH. Therefore, TMPA was
selected to comprehensively assess the performance of SM2RAIN-CCI and SM2RAIN-ASCAT.
Three statistical metrics, i.e., Bias, ubRMSE, and Theil’s U are used to assess the performance of
SM2RAIN-CCI/ASCAT against TMPA during the common period of 2007–2015. Figure 5 shows a
comparison of performances of three precipitation products using box-plots. SM2RAIN-CCI data was
not available for the glacial region, therefore this region is neglected.

In the humid region, SM2RAIN-CCI underestimated precipitation (negative Biases) and
SM2RAIN-ASCAT under/overestimated precipitation (slightly positive Biases), however, TMPA
had completely overestimated (positive Biases) precipitation. Moreover, the SM2RAIN-based product
showed over/underestimation in the arid region while TMPA overestimated precipitation. A contrasting
scenario is observed in the hyper-arid region where TMPA underestimated, and SM2RAIN-CCI/ASCAT
overestimated precipitation. Overall, smaller biases are observed when TMPA is compared with RGs,
in comparison with SM2RAIN-CCI/ASCAT.

In the case of ubRMSE, TMPA outperformed the SM2RAIN-ASCAT in all three climate regions,
while both of them were superior to the SM2RAIN-CCI. The ubRMSE of SM2RAIN-ASCAT and TMPA
were almost comparable in humid and hyper-arid regions. Moreover, ubRMSE decreased significantly
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from humid region to hyper-arid region, which might be associated with the precipitation magnitude,
intensity and any other hydrological (hydraulic) activities in these climate regions.

Among these three PPs, Theil’s U coefficient depicts the best performance of TMPA, followed by
SM2RAIN-ASCAT and SM2RAIN-CCI. Theil’s U shows higher variation (as well as best forecasting
accuracy) in the arid region. Overall, TMPA dominated the SM2RAIN-based products across all
Pakistan. SM2RAIN-ASCAT and SM2RAIN-CCI need proper bias adjustments before integrating into
any hydrological applications.

Figure 5. Daily box-plots for Bias (%), ubRMSE (mm/day) and Theil’s U for SM2RAIN-CCI (black box)
and SM2RAIN-ASCAT (blue box) against TMPA (red box) during the period 2007–2015. The line in
each box indicates the median values and each box (top and bottom lines) depicts the 25th and 75th
percentile, while the lines perpendicular to boxes (whiskers) extend to the extreme data points.

4. Discussion

The performance of SM2RAIN-CCI (2000–2015) and SM2RAIN-ASCAT (2007–2015) precipitation
products against the RGs observations (obtained from PMD and WAPDA departments of Pakistan)
was assessed using six statistical and four categorical metrics. Both precipitation products were
evaluated over the complex topography and diverse climate of Pakistan, and their performance was
also compared with TRMM TMPA 3B42v7 (TMPA) during the period from 2007 to 2015. SM2RAIN-CCI
precipitation observations were not available over snow cover, frozen soil, high topographical regions,
and rainforests because of the mask used to remove the areas characterized by issues in SM retrieval [45]
(shown in Figure 3). Inputs for SM2RAIN-CCI are based on integrating the active and passive ESA
CCI SM datasets with bias-corrected and calibrated observations from GPCC-FDD [37]. However,
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SM2RAIN-ASCAT observations are obtained from application of the SM2RAIN algorithm to ASCAT
SM data without consideration of any filter [32]. The observations are calibrated and bias-corrected
based on the ERA5 reanalysis data [43].

Soil moisture-based precipitation products, i.e., SM2RAIN-CCI and SM2RAIN-ASCAT, captured
the precipitation both spatially and temporally relatively well. However, both of them tended to fail to
estimate the precipitation in the humid region characterized with high precipitation intensity and heavy
magnitude (>700 mm), and more specifically in the hydraulically developed region with dams, barrages,
headworks, and an extensively developed irrigation canal system (Figures 3 and 4). The performance
of SM2RAIN-based products is strongly influenced by spatial and temporal variation of precipitation.
Comparatively better performance is observed in the arid and hyper-arid region, which is characterized
by low precipitation magnitude (<100 mm). Furthermore, the temporal (seasonal) evaluation also
revealed poor performance in monsoon and pre-monsoon seasons, having high precipitation intensity
and magnitude. References [9,30] confirmed the poor performance of SM2RAIN algorithm that is
unable to adequately estimate precipitation when the soil is close to saturation because the algorithm
is unable to derive SM variation when the SM is constant. Similarly, references [41,42] evaluated the
performance of SM2RAIN-CCI over north-eastern Brazil and concluded its poor performance in wetter
precipitation regimes.

SM2RAIN-CCI and SM2RAIN-ASCAT highly overestimated and underestimated the precipitation
in the coastal hyper-arid and mountainous regions of Pakistan, respectively (Figures 3a and 4a). This can
be considered as SM retrieval uncertainties, which significantly deteriorate the accuracy of precipitation
estimates from the SM2RAIN algorithm (i.e., due to error propagation) [43]. Underestimation of
precipitation is associated to poor infiltration capacity and soil moisture storage capacities of rocks
(hills), permanent snow and glacier cover, hydraulic developmental activities, and intense and heavy
precipitation during monsoon and pre-monsoon seasons, while overestimation is associated to low
precipitation intensity and magnitude.

Though SM2RAIN-ASCAT underestimated the precipitation significantly in humid and glacial
regions, the locations of heavy rainfall were relatively accurately detected as compared to SM2RAIN-CCI
(Figures 3 and 4). Larger biases and uncertainties at those locations are due to the impact of complex
topography and diverse climate, which have been well documented in previous literature [47,59,67,68].
Higher positive or negative biases for SM2RAIN-based products are expected over densely vegetated
and forest regions (glacial and hilly areas of the humid region) where signals of satellite sensors do
not breach into dense vegetation [69], or in the region where the soil remains saturated for longer
period of time such as flooded regions (the humid region, especially the hydraulically developed
areas) [9], respectively. Considering other statistical metrics, all the metrics showed poor performance
in precipitation dominated regions and seasons (Figures 3 and 4, Tables 4 and 5). References [9,41]
confirm the findings of the current study.

Concerning the error components, the analysis revealed that SM2RAIN-CCI and SM2RAIN-ASCAT
were similar in the spatial distribution of systematic and random errors (Figure 3d,e and Figure 4d,e).
The results revealed that systematic error contributed significantly in comparison with random errors,
supporting the findings of previous studies conducted by Prakash [6] and Paredes-Trejo, Barbosa and
dos Santos [41] in India and Brazil, respectively. Therefore, these products require refinement and
corrections before their integration into a particular hydrological application [70].

Seasonal evaluation of SM2RAIN-CCI and SM2RAIN-ASCAT presented a better performance
in moderate to low precipitation seasons, i.e., post-monsoon and winter seasons (Tables 4 and 5).
During these two seasons, precipitation has had enough time to infiltrate into the soil and then saturate;
therefore, the precipitation estimation capabilities of SM2RAIN-based precipitation products are high
and hence produce relatively accurate results. However, precipitation in summer (monsoon season),
which is distinguished by intense and short duration precipitation events, is the influential factor that
affected the performance of both SM2RAIN-based products in terms of biases. Therefore, the possibility
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exists that the sensors might have not accurately estimated (or missed) the precipitation during the
period [41].

The TMPA precipitation product performed reasonably well across different climate regions
when compared with SM2RAIN-CCI and SM2RAIN-ASCAT (Figure 5). A different trend is observed
in the humid and arid regions where SM2RAIN-based products overestimate and underestimates
the precipitation; TMPA overestimates the precipitation. In contrast, in the hyper-arid region,
TMPA underestimates while SM2RAIN-based product overestimates the precipitation. SM2RAIN-CCI
depicted poor performance, implying high uncertainties when compared to SM2RAIN-ASCAT and
TMPA across all three climate regions. TMPA showed comparatively good agreement with gauged based
observations in different climate regions and different seasons relative to the SM2RAIN-based products.

The performance of SM2RAIN-based products across glacial, humid, arid and hyper-arid regions
during the common period (2007-2015) are summarized in Tables 7 and 8.

Table 7. Summary of the performance of SM2RAIN-CCI datasets across the four climate regions of
Pakistan during 2007–2015.

Climate Region Evaluation Metrics Performance Reasons

Humid

*Bias
**ubRMSE
**Theil’s U

**KGE
***Systematic error
****Random error

*Underestimation (majority)
**Poor performance
***Lower magnitude

**** Higher magnitude

*High underestimation
due to hydraulically

developed area
** Due to intense and
heavy precipitation

Arid

*Bias
**ubRMSE
**Theil’s U

**KGE
***Systematic error
****Random error

*Underestimation over
mountainous areas while

overestimation in plain areas
**Comparatively better
ubRMSE while higher

accuracy is detected over
agricultural areas and low

accuracy at over
mountainous areas

**High KGE in plain areas
while low in mountain areas
***Highest in the south while

higher in rest of the region
****Lowest in the south while

lower in rest of the region

*Underestimation is due
to poor infiltration

capacity of rock in the
east of the region,

moreover, snow cover in
winter also contributes to

underestimation
**Higher performance in

the region in terms of
ubRMSE and Theil’s U is

due to agriculture and
moderate precipitation

in the region

Hyper-arid

*Bias
**ubRMSE
**Theil’s U

**KGE
***Systematic error
****Random error

*Overestimation in all the
regions (higher in south-east)

**Lowest ubRMSE while
moderate to lower

forecasting accuracy
**Moderate KGE

***Highest among all climate
regions

****Lowest among all climate
regions

*Overestimation due to
seawater intrusion and
minimum precipitation

in the region
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Table 8. Summary of the performance of SM2RAIN-ASCAT dataset across four climate regions of
Pakistan during 2007–2015.

Climate Region Evaluation Metrics Performance Reasons

Glacial

*Bias
**ubRMSE
**Theil’s U

**KGE
***Systematic error
****Random error

*Underestimation, high in east
while relatively low in west

**Relatively better performance
in east

**Poor forecasting in middle of
the region

**Lower KGE
***Highest toward the east
****Lowest toward the east

*Underestimation due to
permanent snow and

glacier cover
**Errors due to low

infiltration and storage
capacity in the region

Humid

*Bias
**ubRMSE
**Theil’s U

**KGE
***Systematic error
****Random error

*Underestimation in the
north-east while overestimation in

the west of the region
**Poor performance

**Poor forecasting accuracy
**Lower KGE score

***Lower systematic error
****High random error

*High underestimation is
due to heavy and intense

precipitation in
north-east

*Hydraulically
developed areas and

flooded regions

Arid

*Bias
**ubRMSE
**Theil’s U

**KGE
***Systematic error
****Random error

*Underestimation in the
mountainous region while

overestimation in plain
agricultural lands

**Moderate RMSE and high
forecasting accuracy in plain areas
**High KGE in plain areas while

low over mountain areas
***Highest over elevated areas
while moderate in plain areas

****Lowest over mountain areas
while moderate in plain areas

*Underestimation in the
west due to snow cover
in winter season, poor

infiltration and soil water
storage capacity of

hilly areas
**Moderate precipitation

and agricultural
activities which preserve

soil moisture

Hyper-arid

*Bias
**ubRMSE
**Theil’s U

**KGE
***Systematic error
****Random error

**Overestimation in all the regions
(higher in south-east)

**Lowest ubRMSE (west) while
moderate (extreme south along

the coast of Arabian Sea) to lower
forecasting (north of the region)

accuracy
**High KGE along the coast,

moderate to relatively low in rest
of the region

***Highest systematic error
****Lowest random error

*Hyper-arid region
receives very low

precipitation. Seas water
intrusion might be the

reason for the
overestimation

**Low precipitation
magnitude in the region

causes lower
uncertainties

Based on spatial and temporal evaluation of SM2RAIN-CCI/ASCAT precipitation products across
Pakistan along different climate regions, and the obtained results, the following recommendations
are suggested for further studies and applications: (1) Agricultural water management and irrigation
scheduling in the arid region (the Punjab province, which is agricultural hub of the country),
where SM2RAIN-based PPs performed comparatively better, (2) An early flood warning system
(EFWS) and flood simulation, where soil moisture (besides the precipitation intensity) plays important
role, and bias-corrected SM2RAIN-based products will be helpful for reducing the impact of flood on
society, (3) Drought monitoring in drought-prone arid and hyper-arid regions, including hydrological
drought (shortage in water storage as well as net precipitation at same time) and meteorological
drought (shortage in the catchment’s water fluxes such as precipitation), (4) Vegetation and crop
growth monitoring, and (5) Groundwater modeling and rainwater harvesting studies.
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5. Conclusions

In this study, the performance of SM2RAIN-CCI and SM2RAIN-ASCAT were assessed extensively
across Pakistan using the rain gauge (RGs) observations. The assessment was carried across four
different climate regions of Pakistan, namely glacial, humid, arid and hyper-arid regions during
the period 2000–2015 (for SM2RAIN-CCI) and 2007–2015 for (SM2RAIN-ASCAT) on a daily scale.
Three statistical metrics, i.e., Bias (%), ubRMSE (mm/day), and Theil’s U coefficient, and four categorical
metrics, i.e., POD, FAR, CSI and Bias score, were used to assess the performance of SM2RAIN-based
products. Moreover, the total mean square error was also decomposed to random and systematic error
components, while KGE was also used to evaluate the performance of PPs. Finally, SM2RAIN-CCI
and SM2RAIN-ASCAT were compared and evaluated against an extensively evaluated satellite
precipitation product, i.e., TRMM TMPA 3B42 v7 (TMPA). Based on the results, following conclusions
were drawn:

(1) Both SM2RAIN-CCI and SM2RAIN-ASCAT underestimated precipitation in north-east of the
humid region and hydraulically developed areas, i.e., regions with barrages, headworks, dams and
an extensively developed irrigation canal system. Maximum underestimation for SM2RAIN-CCI
(SM2RIAN-ASCAT) was 58.04% (42.36%).

(2) SM2RAIN-based product underestimated precipitation over mountainous and glacial regions
(SM2RAIN-ASCAT). In mountainous regions, the maximum underestimation of SM2RAIN-CCI
was 43.16% (at ARG12) and 34.60% (at GRG17). This underestimation is due to low infiltration
and soil water storage capacities of these mountainous areas.

(3) Besides, overestimation is also observed in coastal hyper-arid areas (near the coast of Arabian
Sea), which can be considered due to soil moisture retrieval errors, i.e., propagation errors that
affect the quality of precipitation estimates from the SM2TAIN algorithm and soil water intrusion
from the Arabian Sea. Maximum overestimation for SM2RAIN-CCI (SM2RAIN-ASCAT) was
59.59% (52.35%) at HARG20.

(4) Based on the Theil’s U, high forecasting accuracies for SM2RAIN-based products were observed
in the arid region (plain areas). Theil’s U for SM2RAIN-CCI (SM2RAIN-ASCAT) was 0.23 at
ARG15 (0.15 at ARG16).

(5) SM2RAIN-ASCAT outperformed SM2RAIN-CCI across all climate regions of Pakistan.
The average percentage improvements were: Bias (27.01% in humid, 5.94% in arid, and 6.05%
in hyper-arid), ubRMSE (19.61% in humid, 20.16% in arid, and 25.56% in hyper-arid), Theil’s U
(9.80% in humid, 28.80% in arid, and 26.83% in hyper-arid), MSEs (24.55% in humid, 13.83% in
arid, and 8.22% in hyper-arid), MSEr (19.41% in humid, 29.20% in arid, and 24.14% in hyper-arid)
and KGE score (5.26% in humid, 28.12% in arid, and 24.72% in hyper-arid).

(6) The reliability of SM2RAIN-based products is dependent on topography and climate (precipitation
variability), for instance, SM2RAIN-based products failed to estimate precipitation in mountains
and semi-arid climate (west of arid region).

(7) Among the systematic and random errors of SM2RAIN-CCI and SM2RAIN-ASCAT, systematic
error dominated random error across all Pakistan, which suggest that the products need bias
correction before integrating them in any hydrological application.

(8) SM2RAIN-based products failed to accurately capture the intense (short duration) and heavy
(long term events) precipitation during the monsoon and pre-monsoon seasons. Average values
of statistical metrics during the monsoon season for SM2RAIN-CCI (SM2RAIN-ASCAT) were
20.90% (17.82%), 10.52 mm/day (8.61 mm/day), 0.47 (0.43), and 0.47 (0.55) for Bias, ubRMSE,
Theil’s U, and KGE score, respectively. However, the performance improved from post-monsoon
to the winter season as the precipitation magnitude decreased. Average values for statistical
metrics during winter seasons for SM2RAIN-CCI (SM2RAIN-ASCAT) were 11.45% (8.59%),
3.39 mm/day (2.04 mm/day), 0.34 (0.29), and 0.69 (0.71) for Bias, ubRMSE, Theil’s U, and KGE
score, respectively.
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(9) Comparison of SM2RAIN-based products with TMPA revealed the better performance of TMPA
across all climate regions in terms of all statistical metrics.
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Abstract: During the last decade, satellite-based precipitation products have been believed to be
a potential source for forcing inputs in hydro-meteorological and agricultural models, which are
essential especially over the mountains area or in basins where ground gauges are generally sparse or
nonexistent. This study comprehensively evaluates several newly released precipitation products, i.e.,
MSWEP-V2.2, IMERG-V05B, IMERG-V06A, IMERG-V05-RT, ERA5, and SM2RAIN-ASCAT, at daily
and monthly time-scales over Austria. We show that all the examined products are able to reproduce
the spatial precipitation distribution over the country. MSWEP, followed by IMERG-V05B and -V06A,
show the strongest agreement with in situ observations and perform better than other products with
respect to spatial patterns and statistical metrics. Both IMERG and ERA5 products seem to have
systematic precipitation overestimation at the monthly time-scale. IMERG-V06A performs slightly
better than IMERG-V05B. With respect to heavy precipitation (P > 10 mm/day), MSWEP compare
to other products demonstrate advantages in detecting precipitation events with a higher spatial
average of probability of detection (POD) and lower false alarm ratio (FAR) scores skill (0.74 and
0.28), while SM2RAIN and ERA5 reveal lower POD (0.35) and higher FAR (0.56) in this precipitation
range in comparison with other products. However, the ERA5 and MSWEP indicate robust average
POD and FAR values with respect to light/moderate precipitation (10 mm > P ≥ 0.1 mm) with 0.94
and 0.11, respectively. Such robustness of MSWEP may be rooted in applying the daily rain gauges
in calibration processes. Moreover, although all products accurately map the spatial precipitation
distribution they still have difficulty capturing the effects of topography on precipitation. The overall
performance of the precipitation products was lower in the peripheries of the study area where most
stations are situated in the mountainous area and was higher over the low altitude regions. However,
according to our analysis of the considered products, MSWEP-V2.2, followed by IMERG-V06S and
-V05B, are the most suitable for driving hydro-meteorological, agricultural, and other models over
mountainous terrain.

Keywords: satellite-based precipitation; elevation; extreme events; IMERG-V05B and V06A; MSWEP;
ERA5; SM2RAIN

1. Introduction

Droughts and floods are water-related natural phenomena which have large negative impacts on
society and activities related to agriculture, and local economies. Drought is one of the most important
natural disasters, since it affects wide areas for long time (months to years) and, thus, has a serious
impact on regional or countries economic performance, etc.
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In recent decades, large-scale extreme events (i.e., droughts) have been observed in many places
around the world leading to high negative impacts on economic, ecological resources, food shortages,
etc. However, floods are among the most destructive natural phenomena, declaring more lives and
leading to more property damage than any other natural events. The reliable and accurate drought
and flood information have been more interested for a variety of authorities, such as water managers,
policy makers, researchers, farmers, etc., for effective management [1].

Since precipitation is the most important factor of the aforementioned phenomena, knowing
the locations, domain, and length of precipitation is essential to understand, predict, and mitigate
the impact of such disasters. Irrespective of the less accessible mountainous and oceanic regions,
compared to ground-based measurements, such as gauges and radars, satellite precipitation estimates
(SPE) products are able to cover the precipitation system at a nearly global-scale. Generally, in situ
observations are often subject to wind effects, many missing values, insufficient number of stations, or
sparse gauge networks, particularly in mountainous or desert areas [2,3]. Moreover, gridded daily
surface precipitation data are important for many water-related applications, such as drought and
flood monitoring systems. Rapid growth in computer technology and the remote sensing area help
observations processed from satellites, individually, and merge them with other data sources to provide
a better understanding of the precipitation spatial visualization. The information derived from SPEs
provides tremendous potential for identification, monitoring, and assessment of droughts, flood, etc.,
especially for regions with sparse rain gauges or limited radar coverage [4].

However, the precision of SPEs at spatiotemporal representations has a great influence on the
effective predictions of natural hazard, climate impacts, etc.; therefore, accuracy analysis of the new
precipitation products is often applied before it can be employed in decision-making activities [5]. The
satellite/gridded data produce the area average of precipitation in contrast with point measurements
obtained with rain gauges. Earlier studies have shown that diverse altitude and geographic and climate
conditions have greatly impact on the accuracy and performance of satellite or other precipitation
products [2,5–11]. For instance, in a study by Gottschalck et al. [12] the overestimation of 3B42-RT over
the Central United States is attributed to misclassification of cold cirrus clouds as precipitating systems.
In another study, Dinku et al. [13] demonstrated that topography plays a significant role in SPE due to
the weakness of algorithms to detect orographically-induced precipitation. Numerous studies have
shown that an appropriate interpolation method might develop a gridded dataset using the rain gauges,
but the obtained dataset is dependent on both adequate underlying station observations and the use of
an appropriate interpolation technique to produce high-resolution gridded point estimates prior to the
creation of area-averages grid values [14]. Thaler et al. [15] used different gridded precipitation data in
an agronomic application and analyzed how different products influence a crop model application.
The Austrian radar network (Austrocontrol) is operated consisting of four radar stations distributed
across the country. However, due to the mountainous area and terrestrial characteristics of the country,
in many western regions of Austria radar data have limitation to use particularly during wintertime,
when precipitation may originate from rather shallow cloud systems.

In recent years, with the rapid development of remote sensing technique, more and more
quasi-global satellite precipitation products have been produced and released to the public. The
objective of this paper is inter-comparison of the recently released gridded precipitation products (e.g.,
MSWEP-V2.2, IMERG-V05B, IMERG-V05-RT -V06A, ERA5, and SM2RAIN) against in situ observations.
The question motivating this study is “To what extent have the recently released gridded precipitation
products, improved as compared to a dense rain-gauge network?” The total error is broken down
into estimation and detection of precipitation in order to assess the algorithm performance than can
highlight the weakness and strength of those algorithms and assist the developer to improve those
aspects that have greater need.

In this study, the gauge-based measurements are directly compared against the corresponding
gridded data, enabling us to identify the best precipitation estimated product and how close they are
to source data (stations).
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It is noteworthy to mention that, previously, Sharifi et al. [3] conducted a study to evaluate the
reliability of the IMERG-V04 final-run (FR) and real-time (RT) products against the Central Institute for
Meteorology and Geodynamics (ZAMG) stations over Northeast Austria. However, an evaluation of
the performances of ERA5, MSWEP-V2.2, IMERG-V5B, IMERG-V6, IMERG-V5-RT, and SM2RAIN
products has not been conducted over Austria. Therefore, the aforementioned products and a highly
dense in situ precipitation network provided by the Federal Ministry for Sustainability and Tourism
(BMNT)-Austria (882 stations) are selected in this study. Lastly, this study will be useful since it will
provide the reference for precipitation monitoring and regional climate prediction across Austria.

2. Data and Study Area

The data used in this study are described below and its summaries and characteristics have been
shown in Table 1.

Table 1. Characteristics of the precipitation products.

Products Temporal Resolution Spatial Resolution Coverage Availability

IMERG-V05B 30 min 0.1◦ 60◦N–60◦S March 2014–present
IMERG-V05-RT 30 min 0.1◦ 60◦N–60◦S March 2014–present
IMERG-V06A 30 min 0.1◦ 60◦N–60◦S June 2014–present
MSWEP-V2.2 3 h 0.1◦ 90◦N–90◦S 1979–2017

ERA5 1 h 0.28◦ 90◦N–90◦S 1950–present
SM2RAIN Daily 12.5 km 90◦N–90◦S 2007–2018

2.1. In Situ Data

In this study, we use precipitation data from 782 stations provided by BMNT, followed by proper
quality-control checks within Austria, in the range of daily time-scale between 1985 and 2016.

However, there are other stations provided by ZAMG-Austria distributed throughout the country.
In this study the in situ observation network provided by BMNT (hereafter: eHYD) is used for two
reasons: first, the eHYD network is much denser than the ZAMG stations. Second, eHYD provides
gauge observations that are entirely independent of the gridded precipitation products that are
assessed in this study, while a large number of ZAMG observations are used by the Global Precipitation
Climatology Centre (GPCC) products, which, in turn, are integrated in several of the products assessed
in this study (i.e., IMERG). As an example, Sharifi et al. [3] reported that over the northeast of the
country 51 out of 62 ZAMG synoptic stations are shared with GPCC, which contains a major part of the
total ZAMG gauges (82%). Since the satellite products used in this study are used with GPCC gauge
data for calibration, we utilize the independent eHYD observations in order to avoid any misleading
results. Spatial distribution of both eHYD and ZAMG stations and elevation map of Austria are shown
in Figure 1.

It is worthy to mention that stratiform, convective, and orographic precipitation types occur over
the country [16].

2.2. Precipitation Products

2.2.1. MSWEP V2.2

Multi-Source Weighted-Ensemble Precipitation (MSWEP) uses a combination of the gauge-,
satellite-, and reanalysis-based data to provide a reliable precipitation estimates over the entire globe.
With the consistent precipitation record from 1979 until the near present, it enables assessing the
precipitation trend, drought, etc. In this study, the newest version of this product (V2.2) is used.
The dataset cover the time period from 1979 to 2017 and is available at 0.1◦ spatial resolution and
at three-hourly, daily, and monthly temporal resolutions [17]. The historic MSWEP data are freely
available via www.gloh2o.org.
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Figure 1. (a) Distribution of eHYD and ZAMG precipitation stations and (b) mean annual precipitation
over Austria.

2.2.2. ERA5

The precipitation data obtained from ERA5 forecast product developed through the Copernicus
Climate Change Service (C3S). This product has global spatial coverage and covering the period
1950 to the present. Precipitation data are available at an hourly resolution and consist of forecasts
initialized twice daily from analyses at 06 and 18 UTC. The ERA5 high-resolution atmospheric data
has a resolution of 0.28125 degrees (31 km) but, when downloading the data, there is a possibility to
resampling the data to a higher spatial resolution. This will be done for continuous parameters by
default through bilinear resampling methods [18]. Therefore, for consistency to other satellite data, we
used the precipitation data with 0.1◦ spatial resolution. The data are freely accessible to users from
Climate Data Store (CDS) website (https://cds.climate.copernicus.eu).

2.2.3. IMERG-FR (Final-Run) V05B

The Global Precipitation Measurement (GPM) mission’s Precipitation Processing System (PPS)
at NASA’s Goddard Space Flight Center released IMERG-V05B data to the public in late November
2017. The dataset includes precipitation since March 2014. IMERG datasets are freely accessible to
users from NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) website
(https://disc.gsfc.nasa.gov). The IMERG-FR product is produced based on merging and interpolating all
constellation microwave sensors and IR-based observations, and calibrated with monthly precipitation
rain gauges from GPCC and create research-level products [19].

2.2.4. IMERG-RT (Real-Time) V05

The data are available from March 2014 to the present, thus providing IMERG-RT V03 data for
the period 2014, to December 2015. The IMERG-RT late run, which is the near real-time product of
the IMERG. It runs about ~10–14 h after the observation time and it is calibrated with the monthly
climatological data (unlike the Final-Run, which uses monthly gauge data).

2.2.5. IMERG-FR (Final-Run) V06A

In the new version of IMERG, datasets from the Tropical Rainfall Measuring Mission (TRMM)
have been used as a calibrator for GPM for the nearly time period of TRMM start its observation, to
allow GPM processing spin up and a graceful transition from the TRMM era to the GPM era. This
product was released on 26 March 2019 and the first available GPM-era products start with June 2014
until December 2016 and soon it will span 2000 until the present [20].

2.2.6. SM2RAIN-ASCAT

SM2RAIN obtained from ASCAT (Advanced SCATterometer) satellite soil moisture data [21]. The
SM2RAIN-ASCAT rainfall dataset is provided over an irregular grid at 12.5 km on a global scale. The
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product represents the daily cumulated rainfall. The SM2RAIN method was applied to the ASCAT soil
moisture product for the period from 2007 to 2018.

3. Methodology

For our study period, the 782 eHYD gauges were used in this domain. The eHYD accumulates
daily precipitation ending at 07:00 o’clock local time, which is different from the satellite daily
precipitation accumulation convention. Therefore, the sub-daily precipitation estimates (e.g.,
half-hourly, three-hourly) were aggregated and derived a meaningful daily (at the local time of gauge
measurement) and, consequently, monthly data. Then a comparison among the eHYD gauge-based
data and the gridded precipitation products across Austria was conducted. It should be mentioned
since the SM2RAIN data are available only in daily (and not sub-daily) scale, therefore, we could use
only the original SM2RAIN daily data which estimate rainfall between the 00:00 and the 23:59 UTC of
the indicated day.

In this research, to evaluate the capability of precipitation products to capture the precipitation
patterns and for the aim of intercomparison with other gridded precipitation products, the data of a
pixel of the gridded products are compared with that corresponding to the ground point observation
(i.e., the station). Only the cells where there is at least one reporting station can be selected for
computation. Since we have used a dense network, in numerous pixels, there are two or more gauges
are located. In this case, an average of the two or more gauges is used as the basis for comparison.
At the end, all stations fell within 601 pixels over the country.

The assessment and validation of precipitation products are carried out based on continuous and
categorical statistical metrics. To quantitatively compare the performance of the gridded products
against in situ observations at daily and monthly time-scales, the continuous statistical metrics including
correlation coefficient (CC), bias, mean absolute error (MAE), and root mean square error (RMSE) are
used. The CC is used to assess the agreement between SPEs and rain-gauge observations. The CC
value vary from −1 to +1, where +1 indicates a perfect skill score and −1 indicates a perfect negative
linear correlation. The bias is defined as the average difference between in situ observations and
satellite/model precipitation estimates, and can be either positive or negative. A negative bias indicates
underestimation by satellite precipitation while a positive bias indicates overestimation. The MAE is
used to represent the average magnitude of the error and MAE = 0 indicates a perfect score. The RMSE
is used to measure the average error magnitude and weighs the errors according to their squared
value. This gives a greater weight to larger errors than the MAE. RMSE = 0 represents a perfect score.
To examine the capability of the products in detection of precipitation, the two categorical statistical
metrics, probability of detection (POD) and false alarm ratio (FAR), are used (see Appendix A). POD is
an indicator of the SPE’s ability to correctly detect precipitation events. Values vary from 0 to 1, with 1
as a perfect score. FAR denotes the fraction of cases in which the SPEs record precipitation when the
rain gauges do not. Values vary from 0 to 1, with 0 as a perfect score. For extreme precipitation, we
use R90th index to measure extreme wetter condition. R90 is precipitation in the 90th percentile of
wet days in a year (i.e., after excluding precipitation less than 0.1 mm). We further break down and
more deep analyses are conducted by classifying the stations’ elevation (1000 m ≥ stations’ elevation >
1000 m over the whole country).

The processing stages for error analysis of this study is shown in Figure 2.
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Figure 2. Processing stages for error analysis of this study.

4. Results

In the first step we evaluated the daily time-scale of IMERG-V05, -V05-RT, -V06A, MSWEP, ERA5,
and SM2RAIN over all days from June 2014 to December 2015 against the in situ observations as
reference. Considering that the IMERG-FR V06A started in June 2014 while the eHYD was discontinued
by December 2015, the study period was confined to the 17 months between June 2014 and December
2015. It is worth to mention that further work is needed to evaluate the seasonal and inter-annual
comparison of these products relying on larger sample data. Figure 3 shows the spatial distribution
and average statistical indices (bias, CC, RMSE, and MAE) at daily precipitation time-scale for all
products over Austria.

Precipitation types vary across the area. This region is typified by stratiform and convective
precipitation, while the west and middle of the area (along with alpine mountains), in addition, is
dominated by complex precipitation system due to the orography of the area. In Figures 3 and 4 the
spatial distribution and the statistical summary of the metrics for the aforementioned products at a daily
and monthly resolution over Austria are shown. According to Figure 3, precipitation shows a weaker
correlation to ERA5 and SM2RAIN with mean CC of 0.53 and 0.57, respectively, in compare to MSWEP
(CC= 0.86) at daily time-scale. Particularly, over the Alpine mountains both SM2RAIN and IMERG-V05-RT
indicated low CC skills, while they showed a better CC over the east and middle of the country.

The CC metric is used to describe the agreement between gridded precipitation products and in
situ observations. As can be seen in Figure 3, with respect to CC, MSWEP, significantly yields better
than other products in the whole domain in the range of 0.8 to 1 in most pixels. However, ERA5
indicated very low CC over the south and northern part of the country and rather high CC in the area
with low altitude. The general performances of the CC for all three versions of IMERG and SM2RAIN
are relatively similar and relatively low over the western part, in comparison to MSWEP that several
factors could contribute to this lower CC over such areas: a) the topography and climate of the west
domain is partly complex, might rise a big challenge for SPE accuracy [12]; b) the GPCC stations that
are used for the calibration of IMERG are in monthly time-scale, while in this study the examination of
the products are on a daily time-scale, leads the quality of IMERG products being potentially degraded.
In general, the MAE and RMSE are significantly higher in the high altitudes and low in low altitudes.
This is due to more sensitivity of RMSE, and there were high number of local and heavy convective
precipitation events over the high altitudes of Austria.

The general analysis of the results shows that IMERG-V05B, -RT, -V06A, and SM2RAIN and ERA5
have similar scores with respect to MAE and RMSE, although the ERA5 surpass the other products
according to the bias skill scores. However, MSWEP indicates a better result according to the error
indices with bias, RMSE and MAE of –15 mm, 2.86 mm and 1.08 mm, respectively. This means that in
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Austria, MSWEP daily precipitation is very close to the in situ precipitation observations among the
other recent and state-of-the-art precipitation products. These results are consistent with Beck et al. [22]
which determine to underscore the importance of applying daily gauge corrections and accounting
for gauge reporting times in compare to monthly gauge corrections. Meanwhile, IMERG and ERA5
indicate relatively higher variety of spatial bias and CC. However, one of the causes of the error of the
gridded precipitation products might be their precipitation estimation for a whole pixel once there is a
localized precipitation event, particularly in the west part of the area which characterized by complex
systems, in some of the stations within. Thereby wrongly assigning the event to unaffected stations [23].
The tendency of reanalysis data to overestimate precipitation frequency might be the cause of ERA5
precipitation overestimation [18,24]. Therefore, after numerous occurrences, this process causes an
average areal overestimation/underestimation.

Although all the products exhibited almost similar mean statistical skill scores in overall, regionally
there were considerable differences. Compared to MSWEP and IMERG-FR, ERA5, SM2RAIN, and
IMERG-V05-RT performed substantially worse over regions of complex terrain [22]. The results suggest
that the topography and climate characteristics of the region should be considered when choosing
between satellite and reanalysis datasets.

Figure 3. Statistical indices for bias, MAE, RMSE, and CC from left to right columns, respectively, at
daily time scale for IMERG-V05, IMERG-V06A, IMERG-V05-RT, MSWEP, ERA5, and SM2RAIN. The
center-line of each boxplot depicts the median value (50th percentile) and the box encompasses the 25th
and 75th percentiles of the sample data, while the whiskers represent the extreme values, respectively.
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Figure 4. Statistical indices and for bias, CC, RMSE, and MAE from top to down rows, respectively, at
monthly time scale for IMERG-V05B, IMERG-V06A, MSWEP, ERA5, and SM2RAIN. The center-line of
each boxplot depicts the median value (50th percentile) and the box encompasses the 25th and 75th
percentiles of the sample data, while the whiskers represent the extreme values, respectively.

The monthly statistical indices from all precipitation products versus in situ observations are
shown in Figures 4 and 5. According to the results of monthly precipitation, although all the examined
products indicated a rather close performance to in situ measurements, it is evident that MSWEP,
followed by IMERG-V05B and -V06A monthly precipitation compared well to the corresponding in situ
measurements. With respect to monthly scale, the CC of MSWEP, IMERG-V05B, -V06A, and SM2RAIN
exhibited strong agreement with observations over the whole area. Although IMERG-V05-RT and
ERA5 indicated rather good CC for the eastern part of the country, they showed weak performance for
the western and southern parts of the region, respectively, which might be due to the effect of relief
and complex systems in that area. MSWEP with the skill scores of 6.14 mm, 22.37 mm, 28.29 mm, and
0.93 and ERA5 with −2.08 mm, 43.26 mm, 54 mm, and 0.68 for bias, MAE, RMSE, and CC, respectively
determined as the best and worst products. According to bias, the ERA5 strongly overestimated
precipitation in the north part of the area and underestimated precipitation in south and west part of
the country, with a mean areal bias value of −2.08 mm, that might be due to its native low-resolution
and/or parameterization limitation during the precipitation generation processes [17,25]. The box-plots
can confirm that most of the IMERG-V05B, -V06A, and MSWEP’s pixels are in a smaller range, close
to zero, in comparison to ERA5, with a wider bias range. This suggested that their gauge-correction
methodology requires re-evaluation. Overall, MSWEP, followed by IMERG-V05B and -V06A, showed
improvements in monthly precipitation in comparison with other products.
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Figure 5. Time-series of mean monthly precipitation and box-plots of daily and monthly time-scales
across Austria from IMERG, MSWEP, ERA5, and SM2RAIN products as compared to eHYD stations
for the period of June 2014–December 2016. The center-line of each boxplot depicts the median value
(50th percentile) and the box encompasses the 25th and 75th percentiles of the sample data, while the
whiskers represent the extreme values, respectively.

Figure 5 shows the daily and monthly time-series comparison and boxplots of regional average
precipitation from stations and other precipitation estimate products over Austria from June 2014 to
December 2015. All precipitation products generally captured the spatio-temporal precipitation of daily
and monthly time-scales, with the highest amount occurred in July and August 2014 and the lowest
amount observed in February and December 2015. However, in monthly comparison it is evident that
MSWEP estimates are very close to in situ observations and tend to slightly overestimate precipitation
during August 2014 and July 2015, which might be due to the small scale of the precipitation systems
that are dominant during these months, while IMERG-V05-RT seems to have systematic overestimation
from March to November 2014.

According to Figure 5, MSWEP outperformed other products with slight overestimation over only
the November 2014 and January 2015. The mean monthly data indicated that SM2RAIN underestimated
precipitation during December 2014–April 2015 over Austria, which reflects a possible limitation of
SM2RAIN-ASCAT data during the cold months. The SM2RAIN underestimation in winter can be
related to snowfall that SM2RAIN is unable to estimate. The behavior of IMERG V05B and -V06A
were almost similar with slight overestimation, while a greater overestimation of precipitation is
observed mainly in the months with less precipitation intensity. IMERG-V05-RT shows systematic
underestimation for February–October 2015. Additionally, from the median and the 25th and 75th
percentiles of the box-plots, one can obtain that the precipitation estimated by MSWEP followed by
IMERG-V05B and -V06A are more accurate than other products, although MSWEP whiskers extend to
the most extreme data points. With respect to the box-plots of daily comparison, SM2RAIN indicated
fewer extremes and outliers.

4.1. Elevation

Since Austria characterized by complex terrain and big difference in altitude over the country,
annual mean precipitation range significantly varies with elevation and climate conditions. The
microclimate can be created due to rapid changes in elevation which cause the obstruct the air mass
movement or this rapid changes in elevation can cause the updraft of the air mass over the mountains to
create orographic rainfall. Hence, for more deep analysis, the evaluation of the precipitation products
was conducted by classifying the stations’ elevation equal or less than 1000 m the stations located in
greater than 1000 m altitudes (1000 m ≥ stations’ Elevation > 1000 m) over the whole country in order
to account for the effect of topography.

For the first category (1000 m ≥ Elevation), the performance of gridded precipitation products was
evaluated by comparing daily data for 642 stations which fell into 502 pixels, while the second category
contains 140 stations which fell into 125 pixels. Figures 6 and 7 show the spatial distribution of the
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statistical indices for all products against in situ observations values for different elevation categories.
MAE and RMSE evaluation metrics showed similar spatial patterns, while a sharp contrast from east to
west of Austria for both elevation categories is observed, except for MSWEP, which indicated gradual
variation. According to CC, MSWEP performed well, followed by IMERG-V05B and -V06A over the
whole region, while ERA5, SM2RAIN, and IMERG-V05-RT showed weak CC, respectively, particularly
over the alpine valleys.

With the increase of elevation, the mean RMSE, MAE, and bias increase and CC decreases, whereas
the bias of IMERG-V05B and -V06A show a decreasing trend with increasing elevation/rainfall. The
reason for this difference may be attributed to the cancellation of positive and negative biases, while
logically due to high precipitation amounts the error should be higher. In other words, MAE and RMSE
measure the absolute error magnitude and bias measure the relative error. The MAE, which evaluates
the average magnitude error between precipitation products and in situ observations, were 2.26 mm,
2.2 mm, 2.21 mm, 1.44 mm, 2.59 mm, and 2.57 mm for IMERG-V05B, -V06A, -V05-RT, MSWEP, ERA5,
and SM2RAIN, respectively, for the elevation category of less than 1000 m.

Figure 6. Spatial distributions and box plots of the statistical indices for the precipitation products
and stations with the elevation equal or less than 1000 m. The center-line of each boxplot depicts the
median value (50th percentile) and the box encompasses the 25th and 75th percentiles of the sample
data, while the whiskers represent the extreme values, respectively.

Similarly, CC value of the aforementioned products was ≥ 0.5 in the majority of stations with an
average value of 0.69, 0.70, 0.64, 0.86, 0.55, and 0.59, respectively, for the stations with less than 1000
m in altitude, while the average CC value of 0.64, 0.66, 0.55, and 0.85 obtained for the IMERG-V05B,
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-V06A, -V05-RT, and MSWEP, respectively, for the stations located in the high altitudes. The ERA5 and
SM2RAIN products failed to capture the observed daily precipitation with CC < 0.5 in most stations
over the high altitudes and complex terrains. In general, one can say all products performed better in
the low altitudes compared to the high altitudes.

 
Figure 7. Spatial distributions and box plots of the statistical indices for the precipitation products and
stations with the elevation greater than 1000 m. The center-line of each boxplot depicts the median
value (50th percentile) and the box encompasses the 25th and 75th percentiles of the sample data, while
the whiskers represent the extreme values, respectively.

It is notable to mention that inconsistent estimation of the precipitation products (except MSWEP)
is possibly due to the rough terrains effect. The overall performance of the precipitation products is
lower in the peripheries of the study area where most stations are situated in the mountainous area [26].

4.2. Extreme Events

In this part, R90th index using daily precipitation were examined to characterize the spatial
distribution of daily precipitation and its extremes in order to cover the associated uncertainties. The
90% percentile level of wet days (P ≥ 0.1 mm) as the R90th threshold has been used. The resulting
threshold for each station and precipitation products are shown in Figure 8. As can be seen, the
lengths of extremes are double over the Alpine area in compare to low altitude regions (eastern part
of the country). The stations’ R90th showed the maximum values at high-elevation areas and in the
west and northwest of the country. This region is considered the Alpine mountains with high mean
annual precipitation amounts and has complex precipitation systems. The spatial distribution of the
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R90th for MSWEP, IMERG-V05B, and –V06a were rather similar with higher number of days for the
precipitation threshold above 90th percentile over the south part of the region, which showed the
reliability of the estimations of this index. However, the spatial mean value of R90th for MSWEP was
more close to the stations. In contrast, ERA5 underestimated extreme events over the big part of the
south region, while showed higher number of extreme days over north Austria. Moreover, SM2RAIN,
displayed underestimation of the R90th, almost over the whole country, except for some parts over the
western region.

 

Figure 8. Distribution of daily R90th percentile of precipitation.

Figure 9 illustrates the spatial distributions of aggregated precipitation for stations (through
bilinear interpolation), IMERG-V05B, -V06A, -V05-RT, MSWEP, ERA5, and SM2RAIN across Austria
during the study period. The high precipitation areas extended from east to west along with alpine
mountains. Although there are differences in magnitudes of precipitation among the products,
in general, all products reasonably captured the precipitation distribution for most parts of the domain.
The remarkable precipitation gradients are well-captured by MSWEP, possibly due to using daily in
situ observation for bias correction in its algorithms when compared to IMERG, which uses monthly in
situ observations for its bias correction. Another cause might be the native higher spatial resolutions of
MSWEP (0.1◦ × 0.1◦) than for example ERA5 product (~0.28◦ × ~0.28◦). Nevertheless, ERA5 only poorly
agrees with the gauge-based data at daily and monthly time scales, while patterns of accumulated
precipitation agree well.

Moreover, IMERG indicates smoother precipitation trend from the west to the eastern part of the
study area. The other reason for less comparable of IMERG products with MSWEP might be due to the
limited temporal sampling of observations through active and passive microwave satellite sensors
in comparison to MSWEP [27,28]. The station observation shows mean precipitation of 2.78 mm,
whereas IMERG-V05B, -V06A, MSWEP, and ERA5 overestimate and IMERG-V05-RT underestimates
over the whole domain with the mean precipitation values of 3.08 mm, 3.11 mm, 3.11 mm, 3.36 mm,
and 2.41 mm, respectively.
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Figure 9. Spatial distribution of accumulated precipitation (mm) from June 2014 to December 2015 by
stations, IMERG-V05B, IMERG-V06A, IMERG-V05-RT, MSWEP, and ERA5.

Figure 9 indicates that the total annual precipitation increases with elevation in the center of the
country and extended to the west and south parts of the domain. In contrast, it reduces with elevation
over the east parts. Stations located in the low altitudes of the eastern and northern parts of the basin
receive less precipitation compared to the associated high altitudes.

4.3. Precipitation Detection Capability

The spatial distributions and box-plots of POD and FAR for the light-moderate precipitation range
(0.1 mm ≤ P < 10 mm) and heavy precipitation (P > 10 mm) over Austria are shown in Figure 10. As can
be seen, all products indicated acceptable skill scores in detecting light-moderate precipitation events.
These results underscore the substantial advances in earth system modeling and SPE over the last
decade. However, the POD of IMERG-05B has a mean areal value of 0.88, while that of IMERG-V06A
has a mean value of 0.90, which shows an improvement of IMERG-V-06A over IMERG-V05B in
detecting light-moderate precipitation events. Moreover, ERA5, MSWEP, and SM2RAIN indicated
higher average POD with 0.94, 0.93, and 0.93, respectively, than all IMERG products. However, looking
at the spatial distribution of POD indicating that the ECMWF’s fourth-generation reanalysis (ERA5)
and MSWEP have obvious advantages in detecting light-moderate precipitation events. In general,
each value of POD of ERA5 and MSWEP is significantly better than other products, particularly IMERG
products, at most of the stations, which might be due to the tendency of reanalysis data to overestimate
light-moderate precipitation frequency [18,24]. In contrast, MSWEP is superior to other products to
correctly detect precipitation and no-precipitation events.

The FAR for light-moderate precipitation range of all IMERG and MSWEP products presents
almost similar spatial distribution pattern with better performance of MSWEP, particularly over the
west part of the country. Figure 10 also shows that MSWEP has the lowest average FAR value (0.11) than
other products over the area, while SM2RAIN and ERA5 reveal the highest FAR values (0.33 and 0.25).
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Figure 10. Spatial distributions and box-plots of POD and FAR at daily scale with respect to precipitation
range of light-moderate (0.1 mm ≤ P < 10 mm) and heavy (P > 10 mm) events over Austria. The red-line
in the middle of the box-plots represent the median value, the lines above and below the box represent
the 25th and 75th percentile values, respectively, while the whiskers represent the extreme values.

As can be seen, the FAR values of IMERG products gradually rising from east to west, which
indicates that it is more likely to appear false alarm in areas with higher precipitation. In addition,
higher FAR might be due to the high amount of moisture in the atmosphere in this area that the
satellites observed, although precipitation did not occur because of the evaporation of raindrops before
reaching the ground [29].

For the heavy precipitation category (P > 10 mm), MSWEP and SM2RAIN products were found
as the most and least powerful products to detect precipitation with the average value of 0.74 and
0.28 for MSWEP and 0.35 and 0.41 for SM2RAIN with respect to POD and FAR values over the area.
Compared with MSWEP, IMERG-V05B, and -V06A, the ERA5 product has more complex spatial
non-uniformity of POD and FAR. The MSWEP was found to dominate in the east and north, while
the ERA5 dominated in the west in detecting the events. Despite this, a low POD and a high FAR of
IMERG products for heavy precipitation mean that they are not able to properly detect precipitation
in their exact precipitation categories (P ≥ 10 mm), but they might be able to detect the amount of
precipitation somewhat lower than the specified intensities [3].

Lower POD for IMERG-V05-RT, particularly over the high altitudes in the west part of the country
may be associated with missed precipitation over this region. The missed precipitation may be caused
not only by snow cover on the ground at higher altitudes but also precipitation originates from
small-scale and short-lived convective systems.

554



Remote Sens. 2019, 11, 2018

Notice that in the northern region of the study areas the value of FAR for precipitation above
10 mm/day from all IMERG products was rather high, which could be due not only to evaporation and
not falling the small and tiny raindrops of the observed liquid water in the atmosphere profiles during
the warm seasons, but also short-term precipitation events are highly variable in space and time and
might not be detected by rain gauges, while being detected by other gridded products.

5. Discussion

In this research, assessment and comparison of the aforementioned precipitation products have
provided insights into how different errors vary with precipitation intensities, elevation, and climate
zones. With respect to CC, MSWEP significantly yields better than other products in the whole domain
in the range in most pixels. However, ERA5, followed by SM2RAIN, indicated low CC over the
southern and western parts of the country and rather high CC in the area with low altitude (Figure 3).
The similarities of both IMERG-V05B and -V06A products are very consistent across the scores in daily
and monthly time-scales over the whole country. The southern part of the domain is characterized
by high positive biases up to ±2 mm/day for IMERG-V05B, -V06A, and MSWEP, whereas bias of the
northern and eastern parts are much lower. This can be due to the higher precipitation intensities in
these regions, ranging from 1400 mm to 2600 mm during the time period of this study. Moreover,
varied orography and complex precipitation processes might be the other reason for this high statistical
errors. However, MSWEP significantly performs other products, followed by IMERG-V06 and -V05B
products. Moreover, the low bias, RMSE, and MAE and high CC along the eastern part of the domain
(Lower Austria) shows an interesting feature. A considerable underestimation of precipitation along
the complex train at the southern and western parts of the domain that characterized the complex
precipitation is common to IMERG-V05-RT and ERA5 products.

The average monthly data showed that SM2RAIN underestimated precipitation during the cold
months over Austria (Figure 5). This underestimation in winter can be related to snowfall and/or
frozen soil, which SM2RAIN is unable to estimate. This finding is consistent with those shown by
Paredes-Trejo et al. [30], who evaluated the performance of SM2RAIN over Brazil. Moreover, the
ERA5 and SM2RAIN products failed to capture the observed daily precipitation with CC < 0.5 in most
stations over the high altitudes (elevation > 1000 m) and complex terrains. In general, one can say all
products performed better in the low altitudes (elevation < 1000 m) compared to the high altitudes. As
the ASCAT soil moisture product has severe limitations over frozen soil, snow-cover, rainforest, and
complex topographical regions, SM2RAIN-ASCAT, which is derived based on the ASCAT soil moisture
product, also has difficulties to estimate precipitation over these regions [21,31–33]. In general, MSWEP
properly captured the precipitation gradients, most likely due to using daily in situ observation for bias
correction in its algorithms while IMERG uses monthly in situ observation for its calibration (Figure 9).
Another cause might be the higher native spatial resolution of MSWEP (0.1◦ × 0.1◦) than for example
the ERA5 product (~0.28◦ × ~0.28◦), or higher temporal resolution of MSWEP (3-hourly) in compare to
for example SM2RAIN (daily). The algorithm of MSWEP optimally merges the gauge, satellite, and
reanalysis precipitation estimates combining the advantages of the different data sources. Moreover,
even though at daily and monthly time scales, ERA5 only poorly agrees with the gauge-based data,
patterns of accumulated precipitation agree well. The adequate representation of spatial accumulation
patterns may be due to (i) the high number of observations assimilated in ERA5, and (ii) assimilate
precipitation data from ground-based radar observations (2009 onwards), although ERA5 fails to place
the precipitation in the correct areas, when compared with rain gauges.

With respect to detecting light-moderate precipitation events, ERA5, MSWEP, and SM2RAIN
indicated higher average POD compared to all IMERG products. For the heavy precipitation threshold
(P > 10 mm) MSWEP indicated the most robust and SM2RAIN were found as the less powerful product
to detect precipitation with respect to POD and FAR values over the area (Figure 10). The results
indicated IMERG-V05-RT (for the entire country, except eastern and southeastern regions), ERA5 the
(entire country, except a narrow band in the upper middle of the domain which is extended from
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east to west), and SM2RAIN (the entire country) are unreliable at detecting precipitation at heavy
precipitation category. Regarding the SM2RAIN precipitation products, this can be attributed to soil
moisture retrieval errors, which highly affected the estimation of the precipitation quality derived
from the SM2RAIN algorithm. SM2RAIN implemented a static correction procedure for climatological
correction based on a cumulative density function (CDF) and the ERA5 reanalysis data [34]. Moreover,
ERA5 showed some limitation, with emphasis on heavy precipitation, which can additionally affect the
quality of SM2RAIN. In, overall, SM2RAIN-ASCAT, ERA5, and IMERG-V05-RT still face a significant
challenge to estimate the amount of precipitation, while MSWEP-V2.2 and IMERG-V05B-FR, and
V06A-FR revealed good performance to accurately estimate and detect precipitation over Austria.
Thus, these products can offer a valuable alternative to in situ measurements for operational use in
various applications.

6. Conclusions

To elucidate the strengths and weaknesses of recently released gridded precipitation datasets,
we conducted a comprehensive evaluation of the performance of IMERG-FR-V05B, -V06A,
IMERG-V05B-RT, ERA5, SM2RAIN-ASCAT, and MSWEP-V2.2 at daily and monthly time-scales
for Austria using a dense network of gauges (882 stations) as a reference. The evaluation was carried
out based on continuous and categorical statistical metrics for the period June 2014–December 2015.
Apart from standard evaluations, we also assessed their performance with respect to the elevation of
the stations and extreme events. In agreement with earlier studies, skills vary with respect to elevation,
land surface characteristics and snow-rain phase of precipitation. In summary, our study shows that:

1. At the daily time-scale, MSWEP shows highest agreement with the gauge-based data followed by
IMERG-V06A and -V05A. IMERG-V05-RT, ERA5, and SM2RAIN precipitation products show
weaker correlations.

2. The skill scores of both IMERG-V05B and -V06A are very similar at daily and monthly time-scales
and the newer version of IMERG (-V06A) did not indicate a strong improvement over IMERG-V05B
over this area.

3. All precipitation products generally capture the spatio-temporal precipitation patterns at daily
and monthly time-scales, with the highest precipitation amounts observed in July and August
2014 and the lowest amount observed in February and December 2015.

4. At the monthly time-scale, MSWEP precipitation estimates are very close to in situ observations
while slightly overestimating precipitation during August 2014 and July 2015. This might be
due to the small scale of the precipitation systems that are dominant during this months, while
IMERG-V05B, -V06A, and ERA5 seem to have systematic overestimation over the entire months.

5. MSWEP outperforms other products. The mean monthly data indicate that SM2RAIN
underestimates precipitation during the cold months which might be due to the snowfall
that SM2RAIN is unable to estimate. The behavior of IMERG-V05B and -V06A was almost similar
with slight overestimation in comparison with in situ observations, while a greater overestimation
of precipitation is observed mainly in the months with less precipitation.

6. The overestimation or underestimation over the area with complex precipitation systems reveals
that the newest generation of the satellite and reanalysis precipitation products examined in this
study, even though they are improved, still have difficulties in estimating accurate precipitation
amounts in capturing the effects of topography on precipitation.

7. For the heavy precipitation category (P > 10 mm), MSWEP and SM2RAIN products were found
as the most and least powerful products with the average value of 0.74 and 0.28 for MSWEP and
0.35 and 0.41 for SM2RAIN with respect to POD and FAR values over the area.

8. The FAR for light-moderate precipitation (0.1 mm ≤ P < 10 mm) range of all IMERG and MSWEP
products presents almost similar spatial distribution patterns with slightly better performance of
MSWEP, particularly over the western part of the country.
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9. Regarding the heavy precipitation (P ≥ 10 mm) detection, MSWEP and IMERG products were
found as the most and least powerful products, respectively, with the average value of 0.70 and
0.22 for MSWEP and 0.59 and 0.47 for IMERG-V05B for POD and FAR values over the area. Such
robustness may be rooted in applying the daily gauge corrections for MSWEP.

10. Inadequate number of gauges, provided by the GPCC and using the monthly gauge correction
might be a cause for IMERG products being less powerful compared to MSWEP, which uses daily
gauge data.

11. The spatial distribution of the R90th for MSWEP, IMERG-V05B, and -V06a were rather similar,
which showed the reliability of the estimations of this index. However, the spatial mean value of
R90th for MSWEP was closer to the stations. In contrast, ERA5 underestimated extreme events
over large part of the south of the country, while showing higher number of extremes over north
Austria. Moreover, SM2RAIN underestimates the R90th, almost over the entire country, except
for some parts over the western region.

12. According to the elevation categories, MAE and RMSE evaluation metrics showed almost similar
skills for all products, while a sharp contrast between the east and west of Austria with respect to
both elevation categories is observed, except for MSWEP, which indicated gradual variation. With
respect to CC, MSWEP performed well, followed by IMERG-V05B and -V06A over the whole
region, while ERA5, SM2RAIN, and IMERG-V05-RT showed weak CC, respectively, particularly
over the alpine valleys.

13. Daily CC values of the all products were greater than 0.5 (CC ≥ 0.5) in the majority of stations
with an average value of 0.69, 0.70, 0.64, 0.86, 0.55, and 0.59, for the stations with less than 1000 m
in altitude, while the average CC value of 0.64, 0.66, 0.55, and 0.85 obtained for IMERG-V05B,
-V06A, -V05-RT, and MSWEP, respectively, for the stations located at high altitudes (stations
located above 1000 m asl). The ERA5 and SM2RAIN products failed to capture the observed daily
precipitation with CC < 0.5 for most stations at high altitude and in complex terrain.

As expected, all products are able to reproduce the main characteristics of the precipitation
in Austria. However, MSWEP performed significantly better than other products, followed by
IMERG-V05B and -V06A. Except for MSWEP, the other products indicated difficulty capturing the
effects of relief on precipitation over the complex terrain. This research is to our knowledge the first
study to evaluate IMERG-V06A, ERA5, MSWEP-V02.2, and SM2RAIN-ASCAT over Austria. Since
MSWEP-V2.2 is more robust, statistically, and has long-recorded data (from 1979–2017), we suggest
using this product for further studies in climate applications over this region. Moreover, the IMERG
data are also available from 2000 to the near present. The inclusion of elevation effects seems to be crucial
for a realistic estimation of the spatial distribution of precipitation in mountains areas. We suggest the
developers of the examined products highly consider the actual topography, steep terrain, and deep,
narrow valleys, over the mountainous area to obtain more realistic precipitation amounts. Moreover,
using daily precipitation gauge data, like MSWEP, instead of monthly precipitation data, like IMERG
products, can significantly improve the accuracy of the precipitation products. It is worthy to mention
that the SM2RAIN-ASCAT product is available only at a daily time step (00:00 UTC), while other
products are available at sub-daily time-scales. Therefore, SM2RAIN-ASCAT was evaluated against
rain gauges and other products with a few hours’ difference, which may contribute to increased errors
in this study. Moreover, in the case of gauge measurements, there might also be some uncertainties and
systematic errors due to wind effects, wetting, evaporation, and splashing, which typically amounts to
5%–10% in summer, and even higher in snow conditions [35], which should be considered in further
studies. Moreover, we suggest assessing the performance of the IMERG-V06B, which was not yet
available during the analysis of this study, and the near-real-time product of MSWEP and use them in
hydro-meteorological models. We expect that the regional analysis of the recently released gridded
precipitation products revealed in this study can give users a broader perspective and understanding
of the features associated with currently precipitation products. It is worth mentioning that the
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performance ranking of the products may differ across the other regions depending on the amount of
gauge data utilized and the quality control applied for each dataset as well.
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Appendix A

The effectiveness of precipitation estimations was measured via the following metrics: the root
mean square error (RMSE), bias, the mean absolute error (MAE), and the correlation coefficient (CC):

Bias =

∑n
i = 1 (PSi − POi)

N
(mm), (A1)

CC =

∑N
i = 1 (PSi − PS) (POi − PO)√∑N

i = 1 (PSi − PS)
2

√∑N
i = 1 (POi − PO)

2
, (A2)

RMSE =

√√
1
N

n∑
i = 1

(PSi − POi)
2 (mm), (A3)

MAE =

∑N
i = 1

∣∣∣PSi − POi

∣∣∣
N

(mm), (A4)

where PSi and POi are the value of satellite/reanalysis precipitation estimates and the value of rain-gauge
observations, respectively; i is the index of the station number and N the total number of stations; PS
and PO are the average value of satellite precipitation estimates and rain-gauge observations for N
stations over the study area.

Another assessment technique of satellite/reanalysis precipitation estimation is using a contingency
table that reflects the frequency of “Yes” and “No” of the precipitation estimation products

Table A1. Contingency table.

I/J
Observed

Yes No Total

S
a

te
ll

it
e Yes Hit (a) False alarm (b) a + b

No Miss (c) Correct negative (d) c + d
Total a + c b + d n = a + b + c + d

A dichotomous estimate says, “Yes, an event will happen”, or “No, the event will not happen”.
By using this table for daily precipitation, a set of statistical indices are shown as follows:

Probability of detection (POD) responds to the question of what fraction of the observed “Yes”
events were correctly estimated/forecasted. The perfect score is 1:

POD =
hits

hits + misses
, (A5)
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False alarm ratio (FAR) deals with the question of what fraction of the estimated/forecasted “Yes”
events did not occur. The ideal score is 0:

FAR =
f alse alarms

hits + f alse alarms
, (A6)
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Abstract: Fourteen-month precipitation measurements from a second-generation PARSIVEL
disdrometer deployed in Beijing, northern China, were analyzed to investigate the microphysical
structure of raindrop size distribution and its implications on polarimetric radar applications. Rainfall
types are classified and analyzed in the domain of median volume diameter D0 and the normalized
intercept parameter Nw. The separation line between convective and stratiform rain is almost
equivalent to rain rate at 8.6 mm h−1 and radar reflectivity at 36.8 dBZ. Convective rain in Beijing
shows distinct seasonal variations in log10 Nw–D0 domain. X-band dual-polarization variables are
simulated using the T-matrix method to derive radar-based quantitative precipitation estimation
(QPE) estimators, and rainfall products at hourly scale are evaluated for four radar QPE estimators
using collocated but independent rain gauge observations. This study also combines the advantages
of individual estimators based on the thresholds on polarimetric variables. Results show that the
blended QPE estimator has better performance than others. The rainfall microphysical analysis
presented in this study is expected to facilitate the development of a high-resolution X-band radar
network for urban QPE applications.

Keywords: Northern China; raindrop size distribution (DSD); microphysical processes; quantitative
precipitation estimation (QPE)

1. Introduction

Characteristics of raindrop size distribution (DSD) are of great importance in various disciplinary
research. They are the physical basis in the formation of clouds and precipitation [1]. Understanding the
DSD is critical for the microphysical parameterizations in numerical weather prediction models [2–4],
and quantitative precipitation estimation (QPE) using remote sensing technologies, such as radar and
satellite [5,6]. The DSDs can also be utilized to estimate the kinetic energy of rain [7], which is a key
factor in assessing the degree of soil erosion [8]. To this end, numerous studies have been conducted
around the world to characterize the DSD in different climate regions and rainfall types, using a variety
of in situ and remote sensing instruments [9–16].
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The DSD can be affected by many factors [17], including microphysical processes, such as
condensation, evaporation, collision–coalescence and breakup [18], updrafts and downdrafts [19],
horizontal winds [20], orographic effects [21], and aerosol effects [22].

The climatological characteristics of precipitation in Beijing, China, have been examined using
rainfall data collected at automatic weather stations [23,24] and radar reflectivity mosaics [25,26].
However, the microphysical structure of surface precipitation in Beijing is rarely reported, due to the
lack of long-term ground-based DSD measurements. Using a first-generation laser-optical particle size
and velocity (PARSIVEL) disdrometer manufactured by OTT Hydromet, Germany [27], Tang et al. [28]
compared the characteristics of measured and fitted DSDs, as well as the retrieved dual-polarization
radar variables for stratiform and convective precipitation in Beijing. However, the DSD samples
used by Tang et al. [28] were only collected from July to October 2008, which did not include
precipitation occurred in June that makes a significant contribution to the total annual rainfall in
Beijing [24,29]. In addition, those DSD data were collected mainly under the conditions of improved
air quality and lower aerosol concentration associated with strict emission-reduction during the Beijing
Olympic and Paralympic Games [30], which may not be sufficient to represent normal air quality
conditions in Beijing [31], since the concentrations and components of aerosols could potentially affect
the DSD properties [22,32]. A second-generation PARSIVEL disdrometer (hereafter referred to as
PARSIVEL2) was used to study the snowfall properties over the mountains in northwestern Beijing [33].
Unfortunately, no long-term rainfall observations were reported using this instrument.

From 2017, a PARSIVEL2 disdrometer was deployed at a national weather station in Beijing
(116.47◦E, 39.8◦N; 31.3 m a.s.l.) to perform continuous microphysical measurements of rainfall on the
ground, which provides an opportunity to investigate the characteristics of local DSD comprehensively.
In addition, the DSD data can provide a means for improving the accuracy of remote sensing
retrievals, such as polarimetric radar quantitative precipitation estimation (QPE) [34,35] and enhance
the operational weather forecast model in Beijing (i.e., the Rapid-refresh Multi-scale Analysis and
Prediction System–RMAPS [36]). This study aims to conduct a detailed investigation of DSD
characteristics in Beijing using this disdrometer data. This paper is organized as follows. Section 2
describes the data and analysis methods, including the data quality control procedure and DSD
parameters to be included in this study. Based on the quality-controlled disdrometer dataset, Section 3
describes the microphysical properties of DSDs in log10 Nw–D0 domain, as well as the comparison
with other climate regions. Classification of different rain types is also detailed in Section 3. Section 4
derives the radar-based QPE estimators and quantifies the associated errors of various estimators
using collocated gauge measurements. Major conclusions are summarized in Section 5.

2. Dataset, Quality Control, and DSD Parameters

2.1. Observations

The PARSIVEL2 disdrometer is located at Beijing station in the North China Plain surrounded
by the Yan mountains to the west and north, and the gulf-like Bohai Sea to the southeast (Figure 1).
The mean annual precipitation was 575 mm during the most recent decade (2009–2018). In this study,
14 months continuous DSD measurements in 2017–2018, ranging from 1 April to 31 October in each
year, were used, which made up 96.7% of the total rainfall (1085.8 mm out of 1122.7 mm) during this
period. In order to focus on rainfall analysis, winter precipitation (mainly snowfall from November to
March the next year), as well as the solid precipitation (such as hail), was removed according to the
ground weather reports.
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Figure 1. Topographic (m) information around the PARSIVEL2 disdrometer site at Beijing station (BJ,
the red circle). The districts of Beijing are highlighted in black curves.

2.2. Quality Control (QC)

Particle diameter and fall speed, each divided into 32 nonuniform classes, were measured by
the PARSIVEL2 disdrometer with a 1-min sampling interval. The mean values of particle diameter
(0.062–24.5 mm) and fall speed (0.05–20.8 m s−1) are described by the manual [37]. The first two
size bins are not included in the analysis, because of the low signal-to-noise ratios. As a result,
the smallest detectable mean diameter is 0.312 mm. The effective sampling area of PARSIVEL2 droplet
size measurements is affected by the so-called border effects, and the method of Jaffrain and Berne [38]
is utilized to account for these effects. In particular, defining Di (mm) as the central volume-equivalent
diameter for the ith size bin, the effective sampling area can be calculated as 180 mm × (30 mm − 0.5Di).

The empirical terminal velocity–diameter (V–D) relationship of Gunn and Kinzer [39] with
air-density correction factor (ρ0/ρa)

0.4 [40,41] was used to assess raindrop observations and is repeated
as follows:

Vt(Di) = [9.65− 10.3 exp(−0.6Di)]

(
ρ0

ρa

)0.4

, (1)

where Vt(Di) is the mean particle terminal velocity for the ith size bin; ρa and ρ0 (1.20 kg m−3) are the
air density at the observation altitude and at sea level, respectively. Following the method described in
Atlas et al. [40] and Foote and Toit [41], the mean value (1.008) of the correction factor was selected
for simplicity.

Some droplet observations may deviate from the V–D relationship shown in Equation (1).
A commonly used method to eliminate those abnormal particles is to set a threshold regarding
Equation (1). A value of ±60% was selected as the threshold [20] in this study, which means droplets
with velocities of Vobs(Di) were discarded when they met the condition

∣∣∣Vobs(Di) −Vt(Di)
∣∣∣ > 0.6Vt(Di).

In addition, the 1-min DSD spectrum with a total number of raindrops CT < 10 or a rain rate lower
than 0.01 mm h−1 was considered to have no rain. Rain drops larger than 8 mm in diameter were
also removed. Then, continuous spectra with rain-free periods of no longer than 1 h were defined as
a rain event, and rain events lasting less than 5 min were eliminated to reduce the statistical errors.
The dataset after quality control is further described in Section 3.1.
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2.3. Integral Rainfall Parameters

Based on the DSD data, the number concentration of raindrops per unit volume per unit diameter
interval for the ith size bin, N(Di) (m−3 mm−1), can be calculated using Equation (2):

N(Di) =
32∑

j=1

nij

Ai·Δt·Vj·ΔDi
, (2)

where nij is the number of raindrops at the ith size bin and the jth velocity class; Ai (m2) and ΔDi (mm)
are the effective sampling area and width of the diameter interval at size Di; Vj (m s−1) is the fall speed
for the jth velocity class; and Δt is the sampling time interval, which was set to 60 s in this study.

To further understand the characteristics of rainfall, the integral parameters of total number
concentration NT (m−3), rainwater content W (g m−3), rain rate R (mm h−1), median volume diameter
D0 (mm), mass-weighted mean diameter Dm (mm), normalized intercept parameter Nw (m−3 mm−1),
and mass spectrum standard deviation σm (mm), were also calculated as follows:

NT =
32∑

i=1

32∑
j=1

nij

Ai·Δt·Vj
, (3)

W =
π
6
× 10−3·ρw·

32∑
i=1

32∑
j=1

D3
i

nij

Ai·Δt·Vj
, (4)

R = 6π× 10−4·
32∑

i=1

32∑
j=1

D3
i

nij

Ai·Δt
, (5)

1
2

W =
π
6
ρw·

∫ D0

0
D3N(D)dD, (6)

Nw =
3.674

πρw

⎛⎜⎜⎜⎜⎝103W
D4

0

⎞⎟⎟⎟⎟⎠, (7)

Dm =

∑32
i=1 N(Di)·D4

i ·ΔDi∑32
i=1 N(Di)·D3

i ·ΔDi
, (8)

σm =

∑32
i=3(Di −Dm)

2N(Di)·D3
i ·ΔDi∑32

i=1 N(Di)·D3
i ·ΔDi

, (9)

where ρw is the water density (1.0 g cm−3).
Considering the emerging development of X-band dual-polarization weather radar for urban

hydrometeorological applications [42,43], a set of dual-polarization radar variables, including radar
reflectivity in the horizontal (vertical) polarization Zh (Zv) (mm6 m−3), differential reflectivity ZDR (dB)
and specific differential phase KDP (◦ km−1), are derived from DSDs using the T-matrix scattering
technique [44]:

Zh,v =
4λ4

π4|Kw|2
32∑

i=1

∣∣∣ fhh,vv(Di)
∣∣∣2N(Di)ΔDi, (10)

ZDR = 10 log10

(Zh
Zv

)
, (11)

KDP =
180λ
π

32∑
i=1

Re[ fhh(0, Di) − fvv(0, Di)]N(Di)ΔDi, (12)
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where fhh,vv(Di) is the backscattering amplitude of a droplet with horizontal and vertical polarization;
fhh(0, Di) and fvv(0, Di) are the standard forward scattering amplitudes, which is related to the
depolarization factor and relative permittivity of water dielectric [45]; Kw is the dielectric factor of
water (0.9639); and λ (mm) is the radar wavelength (3 cm). Note that Zh (Zv) in the unit of mm6 m−3 is
replaced by ZH (ZV) in the unit of dBZ wherever required in this paper, and ZH,V = 10× log10 Zh,v.

3. Results

3.1. Dataset after QC

In total, 25,499 (934) 1-minute raindrop spectra passed (failed) the QC. The validated spectra
account for a total rainfall of 1013.78 mm. According to the histogram in Figure 2, DSD samples failed to
pass the QC mainly appear when rain rates (Rstn) measured by collocated rain gauges at 1-min-interval
were lower than 15 mm h−1. Falling beyond the threshold of the empirical V–D relationship is the
major factor leading to droplet removal from the dataset, and accounts for 3.2% of total rainfall. It was
also noted that most of the removed DSD samples were characterized by abnormally rain rates (R)
compared with Rstn, most of which occurred when Rstn < 10 mm h−1 or Rstn > 100 mm h−1 (red points
in the scatter plot of Figure 2). The Pearson correlation coefficient (PCC) between the pairs of (R, Rstn)
was higher after QC (0.96 vs. 0.91). The linear fitting curve based on the dataset with Rstn > 0 mm h−1

after QC (blue line; denoted “QC + Rstn > 0”) is close to the diagonal line.

 

Figure 2. Histogram (top) of the number of 1-min raindrop spectra coinciding with rain gauge
measurements (Rstn); and scatterplot (bottom) of rain rate calculated by PARSIVEL2 disdrometer
measurements vs Rstn observations from rain gauge at BJ during the experiment period. The solid
black line in the scatterplot is the 1:1 line. Data before (NonQC) and after (QC) quality control are
indicated by red and blue dots, respectively.
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As shown in Figure 3, the distribution of raindrops is almost entirely within the threshold of ±60%
based on Equation (1). The filtered particles are mainly below 3 mm in diameter. They generally have
low fall speeds but with relatively large size, likely due to the influences of strong winds or splashes
from instrument surface during heavy rainfall [20]. The accumulated disdrometer data after QC are
almost symmetric along the empirical V–D relationship of Atlas et al. [40] and the highest number
concentrations of raindrops are nearly superimposed.

 
Figure 3. Scattergram of raindrop size distribution (DSD) at different diameter size and fall velocity
classes after QC for the entire experiment period. The solid curve indicates the empirical V–D
relationship described by Atlas et al. [40] which considers the air density effect; dashed curves indicate
the ±60% ranges of the empirical V–D relationship.

A summary of rainfall observations after QC during the experiment period is listed in Table 1.
The precipitation mainly occurred from June to August, which contributed up to 81.5% of the total
rainfall amount. The mean and maximum rain rates, 〈R〉 and Rmax, were much higher during these
three months than other months. The number of DSD samples, Nmins, collected between June−August
and in October, was much higher, contributing 78.3% of total samples. Although Nmins in October
was higher than June, 〈R〉, Rmax, and the rainfall amount were much lower in October, especially
Rmax (12.17 mm h−1 vs. 84.92 mm h−1). The most (least) contribution of rainfall amount, as well as
Rmax, came from July (September), while the least 〈R〉 and Nmins came from April and September,
respectively. Compared with 2017, the precipitation intensity in 2018 was heavier with higher 〈R〉 and
Rmax but lower Nmins and total rainfall amount. All these imply that the selected rainfall events consist
of a wide variety of rainfall types.

Table 1. Summary of rainfall during the experiment period.

Type April May June July August September October 2017 2018

Nmins 2599 1910 4374 5373 5396 1036 4811 14319 11180
〈R〉 (mm h−1) 0.85 1.33 2.14 4.00 3.47 1.64 1.00 2.23 2.58

Rmax (mm h−1) 26.46 45.72 84.92 145.43 123.61 10.02 12.17 118.92 145.43
Amount (mm) 36.63 42.48 155.88 358.28 312.44 28.26 79.80 532.78 481.00

Note: Nmins is the number of 1-min DSD samples. 〈R〉 and Rmax are the mean and max rain rate, respectively.

3.2. Statistical Properties of Nw–D0

Nw and D0 are two main parameters defining the DSD [46,47], which also play an important role
in retrieving precipitation microphysics on a global scale as part of the GPM mission [48,49]. In fact,
major microphysical processes that dominate the DSD properties can partially be recognized in the
log10 Nw–D0 domain [46]. The distribution of log10 Nw vs D0 is also an indicator to separate convective
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and stratiform rain types (C−S). In this study, the separation scheme described in Bringi et al. [50]
(hereafter referred to as BR09) is adopted, as shown in Equation (13). Briefly, Nw–D0 pairs above
(below) Equation (13) are recognized as convective (stratiform) rain,

log10 NBR09
w = −1.6D0 + 6.3. (13)

By using C_BR09 and S_BR09 to, respectively, denote the convective and stratiform rain, classified
by Equation (13), Table 2 summaries a series of DSD parameters for different rainfall types. There are
1488 (24011) minutes of DSDs classified as convective (stratiform) rain, which account for 5.8% (94.2%)
of the entire dataset of occurance and correspond to 54.8% (45.2%) of total rainfall amount. Generally,
the means of all DSD parameters for C_BR09 are higher than those for S_BR09.

Table 2. Properties of DSDs for different rain-type classification schemes.

Type C_BR09 C_BR03 C_TE01 S_BR09 S_BR03 S_TE01

Spectra (min/%) 1488/5.8 1858/7.3 2134/8.4 24011/94.2 22094/86.6 23365/91.6
Amount (mm/%) 555.22/54.8 605.23/59.7 596.33/58.8 458.55/45.2 347.43/34.3 417.45/41.2
〈R〉 (mm h−1) 22.39 19.54 16.77 1.15 0.94 1.07

1%/99% (mm h−1) 1.03/104.55 5.10/102.63 0.16/100.96 0.02/7.23 0.01/6.13 0.01/6.79
〈W〉 (g m−3) 1.08 0.97 0.83 0.08 0.07 0.08
〈NT〉 (m−3) 1179.96 1132.05 1017.30 318.09 299.14 309.12
〈ZH〉 (dBZ) 43.24 41.40 38.58 19.62 18.82 19.39
〈ZDR〉 (dB) 1.75 1.48 1.34 0.38 0.36 0.38
〈KDP〉 (◦ km−1) 1.71 1.43 1.23 0.04 0.03 0.04〈

log10 Nw
〉

3.61 3.77 3.72 3.57 3.56 3.56
〈D0〉 (mm) 2.03 1.82 1.72 1.01 0.99 1.01
〈Dm〉 (mm) 2.05 1.86 1.76 1.03 1.01 1.03
〈σm〉 (mm) 0.78 0.70 0.66 0.32 0.31 0.32

Note: Rain types and classification schemes are listed in the first row. ‘C’/‘S’ indicates convective/stratiform
rain, whereas ‘BR09’, ‘BR03’ and ‘TE01’ represent the classification schemes developed by Bringi et al. [50],
Bringi et al. [51], and Testud et al. [52], respectively. For example, C_BR09 and S_BR09 correspond to convective
and stratiform rain classified by BR09 scheme. The number of spectra (occurrence), as well as their proportion of the
entire dataset are given before and after the ‘/’ in row 2. Row 3 is same as row 2, but for the rainfall amount. The 1th
and 99th quantiles of rain rate for each dataset are listed before and after the ‘/’ in row 5. Angle bracket stands for
the sample mean.

Figure 4 shows the scatterplot of log10 Nw versus D0 for convective (C_All, orange) and stratiform
(S_All, lime) rain types, as well as the corresponding relative occurance frequency. The mean
(MEAN), standard deviation (STD) and skewness (SKEW) are also indicated in Figure 4. Here,
C_All (S_All) dataset equals to the dataset of C_BR09 (S_BR09) denoted in Table 2. Equation (13)
are superimporsed in the scatterplot panel (dashed line). Meanwhile, another C−S separation line
suggested by Thompson et al. [53] (hereafter referred to as TH15) for oceanic, tropical rain regions is
also superimposed (dot-dashed line) for reference. Equation (14) shows the formula of TH15,

log10 NTH15
w = 3.85. (14)

Stratiform samples (S_All) are concentrated near the MEAN values of D0 = 1.01 mm and
log10 Nw = 3.57, whereas convective samples (C_All) are sparsely distributed above the BR09 line. It
results in larger STD of D0 and log10 Nw for convective than stratiform rain. The D0 histograms for both
rain types are positively skewed, whereas the log10 Nw histograms for convective rain exhibit a negative
skewness of −0.93. Compared with stratiform rain, the D0 and log10 Nw histograms for convective
rain tend to shift toward larger values, which are in agreement with previous studies for other climate
regimes [10,11,51]. Similar variation tendencies of D0 and log10 Nw histograms between “Total” dataset
(blue) and stratiform rain can be found, which are due to the dominant role of stratiform rain.
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Figure 4. Scatterplot of log10 Nw vs. D0 for stratiform (S_All, lime) and convective (C_All, orange)
rain in the bottom left panel, as well as the corresponding relative frequency histograms in the top
and bottom right panels. The unit of Nw is m−3 mm−1. Rain types were classified by BR09 scheme.
The C_All (S_All) dataset equals to the dataset of C_BR09 (S_BR09) denoted in Table 2. Blue curves
in each histogram indicate the relative frequency of the entire dataset for log10 Nw and D0. The mean
(MEAN), standard deviation (STD) and skewness (SKEW) for the entire dataset, stratiform rain and
convective rain are shown in colors in each histogram panel, whereas the MEAN values of log10 Nw vs.
D0 together with the respective ±1 × STD values are plotted as error bars. The dashed and dot-dashed
grey lines represent the C−S separation lines of BR09 and TH15, respectively.

The normalized frequency of DSD sample occurrence is shown in Figure 5. Note that the TH15 line
in W–D0 domain (Figure 5b) can be generated by combining Equation (7) and (14). The highest frequency
of occurrence is in the ranges of D0 about 0.8–1.1 mm and log10 Nw about 3.2–4.1, corresponding to
rainwater content W within 0.02–0.11 g m−3. The distribution of normalized frequency of DSD in both
log10 Nw–D0 and W–D0 domains are similar to the analyses in Dolan et al. [46] (their Figure 2b,e) in the
midlatitudes. Therefore, this study provides new evidence from midlatitude Asian (northern China) to
further support such analysis.
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Figure 5. Normalized occurrence frequency of DSD sample in (a) log10 Nw −D0 and (b) W−D0 domains.
The dashed and dot-dashed lines represent the C−S separation lines from BR09 and TH15, respectively.

In Figure 6, the log10 Nw −D0 pairs are color coded by rain rate R and ZH to investigate the
interrelations among them. Similar patterns can be found in Figure 6a,b that the increases of both R and
ZH are proportional to the increases of log10 Nw and D0, illustrating the internal relation between rain
rate and radar reflectivity, or the Zh–R relationship that will be discussed in Section 4. The TH15 line
crosses all levels of R and ZH, whereas BR09 line is almost equivalent to a threshold of R (8.6 mm h−1)
or ZH (36.8 dBZ). Similar conclusion has been drawn for tropical, maritime regions with R = 10 mm h−1

and ZH = 40 dBZ [53], which are slightly higher than our results.

 

Figure 6. Scatterplots of log10 Nw vs. D0 color coded by (a) R and (b) ZH. The units of R and ZH are in
mm h−1 and dBZ, respectively. The dashed and dot-dashed lines represent the C−S separation lines
from BR09 and TH15, respectively.

Interestingly, fewer DSD samples fell within log10 Nw > 4 and D0 > 1 mm (see Figures 4–6)
compared to the results observed during the Asian Summer Monsoon Season in Eastrn [14] (their
Figure 6) or Southern China [54] (their Figure 6), and in tropical, oceanic islands [53] (their Figure 14a,b).
In addition, more DSD samples exist in the range above BR09 line but below TH15 line. Referring to
Dolan et al. [46] and Bringi et al. [51], warm rain with the collision-coalescence process has a great
contribution to the precipitation in Eastern and Southern China during the Asian Summer Monsoon
Season and tropical, oceanic regions. On the contrary, mixed phase precipitaiton processes may
dominante the rainfall microphysics near the disdrometer site in Beijing. The enhanced mixed phase
precipitation processes can produce larger raindrops when the ice-based hydrometers melt, which
need to be further investigated in future.
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Datasets for convective and stratiform rain are further divided into months, as shown in the
log10 Nw–D0 domain in Figure 7, to see the monthly variations in DSD and better compare with previous
findings. For stratiform rain, the MEAN values of log10 Nw and D0 in each month are all concentrated
near the highest frequency of occurrences (Figure 5a), which corresponds to the “ambiguous” area
in Figure 12 shown in reference [46]. For convective rain, those values are distributed in a larger
range from the mixed area to the ice-based area (from April to August), as well as aggregation/riming
area (September and October) in Figure 12 from Dolan et al. [46]. Note that for convective rain the
MEAN values of log10 Nw–D0 pairs in months from May to August are almost all around the value of
3.61 and 2.03 mm for C_All dataset with minor variations. Their STD values are also similar, which
means similar microphysical processes dominated the precipitation during these months. However,
such characteristics are not observed in other months. Relatively larger log10 Nw and smaller D0

indicate relatively more warm rain processes in April, while in September and October obviously
lower log10 Nw and larger D0 indicate the relatively intense ice-based processes, such as aggregation
and riming that sharply exhausting the number of small size hydrometers but slowly increasing
the size of drops. Such analyses demonstrate the seasonal variation of dominating microphysical
processes in Beijing. Overall, all MEAN values for both rain types in each month are below the
TH15 line, illustrating that different microphysical processes are dominating the precipitation between
midlatitude and Eastern and Southern China during the Asian Summer Monsoon Season, as well as
tropical, oceanic regions.

 
Figure 7. The MEAN values of log10 Nw vs. D0 together with the respective ± 1 × STD values plotted
as error bars for convective (triangle) and stratiform (square) rain. The dataset for both rain types,
including all data, are plotted in black, whereas the monthly results are indicated by different colors.
The dashed and dot-dashed lines represent the C−S separation lines from BR09 and TH15, respectively.

3.3. Discussion on C−S Classification Schemes

The classification of precipitation into convective and stratiform is important in this study. Previous
studies have proved that BR09 and TH15 schemes in log10 Nw–D0 domain are applicable based on the
measurements not only from disdrometers but also from polarimetric radars [46,50,53,55,56]. As such,
these classification approaches are adopted. However, there are also a few other C−S classification
schemes. In order to reveal the impacts of the classification approach on the analysis results, this study
also applied the C−S classification schemes described in Testud et al. [52] (hereafter referred as to
TE01) and Bringi et al. [51] (hereafter referred as to BR03) for comparison purpose. Both schemes are
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popularly used as well, and both are based on the variation of R with time and utilize 10 (5) adjacent
DSD measurements at a 1-min (2-min) interval. The major difference between them is that TE01
assesses the values of R with an upper limit of 10 mm h−1 for stratiform rain, whereas BR03 evaluates
the standard deviation of R (σR) with a lower threshold of 5 mm h−1 for convective rain. It should be
mentioned that some DSDs may satisfy the conditions R < 5 mm h−1 and σR ≤ 1.5 mm h−1 according
to BR03, and, thus, fail to be classified as either stratiform or convective rain.

TH15 scheme is not suitable for Beijing, because no obvious peak of sample occurrences above
Equation (14) can be found in Figure 5. Therefore, only integral rainfall parameters derived from BR09,
BR03, and TE01 are listed in Table 2. Compared with BR09, both TE01 and BR03 schemes classify more
convective (less stratiform) DSDs, which result in more (less) rainfall amount and a higher proportion
of convective (stratiform) rain. However, almost all DSD parameter values for both rain types derived
by TE01 and BR03 are not higher than those derived based on BR09, except the log10 Nw value for
convective rain. Compared with Figure 4, convective rain classified by TE01 (Figure A1) and BR03
(Figure A2) in log10 Nw–D0 domain contain much more samples under BR09 line but above TH15 line,
corresponding to the DSDs with higher number concentration but smaller size. As a result, the smallest
log10 Nw but highest D0 for convective rain are obtained by BR09.

For stratiform rain, the DSD parameters from S_TE01 are higher than those from S_BR03.
For convective rain, however, it is the opposite (Table 2). Further study shows that the percentage
of samples with R > 5 mm h−1 in C_BR03 is higher than that in C_TE01. In other words, the lower
threshold of 5 mm h−1 for convective rain set in BR03 scheme plays a key role in the different results
between TE01 and BR03.

In summary, for stratiform rain, the impacts of different C−S classification schemes are not distinct
relative to convective rain, due to the higher number of samples for the former than the latter. Although
DSDs classified by the aforementioned three schemes in log10 Nw–D0 domain can be separated by BR09
line in general (Figures 4, A1 and A2), the specific properties of DSDs could be different. The BR09
scheme is recommended, since it has been proved with radar observations [55,56].

4. Radar-Based Quantitative Precipitation Estimation

This study first computed Zh and R using Equations (5) and (10), based on the DSD measurements,
to support weather radar applications in Beijing. The power-law relation Zh= aRb was then derived
using nonlinear regression approach. It is well known that the Zh–R relationship is dependent on
local DSD variability, which can be influenced by many factors, such as rainfall type, climate regime,
and orographic effect [17,35,57]. Finding a suitable Zh–R relation for Beijing is also critical to RMAPS
model for QPE forecast [36].

Figure 8 shows a scatterplot of Zh–R pairs for both rain types classified by BR09 scheme along
with the corresponding fitted power-law curves and equations. The fitted curve for the entire dataset
is highlighted in black dots. For comparison, other four commonly used Zh–R relationships are also
indicated in Figure 8, including those for the continental stratiform rain (Zh = 200R1.6) [58], tropical
systems (Zh = 250R1.2) [59], operational WSR-88D radars (Zh = 300R1.4) [60], and Meiyu convective
rain in China (Zh = 368R1.21) [11]. Obviously, Zh is proportional to R in the double logarithmic
domain. Based on the fitted relations for the two rain types, for a given Zh, higher R can be obtained
using the stratiform relation than a convective algorithm. The relationship for the entire dataset (i.e.,
Zh = 265.14R1.399) is closer to the relationship for stratiform rain.
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Figure 8. Scatterplot of Zh (mm6 m−3) vs. R (mm h−1) computed from PARSIVEL2 DSD measurements
for stratiform (red dots) and convective (blue dots) rain classified using BR09 scheme. The fitted
power-law curves for stratiform and convective rain, as well as the entire dataset, are indicated by thick
solid dark-red, solid dark-blue, and black dotted lines, respectively. The relationships for continental
stratiform rain, Zh = 200R1.6 [58], tropical systems, Zh = 250R1.2 [59], the operational WSR-88D,
Zh = 300R1.4 [60], and Meiyu convective rain, Zh = 368R1.21 [11] are also indicated in thin dashed
yellow, purple, lime and green lines, respectively. Equations are overlaid using the same color with the
corresponding curves.

It is worth noting that the relationship for the operational WSR-88D (thin dashed lime line) [60] is
very similar to our result based on the entire dataset, which implies that the relationship Zh = 300R1.4

could potentially be employed for QPE in Beijing. For convective rain, both Zh = 250R1.2 and
Zh = 368R1.21 will underestimate the rainfall intensities, likely due to the smaller diameter and
higher number concentration of raindrops in these two climate regions than in Beijing (as detailed in
Section 3.2). Compared with Zh = 300R1.4, Zh = 200R1.6 has relatively larger discrepancy compared to
our result.

Although a suitable Zh–R relationship can be helpful to retrieve rain rate from radar reflectivity,
the dispersion of samples in Zh–R domain is still large. For example, for a given Zh = 103 mm6 m−3,
R can range from 0.5–10 mm h−1 (Figure 8). To further investigate the essence of Zh–R relationships
from a microphysical point of view, the scatter distribution of Zh–R pairs are color coded by D0

and log10 Nw in Figure 9a,b. It is concluded that DSDs can be further grouped in size or number
concentration in Zh–R domain, which means the QPE could be further improved when considering
more physical observables.
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Figure 9. Scatterplots of Zh (mm6 m−3) vs. R (mm h−1) color coded by (a) D0, (b) log10 Nw, (c) KDP,
and (d) ZDR. The Zh = 300R1.4 dashed line is superimposed for reference.

In addition, dual-polarization radar variables are computed using the T-matrix method.
The polarimetric measurements are proven to be capable of improving the performance of QPE.
Figure 9c,d show the distribution of Zh versus R, color coded by KDP and ZDR, respectively. Overall,
similar variation patterns can be seen compared with Figure 9a,b. This is not surprising, since D0 and
log10 Nw can essentially be derived from the combination of Zh, ZDR, and KDP [34,45,61].

The distributions of ZH, ZDR, and KDP are illustrated in Figure 10. It should be noted again that
ZH in dBZ is used in Figure 10a, while QPE estimators are fitted using Zh in linear scale. The details
of boxplot in the center of each panel are listed in Table 3. The median value of ZH is about 20 dBZ,
and the number of ZH higher than 40 dBZ is less than 5%. A large amount of KDP are smaller than
0.1 ◦ km−1. The distribution of each parameter has two peaks: The first peak of ZH and KDP is close
to their median values, while the second peaks are at about 27.5 dBZ and 0.07 ◦ km−1, respectively.
The two peaks of ZDR are about 0.13 and 0.45 dB, and the median value lies between the two peaks.

 

Figure 10. The distributions of (a) ZH, (b) ZDR, and (c) KDP derived from DSD measurements using the
T-matrix scattering approach.
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Table 3. The quantiles of polarization radar variables derived from DSDs using the T-matrix
scattering method.

min 5% 25% median 75% 95% max

ZH (dBZ) −4.37 4.59 13.88 20.35 27.58 38.93 60.21
ZDR (dB) 1.00 × 10−4 1.95 × 10−2 0.12 0.25 0.57 1.71 4.95

KDP (◦ km−1) 1.03 × 10−5 1.42 × 10−4 2.85 × 10−3 1.24 × 10−2 5.82 × 10−2 0.48 13.82

This study also derived the polarimetric radar rainfall relations Rdpr(Zh, ZDR), Rdpr(KDP, ZDR),
and Rdpr(KDP) using the least-squares method and compared with the Zh–R relationships. Here,
the subscript “dpr” represents Dual-Polarization Radar for short. The obtained estimators based on
the total DSD dataset are listed as follows:

Rdpr(Zh, ZDR) = αZβh10γZDR, (15)

Rdpr(KDP, ZDR) = αKβDP10γZDR , (16)

Rdpr(KDP) = αKβDP, (17)

Rdpr(Zh) = αZβh, (18)

where α, β, and γ are generic coefficients and exponents in each relation. The specific values are listed
in Table 4.

Table 4. The fitted parameters of radar QPE estimators (Equations (15)–(18)) derived using the total
DSD dataset.

Parameters Rdpr(Zh,ZDR) Rdpr(KDP,ZDR) Rdpr(KDP) Rdpr(Zh)

α 5.696 × 10−3 23.045 15.375 6.986 × 10−2

β 0.986 0.947 0.836 0.540
γ −0.464 −0.101 —- —-

In order to evaluate the application performance of various QPE estimators, the hourly rainfall
amount (mm) derived using each radar rainfall relation is compared with collocated rain gauge
observations (distance between disdrometer and gauge is less than 10 m). Figure 11a–d shows the
scatter plots of rainfall estimated using radar relations versus gauge measurements. In addition, a set
of evaluation metrics, including the Pearson correlation coefficient (PCC), standard deviation (STD),
normalized mean absolute error (NMAE), and root-mean-square error (RMSE) are computed and
indicated in Figure 11.

Obviously, Rdpr(Zh, ZDR) performs the best in terms of all evaluation metrics, followed
by Rdpr(KDP, ZDR), Rdpr(KDP), and then Rdpr(Zh). The estimated hourly rainfall amount from
Rdpr(Zh, ZDR) (Figure 11a) is the closest to rain gauge measurements at low intensities. However,
Rdpr(KDP, ZDR) provides the best estimation at higher rainfall intensities, especially during severe
precipitation hours.

Recent studies [5,6] demonstrated that the combination of different estimators may improve the
accuracy of QPE. However, their achievements were mainly based on S-band radar measurements.
In this study, we attempted to extend this strategy to X-band applications. Similar thresholds to
the Dual-Polarization Radar Operational Processing System version 2 (DROPS2) [5] are used at
X-band: ZH = 37 dBZ, ZDR = 0.185 dB, and KDP = 0.03 ◦ km−1. For clarification, this paper referred
to the implemented DROPS2.0 architecture as Rdpr(DROPS2–X). As expected, Rdpr(DROPS2–X)
(Figure 11e) provides the best results among various rainfall relations, which demonstrates the
feasibility of the thresholds applied on X-band dual-polarization radar variables. Compared with
Figure 11b, Rdpr(DROPS2–X) inherits the advantage of Rdpr(KDP, ZDR) for all severe precipitation hours.
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Nevertheless, it should be noted that except Rdpr(Zh), the differences among all other QPE estimators
are not distinct: All have PCC higher than 0.98, STD and RMSE smaller than 1.0, and NMAE smaller
than 0.2.

 

Figure 11. Scattergram (based on the total rainfall observations) of hourly rainfall estimates (mm) from
various radar rainfall relations vs. rain gauge measurements: (a) Rdpr(Zh, ZDR), (b) Rdpr(KDP, ZDR),
(c) Rdpr(KDP), (d) Rdpr(Zh), and (e) Rdpr(DROPS2–X). The grey diagonal straight line in each panel
represents the 1–1 relationship. The quantitative evaluation results are also indicated in each panel,
including the Pearson correlation coefficient (PCC), standard deviation (STD—mm), normalized mean
absolute error (NMAE), and root-mean-square error (RMSE—mm).
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5. Conclusions

To investigate the microphysical properties of surface precipitation and improve the accuracy
of radar QPE, 14-month continuous PARSIVEL2 measurements during 2017–2018 in Beijing, China,
were analyzed in this study. After quality control, a total of 25,499 1-min DSD spectra were obtained,
corresponding to 1013.78 mm of total rainfall. The major rainy periods were from June to August,
which contributed to 81.5% of rainfall amount and 78.3% of total DSD samples. The least contribution
of rainfall was from September. In October, the precipitation tends to be steady with relatively long
time but low intensity.

DSD dataset was classified as stratiform and convective rain types using the BR09 C−S scheme [50]
in log10 Nw–D0 domain. A large number of samples were identified as stratiform, which accounted for
less than half of the total rainfall amount. The mean integral rainfall parameters, such as 〈R〉,

〈
log10 Nw

〉
,

〈D0〉, and three X-band dual-polarization variables, were higher in convective rain than stratiform
rain. The occurrence of DSDs concentrated with D0 and log10 Nw in the ranges of 0.8–1.1 mm and
3.2–4.1, respectively, which corresponds to W about 0.02–0.11 g m−3. The increases of R and ZH were
proportional to the increases of log10 Nw and D0, and BR09 line was equivalent to R = 8.6 mm h−1 and
ZH = 36.8 dBZ. The comparation with other C−S classification schemes showed the similar distribution
in log10 Nw–D0 domain, but the detailed characteristics of DSDs among different schemes were
different, with larger discrepancies in convective rain than stratiform rain. The different predominant
microphysical processes in Beijing and other climate regions result in different DSD distributions in
log10 Nw–D0 domain, especially for convective rain. Compared to the warm rain characterized by
a collision-coalescence process in Eastern and Southern China during the Asian Summer Monsoon
Season, as well as in tropical, oceanic regions, the precipitation in Beijing is dominated more by mixed
phase precipitation microphysical processes. The melting large ice-phase hydrometers increased D0

but decreased Nw compared to other climate regions. For stratiform rain, the mean values of log10 Nw

and D0 correspond to the high occurance ranges. For convective rain, three groups were separated,
which showed distinct seasonal variations. The mean values of log10 Nw–D0 pairs from May to August
(Group 1) clustered together while those from April (Group 2) and September-October (Group 3) were
distributed on the two sides of Group 1 above the BR09 line. Group 2 tends to contain more warm
rain processes, while Group 3 was dominated by intense ice-based processes, such as aggregation and
riming that sharply decrease the number of small size hydrometers but slowly increase the particle size.
This finding provides additional insight to precipitation microphysics in midlatitude Asian (northern
China) and further appends the archievements of Dolan et al. [46].

In addition, dual-polarization radar variables were computed from the DSD dataset using the
T-matrix scattering method and the radar-based QPE estimators were derived through nonlinear
regression analysis. The estimated rainfall products using radar rainfall relations were also
independently verified using collocated rain gauge measurements. It was concluded that for
single-polarization variable, the fitted Zh–R relationship, Zh = 265.14R1.399, was almost coincident with
the operational WSR-88D rainfall estimator [60], Zh = 300R1.4; for dual-polarization radar applications,
Rdpr(Zh, ZDR) performed the best for hourly rainfall estimation, while Rdpr(KDP, ZDR) performed the
best at high rainfall intensities. In addition, a blended algorithm is derived based on the architecture
of DROPS2 [5] to enhance radar rainfall estimation. It was shown that Rdpr(DROPS2–X) performed
better than any individual QPE estimators at hourly scale. Future work will focus on the large scale
application of Rdpr(DROPS2–X) for the X-band dual-polarization radar network being deployed
in Beijing.
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Appendix A

 

Figure A1. As in Figure 4, but for the TE01 classification scheme.
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Figure A2. As in Figure 4, but for BR03 classification scheme.
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