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de Barcelona (UAB), Barcelona, Spain, in 1999. He is currently a Full Professor with the Department

of Information and Communications Engineering, UAB. From September 1997 to December 1998, he

worked at the University of Bonn, Germany, funded by the DAAD. He has coauthored more than
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Abstract: A huge amount of remote sensing data is acquired each day, which is transferred to image
processing centers and/or to customers. Due to different limitations, compression has to be applied
on-board and/or on-the-ground. This Special Issue collects 15 papers dealing with remote sensing
data compression, introducing solutions for both lossless and lossy compression, analyzing the
impact of compression on different processes, investigating the suitability of neural networks for
compression, and researching on low complexity hardware and software approaches to deliver
competitive coding performance.

Keywords: remote sensing data compression; lossless compression; lossy compression; compression
impact; neural networks; computational complexity

1. Overview of the Issue: Remote Sensing Data Compression

Announcing this Special Issue, the following was considered. First, a huge amount
of data is acquired each day by different remote sensing systems and these data must be
transferred to image processing centers, stored, and delivered to customers. Due to various
restrictions, data compression is strongly desired or necessary. Second, there is a wide
diversity of methods that can be used, requirements to compression and their priority,
types, and properties of images to be processed, practical implementation aspects, etc. Our
intention was to collect papers focused on advances in lossless and lossy compression,
multi- and hyperspectral image compression, radar image compression, applications of
remote sensing data compression; compression standards, practical implementation of
image compression techniques, data compression hardware and software, impact of data
compression on solving classification and identifications tasks.

As a result of our work as guest editors, 21 submissions have been received from
which 6 have been rejected. The accepted publications cover a wide variety of questions.

Five papers relate to lossless and near lossless methods with application to multi- and
hyperspectral data.

The paper “Analysis of Variable-Length Codes for Integer Encoding in Hyperspec-
tral Data Compression with the k2-Raster Compact Data Structure” by Chow, K., Tza-
marias, D.E.O., Hernández-Cabronero, M., Blanes, I., Serra-Sagristà, J. [1], examines various
variable-length encoders that provide integer encoding to hyperspectral scene data within
a k2-raster compact data structure. This structure leads to a compression ratio similar to
that produced by some classical compression techniques while also providing direct access
for query to its data elements without requiring any decompression. The selection of the
integer encoder is critical for a competitive performance (compression ratio and access
time). Different integer encoders, such as Rice, Simple9, Simple16, PForDelta codes, and
DACs are investigated. Further, a method to determine an appropriate k value for building
a competitive k2-raster compact data structure is discussed.

Remote Sens. 2021, 13, 3727. https://doi.org/10.3390/rs13183727 https://www.mdpi.com/journal/remotesensing
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The paper “Using Predictive and Differential Methods with K2-Raster Compact Data
Structure for Hyperspectral Image Lossless Compression” by Chow, K., Tzamarias, D.E.O.,
Blanes, I., Serra-Sagristà, J. [2] extends the previous paper by proposing a lossless coder
for real-time processing and compression of hyperspectral images. After applying either
a predictor or a differential encoder by exploiting the close similarity between neigh-
boring bands, it uses the k2-raster compact data structure to further reduce the bit rate.
Experiments show that using k2-raster alone already achieves much lower rates (up to
55% reduction), and with preprocessing, the rates are further reduced (up to 64%). Fi-
nally, experimental results show that prediction produces higher rates reduction than
differential encoding.

The paper “Compression of Hyperspectral Scenes through Integer-to-Integer Spectral
Graph Transforms“ by Tzamarias, D.E.O., Chow, K., Blanes, I., Serra-Sagristà, J. [3] exploits
the redundancies found between consecutive spectral components and within components
themselves through the use of spectral graph filterbanks, such as the GraphBior transform.
Such graph based filterbank transforms do not yield integer coefficients, making them
appropriate only for lossy image compression schemes. In the paper, two integer-to-integer
transforms are introduced for the purpose of the lossless compression, and its performance
as a spatial transform is assessed.

The paper “Performance Impact of Parameter Tuning on the CCSDS-123.0-B-2 Low-
Complexity Lossless and Near-Lossless Multispectral and Hyperspectral Image Compres-
sion Standard” by Blanes, I., Kiely, A., Hernández-Cabronero, M., Serra-Sagristà, J. [4]
studies the performance impact related to different parameter choices for the new CCSDS-
123.0-B-2 Low-Complexity Lossless and Near-Lossless Multispectral and Hyperspectral
Image Compression standard. This standard supersedes CCSDS-123.0-B-1 and extends it
by incorporating a new near-lossless compression capability, as well as other new features.
Experimental results include data from 16 different instruments with varying detector
types, image dimensions, number of spectral bands, bit depth, level of noise, level of
calibration, and other image characteristics. Guidelines are provided on how to adjust the
parameters in relation to their coding performance impact.

The paper “High-Performance Lossless Compression of Hyperspectral Remote Sens-
ing Scenes Based on Spectral Decorrelation” by Hernández-Cabronero, M., Portell, J.,
Blanes, I., Serra-Sagristà, J. [5] investigates the most advantageous compression–complexity
trade-off in hyperspectral image (HSI) compression. Compression performance and execu-
tion time results are obtained for a set of 47 HSI scenes produced by 14 different sensors
in real remote sensing missions. Assuming only a limited amount of energy is available,
obtained data suggest that the FAPEC algorithm yields the best trade-off. When compared
to the CCSDS 123.0-B-2 standard, FAPEC is 5.0 times faster and its compressed data rates
are on average within 16% of the CCSDS standard. In scenarios where energy constraints
can be relaxed, CCSDS 123.0-B-2 yields the best average compression results.

There are three papers that deal with compression impact on classification and seg-
mentation.

The paper “Lossy Compression of Multichannel Remote Sensing Images with Quality
Control” by Lukin, V., Vasilyeva, I., Krivenko, S., Li F., Abramov, S., Rubel, O., Vozel, B.,
Chehdi, K., and Egiazarian, K. [6] studies a dependence between classification accuracy of
maximum likelihood and neural network classifiers that have been applied to three-channel
images and visual quality of compressed images. It is demonstrated that the classification
accuracy starts to decrease faster when image quality due to increasing compression
ratio reaches a distortion visibility threshold. In addition, classification accuracy depends
essentially on the training methodology: training carried out for lossy compressed data
seems preferable over training on undistorted data.

The paper “Lossy Compression of Multispectral Satellite Images with Application to
Crop Thematic Mapping: A HEVC Comparative Study” by Miloš Radosavljević, Branko
Brkljač, Predrag Lugonja, Vladimir Crnojević, Željen Trpovski, Zixiang Xiong, and Dejan
Vukobratović [7] provides a comprehensive analysis of the HEVC still-image intra coding
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while applied to multispectral satellite images acquired by the Landsat-8′s OLI and Sentinel-
2′s multispectral instrument. In the specific context of a crop classification application,
HEVC’s intra coding is shown to maintain approximately the same classification accuracy
of a random forest pixel-based classifier for CR up to 150:1 while it is only up to 70:1 with
JPEG 2000. It also achieves a better trade-off between compression gain and image quality,
both visually and in terms of PSNR values, as compared to standard JPEG 2000.

The paper “Spectral Imagery Tensor Decomposition for Semantic Segmentation of
Remote Sensing Data through Fully Convolutional Networks” by Josué López, Deni Torres,
Stewart Santos, and Clement Atzberger [8] suggests a whole framework, called HOOI-FCN,
to perform compression of an input RS-image followed by semantic classification. A Tucker
decomposition-based mapping with preservation of the features of the classes of interest
transforms the input third-order tensor into a core tensor with the same spatial resolution
but a lower number of bands. This is done by means of the higher order orthogonal iteration
(HOOI) algorithm. A fully convolutional network (FCN) is next considered to classify the
core tensor at the pixel level. HOOI-FCN is shown to achieve high performance metrics
competitive with some RS-multispectral images semantic segmentation state-of-the-art
methods on Sentinel-2 images while significantly reducing computational complexity and
processing time.

Lossy compression of data for unmanned aerial vehicle (UAV) is also attracting interest,
as witnessed by two papers.

The paper “Real-Time Hyperspectral Data Transmission for UAV-Based Acquisition
Platforms” by Melián, J.M., Jiménez, A., Díaz, M., Morales, A., Horstrand, P., Guerra, R.,
López, S., and López, J.F. [9] focuses on rapid compression of hyperspectral data prior to
their transmission using two different NVIDIA boards—the Jetson Xavier NX and the Jetson
Nano. The obtained results show the possibility of achieving real-time performance if the
Jetson Xavier NX is used for all the configurations that could be applied in real missions.

The paper “FPGA-Based On-Board Hyperspectral Imaging Compression: Benchmark-
ing Performance and Energy Efficiency against GPU Implementations” by Julián Caba,
María Díaz, Jesús Barba, Raúl Guerra, Jose A. de la Torre, and Sebastián López [10] pro-
poses a highly optimized implementation using integer arithmetic of the lossy compression
algorithm for hyperspectral image systems. The purpose is to comply with the high-frame
requirement imposed by a UAV-based sensing platform. The single-core version of the
FPGA-based solution onto a heterogeneous Zynq-7000 SoC chip allows setting the baseline
scenario of compressed hyperspectral image blocks at 200 FPS, using a small number
of FPGA resources and low power consumption. Moreover, it is shown that a multi-
core FPGA-based version can reach the same level of performance as the most efficient
embedded GPU-based implementations.

Two papers concern neural network use in image compression.
The paper “Reduced-Complexity End-to-End Variational Autoencoder for on Board

Satellite Image Compression” by de Oliveira, V.A., Chabert, M., Oberlin, T., Poulliat, C.,
Bruno, M., Latry, C., Carlavan, M., Henrot, S., Falzon, F., and Camarero, R. [11] concentrates
on design of a complexity-reduced variational autoencoder with attempt to meet the
constraints dealing with board satellite compression, time, and memory complexities. A
simplified entropy model that preserves the adaptability to the input image is proposed.
It is shown that the designed complexity-reduced autoencoder provides a better rate-
distortion trade-off compared to the Consultative Committee for Space Data Systems
standard CCSDS 122.0-B.

The paper “Spectral–Spatial Feature Partitioned Extraction Based on CNN for Mul-
tispectral Image Compression” by Kong, F., Hu, K., Li, Y., Li, D., and Zhao, S. [12] puts
forward a multispectral image compression framework that is fully based on a convolu-
tional neural network (CNN). The novelty concerns the feature extraction module, divided
into spectral and spatial parallel parts. The testing is carried out for datasets acquired by
Landsat-8 and WorldView-3 satellites. A better performance is shown in comparison to
JPEG 2000, 3D-SPIHT and ResConv, another CNN-based algorithm.
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Compression acceleration is also addressed in the paper “An FPGA Accelerator
for Real-Time Lossy Compression of Hyperspectral Images” by Daniel Báscones, Carlos
González, and Daniel Mozos [13], which derives a custom FPGA implementation of the
costliest part (tier 1 coder within JPEG2000) of the JYPEC algorithm, a lossy hyperspectral
compression algorithm that combines PCA and JPEG2000. The main goal is to accelerate it
significantly to bring the full algorithm execution time down as much as possible and even
below the real-time constraint. An average acceleration of 3.6 is verified when the FPGA
accelerated algorithm is applied to six hyperspectral images, four from the Spectrir library
and two from the CCSDS 123 dataset.

Finally, two papers are devoted to compressive sensing.
The paper “Compressive Underwater Sonar Imaging with Synthetic Aperture Pro-

cessing” by Choi, H., Yang, H., and Seong, W. [14] deals with synthetic aperture sonars
(SAS) in underwater imaging. SAS imaging algorithms that employ compressive sensing
are considered and verified through simulation and experimental data. A better resolution
compared to the ω-k algorithms with minimal performance degradation by side lobes
are demonstrated in simulations. Experimental data show the method’s robustness with
respect to sensor loss.

The paper “A Task-Driven Invertible Projection Matrix Learning Algorithm for Hy-
perspectral Compressed Sensing” by Dai, S., Liu, W., Wang, Z., and Li, K. [15] proposes a
hyperspectral compressed sensing algorithm with low complexity and strong real-time
performance. It is based on a task-driven invertible projection matrix learning algorithm
aiming at solving the problems of long time-consuming and low reconstruction accuracy
of compressed sensing-based reconstruction algorithms. Experiments performed on Indian
Pine AVIRIS hyperspectral dataset show that, compared with the traditional compressed
sensing algorithm, the proposed compressed sensing algorithm has higher reconstruction
accuracy and improved real-time performance by more than a hundred times, thus leading
to great application prospects in the field of hyperspectral image compression.

2. Conclusions

From the fifteen papers published in this Special Issue, we can state that compression
of remote sensing data is today an active research area with new direction appearing and
attracting attention of scientists engaged in the design of methods to meet customers’
expectations. We hope that the readers will enjoy this Special Issue.
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Abstract: Synthetic aperture sonar (SAS) is a technique that acquires an underwater image by
synthesizing the signal received by the sonar as it moves. By forming a synthetic aperture, the
sonar overcomes physical limitations and shows superior resolution when compared with use of a
side-scan sonar, which is another technique for obtaining underwater images. Conventional SAS
algorithms require a high concentration of sampling in the time and space domains according to
Nyquist theory. Because conventional SAS algorithms go through matched filtering, side lobes
are generated, resulting in deterioration of imaging performance. To overcome the shortcomings
of conventional SAS algorithms, such as the low imaging performance and the requirement for
high-level sampling, this paper proposes SAS algorithms applying compressive sensing (CS). SAS
imaging algorithms applying CS were formulated for a single sensor and uniform line array and were
verified through simulation and experimental data. The simulation showed better resolution than the
ω-k algorithms, one of the representative conventional SAS algorithms, with minimal performance
degradation by side lobes. The experimental data confirmed that the proposed method is superior
and robust with respect to sensor loss.

Keywords: compressive sensing; synthetic aperture sonar; underwater sonar imaging

1. Introduction

Synthetic aperture sonar (SAS) is a technique that repeatedly transmits and receives
pulses while the sonar is moving and coherently synthesizes the received signals to obtain
a high-resolution image [1–3]. By synthesizing multiple pings, it is possible to achieve
the effect of a sonar operating with an aperture larger than the actual sonar aperture,
therefore called a “synthetic aperture” sonar. Compared to other techniques for obtaining
underwater images, such as side-scan sonar, SAS obtains images with a high resolution [4]
and is used in various fields such as crude oil exploration, geological exploration, and for
military purposes such as in mine detection [5,6].

Conventional SAS methods reconstruct the image by performing Fourier transform
and matched filtering in the slant-range or in the azimuth domain. Conventional SAS meth-
ods are classified into back-projection in the spatial–temporal domain [1], correlation in the
spatial–temporal domain [7], range-Doppler in the range-Doppler domain [8], wavenum-
ber in the wavenumber domain [9,10], and chirp-scaling in the wavenumber domain [11],
contingent on whether Fourier transform is performed in the slant-range or in the azimuth
domain. To form a synthetic aperture requires sampling following Nyquist theory in the
time domain according to the traditional signal processing technique, and dense sampling
in the spatial domain alongside the sonar movement is also required. Because conventional
SAS signal processing techniques pass through a matched filter, side lobes are generated,
resulting in the deterioration of image reconstruction performance [12,13].

This paper proposes SAS imaging algorithms that apply the compressive sensing
(CS) framework to compensate for disadvantages associated with conventional SAS signal

Remote Sens. 2021, 13, 1924. https://doi.org/10.3390/rs13101924 https://www.mdpi.com/journal/remotesensing
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processing techniques. CS is a technique used to restore a sparse signal from a small
number of measurements [14]. Under suitable conditions, CS obtains a better resolution
than conventional signal processing and suppresses side lobes. In addition, admittedly
under suitable conditions, CS obtains exact solutions even at a low sampling level, which
violates Nyquist theory. In recent years, studies related to the CS framework have been
conducted in various fields, such as medical imaging fields—including MRI and ultrasound
imaging—and sensor networks [15–20]. In the estimation of the direction-of-arrival (DOA),
which is a classical source-localizing method, CS is applied to increase the number of
employed sensors or observations, thereby enhancing localization performance [21,22].
Additionally, studies have been conducted on the application of sparse reconstruction
to synthetic aperture radar (SAR) [23–28] and SAS [29,30]. Many studies have applied
CS to SAR, but as far as could be determined, few studies have been conducted on SAS,
especially underwater.

In [29], a method that applies CS to SAS imaging is presented, which estimates the
reflectivity function in the area of interest using all the given data. When some of the
data were excluded, results were good, showing that large data reduction is possible.
However, this study does not show results for actual underwater acoustic conditions; it
only shows results for the ultrasonic synthetic aperture laboratory system using assumed
point targets. The fact that the laboratory results have not been verified against actual
underwater experimental data has significant consequences. Targets in real underwater
environments are generally not point targets but targets with continuous characteristics.
Therefore, if the reflectivity function is estimated instantly, as in the method proposed
in [29], the shape of the target will not be properly revealed and only segments with high
reflectivity will be obtained. In [30], CS was applied to SAS to obtain a parsimonious
representation to utilize aspect- or frequency-specific information. By way of simulation
and employing real underwater experimental data, it was verified that the strategy using
aspect- or frequency-specific information was effective. However, the method proposed
in [30], which uses an iterative method called the alternating direction method of multipliers
(ADMM), has a limitation in that it is unstable because convergence is highly dependent
on the regularization parameter. Therefore, we propose a stable method that does not use
an iterative method and that expresses the characteristics of a real underwater target by
dividing data and repeatedly estimating the reflectivity function of the area of interest.

This study offers three main contributions: First, the proposed method (called the
CS-SAS algorithm for simplicity) that shows better reconstruction performance compared
to a conventional SAS algorithm. The proposed algorithms are SAS algorithms formulated
from the perspective of the CS framework and in accordance with the CS characteristics.
Less aliasing occurs and high-resolution results are obtained. Section 3 explains that the
proposed method outperforms one of the conventional SAS algorithms, the ω-k algorithm.
Second, the proposed algorithms are more robust in the absence of sensor data. Because
conventional SAS algorithms require sampling frequency according to Nyquist theory
in the time and spatial domains, conventional SAS algorithms are not resistant to sensor
failure or data loss in the sonar system. Conversely, the proposed algorithms are robust,
as indicated later on in this paper. Third, few studies apply CS to SAS underwater and,
therefore, this study is meaningful in that it applies simulation data and actual underwater
experimental data.

The remainder of this paper is organized into four sections. In Section 2, the geometry
of the SAS system and the ω-k algorithm—which is a representative conventional SAS
algorithm—are described. In Section 3, the basic theory of CS is described, and SAS
algorithms using CS are proposed. In Section 4, the performance of the proposed method
is verified by comparing the results of applying the CS-SAS and the ω-k algorithms to the
simulation and experimental data. Finally, conclusions are presented in Section 5.

In the following, vectors are represented by bold lowercase letters, and matrices
are represented by bold capital letters. The lp-norm of a vector x ∈ CN is defined as
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‖x‖p =

(
N
∑

i=1
|xi|p

)1/p

. The imaginary unit
√−1 is denoted as j. The operators T ,∗ denote

the transpose and conjugate operators, respectively.

2. Basic SAS Imaging

2.1. SAS Geometry

The general geometry of SAS is depicted in Figure 1. The direction of y along which
the sonar moves is defined as azimuth or the cross-range axis, the direction x perpendicular
to y is the slant-range, the size of the sonar is D, and the synthetic aperture and the distance
the sonar travels is 2L. The basic concept of SAS is that the sonar moves from −L to L along
the cross-range axis, and then transmits and receives signals to synthesize the received
signals scattered back from the targets to obtain underwater images.

Figure 1. SAS geometry.

One of the standards for evaluating the level of performance of an SAS system is
the resolution of the reconstructed images. The slant-range resolution Δx of the SAS was
determined by the matched filtering process as follows:

Δx =
cπ

ωbd
=

c
2 fbd

, (1)

where ωbd is the bandwidth of the transmitted signal, and c is the sound speed.
The cross-range resolution Δy can be derived simply through the following develop-

ment. Consider a single frequency signal as the simplest signal model. Then, the −3 dB
main lobe width of an l-length uniform line array is λ/l, the main lobe width θSAS of
the synthetic aperture is λ/2L. For the slant-range of the target R, L � Rθ and θ = λ/D.
Therefore, the cross-range resolution Δy can be expressed as

Δy = RD/(2R) = D/2. (2)

For convenience, a single frequency signal was assumed, but it is known that cross-
range resolution Δy = D/2 even if a signal with bandwidth like LFM signal is used [28,31].
From Equation (2), it is clear that the cross-range resolution of the synthetic aperture sonar
is independent of range and frequency. This independence makes it possible to reconstruct
high-resolution images over a long range [32,33].

2.2. Wavenumber Domain Algorithm (ω-k Algorithm)

The wavenumber domain algorithm, a representative conventional SAS algorithm,
was used as a baseline method. The wavenumber domain algorithm is a method that

9
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obtains an image using 2-D Fourier transform of recorded signals and is also called the
ω-k algorithm because signal processing is performed in the frequency domain [1,8]. The
signal of duration Tp transmitted from the sonar, is denoted by p(t), and the signal received
by the sonar at position u is denoted by s(t,u). The signal s(t,u) can be expressed as the sum
of the signals scattered by the N-targets as follows:

s(t, u) =
N

∑
n=1

σn p

⎛⎝t − 2
√

x2
n + (yn − u)2

c

⎞⎠⎛⎝0 < t − 2
√

x2
n + (yn − u)2

c
< Tp

⎞⎠ (3)

where σn is the target strength of the n-th target, and xn and yn are the slant-range and
cross-range of the n-th target, respectively. The 2-D Fourier transform of Equation (3) using
the stationary-phase principle [34] gives

S(ω, ku) =
N

∑
n=1

P(ω)σn exp
(
−j

√
4k2 − k2

uxn − jkuyn

)
. (4)

where ω is the angular frequency, k is the wavenumber, and ku is the azimuth wavenumber.
By changing the coordinates as shown in Equation (5), it can be arranged as in Equation (6).

kx =
√

4k2 − k2
u, ky = ku. (5)

S(ω, ku) =
N

∑
n=1

P(ω)σn exp
(−jkxxn − jkyyn

)
. (6)

The function of the distribution of the targets is expressed in Equation (7), and its
Fourier transform is expressed as Equation (8).

f0 =
N

∑
n=1

σnδ(x − xn, y − yn). (7)

F0
(
kx, ky

)
=

N

∑
n=1

σn exp
(−jkxxn − jkyyn

)
. (8)

Equation (9) can be obtained by combining Equations (6) and (8).

S(ω, ku) = P(ω)F0. (9)

Therefore, the distribution of the targets can be estimated through the following
relationship:

F
(
kx, ky

)
= P∗(ω)S(ω, ku) = |P(ω)|2

N

∑
n=1

σn exp
(−jkxxn − jkyyn

)
. (10)

The mapping—Equation (5) from (ω, ku) to
(
kx, ky

)
, called Stolt mapping [35]—

involves interpolation from the data. The interpolation process can be made more rational
through the following spatial shift formulation:

Fb
(
kx, ky

)
= F

(
kx, ky

)
exp

(
jkxXc + jkyYc

)
(11)

where subscript b indicates baseband conversion, and Xc,Yc are the centers of the area of
interest in the slant-range and cross-range, respectively. In Equation (11), the exponential
term performs a spatial shift function, which performs a function similar to the carrier
removal process in spectrum demodulation. It enables interpolation in a slowly varying
region while moving the entire swath down to the origin of the spatial coordinates.

10
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Because the received signal is scattered by a target with a target strength of 1 in the
center of the area of interest, its Fourier transform can be expressed as Equations (12) and
(13), respectively, and Equation (11) can be summarized as follows:

s0(t, u) = p

⎛⎝t − 2
√

X2
c + (Yc − u)2

c

⎞⎠, (12)

S0(ω, ku) = P(ω) exp
(−jkxXc − jkyYc

)
, (13)

Fb
(
kx, ky

)
= S(ω, ku)S∗

0(ω, ku). (14)

The flow chart of the ω-k algorithm is shown in Figure 2 [1].

Figure 2. Flow chart of the ω-k algorithm.

3. SAS Algorithm with CS Framework (CS-SAS)

3.1. Compressive Sensing

Compressive sensing is a method or framework for solving linear problems, such
as y = Ax for sparse signal x [36]. x ∈ CN is an unknown signal vector that we want to
reconstruct. The unknown signal vector x is a k-sparse vector, where x is k-sparse, meaning
that ‖x‖0 = k, that is, x has only k non-zero elements. y ∈ CM is a measurement vector
consisting of measured values. In many realistic problems, A ∈ CM×N—called a sensing
matrix—is introduced to represent the problem as a linear relationship, such as y = Ax.
When the dimension of the measurement vector y is smaller than the dimension of x,
that is, M � N, the y = Ax problem becomes an underdetermined problem and has
numerous solutions, making it impossible to specify x. Using the sparse property of x, it is
possible to specify a unique and exact solution among countless feasible solutions of the
underdetermined problem. The sparsity is imposed by the sparsity constraint l0-norm. The
l0-norm minimization problem is formulated as follows:

min
x∈CN

‖x‖0 subject to y = Ax. (15)

However, the l0-norm minimization problem, Equation (15), is an NP-hard problem
that is computationally intractable. To deal with the NP-hard problem, various methods
have been developed such as l1-norm relaxation or greedy algorithms represented by
orthogonal match-pursuit.

One of the most representative methods for solving the compressive sensing problem
is l1-norm relaxation, which solves the problem by replacing l0-norm with l1-norm. The
l0-norm minimization problem, Equation (15), can be relaxed by reformulating as

min
x∈CN

‖x‖1 subject to y = Ax. (16)

11
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In the presence of noise, a sparse solution x can be obtained by the following equation:

min
x∈CN

‖x‖1 subject to ‖y − Ax‖2 < ε. (17)

Equations (16) and (17) are called basis pursuit (BP) and basis pursuit denoising
(BPDN) problems, respectively. The larger the hyperparameter ε, the sparser the optimized
solution x. Oppositely, the smaller the ε, the more optimized solution x fits the data.
Therefore, it is important to assume a suitable hyperparameter. However, finding a suitable
hyperparameter is complex and deemed to be outside the scope of this study.

In this study, the SAS image was obtained by solving the BPDN problem using the
tool provided by CVX [37].

3.2. CS-SAS Algorithm for Single Sensor

To handle SAS imaging problems from the perspective of compressive sensing, the
problem must first be well defined as the y = Ax problem. To formulate a compressive
algorithm in which a single sensor is in linear motion, the signal reflected by the targets and
returned to the single sensor needs to be considered first. When a signal p(t) is transmitted
from a single sensor located in ru = [x0, y0] and reflected by N-targets, the received signal
s(t, ru) can be written as

s(t, ru) =
N

∑
k=1

σk p(t − τ(rk, ru)), (18)

τ(rk, ru) = 2
|rk − ru|

c
= 2

√
(xk − x0)

2 + (yk − y0)
2

c
, (19)

where σk, k = 1, . . . , N is the target strength of the k-th target, τ(rk, ru) is a function
representing travel time, xk is the slant-range of the k-th target, and yk is the cross-range of
the k-th target. When p(t) is a continuous wave (CW) signal with a pulse duration of Tp
and carrier frequency of fc, Equation (19) can be rewritten as Equation (21).

p(t) = ejωt = ej2π fct(0 ≤ t ≤ Tp
)
, (20)

s(t, ru) =
N

∑
k=1

σkexp(jω(t − τ(rk, ru)))
(
0 ≤ t − τ(rk, ru) ≤ Tp

)
. (21)

The above is a formulation of the signal received at one location, ru. This can be
expanded to the expression for a single sensor.

The operation of a single sensor sonar can be expressed as shown in Figure 3. The
total number of pings is Np, the single sensor—transmitter and receiver—corresponding
to the m-th ping, is um, and the position of um is rum , m = 1, ..., Np. The center point of the
area of interest is (Xc, Yc), the half-size of the area of interest in the range is X0, and the
half-size of the area of interest in the cross-range is Y0. By dividing the area of interest
into Nx × Ny grids, assuming that there is a virtual target σk at each grid point, the signal
s(t, rum) received at the m-th ping can be written as follows:

s(t, rum) =
Nx Ny

∑
k=1

σkexp(jω(t − τ(rk, ru)))
(
0 ≤ t − τ(rk, rum) ≤ Tp

)
. (22)

The signal vector si, which consists of signals received at a specific time ti at each
position of the sonar, can be written as

si =
[
s(ti, ru1), s(ti, ru2), . . . , s

(
ti, ruNp

)]T
. (23)
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Combining Equations (22) and (23), si can be expressed as the product of the target
strength vector σ of the virtual targets and the sensing matrix Ai:

si = Aiσ, (24)

σ =
[
σ1, . . . ,σNx Ny

]T
, (25)

Ai(m, k) = exp(jω(ti − τ(rk, rum)))
(
0 ≤ ti − τ(rk, rum) ≤ Tp

)
, (26)

where Ai(m, k) denotes an element corresponding to the m-th row and k-th column of Ai.
In the CS system, where the length of y is M and the length of x is N and k-sparse, x is
successfully recovered when M ≥ O(k log(N/k)) measurements are used [36,38]. In the
proposed algorithm, if the length Np of the received signal si is too small compared to the
length Nx Ny of σ, an accurate solution cannot be obtained. Therefore, in the case where
the length of the signal si is too small, signals for a total of Nt times are collected to form
a long signal vector s and, similarly, corresponding matrices are collected to form a long
sensing matrix A:

s = Aσ, (27)

s =
[
si

T , si+1
T , . . . , si+Nt−1

T
]T

, (28)

A =
[
Ai

T , Ai+1
T , . . . , Ai+Nt−1

T
]T

, (29)

where s ∈ CNt Nu , A ∈ C
Nt Nu×Nx Ny , and σ ∈ C

Nx Ny . σ is estimated by solving the following
BP or BPDN problems:

min
σ∈CNx Ny

‖σ‖1 subject to s = Aσ, (30)

min
σ∈CNx Ny

‖σ‖1 subject to ‖s − Aσ‖2 < ε. (31)

The σ value, determined by applying Equation (30) or (31), is a target strength vector
obtained from using only the signals received in consecutive Nt time snapshots from
ti. Therefore, to obtain the target strength vector for all the area of interest, the l1-norm
minimization process must be repeated for all time snapshots corresponding to the area of
interest. The final image was compiled by adding all the σ values obtained in each process.

Figure 3. Description for a single sensor sonar operation: um is the single sensor corresponding to
the m-th ping, Np is the total number of pings, σk is a virtual target, Nx is the number of the grid in
the x direction, Ny is the number of the grid in the y direction, (Xc,Yc) is the center point of the area of
interest, X0 is the half-size of the area of interest in the x direction, Y0 is the half-size of the area of
interest in the y direction.
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When obtaining solutions for BP or BPDN, the elements of σ with a large l1-norm
of the corresponding sensing matrix column vector tend to have a non-zero value. To
eliminate this bias, each column vector ai of the sensing matrix A and the received signal s

is normalized by their l2-norms [14].

snormal =
s

‖s‖2
, (32)

Anormal =

[
a1

‖a1‖2
,

a2

‖a2‖2
, . . . ,

aNx Ny

‖aNx Ny‖2

]T

. (33)

Therefore, Equations (30) and (31) are modified, and the final solution is obtained
by compensating the l2-norms to the σ estimated from Equation (34) or Equation (35)
as follows:

min
σ∈CNx Ny

‖σ‖1 subject to snormal = Anormalσ, (34)

min
σ∈CNx Ny

‖σ‖1 subject to ‖snormal − Anormalσ‖2 < λ. (35)

3.3. CS-SAS Algorithm for Uniform Line Array

The algorithm proposed in Section 3.2 is a method used for a single sensor. However,
in many cases, a uniform array sonar consisting of one transmitter and multiple receivers is
used, and it needs to be extended to the algorithm for a uniform line array. The algorithm
for the uniform linear array introduced in this section is the same as the algorithm for
a single sensor, except for the travel time function. The transmitter in the m-th ping is
utm, m = 1, . . . , Np, and its position vector is rutm . The number of receivers in the physical
array is Nu, and the n-th receiver in the physical array is un, n = 1, . . . , Nu. Therefore,
Equations (22) and (23) can be reformulated as follows:

s(t, run , rutm) =
Nx Ny

∑
k=1

σkexp(jω(t − τ(rk, run , rutm)))
(
0 ≤ t − τ(rk, run , rutm) ≤ Tp

)
, (36)

τ(rk, run , rutm) =
|rk − run |+ |rk − rutm |

c
. (37)

The signal vector composed of measurements received at a specific time ti of each
receiver in the j-th ping is denoted as si,j. Therefore, the signal vectors si,j can be arranged as

si,j = Ai,jσ, (38)

si,j =
[
s
(

ti, ru1 , rutj

)
, s
(

ti, ru2 , rutj

)
, . . . , s

(
ti, ruNu

, rutj

)]T
, (39)

Ai,j(m, k) = exp
(

jω
(

ti − τ
(

rk, rum , rutj

))) (
0 ≤ ti − τ

(
rk, rum , rutj

)
≤ Tp

)
. (40)

Similar to the previous section, the following formulas are obtained:

s = Aσ, (41)

s =
[
si,1

T , si,2
T , . . . , si,Np

T , si+1,1
T , si+1,2

T , . . . , si+Nt−1,Np
T
]T

, (42)

A =
[
Ai,1

T , Ai,2
T , . . . , Ai,Np

T , Ai+1,1
T , Ai+1,2

T , . . . , Ai+Nt−1,Np
T
]T

. (43)

The CS framework can be applied by formulation as above.
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4. Results

In this section, the performance of the proposed algorithms is demonstrated by com-
paring the results of applying the ω-k algorithm and the CS-SAS algorithms to both the
simulation and experimental data. In the simulation and in the experiment, the carrier
frequencies of the CW signal were 400 and 455 kHz, respectively, whereas the sampling fre-
quencies were 25 or 50 kHz and, therefore, the ω-k algorithm included the baseband process.

The following shows that the CS-SAS algorithms exhibit superior performance in
terms of resolution and noise robustness and indicates how to become robust when com-
bating conditions where sensors are not working or data are lost.

4.1. Simulation Results
4.1.1. Simulation Results for Single Sensor

The ω-k and CS-SAS algorithms were compared for various cases. For the single-
sensor SAS, five cases were simulated. The basic simulation environment was a single-
sensor sonar operated at 0.02 m intervals from −5 to 5 in the cross-range axis, that is,
Np = 501. The signal p(t) was a CW signal with carrier frequency fc = 400 kHz and pulse
duration Tp = 0.1 ms. The center point of the area of interest was [Xc,Yc] = [250, 0], the
half-size of the area of interest in slant-range was X0 = 0.5 m, the half-size of the area of
interest in cross-range was Y0 = 1 m, the sampling frequency was fs = 50 kHz, and the area
of interest consisted of NX = 101 and NY = 101 uniform grid points. The sound speed was c
= 1500 m/s. Twelve-point targets were placed, as described in Figure 4.

Figure 4. Locations of the 12 targets.

All simulation environments for single-sensor sonar were fundamentally the same as
the basic simulation environment described above and were performed by changing the
noise level, Xc, fs, and sonar interval, as shown in Table 1.

Table 1. Simulation Case for Single Sensor.

Case Noise Existence Xc (m) fs (kHz) Sonar Interval (m)

1 X 250 50 0.02
2 X 250 25 0.02
3 X 150 50 0.2
4 X 150 50 0.4
5 O 250 50 0.02
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• Case 1

As shown in Figure 5, it was confirmed that the images obtained through the CS-SAS
algorithm accurately distinguished 12 targets and had a good azimuth resolution. In
addition, it was confirmed that there was no performance degradation caused by the side
lobes. However, the result for the ω-k algorithm is unable to distinguish between targets
adjacent to each other in the center of the area of interest. In addition, much aliasing occurs,
especially in the azimuth direction. On account of the influence of matched filtering and
Fourier transform, the exact position of the point targets cannot be obtained, resulting in a
blurred result.

 
(a) (b) 

Figure 5. Simulation results for Case 1 for single sensor: (a) result for the ω-k algorithm; (b) result
for the CS-SAS algorithm for single sensor.

• Case 2

The results of the simulation are shown in Figure 6. In the case of the ω-k algorithm,
because the sampling frequency is reduced by half compared to Case 1, the resolution
in the slant-range direction is reduced. The aliasing at the center of the area of inter-
est has a larger value than the values at the four target locations, [250 ± 0.02, 0] and
[250 ± 0.04, 0]. Nonetheless, the image obtained using the CS-SAS algorithm yielded an
accurate target image.
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(a) (b) 

Figure 6. Simulation results for Case 2 for single sensor: (a) result for the ω-k algorithm; (b) result
for the CS-SAS algorithm for single sensor.

• Case 3

The results are shown in Figure 7. The CS-SAS algorithm accurately fetches the images
of 12 targets. However, the ω-k algorithm requires a Fourier transform in the space domain,
which violates Nyquist theory because the sampling level in the space domain is reduced
to 1/10. Therefore, aliasing occurred, and the image of the target could not be properly
obtained. The eight target points in the center were not distinguishable, and the remaining
four points were difficult to determine.

 
(a) (b) 

Figure 7. Simulation results for Case 3 for single sensor: (a) result for the ω-k algorithm; (b) result
for the CS-SAS algorithm for single sensor.
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• Case 4

The results are depicted in Figure 8. Even when the spatial sampling is reduced to a
level of 1/20 and when some side lobes occur, the CS-SAS algorithm still fetches the image
of 12 targets, whereas the ω-k algorithm fails to depict the proper image of the targets.

 
(a) (b) 

Figure 8. Simulation results for Case 4 for single sensor: (a) result for the ω-k algorithm; (b) result
for the CS-SAS algorithm for single sensor.

• Case 5

Noisy conditions with signal-to-noise ratios (SNRs) of 20, 10, and 5 dB were simulated.
The results in Figure 9 indicate that the CS-SAS algorithm applied to an environment with
SNRs of 20 dB and 10 dB, obtained an almost accurate image of the targets. However, when
the SNR was 5 dB, the values at the grid point between [250, ±0.04] and [250, ±0.08] were
greater than the values at [250, ±0.04] and [250, ±0.08], and an accurate image could not
be obtained. As the noise became louder, a degree of degradation occurred. Nevertheless,
the CS-SAS algorithm was still superior to the ω-k algorithm in terms of resolution and
sidelobe suppression.

   
(a) (b) (c) 

Figure 9. Simulation results of CS-SAS algorithm for Case 5 for single sensor: (a) SNR = 20 dB; (b) SNR = 10 dB;
(c) SNR = 5 dB.
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4.1.2. Simulation Results for Uniform Line Array

The CS-SAS and ω-k algorithms for a uniform line array were simulated in two cases.
The first simulation case is as follows: The simulation environments of sampling frequency
fs and sound velocity c, excluding sonar configuration and Xc, are the same as those of
simulation Case 1 for a single sensor. The array has 20 receivers, with a 0.04 m spacing
between receivers, as shown in Figure 10a. By moving 0.4 m between pings, a total of
25 pings were shot. The source position of the uniform line array is 0.1 m away from the
first sensor in the cross-range direction. Conditions for other simulations are the same
as for Case 1, except that the sensor spacing of the array is different. The array has two
receivers, with 0.4 m spacing between receivers, as shown in Figure 10b. By moving 0.4 m
between pings, a total of 25 pings were shot. The source position of the uniform line array
is 0.1 m away from the first sensor in the cross-range direction.

(a) 

(b) 

Figure 10. Description of line array in: (a) the first case of simulation; (b) the second case of simulation;
the red box is a transmitter, and the black boxes are receivers. The black-dash boxes in (b) are actually
empty but marked for comparison with (a).

• Case 1

The results for Case 1 are shown in Figure 11. The CS-SAS algorithm accurately fetched
images of the 12 targets. Contrarily, the result for the ω-k algorithm showed aliasing. In
particular, the total number of sensors used were 500 = 20 × 25, which compares favorably
to the simulation environment of a single sensor; however, the interval between the sensors
doubled to 0.04, and the spatial sampling interval also doubled, resulting in aliasing near
[250, ±0.07].
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(a) (b) 

Figure 11. Simulation results for Case 1 for uniform line array: (a) result for the ω-k algorithm;
(b) result for the CS-SAS algorithm for uniform line array.

• Case 2

The results for Case 2 are shown in Figure 12. The synthetic aperture is the same as
in Case 1, but the sensor spacing is increased 10 times. Severe aliasing occurred in the
ω-k results as well as the inability to properly identify the targets. However, the CS-SAS
algorithm was significantly better distinguished.

 
(a) (b) 

Figure 12. Simulation results for Case 2 for uniform line array: (a) result for the ω-k algorithm;
(b) result for the CS-SAS algorithm for a uniform line array.

The performances of the CS-SAS and ω-k algorithms were compared using simulation
results for a single sensor and uniform line array. In the case of the ω-k algorithm, even
under the most naïve simulation conditions, adjacent targets could not be distinguished
and aliasing occurred, whereas in the case of the proposed algorithm, because CS was
applied and sidelobes were rather suppressed, high-resolution results were obtained. In
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effect, CS-SAS has clearly distinguished targets under harsher conditions by increasing
spatial sampling or reducing fs, and has obtained accurate locations and shown robustness
in noisy situations. This is possible because the measured signal can be expressed in a
sparse representation for a certain domain, and CS can significantly lower the sampling
rate and has robust resistance to noise [36,39].

4.2. Experimental Data Results

This was a water tank experiment conducted by SonaTech Inc. (Santa Barbara, CA,
USA). As shown in Figure 13a, an experiment was performed to obtain images of two rings
in a water tank. As shown in Figure 13b, the sonar has one transmitter and 32 receivers.
After transmitting and receiving the signal once, the transmitter moves 616.5 mm and then
sends and receives the next signal. This process was repeated seven times to receive signals
from 224 locations. The ping signal p(t) is a CW signal with carrier frequency fc = 455 kHz
and pulse duration Tp = 0.3 ms, the sampling frequency is fs = 50 kHz, and the sound speed
c = 1480 m/s. There are two ring-shaped targets of approximate length of major axis 1.5 m
each in the slant-range of 7 to 10 m and a cross-range of −2.4385 to 2.4385 m.

 
(a) (b) 

Figure 13. Water tank experiment overview: (a) water tank structure; (b) synthetic aperture line-array sonar.

The raw data recorded in the slant-range are shown in Figure 14a. The CS-SAS result
was derived by dividing the area of interest into a uniform grid of NX = 101 and NY = 101.
The results of the ω-k and CS-SAS algorithms are shown in Figure 14b,c, respectively.

  
(a) (b) (c) 

Figure 14. (a) Raw data; (b) result for the ω-k algorithm; (c) result for the CS-SAS algorithm.

21



Remote Sens. 2021, 13, 1924

From the raw data, the targets can be seen in the form of rings, but the shape appears
thick, and it is difficult to accurately determine the location of the targets. In the results
of the ω-k algorithm, the shapes are slightly thinner, but aliasing is severe in the azimuth
direction, and it appears that there are several rings. The results of the CS-SAS algorithm
construct tworing-shaped targets. Because the CS-SAS algorithm attempts to bring an
image with as little target distribution as possible, the side lobes are suppressed to obtain
thin ring-shaped targets.

To examine whether the CS-SAS algorithm is robust under conditions where some
of the sensors are broken, the result was derived by assuming a situation in which data
from some sensors were lost. The experiment was divided into two cases: one case where
the sensor failed uniformly (Sensor Loss: Uniform, SLU) and another case where the
sensor failed randomly (Sensor Loss: Random, SLR). The percentages of sensors that did
not malfunction and operated normally are also indicated in the results. The results are
displayed in Figure 15.

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 15. Results for some sensor loss conditions. Uniformly broken case (SLU) where the percentage of the remaining
sensors are: (a) 75%; (b) 50%; (c) 25%. Randomly broken case (SRU) where the percentage of the remaining sensors are
(d) 75%; (e) 50%; (f) 25%.

In addition, peak signal-to-noise ratio (PSNR) and structural similarity index measure
(SSIM), which are representative image quality measurement indicators [40,41], were
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calculated for quantitative comparison. PSNR is an index that evaluates loss information
for the quality of the generated or compressed images and is expressed by the peak
signal/mean square error (MSE) term. It has a unit of dB, and a higher value indicates
less loss, i.e., higher image quality. SSIM is an index designed to evaluate differences in
human visual quality rather than numerical errors. SSIM quality is evaluated in three
aspects: luminance, contrast, and structural. However, since the correct answer image is
not known, PSNR and SSIM were calculated for all sensor loss situations using Figure 14c
as a reference image. The calculation results are shown in Table 2.

Table 2. PSNR and SSIM.

SLU 75% SLU 50% SLU 25%

PSNR (dB) 33.7691 29.2229 28.1871
SSIM 0.8850 0.6947 0.6029

SLR 75% SLR 50% SLR 25%

PSNR (dB) 32.9409 30.6011 28.4189
SSIM 0.8609 0.7324 0.6178

In the case of some conventional methods such as ω-k, a Fourier transform in space is
performed. Therefore, it is difficult to obtain results freely in the form of an array because
linear sampling is not possible in space when some sensors in the array fail. However, the
CS-SAS algorithm does not perform Fourier transform in space and has a formulation that
is free in the form of an array and, therefore, it is easy to obtain a result in a sensor loss
situation. In addition, it is difficult to detect significant performance degradation of up to
75% for both SLU and SLR, and 50% of the SLR show particularly good results; note that
CS has the best performance for random array or random down sampling [42,43]. Table 2
also shows that the random array results are generally better. In Table 2, it can be seen that
the image quality of SLR is high for both 50% and 25%. At 75%, the indicators of SLR are
worse than at 75% of SLU. Because there is little deterioration in image quality in 75% of
cases, it can be seen that the PSNR and SSIM simply show how similar the reconstruction
results are to Figure 14c, rather than showing the results of image quality deterioration.
When it reaches approximately 25%, both SLU and SLR seem to blur to some extent, but in
terms of side lobe suppression, it still shows no inferiority over the ω-k algorithm.

Using the CS-SAS algorithm in this study made it possible to obtain a higher resolution
image than when using the conventional synthetic aperture sonar algorithm—the ω-k
algorithm—and made it possible to reduce the problem of aliasing which also occurs
in the conventional method. In addition, even with less spatial sampling, better results
were obtained than compared to the conventional algorithm, and it was confirmed to be
robust even when some sensors failed. Good results can be expected even if the number of
sensors are reduced during actual sonar operation, and as a consequence, cost reduction
is possible. Moreover, it is durable because it presents robust characteristics in failure
situations. Results of actual experimental data were also observed, and it is expected that
satisfying results will be obtained in the event that the CS-SAS algorithm is applied to a
natural underwater environment.

5. Conclusions

In this paper, we proposed an algorithm that applies compressive sensing (CS) to a
synthetic aperture sonar (SAS) under the assumption that the target distribution in water
is sparse. Through simulation, it was confirmed that the proposed algorithm produces
images with better resolution than the conventional SAS algorithm, the ω-k algorithm. In
addition, because images obtained by the proposed method present very few and small
side lobes, no deterioration of imaging performance occurs. Furthermore, even in the case
of sampling at a low level that violates Nyquist theory in the time and space domain, a
higher quality target image was obtained than with the ω-k algorithm.
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Real environment applicability was revealed for the proposed method when compar-
ing the results with actual experimental data. The results confirm that aliasing is reduced
and side lobes are suppressed when applying the compressive sensing method. Contrarily,
the ω-k algorithm does not obtain accurate target images due to aliasing. Importantly, it
was confirmed that the proposed method is robust in the event of some sensors of the sonar
system failing or when some data are lost.
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Abstract: Hyperspectral sensors that are mounted in unmanned aerial vehicles (UAVs) offer many
benefits for different remote sensing applications by combining the capacity of acquiring a high
amount of information that allows for distinguishing or identifying different materials, and the
flexibility of the UAVs for planning different kind of flying missions. However, further developments
are still needed to take advantage of the combination of these technologies for applications that require
a supervised or semi-supervised process, such as defense, surveillance, or search and rescue missions.
The main reason is that, in these scenarios, the acquired data typically need to be rapidly transferred
to a ground station where it can be processed and/or visualized in real-time by an operator for
taking decisions on the fly. This is a very challenging task due to the high acquisition data rate of the
hyperspectral sensors and the limited transmission bandwidth. This research focuses on providing
a working solution to the described problem by rapidly compressing the acquired hyperspectral
data prior to its transmission to the ground station. It has been tested using two different NVIDIA
boards as on-board computers, the Jetson Xavier NX and the Jetson Nano. The Lossy Compression
Algorithm for Hyperspectral Image Systems (HyperLCA) has been used for compressing the acquired
data. The entire process, including the data compression and transmission, has been optimized and
parallelized at different levels, while also using the Low Power Graphics Processing Units (LPGPUs)
embedded in the Jetson boards. Finally, several tests have been carried out to evaluate the overall
performance of the proposed design. The obtained results demonstrate the achievement of real-time
performance when using the Jetson Xavier NX for all the configurations that could potentially be used
during a real mission. However, when using the Jetson Nano, real-time performance has only been
achieved when using the less restrictive configurations, which leaves room for further improvements
and optimizations in order to reduce the computational burden of the overall design and increase
its efficiency.

Keywords: real-time compression; on-board compression; real-time transmission; hyperspectral
images; UAVs

1. Introduction

During the last years, there has been a great interest in two very different technologies that
have demonstrated to be complementary, unmanned aerial vehicles (UAVs) and hyperspectral
imaging. In this way, the combination of both allows to extend the range of applications
in which they have been independently used up to now. In one hand, UAVs have been
employed in a great variety of uses due to the advantages that these vehicles have over
traditional platforms, such as satellites or manned aircrafts. Among these advantages are the
high spatial and spectral resolutions that can be reached in images obtained from UAVs, the
revisit time and a relative low economical cost. The monitoring of road-traffic [1–4], searching
and rescuing operations [5–7], or security and surveillance [8,9] are some examples of civil
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applications that have adopted UAVs-based technologies. On the other hand, hyperspectral
imaging technology has also gained an important popularity increment due to the high
amount of information that this kind of images is able to produce, which is specially valuable
for applications that need to detect or distinguish different kind of materials that may look like
very similar in a traditional digital image. Accordingly, it can be inferred that the combination
of these two technologies by mounting hyperspectral cameras onto drones would bring
important advances in fields like real-time target detection and tracking [10].

Despite the benefits that can be obtained combining UAVs and hyperspectral technol-
ogy, it is necessary to take into account that both also have important limitations. Referring
to UAVs, they have a flight autonomy that is limited by the capacity of their batteries, a
restriction that gets worse as the weight carried by the drone increases with additional
elements, such as cameras, gimbal, on-board PC, or sensors. In reference to the hyperspec-
tral technology, the analysis of the large quantity of data provided by this kind of cameras
to extract conclusions for the targeted application implies a high computational cost and
makes it difficult to achieve real-time performance. So far, two main approaches have been
followed in the state-of-the-art of hyperspectral UAVs-based applications:

1. Storing the acquired data into a non-volatile memory and off-board processing it

once back in the laboratory. The main advantage of this approach is its simplicity and
the possibility of processing the data without any limitation in terms of computational
resources. However, it is not viable for applications that require a real-time response,
and it does not allow the user to visualize the acquired data during the mission. For
instance, following this strategy, the drone could fly over a region, scan it with the
hyperspectral camera, and store all of the acquired data into a solid state drive (SSD),
so, once the drone lands, it is powered off and the disk is removed for extracting the
data and processing it [11–13]. However, if, by any reason, the acquisition parameters
were not correctly configured or the data was not captured as expected, this will not
be detected until finishing the mission and extracting the data for its analysis.

2. On-board processing the acquired hyperspectral data. This is a more challenging ap-
proach due to the high data acquisition rate of the hyperspectral sensors as well as the
limited number of computational resources available on-board. Its main advantage
is that the acquired data could be potentially analysed in real-time or near real-time
and, so, decisions could be taken on the fly according to the obtained results. However,
the data analysis methods that can be on-board executed are very limited [10,14,15].
Additionally, since, while following this approach, the data are fully processed on-board
and never transmitted to the ground station during the mission, it cannot be used for
any supervised or semi-supervised application in which an operator is required for
visualizing the acquired data or its results and taking decisions according to it. Some
examples of this kind of applications are surveillance and search and rescue missions.

This work focuses on providing an alternative solution for a UAV-based hyperspectral
acquisition platform to achieve greater flexibility and adaptability to a larger number
of applications. Concretely, the aforementioned platform consists of a visible and near-
infrared (VNIR) camera, the Specim FX10 pushbroom scanner, [16] mounted on a DJI
Matrice 600 [17], which also carries a NVIDIA Jetson board as on-board computer. A
detailed description of this platform can be found in [10]. Two different Jetson boards have
been used in the experiments and it can be set in the platform as on-board computer, the
Jetson Nano [18] and the Jetson Xavier NX [19]. They are both pretty similar in shape and
weight, although the Jetson Xavier NX has a higher computational capability as well as a
higher price.

The main goal of this work is to provide a working solution that allows us to rapidly
download the acquired hyperspectral data to the ground station. Once the data are in the
ground station, they could be processed in a low latency manner and both the hyperspectral
data or the results obtained after the analysis could be visualized by an operator in real-time.
This is advantageous for many applications that involve a supervised or semi-supervised
procedure, such as defense, surveillance, or search and rescue missions. Currently, these
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kind of applications are mostly carried out by using RGB first person view cameras [1,2],
but they do not take advantage of the possibilities that are offerred by the extra information
provided by the hyperspectral sensors. Figure 1 graphically describes the desired targeted
solution. To achieve this goal, it is assumed that a Wireless Local Area Network (WLAN)
based on the 802.11 standard, which was established by the Institute of Electrical and
Electronics Engineers (IEEE), will be available during the flight, and that both the on-board
computer and the ground station will be connected to it to use it as data downlink. It will
be considered to be real-time transmissions those situations in which the acquisition frame
rate and the transmission frame rate reach the same value, although there may be some
latency between the capturing process and the transmission one.

Figure 1. Overall description of the targeted design purpose.

According to our experience in the flight missions carried up to now, the frame rate of
the Specim FX10 camera mounted in our flying platform is usually set to a value between
100 and 200 frames per second (FPS) and, so, these are the targeted scenarios to be tested
in this work. The Specim FX10 camera produces hyperspectral frames of 1024 pixels with
up to 224 spectral bands each, storing them using 12 or 16 bits per pixel per band (bpppb).
This means that the acquisition data rate goes from 32.8 MB/s (100 FPS and 12 bpppb) to
87.5 MB/s (200 FPS and 16 bpppb). These values suggest the necessity of carrying out
the hyperspectral data compression before its transmission to the ground station in order
to achieve real-time performance. For that purpose, the Lossy Compression Algorithm for
Hyperspectral Image Systems (HyperLCA) has been chosen. This specific compressor has
been selected due to the fact that it offers several advantages with respect to other state-
of-the art solutions. One one side, it presents a low computational complexity and high
level of parallelism in comparison with other transform-based compression approaches.
On the other side, the HyperLCA compressor is able to achieve high compression ratios
while preserving the relevant information for the ulterior hyperspectral applications. Ad-
ditionally, the HyperLCA compressor independently compresses blocks of hyperspectral
pixels without any spatial alignment required, which makes it especially advantageous for
compressing hyperspectral data that were captured by pushbroom or whiskbroom sensors
and providing a natural error-resilience behaviour. All of these advantages were deeply
analyzed in [20].
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The data compression process reduces the amount of data to be downloaded to the
ground station, which makes the achievement of a real-time data transmission viable. How-
ever, it is also necessary to achieve a real-time performance in the compression process. For
doing so, the HyperLCA compressor has been parallelized taking advantage of the available
LPGPU included in the Jetson boards as it was done in [21]. However, multiple additional
optimizations have been developed in this work with respect to the one presented in [21] to
make the entire system work as expected, encompassing the capturing process, the on-board
data storing, the hyperspectral data compression and the compressed data transmission.

The document is structured, as follows. Section 2 contains the description of the algo-
rithm used in this work for the compression of the hyperspectral data. Section 3 displays the
information of the on-board computers that have been tested in this work. The proposed
design for carrying out the real-time compression and transmission of the acquired hyper-
spectral data is fully described in Section 4.1. Section 4.2 contains the data and resources that
are used for the experiments and Section 5 shows the description of the experiments and
obtained results. Finally, the obtained conclusions are summarized in Section 7.

2. Description of the HyperLCA Algorithm

The HyperLCA compressor is used in this work to on-board compress the hyperspec-
tral data, reducing its volume before being transmitted to the ground station, as it was
previously specified. This compressor is a lossy transform-based algorithm that presents
several advantages that satisfy the necessities of this particular application very well. The
most relevant are [20]:

• It is able to achieve high compression ratios with reasonable good rate-distortion
ratios and keeping the relevant information for the ulterior hyperspectral images
analysis. This allows considerably reducing the data volume to be transmitted without
decreasing the quality of the results obtained by analyzing the decompressed data in
the ground station.

• It has a reasonable low computational cost and it is highly parallelizable. This allows
for taking advantage of the LPGPU available on-board to speed up the compression
process for achieving a real-time compression.

• It permits independently compressing each hyperspectral frame as it is captured. This
makes possible to compress and transmit the acquired frames in a pipelined way, enabling
the entire system to continuously operate in an streaming fashion, with just some latency
between the acquired frame and the frame received in the ground station.

• It permits setting the minimum desired compression ratio in advance, making it possible
to fix the maximum data rate to be transmitted prior to the mission, thus ensuring that it
will not saturate the donwlink.

The compression process within the HyperLCA algorithm consists of three main com-
pression stages, which are a spectral transform, a preprocessing stage, and the entropy coding
stage. In this work, each compression stage independently processes one single hyperspectral
frame at a time. The spectral transform sequentially selects the most different pixels of the
hyperspectral frame using orthogonal projection techniques. The set of selected pixels is then
used for projecting this frame, obtaining a spectral decorrelated and compressed version of
the data. The preprocessing stage is executed after the spectral transform for adapting the
output data for being entropy coded in a more efficient way. Finally, the entropy coding
stage manages the codification of the extracted vectors using a Golomb–Rice coding strategy.
In addition to these three compression stages, there is one extra initialization stage, which
carries out the operations that are used for initializing the compression process according to
the introduced parameters. Figure 2 graphically shows these compression stages, as well as
the data that the HyperLCA compressor share between them.
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Figure 2. Flowchart of the HyperLCA compressor.

2.1. HyperLCA Input Parameters

The HyperLCA algorithm needs three input parameters in order to be configured:

1. Minimum desired compression ratio (CR), defined as the relation between the num-
ber of bits in the real image and the number of bits of the compressed data.

2. Block size (BS), which indicates the number of hyperspectral pixels in a single hyper-
spectral frame.

3. Number of bits used for scaling the projection vectors (Nbits). This value determines
the precision and dynamic range to be used for representing the values of the V vectors.

2.2. HyperLCA Initialization

Once the compressor has been correctly configured, its initialization stage is carried out.
This initialization stage consists on determining the number of pixel vectors and projection
vectors (pmax) to be extracted for each hyperspectral frame, as shown in Equation (1),
where DR refers to the number of bits per pixel per band of the hyperspectral image to be
compressed and Nbands refers to the number of spectral bands. The extracted pixel vectors
are referred as P and the projection vectors are referred as V in the rest of this manuscript.

pmax ≤ DR · Nbands · BS
CR · (DR · Nbands + Nbits · BS)

(1)

The pmax value is used as an input of the HyperLCA transform, which is the most
relevant part of the HyperLCA compression process. The compression that is achieved
within this process directly depends on the number of selected pixels, pmax. Selecting more
pixels provides better decompressed images, but lower compression ratios.

2.3. HyperLCA Transform

For each hyperspectral frame, the HyperLCA Transform calculates the average pixel,
also called centroid. Subsequently, the centroid pixel is used by the HyperLCA Transform
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to select the first pixel as the most different from the average. This is an unmixing like
strategy used in the HyperLCA compressor for selecting the most different pixels of the
data set to perfectly preserve them through the compression–decompression process. This
results in being very useful for many remote sensing applications, like anomaly detection,
spectral unmixing, or even hyperspectral and multispectral image fusion, as demonstrated
in [22–24].

The HyperLCA Transform provides most of the compression ratio that was obtained
by the HyperLCA compressor and also most of its flexibility and advantages. Additionally,
it is the only lossy part of the HyperLCA compression process. Algorithm 1 describes, in
detail, the process followed by the HyperLCA Transform for a single hyperspectral frame.
The pseudocode assumes that the hyperspectral frame is stored as a matrix, M, with the
hyperspectral pixels being placed in columns. The first step of the HyperLCA Transform
consists on calculating the centroid pixel, c, and subtracting it to each pixel of M, obtaining
the centralized frame, Mc. The transform modifies the Mc values in each iteration.

Figure 3 graphically describes the overall process that is followed by the HyperLCA
Transform for compressing a single hyperspectral frame. As shown in this figure, the
process that is followed by the HyperLCA Transform mainly consists of three steps that
are sequentially repeated. First, the brightest pixel in Mc, which is the pixel with more
remaining information, pi, is selected (lines 2 to 7 of Algorithm 1). After doing so, the vector
vi is calculated as the projection of the centralized frame, Mc, in the direction spanned
by pi (lines 8 to 10 of Algorithm 1). Finally, the information of the frame that can be
represented with the extracted pi and vi vectors is subtracted from Mc, as shown in line 11
of Algorithm 1.

Figure 3. Flowchart of the HyperLCA Transform.

Accordingly, Mc contains the information that is not representable with the already
selected pixels, P, and V vectors. Hence, the values of Mc in a particular iteration, i, would
be the information lost in the compression–decompression process if no more pixels pi and
vi vectors are extracted.
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Algorithm 1 HyperLCA transform.

Inputs:

M = [r1, ..., rNp ], pmax

Outputs:

c, P = [p1, ..., ppmax ], V = [v1, ..., vpmax ]

Declarations:

c; {Centroid pixel.}
P = [p1, ..., ppmax ]; {Extracted pixels.}
V = [v1, ..., vpmax ]; {Projected image vectors.}
Mc = [x1, ..., xNp ]; {Centralized version of M.}
Algorithm:

1: {Centroid calculation and frame centralization (c, Mc )}
2: for i = 1 to pmax do

3: for j = 1 to Np do

4: bj = xj
t · xj

5: end for

6: jmax = arg max(bj)

7: pi = rjmax

8: q = xjmax

9: u = xjmax /((xjmax)
t · xjmax)

10: vi = ut · Mc

11: Mc = Mc − vi · q

12: end for

2.4. HyperLCA Preprocessing

This stage is crucial in the HyperLCA compression algorithm to adapt the HyperLCA
Transform output data for being entropy coded in a more efficient way. This compression
stage encompasses two different parts.

2.4.1. Scaling V Vectors

After executing the HyperLCA Transform, the resulting V vectors contain the projec-
tion of the frame pixels into the space spanned by the different orthogonal projection vector
ui in each iteration. This results in floating point values of V vector elements between −1
and 1. These values need to be represented using integer data type for their codification.
Hence, vectors V can be easily scaled in order to fully exploit the dynamic range available
according to the Nbits used for representing these vectors and avoid loosing too much
precision in the conversion, as shown Equation (2). After doing so, the scaled V vectors are
rounded to the closest integer values.

vjscaled
= (vj + 1) · (2Nbits−1 − 1) (2)

2.4.2. Error Mapping

The entropy coding stage takes advantage of the redundancies within the data to assign
the shortest word length to the most common values in order to achieve higher compression
ratios. In order to facilitate the effectiveness of this stage, the output vectors of the HyperLCA
Transform, after the preprocessing of V vectors, are independently lossless processed to
represent their values using only positive integer values closer to zero than the original
ones, using the same dynamic range. To do this, the HyperLCA algorithm makes use of the
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prediction error mapper described in the Consultative Committee for Space Data Systems
(CCSDS) that are recommended standard for lossless multispectral and hyperspectral image
compression [25].

2.5. HyperLCA Entropy Coding and Bitstream Generation

The last stage of the HyperLCA compressor corresponds to a lossless entropy coding
strategy. The HyperLCA algorithm makes use of the Golomb–Rice algorithm [26] where
each single output vector is independently coded.

Finally, the outputs of the aforementioned compression stages are packaged in the
order that they are produced, generating the compressed bitstream. The first part of the
bitstream consists of a header that includes all of the necessary information to correctly
decompress the data.

The detailed description of the coding methodology followed by the HyperLCA
compressor as well as the exact structure of the compressed bitstream can be found in [20].

3. On-Board Computers

The on-board computer is one of the key elements of the entire acquisition platform,
as described in [10]. It is in charge of managing the overall mission, controlling the UAV
actions and flying parameters (direction, speed, altitude, etc.), as well as the data acquisition
controlling all of the sensors available on-board, including the Specim FX10 hyperspectral
camera. For doing so, two different Nvidia Jetson boards have been separately tested in
this work, the Jetson Nano [18] and the Jetson Xavier NX [19]. These two boards present
very good computational capabilities as well as many connection interfaces that facilitate
the integration of all the necessary devices into the system, while, at the same time, are
characterized by a high computational capability in relation to their reduced size, weight
and power consumption. Additionally, their physical characteristics are generally better
than the ones that are presented by the Jetson TK1, the board originally used in the first
version of our UAV capturing platform, described in [10]. This is a remarkable point when
taking into account the restrictions in terms of available space and load weight in the drone.
Table 1 summarizes the main characteristics of the Jetson TK1, whereas, in Tables 2 and 3,
the main characteristics of the two Jetson boards tested in this work are summarized.

In addition to the management of the entire mission and acquisition processes, the
on-board computer is also used in this work for carrying out the necessary operations to
compress and transmit in real-time the acquired hyperspectral data to the ground station.
For doing so, the compression process, which is the most computational demanding
one, has been accelerated while taking advantage of the LPGPUs integrated into these
Jetson boards.

Table 1. Technical specifications of the NVIDIA Jetson TK1 development board used in the original
flight platform.

Board Model Jetson TK1

LPGPU GPU NVIDIA Kepler with 192 CUDA cores (uptto 326 GFLOPS)(Model GK20)

CPU NVIDIA 2.43 GH < ARM quad-core CPU with Cortex A15 battery saving shadow core

Memory 16GB fast eMMC 4.51 (routed to SDMMC4)

Weight 500 g

Dimensions 127 × 127 × 25.4 mm

Power consumption 1 W minimum

By default, both the Jetson Nano and Jetson Xavier NX are prepared for running the
operating system in a Secure Digital card (SD). However, this presents limitations in terms of
memory speed as well as in the maximum amount of data that can be stored. To overcome
this issue, an external SSD that is connected through an USB3.0 port has been used in the
Jetson Nano. The Jetson Xavier NX is already prepared to integrate a Non-Volatile Memory
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Express (NVMe) 2.0 SSD keeping the system more compact and efficient. However, this
memory was not yet available during this work and, hence, all of the experiments executed in
the Jetson Xavier NX were carried out using just the SD card memory.

Additionally, a Wifi antenna is required. to be able to connect to the WLAN to transmit
the compressed hyperspectral data to the ground station. While the Jetson Xavier NX already
integrates one, the Jetson Nano does not. Hence, an external USB2.0 TP-Link TL-WN722N Wifi
antenna [27] has been included in the experiments that were carried out using the Jetson Nano.

Table 2. Technical specifications of the NVIDIA Jetson Nano and NVIDIA Jetson Xavier NX.

Board Model Jetson Nano

LPGPU GPU NVIDIA Maxwell with 128 CUDA cores (Model GM200)

CPU Quad-core ARM A57 @ 1.43 GHz

Memory 4 GB 64-bit LPDDR4 25.6 GB/s

Weight 140 g

Dimensions 99.06 × 78.74 × 27.94 mm

Power consumption 5W minimum

Board model Jetson Xavier NX

LPGPU GPU NVIDIA Volta with 384 CUDA cores and 48 Tensor Cores (Model GV100)

CPU 6-core NVIDIA Carmel ARM v8.2 64-bit CPU + 6MB L2 + 4MB L3

Memory 8 GB 128-bit LPDDR4x 51.2 GB/s

Weight 180 g

Dimensions 99.06 × 78.74 × 27.94 mm

Power consumption 10 W minimum

Table 3. Technical specifications of the LPGPU in NVIDIA Jetson Nano and NVIDIA Jetson Xavier NX.

Technical Specifications GM200 GV100

LPGPU Jetson Nano Jetson Xavier NX

Number of CUDA cores 640 384

Number of Tensor Cores - 48

Number of Streaming multiprocessors (SM) 5 6

Compute Capability 5.2 7.0

Warp Size 32 32

Maximum blocks per SM 32 32

Maximum warps per SM 64 64

Maximum threads per SM 2048 2048

32 bit registers per SM 64 KB 64 KB

Maximum shared memory per SM 96 KB 96 KB

4. Materials and Methods

4.1. Proposed Methodology

As already mentioned, the goal of this work is to provide a working solution that al-
lows for rapidly downloading the acquired hyperspectral data to the ground station, where
it could be visualized in real-time. It is assumed that a WLAN will be available during the
flight, and that both the on-board computer and the ground station will be connected to it
to use it as data downlink. Additionally, it is necessary to independently compress each
acquired hyperspectral frame in real-time, so that it can be rapidly transferred to the ground
station without saturating the donwlink. A previous work was already published, where
the viability of carrying out the real-time compression of the hyperspectral data using the
HyperLCA algorithm and some NVIDIA Jetson boards was tested [21]. In that work, it

35



Remote Sens. 2021, 13, 850

was assumed that the hyperspectral data that were collected by the Specim FX10 camera
would be directly placed in Random-access memory (RAM), and that the compression
process would directly read from it. Figure 4 graphically shows the workflow that was
proposed in that work.

Figure 4. Previous work design for the real-time compression of the hyperspectral data.

Ring buffers are used to prevent the saturation of the RAM memory of the board.
These ring buffers allow for a maximum number of frames to be stored at the same time in
the memory. Once that the last position of the ring buffer is written, it returns to the first
one, overwriting the information that is present in this position. This methodology is able to
achieve real-time performance and very high compression speeds, as demonstrated in [21].
For doing so, the HyperLCA Transform, which is the most computational demanding part
of the HyperLCA compressor, has been implemented into the LPGPU that is available in
the Jetson board using a set of self developed kernels that were programmed using CUDA.
However, this methodology presents some weaknesses that need to be overcome for the
purpose of this work:

• Information lost if any part of the process delays. If anything affects the perfor-
mance of the compression or transmission process during the mission, so that one
of them is delayed, part of the hyperspectral data will be lost. This is due to the fact
that the data are never written to a non-volatile memory on-board, and that the ring
buffers will be overwritten after a while.

• Original uncompressed data are not preserved. The captured hyperspectral frames
are just stored in the corresponding ring buffer in RAM memory, from where it is read
by the compression process. However, they are never stored in a non-volatile memory
and, hence, just the compressed-decompressed data will be available for the analysis.
Because the HyperLCA compressor is a lossy transform-based one, the original data
cannot be recovered.

• Restricted input data format. The overall compression process that is presented in [21]
was developed assuming that the captured hyperspectral frames would be placed in the
RAM memory in Band Interleaved by Pixel (bip) format using 16 bits unsigned integer
values and coded in little-endian. However, many of the hyperspectral pushbroom
cameras, such as the Specim FX10, work in Band Interleaved by Line (bil) format and
use different precision and endianness.

• Real-time data transmission not tested. While, in [21], it was proved that it was pos-
sible to achieve real-time compression performance using the HyperLCA compressor
in the Jetson boards, the transmission to the ground station was not tested.

A new design is proposed in this work to overcome these weaknesses and achieve the
desired performance. Figure 5 shows a graphic description of this design.

The main changes with respect to the design previously proposed in [21] are:

36



Remote Sens. 2021, 13, 850

• Acquired frames and compressed frames are stored in non-volatile memory. Each
acquired hyperspectral frame is independently stored in a single file in the non-volatile
memory of the on-board computer. Both the compression and transmission processes
read from these files. By doing so, it is guaranteed that all of the frames will be
compressed and transmitted to the ground station, even if a delay occurs in any
process. Additionally, the original uncompressed hyperspectral data can be extracted
from the on-board computer once that the mission finishes and the UAV lands.

• Flexible input data format. The compression process has been adapted to be able
to process data in different input formats and data types, namely (bip and bil, little-
endian, and big-endian), as well as being able to adapt to 12 and 16 bits resolutions.
This makes the proposed design more flexible and adaptable to different hyperspectral
cameras.

• Real-time data transmission tested. The transmission of the compressed hyperspec-
tral data from the on-board computer to the ground station has been tested in this
work, thus verifying the possibility of achieving real-time performance.

Each of these changes is explained in detail in the subsequent sections.

Figure 5. Proposed design for the real-time compression and transmission of the hyperspectral data.

4.1.1. Use of Non Volatile Memory

As previously mentioned, in the design that is described in [21], both the captured
frames and the compressed frames are stored in ring buffers in RAM memory. This may
result in frames being lost if any of the compression or transmission processes delay during
mission. In order to avoid this potential failure, the design proposed in this work stores
each frame captured by the Specim FX10 hyperspectral camera as a single file in non-
volatile memory. These files are read to feed the compression process, and the compressed
bitstreams for each frame are also stored as files to non-volatile memory. By doing so, even
if the compression or transmission process delays for a while, all of the frames will be
compressed and transmitted to the ground station with a certain latency. Additionally, the
original frames keep being stored in the on-board computer and they can be extracted from
it once the mission finishes and the UAV lands.

Despite the clear advantages of this new methodology, it also presents some limitations.
First of all, the writing and reading speed in the non-volatile memory is usually lower than
the corresponding speed of the RAM memory, thus making it more challenging to achieve
real-time performance. Additionally, it is necessary to add new steps to the overall process
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to manage the writing and reading stages of the produced files and the synchronization
between the data capturing, compression, and transmission processes.

Different levels of parallelism have been employed in order to carry out this method-
ology. A graphic representation of the overall process is displayed in Figure 5. First of all, a
Python process (P1 in Figure 5) is executed using the Python module, named iNotify, which
permits event-driven-programing. This process reacts every time that a file is created in
the target directory by the capturing process, reading the stored hyperspectral frame and
then loading it into the RAM memory for the compression process (P2 in Figure 5).

Secondly, another process (referred to as P2 in Figure 5) reads the hyperspectral frames to
be compressed from the RAM memory, compresses them, and stores the resulting bitstream
in a new file. This process involves the execution of the HyperLCA Transform, implemented
in the LPGPU included in the Jetson board, and the HyperLCA entropy coder, executed in the
CPU. For synchronizing the processes included inside P2, a set of ring buffers and memory
pointers is used. Concretely, two shared memory ring buffers are used for transferring the
data between the different subprocesses:

• Input Frame Ring Buffer. Part of the shared memory where the hyperspectral data
to be compressed are placed.

• Transform Output Data. Part of the shared memory where the results of the Hyper-
LCA Transform are stored for its codification.

Additionally, four single shared memory pointers are used to synchronize the execu-
tion of the different parallel subprocesses:

• Last Captured Frame Index. Index indicating the last frame captured by the hyper-
spectral camera.

• Last Transformed Frame Index. Index specifying the last transformed frame.
• Last Coded Frame Index. Index indicating the last coded frame.
• Process Finished. Boolean value indicating if the overall process should stop.

Finally, another Python process (P3 in Figure 5) is executed using the Python module
named iNotify, together with the Python module, named Paramiko. This process reacts
every time that a compressed bitstream is written to a file by process P2 in the target
directory and transmits it to the ground station via SSH connection.

Altogether, these processes (P1 to P3) result in the next synchronized behavior, which
keeps allowing both the real-time compression and the real-time transmission processes
while at the same time is able to recover itself from losses of capabilities and permits to
analyze the original captured data after the drone lands and the data are extracted from
the disk.

1. The Specim FX10 VNIR sensor captures a new frame and stores it in a specific folder
placed into a non-volatile memory. In this moment, the Python module named iNotify,
which permits event-driven-programing, detects the creation of a new hyperspectral
file that is loaded into the Input Frame Ring Buffer and the Last Captured Frame Index is
increased. If the HyperLCA Transform is delayed, it is detected by this process by
checking the Last Tranformed Frame Index, preventing overwriting the data in the Input
Frame Ring Buffer until the HyperLCA Transform moves to the next frame.

2. The HyperLCA Transform is continuously checking the Last Captured Frame Index to
know when a new frame is loaded in the Input Frame Ring Buffer. In that moment, the
frame is copied from the shared memory to the device memory to be compressed by
the HyperLCA Transform. Once this process finishes, the corresponding bitstream is
copied to the Transform Output Data and the Last Transformed Frame Index is increased.
If the codification process delays, it is detected by this process by checking the Last
Coded Frame Index, preventing overwriting the data in the Transform Output Data Ring
Buffer until the HyperLCA Coder moves to the next frame.

3. The entropy coder is continuously checking the Last Transformed Frame Index to know
when a new frame has been compressed by the HyperLCA Transform and stored in
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the Transform Output Data. After that, the frame is coded by the entropy coder and the
resultant compressed frame is written into a specific folder within a non-volatile memory.

4. Once this file is written in the specific folder, the iNotify Python module detects this new
element and triggers the transmission process of the compressed frame to the ground
station via Secure Shell Protocol (SSH) while using the Python module, named Paramiko.

4.1.2. Flexible Input Data Format

As already described, the HyperLCA Transform stage, which was implemented into
the LPGPU available in the Jetson board in [21], expects the input data to be formatted as
16 bits unsigned integers, in little-endian and BIP order. In order to make it more flexible
and adaptable to any input data format, the first kernel of the HyperLCA Transform has
been replaced by a set of six new kernels that support the conversion from different input
data formats to the one that is required by the next kernel of the HyperLCA Transform.
Each of these kernels first converts the data to 16 bits unsigned integer, in little-endian and
BIP order, as expected by the previous version, and then casts these values to floating point
arithmetic, as it is required by the subsequent HyperLCA Transform operations. The kernel
to be executed in each case is selected from the CPU while taking the input format of the
hyperspectral frames to be compressed into account. The six new proposed kernels are:

• uint16_le_bip_to_float. This kernel is used when the input image is formatted as
unsigned 16 bits integers, in bip format and little-endian.

• uint16_be_bip_to_float. This kernel is used when the input image is formatted as
unsigned 16 bits integers, in bip format and big-endian.

• uint16_le_bil_to_float. This kernel is used when the input image is formatted as
unsigned 16 bits integers, in bil format and little-endian.

• uint16_be_bil_to_float. This kernel is used when the input image is formatted as
unsigned 16 bits integers, in bil format and big-endian.

• uint12_bip_to_float. This kernel is used when the input image is formatted as un-
signed 12 bits integers, in bip format.

• uint12_bil_to_float. This kernel is used when the input image is formatted as un-
signed 12 bits integers, in bil format.

4.1.3. Packing Coded Frames

As it has been stated before in Section 4.1.1, the hyperspectral data are transmitted
from the UAV to the ground station once the compressed frames are stored in non-volatile-
memory. In one hand, this is possible due to the use of the SSH protocol that establishes
a secured connection between the on-board computer that was installed on the drone
and the ground station. On the other hand, it is the Python module, named Paramiko,
which implements that SSH connection generating a client-server (drone-ground station)
functionality for the transmission of the hyperspectral information.

As already described, the compression process is individually applied to each frame
and, so, each single frame could be written to a single file. Because the transmission process
is triggered every time that a file is written in the specified location using the Python iNotify
module, the transmission process would be triggered once per frame and a SSH transmission
would be executed for each of them. However, this may lead to a situation in which the
overhead produced in the SSH connection for initiating the transmission of each data file is
closed to the time that is needed to transmit the data. Thereby, in order to overcome this
issue, the compression process may accumulate a certain amount of compressed frames to
write them all together in a single file, thus reducing the communication overhead at the
cost of slightly increasing the transmission latency. Figure 6 illustrates this strategy, where
each block corresponds to a compressed hyperspectral frame.
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Figure 6. Strategy of packing various compressed frames into a single file.

4.2. Data Set Used in the Experiments

The proposed design for the real-time hyperspectral data compression and trans-
mission has been tested in this work carrying out multiple experiments and using real
hyperspectral data that are captured by the aforementioned UAV-based acquisition plat-
form [10]. This design includes a compression stage using the HyperLCA algorithm, whose
performance, in terms of compression quality, has been evaluated in detail in previous
works [20,21,28]. Accordingly, this work exclusively focuses in the development and
validation of a design that can achieve a real-time hyperspectral data compression and
transmission in a real scenario.

An available hyperspectral dataset that was obtained from one of the performed
missions has been used to simplify the experiments execution and the evaluation process.
This image is a subset of the hyperspectral data collected during a flight campaign over a
vineyard area in a village called Tejeda located in the center of the island of Gran Canaria.
The exact coordinates of the scanned terrain are 27°59′35.6′′N 15°36′25.6′′W (graphically
indicated in Figure 7a. The flight was performed at a height of 45 m over the ground
and at a speed of 4.5 m/s with the hyperspectral camera capturing frames at 150 FPS.
This resulted in a ground sampling distance in line and across line of approximately 3 cm.
This flight mission consisted of 12 waypoints that provided six swathes, but just one of
them was used in the experiments that were carried out in this work. The ground area
covered by this swath is highlighted in the Google Map picture displayed in Figure 7b. In
particular, a smaller portion of 825 subsequent hyperspectral frames of 1024 pixels and 160
spectral bands each was selected for the experiments (as highlighted in Figure 7c. Despite
the Specim FX10 camera used for acquiring this data can collect up to 224 bands, the first
20 bands and the last 44 ones were discarded during the capturing process due to a low
Signal-to-Noise-Ratio (SNR), as described in [29].
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(a) (b)

(c)

Figure 7. Graphical description of the appearance and location of the terrain corresponding to the image used in this work
for the experiments. (a) Google Maps pictures indicating the terrain location on the island of Gran Canaria. (b) Google
Maps pictures indicating the area covered during the selected swath of the flight campaign over the vineyard. (c) RGB
respresentation of the real hyperspectral data, highlighting the portion of it that was used for the experiments.

Using the described hyperspectral image, an acquisition simulation process has been
developed, which independently stores each of the 825 hyperspectral frames as a single
file in a target directory and at user defined speed. This process has been used in the
experiments to emulate the camera capturing process with the possibility of controlling the
simulated capturing speed, while, at the same time, allowing for the execution of all the
experiments with the same data and in similar conditions.

The Specim FX10 camera used for collecting the aforementioned images measures
the incoming radiation using a resolution of 12 bpppb. However, it can be configured
in two different modes, 12-Packed and 12-Unpacked to store each value using 12, or 16
bpppb, respectively. In the 12-Unpacked mode, four zeros are padded at the beginning of
each sample. With independence of the mode used, the hyperspectral frames are always
stored in bil format. However, in order to test the proposed design with more details, the
acquired image has been off-board formatted to store it using different configurations.
On one side, it has been stored using the 12-Packed, bil format, which is the most efficient
format that is produced by the sensor. This has been labeled as uint12-bil in the results.
On the other side, it has been stored as 12-Unpacked, bip format, which is not a format that
can be directly produced by the sensor and requires reordering the data. Additionally,
this format requires more memory, which makes it less efficient. However, this format is
the one for which the reference HyperLCA compressor and its parallel implementation
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proposed in [21] were originally designed, and allows for using it without including any
of the additional data transformation described in Section 4.1.2. This has been labeled as
uint16-bip in the results. The results that could be obtained with any other combination of
data precision and samples order would be in the range of the results that were obtained
for these two combinations.

5. Results

Several experiments have been carried out in this work to evaluate the performance of
the proposed designed for real-time hyperspectral data compression and transmission. First,
the achievable transmission speed that could be obtained without compressing the acquired
hyperspectral frames is analyzed in Section 5.1. The obtained results verify that the data
compression is necessary for achieving a real-time transmission. Secondly, the maximum
compression speed that can be obtained without parallelizing the compression process using
the available GPU has been tested in Section 5.2. The obtained results demonstrate the neces-
sity of parallelizing the process using the available GPU to achieve real-time performance.
Finally, the results that can be obtained with the proposed design taking advantage of the
different levels of parallelism and the available GPU are tested in Section 5.3, demonstrating
its suitability for the real-time hyperspectral data compression and transmission.

In the following Tables 4–7, the simulated capturing speed and the maximum com-
pressing and transmission speeds are referred to as Capt, Comp, and Trans, respectively. In
addition, the WiFi signal strength is named Signal in the aforementioned tables of results, a
value that is directly obtained from the WLAN interface during the transmission process.

5.1. Maximum Transmission Speed without Compression

First of all, the maximum transmission speed that could be achieved if the acquired
frames were not compressed has been tested. For doing so, the targeted capturing speed
has been set to 100 FPS, since it is the lowest frame rate typically used in our flight missions.
Table 4 displays the obtained results.

Table 4. Transmission speed without compressing the frames.

Input Parameters
Jetson Xavier NX Jetson Nano

Speed (FPS) Speed (FPS)

Format FPS Packing Capt Trans Signal Capt Trans Signal
uint12-bil 100 1 99 26 42/100 98 13 100/100
uint12-bil 100 5 103 36 45/100 101 18 100/100
uint16-bip 100 1 101 21 47/100 93 11 100/100
uint16-bip 100 5 100 30 38/100 105 15 100/100

As it can be observed, when independently transmitting each frame (Packing = 1), the
transmission speed is too low in relation to the capturing speed, even capturing at 100 FPS.
When transmitting five frames at a time, the transmission speed increases, but it is still
very low. It can also be observed that, when using the uint12-bil format, the transmission
speed is approximately 25 percent faster than when using the uint16-bip one. This makes
sense, since the amount of data per file when using the uint12-bil format is 25 percent lower
than the uint16-bip one. These results verify the necessity of compressing the acquired
hyperspectral data before transmitting it to the ground station.

Additionally, it can also be observed in the results that the Jetson Xavier NX is able
to achieve a higher transmission rate than the Jetson Nano, even if the Jetson Nano has a
higher WiFi signal strength. This could be due to the fact that the Jetson Nano is using an
external TP-Link TL-WN722N WiFi antenna that is connected through USB2.0 interface,
while the WiFi antenna used by the Jetson Xavier NX is integrated in the board.

5.2. Maximum Compression Speed without Gpu Implementation

Once the necessity of carrying out the compression of the acquired hyperspectral data
has been demonstrated, the necessity of speeding up this process by carrying out a parallel
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implementation is to be tested. For doing so, the compression process within the HyperLCA
algorithm has been serially executed in the CPU integrated in both boards for evaluating
the compression speed. The capturing speed has been set to the minimum value used in
our missions (100 FPS), as done in Section 5.1. The compression parameters have been
set to the less restrictive values typically used for the compression within the HyperLCA
algorithm (CR = 20 and Nbits = 12). From the possible combinations of input parameters
for the HyperLCA compressor, these values should lead to the fastest compression results
according to the analysis done in [21], where the HyperLCA compressor was implemented
onto a Jetson TK1 and Jetson TX2 developing boards. Additionally, the data format used
for this experiment is uint16-bip, since this is the data format for which the reference version
of the HyperLCA compressor is prepared. By using this data format, the execution of
extra data format transformations that would lead to slower results is prevented. Table 5
displays the obtained results.

Table 5. Compression speed without using parallelism.

Input Parameters
Jetson Xavier NX Jetson Nano

Speed (FPS) Speed (FPS)

Format CR Nbits FPS Packing Capt Comp Capt Comp
uint16-bip 20 12 100 1 103 23 96 9

The compression speed achieved without speeding up the process is too low and far
from a real-time performance, as it can be observed in Table 5. This demonstrates the necessity
of a parallel implementation that takes advantage of the available LPGPUs integrated in the
Jetson boards for increasing the compression speed. It can also be observed that the Jetson
Xavier NX offers a better performance that the Jetson Nano.

5.3. Proposed Design Evaluation

In this last experiment, the performance of the proposed design has been evaluated
for both the Jetson Xavier NX and the Jetson Nano boards. The capturing speed has been
set to the minimum and maximum values that are typically used in our flying missions,
which are 100 FPS and 200 FPS, respectively. Two different combinations of compression
parameters have been tested. The first one, CR = 20 and Nbits = 12, corresponds to the less
restrictive scenario and should lead to the fastest compression results according to [21].
Similarly, the second one, CR = 12 and Nbits = 8, corresponds to the most restrictive case and
it should lead to the slowest compression results, as demonstrated in [21]. Furthermore,
both the uint16-bip and uint12-bil data formats have been tested. Finally, the compressed
frames have been packed in two different ways, individually and in groups of 5. All of the
obtained results are displayed in Table 6.

The Jetson Xavier NX is always capable of compressing more than 100 frames per
second, regardless of the configuration used, as observed in Table 6. However, it is only
capable of achieving 200 FPS in the compression in the less restrictive scenario, which is
uint12-bil, CR = 20, Nbits = 12 and Packing = 5. Additionally, when capturing at 200 FPS,
there are other scenarios in which real-time compression is almost achieved, producing
compression speeds up to 190 FPS or 188 FPS. On the other hand, the Jetson Nano only
presents a poorer compression performance, achieving real-time compression speed in the
less restrictive scenario.

Regarding the transmission speed, it can be observed that, when packing the frames
in groups of five, the transmission speed is always the same as the compression speed,
but in the two fastest compression scenarios in which the compression speed reaches 200
and 188 FPS, the transmission speed stays at 185 and 162 FPS, respectively. This may be
to the fact that the WiFi signal strength is not high enough (36/100 and 39/100) in these
two tests. Nevertheless, two additional tests have been carried out for these particular
situations with the Jetson Xavier NX, whose results are displayed in Table 7. A real-time
transmission is achieved when increasing the packing size to 10 frames, as shown in this
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table. It can be also observed that in these two tests real-time compression has also been
achieved. This may be due to the fact that a lower number of files are being written and
read by the operating system. This suggests that a faster performance could be obtained in
the Jetson Xavier NX using a solid stage disk (SSD) instead of the SD card that has been
used so far in these experiments.

Table 6. Speed results for the proposed design.

Input Parameters
Jetson Xavier NX Jetson Nano

Speed (FPS) Speed (FPS)

Format CR Nbits FPS Packing Capt Comp Trans Signal Capt Comp Trans Signal

uint12—bil

20
12 100 1 104 104 75 48/100 93 93 56 100/100

5 106 106 106 37/100 101 101 101 100/100

200 1 197 190 77 47/100 185 105 59 100/100
5 202 200 185 36/100 208 110 110 100/100

12
8 100 1 104 104 69 48/100 91 44 44 100/100

5 104 104 104 37/100 94 44 44 100/100

200 1 205 140 73 47/100 205 44 44 100/100
5 187 138 138 37/100 187 45 45 100/100

uint16—bip

20
12 100 1 102 102 75 47/100 85 82 39 100/100

5 103 103 103 38/100 98 83 83 100/100

200 1 189 166 65 46/100 194 82 52 100/100
5 193 188 162 39/100 186 84 84 100/100

12
8 100 1 100 99 68 47/100 99 36 36 100/100

5 101 101 101 38/100 99 36 36 97/100

200 1 196 119 49 38/100 188 35 35 100/100
5 171 110 110 37/100 208 36 36 100/100

Table 7. Speed results for the proposed design when increasing the packing size to 10 frames.

Input Parameters
Jetson Xavier NX

Speed (FPS)

Format CR Nbits FPS Packing Capt Comp Trans Signal

uint12-bil 20 12 200 10 206 206 206 37/100
uint16-bip 20 12 200 10 203 203 203 48/100

Additionally, the time at which each hyperspectral frame has been captured, com-
pressed, and transmitted in these two last experiments is graphically displayed in Figure 8.
Figure 8a shows the results that were obtained for the uint12-bil data format, while Figure 8b
shows the values that were obtained for the uint16-bip one. In these two graphics, it can be
observed how, on average, the slope of the line representing the captured frames (in blue
color), the line representing the compressed frames (in orange), and the line representing
the transmitted frames (in green color) is the same, indicating a real-time performance. It
can also be observed the effect of packing the frames in groups of 10 in the transmission
line. Finally, Figure 8a also shows the effect of a short reduction in the transmission speed
due to a lower WiFi signal quality. As it can be observed in this figure, the transmission
process is temporarily delayed and so is the compression one to prevent writing new data
to the shared memory before processing the existing one. After a while, both the connection
and the overall process are fully recovered, demonstrating the benefits of the proposed
methodology previously exposed in Section 4.1.
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Finally, all of the obtained results demonstrate that packing the compressed frames
reduces the communication overhead and accelerates the transmission process. It can also
be observed that using the data in uint12-bil format accelerates the compression process,
since less data are been transferred through the shared memory, demonstrating the benefits
of the developed kernels for allowing the compression process to be adapted to any input
data format.

In general, the results that were obtained for the Jetson Xavier NX demonstrate that
the proposed design can be used for real-time compressing and transmitting hyperspectral
images at most of the acquisition frame rates typically used in our flying missions and
using different configuration parameters for the compression. Additionally, it could be
potentially faster if a solid stage disk (SSD) memory were used instead of the SD card that
was used in the experiments. Regarding the Jetson Nano, a real-time performance was
hardly achieved in just the less restrictive scenarios.

(a) (b)

Figure 8. Graphical representation of the time in which each hyperspectral frame is captured, compressed and transmitted
for the experiments displayed in Table 7. (a) uint12-bil version. (b) uint16-bip version.

6. Discussion

The main goal of this work is to be able to transmit the hyperspectral data captured by
an UAV-based acquisition platform to a ground station in such a way that it can be analyzed
and/or visualized in real-time to take decisions on the flight. The experiments conducted
in Section 5.1 show the necessity of compressing the acquired hyperspectral data in order to
achieve a real-time transmission. Nevertheless, the achievement of a real-time compression
performance on-board this kind of platforms is not an easy task when considering the high
data rate that is produced by the hyperspectral sensors and the limited computational
resources available on-board. This fact has been experimentally tested in Section 5.2. While
considering this, the compression algorithm to be used must meet several requirements,
including a low computational cost, a high level of parallelism that allows for taking
advantage of the LPGPUs available on-board to speed up the compression process, being
able to guarantee high compression ratios, and integrate an error resilience nature to ensure
that the compressed data can be delivered as expected. These requirements are very similar
to those found in the space environment, where the acquired hyperspectral data must be
rapidly compressed on-board the satellite to save transmission bandwidth and storage
space, using limited computational resources and ensuring an error resilience behaviour.

The HyperLCA compressor has been selected in this work for carrying out the com-
pression of the acquired hyperspectral data, since this compressor was originally devel-
oped for the space environment and satisfies all the mentioned requirements [20,28]. This
compressor has been tested in previous works against those that were proposed by the
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Consultative Committee for Space Data Systems (CCSDS) in their Recomended Standards (Blue
Books) [25]. Concretely, in [20], it was compared with the Karhunen–Loeve transform-based
approach described in the CCSDS 122.1-B-1 standard (Spectral Preprocessing Transform for
Multispectral and Hyperspectral Image Compression) [30] as the best spectral transform
for decorrelating hyperspectral data in terms of accuracy. The results shown in [20] indicate
that the HyperLCA transform is able to achieve a similar decorrelation performance, but at
a much lower computational cost and introducing extra advantages, such as higher levels
of parallelism and an error resilience behavior. In [20], the HyperLCA compressor was
also tested against the lossless prediction-based approach that was proposed in the CCSDS
123.0-B-1 standard (Lossless Multispectral and Hyperspectral Image Compression) [31].
As expected, the compression ratios that can be achieved by a lossless approach are very
far from those that are required by the application targeted in this work. The CCSDS has
recently published a new version of this prediction-based algorithm, making it able to
behave not only as a lossless solution, but also as a near-lossless one to achieve higher
compression ratios. This new solution has been published under the CCSDS 123.0-B-2
standard (Low-Complexity Lossless and Near-Lossless Multispectral and Hyperspectral
Image Compression) [32] and it represents a very interesting alternative to be considered
in future works.

On the other hand, although presenting a new methodology to transmit hyperspectral
information from a UAV to a ground station in real-time is the main goal of this research
work, the ulterior hyperspectral imaging applications have been always taken into account
during the development process. This means that, while it is necessary to carry out lossy-
compression to meet the compression ratios that are imposed by the acquisition data rates
and transmission bandwidth, the quality of the hyperspectral data received in the ground
station has to be good enough to preserve the desired performance in the targeted appli-
cations. As previously described in this work, the HyperLCA compressor was developed
following an unmixing-like strategy in which the most different pixels present in each image
block are perfectly preserved through the compression-decompression process. This is
traduced in the fact that most of the information that is lost in the compression process
corresponds to the image noise, while the relevant information is preserved, as demon-
strated in [20,29]. In [20], the impact of the compression-decompression process within the
HyperLCA algorithm was tested when using the decompressed images for hyperspectral
linear unmixing, classification, and anomaly detection, demonstrating that the use of this
compressor does not negatively affect the obtained results. This specific study was carried
out while using well known hyperspectral datasets and algorithms, such as the Pavia Uni-
versity data set coupled with the Support Vector Machine (SVM) classifier, or the Rochester
Institute of Technology (RIT) and the World Trade Center (WTC) images coupled with the
Orthogonal Subspace Projection Reed-Xiaoli (OSPRX) anomaly detector. The work presented
in [29] carries out a similar study, just for anomaly detection, but using the hyperspectral
data that were collected by the acquisition platform used in this work and with the exact
same configurations, both in the acquisition stage and compression stage. Concretely, the
data used in this work, as described in Section 4.2, are a reduced subset of the hyperspectral
data used in [29].

Finally, all of this work has been developed while assuming that a Wireless Local
Area Network (WLAN), based on the 802.11 standard, will be available during the flight,
and that both the on-board computer and ground station will be connected to it to use
it as data downlink. Further research works are needed to increase the availability and
range of this kind of networks or to be able to integrate the proposed solution with
another wireless transmission technologies to make it available to a wider range of remote
sensing applications.

7. Conclusions

In this paper, a design for the compression and transmission of hyperspectral data
acquired from an UAV to a ground station has been proposed so that it can be analysed
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and/or visualized by an operator in real-time. This opens the possibility of taking advan-
tage of the spectral information collected by the hyperspectral sensors for supervised or
semi-supervised applications, such as defense, survilliance, or search and rescue missions.

The proposed design assumes that a WLAN will be available during the flight, and
that both the on-board computer and the ground station will be connected to it to use it
as data downlink. This design can work with different input data formats, which allows
for using it with most of the hyperspectral sensors present in the market. Additionally,
it preserves the original hyperspectral data in a non-volatile memory, producing two
additional advantages. On one side, if the connection is lost for a while during the mission,
the information is not lost, and the process will go on once the connection is recovered,
guaranteeing that all of the acquired data are transmitted to the ground station. On the
other side, once the mission finishes and the drone lands, the real hyperspectral data
can be extracted from the non-volatile memory without compression if a more detailed
analysis is required.

The entire design has been tested using two different boards from NVIDIA that
integrate LPGPUs, the Jetson Xavier NX, and the Jetson Nano. The LPGPU has been used
for accelerating the compression process, which is required for decreasing the reduction
of the data volume for its transmission. The compression has been carried out using the
HyperLCA algorithm, which permits achieving high compression ratios with a relatively
high rate-distortion relation and at a reduced computational cost.

Multiple experiments have been executed to test the performance of all the stages
that build up the proposed design for both the Jetson Xavier NX and Jetson Nano boards.
The results obtained for the Jetson Xavier NX demonstrate that the proposed design
can be used for real-time compressing and transmitting hyperspectral images at most
of the acquisition frame rates typically used in our flying missions and using different
configuration parameters for the compression. Additionally, it could be potentially faster if
a solid stage disk (SSD) memory was used instead of the SD card that was used in these
experiments. On the other hand, when using the Jetson Nano, a real-time performance was
achieved in just the less restrictive scenarios.

Future research lines may include the optimization of the proposed design for reducing
its computational burden, so that it can achieve a more efficient performance, especially
when using boards with more limitations in terms of computational resources as an on-
board computer.
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Abstract: Recently, convolutional neural networks have been successfully applied to lossy image
compression. End-to-end optimized autoencoders, possibly variational, are able to dramatically
outperform traditional transform coding schemes in terms of rate-distortion trade-off; however, this
is at the cost of a higher computational complexity. An intensive training step on huge databases
allows autoencoders to learn jointly the image representation and its probability distribution, pos-
sibly using a non-parametric density model or a hyperprior auxiliary autoencoder to eliminate
the need for prior knowledge. However, in the context of on board satellite compression, time
and memory complexities are submitted to strong constraints. The aim of this paper is to design a
complexity-reduced variational autoencoder in order to meet these constraints while maintaining the
performance. Apart from a network dimension reduction that systematically targets each parameter
of the analysis and synthesis transforms, we propose a simplified entropy model that preserves the
adaptability to the input image. Indeed, a statistical analysis performed on satellite images shows
that the Laplacian distribution fits most features of their representation. A complex non parametric
distribution fitting or a cumbersome hyperprior auxiliary autoencoder can thus be replaced by a
simple parametric estimation. The proposed complexity-reduced autoencoder outperforms the
Consultative Committee for Space Data Systems standard (CCSDS 122.0-B) while maintaining a
competitive performance, in terms of rate-distortion trade-off, in comparison with the state-of-the-art
learned image compression schemes.

Keywords: remote sensing; lossy compression; on board compression; transform coding; rate-
distortion; JPEG2000; CCSDS; learned compression; neural networks; variational autoencoder;
complexity

1. Introduction

Satellite imaging has many applications in oceanography, agriculture, biodiversity con-
servation, forestry, landscape monitoring, geology, cartography or military surveillance [1].
The increasing spectral and spatial resolutions of on board sensors allow obtaining ever-
better quality products, at the cost of an increased amount of data to be handled. In this
context, on board compression plays a key role to save transmission channel bandwidth
and to reduce data-transmission time [2]. However, it is subject to strong constraints in
terms of complexity. Compression techniques can be divided into two categories: lossless
and lossy compression. Lossless compression is a reversible technique that compresses data
without loss of information. The entropy measure, which quantifies the information con-
tained in a source, provides a theoretical boundary for lossless compression, e.g., the lowest
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attainable compression bit-rate. For optical satellite images, the typical lossless compres-
sion rate that can be achieved is less than 3:1 [3]. On the other side, lossy compression
achieves high compression rates through transform coding [4] and the optimization of
a rate-distortion trade-off. Traditional frameworks for lossy image compression operate
by linearly transforming the data into an appropriate continuous-valued representation,
quantizing its coefficients independently, and then encoding this discrete representation
using a lossless entropy coder. To give on-ground examples, JPEG (Joint Photographic
Experts Group) uses a discrete cosine transform (DCT) on blocks of pixels followed by
a Huffman coder whereas JPEG2000 [5] uses an orthogonal wavelet decomposition fol-
lowed by an arithmetic coder. In the context of on board compression, the consultative
committee for space data systems (CCSDS), drawing on the on-ground JPEG2000 standard,
recommends the use of the orthogonal wavelet transform [6]. However, the computational
requirements of the CCSDS have been considerably reduced with respect to JPEG2000,
taking into account the significant hardware constraints in payload image processing units
of satellites. This work follows the same logic; however in the context of learned image
compression. The idea is to propose a reduced-complexity learned compression scheme,
considering on board limitations regarding computational resources due to hardware and
energy consumption constraints.

In recent years, artificial neural networks appeared as powerful data-driven tools to
solve problems previously addressed with model-based methods. Their independence
from prior knowledge and human efforts can be regarded as a major advantage. In par-
ticular, image processing has been widely impacted by convolutional neural networks
(CNNs). CNNs have proven to be successful in many computer vision applications [7]
such as classification [8], object detection [9], segmentation [10], denoising [11] and feature
extraction [12]. Indeed, CNNs are able to capture complex spatial structures in the images
through the convolution operation that exploits local information. In CNNs, linear filters
are combined with non-linear functions to form deep learning structures doted of a great
approximation capability. Recently, end-to-end CNNs have been successfully employed for
lossy image compression [13–16]. Such architectures jointly learn a non-linear transform
and its statistical distribution to optimize a rate-distortion trade-off. They are able to dra-
matically outperform traditional compression schemes regarding this trade-off; however at
the cost of a high computational complexity.

In this paper, we start from the state-of-the-art CNN image compression schemes [13,16]
to design a reduced-complexity framework in order to adapt to satellite image compression.
Please note that the second one [16] is a sophistication of the first one [13] that leads to
higher performance at the cost of an increased complexity, by better adapting to the input
image. More precisely, the variational autoencoder [16] allows reaching state-of-the-art
compression performance, close to the one of BPG (Better Portable Graphics) [17] at the
expense of a considerable increase in complexity with respect to [13], reflected by a runtime
increase between 20% and 50% [16]. Our objective is to find an intermediary solution, with
similar performance as [16] and similar or lower complexity as [13]. The first step is an
assessment of the complexity of these reference frameworks and a statistical analysis of the
transforms they learn. The objective is to simplify both the transform derivation and the
entropy model estimation. Indeed, apart from a reduction of the number of parameters
required for the transform, we propose a simplified entropy model that still preserves the
adaptivity to the input image (as in [16]) and thus maintain compression performance.

The paper is organized as follows. Section 2 presents some background on learned
image compression and details two interesting frameworks. Section 3 performs a com-
plexity analysis of these frameworks and a statistical analysis of the transform they learn.
Based on these analyses, a complexity-reduced architecture is proposed. After a subjective
analysis of the resulting decompressed image quality, Section 4 quantitatively assesses the
performance of this architecture on a representative set of satellite images. A comparative
complexity study is performed and the impact of the different design options on the com-
pression performance is studied, for various compression rates. A discussion regarding the
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compatibility of the proposed architecture complexity with the current and future satellite
resources is then held. Section 5 concludes the paper. The symbols used in this paper are
listed in Appendix A.

2. Background: Autoencoder Based Image Compression

Autoencoders were initially designed for data dimension reduction similar to e.g., Prin-
cipal Component Analysis (PCA) [7]. In the context of image compression, autoencoders
are used to learn a representation with low entropy after quantization. When devoted to
compression, the autoencoder is composed of an analysis transform and a synthesis trans-
form connected by a bottleneck that performs quantization and coding. Please note that the
dequantization process is integrated in the synthesis transform. An auxiliary autoencoder
can also be used to infer the probability distribution of the representation as in [16]. In this
paper, we focus on two reference architectures: [13] displayed in Figure 1 (left) and [16]
displayed in Figure 1 (right).

Figure 1. Architecture of the autoencoder [13] (left) and of the variational autoencoder [16] (right).
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The first one [13] is composed of a single autoencoder. The second one [16] is composed
of a main autoencoder (slightly different than the one in [13]) and of an auxiliary one which
aims to infer the probability distribution of the latent coefficients. Recall that the second
architecture is an upgraded version of the first one regarding both the design of the analysis
and synthesis transforms and the estimation of the entropy model.

2.1. Analysis and Synthesis Transforms

In the main autoencoder (Figure 1 (left) and left column of Figure 1 (right)), the analy-
sis transform Ga is applied to the input data x to produce a representation y = Ga(x). After
the bottleneck, the synthesis transform Gs is applied to the quantized representation ŷ to
reconstruct the image x̂ = Gs(ŷ). These representations are derived through several layers
composed of filters each followed by a non-linear activation function. The learned repre-
sentation is multi-channel (the output of a particular filter is called a channel or a feature)
and non-linear. As previously mentioned, the analysis and synthesis transforms proposed
in [16] result from improvements (mainly parameter adjustments) of the ones proposed
in [13]. Thus, for brevity, the following description focuses on [16]. In [16], the analysis
(resp. synthesis) transform Ga (resp. Gs) is derived through 3 convolutional layers each
composed of N filters with kernel support n × n associated with parametric activation func-
tions called generalized divisive normalizations (GDN) (resp. Inverse Generalized Divisive
Normalizations (IGDN)) and a downsampling (resp. upsampling) by a factor 2. These three
convolutional layers are linked to the input (resp. output) of the bottleneck by a convolu-
tion layer composed of M > N (resp. N) filters with the same kernel support but without
activation function. Please note that the last layer of the synthesis transform is composed of
M > N filters and leads to the so-called wide bottleneck that offers increased compression
performance according to [16,18]. Contrarily to usual parameter-free activation functions
(e.g., ReLU, sigmoid,. . . ), GDN and IGDN are parametric functions that implement an
adaptive normalization. In a given layer, the normalization operates through the different
channels independently on each spatial location of the filter outputs. If vi(k, l) denotes the
value indexed by (k, l) of the output of the ith filter, the GDN output is derived as follows:

GDN(vi(k, l)) =
vi(k, l)

(βi + ∑N
j=1 γijv2

j (k, l))1/2
for i = 1, . . . , N. (1)

The IGDN is an approximate inverse of the GDN, derived as follows:

IGDN(vi(k, l)) = vi(k, l)

(
β′

i +
N

∑
j=1

γ′
ijv

2
j (k, l)

)1/2

for i = 1, . . . , N. (2)

According to Equation (1) (resp. Equation (2)), the GDN (resp. IGDN) for channel
i is defined by N + 1 parameters denoted by βi and γij for j = 1, . . . , N (resp. β′

i and γ′
ij

for j = 1, . . . , N). Finally N(N + 1) parameters are required to define the GDN/IGDN in
each layer. The learning and the storage of these parameters are required. However, GDN
has been shown to reduce statistical dependencies [19,20] and thus it appears particularly
appropriate for transform coding. According to [19], the GDN better estimates the optimal
transform than conventional activation functions for a wide range of rate-distortion trade-
offs. GDN/IGDN, while intrinsically more complex than usual activation functions, are
prone to boost the compression performance especially in case of a low number of layers,
thus affording a low global complexity for the network.

2.2. Bottleneck

The interface between the analysis transform and the synthesis transform, the so-
called bottleneck, is composed of a quantizer that produces the discrete-valued vector
ŷ = Q(y), an entropy encoder and its associated decoder. Recall that the dequantization
is performed by the synthesis transform Gs (and by Hs in the case of the variational
autoencoder). A standard entropy coding method, such as arithmetic, range or Huffman
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coding [21–23] losslessly compress the quantized data representation by exploiting its
statistical distribution. The bottleneck thus requires a statistical model of the quantized
learned representation.

2.3. Parameter Learning and Entropy Model Estimation
2.3.1. Loss Function: Rate Distortion Trade-Off

The autoencoder parameters (filter weights, GDN/IGDN parameters and represen-
tation distribution model) are jointly learned through the optimization of a loss function
involving the rate R(ŷ) and the distortion D(x, x̂) between the original image x and the
reconstructed image x̂. The rate-distortion criterion, denoted as J(x, x̂, ŷ), writes as the
weighted sum:

J(x, x̂, ŷ) = λD(x, x̂) + R(ŷ), (3)

where λ is a key parameter that tunes the rate-distortion trade-off.

• The rate R achieved by an entropy coder is lower-bounded by the entropy derived
from the actual discrete probability distribution m(ŷ) of the quantized vector ŷ.
The rate increase comes from the mismatch between the probability model pŷ(ŷ)
required for the coder design and m(ŷ). The bit-rate is given by the Shannon cross
entropy between the two distributions:

H(ŷ) = Eŷ∼m
[−log2 pŷ(ŷ)

]
, (4)

where means distributed according to. The bit-rate is thus minimized if the distribu-
tion model pŷ(ŷ) is equal to the distribution m(ŷ) arising from the actual distribution
of the input image and from the analysis transform Ga. This highlights the key role of
the probability model.

• The distortion measure D is chosen to account for image quality as perceived by a
human observer. Due to its many desirable computational properties, the mean square
error (MSE) is generally selected. However, a measure of perceptual distortion may
also be employed such as the multi-scale structural similarity index (MS-SSIM) [24].

The loss function defined in Equation (3) is minimized through gradient descent with
back-propagation [7] on a representative image training set. However, this requires the
loss function to be differentiable. In the specific context of compression, a major hurdle
is that the derivative of the quantization function is zero everywhere except at integers,
where it is undefined. To overcome this difficulty, a quantization relaxation is considered
in the backward pass (i.e., when back-propagating the gradient of the error). Ballé et al.
(2016) [13] proposed to back-propagate an independent and identically distributed (i.i.d.)
uniform noise, while Theis et al. (2017) [14] proposed to replace the derivative of the
quantization function with a smooth approximation. In both cases, the quantization is kept
as it is in the forward pass (i.e., when processing an input data).

2.3.2. Entropy Model

As stressed above, a key element in the end-to-end learned image compression frame-
works is the entropy model defined through the probability model pŷ(ŷ) assigned to the
quantized representation for coding.

• Fully factorized model: For simplicity, in [13,14], the approximated quantized repre-
sentation was assumed independent and identically distributed within each channel
and the channels were assumed independent of each other, resulting in a fully factor-
ized distribution:

pỹ|ψ(ỹ|ψ) = ∏
i

pỹi |ψ(i) (ỹi), (5)
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where index i runs over all elements of the representation, through channels and
through spatial locations, ψ(i) is the distribution model parameter vector associated
with each element. As mentioned previously, for back-propagation derivation during
the training step, the quantization process (ŷ = Q(y)) is approximated by the addition
of an i.i.d uniform noise Δy, whose range is defined by the quantization step. Due to
the adaptive local normalization performed by GDN non-linearities, the quantization
step can be set to one without loss of generality. Hence the quantized representation ŷ,
which is a discrete random variable taking values in Z, is modelled by the continuous
random vector ỹ defined by:

ỹ = y + Δy (6)

taking values in R. The addition of the uniform quantization noise leads to the
following expression for pỹi |ψ(i) (ỹi) defined through a convolution by a uniform
distribution on the interval [−1/2, 1/2]:

pỹi |ψ(i) (ỹi) = pyi |ψ(i) (yi) ∗ U (−1/2, 1/2). (7)

For generality, in [13], the distribution pyi |ψ(i) (yi) is assumed non parametric, namely
without predefined shape. In [13,14], the parameter vectors are learned from data dur-
ing the training phase. This learning, performed once and for all, prohibits adaptivity
to the input images during operational phase. Moreover, the simplifying hypothesis
of a fully factorized distribution is very strong and not satisfied in practice, elements
of ŷ exhibiting strong spatial dependency as observed in [16]. To overcome these
limitations and thus to obtain a more realistic and more adaptive entropy model, [16]
proposed a hyperprior model, derived through a variational autoencoder, which takes
into account possible spatial dependency in each input image.

• Hyperprior model: Auxiliary random variables z̃, conditioned on which the quantized
representation ỹ elements are independent, are derived from y by an auxiliary autoen-
coder, connected in parallel with the bottleneck (right column of Figure 1 (right)). The
hierarchical model hyper-parameters are learned for each input image in operational
phase. Firstly, the hyperprior transform analysis Ha produces the set of auxiliary
random variables z. Secondly, z is transformed by the hyperprior synthesis transform
Hs into a second set of random variables σ. In [16], z distribution is assumed fully
factorized and each representation element ỹi, knowing z, is modeled by a zero-mean
Gaussian distribution with its own standard deviation σi. Finally, taking into account
the quantization process, the conditional distribution of each quantized representation
element is given by:

ỹi|z̃ ∼ N
(

0, σi
2
)
∗ U

(
−1

2
,

1
2

)
. (8)

The rate computation must take into account the prior distribution of z̃, which has to
be transmitted to the decoder with the compressed data, as side information.

In the following we derive the complexity of the analysis and synthesis transforms,
involved both in the main and in the auxiliary autoencoders of [16]. We also perform a
statistical analysis of the learned transform on a representative set of satellite images. The
objective is to propose an entropy model simpler while adaptive, because more specifically
tailored than the two previous ones.

3. Reduced-Complexity Variational Autoencoder

In the literature, the design of learned image compression frameworks hardly takes
into account the computational complexity: the objective is merely to obtain the best
performance in terms of rate-distortion trade-off. However, in the context of on board
compression, a trade-off between performance and complexity has also be considered to
take into account the strong computational constraints. Our focus here is to propose a
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complexity-reduced alternative to the state-of-the-art structure [16] minimizing the impact
on the performance. Please note that this complexity reduction must be essentially targeted
at the coding part of the framework, most subject to the on board constraints. A meaningful
indicator of the complexity reduction is the number of network parameters. Indeed, its
reduction has a positive impact not only on the memory complexity, but also on the time
complexity and on the training difficulty. Indeed, the optimization problem involved in the
training step applies on a smaller number of parameters. This is an advantage even if the
training is performed on ground. The convergence is thus obtained with less iterations and
thus within a shorter time. Moreover, the complexity reduction has also a positive impact
on the ease to upload the final model to the spacecraft (once commissioning is finished and
the training with real data completed) as the up-link transmission is severely limited.

3.1. Analysis and Synthesis Transforms
3.1.1. Complexity Assessment

First, let characterize the computational complexity of a convolutional layer composing
the analysis and synthesis transforms. Let Nin denote the number of features at the
considered layer input. In the particular case of the network first layer, Nin is the number of
channels of the input image (Nin = 1 for a panchromatic image) else Nin is the number of
filters of the previous layer. Let Nout denote the number of features at this layer output, i.e.,
the number of filters of this layer. As detailed in Section 2, in [16], Nout = N for each layer
of the analysis and synthesis transforms except for the last one of the main auto-encoder
analysis transform and the last one of the auxiliary auto-encoder synthesis transform
composed of M filters with M > N and thus for these layers Nout = M. As in [13,16],
we consider square filters with size n × n. The number of parameters associated with the
filtering part of the layer is:

Param f = (n × n × Nin + δ)× Nout. (9)

The term δ is equal to 1 when a bias is introduced and is equal to 0 otherwise. Please
note that this bias is rarely used in the considered architectures (except in Tconv3, as
displayed in Figure 1). The filtering is applied to each input channel after downsampling
(respectively upsampling). The downsampled (resp. upsampled) input channel if of
size sout × sout with sout = sin/D (respectively sout = sin × D) where D denotes the
downsampling (respectively upsampling) factor and sin × sin is the size of a feature at the
filter input. Floating points operations Operation f for the filtering operation is thus:

Operation f = Param f × sout × sout. (10)

GDN/IGDN perform a normalization of a filter output with respect to the other filter
outputs. According to Section 2, the number of parameters and the number of operations
of each GDN/IGDN are expressed by:

Paramg = (Nout + 1)× Nout

Operationg = Paramg × sout × sout.
(11)

Since the number of layers is already very low for the considered architectures, the
reduction of the complexity of the analysis and synthesis transforms may target, according
to the previous complexity assessment, the number of filters per layer, the size of these
filters and the choice of the activation functions. Our proposal below details our strategy
for complexity reduction.

3.1.2. Proposal: Simplified Analysis and Synthesis Transforms

Our approach to reduce the complexity of the analysis and synthesis transforms, while
maintaining an acceptable rate-distorsion trade-off, is to fine-tune the parameters of each
layer (number of filters and filter sizes) and to consider the replacement of GDN/IGDN by
simpler non-parametric activation functions.
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In a first step, we propose a fine-tuning of the number of filters composing the convo-
lutional layers of the analysis and synthesis transforms. The state-of-the-art frameworks
generally involve a large number of filters with the objective of increasing the network
approximation capability [13,16]. However, a high number of filters also implies a high
number of parameters and operations in the GDN/IGDN, as it increases the depth of
the tensors (equal to the number of filters) at their input. Apart from a harder training, a
large number of filters comes with a high number of operations as well as a high memory
complexity, which is problematic in the context of on board compression. In [16], the
number of filters at the bottleneck (M) and for the other layers (N) are fixed according to
the target bit-rate: the higher the target bit-rate, the higher M and N. Indeed, higher bit
rates mean lower distortion and thus increased network approximation capabilities to learn
accurate analysis and synthesis transforms [16]. This principle also applies to the auxiliary
autoencoder implementing the hyperprior illustrated in Figure 1 (right column of the right
part). In the present paper, we propose and evaluate a reduction of the number of filters
in each layer for different target rate ranges. In particular, we investigate the impact of M
on the attainable performance when imposing a drastic reduction of N. The question is
whether there is a real need for a high global number of filters (high N and M) or whether a
high bottleneck size (low N and high M) is sufficient to achieve good performance at high
rates. For that purpose, we impose a low value of N (typically N = 64) and we consider
increasing values of M defined by M = 2N, 3N, 4N, 5N to determine the minimum value
of M that leads to an acceptable performance in a given rate range.

In a second step, we investigate the replacement of the GDN/IGDN by non-parametric
activation functions. As previously mentioned, according to [19], GDN/IGDN allow
obtaining good performance even with a low number of layers. However, for the sake of
completeness, we also test their replacement by ReLU functions. Finally, we propose to
evaluate the effect of the filter kernel support. The main autoencoder in [16] is entirely
composed of filters with kernel support n × n. The idea then is to test different kernel
supports that is (n − 2)× (n − 2) and (n + 2)× (n + 2).

3.2. Reduced Complexity Entropy Model
3.2.1. Statistical Analysis of the Learned Transform

This section first performs a statistical analysis of each feature of the learned repre-
sentation in the particular case of satellite images. A similar statistical analysis has been
conducted in the case of natural images in [25] with the objective to properly design the
quantization in [13]. The probability density function related to each feature, averaged
on a representative set of natural images, was estimated through a normalized histogram.
The study showed that most features can be accurately modelled as Laplacian random
variables. Interestingly, a similar result has also been analytically demonstrated in [26] for
block-DCT coefficients of natural images under the assumption that the variance is constant
on each image block and that its values on the different blocks are distributed according
to an exponential or a half-normal distribution. We conducted the statistical analysis on
the representation obtained by the main autoencoder as defined in [16], with N = 128 and
M = 192, but used alone, as in [13], without auxiliary autoencoder. Indeed, on one side
the main autoencoder in [16] benefits from improvements with respect to the one in [13]
and on another side, the auxiliary autoencoder is not necessary in this statistical study.
This autoencoder is trained on a representative dataset of satellite images and for rates
between 2.5 bits/pixel and 3 bits/pixel. First, as an illustration, let consider the satellite
image displayed in Figure 2. This image of the city of Cannes (French Riviera) is a 12-bit
simulated panchromatic Pléiades image with size 512 × 512 and resolution 70 cm.
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Figure 2. Simulated 12-bit Pléiades image of Cannes with size 512 × 512 and resolution 70 cm.

Figure 3 shows the 1st 32 × 32 feature derived from the Cannes image and its normal-
ized histogram with Laplacian fitting.

(a) 1st feature. (b) Normalized histogram and Laplacian fitting.

Figure 3. First feature of Cannes image representation, its normalized histogram with Laplacian fitting.

On this example, the fitting with an almost centered Laplacian seems appropriate.
According to the Kolmogorov-Smirnov goodness-of-fit test [27], 94% of the features derived
from this image follow a Laplacian distribution with a significance level α = 5%. Recall
that the Laplacian distribution Laplace(μ, b) is defined by:

f (ζ, μ, b) =
1
2b

(
−|ζ − μ|

b

)
for ζ ∈ R, (12)

where μ is the mean value and b > 0 is a scale parameter related to the variance by
Var(ζ) = 2b2.

To extend this result, the representation (composed of M = 192 feature maps) was
derived for 16 simulated 512 × 512 Pléiades images. Figure 4 shows the normalized his-

59



Remote Sens. 2021, 13, 447

tograms (derived from 16 observations) of some feature maps (each of size 32 × 32) and
the Laplacian fitting.

(a) i = 1. (b) i = 58.

(c) i = 136. (d) i = 144.

Figure 4. Normalized histogram of the ith feature map and Laplacian fitting f (., μ, b).

Most of the feature maps have a similar normalized histogram. According to
Kolmogorov-Smirnov goodness-of-fit test [27], 94% of the features derived from this image
follow a Laplacian distribution with a significance level α = 5%. Please note that the
Gaussian distribution, N (μ, σ2) with a small value of μ, also fits the features albeit to a
lesser extent. The remaining non-Laplacian feature maps (6% of the maps for this example)
stay close to the Laplacian distribution. Figure 5 displays two representative examples of
non-Laplacian feature maps. Please note that the first one (19th feature map) is far from
Laplacian, this feature appears as a low-pass approximation of the input image. However,
this is a very particular case: the second displayed feature has a typical behavior, not so far
from a Laplacian distribution.
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(a) 19th feature. (b) Normalized histogram and Laplacian fitting.

(c) 55th feature. (d) Normalized histogram and Laplacian fitting.

Figure 5. Normalized histogram of the ith feature map and Laplacian fitting f (., μ, b).

3.2.2. Proposal: Simplified Entropy Model

The entropy model simplification aims at achieving a compromise between simplic-
ity and performance while preserving the adaptability to the input image. In [13], the
representation distribution is assumed fully factorized and the statistical model for each
feature is non-parametric to avoid a prior choice of a distribution shape. This model is
learned once, during the training. In [16], the strong independence assumption leading
to a fully factorized model is avoided by the introduction of the hyperprior distribution,
whose parameters are learned for each input image even in the operational phase. Both
models are general and thus suitable to a wide variety of images; however the first one
implies a strong hypothesis of independence and prohibits adaptivity while the second one
is computationally expensive. Based on the previous analysis, we propose the following
parametric model for each of the M features. Consider the jth feature elements yij for
ij ∈ Ij, where Ij denotes the set of indexes covering this feature:

yij ∼ Laplace(0, bj) (resp. yj
i ∼ N (0, σ2

j ))

with: bj =

√
Var(yj

i)/2 (resp. σ2
j = Var(yj

i)).
(13)

The problem then boils down to the estimation of a single parameter per feature
referred to as the scale bj (respectively the standard deviation σj) in the case of the Laplacian
(resp. Gaussian) distribution. Starting from [16], this proposal reduces the complexity at
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two levels. First, the hyperprior autoencoder, including the analysis Ha and synthesis Hs
transforms, is removed. Second, the side information initially composed of the compressed
auxiliary random variable set (z) of size 8 × 8 × M now reduces to a M × 1 vector of
variances. The auxiliary network simplification is displayed on the right part of Figure 6.

Figure 6. Proposed architecture after entropy model simplification: main autoencoder (left column)
and simplified auxiliary autoencoder (right column).
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In the next section, the performance of these proposals and of their combinations are
studied for different rate ranges.

4. Performance Analysis

This section assesses the performance, in terms of rate-distortion, of the proposed
method in comparison with the CCSDS 122.0-B [6], JPEG2000 [5] and with the reference
methods [13,16]. Beforehand, a subjective image quality assessment is proposed. Although
informal, it allows comparing the artefacts produced by learned compression and by the
CCSDS 122.0-B [6].

4.1. Implementation Setup

To assess the relevance of the proposed complexity reductions, experiments were
conducted using TensorFlow. The batch size (i.e., the number of training samples to work
through before the parameters are updated) was set to 8 and up to 1M iterations were
performed. Both training and validation datasets are composed of simulated 12-bit Pléiades
panchromatic images provided by the CNES, covering various landscapes (i.e., desert,
water, forest, industrial, cloud, port, rural, urban). The reference learned frameworks for
image compression are designed to handle 8-bit RGB natural images and they generally
target low rates (typically up to a maximum of 1.5 bits/pixel). In contrast, on board satellite
compression handles 12-bit panchromatic images and targets higher rates (from 2bits/pixel
to 3.5 bits/pixel). The training dataset is composed of 8M of patches (of size 256 × 256)
randomly cropped from 112 images (of size 585 × 585). The validation dataset is composed
of 16 images (of size 512× 512). MSE was considered to be the distortion metric for training.
The rate and distortion measurements were averaged across the validation dataset for a
given value of λ. Please note that the value of λ has to be set by trial and error for a targeted
rate range.

In addition to the MSE, we also evaluate those results in terms of MS-SSIM. Please
note that they exhibit a similar behavior even if the models were trained for the MSE only.
The proposed framework is compared with the CCSDS 122.0-B [6], JPEG2000 [5] and with
the reference methods [13,16] implemented for values of N and M recommended by their
authors for particular rate ranges.

• Ballé(2017)–non-parametric-N refers to the autoencoder [13] and is implemented
for N = 192 (respectively N = 256) for rates below 2 bits/pixel (respectively above
2bits/pixel).

• Ballé(2018)–hyperprior-N-M refers to the variational autoencoder [16] and is im-
plemented for N = 128 and M = 192 (respectively N = 192 and M = 320) for rates
below 2 bits/pixel (respectively above 2 bits/pixel).

4.2. Subjective Image Quality Assessment

At low rates, JPEG2000 is known to produce quite prominent blurring and ringing
artifacts, which is particularly visible in high-frequency textures [5]. This is also the case for
the CCSDS 122.0-B [6]. Figure 7a,b shows the original image of the city of Blagnac, which is
a 12-bit simulated panchromatic Pléiades image with size 512 × 512 and resolution 70 cm.
The figure also shows the image compressed by CCSDS 122.0 (c) and the image compressed
by the reference learned compression architecture Ballé(2017)–non-parametric-N (d), for
a low compression rate (1.15 bits/pixel). The image obtained through learned compression
appears closest to the original one than the image obtained through the CCSDS.
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(a) Original image. (b) Zoom on the original image.

(c) Zoom on the CCSDS compressed image. (d) Zoom on the end-to-end compressed image.

Figure 7. Subjective image quality analysis (R = 1.15 bits/pixel).

For medium luminances, far less artifacts, such as blurring and flattened effects are
observed. In particular, the building edges are sharper. The same is true for low luminances,
corresponding to shaded areas: the ground markings are sharp and less flatened areas are
observed. As shown in Figure 8, for a higher rate of 1.66 bits/pixel, the two reconstructed
images are very close. However, the image obtained through learning compression remains
closest to the original one, especially in shaded areas.

(a) Original image. (b) Zoom on the original image.

(c) Zoom on the CCSDS compressed image. (d) Zoom on the end-to-end compressed image.

Figure 8. Subjective image quality analysis (R = 1.66 bits/pixel).
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Finally, as shown in Figure 9 for an even higher rate of 2.02 bits/pixel, CCSDS 122.0 still
produces flattened effects, especially in low variance areas. The learned compression method
leads to a reconstructed image that is closest to the original one. Even though the stadium
ground markings slightly differs from the original, the image quality is overall preserved.

(a) Original image. (b) Zoom on the original image.

(c) Zoom on the CCSDS compressed image. (d) Zoom on the end-to-end compressed image.

Figure 9. Subjective image quality analysis—R = 2.02 bits/pixel.

Finally, for various rates, the learned compression method [13] does not suffer from
the troublesome artifacts induced by the CCSDS 122.0, leading to a more uniform image
quality. The same behavior was observed for the proposed method.

In the following, an objective performance analysis is performed in terms of rate-
distortion trade-off for the CCSDS 122.0-B [6], JPEG2000, the reference methods [13,16]
and the proposed ones.

4.3. Impact of the Number of Filter Reduction
4.3.1. At Low Rates

We first consider architectures devoted to low rates, say up to 2 bits/pixel. Starting
from [16] denoted as Ballé(2018)–hyperprior-N128-M192, the number of filters N (for
all layers, apart from the one just before the bottleneck) is reduced from N = 128 to N = 64,
keeping M = 192 for the layer just before the bottleneck. This reduction is applied jointly
to the main autoencoder and to the hyperprior one. The proposed simplified architecture is
termed Ballé(2018)-s-hyperprior-N64-M192. The complexity of this model is evaluated
in terms of number of parameters and of floating point operation per pixel (FLOPp) in
Table 1 .
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Table 1. Detailed complexity of Ballé(2018)-s-hyperprior-N64-M192.

Layer
Filter Size Channels Output Parameters FLOPp

n n Nin Nout sout sout

conv1 5 5 1 64 256 256 1664 4.16 × 102

GDN1 4160 1.04 × 103

conv2 5 5 64 64 128 128 102,464 6.40 × 103

GDN2 4160 2.60 × 102

conv3 5 5 64 64 64 64 102,464 1.60 × 103

GDN3 4160 0.65 × 102

conv4 5 5 64 192 32 32 307,392 1.2 × 103

Hconv1 3 3 192 64 32 32 110,656 4.32 × 102

Hconv2 5 5 64 64 16 16 102,464 1.00 × 102

Hconv3 5 5 64 64 8 8 102,464 0.25 × 102

HTconv1 5 5 64 64 16 16 102,464 1.00 × 102

HTconv2 5 5 64 64 32 32 102,464 4.00 × 102

HTconv3 3 3 64 192 32 32 110,784 4.32 × 102

Tconv1 5 5 192 64 64 64 307,264 4.80 × 103

IGDN1 4160 0.65 × 102

Tconv2 5 5 64 64 128 128 102,464 6.40 × 103

IGDN2 4160 2.60 × 102

Tconv3 5 5 64 64 256 256 102,464 2.56 × 104

IGDN3 4160 1.04 × 103

Tconv4 5 5 64 1 512 512 1601 1.60 × 103

Total 1,683,969 5.2264 × 104

Table 2 compares the complexity of Ballé(2018)-s-hyperprior-N64-M192 to the
reference Ballé(2018)-hyperprior-N128-M192.

Table 2. Comparative complexity of the global architectures-Case of target rates up to 2 bits/pixel.

Method Parameters FLOPp Relative

Ballé(2018)–hyperprior-N128-M192 5,055,105 1.9115 × 105 1.00

Ballé(2018)-s-hyperprior-N64-M192 1,683,969 5.2264 × 104 0.27

Ballé(2018)-s-laplacian-N64-M192 1,052,737 5.0774 × 104 0.265

The complexity of the proposed simplified architecture is 73% lower in terms of
FLOPp with respect to the reference method. Now let consider the impact on compression
performance of the reduction of N. Figure 10 displays the performance, in terms of MSE
and MS-SSIM, of our different proposed solutions, of the reference learned methods and
of the JPEG2000 [5] and CCSDS 122.0-B [6] standards. The gray curve portions indicate
that the values of N and M are not recommended for this rate range (above 2 bits/pixel).
In this first experiment, we are mainly concerned by the comparison of the blue lines: the
solid one for the reference method Ballé(2018)–hyperprior-N128-M192 and the dashed
one for the proposal Ballé(2018)–hyperprior-N64-M192.
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(a) Log–log scale. Distortion measure: MSE.

1 1.5 2 2.5 3 3.5

bit rate [bits/pixel]

26

28

30

32

34

36

38

40

42

44

M
S

-S
S

IM
 (

dB
)

Ballé (2018)--hyperprior-N128-M192
Ballé (2018)--non-parametric-N128-M192
Ballé (2018)--laplacian-N128-M192
Ballé (2017)--non-parametric-N192
Ballé (2018)-s-hyperprior-N64-M192
Ballé (2018)-s-non-parametric-N64-M192
Ballé (2018)-s-laplacian-N64-M192
CCSDS standard
JPEG2000

(b) Distortion measure: MS-SSIM (dB).

Figure 10. Rate-distortion curves for the considered learned frameworks and for the CCSDS 122.0-B [6] and JPEG2000 [5]
standards in terms of MSE and MS-SSIM (dB) (derived as −10 log10(1−MS-SSIM))-Case of rates up to 2 bits/pixel.

As expected, Ballé(2018)-s-hyperprior–N64-M192 achieves a rate-distortion per-
formance close to the one of Ballé(2018)–hyperprior-N128-N192 [16], both in terms of
MSE and MS-SSIM, for rates up to 2 bits/pixel. We can conclude that the decrease in
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performance is very small, keeping in mind the huge complexity reduction. Please note
that our proposal outperforms by far CCSDS 122.0-B [6], JPEG2000 [5] standards as well as
Ballé(2017)-non-parametric-N192 [13].

4.3.2. At High Rates

Now let consider the architecture devoted to higher rates, say above 2 bits/pixel. For such
rates, the reference architectures involve a high number of filters (N = 256 in [13], N = 192
and M = 320 in [16]). Starting from [16], we reduced the number of filters to N = 64 in all
layers except the one before the bottleneck, keeping M = 320. The proposal Ballé(2018)-
s-hyperprior–N64-M320 is compared to the reference Ballé(2018)-hyperprior–N192-M320
but also to Ballé(2017)-non-parametric–N256 and to JPEG2000 [5] and CCSDS 122.0-B [6]
standards. Table 3 compares the complexity of Ballé(2018)-s-hyperprior-N64-M320 to the
reference Ballé(2018)-hyperprior-N192-M320.

Table 3. Comparative complexity of the global architectures-Case of target rates above 2 bits/pixel.

Method Parameters FLOPp Relative

Ballé(2018)–hyperprior-N192-M320 11,785,217 4.3039 × 105 1.00

Ballé(2018)-s-hyperprior-N64-M320 1,683,969 5.6966 × 104 0.13

Ballé(2018)-s-laplacian-N64-M320 1,052,737 5.4774 × 104 0.1273

The complexity of the proposed simplified architecture is 87% lower in terms of
FLOPp with respect to the reference method. Now let consider the impact on compression
performance of the reduction of N. Figure 11 displays the performance, in terms of MSE
only, of our different proposed solutions, of the reference learned methods and of the
JPEG2000 and CCSDS standards. The MS-SSIM shows the same behaviour.
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Ballé (2018)-s-hyperprior-N64-M320
Ballé (2018)-s-non-parametric-N64-M320
Ballé (2018)-s-laplacian-N64-M320
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Figure 11. Rate-distortion curves at higher rates for learned frameworks and for the CCSDS 122.0-B [6] and JPEG2000 [5]
standards for MSE in log-log scale Case of high rates (above 2 bits/pixel).
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Theses curves show that the simplified architectures (e.g., resulting from a decrease of
N) by far outperform the JPEG2000 and CCSDS standard even at high rates, while showing
a low decrease in performance with respect to the reference architectures. Note how-
ever that, for both the reference (Ballé(2018)–hyperprior-N192-M320) and the simplified
(Ballé(2018)-s-hyperprior-N64-M320) variational models, a training of 1M iterations
seems insufficient for the highest rates. Indeed, due to the auxiliary autoencoder im-
plementing the hyperprior, the training has conceivably to be longer, which can be a
disadvantage in practice. This may be an additional argument to propose a simplified
entropy model.

4.3.3. Summary

As an intermediary conclusion, for either low or high bit rates, a drastic reduction
of N starting from the reference architecture [16], does not decrease significantly the
performance, both in MSE and in MS-SSIM, while it leads to a complexity decrease of more
than 70%. These results are interesting since it was mentioned in [13,16,19] that structures
of reduced complexity would not be able to perform well at high rates.

4.4. Impact of the Bottleneck Size

As previously highlighted, the bottleneck size (M) plays a key role in the perfor-
mance of the considered architectures. Thus, we now consider a fixed low value of N
(N = 64) and then we vary the bottleneck size (M = 128, 192, 256 and 320). This experi-
ment, performed on the proposed architecture integrating the simplified entropy model
Ballé(2018)-s-laplacian-N64-M, allows quantifying the impact of M on the performance
in terms of both MSE and MS-SSIM for increasing values of the target rate. Figure 12 shows
the rate-distortion averaged over the validation dataset. According to the literature, high
bit rates require a large global number of filters [16].
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(a) Log–log scale. Distortion measure: MSE.

Figure 12. Cont.
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(b) Distortion measure: MS-SSIM (dB).

Figure 12. Impact of the bottleneck size in terms of MSE and MS-SSIM (dB) (derived as −10 log10(1−MS-SSIM)) .

Figure 12 shows that increasing the bottleneck size M only, while keeping N very
small, allows maintaining the performance as the rate increases. As displayed in Figure 12,
while the performance reaches a saturation point for a given bottleneck size, it is possible
to renew its dynamic by increasing M only. This result is consistent since the number of
output channels (M), just before the bottleneck, corresponds to the number of features that
must be compressed and transmitted. It therefore makes sense to produce more features at
high rates for a better reconstruction of the compressed images. Interestingly, this figure
allows establishing in advance the convolution layer dimensions (N and M) for a given
rate range, taking into account a complexity concern.

4.5. Impact of the Gdn/Igdn Replacement in the Main Autoencoder

The original architecture Ballé(2018)–hyperprior-N128-M192 of [16], involving
GDN/IGDN non-linearities, is compared with the architecture obtained after a full ReLU
replacement, except for the last layer of the decoder part. Indeed, this layer involves a
sigmoid activation function for constraining the pixel interval mapping between 0 and 1
before the quantization. Figure 13 shows the rate-distortion averaged over the validation
dataset in terms of both MSE and MS-SSIM.

As claimed in [19], GDN/IGDN perform better than ReLU for all rates and especially
at high rates. Thus, although GDN/IGDN increase the number of parameters to be
learned and stored, as well as the number of FLOPp, on one side this increase represents a
small percentage of the overall structure with respect to conventional non-linearities [19].
On the other side, GDN/IGDN lead to a dramatic performance boost. In view of these
considerations, the complexity reduction in this paper does not target the GDN/IGDN.
However, their replacement by simpler activation functions can be envisioned in future
work to take into account on board hardware requirements.
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(a) Log–log scale. Distortion measure: MSE.
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Figure 13. Impact of the GDN/IGDN replacement and of the filter kernel support on performance in terms of MSE and
MS-SSIM (dB) (derived as −10 log10(1−MS-SSIM)).
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4.6. Impact of the Filter Kernel Support in the Main Autoencoder

The original architecture Ballé(2018)–hyperprior-N128-M192 of [16] is also com-
pared when the 5 × 5 filters composing the convolutional layers of the main autoencoder
are replaced by 3 × 3 and 7 × 7 filters. It is worth mentioning that all the variant architec-
tures considered in this part share the same entropy model obtained through the same
auxiliary autoencoder in terms of number of filters and kernel supports, since the objective
here is not to assess the impact of the entropy model. According to Figure 13, a kernel
support reduction from 5 × 5 to 3 × 3 leads to a performance decrease. This result is
expected in the sense that filters with a smaller kernel support correspond to a reduced
approximation capability. On the other hand, a kernel support increase from 5 × 5 to 7 × 7
does not lead to a significant performance improvement. This result indicates that the
approximation capability obtained with a kernel support 5 × 5 is sufficient.

4.7. Impact of the Entropy Model Simplification
4.7.1. At Low Rates

For rates up to 2 bits/pixel, the proposed architectures Ballé(2018)–laplacian-N128-
M192 (with the simplified entropy model) and Ballé(2018)-s-laplacian-N64-M192 (com-
bining the reduction of the number of filters to N = 64 and the simplified Laplacian en-
tropy model) are compared with the non-variational reference method Ballé(2017)–non-
parametric-N192 [13], with the variational reference method Ballé(2018)–hyperprior-
N128-M192 [16], with its version after reduction of the number of filters Ballé(2018)-s-
hyperprior-N64-M192, with the architecture denoted as Ballé(2018)-nonparametric-N128-
M192 (combining the main auto-encoder in [16] and the non-parametric entropy model in [13])
and its version after reduction of the number of filters Ballé(2018)-s-non-parametric-N64-
M192. Table 4 shows that the coding part complexity of Ballé(2018)-s-laplacian-N64-M192
is 13% lower than the one of Ballé(2018)-s-hyperprior-N64-M192.

Table 4. Reduction of the encoder complexity induced by simplified entropy model on the coding
part-Case of rates up to 2 bits/pixel).

Method Parameters FLOPp Relative

Ballé(2018)-s-hyperprior-N64-M192 1,157,696 1.25 × 104 1

Ballé(2018)-s-laplacian-N64-M192 526,464 1.09 × 104 0.87

Figure 10 shows the rate-distortion averaged over the validation dataset for the
trained models for both MSE and MS-SSIM quality measures. Recall that the architec-
tures were trained for MSE only. The proposed simplified entropy model (Ballé(2018)-s-
laplacian-N64-M192) achieves an intermediate performance between the variational model
(Ballé(2018)-s-hyperprior-N64-M192) and the non-variational model (Ballé (2018)-s-
non-parametric-N64-M192). Obviously, due to the entropy model simplification,
Ballé(2018)-s-laplacian-N64-M192 underperforms the more general and thus more
complex Ballé(2018)-s-hyperprior-N64-M192 model. However, the proposed entropy
model, even if simpler, preserves the adaptability to the input image, unlike the models
Ballé(2018)–non-parametric-N128-M192 and Ballé(2017)–non-parametric-N192 [13].
Please note that the simplified Laplacian entropy model perform close to the hyperprior
model at relatively high rates. One possible explanation for this behaviour can be the
increased amount of side information required by the hyperprior model [16] for these
rates [28].

4.7.2. At High Rates

For high rates (above 2 bits/pixel), the proposed architectures Ballé(2018)–laplacian-
N192-M320 (with the simplified entropy model) and Ballé(2018)-s-laplacian-N64-M320
(combining the reduction of the number of filters to N = 64 and the simplified Laplacian
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entropy model) are compared with the non-variational reference method Ballé(2017)–non-
parametric-N256 [13], with the variational reference method Ballé(2018)–hyperprior-
N192-M320 [16], with its version after reduction of the number of filters Ballé(2018)-
s-hyperprior-N64-M320, with the architecture denoted as Ballé(2018)-nonparametric-
N192-M320 (combining the main auto-encoder in [16] and the non-parametric entropy
model in [13]) and its version after reduction of the number of filters Ballé(2018)-s-non-
parametric-N64-M320. Figure 11 displays the rate-distortion averaged over the validation
dataset for the trained models in terms of MSE. The proposed simplified entropy method
Ballé(2018)-s-laplacian-N64-M320 achieves an intermediate performance between the
variational model (Ballé(2018)-s-hyperprior-N64-M320) and the non-variational model
Ballé(2018)-s-non-parametric-N64-M320, similarly to the models targeting lower rates
in Figure 10. Table 5 shows that the coding part complexity of Ballé(2018)-s-laplacian-
N64-M320 is around 16% lower than the one of Ballé(2018)-s-hyperprior-N64-M320.

Table 5. Reduction of the encoder complexity induced by simplified entropy model on the coding
part-Cas of rates above 2 bits/pixel.

Method Parameters FLOPp Relative

Ballé(2018)-s-hyperprior-N64-M320 1,715,008 1.3979 × 104 1

Ballé(2018)-s-laplacian-N64-M320 731,392 1.1787 × 104 0.8432

4.7.3. Summary

For either low or high bit rates, the proposed entropy model simplication leads to
intermediary performance when compared to the reference architectures [13,16], both in
MSE and in MS-SSIM, while it leads to a coding part complexity decrease of more than
10% with respect to [16].

4.8. Discussion About Complexity

According to the previous performance analysis, the computational time complexity
of the proposed method is significantly lower than the one of the reference learned com-
pression architecture [16]. However, around 10 kFLOPs/pixel, the attained complexity is
at least 2 orders of magnitude higher than the ones of the CCSDS and JPEG2000 [5] stan-
dards. Indeed, the complexity of CCSDS 122.0 is around 140 operations per pixel (without
optimizations), or 70 MAC (Multiplication Accumulation). The JPEG2000 is 2 to 3 times
more complex depending on the optimizations. Note however that the CCSDS 122.0 dates
back to 2008 when onboard technologies were limited to radiation-hardened (Rad-Hard)
components dedicated to space, with the objectives of 1 Msample/s/W (as specified in the
CCSDS 122.0 green book [29]), to process around 50 Mpixels/s. Space technologies, cur-
rently developed for the next generation of CNES Earth observation satellites, rather target
5–10 Msample/s/W. Nowadays, the use of commercial off-the-shelf (COTS) components
or of dedicated hardware accelerators is envisioned: based on a thinner silicon technology
node, they allow higher processing frequencies with consistently lower consumption. For
instance, the Movidius Myriade 2 announces 1 TFLOP/s/W. The 10 kFLOP/pixels of the
current network would lead to 100 Mpixels/s/W on this component. Therefore, the order
of magnitude of the proposed method complexity is not incompatible with an embedded
implementation, taking into account the technological leap from the component point of
view. Consequently, the complexity increase with respect to the CCSDS one, which we
limited as far as possible, is expected to be affordable after computation device upgrading.
Please note that, in addition, manufacturers of components dedicated to neural networks
provide software suites (for example Xilinx) to optimize the portings. Finally, before on
board implementation, a network compression (including pruning, quantization, or ten-
sor decomposition for instance) can be envisioned. However, this is out of the scope of
this paper.
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5. Conclusions

This paper proposed different solutions to adapt the reference learned image com-
pression models [13,16] to on board satellite image compression, taking into account their
computational complexity. We first performed a reduction of the number of filters compos-
ing the convolutional layers of the analysis and synthesis transforms, applying a special
treatment to the bottleneck. The impact of the bottleneck size, under a drastic reduction
of the overall number of filters, was investigated. This study allowed identifying the
lowest global number of filters for each rate. For the sake of completeness, we also called
into question the other design options of the reference architectures, and especially the
parametric activation functions. Second, in order to simplify the entropy model, we also
performed a statistical analysis of the learned representation. This analysis showed that
most features follow a Laplacian distribution. We thus proposed a simplified parametric
entropy model, involving a single parameter. To preserve the adaptivity and thus the
performance, this parameter is estimated in the operational phase for each feature of the
input image. This entropy model, although far simpler than non-parametric or hyperprior
models, brings comparable performance. In a nutshell, by combining the reduction of
the global number of filters, and the simplification of the entropy model, we developed
a reduced-complexity compression architecture for satellite images that outperforms the
CCSDS 122.0-B [6], in terms of rate-distortion trade-off, while maintaining a competitive
performance for medium to high rates in comparison with the reference learned image
compression models [13,16]. Thereupon, while more complex than traditional CCSDS 122.0
and JPEG 2000 standards, the proposed solutions offer a good compromise between com-
plexity and performance. Thus, we can recommend their use, subject to the availability of
suitable on board devices. Besides, future work will be devoted to hardware considerations
regarding the on board implementation.
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Abbreviations

The following abbreviations are used in this manuscript:

CCSDS Consultative committee for space data systems
CNN Convolutional neural networks
DCT Discrete cosine transform
GDN Generalized divisive normalization
IGDN Inverse generalized divisive normalization
JPEG Joint photographic experts group
MSE Mean square error
MS-SSIM Multi-scale structural similarity index
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PCA Principal component analysis
ReLU Rectified Linear Unit

Appendix A. Table of Symbols Used

This annex tabulates symbols used in this article.

Table A1. Quantities.

Symbol Meaning Reference

x original image Section 2.1

Ga(x) analysis transform Section 2.1

y learned representation Section 2.1

ŷ quantized learned representation Section 2.1

Gs(ŷ) synthesis transform Section 2.1

x̂ reconstructed image Section 2.1

GDN generalized divisive normalizations Section 2.1

IGDN inverse generalized divisive normalizations Section 2.1

N filters composing the convolutional layers Section 2.1

n × n kernel support Section 2.1

M filters composing the last layer of Ga Section 2.1

k, l coordinate indexes of the output of the ith filter Section 2.1

vi(k, l) value indexed by (k, l) of the output of the ith filter Section 2.1

Q(y) quantizer Section 2.2

J rate-distortion loss function Section 2.3.1

R(ŷ) rate Section 2.3.1

D(x, x̂) distortion between the original image x and the reconstructed image x̂ Section 2.3.1

λ parameter that tunes the rate-distortion trade-off Section 2.3.1

m(ŷ) actual discrete probability distribution Section 2.3.1

pŷ(ŷ) probability model assigned to the quantized representation Section 2.3.1

H(ŷ) bit-rate given by the Shannon cross entropy Section 2.3.1

ψ(i) distribution model parameter vector associated with each element Section 2.3.2

Δy i.i.d uniform noise Section 2.3.2

ỹ continuous approximated quantized learned representation Section 2.3.2

z set of auxiliary random variables Section 2.3.2

Ha(y) hyperprior analysis transform Section 2.3.2

Hs(ẑ) hyperprior synthesis transform Section 2.3.2

σi standard deviation of a zero-mean Gaussian distribution Section 2.3.2

Nin number of features at the considered layer input Section 3.1.1

Nout number of features at the considered layer output Section 3.1.1

Param f number of parameters associated with the filtering part of the considered layer Section 3.1.1

δ term accounting for the bias Section 3.1.1
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Table A1. Cont.

Symbol Meaning Reference

D downsampling factor Section 3.1.1

sin channel input size Section 3.1.1

sout downsampled input channel size Section 3.1.1

Operation f number of floating points operations Section 3.1.1

Paramg number of parameters associated with each IGDN/GDN Section 3.1.1
Operationg number of floating points operations of each GDN/IGDN Section 3.1.1

ζ random variable that follows a Laplacian distribution Section 3.2.1

μ mean value of a Laplacian distribution Section 3.2.1

b scale parameter of a Laplacian distribution Section 3.2.1

Var(ζ) variance of a laplacian distributed random variable Section 3.2.1

yi feature map elements Section 3.2.2

Ij set of indexes covering the jth feature Section 3.2.2
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Abstract: Recently, the rapid development of multispectral imaging technology has received great
attention from many fields, which inevitably involves the image transmission and storage problem.
To solve this issue, a novel end-to-end multispectral image compression method based on spectral–
spatial feature partitioned extraction is proposed. The whole multispectral image compression
framework is based on a convolutional neural network (CNN), whose innovation lies in the feature
extraction module that is divided into two parallel parts, one is for spectral and the other is for
spatial. Firstly, the spectral feature extraction module is used to extract spectral features indepen-
dently, and the spatial feature extraction module is operated to obtain the separated spatial features.
After feature extraction, the spectral and spatial features are fused element-by-element, followed
by downsampling, which can reduce the size of the feature maps. Then, the data are converted to
bit-stream through quantization and lossless entropy encoding. To make the data more compact,
a rate-distortion optimizer is added to the network. The decoder is a relatively inverse process of
the encoder. For comparison, the proposed method is tested along with JPEG2000, 3D-SPIHT and
ResConv, another CNN-based algorithm on datasets from Landsat-8 and WorldView-3 satellites.
The result shows the proposed algorithm outperforms other methods at the same bit rate.

Keywords: spectral–spatial feature; multispectral image compression; partitioned extraction; group
convolution; rate-distortion

1. Introduction

By capturing digital images of several continuous narrow spectral bands, remote
sensors can generate three-dimensional multispectral images that contain rich spectral and
spatial information [1]. The abundant information is very useful and has been employed in
various applications, such as military reconnaissance, target surveillance, crop condition
assessment, surface resource survey, environmental research, and marine applications
and so on. However, with the rapid development of multispectral imaging technology,
the spectral–spatial resolution of multispectral data becomes higher and higher, resulting
in the rapid growth of its data volume. The huge amount of data is not conducive to
image transmission, storage, and application, which hinders the development of related
technologies. Therefore, it is necessary to find an effective multispectral image compression
method to process images before use.

The research of multispectral image compression methods has always received
widespread attention. After decades of unremitting efforts, various multispectral image
compression algorithms for different application needs have been developed, which can be
summarized as follows: predictive coding-based framework [2], vector quantization coding-
based framework [3], transform coding-based framework [4,5]. The predictive coding is
mainly applied to lossless compression. Its rationale is to use the correlation between
pixels to predict the unknown data based on its neighbors, and then to encode the residual
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between the real value and the predicted value. In [6], Slyz et al. proposed a block-based
inter-band lossless multispectral image compression method, in which every image was
divided into blocks and the current block was predicted by the corresponding block in the
adjacent band. For vector quantization coding, several scalar data sets are formed into a
vector, and then the data are quantized as a whole in vector space, so as to be compressed
without losing much information. As the performance of the vector quantization coding
is closely connected with the codebook, to improve the time efficiency, Qian proposed a
fast codebook search method in [7]. In the full search process of the generalized Lloyd
algorithm (GLA), if the distance to the partition is better than that of the previous iteration,
there is no need to require a search to find the minimum distance partition. Transform
coding is an important method in multispectral image compression, which is widely used
in lossy compression. This algorithm reduces the correlation between pixels by converting
the data to transform domain representation, so that information can be concentrated so
as to be quantified and encoded. Karhunen–Loève transform (KLT) [8], discrete cosine
transform (DCT) [9] and discrete wavelet transform [10] are all commonly used transform
coding algorithms. As we obtain deeper insight into multispectral images, more and
more improved algorithms have been developed, such as 3D-SPECK [11], 3D-SPIHT [12],
and so on.

The traditional compression methods mentioned above are all effective and obtain
great results, but they also have shortcomings. For instance, it is simple to implement the
predictive coding algorithm, but the compression ratio is relatively low. Although the vector
quantization coding algorithm can achieve a more ideal effect, it is not conducive to imple-
mentation due to its computation complexity. To overcome the shortcomings of traditional
compression methods and also ensure the compression performance, many multispectral
image compression algorithms based on deep learning have been rapidly developed in
recent years. Among them, the convolutional neural network (CNN) has emerged as one
of the main algorithms in image compression in recent years. The history of CNN started
from LeNet-style models, which consist of simple stacks of convolution layers for feature
extraction and max-pooling layers for downsampling [13]. In order to extract more features
of different scales, AlexNet [14], proposed in 2012, followed this idea and made an im-
provement by adding several convolutional layers between every two max-pooling layers.
To obtain better performance, it is necessary to increase the depth of the network. As a
result, VGG [15], GoogLENet [16], ResNet [17] and other excellent network architectures
began to emerge one after another. These network frameworks are all milestones in the
process of image compression technology and have obtained great grades in past ILSVRC
and other competitions.

Inspired by these remarkable network frameworks, many compression methods based
on CNN have appeared and showed applicability for visible images. In [18], Ballé proposed
an end-to-end optimized image compression method based on CNN with generalized
divisive normalization (GDN) joint nonlinearity, by means of the flexible use of linear
convolution and nonlinear transformation, the proposed network achieved comparable
performance with JPEG2000. To further improve the quality of the reconstructed images,
Jiang et al. [19] added CNNs to both encoder and decoder for joint training. The CNN in the
encoder produces compact presentation for encoding, and the other CNN in the decoder is
to restore the decoded image with high quality, with which block effects can be significantly
reduced. It is known that multispectral images are three-dimensional data, in which two
dimensions are spatial and one is spectral. As RGB images have three bands as well,
it can be seen as special multispectral data. Consequently, many compression methods
for visible images can also be applied to multispectral images. In [20], an end-to-end
compression framework for multispectral images with optimized residual unit is presented.
It is also based on a CNN, and the default architecture of ResNet, which is adopted in
the network, was adjusted to better fit for multispectral images. This algorithm has been
proven effective and obtains higher PSNR than that of JPEG2000 by about 2 dB. Even so,
the methods mentioned above still fail to focus on the strong correlation between spectra of
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multispectral images, for that is less important for RGB images. However, for multispectral
image compression, ignoring spectral correlation may lead to some information loss after
compressing. Hence, in this paper, we proposed a novel multispectral image compression
method based on partitioned extraction of spectral–spatial feature.

The network is an end-to-end framework based on a CNN and is composed of encoder
and decoder. In the encoder, there are two parts for spectral feature extraction and spatial
feature extraction, respectively. In the first part, continuous spectral feature extraction
modules are adopted to extract spectral features independently. This part does not in-
volve the fusion of spatial information. The second part is for spatial feature extraction,
which contains several residual blocks. We use group convolution to separate each channel,
so that only spatial features can be extracted without mixing the spectral information
within them. Afterwards, all features are fused together and then downsampling is em-
ployed to reduce the size of the feature map. Additionally, to make the data more compact,
a rate-distortion optimizer is used in the network. After obtaining the intermediate feature
data, quantization and lossless entropy encoding are carried out to obtain the compressed
binary bit stream. In the decoder, the bit stream first goes through entropy decoding and
inverse quantization, and then upsampling helps to restore the image size. Finally, spectral
and spatial features are acquired by corresponding deconvolution operations, and the
joint feature is used to reconstruct the image. Experimental results demonstrate that our
network surpasses JPEG2000 and 3D-SPIHT.

The remainder of this paper is organized as follows. Section 2 introduces our proposed
network framework and principal analysis, Section 3 includes experimental parameter
settings and the training process, and Section 4 presents the results and comparison with
JPEG2000, 3D-SPIHT and the method mentioned in [20] at the same bit rate, which proves
the wonderful performance of our network.

2. Proposed Method

In this section, we introduce the proposed multispectral image compression network
framework in detail and describe the training flow diagram. We elaborate on several key
operations, such as spectral feature extraction module, spatial feature extraction module,
rate-distortion optimizer, etc.

2.1. Spectral Feature Extraction Module

2D convolution has been proven with great promise and successfully applied to lots
of aspects of image vision and processing, such as target detection, image classification
and image compression. However, as multispectral images are three-dimensional, which is
more complex, and rich spectral information is even more important, the information loss
problem will inevitably be encountered when 2D convolution is used to process multi-
spectral images. Although there have been many precedents of applying deep learning
to multispectral image compression, and it has achieved great performance and exceeded
some traditional compression methods such as JPEG and JPEG2000, in the process of
feature extraction, however, as the convolution kernel is two-dimensional, the spectral
redundancy on the third dimension cannot be efficaciously removed, which inhibits the
performance of the network.

To deal with this problem, we have come up with the idea of extracting spectral or spatial
features separately. Among this, the inspiration of extracting spectral features derives from [21].
Ref. [21] uses three-dimensional kernels for convolution operation, which can maintain the
integrity of spectral features in multispectral image data. To avoid the data volume becoming
too large, we use a 1 × 1 × n convolution kernel on the spectral dimension named as 1D
spectral convolution to extract spectral features independently. Figure 1 shows the differences
between 2D convolution and 1D spectral convolution.
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(a) (b)

Figure 1. (a) 2D convolution; (b) 1D spectral convolution.

As shown in Figure 1a, the image is convolved by 2D convolution, whose kernel
is two-dimensional, generally followed by activation functions, such as rectified linear
units (ReLU) [14], parametric rectified linear units (PReLU) [22], etc. This operation can be
expressed as follows:

vxy
ij = f

(
Mi−1

∑
m=1

Pi−1

∑
p=0

Qi−1

∑
q=0

wpq
ijmv(x+p)(y+q)

(i−1)m + bij

)
, (1)

where i indicates the current layer, j indicates the current feature map of this layer, vxy
ij is the

output value at (x, y) of the j-th feature map in the i-th layer, f (·) represents the activation
function, wpq

ijm denotes the weight of the convolution kernel at position (p, q) connected
to the m-th feature map (m indexes over the set of feature maps in the (i − 1)-th layer
connected to the current feature map), bij is the bias of the j-th feature map in the i-th layer,
Mi−1 is the number of feature maps in the (i − 1)-th layer, Pi and Qi are the height and
width of the convolution kernel, respectively.

Similarly, considering the dimension of the spectrum, 1D spectral convolution oper-
ated on 3D images can be formulated as follows:

vxyz
ij = f

(
Mi−1

∑
m=1

Pi−1

∑
p=0

Qi−1

∑
q=0

Ri−1

∑
r=0

wpqr
ijmv(x+p)(y+q)(z+r)

(i−1)m + bij

)
, (2)

where Ri is the size of the convolution kernel in the spectral dimension, vxyz
ij is the output

value at (x, y, z) of the j-th feature map in the i-th layer, and wpqr
ijm is weight of the kernel

at position (p, q, r) connected to the m-th feature map. As the size of kernel is 1 × 1 × n,
by extension, Pi and Qi are set to 1, Equation (2) can be written as:

vxyz
ij = f

(
Mi−1

∑
m=1

Ri−1

∑
r=0

wpqr
ijmv(x+p)(y+q)(z+r)

(i−1)m + bij

)
, (3)

In regard to the activation function, we adopt ReLU as our first choice, as the gradient
is usually constant in back propagation when using ReLU, which alleviates the problem of
gradient disappearance in deep network training and contributes to network convergence.
Additionally, the computation cost is much less when using ReLU than other functions
(e.g., sigmoid). In addition, ReLU can make the output of some neurons zero, which ensures
the sparsity of the network so as to alleviate the overfitting problem. The ReLU function
can be formulated as below:

f (x) = max(0, x). (4)

In summary, when 2D convolution is operated on three-dimensional images, the out-
put is always two-dimensional, which may cause a large amount of spectral information
loss. Therefore, we adopt 1D spectral convolution to retain more feature data of the multi-
spectral image.
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2.2. Spatial Feature Extraction Module

In order to ensure the spatial information does not mingle with the spectral features,
we use group convolution instead of normal 2D convolution in spatial dimensions. Group
convolution first appeared in AlexNet, in order to solve the problem of limited hardware
resources at that time. Feature maps were distributed to several GPUs for simultaneous
processing, and finally concatenated together. Figure 2 shows the differences between
normal convolution and group convolution.

(a) (b)

Figure 2. (a) Normal convolution; (b) group convolution.

As shown in Figure 2a, the size of input data is C × H × W, representing the number
of channels, width, and height of the feature map, respectively. The size of the convolution
kernel is k × k, and the number of the kernels is N. At this point, the size of the output
feature map is N × H′ × W ′. The parameter number of N convolution kernels is:

params = N × k × k × C. (5)

In group convolution, just as its name implies, the input feature maps are divided
into several groups, and then convolved separately. Assuming that the size of the input is
still C × H × W and the number of output feature maps is N. If the input is divided into
G groups, the number of input feature maps in each group is C/G, the number of output
feature maps in each group is N/G, and the size of convolution kernel is k × k, that is,
the amount of convolution kernels remains unchanged and the number of kernels in each
group is N/G. Since the feature maps are only convolved by the convolution kernels of
the same group, the total number of parameters can be calculated as:

params = N × k × k × C
G

. (6)

By comparing the two Equations (5) and (6), it can be easily known that group convolu-
tion can greatly reduce the number of parameters, precisely speaking, it can reduce them to
1/G. Moreover, as group convolution can increase the diagonal correlation between filters
according to [14], filter relationships become sparse after grouping.

Figure 3 shows the correlation matrix between filters of adjacent layers [23], highly
correlated filters are brighter, while lower correlated filters are darker. The role of filter
groups, namely group convolution, is to take advantage of the block-diagonal sparsity
to learn information about the channel dimension. Low correlated filters do not need to
be learned, that is to say, they do not need to be given parameters. What is more, as seen
in Figure 3, the highly correlated filters can be trained in a more structured way when
using group convolution. Therefore, with structured sparsity, group convolution can not
only reduce the number of parameters, but also learn more accurately to make a more
efficient network.
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(a) (b)

(c) (d)

(e)

Figure 3. The correlation matrix between filters of adjacent layers: (a) 1 group; (b) 2 groups; (c) 4 groups; (d) 8 groups; (e)
the correlation illustration.

2.3. Framework of the Proposed Network

The whole framework of the proposed compression network is illustrated in Figure 4.
The multispectral images are fed into the forward network first, after feature extraction,
the data are then compressed and converted to bit stream successively through quantiza-
tion and entropy encoder. The structure of the decoder is symmetrical with that of the
encoder. As a result, for decoding, the bit stream goes through entropy decoding, inverse
quantization, and the backward network, in turn, to restore the images. The detailed
architecture of the forward and backward network will be demonstrated in Section 2.3.1.

Figure 4. The flow diagram of the proposed network.
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2.3.1. The Forward Network and the Backward Network

The architecture of the forward and backward network is shown in Figure 5, the spec-
tral block and the spatial block are shown in Figure 6.

(a)

(b)

Figure 5. (a) The forward network; (b) the backward network.

(a) (b)

Figure 6. (a) Spectral block; (b) spatial block.

Figure 5 illustrates the detailed process of our network. First of all, the input multi-
spectral images are simultaneously fed into the spectral feature extraction network and
the spatial feature extraction network separately, which consist of corresponding function
modules. In the spectral part, there are several spectral blocks (Figure 6a), which are based
on residual block structure. We replace the convolution layers with 1D spectral convolution
as adjusted to meet our expectations, and the size of the kernel is 1 × 1 × 3. Likewise,
the spatial part is composed by several spatial blocks with a similar structure, as shown
in Figure 6b, and group convolution is used so that each channel will not interact with
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each other. To be specific, the GROUP is set to 7 or 8 as the input multispectral images
are of seven or eight bands. Additionally, some convolution layers are added to enhance
the ability of the learning features, whose kernel size is 3 × 3. After extraction, two parts
of the features are fused together, and then downsampling is carried out to reduce the
size of the feature maps. At the end of the forward network, the sigmoid function plays a
role of limiting the value of the intermediate output, in addition, similar to ReLU as well,
it introduces nonlinear factors to make the network more expressive to the model.

Symmetric with the forward network, the backward network is formed with upsam-
pling layers, some convolution layers, and the partitioned extraction part. In particular,
upsampling is implemented with PixelShuffle [24], which can turn low resolution images
into high resolution images using sub-pixel operation.

2.3.2. Quantization and Entropy Coding

After the forward network, the intermediate data are first quantized into a succession
of discrete integers by the quantizer. Since the descent gradient is used in the backward
propagation to update parameters when training the network, the gradient needs to be
passed down. However, the rounding function is not differentiable [25], which will hinder
the optimization of the network. Therefore, we relax the function, and it is calculated as:

XQ = round
[(

2Q − 1
)
× Xs

]
, (7)

where Q is the quantization level, Xs ∈ (0, 1) is the intermediate datum after sigmoid
activation, round[·] is the rounding function, and XQ is the quantized data. The function
rounds the data in the forward network and is skipped during backward propagation,
to pass the gradient directly to the previous layer.

Then, we adopt ZPAQ as the lossless entropy coding standard and select “Method-6”
as the compression pattern, in order to further process the quantized XQ and generate the
binary bit stream. In the decoder, the bit stream goes through the entropy decoder and
de-quantization, and the data XQ/

(
2Q − 1

)
are finally fed into the backward network to

recover the image.

2.4. Rate-Distortion Optimizer

There are two criterions to evaluate a compression method, one is the bit rate, and the
other is the quality of the recovered image. To enhance the performance of the network,
it is vital to strike a balance between these two criterions. In consequence, rate-distortion
optimization is introduced:

L = LD + λLR, (8)

where L is the loss function that should be minimized during training, LD indicates the
distortion loss, LR represents the rate loss, which can be controlled by the penalty λ. As we
use MSE to measure the distortion loss of the recovered image, LD can be expressed as follows:

LD =
1
N

1
H × W × C

N

∑
n=1,x,y,z

‖I(x, y, z)− Ĩ(x, y, z)‖2
, (9)

where N denotes the batch size, I represents the original multispectral image and Ĩ is the
recovered image, H, W and C are, respectively, height, width, and spectral band number of
the image.

In order to estimate the rate loss, we adopt an Importance-Net to replace the entropy
computation with a continuous approximation of the code length. The importance network
is used to generate an importance map P(X) learning from the input images [26]. The in-
tention is to assign the bit rate according to the importance of the content of the image,
more bits are assigned to complex regions, and fewer bits are assigned to smooth regions.
The importance-net is simply composed of four layers, two 1 × 1 convolution layers and a
residual block that consists of two 3 × 3 convolution layers, which is shown as Figure 7.
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Figure 7. The Importance-Net.

The activation function used in the importance-net is Mish [27], and it has been proven
to be smoother than ReLU and achieve better results. Nonetheless, considering the time cost
and limited hardware conditions due to the increased complexity of Mish, we only adopt
Mish in the importance-net rather than the whole network. Mish can be formulated as:

Mish(x) = x · tanh(ln(1 + ex)). (10)

After sigmoid activation, the value range of the output is [0, 1]. The importance map
can be described as below:

P(x, y) =
[
X̂ ⊗ w

]
(x, y) + b =

k
∑

i=1

k
∑

j=1

[
X̂n(s0x + i, s0y + j)wn(i, j)

]
+ b,

x ∈ {0, 1, . . . , H}, y ∈ {0, 1, . . . , W},
(11)

where X̂ represents the un-quantized output after the encoder, w indicates the weight of
the importance-net, (x, y) is the spatial location of the pixel, and b, k and s0 are the bias,
size of the kernel and stride, respectively. Unlike [26], we use the mean of P(X) instead of
the sum to define the rate loss:

P(X) = ∑
N

P(x, y), (12)

LR = avg(P(X)), (13)

where N is the number of the intermediate channel.

3. Experimental Settings and Training

3.1. Datasets

The 7 band image datasets come from the Landsat-8 satellite. The training dataset
contains about 80,000 images. The images we selected include various terrains under
different seasons and different weather conditions, which enables the network to learn
multiple features, preventing the network training from overfitting. We pick 17 represen-
tative images from 80,000 images as a test set and make sure that there are no identical
images in the two data sets. The size of training images and test images are 128 × 128 and
512 × 512, respectively.

The 8 band image datasets come from the WorldView-3 satellite, which contains about
8700 images of size of 512 × 512. Likewise, we ensure that the datasets include various
terrains under different weather conditions to ensure the diversity of the feature. The test
set has 14 images of size of 128 × 128, and has no identical images with the training set.

3.2. Parameter Settings

We use the Adam optimizer to train the model and update the network. To accelerate
the convergence of the network, the initial learning rate is set to 0.0001. Until the loss function
drops to a certain degree, then set the learning rate to 0.00001 to seek for the optimal solution.
The experimental settings of the training network are listed as Table 1:
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Table 1. Parameter settings.

Parameter Value

Batch Size 16, 32
Learning Rate 1 × 10−4, 1 × 10−5

Inter-Channels 36, 48
λ 5 × 10−4, 1 × 10−3, 1 × 10−1, 5 × 10−1, 1, 5, 8

3.3. The Training Process

First of all, we initialize the weights of the network randomly, and utilize the Adam
optimizer to train the network. In the first stage of training, MSE is introduced into the loss
function. Since optimization is a process of restoring the image as close as possible to the
original one, we can express it by the following formula:(

θ̃1, θ̃2

)
= arg min

θ1,θ2
‖Re(En(Se(θ1, x) + Sa(θ2, x)))− x‖2, (14)

where x is the original image, θ1 and θ2 are the parameters of the spectral feature extraction
network and spatial feature extraction network, respectively. Se(·) represents the 1D spectral
convolution network, Sa(·) is the spatial group convolution network, En(·) denotes quantiza-
tion coding, and Re(·) denotes the whole decoding and recovering process. To make the loss
function decline as soon as possible, θ1 and θ2 are disposed to update along with the gradient
descent. By fixing θ1, we can obtain:

θ̃2 = arg min
θ2

‖Re
(
En

(
Se
(
θ̂1, x

)
+ Sa(θ2, x)

))− x‖2
, (15)

and we can obtain θ̃1 by fixing θ2:

θ̃1 = arg min
θ1

‖Re
(
En

(
Se(θ1, x) + Sa

(
θ̂2, x

)))− x‖2
. (16)

During the backward propagation, the quantization needs to be skipped. Accordingly,(
θ̂1, θ̂2

)
= arg min

θ1,θ2
‖Re(Se(θ1, x) + Sa(θ2, x))− x‖2, (17)

to simplify the representation of Equation (14), an auxiliary variable xm is introduced:

xm(θ1, θ2) = Se(θ1, x) + Sa(θ2, x), (18)

hence, Equation (14) can be written as:(
θ̃1, θ̃2

)
= arg min

θ1,θ2
‖Re(En(xm(θ1, θ2)))− x‖2. (19)

As the first stage of training optimization is completed, we then bring in the rate loss
into the loss function. Combining Equations (13) and (19), the final optimization procedure
can be formulated as:(

θ̃1, θ̃2

)
= arg min

θ1,θ2

{
‖Re(En(xm(θ1, θ2)))− x‖2 + avg[P(θ1, θ2, x)]

}
. (20)

When the loss function no longer declines, the training reaches the optimal solution.
Moreover, in the second stage of the training, a different compression rate can be easily
obtained by changing the penalty λ. The value of λ in our experiment is listed in Table 1.
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4. Results and Discussion

In this section, we recorded the experimental results, including the performance
comparison of our network with other traditional methods at the same bit rate, and the
different bit rates have been obtained through adjusting the penalty λ. Meanwhile, to make
the results more convincing, the compression method based on CNN using an optimized
residual unit in [20] is also added for comparison. For presentation purposes, it is written
as ResConv.

4.1. The Evaluation Criterion

To evaluate the performance of the network comprehensively, apart from PSNR
measuring the image recovery, we also utilize another metric known as spectral angle
(SA) on the spectral dimension to verify the validity of the partitioned extraction method
we proposed. SA indicates the angle between two spectra, which can be viewed as two
vectors [28], and it can be used to measure the similarity between two spectral dimensions.
The formula is written as follows:

SAI, Ĩ = cos−1

⎛⎜⎜⎝ ∑
λ

(
I(x, y, λ) · Ĩ(x, y, λ)

)
√

∑
λ

I2(x, y, λ)∑
λ

Ĩ2(x, y, λ)

⎞⎟⎟⎠, (21)

whose value ranges from −1 to 1. The closer the SA is to zero, the more similar the two
vectors are.

4.2. Experimental Results
4.2.1. Spatial Information Recovery

Figure 8 shows the average PSNR of 7 band test sets. As seen from above, our proposed
method is about 1 dB better than 3D-SPIHT and exceeds JPEG2000 by 3 dB. Comparing
with ResConv, the partitioned extraction method still gains a little advantage of about
0.6 dB. Figure 9 states the detailed comparison of four selected test images, which can
show the recovered result comparison of four methods. It is easy to tell that the partitioned
extraction algorithm has an obvious superiority when the bit rate is ranging from 0.3–0.4.

For illustrative purposes, Figure 10 shows the visual effects of four test images when
the bit rate is around 0.4. To be specific, we display the grayscale image of the third band
of the test image to show the differences more clearly. As can be seen from it, with the
JPEG2000 and 3D-SPIHT algorithms, the recovered images have obvious block effects and
the textures and margins are seriously blurred, whereas the proposed partitioned extraction
algorithm performs well under the same bit rate, the same with ResConv, and these two
methods preserve more details than any other methods. Figure 11 shows the partial
enlarged view of ah_xia for a clearer demonstration. When the bit rate is around 0.4,
ResConv and our proposed method both demonstrate impressive performance. However,
according to Figure 8, ResConv starts to lose its edge as the bit rate drops to 0.3 or even
lower and our method is then more stable.

To further illustrate the advantage of our partitioned extraction method, we augment
8 band test sets into the experiment for better comparison. The average PSNR is shown in
Figure 12. As seen from below, our method obtained a higher PSNR than JPEG2000 and 3D-
SPIHT, approximately 8 dB and 4 dB, respectively. With regard to ResConv, the proposed
method maintains the competitive edge and obtains about 2.5 dB higher than it on average.
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Figure 8. Average PSNR of 7 band test images at different bit rates.

(a) (b)

(c) (d)

Figure 9. PSNR of recovered images: (a) ah_chun; (b) ah_xia.; (c) hunan_chun; (d) tj_dong.
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Figure 10. The visual comparison of the recovered images (each column represents the same image).
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ah_xia

JPEG2000

3D SPIHT

ResConv

proposed

Figure 11. Partial enlarged view of ah_xia.
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Figure 12. Average PSNR of 8 band test images at different bit rates.

Figure 13 represents the comparison of the PSNR of four test images from 8 band test
sets at different bit rates. It can be observed that the advantage of the partitioned extraction
method becomes quite prominent, compared with the result of the 7 band test images.
Regarding ResConv, in spite of it surpassing JPEG2000 and 3D-SPIHT, its inferiority to our
proposed method is more distinct compared with the results of the 7 band test sets. When it
comes to processing multispectral images with more bands, or even hyperspectral images,
some traditional compression methods will ineluctably be in a more inferior position,
as they rarely take the abundant spectral correlation into account.

For visual comparison, as shown in Figures 14 and 15, the JPEG2000 method inevitably
generates serious block and ring effects, and detailed texture is ignored too. Furthermore,
3D-SPIHT is relatively better than JPEG2000; however, there are still a lot of blurred texture
details in the recovered images. ResConv also obtains recovered images with blurred
texture. On the contrary, the algorithm we proposed can retain the detailed texture and
edge information of the images to a great extent.

All of the comparison results indicate that these traditional compression methods are
not suitable for multispectral image compression, which may cause a lot spatial–spectral
information loss. Some CNN-based algorithms may obtain a better result; however, as the
bands increase, the inadequacy manifests as well. The partitioned extraction method of
spatial–spectral features that we proposed has been proven effective on multispectral image
compression, with its higher PSNR and much smoother visual effects.
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(a) (b)

(c) (d)

Figure 13. PSNR of recovered images: (a) test2; (b) test8; (c) test14; (d) test16.

test2 test8 test14 test16

JPEG2000 JPEG2000 JPEG2000 JPEG2000

Figure 14. Cont.
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3D SPIHT 3D SPIHT 3D SPIHT 3D SPIHT

ResConv ResConv ResConv ResConv

proposed proposed proposed proposed

Figure 14. The visual comparison of the recovered images (each column represents the same image).

test8

JPEG2000

3D SPIHT

Figure 15. Cont.
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ResConv

proposed

Figure 15. Partial enlarged view of test8.

4.2.2. Spectral Information Recovery

To adapt to our partitioned extraction network structure and verify the effectiveness of
spectral information recovery as well, we adopt the SA as the second evaluation criterion.
The average SA curves of 7 band and 8 band test sets are shown in Figures 16 and 17,
respectively. As seen below, we can find that the SA of the images reconstructed by the
partitioned extraction algorithm is always smaller than that of JPEG2000, 3D-SPIHT and
ResConv. Tables 2 and 3 list the detailed SA values of four representative test images of 7
band and 8 band, respectively. Supported by the chart and data below, it can be proven that
the partitioned extraction algorithm obtains the smallest SA at all bit rates compared with
the other three methods, and the smaller SA indicates that the images reconstructed by the
proposed partitioned extraction method can obtain better spectral information recovery.

Figure 16. Average spectral angle (SA) curve of 7 band test images.
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Table 2. SA of four 7 band test images (around a bit rate of 0.35).

Methods ah_chun ah_xia hunan_chun tj_dong

Proposed 0.0251 0.0192 0.0182 0.0180
ResConv 0.0265 0.0211 0.0206 0.0201

3D-SPIHT 0.0286 0.0301 0.0249 0.0253
JPEG2000 0.0324 0.0298 0.0255 0.0394

 

Figure 17. Average SA curve of 8 band test images.

Table 3. SA of four 8 band test images (around a bit rate of 0.35).

Methods Test2 Test8 Test14 Test16

Proposed 0.0348 0.0300 0.0289 0.0251
ResConv 0.0411 0.0377 0.0327 0.0312

3D-SPIHT 0.0576 0.0645 0.0571 0.0505
JPEG2000 0.0514 0.0517 0.0443 0.0397

5. Conclusions

In this paper, a novel end-to-end framework with partitioned extraction of spatial–
spectral features for multispectral image compression is proposed. The algorithm pays close
attention to the abundant spectral features of the multispectral images and is committed to
preserving the integrity of the spectral–spatial features. The spectral and spatial feature
modules extract corresponding features separately, after which the features are fused
together for further processing. Likewise, the spectral and spatial features are severally
recovered when reconstructing the images, which can help obtain images with high quality.
To testify the validity of the framework, experiments are implemented on both 7 band
and 8 band test sets. The results show that the proposed algorithm surpasses JPEG2000,
3D-SPIHT and ResConv on PSNR, visual effects and SA as well. The results on the 8 band
show that the proposed method has achieved a more obvious superiority, which may prove
that spectral information plays an indispensable role in multispectral image processing.
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Abstract: Lossy compression is widely used to decrease the size of multichannel remote sensing
data. Alongside this positive effect, lossy compression may lead to a negative outcome as making
worse image classification. Thus, if possible, lossy compression should be carried out carefully,
controlling the quality of compressed images. In this paper, a dependence between classification
accuracy of maximum likelihood and neural network classifiers applied to three-channel test and
real-life images and quality of compressed images characterized by standard and visual quality
metrics is studied. The following is demonstrated. First, a classification accuracy starts to decrease
faster when image quality due to compression ratio increasing reaches a distortion visibility threshold.
Second, the classes with a wider distribution of features start to “take pixels” from classes with
narrower distributions of features. Third, a classification accuracy might depend essentially on the
training methodology, i.e., whether features are determined from original data or compressed images.
Finally, the drawbacks of pixel-wise classification are shown and some recommendations on how to
improve classification accuracy are given.

Keywords: remote sensing; lossy compression; image quality; image classification; visual
quality metrics

1. Introduction

Nowadays, remote sensing (RS) is used in numerous applications [1–3] due to the following
main reasons. Different types of useful information can be potentially retrieved from RS images,
especially high resolution and multichannel data (i.e., a set of co-registered component images of
the same territory acquired for different wavelengths, polarizations, even by different sensors [3–6]).
The modern RS sensors often offer a possibility of fast and frequent data collection—good examples
are multichannel sensors Sentinel-1 and Sentinel-2 which have been launched recently and started to
produce a great amount of valuable RS data [7,8].

Therefore, the volume of RS data greatly increases due to the aforementioned factors: better
spatial resolution, a larger number of channels, more frequent observations. This causes challenges
in RS data processing that relate to all basic stages of their processing: co-registration, calibration,
pre- or post-filtering, compression, segmentation, and classification [9,10]. One of the most serious
challenges is the compression of multichannel RS images [11–13]. Compression is applied to diminish
data size before their downlink transferring from spaceborne (more rarely, airborne, UAV) sensors,
to store acquired images in on-land centers of RS data collecting or special depositories, to pass images
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to potential customers. Lossless compression is often unable to meet requirements to compression
ratio (CR) that should be provided, since, even in the most favorable situations of high inter-band
correlation of component images [14], CR attained by the best existing lossless compression techniques
reaches 4 . . . 5 [12].

Lossy compression can provide considerably larger CR values [12,13,15–17] but at the expense of
introduced distortions. It is always a problem to reach an appropriate compromise between compressed
image quality (characterized in many different ways) and CR [11–13,18–20]. There are several reasons
behind this. First, compression providing a fixed CR often used in practice [21,22] leads to compressed
images whose quality can vary in wide limits [23]. For a given CR and simpler structure images,
introduced distortions are smaller and compressed image quality is higher, whilst for images, having
a more complex structure (containing many small-sized details and textures), losses are larger and,
thus, image quality can be inappropriate since some important information can be inevitably lost,
which is undesired. Certainly, some improvements can be reached due to the employment of a better
coder, adaptation to image content [24], use of inter-channel correlation by three-dimensional (3D)
compression [12,13,21,22], or some other means. However, the positive effect can be limited, and/or
there can be some restrictions, e.g., the necessity to apply image compression standard [12,19,21].

Thus, we are more interested in a different approach that presumes lossy compression of
multichannel RS images with a certain control of introduced distortions combined with simultaneous
desire to provide a larger CR. Let us explain the advantages of such an approach, when it can be
reasonable, and what the conditions are for its realization. Recall here that RS data compressed in
a lossy manner can be useful if: (a) introduced losses do not lead to sufficient reduction of solving
the final tasks of RS image processing such as segmentation, object detection, spectral unmixing,
classification, parameter estimation [17,25–34]; (b) distortions due to lossy compression do not appear
themselves as artifacts leading to undesired negative effects (e.g., appearing of ghost artifacts) in
solving the aforementioned final task.

Below, we consider the impact of lossy compression on multichannel RS image
classification [27,28,33–35]. Specifically, we focus on the case of a limited number of channels, e.g.,
color, multi-polarization, or multispectral images, due to the following reasons: (a) it is simpler to
demonstrate the effects that take place in images due to lossy compression and how these effects
influence classification just for the case of a small number of image components; (b) an accurate
classification of multichannel images with a small number of components is usually a more difficult
task than the classification of hyperspectral data (images with a relatively large number of components)
because of a limited number of available features and the necessity to reliably discriminate classes in
feature space.

Returning to the advantages of lossy compression of multichannel RS data, we can state the
following. First, images compressed in a lossy manner might be classified better than original
images [27,34]. Such an effect usually takes place if original images are noisy and coder parameters are
adjusted so that the noise removal effect due to lossy compression [13,36–38] is maximal. However,
even if the noise in images is absent (or, more exactly, peak signal-to-noise ratio (PSNR) values in
original images are high and noise is not seen in visualized component images), the accuracy of image
classification may remain practically the same for a relatively wide range of CR variation [27,34,38].

This range width can be different [39]. Its width depends on the following main factors:

• Used classifier, how efficient it is, how it is trained;
• Applied compression technique (coder);
• How well classes are discriminated, and which features are used;
• How many classes are present in each multichannel image;
• How “complex” is a considered image (is it highly textural, does it contain many small-sized or

prolonged objects, what is the mean size of fragments belonging to each class).
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Therefore, researchers have a wide field of studies intended on understanding how to set a CR
or a coder’s parameter that controls compression (PCC) for a given multichannel image, used lossy
compression technique, and considered classifier. Here we would like to recall some already known
aspects and dependencies that will be exploited below. First, for the same CR, considerably larger
distortions can be introduced into images with higher complexity [40]. Moreover, larger distortions can
be introduced into more complex and/or noisier images for the same PCC, for example, quantization
step (QS) of coders based on orthogonal transforms (discrete cosine transform (DCT) or wavelets [40]).
Second, the desired quality of a compressed image (a value of a metric that characterizes image quality)
can be nowadays predicted and provided with an appropriate accuracy [40,41], at least, for some
coders based on DCT as, e.g., the coder AGU [42]. Third, there exist certain dependencies between
values of conventional (e.g., PSNR) and/or visual quality metrics and accuracy of correct classification
of an entire image or classes [43]. Classification accuracy for classes mainly represented by large
size homogeneous objects (water surfaces, meadows) better correlates with the conventional metrics
whilst probability of correct classification for classes mainly represented by textures, small-sized and
prolonged objects (forests, urban areas, roads, narrow rivers) correlates with visual quality metrics.
Besides, classification accuracies for classes can depend on PCC or CR differently [38]. For the latter
type of classes, the reduction of probability of correct classification with an increase of CR is usually
faster. Fourth, different classifiers produce classification results that can significantly differ both in
the sense of obtained classification maps and quantitative characteristics as the total probability of
correct classification, probabilities for classes, and confusion matrices [43,44]. Fifth, there are quite
successful attempts to predict the total probability of correct classification (TPCC) of compressed RS
images based on the fractal models [28].

Aggregating all these, we assume the following:

• There are strict dependencies between distortions due to lossy compression (that can be
characterized by certain metrics) and TPCC for multichannel RS images;

• Having such dependences, it is possible to recommend what metrics’ values must be provided to
ensure practically the same TPCC for compressed data as for original data;

• It is possible to provide the recommended metrics’ values, at least, for some modern compression
techniques based on DCT;

• Metric’s thresholds might depend upon a classifier used and properties of a multichannel image
subject to lossy compression;

• Classifier performance might also depend on how it is trained (for example, using an original or
compressed multichannel image).

The goal of this paper is to carry out a preliminary analysis are these assumptions valid. The main
contributions are the following. First, we show that it is worth applying lossy compression with
distortions around their invisibility threshold to provide either some improvement of TPCC (achieved
for simple structure images) or acceptable reduction of TPCC (for complex structure images) compared
to TPCC for the corresponding original image. Moreover, we show how such compression can be
carried out for a particular coder. Second, we demonstrate that classifier training for compressed data
usually provides slightly better results than training for original (uncompressed) images.

The paper structure is the following. Section 2 deals with a preliminary analysis of the performance
criteria used in lossy compression of RS images. In Section 3, two popular methods of RS data
classification based on the maximum likelihood method (MLM) and neural network (NN) are
described. Section 4 contains the results of classifier testing for the synthetic three-channel test image.
Section 5 provides the results of experiments carried out for real-life three-channel image. Discussion
and analysis of some practical peculiarities are presented in Section 6; the conclusions are shown in
Section 7.
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2. Performance Criteria of Lossy Compression and Their Preliminary Analysis

Consider an image It
ij where i, j denote pixel indices and IIm, JIm define the processed image size.

If one deals with a multichannel image, index q can be used. Let’s start with the consideration of the
case of a single-component image. To characterize compression efficiency, we have used the following
three metrics. The first one, traditional PSNR, is defined by

PSNRinp = 10 log10

⎛⎜⎜⎜⎜⎜⎜⎝DR2/
IIm∑
i=1

JIm∑
j=1

(
Ic
ij − It

ij

)2
/(IIm × JIm)

⎞⎟⎟⎟⎟⎟⎟⎠ = 10 log10

(
DR2/MSE

)
(1)

where DR denotes the range of image representation, Ic
ij is the compressed image, MSE is the mean square

error of distortions introduced by lossy compression. In general, DR in remote sensing applications
might sufficiently differ from 255, which is common for processing RGB color images. Below, we will
mainly consider single and multichannel RS images having DR = 255 but will also analyze what should
be done if DR is not equal to 255.

PSNR is the conventional metric widely used in many image processing applications. Meanwhile,
the drawbacks of PSNR are well known. The main drawback of PSNR is that it is not adequate
in characterizing image visual quality [45,46]. Currently, there are numerous other, so-called HVS
(human vision system) metrics, that are considered to be more adequate [45–47]. Some of the existing
HVS-metrics can be applied only to color images. As we need some metrics that should be good enough
and applicable to single component images, we apply the metrics PSNR-HVS and PSNR-HVS-M. The
former HVS-metric takes into account less sensitivity of human vision to distortions in high-frequency
spectral components, the latter one also takes into consideration a masking effect of image texture and
other heterogeneities [47]. These metrics are defined by

PHVSM = 10 log10

(
DR2/MSEHVS

)
(2)

PHVSMout = 10 log10

(
DR2/MSEHVS−M

)
(3)

where MSEHVS and MSEHVS−M are MSEs determined considering the aforementioned effects.
If PSNR-HVS is approximately equal to PSNR, then the distortions due to lossy compression have
properties similar to an additive white Gaussian noise. If PSNR-HVS is smaller than PSNR, this
evidences that distortions are more similar to either non-Gaussian (heavy-tailed), or spatially correlated
noise, or both [47] (see also [48] for details). If PSNR-HVS-M is considerably larger than PSNR, then a
masking effect of image content is sufficient (most probably, an image is highly textural). In turn, if
PSNR-HVS-M is approximately equal or smaller than PSNR, then a masking effect is absent, and/or
distortions are like spatially correlated noise.

Figure 1a,c,e present three grayscale test RS images of different complexity—the image Frisco has
the simplest structure whilst the image Diego is the most textural. Figure 1b,d,f represent dependences
of the considered metrics in Equations (1)–(3) on quantization step which serves as PCC in the coder
AGU [42] (this compression method employs 2D DCT in 32 × 32 pixel blocks, the advanced algorithm
of coding uniformly quantized DCT coefficients, and embedded deblocking after decompression).
As one may expect, all metrics become smaller (worse) if QS increases. Meanwhile, for the same
QS, compressed image quality is not the same. As an example, for the case of QS = 20, PSNR and
PSNR-HVS-M for the test image Frisco are practically the same (about 40 dB). For the test images
Airfield and Diego that have more complex structures, PSNR-HVS-M values are also about 40 dB whilst
PSNR values are about 34 dB. This means the following: (1) there are masking effects, i.e., textures
and heterogeneities still sufficiently mask introduced distortions; (2) the introduced distortions can be
noticed by visual inspection (comparison of original and compressed images). Recall that distortion
visibility thresholds are about 35 . . . 38 dB according to the metric PSNR and about 40 . . . 42 dB
according to the metric PSNR-HVS-M [45].
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 1. Test grayscale images Frisco (a), Airfield (c), and Diego (e), all of size 512 × 512 pixels, and
dependences of the considered metrics (PSNR, PSNR-HVS, PSNR-HVS-M, all in dB) on the quantization
step (QS) for the coder AGU for these test images ((b), (d), and (f), respectively).

Note that distortions’ invisibility happens if QS is smaller than 18 . . . 20 for grayscale images
represented as 8-bit data arrays [23] (more generally, if QS ≤ DR / (12 . . . 13)). One should also keep
in mind that the use of the same QS leads to sufficiently different CR. For example, for QS = 20,
CR values are equal to 26.3, 4.6, and 4.5 for the considered test images Frisco, Airfield, and Diego,
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respectively. These facts and dependences are given in Figure 1 confirm the basic statements presented
in the Introduction.

Alongside differences in metrics’ values for the same QS considered above for QS ≈ 20 (similar
differences take place for QS > 20, compare the corresponding plots in Figure 1b,d,f), there are
interesting observations for QS ≤ 10 (more generally, QS ≤ DR / 25). In this case, MSE ≈ QS2 / 12 [20],
PSNR exceeds 39 dB and PSNR-HVS-M is not smaller than PSNR and exceeds 45 dB. Thus, the
introduced distortions are not visible and the desired PSNRdes (or, respectively, MSEdes) can be easily
provided by a proper setting of QS as QS ≈ (12MSEdes)1/2.

Certainly, there are numerous quality metrics proposed so far. Below we carry our study based on
PSNR-HVS-M because of the following reasons. First, it is one of the best component-wise quality
metrics [49] that can be calculated efficiently. Second, the cross-correlation between the best existing
quality metrics is high (see data in Supplementary Materials Section). Therefore, other quality metrics
can be used in our approach under the condition of carrying out a corresponding preliminary analysis
of their properties. Note that we have earlier widely used PSNR-HVS-M in image compression and
denoising applications [23] utilizing well its main properties.

3. Considered Approaches to Multichannel Image Classification

As has been mentioned above, there are numerous approaches to the classification of multichannel
images. Below we consider two of them. The first one is based on the maximum likelihood method
(MLM) [50,51] and the second one relies on a neural network (NN) training [50]. In both cases, the
pixel-wise classification is studied. There are many reasons behind using the pixel-wise approach and
just these classifiers: (a) to simplify the classification task and to use only Q features (q = 1, . . . , Q),
i.e., the values of a given multichannel image in each pixel; (b) to show the problems of pixel-wise
classification; (c) MLM and NN based classifiers are considered to be among the best ones [50].

The note that classifiers of RS data classification can be trained in different ways. One option is to
train a classifier in advance using earlier acquired images, e.g., uncompressed ones stored for training
or other purposes. Another option is to use a part of the obtained compressed image for classifier
training and its use for entire image classification [39]. One can expect that classification results would
be different where both options have both advantages and drawbacks.

3.1. Maximum Likelihood Classifier

The classification (recognition) function for MLM is based on the calculation of some metric in the
feature space

Φ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, ρ

(→
x
∗
,
→
x s

)
≥ tr;

0, ρ

(→
x
∗
,
→
x s

)
< tr,

(4)

where
→
x
∗
,
→
x s are feature (attribute) vectors for current and sample objects (image pixel in our case);

ρ(•, •) is a used metric of vector similarity; tr denotes the decision undertaking threshold.
As components of the feature vector, in general, one can consider both original ones (pixel (voxel)

values of a multichannel image) and “derivative” features calculated on their basis (e.g., ratios of
these values).

If Φ = 1, then a current object (pixel) determined by the feature vector
→
x
∗
, is related to a class as.

Taking into account the stochastic nature of the features
→
x ,
→
x ∈ Rc, information about each object

class is contained in parameters
→
θ of joint probability density functions (PDFs) fc

(→
x ;
→
θ

)
.

This information is used for creating statistical decision rules

L =
fc

(→
x
∗
;
→
θ | a2

)

fc

(→
x
∗
;
→
θ | a1

) ≥ tr (5)

106



Remote Sens. 2020, 12, 3840

where L is the likelihood ratio. The threshold tr is determined by a statistical criterion used; for
example, the Bayesian criterion provides getting the optimal classifier when the following information
is available: PDFs for all sets of patterns, probabilities of each class occurrence, and losses connected
with probabilities of misclassifications.

In most practical cases, for object description, statistical sample information is used, i.e., statistical
estimates of PDFs obtained at the training stage are employed in likelihood ratio L. Then, sample size,
reliability of information about observed objects, and efficiency of using this information in decision
rule mainly determine the quality of undertaken decisions.

Training samples are formed using pixels representing a given class; usually, it is some area (or
areas, a set of pixels) in an image identified based on some true data for a sensed terrain. The main
requirement for the data of training samples is their representativeness—the pixels of the sample
must correspond to one class on the ground; such a class should occupy a territory that is fairly well
represented by pixels in the image with a given resolution. In other words, the number of pixels in the
selected area of the image should ensure the adoption of statistically significant decisions.

When constructing a multi-alternative decision rule (K > 2), the maximum likelihood criterion
is used; the threshold tr in the Equation (5) is assumed to be equal to 1. The maximum likelihood
criterion makes it possible to eliminate the uncertainty of the solution (when none of the classes can
be considered preferable to the others), does not require knowledge of the a priori probabilities of
the classes and the loss function, allows evaluating the reliability of the solutions, and can be easily
generalized to the case of many classes. In accordance with this criterion, it is believed that the control
sample (measured values of features in the current image pixel) belongs to the class, 1 ≤ u ≤ K, for
which the likelihood function (or rather, its estimate obtained at the training stage) is maximum:

fc

(→
x
∗
;
→
θ | au

)
= max

1≤k≤K

{
fc

(→
x
∗
;
→
θ | ak

)}
⇒ →

x
∗ ∈ au. (6)

If the assumptions about the normal law of distribution of the feature vector are true, the maximum
likelihood method Equation (6) provides optimal recognition. The assumption of normality of features,
on the one hand, simplifies the estimation of the parameters of distribution laws (DL) and makes
it possible to take into account the presence of mutual correlation relationships between data in
different channels in models of classes. On the other hand, it is known that the distributions of real
multichannel data are often non-Gaussian. Even with the assumption of the normalization of DL
observations due to the central limit theorem, the nonlinearity introduced during the reception and
primary processing of information, which manifests itself in a change in the shape and parameters of
the observed distribution, cannot be ignored.

To increase the accuracy of approximating empirical non-Gaussian distributions of features and to
take into consideration the possible presence of strong correlation relationships, it is advisable to apply
multiparameter distribution laws based on non-linear transformations of normal random variables.
These transformations include Johnson’s transformations.

For describing a class of spectral features, we propose to apply Johnson SB-distribution [52,53]:

f(x) =
ηλ√

2π(x− ε)(ε+ λ− x)
e−

1
2 (γ+η ln x−ε

ε+λ−x )
2

(7)

where η and γ are two shape parameters connected with skewness and kurtosis (η > 0, γ ∈ (−∞,+∞));
ε and λ are two scale parameters of a random variable x (ε(−∞,+∞),ε ≤ x ≤ ε+ λ).

Due to a large number of parameters, the model in Equation (4) is quite universal and able to
approximate almost any unimodal distribution as well as a wide spectrum of bimodal distributions.
Besides, since Johnson distributions are based on nonlinear transformations of normal random variables,
their use in describing empirical distributions allows staying within correlation theory framework,
which is important for the considered features characterized by non-Gaussian distributions (see
examples below) and the presence of strong inter-channel correlation.
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The estimates of the parameters for PDFs
→
θ |ak =

{
εk, λk,ηk,γk

}
can be found by a numerical

optimization of the loss function minimizing integral MSE of empirical distribution (histogram)
representation by the theoretical model in Equation (7).

The multidimensional variant of Equation (7) is the following [52]:

fc(
→
x |a ) = (2π)−c/2‖Ξ‖−1/2

c∏
ν=1

ηνλν

(xν−εν)(εν+λν−xν)
×

× exp
[
− 1

2

c∑
ν,κ=1

Ξ−1
νκ

(
γν + ην ln xν−εν

εν+λν−xν

) (
γκ + ηκ ln xκ−εκ

εκ+λκ−xκ

)] (8)

where c is the size of the feature vector
→
x ; Ξ is the sample correlation matrix.

Thus, to construct a multidimensional statistical model of correlated data, processing consists
of several stages. At the first stage, a traditional statistical analysis is performed by estimating
the moments of distributions and histograms of the components of the random vector. Sample
estimates of the cross-correlation coefficients of the components

→
x are also found. At the second stage,

one-dimensional statistical models of the form Equation (7) are constructed for each of the components
of multidimensional data. The initial estimation of the distribution density (the histogram of the
feature xν) is used as a target for the desired model f(xν) described by the Johnson DL parameter

vector
→
θ . The multidimensional statistical model is built based on multidimensional histograms f̂c

(→
x
)
.

To construct a multidimensional model as in Equation (8) for a class ak, one needs to evaluate the
matrix of distribution parameters Θk = [εck, λck,ηck,γck] : 4× c and the sample correlation matrix Ξ.

After the process of creation and estimation of the training samples, image pixels are sorted
(related) to the classes based on the decision rule (#3). If the pixel-wise classification is applied, data for
each pixel with coordinates (i, j) are processed separately (independently). Value vector for a current
pixel

→
x
∗
ij is put into mathematical models of the class target in Equation (5). The obtained results

f̂c

(→
x
∗
ij

)
| ak , k = 1 . . . K are compared between each other and a maximal estimate of the likelihood

function is chosen; its number is the number of the class the current pixel (i, j) is referred to.

3.2. NN Classifier Description

As the classifier is based on a neural network for image processing, a feedforward neural network
is used. Nowadays there exist many NNs and approaches to their training and optimization [54].
We have chosen a simple but efficient NN for our application that can be easily implemented or placed
on different platforms and devices. The employed classifier is an all-to-all connected perceptron
combined with a self-organizing map to treat obtained weights or probabilities of the pixel belonging
to one of the classes. The architecture details are the following: input layer for incoming data of
three-color components, one hidden neuron layer with 30 fully connected neurons (this number has
shown to perform equally well with larger possible numbers of hidden layer neurons). For the hidden
layer, the tanh activation function is exploited. Scaled conjugate gradient backpropagation is used
as a global training function. As has been mentioned above, the output layer of the used NN is a
self-organized map fully connected with neurons of the hidden layer. It provides the mapping of
output probabilities of the decision to the list of classes as vectors.

Training and validation processes have been performed in the following way. For this purpose,
a certain image is divided into a set of pixel color value vectors. Hereby, the obtained set of vectors is
permuted to introduce non-ordinary allocation for each training. For NN training, we have taken 70%
of the produced set, the other 30% of data is used for validation. The self-dataset validation at this
first stage has to be performed to prove the chosen NN architecture and NN parameters, and other
training process peculiarities. We have considered different configurations of NN-based classifiers,
especially varying the number of hidden layers, neurons, and connections among them. It has been
established that complex architectures, like multi-layer perceptron, do not provide better efficiency of
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the classification and even cause over-fitting using the same training dataset. As the result, the chosen
architecture was NN with one hidden layer with a fully optimal number of training epochs equal to 50
for the given NN. The proposed classifier is easy to use, and it is fast (which is the crucial point for the
application of classification to remotely sensed data). The overall training process was repeated 100
times with full permutation of the dataset and the obtained classifier has been applied to test images.

4. Analysis of Synthetic Three-Channel Image

4.1. MLM Classifier Results

Creating a test multichannel image, we have taken into account the following typical properties
of classes that might take place in real-life RS images:

Property 1. Features rarely have distributions close to Gaussian; since in our case, color component values (see
the test color image and its components in Figure 2a–d, respectively) are the used features, then this property
relates to them;

  

(a) (b) 

  
(c) (d) 

Figure 2. Cont.
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(e) (f) 

Figure 2. Three-channel test image: original (a), its three components (b–d), compressed with providing
PSNR-HVS-M = 36 dB (e), compressed with providing PSNR-HVS-M = 30 dB (f).

Property 2. Objects that relate to a certain class are rarely absolutely homogeneous (even water surface usually
cannot be considered as absolutely homogeneous); many factors lead to diversity (variations) of pixel values as
variations of physical and chemical characteristics of reflecting or irradiating surface, noise, etc.

Property 3. Features overlap (intersect) in the feature space; just this property usually leads to misclassifications
especially if such overlapping takes place for many features;

Property 4. The numbers of pixels belonging to different classes in each RS image can differ a lot, it might be so
that a percentage of pixels belonging to one class is less than 1% whilst for another class, there can be tens of
percent of the corresponding pixels.

Property 5. There can be objects of two or even more classes in one pixel [54,55] that requires the application of
unmixing methods but we do not consider such, more complex, situations in our further studies (usually more
than three components of multichannel RS data are needed to carry out efficient unmixing).

Let us show that we have, in a more or less extent, incorporated these properties in our test
image. Table 1 contains data about seven classes, histograms for them, and approximations using
Johnson SB-distribution. Class 1 can be conditionally treated as “Roads”, Class 2—as agricultural fields
(Field-Y), Class 3—as agricultural fields of another color (Field-R), Class 4—as “Water”, Class 5—as
“Grass”, Class 6—as “Trees”, Class 7—as some very textural or heterogeneous class like urban area or
vineyard (“Texture”).
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Table 1. Information about classes.

# 
Class Map 

(Object Sample) 
Red (Histogram and 

Approximation) 
Green (Histogram and 

Approximation) 
Blue (Histogram and 

Approximation) 

1 

   

2 

 
   

3 

    

4 

 
   

5 

 
   

6 

 
  

7 
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As one can see, Property 1 (non-Gaussian distribution) holds for practically all particular
distributions. Property 2 (internal heterogeneity) takes place for all classes, especially for Classes 2 and
7. Property 3 (intersection of features) takes place for many classes—all three features for Classes 1 and
2, all three features for Classes 5 and 6; features of Class 7 overlap practically with all other classes
(intersection of features can be also seen from a comparison of component images where some classes
can be hardly distinguished, e.g., Classes 2 and 4 in Green component, Figure 2c). Property 4 is also
observed—there is a small percentage of pixels belonging to Class 1 whilst quite many pixels belong to
Classes 4, 5, and 7.

Figure 3a presents the true map of classes where Class 1 is shown by light brown, Class 2—by
yellow; Class 3—by red, Class 4—by blue; Class 5—by light green, Class 6—by dark green, Class
7—by white.

  

(a) (b) 

  

(c) (d) 

Figure 3. Classification results: true map (a); classification map for original image (b); classification
map for image compressed with PSNR-HVS-M = 36 dB (c); classification map for image compressed
with PSNR-HVS-M = 30 dB (d).

MLM classifier applied to original image pixel-wise (Figure 3a) produces a classification map
given in Figure 3b. As one can see, there are quite many misclassifications. Classes 4 and 6 are classified
in the best way (probabilities of correct classification P44 and P66 are equal to 0.85 and 0.82, respectively)
whilst Class 5 is recognized in the worst manner (P55 = 0.19). Classes 1 and 7 are not recognized well
(P11 and P77 are equal to 0.48 and 0.42, respectively). Classes 2 and 3 are characterized with P22 = 0.67
and P33 = 0.77, respectively.
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Quite low probabilities of classification can be explained by several factors. Some of them have
been already mentioned above—intersections in feature space are sufficient. One more possible reason
is that the MLM classifier is based on distribution approximations and these approximations can be
not perfect (see histograms and their approximations in Table 1).

Quite many pixels are erroneously related to Class 7 (“Texture”) for which distributions are very
wide and they intersect with distributions for other classes.

Figure 2e,f presents images compressed providing PSNR-HVS-M ≈ 36 dB and PSNR-HVS-M ≈ 30 dB.
In these cases, CR values are about 4.5 and 8.9, respectively (for component-wise lossy compression).
For the case of PSNR-HVS-M≈36 dB, introduced distortions are visible [45]. They mostly appear
themselves as smoothing of variations in quasi-homogeneous regions (consider the fragments for Class
6 (dark blue) for images in Figure 2a,e). The effects of such suppression of noise or high-frequency
variations due to lossy compression are known for lossy compression [36,37] and they might have even
a positive effect for classification (under certain conditions). For the case of PSNR-HVS-M ≈ 30 dB, the
distortions due to lossy compression (see the compressed image in Figure 2f) appear themselves in
variations’ smoothing and edge/object smearing (this can be seen well for Class 1). Clearly, such effects
might have an impact on classification.

Probabilities of correct classification for classes are given in Table 2. Note that the MLM classifier
has been “trained” using distribution approximations obtained for the original (uncompressed)
three-channel image. As one can see, probabilities for particular classes depend on compressed image
quality and compression ratio in a different manner. P11 steadily decreases and becomes close to zero.
This happens because of two reasons. First, features for Class 1 sufficiently intersect with features for
Class 2. Second, due to lossy compression, feature distribution after compression differs from feature
distribution for the original image (for which the MLM classifier has been trained) where this difference
increases with the reduction of PSNR-HVS-M and CR increase. This is illustrated by distributions
presented in Table 3 for Class 1 and, partly, in Table 4 for Class 2.

Table 2. Probabilities of correct classifications for particular classes depending on image quality.

PSNR-HVS-M, dB P11 P22 P33 P44 P55 P66 P77

∞ (original image) 0.475 0.667 0.773 0.854 0.193 0.822 0.415
48 0.190 0.781 0.686 0.384 0.093 0.809 0.579
45 0.147 0.795 0.652 0.308 0.077 0.777 0.623
42 0.101 0.804 0.615 0.253 0.058 0.712 0.665
36 0.031 0.802 0.568 0.163 0.040 0.545 0.777
30 0.001 0.753 0.478 0.177 0.042 0.556 0.843

Table 3. Illustration of distribution changes due to lossy compression for Class 1.

PSNR-HVS-M,
dB

Red (Histogram and
Approximation)

Green (Histogram and
Approximation)

Blue (Histogram and
Approximation)

∞
(original image)

42
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Table 3. Cont.

PSNR-HVS-M,
dB

Red (Histogram and
Approximation)

Green (Histogram and
Approximation)

Blue (Histogram and
Approximation)

36

30

Table 4. Illustration of distribution changes due to lossy compression for Class 2.

PSNR-HVS-M,
dB

Red (Histogram and
Approximation)

Green (Histogram and
Approximation)

Blue (Histogram and
Approximation)

∞ (original
image)

36

30

Analysis of data in Table 2 also shows the following. There are some classes (Classes 3–6) for
which a larger CR and smaller PSNR-HVS-M (that correspond to more sufficient lossy compression)
results in a reduction of probabilities of correct classification (analyze data in columns for P33, P44, P55,

and P66). Meanwhile, there are classes, for which probabilities of correct classification increase—see
data for P77. This is because of the decrease in misclassifications in the texture area (see the maps in
Figure 3c,d). There is also one class (Class 2) for which P22 is the largest for PSNR-HVS-M about 40 dB
(due to noise filtering effect) but it reduces for smaller PSNR-HVS-M (larger CR).

One probable reason why the MLM classifier trained for original images and applied to compressed
ones loses efficiency is that feature distributions observed for compressed data differ from those ones
observed for original RS data and used for classifier training.

Then, one can expect that the MLM classifier has to be trained for compressed images. We
have carried out the corresponding study and the results are presented in Table 5. The conclusion
that follows from the analysis of data in Table 5 might seem trivial—it is needed to train the MLM
classifier for compressed images with the same characteristics of compression. Following this rule
leads to a considerable improvement in classification accuracy. For example, if original data are used in
training and then the MLM classifier is applied to data compressed providing PSNR-HVS-M = 42 dB,
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then Pcc = 0.501. At the same time, if the image compressed providing PSNR-HVS-M = 42 dB was
used in training, Pcc radically increases and becomes equal to 0.579. Even more surprising results
are observed for cases of images compressed producing PSNR-HVS-M equal to 36 and 30 dB. Pcc for
the corresponding training reaches 0.597 and 0.527, respectively. Note that Pcc = 0.627 for original
image classified using training for the original image. Then, it occurs that for images compressed with
PSNR-HVS-M about 40 dB almost the same Pcc is observed if they are trained for the corresponding
compressed images.

Table 5. Total probabilities of correct classification Pcc for different images depending upon
“training” data.

Image Used for Training

Total Probabilities of Correct Classification for
Compressed Images

PSNR-HVS-M =
42 dB

PSNR-HVS-M =
36 dB

PSNR-HVS-M =
30 dB

0 Original (uncompressed) 0.501 0.434 0.442

1 Compressed with providing
PSNR-HVS-M = 42 dB 0.579 0.566 0.563

2 Compressed with providing
PSNR-HVS-M = 36 dB 0.519 0.597 0.599

3 Compressed with providing
PSNR-HVS-M = 30 dB 0.408 0.446 0.527

Classification maps obtained for this methodology of training are presented in Figure 4a,b.
They can be compared to the maps in Figure 3c,d, respectively. This comparison clearly demonstrates
that training for the corresponding compressed data is preferable. Many classes are recognized
sufficiently better. One interesting point is that many classifications might appear in the neighborhoods
of sharp edges in multichannel images (near edges of Class 4). This is because such edges are
smeared by lossy compression and pixels with “intermediate values” that can be referred to as “wrong
classes” appear.

  
(a) (b) 

Figure 4. Classification maps for the compressed image with providing PSNR-HVS-M = 36 dB using
maximum likelihood method (MLM) classifier trained for the same compressed image (a); compressed
image with providing PSNR-HVS-M = 30 dB using MLM classifier trained for the same compressed
image (b).
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4.2. NN-Based Classification

Let us start by analyzing data for classifying the original three-channel image using NN training
for this image. The obtained confusion matrix is presented in Table 6. The corresponding map is given
in Figure 5a. As one can see, several classes are recognized well: Field-R (Class 3), Water (class 4),
Trees (Class 6). There are many misclassifications for Classes “Roads” (with Class Field-Y that has
practically the same colors) and “Texture” (its pixels can be erroneously related to classes “Water”,
“Trees”, “Grass”, and, more rarely, Field-Y). The results are relatively bad for Class 2 and Class 5. Thus,
even for this almost ideal case (classified image is the same as that one used for training, the NN-based
classifier able to work with non-Gaussian distributions of features is applied), the classification results
are far from being perfect.

Table 6. Confusion matrix for the original image classified by neural networks (NN) trained for
this image.

Class
Probability of Decision

Road Field-Y Field-R Water Grass Trees Texture

Road 0.356 0.645 0 0 0 0 0
Field-Y 0.109 0.608 0.002 0 0 0 0.281
Field-R 0 0.004 0.996 0 0 0 0
Water 0 0 0 0.986 0 0 0.014
Grass 0 0 0 0 0.744 0.245 0.012
Tree 0 0 0 0 0.072 0.923 0.005

Texture 0 0.03 0 0.26 0.116 0.153 0.441

   

(a) (b) (c) 

Figure 5. Classification results: for compressed image (PSNR-HVS-M = 42 dB) (a), for compressed
image (PSNR-HVS-M = 36 dB) (b); for compressed (PSNR-HVS-M = 30 dB) (c).

Taking into account the results for the MLM classifier, we also considered the case when the NN
classifier has been trained for the original image and then applied to compressed images. The data
obtained for the cases of PSNR-HVS-M equal to 42 dB, 36 dB, and 30 dB are given in Tables 7–9,
respectively. Analysis of data in Table 7 shows the following. As was expected, all probabilities have
changed. Let us consider the diagonal elements marked by Bold that correspond to probabilities of
correct classification of particular classes. In this sense, there are interesting observations (compare
the corresponding data in Tables 6 and 7): some probabilities have decreased sufficiently (see P11),
some decreased slightly (P33, P44, P66, P77). Meanwhile, some probabilities have slightly increased (P22

and P55).
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Table 7. Confusion matrix for compressed image classified by NN trained for the original image and
applied for the compressed image (PSNR-HVS-M = 42 dB).

Class
Probability of Decision

Road Field-Y Field-R Water Grass Trees Texture

Road 0.299 0.699 0 0 0 0 0
Field-Y 0.089 0.627 0 0 0 0 0.276
Field-R 0 0.018 0.982 0 0 0 0
Water 0 0 0 0.980 0 0 0.020
Grass 0 0 0 0 0.753 0.219 0.028
Tree 0 0 0 0 0.084 0.911 0.006

Texture 0 0.03 0 0.26 0.116 0.153 0.441

Table 8. Confusion matrix for compressed image classified by NN trained for original image and
applied for the compressed image (PSNR-HVS-M = 36 dB).

Class
Probability of Decision

Road Field-Y Field-R Water Grass Trees Texture

Road 0.271 0.728 0.001 0 0 0 0
Field-Y 0.078 0.631 0.012 0 0.001 0 0.279
Field-R 0 0.027 0.973 0 0 0 0
Water 0 0 0 0.979 0 0 0.021
Grass 0 0 0 0 0.721 0.22 0.059
Tree 0 0 0 0 0.078 0.915 0.007

Texture 0 0.049 0 0.253 0.123 0.148 0.426

Table 9. Confusion matrix for compressed image classified by NN trained for the original image and
applied for the compressed image (PSNR-HVS-M = 30 dB).

Class
Probability of Decision

Road Field-Y Field-R Water Grass Trees Texture

Road 0.217 0.766 0 0 0 0 0.017
Field-Y 0.067 0.646 0.007 0 0.005 0 0.275
Field-R 0 0.05 0.946 0.004 0 0 0
Water 0 0 0 0.992 0 0 0.008
Grass 0 0 0 0 0.658 0.21 0.131
Tree 0 0 0 0 0.051 0.925 0.025

Texture 0 0.067 0 0.243 0.141 0.131 0.418

Analysis of data in Tables 8 and 9 shows that lossy compression negatively influences P11, i.e.,
Probability of correct classification for the Class “Road”. Recall that the same effect has been observed
for the MLM. With a larger CR (smaller provided PSNR-HVS-M), probabilities P33 and P77 continue
to decrease. P22 slowly increases. P44 remains practically the same and very high. P66 also remains
practically the same. Finally, P55 decreases. Thus, we can state that being trained for the original image,
the NN classifier continues working well for PSNR-HVS-M about 40 dB and then its performance
starts making worse faster (with further increase of CR).

Figure 5 shows classification results for the test image compressed providing three different values
of PSNR-HVS-M. The results are quite similar. However, some differences can be noticed:

1. Less misclassifications are observed for PSNR-HVS-M = 30 dB for the class “Water”.
2. There are quite many misclassifications around the edge of Class “Water”.
3. More misclassifications appear for the class “Grass” when CR increases.
4. Many pixels and even some objects that belong to Class 2 (Field-Y) are classified as “Texture”

(white color). This example one more time shows the problems in image classification if an image
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to be classified contains a class like “Texture”. The problems occur for the class “Texture” itself
and the classes for which there is an intersection of features with features of the class “Texture”.

Let us now check what happens if compressed images are used for training. Table 10 presents
the confusion matrix obtained for the case of NN training using image compressed providing
PSNR-HVS-M = 42 dB. These data can be compared to the corresponding data in Table 7. If compressed
image is employed for training, probabilities P11, P55, and P77 are sufficiently better, probability P22 is
sufficiently worse, other probabilities are slightly worse. Thus, the quality of classification, in general,
slightly improves. The classification map is presented in Figure 6b.

Table 10. Confusion matrix for compressed image classified by NN trained for this image
(PSNR-HVS-M = 42 dB).

Class
Probability of Decision

Road Field-Y Field-R Water Grass Trees Texture

Road 0.455 0.545 0.001 0 0 0 0
Field-Y 0.137 0.561 0.014 0 0 0 0.289
Field-R 0 0.026 0.974 0 0 0 0
Water 0 0 0 0.961 0 0 0.039
Grass 0 0 0 0 0.820 0.165 0.015
Tree 0 0 0 0 0.068 0.929 0.004

Texture 0 0.029 0 0.234 0.124 0.153 0.461

  

(a) (b) 

  
(c) (d) 

Figure 6. Results of image classification by NN trained for the same image: original (a), compressed
with PSNR-HVS-M = 42 dB (b), compressed with PSNR-HVS-M = 36 dB (c), compressed with
PSNR-HVS-M = 30 dB (d).
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The next considered case is the classification of the image compressed producing
PSNR-HVS-M = 36 dB. The obtained probabilities are given in Table 11, the classification map
is presented in Figure 6c. The probabilities of correct classification in Table 11 are almost the same as
the corresponding values in Table 10. Comparing the data in Tables 8 and 11, it is possible to state that
it is worth using a compressed image for training (most probabilities of correct classification for classes
are better in this case). The classification map is given in Figure 6c and it is quite similar to those in
Figure 6a,b. This means that there is no considerable degradation of classification accuracy compared
to the previous two cases.

Table 11. Confusion matrix for compressed image classified by NN trained for this image
(PSNR-HVS-M = 36 dB).

Class
Probability of Decision

Road Field-Y Field-R Water Grass Trees Texture

Road 0.507 0.492 0.002 0 0 0 0
Field-Y 0.127 0.562 0.005 0 0.001 0 0.305
Field-R 0 0.069 0.931 0 0 0 0
Water 0 0 0 0.989 0 0 0.01
Grass 0 0 0 0 0.901 0.087 0.013
Tree 0 0 0 0 0.039 0.956 0.005

Texture 0 0.029 0 0.236 0.142 0.141 0.452

Finally, the last case is the classification of the image compressed providing PSNR-HVS-M = 30 dB,
i.e., with considerable distortions. The confusion matrix is given in Table 12, the classification map is
represented in Figure 6d. Compared to the corresponding data in Table 9, a sufficient increase of P11,
P55, P66, and P77 is observed, P22, P33, and P44 have increased a little too. This means that it is worth
using the compressed image for training, especially if compression is carried out with a large CR.

Table 12. Confusion matrix for compressed image classified by NN trained for this image
(PSNR-HVS-M = 30 dB).

Class
Probability of Decision

Road Field-Y Field-R Water Grass Trees Texture

Road 0.692 0.304 0 0 0.002 0.001 0.01
Field-Y 0.055 0.654 0.009 0 0.019 0 0.263
Field-R 0 0.033 0.967 0.004 0 0 0
Water 0 0 0 0.994 0 0 0.006
Grass 0 0 0 0 0.939 0.035 0.026
Tree 0 0 0 0 0.023 0.972 0.005

Texture 0 0.049 0 0.221 0.113 0.131 0.486

Attentive analysis of the classification map in Figure 6d allows noticing quite many
misclassifications near the edge between classes “Water” and “Trees” where these misclassified
pixels are related to “Texture”. We associate this effect with edge smearing and other effects that
happen near high contrast edges if the compression ratio is quite high.

4.3. Preliminary Conclusions

Summarizing the obtained results and conclusions, we can state the following:
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1. Classification by any classifier is not perfect if features intersect in feature space and/or if not all
possible features are used; here we mean that pixel-wise classification is unable to exploit spatial
information that can be useful for improving classification accuracy;

2. If a classifier is trained for original (uncompressed) data and then applied to compressed images,
then more compression (a larger CR, a smaller PSNR or PSNR-HVS-M) leads to classification
worsening (in general); meanwhile, the difference in Pcc and probabilities of correct classification
for particular classes can be negligible; classification accuracy for some particular classes can even
improve due to noise/variation suppression (if noise or high frequency variations are present);

3. It is worth training a classifier (at least, MLM and NN-based classifiers) for “conditions” they will
be applied; these conditions can be described by quality metrics’ values that are planned to be
provided at compression stage or QS value that will be used;

4. Different classifiers can produce sufficiently different classification maps for the same RS data;
quantitative parameters that characterize classification can be considerably different as well; a
good example are data for Class 6—the MLM classifier does not recognize it well enough whilst
the NN classifier performs sufficiently better, the situation is the opposite for Class 7;

5. Lossy compression negatively influences classes that are mainly associated with small-sized and
prolonged objects such as roads, narrow rivers, and cricks, small houses; the reason is that lossy
compression smears such kinds of objects and changes feature distributions; in this sense, the use
of visual quality metrics and setting desired values for them at compression stage can be useful
to avoid sufficient degradation of classification accuracy for such classes;

6. For pixel-wise classification, the misclassifications usually appear as isolated pixels; if distortions
due to compression are larger, the misclassifications might appear as groups of pixels, especially
in the neighborhoods of high contrast edges in RS images; this is undesired and it is worth
avoiding such situations that mostly happen if distortions due to lossy compression are visible
(in our experiments, if PSNR-HVS-M = 30 dB and, more rarely, if PSNR-HVS-M = 36 dB);

7. This runs us into the idea that, possibly, it is worth carrying out lossy compression either
without visually noticeable distortions or with distortions relating to partial suppression of
noise in quasi-homogeneous image regions; this can be controlled by either setting the desired
PSNR-HVS-M (≈40 dB) or the corresponding PCC for the used coder (e.g., QS for AGU).

Certainly, these conclusions are based on analysis of only one test image, and more studies are
needed. One opportunity is to check them for real-life RS data.

5. Analysis of Real-Life Three-Channel Image

Our experiments with real-life images have been done using a three-channel Landsat TM image
earlier used in our studies [38,39]. This test image (shown in pseudo-color representation in Figure 7a)
contains three component images acquired in optical bands with central wavelengths equal to 0.66
μm, 0.56 μm, and 0.49 μm, respectively. They have been associated with R, G, and B components of
the color image that has a size of 512 × 512 pixels. The image has five recognizable classes, namely,
“Soil” (Class 1), “Grass” (Class 2), “Water” (Class 3), “Urban (Roads and Buildings)” (Class 4), and
“Bushes” (Class 5). The image fragments used in classifier training are shown in Figure 7b whilst the
pixel used for verification of classifiers are marked by the same colors in Figure 7c. Details concerning
the numbers of pixels are given in [39]. Class 1 is marked by red color, Class 2—by green, Class 3—by
dark blue; Class 4—by yellow, Class 5—by azure.
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(a) (b) (c) 

Figure 7. The three-channel image in pseudo-color representation (a); pixel groups used for training
(b), pixel groups used for verification (c).

As one can see, the total number of classes is less than for the test image in the previous section,
but some classes are the same or similar. Class 1 is similar to Field-R, Class 5—to Class “Texture”. As in
test RS data, color features for many classes intersect (consider Classes “Grass” and “Soil”, Classes
“Soil” and Bushes”). This means that classification is not a simple task.

A part of data concerning lossy compression of this image component-wise are presented in
Table 13 (more details can be found in [39]). As one can see, to provide PSNR-HVS-Mdes = 42 dB, one
has to use QS ≈ 17.3. To provide PSNR-HVS-Mdes = 42 dB, QS ≈ 29.3. This is in good agreement with
the data in Figure 1 for other test images. Thus, it is possible to give recommendations on what QS to
use for providing PSNR-HVS-Mdes (see details in [23]).

Table 13. Compression parameters.

Component PSNR-HVS-M Desired QS PSNR-HVS-M Provided CR

Pseudo-red
42 dB 17.372 41.941 6.008
36 dB 29.825 36.059 8.952
30 dB 55.558 30.007 16.503

Pseudo-green
42 dB 17.285 41.936 5.994
36 dB 29.856 35.992 8.968
30 dB 55.134 29.996 16.445

Pseudo-blue
42 dB 17.227 41.847 6.016
36 dB 29.729 35.998 8.993
30 dB 55.014 30.0008 16.577

Note that the provided CR can be quite large. It is about 6 for PSNR-HVS-Mdes = 42 dB and
reaches 16.5 for PSNR-HVS-Mdes = 30 dB.

We have carried out the analysis for six values of PSNR-HVS-M (45, 42, 39, 36, 33, and 30 dB).
Figure 8 presents the considered three-channel image (in pseudo-color representation) compressed
providing PSNR-HVS-M equal to 42 dB, 36 dB, and 30 dB. They are all very similar between each other
and similar to the original image. A more attentive analysis allows finding differences for images
in Figure 8b,c that mainly appear themselves in the neighborhoods of small-sized objects and high
contrast edges.
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(a) (b) (c) 

Figure 8. Three-channel image in pseudo-color representation: compressed with providing
PSNR-HVS-M = 42 dB (a), compressed with providing PSNR-HVS-M = 36 dB (b); compressed
with providing PSNR-HVS-M = 30 dB (c).

5.1. MLM Classifier Results

Let us start by considering the results of applying the MLM classifier trained for the original image.
Tables 14–17 present the obtained data in the form of confusion matrices. As it is seen, probabilities of
correct classification for particular classes vary from 0.75 to 0.99 and the smallest probabilities take
place for rather heterogeneous classes “Soil” and “Bushes”.

Table 14. Classification probabilities for the MLM method trained for the original image and applied
to it.

Class
Probability of Decision

Soil Grass Water Urban Bushes

Soil 0.747 0.027 0 0.037 0.189
Grass 0.173 0.812 0 0.008 0.007
Water 0 0 0.967 0 0.033
Urban 0.004 0 0 0.989 0.007
Bushes 0.091 0.068 0.013 0.016 0.812

Table 15. Classification probabilities (confusion matrix) for the MLM method trained for the original
image and applied to the compressed image (PSNR-HVS-M = 42 dB).

Class
Probability of Decision

Soil Grass Water Urban Bushes

Soil 0.732 0.025 0 0.043 0.199
Grass 0.177 0.808 0 0.008 0.006
Water 0 0 0.963 0 0.037
Urban 0.005 0 0 0.987 0.008
Bushes 0.118 0.07 0.014 0.018 0.779

If the same classifier is applied to a compressed image (PSNR-HVS-M=42 dB), the results are slightly worse
(see data in Table 15). Reduction of probabilities of correct classification by 0.002 . . . 0.033 takes place. The largest
reduction is observed for the most heterogeneous class “Bushes”.
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Table 16. Classification probabilities (confusion matrix) for the MLM trained for the original image and
applied to the compressed image (PSNR-HVS-M = 36 dB).

Class
Probability of Decision

Soil Grass Water Urban Bushes

Soil 0.744 0.028 0 0.043 0.185
Grass 0.185 0.799 0 0.009 0.007
Wate» 0 0 0.959 0 0.041
Urban 0.005 0 0 0.985 0.010
Bushes 0.133 0.074 0.016 0.018 0.758

Table 17. Classification probabilities (confusion matrix) for the MLM trained for the original image and
applied to the compressed image (PSNR-HVS-M = 30 dB).

Class
Probability of Decision

Soil Grass Water Urban Bushes

Soil 0.724 0.026 - 0.044 0.206
Grass 0.178 0.809 0 0.006 0.007
Water - 0 0.942 0 0.058
Urban 0.007 - 0 0.982 0.011
Bushes 0.145 0.079 0.016 0.019 0.741

Consider now the data obtained if the MLM classifier is applied to the image compressed
with visible distortions (PSNR-HVS-M = 36 dB). The confusion matrix is given in Table 16. Most
probabilities of correct classification for particular classes continue to decrease although this reduction
is not essential—up to 0.021 compared to the previous case (Table 15).

Finally, let us analyze data for a compressed image (PSNR-HVS-M = 30 dB) to which the MLM
classifier has been applied. The data are presented in Table 17. The tendency is the same—most
probabilities of correct classification for particular classes continue to decrease but, again, the reduction
is not large.

Classification maps for three images are presented in Figure 9. They are quite similar although some
differences can be found. Compression does not lead to radical degradation of classification accuracy.

   
(a) (b) (c) 

Figure 9. Classification results: for original image (a), for compressed image (PSNR-HVS-M = 36 dB)
(b), for compressed (PSNR-HVS-M = 30 dB) (c).

One can be interested in the behavior of Pcc depending on compression. For original image
Pcc = 0.865; for compressed images it equals to 0.853, 0.854, 0.853, 0.849, 0.842, and 0.839 for
PSNR-HVS-M equal to 45, 42, 39, 36, 33, and 30 dB, respectively. So, it is possible to state that lossy
compression providing PSNR-HVS-M about 40 dB does not lead to sufficient reduction of Pcc for the
considered case. Moreover, if training is done for the image compressed with the same conditions as
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an image subject to classification, classification results can improve. For example, if training has been
done for the compressed image (PSNR-HVS-M = 36 dB) and then applied to this image (to verification
set of pixels), Pcc increases to 0.855.

We have analyzed distributions of features before and after compression. One reason why Pcc

does not radically reduce with CR increase is that the corresponding distributions do not differ a lot.
The largest differences are observed for the classes “Soil” and “Bushes”. It might be slightly surprising
that the class “Urban” is recognized so well. The reason is that, for the considered image, features for
this class do not sufficiently overlap with features for other classes.

5.2. NN Classifier Results

Consider now the results of the NN-based classification of the real-life image. The ideal case data
(NN trained for original image is applied to the original image) are given in Table 18. The results can
be compared to the data in Table 14. The NN classifier better recognizes the classes “Soil” and “Grass”,
the results for the class “Water” are approximately the same.

Table 18. Classification probabilities for the NN-based method trained for the original image and
applied to it.

Class
Probability of Decision

Soil Grass Water Urban Bushes

Soil 0.950 0 0 0 0.05
Grass 0 1 0 0 0
Water 0 0 0.952 0 0.048
Urban 0.098 0 0 0.767 0.135
Bushes 0.187 0.009 0.02 0.009 0.774

Suppose now that this classifier (NN trained for the original image) is applied to compressed images.
The results for different qualities of compressed data are presented in Tables 19–21. If PSNR-HVS-M
is equal to 42 dB or 36 dB, the results keep practically the same. Only the probability of correct
classification for “Bushes” steadily decreases. Reduction of classification accuracy occurs to be larger
for the image compressed with PSNR-HVS-M equal to 30 dB. Mainly, reduction takes place for the
classes “Water” and “Urban”.

Table 19. Classification probabilities (confusion matrix) for the NN-based method trained for the
original image and applied to the compressed image (PSNR-HVS-M = 42 dB).

Class
Probability of Decision

Soil Grass Water Urban Bushes

Soil 0.942 0 0 0 0.058
Grass 0 0.999 0 0 0.001
Water 0 0 0.942 0 0.058
Urban 0.01 0 0 0.765 0.136
Bushes 0.207 0.016 0.018 0.009 0.751
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Table 20. Classification probabilities (confusion matrix) for the NN-based method trained for original
image and applied to the compressed image (PSNR-HVS-M = 36 dB).

Class
Probability of Decision

Soil Grass Water Urban Bushes

Soil 0.944 0 0 0 0.057
Grass 0 1 0 0 0
Water 0 0 0.941 0 0.059
Urban 0.108 0 0 0.761 0.131
Bushes 0.236 0.022 0.017 0.007 0.718

Table 21. Classification probabilities (confusion matrix) for the NN-based method trained for the
original image and applied to the compressed image (PSNR-HVS-M = 30 dB).

Class
Probability of Decision

Soil Grass Water Urban Bushes

Soil 0.941 0 0 0 0.059
Grass 0 0.999 0 0 0.001
Water 0.001 0 0.919 0 0.08
Urban 0.099 0 0 0.747 0.153
Bushes 0.247 0.028 0.014 0.004 0.707

Some classification maps are presented in Figure 10. They do not differ a lot from each other.
Some pixels that belong to the class “Water” for the narrow river (see the left low corner in Figure 10c)
“disappear” (become misclassified). This is because of the effects of smearing prolonged objects due to
lossy compression. The MLM classifier training for compressed images was performed using training
samples for fragments shown in Figure 7b. Due to the usage of the same data for both training and
validation, noticeable classification improvement can be observed (at least, for several classes).

   

(a) (b) (c) 

Figure 10. Classification results provided by NN-based method: for original image (a), for compressed
image (PSNR-HVS-M = 36 dB) (b); for compressed (PSNR-HVS-M = 30 dB) (c).

5.3. Brief Analysis for Sentinel-2 Three-Channel Images

One can be interested whether the observed dependences hold for other images or their fragments,
other imagers, and other compression techniques. Sentinel-2 offers wide possibilities to check this since
it provides a huge amount of data that can be exploited for different purposes. For our study, we have
taken three-channel images of the Kharkiv region (Ukraine) in visible range acquired on 30 August
2019 when there were practically no clouds (images are available at [56]). The analyzed 512 × 512 pixel
fragments are for the neighborhood of Staryi Saltiv (45 km north-east from Kharkiv, Ukraine, set 1)
and north part of Kharkiv (set 2)—see Figure 11. The main reason for choosing these fragments is
the availability of ground truth data that allow easy marking of four typical classes: Urban, Water,
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Vegetation, and Bare Soil. One more reason is that the image in Figure 11a is considerably less complex
(textural) than the image in Figure 11b.

  

(a) (b) 

Figure 11. Fragments of Sentinel-2 images of Staryi Saltiv (a) and north part of Kharkiv (b).

First, these fragments have been compressed component-wise with providing a set of PSNR-HVS-M
values using three coders: AGU used in the previous part of this paper, SPIHT [57] which can be
considered as an analog of JPEG2000 standard, and Advanced DCT coder (ADCTC) [58] that uses
partition scheme optimization for better adaptation to image content. Basic data on compression
performance are given in Table 22. The observed dependences are predictable. CR for all coders
increases if desired PSNR-HVS-M reduces. CR values for different components for the same desired
PSNR-HVS-M and set differ but not considerably. CR for AGU is usually slightly larger than for SPIHT
(for the same conditions), ADCTC outperforms both coders. CR values for set 2 images are several
times smaller than for the corresponding set 1 images due to the higher complexity of set 2 RS data.

Table 22. CR comparison for real-life data for three coders, both sets.

Color Desired PSNR-HVS-M CR for AGU CR for SPIHT CR for ADCTC

Pseudo-Red, set 1
45.000 10.338 9.467 11.306
39.000 18.383 16.631 20.362
33.000 32.929 29.303 36.465

Pseudo-Red, set 2
45.000 3.317 3.283 3.498
39.000 4.520 4.762 4.886
33.000 7.121 7.360 7.986

Pseudo-Green, set 1
45.000 7.179 5.957 7.513
39.000 12.666 10.914 13.513
33.000 23.907 20.833 26.030

Pseudo-Green, set 2
45.000 3.214 3.150 3.363
39.000 4.356 4.564 4.684
33.000 6.784 7.105 7.573

Pseudo-Blue, set 1
45.000 6.665 5.727 7.216
39.000 11.942 10.336 12.740
33.000 24.914 22.346 27.191

Pseudo-Blue, set 2
45.000 3.212 3.252 3.418
39.000 4.314 4.698 4.785
33.000 6.882 7.380 7.817

Second, classifier training has been performed and probabilities of correct classification for all four
classes as well as the total probability of correct classification have been obtained. For the NN classifier

126



Remote Sens. 2020, 12, 3840

and AGU coder, the data are presented in Tables 23 and 24. Here and below abbreviation SS1 means
that classification has been done for an original (uncompressed) image 1 whilst, e.g., SS1_45 means
that classification has been done for the image compressed with providing PSNR-HVS-M = 45 dB.
Training has been done for the original image. As one can see, compression results for the Set 1 image
practically do not depend on compressed image quality. Even for PSNR-HVS-M = 30 dB probabilities
of correct classification are practically the same as for original data. Meanwhile, for the Set 2 image, the
situation is another. There is a tendency for classification accuracy degradation if compressed image
quality becomes worse. This is mainly due to the reduction of correct classification probabilities for
more heterogeneous classes, e.g., vegetation. For this image, it is possible to recommend compression
with providing PSNR-HVS-M about 42 dB to avoid considerable reduction of classification accuracy.

Table 23. Probabilities of correct classification depending on compressed image quality for Set 1, AGU
coder, NN classifier.

Classes SS1 SS1_45 SS1_42 SS1_39 SS1_36 SS1_33 SS1_30

Urban 0.774 0.777 0.775 0.777 0.778 0.773 0.786
Water 0.998 0.998 0.998 0.999 0.999 0.999 0.998

Vegetation 0.915 0.913 0.914 0.915 0.918 0.921 0.927
Bare soil 0.809 0.811 0.809 0.809 0.812 0.798 0.801

Ptotal 0.874 0.875 0.874 0.875 0.877 0.873 0.878

Table 24. Probabilities of correct classification depending on compressed image quality for Set 2, AGU
coder, NN classifier.

Classes SS2 SS2_45 SS2_42 SS2_39 SS2_36 SS2_33 SS2_30

Urban 0.877 0.872 0.871 0.865 0.861 0.861 0.864
Water 0.654 0.659 0.662 0.661 0.654 0.644 0.647

Vegetation 0.857 0.825 0.815 0.801 0.788 0.797 0.788
Bare soil 0.890 0.867 0.865 0.869 0.866 0.860 0.870

Ptotal 0.820 0.810 0.803 0.799 0.792 0.791 0.792

We have also analyzed the possibility of using compressed images for training. The probability of
correct classification has improved by about 0.01 for Set 1 image and remained practically the same for
Set 2 image.

Another part of our study relates to classification by MLM (the same maps have been used for
training the NN and MLM). MLM has been applied to data compressed by three aforementioned
coders. For the AGU coder, the obtained data are presented in Tables 25 and 26.

Table 25. Probabilities of correct classification depending on compressed image quality for Set 1, AGU
coder, ML classifier.

Classes SS1 SS1_45 SS1_42 SS1_39 SS1_36 SS1_33 SS1_30

Urban 0.695 0.727 0.727 0.735 0.745 0.743 0.771
Water 0.979 0.99 0.992 0.992 0.993 0.992 0.988

Vegetation 0.9 0.896 0.896 0.895 0.899 0.901 0.902
Bare soil 0.85 0.852 0.851 0.849 0.852 0.831 0.826

Ptotal 0.856 0.866 0.866 0.868 0.872 0.867 0.872
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Table 26. Probabilities of correct classification depending on compressed image quality for Set 2, AGU
coder, ML classifier.

Classes SS2 SS2_45 SS2_42 SS2_39 SS2_36 SS2_33 SS2_30

Urban 0.917 0.914 0.913 0.913 0.91 0.913 0.918
Water 0.923 0.902 0.893 0.885 0.873 0.873 0.857

Vegetation 0.691 0.667 0.647 0.645 0.634 0.631 0.619
Bare soil 0.856 0.819 0.815 0.817 0.812 0.802 0.812

Ptotal 0.847 0.826 0.817 0.815 0.807 0.805 0.801

It is seen that lossy compression leads to a positive effect for the Set 1 image. For all classes except
Bare Soil, the probabilities of correct classification improve or remain the same. Total probability also
improves and remains at approximately the same level for all considered qualities of the compressed
image (Table 25). Meanwhile, for the Set 2 image, larger CR leads to a steady reduction of total
probability and decreasing of probabilities for most classes Table 26).

We have also checked whether or not it is worth carrying out training for compressed images
instead of uncompressed ones. The answer, as earlier, is yes. In particular, for images compressed with
providing PSNR-HVS-M = 42 dB. The total probabilities equal to 0.893 for the Set 1 data and 0.858 for
the Set 2 image. Thus, it is worth using those data in training that have been obtained with the same
compression conditions as images subject to classification.

Data obtained for the SPIHT coder are presented in Tables 27 and 28. Their analysis shows
the following. Again, lossy compression has a small impact on the classification of the Set 1 data.
An optimum is observed for PSBR-HVS-M about 40 dB. The impact of compression for the Set 2 data is
also small. For some classes, probabilities of correct classification improve, for others become slightly
worse. In aggregate, the total probability remains almost the same.

Table 27. Probabilities of correct classification depending on compressed image quality for Set 1, SPIHT
coder, ML classifier.

Classes SS1 SS1_45 SS1_42 SS1_39 SS1_36 SS1_33 SS1_30

Urban 0.695 0.721 0.724 0.728 0.735 0.742 0.759
Water 0.979 0.991 0.991 0.993 0.993 0.992 0.985

Vegetation 0.9 0.899 0.901 0.9 0.904 0.908 0.906
Bare soil 0.85 0.856 0.864 0.858 0.858 0.848 0.816

Ptotal 0.856 0.866 0.87 0.87 0.872 0.873 0.867

Table 28. Probabilities of correct classification depending on compressed image quality for Set 2, SPIHT
coder, ML classifier.

Classes SS2 SS2_45 SS2_42 SS2_39 SS2_36 SS2_33 SS2_30

Urban 0.917 0.915 0.915 0.917 0.916 0.92 0.924
Water 0.923 0.918 0.913 0.903 0.892 0.884 0.875

Vegetation 0.691 0.686 0.688 0.692 0.697 0.699 0.707
Bare soil 0.856 0.847 0.858 0.862 0.853 0.861 0.859

Ptotal 0.847 0.841 0.843 0.843 0.839 0.841 0.841

Consider now the data obtained for ADCTC. They are presented in Tables 29 and 30. Their analysis
shows the same tendencies as those observed for the SPIHT coder.
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Table 29. Probabilities of correct classification depending on compressed image quality for Set 1,
ADCTC, ML classifier.

Classes SS1 SS1_45 SS1_42 SS1_39 SS1_36 SS1_33 SS1_30

Urban 0.695 0.723 0.725 0.734 0.736 0.751 0.76
Water 0.979 0.992 0.994 0.995 0.995 0.995 0.995

Vegetation 0.9 0.898 0.9 0.901 0.901 0.91 0.913
Bare soil 0.85 0.863 0.855 0.85 0.864 0.84 0.827

Ptotal 0.856 0.869 0.869 0.87 0.874 0.874 0.874

Table 30. Probabilities of correct classification depending on compressed image quality for Set 2,
ADCTC coder, ML classifier.

Classes SS2 SS2_45 SS2_42 SS2_39 SS2_36 SS2_33 SS2_30

Urban 0.917 0.914 0.911 0.91 0.911 0.912 0.915

Water 0.923 0.918 0.912 0.906 0.909 0.901 0.898

Vegetation 0.691 0.674 0.688 0.682 0.664 0.67 0.693

Bare soil 0.856 0.848 0.848 0.847 0.843 0.859 0.868

Ptotal 0.847 0.838 0.84 0.836 0.832 0.836 0.844

6. Discussion

Above, we have considered tendencies for one test and three real-life three-channel images
presented as 8-bit 2D data for each component. In practice, images can be presented differently, for
example, by 16-bit data [13] or by 10-bit data after certain normalization [59]. Then, a question arises
how to provide the desired PSNR-HVS-M (e.g., 40 dB) for a given multichannel image to be compressed.
To answer this question, let us consider some data. First, Figure 11 taken from [60] presents the
dependences of PSNR-HVS-M on QS for nine 8-bit grayscale test images of different complexity for
AGU. The average curve obtained for these nine test images is also given. It is seen that this average
curve allows the approximate setting of QS to provide the desired PSNR-HVS-M. For example, to
provide PSNR-HVS-M ≈ 43 dB, one has to set QSrec ≈ 15. To provide PSNR-HVS-M ≈ 40 dB, it is
possible to set QSrec ≈ 20. If D is not equal to 255, then the recommended QS is

QSrecD = QSrecD/255, (9)

where QSrec is determined from the average curve in Figure 11. As it follows from the analysis of data
in Figure 11, the use of QSrec or QSrecD provides PSNR-HVS-M approximately, errors can be up to 1 . . .
2 dB depending upon the complexity of an image to be compressed. Such accuracy can be treated
as acceptable, since, as it is shown in the previous Section, change of PSNR-HVS-M by even 2 dB
does not lead to radical changes of Pcc and probabilities of correct classification for particular classes.
Second, if errors in providing the desired PSNR-HVS-M are inappropriate, accuracy can be improved
by applying a two-step procedure proposed in [60]. As it has been shown in Table 13, QS that should
be used in component-wise compression is practically the same for all components. This means that it
is enough to determine QSrec or QSrecD for one component image and then apply it for compressing
other components (this can save time and resources at the data compression stage). Moreover, QSrec or
QSrecD determined according to recommendations given above can be used in joint compression of all
components of multichannel images or groups of components [59] by the 3D version of AGU. In this
case, the positive effect is twofold. First, a larger CR is provided compared to the component-wise
compression. Second, a slightly larger quality of the compressed image can be ensured.

Figure 12 demonstrates the dependences PSNR-HVS-M on QS for different test images. Figure 13
shows the RS data processing flowchart. Acquired images (e.g., on-board) are subject to “careful”
lossy compression in Quality Control Compression Unit where PCC (e.g., QS) is determined using
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the desired threshold for a chosen quality metric (e.g., 40 dB for PSNR-HVS-M) and rate/distortion
curves obtained in advance (like those in Figure 12). PCC corrections can be done if, e.g., images are
normalized before compression. In the Image Classification Unit, RS data are subject to classification
where the classifier can be trained using either earlier processed images or data that have been just
received. If time limitations are not strict, the second option seems preferable (according to results
obtained in our analysis).

 

Figure 12. Dependences PSNR-HVS-M on QS for nine test images (see the list in the upper part of the
plot) and the average curve for AGU.

 
Figure 13. Flowchart of the proposed processing approach.
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Another question that has arisen several times is the following—is it possible to improve
classification accuracy? One answer that easily follows from our analysis is that the pixel-wise
classification (at least, its simple version used by us) does not allow exploiting information from
neighboring pixels. Such information can be of different types and it can be used differently. For
example, a pixel can be preliminarily classified as belonging to a homogeneous, textural, or locally active
area (by locally active, we mean pixel belonging to a small-sized object or edge or their neighborhood).
Then, different features can be determined and used for such pre-classified pixels. However, this
approach is out of the scope of this paper.

There are also two other approaches possible. They have been proposed in [39]. First, several
elementary classifiers (for example, MLM, NN, and SVM ones) can be applied in parallel, and then
their outputs can be combined. Second, post-processing of classification results with preliminary
detection of edges can be performed. Note that these approaches can lead to a sufficient (up to 0.1 . . .
0.2) increase of Pcc, especially if it is low for originally classified data. Meanwhile, more experiments
for verifying the methods developed in [39] are needed.

Finally, the last question is how to improve CR without losing classification performance for
multichannel RS data? In our opinion, 3D compression should be applied. However, in this case,
additional studies are also desired.

7. Conclusions

We have considered the task of lossy compression of multichannel images by introducing different
levels of distortions to analyze their influence on classification accuracy. Two classifiers, namely
MLM and NN, have been studied. The DCT-based coder AGU has been used. In addition, two other
transform-based coders have been employed with a brief analysis of their performance. One artificial
and three real-life three-channel images have been thoroughly analyzed. Component-wise compression
has been addressed with quality controlled (characterized) by visual quality metric PSNR-HVS-M.

The following has been shown for the case of classifier training for original (uncompressed) data;

- there is no sufficient decrease in classification accuracy if images are compressed without visible
distortions (PSNR-HVS-M exceeds 40 . . . 42 dB); in some cases, TPCC can even increase compared
to TPCC for original (uncompressed) data;

- lossy compression might have no considerable negative impact on classification accuracy even
if distortions are visible (PSNR-HVS-M < 40 dB) but this happens if a compressed image has a
simple structure;

- distortions of the aforementioned level result in different CR depending upon image complexity;
this means that images with complex structure have to be compressed with smaller CR to avoid
considerable reduction of Pcc;

- dependences of probabilities of correct classification of particular classes on compression
parameters are different; for classes mostly represented by large-size objects, lossy compression is
not so crucial; it might even happen that lossy compression can improve classification accuracy if
noise or high-frequency variations are partly suppressed due to it;

- for classes represented by small-sizes and prolonged objects as well as some textures, lossy
compression might lead to sufficient reduction of classification accuracy. This is due to the image
smearing effect that transforms features.

The situation is slightly different if the training is done for compressed data. Then, it is worth
using for training such compressed data that are characterized by the same quality (for example,
approximately the same PSNR-HVS-M value) as data to which classification will be applied. Then,
even for PSNR-HVS-M about 36 dB, the classification can be almost as good enough as for the original
image classified by the classifier trained for original data.

It has been also shown that the main dependencies are observed for different coders (in particular,
compression techniques based on DCT and wavelets) and for data provided by different multispectral
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systems. We also believe that other than PSNR-HVS-M visual quality metrics can be applied within
the proposed approach to lossy compression. Thus, the approach is quite general.

Finally, practical recommendations on how to set coder parameters to avoid sufficient reduction
of classification accuracy are given. Possibilities of classification improvement are briefly mentioned
and directions of future research are described.
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Abstract: Remote-sensing platforms, such as Unmanned Aerial Vehicles, are characterized by limited
power budget and low-bandwidth downlinks. Therefore, handling hyperspectral data in this context
can jeopardize the operational time of the system. FPGAs have been traditionally regarded as the most
power-efficient computing platforms. However, there is little experimental evidence to support this claim,
which is especially critical since the actual behavior of the solutions based on reconfigurable technology
is highly dependent on the type of application. In this work, a highly optimized implementation of
an FPGA accelerator of the novel HyperLCA algorithm has been developed and thoughtfully analyzed
in terms of performance and power efficiency. In this regard, a modification of the aforementioned
lossy compression solution has also been proposed to be efficiently executed into FPGA devices using
fixed-point arithmetic. Single and multi-core versions of the reconfigurable computing platforms are
compared with three GPU-based implementations of the algorithm on as many NVIDIA computing
boards: Jetson Nano, Jetson TX2 and Jetson Xavier NX. Results show that the single-core version of our
FPGA-based solution fulfils the real-time requirements of a real-life hyperspectral application using a
mid-range Xilinx Zynq-7000 SoC chip (XC7Z020-CLG484). Performance levels of the custom hardware
accelerator are above the figures obtained by the Jetson Nano and TX2 boards, and power efficiency is
higher for smaller sizes of the image block to be processed. To close the performance gap between our
proposal and the Jetson Xavier NX, a multi-core version is proposed. The results demonstrate that a
solution based on the use of various instances of the FPGA hardware compressor core achieves similar
levels of performance than the state-of-the-art GPU, with better efficiency in terms of processed frames
by watt.

Keywords: hyperspectral imaging; lossy compression; on-board processing; FPGA; GPU; real-time
performance; UAV; parallel computing

1. Introduction

Hyperspectral technology has experienced a steady surge in popularity in recent decades. Among
the main reasons that have given hyperspectral imaging greater visibility is the richness of spectral
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information collected by this kind of sensor. This feature has positioned hyperspectral analysis techniques
as the mainstream solution for the analysis of land areas and the identification and discrimination of
visually similar surface materials. As a consequence, this technology has acquired increasing relevance,
being widely used for a variety of applications, such as precision agriculture, environmental monitoring,
geology, urban surveillance and homeland security, among others. Nevertheless, hyperspectral image
processing is accompanied by the management of large amounts of data, which affects, on one hand,
its real-time performance and, on the other hand, the requirements of the on-board storage resources.
Additionally, the latest technological advances are promoting to market hyperspectral cameras with higher
spectral and spatial resolutions. All of this makes the efficient data handling, from an on-board processing,
communication, and storage point of view, even more challenging [1,2].

Traditionally, images sensed by spaceborne Earth-observation missions are not on-board processed.
The main rationale behind this is the limited on-board power capacity that forces the use of low-power
devices, which are normally not as highly performing as their commercial counterparts [3–8]. In this
regard, images are subsequently downloaded to the Earth surface where they are off-line processed on
high-performance computing systems based on Central Processing Units (CPUs), Graphics Processing
Units (GPUs), Field-Programmable Gate Arrays (FPGAs), or heterogeneous architectures. In the case
of airborne capturing platforms, images are normally on-board stored and hence the end user could
not access them until the flight mission is over [9]. Additionally, unmanned aerial vehicles (UAVs)
have gained momentum in recent years. They have become a very popular solution for inspection,
surveillance and monitoring since they represent a lower-cost approach with a more flexible revisit time
than the aforementioned Earth-observation platforms. In this context, hyperspectral image management
is addressed similarly to how it is done in airborne platforms, although a lot of efforts have been made
recently to transmit the images to the ground segment as soon as they are captured [10,11].

Regrettably, the data transmission from the aforementioned remote-sensing observation platforms
introduces important delays. They are mainly related to the transference of large volumes of data
and the limited communication bandwidths between the source and the final target, which has also
kept relatively stable over the years [6,12,13]. Consequently, it reveals a bottleneck in the downlink
systems that can seriously affect to the effective performance of real-time or nearly real-time applications.
However, the steadily growing data-rate of the latest-generation sensors makes it compulsory to reach
higher compression ratios and to carry out a real-time compression performance in order to prevent the
unnecessary accumulation of high amounts of uncompressed data on-board and to facilitate efficient data
transfers [14].

In this scenario of limited communication bandwidths and increasing data volumes, it is becoming
necessary to move from lossless or near-lossless compression approaches to lossy compression techniques.
Despite most of the state-of-the-art lossless compressors bringing a quite satisfactory rate-distortion
performance, the former approaches provide very moderate compression ratios of about 2∼3:1 [15,16],
which presently are not sufficient to handle the high input data-rate of the newest-generation
sensors. For this reason, a research effort targeting lossy compression is currently being made [17–21].
Due to the limited on-board computational capabilities of remote-sensing hyperspectral acquisition
systems, low-complexity compression schemes stand as the most practical solution for such restricted
environments [21–24]. Nevertheless, most of the state-of-the-art lossy compressors are generalizations of
existing 2D images or video compression algorithms [25]. For this reason, they are normally characterized
by high computational burden, intensive memory requirements and a non-scalable nature. These features
prevent their use in power-constrained applications with limited hardware resources, such as on-board
compression [26,27].

In this context, the Lossy Compression Algorithm for Hyperspectral Image Systems (HyperLCA) [28]
was developed as a novel hardware-friendly lossy compressor for hyperspectral images. HyperLCA
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was introduced as a low-complexity alternative that provides a good compression performance at
high compression ratios with a reasonable computational burden. Additionally, this algorithm permits
compressing blocks of image pixels independently which promotes, on the one hand, the reduction
of the data to be managed at once besides the hardware resources to be allocated. On the other
hand, the HyperLCA algorithm becomes a very competitive solution for most applications based on
pushbroom/whiskbroom scanners, paving the way for real-time compression performance. The flexibility
and the high level of parallelism intrinsic to the HyperLCA algorithm has been previously evaluated in
earlier publications. In particular, its suitability for real-time performance in applications characterized
by high data-rates with restrictions in computational resources due to power, weight or space was tested
in [29].

In this work, we focus on a use case where a visible-near-infrared (VNIR) hyperspectral pushbroom
scanner is mounted onto a UAV. In particular, we have analyzed the performance of FPGAs for the lossy
compression of hyperspectral images against low-power GPUs (LPGPUs) in order to establish the benefits
and barriers of using each one of these hardware devices for the on-board compression task. Specifically,
we have implemented the HyperLCA algorithm in a Xilinx Zynq-7000 programmable System on Chip
(SoC). We have selected this SoC because it can be found in low-cost, low-weight and compact-size
development boards, such as MicroZedTM and PYNQ boards. Although UAVs have been consolidated as
trending aerial observation platforms, their acquisition costs are still not accessible for many end customers,
not only those who want to purchase them but also those who lease their services. For this reason, we
must also aim to solve the economic implications that comes along with these devices. On this basis, in this
work we have focused on the on-board computing platform, searching for a less expensive alternative
that, in exchange, cannot offer the same level of both performance and functionality than other costly
commercial products. Additionally, it is important to note that while experiments carried out in this work
are oriented to the current necessities imposed by an application based on drones, all drawn conclusions
can be extrapolated to other fields in which remotely sensed hyperspectral images have to be compressed
in real time, such as spaceborne missions that employs next-generation space-grade FPGAs.

The rest of this paper is organized as follows. Section 2 gives outlines of the majority issues around
the operations involved in the HyperLCA algorithm. In addition, it also includes a detailed explanation
about the implementation model developed for the execution of the HyperLCA compressor on the selected
FPGA SoC. Section 3 analyzes the obtained experimental results in terms of both quality of the compression
process and hardware implementation points of view. Section 4 discusses the strengths and limitations of
the proposed solution and includes a comparison evaluation of the obtained results with those achieved
by a selection of LPGPUs embedded systems, following the implementation model shown in [29]. Finally,
Section 5 draws the main conclusions of this work.

2. Materials and Methods

2.1. HyperLCA Algorithm

The HyperLCA algorithm is a novel lossy compressor for hyperspectral images especially designed
for applications based on pushbroom/whiskbroom sensors. Concretely, this transform-based solution
can independently compress blocks of image pixels regardless of any spatial alignment between pixels.
Consequently, it facilitates the parallelization of the entire compression process and makes it relatively
simple to stream the compression of hyperspectral frames collected by a pushbroom or whiskbroom
sensor. Additionally, the HyperLCA compressor also allows fixing a desired minimal compression ratio
and guaranties that at least this minimum will be achieved for each block of image pixels. This makes
it possible to know in advance the maximum data rate that will be attained after the acquisition and
compression processes in order to efficiently manage the data transfers and/or storage. Additionally,
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the HyperLCA compressor provides quite satisfactory rate-distortion results for higher compression
ratios than those achievable by lossless compression approaches. Furthermore, the HyperLCA algorithm
preserves the most characteristic spectral features of image pixels that are potentially more useful for
ulterior hyperspectral analysis techniques, such as target detection, spectral unmixing, change detection,
anomaly detection, among others [30–34].

Figure 1 shows a graphic representation of the main computing stages involved by the HyperLCA
compressor. First, the Initialization stage configures the same parameters (pmax) employing the input
parameters CR, Nbits and BS. Since the HyperLCA compressor follows an unmixing-like strategy, the pmax

most representative pixels within a block of image pixels to be independently processed are compressed
with the highest precision. Then, other image pixels are reconstructed using their scalar projections,
V, over the previously selected pixels. Therefore, pmax is estimated according to the minimum desired
compression ratio to be reached, CR, the number of hyperspectral pixels within each image block, BS and
the number of bits used for representing the values of V vectors. Second, these pmax characteristic pixels
are selected using orthogonal projection techniques in the HyperLCA Transform stage. It results in a spectral
uncorrelated version of the original hyperspectral data. Thirdly, the outputs of the HyperLCA Transform
stage are adapted in the following HyperLCA Preprocessing stage for being later more efficiently codified
in the fourth and last HyperLCA Entropy Coding stage. In the following lines, the operations involved in
these four algorithm stages are further analyzed in order to give a glance of the decisions taken for the
acceleration of the HyperLCA algorithm in hardware devices based on FPGAs.

Figure 1. Data flow among the different computing stages of the HyperLCA compressor.

2.1.1. General Notation

Before starting the algorithm description, it is necessary to introduce the general notation followed
thorough the rest of this manuscript. In this sense, HI = {Fi, i = 1, ..., nr} is a sequence of nr scanned
cross-track lines of pixels acquired by a pushbroom sensor, Fi, comprised by nc pixels with nb spectral
bands. Pixels within HI are grouped in blocks of BS pixels, Mk =

{
rj, j = 1, ..., BS

}
, being normally BS

equal to nc, or multiple of it, and k spans from 1 to nr·nc
BS . μ̂ represents the average pixel of each image

block, Mk. Therefore, C is defined as the centralized version of Mk after being subtracted μ̂ from all
image pixels. E = {en, n = 1, ..., pmax} saves the pmax most different hyperspectral pixels extracted from
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each Mk block. V = {vn, n = 1, ..., pmax} comprises pmax vectors of BS elements where each vn vector
corresponds to the projection of the BS pixels within Mk onto the corresponding n extracted pixel, en.
Q = {qn, n = 1, ..., pmax} and U = {un, n = 1, ..., pmax} save pmax pixels of nb bands that are orthogonal
among them.

2.1.2. HyperLCA Initialization

The HyperLCA compressor must first determine the number of pixels, en, and projection vectors,
vn, (pmax) to be extracted from each image block, Mk, according to the input parameters CR, Nbits
and BS, as shown in Equation (1). In it, DR refers to the number of bits per pixel per band used for
representing the hyperspectral image elements to be compressed. As can be deduced, the number of
selected pixels, pmax, directly determines the maximum compression ratio to be reached with the selected
algorithm configuration. Furthermore, bigger pmax results in better reconstructed images but lower
compression ratios.

pmax ≤ DR · nb · (BS − CR)
CR · (DR · nb + Nbits · BS)

(1)

2.1.3. HyperLCA Transform

The HyperLCA compressor is a transform-based algorithm that employs a modified version of the
well-known Gram-Schmidt orthogonalization method to obtain a compressed and uncorrelated image.
In this regard, the HyperLCA Transform stage oversees carrying out the spectral transform. For this reason,
it is the algorithm stage that involves the most demanding computing operations and thus, which are
more prone to be accelerated in parallel dedicated hardware devices.

The HyperLCA Transform is described in detail in Algorithm 1. As can be seen, the HyperLCA
Transform stage receives as inputs the hyperspectral image block to be compressed, Mk, and the number
of hyperspectral pixels to be extracted, pmax. As outputs, the HyperLCA Transform states the set of the
pmax most different hyperspectral pixels, E, and their corresponding projection vectors, V. For doing
so, the hyperspectral image block, Mk, is first centralized by subtracting the average pixel, μ̂, from all
pixels within Mk, which results in the centralized version of the data, C, in line 3. Second, the pmax most
characteristic pixels are sequentially extracted from lines 4 to 15. In this iterative process, the brightness
of each image pixel is calculated in lines 5 to 7. It is defined as the dot product of each image pixel with
itself (see line 6). The extracted pixels, en, are those pixels within the original image block, Mk, with the
highest brightness in each iteration, n (see line 8 and 9). Afterwards, the orthogonal vectors qn and un are
accordingly defined as shown in lines 10 and 11, respectively. un is employed to estimate the projection of
each image pixel over the direction spanned by the selected pixel, en, deriving in the projection vector, vn

in line 12. Finally, this information is subtracted from C in line 13.
Accordingly, C retains in next iterations the spectral information that cannot be represented by the

already selected pixels en. For this reason, once the pmax pixels have been extracted, C contains the spectral
information that will be not recovered after the decompression process. Hence, it is represented of the
losses introduced by the HyperLCA compressor. Consequently, the remaining information in C could
be used to establish extra stopping conditions based on quality metrics, such as the Signal-to-Noise Ratio
(SNR) or the Maximum Absolute Difference (MAD). In this work, these extra stopping conditions have been
discarded, and thus, a fixed number of pmax iterations is executed for all image blocks, Mk.
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Algorithm 1 HyperLCA Transform.

Inputs:

Mk = [r1, r2, ..., rBS], pmax
Outputs:

μ̂; μ̂; E = [e1, e2, ..., epmax ]; V = [v1, v2, ..., vpmax ]
Algorithm:

1: {Additional stopping condition initialization.}
2: Average pixel: μ̂;
3: Centralized image: C = Mk − μ̂ = [c1, c2, ...cBS];
4: for n = 1 to pmax do

5: for j = 1 to BS do

6: Brightness Calculation: bj = c′j · cj;
7: end for

8: Maximum Brightness: jmax = argmax(bj);
9: Extracted pixels: en = rjmax ;

10: qn = cjmax ;
11: un = qn/bjmax ;
12: Projection vector: vn = u′

n · C;
13: Information Subtraction: C = C − qn · vn;
14: {Additional stopping condition checking.}
15: end for

2.1.4. HyperLCA Preprocessing

To ensure an efficient entropy coding of the HyperLCA Transform outputs, they must be first adapted
in the HyperLCA Preprocessing stage. This transformation process is performed in two steps:

Scaling V Vectors

V vectors represent the projection of each pixel within Mk over the direction spanned by each
orthogonal vector, un, in each iteration. Therefore, potential values of each element of V vectors are in the
range of (−1, 1]. However, the later Entropy-coding stage works exclusively with integers. Consequently,
elements within V must be scaled to fully exploit the dynamic range offered by the input parameter Nbits,
as shown in Equation (2). After doing so, the scaled Vvectors are rounded up to the closest integer values.

vjscaled
= (vj + 1) · (2Nbits−1 − 1) (2)

Error Mapping

The codification stage also exploits the redundancies within the data in the spectral domain to assign
the shortest word length to the most common values. With it, the compression ratio achieved by the
HyperLCA Transform could be even increased. To this end, the output vectors of the HyperLCA Transform (μ̂,
E and scaled V) are lossless pre-processed in the Error Mapping stage. To do so, the prediction error mapper
described in the Consultative Committee for Space Data Systems (CCSDS) Blue Books is employed [35].
In this regard, each output vector, (μ̂, en and scaled vn) is individually processed and transformed to be
exclusively composed of positive integer values closer to zero.
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2.1.5. HyperLCA Entropy Coding

The Entropy Coding is the last stage of the HyperLCA compressor. It follows a lossless entropy-coding
strategy based on the Golomb–Rice algorithm [36]. As in the Error Mapping stage, each single output vector
is independently coded. For doing so, the compression parameter, M, is estimated as the average value
of the targeted vector. Afterwards, each of its elements is divided by M in order to obtain the results of
the division, the quotient (q) and the remainder (r). On one hand, the quotient, q, is codified using unary
code. On the other hand, the remainder, r, could be coded using b = log2(M) + 1 bits if M is power of 2.
Nevertheless, M can actually be any positive integer. For this reason, the remainder, r is coded as plain
binary using b − 1 bits for r values smaller than 2b − M, otherwise it is coded as r + 2b − M using b bits.

2.1.6. HyperLCA Data Types and Precision Evaluation

Most of the compression performance achieved by the HyperLCA algorithm is obtained in the
HyperLCA Transform stage, originally designed to use floating-point precision. However, FPGA devices
are, in general, more efficient dealing with integer operations. Additionally, the execution of floating-point
operations in different devices may produce slightly different results. For this reason, the performance of
the HyperLCA algorithm using integer arithmetic was largely drawn in [37] in order to adapt it for being
more suitable for this kind of device. In particular, it was used the fixed-point concept in a custom way
employing integer arithmetic and bits shifting [38]. In this previous work, two different versions of the
HyperLCA Transform were considered employing 32 and 16 bits, respectively, for representing the image
values stored in the centralized version of the hyperspectral frame to be processed, C.

It is important to note that the aforementioned proposed versions were developed for working with
hyperspectral images whose element values could be represented with up to 16 bits per pixel per band
as maximum. In this context, the quality of the compression results is very similar between the 32-bits
fixed point and the single precision floating-point versions. Nevertheless, the compression performance
obtained by the 16-bit version is not as competitive as the other two solutions. It is shown that this 16-bit
approach provides its best performance for very high compression ratios, small BS and images packaged
using less than 16 bits per pixel per band. This makes the 16-bits version into a very interesting option for
applications with limited hardware resources, especially the availability of in-chip memory, one of the
weaknesses of FPGAs.

On this basis, we have made some performance-enhancing improvements to the 16-bit version to
obtain better compression results. In this context, we have assumed that the available capturing system
codes hyperspectral images with a maximum of 12 bits, which is also the most common scenario in
remote-sensing applications [39,40] and in the one outlined in this manuscript. Table 1 summarizes the
number of bits used by the two algorithm versions introduced in [37], known as I32 and I16, and the one
described in this work, referred as to I12, for some algorithm variables. It should be pointed out that when
integer arithmetic is used, V vectors are directly represented using integer data types and do not need to
be scaled and rounded to integer values.

As described in Section 2.1.3, the information presents in matrix C decreases with every iteration, n,
though some specific values may increase in some quite unlikely situations. For this reason, initial values
of C were divided by 2 in the previous 16-bit version in order to avoid overflowing, what directly decreases
the precision in one bit. In the new version proposed in this work, this fact is discarded since we have
2 bits extra for these improbable situations. As can be noticed from Table 1, image C is stored employing
16 bits in the new I12 version as well as in the I16 version. However, it is assumed that images values are
coded employing 12 bits as maximum instead of 16 bits. It permits having 2 extra bits for representing the
integer part of the fixed-point values of C elements. Consequently, image precision is not altered as in
previous 16-bit version for dealing with possible overflowing scenarios. Additionally, this new version
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also allows having 2 bits for representing the decimal part of the fixed-point values of matrix C, which is
not possible in the I16 version.

Table 1. Number of bits used for the integer and decimal parts used to represent the variables involved in the
HyperLCA Transform. Three versions of the algorithm were developed to use integer arithmetic (I32, I16, I12).

Variable
Integer Part Decimal Part Total

I32 I16 I12 I32 I16 I12 I32 I16 I12

C 20 16 14 12 0 2 32 16 16
b 48 48 48 16 16 16 64 64 64
q 20 20 20 12 12 12 32 32 32
u 2 2 2 30 30 30 32 32 32
v 2 2 2 30 30 30 32 32 32
μ 16 16 12 0 0 0 16 16 12

2.2. FPGA Implementation of the HyperLCA Algorithm

An FPGA (Field-Programmable Gate Array) can be seen as a whiteboard for designing specialized
hardware accelerators (HWacc), by composition of predefined memory and logic blocks that are available
in the platform. Therefore, a HWacc is a set of architectural FPGA resources, connected and configured to
carry out a specific task. Each vendor proposes its own reconfigurable platform, instantiating a particular
mix of such resources, around a particular interconnection architecture.

FPGAs provide flexibility to designers, since the silicon adapts to the solution, instead of fitting the
solution to the computing platform as is the case of GPU-based solutions. On top of that, FPGA-based
implementations can take advantage of the fine-grain parallelism of their architecture (operation level)
as well as task-level concurrency. In this paper, the HyperLCA lossy compressor has been implemented
onto a heterogeneous Zynq-7000 SoC (System-on-a-Chip) from Xilinx that combines a Processor System
(PS), based on a dual core ARM processor, and a Programmable Logic (PL), based on a Artix-7/Kintex-7
FPGA architecture.

The development process followed a productive methodology based on High-Level Synthesis (HLS).
This methodology focuses the effort on the design and verification of the HWacc, as well as the exploration
of the solution space that helps to speed up the search for value-added solutions. The starting point of a
methodology based on HLS is a high-abstraction model of the functionality to be deployed on the FPGA,
usually described by means of high-level programming languages, such as C or C++. Then, HLS tools can
generate the corresponding RTL (Register Transfer Level) implementation, functionally equivalent to the
C or C++ model [41,42].

Productivity is the strongest point of HLS technology, and one of the main reasons why hardware
architects and engineers have been recently attracted to it. However, HLS technology (more specifically,
the tools that implement the synthesis process) has some weaknesses. For example, despite the fact that the
designer can describe a modular and hierarchical implementation of a HWacc (i.e., grouping behavior via
functions or procedures), all sub-modules are orchestrated by a global clock due to the way the translation
to RTL from C is done. Another example is the rigid semantic when specifying dataflow architectures,
allowing a reduced number of alternatives. This prevents the designer from obtaining optimal solutions
for certain algorithms and problems [43,44], as was the case of the HyperLCA compressor. Therefore,
to overcome the limitations of current HLS tools, a hybrid solution that combines modules developed
using VHDL and HLS-synthesized C or C++ blocks has been selected. The result allows the achievement
of the maximum performance. Otherwise, it could not be possible to realize either the synchronization
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mechanisms or the parallel processing proposed in this work. On top of that, this approach makes it
also possible to optimize the necessary resources because of the use of custom producer-consumer data
exchange patterns that are not supported by HLS tools.

The four main stages of the HyperLCA compressor, described in Section 2.1 and shown in Figure 1,
have been restructured in order to better adapt to devices with a high degree of fine-grain parallelism such
as FPGAs. Thus, the operations involved in these parts of the HyperLCA algorithm have been grouped in
two main stages: HyperLCA Transform and HyperLCA Coder. These new stages can run in parallel, which
improves the performance.

The Initialization stage (Section 2.1.2), where the calculation of the pmax parameter is done,
is considered only at design time. This is because several hardware components, such as internal memories
or FIFOs, must be configured with the appropriate size. In this sense, it is worth mentioning that the
pmax value (Equation (1)) depends on other parameters also known at design time (the minimum desired
compression ratio (CR), block size (BS) and the number of bits (Nbits) used for scaling the projection
vectors, V, and, therefore, can be fixed for the HWacc.

2.2.1. HyperLCA Transform

HyperLCA Transform stage performs the operations of the HyperLCA transform itself (described in
Section 2.1.3), and also the computation of the average pixel and the scaling of V vector. These are the most
computational demanding operations of the algorithm and, together with the fact that they are highly
parallelizable by nature, are good candidates for acceleration.

Figure 2 shows an overview of the hardware implementation of the HyperLCA Transform stage.
Avg_Cent, Brightness and Proj_Sub modules have been modeled and implemented using the aforementioned
HLS tools, while the memory buffers and custom logic that integrates and orchestrates all the components
in the design have been instantiated and implemented using VHDL language, respectively. This HWacc
has a single entry corresponding to a hyperspectral block (Mk) that will be compressed, while the output
is composed of three elements (which differs to the output of Algorithm 1) in order to achieve a high
level of parallelism. It must also be mentioned that the output of the HyperLCA Transform stage feeds the
input of the HyperLCA Coder stage that performs the error mapping and entropy coding in parallel. Thus,
the centroid, μ̂, is obtained as depicted in Algorithm 1, while the pmax most different hyperspectral pixels,
E, are not directly obtained. In this regard, the HWacc provides the indexes of such pixels, jmax, in each
loop iteration of Algorithm 1 (outer loop), while the HyperLCA Coder is the responsible to obtaining each
hyperspectral pixel, en, from the external memory, in which is stored the hyperspectral image, to build the
vector of most different hyperspectral pixels, E. Finally, the projection of pixels within each image block,
V, is provided by the HWacc in a batch mode, i.e., each loop iteration (outer loop of Algorithm 1) obtains a
projection (vn) that forms part of the V vector.

The architecture of the HLCA Transform HWacc can be divided into two main modules: Avg_Cent,
which corresponds to lines 2 and 3 of Algorithm 1, and Loop_Iter (the main loop body, lines from 5 to
14). These modules are connected by a bridge buffer (BBuffer), whose depth is only 32 words, and also
share a larger buffer (SBuffer) with capacity to store a complete hyperspectral block. The size of the SBuffer
depends on the BS algorithm parameter and its depth is determined at design time. The role of this SBuffer
is to avoid the costly access to external memory, such it is the case of double data rate (DDR) memory in
the Zynq-7000 SoCs.

The implementation of the SBuffer is based on a first-in, first-out (FIFO) memory that is written
and read by different producers (i.e., Avg and Brightness) and consumers (i.e., Cent and Projection) of
the original hyperspectral block and the intermediate results (transformations). Since there are more
than one producer and consumer for the SBuffer, a dedicated synchronization and control access logic
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has been developed in VHDL (not illustrated in Figure 2). The use of a FIFO contributes to reduce the
on-chip memory resources in the FPGA fabric, being its use feasible because of the linear pattern access of
the producers and consumers. However, this type of solution would not have been possible with HLS
because the semantic of stream-based communication between stages in a dataflow limits the number of
producers and consumer to one. Also, it is not possible, with the used HLS technology, to exploit inter-loop
parallelism as is done in the proposed solution. Notice that there is a data dependency between iterations
in Algorithm 1 (centralized block, C) and, therefore, the HLS tool infers that the next iteration must wait
for the previous one to finish, resulting in fact in sequential computation. However, a deeper analysis of
the behavior of the algorithm shows that the computation of the brightest pixel for iteration n + 1 can be
performed as it has received the output of the subtraction stage, which will be still processing iteration n.

Figure 2. Overview of the HyperLCA Transform hardware accelerator. Light blue and white boxes represent
modules implemented using HLS. Light red boxes and FIFOs represent glue logic and memory elements
designed and instantiated using VHDL language.

The Avg_Cent module has been developed using HLS technology and contains two sub-modules,
Avg and Cent, that implement lines 2 and 3 of Algorithm 1, respectively.

Avg This sub-module computes the centroid or average pixel, μ̂, of the original hyperspectral block, Mk,
following line 2 of Algorithm 1, and stores it in CBuffer, a buffer that shares with Cent sub-module.
During this operation, Avg forwards a copy of the centroid to the HyperLCA Coder via a dedicated
port (orange arrow). At the same time, the Avg sub-module writes all the pixels of the Mk into the
SBuffer. A copy of the original hyperspectral block, Mk, will be available once Avg finishes, ready to
be consumed as a stream by Cent, which reduces the latency.

Figure 3 shows in detail the functioning of the Avg stage. The main problem in this stage is the way
the hyperspectral data is stored. In our case, the hyperspectral block, Mk, is ordered by the bands
that make up a hyperspectral pixel. However, to obtain the centroid, μ̂, the hyperspectral block
must be read by bands (in-width reading) instead of by pixels (in-depth reading). We introduce an
optimization that handles the data as it is received (in-depth), avoiding the reordering of the data
to maintain a stream-like processing. This optimization consists of an accumulate vector, whose
depth is equal to the number of bands that stores partial results of the summation for each band,
i.e., the first position of this vector contains the partial results of the first band, the second position
the partial results of the second band and so on. The use of this vector removes the loop-carry
dependency in the HLS loop that models the behavior of the Avg sub-module, saving processing
cycles. The increase in resources is minimal, which is justified by the gain in performance.
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Figure 3. Overview of Avg stage.

Cent This sub-module reads the original hyperspectral block, Mk, from the SBuffer to centralize it
(C). This operation consists of subtracting the average pixel, calculated in the previous stage,
from each hyperspectral pixel of the block (line 3 of Algorithm 1). Figure 4 shows this process,
highlighting the elements that are involved in the centralization of the first hyperspectral pixel. Thus,
the Cent block reads the centroid, μ̂, which is stored in the CBuffer, as many times hyperspectral
pixels have the original block (i.e., BS times in the example illustrated in Figure 4). Therefore,
CBuffer is an addressable buffer that permanently stores the centroid of the current hyperspectral
block that is being processed. The result of this stage is written into the BBuffer FIFO, which
makes unnecessary an additional copy of the centralized image, C. As soon as the centralized
components of the hyperspectral pixels are computed, the data is ready at the input of the Loop_Iter
module and, therefore, it can start to perform its operations without waiting for the block to be
completely centralized.

Figure 4. Overview of Cent stage.

The Loop_Iter module instantiates the Brightness and Proj_Sub sub-modules which have been designed
and implemented using HLS technology. Both modules are connected by two FIFO components (uVectorB
and qVectorB) using customized VHDL code to link them. Unlike Avg_Cent module, Loop_Iter module is
executed several times (specifically pmax times, line 4 of Algorithm 1) for each hyperspectral block that is
being processed.

Brightness This sub-module starts as soon as there is data in the BBuffer. In this sense, Brightness
sub-module works in parallel with the rest of the system; the input of the Brightness module is the
output of Cent module in the first iteration, i.e., the centralized image, C, while the input for all other
iterations is the output of Subtraction sub-module that corresponds to the image for being subtracted,
depicted as X for the sake of clarity (see brown arrows in Figure 2).

Brightness sub-module has been optimized to achieve a dataflow behavior that takes the same time
regardless of the location of the brightest hyperspectral pixel. Figure 5 shows how the orthogonal
projection vectors qn and un are obtained by the three sub-modules in Brightness. First, the Get
Brightness sub-module reads in order the hyperspectral pixel of the block from the BBuffer (C or X,
it depends on the loop iteration) and calculates its brightness (bj) as specified in line 6 of Algorithm 1.
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Get Brightness also makes a copy of the hyperspectral pixel in an internal buffer (actual_pixel) and
in SBuffer. Thus, actual_pixel contains the current hyperspectral pixel whose brightness is being
calculated, while SBuffer will contain a copy of the hyperspectral block with transformations (line 6
and assignment in line 13 of Algorithm 1).

Once the brightness of the current hyperspectral pixel is calculated, the Update Brightness sub-module
will update the internal vector brightness_pixel if the current brightness is greater than the previous
one. Regardless of such condition, the module will empty the content of actual_pixel in order to keep
the dataflow with the Get Brightness sub-module. The operations of both sub-modules are performed
until all hyperspectral pixels of the block are processed (inner loop, lines 5 to 7 of Algorithm 1).
The reason to use a vector to store the brightest pixel instead of a FIFO is because the HLS tool would
stall the dataflow otherwise.

Finally, the orthogonal projection vectors qn and un are accordingly obtained from the brightest pixel
(lines 10 and 11 of Algorithm 1) by the module Build quVectors. Both are written in separate FIFOs:
qVectorB and uVectorB, respectively. Furthermore, the contents of these FIFOs are copied in qVector
and uVector arrays in order to get a double space memory that does not deadlock the system and
allows Proj_Sub sub-module to read several times (concretely BS times) the orthogonal projection
vectors qn and un to obtain the projected image vector, vn, and transform the current hyperspectral
block. This module also returns the index of the brightest pixel, jmax, so that the HyperLCA Coder
stage reads the original pixel from the external memory, such as DDR, where the hyperspectral image
is stored in order to build the compressed bitstream.

Figure 5. Overview of Brightness stage.

Proj_Sub Although this sub-module is represented by separate Projection and Subtraction boxes in Figure 2,
it must be mentioned that both perform their computations in parallel. The Proj_Sub sub-module
reads just once the hyperspectral block that was written in SBuffer by the Brightness sub-module
(X). Figure 6 shows an example of Projection and Subtraction stages. First, each hyperspectral pixel
of the block is read by the Projection sub-module to obtain the projected image vector according to
line 12 of Algorithm 1. At the same time, the hyperspectral pixel is written in PSBuffer, which can
store two hyperspectral pixels. Two is the number of pixels because the Subtraction stage begins right
after the first projection on the first hyperspectral pixel is ready, i.e., the executions of Projection and
Subtraction are shifted by one pixel. Figure 6 shows such behavior. While pixel r1 is being consumed
by Subtraction, pixel r2 is being written in PSBuffer. During the projection of the second hyperspectral
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pixel (r2), the subtraction of the first one (r1) can be performed since all the input operands, included
the projection vn, are available, following the expression in line 13 of Algorithm 1.

The output of the Projection sub-module is the projected image vector, vn, which is forwarded
to the HyperLCA Coder accelerator (through the Projection port) and to the Subtration sub-module
(via the PBuffer FIFO). At the same time, the output of the Subtraction stage feeds the Loop_Iter
block (see purple arrow, labeled as X, in Figure 2) with the pixels of the transformed block in the
ith iteration. It means that Brightness stage can start the next iteration without waiting to get the
complete image subtracted. Thus, the initialization interval between loop-iterations is reduced as
much as possible because the Brightness starts when the first subtracted data is ready.

Figure 6. Example of Projection and Subtraction stages.

The FPGA-based solution described above highlights how the operations are performed in parallel to
make the most out of such technology. Also, it has been spotted specific synchronization scenarios that are
not possible to design using solely HLS. due to the current communication semantics supported by the
synthesis tools. For example, is not possible for current synthesis tools to perform an analysis of the data
and control dependencies such as the one done in this work. However, a hybrid solution based on HLS
and hand-written VHDL code to glue the RTL models synthesized from C/C++ models, brings to life an
efficient dataflow (see Figure 7). In this regard, the use of optimal sized FIFOs to interconnect the modules
is key. For example, while the Brightness sub-module is filling the SBuffer, the Projection sub-module is
draining it, and at the same time this sub-module supplies to the Subtraction sub-module with the same
data read from SBuffer. Finally, Subtraction sub-module feeds back the Brightness sub-module through the
BBuffer FIFO. The Brightness sub-module fills, in turn, the SBuffer, with the same data, closing the circle;
this loop is repeated pmax times.

Furthermore, the initialization interval between image blocks has been reduced. The task performed
by the Avg sub-module for block k + 1 (see Figure 7) can be scheduled at the same time that the Projection
and Subtraction sub-modules are computing their outputs for block k, and right after the completion of the
Brightness sub-module for block k. This is possible since the glue logic discards the output of the Subtraction
sub-module during the last iteration. This logic ensures that the BBuffer is filled with the output from the
Avg sub-module that feeds the first execution of Brightness for the first iteration of block k + 1, resulting in
an overlapped execution of the computation for blocks k and k + 1.
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Figure 7. Dataflow of HyperLCA Transform hardware accelerator. Overlapping of operations within
inter-loops and inter-blocks.

Unfortunately, despite the optimizations introduced in the dataflow architecture, the HWacc is not
able to reach the performance target as shown by the experimental results (see Section 3). The value in
the column labeled as 1 PE (Processing Element) is clearly below the standard frame rates provided by
contemporary commercial hyperspectral cameras. However, the number of FPGA resources required by
the one-PE version of the HWacc is very low (see Section 3.2) which makes it possible to implement further
parallelism strategies to speed up the compression process. Thus, three options open up for solving the
performance problem.

First, task-level parallelism approach is possible by means of the use of several instances of the
HWacc working concurrently. Second, increase the intra-HWacc parallelism using multiple operators,
computing several pixel bands at the same time. Thirdly, a combination of the two previous approached.
Independently of the strategy chosen, the limiting factor is the version of the Xilinx Zynq-7000
programmable SoC, that would have enough resources to support the design. In Section 4, a detailed
analysis of several single-HWacc (with variations in the number of PEs) and multi-HWacc versions of the
design is drawn.

So far, it has been described the inner architecture of a HWacc that only performs a computational
operation over a single band component of a hyperspectral pixel. However, it can be modified to increase
the number of bands that are processed in parallel. Thus, the HWacc of HyperLCA compressor turns from
a single-PE to multiple PEs. This fact opens two new challenges. First challenge is to increase the width
of the input and output ports of the modules, in accordance with the number of bands that would be
processed in parallel. It must be mentioned that it is technologically possible because HLS-based solutions
allow designers to build their own data types. For example, if a band component of a hyperspectral
pixel is represented by an unsigned integer of 16-bits, we could define our own data type consisting of
an unsigned integer of 160-bits packing ten bands of a hyperspectral pixel (see Figure 8). The second
challenge has to do with the strategy to process the data in parallel. In this regard, a solution based on the
map-reduce programming model has been followed.

Figure 8 shows an example of the improvements applied to the Cent stage, following the
above-mentioned optimizations. The input of this stage is the hyperspectral block, Mk, and the average
pixel, μ̂, which are read in blocks of N-bands. The example assumes that the block is composed of ten
bands and uses an user data type, specifically an unsigned int of 160-bits (10 bands by 16-bits to represent
each band). Then, both blocks are broken down into the individual components that feed the PEs in an
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orderly fashion. This process is also known as map phase in the map-reduce programming model [45].
It must be mentioned that the design needs as many PEs as number of divisions made in the block.

Once the PEs have performed the assigned computational operation, the reduce phase of the
map-reduce model is executed. For Cent sub-module, this stage consists of gathering in a block the
partial results produced by each one of the PEs. Thus, a new block of N-bands is built, which in turn is
part of the centralized block (C), which is the output of Cent sub-module.

Figure 8. Map-reduce programming model and data packaging on Cent stage.

2.2.2. Coder

The HyperLCA Coder is the second of the HWacc developed, responsible for the error mapping and
entropy-coding stages of the HyperLCA compression algorithm (Figure 1). The coder module teams
up with the transform module to perform in parallel the CCSDS prediction error mapping [35] and the
Golomb–Rice [36] entropy-coding algorithms as the different vectors are received from the HyperLCA
Transform block.

The HyperLCA transform block generates the centroid, μ̂, extracted indexes of pixels, jmax,
and projection vectors, vn, for an input hyperspectral block, Mk. These arrays are consumed as they
are received, reducing the need for large intermediate buffers. To minimize the necessary bandwidth to
the memory that stores the hyperspectral image, only the indexes of the selected pixels in each iteration of
the transform algorithm (line 8 of Algorithm 1) are provided to the coder (MB_index port).

The operation of the transform and coder blocks overlaps in time. Since the coder takes approximately
half of the time the transform needs to generate each vector (see Section 3.2) for the maximum number of
PEs (i.e., the maximum performance achieved), a contention situation is not taking place, reducing
the pressure over the FIFOs that connect both blocks and, therefore, requiring less space for these
communication channels.

Figure 9 sketches the internal structure of the HyperLCA Coder that has been modeled entirely using
Vivado HLS. It is a dataflow architecture comprising three steps. During the first step, the prediction mapping
and entropy coding of all the input vectors are performed by the coding command generator. The result of this
step is a sequence of commands that are subsequently interpreted by the compressed bitstream generator.
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Figure 9. Overview of the HyperLCA Coder hardware accelerator.

The generation of the bitstream was extracted from the entropy-coding original functionality, which
enabled a more efficient implementation of the latter, which could be re-written as a perfect loop and, therefore,
Vivado HLS was able to generate a pipelined datapath with the minimum initiation internal (II = 1).

The generation of the compressed bitstream is simple. This module is continuously reading the
cmd_queue FIFO for a new command to be processed. A command contains the operation (unary of binary
coding) as well as the word (quotient or reminder, see Section 2.1.5) to be coded, and the number of bits to
generate. Unary and binary coding functions simply iterate over the word to be coded and produces a
sequence if bits which corresponds to the compressed form of the hyperspectral block.

Finally, the third step packs the compressed bitstream in words and written to memory. For this
implementation, the width of the memory word is 64 bits, the maximum allowed by the AXI Master
interface port for the Zynq-7020 SoC. The bitstream packer module instantiates a small buffer (64 words)
that is flushed to DDR memory once it has been filled. This way, average memory access cycles per word
is optimized by means of the use of burst requests.

As mentioned above, the HyperLCA Transform block feeds the coder with the indexes of the extracted
pixels en, which correspond to the highest brightness as the hyperspectral block is processed. Hence,
it is necessary to retrieve the nb spectral bands from memory before the coder could start generating the
compressed stream for the pixel vector. This is the role played by the pixel reader module. As in the case of
the bitstream packer step, the pixel reader makes it use of a local buffer and issue burst requests to read the
bands in the minimum number of cycles.

While the computing complexity of the coder module is low, the real challenge when it comes
to the implementation of its architecture is to write a C++ HLS model that is consistent through the
whole design, verification and implementation processes. To achieve this goal, it has been provided the
communication channels with extra semantic so as to keep the different stages sync, despite the fact the
model of computation of the architecture falls into the category of GALS (Globally Asynchronous, Locally
Synchronous) systems. Side-channel information is embedded in the cmd_queue and compressed_stream
FIFOs that connects the different stages of the coder. This information is used by the different modules
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to reset their internal states or stop and resume their operation (i.e., special commands to be interpreted
by the bitstream generator or a flush signal as input to the packing module). This way, it is possible to
integrate under a single HLS design all the functionality of the coder, which simplifies and speeds up the
design process. On top of that, this strategy allowed avoiding the need to tailor the C++ HLS specification
to make it usable in different steps of the design process. For example, it is common to write variations of
the model depending on whether functional (C simulation) or RTL verification (co-simulation) is taking
place due to the fact that the former is based on an untimed model and the latter introduces timing
requirements [46,47].

Designing for parallelism is key to obtain the maximum performance. The dataflow architecture
of the coder ensures an inter-module level of concurrency. However, the design must be balanced as
to the latency of the different stages in the dataflow. Otherwise, the final result could be jeopardized.
As mentioned before, decoupling the generation of the compressed bitstream from the entropy-coding
logic, led to a more efficient implementation of the latter by the HLS synthesis tool. Also, this change
helped to redistribute the computing effort, achieving a more balanced implementation.

In the first stage of the dataflow (coding command generator) a simple logic that controls the encoding of
each input vector plus a header is implemented. It is an iterative process that performs the error mapping
and error coding over the centroid, and p_max times over the extracted pixels and projections vectors.
The bulk of this process is, thus, the encoding algorithm. The encoding is delegated in another module
that implements an internal dataflow itself. In this way, it is possible to reduce the interval between two
encoding operations. As can be seen in Figure 9, the prediction mapping and entropy-coding sub-modules
communicates through a ping-pong buffer for the mapped vector.

To conclude this section, it is worth mentioning a couple of optimizations carried out related to the
operations pow and log, which are used by the prediction mapping and entropy-coding algorithms. This
type of arithmetic operation is costly to implement in FPGAs since the generated hardware is based on
tables that consume on-chip resources (mainly BRAM memories), and an iterative processes that boosts
latency. Since the base used in this application is 2, it can be largely simplified. Thus, we can substitute
the pow and log operations by a logical shift instruction and the GCC compiler __builtin_clz(x) built-in
function, respectively. This change is part of the refactoring process of the reference code implementation
(golden model) that is almost mandatory at the beginning of any HLS project. The __builtin_clz(x) function
is synthesizable and counts the leading zeros of the integer x. Therefore, the computation of the lowest
power of 2 higher than M, performed during the entropy coding, is redefined as follows:

Listing 1: FPGA implementation of costly arithmetic operations during entropy coding.

1 //Or ig ina l code
2 b = log2 (M) + 1 ;
3 d i f f e r e n c e = pow( 2 , b ) − M;
4

5 //FPGA opt imizat ion
6 b = (32 − _ _ b u i l t i n _ c l z (M) ) ;
7 d i f f e r e n c e = (1<<b ) − M;

2.3. Reference Hyperspectral Data

In this section, we introduce the hyperspectral imagery used in this work to evaluate the performance
of the proposed computing approach using reconfigurable logic devices. This data set is composed of 4
hyperspectral images that were also employed in [29], where the HyperLCA algorithm was implemented
in low-power consumption embedded GPUs. We have kept the same data set in order to compare
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in Section 3 the performance of the developed FPGA-based solution with the results obtained by the
GPU accelerators.

In particular, the test bench was sensed by the acquisition system extensively analyzed in [48].
This aerial platform mounts a Specim FX10 pushbroom hyperspectral camera on a DJI Matrice 600 drone.
The image sensor covers the range of the electromagnetic spectrum between 400 and 1000 nm using
1024 spatial pixels per scanned cross-track line and 224 spectral bands. Nevertheless, the hyperspectral
images used in the experiments only retain the spectral information of 180 spectral bands. Concretely,
the first 10 spectral bands and the last 34 bands have been discarded due to the low spectral response of
the hyperspectral sensor at these wavelengths.

The data sets were collected over some vineyard areas in the center of Gran Canaria island (Canary
Islands, Spain) and in particular, in a village called Tejeda, during two different flight campaigns. Figure 10
and Figure 11 display some Google Maps pictures of the scanned terrain in both flight missions, whose
exact coordinates are 27°59′35.6′′N 15°36′25.6′′W (green point in Figure 10) and 27°59′15.2′′N 15°35′51.9′′W
(red point in Figure 11), respectively. Both flight campaigns were performed at a height of 45 m over the
ground, which results in a ground sampling distance in line and across line of approximately 3 cm.

Figure 10. Google Maps pictures of the vineyard areas sensed during the first flight campaign. False RGB
representations of the hyperspectral images employed in the experiments.

The former was carried out with a drone speed of 4.5 m/s and the camera frame rate set to
150 frames per second (FPS). In particular, this flight mission consisted of 12 waypoints that led to a
total of 6 swathes, but only one was used for the experiments, which has been highlighted in green in
Figure 10. Two portions of 1024 hyperspectral frames with all their 1024 hyperspectral pixels were selected
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from this swath to generate two of the data sets that compose the test bench. A closer view of these
selected areas can be also seen in Figure 10. These images are false RGB representations extracted from the
acquired hyperspectral data.

The latter was carried out with a drone speed of 6 m/s and the camera frame rate set to 200 FPS.
The entire flight mission consisted of 5 swathes, but only one was used for the experiments in this work,
which has been highlighted in red in Figure 11. From this swath, two smaller portions of 1024 hyperspectral
frames were cut out for simulations. A closer view of these selected areas is also displayed in Figure 11.
Once again, they are false RGB representations extracted from the acquired hyperspectral data. For more
details about the flight campaigns, we encourage the reader to see [48].

Figure 11. Google Maps pictures of the vineyard areas sensed during the second flight campaign. False
RGB representations of the hyperspectral images employed in the experiments.

3. Results

3.1. Evaluation of the HyperLCA Compression Performance

The goodness of the I12 version of the HyperLCA algorithm proposed in this work has been evaluated
and compared with previous I32 and I16 versions of the algorithm presented in [37] and the single precision
floating-point (F32) implementation presented in [29]. For doing so, the hyperspectral imagery described
in Section 2.3 has been compressed/decompressed using different settings of the HyperLCA compressor
input parameters.

In this context, the information lost after the lossy compression process has been analyzed using
three different quality metrics. Concretely, the Signal-to-Noise Ratio (SNR), the Root Mean Squared Error
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(RMSE) and the Maximum Absolute Difference (MAD), which are shown in Equations (3)–(5), respectively.
The SNR and the RMSE give an idea of the average information lost in the compression-decompression
process. Bigger values of SNR are indicative of better compression performance. On the contrary, higher
RMSE values mean that the lossy compression has introduced bigger data losses. The MAD assesses
the amount of lost information for the worst reconstructed image value. For our targeted application,
the dynamic range is 212 = 4096 and hence, the worst possible MAD value is 4095. For the sake of clarity,
the aforementioned metrics have been calculated using the entire compressed–decompressed images, i.e.,
after the HyperLCA algorithm has finished to compress all image blocks, MK.

SNR = 10 · log10(
∑nb

i=1 ∑
np
j=1(Ii,j)

2

∑nb
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np
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(Ii,j − Ici,j)2 (4)

MAD = max(Ii,j − Ici,j) (5)

Table 2 shows the average results obtained for each configuration of the HyperLCA compressor input
parameters using the data set described in Section 2.3. Different conclusions can be drawn from these
results. First of all, it is confirmed that the I12 version offers significantly better-quality compression results
than previous I16 version, employing the same hardware resources. These gaps are even wider for smaller
compression ratios. This is because the losses introduced by the decrease in the data precision compare to
the previous I16 version, as mentioned in Section 2.1.6, is disguised by the bigger losses introduced by the
compression process itself for higher compression ratios.

Table 2. Comparison of the compression results for the four versions of the HyperLCA algorithm under
study: I12, I16, I32 and F32.

Nbits BS CR
SNR MAD RMSE

I12 I16 I32 F32 I12 I16 I32 F32 I12 I16 I32 F32

12

1024
12 43.01 38.01 43.12 42.75 24.50 39.00 25.00 25.50 3.12 5.55 3.08 3.22
16 42.27 38.57 42.27 41.97 32.25 41.50 32.25 32.50 3.40 5.21 3.40 3.52
20 41.31 39.13 41.31 41.06 41.25 46.50 41.25 41.25 3.73 4.88 3.80 3.91

512
12 42.99 38.95 43.03 42.68 26.25 34.50 25.00 25.00 3.13 4.98 3.12 3.24
16 42.45 39.36 42.47 42.14 30.75 38.00 30.00 30.50 3.33 4.75 3.33 3.45
20 41.50 39.92 41.48 41.24 39.50 43.75 39.50 40.00 3.72 4.46 3.72 3.83

256
12 43.03 40.00 43.02 42.67 25.00 34.50 25.00 25.50 3.12 4.42 3.12 3.25
16 42.33 40.51 42.32 42.02 34.75 37.25 34.75 35.00 3.38 4.16 3.38 3.50
20 40.94 40.59 40.59 40.73 54.75 57.75 54.75 54.75 3.96 4.13 3.97 4.06

8

1024
12 41.80 36.91 42.19 41.68 23.25 41.50 22.00 22.25 3.62 6.32 3.47 3.69
16 41.63 37.42 41.73 41.27 25.50 41.25 25.50 26.50 3.69 5.95 3.65 3.86
20 41.20 37.89 41.20 40.79 32.25 42.00 32.50 32.25 3.87 5.64 3.87 4.07

512
12 42.49 37.99 42.70 42.26 23.00 38.00 22.75 22.25 3.33 5.57 3.25 3.42
16 42.07 38.64 42.09 41.69 27.50 36.00 26.50 26.75 3.49 5.17 3.48 3.65
20 41.61 39.01 41.60 41.25 31.25 39.50 30.50 31.75 3.68 4.95 3.68 3.84

256
12 42.79 39.35 42.82 42.39 24.75 35.50 25.00 25.00 3.20 4.76 3.19 3.36
16 42.15 39.96 42.13 41.76 30.00 37.00 29.75 29.75 3.45 4.43 3.46 3.61
20 41.80 40.21 41.78 41.44 35.75 37.00 35.75 36.00 3.59 4.31 3.60 3.74
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Additionally, deviations in the values of the three quality metrics employed in this work between
I32, I12 and F32 versions are almost negligible, with the advantage of halving the memory space
required for storing C. Second, it can be also concluded that the HyperLCA lossy compressor is able to
compress the hyperspectral data with high compression ratios and without introducing significant spectral
information losses.

3.2. Evaluation of the HyperLCA Hardware Accelerator

Section 2.1 describes the FPGA-based implementation of the HyperLCA compressor as defined in
Algorithm 1. The architecture of the HWacc is divided into two blocks, Transform and Coder that run in
parallel following a producer-consumer approach. Therefore, for the performance analysis of the whole
solution, the slowest block is the one determining the productivity of the proposed architecture.

The HyperLCA Transform block bears most of the complexity and computational burden of the
compression process. For that reason, several optimizations (see Section 2.1.3) have been applied during
its design in order to achieve a high degree of parallelism and, thus, reduce the latency. One of the
most important improvements is the realization of the map-reduce programming model, to enable an
architecture with multiple PEs (see Figure 8) working concurrently on several bands. The experiments
carried out over the different alternatives for the HyperLCA Transform block are intended to evaluate how
the performance and resource usage of the FPGA-based solution scales, as the number of PEs instantiated
by the architecture grows up.

The configuration of the input parameters has been set as follows: CR parameter has been set to 12,
16 and 20; the BS parameter has been set to 1024, 512 and 256 and; Nbits parameter gets the values 12 and
8. The value of pmax is obtained at design time from these parameters following Equation (1), and are
listed in the last column of Table 3. Concerning the sizing of the various memory elements present in the
architecture, it is determined by two parameters: the number of PEs to instantiate (parallel processing of
hyperspectral bands) and the size of the image block to be compressed. It is worth mentioning that in this
version of the HWacc, the number of PEs must be a divisor of the number of hyperspectral bands in order
to simplify the design of the datapath logic.

First, the data width of the architecture must be defined. Such parameter is obtained multiplying the
number of PEs by the size of the data type used to represent a pixel band. In the version of the HWacc
under evaluation, the I12 alternative has been selected, due to its good behavior (comparable to the I32
version as discussed in Section 2.1.6) and the resource savings it brings. For the I12 version, a band is
represented with an unsigned short int which turns into 16-bit words in memory. On the contrary, choosing
the I32 version, the demand for memory resources and internal buffers (such as the SBuffer) would double,
because an unsigned int data type is used in the model definition. Thus, if the HWacc only instantiates
a PE, the data width will be 16-bits, whereas if the HWacc instantiates 12 PEs (i.e., the HWacc performs
12 operations over the set of bands in parallel), the data width will be 192-bits. Second, the depth of the
SBuffer must be calculated following Equation (6), where BS is the block size, nb the number of bands
(in our case is fixed to 180), and NPEs is the number of processing elements.

SBu f f erDepthmin =
BS · nb
NPEs

(6)

Being optimal as to the use of BRAM blocks within the FPGA fabric is compulsory since this resource
is highly demanded as the number of PEs increases (seen in Table 4). On top of that, keeping the use
of resources under control brings along some benefits such as helping the synthesis tool to generate a
better datapath and, therefore, to obtain an implementation with a shorter critical path or contain the
consumption of energy.

157



Remote Sens. 2020, 12, 3741

Table 3. Design-time configurations parameters of the HyperLCA transform hardware block for
hyperspectral images with 180 bands.

Nbits BS CR
Min SBuffer Depth

1 PE 2 PEs 4 PEs 6 PEs 10 PEs 12 PEs
pmax

12

1024
12

184,320 92,160 46,080 30,720 18,432 15,360
12

16 9
20 7

512
12

92,160 46,080 30,720 18,432 15,360 7680
10

16 8
20 6

256
12

46,080 30,720 18,432 15,360 7680 3840
8

16 6
20 4

8

1024
12

184,320 92,160 46,080 30,720 18,432 15,360
17

16 13
20 10

512
12

92,160 46,080 30,720 18,432 15,360 7680
14

16 10
20 8

256
12

46,080 30,720 18,432 15,360 7680 3840
10

16 7
20 6

Data Width (bits) 16 32 64 96 160 192

Table 3 lists the memory requirements demanded by SBuffer for the 108 different configurations of the
HyperLCA Transform block evaluated in this work. The SBuffer component is, by far, the largest memory
instantiated by the architecture and it is implemented as a FIFO. SBuffer component has been generated
with the FIFO generator tool provided by Xilinx which only allows depths that are power of two. Therefore,
from a technical point of view, it is not possible to match the minimum required space of SBuffer with
the obtained from the vendor tools. To mitigate the waste of memory space derived from such constraint
of the tool, the SBuffer has been broken into two concatenated FIFOs (i.e., the output of the first FIFO is
the input of the second) but keeping the facade of a single FIFO to the rest of the system. For example,
the minimum depth of SBuffer for PE = 1 and BS = 256 is 46,080. With a single FIFO, the smallest depth
with enough capacity generated by Xilinx tools would be 65,536. Therefore, the unused memory space
represents approximately 30% of the overall resources for SBuffer. However, by using the double FIFO
approach, one FIFO of 32,768 words plus another one of 16384 would be use. Only ≈ 6% of the assigned
resources to SBuffer would be misused.

To evaluate the HyperLCA Transform hardware accelerator, the proposed HWacc architecture has been
implemented using the Vivado Design suite. This toolchain is provided by Xilinx and features a HLS
tool (Vivado HLS) devoted to optimize the developing process of IP (Intellectual Property) components
FPGA-based solutions for their own devices. The first implemented prototype instantiated one HWacc
targeting the XC7Z020-CLG484 version of the Xilinx Zynq-7000 SoC. This FPGA has been selected because
of its low-cost, low-weight and high flexibility, features that make it an interesting device to be integrated
in aerial platforms, such as drones. The aim of this first prototype is to evaluate the capability of a
mid-range reconfigurable FPGAs such as the XC7Z020 chip, for a specific application such as the HyperLCA
compression algorithm. Hence, and due to the amount of resources available on the target device,
the maximum possible number of PEs for the single-HWacc prototype is 12.
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Table 4 summarizes the resources required, which have been extracted from post-synthesis reports,
for each of the 108 versions of the HWacc that process different block sizes of 180-band hyperspectral
images of the data set (see Section 2.3).

Table 4. Post-Synthesis results for the different versions of the HyperLCA Transform for a Xilinx Zynq-7020
programmable SoC and image block up to 180 bands.

BS Num. PEs BRAM18K DSP48E FlipFlops LUTs

256

1 56 (20.0%) 9 (4.09%) 6942 (6.52%) 5194 (9.76%)
2 59 (21.07%) 16 (7.27%) 9112 (8.56%) 8735 (16.42%)
4 71 (25.36%) 30 (13.64%) 20,171 (18.96%) 15,811 (29.72%)
6 71 (25.36%) 62 (28.18%) 29,368 (27.6%) 23,530 (44.23%)

10 84 (30.0%) 102 (46.36%) 47,350 (44.5%) 38,221 (71.84%)
12 71 (25.36%) 122 (55.45%) 56,297 (52.91%) 45,867 (86.22%)

512

1 101 (36.07%) 9 (4.09%) 6988 (6.57%) 5270 (9.91%)
2 102 (36.43%) 16 (7.27%) 9159 (8.61%) 8820 (16.58%)
4 113 (40.36%) 30 (13.64%) 20,215 (19.0%) 16,040 (30.15%)
6 113 (40.36%) 62 (28.18%) 29,406 (27.64%) 23,761 (44.66%)

10 124 (44.29%) 102 (46.36%) 47,420 (44.57%) 38,352 (72.09%)
12 113 (40.36%) 122 (55.45%) 56,342 (52.95%) 45,857 (86.20%)

1024

1 192 (68.57%) 9 (4.09%) 7114 (6.69%) 5468 (10.28%)
2 190 (67.86%) 16 (7.27%) 9278 (8.72%) 8969 (16.86%)
4 198 (70.71%) 30 (13.64%) 20,301 (19.08%) 16,210 (30.47%)
6 199 (71.07%) 62 (28.18%) 29,524 (27.75%) 23,916 (44.95%)

10 204 (72.86%) 102 (46.36%) 47,514 (44.66%) 38,485 (72.34%)
12 199 (71.07%) 122 (55.45%) 56,463 (53.07%) 46,116 (86.68%)

Several conclusions can be derived from these figures. In first place, the amount of digital signal
processors (DSPs), flipflops (FFs) and look-up-tables (LUTs) resources increases with the number of PEs
but are similar for different values of the BS parameter. On the contrary, the demand of BRAMs depends
directly on BS and increases slightly with PE for a given block size. The PE = 10 version needs a special
remark. Such version represents an anomaly in the linear behavior of the resource demand. Even with the
use of a double FIFO approach, as explained before, the total capacity of the BRAM used to instantiate
SBuffer is clearly oversized for that datawidth to assure that a hyperspectral block and its transformations
(Mk and C, respectively) could be stored in-circuit. Second, in addition to the resources needed by the
HWacc of the HyperLCA Transform, it is necessary to take into account those corresponding to the other
components in the system such as the Coder or the DMA (Direct Memory Access) to move the hyperspectral
data (Mk) from/to DDR to/from the hardware accelerators. These extra components will make use of the
remaining resources (specially LUTs, which is the most demanded as can be seen in Table 4), establishing a
maximum of 12 for the number of PEs.

Table 5 shows the post-synthesis results for the HyperLCA Coder block. The resources demanded by
the coder does not depend on the BS parameter or the number of PEs. It is important to mention that the
majority of the BRAM, FFs and LUTs resources are assigned to the two AXI-Memory interfaces that the
HLS tool generates for the Pixel Reader and the Bitstream Packer modules (see Figure 9).

Table 5. Post-Synthesis results for the HyperLCA Coder block for a Xilinx Zynq-7020 programmable SoC
and pixel size up to 180 bands.

BS BRAM18K DSP48E FlipFlops LUTs

2,565,121,024 7 (2.5%) 1 (0.45%) 3464 (3.25%) 4106 (7.71%)
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Table 6 shows the throughput, expressed as the maximum frame rate, for a specific configuration of
the HWacc using two clock frequencies: 100 MHz and 150 MHz (Table A1 extends this information by
adding the number of cycles to compute a hyperspectral block). Columns labeled as PE denote the number
of processing elements instantiated by the HWacc, which in combination with the input parameters (Nbits,
BS, CR and pmax), show the average number of hyperspectral blocks that the HWacc is able to compress
per second (FPS). The maximum frame rate has been normalized to 1024 hyperspectral pixels per block,
which is the size of the frame delivered by the acquisition system.

Table 6. Maximum frame rate obtained using the FPGA-based solution on a Xilinx ZynQ-7020
programmable SoC for hyperspectral images with 180 bands.

Max Frame Rate

Nbits BS CR 1 PE 2 PEs 4 PEs 6 PEs 10 PEs 12 PEs

f1 f2 f1 f2 f1 f2 f1 f2 f1 f2 f1 f2

12

1024
12 37 56 72 108 131 196 178 266 248 370 275 411
16 47 71 91 137 167 250 225 336 310 463 343 511
20 58 87 112 168 204 305 273 408 373 555 410 611

512
12 43 65 83 125 152 228 205 307 284 424 314 469
16 52 78 100 151 183 273 245 366 336 501 370 552
20 69 98 126 189 229 342 304 454 411 612 452 672

256
12 52 78 100 149 181 270 242 361 330 493 364 543
16 65 97 125 187 227 339 301 449 405 604 444 661
20 87 130 167 251 303 453 397 591 523 778 570 847

8

1024
12 27 41 53 79 96 144 131 197 186 278 207 310
16 34 52 67 100 122 183 166 248 232 347 258 386
20 43 65 84 126 153 229 206 309 286 427 317 473

512
12 32 49 62 94 114 170 155 232 217 324 241 360
16 43 65 83 125 152 227 205 307 284 424 370 469
20 52 78 100 151 183 273 245 366 336 501 370 552

256
12 43 65 83 124 150 225 202 303 279 417 309 460
16 57 86 111 166 201 301 268 401 364 543 400 596
20 65 97 125 187 227 339 301 448 405 603 444 661

f1 Clock frequency: 100 MHz. f2 Clock frequency: 150 MHz.

It is worth noting that these results include the transform and coding steps, which are performed in
parallel. Table 7 shows the coding times (in clock cycles) compared to the time needed by the transform
step with the best configuration possible (i.e., PE = 12). The HyperLCA Coder takes roughly 50% less
time on average and, since the relation between both hardware components is a dataflow architecture,
the latency of the whole process corresponds to the maximum; that is, the delay of the Transform step.

One key factor is the minimum frame rate that must be supported for the targeted application. Ideally,
such threshold would correspond to the maximum frame rate provided by the employed hyperspectral
sensor (i.e., 330 FPS). However, the experimental validation of the camera set-up in the drone (Section 2.3),
tells us that frame rates between 150 and 200 are enough to obtain hyperspectral images with the desired
quality, given the speed and altitude of the flights. Therefore, a threshold value of 200 FPS is established as
the minimum throughput to validate the viability of the HyperLCA hardware core. In Table 7, it has been
highlighted (bold type-faced cells) the configurations that would be valid given this minimum. Thus, it can
be observed that the PE = 12 version, for both clock frequencies, and the PE = 10 version at 150 MHz
reach the minimum frame rate, even for the most demanding scenario (Nbits = 8, BS = 1024 and CR = 12).
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In turn, by using lower values for Nbits the compression rate is reduced due to the higher number of V

vectors extracted by the HyperLCA Transform. This means that more computations must be performed to
compress a hyperspectral block. It must be mentioned that the PE = 10 version meets the FPS target in all
the scenarios but the most demanding one when the clock frequency is set to 100 MHz. As for the PE = 10
version, the PE = 6 version does not reach the minimum FPS in a few scenarios (concentrated in Nbits = 8
and BS = 1024), but in can be a viable solution given the actual needs of the application set-up.

Table 7. Comparison of the computation effort made by the Transform and Coding stages.

Nbits BS CR
Cycles per Block

pmax
Transform Delay (12 PEs) Coder Delay

12

1024
12 364,594 184,999 12
16 293,101 137,379 9
20 245,360 105,836 7

512
12 159,901 88,235 10
16 135,691 70,468 8
20 111,546 52,593 6

256
12 69,030 44,095 8
16 56,649 33,294 6
20 44,265 22,587 4

8

1024
12 483,832 194,170 17
16 388,391 147,055 13
20 316,731 111,919 10

512
12 208,129 94,584 14
16 159,834 67,697 10
20 135,748 54,037 8

256
12 81,374 44,579 10
16 62,850 31,424 7
20 56,658 27,163 6

In addition to the performance results listed in Table 6, Figure 12 graphically shows the speed-up
gained by the FPGA-based implementation as the number of PEs increases. The values have been
normalized, using the average time for the PE = 1 version as the baseline. Several conclusions can
be drawn from this figure. First, it is observable that the PE = 12 version of the HWacc performs ×7
times (Nbits = 12) to ×7.6 times (Nbits = 8) faster than PE = 1 version. This configuration is the one
that guarantees the fastest compression results. Second, the speed-up gain is nearly linear for PE = 2
and PE = 4 versions, whereas the scalability of the accelerator drops as the number of PEs is higher
(see Figure 12a,b). This behavior is seen for both Nbits = 8 and Nbits = 12 configurations (see Figure 12c,d).
However, for higher values of BS and CR the shape of the curve shows a better trend though not reaching
the desired linear speed-up.
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(a) (b)

(c) (d)

Figure 12. Speed-up obtained for multiple PEs compared to the 1 PE version of the HyperLCA HW
compressor. (a) Speed-up Nbits = 8; (b) Speed-up Nbits = 12; (c) Speed-up curve Nbits = 8; (d) Speed-up
curve Nbits = 12.

4. Discussion

In this paper, we present a detailed description of an FPGA-based implementation of the HyperLCA
algorithm, a new lossy transform-based compressor. As fully discussed in Section 3.2, the proposed HWacc
meets the requirements imposed by the targeted application in terms of the frame rate range employed
to capture quality hyperspectral images. In this section, we would like to also provide a comprehensive
analysis of the suitability of the FPGA-based HyperLCA compressor implementation and a comparison
with the results obtained by an embedded System-on-Module (SoM) based on a GPU that has been recently
published [29].

Concretely, María Díaz et al. introduce in [29] three implementation models of the HyperLCA
compressor. In this previous work, the parallelism inherent to the HyperLCA algorithm was exploited
beyond the thread-level concurrency of the GPU programming model taking advantage of the CUDA
steams. In particular, the third approach, referred to as Parallel Model 3 in [29], achieves the highest
speed-up, especially for bigger image blocks (BS = 1024). This implementation model bets for pipelining
the data transfers between the host and the device and the kernel executions for the different image
blocks (Mk). To do this, such proposal exploits the benefits of the concurrent kernel execution through the
management of CUDA streams. Unlike the FPGA-based implementation model proposed in this paper,
only the HyperLCA Transform stage is accelerated in the GPU. In this case, the codification stage is also
pipelined with the HyperLCA Transform stage but executed on the Host using another parallel CPU process.
Table 2 collects the quality results of the compression process issued by the aforementioned GPU-based
implementation model in terms of SNR, MAD and RMSE (F32 version). For more details, we encourage
the reader to see [29].
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To compare the performance of the GPU-based implementation model and the FPGA solution
presented here, we are going to use two assessment metrics: the maximum number of frames compressed
in a second (FPS) and the power efficiency in terms of FPS per watt. The latter figure of merit is of
great importance given the target application, since it is critical to maximize the battery life of the drone.
Additionally, the GPU-based model introduced in [29] has been executed in three different NVIDIA
Jetson embedded computing devices: Jetson Nano, Jetson TX2 and the most recent supercomputer Jetson
Xavier NX.

These modules have been selected for the reasonable computational power provided at a relatively
low power consumption. Table 8 summarizes the most relevant technical characteristics of these embedded
computing boards. As can be seen, the Jetson Nano module integrates the less advanced, oldest generation
of the three GPU architectures, instantiating the fewer execution units or CUDA cores as well. On the
contrary, Jetson Xavier NX represents one of the latest NVIDIA power-efficient products, which offers
more than 10X the performance of its widely adopted predecessor, Jetson TX2.

Table 8. Most relevant characteristics of the NVIDIA modules Jetson Nano, Jetson TX2 and Jetson Xavier NX.

Jetson Nano
LPGPU GPU NVIDIA Maxwell architecture with 128 NVIDIA CUDA cores
CPU Quad-core ARM Cortex-A57 MPCore processor
Memory 4 GB LPDDR4, 1600MHz 25.6 GB/s

Jetson TX2
LPGPU GPU NVIDIA Pascal with 256 CUDA cores
CPU HMP Dual Denver 2/2 MB L2 + Quad ARM A57/2 MB L2
Memory 8 GB LPDDR4, 128 bits bandwidth, 59.7 GB/s

Jetson Xavier NX
LPGPU GPU NVIDIA Volta with 384 NVIDIA CUDA cores and 48 Tensor cores
CPU 6-core NVIDIA Carmel ARM®v8.2 64-bit CPU 6 MB L2 + 4 MB L3
Memory 8 GB 128-bit LPDDR4x @ 51.2GB/s

Table 9 collects the performance results obtained for the three GPU-based implementations of the
HyperLCA and the most powerful implementation of the HWacc in a Zynq-7020 SoC (PE = 12). For each
implementation, it is specified the clock frequency and power budget. Several algorithm parameters have
been tested over 180-band input images. In addition, Figure 13 displays the obtained FPS according to
different configurations of the input image block size (BS). For the sake of simplicity, we only represent
results for Nbits = 8 since the behavior is similar for Nbits = 12 as the reader can see in Table 9.

From the performance point of view, the most competitive FPGA results, compared to the fastest
GPU implementations on Jetson Nano and Jetson TX2, are for the smallest input block size (BS = 256),
resulting very similar to BS = 512 and even better compared to Jetson Nano. For the largest block size
(BS = 1024) the performance of the solutions based on GPUs, is higher because of how the parallelism
is inferred in both architectures. On the one hand, the FPGA architecture can process 12 bands at a
time, overlapping the computation of several groups of pixels due to the internal pipeline architecture.
Therefore, processing time linearly increases as the number of pixels in the image block is higher. On the
other hand, GPUs can process all the pixels in an image block in parallel, regardless the size of the
block. Thus, processing time is nearly constant, independently of the value of parameter BS. However,
this assumption does not hold when it comes to reality, since it has to be taken in consideration the time
required for memory transfers, kernel launches and data dependencies. In this context, the time spent
to setting up and launching the instructions to execute a kernel or perform a memory transfer must be
also taken into account. As analyzed in [29], the time used in transferring image blocks of 256 pixels is
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negligible in relation to the overhead of launching the memory transfers and the additional required logic.
However, the time required for transferring image blocks of 1024 pixels is comparable with the overhead
of initializing the copy. Consequently, the bigger the size of the block, the better performance obtained by
GPU-based implementation. For this reason, the trend of the FPGA performance function (see blue line
in Figure 13) decreases as BS increases, while the opposite behavior is shown for the GPU-based model
regardless of the desired CR.

Table 9. Maximum frame rates obtained by the proposed FPGA implementation and the GPU-based model
introduced in [29] for the NVIDIA boards Jetson Nano, Jetson TX2 and Jetson Xavier NX.

Max Frame Rate

FPGA GPU
Nbits BS CR XC7Z020-CLG484 (MicroZed) Jetson Nano Jetson TX2 Jetson Xavier NX

100 MHz 150 MHz 921.6 MHz 1.12 GHz 800 MHz
3.12 W 3.74 W 10 W 15 W 10 W

12

1024
12 275 411 533 558 2062
16 343 511 638 762 2422
20 410 611 729 923 2682

512
12 315 469 351 506 1405
16 371 553 408 599 1582
20 452 672 487 748 1767

256
12 365 543 225 372 909
16 445 662 275 465 1052
20 570 847 357 620 1251

8

1024
12 207 310 421 452 1730
16 258 386 511 568 2020
20 317 473 606 700 2294

512
12 241 360 276 384 1149
16 371 469 350 511 1409
20 371 552 409 596 1574

256
12 309 461 192 309 794
16 401 662 249 414 973
20 444 663 276 463 1053

This pattern is also present when analyzing the results for the Jetson Xavier NX. However, in this
case, the GPU clearly outperforms the maximum number of FPS achieved by the FPGA for all algorithm
settings. Nevertheless, it should be noticed by the reader that the Jetson Xavier NX represents one of the
latest, most advanced NVIDIA single-board computers whereas the Xilinx Zynq-7020 SoC that mounts
the ZedBoard (i.e., XC7Z020-CLG484) is a mid-range FPGA several technological generations behind the
Jetson Xavier GPU. Despite the fact that there are more powerful FPGA devices currently on the market,
one of the main objectives of this work is to assess the feasibility of the reconfigurable logic technology
for high-performance embedded applications such as HyperLCA under real-file conditions. At the same
time, it is also a goal of this work to explore the minimum requirements of an FPGA-based computing
platform that is able to fulfil the performance demands and constraints of the hyperspectral application
under study. Thus, the selected version of the Xilinx Zynq-7020 SoC meets the demand for all algorithm
configurations, at a lower cost.
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(a) (b)

(c)

Figure 13. Comparison of the speed-up obtained in the compression process, in terms of FPS and the input
parameter BS, reached by a Xilinx Zynq-7020 programmable SoC following the design-flow proposed in
this work versus the GPU-based implementation model described in [29] performed onto some NVIDIA
power-efficient embedded computing devices, such as Jetson Nano, Jetson TX2 and Jetson Xavier NX.
(a) FPS Nbits = 12, CR = 12; (b) FPS Nbits = 12, CR = 16; (c) FPS Nbits = 12, CR = 20.

Going deeper in the analysis of the results, Figure 14 plots the power efficiency for each targeted
device, measured as the FPS achieved divided by the average power budget. The picture shows how the
efficiency varies in relation to the size of the input image blocks (BS). Jetson boards are designed with a
high-efficient Power Management Integrated Circuit that handles voltage regulators, and a power tree to
optimize power efficiency. According to [49–51], the typical power budgets of the selected boards amount
to 10 W, 15 W and 10 W for the Jetson Nano, Jetson TX2 and Jetson Xavier NX modules, respectively.
In the case of the XC7Z020-CLG484 FPGA, the estimated power consumption after Place & Route stage in
Vivado toolchain goes up to 3.74 W at 150 MHz. Based on the trend lines shown in Figure 14, it can be
concluded that the FPGA-based platform is by far more efficient in terms of power consumption that the
Jetson Nano and TX2 NVIDIA boards, for all algorithm configurations. As in the case of the performance
analysis (Figure 13), the power efficiency of the FPGA slightly decreases with higher BS values while
GPU-based implementations present an opposite behavior. As a result, the FPGA-based solution remains
a more power-efficient approach for the smallest image block size (BS = 256) and shows similar figures for
BS = 512 and higher CR. Nevertheless, for BS = 1024, Jetson Xavier NX clearly outperforms the proposed
FPGA-based solution.
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(a) (b)

(c)

Figure 14. Comparison of the energy efficiency in the compression process, in terms of the ratio between
obtained FPS and power consumption and the input parameter BS, reached by a Xilinx Zynq-7020
programmable SoC following the design-flow proposed in this work versus the GPU-based implementation
model described in [29] performed onto some NVIDIA power-efficient embedded computing devices, such
as Jetson Nano, Jetson TX2 and Jetson Xavier NX. (a) FPS Nbits = 12, CR = 12; (b) FPS Nbits = 12, CR = 16;
(c) FPS Nbits = 12, CR = 20.

The reasons that explain this behavior root in the fact that GPU-embedded platforms have been
able to significantly increase their performance while maintaining or even reducing the power demand.
The combination of architectural improvements and better IC manufacturing processes have paved the
way to an scenario where embedded-GPU platforms are gaining ground and can be seen as competitors of
FPGAs concerning power efficiency.

Although the initial FPGA solution has proved to be sufficient, given the real-life requirements of
the targeted application, we have ported the proposed design to a larger FPGA device. The objective is
two-fold. First, to evaluate if it is possible to reach the same level of performance (in terms of FPS) than
that obtained by the Jetson Xavier NX implementation with current FPGA technology. Second, to study
how FPGA power efficiency evolves as the complexity of the design increases, and compare it to the results
obtained by the Jetson Xavier NX.

Thus, a multi-HWacc version of the design was developed using the XC7Z100-FFV1156-1 FPGA, one
of the biggest Xilinx Zynq-7000 SoCs, as the target platform. The new FPGA allows up to 5 instances of
the HyperLCA component working in parallel. The selected baseline scenario is the configuration where
the single-core FPGA design obtained the worst results compared to the Jetson Xavier NX (i.e., BS = 1024
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and Nbits = 8 for all CR values). Synthesis and implementation was carried out by means of Vivado
toolchain using the Flow_AreaOptimized_high and Power_ExploreArea strategies, respectively. As can be
seen in Figure 15a, the performance of the multi-HWacc version grows almost linearly with the number of
instances. There is a loss due to the concurrent access to memory in order to get the hyperspectral frames
and the necessary synchronization of the process, which is the responsibility of the software. The new
multi-core FPGA-based HyperLCA computing platform can reach the same level of performance for the
maximum number of instances. As to the efficiency in terms of energy consumption per frame processed
by the collection of HWaccs, with just three instances the FPGA is comparable to the GPU (above the Jetson
Xavier NX results for CR = 16 and CR = 20) and better for four and five instances of the HWacc.

(a) (b)

Figure 15. Evolution of the performance (a) and energy efficiency (b) of a multi-core version of the
FPGA-based HyperLCA computing platform. Comparison with the GPU-based implementation model
described in [29] performed onto NVIDIA Jetson Xavier NX (Nbits = 8, BS = 1024, using a Xilinx Zynq-7000
XC7Z100-FFV1156-1).

5. Conclusions

The suitability of the HyperLCA algorithm for being executed using integer arithmetic was already
examined in further detail in previous state-of-the-art publications. Nonetheless, in this work we have
contributed to its optimization providing a performance-enhancing alternative that has brought about a
substantial performance improvement along with a significant reduction in hardware resources, especially
aimed at overcoming the scarcity of in-chip memory, one of the weakness of FPGAs.

In this context, the aforementioned modified version of the HyperLCA lossy compressor has been
implemented onto an heterogeneous Zynq-7000 SoC in pursuit of accelerating its performance and thus,
complying with the requirements imposed by a UAV-based sensing platform that mounts a hyperspectral
sensor, which is characterized by a high frame rate. The adopted solution combines modules using VHDL
and synthesized HLS models, bringing to life an efficient dataflow that fulfils the real-life requirements of
the targeted application. On this basis, the designed HWaccs are able to reach frame rates of compressed
hyperspectral image blocks higher than 330 FPS, setting the baseline scenario in 200 FPS, using a small
number of FPGA resources and low power consumption.
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Additionally, we also provide a comprehensive comparison in terms of energy efficiency and
performance between the FPGA-based implementation developed in this work and a state-of-the-art
GPU-based model of the algorithm on three low-power NVIDIA computing boards, namely Jetson
Nano, Jetson TX2 and Jetson Xavier NX. Conclusions drawn from the discussion show that although the
FPGA-based platform is by far more efficient in terms of power consumption than the oldest-generation
NVIDIA boards, such as the Jetson Nano and the Jetson TX2, the newest embedded-GPU platforms,
such as the Jetson Xavier NX, are gaining ground and can be seen as competitors of FPGAs concerning
power efficiency.

On account of that, we have also introduced a multi-HWacc version of the developed FPGA-based
approach in order to analyze its evolution in terms of performance and power consumption when the
number of accelerators increases in a larger FPGA. Results conclude that the new multi-core FPGA-based
version can reach the same level of performance as the most efficient embedded GPU systems. Also,
looking at the energy consumption, FPGA performance per watt is comparable from just three instances of
the HWaccs.

Finally, we would like to conclude that although the work described in this manuscript has been
focused on a UAV-based application, it can be easily extrapolated to other work in the space domain.
In this regard, FPGAs have been established as the mainstream solution for on-board remote-sensing
applications due to their smaller power consumption and above all, the accessibility to radiation-tolerant
FPGAs [6]. That is why the FPGA-based model proposed in this manuscript efficiently implements all
HyperLCA compression stages in the programmable logic (PL) of the SoC, that is the FPGA. Hence, it can
easily be adapted to be performed on other space-grade certified FPGAs.
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Abstract: Hyperspectral images offer great possibilities for remote studies, but can be difficult
to manage due to their size. Compression helps with storage and transmission, and many
efforts have been made towards standardizing compression algorithms, especially in the lossless
and near-lossless domains. For long term storage, lossy compression is also of interest, but its
complexity has kept it away from real-time performance. In this paper, JYPEC, a lossy hyperspectral
compression algorithm that combines PCA and JPEG2000, is accelerated using an FPGA. A tier
1 coder (a key step and the most time-consuming in JPEG2000 compression) was implemented in
a heavily pipelined fashion. Results showed a performance comparable to that of existing 0.18 μm
CMOS implementations, all while keeping a small footprint on FPGA resources. This enabled
the acceleration of the most complex step of JYPEC, bringing the total execution time below the
real-time constraint.

Keywords: hyperspectral image; lossy compression; real time; FPGA; PCA; JPEG2000; EBCOT

1. Introduction

Remote sensing covers a broad range of techniques that are used to perform a variety of analyses
remotely and with no close up interactions with the subjects of interest. Hyperspectral imaging is one
of these techniques that has been growing since its inception.

It extends the concept of remote imaging by capturing information related not only to the visible
part of the spectrum, but also in wavelengths that the human eye cannot see. A typical hyperspectral
image will have from tens to hundreds of samples per pixel [1,2], each recording information of the
light perceived at a specific wavelength.

The data collected at one wavelength are grouped in bands that span the whole image.
The combination of multiple bands creates a spectral signature per pixel, providing information on a
scale that helps with military applications such as target detection [3,4] and terrain trafficability [5],
mineral identification [6,7], ground and water studies [8], vegetation and crop control [9,10],
and many more.

It is the amount of information that is the bottleneck of hyperspectral imaging: storage and
transmission are often limited in remote scenarios, and optimizing them is a must for uninterrupted
image capture. Some of the most popular sensors such as EnMAP [11] reach speeds of 700 Mb/s and
work uninterrupted for hours or days on a satellite.

Hyperspectral image compression has been explored in many ways, and has provided
great results, especially in the lossless and near-lossless domains. Standards such as CCSDS [12]
(a simple algorithm targeting on-board compression in real-time) have emerged for these applications.
However, for long-term storage, a more powerful lossy algorithm is also of interest.
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The literature has shown a variety of approaches, generally inspired by traditional image
compression techniques. Predictive models ([13] Ch.2) have been optimized—even reordering
bands ([13] Ch. 3) for increased correlation. Vector quantization (VQ) has also been extensively used to exploit
pixel similarities [14]. Block-based approaches [15] have been used to reduce algorithm complexity.
Wavelet techniques [16] have been extended from the 2D domain to anisotropic decompositions [17].
The most promising ones combine spectral decorrelation followed by compression in the spatial
domain for each decorrelated band, using the Karhunen–Loève Transform ([18] Ch.9), or principal
component analysis (PCA) [19].

The JYPEC algorithm [20] follows this approach by employing PCA as the decorrelation step,
followed by JPEG2000 [21] as the spatial domain compressor. Since PCA decorrelates the most
information-heavy bands first, variable bit-depths are used, thereby allocating more bits to the
first components and using less bits for the ones that convey less information according to PCA
(i.e., less variance).

This process is computationally intensive, and not suited for real-time in general purpose processors.
When analyzed with care, the most intensive part has been found to be the JPEG2000 compression step,
and more specifically, its encoder.

JPEG2000’s drawback is complexity, which is much higher [22] than that of the well-known and
more extensively used JPEG [23]. The main reason is its block coding step, which takes up to 70% of
the total execution time [24,25]. It includes simple operations but is heavy in conditional execution,
making it unsuitable for traditional CPUs.

In order to level the playing field and bring lossy hyperspectral compression to real-time,
acceleration techniques can be used. Field programmable gate arrays (FPGAs) offer a viable option with
which to accomplish this task, and have been widely popular in accelerating block coding [24,26–32].

FPGAs each offer a reconfigurable fabric in which any circuit can be synthesized, and as a
consequence have seen many applications [33,34]. They offer higher performance than a CPU or GPU,
and the cost when compared to an ASIC is orders of magnitude smaller. They are also very efficient
power-wise and radiation-hardened models [35] exist out of the box. All of these characteristics
have made them very good candidates for remote sensing scenarios, wherein power is limited but
performance and flexibility are still requirements. Great results have already been achieved for lossless
and near-lossless hyperspectral image compression [36–38].

In [38] we present an FPGA implementation of the low complexity predictive lossy compression
(LCPLC) algorithm. A highly pipelined architecture was designed which allows for real-time throughput
while keeping FPGA usage low. However, when we want to obtain a very high compression ratio,
the LCPLC algorithm does not obtain a distortion ratio as well as the JYPEC algorithm. Therefore in
this study, JYPEC was accelerated using an FPGA. A tier 1 coder (a key step and the most
time-consuming in JPEG2000 compression) was implemented in a heavily pipelined fashion.
This enabled the acceleration of the most complex step of JYPEC, bringing the total execution time
below the real-time constraint.

The rest of the paper is organized as follows: First, the JYPEC algorithm is looked at as a whole by
detailing the tier 1 coder within JPEG2000, which was found to be the bottleneck for real-time execution.
Secondly, an in-depth review of existing FPGA and ASIC implementations is presented, focusing on
the different approaches for acceleration. Finally, a custom FPGA implementation of the tier 1 coder is
presented based on the best techniques developed over the years, showing results that greatly improve
on previous works, putting it in the context of real-time lossy hyperspectral image compression.

2. The JYPEC Algorithm

The JYPEC algorithm is a lossy algorithm aimed at hyperspectral image compression. It extends
the concept presented in [19] of using PCA+JPEG2000 for compression. An optional vector quantization
step is added prior to the dimensionality reduction, a variable bit-depth is used for each band, and the
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JPEG2000 coding is optimized for the whole image instead of for progressive decoding afterwards.
This improves compression ratios and quality. A general diagram is seen in Figure 1.

n m
. . .

m

. . .

q

Figure 1. Diagram of the full JYPEC algorithm.

2.1. Dimensionality Reduction

Even though JYPEC supports multiple dimensionality reduction algorithms, for this approach
only PCA was used. It has a very low complexity (being a candidate for real-time), and has also a
very good distortion-ratio performance [20], only falling short when targeting very high qualities at
low ratios (against vector quantization PCA (VQPCA)).

First, a preprocessing step selects random pixels in the image. These pixels are processed by PCA,
generating a set of vectors that indicate the directions of maximum variance within the set. Since the
selection is random and the sample size is big due to the size of hyperspectral images, it matches well
the total variance even when using only 1% of the total pixels [39]. This process generates a projection
matrix to reduce the data size, as well as a recovery matrix to go back from the reduced data to the
original size. Each band of the reduced image is compressed by JPEG2000.

The process can be undone by first uncompressing each reduced band, and then using the recovery
matrix to project back into the original space.

2.2. The JPEG2000 Algorithm

The JPEG2000 standard is a multi-step algorithm which takes advantage of different image
characteristics for compression. As well as being used for its main purpose of image compression, it has
also found applications in compressing electroencephalography [40], video [41], and hyperspectral
images [20], among others.

It follows a series of simple steps (Figure 2) to compress an image:

Figure 2. Diagram of the full JPEG2000 algorithm. In green, steps that deal with the whole image
at once. In blue, steps that deal with small blocks of the image.

• A color transformation is done per pixel, converting the input color space (usually RGB) into a
luminance (brightness) and chrominance (color) model, since human vision is more sensitive
to brightness than color. The color channels can be down-sampled with no perceivable loss
in quality, reducing a large chunk of the data bits.
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• Every channel is then subjected to a wavelet transform [42]. A wavelet transform consists of a
high-pass and a low-pass [43] filter that are applied both horizontally and vertically to all rows
and columns respectively. This can be done in a reversible (lossless) or irreversible (lossy) way,
and in either case the result is a partitioned channel in which different zones present different
patterns that can be compressed to a higher degree than the original data.

• After doing the wavelet transform, the resulting values are quantized to integer values;
some information is lost when the lossy wavelet transform is used.

• Finally, the values are encoded. The image is split into blocks of up to 4096 samples; each one
is encoded individually, thereby exploiting local redundancies and the patterns left by the
wavelet transform.

The color transform is not needed for hyperspectral compression, since the spectral dimension is
already decorrelated by the dimensionality reduction step. Only the wavelet transform and encoding
steps are performed.

The wavelet transform is fast when compared to encoding, which takes up to 70% of the total
execution time [24,25] of JPEG2000. Within JYPEC, it also dominates execution times [39]. This paper
focuses on a FPGA implementation that greatly improves encoding, bringing the full algorithm
execution time down as much as possible by accelerating the bottleneck.

In the following subsections, the encoder algorithm is detailed to give a better understanding of
the implemented accelerator later.

2.2.1. Encoding

Encoding is done in a lossless way over blocks of up to 4096 samples (usually 64 × 64 squares,
with a depth of 16 bits (15 magnitude + 1 sign). The encoding technique used in JPEG2000 is called
embedded block coding with optimal truncation [44] (EBCOT). Two different coders lie within EBCOT:
the tier 1 and tier 2 coders:

The tier 1 coder compresses the original block. The resulting stream has the prefix property:
any prefix of that stream, once decoded, gives an approximation of the block. Longer prefixes provide
better reconstruction accuracy.

The tier 2 coder splits the output streams from each block into sections, with each section refining
the information decoded by the previous one. Sections from different blocks are interleaved by first
storing the ones which better approximate the original image. This technique extends the concept of
the prefix property from blocks to the full image. This part of the coder is not used here, since JYPEC
targets full image compression and not progressive decoding.

2.2.2. Tier 1 Coder

Two phases lie within: First, the so called “bit plane coder” (BPC) pairs each bit with some context.
This creates context—data pairs (CxD pairs). The distribution of all bits paired with the same context
is highly skewed, making coding more efficient.

Second, CxD pairs are processed by the MQ-coder (it belongs to the family of arithmetic coders),
generating the compressed output stream. The more skewed the input distributions are, the fewer bits
the MQ-coder will output.

The BPC works by scanning the different bit planes of the block. First, the most significant bit of
each sample is coded; then the second-most significant; and so on. This is the trick that later allows for
progressive decoding.
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The sign bit receives a special treatment, and is only coded when needed (i.e., when a sample is
known to be nonzero, the sign bit for that sample is coded, but not before). This avoids coding sign
bits for samples that are zero.

To exploit redundancies, bits are scanned in a zig-zag pattern in up to three passes per bit plane
p (Figure 3). To keep track of what bit is scanned in what pass, a "significance" value σ[j] is kept per
sample v[j], where j is the 2D position within the block/bit plane.

Figure 3. Bit plane coder. The zig-zag pattern can be seen (four rows visited column by column). This is
repeated three times (three passes) until all bits from a plane have been visited. The sign bit plane (red)
is coded separately.

This value indicates whether a sample is significant (i.e., at least one of its already coded bits
is one) or insignificant (if all bits have been zero up until the current pass in previous bit planes).
A significant sample is either positive or negative depending on its sign bit.

Three distinct passes exist: First, a significance propagation pass in which bits from samples that
are expected to turn significant in the current plane are coded. Second, a refinement pass that codes
bits from all samples that are already significant. Finally, a cleanup pass that codes the remaining bits.

The cleanup pass will mostly code zeros and the significance pass will mostly code ones, while the
refinement pass is more random. These skewed distributions are the key for compression. To increase
efficiency, each bit is paired with a context based on the significance state of neighboring samples.
The context is used to predict the value of the bit, and if right, can save even more space in the
compressed stream.

The MQ-coder starts by mapping each context to two values:

• A bit x which is the current prediction for the given context.
• A state (of which there are 47 different ones) indicating the probability p of the prediction x

being right.

The basic idea of the MQ-coder is that of arithmetic coders: The input data will be compressed as
a subinterval I ⊂ [0, 1). Starting with the interval [0, 1), the data are subdivided with each CxD pair.

Given the probability p, I = [c, c + a) is divided in I1 = [c, c + ap) and I2 = [c + ap, c + a). If the
predictive model is right, and the probability p high, I1 (the bigger subinterval) will be kept. The bigger
the final interval is, the less bits are needed to represent it.

In practice, infinite precision cannot be achieved, so 27 and 16 bits are allocated for c and a
respectively as per JPEG2000 standard, calling them registers C and A.

Each state has an associated probability of finite precision p̄ ∈ {0, . . . , 216 − 1} mapping to the
[0, 1) interval when dividing by 216, indicating the probability of its prediction’s success.
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Since p̄ is fixed for a given state, its change is accomplished with two transition functions:
most probable symbol (MPS) and least probably symbol (LPS). The MPS or LPS functions will be used
depending on whether the prediction turns out to be right or not, and will change the state to one
where p̄ is expected to better approximate the current bit input distribution. The prediction is also
inverted when certain states are reached, doubling the possible states.

p̄ is used to update the interval [C, C + A) by either adding p̄ to C or subtracting it from A.
When both ends get close together, a shift left is performed to keep the length of the interval longer
than the maximum value of p̄.

A is kept under control by periodically resetting it, and C eventually overflows. The overflow is
saved and forms the compressed output stream. To finish compression, C is flushed out. The process
can then be reversed, and the original inputs recreated for decompression.

3. Existing Implementations

The objective of this study was to bring lossy compression to real time. For that, JYPEC was
chosen as the target algorithm, and a tier 1 coder implementation of JPEG2000 (a step within JYPEC)
is presented. It accelerates both the BPC and MQ-coder by making a single high-speed pipeline
with both. To show that this effort was justified, a timing breakdown of compression of different
images with JYPEC is shown in Figure 4.

1 2 3 4 5 6 7

s

Figure 4. Timing breakdown when compressing a set of hyperspectral images with JYPEC. Steps are
sorted by time. While training takes a fair bit of time, coding is clearly the bottleneck of the process.

It is clear that coding is the slowest part of the algorithm, and that any efforts to speed up
the algorithm should be dedicated to it. Many implementations of the full tier 1 coder have
been proposed, but more efforts have been focused towards accelerating the MQ-coder alone. In the
following paragraphs, the literature is explored in this regard.

3.1. Bit Plane Coder

In [45], the authors designed a basic BPC which goes over the full block following the
zig-zag pattern. Its controller is a 24 state machine which goes over the different passes bit by bit,
producing at most one CxD pair per cycle.

Improving on that, in [25] the authors introduced the concept of skipping. They loaded full
columns with four bits at once, and marked them with flags when they were no longer required in
a certain pass. This way, the BPC could skip them when not needed, saving clock cycles. They also
introduced flags for groups of columns and even full passes, allowing one to skip big chunks of idle
cycles in some cases. Finally, since they loaded the full column at once, they also checked which bits
needed to be encoded, and skipped the others within the column. In the end, savings of around 60%
of clock cycles were achieved.
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A different approach was reported in [27]. Instead of skipping, the authors processed whole
columns at once, producing up to 10 CxD pairs per cycle. CxD generation is not independent, so a series
of cascading dependencies were taken into account. Despite the added complexity, this idea doubles
the throughput of the sample-skipping technique without the extra memory. In [46], the authors
went even further by allowing multiple planes to be coded simultaneously by using non-default
coding options. Despite the small loss in compression efficiency, the throughput grew by a factor
of 8 in CMOS 0.35 μm technology when using gray-scale images. This, however, deviates from the
standard implementation, since multiple MQ-coders would have had to be used for a single block in
order to keep up with the BPC.

3.2. MQ-Coder

The MQ-coder has seen more optimizations [47] than the BPC, since traditionally the MQ-coder
always was the bottleneck.

MQ-coder receives and processes CxD pairs from the bit plane coder, generating a compressed
bit stream which can be further processed by the tier 2 coder. It is important to note that by design,
the CxD pairs are processed serially, so no parallelization is possible at this stage.

Two main approaches have been used to accelerate its execution:

• Pipelining: As with many other designs, pipelining can be the key to improving performance.
Distinct stages have been identified (mainly separating the update of A and C, and the output of
coded byte(s)).

• Dual symbol processing: Some bit plane coders can produce two CxD pairs in one cycle.
This has motivated the design of MQ coders with the capability of processing two pairs at the
same time. Since this can not be done in parallel, these MQ-coders incorporate two cascaded
processing units.

In [31], a three stage pipelined MQ coder is proposed. It performs all arithmetic operations
in the first stage, A and C register shifts are done in a second stage, and a third stage emits bytes.
The drawback of the authors’ approach was that the second stage could stall the first if the number of
shifts was greater than one, since the authors did not use barrel shifters. In the end, they worked around
this limitation by having two clock domains increasing the speed of the shifting stage, ensuring that
stalling occurred only 0.64% of the time, achieving a performance of around 145.9 MS/s on a Stratix
EP1S10B672C6 board.

In [30], an implementation of the full tier 1 coder with no pipelining nor dual symbol processing
is presented for the Virtex II Pro FG 456 board. They note that, at 112 MS/s, the arithmetic coder is
the bottleneck, with the (context, bit) generation being five times faster. Speed was later increased by
having up to four simultaneous instances of the tier 1 coder working in parallel.

In [48], two techniques were used to create a pipelined design that works at 413 MS/s: They first
employed “traced pipelining” which consists of designing a pipeline for the most likely cases,
and processing unlikely, more costly cases in a separate unit that stalls the pipeline if necessary.
The second technique is based on eliminating cascading shifts (such as the ones from [29]) by looking
ahead at the number of necessary shifts and performing them all at once. All of this is made possible
by working on 0.18 μm CMOS technology.

Both pipelining and dual processing are employed in the approach from [32], in which
improvements are made to the multiple approaches from [26]. Dual processing is solved by having
four different units processing all four possible scenarios (taking the lower or upper interval two
times in any combination). Pipelining was used to separate the A register update, C register update,
and byte output procedures, achieving in the end performances of 96.6 MS/s on FPGA and 440.2 MS/s
on 0.18 μm CMOS technology.

A different pipelined approach is presented in [49]. The A register update, C register update,
and byte out procedures are kept in three distinct stages, and two more are added at the beginning
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by using two memory modules. The first one stores contextual information (namely state and
predicted symbol) and the second one is a ROM which outputs state change information. If two
consecutive contexts are equal, the second memory will be read with the updated state that is sent
to the first one. This splits reading into a two-step process that accelerates the pipeline. The other
notable technique is that shifting is limited to seven bits per cycle, reducing the critical path at the cost
of one cycle stall in the unlikely case that the shift amount is greater than seven. In the end, a speed of
192.77 MS/s was achieved on 0.18 μm technology.

4. Implementation

The presented design includes both the BPC and MQ-coder, chained together to form the full tier
1 coder. The basic structure of the tier 1 coder is shown in Figure 5.

Figure 5. Tier 1 coder architecture.

The bit plane coder receives data from memory and generates CxD pairs. These are coded by the
MQ-coder and the output stream is generated.

4.1. BPC

Internally, the BPC generates CxD pairs for four samples at a time (a full column of the
zig-zag pattern), following the techniques of [27]. To generate the CxD pairs for a sample, flags from a
3 × 3 neighborhood around the current sample are taken into account. When dealing with columns,
this neighborhood grows to 6 × 3. This is seen in Figure 6.

The main problem comes from the fact that the context generation modules are slow. They are
based on lookup tables that require many LUT levels during FPGA implementation. They also
need to be cascaded to generate the output significance that is required by the following bit strip.
To avoid delays, a special module that predicts the next significance state in a faster way is used. It is
shown in Figure 7.

The other modules are straightforward, with context generation being a ROM that outputs the
context associated with the neighborhood by simple lookup. The cleanup predictor does a job similar
to the significance predictor by looking at the first bit that is nonzero,and setting it and the following
ones as significant if needed.

Up to 10 CxD pairs are generated per cycle. A serializer is used to order them sequentially before
sending them to the MQ-coder (see Figure 8).

With a big enough vector queue, the problem of running into idle cycles when few CxD pairs are
generated is avoided (e.g., the first refinement pass or the last significance and cleanup passes), since a
big enough buffer exists to keep feeding the MQ coder. The serializer is designed to output one pair
per cycle as long as the vector queue is not empty, so it can feed the MQ-coder without forcing a stall.
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Figure 6. BPC structure. sg indicates sign bits for the current strip. m indicates magnitude bits for the
current strip. ic is the coded flag for the strip, indicating whether each bit is coded. f r is yet another
flag indicating, for each bit, whether it is being refined for the first time. s is the significance status
for the neighborhood of the strip. passx are flags indicating the current pass (significance, cleanup,
refinement). Flags are updated for the next pass and output to memory. The contexts for each pass
exit the context generation (CG) modules for all three passes (spc, mrc, sbc) along with the xor bit for
the sign. This ends up being output as a vector of triplets oc, ob, ov, containing the context–data (CxD)
pairs as well as a valid bit.
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Figure 7. Significance predictor module. It cascades the possible significance conversion of all bits in the
strip by using a small critical path, instead of waiting for the cascade of CG modules. The significances s,
magnitude bits m, and sign bits sgn are used to produce the new significance ss

f . It is output along with
a flag ss

a, indicating if it is a newly acquired significance this cycle.

Figure 8. BPC architecture. The BPC core generates up to 10 CxD pairs per cycle, which are then
serialized before sending them to the CxD FIFO.

4.2. MQ-Coder

The extensive work seen in Section 3.2 can be summed up in two different approaches:
pipelining and dual-symbol processing. Since the target platform is an FPGA, pipelining is ideal
to avoid a longer critical path which, on reconfigurable hardware, has a higher timing penalty than on
fixed silicon. It will later be seen that a bottleneck arises in the CxD generation, so this area-efficient
approach is the right choice since it can keep up with previous stages.

The only common step of all pipelining approaches is separating the byte out procedure in a
last stage. Register updates are often split in two stages, treating A and C updates independently.
Memory access is also split in some implementations. The point is, there are no obvious stages in the
algorithm given the great dependency of the different stages. In fact, most designs implement the most
likely execution path, having to stall in the event of an unexpected input.
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Most implementations are offering a theoretical throughput that varies depending on the data
being compressed. The goal with this paper was to design an implementation which can consistently
process CxD pairs at a certain speed. By pipelining the design and inserting queues in between stages,
any potential stall in one stage gets absorbed by the queues and does not affect the others. The result
can be seen on Figure 9.

Figure 9. MQ-coder architecture. The interval updates are fused when possible, having less bound
updates which could stall the pipeline.

Four main stages can be seen.

4.2.1. First and Second Stages

First, the context memory is accessed. This memory outputs “context information”, which has the
prediction for that context, as well as the MPS and LPS transitions, XOR bit, and probability.

This memory is written with the context from the third stage, so care is taken whenever the same
context is encountered twice in a three context window span:

• If the same context is found in cycles n and n + 2, a write–read cycle is skipped and input data
are directly multiplexed to the memory’s output.

• To avoid stalling in the case where the same context appears in cycles n and n + 1, a second
memory is present in the second stage, which outputs state information. The state is decided
from the MPS and LPS transitions, and used to read this second memory. In this case, the context
memory will be updated the next cycle. But those values are required in the current cycle, so a
mux is used to bypass it from the second memory, avoiding a stall.

All in all, reading is segmented in two different stages, without the stalling that sometimes could
happen in implementations such as [49].

The second stage is the most complex one, where the critical path lies. First, the context
information to be used is decided, which comes from the context memory unless the same context
appeared twice in a row, in which case it is fetched from the state memory and previous prediction.

State and prediction changes are fed to the state and context memories.
The prediction is adjusted, and the A register is updated. This can happen in one of four ways:

either the A register is not shifted, it is shifted once or twice, or the contents are assigned from memory.
In the last case, the number of shifts is calculated in advance.

The number of shifts s̄, value p̄ to add to the C register, and hit flag h (indicating C needs to be
updated with p̄) are sent to the next stage.

Both stages are seen in Figure 10.
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Figure 10. MQ-coder first and second stages. The context and bit from the BPC are input,
and a probability, shift, and hit (correct prediction or not) are output.

4.2.2. Third Stage

The fourth stage can stall the pipeline. In order to minimize that risk, the inputs from multiple
cycles are combined into just one update, so as to send the minimum number of updates ahead.
This can be done under two scenarios:

• If hi = hi+1 = 0 and s̄i + s̄i+1 ≤ 15, both updates can be merged by setting h′ = 0, s̄′ = s̄i + s̄i+1,
p̄′ = 0. This merges two consecutive shifts that are under the maximum shift length of 15.

• If s̄i = 0 and p̄i + p̄i+1 ≤ 216 − 1, then both updates can be merged with h′ = hi ⊕ hi+1, s̄′ = s̄i+1,
p̄′ = p̄i + p̄i+1. This is because the addition of p̄ to C happens before the shift s̄′. Both probabilities
can be added at once because they are below the limit of 216.

Both these merging techniques can be done recursively.

4.2.3. Fourth Stage

The C register is updated by adding p̄ and shifting it. Whenever it fills up, a byte is output.
When the register overflows or a special byte 0xFF is output, padding needs to be added to avoid
special markers used to indicate the end of stream. Up to three bytes might be output per update,
and the control logic for all possibilities would make this stage too slow.

In order to avoid that problem, shifting is done byte by byte. If the shift amount is greater than
one byte, the pipeline will stall for one cycle. Studies have shown [48] this problem to be negligible
(<1% of the time). This stage is seen in Figure 11.

186



Remote Sens. 2020, 12, 2563

Figure 11. MQ-coder last stage. It interfaces with two FIFOs, reading updates from the previous stage
and making sure space is available at the output to send bytes out.

4.3. The Full Tier 1 Coder

By chaining together both the BPC and MQ-coder, the tier 1 coder for JPEG2000 is formed.
The basic segmentation is two stages for the BPC coder and four for the MQ-coder. Joining the different
stages are multiple FIFOs. These help maintain a constant flow of data:

• When the MQ-coder stage IV stalls (because it has to output more than one byte), the fuser queue
can hold updates until a fused one is sent (effectively canceling out the stalling).

• When the BPC-core is producing many CxD vectors, the vector queue avoids a stall from the
BPC-core.

• Conversely, when the BPC-core does not produce vectors, the queue serves as a buffer to keep
the next stages busy.

The full pipeline, taking into account the different queues, has a total of 15 stages, as seen in
Figure 12. Despite the amount of stages, this has negligible impact in the final speed, since the coding
of a full 64 × 64 × 16 block takes a minimum of 1024 · 3 · 14 + 1024 = 44, 032 cycles, so filling the
pipeline takes at most 15/44, 032 · 100 = 0.03% of the total cycles.

Figure 12. Detailed pipeline of the tier 1 coder. In dotted orange, the separation between stages.
Each FIFO introduces two stages (read/write).
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5. Results

The hardware architecture described in Section 4 has been implemented using VHDL language
for the specification of the tier 1 coder. Moreover, we have used the 2020 Xilinx Vivado Design Suite
environment to specify the complete system. The full system has been implemented on a VC709 board,
a reconfigurable board with a single Virtex-7 XC7VX690T, two DDR3 SDRAM DIMM slots which hold
up to 4 GB each, a RS232 port, and some additional components not used by our implementation.
The HDLmodel has been verified via simulation and physical prototyping using a memory controller
for input/output.

Table 1 shows the frequency and FPGA slice occupancy for the full tier 1 coder and its modules
and submodules. More details are given in the following list:

• The BPC-core processes a full block of 65,536 bits in 44,032 cycles, working at a speed of 380 Mb/s.
• The BPC-serial can produce up to 390 MCxD pairs per second.
• The MQ-I/II stages processes 322 MCxD pairs per second, generating up to 322 M updates

per second.
• The third stage is a bit faster, being able to merge 535 M updates per second.
• The last MQ stage processes up to 331 M updates per second.
• The intermediate FIFO queues have no problem at all keeping up with the speed requirements.

Table 1. Frequency and occupancy for the different modules that make the full tier 1 coder. Results are
for the Virtex-7 XC7VX690T board with a depth of 32 set for all queues.

Module Frequency (MHz) Slices BRAM

Tier 1 coder 255 2708 4
BPC-core 248 731 2
BPC-serial 390 142 0
MQ 321 1778 0

MQ-I/II 322 1326 0
MQ-III 535 47 0
MQ-IV 331 231 0

FIFOs 927 57 2

All in all, the full tier 1 coder is able to work at 255 MHz. At that speed, the bottleneck is the
number of CxD pairs processed by the MQ-coder at 255 MCxD/s. By studying how many CxD pairs
are produced,the input speed is calculated:

• The minimum number of updates for a 64 × 64 × 16 block is seen when it is all zero, having
successful run-length coding throughout the block. In this case, a total of 15 × 1024 = 15,360
updates are generated. That is, 0.234 per bit.

• Conversely, an upper limit for the number of updates is given by a cleanup pass with run-length
interruptions at every position, followed by 14 refinement passes. In this case, the number of
updates is 1024 × 10 + 4096 × 14 = 67,584 updates. Exactly 1.03125 per bit.

Thus, the input rate to generate 255 MS/s would range from 1.01 Gb/s to 247.3 Mb/s. However,
the BPC-core is only capable of processing 380 Mb/s, so in practice this range is limited to 247.3 to
380 Mb/s.

The exact value within this range of course depends on the redundancy of the data. For [31],
they compressed five images of size 512 × 512 × 10 and noted that the average p/b rate was 0.56.
This means that, on average, the input rate for 255 MS/s would be 455 Mb/s. Thus it is safe to say that
the tier 1 coder will consistently perform at its 380 Mb/s limit.
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5.1. Comparison

A comparison with other implementations can be seen in Table 2. Only the best implementations
found in the literature have been taken into account.

As seen, this implementation of the BPC works more than four times faster than other FPGA
implementations, surpassing even ASIC designs in throughput.

With regard to the MQ-coder, this design doubles the performance of previous FPGA designs,
only falling short of 0.18 μm CMOS. It was expected that porting the design to this technology would
make it faster than the competition, since other implementations have experienced [32] a speedup of
4× when doing so.

Table 2. Comparison with other implementations.

Coder Ref. Technology Frequency Speed Slices BRAM/b

BPC
[27] APEX20KE FPGA 51.7 MHz 73.44 Mb/s 956 n/a **
[28] XCV600e-6BG432 52.0 MHz 94.4 Mb/s n/a n/a **
[50] Altera EP20K600EFC672–3 100.0 MHz 40.5 Mb/s 1850 0 **
This Virtex-7 FPGA 247.8 MHz 368.8 Mb/s 731 2

MQ

[51] 0.35 μm 90.0 MHz 180.0 MCxD/s n/a n/a
[46] 0.35 μm 150.0 MHz 300.0 MCxD/s n/a n/a
[26] Stratix 48.8 MHz 97.7 MCxD/s 1596 8192 b
[26] 0.18 μm 211.8 MHz 423.7 MCxD/s n/a n/a
[50] Altera EP20K600EFC672–3 26.3 MHz 52.6 MCxD/s 1811 n/a
[29] Stratix FPGA 153.0 MHz 137.7 MCxD/s 279 1344 b
[48] 0.18 μm 413.0 MHz 413.0 MCxD/s n/a n/a
[52] Stratix FPGA 106.2 MHz 212.4 MCxD/s 1267 0
[32] XC4VLX80 FPGA 48.3 MHz 96.6 MCxD/s 6974 1509 b
[32] 0.18 μm 220.0 MHz 440.0 MCxD/s n/a n/a
[53] Stratix EP1S10B672C6 136.9 MHz 136.9 MCxD/s 695 3301 b
[31] Stratix FPGA 146.0 MHz 146.0 MCxD/s 824 428 b
[49] 0.18 μm 208.0 MHz 192.8 MCxD/s n/a n/a
[54] Stratix II FPGA 106.2 MHz 212.4 MCxD/s 1267 1321 b
This Virtex-7 FPGA 321.5 MHz 321.5 MCxD/s 1778 0

Tier 1

[25] 0.35 μm 50.0 MHz 36.5 Mb/s n/a n/a
[24] Virtex II XC2V1000 50.0 MHz 91.2 Mb/s 4420 3120 b **
[30] Virtex II Pro FG 456 112.0 MHz 181.6 Mb/s * 2504 28
This Virtex-7 FPGA 255.3 MHz 380.0 Mb/s 2708 4

* Although not specified, the architecture is similar to the one presented here so a similar relationship between
frequency and speed was expected. ** Requires external memory for data and/or internal variables.

5.2. Acceleration of JYPEC

To see its impact on hyperspectral image compression under JYPEC, six images from two libraries
have been compressed by JYPEC with and without acceleration. Four from the Spectir [55] library and
two from the CCSDS 123 test data set [56]. The image characteristics are seen in Table 3 and a preview
in Figure 13.

Table 3. Images used for testing.

Image NX NY NZ Bit Depth Description

CUP [56] 350 350 188 16 Cuprite valley in Nevada
SUW [55] 320 1200 360 16 Lower Suwannee natural reserve
DHO [55] 320 1260 360 16 Deepwater Horizon oil spill
BEL [55] 320 600 360 16 Crop fields in Belstville
REN [55] 320 600 356 16 Urban and rural mixed area
CRW [56] 614 512 224 16 Cuprite valley full image
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Figure 13. Small cutouts of the images from Table 3. In reading order: CUP, SUW, DHO, BEL,
REN, CRW.

The results have been acquired in a DELL XPS 13 9360 computer, with an i7-7500U processor
with a thermal design power (TDP) of 15 W, 8 GB of RAM running at 1866 MHz, and 256 GB of SSD
PCIe storage. For the accelerated version, the time of coding in the processor was replaced with the
time of coding in the FPGA itself. Memory transfer times ertr not taken into account, because the PCIe
of the VC709 board works at 25 GB/s and the typical image size is 500 MB, so it was transferred in
20 ms, not impacting results.

The speedup attained is shown in Figure 14. The average speedup obtained was 3.6, ranging from
1.6 for the DHOimage to 7.5 for the CRWimage.

1 2 3 4 5 6 7

s

1 2 3 4 5 6 7

s

Figure 14. Speedup when using an FPGA as an accelerator. For each image, the top bars indicate
the sped-up version, and the bottom bars are the non-sped-up one. A dashed bar indicates the
real-time threshold, which without acceleration was only met by the DHO image.

The code for the software JYPEC implementation can be accessed in [57], and the accelerator code
was uploaded in [58].

190



Remote Sens. 2020, 12, 2563

6. Conclusions

JYPEC is a complex algorithm that demands high-performing hardware for a fast execution in
real time. The most costly part is the tier 1 coder within JPEG2000, since code with erratic branching is
very hard to optimize for traditional processors.

Very simple arithmetic and logic operations, however, make this part of the algorithm ideal for
execution on a FPGA. A very fast architecture for the full tier 1 coder within JPEG2000 has been
developed based on two main ideas:

• First, the bit plane coder concurrently processes bits in groups of four,
greatly accelerating execution. A system of FIFOs and buffers ensure that a constant
stream of CxD pairs reach the MQ-coder.

• Second, the coder itself is highly optimized in a pipelined fashion. Stalling of the pipeline,
a problem previous designs had, is avoided by fusing together multiple updates when possible.

The presented design doubles the speed of any previous design on FPGA, coming close in
performance to 0.18 μm CMOS technology in single-core tests.

In the context of hyperspectral imaging, it brings complex lossy compression to real-time
performance under the AVIRIS-ng sensor threshold (30–72 MS/s for a total of 491.52 Mb/s). This allows
for very high data rates to be reduced for long-term storage on-the-fly, while keeping great quality for
posterior analyses.
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Abstract: This paper examines the various variable-length encoders that provide integer encoding to
hyperspectral scene data within a k2-raster compact data structure. This compact data structure leads
to a compression ratio similar to that produced by some of the classical compression techniques. This
compact data structure also provides direct access for query to its data elements without requiring any
decompression. The selection of the integer encoder is critical for obtaining a competitive performance
considering both the compression ratio and access time. In this research, we show experimental
results of different integer encoders such as Rice, Simple9, Simple16, PForDelta codes, and DACs.
Further, a method to determine an appropriate k value for building a k2-raster compact data structure
with competitive performance is discussed.

Keywords: compact data structure; k2-raster; DACs; Elias codes; Simple9; Simple16; PForDelta; Rice
codes; hyperspectral scenes

1. Introduction

Hyperspectral scenes [1–10] are data taken from the air by sensors such as AVIRIS (Airborne
Visible/Infrared Imaging Spectrometer) or by satellite instruments such as Hyperion and IASI (Infrared
Atmospheric Sounding Interferometer). These scenes are made up of multiple bands from across the
electromagnetic spectrum, and data extracted from certain bands are helpful in finding objects such as
oil fields [11] or minerals [12]. Other applications include weather prediction [13] and wildfire soil
studies [14], to name a few. Due to their sizes, hyperspectral scenes are usually compressed to facilitate
their transmission and reduce storage size.

Compact data structures [15] are a type of data structure where data are stored efficiently while at
the same time providing real-time processing and compression of the data. They can be loaded
into main memory and accessed directly by means of the rank and select functions [16] in the
structures. Compressed data provide reduced space usage and query time, i.e., they allow more
efficient transmission through limited communication channels, as well as faster data access. There is
no need to decompress a large portion of the structure to access and query individual data as is the case
with data compressed by classical compression algorithms such as gzip or bzip2 and by specialized
algorithms such as CCSDS123.0-B-1 [17] or KLT+JPEG 2000 [18,19]. In this paper, we are interested in
lossless compression of hyperspectral scenes through compact data structures. Therefore, reconstructed
scenes should be identical to the originals before compression. Any deterministic analysis process will
necessarily yield the same results. Figure 1 shows several images from our datasets.
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(a) Yellowstone 00 (uncal.) (Band 128) (b) Yellowstone 03 (cal.) (Band 128) (c) Hyperion Mt. St. Helens (Band 21)

(d) AIRS Gran 6 (Band 1256) (e) AIRS Gran 120 (Band 256) (f) Yellowstone 00 (uncal.)

Figure 1. Several hyperspectral scenes used in this paper. The original and the decompressed scenes
discussed in this paper are numerically identical. Depicted also are two spectral signatures for AVIRIS
Yellowstone 00 (uncal.). The AVIRIS images in this figure are courtesy of NASA/JPL-Caltech.

The compact data structure used in this paper is called k2-raster. It is a tree structure developed
from another compact data structure called k2-tree. k2-raster is built from a raster matrix with its
pixel cells filled with integer values, while k2-tree is from a bitmap matrix with zero and one values.
During the construction of the k2-raster tree, if the neighboring pixels have equal values such as
clusters (spatial correlation), the number of nodes in the tree that need to be saved is reduced. If the
values are similar, as discussed later in this paper, the values will be made even smaller. They are then
compressed or packed in a more compact form by the integer encoders, and with these small integers,
the compression results are even better. Moreover, when it comes to querying cells, a tree structure
speeds up the search, saving access time. Another added advantage of some of the integer encoders is
that they provide direct random access to the cells without any need for full decompression.

Currently, huge amounts of remote sensing data have been produced, transmitted, and archived,
and we can foresee that in the future, the amount of larger datasets is expected to keep growing at
a fast rate. The need for their compression is becoming more pressing and critical. In view of this
trend, we take on the task of remote sensing compression and make it as one of our main objectives.
In this research work, we reduce hyperspectral data sizes by using compact data structures to produce
lossless compression. Early on, we began by examining the possibility of taking advantage of the
spatial correlation and spectral correlation in the data. In our previous paper [20], we presented a
predictive method and a differential method that made use of these correlations in hyperspectral
data with favorable results. However, in this paper, we would like to focus on selecting a suitable
integer encoder that is employed in the k2-raster compact data structure, as that is also a major factor
in providing competitive compression ratios.

Compression of integer data in the most effective and efficient way, in relation to compact data
structures, has been the focus of many studies over the past several decades. Some include Elias [21–23],
Rice [24–26], PForDelta [27–29], and Directly Addressable Codes (DACs) [30–32]. In our case, we
need to store non-negative, typically small integers in the k2-raster structure. This structure is a tree
built in such a way that the nodes are not connected by pointers, but can still be reached with the
use of a compact data structure linear rank function. When the data are saved, no pointers need to
be stored, thus keeping the size of the structure small. Additionally, we use a fixed code ([15], §2.7)
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to help us save even more space. In what follows, we investigate the effectiveness of some of these
integer encoders.

The rest of the paper is organized as follows: In Section 2, we describe the k2-raster structure,
followed by the various variable-length integer encoders such as Elias, Rice, PForDelta, and DACs.
Section 3 presents experimental results for finding the best and optimal values for k and exploring
the different integer encoders for k2-raster. This is done in comparison with classical compression
techniques. Lastly, some conclusions and final thoughts on future work are put forth in Section 4.

2. Materials and Methods

In this section, we describe k2-raster [33] and the integer encoders Elias, Rice, Simple9, Simple16,
PForDelta codes, and DACs. This is followed by a discussion on how to obtain the best value of k and
two related works on raster compression: heuristic k2-raster [33] and 3D-2D mapping [34].

2.1. K2-Raster

The k2-tree structure was originally proposed by Ladra et al. [35] as a compact representation of
the adjacency matrix of a directed graph. Its applications include web graphs and social networks.
Based on k2-tree, the same authors also proposed k2-raster [33], which is specifically designed for raster
data including images. A k2-raster is built from a matrix of width w and height h. If the matrix can be
partitioned into k2 square subquadrants of equal size, it can be used directly. Otherwise, it is necessary
to enlarge the matrix to size s × s, where s is computed as:

s = k�logk max(w, h)�, (1)

setting the new elements to 0. This extended matrix is then recursively partitioned into k2 submatrices
of identical size, referred to as quadrants. This process is repeated until all cells in a quadrant have the
same value, or until the submatrix has size 1 × 1 and cannot be further subdivided. This partitioning
induces a tree topology, which is represented in a bitmap T. Elements can then be accessed via a
rank function. At each tree level, the maximum and minimum values of each quadrant are computed.
These are then compared with the corresponding maximum and minimum values of the parent,
and the differences are stored in the Vmax and Vmin arrays of each level. Saving the differences instead
of the original values results in lower values for each node, which in turn allows a better compression
with DACs or other integer encoders such as Simple9, PForDelta, etc. An example of a simple 8 × 8
matrix is given in Figure 2 to illustrate this process. A k2-raster is constructed from this matrix with
maximum and minimum values as given in Figure 3. Differences from the parents’ extrema are then
computed as explained above, resulting in the structure shown in Figure 4. Next, with the exception of
the root node at the top level, the Vmax and Vmin arrays at all levels are concatenated to form Lmax and
Lmin, respectively. Both arrays are then compressed by an integer encoder such as DACs. The root’s
maximum (rMax) and minimum (rMin) values remain uncompressed. The resulting elements, which
fully describe this k2-raster structure, are given in Table 1.

2.2. Unary Codes and Notation

We denote x as a non-negative integer. The expression |x| gives the minimum bit length needed
to express x, i.e., |x| = �log2 x�+ 1.

Unary codes are generally used for small integers. Unary codes have the following form:

u(x) = 0x 1 , (2)

where the superscript x indicates the number of consecutive 0 bits in the code. For example, u(1d) =
01 1 = 01b, u(6d) = 06 1 = 0000001b, u(9d) = 09 1 = 0000000001b. Here, bits are denoted by a subscript b
and decimal numbers by a subscript d. Furthermore, when codes are composed of two parts, they are
spaced apart for readability purposes. In general, the notation used in [15] is adopted in this paper.
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8 6 5 4 4 3 2 2
7 6 5 4 3 3 2 2
7 5 4 4 3 2 2 2
6 5 4 3 2 2 2 2
4 4 3 2 2 2 2 2
4 3 3 2 2 2 2 2
3 3 3 2 2 2 2 2
2 2 2 2 2 2 2 2

Level 0 (Root)

8 6 5 4 4 3 2 2
7 6 5 4 3 3 2 2
7 5 4 4 3 2 2 2
6 5 4 3 2 2 2 2
4 4 3 2 2 2 2 2
4 3 3 2 2 2 2 2
3 3 3 2 2 2 2 2
2 2 2 2 2 2 2 2

Level 1

8 6 5 4 4 3 2 2
7 6 5 4 3 3 2 2
7 5 4 4 3 2 2 2
6 5 4 3 2 2 2 2
4 4 3 2 2 2 2 2
4 3 3 2 2 2 2 2
3 3 3 2 2 2 2 2
2 2 2 2 2 2 2 2

Level 2

8 6 5 4 4 3 2 2
7 6 5 4 3 3 2 2
7 5 4 4 3 2 2 2
6 5 4 3 2 2 2 2
4 4 3 2 2 2 2 2
4 3 3 2 2 2 2 2
3 3 3 2 2 2 2 2
2 2 2 2 2 2 2 2

Level 3

Figure 2. Subdivision of an example 8 × 8 matrix for k2-raster (k = 2).

8-2

2-24-2

3-2

2223

3-2

2233

3-2

2323

4-3

3444

4-2

2-23-2

2223

2-24-3

3334

8-3

4-3

3444

7-5

5657

5-4

4545

8-6

6768

Level 0

Level 1

Level 2

Level 3

Figure 3. A k2-raster (k = 2) tree storing the maximum and minimum values for each quadrant of
every recursive subdivision of the matrix in Figure 2. Every node contains the maximum and minimum
values of the subquadrant, separated by a dash. On the last level, only one value is shown as each
subquadrant contains only one cell.

8-2

6-04-0

1-0

1110

1-0

1100

1-0

1010

0-1

1000

4-0

2-01-0

1110

2-00-1

1110

0-1

4-0

1000

1-2

2120

3-1

1010

0-3

2120

Level 0

Level 1

Level 2

Level 3

Figure 4. Based on the tree in Figure 3, the maximum value of each node is subtracted from that of its
parent while the minimum value of the parent is subtracted from the node’s minimum value. These
differences then replace their corresponding values in the node. The maximum and minimum values
of the root remain the same.

Table 1. An example of the elements of a k2-raster based on Figures 2–4.

T Bitmap binary 1110 1111 1010 1111

Lmax decimal
Level 1 0446

Level 2 0314 0212 0111

Level 3 0212 0101 0212 0001 0111 0111 0001 0101 0011 0111

Lmin decimal Level 1 100

Level 2 3120 10 1000

rMax decimal 8

rMin decimal 2

2.3. Elias Codes

Elias codes include Gamma (γ) codes and Delta (δ) codes. They were developed by Peter Elias [21]
to encode natural numbers, and in general, they work well with sequences of small numbers.

Gamma codes have the following form:

γ(x) = 0|x|−1 [x]|x| = u(|x| − 1) [x]|x|−1 , (3)
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where [x]l represents the l least significant bits of x. For example, γ(1d) = γ(1b) = 1b, γ(4d) = γ(100b)

= 001 00b, γ(6d) = γ(110b) = 001 10b, γ(9d) = γ(1001b) = 0001 001b, γ(14d) = γ(1110b) = 0001 110b.
Delta codes have the following form:

δ(x) = γ(| x |) [x]|x|−1 . (4)

For values that are larger than 31, Delta codes produce shorter codewords than Gamma codes.
This is due to the use of Gamma codes in forming the first part of their codes, which provides a shorter
code length for Delta codes as the number becomes larger. Some examples are: δ(1d) = δ(1b) = 1b,
δ(6d) = δ(110b) = 011 10b, δ(9d) = δ(1001b) = 00100 001b, δ(14d) = δ(1110b) = 00100 110b.

2.4. Rice Codes

Rice codes [25] are a special case of Golomb codes. Let x be an integer value in the sequence, and
let y = �x/2l�, where l is a non-negative integer parameter. The Rice codes for this parameter are
defined as:

Rl(x) = u(y + 1) [x]l . (5)

Some examples are shown for different values of l in Table 2.

Table 2. Some examples of Rice codes.

Value v Rice Code Rl(v)
Decimal Binary l = 1 l = 2 l = 3 l = 4

1d 1b 1b 1b 1b 1b
6d 110b 0001 0b 01 10b 110b 110b
9d 1001b 00001 1b 001 01b 01 001b 1001b

14d 1110b 00000001 0b 0001 10b 01 110b 1110b

To obtain optimal performance among Rice codes, l should be selected to be close to the expected
value of the input integers. In general, Rice codes give better compression performance than Elias γ

and δ codes.

2.5. Simple9, Simple16, and PForDelta

Apart from Elias codes and Rice codes, the codes in this section store the integers in single or
multiple word-sized elements to achieve data compression. They have been shown to have good
compression ratios [30].

Simple9 [36] assigns a maximum possible number of a certain bit length to a 28-bit segment or
packing space of a 32-bit word. The other 4 bits contain a selector that has a value ranging from 0 to 8.
Each selector has information that indicates how the integers are stored, and that includes the number
of these integers and the maximum number of bits that each integer is allowed in this packing space.
For example, Selector 0 tests to see if the first 28 integers in the data have a value of 0 or 1, i.e., a bit
length of 1. If they do, then they are stored in this 28-bit segment. Otherwise, Selector 1 tests to see if it
can pack 14 integers into the segment with a maximum bit length of 2 bits for each. If this still does
not work, Selector 2 tests to see if 9 integers can each be packed into a maximum bit length of 3 bits.
This testing goes on until the right number of data are found that can be stored in these 28 bits. Table 3
shows the 9 different ways of using 28 bits in a word of 32 bits in Simple9.

Simple16 [37] is a variant of Simple9 and uses all 16 combinations in the selector bits. Their values
range from 0 to 15. Table 4 shows the 16 different ways of packing integers into the 28-bit segment
in Simple16.

PForDelta [27] is also similar to both Simple9 and Simple16, but encodes a fixed group of numbers
at a time. To do so, 128- or 256-bit words are used.
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Due to its relative simplicity, Simple9 is used here as an example to illustrate how an integer
sequence is stored in the encoders described in this section. This sequence <3591 25 13 12 15 12 11
26 20 8 13 8 9 7 13 10 12 0 10>d is taken from the Lmax array of one of our data scenes AG9, and the
bit-packing is shown in Table 5. There are 19 integers in the sequence. Assuming the integer is 16 bits
each, the sequence has a total size of 38 bytes. After packing into the array, the sequence occupies only
16 bytes.

Table 3. Nine different ways of encoding numbers in the 28-bit packing space in Simple9.

Selector Number of Integers n Width of Integers �28/n� (Bits) Wasted Bits

0 28 1 0
1 14 2 0
2 9 3 1
3 7 4 0
4 5 5 3
5 4 7 0
6 3 9 1
7 2 14 0
8 1 28 0

Table 4. Sixteen different ways of encoding numbers in the 28-bit packing space in Simple16. There are
no wasted bits in any of the selectors.

Selector Number of Integers Width of Integers (Bits)

0 28 28 × 1 bit
1 21 7 × 2 bits, 14 × 1 bit
2 21 7 × 1 bit, 7 × 2 bits, 7 × 1 bit
3 21 14 × 1 bit, 7 × 2 bits
4 14 14 × 2 bits
5 9 1 × 4 bits, 8 × 3 bits
6 8 1 × 3 bits, 4 × 4 bits, 3 × 3 bits
7 7 7 × 4 bits
8 6 4 × 5 bits, 2 × 4 bits
9 6 2 × 4 bits, 4 × 5 bits

10 5 3 × 6 bits, 2 × 5 bits
11 5 2 × 5 bits, 3 × 6 bits
12 4 4 × 7 bits
13 3 1 × 10 bits, 2 × 9 bits
14 2 2 × 14 bits
15 1 1 × 28 bits

Table 5. Example to show how the integer sequence <3591 25 13 12 15 12 11 26 20 8 13 8 9 7 13 10 12 0
10>d is stored with Simple9.

Element Selector
Number of

Integers
Integers Stored

(Decimal)
Integers Stored

(Binary)

0 7d (0111b) 2 3591 25 00111000000111 00000000011001
1 4d (0100b) 5 13 12 15 12 11 01101 01100 01111 01100 01011
2 4d (0100b) 5 26 20 8 13 8 11010 10100 01000 01101 01000
3 3d (0011b) 7 9 7 13 10 12 0 10 1001 0111 1101 1010 1100 0000 1010

2.6. Directly Addressable Codes

Directly Addressable Codes (DACs) can be used to compress k2-raster and provide access to
variable-length codes. Based on the concept of compact data structures, DACs were proposed in the
papers published by Brisaboa et al. in 2009 [30] and 2013 [31]. This structure is proven to yield good
compression ratios for variable-length integer sequences. By means of the rank function, it gains fast
direct access to any position of the sequence in a very compact space. The original authors also asserted
that it was best suited for a sequence of integers with a skewed frequency distribution toward smaller
integer values.
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Different types of encoding are used for DACs, and the one that we are interested in for k2-raster
is called VBytecoding. Consider a sequence of integers x. Each integer xi, which is represented by
�log2 xi�+ 1 bits, is broken into chunks of bits of size CS. Each chunk is stored in a block of size CS + 1
with the additional bit used as a control bit. The chunk occupies the lower bits in the block and the
control bit the highest bit. The block that holds the most significant bits of the integer has its control
bit set to 0, while the others have it set to 1. For example, if we have an integer 41d (101001b), which
is 6 bits long, and if the chunk size is CS = 3, then we have 2 blocks: 0101 1001b. The control bit in
each block is shown underlined. To show how the blocks are organized and stored, we again illustrate
it with an example. Given five integers of variable length: 7d (111b), 41d (101001b), 100d (1100100b),
63d (111111b), 427d (110101011b), and a chunk size of 3 (the block size is 4), their representations are
listed in Table 6.

Table 6. Example of an integer sequence and the corresponding DACs blocks of the integers.

Decimal Binary DACs Blocks

7d 0111b (B1,1A1,1)
41d 0101 1001b (B2,2A2,2 B2,1A2,1)

100d 0001 1100 1100b (B3,3A3,3 B3,2A3,2 B3,1A3,1)
63d 0111 1111b (B4,2A4,2 B4,1A4,1)

427d 0110 1101 1011b (B5,3A5,3 B5,2A5,2 B5,1A5,1)

We store them in three blocks of arrays A and control bitmaps B. This is depicted in Figure 5.
To retrieve the values in the arrays A, we make use of the corresponding bitmaps B with the rank
function. This function returns the number of bits, which are set to 1 from the beginning position to the
one being queried in the control bitmap Bi. An example of how the function is used follows: If we want
to access the third integer (100d) in the sequence in Figure 5, we start looking for the third element in
the array A1 in Block1 and find A3,1 with its corresponding control bitmap B3,1. The function rank(B3,1)
then gives a result of 2, which means that the second element A3,2 in the array A2 in Block2 contains
the next block. With the control bit in B3,2, we compute the function rank(B3,2) and obtain a result of
1. This means the next block in Block3 can be found in the first element A3,3. Since its corresponding
control bitmap B3,3 is set to 0, the search ends here. All the blocks found are finally concatenated to
form the third integer in the sequence.

More information on DACs and the software code can be found in the papers [30,31] by Ladra et al.

Block1
A1 111 (A1,1) 001 (A2,1) 100 (A3,1) 111 (A4,1) 011 (A5,1)

B1 0 (B1,1) 1 (B2,1) 1 (B3,1) 1 (B4,1) 1 (B5,1)

Block2
A2 101 (A2,2) 100 (A3,2) 111 (A4,2) 101 (A5,2)

B2 0 (B2,2) 1 (B3,2) 0 (B4,2) 1 (B5,2)

Block3
A3 001 (A3,3) 110 (A5,3)

B3 0 (B3,3) 0 (B5,3)

Figure 5. Organization of 3 DACs blocks.

2.7. Selection of the k Value

Following the description of Subsection 2.1, using different k values leads to the creation of Lmax
and Lmin arrays of different lengths. This, in turn, affects the final results of the size of k2-raster.
With this in mind, we present a heuristic approach that can be used to determine the best k value for
obtaining the smallest storage size. First, we compute the sizes of the extended matrix for different
values of k within a suitable range using Equation (1). Then, we find the k value that corresponds to
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the matrix with the smallest size, and the result can be considered as the best k value. Before the start
of the k2-raster building process, the program can find the best k value and use it as the default.

2.8. Heuristic k2-Raster

In the k2-raster paper by Ladra et al. [33], a variant of this structure was also proposed whereby
the elements at the last level of the tree structure are stored by using an entropy-based heuristic
approach. This is denoted by k2

H-raster. For example, for k = 2, each set of the 4 nodes that are from the
same parent forms a codeword. It is possible that at this same level of the tree, these codewords may
be repeated, and their frequencies of occurrences can be computed. These sets of codewords and their
frequencies are then compressed and saved. In effect, the more these codewords are repeated, the less
storage space they take up. An example of codeword frequency based on the k2-raster discussed in
Section 2.1 is shown in Table 7. According to experiments conducted by the authors of [33], it saves
space in the final representation.

Table 7. Codeword frequency in Level 3 of the Lmax bitmap in the k2-raster structure in Figure 1.

Codeword Frequency

0111 3
0212 2
0101 2
0001 2
0011 1

2.9. 3D-2D Mapping

A study on compact representation of raster images in a time-series was proposed by Cruces et al.
in [34]. This method is based on the 3D to 2D mapping of a raster where 3D tuples <x, y, z> are mapped
into a 2D binary grid. That is, a raster of size w × h with values in a certain range, between 0 and v
inclusive, has a binary matrix of w × h columns and v+1 rows. All the rasters are then concatenated
into a 3D matrix and stored as a 3D-k2-tree.

3. Experimental Results

In this section, we present an exhaustive comparison of the different integer encoders for use with
k2-raster. First, though, we report results from experiments for finding the best k value. Reported also
are the experimental results to find out if the heuristic k2-raster and 3D-2D mapping would give better
storage sizes. All storage sizes in this section are expressed as bits per pixel per band (bpppb).

The hyperspectral scenes were captured by different sensors: Atmospheric Infrared Sounder
(AIRS), AVIRIS, Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), Hyperion, and IASI.
Except for IASI, all of them are publicly available for download (http://cwe.ccsds.org/sls/docs/sls-
dc/123.0-B-Info/TestData). The hyperspectral scenes used are listed in Table 8.

The implementations for k2-raster and k2
H-raster were based on the algorithms presented in

the paper by Ladra et al. [33]. The sdsl-lite implementation of k2-tree by Simon Gog [38] (https:
//github.com/simongog/sdsl-lite/blob/master/include/sdsl/k2_tree.hpp) was used for testing
3D-2D mapping described in the paper by Cruces et al. [34]. The DACs software was downloaded
from a package called “DACs, optimization with no further restrictions” at the Universidade da
Coruña’s Database Laboratory website (http://lbd.udc.es/research/DACS/). The programming code
for the Rice, PForDelta, Simple9, and Simple16 codes was written by the programmers Diego Caro,
Michael Dipperstein, and Christopher Hoobin and was downloaded from these authors’ GitHub
web pages. Slight modifications to the code were made to meet our requirements to perform the
experiments. All programs for this paper were written in C and C++ and compiled with gnu g++
5.4.0 20160609 with -Ofast optimization. The experiments were carried out on an Intel Core 2 Duo
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CPU E7400 @2.80GHz with 3072KB of cache and 3GB of RAM. The operating system was Ubuntu
16.04.5 LTS with kernel 4.15.0-47-generic (64 bits). The software code is available at http://gici.uab.
cat/GiciWebPage/downloads.php.

Table 8. Hyperspectral scenes used in our experiments. Also shown are the bit rate and bit rate
reduction using k2-raster. x is the scene width, y the scene height, and z the number of spectral bands.
bpppb, bits per pixel per band; CRISM, Compact Reconnaissance Imaging Spectrometer for Mars; IASI,
Infrared Atmospheric Sounding Interferometer.

Sensor Name C/U � Acronym
Original

Dimensions
(x × y × z)

Bit
Depth

(bpppb)

Best
k Value

k2-raster
Bit Rate
(bpppb)

k2-raster
Bit-Rate

Reduction (%)

AIRS

9 U AG9 90 × 135 × 1501 12 6 9.49 21%
16 U AG16 90 × 135 × 1501 12 6 9.12 24%
60 U AG60 90 × 135 × 1501 12 15 9.72 19%
126 U AG126 90 × 135 × 1501 12 6 9.61 20%
129 U AG129 90 × 135 × 1501 12 6 8.65 28%
151 U AG151 90 × 135 × 1501 12 6 9.53 21%
182 U AG182 90 × 135 × 1501 12 6 9.68 19%
193 U AG193 90 × 135 × 1501 12 15 9.30 23%

AVIRIS

Yellowstone sc. 00 C ACY00 677 × 512 × 224 16 6 9.61 40%
Yellowstone sc. 03 C ACY03 677 × 512 × 224 16 6 9.42 41%
Yellowstone sc. 10 C ACY10 677 × 512 × 224 16 6 7.62 52%
Yellowstone sc. 11 C ACY11 677 × 512 × 224 16 6 8.81 45%
Yellowstone sc. 18 C ACY18 677 × 512 × 224 16 6 9.78 39%

Yellowstone sc. 00 U AUY00 680 × 512 × 224 16 9 11.92 25%
Yellowstone sc. 03 U AUY03 680 × 512 × 224 16 9 11.74 27%
Yellowstone sc. 10 U AUY10 680 × 512 × 224 16 9 9.99 38%
Yellowstone sc. 11 U AUY11 680 × 512 × 224 16 9 11.27 30%
Yellowstone sc. 18 U AUY18 680 × 512 × 224 16 9 12.15 24%

CRISM

frt000065e6_07_sc164 U C164 640 × 420 × 545 12 6 10.08 16%
frt00008849_07_sc165 U C165 640 × 450 × 545 12 6 10.37 14%
frt0001077d_07_sc166 U C166 640 × 480 × 545 12 6 11.05 8%
hrl00004f38_07_sc181 U C181 320 × 420 × 545 12 5 9.97 17%
hrl0000648f_07_sc182 U C182 320 × 450 × 545 12 5 10.11 16%
hrl0000ba9c_07_sc183 U C183 320 × 480 × 545 12 5 10.65 11%

Hyperion

Agricultural C HCA 256 × 3129 × 242 12 16 8.52 29%
Coral Reef C HCC 256 × 3127 × 242 12 8 7.62 36%
Urban C HCU 256 × 2905 × 242 12 16 8.85 26%

Erta Ale U HUEA 256 × 3187 × 242 12 8 7.76 35%
Lake Monona U HULM 256 × 3176 × 242 12 8 7.82 35%
Mt. St. Helena U HUMS 256 × 3242 × 242 12 8 7.91 34%

IASI

Level 0 1 U I01 60 × 1528 × 8359 12 12 6.32 47%
Level 0 2 U I02 60 × 1528 × 8359 12 12 6.38 47%
Level 0 3 U I03 60 × 1528 × 8359 12 12 6.31 47%
Level 0 4 U I04 60 × 1528 × 8359 12 12 6.43 46%

�: Calibrated (C) or Uncalibrated (U).

3.1. Best k Value Selection

From our previous research [20], the selection of the k value when building a k2-raster was shown
to have a great effect on the resulting size of the structure, as well as the access time to query its
elements. In order to further investigate this idea, we extended our research to finding ways of
choosing the best k value. One way was to build the k2-raster structure with different k values for
scene data from each sensor to see how the matrix size affected the choice of the k value. Additionally,
we measured the time it took to build the k2-raster and the size of the structure. The results are shown
in Table 9. For most tested data, the k value leading to the smallest extended matrix size (attribute S in
the table) usually provided the fastest build time and the smallest storage size. With these results, we
could say that, in general, when k = 2, the compressed data size was large, sometimes even larger than
the size of the original scene. As the value of k became larger, beginning with k = 3, the compressed
data size was reduced. As far as the compressed size was concerned, the best value was in the range
from three to 10 for matrices with a small raster size (i.e., if both the original width and original height
were less than 1000) such as the ones for the AIRS Granule or AVIRIS Yellowstone scenes. If at least
one dimension was larger than 1000 such as Hyperion calibrated or uncalibrated scenes, a larger range,
typically between three and 20, needed to be considered.
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The above experiments were repeated to compare the access time for the different k values.
For each scene, the average time over 100,000 consecutive queries is reported. Results are shown in
Table 10, and Figure 6 shows how the access time and the size varied depending on the k value. As can
be observed, access time became smaller and smaller as the value of k became larger. The plotted data
suggested that there was a trade-off between access time and size with respect to the k value. We
considered the optimal k value to be the one that created a relatively small size with a minimal access
time. For example in AG9, when comparing the results between k = 6 and k = 15, the difference in
bits per pixel per band for storage size was not very significant, but the reduction in access time was.
Therefore, for this scene, k = 15 was considered an optimal value.

(a) AIRS Granule 9 (b) Yellowstone 00 (cal.) (c) Yellowstone 00 (uncal.)

(d) CRISM 164 (e) Hyperion Agricultural (f) Hyperion Erta Ale

(g) IASI Level 0 1

Figure 6. A comparison of the storage size (bpppb) and access time (μs) for different k values of
k2-raster built from scenes in our datasets. Access time is the average time of 100,000 consecutive
queries. For AIRS Granule 9, the best value is marked with a red circle, and the optimal value is marked
with a blue square.
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3.2. Heuristic k2-Raster

In this section, we present the results of the experiments using the heuristic k2-raster proposed by
Ladra et al. [33] on some of our datasets. Table 11 reports results for two hyperspectral scene datasets:
AIRS Granule and AVIRIS Uncalibrated Yellowstone. In the experiments, we found that only when
k = 2 would there be enough repeated sets of codewords in the last level of nodes to help us save
space. When k ≥ 3, there were no repeated sets of codewords. From the table, it can be seen that
there was not much size reduction with k2

H-raster in most cases. However, if we built a k2-raster using
the best or optimal k value, the size was considerably smaller. Therefore, we can see that k2

H-raster
structure did not produce a better size.

Table 11. Comparison of the structure size (bpppb) built from k2-raster and k2
H-raster where k = 2.

The sizes for k2-raster using the best k value and the optimal k value are also shown. The best results
are highlighted in blue.

AIRS
Granule

k2-Raster (k = 6)
(Best)

k2-Raster (k = 15)
(Optimal)

k2-Raster (k = 2) k2
H -Raster (k = 2)

AG9 9.49 9.53 13.06 13.22
AG16 9.12 9.17 12.72 12.85
AG60 9.81 9.72 13.65 13.86

AG126 9.61 9.72 13.42 13.59
AG129 8.65 8.72 11.98 11.95
AG151 9.53 9.56 13.19 13.35
AG182 9.68 9.71 13.32 13.47
AG193 9.44 9.30 13.29 13.43

AVIRIS
Uncalibrated

k2-Raster (k = 9)
(Best)

k2-Raster (k = 9)
(Optimal)

k2-Raster (k = 2) k2
H -Raster (k = 2)

AUY00 11.92 11.92 15.31 15.19
AUY03 11.74 11.74 15.03 14.74
AUY10 9.99 9.99 12.85 11.86
AUY11 11.27 11.27 14.27 14.08
AUY18 12.15 12.15 15.36 15.25

3.3. 3D-2D Mapping

As discussed earlier, Cruces et al. [34] proposed a 3D to 2D mapping of raster images using k2-tree
as an alternative to achieve a better compression ratio. We used the k2-tree implementation in sdsl-lite
software to obtain the sizes for one of our datasets (AG9) from k = 2 to k = 4. Note that similar to
k2-raster, if the 2D binary matrix cannot be partitioned into square subquadrants of equal size, it needs
to be expanded using Equation (1), and the extra elements are set to zero. The results are presented in
Table 12. The sizes for a range of bands from 1481 to 1500 of the scene are also given for comparison.

From the results for AG9, we can see that the 3D-2D mapping did not make the size smaller.
Instead, it became larger when the k value increased, and therefore, the method did not produce
competitive results.

3.4. Comparison of Integer Encoders for k2-Raster

Experiments were conducted to determine whether other variable-length encoders of integers
might serve as a better substitute for DACs, which were the original choice in the k2-raster structure
initially proposed by Ladra et al. [33]. The performance of DACs was compared to that of other
encoders such as Rice, Simple9, PForDelta, Simple16 codes, and gzip. In these experiments, the Lmax
and Lmin arrays were encoded using these codes, and the results are shown in Table 13. For Rice
codes, the l value, as explained in Section 2.4, produced different results depending on the mean of the
raster’s elements, and only the ones with the best l value are shown.
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Table 12. The sizes of AIRS Granule (AG9) produced by 3D to 2D mapping from k = 2 to k = 4.
The individual band sizes ranging from 1481 to 1500 are also shown. Sizes for individual bands are in
bits per pixel (bpp), while the ones for all bands are in bits per pixel per band (bpppb).

Band
Original

Size
k2-Tree
k = 2

k2-Tree
k = 3

k2-Tree
k = 4

All bands 16 16.53 20.57 26.57

1481 16 17.56 22.00 28.45
1482 16 17.27 21.54 27.84
1483 16 17.19 21.47 27.67
1484 16 17.45 21.81 28.18
1485 16 16.93 21.10 27.29
1486 16 17.09 21.27 27.50
1487 16 16.82 21.06 27.02
1488 16 17.01 21.21 27.34
1489 16 17.23 21.51 27.78
1490 16 16.94 21.10 27.20
1491 16 16.80 20.86 26.96
1492 16 16.56 20.64 26.51
1493 16 16.80 20.91 26.89
1494 16 16.84 20.93 26.98
1495 16 16.69 20.88 26.72
1496 16 16.66 20.75 26.66
1497 16 16.70 20.87 26.73
1498 16 16.61 20.70 26.58
1499 16 16.67 20.73 26.78
1500 16 16.39 20.40 26.18

Table 13. A comparison of the storage size (in bpppb) using different integer encoders on Lmax and
Lmin from the k2-raster built from our datasets. The combined entropies for Lmax and Lmin are listed
as a reference. The l value that was used in Rice codes is enclosed in brackets. The best and optimal k
values for DACs are also enclosed in brackets. Except for the entropy, the best rates for each scene’s
data are highlighted in blue.

Hyperspectral
Scene

Entropy
(Lmax + Lmin)

Rice
(l Value)

Simple9 PForDelta Simple16
DACs

(Best k)
DACs

(Optimal k)
gzip

AG9 8.29 10.10 (7) 10.06 9.88 9.69 9.49 (6) 9.53 (15) 12.45
AG16 7.92 9.88 (7) 9.64 9.55 9.30 9.12 (6) 9.17 (15) 11.96
AG60 8.58 10.31 (7) 10.50 10.19 10.12 9.72 (15) 9.81 (6) 12.79
AG126 8.42 10.34 (7) 10.25 9.98 9.81 9.61 (6) 9.72 (15) 12.55
AG129 7.47 9.66 (7) 9.01 9.01 8.61 8.65 (6) 8.72 (15) 11.21
AG151 8.36 10.39 (7) 9.99 9.79 9.54 9.53 (6) 9.56 (15) 12.39
AG182 8.44 10.58 (7) 10.44 10.09 10.01 9.68 (6) 9.71 (15) 12.71
AG193 8.25 10.26 (7) 10.06 9.93 9.65 9.30 (15) 9.44 (6) 12.33

ACY00 8.81 9.89 (7) 10.37 9.80 10.11 9.61 (6) 9.69 (9) 12.56
ACY03 8.48 9.70 (7) 9.80 9.40 9.57 9.42 (6) 9.50 (9) 11.98
ACY10 6.88 9.18 (7) 7.34 7.43 7.18 7.62 (6) 7.74 (9) 9.32
ACY11 8.12 9.45 (7) 9.32 9.02 9.09 8.81 (6) 9.00 (9) 11.61
ACY18 8.96 10.58 (7) 10.52 9.84 10.28 9.78 (6) 9.88 (9) 12.66

AUY00 11.16 17.59 (7) 14.01 11.93 13.79 11.92 (9) 11.92 (9) 15.13
AUY03 10.83 16.59 (7) 13.54 11.56 13.29 11.74 (9) 11.74 (9) 14.59
AUY10 9.26 12.87 (7) 10.90 9.61 10.54 9.99 (9) 9.99 (9) 12.29
AUY11 10.60 15.16 (7) 13.12 11.24 12.89 11.27 (9) 11.27 (9) 14.47
AUY18 11.38 20.70 (7) 14.19 12.10 14.01 12.15 (9) 12.15 (9) 15.53

C164 9.18 10.33 (7) 11.35 10.44 11.14 10.08 (6) 10.08 (6) 12.85
C165 9.48 10.91 (7) 11.78 10.69 11.57 10.37 (6) 10.37 (6) 13.17
C166 10.02 12.83 (7) 12.99 11.41 12.74 11.05 (6) 11.05 (6) 13.61
C181 9.16 9.96 (7) 10.93 10.53 10.72 9.97 (5) 9.97 (5) 13.37
C182 9.27 10.17 (7) 11.24 10.67 10.99 10.11 (5) 10.11 (5) 13.26
C183 9.60 11.15 (7) 12.33 11.21 12.05 10.65 (5) 10.65 (5) 13.32
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Table 13. Cont.

Hyperspectral
Scene

Entropy
(Lmax + Lmin)

Rice
(l Value)

Simple9 PForDelta Simple16
DACs

(Best k)
DACs

(Optimal k)
gzip

HCA 7.59 8.94 (7) 9.79 8.80 9.56 8.52 (16) 8.54 (8) 11.20
HCC 6.75 8.20 (7) 8.28 7.60 7.93 7.62 (8) 7.71 (16) 9.51
HCU 7.87 9.78 (7) 10.30 8.91 10.04 8.85 (16) 8.86 (8) 11.35

HUEA 6.66 7.67 (5) 8.30 7.99 8.00 7.76 (8) 7.80 (16) 9.85
HULM 6.71 7.66 (5) 8.38 8.11 8.10 7.82 (8) 7.88 (16) 10.13
HUMS 6.77 7.90 (5) 8.48 8.14 8.20 7.91 (8) 7.94 (16) 10.12

I01 5.39 6.51 (4) 6.26 6.54 5.94 6.32 (12) 6.80 (15) 7.46
I02 5.46 6.56 (4) 6.27 6.55 5.96 6.38 (12) 6.84 (15) 7.51
I03 5.42 6.51 (4) 6.19 6.48 5.89 6.31 (12) 6.79 (15) 7.39
I04 5.51 6.62 (4) 6.37 6.65 6.04 6.43 (12) 6.90 (15) 7.63

The results showed that, in most cases, DACs still provided the best storage size compared
to other encoders for our datasets. They also had the added advantage of direct random access to
individual elements of the matrix whilst the other encoders would need to decompress each raster
in order to retrieve the element, thus requiring much longer access time. When DACs did not yield
the best performance, DACs results were usually only less than 0.1 bpppb worse. In the worst cases,
DACs results lagged behind by, at most, 0.4 bpppb.

4. Conclusions

In this research, we examined the possibility of using different integer coding methods for k2-raster
and concluded that this compact data structure worked best when it was used in tandem with DACs
encoding. The other variable-length encoders, though having competitive compression ratios, lacked
the ability to provide users with direct access to the data. We also studied a method whereby we could
obtain a k value that gave a competitive storage size and, in most cases, also a suitable access time.

For future work, we are interested in investigating the feasibility of modifying elements in a
k2-raster structure, facilitating data replacements without having to go through cycles of decompression
and compression for the entire compact data structure.
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Abstract: Remote sensing applications have gained in popularity in recent years, which has resulted
in vast amounts of data being produced on a daily basis. Managing and delivering large sets of
data becomes extremely difficult and resource demanding for the data vendors, but even more
for individual users and third party stakeholders. Hence, research in the field of efficient remote
sensing data handling and manipulation has become a very active research topic (from both storage
and communication perspectives). Driven by the rapid growth in the volume of optical satellite
measurements, in this work we explore the lossy compression technique for multispectral satellite
images. We give a comprehensive analysis of the High Efficiency Video Coding (HEVC) still-image
intra coding part applied to the multispectral image data. Thereafter, we analyze the impact of the
distortions introduced by the HEVC’s intra compression in the general case, as well as in the specific
context of crop classification application. Results show that HEVC’s intra coding achieves better
trade-off between compression gain and image quality, as compared to standard JPEG 2000 solution.
On the other hand, this also reflects in the better performance of the designed pixel-based classifier in
the analyzed crop classification task. We show that HEVC can obtain up to 150:1 compression ratio,
when observing compression in the context of specific application, without significantly losing on
classification performance compared to classifier trained and applied on raw data. In comparison,
in order to maintain the same performance, JPEG 2000 allows compression ratio up to 70:1.

Keywords: HEVC; intra coding; JPEG 2000; high bit-depth compression; multispectral satellite
images; crop classification; Landsat-8; Sentinel-2

1. Introduction and Motivation

Satellite imaging has experienced proliferation in the recent period and there are more possibilities
for realization of its applications than ever before. However, data burden is expected to become even
greater in the future with the advancement of sensors with higher spatial resolutions and more
measurement bands. Therefore, there is a need to revisit and possibly complement some previous
findings that were related to efficient satellite image compression, like ones presented in [1], or more
recently in [2], and offer users more insights into effects of different choices in such case. Of particular
interest is the field of lossy image compression where high compression ratios can be easily achieved,
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but at the cost of inevitable information loss. However, the question remains what level of image quality
degradation could be acceptable for some remote sensing application, and even more importantly,
how sensitive such application would be on the particular choice of an image compression strategy.
This paper tries to offer some answers to such questions and tracks possibilities of using one of the
latest, industry confirmed, general purpose coding standard, which could be expected to be easily
accessible to broad community of users, and easy to implement in custom, application dependant,
processing frameworks. More exactly, we present a comparative study in which the effectiveness of
the intra coding part of the High Efficiency Video Coding (HEVC) standard [3,4] is analyzed against the
well established JPEG 2000 lossy compression [5,6], under two selected application scenarios:

(a) HEVC as a general purpose lossy compression solution for medium and high resolution
multispectral satellite images acquired by the Landsat-8’s OLI [7,8], and Sentinel-2’s multispectral
instrument (MSI) [9,10], which are considered as frequently used and freely available image
sources; and

(b) HEVC as an application oriented lossy compression solution for thematic mapping,
i.e., pixel-based crop classifications like the ones presented in [11,12]—however with an important
difference that multispectral time series in our study consist of lossy compressed reflectance
measurements as compared to original (uncompressed or lossless) measurements that were used
in the referred studies.

The choice of the second application scenario has been influenced by the fact that the
corresponding classifier design, and the subsequent production phases, where the trained model
is going to be deployed, require large volumes of data. Therefore, such tasks could easily benefit
from the effective lossy image compression, resulting in the more efficient data handling. They could
also benefit from the possible side effects, like the noise cancelling, leading to the better classifier
performance, as in [13,14]. Naturally, this could be only possible if such lossy compression classification
approach, usually denoted as compress-then-analyze, would prove to be not highly sensitive to the
expected information loss. Thus, the aim of this work is to offer an application oriented insight into
specific compression vs. classification performance trade-off in the pixel-based crop classification tasks,
through estimation of the corresponding classification performance sensitivity, similarly as in [15].
Also, since we advocate the use of the standardized compression solutions, instead of custom-made
codecs that cannot benefit to such extent from the large community support (optimized hardware
implementations and continuously maintained software libraries), HEVC effectiveness is tested against
the JPEG 2000, which has been often utilized in Earth Observation (EO) data distribution systems.

Besides the possible advantages arising from utilizing the baseline (still-image) HEVC intra mode,
we also point out that the particular thematic mapping application that has been chosen in this study
represents a sort of typical remote sensing tasks. However, it has not been frequently analyzed from
the application perspective of the general data compression community. Moreover, currently there is
not so much research on this topic, and a comprehensive analysis of the compression effects on remote
sensing applications has been relatively scarce. Therefore, the EO community could benefit from more
interest of the compression community for the specific application oriented compression scenarios,
as well as from the comprehension of how some finely tuned and well established (off-the-shelf) data
compression technique could effect different bands of acquired multispectral images, and to what
extent this choice could be expected to have influence on some particular remote sensing application.

Results presented in this paper confirm that HEVC, as a hybrid and feature rich method based on
transform and predictive coding techniques, outperforms transform based JPEG 2000 compression
approach that has been currently used in some ground-based data distribution systems and has
been considered as a general purpose solution for lossless or lossy satellite image compression.
The presented results confirm initial assumptions regarding HEVC’s applicability and effectiveness
in lossy compression of multispectral images, opening possibly new research directions towards its
application in hyperspectral image compression. However, even more importantly, presented results
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give a new perspective on the possibilities of exploiting general purpose lossy compression solutions,
like HEVC, in contemporary ground segment data distribution operations, oriented towards users
interested in different levels of quality of service, like in the standard streaming application scenarios.

The rest of the paper is organized as follows. In Section 2, a brief discussion on the current
state and future trends in the field of satellite image compression has been given, specifically
placing in a given context HEVC as one of the possible compression solution for the future EO data
distribution systems. Review of other related coding techniques has been given in the same section.
In the Section 3, the underlying data, used as part of experiments, has been briefly described and
motivated. Experimental setup and methods used in this study are explained in Section 4. It includes
the design characteristics of the crop classification method, that is used as an example of application
oriented benchmark in this work, as well as settings of the codecs used for the compression purpose.
The results, and additional discussions of the outcomes of this study, are emphasized in Section 5.
Presented results in this work include both quantitative and qualitative assessments of compression
effects on the image quality, as well as on the overall accuracy of the considered crop thematic maps.
The paper is concluded in Section 6, with a short reference to the possible future research directions.

2. Provisioning of EO Data Through Lossy Compression Schemes in the Ground Segment

Broadly speaking, utility of an image compression scheme is mostly affected by the type of data
and planned application. Essentially it goes down to the amount of useful information inherent in
the data, as compared to the overall data quantity [16], sometimes requiring a global, mission specific
approach in a quest for an optimal compression trade-off [17].

2.1. Downlink Related Work

Downlink systems, Figure 1, usually prefer lossless or near-lossless image coding designed in
such a way to ensure high fidelity of possible applications. Due to a limited on-board power capacity,
low complexity compression schemes, e.g., [18–24], have been the main choice towards the practical
implementation. For example, in such restricted environment, even JPEG 2000 has been considered
a too complex method. Consequently, the Consultative Committee for Space Data Systems (CCSDS) has
been constituted to research on a family of recommended compression schemes specifically designed
for space data systems. Works like these [25–27] developed by CCSDS have emerged, following
a general paradigm of low complexity requirements in order to facilitate applications such as on-board
compression. Aforementioned approaches are just some of the wide range of different coding choices
that meet requirements imposed by power-constrained EO missions, with a limited hardware resources
specifically designed to function in orbit. However, those techniques are often used with compression
ratios that could be considered as moderate [28], sometimes also due to the the nature of the lossless
compression itself. Nevertheless, limited bandwidths and ever-growing data volumes make these
methods inevitable in today’s EO missions. As a consequence of the huge increment in the data-rate of
the new generation sensors (despite that the lossless or near-lossless compression algorithms have
been traditionally preferred for on-board compression scenarios), a research effort targeting lossy
on-board compression has been reported in [29,30]. Also, lossy extensions of CCSDS standards have
been proposed [26,31], however still bearing in mind available on-board technologies related with
tolerance to solar radiation and low power consumption, e.g., see [32]. As a matter of fact, it is generally
accepted that the lossy coding schemes can be (if required) derived from the corresponding lossless
modes through introduction of a suitable quantization (or coefficient truncation) scheme [31,33].

2.2. Focusing towards the Users Side Compression

As opposed to the constraints related to the on-board processing and downlink communication
requirements, end-user oriented EO applications, that are placed at the other end of the data
distribution chain, offer much broader range of design possibilities. Liberating from the tendency
to suggest low-power codec solutions, and approaching closer to end-users, different compression
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options may appear, especially considering theoretically unlimited resources in the cloud where
complexity is no longer a critical issue during the encoding step. Thus, low-complexity requirement
imposed over on-board solutions can be significantly relaxed, which can be particularly suited for
a more complex compression algorithms that are trying to achieve better trade-off between image
quality and compression ratio.

Figure 1. General scheme of Earth Observation (EO) communication and data distribution system.

Traditionally, those methods are mainly based on various decorrelating transforms [34,35], leading
to wide range of different coding approaches, where usual precondition for efficiently going below the
nominal entropy rate of the source is to decorrelate acquired measurements in spatial and/or spectral
domain. In particular, general purpose coding schemes, originally designed to be applicable in broader
progressive lossless-to-lossy use-case scenarios, such as EZW [36], SPIHT [37–39] or SPECK [40,41],
proved to be useful in achieving higher compression ratio requirements, however bringing in
higher processing and memory requirements when compared to less complex on-board solutions
(see Section 2.1). Aforementioned research has established that, among transform coding architectures,
many systems usually follow a general coding pipeline in which, at the first stage, a suitable transform
is applied in the spectral domain (e.g., wavelets or some covariance-based decorrelation method
like Karhunen-Loève transform (KLT) [42] or its low-complexity approximation named Pairwise
Orthogonal Transform [43,44]), which is afterwards followed by some of the standard coding schemes
(EZW, SPIHT, SPECK). Similarly, JPEG 2000 can be deployed in order to compress each of the
previously computed, spectrally decorrelated, image components (usually by implicitly performing an
additional 2D spatial transform on each of resulting channels from the first step, followed by rate or
quality allocator, and entropy coder), leading to three-dimensional (3-D) decorrelation [13,35,45,46].
In particular, a combination of spectral decorrelator such as KLT in conjunction with JPEG 2000 proved
to provide state-of-the-art performance according to [13,43]. Other noteworthy research efforts are also
reported in [47–50].

In addition, authors note that very few works utilize standard video coding schemes,
or any similar hybrid-based approaches (combination of predictive coding and transform coding),
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as a compression choices for high-dimensional satellite data. More precisely, we found out only work
presented in [51] worth mentioning. However it does not use HEVC as a base codec setting.

2.3. Applications Oriented Lossy Compression—Related Work

Although higher compression gains may be achieved using lossy compression, there is always
a question to what extent some artifacts introduced by the specific compression algorithm affect
a certain type of application. Some previous works, that provide insights into this important question,
and which could be considered as closely related in the context of the presented study, are given
in [15,52–55]. In [15], as well as [56], it was shown that a small amount of lossy compression
can have beneficial effects for the overall performance of crop thematic mapping. This was also
independently confirmed by the experimental results of our study. However, in comparison to [15],
we have considered different types of compression methods and application scenarios. On the other
hand, regarding the specific task of crop thematic mapping, in comparison to [15] our study considers
only a multitemporal classification scenario, which can be considered as a more realistic one, as opposed
to a single-date classification approach, since it is well known that the plant’s phenology is captured
much better by independent observations made throughout the vegetation season. Also, according
to [15], multitemporal information allows one to utilize much higher compression ratios in comparison
to single-date classification, and still achieve almost the same classification performance as in the
case of original data. One of the main conclusions in [52] was that the level of scene fragmentation
determines the acceptable level of lossy compression, which is consistent with the general rule of
thumb that image’s scene complexity determines the overall information content (entropy of the
image), and thus level of required spatial details for successful, discirminative classification. Related to
the mentioned fragmentation aspect, scene content complexity was also considered by the first set of
experiments in our study, which involves algorithms benchmarking against satellite images with the
varying scene content, captured at the approximately same time by the image sensors with varying
spatial and spectral characteristics. In addition, influence of lossy compression on the quality of
different vegetation indices, which also represent potentially valuable features for crop classification,
was analyzed in [53,54]. Favoring image channels that contain more task specific information was also
proposed in [54], where the group of channels characteristic for vegetation was encoded at a higher bit
rate than the remaining one.

Besides the above mentioned methods, there were also many others which have evaluated
compression efficiency against the specific remote sensing tasks like classification [35,43,55,57–60],
image segmentation [61], atmospheric parameter retrieval [14,62], spectral unmixing [63], endmember
extraction [64], vegetation [53,54] and spectral [65] indices computation, and biophysical variables
estimation [66]. In [59] it was concluded that in the context of the general applications it is hard to
define optimal level of image quality that should be preserved by the lossy compression. As a
possible answer to this open question, authors in [59] have proposed a general, unsupervised
classification-accuracy based method for image quality assessment, which could provide some
indicators regarding effectiveness of different elements of the considered compression procedures.
In [59] it was also pointed out that the spectral decorrelation usually removes peaks from spectral
signatures of hyperspectral measurements, even at high reconstructed image qualities. On the other
hand, Ref. [60] proposed a specific classification oriented lossy compression approach, inspired
by optimal signal representation in the spectral domain. This approach was later extended in [67].
An overview of the contemporary approaches for measuring how classification accuracy is affected
by the compression can also be found in a recent study in [68]. In addition, they establish a
prediction model between the features extracted from compressed images and the corresponding
classification accuracy.

217



Remote Sens. 2020, 12, 1590

2.4. HEVC as a Matter of Choice

Generally speaking, role of an efficient compression scheme would be to enable and facilitate
deployment of other technologies that are expected to be highly dependant on the efficient and
timely distribution of image data, and which would possible benefit from the achieved reduction
in the required storage, energy consumption, data access and processing time. This could prove
to be extremely important for data vendors, but even more so for individual users, on-demand
service providers, or third party stakeholders in general. At the same time, positioning at the ground
segment could open the access to the larger compression community that could also be crucial for
the implementation of new forms of compression techniques that at the time being have not been
considered in the RS applications, e.g., HEVC. In that sense, this work aims to position itself on the
link between the EO data service providers and the end-users, see Figure 1. Also, in the context of this
work, we consider classification task just as one of the possible user specific applications that could
benefit from the reduced data burden that is easily achieved by the lossy compression of multispectral
satellite images. In addition, as the remote sensing technologies advance, new applications require
constant improvement of existing coding schemes, allowing higher compression gains, which usually
(however not necessarily) comes at the price of higher complexity.

Eventually, it is important to note that widely accepted industry standards for image and
video compression could ensure interoperability and can be adopted by the broader community
of EO practitioners. At the same time, it is more likely to be implemented in a custom, application
dependant, processing framework, since they usually come with the open source reference software,
e.g., [69]. This implies that efficient, fast and reliable implementation of the standardized codecs may
be realized with much less effort than implementing custom based codec from the ground. By doing
so, schemes such as HEVC may be deployed efficiently, making available to process large amount of
data utilizing computationally complex features like those incorporated in HEVC. Hence, building
compression processing unit, on cloud or locally on a workstation (or even personal computer),
is significantly facilitated since available computing power comes at reasonable cost. Efficient widely
used and industry accepted compression techniques are therefore easier to be integrated in the existing
infrastructure, or implemented using existing equipment. In addition, even though HEVC has high
computational complexity, it is highly parallelizable and implementation friendly scheme [70,71]
(it uses integer logic with shifts and additions). For example, work that implements fast and efficient
HEVC encoder was described in [72].

Emerging from the above, in our research, we consider the use of standardized and ubiquitous,
industry accepted solution such as HEVC. Technical specifications for the data distribution and
management of the most spaceborne programs has identified JPEG 2000 as a straightforward
compression solution, e.g., [73]. In this work we want to show that more recent, state-of-the-art
standardized compression schemes may provide performance improvement compared to the
JPEG 2000. Given the current computing technologies, besides HEVC’s higher computational
complexity, it is practically feasible to use such scheme in a ground-based satellite data distribution
chain. Hence, we have done comparative study in which we analyze effectiveness of the HEVC
standard. We show that using intra-band (still-image) coding part of HEVC can improve compression
gain over the JPEG 2000 coding scheme which is specified as a baseline (and mostly used) compression
method for EO data distribution at the ground segment. Indeed, HEVC has been reported to perform
better than any other international standardized coding scheme currently on the market. It was
reported in [74] that HEVC intra coding reduced the average bit rate by 17% compared to H.264/AVC,
23% compared to JPEG-2000, 30% compared to JPEG-XR, and 44% compared to classic JPEG. However,
the previous work has been focused on the HEVC’s performance evaluation by using representative test
set of standard photographic still images. Furthermore, with the completion of its second version that
supports up to 16 bits per pixel (b/p) [75], it became available to other specialized applications besides
standard consumer data, such as remote sensing applications among others [76]. Thus, in this work,
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we quantify HEVC’s intra coding performance, however this time applied on a set of multidimensional
satellite data.

3. Datasets Preparation and Design

3.1. General Compression Performance Evaluation Dataset

The set of test images, which have been used by the first group of experiments, consists of the
selected image scenes presented in Table 1. Similar set was originally proposed in [77] with the aim
of having a representative collection of the scene content variations in order to derive the optimal
estimates of the tasselled cap transformation parameters, specifically adapted to the corresponding
Landsat-8 TOA reflectances. Therefore, in this paper, it was also considered as a suitable image
collection for the general analysis of the compression effects in the case of the proposed HEVC solution.
In line with the above mentioned, the set of images includes variety of scenes consisting of different
land use and land cover classes (LULC), corresponding to urban areas, crop fields, mountainous
forests, water bodies of different size, bare soil and various urban features, Table 1.

Table 1. Characteristics of scenes and images used in general compression performance comparisons.

Scene
No.

Location Description
Landsat-8
Path/Row

Landsat-8
Acq. Date

Sentinel-2A/B
Granule ID

Sentinel-2A/B
Acq. Date

1 Jiangxi, China Poyang lake, urban and
vegetation areas 121/40 10 April T50RMT/R132 7 April

2 Jiangxi, China Poyang lake, urban and
vegetation areas 121/40 31 July T50RMT/R132 31 July

3
Northern
Nebraska,
South Dakota

Variety of crop fields,
urban areas, airport and
bare soil

31/30 8 July T14TLN/R055 10 July

4
Northern
Nebraska,
South Dakota

Variety of crop fields,
urban areas, airport and
bare soil

31/30 9 August T14TLN/R055 9 August

5 West Virginia
Mountainous forests,
water bodies and urban
features

16/34 12 May T17SPB/R097 14 May

6 West Virginia
Mountainous forests,
water bodies and urban
features

16/34 29 June T17SPB/R097 18 June

7 North
Carolina

Agricultural holdings,
forest and water bodies 16/35 12 May T17SPV/R097 14 May

8 North
Carolina

Agricultural holdings,
forest and water bodies 16/35 29 June T17SPV/R097 18 June

9 Idaho Large water bodies and
crop fields 39/31 14 June T12TUM/R127 10 June

10 Idaho Large water bodies and
crop fields 39/31 30 June T12TUM/R127 25 June

11 Indus River
Basin

Indus River, extensive
crop fields 152/41 8 July T42RVR/R021 7 August

12 Indus River
Basin

Indus River, extensive
crop fields 152/41 25 August T42RVR/R021 27 August

However, all images were always used and analyzed as a whole, and the corresponding image
quality metrics were aggregated at the scene level, which makes the class specific analysis of the
corresponding compression effects hard to follow. Nevertheless, some of the selected scenes are
mutually discriminative enough, thus allowing a generalization of results and analysis to a wide range
of image contents. In addition to Landsat-8 multispectral images, corresponding to the specific scenes
in Table 1, an additional subset of the benchmark dataset was designed. It consists of Sentinel-2 images
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of the same ground areas that were closest in space and time to the specified Landsat-8 scenes (images
listed in the last two columns of Table 1). Thus, the proposed dataset has been designed to conduct the
first group of experiments aim to objectively characterize HEVC’s general compression performance in
comparison to the baseline JPEG 2000 solution. Visual preview of selected images is given in Figure 2.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 2. Visual overview of the scenes 1–12 in Table 1. True color illustrations (a–l) correspond to 60 m
Sentinel-2 image channels. Some contain clouds and haze due to the adopted selection criteria which
favours the Sentinel-2 images that were the ones closest in time to the original Landsat-8 counterparts.

Since Sentinel-2A/B were still not operational at the time when the original scenes in [77] were
proposed, we have selected measurements from 2018 when both satellites were available, with the
acquisition dates that were closest to the original ones made by Landsat-8 in [77]. It should be noted
that in [77], for some of the location listed in Table 1, only one acquisition was selected, while for some
others there were up to two acquisitions relatively close in time. Therefore, for all of the scenes of the
dataset used in this study, we have selected two close acquisitions for each Landsat-8 and Sentinel-2 in
order to have richer test environment with more samples of representative LULC categories in the
given scenes.

All selected images are Level-2 atmospherically corrected image products, containing surface
level reflectances, stored as 16 b/p integers. Selection of multispectral images of the same test sites,
but originating from two different satellite instruments, was motivated by the fact that Sentinel-2 and
Landsat-8 imagers have different spatial resolutions, which could enable comparison of compression
effects under different spatial resolution scenarios. In addition, individual channels of Sentinel-2
images are also of varying spatial resolutions, which was taken into account in results presentation,
where in addition to performance measures aggregated at the scene level over all channels, the results
corresponding to the groups of image channels with different spatial resolutions are also presented.

In case of Landsat-8 images, experiments were performed on all OLI based bands except
panchromatic channel 8 and cirrus channel 9 [8], e.g., on all atmospherically corrected Level-2 image
products of spatial resolution of 30 m [78]. These include 4 VNIR (visual and near-infrared) and 2 SWIR
(shortwave infrared) narrowband channels, and one coastal/aerosol channel 1.

In case of Sentinel-2 images [9], those originating from both Sentinel-2A, as well as -2B, were used
interchangeably in order to find an image with the acquisition time closest to the corresponding
Landsat-8 image of the same area. Although Sentinel-2 images were selected to match with Landsat-8
acquisitions (path and row in the corresponding world reference system), it should be noted that, due to
higher spatial resolution, Sentinel-2 images cover significantly lower area, of approximately 100 km
by 100 km, as compared to Landsat-8’s 185 km wide swath and 170 km long range. Sentinel-2 MSI
channels [10], that were used in this study, include all channels that were available after atmospheric
correction, at different spatial resolutions (10, 20 and 60 m). Thus, at 10 m spatial resolution, in total
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4 VNIR channels were used, consisting of three B02-B04 narrowbands, and somewhat wider B08;
at 20 m resolution 7 VNIR channels were used (B02-B07, B8a) and additional 2 SWIR channels
(B11 and B12), thus in total nine channels; while at 60 m all channels except B08 and B10 were utilized,
i.e., in total 11 channels of which 9 VNRI and 2 SWIR. As specified in [73] and illustrated in [10],
at 20 m resolution only 6 channels B05-B8a and B11-B12 are originally acquired by the MSI, while the
rest of 5 channels are synthesized from the original higher resolution 10 m measurements. Similar also
holds for 60 m image channels, where out of 11 utilized channels only the image channels B01 and B09
are acquired at original, nominal spatial resolution, while the rest of nine 60 m image channels, that
are delivered as part of Level-2 atmospherically corrected Sentinel-2 image product, are synthesized
through adequate postprocessing.

Intrinsic spatial resolutions of Sentinel-2 image bands are: 10,980 × 10,980, 5490 × 5490,
1830 × 1830 pixels, corresponding to spatial resolutions of 10, 20, and 60 m respectively. On the
other hand, intrinsic spatial resolution of Landsat-8 OLI images is not fixed and varies around
≈ 7800 × 7900 pixels. In addition, substantial part of Landsat-8 images is always occupied by
no-data regions (along the corners of the scene), which is not always the case with Sentinel-2 images.
To be more precise, it turns out that in our dataset Sentinel-2 images are barely occupied with such no
data regions. From the compression point of view, such regions have high information redundancy,
and therefore are easy to compress, which could be considered as a source of the potential positive
bias in the overall evaluation of the compressed image quality. However, the same influence is present
in the case of all analyzed compression scenarios, and therefore if present it could be considered as
a relative one, which is a more favourable option for performance comparison of different methods.
Also, according to corresponding product specifications, like [78], original data are always distributed
in the predefined format that is adopted by the end-user community, which makes the use of standard,
of-the-shelf codec implementations, more suitable, as opposed to some optimal, custom solutions,
which would have a special treatment of such no-data regions.

Most of the above presented information related to characteristics of multispectral image products,
that were utilized in the first type of experiments, also hold for the data that were used in the
second type of experiments (pixel-based classification) described in Section 4.2. Therefore, in the
next subsection, only the specific differences arising from the characteristics of the chosen application
scenario will be additionally discussed and highlighted.

3.2. Crop Thematic Mapping Dataset

The second group of experiments relies on time series of multispectral images corresponding to
the specific ground test site (area) where additional field level data were collected. Selected satellite
images were used as the source of reflectance data for the design of pixel-based crop classification
models, which are mutually compared and benchmarked against different lossy compression scenarios,
utilizing the proposed HEVC and the chosen baseline JPEG 2000 solutions. As the result, constructed
classification models differ only in the type of the training data that were used for their estimation.
Thus, they differ in the degree to which different compression types influence the performance
sensitivity of the chosen type of classification model (random forest), which belongs to the widely
accepted and utilized family of learning machines that are present in many contemporary pixel-based
thematic mapping systems.

Due to the varying cloud cover and limited vegetation season, only a relatively small subset of all
available images for the chosen test site was utilized. In total, two different time series of Sentinel-2A
images were chosen, corresponding to two adjacent and spatially overlapping relative orbits R036 and
R136, respectively. Two orbits cover the main agricultural region in the Republic of Serbia, known
as Vojvodina. Acquisition dates and the percent of cloud coverage for the two described Sentinel-2A
multispectral time series are shown in Figure 3.

Orbits from Figure 3 have some spatial overlapping, as illustrated in Figure 4, however they were
used separately and independently in all experiments. This was done, since the field level data were

221



Remote Sens. 2020, 12, 1590

distributed uniformly over the whole region of interest, but also since images corresponding to one
relative orbit have significant percent of no-data region pixels, and therefore were expected to achieve
higher compression ratios in comparison to images from the other one. Also, having two classification
experiments with almost the same ground-truth data, but different image sources, enables one to
additionally assess stability of the obtained results and their significance.

0

3

6

9

12

15

12/12 1/31 3/21 5/10 6/29 8/18 10/7 11/26

R036

R136

Figure 3. Acquisition dates and the percentage of cloud coverage (CC) for the selected Sentinel-2A
images in the crop thematic mapping. Data correspond to images with small CC from two adjacent
relative orbits of Sentinel-2A in 2016, i.e., time series R036 and R136. Since the winter wheat harvest
season in Serbia usually starts in the beginning of June, and in R036 were no cloud free acquisitions
before the end of the June, in order to improve winter wheat classification R036 also includes one
snow-free image from the winter period.

(a) (b)
Figure 4. Degree of spatial overlap between two adjacent Sentinel-2A relative orbits, (a) R036 and
(b) R136. Shown 20 m images were acquired on 28th and 25th August 2016, as parts R036 and R136.

As the result, two distinct classification datasets were designed and prepared by labeling
individual pixels from the images in multispectral time series, i.e., by using ground-truth crop
type labels extracted from the corresponding shapefiles that were labeled at the level of individual
agricultural plots/parcels.

Characteristics of utilized Level-2 image products were already described in Section 3.1. However,
it should be mentioned that the second type of experiments does not include Landsat-8 images, due to
relatively small size of agricultural parcels in Vojvodina, which in the case of Landsat-8 can be only
a few pixels wide, see [11]. Therefore, in order to eliminate possible influence of the spectral mixing
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effects onto performed compression sensitivity analysis, we have decided to exclude Landsat-8 from
thematic mapping experiments, since there was no possibility to only exclude pixels laying in the crop
field boundaries, due to the highly narrow shape of agricultural plots and the general lack of pixels
within the fields in the case of Landsat-8.

Field level data consist of manually labeled plots corresponding to five predefined crop types
(wheat, maize, sugar beet, sunflower, soybean) and an additional class corresponding to other land
cover types. Each of the labeled plots was planted with only one crop type, and there was no double
cropping. Labels were assigned to individual pixels inside the parcel, and their distribution per each
of the categories, as well as distribution of number of corresponding agricultural parcels per each of
the categories, are shown in the lower part of Tables 2 and 3. For example, note the table entries in the
rows denoted by the symbols “R036” and “R136”, corresponding to the total number of the parcels
falling into paths of the two distinct orbits of interest, respectively.

Table 2. Number of agricultural fields per each of the categories in 10-fold cross-validation of mapping
experiments. Partition subsets, denoted by No, consist of manually labeled crop fields from two
different relative orbits in Figure 4, R036 and R136. Abbreviations: Ma-Maize, Wh-Wheat, So-Soybean,
Sb-Sugar beet, Sn-Sunflower, Ot-Other.

No Ma Wh So Sb Sn Ot Σ No Ma Wh So Sb Sn Ot Σ

1 26 28 14 4 11 8 91 1 23 25 11 2 11 8 80
2 26 28 14 4 11 8 91 2 23 25 11 2 11 8 80
3 26 28 14 4 11 8 91 3 23 25 11 2 10 8 79
4 26 27 14 4 11 8 90 4 23 25 11 2 10 8 79
5 26 27 14 4 11 8 90 5 23 25 11 2 10 8 79
6 26 27 14 4 10 8 89 6 22 25 11 2 10 8 78
7 26 27 14 4 10 8 89 7 22 25 11 2 10 8 78
8 26 27 14 3 10 8 88 8 22 24 11 1 10 7 75
9 26 27 14 3 10 8 88 9 22 24 11 1 10 7 75
10 25 27 14 3 10 8 87 10 22 24 11 1 10 7 75

R036 259 273 140 37 105 80 894 R136 225 247 110 17 102 77 778

Table 3. Number of labeled pixels in 103 per each of the categories of random partition in Table 2.

No Ma Wh So Sb Sn Ot Σ No Ma Wh So Sb Sn Ot Σ

1 9.5 16.8 19.0 5.3 3.5 1.7 55.9 1 21.0 9.2 3.6 1.8 10.1 1.6 47.2
2 22.3 13.5 4.2 3.3 9.0 4.0 56.1 2 5.2 26.2 4.1 6.2 2.2 2.0 46.1
3 21.1 14.5 10.7 5.4 2.0 2.5 56.1 3 22.3 6.4 2.9 1.0 7.3 6.5 46.5
4 24.4 7.8 4.4 2.4 10.0 6.1 55.2 4 14.7 17.5 5.2 0.4 2.5 6.4 46.8
5 9.5 20.5 4.1 13.8 2.9 4.1 55.0 5 5.2 11.4 9.9 3.5 7.7 8.9 46.6
6 12.3 23.5 3.1 5.6 3.9 7.3 55.7 6 14.9 17.6 5.1 2.3 2.4 4.0 46.3
7 9.5 26.1 4.4 5.0 2.6 8.0 55.6 7 7.7 16.0 14.4 0.8 2.7 4.3 45.9
8 15.1 15.7 7.0 7.3 9.1 2.4 56.7 8 25.9 9.4 4.3 0.4 3.7 2.3 46.0
9 12.6 25.4 10.8 1.2 2.5 2.5 55.1 9 11.8 9.5 9.4 3.5 5.7 7.0 46.9
10 15.4 19.5 9.3 3.0 1.9 7.1 56.3 10 10.0 24.8 6.5 0.6 2.4 2.4 46.8

R036 151.9 183.5 76.8 52.4 47.3 45.8 557.9 R136 138.7 147.9 65.3 20.9 46.9 45.5 465.1

Final benchmark dataset of the labeled pixels, corresponding to the multispectral time series R036
and R136, which was utilized in all classification (thematic mapping) experiments, was obtained by
random partitioning of original labeled dataset into ten disjunctive subsets. Partitioning was performed
at the plot level in order to avoid that some pixels from the same field enter into another partition subset.
Consequently, distribution of pixels corresponding to different crop types is not completely uniform
over the 10 different, randomly generated subsets of the partition, Table 3. However, distribution of
number of plots that are corresponding to different crop types over the 10 different subsets of the
partition is approximately uniform, as illustrated by the entries in different rows of the Table 2.
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The same subsets of the random partition shown in Table 3 were used in all performed experiments
for training and testing of classification models, and the average results obtained by the corresponding
10-fold cross-validation performance evaluation procedure were reported in all cases.

4. Experimental Setup and Methods

As previously stated, experiments are divided into two groups, or experimental setups, illustrated
in Figure 5. In the following we give a detailed descriptions of all steps and explore the motivations
for conducted numerical analyses presented in Section 5.
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Figure 5. Processing workflows for comparison of High Efficiency Video Coding (HEVC)’s intra
coding against widely accepted lossy compression solutions: (a) general performance comparison and
(b) application oriented comparison.

4.1. First Set of Experiments—General Coding Performance Comparison

This experimental setup was designed in order to perform the general rate-distortion performance
comparison of the HEVC’s still-image intra-band coding, relative to the standard band-per-band
JPEG 2000 lossy compression. Objective compression performance is measured by the means of
Peak Signal-to-Noise Ratio (PSNR) vs. compression ratio curves. PSNR formulation is given with
10log10

L2

MSE , MSE is mean squared error, and L represents the dynamic range of pixel intensities,
e.g., 216 − 1 for 16 b/p input data. Besides aiming at the objective assessment of lossy compression
effect, we have also analyzed compression artefacts introduced by different coding approaches.
A performance analysis utilizes multispectral satellite image dataset described in Section 3.1.

In the case of JPEG 2000, as the baseline lossy compression solution, a reference
JPEG 2000 implementation made by [79], version 2.3.0, was used with default set of encoder
parameters. Such setup includes Reversible Color Transformation (RCT) and 5/3 wavelet filter,
and number of wavelet resolutions (discrete wavelet transform (DWT) decomposition level) is set to 6.
Wavelet transform is applied to the whole image, thus single tile/segment is used, and the resulting
wavelet transform coefficients are grouped into code-blocks (rectangular regions in the sub-band
wavelet domain) of size 64 × 64. In addition, quality control parameter Q, which corresponds to the
desired PSNR level, is set to some of the discrete values in the range between [30, 136] [dB], with the
step size of 2 [dB] in-between different experiments. This gives 54 unique lossy compression quality
levels obtained by JPEG 2000 per each multispectral image, per each of image bands. It is important
to note that the input quality parameter is targeted value, however exact reconstruction quality level
should be precisely calculated after image reconstruction by performing decoding process, e.g., see
Figure 5a.

For comparison purpose only, in our general coding performance experiments we also included
CCSDS-122.0.B1 image compression standard (we use CCSDS to refer to the given standard). It is
based on similar coding scheme as JPEG 2000 (both are wavelet-based codecs), however with several
features specifically adopted to reduce its complexity [28]. Implementation of the standard, used in
our experiments, is Bit Plane Encoder (BPE) [80]. In contrast to JPEG 2000 wavelet transform, CCSDS
uses integer 9/7 wavelet filter with maximum number of decomposition levels set to 3 (as defined
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by standard). As a quality regulation parameter, compression ratio in terms of b/p is used. In total,
55 different quality levels were obtained during experiments. CCSDS has been used in frame-based
setup (with only one transform segment consisting of all image blocks), which is the most similar to
computation of DWT in JPEG 2000. However, coding blocks in CCSDS are limited to 8 × 8 pixels.
We have also performed some experiments in strip-based mode (with transform segments in form
of strips or lines consisting of image blocks collected in raster order). However, those results were
noticeably lower in terms of achieved PSNR vs. compression ratio performance.

The implementation of the HEVC’s encoder and decoder according to the standardized bit-stream
is represented by the HM-15.0+RExt-8.1 reference software [69]. The set of tools is restricted to intra
coding only by using encoder_intra_main_rext.cfg configuration setup, a.k.a. all intra (AI), which is the
preferred configuration of the HM codec for still images. In our experiments, we use default coding
settings with the respect of the given intra configuration and HM reference software. Tiles are not
used in HM experiments. Essentially, the standardized version of HEVC [3] accepts input data
up to 16 b/p, which makes it suitable for the applications that use high-dimensional and high
bit-depth satellite data. Thus, it is also very important not to downsample satellite images prior
to compression since some sensitive visual information can be lost, and this is the main reason why
we have to use the range extension (RExt) version of HEVC [75]. Therefore, code is build with
RExt_HIGH_BIT_DEPTH_SUPPORT and with ExtendedPrecision flag set to 1, in order to accommodate
16 b/p extension as suggested in [81]. Quality control has been given by the means of the input
quantization parameter Qp, where we vary its value in the range of [−48, 51] with step size of
2 in-between experiments. Note that RExt version of HEVC extends Qp for high bit-depth inputs to
negative values by performing additional internal offset calculations before mapping Qp to actual
quantization step size. Thus, we obtain 50 different quality levels in our experiments, which resulted
in variety of compression ratios, from near lossless to high compression ratios. Although, within
HEVC standardization process, common test conditions for HEVC range extensions [81] have been
specified in order to have unified experimental setup used by multiple groups, we have not complied
strictly with this process, especially as we turn to the specific application which is not covered under
the given specification. In addition, it only defines two tiers of quality estimates (each tier uses
only 4 Qp values taken in-between −37 and −16), which in our use-case is not enough to cover
wider range of compression ratios and to precisely obtain application’s sensitivity to the introduced
compression distortion.

Also, used default configuration of the reference codecs resulted in the best coding performance
for both JPEG 2000, CCSDS, and HEVC. It should be mentioned that JPEG 2000 and CCSDS in all
settings were used without an additional spectral decorrelation step before actual band-by-band
image compression, which also holds for the proposed HEVC. Although there are many examples
of custom encoders from the literature that suggest such spectral decorrelation step, it is usually in
the context of hyperspectral images. In such case, there is much more redundancy present in the
spectral domain than in the case of multispectral images. Also, since baseline JPEG 2000 performs
only spatial decorrelation, HEVC analyses were focused only on the still-image coding and no spectral
decorrelation was considered, e.g., utilization of inter coding mode. That part of the codec is left for
our future research.

Therefore, in our setup we use per-band coding, meaning that each band is compressed individually
as a separate file. Considering HEVC as video based codec, we could also re-arrange all bands of
an image, resembling standard video sequence, and thereafter code all bands jointly as a sequence
of bands resulting in one compressed file (although still by using intra mode only to code all bands).
However, we observed that overhead information introduced by band-by-band compression is
negligible when compared to the sequence coding, and almost identical performance has been obtained.
Thus we chose to code bands individually to be consistent with current EO systems which are organized
in a manner to perform per-band distribution. Similarly can be said for the video based Motion-JPEG
2000 (MJP2) [82], where MJP2 only defines file format for sequences of JPEG 2000 images, and where
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each image is coded as an independent JPEG 2000 codestream. Thus, results are obtained on per-band
basis, and aggregated over image.

Regarding the PSNR vs. compression ratio performance diagrams that will be presented in
Section 5.1, it should be emphasized that the presented PSNR values are averages, computed over all
satellite images in Table 1. However, averaging in the case of the Landsat-8 and the Sentinel-2A/B
images is slightly different, due to the fact that analyzed Sentinel-2A/B image products have varying
number of image channels per each of the supported spatial resolutions of 10, 20, and 60 m (4, 9, and
11 channels, respectively). Thus, in the case of Sentinele-2A/B, in order to have a more representative
average, PSNRs of individual channels where first averaged over the same spatial resolution, and then
three distinct PSNR values were aggregated in the final PSNR of the same image.

Since in the most of the currently operational ground based image distribution systems user
specified image orders are usually provided in the form of bulk downloads, in Section 5 compression
ratio (CR) is computed over all lossy compressed images, without averaging. Such CR values
correspond exactly to the possible use case scenario, like the one considered in this paper, where due to
the specific characteristics of the crop thematic mapping, time series were required to be downloaded
as a whole for the purpose of developing analyzed classifier instances.

4.2. Second Set of Experiments—Crop Thematic Mapping

The other set of experiments is oriented towards the analysis of the compression induced distortion
effects on the specific thematic mapping application. Experiments are conducted on the proposed
Sentinel-2A benchmark dataset given in Section 3.2. Since presented analysis also aims to offer
application oriented comparison of HEVC’s performance, as the foundation for the second set of
experiments, a classic problem of pixel-based crop classification in multispectral satellite images
using time series of georeferrenced surface reflectance measurements has been chosen. Such data
capture the time varying phenology of the plants and make required category discrimination much
more effective. In order to simplify the experimental setup, and enable a fair comparison in terms
of sensitivity of classification performance to various effects caused by different lossy compression
scenarios, instead of object-based classification approach we have decided to rely on pixel-based
classifier. As opposed to object-based approach, it performs feature space partitioning by using
measurements aggregated only at the level of individual pixel, which eliminates possible improvements
that could arise from incorporation of pixel’s neighbourhood, or enhancements resulting from the
postprocessing of pixel-based decisions at the object level. However, such pixel-based approach is
widely accepted solution, which is used in many operational thematic mapping systems.

Thus, classification performance, which is intended to be used as an indicator of the thematic
mapping’s sensitivity to compression effects, is influenced only by the quality of measurements at
the level of individual pixels, and not by the spatial resolution of the sensor nor the structure of
pixel’s neighbourhood. However, through comparison of classifier’s performance with the same
type of decision system utilizing original, uncompressed data, such pixel-based classifier is still
capable of highlighting and reflecting the level of preserved quality of original measurements after
compression, relative to the uncompressed baseline. Potentially, this could be very important in some
other applications besides thematic mapping, which could be oriented more towards computation
of plants’ biophysical parameters, or that would rely on multispectral satellite images with coarser
spatial resolution than Sentinel-2. On the other hand, experimentally measured performance of
such pixel-based classification approach does not reflect the effects of compression on simple image
primitives like edges and textures, which could be important in the case of higher resolution sensors
and predefined or learned object-based image descriptors. However, such effects are possible to
estimate in other ways, including visual inspection of higher resolution lossy compressed images and
their comparison with their coarser resolution counterparts, like Landsat-8 images of the same scene.
Therefore, this was particularly considered in the set of the conducted experiments of the first type,
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described in Section 4.1‚ where the compression performance was analyzed from the general, and not
an application oriented perspective.

As the type of an adequate classification model for the specified thematic mapping task was
used random forest [83], which possesses high generalization capability due to its intrinsic ensemble
structure and the fact that decision trees [84] are particularly suitable for partitioning of feature space
based on simple, yet very informative features corresponding to time varying spectral signatures of
the Earth’s surface.

In order to remove any classification performance bias coming from the specific classifier design
or feature extraction pipeline, in all conducted experiments was used the same classification setting
as proposed in [11]. It consists of feature level fusion that extracts surface reflectance measurements
corresponding to the same image pixel from all bands of all images in the corresponding time series.
This step is followed by an ensemble type random forest classifier with 100 trees of variable depth
(adaptive splitting until all leaves are pure or contain only two samples), and splitting criterion
based on the Gini index and sampling of

√
d random features in each node, where d is the total

dimensionality of the feature space. Classification was implemented in the Python programming
language, using library [85].

However, since individual bands of Sentinel-2 images have varying spatial resolutions
(see Section 3.2), before final feature extraction all multispectral images were: (1) compressed at
their nominal spatial resolution (except in the case of classification model based on uncompressed
image data), and afterwards (2) in the case of 20 m and 60 m Sentinel-2 image channels additionally
upsampled to spatial resolution of 10 m using nearest neighbour interpolation method. The second
step is necessary since we are interested in exploiting as much of available spatial information during
the decision process, e.g., fine signal variations present in 10 m image channels are valuable in the
presence of small crop fields. We would also like to add that the practical implementation of this step
does not require allocation of new memory, since 20 m and 60 m image pixels are just indexed several
times during the feature extraction process, in accordance with their spatial position in the physical
coordinate system. Thus, classifier decisions were made at the highest level of detail, i.e., at the level of
pixels with 10 m of spatial resolution.

Each of the experiments that are introduced in this subsection correspond to the performance
analysis of the selected random forest classifier that was trained and tested using the labeled benchmark
dataset described in Section 3.2, which was initially randomly partitioned into 10 subsets in order to
enable classifier performance evaluation based on 10-fold cross-validation procedure. It should be
noted that each of the experiments is utilizing different type of source data, i.e., the same Sentinel-2A
multispectral images (time series), but with different type and level of lossy compression. Thus,
the performance of the baseline classification model is evaluated using uncompressed image data,
while the rest of experiments are conducted using lossy compressed image time series, obtained
with different sets of encoding control parameters in each experiment, i.e., by varying HEVC and
JPEG 2000 configurations. These configurations were varied in the same manner as in the case of the
first set of general compression experiments that were described in Section 4.1. The only difference is
that instead of both Landsat-8 and Sentinel-2A/B data, in classification experiments only Sentinel-2A
data were utilized.

Since for the selected area we have collected two separate image time series, denoted as R036
and R136, each of the above mentioned experiments was conducted twice, once for each of the two
Sentinel-2A relative orbits. Alternative option would be to combine all these measurements together.
However, as already mentioned before, using data from R036 and R136 separately gives possibility to
mutually compare results of two individual classification analyses under similar experimental setting.
Also, combining data from R036 and R136 would slightly reduce the overall number of training and
test samples per each class in the benchmark dataset. Therefore, such alternative dataset design
strategy was avoided.
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5. Results Analysis and Discussion

All results are presented according to the plan of experiments developed and presented in Section 4
with level of presentation details adapted to the large number of numerical simulations.

5.1. General Compression Performance Comparison

From the perspective of the general compression performance, results from the first set of
experiments, Figure 5a, confirm initial hypothesis that HEVC still-image intra band coding can
be considered as an adequate standardized solution for effective lossy compression of multispectral
satellite images.

5.1.1. PSNR vs. CR—Results

Figure 6 and Table 4 neatly summarize the codecs general performance over the two proposed
image datasets corresponding to—Landsat-8 and Sentinel-2A/B, which were described in detail in
Figure 2 and Table 1. Presented results also highlight variations in compression performance due to
differences in the type of studied image sensors.

(a) (b)
Figure 6. Average Peak Signal-to-Noise Ratio (PSNR) vs. compression ratio performance of the
proposed High Efficiency Video Coding (HEVC), baseline JPEG 2000, and the Consultative Committee
for Space Data Systems (CCSDS) 122.0.B1 standard, over: (a) Landsat-8 and (b) Sentinel-2A/B part of
the dataset described in Figure 2 and Table 1.

Table 4. Achieved compression ratios (CR) at the same level of PSNR. Performance of HEVC is
expressed relative to JPEG 2000 and CCSDS 122.0.B1 CRs over two parts of the proposed dataset.

Landsat-8 CRs

PSNR HEVC JPEG 2000 Rel. Diff. [%] CCSDS Rel. Diff. [%]

55 229.84 89.04 158.13 93.19 146.63
60 60.66 37.14 63.33 39.78 52.48
65 26.29 19.68 33.59 19.30 36.22
70 15.04 12.36 21.68 11.56 30.10

Sentinel-2A/B CRs

PSNR HEVC JPEG 2000 Rel. Diff. [%] CCSDS Rel. Diff. [%]

55 103.94 66.17 57.08 65.02 59.85
60 34.11 26.69 27.80 21.46 58.94
65 16.57 13.69 21.04 10.48 58.11
70 9.84 8.34 17.99 6.56 50.00
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5.1.2. PSNR vs. CR—Analysis and Discussion

Regarding the performance comparison between JPEG 2000 and CCSDS image coding standards,
from Figure 6, we can observe that CCSDS codec perform on par with JPEG 2000 over the majority
of the CRs. The CCSDS results were close, or sometimes even lower, to the results obtained by the
JPEG 2000. Therefore, this codec was left out from the further discussion, e.g., classification sensitivity
analysis. In addition, at higher CRs we note significant deterioration in performance for CCSDS codec.
However, it is expected since CCSDS was not designed to operate on such high CRs.

As measured by preserved image quality, HEVC has shown greater resilience to information
loss, i.e., ability to achieve higher CRs at approximately the same image quality levels as compared to
JPEG 2000. Thus, it can be seen that Landsat-8 images, Figure 6a, tend to be compressed more efficiently,
e.g., have higher compression ratios for the same level of PSNR, when compared to their Sentinel-2
counterparts, Figure 6b. Therefore, relative difference between HEVC and JPEG 2000 performance is
higher when benchmarked exclusively over Landsat-8 part of the adopted general purpose dataset,
which is also summarized in Table 4. This could be explained by the presence of no-data regions,
which are always found in Landsat-8 images (dark/blank areas in the corners of the scene, present
due to orientation of satellite orbits with respect to the image reference system). In contrast, this is not
always the case for Sentinel-2 images (especially in the proposed Sentinel-2A/B part of our general
performance comparison dataset, which turns out to have a very low proportion of no-data regions).
Such blank, uniform regions are naturally easier to be compressed by using block based approach
(characteristic for HEVC), as opposed to wavelet decomposition that is performed on an image as
a whole (in the selected baseline JPEG 2000).

We also remark that HEVC brings substantial savings in the required rate in comparison to
JPEG 2000, as it can be seen from Figure 6 and Table 4. In particular, for mid compression ratios
(high PSNR range, between 65 [dB] and 70 [dB]), HEVC brings from 17.99% up to 33.59% savings
in the required rate with respect to JPEG 2000 (as measured by the relative difference in achieved
compression ratios over Sentinel-2A/B and Landsat-8 parts of the proposed benchmark dataset,
respectively, Table 4). Furthermore, HEVC achieves up to 63.33% reduction in rate over JPEG 2000,
for high compression ratios (low PSNRs) represented by the 60 [dB] entry in Table 4 corresponding
to the results obtained over Landsat-8 part of the proposed dataset. As it can be seen from Figure 6
and Table 4, savings are even higher at 55 [dB], but this range of image quality is already below the one
desirable for crop thematic mapping applications (see Section 5.2). Thus, for very high compression
ratios HEVC can achieve even up to 158.13% of rate improvement over JPEG 2000, as measured over
Landsat-8 images, which is lower for Sentinel-2 images and goes to 57.08%, due to already mentioned
lower presence of no-data regions that are characteristic for Landsat-8 images.

Additionally, in Figure 6 we can see that the performance on very low compression ratios (around
2–3) does not show significant difference between the two benchmarked codecs. Moreover, JPEG 2000
was able to slightly outperform HEVC, as shown in the zoomed part of the diagrams in Figure 6.
However, performance for very low compression ratios should be additionally investigated in greater
detail, e.g., by benchmarking obtained lossy compression results with the lossless versions of the
same codecs, which should be considered as a more appropriate design choice for the described,
specific operational range. Our assumption is that the same compression ratios could be achieved
by lossless modes, leading to a perfect reconstruction. Also, lossless modes usually posses less
computational complexity. However, such analysis is left out from this study and could be part of
potential future work.

5.1.3. Resolution Effects—Results

Since Sentinel-2 image products contain image channels with varying spatial resolutions,
this specific property was exploited to additionally investigate effects of the pixel size on the
compression performance. These results are summarized in Figure 7, where for each spatial resolution
of 10, 20, and 60 m, computed average PSNRs are depicted against the achieved compression ratios.

229



Remote Sens. 2020, 12, 1590

Figure 7. Compression performance comparison over satellite images with different spatial resolutions.
Pixel resolutions of 10, 20, and 60 m correspond to channels of Sentinel-2A/B images listed in Table 1.

5.1.4. Resolution Effects—Analysis and Discussion

We can see that both codecs perform better on higher resolutions (blue lines). Moreover, HEVC
(represented by dotted lines) always shows higher performance margin in comparison to JPEG 2000
(dashed lines), at all spatial resolutions (which was already expected based on the results presented
in Figure 6). However, HEVC’s advantage is particularly exaggerated at the highest level of details,
corresponding to 10 m spatial resolution, where, e.g., at 60 [dB] we can see significantly higher margin
between HEVC and JPEG 2000’s compression ratios, as compared to other spatial resolutions. This was
natural to expect, since images with higher spatial resolution have higher presence of uniform image
regions, and these regions are also expected to have larger size (image extent in pixels) in comparison
to images with coarser spatial resolution of 20 m, or 60 m per pixel.

5.1.5. Visual Comparison—Results

As an adequate testbed for qualitative assessment of the benchmarked codecs we have selected
an image region with the complex scene content, corresponding to agricultural holdings, forest and
water bodies in North Carolina, entry No 7 form Table 1. Visual illustrations of the obtained results
are presented in Figure 8, where true color composites of original images are ordered according to
Sentinel-2 image spatial resolutions (10, 20, and 60 m) and the selected, representative levels of PSNR
(56, 60 and 70 [dB]). True color composites of lossy compressed 30 m Landsat-8 image of the same
region are also presented in Figure 9.

5.1.6. Visual Comparison—Analysis and Discussion

As expected, visual inspection of results in Figures 8 and 9 reveals that in the case of both codecs
the presence of compression artefacts is becoming more significant after the mid-range of 60 [dB]
(the last two columns). Also, compression effects are dependant on spatial resolution, and the perceived
rate of image degradation is higher towards the lower resolutions of 20, and 60 m, even at the same
level of PSNR (e.g., Figure 8e,h or Figure 8f,i).

However, it is particularly interesting to note that, based on visual comparison, HEVC
outperforms JPEG 2000 even at the same level of PSNR, consistently over all spatial resolutions.
This is easiest to see at 60 [dB], even at the highest spatial resolution of 10 m, Figure 8b. In addition,
savings introduced by the HEVC’s higher compression ratio over JPEG 2000 at the same PSNR level
of 60 [dB], were already shown to be 27.80%, Table 4. Thus, besides the significant gain in achieved
compression ratios in the case of the proposed HEVC solution, visual inspection confirms that the
object boundaries are also better preserved, i.e., object boundaries in the image are much sharper and
have a more precise shape with less visual distortions (blurring effect). For example, lake and field
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boundaries in the upper part of Figure 8b, and objects at smaller spatial scale. For the best comparison,
10 m images in Figure 8b should be analyzed enlarged, side by side, at the computer screen.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8. Visual comparison of HEVC and JPEG 2000 at the same level of PSNR. The first column

corresponds to Sentinel 2 images of 10, 20, and 60 m generated at high PSNR of 70 [dB]. In the
second column are images with 60 [dB], while in the last column are images with approximate lower
borderline quality of 56 [dB]. Each pair of rows (3 in total) represents satellite images at exclusively one
of the following spatial resolutions: 10 m (a–c), 20 m (d–f), and 60 m (g–i), respectively. The first row

in each pair corresponds to obtained HEVC results, e.g., the first row of (a–c), while the second row in
each pair is reserved for JPEG 2000 results with the same level of PSNR and spatial resolution (e.g.,
10 m for (a–c)). Presented image detail was taken from the test scene No 7 in Table 1, Figure 2g.
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(a) (b) (c)
Figure 9. HEVC (upper row) vs. JPEG 2000 (lower row) on the example of an 30 m Landsat-8 image
detail corresponding to the same area as shown in Figure 8. Results are the most comparable to those
shown in Figure 8d–f. Columns (a–c) correspond to PSNR of 70, 60, and 56 [dB], respectively.

Differences in compression effects among HEVC and JPEG 2000 at high PSNR of 70 [dB] are
definitely more subtle (the first column in Figure 8). However, based on objective assessment there is
still significant relative difference in achieved compression ratios between HEVC and JPEG 2000 at
this high PSNR range (from 17.99% up to 21.68% according to Table 4).

Regarding comparison over 30 m Landsat-8 image, Figure 9, it is worth mentioning that by visual
inspection at mid and low PSNR range it is easier to become aware of blocking artifacts introduced by
HEVC, in comparison to 20 m or even 60 m Sentinel-2 images with same image quality in Figure 8
(e.g., compare Figure 8h and Figure 9b). Latter is rather strange, since 30 m image contains four times
more pixels than a 60 m one. However, it can be explained by the scale of objects present in the
scene and the fact that a 60 m image channel inherently already has significant amount of spectral
mixing (less features of the scene geometry), i.e., only large scale scene details are recorded in the
uncompressed original image.

Again, HEVC shows better ability to preserve image details (e.g., lake boundaries), however it
is less obvious than in the case of 10 m and 20 m Sentinel-2 images due to lower spatial resolution
(especially at lower PSNRs, the last two columns). As expected, results also reveal that at lower spatial
resolutions and PSNR levels more blocking effects are present. E.g., when the upper image in Figure 9b
with a 60 [dB] is enlarged next to the upper image in Figure 9a (which at 70 [dB] is very close to the
30 m uncompressed original).

5.2. Application Oriented Compression Performance Comparison

In addition to the general compression performance analysis, it is also tempting to validate
previously presented results from the standpoint of some practical remote sensing application. Thus,
in the following are the analyses measuring sensitivity of the specific remote sensing classification task
in the presence of lossy compressed input data. The same set of experiments, illustrated in Figure 5b
and described in Section 4.2, was conducted twice, independently over two different subsets R036 and
R136 of the prepared ground-truth dataset introduced in Section 3.2.

5.2.1. Classification Sensitivity—Results

Performed analyses consist of benchmarking classifiers’ performance against the lossy compressed
images generated by the HEVC and the JPEG 2000. This means that for the each of the codecs’
configurations (driven by different values of the corresponding quality control parameters), datasets
R036 and R136 were lossy compressed each time, and the new instance of the same learning model
type was trained and tested.
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Thus, in Figure 10, for each experiment (classifier instance), a pair of values corresponding to
the overall classification accuracy (OA) and the achieved compression ratio (CR) was plotted. For the
sake of completeness, in Table 5, are also provided results of the two classifier instances based on the
original, uncompressed image data, while their OAs are plotted by the solid red lines in Figure 10.

(a) (b)

(c) (d)

Figure 10. Sensitivity of classification performance, as illustrated by the overall classification accuracies
(OAs) against the compression ratios (CRs) achieved by the HEVC intra and the JPEG 2000 image
codecs. Diagrams (a,b) and (c,d) correspond to experiments based on time series R036 and R136, while
the solid red lines denote OAs of the “original” classifier instances reported in Table 5. Higher CRs are
given in log scale in (b,d).

Table 5. Accuracy assessment matrices for two classifier instances based on the original, uncompressed
time series data, R036 and R136. Symbols are the same as in Table 2. Values represent number of pixels
in 103. Column labels denote classifier decisions, while the row labels represent true crop categories.
Overall accuracy (OA), Cohen’s Kappa statistic (KP) and the KP confidence intervals (CI) are given at
the bottom of the table.

R036 Ma Wh So Sb Sn Ot R136 Ma Wh So Sb Sn Ot

Ma 148.6 0.4 1.5 0.2 0.9 0.1 Ma 137.0 0.3 0.5 0.0 0.6 0.1
Wh 0.5 181.6 0.6 0.0 0.3 0.4 Wh 0.3 146.7 0.0 0.0 0.2 0.7
So 4.7 0.3 67.0 1.4 3.2 0.2 So 0.9 1.4 60.6 0.1 2.0 0.3
Sb 0.6 0.1 0.5 51.0 0.2 0.0 Sb 0.0 0.0 0.2 20.5 0.1 0.0
Sn 1.3 0.4 0.4 0.3 44.7 0.1 Sn 1.0 0.5 0.1 0.2 45.0 0.1
Ot 4.9 3.1 0.3 0.1 0.8 36.6 Ot 0.5 8.4 0.2 0.1 0.0 36.2

OA = 94.95% KP = 0.94 CI = [0.9339 0.9354] OA = 95.90% KP = 0.95 CI = [0.9471 0.9456]

5.2.2. Classification Sensitivity—Analysis and Discussion

Based on Figure 10, it can be said that the initial assumption regarding the possibility of lossy
compression having a positive impact on the classification performance at low compression ratios
proved to be valid, since the compression side effects (e.g., noise canceling) led to better classifier
performance at lower CRs, in the case of both benchmarked codecs and for the both R036 and R136
test subsets. Also, in Figure 10 we can see that the JPEG 2000 performs quite well for the CRs of
up to 35:1 (dashed lines), mostly without any loss in performance when compared to the original
classifiers, which were trained and tested on the uncompressed data (red lines). At the same time,
HEVC (dotted lines) can achieve the same (or even better) classification accuracy in comparison to the
original classifiers (OA’s represented by the red lines), even at compression ratios of up to 70:1, leading
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to a nearly 100% relative improvement in achieved CR (potential savings) over JPEG 2000. The range of
compression ratios leading to such OAs, which are close to the ones achieved by the original classifiers,
could be regarded as the first operational range, when considered in the context of the selection of
an optimal compression strategy. Therefore, points towards the end of the described range should
be regarded as the effective codec configuration choices for efficient distribution of the lossy image
data applied in crop thematic mapping. Moreover, since high temporal resolution signatures of the
vegetation pixels require dense image time series, any potential savings in storage and communication
requirements could be significant in the case of the constrained time or memory resources.

On the other hand, JPEG 2000 is able to provide sufficiently high classification accuracies when
data are compressed with CRs of up to 60:1 for R036, or 70:1 for R136, maintaining OA within the
acceptable loss margin of 0.5%. However, HEVC has demonstrated ability to maintain approximately
the same classification performance (losing no more than 0.5% of accuracy) for CRs of up to 150:1,
in the case of R036, and up to 140:1, for R136 test subset, as in Figure 10. It is a limit after which
distortions begin to have significant influence on the overall classification performance. For example,
in comparison to HEVC, at same CR JPEG 2000 loses on OA are around 1.5% and 1.2% for R136 and
R036, respectively.

Therefore, breaking points of HEVC and JPEG 2000 curves in Figure 10 could be considered
as the examples of the indicators designed to measure codec’s expected performance in application
oriented lossy compression scenarios. Implications of the presented sensitivity analyses, conducted
over both R036 and R136, confirm that at the relatively high CRs (which are determined by the
application specific, performance loss margin) the proposed HEVC based solution is able to better
preserve features important for more accurate classification, as compared to the JPEG 2000, when
the same CR has been accounted for—leading to the higher savings in storage and communication
requirements of the ground based data distribution segment.

Although it may not be considered to be of significant practical importance for the considered
application task, codecs’ behavior for the higher compression ratios (with loss margin larger than the
0.5% of the overall accuracy of the original classifier) is also shown in Figure 10b,d.

In the context of the crop thematic mapping, spatial dependant relationships may be an important
part to analyze in more detail. However, significance of the particular, individual image channels and
the impact of the level of distortion introduced during compression at different spatial resolutions on
the overall classification accuracy will be the subject of our future work, especially from the standpoint
of adaptive control parameter selection for optimal compression performance and classifier design.

5.2.3. Crop Thematic Maps—Results

Besides the comparative quantitative analyses presented in Figure 10, in order to further discuss
the performance of HEVC and JPEG 2000 based solutions, we also provide a type of qualitative
assessment of the achieved classification performance. It is based on the visual inspection of the
obtained crop thematic maps and their differences, see Figure 11.

As the result of HEVC’s higher effectiveness, as shown in Section 5.1, it was expected that HEVC
based lossy compressed images should also generally provide better application oriented performance
(higher quality crop thematic maps). In particular, it was expected that even at low CRs, where there is
less difference between HEVC’s and JPEG 2000’s performance, visual inspection of the corresponding
thematic maps should also reveal better visual quality of classification maps produced using HEVC
encoded images. This was the main motivation for illustrations presented in Figure 11, which have
confirmed described initial assumptions, and gave additional insights into complex relationship
between lossy compressed image quality and classification performance.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

(l) (m) (n)

(o) (p) (q)

(r) (s) (t)
Figure 11. Illustration of the compression effects on the quality of generated crop thematic maps. Each
of the columns 2–4 gives visual insights into sensitivity at achieved image compression ratios (CRs)
of approximately 25:1, 75:1, and 200:1, respectively. Classification map (e) in the first column is based
on the the original, uncompressed image time series, shown in (a). Images (b–d) and (f–h) are the
NIR-red-green false color composites of the same scene detail produced by the HEVC and the JPEG 2000
for the considered CRs, respectively. Similarly, group of images (i–k) are the crop thematic maps made
by classifier instances tbased on the proposed HEVC solution, while the maps (o–q) are the results of
applying JPEG 2000. Differences between HEVC based classification maps (i–k), as well as JPEG 2000
based maps (o–q), in comparison to the original map (e) are illustrated by the yellow pixels in (l–n) for
the HEVC, and (r–t) for the JPEG 2000.
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5.2.4. Visual Comparison of Classification Maps—Analysis and Discussion

Examples in Figure 11 were selected in order to indicate an important fact - that the classification
maps obtained by the HEVC and the JPEG 2000 with approximately the same CRs (around 25:1,
75:1, and 200:1) result in the crop thematic maps that are visibly more accurate in the case of the
HEVC compression. This can be confirmed by the visual comparison of the corresponding difference
images, computed between the map produced by original classifier and each of the maps produced by
HEVC and JPEG 2000 based solutions (obtained at the same CR), i.e., by comparison of: Figure 11l vs.
Figure 11r; Figure 11m vs. Figure 11s; and Figure 11n vs. Figure 11t. Difference images reveal changes
in decision maps made by the original classifier (relying on uncompressed data), Figure 11e, and the
maps produced by the three selected lossy compression instances of the same classification model,
illustrated in Figure 11i–k,o–q.

Thus, by inspection of the given pairs of figures, it is clear that at all considered CRs (corresponding
to different columns of Figure 11), there are always more yellow pixels (dissimilarities) in the case of
JPEG 2000, as opposed to HEVC based solution. It is interesting to see that differences are also visible
in the case of low compression ratio, e.g., 25:1, where HEVC produces visually better map, compare
Figure 11l against Figure 11r, even that classifiers’ OA is approximately the same at the given CR,
e.g., see Figure 10. The same trend is even more exaggerated at the higher CR’s (column 3–4), where
according to the previously presented results HEVC achieves even better level of the corresponding
quality-compression trade-off against JPEG 2000. However, it should also be noted that in both
cases, at low CRs (second column) classification maps are the most sensitive to compression effects
affecting fine image details, like the boundaries between fields or the lines corresponding to roads.
This is understandable, since at the boundaries of different objects in the scene there is naturally
more spectral mixing and it is harder to delineate different categories in the corresponding feature
space, which makes them the most sensitive to any signal variations. On the other hand, as expected,
higher CRs result in noisier maps, or even complete misclassification. Again, smaller fields, which
are harder to delineate, are more suspectable to errors. In addition to the above discussion, we would
also like to note that the presented map differences at lower CRs (higher PSNR) are not necessarily
corresponding to classification errors, since the map in Figure 11e does not represent the ground-truth,
but the decisions of the original classifier instance (which is also prone to errors), while the previously
presented quantitative analyses revealed that the small amount of lossy compression can have a noise
canceling effect and bring additional improvements in the overall classification performance.

5.3. Classification Results from the Statistical Significance Perspective

Since presented sensitivity analyses in Section 5.2 were based on extensive numerical simulations,
there is a question of statistical significance of difference between results corresponding to different
classifier instances, i.e., lossy compression experiments driven by different values of corresponding
HEVC and JPEG 2000 control parameters, Figure 5b.

In total, for each R036 and R136 dataset there were 104 unique numerical experiments,
50 corresponding to HEVC and 54 to JPEG 2000, covering approximately the same range of image
quality levels. Each of the reported outcomes, plotted in Figure 10, represents the statistically
cross-validated classification performance measure, i.e., in the given case overall accuracy (OA).
However, for the purpose of measuring statistical significance of difference between each pair of
conducted experiments, we have decided to analyse another aggregate performance measure, the
Cohen’s Kappa coefficient [86], which compactly integrates both “type I” and “type II” classification
errors into one representative performance measure, i.e., efficiently aggregates the off-diagonal
elements present in the corresponding accuracy assessment matrix of each experiment. Thus, for each
pair of the experiments, represented by the estimated Kappa coefficients, the null hypothesis of two
Kappa values being the same was tested with the level of 5% of statistical significance. Results of
all statistical tests are graphically presented by the upper triangular matrix in Figure 12, with circles
denoting the positive outcomes (rejection of null hypothesis).
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Figure 12. Results of the tests of statistical significance of difference among the classification results
produced by the crop thematic mappers based on the HEVC and the JPEG 2000. Missing entries indicate
pairs of experiments with non-significant differences. Coloured circles above the main diagonal indicate
rejections of the null hypothesis, and denote the pairs of experiments with significantly different
classification performance. Tests were based on the Cohen’s Kappa statistic and the significance level
of 5%. Black circles on the main diagonal correspond to the tests of all 104 experiments against the
classification results expected to be produced by chance, while the circles in red correspond to the tests
against original classifier based on the uncompressed image data in the time series R036. Other regions
are coloured according to the type of test (exclusively within the HEVC based results, light and dark blue;
or exclusively within the JPEG 2000, the green ones). Orange and yellow regions are the crosswise tests
between the HEVC and the JPEG 2000. Aligned above the test matrix is the bar diagram representing
compression ratios (CRs) achieved by the each of the experiments. Interpretations of regions illustrated
by different colours and discussion of tests implications are given in Section 5.3.1.
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Thus, when present, circles above the main diagonal denote that the experiments’ outcomes (Kappa
coefficients) were significantly different, while the elements on the main diagonal (except the first
one) denote that the each of the associated experiments resulted in classification that was significantly
different from the one expected by chance. Finally, indices of the first element in the 105 × 105 test
matrix in Figure 12 denote the original classifier, based on the uncompressed image data from the time
series R036.

5.3.1. Analysis of Observed Patterns and Discussion of Their Implications

Figure 12 shows that in the most cases experiments based on different (lossy compressed) input
data resulted in different classification performance. Presented illustration also reveals that for some
choices of codecs’ configuration parameters (varied in the defined range of values by the constant
step size) there appear small “clusters” of empty circles, i.e., experiments resulting in classification
performance that could be regarded as the same in the statistical sense. However, the most interesting
insight is that observed clusters can be visually grouped into different “compression comparison
zones”, or regions, illustrated by different colours in Figure 12. Moreover, the regions seem to be not
arbitrary, but aligned with the experiments corresponding to different working regimes (compression
ratios) of the compared HEVC and JPEG 2000 image codecs. Therefore, besides the test matrix, upper
part of Figure 12 also includes the graphical illustration of the computed CR for each experiment
(the bar diagram that is aligned with the matrix columns and shown in the log scale). The bar
diagram also has an additional purpose, to delineate matrix columns (i.e., rows) corresponding to
experiments considering HEVC and JPEG 2000. Therefore, with the help of the bar diagram, it is easy
to distinguish between the two, by considering the two distinctive parts of the diagram—the first one
on the left, representing the HEVC related CRs, and the second one on the right, depicting considered
JPEG 2000 configurations.

In Figure 12 we have identified several regions, which is also reflected in the choice of the selected
colours. Thus, the light blue and the dark blue regions correspond to the tests of statistical significance
among the experiments exclusively utilizing the HEVC based data with different CRs, while the light
green and the dark green correspond to the experiments exclusively based on the JPEG 2000 input data.
The remaining regions, the orange one and the “L” shaped yellow one, correspond to crosswise tests
among experiments based on different configurations of the HEVC and the JPEG 2000.

Last, but not the least important, is the group of tests illustrated by the red colour, the first row of
the test matrix in Figure 12. It illustrates the significance of difference among all 104 “lossy classifiers”
and the “original” classifier (based on the uncompressed image data and represented by the the
first element of the test matrix, i.e., by the first “missing” circle in the first row). The red region, i.e.,
the first row, reveals that there are more empty spaces (missing circles) among the set of columns
in the first row that are representing the HEVC solution, as opposed to the one associated with the
JPEG 2000. This is another confirmation that among the HEVC based classifiers operating at the
relatively moderate compression ratios (up to 16:1), there are more classifiers that can achieve the
classification performance that is (in the statistical sense) the same as as the one achieved by the
original classifier—as compared to the JPEG 2000, which has only one empty circle in the red region of
the given example in Figure 12 (at CR of 13:1). Moreover, when compared by using described Kappa
based tests of statistical significance, it is also clear that the bar values (CRs) corresponding to the
missing red circles in Figure 12 grow faster in the case of the HEVC, as compared to the CR entries
preceding the missing red circle in the case of the the JPEG 2000. This is in full accordance with the
results and implications of the previously discussed sensitivity analysis in Figure 10a, where the HEVC
was able to preserve the OAs close to the original one much longer, in comparison to the JPEG 2000
(up to significantly higher CRs).

We would also like to note that in the Figure 10a the breaking points of the HEVC and the
JPEG 2000 performance with respect to the OA of the original classifier (red line), were at CRs of
70:1 and 35:1, respectively, Figure 10a. In both cases, these values are significantly higher than the
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above mentioned Kappa based CRs with similar interpretation, in Figure 12. This indicates that
establishing equivalence between lossy compression based solutions and original classifier, besides
being application dependant also requires careful consideration of the adopted metrics. However,
we should also emphasize that the red circles in the first row of Figure 12 do not indicate to what extent
an experiment with the OA close to the one achieved by the original classifier is different (like in the
case of the red circle in column 32 of the test matrix, closely corresponding to the HEVC’s CR limit of
70:1). However, in the given case, based on Figure 10a, we can say that their (OA) performance is
almost the same.

In the column direction, the triangular light blue HEVC region in Figure 12 ends at CR of ≈ 130:1

(column 34 of the test matrix), while the light green JPEG 2000 region ends at CR of ≈ 53:1 (column 92).
The shared characteristic of both triangular regions is that they correspond to relatively low CRs, as well
as to the statistical tests performed exclusively among the pairs of experiments based on the same type
of compression algorithm (HEVC or JPEG 2000).

The fact that in the light blue and the light green matrix regions there is a significant number of
missing circles is also interesting and indicates that many of the classifier instances could be regarded
as mutually equivalent at relatively low CRs. In that sense, the following hypothesis could also be
established. Let us consider the HEVC based classifier with CR closest to the previously discussed
performance limit of 70:1 (highest CR in Figure 10a at which OA is still the same as the one of the
original classifier). The closest experiment to this point in Figure 12 is the red circle in column 32 of
the test matrix (to be precise, this circle has CR of ≈ 75:1). According to previous discussion, this
experiment results in classification that is statistically different from the original one (due to the
presence of the red circle). However, the test matrix in Figure 12 also shows that in the second row of
the same column 32 there is a missing light blue circle, which indicates that (in the statistical sense) the
classification performance of the HEVC classifier with CR of 75:1 in column 32 could be the same as the
performance of the HEVC based mapper with very low CR of less than 2:1 in the column 2 (i.e., the one
denoted with the black circle in the row 2). Since CR of 2:1 should be expected to produce an image
with very high PSNR and very close to the original (uncompressed) one, it could be said that based
on Figure 12 the performance of the HEVC based mappper at CR of 70:1 is very close to the original
classifier. Moreover, the same also holds for the column 33 in Figure 12 with CR of 99:1, where the
similar type of the equivalence with the original classifier could be established.

Finally, the limit of the light blue region at CR of ≈130:1 is very close to the HEVC CR limit of
150:1, which according to Figure 10a corresponds to the lower bound of the 0.5% OA performance loss
margin in Figure 10a. On the other hand, the dark blue HEVC region in Figure 12, characterized by
no missing circles, starts at the column 35 of the test matrix, and corresponds to the CR of ≈ 170:1.
Since 150 is an exact average of the two values (130 and 170), results of the tests in Figure 12 indirectly
confirm that the HEVC’s CR limit of 150:1 (determined from the HEVC curve in Figure 10a by the 0.5%
accuracy loss margin) corresponds exactly to the HEVC experiment that would be positioned on the
border between the light blue and the dark blue region in Figure 12. This result is also interesting since
it provides an empirical answer to the question what should be considered as an acceptable level of
the performance loss (in the terms of the overall classification accuracy) in the case of the thematic
mapping based on lossy compression in comparison to the original classifier. Since the loss margin
level of 0.5% has been previously proposed, presented results could be regarded as an empirical
confirmation of these findings.

In the same line with the above mentioned, based on Figure 10a, CR limit of the JPEG 2000
is estimated to be around 60:1 (corresponding to the 0.5% drop in performance with respect to the
original classifier), which is almost exactly the value that is obtained as the average of the CR values
corresponding to the last column in the light green region of the test matrix in Figure 12 (column 92,
CR 53:1), and the first column in the dark green region (column 93, CR 78:1) of the same matrix.

Regarding the rest of the entries in Figure 12, it is noticeable that in the case of the both HEVC
and the JPEG 2000, when mutually compared at relatively low CRs (experiments determined by the
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row and column indices of the rectangular, orange region) there is a larger number of statistically
similar codec configurations. However, it is also interesting that the empty circles are mostly clustered
along the vertical or horizontal lines, which implies that at this high PSNR range there are some
classifier instances that have almost the same performance as several classifiers based on the other
type of encoder. Nevertheless, it is clear that the CR bars corresponding to row indices representing
HEVC in this orange region are significantly higher than the bars representing CRs of the compared
JPEG 2000 solutions (corresponding to column indices).

The dark blue and the dark green matrix regions confirm that the both HEVC and the
JPEG 2000 mappers at high CRs produce classification results that are statistically significantly different
among themselves, as well as in comparison to the original classifier. The same conclusion holds
in the case of the HEVC vs. JPEG 2000 crosswise tests, represented by the “L” shaped yellow region
in Figure 12, where there were confirmed only two non-significant entries, which could be regarded as
possible outliers.

6. Conclusions and Future Work

In this work we gave comprehensive analysis of the HEVC still-image intra coding part applied to
the multispectral image data. Obtained results were compared with standard JPEG 2000 solutions, and
significantly better compression performance has been observed. In addition, specific crop classification
task has been considered as an additional measure of HEVC’s performance against JPEG 2000.
We showed that HEVC is able to outperform JPEG 2000 with regard to the preservation of features
important for accurate classification. According to the obtained results, HEVC has demonstrated ability
to maintain approximately the same classification accuracy for CR up to 150:1, which for JPEG 2000
on the same test set and the same accuracy has been shown to be up to 70:1 of CR. Results of the
qualitative analysis based on visual inspection have also proved that HEVC can be regarded as a better
compression solution. Even at the same level of PSNR (which also means higher CR in the case of
HEVC), HEVC results were able to visually demonstrate higher level of the preserved image details in
comparison to the JPEG 2000.

In future research, we plan to analyze in details the impact of the particular (individual) image
channels and the level of distortion introduced during compression at different resolutions on
classification accuracy. In particular, our research efforts will be oriented towards adaptive parameter
selection for optimal compression performance considering different image scales with different level
of useful information. Also, we will explore additional HEVC’s features, and we will try to investigate
different strategies on how to improve coding gain (including inter-based prediction). In that way,
our plan will be to compare some custom coding approach based on the transform-based spectral
decorrelation (which is considered as a state-of-the-art approach), with spectral decorrelation based
on the standardized block-based prediction achieved by utilizing HEVC inter coding mode. Part of
our focus will also be on HEVC’s complexity reduction from the algorithmic standpoint of view.
As we have successfully showed that the certain level of image quality degradation can be acceptable,
we will also continue to investigate the effects of the HEVC compression on other applications in
remote sensing. In that sense we believe that this work will contribute to the introduction of the
lossy compression based solutions in the ground segment of the currently operational satellite image
distribution systems.
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Abstract: This work aims at addressing two issues simultaneously: data compression at input space
and semantic segmentation. Semantic segmentation of remotely sensed multi- or hyperspectral
images through deep learning (DL) artificial neural networks (ANN) delivers as output the
corresponding matrix of pixels classified elementwise, achieving competitive performance metrics.
With technological progress, current remote sensing (RS) sensors have more spectral bands and
higher spatial resolution than before, which means a greater number of pixels in the same area.
Nevertheless, the more spectral bands and the greater number of pixels, the higher the computational
complexity and the longer the processing times. Therefore, without dimensionality reduction,
the classification task is challenging, particularly if large areas have to be processed. To solve this
problem, our approach maps an RS-image or third-order tensor into a core tensor, representative of
our input image, with the same spatial domain but with a lower number of new tensor bands using a
Tucker decomposition (TKD). Then, a new input space with reduced dimensionality is built. To find
the core tensor, the higher-order orthogonal iteration (HOOI) algorithm is used. A fully convolutional
network (FCN) is employed afterwards to classify at the pixel domain, each core tensor. The whole
framework, called here HOOI-FCN, achieves high performance metrics competitive with some
RS-multispectral images (MSI) semantic segmentation state-of-the-art methods, while significantly
reducing computational complexity, and thereby, processing time. We used a Sentinel-2 image data
set from Central Europe as a case study, for which our framework outperformed other methods
(included the FCN itself) with average pixel accuracy (PA) of 90% (computational time ∼90s) and nine
spectral bands, achieving a higher average PA of 91.97% (computational time ∼36.5s), and average
PA of 91.56% (computational time ∼9.5s) for seven and five new tensor bands, respectively.

Keywords: fully convolutional network; semantic segmentation; spectral image; tensor decomposition

1. Introduction

Remote sensing RS images are of great use in many earth observation applications, such as
agriculture, forest monitoring, disaster prevention, security affairs, and others [1]. The recent and
upcoming availability of multispectral and hyperspectral satellites alleviates specific tasks, such as
detection, classification, and semantic segmentation. In semantic segmentation, also called pixel-wise
classification, each pixel in an RS image is assigned to one class [1]. This classification becomes easier
when higher dimensional spectral information is acquired [1]. Spectral systems split, by physical filters,
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the incoming radiance, and provide a vector with spectral reflectance values called spectral signatures.
The remotely sensed spectral signatures enable a precise interpretation and recognition of different
elements of interest covering the earth surface [2].

Supervised and unsupervised classification of RS images is a very active research area in spectral
analysis [3]. To reduce the data dimensionality, and to concentrate the information into a fewer
number of features, a once widely used approach was to define various indices to facilitate the
classification of diverse land cover [4]. For instance, normalized difference vegetation index (NDVI) [5]
and normalized difference water index (NDWI) [6] use a combination of visible to near infrared
(NIR) spectral reflectance respectively, to assess land cover, vegetation vitality, and water status [4].
Additionally, supervised machine learning techniques such as random forest [7], support vector
machine (SVM) [8,9], decision trees [10], and ANN [11] have been used for RS spectral image
classification and have achieved very high accuracy rates [12]. More recently, CNN has been used
for semantic segmentation of multispectral images (MSI), promising to be an alternative for solving
semantic segmentation issues [13].

The high spectral redundancy of spectral images produces a huge unnecessary number of
computations in classification/segmentation algorithms. It is therefore advisable to implement these
algorithms together with a dimensionality reduction preprocessing [14]. Spectral data are stored
as three-dimensional arrays, so it seems possible to use tensor decomposition (TD) methods [15]
for preprocessing, to reduce high redundancy while avoiding information loss [14]. Different to
matrix-based decomposition algorithms, such as principal components analysis (PCA) [16] and SVD,
TD approach allows to treat spectral data as third-order tensor preserving the spatial information,
which sustains the pixel-wise classification task.

In this work we aim addressing two main issues: data compression at input space, and semantic
segmentation; i.e., pixel-wise classification of RS imagery. We introduce a spectral data preprocessing
that preserves tensor structure and reduces information loss through tensor algebra [17], with the
ultimate aim of reducing processing time while keeping high accuracy in further semantic segmentation
CNNs. This will produce MSI compression, preserving the spatial domain while reducing the
spectral domain, decomposing the original tensor into a core tensor with same order but much lower
dimensionality multiplied by a matrix in each mode in the context of tensor algebra [17]. The core
tensor, with lower rank than the original data, is used as the input data to the semantic segmentation
ANN instead of the MSIs, decreasing the number of computations and in turn the execution time.
Previous experimental results demonstrate high performance in semantic segmentation with circa 10×
speed up in execution time [18].

The proposed framework can be applied to multispectral, hyperspectral, and even multitemporal
datasets. As a particular case, in this study we performed experiments using RS multispectral dataset
from the european space agency (ESA) program Sentinel-2 [19] with five classes (soil, water, vegetation,
cloud, and shadow).

1.1. Related Work

In recent years, spectral data for earth surface classification has been a very active research area.
Methods proposed by Kemker et al. [11,20], Hamida et al. [21], and López et al. [18] use CNNs for
RS-CNNMSI pixel-wise classification. Nevertheless, processing raw spectral data with deep learning
(DL) algorithms is computationally very expensive. Wang et al. [22] introduced a salient band selection
method for HSIs by manifold ranking, and Li et al. [23] proposed a band selection method from the
perspective of spectral shape similarity analysis of RS-HSIs to obtain less computational complexity.
However, some surface materials differentiate from each other in specific bands, so cutting off spectral
bands negatively affected further classification tasks.

More recently, the use of tensor approach for spectral images compression has been introduced;
see Zhang et al. [24]. Many authors adopted dimensionality reduction algorithms, such as PCA [16] and
singular value decomposition (SVD), for spectral image compression. Other authors have made efforts
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to reduce the computational cost in CNNs for image classification by using TD algorithms [25,26].
Astrid et al. in [25] proposed a CNN compression method based on CPD and the tensor power method
where they achieved significant reduction in memory and computational cost. Chien et al. in [26]
presents a tensor-factorized ANN, which integrates TD and ANNs for multi-way feature extraction
and classification. Nevertheless, although the idea is to compress data in order to reduce computational
cost and processing time, these works compress or decompose the data of the hyper-parameters within
the network, which causes the training of the semantic segmentation or classification network to be
slower due to the change of the weights in the tensor decomposition.

Recently, three works close to our research [27–29] were published. In [27] An et al. proposed an
unsupervised tensor-based multiscale low rank decomposition (T-MLRD) method for hyperspectral
image dimensionality reduction, and Li et al. in [28] proposed a low-complexity compression approach
for multispectral images based on convolution neural networks CNNs with nonnegative Tucker
decomposition (NTD). Nevertheless, these methods reduce the tensor in every dimension, which
is self-defeating for a segmentation CNN. Besides, the non-negative decomposed tensor proposed
in [28] causes slower convergence in DL algorithms. In [29] An et al. proposed a tensor discriminant
analysis (TDA) model via compact feature representation, wherein the traditional linear discriminant
analysis was extended to tensor space to make the resulting feature representation more discriminant.
However, this approach still leads to a degradation of the spatial resolution, which disturbed the CNN
performance. See Table 1 for a summary of the related works.

Table 1. Related work in spectral imagery semantic segmentation.

Reference Input Decomposition Reduction Classifier

Li, S. et al. [23] (2014) HSI - Band selection SVM
Zhang, L. et al. [24] (2015) HSI TKD Spatial-Spectral -
Wan, Q. et al. [22] (2016) HSI - Band selection SVM/kNN/CART
Kemke, R. et al. [11] (2017) MSI - - CNN
Hamida, A. et al. [21] (2017) MSI - - CNN
Li, J. et al. [28] (2019) MSI NTD-CNN Spatial-spectral -
An, J. et al. [27] (2019) HSI T-MLRD Spatial-spectral SVM/1NN
An, J. et al. [29] (2019) HSI TDA Spatial-spectral SVM/1NN
Our framework (2019) MSI HOOI Spectral FCN

1.2. Contribution

The contribution of this work is summarized into three main points:

1. RS-CNNMSI or -HSI, or third order tensors are compressed in the spectral domain through TKD
preprocessing, preserving the pixel spatial structure and obtaining a core tensor representative
of the original. These core tensors, with less new tensor bands, which belong to subspaces of
the original space, build the new input space for any supervised classifier at pixel level, which
delivers the corresponding prediction matrix of pixels classified element-wise. This approach
achieves high or competitive performance metrics but with less computational complexity,
and consequently, lower computational time.

2. This approach outperforms other methods in normalized difference indexes, PCA, particularly
the same FCN with original data. Each core tensor is calculated using the HOOI algorithm,
which achieves high orthogonality degree for the core tensor (all-orthogonality) and for its
factor matrices (column-wise orthogonal); besides, it converges faster than others, such as
TUCKALS3 [17].

3. The efficiency of this approach can be measured by one or more performance metrics, e.g., pixel
accuracy (PA), as a function of the number of new tensor bands, orthogonality degree of the
factor matrices and the core tensor, reconstruction error of the original tensor, and execution time.
These results are shown in Section 6: Experimental Results.

249



Remote Sens. 2020, 12, 517

The remainder of this work is organized as follows. Section 2 introduces tensor algebra notation
and basic concepts to familiarize the reader with the symbology used in this paper. Section 3 presents
the problem statement of this work and the mathematical definition. In Section 4, CNN theory is
described for classification and semantic segmentation. Section 5 presents the framework proposed
for compression and semantic segmentation of spectral images. Experimental results are presented in
Section 6. Finally, Sections 7 and 8 present a discussion and conclusions based on the results obtained
in the experiments.

2. Tensor Algebra Basic Concepts

For this work we used the conventional tensor algebra notation [15]. Hence, scalars or zero order
tensors are represented by italic lowercase letters; e.g., a. Vectors or first order tensor are denoted by
boldface lowercase letters; e.g., a. Matrices or tensor of order two are denoted by boldface capital
letters, e.g., A, and three or higher order tensors by boldface Euler script letters, e.g., AAA. In a N-order
tensor AAA ∈ RI1×···×IN , where R represents the set of real numbers, In indicates the size of the tensor in
each mode n = {1, . . . , N}. An element of AAA is denoted with indices in lowercase letters, e.g., ai1...iN

where in denotes the n-mode of AAA [17]. A fiber is a vector, the result of fixing every index of a tensor
but one, and it is denoted by a:i2i3 , ai1:i3 , and ai1i2—for column, row, and tube fibers respectively for
a third order tensor instance. A slice is a matrix, the result of fixing every index of a tensor but two,
and it is denoted by Ai1::, A:i2:, and A::i3 , or more compactly, Ai1 , Ai2 , and Ai3 for horizontal, lateral,
and frontal slices respectively for a third order tensor instance. Finally, A(n) denotes a matrix element
from a sequence of matrices [17].

It is also necessary to introduce some tensor algebra operations and basic concepts used in later
explanations. These notations were taken textually from [17].

2.1. Matricization

The mode-n matricization is the process of reordering the elements of a tensor into a matrix along
axis n and it is denoted as A(n) ∈ R

In×∏m �=n Im .

2.2. Outer Product

The outer product of N vectors XXX = a(1) ◦ · · · ◦ a(N) produces a tensor XXX ∈ RI1×···×IN

where ◦ denotes the outer product and a(n) denotes a vector in a sequence of N vectors
and each element of the tensor is the product of the corresponding vector elements; i.e.,
xi1i2...iN = a(1)i1

. . . a(N)
iN

.

2.3. Inner Product

The inner product of two tensors AAA,BBB ∈ RI1×···×IN is the sum of the products of their entries;
i.e., 〈AAA,BBB〉 = ∑I1

i1=1 · · ·∑IN
iN=1 ai1...iN bi1...iN .

2.4. N-Mode Product

It means the multiplication of a tensor AAA ∈ RI1×···×IN by a matrix U ∈ RJ×In or vector u ∈ RIn in
mode n; i.e., along axis n. It is represented by BBB = AAA×n U, where BBB ∈ RI1×···×In−1×J×In+1×···×IN [17].

2.5. Rank-One Tensor

A tensor XXX ∈ RI1×···×IN is rank one if it can be written as the outer product of N vectors;
i.e., XXX = a(1) ◦ · · · ◦ a(N).
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2.6. Rank-R Tensor

The rank of a tensor rank(XXX) is the smallest number of components in a CPD; i.e., the smallest
number of rank-one tensors that generate XXX as their sum [17].

2.7. N-Rank

The n-rank of a tensor XXX ∈ RI1×···×IN denoted rankn(XXX), is the column rank of X(n); i.e., the
dimension of the vector space spanned by the mode-n fibers. Hence, if Rn ≡ rankn(XXX) for n = 1, . . . , N,
we can say that XXX has a rank − (R1, . . . , RN) tensor.

All the tensor algebra notation presented until this point is summarized in Table 2 for
simpler regarding.

Table 2. Tensor algebra notation summary

AAA, A, a, a Tensor, matrix, vector and scalar respectively
AAA ∈ RI1×···×IN N-order tensor of size I1 × · · · × IN .
ai1...iN An element of a tensor
a:i2i3 , ai1:i3 , and ai1i2: Column, row and tube fibers of a third order tensor
Ai1::, A:i2:, A::i3 Horizontal, lateral and frontal slices for a third order tensor
A(n), a(n) A matrix/vector element from a sequence of matrices/vectors
A(n) Mode-n matricization of a tensor. A(n) ∈ R

In×∏m �=n Im

XXX = a(1) ◦ · · · ◦ a(N) Outer product of N vectors, where xi1i2...iN = a(1)i1
. . . a(N)

iN〈AAA,BBB〉 Inner product of two tensors.
BBB = AAA×n U n-mode product of tensor AAA ∈ RI1×···×IN by a matrix U ∈ RJ×In along axis n.

2.8. Tucker Decomposition (Tkd)

The TKD can be seen as a form of higher-order PCA [17]. This method decomposes a tensor
XXX ∈ RI1×···×IN into a core tensorGGG ∈ RJ1×···×JN multiplied by a matrix along each mode n = 1, . . . , N as

XXX ≈ GGG×1 U(1) · · · ×N U(N) (1)

where the core tensor preserves the level of interaction for each factor or projection matrix
U(n) ∈ RIn×Jn . These matrices are usually, but not necessarily, orthogonal, and can be thought of as the
principal components in each mode [17] (see Figure 1). Jn represents the number of components in the
decomposition; i.e., the rank − (R1, . . . , RN). We compute rank − (R1, . . . , RN), where rankn(XXX) = Rn

for every n-mode, which generally does not exactly reproduce XXX. Starting from (1), the reconstruction
of an approximated tensor can be given by where X̂̂X̂X is the reconstructed tensor. Then, we can acquire
the core tensor GGG by the multilinear projection

GGG = XXX×1 U(1)T · · · ×N U(N)T, (2)

where U(n)T denotes the transpose matrix of U(n) for
n = 1, . . . , N. The reconstruction error ξ can be computed as

ξ(X̂̂X̂X) = ||XXX− X̂̂X̂X||2F, (3)

where || · ||F represents the Frobenius norm. To effectively compress data, the reconstructed lower-rank
tensor X̂̂X̂X should be close to the original tensor XXX; this can be reached by an algorithm as HOOI, which
is iterative, and it is described in Section 5.1.

X̂̂X̂X = GGG×1 U(1) · · · ×N U(N), (4)
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Core Tensor

Projec on matrices

Figure 1. Tucker decomposition for a third-order tensor.

3. Problem Statement and Mathematical Definition

Spectral images are third-order arrays, which provide not only spatial, but also spectral features
from RS scenes of interest. These properties aid CNNs to easily find features to characterize
the behaviors of different materials over the earth’s surface. However, the large amount of
spectral data causes huge computational load, and therefore, large processing time using machine
learning algorithms.

It is important to preserve the three-dimensional array structure of the RS spectral input image,
in order to effectively classify each pixel of the image. In RS multi- or hyperspectral images, the spectral
bands are highly correlated, and contain lot of redundancy. Therefore, we propose a TKD-based method
as a preprocessing step to provide a better suited input for the semantic segmentation based on CNN.
This will also considerably reduce high number of parameters, and in turn, processing time during
training and testing. Our problem statement for RS spectral images can be described as follows.

3.1. Problem Statement

Given a pair (XXX, Y), where tensor XXX ∈ RI1×I2×I3 denotes a CNNMSI or HSI, and Y ∈ RI1×I2 its
corresponding ground truth matrix for a specific number of classes C, find another pair (GGG, Ŷ), where
the tensor GGG ∈ RJ1×J2×J3 , used for classification, is representative of XXX, and Ŷ is its associated matrix
of predicted classes; preserving the spatial-domain J1 = I1, J2 = I2 but with fewer new tensor bands,
i.e., J3 < I3, achieving higher or competitive performance metrics for pixel-wise classification, reducing
the dimensionality, and therefore, decreasing computational complexity in the classification task.

3.2. Mathematical Definition

We can describe the problem stated in previous subsection mathematically as the following
optimization problem

min
GGG,U(1) ,U(2) ,U(3)

||XXX−GGG×1 U(1) ×2 U(2) ×3 U(3)||2F
subject to U(n) ∈ StIn×Jn and StIn×Jn ≡ {U(n) ∈ R

In×Jn | U(n)TU(n) = I(n)},

J1 = I1, J2 = I2 preserving the pixel domain,

J3 < I3 reducing spectral dimensionality

ξ(X̂̂X̂X) ≤ ψ mesaure of how representative of X̂̂X̂X G isG isG is

(5)

where ψ denotes an error threshold defined depending on the accuracy or performance metrics
required for each application and StIn×Jn represents the Stiefel manifold [30]. Embedding GGG into the
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objective function, as Lathhauwer proved in [31] Theorems 3.1, 4.1, and 4.2, (5), can be written by
the equivalent under the same constraints as (5).

max
U(1) ,U(2) ,U(3)

||XXX×1 U(1)T ×2 U(2)T ×3 U(3)T||2F (6a)

where GGG = XXX×1 U(1)T ×2 U(2)T ×3 U(3)T (6b)

The subtensorsGGGin of the core tensorGGG satisfy the all-orthogonality property [32], which establishes
that two subtensors GGGin=α and GGGin=β are all-orthogonal

〈GGGin=α,GGGin=β〉 = 0 (7)

for all possible values of n, α, and β subject to α �= β, and the ordering property:

‖GGGin=1‖F ≥ ‖GGGin=2‖F ≥ · · · ≥ ‖GGGin=IN‖F. (8)

Our optimization problem can be solved by several algorithms. In this work, the HOOI algorithm
was selected (described in Section 5.1), due to its convergence and orthogonality performance. Once
a tensor GGG is obtained, a classifier f that belongs to the hypothesis space H maps input data GGG into
output data Ŷ; that is

Ŷ = f (GGG) (9)

where f is a pixel-wise classifier. In this paper, a FCN for semantic segmentation was used as classifier
due to the need of classify each pixel of the input image and to its performance in pixel accuracy.
The FCN used in this work is described in Section 4.

4. Convolutional Neural Networks (CNNs)

CNNs are supervised feed-forward DL-ANNs for computer vision. The idea of applying a sort of
convolution of the synaptic weights of a neural network through the input data yields to a preservation
of spatial features, which alleviates the hard task of classification and in turn semantic segmentation.
This type of ANN works under the same linear regression model as every machine learning (ML)
algorithm. Since images are three dimensional arrays, we can use tensor algebra notation to describe
the input of CNNs as a tensor AAA ∈ RI1×I2×I3 , where I1, I2, and I3 represent height, width, and depth
of the third order array respectively; i.e., the spatial and spectral domain of an image. We can write
generally the linear regression model used for ANNs as

ŷ = σ (Wg + b) (10)

where ŷ represents the output prediction of the network; σ denotes an activation function; g is the
input dataset; W and b are the matrix of synaptic weights and the bias vector, respectively. These
parameters are adjustable; i.e., their values are modified every iteration looking for convergence to
minimize the loss in the prediction through optimization algorithms [33]. For simplicity, the bias vector
can be ignored, assuming that matrix W will update until convergence independently of another
parameter [33]. Considering that the input dataset to a CNN is a multidimensional array, we can
represent (9) and (10) using tensor algebra notation as

ŶYY = σ (WWWGGG) (11)

where ŶYY represents the prediction output tensor of the ANN (in our case, a second order tensor or
matrix Ŷ),GGG is the input dataset, andWWW is a K1 ×K2 × F1 tensor called filter or kernel with the adaptable
synaptic weights. Different to conventional ANN, in CNNs, WWW is a shiftable square tensor is much
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smaller in height and width than the input data, i.e., K1 = K2 and Ks << Is for s = 1, 2; F1 denotes the
number of input channels; i.e., F1 = I3. For hidden layers, instead of the prediction tensor ŶYY, the output
is a matrix called activation map M ∈ RI1×I2 , which preserves features from the original data in
each domain. Actually, it is necessary to use much kernels WWW( f2) as activation maps, with different
initialization values to preserve diverse features of the image. Hence, we can also define activation
maps as a tensor MMM ∈ RI1×I2×F2 where F2 denotes the number of activation maps produced by each
filter (see Figure 2). Kernels are displaced through the whole input image as a discrete convolution
operation. Then, each element of the output activation map mi1i2 f2 is computed by the summary of the
Hadamard product of kernel WWW( f2) and a subtensor from the input tensor GGG centered in position (i, j)
and with same dimensions of WWW, as follows

mi1i2 f2 = σ

[
K1

∑
k1=1

K2

∑
k2=1

F1

∑
f1=1

wk1,k2, f1 gi1+k1−o1,i2+k2−o2, f1

]
(12)

where mi1i2 f2 denotes the value of the output activation map f2 at position i1, i2; σ represents the
activation function; and o1 and o2 are offsets in spatial dimensions which depend on the kernel size,
and equal K1+1

2 and K2+1
2 respectively (see Figure 2).

Input image

Kernel

Ac va on maps

ReLU

Figure 2. Convolutional layer with a K1 × K2 × F1 × F2 kernel. Input channels F1 must equal the
spectral bands I3. To preserve original dimensions at the output, zero padding is needed [18]. Output
dimensions also depend on stride S = 1 to consider every piece of pixel information and to preserve
original dimensions.

An ANN is trained by using iterative gradient-based optimizers, such as Stochastic gradient
descent, Momentum, RMSprop, and Adam [33]. This drive the cost function L(WWW) to a very low
value by updating the synaptic weights WWW. We can compute the cost function by any function that
measures the difference between the training data and the prediction, such as Euclidean distance or
cross-entropy [10]. Besides, the same function is used to measure the performance of the model during
testing and validation. In order to avoid overfitting [33], the total cost function used to train an ANN
combines one of the cost functions mentioned before, plus a regularization term.

J(WWW) = L(WWW) + R(WWW), (13)

where J(WWW) denotes the total cost function and R(WWW) represents a regularization function. Then, we
can decrease J(WWW) by updating the synaptic weights in the direction of the negative gradient. This is
known as the method of steepest descent or gradient descent.

WWW′ =WWW− α∇WWW J(WWW), (14)
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where WWW′ represents the synaptic weights tensor in next iteration during training, α denotes the
learning rate parameter, and ∇WWW J(WWW) the cost function gradient. Gradient descent converges when
every element of the gradient is zero, or in practice, very close to zero [10].

CNNs has been successfully used in many image classification frameworks. This variation in
architecture from other typical ANN models yields the network to learn spatial and spectral features,
which are highly profitable for image classification. Besides, FCNs, constructed with only convolutional
layers are able to classify each element of the input image; i.e., they yield pixel-wise classification, or in
other words, semantic segmentation.

5. Hooi-Fcn Framework

In this work we propose a TKD-CNN-based framework called HOOI-FCN, which maps the
original high-correlated spectral image into a low-rank core tensor, preserving enough statistical
information to alleviate image pixel-wise classification. The aim is to improve performance while
reducing processing time in semantic segmentation ANNs by compressing CNNMSI third-order
tensors. Applying TD methods, relevant information is preserved, mainly acquired from the
spectral domain, convenient for the classification FCN. This novel framework is in summary, a two
step structure composed by an HOOI TD and a FCN for semantic segmentation described below
(see Figure 3).

5.1. Higher Order Orthogonal Iteration (HOOI) for Spectral Image Compression

Quoting Kolda, “The truncated higher order singular value decomposition (HOSVD) is not
optimal in terms of giving the best fit as measured by the norm of the difference, but it is a good
starting point for an iterative alternating least square algorithm” [17]. HOOI is an iterative algorithm to
compute a rank-(R1, . . . , RN) TKD. Let XXX ∈ RI1×···×IN be an N-th order tensor and R1, . . . , RN be a set
of integers satisfying 1 ≤ Rn ≤ In, for n = 1, . . . , N; the rank − (R1, . . . , RN) approximation problem
is to find a set of In × Rn matrices U(n) column-wise orthogonal and a R1 × · · · × RN core tensor GGG
by computing

min
GGG,U(1) ,...,U(N)

||XXX−GGG×1 U(1) · · · ×N U(N)||2, (15)

and from matrices U(n), where U(n)TU(n) = I(n), the core tensor GGG is found to satisfy (2) [34]. For a
third-order tensor decomposition, we can rewrite (4) as

X̂̂X̂X = GGG×1 U(1) ×2 U(2) ×3 U(3) (16)

where X̂̂X̂X denotes the reconstruction approximation of the input spectral image XXX, GGG is the J1 × J2 × J3

core tensor, and U(1) ∈ RI1×J1 , U(2) ∈ RI2×J2 and U(3) ∈ RI3×J3 are the projection matrices. Algorithm 1
shows HOOI for a third order tensor decomposition, but the extension to higher order tensors is
straightforward. Thus, with Algorithm 1 we compute the tensor GGG with rank-(J1, J2, J3) for each
spectral image as third-order tensor.
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Figure 3. The big picture of the fast semantic segmentation framework proposed, with a
fully convolutional network encoder-decoder architecture and a preprocessing HOOI tucker
decomposition stage.

Algorithm 1: HOOI for MSI. ALS algorithm to compute the core tensor GGG.

Function HOOI(XXX, R1, R2, R3):

initialize U(n) ∈ RIn×Rn for n = 1, 2, 3 using HOSVD;
repeat

for n = 1, 2, 3 do

DDD ← XXX×1 U(1)T ×2 U(2)T ×3 U(3)T

U(n) ← Rn leading left singular vectors of D(n)

end

until fit ceases to improve or maximum iterations exhausted;
GGG ← XXX×1 U(1)T ×2 U(2)T ×3 U(3)T

Output: GGG, U(1), U(2), U(3)

5.2. Fcn for Semantic Segmentation of Spectral Images

We use a FCN model for semantic segmentation based on the proposed by Badrinarayanan et al.
in [35] called Segnet. Each core tensor GGG obtained after decomposition, is the input to the SegNet
for training and testing the network. Hence, the feature activation maps MMM ∈ RI1×I2×F2 for each
hidden layer of the SegNet encoder-decoder FCN are computed by displacing the filters WWW through
the whole input core tensor in strides S = 1. It is worth noting that kernel WWW is a four-order tensor
WWW ∈ RK1×K2×F1×F2 , where K1 and K2 represent its spatial dimensions height and width; F1 its depth,
i.e., the spectral domain; and F2 denotes the number of filters used to produce F2 activation maps
(Figure 2). We express this convolution operation as

M( f2) = σ (WWW�GGG) , (17)

where M( f2) represents each activation map for f2 = 1, . . . , F2, and each value mi1i2 f2 is computed as
in (12). σ denotes the rectified linear unit (ReLU) [33] function; i.e., σ(z) = max {0, z}. Symbol � is
used in this paper to represent the convolution; i.e., the whole operation applied in convolutional
layers (see Figure 2). These activation maps are the input for the subsequent layer in the SegNet FCN.

The last layer is used the softmax activation function [33] to produce a distribution probability,
and so, predict values relating each pixel to one of the C classes of interest. Hence, for the last layer we
rewrite (17) as

Ŷ = δ (WWW�MMM) , (18)

where Ŷ represents the output prediction, MMM is the feature activation maps at previous layer, δ the
softmax activation function, and WWW the filter or kernel tensor with the adaptable synaptic weights.

The output of the FCN is a matrix Ŷ with the same spatial dimensions as the input, with a value
of the most likely class for each pixels. Figure 4 shows the architecture of the SegNet model used in
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this work. Experiments present the behavior of this FCN with and without data compression in the
spectral domain.

Conv + ReLU + Batch Norm
Pooling
Upsampling
So max

Figure 4. SegNet FCN. Encoder-decoder architecture with convolutional, pooling, and upsampling
layers with their corresponding activation functions and batch normalization [33].

6. Experimental Results

6.1. Our Data

As case study, a CNNMSI dataset with 100 RS images was used for training and 10 for testing,
all of them from central Europe with 128 × 128 pixels. These images are partitions of the original
Sentinel-2 images without modification and all semi-manually labeled, and with abundant presence of
the elements of interest. In Table 3 the 10 scenarios correspond to our 10 images for testing. We used
only nine from the 13 available spectral bands from visible, NIR to SWIR wavelengths. Bands 2, 3, 4,
and 8 have 10 m resolution, and bands 5, 6, 7, 11, and 12 have 20 m (oversampled to 10 m [18]). These
bands provide decisive information for discrimination of different classes. Bands 1, 9, and 10 were
dismissed because of their lower spatial resolution of 60 m. Band 8A, also with 20 m spatial resolution,
was dismissed due to wavelength overlapping with band 8. It is worth mentioning that the framework
proposed in this work can be applied to any kind of spectral image and multitemporal datasets [36].

6.1.1. The Training Space

For training, the input data ws a tensor XXX ∈ R128×128×9×100, where 128 × 128 is the spatial
dimensions, 9 is the number of spectral bands, and 100 is the number of images used for training.
Although the number of images seems low, taking into account that we work at pixel-domain, the real
number of training points or vectors is high. Indeed, our FCN for semantic segmentation was trained
with 128 × 128 × 100 = 1638400 samples or vectors. To test whether the size of the data for training
was sufficiently high, a smaller subtensor of XXX, XXXp ∈ R128×128×9×80, equivalent to 1310720 points or
vectors, was used for a second training obtaining, for the same test set, an average PA of 91.48%;
i.e., only 0.08% less than with 100 images, 91.56%. We also tested these results by a third training
with an extended dataset of 120 images, XXXq ∈ R128×128×9×120 equivalent to 1966080 vectors, and we
found only a slight variation of +0.01% in the PA (91.57%), while the execution time for the training
increased significantly.

6.1.2. The Labels

Our labels were acquired using the scene classification algorithm developed by the ESA [19],
and subsequently modified, semi-manually, misclassified pixels.
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6.1.3. The Testing Space

For testing, our input data were a 128 × 128 × 9 × 10 tensor; i.e., 10 different scenarios for
pixel-wise classification, whose results are shown in Table 3. That is, the framework classifies
128 × 128 × 10 = 163, 840 pixels.

6.1.4. Downloading Data

Due to the big size of the data, format npy was used. Data are available in the link Dataset.

• The training dataset is in the file S2_TrainingData.npy.
• Labels of the training dataset are in the file S2_TrainingLabels.npy.
• A true color representation of the training dataset can be found in S2_Trainingtruecolor.npy.
• The testing dataset and the corresponding labels are in the file S2_TestData.npy.
• Labels of the test dataset are in the file S2_TestLabels.npy.
• Last, a true color representation of the test data can be found in S2_Testtruecolor.npy.

Code will be delivered by the corresponding author upon request for research purposes only.

6.2. Classes

The CNNMSI dataset has been semi-manually labeled for supervised semantic segmentation of
C = 5 classes; vegetation, water, cloud, cloud shadow, and soil. These classes were selected according
to their impact in RS research areas such as agriculture, forest monitoring, population growth analysis,
and disaster prevention. It is worth mentioning that the detection of clouds and cloud shadows is an
important prerequisite for almost all RS applications.

6.3. Metrics

6.3.1. Pixel Accuracy (PA)

We used the PA metric to compute a ratio between the amount of correctly classified pixels and
the total number of pixels as

PA =
∑C

c=0 pcc

∑C
c=0 ∑D

d=0 pcd
(19)

where we have a total of C classes and pii is the amount of pixels of class c correctly assigned
to class c (true positives), and pcd is the amount of pixels of class c inferred to belong to class d
(false positives). We can see in Table 3 the PA values for our proposed framework in comparison with
other state-of-the-art methods. From Table 3, we can see that:

• Indexes NDI are important references for pixel-wise classification but they show one of the lowest
PAs and the highest computational time.

• Classic PCA with five components shows the lowest PA, although the computational time is
similar to HOOI-FCN with five tensor bands.

• Due to the poor results of NDI and classical PCA, FCN (with raw data and nine components) is a
good reference in terms of performance and computational time, and HOOI-FCN with seven and
five tensor bands achieves the highest PA and the lowest computational time.

The PA and the computational times for FCN and HOOI-FCN with different numbers of tensor
bands are shown in Figure 5.
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Figure 5. Box and whiskers plot of the pixel accuracy (PA) for the 10 testing scenarios shown in Table 3.

6.3.2. Relative Mean Square Error (rMSE)

In order to compute the reconstruction error of the tensor XXX for the implementation of HOOI,
the rMSE was used:

rMSE
(
X̂XX
)
=

1
Q

Q

∑
q=1

∥∥∥X̂XXq −XXXq

∥∥∥2

F∥∥XXXq
∥∥2

F

, (20)

where XXXq represents the q-th CNNMSI from our dataset with Q MSIs and X̂XXq its corresponding
reconstruction computed by (4).

Figure 6a shows the behavior of the reconstruction rMSE for our 100 training images for
J3 = 1, . . . , I3. With this metric we can quantify how good the decomposition represents the input
data. The rMSE is also one of the decisive parameters to set the value of the rank3(XXX) = J3. To preserve
a high performance in the pixel-wise classification task, we set the threshold ψ to a value for which the
rMSE error is less than or equal to 0.05%, since deeper decomposition decrease the PA to less than 90%,
as we can see in Figure 5. For a rank decomposition (128, 128, 5) our rMSE is 0.04%, which means that
we reduce the dimensionality of our input data to almost half with a very low loss in performance.
Besides, comparing this error with matrix based methods as PCA, we can see that our tensor-based
decomposition produces lower rMSE for every value of J3 except for the first one.

6.3.3. Orthogonality Degree of Factor Matrices and Tensor Bands

A way to analyze the algorithm HOOI efficiency is computing the orthogonality degree of the core
tensor GGG and the projection matrices U(n). As we mentioned in Section 3, we use the all-orthogonality
property proposed in [32] and described in (7) and (8) to evaluate the orthogonality degree of our core
tensors. Table 4 shows the results of the inner products between each tensor band with the others from
one of our training images. We can see that these values are practically zero, which means that our
bands are orthogonal. Furthermore, we can see in Figure 6b that (8) is fulfilled.

It is also important to know the orthogonality degree in our projection matrices. From Theorem 2
in [32] we start from the condition U(n)TU(n) = I(n); then, we create a vector ô where the components
are the trace of each resulting matrix, i.e., tr(I(n)), and compute the MSE with respect to a vector rank
o = (J1, J2, J3) as

MSE(ô) =
3

∑
q=1

∥∥oq − ôq
∥∥2

F . (21)

Using this orthogonality analysis, we obtain MSE values very close to zero, e.g., in order of 10−20,
which means that projection matrices present a high orthogonality degree.
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Table 3. Quantitative results for 10 test MSIs running in a NVIDIA GeForce GTX 1050 Ti graphics
processing unit (GPU), Intel core i7 processor, 8 Gb RAM, SSD 128 Gb, and HDD 1 Tb. Values in blue
and red represent the highest PA and the lowest time, respectively.

Scenarios
NDI FCN9 PCA-FCN5 HOOI-FCN7 HOOI-FCN5

PA (%) Time (s) PA (%) Time (s) PA (%) Time (s) PA (%) Time (s) PA (%) Time (s)

1 88.20 363.03 91.05 101.21 85.12 9.85 91.12 37.84 90.63 9.13
2 84.75 412.89 92.21 87.54 84.60 9.83 90.12 36.54 89.23 9.06
3 92.34 307.56 93.67 93.45 88.32 10.00 93.75 36.02 93.22 9.03
4 90.08 382.31 91.72 98.92 86.08 9.73 92.85 36.79 92.18 8.93
5 87.14 400.12 89.91 103.57 86.36 9.12 92.13 35.88 91.84 9.67
6 89.75 312.15 90.95 95.21 87.65 10.15 92.95 37.23 92.71 10.09
7 85.73 373.84 89.92 107.13 88.47 9.63 93.06 35.56 92.59 9.55
8 91.49 308.00 90.17 95.45 85.78 9.76 90.23 36.34 90.12 9.14
9 89.38 397.92 90.74 80.33 87.91 10.26 92.50 37.09 92.18 10.11
10 90.01 352.66 88.52 112.85 84.32 9.88 91.17 35.53 90.97 9.85

Average 88.87 361.04 90.88 97.56 86.46 9.82 91.97 36.48 91.56 9.45

(a) (b)

Figure 6. TD metrics (a) Reconstruction error computed by the relative mean square error (rMSE) for
J3 = 1, ..., I3 and (b) norm of each subtensor GGGin , relative to the norm of the first tensor band GGGi1 .

(a)

(b) (c)

Figure 7. Box and whiskers plots of the behavior of five classes of interest: (a) in the original spectral
domain, (b) the tensor band domain after decomposition for nine bands, and (c) the new tensor band
domain for five bands.
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6.4. Fcn Specifications

We used hyperparameter search [33] to set the learning rate to 1 × 10−3. The model was
run 100 epochs introducing 100 CNNMSI from our dataset. We used the Adam optimizer as our
optimization algorithm. Xavier initialization was used for setting the initial values of the weights in
the model. The Segnet FCN was used as the base model, since it achieves very high performance
metrics in semantic segmentation [35].

6.5. Hardware/Software Specifications

Our framework was implemented using Python 3.7 with Tensorflow-GPU version 1.13.
Experiments were run with a NVIDIA GeForce GTX 1050 Ti GPU. The processor used was an
Intel core i7 with 8GB RAM, 128 GB SSD, and 1 TB HDD.

Table 4. Inner products of each tensor band with the others from one image of our dataset decomposed
by HOOI.

Tensor Band 1 2 3 4 5 6 7 8 9

1 - 2.7 × 10−4 8.0 × 10−5 7.0 × 10−5 4.1 × 10−5 9.7 × 10−6 2.0 × 10−5 2.6 × 10−5 8.6 × 10−5

2 - - 3.1 × 10−7 8.5 × 10−6 4.9 × 10−6 3.2 × 10−6 3.6 × 10−6 6.0 × 10−6 4.8 × 10−6

3 - - - 8.4 × 10−7 3.9 × 10−7 4.4 × 10−7 4.1 × 10−7 1.8 × 10−9 1.0 × 10−6

4 - - - - 5.0 × 10−8 2.6 × 10−7 1.2 × 10−8 5.3 × 10−8 1.2 × 10−7

5 - - - - - 3.7 × 10−9 8.3 × 10−9 2.6 × 10−8 8.9 × 10−9

6 - - - - - - 1.4 × 10−8 7.2 × 10−8 2.1 × 10−7

7 - - - - - - - 1.2 × 10−8 1.3 × 10−9

8 - - - - - - - - 1.6 × 10−7

Figure 8. Comparison of the PA and the computational time of FCN with the proposed HOOI-FCN
(seven and five bands) for semantic segmentation. See Table 3.
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Figure 9. Qualitative results testing a scene of interest with abundant vegetation, and presence of
shadows and clouds. (a) Original true color scenario of 128 × 128 pixels, in Central Europe: (b) five
classes semi-manually labeled ground truth of the MSIs, (c) classification with an unsupervised
normalized difference index (NDI) fusion algorithm, and (d) output prediction after 100 epochs in the
FCN used for this work without data compression. (e) PCA-FCN framework output; (f) prediction
of the whole framework HOOI-FCN proposed in this work; and (g) PA behavior of the HOOI-FCN
versus number of tensor bands.

Cloud Vegeta onSoil WaterShadow
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(d) (e) (f)

(g)

Figure 10. Qualitative results testing a scene of interest with abundant vegetation, and presence of
shadows and clouds. (a) Original true color scenario of 128 × 128 pixels, in Central Europe: (b) five
classes semi-manually labeled ground truth of the MSIs, (c) classification with an unsupervised
normalized difference index (NDI) fusion algorithm, and (d) output prediction after 100 epochs in the
FCN used for this work without data compression. (e) PCA-FCN framework output; (f) prediction
of the whole framework HOOI-FCN proposed in this work; and (g) PA behavior of the HOOI-FCN
versus number of tensor bands.
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Cloud Vegeta onSoil WaterShadow

(a) (b) (c)

(d) (e) (f)

(g)

Figure 11. Qualitative results testing a scene of interest with abundant presence of soil. (a) Original true
color scenario of 128 × 128 pixels, in Central Europe: (b) five classes semi-manually labeled ground
truth of the MSIs, (c) classification with an unsupervised normalized difference index (NDI) fusion
algorithm, and (d) output prediction after 100 epochs in the FCN used for this work without data
compression. (e) PCA-FCN framework output; (f) prediction of the whole framework HOOI-FCN
proposed in this work; and (g) PA behavior of the HOOI-FCN versus number of tensor bands.

Cloud Vegeta onSoil WaterShadow

(a) (b) (c)

(d) (e) (f)

(g)

Figure 12. Qualitative results testing a scene of interest with abundant presence of clouds. (a) Original
true color scenario of 128× 128 pixels, in Central Europe: (b) five classes semi-manually labeled ground
truth of the MSIs, (c) classification with an unsupervised normalized difference index (NDI) fusion
algorithm, and (d) output prediction after 100 epochs in the FCN used for this work without data
compression. (e) PCA-FCN framework output; (f) prediction of the whole framework HOOI-FCN
proposed in this work; and (g) PA behavior of the HOOI-FCN versus number of tensor bands.

7. Discussion and Comparison with Other Methods

Original spectral bands (Figure 7a) were transformed or mapped into new tensor bands
(Figure 7b,c) which preserved features of our classes of interest within the first tensor bands, avoiding
the use of all the original spectral bands, thereby reducing computational load in further applications.

From Figure 7b,c, we can see that, for the classes of interest in this case study, the error margin
selected ψ is indeed a good parameter to restrict the rank in the third mode, since the spectral
information for differentiation of these five classes is a greater proportion than the first elements of the
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spectral domain. Nevertheless, if a smaller value for J3 were used, there would be a trade off in the
performance of the semantic segmentation.

Quantitative results in Figures 8–12 and Table 3 present a comparison of the processing
time and PA from our proposed framework with a model without any preprocessing data
decomposition algorithm and with a normalized differentiation index based method in different
scenarios. The accuracy values obtained by the proposed HOOI-FCN framework are better in
overall than those obtained by the other methods under same conditions and scenarios, but with
a quite significant decrease of the processing time, in the order of 10 times. It is worth noting that
our HOOI-FCN framework with seven and five tensor bands outperforms in PA to the same FCN
with the original nine bands. This means that the decomposition produces better features for the
classification ANN.

In the confusion matrix presented in Figure 13, we can see the accuracy of the framework proposed
HOOI-FCN for each class and the overall accuracy. Rows correspond to the output class or prediction
and the columns to the truth class. Diagonal cells show the correctly classified pixels. Off-diagonal cells
show where the errors come from. The rightmost column shows the accuracy for each predicted class,
while the bottom row shows the accuracy for each true class. It is important to note that vegetation
and cloud classes are close to 95% accuracy, while for water and cloud shadows have less than 90%
accuracy. The latter can be caused by the lack of samples with a greater contribution of these elements
in the training dataset as well as the similarity of these elements to others in the scenes.

Figure 13. Confusion matrix of the proposed framework. The main diagonal indicates the pixel
accuracy for each class in % for the ten selected scenarios.

8. Conclusions

Any RS-MSI or -HSI or third-order tensor image is mapped by the TKD to another tensor, called
core tensor representative of the original, preserving its spatial structure, but with fewer tensor bands.
In other words, a new subspace embedded in the original space was found and it was be used as the
new input space for the task of pixel-level classification or semantic segmentation. Due to the success
of DL for image processing, our approach employs an FCN network as the classifier, which delivers
the corresponding prediction matrix of pixels classified element-wise.

The efficiency of the proposed higher order orthogonal iteration (HOOI)-FCN framework is
measured by metrics such as pixel accuracy (PA) or recall as a function of the number of new tensor
bands, which is defined by the reconstruction error computed by the rMSE. Another important
parameter in the TKD is the orthogonality degree of each component, i.e., the core tensor and the factor
matrices, computed by the inner products of each band with the others.
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Our experimental results for a case study show that the proposed HOOI-FCN framework for
CNNMSI semantic segmentation reduced the number of spectral bands from nine to seven or five
tensor bands, for which PA values converge or are very close to the maximum.

State-of-the-art methods, such as normalized difference indexes, PCA with five principal
components, and the same FCN network with nine original bands, with an average pixel accuracy
90% (computational time ∼90s), were outperformed by the HOOI-FCN framework, which achieved a
higher average pixel accuracy of 91.97% (and computational time ∼36.5s), and average PA of 91.56%
(computational time 9.5s) for seven and five new tensor bands respectively.

These results are very promising in RS, since the use of other algorithms for the calculation
of core tensors and a deeper data analysis of weights and initialization of the convolutional neural
network (CNN) can increase performance metrics of the segmentation for RS spectral data. Some
limitations for a better validation of this approach are: denoising is not included; there is a need for
new cases to enhance the input space; use of a greater number of classifiers is needed.

Finally, this research allows us to emphasize two main, relevant points. (1) RS images are
characterized by a large number of bands, high correlation between neighbor bands, and high data
redundancy; (2) besides, they are corrupted by several noises. Some issues related to our approach
remain open.

Open Issues

• Compression affects not only the input data, but also the CNN network to reduce
overall complexity and/or create new ANN architectures for specific RS-CNNMSI or HSI
image applications.

• Instead of the HOOI algorithm, use greedy HOOI and other algorithms that determine the core
tensor for a broad comparison.

• For classification purposes, use other machine learning algorithms, such as a SVM or
random forest.

• Increase the input data with more scenarios and their corresponding ground truth to a deeper
study of the behaviors of several classifiers, including those based on ANN, and the scope of the
TD methods.

• Denoise the original input data for an improvement of the new subspace of reduced dimensionality.
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Abbreviations

The following abbreviations are used in this manuscript:

ANN artificial neural network
CNN convolutional neural network
CPD canonical polyadic decomposition
ESA european space agency
DL deep learning
FCN fully convolutional network
GPU graphics processing unit
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HSI hyperspectral image
HOOI higher order orthogonal iteration
HOSVD higher order singular value decomposition
MSE mean square error
ML machine learning
MSI multispectral image
NIR near-infrared
NTD nonnegative Tucker decomposition
NDVI normalized difference vegetation index
NDWI normalized difference water index
PA pixel accuracy
PCA principal components analysis
ReLU rectified linear unit
rMSE relative mean square error
RS remote sensing
SVD singular value decomposition
SWIR short wave infrared
SVM support vector machine
T-MLRD tensor-based multiscale low rank decomposition
TD tensor decomposition
TDA tensor discriminant analysis
TKD tucker decomposition
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Abstract: This paper proposes a lossless coder for real-time processing and compression of
hyperspectral images. After applying either a predictor or a differential encoder to reduce the
bit rate of an image by exploiting the close similarity in pixels between neighboring bands, it uses a
compact data structure called k2-raster to further reduce the bit rate. The advantage of using such a
data structure is its compactness, with a size that is comparable to that produced by some classical
compression algorithms and yet still providing direct access to its content for query without any need
for full decompression. Experiments show that using k2-raster alone already achieves much lower
rates (up to 55% reduction), and with preprocessing, the rates are further reduced up to 64%. Finally,
we provide experimental results that show that the predictor is able to produce higher rates reduction
than differential encoding.

Keywords: compact data structure; quadtree; k2-tree; k2-raster; DACs; 3D-CALIC; M-CALIC;
hyperspectral images

1. Introduction

Compact data structures [1] are examined in this paper as they can provide real-time processing
and compression of remote sensing images. These structures are stored in reduced space in a compact
form. Functions can be used to access and query each datum or groups of data directly in an efficient
manner without an initial full decompression. This compact data should also have a size which is
close to the information-theoretic minimum. The idea was explored and examined by Guy Jacobson in
his doctoral thesis in 1988 [2] and in a paper published by him a year later [3]. Prior to this, works
had been done to express similar ideas. However, Jacobson’s paper is often considered the starting
point of this topic. Since then it has gained more attention and a number of research papers have
been published. Research on algorithms such as FM-index [4,5] and Burrows-Wheeler transform [6]
were proposed and applications were released, notable examples of which include bzip2 (https:
//linux.die.net/man/1/bzip2), Bowtie [7] and SOAP2 [8]. One of the advantages of using compact
data structures is that the compressed data form can be loaded into main memory and accessed
directly. The smaller compressed size also helps data move through communication channels faster.
The other advantage is that there is no need to compress and decompress the data as is the case
with data compressed by a classical compression algorithm such as gzip or bzip2, or by a specialized
algorithm such as CCSDS 123.0-B-1 [9] or KLT+JPEG 2000 [10,11]. The resulting image will have the
same quality as the original.
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Hyperspectral images are image data that contain a multiple number of bands from across the
electromagnetic spectrum. They are usually taken by hyperspectral satellite and airborne sensors. Data
are extracted from certain bands in the spectrum to help us find the objects that we are specifically
looking for, such as oil fields and minerals. However, due to their large sizes and the huge amount of
data that have been collected, hyperspectral images are normally compressed by lossy and lossless
algorithms to save space. In the past several decades, a lot of research studies have gone into keeping
the storage sizes to a minimum. However, to retrieve the data, it is still necessary to decompress
all the data. With our approach using compact data structures, we can query the data without fully
decompressing them in the first place, and this is the main motivation for this work.

Prediction is one of the schemes used in lossless compression. CALIC (Context Adaptive Lossless
Image Compression) [12,13] and 3D-CALIC [14] belong to this class of scheme. In 1994, Wu et al.
introduced CALIC, which uses both context and prediction of the pixel values. In 2000, the same
authors proposed a related scheme called 3D-CALIC in which the predictor was extended to the pixels
between bands. Later in 2004, Magli et al. [15] proposed M-CALIC whose algorithm is related to
3D-CALIC. All these methods take advantage of the fact that in a hyperspectral image, neighboring
pixels in the same band (spatial correlation) are usually close to each other and even more so for
neighboring pixels of two neighboring bands (spectral correlation).

Differential encoding is another way of encoding an image by taking the difference between
neighboring pixels and in this work, it is a special case of the predictive method. It only takes advantage
of the spectral correlation. However, this correlation between the pixels in the bands will become
smaller as the distance between the bands are further apart and therefore, its effectiveness is expected
to decrease when the bands are far from each other.

The latest studies on hyperspectral image compression, both lossy and lossless, are focused
on CCSDS 123.0, vector quantization, Principal Component Analysis (PCA), JPEG2000, and Lossy
Compression Algorithm for Hyperspectral Image Systems (HyperLCA), among many others. Some of
these research works are listed in [16–19]. In this work, however, we investigate lossless compression of
hyperspectral images through the proposed k2-raster for 3D images, which is a compact data structure
that can provide bit-rate reduction as well as direct access to the data without full decompression.
We also explore the use of a predictor and a differential encoder as preprocessing on the compact
data structure to see if it can provide us with further bit-rate reduction. The predictive method
and the differential method are also compared. The flow chart shown in Figure 1 depicts how the
encoding/decoding of this proposal works.

This paper is organized as follows: In Section 2, we present the k2-raster and discuss it in detail,
beginning with quadtree, followed by k2-tree and k2-raster. Later in the same section, details of the
predictive method and the differential method are discussed. Section 3 shows the experimental results
on how the two methods fare using k2-raster on hyperspectral images, and more results on how some
other factors such as using different k-values can affect the bit rates. Finally, we present our conclusions
in Section 4.
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Figure 1. A flow chart showing the encoding and decoding of this coder.

2. Materials and Methods

One way to build a structure that is small and compact is to make use of a tree structure and do
it without using pointers. Pointers usually take up a large amount of space, with each one having a
size in the order of 32 or 64 bits for most modern-day machines or programs. A tree structure with n
pointers will have a storage complexity of O(n log n) whereas a pointer-less tree only occupies O(n).
For pointer-less trees, to get at the elements of the structure, rank and select functions [3] are used,
and that only requires simple arithmetic to find the parent’s and child’s positions. This is the premise
that compact data structures are based on. In this work, we will use k2-raster from Ladra et al. [20],
a concept which was developed from k2-tree, also a type of compact data structure, as well as the idea
of using recursive decomposition of quadtrees. The results of k2-raster were quite favorable for the
data sets that were used. Therefore, we are extending their approach for hyperspectral images and
investigate whether it would be possible to use that structure for 3D hyperspectral images. The Results
section will show us that the results are quite competitive compared to other commonly-used classical
compression techniques. There is a bit-rate reduction of up to 55% for the testing images. Upon more
experimentation with predictive and differential preprocessing, a further bit-rate reduction of up to
64% can be attained. For that reason, we are proposing in this paper our encoder using the predictor
or differential method on k2-raster for hyperspectral images.

2.1. Quadtrees

Quadtree structures [21], which have been used in many kinds of data representations such
as image processing and computer graphics, are based on the principle of recursive decomposition.
As there are many variants of quadtree, we will describe the one that is pertinent to our discussion:
region quadtree. Basically, a quadtree is a tree structure where each internal node has 4 children. Given
a 2D square matrix, it is partitioned recursively into four equal subquadrants. If a tree is built to
represent this, it will have a root node at level 0 with 4 children nodes at level 1, each child representing
a node and a subquadrant. Next, if the subquadrant has a size larger than 22, then each of these
subquadrants will be partitioned to give 4 more children and a new level 2 is added to the tree. Note
that the tree nodes are traversed in a left to right order.

Considering a matrix of size n × n where n is a power of 2, it is recursively divided until each
subquadrant has a size of 22. For example, if the size of the matrix is 8 × 8, after the recursive division
of matrix, (82)/(22) = 16 subquadrants are obtained. It should be noted that the value of n in the image
matrix needs to be a power of 2. Otherwise, the matrix has to be enlarged widthwise and heightwise to
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a value which is the next power of 2, and these additional pixels will be padded with zeros. As k2-trees
are based on quadtrees, the division and the resulting tree of a quadtree are very similar to those of a
k2-tree. Figure 2 illustrates how a quadtree’s recursive partitioning works.

1 2 3

4

5

6

M 1 2 3 4 5 6 7 8
1 1 0 0 0 0 0 0 0
2 0 1 0 1 0 0 0 0
3 0 0 1 0 0 0 0 0
4 0 0 1 1 0 0 0 0
5 0 0 0 0 1 1 0 0
6 0 0 0 0 1 1 0 0
7 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0

Level 0 (Root)

1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Level 1

1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Level 2

1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Level 3

Root

1

0001

1111

001

1

1101

01

1000

1

1001

Level 0

Level 1

Level 2

Level 3

Figure 2. A graph of 6 nodes (top) with its 8 × 8 binary adjacency matrix at various stages of recursive
partitioning. At the bottom, a k2-trees (k=2) is constructed from the matrix.

2.2. LOUDS

k2-tree is based on unary encoding and LOUDS, which is a compact data structure introduced by
Guy Jacobson in his paper and thesis [2,3]. A bit string is formed by a breadth-first traversal (going
from left to right) of an ordinal (rooted, ordered) tree structure. Each parent node is encoded with a
string of ‘1’ bits whose length indicates the number of children it has and each string ends with a ‘0’
bit. If the parent node has no children, only a single ‘0’ bit suffices.

The parent and child relationship can be computed by two cornerstone functions for compact
data structures: rank and select. These functions give us information about the node’s first-child,
next-sibling(s), and parent, without the need of using pointers. They are described below:

rankb(m) returns the number of bits which are set to b, left of position m (inclusive) in the
bitmap where b is 0 or 1.

selectb(i) returns the position of the i-th b bit in the bitmap where b is 0 or 1.

By default, b is 1, i.e., rank(m) = rank1(m). These operations are inverses of each other. In other
words, rank(select(m)) = select(rank(m)) = m. Since a linear scan is required to process the rank and
select functions, the worst-case time complexity will be O(n).

To clarify how these functions work, consider the binary trees depicted in Figure 3 where the one
on the left shows the values and the one on the right shows the numbering of the same tree. If the
node has two children, it will be set to 1. Otherwise, it is set to 0. The values of this tree are put in a bit
string shown in Figure 4. Figure 5 shows how the position of the left child, right child or parent of a
certain node m is computed with the rank and select functions. An example follows:
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To find the left child of node 8, we first need to compute rank(8), which is the total number of 1’s
from node 1 up to and including node 8 and the answer is 7. Therefore, the left child is located in
2*rank(8) = 2*7 = 14 and the right child is in 2*rank(8)+1 = 2*7+1 = 15. The parent of node 8 can be
found by computing select(�8/2�) or select(�4�). The answer can be arrived at by counting the total
number of bits starting from node 1, skipping the ones with ’0’ bits. When we get to node 4 which
gives us a total bit count of 4, we then know that node 4 is where the parent of node 8 is.

1

1

01

01

00

1

1

00

1

01

00

1

3

76

1312

1716

2

5

1110

4

98

1514

Figure 3. A binary tree example for LOUDs. The one on the left shows the values of the nodes and the
one on the right shows the same tree with the numbering of the nodes in a left-to-right order. In this
case the numbering starts with 1 at the root.

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
bit 1 1 1 1 1 1 0 1 0 0 0 1 0 0 0 0 0

Figure 4. A bit string with the values from the binary tree in Figure 3.

m 1 2 3 4 5 6 8 12
Left child(m) = 2 · rank(m) 2 4 6 8 10 12 14 16
Right child(m) = 2 · rank(m)+1 3 5 7 9 11 13 15 17
Parent(m) = select(�m/2�) - 1 1 2 2 3 4 6

Figure 5. With the rank and select functions listed in the first column, we can navigate the binary tree
in Figure 3 and compute the position node for the left child, right child or parent of the node.

In the next section, we will explain how the rank function can be used to determine the children’s
positions in a k2-tree, thus enabling us to query the values of the cells.

2.3. k2-Tree

Originally proposed for compressing Web graphs, k2-tree is a LOUDS variant compact data
structure [22]. The tree represents a binary adjacency matrix of a graph (see Figure 2). It is constructed
by recursively partitioning the matrix into square submatrices of equal size until each submatrix
reaches a size of k x k where k ≥2. During the process of partitioning, if there is at least one cell in the
submatrix that has a value of 1, the node in the tree will be set to 1. Otherwise, it will be set to 0 (i.e., it
is a leaf and has no children) and this particular submatrix will not be partitioned any further. Figure 2
illustrates an example of a graph of 6 nodes, its 8 × 8 binary adjacency matrix at various stages of
recursive partitioning, and the k2-tree that is constructed from the matrix.

The values of k2-trees are basically stored in two bitmaps denoted by T (tree) and L (leaves).
The values are traversed in a breadth-first fashion starting with the first level. The T bitmap stores
the bits at all levels except the last one where its bits will be stored in the L bitmap. Note that the bit
values of T which are either 0 or 1 will be stored as a bit vector. To illustrate this with an example, we
again make use of the binary matrix in Figure 2. The T bitmap contains all the bits from levels 1 and 2.
Thus the T bitmap has the following bits: 1001 1101 1000 (see Figure 6). The bits from the last level,
level 3, will be stored in the L bitmap with the following bits: 1001 0001 1011 1111.

Consider a set S with elements from 1 to n, to find the child’s or the parent’s position of a certain
node m in a k2-tree, we perform the following operations:
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first-child(m) ← rank(m) · k2 where 1 ≤ m ≤ ‖S‖
parent(m) ← select(�m/k2�) where 1 ≤ m ≤ ‖S‖

Once again using the k2-tree in Figure 2 as an example, with the T bitmap (Figure 6) and the rank
and select functions, we can navigate the tree and obtain the positions of the first child and the parent.
Figure 7 shows how the nodes of the k2-tree are numbered.

Ex. Locate the first child of node 8:
rank1(8) * 4 = 6 * 4 = 24
(There are 6 one bits in the T bitmap starting from node 0 up to and including node 8.)

Ex. Locate the parent of node 11:
select1(�11/4�) = select1(2) = 3
(Start counting from node 0, skipping all nodes with ’0’ bits, and node 3 is the first node that
gives a total number of 1-bit count of 2. Therefore, node 3 is the parent.

Node 0 1 2 3 4 5 6 7 8 9 10 11
Bit 1 0 0 1 1 1 0 1 1 0 0 0

Figure 6. A T bitmap with the first node labeled as 0.

Root

3

111098

27262524

210

7

23222120

65

19181716

4

15141312

Figure 7. An example showing how the rank function is computed to obtain the children’s position on
a k2-tree node (k=2) based on the tree in Figure 2. It starts with 0 on the first child of the root (first level)
and the numbering traverses from left to right and from top to bottom.

It was shown that k2-tree gave the best performance when the matrix was sparse with large
clusters of 0’s or 1’s [20].

2.4. DACs

This section describes DACs which is used in k2-raster to directly access variable-length codes.
Based on the concept of compact data structures, DACs were proposed in the papers published by
Brisaboa et al. in 2009 and 2013 [23,24] and the structure was proven to yield good compression ratios
for variable-length integer sequences. By means of the rank function, it gains fast direct access to any
position of the sequence in a very compact space. The original authors also asserted that it was better
suited for a sequence of integers with a skewed frequency distribution toward smaller integer values.

Different types of encoding are used for DACs and the one that we are interested in for k2-raster
is called Vbyte coding. Consider a sequence of integers x. Each integer, which is represented by
�log2xi�+ 1 bits, is broken into blocks of bits of size S. Each block is stored as a chunk of S + 1 bits.
The chunk that holds the most significant bits has the highest bit set to 0 while the other chunks have
their highest bit set to 1. For example, if we have an integer 20 (101002) which is 5 bits long and if the
block size is S = 3, then we can have 2 chunks denoted by the following: 0010 1100.

To show how the chunks are organized and stored, we again illustrate it with an example. If we
have 3 integers of variable length 20 (101002), 6 (1102), 73 (10010012) and each block size is 3, then the
three integers have the following representations.

20 0010 1100 (B1,2A1,2 B1,1A1,1)
6 0110 (B2,1A2,1)
73 0001 1001 1001 (B3,3A3,3 B3,2A3,2 B3,1A3,1)
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We will store them in three chunks of arrays A and bitmaps B. This is depicted in Figure 8.
To retrieve the values in the arrays A, we make use of the corresponding bitmaps B with the
rank function.

More information on DACs and the software code can be found in the papers [23,24].

C1
A1 100 (A1,1) 110 (A2,1) 001 (A3,1)
B1 1 (B1,1) 0 (B2,1) 1 (B3,1)

C2
A2 010 (A1,2) 001 (A3,2)
B2 0 (B1,2) 1 (B3,2)

C3
A3 001 (A3,3)
B3 0 (B3,3)

Figure 8. Organization of 3 Directly Addressable Codes (DACs) clusters.

2.5. k2-Raster

k2-raster is a compact data structure that allows us to store raster pixels in reduced space.
It consists of several basic components: bitmaps, DACs and LOUDS. Similar to a k2-tree, the image
matrix is partitioned recursively until each subquadrant is of size k2. The resulting LOUDS tree
topology contains the bitmap T where the elements are accessed with the rank function. Unlike
k2-tree, at each tree level, the maximum and minimum values of each subquadrant are stored in
two bitmaps which are respectively called Vmax and Vmin. However, to compress the structure
further, the maximum and minimum values of each level are compared with the corresponding values
of the parent and their differences will replace the stored values in the Vmax and Vmin bitmaps.
The rationale behind all this is to obtain smaller values for each node so as to get a better compression
with DACs. An example of a simple 8 × 8 matrix is given to illustrate this point in Figure 9. A k2-raster
is constructed from this matrix with maximum and minimum values stored in each node in Figure 10.
The structure is further modified, according to the above discussion, to form a tree with smaller
maximum and minimum values and this is shown in Figure 11.

Next, with the exception of the root node at the top level, the Vmax and Vmin bitmaps at all levels
are concatenated to form Lmax and Lmin bitmaps. The root’s maximum (rMax) and minimum (rMin)
values are integer values and will remain uncompressed.

For an image of size n × n with n bands, the time complexity to build all the k2-rasters is
O(n3) [22]. To query a cell from the structure, which has a tree height of at most �logk n� levels, the
time complexity to extract a codeword at a single Lmax level is O(logk n), and this is the worst-case
time to traverse from the root node to the last level of the structure. The number of levels, L, in Lmax
can be obtained from the maxinum integer in the sequence and with this, we can compute the time
complexity for a cell query, which is O(logk n · L) [23,25].

To sum up, a k2-raster structure is composed of a bitmap T, a maximum bitmap Lmax, a minimum
bitmap Lmin, a root maximum rMax integer value and a root minimum rMin integer value.
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5 4 4 4 4 4 1 1
5 5 4 4 3 3 1 1
5 4 4 3 3 2 1 1
4 4 4 3 2 2 1 1
4 4 4 3 1 1 1 1
4 4 3 2 1 1 1 1
3 3 1 1 1 1 1 1
1 1 1 1 1 1 1 1

Level 0 (Root)

5 4 4 4 4 4 1 1
5 5 4 4 3 3 1 1
5 4 4 3 3 2 1 1
4 4 4 3 2 2 1 1
4 4 4 3 1 1 1 1
4 4 3 2 1 1 1 1
3 3 1 1 1 1 1 1
1 1 1 1 1 1 1 1

Level 1

5 4 4 4 4 4 1 1
5 5 4 4 3 3 1 1
5 4 4 3 3 2 1 1
4 4 4 3 2 2 1 1
4 4 4 3 1 1 1 1
4 4 3 2 1 1 1 1
3 3 1 1 1 1 1 1
1 1 1 1 1 1 1 1

Level 2

5 4 4 4 4 4 1 1
5 5 4 4 3 3 1 1
5 4 4 3 3 2 1 1
4 4 4 3 2 2 1 1
4 4 4 3 1 1 1 1
4 4 3 2 1 1 1 1
3 3 1 1 1 1 1 1
1 1 1 1 1 1 1 1

Level 3

Figure 9. An example of an 8 × 8 matrix for k2-raster. The matrix is recursively partitioned into square
subquadrants of equal size. During the process, unless all the cells in a subquadrant have the same
value, the partitioning will continue. Otherwise the partitioning of this particular subquadrant will
end at this point.

5-1

1-14-1

1-13-1

1133

4-2

2334

4-4

4-1

1-13-2

2223

1-14-3

3344

5-3

4-3

3434

5-4

4445

4-45-4

5545

Level 0

Level 1

Level 2

Level 3

Figure 10. A k2-raster (k = 2) tree storing the maximum and mininum values for each quadrant of
every recursive subdivision of the matrix in Figure 9. Every node contains the maximum and minimum
values of the subquadrant, separated by a dash. On the last level, only one value is shown as each
subquadrant contains only one cell.

5-1

4-01-0

3-01-0

2200

0-1

2110

0-3

1-0

3-01-1

1110

3-00-2

1100

0-2

1-0

1010

0-1

1110

1-10-1

0010

Level 0

Level 1

Level 2

Level 3

Figure 11. Based on the tree in Figure 10, the maximum value of each node is subtracted from that of
its parent while the minimum value of the parent is subtracted from the node’s minimum value. These
differences will replace their corresponding values in the node. The maximum and minimum values of
the root remain the same.

2.6. Predictive Method

As mentioned in the Introduction, an interband predictor called 3D-CALIC was proposed by
Wu et al. in 2000 and another predictor called M-CALIC by Magli et al. in 2004. Our predictor is based
on the idea of least squares method and the use of reference bands that were discussed in both the
3D-CALIC [14] and M-CALIC [15] papers. Consider two neighboring or close neighboring bands of the
same hyperspectral image. These bands can be represented by two vectors X = (x1, x2, x3, ..., xn−1, xn)

and Y = (y1, y2, y3, ..., yn−1, yn) where xi and yi are two pixels that are located at the same spatial
position but in different bands, and n is the number of pixels in each band. We can then employ
the close similarity between the bands to predict the pixel value in the current band Y using the
corresponding pixel value in band X, which we designate as the reference band.

A predictor for a particular band can be built from the linear equation:

Ŷ = αX + β (1)
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so as to minimize ||Ŷ − Y||22 where Ŷ is the predicted value and Y is the actual value of the current
band. The optimal values for α and β should minimize the prediction error of the current pixel and
can be obtained by using the least squares solution:

α̂ =
n ∑n

i=1 xiyi − ∑n
i=1 xi ∑n

i=1 yi

n ∑n
i=1 x2

i − (∑n
i=1 xi)2

, (2)

β̂ =
n ∑n

i=1 yi − α̂ ∑n
i=1 xi

n
(3)

where n is the size of each band, i.e., the height multiplied by the width, α̂ the optimal value of α and β̂

the optimal value of β.
The difference between the actual and predicted pixel values of a band is known as the residual

value or the prediction error. When all the pixel values in the current band are calculated, these
prediction residuals will be saved in a vector, which will later be used as input to a k2-raster.

In other words, for a particular pixel in the current band and the corresponding pixel in the
reference band, δi being the residual value, yi the actual value of the current band, and xi the value of
the reference band, to encode, the following equation is used:

δi = yi − (α̂ · xi + β̂) . (4)

To decode, the following equation is used:

yi = δi + (α̂ · xi + β̂) . (5)

The distance from the reference band affects the residual values. The closer the current band is to
the reference band, the smaller the residual values would tend to be. We can arrange the bands into
groups. For example, the first band can be chosen as the reference and the second, third and fourth
bands will have their residual values calculated with respect to the first band. And the next group
starts with the fifth band as the reference band, etc.

For this coding method, the group size (stored as a 2-byte short integer) as well as the α̂ and β̂

values for each band (stored as 8-byte double’s) will need to be saved for use in both the encoder and
the decoder. Note that the size of these extra data is insignificant - which generally comes to around
3.5 kB - compared to the overall size of the structure.

2.7. Differential Method

In the differential encoding, which is a special case of the predictor where α = 1 and β = 0,
the residual value is obtained by simply taking the difference between the reference band and the
current band. For a particular pixel in the current band and the corresponding pixel in the reference
band, δi being the residual value, yi the actual value of the current band, and xi the value of the
reference band, to encode, the following equation is used:

δi = yi − xi . (6)

To decode, the following equation is used:

yi = δi + xi . (7)

Like the predictor, we can use the first band as the reference band and the next several bands can
use this reference band to find the residual values. Again, the grouping is repeated up to the last band.
For this coding method, only the group size (stored as a 2-byte short integer) needs to be saved.
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2.8. Related Work

Since the publication of the proposals on k2-tree and k2-raster, more research has been done to
extend the capabilities of the structures to 3D where the first and second dimensions represent the
spatial element and the third dimension the time element.

Based on their previous research of k2-raster, Silva-Coira et al. [26] proposed a structure called
Temporal k2-raster (T− k2raster) which represents a time-series of rasters. It takes advantage of the fact
that in a time-series, the values in a matrix M1 are very close to, if not the same as, the next matrix M2

or even the one after that, M3, along the timeline. The matrices can then be grouped into τ time instants
where the values of the elements of the first matrix in the group is subtracted from the corresponding
ones in the current matrix. The result will be smaller integer values that would help form a more
compact tree as there are likely to be more zeros in the tree than before. Their experimental results bear
this out. When the τ value is small (τ = 4), the sizes are small. However, as would be expected, the
results are not as favorable when the τ value becomes larger (τ = 50). Akin to the Temporal k2-raster,
the differential encoding on k2-raster that we are proposing in this paper also exploits the similarity
between neighboring matrices or bands in a hyperspectral image to form a more compact structure.

Another study on compact representation of raster images in a time-series was proposed earlier
this year by Cruces et al. in [27]. This method is based on the 3D to 2D mapping of a raster where 3D
tuples <x, y, z> are mapped into a 2D binary grid. That is, a raster of size w × h with values in a certain
range, between 0 and v inclusive will have a binary matrix of w × h columns and v+1 rows. All the
rasters will then be concatenated into a 3D cube and stored as a k3-tree.

3. Results

In this section we describe some of the experiments that were performed to show the use of
compact data structures, prediction and differential encoding for real-time processing and compression.
First, we show the results with other compression algorithms and techniques that are currently in use
such as gzip, bzip2, xz, M-CALIC [15] and CCSDS 123.0-B-1 [9]. Then we compare the build time and
the data access time for k2-raster with and without prediction and differential encoding. Next, we show
the results of different rates in k2-raster that are produced as different k-values are applied. Similarly,
the results of different group sizes for prediction and differential encoding are shown. Finally, the
predictive method and the differential method are compared.

Experiments were conducted using hyperspectral images from different sensors: Atmospheric
Infrared Sounder (AIRS), Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), Compact
Reconnaissance Imaging Spectrometer for Mars (CRISM), Hyperion, and Infrared Atmospheric
Sounding Interferometer (IASI). Except for IASI, all of them are publicly available for download (http:
//cwe.ccsds.org/sls/docs/sls-dc/123.0-B-Info/TestData). Table 1 gives more detailed information
on these images. The table also shows the bit-rate reduction for using k2-raster with and without
prediction. Performance in terms of bit rate and entropy is evaluated for them.

For best results in k2-raster for the testing images, we used the optimal k-value, and also in the
case of the predictor and the differential encoder, the optimal group size for each image was used.
The effects of using different k-values and different group sizes will be discussed and tested in two of
the subsections below.

To build the structure of k2-raster and the cell query functions, a program in C was written.
The algorithms presented in the paper by Ladra et al. [20] were the basis and reference for writing
the code. The DACs software that was used in conjunction with our program is available at the
Universidade da Coruña’s Database Laboratory (Laboratorio de Bases de Datos) website (http://lbd.
udc.es/research/DACS/). The package is called “DACs, optimization with no further restrictions”.
As for the predictive and differential methods, another C program was written to perform the tasks
needed to give us the results that we will discuss below. All the code was compiled using gcc or g++
5.4.0 20160609 with -Ofast optimization.
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The machine that these experiments ran on has an Intel Core 2 Duo CPU E7400 @2.80GHz
with 3072KB of cache and 3GB of RAM. The operating system is Ubuntu 16.04.5 LTS with kernel
4.15.0-47-generic (64 bits).

To ensure that there was no loss of information, the image was reconstructed by reverse
transformation and verified to be identical to the original image in the case of predictive and differential
methods. For k2-raster, after saving the structure to disk, we made sure that the original image could
be reconstructed from the saved data.

3.1. Comparison with Other Compression Algorithms

Both k2-raster with and without predictive and differential encoding were compared to other
commonly-used compression algorithms such as gzip, bzip2, xz, and specialized algorithms such as
M-CALIC and CCSDS 123.0-B-1. The results for the comparison are shown in Table 2 and depicted in
Figure 12.

It can be seen that k2-raster alone already performed better than gzip. When it was used
with the predictor, it produced a bit rate that was basically on a par with and sometimes better
than other compression algorithms such as xz or bzip2. However, it could not attain the bit-rate
level done by CCSDS 123.0-B-1 or M-CALIC. This was to be expected as both are specialized
compression techniques, and CCSDS 123.0-B-1 is considered a baseline against which all compression
algorithms for hyperspectral images are measured. Nevertheless, k2-raster provides direct access to
the elements without full decompression, and this is undoubtedly the major advantage it has over all
the aforementioned compression algorithms.

Figure 12. A rate (bpppb) comparison with other compression techniques.
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3.2. Build Time

Both the time to build the k2-raster only and the time to build k2-raster with predictive and
differential preprocessing were measured. They were then compared against the time to compress
the data with gzip. The results are presented in Table 3. We can see that the build time for k2-raster
only took half as long as with gzip. Comparing the predictive and the differential methods, the time
difference is small although it generally took longer to build the former than the latter due to the
additional time needed to compute the values of α̂ and β̂. Both, however, still took less time to build
than gzip compression.

Table 3. A comparison of build time (in seconds) using k2-raster only and k2-raster with predictive and
differential methods.

Hyperspectral
Image

Build Time (s)
Gzip

Compression (s)k2-Raster
k2-Raster +
Predictor

k2-Raster +
Differential

AG9 1.86 2.23 2.12 3.18
AG16 1.78 2.22 2.09 3.49

ACY00 8.32 10.11 9.49 15.01
ACY03 8.26 10.00 9.47 15.32

AUY00 5.56 7.39 6.84 12.10
AUY03 5.59 7.38 6.76 12.68

C164 17.84 21.32 21.59 27.94
C165 17.89 22.83 22.92 30.83

HCA1 1.98 2.67 2.47 5.59
HCA2 1.98 2.64 2.42 5.80

HFUEA 2.38 3.01 3.05 7.59
HFULM 2.41 3.04 2.87 7.57
HFUMS 2.33 2.95 2.76 8.26

I01 14.58 18.62 16.56 31.59
I02 14.66 17.49 16.66 29.64

3.3. Access Time

Several tests were conducted to see what the access time was like to query the cells in each image
and we found that the time for a random cell access took longer for a predictor compared to just using
the k2-raster. This was expected but we should bear in mind that the bit rates are reduced when a
predictor is used, thus decreasing storage size and transmission rate. Note that the last column also
lists the time to decompress a gzip image file and it took at least 4 or 5 times longer than using a
predictor to randomly access the data 105 times. Table 4 shows the results of access time in milliseconds
for 100,000 iterations of random cell query done by getCell(), a function which was described in the
paper from Ladra et al. [20] for accessing pixel values in a k2-raster.
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Table 4. A comparison of access time (in milliseconds) using k2-raster only and k2-raster with predictive
and differential encoders.

Hyperspectral
Image

100,000 Iterations of Random Access (ms)
Gzip

Decompression (ms)k2-Raster
k2-Raster +
Predictor

k2-Raster +
Differential

AG9 90 125 92 474
AG16 85 121 85 459

ACY00 275 485 426 1949
ACY03 269 474 424 1912

AUY00 151 489 402 1941
AUY03 151 485 402 1957

C164 273 400 381 4048
C165 301 420 397 4382

HCA1 77 131 127 735
HCA2 76 121 118 737

HFUEA 93 150 129 684
HFULM 92 148 129 680
HFUMS 91 146 134 670

I01 155 222 244 2517
I02 168 236 255 2396

3.4. Use of Different k-Values

With k2-raster, we found that different k-values used in the structure would produce different bit
rates and different access time. In general, for most of our testing images the k-value is at its optimal
bit-rate level when it is between 4 and 9. The reason is that as the k-value increases, the height of the
constructed tree becomes smaller. Therefore, the number of nodes in the tree will decrease and so will
the size of the bitmaps Lmax and Lmin that need to be stored in the structure. Table 5 shows the bit
rates of some of the testing images between k = 2 and k = 20. Additionally, experiments show that
as the k-value becomes higher, the access time also becomes shorter, as can be seen in Table 6. As the
k-value gets larger, the tree becomes shorter, thus making it faster to traverse from the top level to a
lower level when searching for a particular node in the tree. As there is a trade-off between storage
size and access time, for the experiments, the k-value that produces the lowest bit rate for the image
was used.

For those who would like to know which k-value would give the best or close to the best rate,
we recommend them to use a value of 6 as a general rule. This can be seen from Table 5 where the
difference in the rate produced by this value and the one by the optimal k-value averages out to be
only about 0.19 bpppb.

3.5. Use of Different Group Sizes

Tests were performed to see how the group size affects the predictive and differential methods.
The group sizes were 2, 4, 8, 12, 16, 20, 24, 28 and 32. The results in Table 7 and Figure 13 show that
for most images, they are at their optimal bit rates when the size is 4 or 8. The best bit-rate values
are highlighted in red. For the range of group size tested, we can also see that except for the CRISM
scenes (which consist of pixels with low spatial correlation, thus leading to inaccurate prediction), the
bit rates for the predictor are always lower than the ones for differential encoding, irrespective of the
group size.

For users who are interested in knowing which group size is the best to apply to the predictive and
differential methods, a size of 4 is recommended for general use as the difference in bit rate produced
by this group size and the one by the optimal group size averages out to be about 0.06 bpppb.

For the rest of the experiments, the optimal group size for each image was used to obtain the
bit rate.
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Figure 13. A rate (bpppb) comparison of different group sizes.

Table 7. A rate (bpppb) comparison of different group sizes using the predictive and the differential
methods. The optimal values are highlighted in red.

Hyperspectral
Image

Group Size

2 4 8 12 16 20 24 28 32

AG9-Pred 8.03 7.41 7.19 7.13 7.16 7.15 7.17 7.17 7.25
AG9-Diff 8.11 7.60 7.51 7.52 7.63 7.58 7.74 7.73 8.00

ACY00-Pred 7.74 7.05 7.03 7.36 7.55 7.78 7.81 8.18 8.18
ACY00-Diff 8.03 7.58 7.79 8.18 8.40 8.73 9.09 9.48 9.13

AUY00-Pred 9.94 9.22 9.18 9.53 9.70 10.03 10.02 10.53 10.34
AUY00-Diff 10.33 9.91 10.18 10.49 10.71 11.14 11.32 11.91 11.36

C164-Pred 10.08 10.11 10.17 10.20 10.23 10.20 10.31 10.24 10.24
C164-Diff 10.06 10.08 10.13 10.16 10.18 10.20 10.31 10.22 10.17

HCA1-Pred 7.51 7.30 7.31 7.51 7.65 8.15 8.31 8.09 8.16
HCA1-Diff 7.57 7.47 7.68 7.66 8.00 8.34 8.95 8.84 8.47

HFUEA-Pred 6.07 6.01 6.05 6.13 6.25 6.33 6.41 6.21 6.55
HFUEA-Diff 6.11 6.15 6.30 6.44 6.75 6.63 6.81 6.70 7.07

I01-Pred 5.22 4.91 4.78 4.75 4.73 4.74 4.69 4.73 4.71
I01-Diff 5.32 5.10 5.01 5.04 5.01 5.06 5.02 5.05 5.06

3.6. Predictive and Differential Methods

The proposed differential and predictive methods were used to transform these images into
data with lower bit rates. They were then used as input to k2-raster to further reduce their bit rates.
Their performance was compared together with Reversible Haar Transform at levels 1 and 5, and
the results are presented in Table 8. Figure 14 shows the entropy comparison of Yellowstone03 using
differential and predictive methods while Figure 15 shows the bit rate comparison between the two
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methods. Both show us that the proposed algorithm has brought benefits by lowering the entropy and
the bit rates. The data for reference bands are left out of the plots so that the reader can have a clearer
overall picture of the bit rate comparison.

Compared to other methods, the predictive method outperforms others, with the exception
of Reversible Haar Transform level 5. However, it should be noted that while the predictive and
differential methods require only two pixels (reference pixel and current pixel) to perform the reverse
transformation, it would be a much more involved process to decode data using Reversible Haar
Transform at a higher level. The experiments show that for all the testing images, the predictive
method in almost all bands perform better than the differential method. This can be explained by the
fact that in predictive encoding the values of α and β in Equation (1) take into account not only the
spectral correlation, but also the spatial correlation between the pixels in the bands when determining
the prediction values. This is not the case with differential encoding whose values are only taken from
the spectral correlation.

Figure 14. An entropy comparison of Yellowstone03 using differential and predictive methods. Data
for reference bands are not included.

Figure 15. A bit rate comparison of Yellowstone03 using differential and predictive methods on
k2-raster. Data for reference bands are not included.

289



Remote Sens. 2019, 11, 2461

Table 8. A rate (bpppb) comparison using different transformed methods: predictor, differential,
reversible Haar level 1 and reversible Haar level 5 on k2-raster. The optimal values are
highlighted in red.

Hyperspectral
Image

Transformation Type

Without
Transformation

Predictor Differential
Reversible

Haar
(Level 1)

Reversible
Haar

(Level 5)

AG9 9.49 6.76 7.52 8.10 6.83
AG16 9.12 6.63 7.29 7.81 6.60

ACY00 9.63 6.87 7.79 8.01 7.00
ACY03 9.44 6.72 7.65 7.86 6.87

AUY00 11.92 9.04 10.04 10.33 9.35
AUY03 11.74 8.87 9.91 10.18 9.23

C164 10.08 10.02 10.06 10.01 9.83
C165 10.37 10.33 10.37 10.33 10.16

HCA1 8.20 7.47 7.47 7.37 7.05
HCC 7.38 7.50 7.50 6.71 6.54

HFUEA 6.84 5.99 6.15 7.12 6.75
HFULM 6.79 6.06 6.18 7.14 6.83

I01 5.93 4.69 5.01 5.26 4.54
I02 5.90 4.75 5.03 5.26 4.57

4. Conclusions

In this work, we have shown that using k2-raster structure can help reduce the bit rates of a
hyperspectral image. It also provides easy access to its elements without the need for initial full
decompression. The predictive and differential methods can be applied to further reduce the rates.
We performed experiments that showed that if the image data are first converted by either a predictive
method or a differential method, we can gain more reduction in bit rates, thus making the storage
capacity or the transmission volume of the data even smaller. The results of the experiments verified
that the predictor indeed gives a better reduction in bit rates than the differential encoder and is
preferred to be used for hyperspectral images.

For future work, we are interested in exploring the possibility of modifying the elements in a
k2-raster. This investigation is based on the dynamic structure, dk2-tree, as discussed in the papers by
de Bernardo et al. [29,30]. Additionally, we would like to improve on the variable-length encoding
which is currently in use with k2-raster, and hope to further reduce the size of the structure [23,24].
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Abbreviations

The following abbreviations are used in this manuscript:

AIRS Atmospheric Infrared Sounder
AVIRIS Airborne Visible InfraRed Imaging Spectrometer
CALIC Context Adaptive Lossless Image Compression
CCSDS Consultative Committee for Space Data Systems
CRISM Compact Reconnaissance Imaging Spectrometer for Mars
DACs Directly Addressable Codes
IASI Infrared Atmospheric Sounding Interferometer
JPEG 2000 Joint Photographic Experts Group 2000
KLT Karhunen–Loève Theorem
LOUDS Level-Order Unary Degree Sequence
MDPI Multidisciplinary Digital Publishing Institute
PCA Principal Component Analysis
SOAP Short Oligonucleotide Analysis Package
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Abstract: Hyperspectral images are depictions of scenes represented across many bands of the
electromagnetic spectrum. The large size of these images as well as their unique structure requires
the need for specialized data compression algorithms. The redundancies found between consecutive
spectral components and within components themselves favor algorithms that exploit their particular
structure. One novel technique with applications to hyperspectral compression is the use of spectral
graph filterbanks such as the GraphBior transform, that leads to competitive results. Such existing
graph based filterbank transforms do not yield integer coefficients, making them appropriate only for
lossy image compression schemes. We propose here two integer-to-integer transforms that are used in
the biorthogonal graph filterbanks for the purpose of the lossless compression of hyperspectral scenes.
Firstly, by applying a Triangular Elementary Rectangular Matrix decomposition on GraphBior filters
and secondly by adding rounding operations to the spectral graph lifting filters. We examine the merit
of our contribution by testing its performance as a spatial transform on a corpus of hyperspectral
images; and share our findings through a report and analysis of our results.

Keywords: hyperspectral image coding; graph filterbanks; integer-to-integer transforms; graph
signal processing

1. Introduction

Hyperspectral images are representations of scenes across many bands of the electromagnetic
spectrum (otherwise called spectral components). These images have been used to classify areas of
a landscape [1], identify clouds [2] or seeds located on the Earth’s surface [3] and even forecast
geological events such as landslides [4]. Due to their large size, these images require the use
of efficient compression techniques in the form of specialized image transforms. The above
mentioned transforms can often be computationally costly but one could strive towards real-time
compression of remotely-sensed hyperspectral images, when processed accordingly through
on-ground, high-performance parallel computing facilities.

Transform-based lossy compression techniques used on hyperspectral images are commonly
related to one of two families. The first group of algorithms are based on the Discrete Wavelet
transform (DWT) [5–8]. On one hand the advantage of these transforms manifests through their
low computational complexity, though they are not adaptive to the input signal. On the other hand,
algorithms such as those in References [9–12] are based on the Karhunen-Loeve transform (KLT), which
is adaptive at the expense of a high computational complexity. Meanwhile the techniques used for the
lossless compression of hyperspectral images are generally based on a predictive coding model [13,14]
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though lossy predictive techniques [15] have the benefit of a lower computational complexity. Some
lossless predictive techniques [16,17] are implemented in the CCSDS-123.0-B-2 [18] standard that also
supports near-lossless compression and whose parameter tuning is explored in Reference [19].

This paper exploits a recently emerged family of wavelet transforms which are based on graph
signal processing, a field in which data structures are represented as signals lying on the nodes of
graphs while weighted graph edges denote the degree of similarity between nodes [20,21]. Graph
wavelet transforms are derived from the graph structures, which in turn, one can also construct from
images. Applying such transforms on hyperspectral images has been shown to lead to competitive
compression results [22].

The strength of graph wavelet transforms in the field of image compression stems from the
Graph Fourier Transform (GFT), an equivalent to the classical Fourier transform that is formed by the
eigenvectors of the graph Laplacian, a matrix constructed from the values of the weighted edges of
the graph. Just like the KLT, the GFT is an adaptive transform but instead of following a statistical
approach, it attempts to encode image structures that are embedded in the graph edges. Thus, an
important attribute of the GFT is related to its flexibility, since one can decide on the degree of accuracy
with which image structures are represented on the graph [23]. It has also been shown [24] that not only
does the GFT approximate the KLT for a piece-wise first-order autoregressive process but also that the
GFT optimally decorrelates images following a Gauss-Markov random field model [25]. Consequently,
graph wavelet transforms combine the GFT with a multiresolution analysis, resulting in a powerful
tool for image compression.

A brief review of graph wavelet transforms follows. One can organize these transforms into two
general groups—vertex domain and spectral domain designs. The former are based on spatial features
of the graph such as the degree of connectivity between nodes. These vertex domain designs, though,
lack spectral localization. While the energy of the resulting transformed signal is not concentrated
around central graph frequencies, the vertex domain designs are described by a perfect localization on
the vertex domain, meaning that one can define the number of nodes that will update the value of a
vertex after the transform. One specific vertex domain design is the lifting-based graph wavelets [26]
that use distinct groups of nodes to compute the update and detail wavelet coefficients.

Transforms that belong in the latter category of spectral designs exploit characteristics of the
graph spectrum (not to be confused with the spectrum of hyperspectral images) in the form of the
eigenvectors and the eigenvalues of the graph. One key feature of these designs is good spectral as
well as vertex domain localization. One of the first spectral graph wavelet transforms are the diffusion
wavelets [27] as well as the spectral graph wavelets [28]. While these spectral graph transforms are
over-complete (the number of wavelet coefficients surpass the number of signal samples), this problem
is solved by the two-channel graph wavelet filterbanks [29] that uses quadrature mirror filters (QMF)
on bipartite graphs. These filters are not compactly supported and produce transforms that are not
well localized on the vertex domain. The next iteration of such transforms are the biorthogonal graph
wavelet filterbanks (introducing the GraphBior transform) [30] which are compactly supported as
well as critically sampled. Since then several improvements and variations of the biorthogonal graph
filterbanks have been proposed by including spectral sampling [31] or by introducing the M-channel
graph wavelet filterbanks that can be implemented on large sparse graphs [32]. One of these variations
uses polyphase transform matrices [33], proposing graph lifting structures [34] in the spectral domain
for biorthogonal graph filterbanks.

One major issue of the filters developed for biorthogonal graph filterbanks, regarding image
compression, is that they are only suited for lossy compression schemes. This drawback originates
from the fact that the graph wavelet coefficients arising from these transforms are not integer. Thus a
necessary quantization step is required rendering such compression schemes lossy. Furthermore,
the use of spectral graph transforms for the compression of hyperspectral images spawns further
difficulties—a huge amount of side information is required, due to the necessity to transmit the graph
structure to the decoder.

294



Remote Sens. 2019, 11, 2290

In this paper, we provide transforms that allow us to construct a lossy-to-lossless compression
scheme for hyperspectral images, using biorthogonal graph filterbanks. We developed two integer
graph-transforms, both suitable for the biorthogonal graph filterbanks.

Our first approach is to modify the filtering process of GraphBior so that the resulting analysis
wavelet coefficients are integer. We solve this problem by computing the Triangular Elementary
Rectangular Matrix (TERM) [35] decomposition of the spectral GraphBior filter. At first glance this
solutions seems promising but due to the high complexity of the TERM factorization process and
the large size of the GraphBior filters, one could argue otherwise. Thus we partition each GraphBior
filter in tiles and compute the TERM factorization of each tile in parallel. This process dramatically
decreases the time complexity of the TERM factorization of GraphBior.

Our second integer spectral graph transform is achieved by introducing rounding operations
within the spectral graph lifting structures proposed in Reference [34]. Hence, we transform it into an
integer-to-integer graph wavelet transform.

Using our proposed transforms mentioned above, we design a lossy-to-lossless extension to
the scheme developed for the lossy compression of hyperspectral images through GraphBior in
Reference [22]. The compression scheme published in Reference [22] tackles the issue of transmitting
the graph structure to the decoder by assembling consecutive hyperspectral components into packets
called band groups.

In this paper we evaluate and analyze the performance of our lossy-to-lossless compression
scheme on a variety of hyperspectral images. We then explore the use of our graph transforms
for hyperspectral images. Additional, we explore the effect that different parameters have on our
compression scheme. Such parameters are the size of the tiles as well as the size of band groups.
Experimental results are provided comparing the performance of the proposed techniques for several
images from the CCSDS MHDC corpus of hyperspectral images [36].

This paper is structured as follows. First, in Section 2, we present a brief overview of graph signal
processing and biorthogonal graph filterbanks. Then, the derivation of the TERM decomposition
of the GraphBior transform, the introduction of the integer spectral graph lifting transform, as well
as the adopted coding strategy are discussed in Section 3. In Section 4 we detail the setting of our
experiments and showcase our results. Our conclusions are stated in Section 5.

2. Graphs and Biorthogonal Graph Wavelets

This section provides a brief introduction on graph signal processing and GraphBior. A graph
G = (V, E) is composed by a set of nodes V that are linked to each other by a set of edges E. There is a
large variety of graphs, each with its own special properties. One relevant example is the bipartite
graph, whose nodes can be arranged in 2 subsets such that there are no edges connecting nodes of the
same subset. In other words, one needs only two colors in order to color the nodes of the graph in a
way that no two nodes of the same color are connected through an edge. Two examples of bipartite
graphs can be seen in Figure 1b,c.

The edges of a graph can be weighted, in a way that nodes can be connected strongly or weakly
by a non discrete measure. The adjacency matrix A ∈ R|V|×|V|, of a graph, is the symmetric matrix that
describes the strength of all the possible connections between all nodes of a graph. We establish matrix
A in such a way that any of its elements located in row i and column j is a real number aij ∈ [0, 1]
representing the weight of the edge between node i and j. The stronger the connection between two
nodes, the higher the value of the weight, with the value 1 describing an edge of the highest strength.
Conversely, weaker connections are represented by lower adjacency values such that a weight value
equal to 0 represents a non existing edge between nodes. Using the Adjacency matrix one can compute
the normalized Laplacian matrix that is defined as L̃ = I − D−1/2 AD−1/2, where D is the diagonal
degree matrix whose ith element is equal to the sum of the elements of A situated on its ith row.
In graph signal processing the normalized Laplacian matrix is of vital importance since it embeds
within its structure the spectral information of the graph. Due to its symmetric nature, the eigenvectors
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of L̃ create a complete orthogonal basis that can describe any vector in R|V| as a linear combination
of its basis. Additionally the eigenvalues of L̃ are known as the spectrum of the graph and portray a
notion of frequency.

We can also assign a real value to each node of the graph such that node i has a value of fi. A graph
signal f ∈ R|V| is expressed mathematically as a vector and represents the collective values of the
nodes. A graph signal of low frequency is expected to vary slowly, meaning that strongly connected
nodes will support very similar graph signal values, while a high frequency signal is expected to assign
very dissimilar values to strongly connected nodes. In other words a low frequency signal reflects the
natural connectivity characteristics of the nodes of the graph whereas a high frequency signal goes
against the connectivities imposed by the values of the graph edges.

The GraphBior transform, just as classical wavelet filterbanks, filters in the analysis step a signal
into low pass and high pass signals that are later downsampled in order to decrease the number of
graph wavelet coefficients. In order to guarantee reversibility of the transform, GraphBior exploits
a particular characteristic of the spectrum of bipartite graphs (called spectral folding) [30]. Thus an
arbitrary graph first needs to be decomposed into a series of bipartite subgraphs. These subgraphs
share the same set of nodes as the original graph but their sets of edges do not intersect. The GraphBior
filterbanks then makes use of these graphs by creating low and high pass filters.

(a) General graph (b) First bipartite component (c) Second bipartite component

Figure 1. A graph (a) is decomposed into bipartite components (b) and (c). Node colors are the result
of the graph coloring process, required for the graph bipartition.

3. Lossy-to-Lossless Graph Wavelet Filterbanks

Our work in this paper strives towards a lossy-to-lossless extension of Reference [22] for the
compression of hyperspectral images using the GraphBior filterbanks. In this following section
we go through the compression scheme that is employed, which follows the one introduced in
Reference [22]. Then we propose an integer-to-integer version of the GraphBior filters, by applying
a TERM decomposition, as well as tiling to decrease the time complexity of the TERM factorization.
Additionally, we propose a second integer-to-integer graph transform suited for the biorthogonal
graph filterbanks by modifying the spectral graph lifting structures in Reference [34].

3.1. Compression Scheme

Our compression scheme consists of 3 modules—one whose purpose is to calculate the
biorthogonal graph filterbank transform, an encoder and a decoder.

The first module is where a single hyperspectral component is used for the construction of
a biorthogonal graph filterbank transform and follows the scheme introduced in Reference [22].
The component is first mapped into a graph, then decomposed into a series of bipartite graphs which
will finally be used to create the graph transform. We design a graph G by representing the pixels of
a component as graph nodes and connect neighboring nodes with vertical, horizontal and diagonal
edges resulting in a 8-regular graph just as the one shown in Figure 1a. Edges between two connected
nodes are strong if the luminance values of these two pixels are similar and low when they are not.
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Specifically a graph edge aij is calculated through the Gaussian kernel aij = e−
( fi− f j)

2

σ where fi and
f j are the values of pixels i and j and σ is a scaling factor. Once the graph G = (V, E) has been
constructed, it is decomposed into a series of n bipartite subgraphs Bi = (Vi, Ei) with i = 1, . . . , n.
The bipartition should be done in a way where each bipartite subgraph has the same vertex set as the
original graph, whereas the edges of E are distributed among the subgraphs Bi in such a way that no
single edge of the original graph is present in more than one bipartite subgraphs. Thus, the union of all
the sets of edges from all the bipartite graphs is equal to the set of edges of the original graph. In other
words, Vi = V, ∪iEi = E and Ei ∩ Ej = ∅ for i �= j. To decompose a graph into a series of bipartite
subgraphs, we utilize Harary’s decomposition [37]. Other decomposition techniques are found in
References [38–40]. In the case of the 8-regular graph, shown in Figure 1a, the bipartition resulting
from Harary’s algorithm is very intuitive and is not computationally intensive. By discarding all
diagonal edges from the graph in Figure 1a, we construct the first bipartite graph, shown in Figure 1b
and by discarding all horizontal and vertical edges from Figure 1a, we construct the second bipartite
graph, shown in Figure 1c. Hence, an 8-regular graph G, constructed out of a single component, is
decomposed into two bipartite graphs that are utilized for the computation of a biorthogonal graph
filterbank transform, just as shown in Figure 2.

It is necessary, for the reversibility of the transform, that the encoder and the decoder have both
access to the same graph structure. This ensures that both modules construct the analysis and synthesis
filters out of the same graph. The first module is designed in a way that circumvents the transmission
of the graph structure to the decoder without the need of side information. This is done by only using
decoded components for the calculation of the graph wavelet transforms. Specifically, components
are bundled into packets of consecutive components called band groups. Each band group should
preferably consist of the same number, ω, of components. Once the decoder has decompressed a band
group we extract the last of its components. Using that component we create the graph G and thus the
graph wavelet transform. This process can be executed in the decoder and the encoder simultaneously.
Once the graph wavelet transform has been learned, it is then applied to the next band group, in
the analysis step within the encoder as well as in the synthesis step at the decoder. A schematic
representing the computation and usage of the graph filterbank transform is depicted in Figure 3a.

The next module is the encoder, whose first operation upon receiving an image is to partition
all but the first component into band groups. The first component is then compressed in a lossless
manner by a spatial DWT and transmitted to the decoder. Thus the first component can be used to
create the biorthogonal graph filterbank transform for the first band group. Remaining components
are partitioned in band groups and encoded sequentially. The next step involves an optional RKLT
or DWT transform across the spectral direction of the band group. This step is followed by the
application of a spatial graph wavelet transform and the resulting graph wavelet coefficients are
then quantized and coded by a plain entropy encoder. Accordingly, the module of the decoder is
composed by an entropy decoder, a dequantizer, the synthesis process of the biorthogonal graph
filterbank and the optional inverse spectral transform. The encoder and decoder modules are depicted
in Figure 3b. By introducing our integer-to-integer filters for the biorthogonal graph filterbank we
obtain a lossy-to-lossless compression scheme using graph wavelets.

It is important to note that this manuscripts aims to study graph wavelet transforms when
applied spatially to hyperspectral images. For that reason, we have followed a minimalist approach to
designing our overall compression scheme. By avoiding complex quantization or entropy encoding
stages, with complex overall interactions, we focus our efforts to the proposed graph transforms and to
measure their performance with less interference. While a more complex integration of post-transform
encoder parts would be possible, due to the adaptive nature of the biorthogonal graph filterbanks, it is
expected that these transforms perform competitively, regardless of the probabilistic characteristics of
the pre-transform data. For theoretical result on transform performance, readers can see Reference [25],
where it is proven that the GFT optimally decorrelates images following a Gauss-Markov random
field model.
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Compute graph filterbank
transform out of bipartite
graphs G1 and G2

Construct 8-regular graph G from
component using vertical,
horizontal and diagonal edges

Construct 8-regular graph G from
component using vertical,
horizontal and diagonal edges

Component selected for the
computation of a biorthogonal
graph filterbank transform

Decompose graph G into
bipartite graphs G1 and G2 by
applying Harary’s algorithm

G1 G2

Decompose graph G into
bipartite graphs G1 and G2 by
applying Harary’s algorithm

G1 G2

Figure 2. Construction of the bipartite graphs out of a selected component leading to the calculation of
a graph filterbank transform.
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(b) Compression scheme
Figure 3. Schematics of the compression scheme used.

3.2. TERM factorization of GraphBior

In order for the proposed graph compression scheme, based on the biorthogonal graph filterbanks,
to develop a lossless behavior we require an appropriate transform. Specifically, an integer-to-integer
spectral graph wavelet transform. One of our solutions is to apply the TERM factorization process and
the computational scheme introduced in Reference [35] on the GraphBior transform matrix.

However, one cannot decompose any arbitrary square transform matrix through TERM.
The necessary condition in order to apply such a factorization dictates that the determinant of the
transform should be strictly equal to 1. By design the GraphBior transform is reversible, which means
that the determinant of the GraphBior analysis filter Ta ∈ R|V|×|V| is equal to an arbitrary non zero
real number d.

We scale the elements of Ta by d−1/|V|, without the loss of graph spectral information, to force
its determinant to 1. Therefore we create a new matrix T′

a = Ta · d−1/|V| whose determinant is equal
to 1 and can follow the decomposition and computational scheme of Reference [35]. Applying the
TERM factorization to the transform T′

a and by following the computation scheme introduced in
Reference [35] we manage to create an integer-to-integer variation of the GraphBior transform. We
shall abbreviate our proposed TERM GraphBior transform as IGB (integer GraphBior).

This factorization procedure raises the concern for certain drawbacks, specifically if we consider
the large size of the GraphBior transform matrix. These square nonsingular matrices have as
many rows (or columns) as the total number of pixels in each hyperspectral component. Due
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to its cubical computational complexity, the factorization of a GraphBior transform for an entire
component, through TERM, is computationally intensive. As a first measure we use low order
polynomials to compute the GraphBior filters. For that reason we use the GraphBior(1,1) rather than
the better performing GraphBior(5,5) transform, since the former produces a sparser transform matrix.
Additionally we split each component that is used to create the transform into smaller square tiles in
an effort to accelerate the factorization process.

3.3. Tiling

In order to alleviate the time complexity from the TERM factorization, we developed a divide and
conquer method. We initially split the component that is used to derive the graph wavelet transform
into multiple small square tiles. From each tile, we compute its corresponding GraphBior transform to
which we apply the TERM factorization. For the selection of a suitable tile size, in this subsection we
study the effect on the performance of our compression scheme with respect to the tile size. Therefore we
have experimented with IGB on our compression scheme, with no spectral transforms and using 3
different tile sizes (8 by 8, 16 by 16 and 32 by 32 square tile sizes). We tested the performance of IGB
on the hyperspectral images, listed in Table 1, that contain several hyperspectral scenes available at the
CCSDS website [36]. In Table 2 we display the entropy, in bits per pixels per component (bpppc), at
which IGB becomes lossless, while using ω = 2. We observe that the entropy where the IGB transform
becomes lossless decreases as the tile size increases. This first observation encourages us to use a larger
tiles for the lossless case. The results from Figure 4 lead to the same conclusions when testing the lossy
performance of IGB. Specifically, in Figure 4 we display the performances of IGB when using tiles of
8 by 8 and 16 by 16 pixels, relative to using larger tiles of 32 by 32 pixels. Larger tile sizes are not included
in our experiments as we are limited by the high computational complexity of the TERM decomposition.
In Figure 5 we have repeated the same experiment on other hyperspectral images. Regarding the two
AVIRIS images, due to their much larger spectral size, we have not experimented with the largest tile
option as we have done with the Landsat image. The experimental conclusions also agree with our
intuitive interpretation of the graph biorthogonal filterbanks since when using larger tiles, the graph can
exploit spatial redundancies on a bigger area of each component. This is because the graph edges that
connect adjacent nodes that belong to different tiles are not utilized. Since the number of discarded edges
rises as the tiles becomes smaller so does the performance of IGB deteriorate. Therefore it is beneficial to
keep the sizes of the tiles as large as possible but small enough to allow a fast TERM factorization. Luckily
this solution can be parallelized since we could process every tile of every component of the same group
at the same time.

Table 1. The hyperspectral images with their dimensions used in our experiments.

Name Instrument Calibrated Across-Track Along-Track Spectral Dimension

Yellowstone sc. 0 cal. AVIRIS Yes 512 512 224
Yellowstone sc. 0 raw AVIRIS No 512 512 224

Lake Monona Hyperion Yes 512 256 242
Mt. St. Helens Hyperion Yes 512 256 242

Agriculture Landsat No 512 512 6

299



Remote Sens. 2019, 11, 2290

Table 2. Rates at which integer GraphBior (IGB) achieves a lossless compression using ω = 2 for
various tile sizes and multiple images. Units are in bpppc.

Image
IGB

Tiles of 8 by 8 Tiles of 16 by 16 Tiles of 32 by 32

Yellowstone sc. 0 cal. 7.14 6.95 -
Yellowstone sc. 0 raw 9.15 9.02 -

Lake Monona 6.40 6.31 6.26
Mt. St. Helens 6.78 6.68 6.63

Agriculture 4.39 4.27 4.21

0 1 2 3 4 5

Rate [bpppc]

-1.5

-1

-0.5

0

Mt. St. Helens

8 by 8 tiles
16 by 16 tiles
32 by 32 tiles

Figure 4. Relative rate-distortion plots for IGB, using ω = 2, when varying the tile size. Results are
relative to those of the largest tile size.

3.4. Integer-to-Integer Spectral Graph Lifting

The main disadvantage of the IGB arises from the computational complexity of the TERM
factorization step. As we have seen in the previous section although the tiling strategy reduces the
time complexity for the TERM factorization, the performance of our compression scheme decreases in
relation to the size of the tiles. For that reason we introduce a second integer-to-integer graph filterbank
transform using the spectral graph lifting filters [34].

These filters are arranged into Type 1 and 2 polyphase transform matrices (PTM) which have
an upper and lower triangular structure respectively. The final transform matrix is calculated
by multiplying alternatively Type 1 PTMs with Type 2 PTMs. One can notice that both types of
PTMs are unit triangular rectangular matrices, which means that by following the TERM filtering
process we can modify the spectral graph lifting filters into integer-to-integer transforms. Due to
their particular structure, by introducing rounding operations after applying each PTM matrix
multiplication, the transform becomes integer and reversible. We experiment with the integer-to-integer
spectral graph lifting using the quad kernel (ISGLQ) and the integer-to-integer spectral graph lifting
using the dual kernel (ISGLD) designs [41].

It should be noted that the computational complexity of this transform is comparable to the one
of the GraphBior transform and can be easily computed from an entire component without the need of
tiling operations. Specifically the computational complexity of the costlier ISGLQ is comparable to
the one of GraphBior(5,5) since the former requires a computation of a 10th and 13th degree matrix
polynomial, whereas the latter one of 10th and one of 11th. This means that by implementing the
filtering process with Chebyshev polynomials [28] one can use the same order M to approximate
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similarly well the GraphBior(5,5) as well as the ISGLQ filters resulting in a computational complexity
of O(M|E|) per filter, where E is the set of edges of the graph. By performing the appropriate
modifications, our proposed ISGLQ compresses and decompresses the calibrated AVIRIS image from
Table 1 in 4.5 min, whereas the IGB required more than 1 h to successfully perform the same action on
a computer using an Intel Core i7-7700HQ CPU and 16GB of RAM.
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Figure 5. Relative rate-distortion plots for IGB, using ω = 2, when varying the tile size, for multiple
images. Results are relative to those of the largest tile.

4. Experimental Results

In this section we describe the setting of our experiments and analyze our results. We provide
several comparisons testing the performance of our compression scheme using our proposed
transforms, in both progressive lossy-to-lossless and lossless settings. We should note that regarding
the rate computations, we compute the average of the entropies of each compressed component
instead of using any particular entropy encoder to discard any bias introduced by an entropy encoder
fine-tuned for a specific transform. All experiments have been performed using a prototype encoder
implementation in Matlab R2017b. Initially we experiment solely on spatial transforms. We compare
our proposed transforms against the GraphBior transform, with and without dividing the components
into tiles as well as the reversible 5/3 integer wavelet transform (DWT). All GraphBior transforms
are using the maximally flat GraphBior(1,1) filters. The spectral graph lifting designs are using
the maximum flatness dual (with the B7,3 Parametric-Bernstein-Polynomial for ISGLD) and quad
(with the B3,1 Parametric-Bernstein-Polynomial for ISGLQ) kernel designs without normalization
parameters [41]. We provide further comparisons between the spatial transforms by including spectral
transforms such as the Reversible Karhunen Loeve Transform (RKLT) [42] and the DWT.
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We have repeated our experiments on crops of the Aviris Yellowstone scene 00, the Hyperion
images Lake Monona and Mt. St. Helens and the Landsat Agriculture image. The dimensions of the
cropped images that have been used are displayed in Table 1. More precisely, we have discarded the
last rows and columns of each component for both Aviris as well as the Landsat scenes. Regarding the
Hyperion images we have discarded the last columns and the first 1350 and 760 rows for Lake Monona
and Mt. St. Helens respectively.

Next we explore the version of the compression scheme where we include a spectral transform
on each band group before applying the spatial transform. The graph transforms are always
computed from the luminance values of components and not the spectrally transformed results.
We experiment with the Reversible Karhunen Loeve Transform (RKLT) [42] and DWT as spectral
transforms. The spatial transforms compared in this experiment are the proposed IGB, the tiled
GraphBior, the DWT, the ISGLQ and ISGLD. In this final experiment, we also include a comparison of
our overall compression scheme with the CCSDS-123.0-B-2 standard, tuned according to Reference [19].

4.1. Parameter Variations

We first study the effect that different values of ω have on IGB, without taking into account
spectral transforms. To search for the most beneficial choices of ω to IGB we use tiles of large size.

In Figure 6 the relative rate-distortion plot displays the decrease of performance when larger
values of ω are compared against the smallest ω = 2. One can clearly conclude that it is beneficial
to choose smaller values of the parameter ω when no spectral transform is used. We repeat the
experiment with several other hyperspectral images and display the results in Figure 7. Specifically,
it is for ω = 2 that tends to lead to optimal results in all cases. This result agrees with our expectations
since components closer in the spectral dimension tend to have high correlation. Thus, the component
that has been used to create the IGB transform will capture sometimes more accurately the spatial
redundancies of its neighboring component rather than of one located further away in the spectral
dimension. Though this can lead to detrimental results for low ω values, when high quantization
occurs. As we can see from Figures 6 and 7c,d at low rates, larger parameters ω outperform lower ones.
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-0.3

-0.2
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0

0.1

Mt. St. Helens

Figure 6. Relative rate-distortion plot for IGB using tiles of 16 by 16 when varying ω. The reference
curve coincides with tuning the parameter ω = 2.

This could be explained by high quantization, when the surviving features preserved in a
decompressed component are general enough to construct a graph that represents sufficiently well a
larger number of components. Furthermore, the smaller the parameter ω, the higher the probability
of outlier components (ones that do not share high correlation with neighboring components such

302



Remote Sens. 2019, 11, 2290

as dead bands) to be used for the graph creation, which may result in poor reconstruction results of
components of an entire band group.

From Table 3 we also observe that the entropy where the compression scheme using the IGB
transform becomes lossless, increases with ω. This explains why at high rates, higher ω values
can be seen to sometimes perform better. This is also noticeable in classical reversible integer
wavelet transforms. Their rate distortion curves tend to plateau close to the bitrate at which they
achieve a reversible compression. As a result, sometimes, they are surpassed by the distortion curves
corresponding to methods that become reversible at higher bitrates (since they still continue to grow
with a higher gradient).

Table 3. Rates at which IGB achieves a lossless compression for different values of ω. The tiles size
is set to 16 by 16. The spectral size of the hyperspectral image should be a multiple of ω, resulting in
empty cells. Units are in bpppc.

Image
IGB

ω = 2 ω = 3 ω = 8 ω = 11 ω = 14 ω = 16 ω = 22

Yellowstone sc. 0 cal. 6.95 7.00 7.06 7.14
Yellowstone sc. 0 raw 9.02 9.06 9.14 9.15

Lake Monona 6.31 6.36 6.37
Mt. St. Helens 6.68 6.75 6.75

Agriculture 4.27 4.39
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Figure 7. Relative rate-distortion plots for IGB using tiles of 16 by 16 when varying the parameter ω

for multiple images. Results are relative to those of smallest value of ω.

303



Remote Sens. 2019, 11, 2290

4.2. Spatial Transformations

Adopting our previous findings regarding the parameter ω as well as the size of the tiles,
we compare our proposed reversible transforms against the DWT and the GraphBior with and without
using tiles. All transforms are applied spatially whereas spectral transforms are not included in the
subsequent experiments. It should be noted that all spatial transforms are tested using the compression
scheme introduced in Section 3.

For this experiment, the rate-distortion plot, as well as the relative rate-distortion plot using the
DWT transform as reference can be observed in Figure 8a,b respectively. From the rate-distortion plots
of Figure 8 we observe that the ISGLQ performs the best for low and medium rates, whereas GraphBior
provides the best results for high rates. It is important to mention, though, that in most cases IGB
slightly outperforms the DWT as well as the ISGLD at low rates. Moreover, although in general, tiled
GraphBior outperforms IGB, at low rates, both perform similarly. This same behavior is also observed
between classical discrete wavelet transforms and their reversible counterparts. Given the previous
observation and since the results of IGB improve as the tile size increases, one could speculate that a
IGB that does not use any tiles would perform similarly to GraphBior for low rates. This experiment
has been repeated on different hyperspectral scenes and the results can be observed in Figure 9.

In Table 4 we can see the rates at which the IGB, DWT, ISGLQ and ISGLD achieve a lossless
compression. We also observe that in most cases the entropy where IGB achieves a lossless compression
is the lowest.
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Figure 8. Comparison of spatial transforms. Tiles of 16 by 16 and ω = 2 were used.

Table 4. Rates at which each integer transform achieves a lossless compression. No spectral transform
is used. The parameter ω is set to 2. The IGB transform uses tiles of 16 by 16 for the Yellowstone images
and 32 by 32 for Lake Monona, Mt. St. Helens and Agriculture. Units are in bpppc.

Image
Transform

IGB DWT ISGLD ISGLQ

Yellowstone sc. 0 cal. 6.95 7.29 7.44 7.11
Yellowstone sc. 0 raw 9.02 9.32 9.47 9.19

Lake Monona 6.26 6.23 6.50 6.28
Mt. St. Helens 6.63 6.57 6.93 6.67

Agriculture 4.21 4.37 4.67 4.37
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Figure 9. Relative rate-distortion plots comparing spatial transforms using ω = 2 for multiple images.
Results are relative to DWT. The tiles sizes are 16 by 16 for the Yellowstone sc. 0 raw image and 32 by
32 for the rest.

4.3. Spectral and Spatial Transformations

Our comparisons on strictly spatial transforms are ensued by experiments that include the
DWT and the RKLT as spectral transforms, in the compression scheme mentioned in Section 3.
Succeeding the spectral transform, we then compare our proposed reversible transforms against the
DWT and the tiled GraphBior applied in the spatial dimension of the hyperspectral images. Our overall
compression scheme including classical spectral and graph spatial transforms is also compared against
the CCSDS-123.0-B-2 standard.

In Figure 10a,b we present the rate-distortion plot as well as the relative rate-distortion plot.
The results are relative to applying a spectral RKLT along the entire hyperspectral image, followed by
a spatial DWT.

Regarding the comparison between the transforms used in our compression scheme, we observe
that a spectral RKLT followed by the proposed ISGLQ or ISGLD transforms perform the best.
Several additional comparisons are done on multiple hyperspectral images and from our results
in Figure 11 we observe that the spectral RKLT and the spatial ISGLQ systematically outperforms the
spectral RKLT and spatial DWT, mostly at medium to high rates. The spectral RKLT and spatial ISGLD,
also, usually surpasses the reference method but provides less important results when compared to
using the spatial ISGLQ instead. On the other hand the spectral RKLT and the spatial IGB is almost
always providing worse results when compared to the spectral RKLT and the spatial DWT.

Our conclusions from the comparison of the spatial transforms done in Section 4.2 are also evident
in our current experiment. Regardless of the spectral transform, the spatial IGB coincides with the
spatial tiled GraphBior for low entropy values. When we apply DWT as a spectral transform, out of
the spatial transforms, the ISGLQ performs the best followed mostly by the DWT and the ISGLD.
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From Table 5, we observe that mostly the spectral RKLT and the spatial DWT achieve a lossless
compression at lower rates. Only in the case of the Hyperion images (Lake Monona and Mt. St. Helens)
the spectral RKLT followed by the spatial ISGLQ performs better.

When comparing the compression efficiency of the latest CCSDS-123.0-B-2 standard against our
overall proposed compression scheme, we observe the usual pattern where transform-based methods
tend to perform better at lower rates while the CCSDS standard yields better results at mid to high
rates. In Figures 10 and 11, a spectral RKLT followed by a spatial DWT often outperforms CCSDS
for low rates. Furthermore, CCSDS results are also improved by the proposed compression scheme
using a spectral RKLT and a spatial ISGLQ for low-rate results in Figure 11a,b. In the mid to high rate
regions, the CCSDS standard clearly outperforms all transform-based methods. In addition, for pure
lossless compression, the CCSDS standard consistently achieves best results (Table 5). It should be
noted though that the CCSDS standard is a highly refined method, whereas the proposed compression
scheme here presented is mainly designed to compare the graph transforms. Thus, it lacks many of the
techniques that the CCSDS standard incorporates, such as quantization enhancements, noise tolerance
or entropy encoding with adaptive statistics.
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Figure 10. Comparison of spectral + spatial transforms. Tiles of 16 by 16 and ω = 11 was used.
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Table 5. Rates at which each of the integer transforms achieves a lossless compression. RKLT and
DWT are used as spectral transforms. For the methods that use tiles, their size has been set to 16 by 16.
The Yellowstone images are evaluated at ω = 8, the Lake Monona and Mt. St. Helens are evaluated at
ω = 11 and the Agriculture image is evaluated at ω = 3. For each column, the spectral transform is
mentioned first followed by the spatial transform (spectral transform + spatial transform). Units are
in bpppc.

Image
Transforms

CCSDS
DWT + IGB RKLT + IGB DWT + DWT DWT + ISGLD DWT + ISGLQ RKLT + DWT RKLT + ISGLD RKLT + ISGLQ

Yellowstone sc. 0 cal. 5.03 4.41 4.73 5.36 5.05 3.74 4.65 4.36 4.04
Yellowstone sc. 0 raw 7.17 6.47 6.97 7.54 7.25 5.93 6.72 6.44 6.19

Lake Monona 6.69 6.19 6.56 6.89 6.66 6.35 6.34 6.13 6.10
Mt. St. Helens 7.06 6.52 6.90 7.32 7.05 6.58 6.71 6.47 6.37

Agriculture 4.21 3.96 3.96 4.63 4.34 3.68 4.37 4.08 3.62
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Figure 11. Relative rate-distortion plots comparing spectral + spatial transforms for multiple images.
Results are relative to the spectral RKLT followed by the spatial DWT. Tiles of 16 by 16 were used.
The parameter ω is set to 8 for Yellowstone sc. 0 cal., to 11 for Mt. St. Helens and to 3 for Agriculture.

5. Conclusions

In this paper we study the suitability of graph transforms for lossy-to-lossless hyperspectral
compression. The adopted compression scheme organizes the components into packets, called band
groups and transforms each one of them through graph wavelet filterbanks. We introduce two spatial,
integer-to-integer, biorthogonal graph filterbank transforms. The first transform is calculated by
applying a TERM factorization on the GraphBior filterbank, whereas the second one is designed
by modifying the spectral graph lifting transform [34]. The high computational complexity of the
TERM decomposition is addressed and is solved through processing the GraphBior transform in tiles.
Our theoretical interpretations as well as our experimental results show that it is advantageous to use
larger tiles and give us valuable insight about the choice of sizes of band groups. Our experiments
without spectral transformations suggest that it is preferable to use small band groups, while our
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integer-to-integer transforms outperform the DWT in the lossy regime. Further-more we show that
one of our integer transforms performs similarly to the DWT for the case of lossless compression.
Additional experimental results including spectral transforms on each bandgroup show that our
proposition improves on the results obtained by using the spectral RKLT along all the spectral
dimension of the hyperspectral image followed by the spatial DWT in the lossy setting, as well
as, in some cases, at the lossless one.
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21. Ortega, A.; Frossard, P.; Kovačević, J.; Moura, J.M.; Vandergheynst, P. Graph signal processing: Overview,
challenges, and applications. Proc. IEEE 2018, 106, 808–828. [CrossRef]

22. Zeng, J.; Cheung, G.; Chao, Y.H.; Blanes, I.; Serra-Sagristà, J.; Ortega, A. Hyperspectral image coding
using graph wavelets. In Proceedings of the IEEE International Conference on Image Processing (ICIP),
Beijing, China, 17–20 September 2017.

23. Cheung, G.; Magli, E.; Tanaka, Y.; Ng, M.K. Graph spectral image processing. Proc. IEEE 2018, 106, 907–930.
[CrossRef]

24. Hu, W.; Cheung, G.; Ortega, A.; Au, O.C. Multiresolution graph fourier transform for compression of
piecewise smooth images. IEEE Trans. Image Process. 2014, 24, 419–433. [CrossRef] [PubMed]

25. Zhang, C.; Florêncio, D. Analyzing the optimality of predictive transform coding using graph-based models.
IEEE Signal Process. Lett. 2012, 20, 106–109. [CrossRef]

26. Narang, S.K.; Ortega, A. Lifting based wavelet transforms on graphs. In Proceedings of the APSIPA ASC
2009: Asia-Pacific Signal and Information Processing Association, 2009 Annual Summit and Conference,
Sapporo, Japan, 4–7 October 2009; pp. 441–444.

27. Coifman, R.R.; Maggioni, M. Diffusion wavelets. Appl. Comput. Harmonic Anal. 2006, 21, 53–94. [CrossRef]
28. Hammond, D.K.; Vandergheynst, P.; Gribonval, R. Wavelets on graphs via spectral graph theory.

Appl. Comput. Harmonic Anal. 2011, 30, 129–150. [CrossRef]
29. Narang, S.K.; Ortega, A. Perfect reconstruction two-channel wavelet filter banks for graph structured data.

IEEE Trans. Signal Process. 2012, 60, 2786–2799. [CrossRef]
30. Narang, S.K.; Ortega, A. Compact support biorthogonal wavelet filterbanks for arbitrary undirected graphs.

IEEE Trans. Signal Process. 2013, 61, 4673–4685. [CrossRef]
31. Sakiyama, A.; Watanabe, K.; Tanaka, Y.; Ortega, A. Two-Channel Critically Sampled Graph Filter Banks with

Spectral Domain Sampling. IEEE Trans. Signal Process. 2019, 67, 1447–1460. [CrossRef]
32. Li, S.; Jin, Y.; Shuman, D.I. Scalable M-Channel Critically Sampled Filter Banks for Graph Signals. IEEE Trans.

Signal Process. 2019, 67, 3954–3969. [CrossRef]
33. Tay, D.B.; Ortega, A. Bipartite graph filter banks: Polyphase analysis and generalization. IEEE Trans.

Signal Process. 2017, 65, 4833–4846. [CrossRef]
34. Tay, D.B.; Ortega, A.; Anis, A. Cascade and Lifting Structures in the Spectral Domain for Bipartite Graph

Filter Banks. In Proceedings of the 2018 Asia-Pacific Signal and Information Processing Association Annual
Summit and Conference (APSIPA ASC), Honolulu, HI, USA, 12–15 November 2018; pp. 1141–1147.

35. Hao, P.; Shi, Q. Matrix factorizations for reversible integer mapping. IEEE Trans. Signal Process. 2001,
49, 2314–2324.

36. Consultative Committee for Space Data Systems, Test Data. Available online: http://cwe.ccsds.org/sls/
docs/sls-dc/123.0-B-Info/TestData (accessed on 3 March 2019).

37. Harary, F.; Hsu, D.; Miller, Z. The biparticity of a graph. J. Graph Theory 1977, 1, 131–133. [CrossRef]

309



Remote Sens. 2019, 11, 2290

38. Narang, S.K.; Ortega, A. Multi-dimensional separable critically sampled wavelet filterbanks on arbitrary
graphs. In Proceedings of the 2012 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Kyoto, Japan, 25–30 March 2012; pp. 3501–3504.

39. Nguyen, H.Q.; Do, M.N. Downsampling of signals on graphs via maximum spanning trees. IEEE Trans
Signal Process. 2014, 63, 182–191. [CrossRef]

40. Zeng, J.; Cheung, G.; Ortega, A. Bipartite approximation for graph wavelet signal decomposition. IEEE Trans
Signal Process. 2017, 65, 5466–5480. [CrossRef]

41. Tay, D.B.; Zhang, J. Techniques for constructing biorthogonal bipartite graph filter banks. IEEE Trans
Signal Process. 2015, 63, 5772–5783. [CrossRef]

42. Hao, P.; Shi, Q. Reversible integer KLT for progressive-to-lossless compression of multiple component
images. In Proceedings of the 2003 International Conference on Image Processing (Cat. No. 03CH37429),
Barcelona, Spain, 14–17 September 2003; Volume 1, pp. 1–633.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

310



remote sensing 

Article

Performance Impact of Parameter Tuning on the
CCSDS-123.0-B-2 Low-Complexity Lossless and
Near-Lossless Multispectral and Hyperspectral
Image Compression Standard †

Ian Blanes 1,∗, Aaron Kiely 2, Miguel Hernández-Cabronero 1 and Joan Serra-Sagristà 1

1 Department of Information and Communications Engineering, Universitat Autònoma de Barcelona,
Campus UAB, 08193 Cerdanyola del Vallès, Spain; mhernandez@deic.uab.cat (M.H.-C.);
joan.serra@uab.cat (J.S.-S.)

2 NASA Jet Propulsion Laboratory (JPL), California Institute of Technology, 4800 Oak Grove Drive, Pasadena,
CA 91109, USA; Aaron.B.Kiely@jpl.nasa.gov

* Correspondence: ian.blanes@uab.cat
† This paper is an extended version of our paper published in The 6th ESA/CNES International Workshop on

On-Board Payload Data Compression.

Received: 11 April 2019; Accepted: 6 June 2019; Published: 11 June 2019

Abstract: This article studies the performance impact related to different parameter choices for the
new CCSDS-123.0-B-2 Low-Complexity Lossless and Near-Lossless Multispectral and Hyperspectral Image
Compression standard. This standard supersedes CCSDS-123.0-B-1 and extends it by incorporating
a new near-lossless compression capability, as well as other new features. This article studies the
coding performance impact of different choices for the principal parameters of the new extensions,
in addition to reviewing related parameter choices for existing features. Experimental results include
data from 16 different instruments with varying detector types, image dimensions, number of spectral
bands, bit depth, level of noise, level of calibration, and other image characteristics. Guidelines are
provided on how to adjust the parameters in relation to their coding performance impact.

Keywords: on-board data compression; CCSDS 123.0-B-2; near-lossless hyperspectral image compression

1. Introduction

It is well known that space-borne remote-sensing instruments are often the source of large volumes
of data and that, due to constraints on the down-link channel, these data need to be compressed [1–3].
In this regard, the Consultative Committee for Space Data Systems (CCSDS) has standardized several
data-compression techniques [4–6].

Very recently, the CCSDS has superseded Issue 1 of the Lossless Multispectral & Hyperspectral Image
Compression standard [7] with Issue 2 titled Low-Complexity Lossless and Near-Lossless Multispectral and
Hyperspectral Image Compression (CCSDS-123.0-B-2) [8]. The original issue of the standard employed
the fast lossless compression algorithm [9,10] to achieve state-of-the-art compression performance,
whilst being implemented in resource-constrained hardware available for space operation [11–19].

The new Issue 2 extends the previous issue, primarily by incorporating support for near-lossless
compression, while retaining lossless compression capabilities (and all other features) of Issue 1.

The cornerstone behind Issue 2 of the standard is the newly-available option for near-lossless
compression provided by an in-loop quantizer embedded in the prediction stage of the compressor.
In addition, Issue 2 incorporates several other features including: prediction representatives, weight
exponent offsets, narrow prediction modes, and a new hybrid entropy coder. The authors assume that readers
are familiar with its contents (an overview of the new standard is provided in [20]).

Remote Sens. 2019, 11, 1390; doi:10.3390/rs11111390 www.mdpi.com/journal/remotesensing311
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As with the previous Issue 1, several tunable parameters are available to implementers and
end-users. Employing different settings for these parameters may allow an implementer to achieve
different trade-offs between implementation complexity and compression efficiency or may allow
an end-user to fine-tune compression performance for particular datasets. This paper studies these
parameters and provides some guidelines on how to adjust them to achieve high coding efficiency
based on a representative corpus of multi- and hyper-spectral images.

The current study includes revisiting our previous assessment of parameter settings under lossless
compression [21,22] while considering the newly-available coding options, in addition to providing
new guidelines for both old and new coding options for near-lossless compression.

This paper is organized as follows. Section 2 describes the experimental methodology. Section 3
reports the principal experimental results and provides usage guidelines. Finally, some conclusions
close this document.

2. Experimental Approach and Default Settings

The new CCSDS-123.0-B-2 provides more than twenty configuration parameters, with most
of these parameters having a direct impact on the compression performance of an implementation.
Moreover, the performance impact of one parameter may depend on the values set for all the remaining
ones. Given these interactions and the large number of parameters, any exhaustive exploration of the
configuration space will rapidly hit a complexity wall. Hence, any reasonable experimental study
requires a pragmatic approach to the exploration of the configuration space.

It is expected that different encoding configurations yield not only different coding performances,
i.e., smaller compressed files, but also different implementation considerations, such as FPGA
area utilization, required memory buffers, etc. However, these are strongly dependent on the
implementation strategy and technology employed. This paper does not try to address these
implementation considerations and focuses exclusively on coding performance, which does not
depend on the implementation approach.

The approach followed in the parameter study presented in this paper is as follows. First, an initial
configuration for a CCSDS-123.0-B-2 encoder has been drawn from the authors’ prior experiences and
previous parameter assessments [22] (Annex C). Then, the effects of each of the parameters have been
studied (one or a few at a time), and the configuration has been adjusted based on the outcomes of
those analyses. Several iterations have been performed until a reasonable final configuration reached a
local performance maximum.

This article reports the studies for parameters with the most significant performance impacts,
where one or more parameters are studied independently, while the rest are set to default values,
as reported in Tables 1 and 2. Defaults are based on the final configuration described in the
previous paragraph.

In order to obtain relevant experimental results, a curated corpus of images is employed,
encompassing images acquired by 16 different instruments, of varying processing levels, bit depths,
and dimensions. The corpus is a superset of the publicly-available corpus used in the course of
developing the CCSDS-123.0-B-1 recommendation [23]. Table 3 summarizes the corpus images and
their properties. The number of images available for the each instrument is indicated through the use
of × and {·} in the width and height columns of the table.

The default values for three of the parameters presented in Table 1 are adjusted to account for the
specific characteristics of each instrument whenever experimental data presented in Section 3 suggest
that the same parameter value is not adequate for all instruments. These adjustments are as follows.
For the local sum type parameter, a value of wide column-oriented is employed for the CRISM, Hyperion,
M3, and MODIS day and night images, while a value of wide neighbor-oriented is employed otherwise.
A full prediction mode is employed for all images, except for the AIRS, AVIRIS 12-bit, CASI, CRISM,
Hyperion, IASI, M3, and MODIS day and night images. The value of the sample representative damping
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parameter is set to five for the AVIRIS NG, HICO, and SFSI images; to three for the AIRS, AVIRIS 12-bit
raw, CASI, CRISM, Hyperion, and M3 target images; and to zero for the rest of the images.

Table 1. Default predictor settings employed in the experimental results, unless otherwise indicated.

Parameter Name Symbol Default Value Description

Sample Encoding Order Band interleaved by pixel (BIP) The order in which mapped quantizer indexes are
encoded by the entropy coder

Entropy Coder Type Hybrid Indicates which entropy coding option is employed

Quantizer Fidelity Control Method Absolute error limits or lossless Enables or disables absolute and relative error limits

Number of Prediction Bands P 3 Number of previous bands used to perform
prediction

Register Size R 64 Size of the register used in prediction calculation

Local Sum Type (Image dependent) Identifies neighborhood used to calculate local sums

Prediction Mode (Image dependent) Indicates whether directional local differences are
used in the prediction calculation

Weight Component Resolution Ω 19 Determines the number of bits used to represent
each weight vector component

Weight Initialization Method Default Determines initial values of weight vector
components

Weight Initialization Table {Λz} (Unused) Defines the initial weight components under custom
weight initialization

Weight Initialization Resolution Q (Unused) Determines the precision of the initial weight
components under custom initialization

Weight Update Scaling Exponent Initial
Parameter

νmin -1 Determines initial rate at which the predictor adapts
the weight vector to input

Weight Update Scaling Exponent Final
Parameter

νmax 7 − φz Determines the final rate at which the predictor
adapts the weight vector to input

Weight Update Scaling Exponent Change
Interval

tinc 26 Determines the interval between increments to the
weight update scaling exponent

Weight Update Scaling Exponent Offsets {ζ
(i)
z },

{ζ∗z}
All are set to 0 Offsets the exponent of each predictor weight

update calculation

Periodic Error Limit Updating Disabled Enables or disables periodic updates of error limits

Sample Representative Resolution Θ 3 Determines the precision of sample representative
calculations

Sample Representative Offset1 {ψz} 7 Controls the offset from the center of the quantizer
bin in the sample representative calculation.

Band Varying Offset Disabled (all ψz are equal) Enables the use of different values for each element
in {ψz}

Sample Representative Damping {φz} (Image dependent) Controls the tradeoff between the predicted
sample value and offset bin center in the sample
representative calculation

Band Varying Damping Disabled (all φz are equal) Enables the use of different values for each element
in {φz}

1 When the quantizer fidelity control method is set to lossless, the sample representative offset parameter does not influence
compression performance. However, its actual value is set to 0, as mandated in the standard.

Table 2. Default entropy encoder settings employed in the experimental results, unless otherwise indicated.

Parameter Name Symbol Default Value Description

Unary Length Limit Umax 18 Limits the maximum length of any encoded sample

Rescaling Counter Size γ∗ 6 Determines the interval between rescaling of the
counter and accumulator

Initial Count Exponent γ0 1 Sets the initial counter value

Initial High-resolution Accumulator Value {Σ̃z(0)} 0 Sets an initial accumulator value for each band
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Table 3. Summary of the corpus images and their properties.

Instrument Image Type Bit Depth Number of Bands Width Height

AIRS raw 14 1501 90 135 × 10

AVIRIS raw 12 224 {614, 680} 512

AVIRIS calibrated 16 224 677 512 × 5

AVIRIS raw 16 224 680 512 × 5

AVIRIS-NG radiance 14 432 598 512 × 4

AVIRIS-NG raw 14 432 640 512 × 4

CASI raw 12 72 405 2852

CASI raw 12 72 406 1225

CRISM FRT, raw 12 545 640 {420 × 4, 450, 480 × 2, 510 × 2}

CRISM HRL, raw 12 545 320 {420, 450 × 2, 480}

CRISM MSP, raw 12 74 64 2700 × 7

HICO calibrated 14 128 512 2000 × 2

Hyperion raw 12 242 256 {1024, 3176, 3187, 3242}

IASI calibrated 12 8461 66 60 × 4

Landsat raw 8 6 1024 1024 × 3

M3 global, radiance 12 85 304 512 × 4

M3 global, raw 12 86 320 512 × 2

M3 target, raw 12 260 640 512 × 3

MODIS night, raw 12 17 2030 1354 × 5

MODIS day, raw 12 14 2030 1354 × 5

MODIS 500 m, raw 12 5 4060 2708 × 5

MODIS 250 m, raw 12 2 8120 5416 × 5

MSG calibrated 10 11 3712 3712 × 3

Pleiades HR, simulated 12 4 224 {2456, 3928}

Pleiades misregistered, sim. 12 4 296 2448 × 4

SFSI raw 12 240 496 140 × 1

SPOT-5 HRG , processed 8 3 1024 1024 × 3

Vegetation raw 10 4 1728 {10,080 × 2, 10193 × 2}

3. Experimental Results

This section analyzes how the principal parameters for the new Issue 2 affect compression
performance. The experimental results are organized into four subsections, each focusing on one of
the key new features introduced in Issue 2, examining both lossless and near-lossless compression.

While experiments have been performed for a large number of images, due to space constraints,
this document only reports results covering the most significant behaviors for some of the experiments.
In addition, averaged results are reported when multiple images are available for an instrument type
for the same reason (averages are weighted by image size).
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Other experimental restrictions, intended to obtain a reasonably-sized set of results, are as follows.
When compression is not lossless, reconstructed image fidelity is controlled using band-independent
absolute error limits via the value of the integer absolute error limit constant parameter A∗. Note that
setting A∗ = 0 yields lossless compression and is equivalent to selecting the fidelity control method to
be lossless, apart from some minor differences in the compressed image header. Relative error limits are
not used, and periodic error limit updating is not used, i.e., a fixed value of A∗ is used for the entire
image (see [24,25] for alternative error limit adjustment strategies). Per-band parameter adjustment
and custom weight initialization are purposely left out of the article as well. In addition, the studies
related to the following less relevant parameters are omitted for conciseness: weight component
resolution, register size, sample-adaptive and block-adaptive encoder initialization.

Even with all the aforementioned constraints, the experimental results presented in this section
are the outcome of more than two million individual compression experiments where an image is
compressed with an implementation fully compliant with CCSDS-123.0-B-2. In terms of the volume of
data processed, more than 100 TB of image data have been compressed to produce these results.

3.1. Local Sum Type, Prediction Mode, and Number of Prediction Bands

The choices of local sum type, prediction mode, and number of prediction bands (P) determine the
prediction neighborhood, i.e., the neighboring samples that directly influence the prediction of a given
image sample.

Different choices for these three parameters strongly influence the implementation complexity
due to the varying data dependencies of each mode. In particular, to facilitate pipelining in a hardware
implementation, Issue 2 introduces a new option to use narrow local sums as an alternative to the
existing local sums, which are now called wide. However, note that the use of narrow local sums
and full prediction mode might be an unlikely combination in practice since full prediction mode
has data dependencies that may quash any advantage provided by narrow local sums over their
wide counterparts.

Figure 1 reports results for all choices of the local sum type and prediction mode under a varying
number of prediction bands and an absolute error limit. As in Issue 1, the choice of both local sum type
and prediction mode can have a huge impact on compression performance, and the optimum choices
strongly depend on the image type. However, results suggest that the best choices remain constant
regardless of the number of prediction bands employed and that the same recommendations available
for Issue 1 [22] are applicable to Issue 2 when in lossless mode; i.e., the use of column-oriented local
sums and reduced mode is still recommended for images that exhibit significant streaking artifacts
parallel to the y direction (e.g., AVIRIS-NG raw images), whereas for images without such artifacts,
neighbor-oriented local sums provide the best performance.

Varying the absolute error limit constant appears to generally have little impact on which choice
of local sum type and prediction mode is optimum. Results may vary at very high (in relation to image
bit depth) quantization levels, as indicated for the Landsat images.

The use of narrow local sums nearly always results in some performance penalty. The exception
here is the use of neighbor-oriented local sums on AVIRIS-NG images. However, in this case, the lower
complexity column-oriented local sums perform substantially better anyway. Narrow and wide
column-oriented local sums differ only for the first image frame (i.e., at y = 0), and thus tend to yield
only a small performance difference as long as image height is not small. For neighbor-oriented local
sums, the penalty for using narrow instead of wide sums becomes significant (10 percent or more in
several cases) at larger values of absolute error.

Regarding the selection of the number of prediction bands, as shown in Figures 1 and 2, using a
very large value of P provides no appreciable improvement for most images. In addition, a large P
value may even slightly decrease the performance for some images, which could be explained by the
slower adaptation caused by a larger weight vector. A default value of P = 3 appears reasonable for
both lossless and near-lossless compression.
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Figure 1. Compressed bit rate for different choices of prediction mode and local sum type. Plots in the
left column are for lossless compression (A∗ = 0). Plots in the right column are relative to the adjusted
combination of the local sum type and prediction mode described in Section 2.
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Figure 2. Average compressed bit rate performance as a function of P.

3.2. Adaptation Rate and Sample Representatives

The rate at which the predictor adapts to varying image characteristics is controlled by νmin and
tinc initially and by νmax once a steady state is reached. Figure 3 shows the performance of different
steady-state learning rates, νmax, under varying quantization levels. The results indicate that adequate
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values for νmax are generally invariant to the quantization level, though a more pronounced decrease
in performance as νmax becomes smaller is evident.
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Figure 3. Average compressed data rate as a function of νmax when νmin = −6 and tinc = 27.

Figure 4 reports on the performance impact of extreme choices for νmin and tinc. In images with
few samples per band, parameters affecting the initial learning rate control predictor learning rate for
most (or all) samples in each band, thus, have a significant impact on overall prediction performance.
This effect diminishes as images grow in spatial size.
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Figure 4. Average compressed data rate for different choices of parameters that affect the adaptation of
the predictor to the image.

The newly-introduced sample representatives and the associated damping parameter φz interact
significantly with the predictor learning rate. The damping parameter interacts with the predictor
feedback loop in a manner that may prevent image noise from influencing the training process, and
thus improve coding performance for noisy images. Figure 5 shows coding performances obtained for
varying damping values in relation to νmax. Substantial benefits may be obtained by properly-selected
damping values. In our experiments, using sample representative resolution Θ = 3, the best results
have been obtained by employing a strong damping value of five for AVIRIS-NG, HICO, and SFSI;
by employing a medium value of three for AIRS, AVIRIS 12-bit raw, CASI, CRISM, Hyperion, and M3
target; and no damping (φz = 0) for the remaining instruments. Visual inspection of image noise levels
seem to corroborate that noise levels are a determining factor in the selection of the damping value.
However, these results do not exclude the possibility that other factors might also be relevant to the
selection of damping values, such as instrument resolution or other forms of signal distortion different
than noise.

When damping values are examined in relation to νmin and νmax in Figures 5 and 6, larger damping
values have been found to be related to a decreased performance at higher νmax values. Setting
νmax = 7 − 2−Θ+3φz has been found to be a good choice in the experimental results. Similarly, higher
damping values seem to produce decreased performances when used with smaller νmin values. Thus,
higher damping values seem to narrow the desirable predictor learning rates.

Figure 7 reports the relation between damping value φz and the quantity of samples necessary
to reach a steady predictor state, as controlled by tinc. Curiously, for the νmin and νmax values set as
described above, varying φz does not seem to influence the choice of tinc.
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Figure 5. Average compressed data rate as a function of νmax for different values of the sample
representative damping value, φz, and absolute error limit constant A∗, when Θ = 3.
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Figure 6. Average compressed data rate as a function of νmin for various values of the sample
representative damping value, φz, and absolute error limit constant, A∗, when Θ = 3.
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Figure 7. Average compressed data rate as a function of tinc for various values of the sample
representative damping value, φz, and absolute error limit constant, A∗, when Θ = 3.

The offset parameter, ψz, also affects sample representative values, though this value has no effect
when compression is lossless. For properly-selected values of φz, experimental results suggest setting
ψz = 2Θ − 1 is a reasonable default choice (Figure 8).
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Figure 8. Average compressed data rate as a function of ψz for various values of sample representative
damping value φz and absolute error limit constant A∗, when Θ = 3.

3.3. Weight Component Resolution and Register Size

The precision with which the predictor stores its weight vector (i.e., its internal state) is controlled
by the weight component resolution parameter, Ω. Together with the register size parameter, R, both
parameters regulate the bit depths required for the multipliers employed in the predictor calculation.
For each multiplier, the value of Ω controls the depth of one of its inputs (the other is controlled
by image bit depth), while the value of R enables the multipliers to provide results modulo R, thus
limiting its output bit depth.

The effects of varying weight resolutions are reported in Figures 9 and 10. For lossless compression,
Figure 9 shows the relation between weight resolution and rate, both in absolute and relative terms.
It can be observed that as Ω is decreased, prediction accuracy is negatively impacted by less accurate
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weight vector coefficients, and thus, the rate is increased. For the images tested, weight resolution
can be decreased down to 11 bits with a rate increase smaller than 5%. For near-lossless compression,
Figure 10 shows the relation between weight resolution and rate increase over results for Ω = 19.
It can be observed that the small perturbations in the curves for A∗ = 0 are significantly amplified
as A∗ increases. While the predictor is approximately linear, lower values of Ω seem to magnify the
non-linear interactions that finite-precision operations have on least significant bits.

4 6 8 10 12 14 16 18
Weight Resolution, Ω

3

4

5

6

7

R
at
e
(b
it
s/
sa
m
pl
e)

4 6 8 10 12 14 16 18
Weight Resolution, Ω

0

2

4

6

8

10

R
at
e
In
cr
ea
se

(%
)

AVIRIS 16-bit raw

HICO

IASI

AVIRIS-NG raw

CRISM MSP

MODIS night

AIRS

Hyperion raw

Landsat

Figure 9. Average bit rate as a function of weight resolution Ω for lossless compression (A∗ = 0).
Curves in the right plot are relative to Ω = 19.
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Figure 10. Change in the compressed data rate as a function of weight resolution Ω (and relative to
Ω = 19) for multiple absolute error limit constants A∗.

The effects of varying the register size parameter, R, are shown in Figure 11. For values of
R over a certain threshold (shaded in gray in the figure plots), prediction results can be proven
invariant [22] (pp. 4–7).While decreasing register size by one or two bits under this threshold does not
increase the rate significantly, decreasing a few more bits rapidly yields very large increases in the rate.
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Figure 11. Change in compressed data rate as a function of register size R for multiple absolute error
limit constants A∗. Results are relative to R = 64.

3.4. Weight Exponent Offsets

The use of weight exponent offsets {ζ
(i)
z , ζ∗} allows fine tuning of the predictor learning rate for

each band, and within a band for each predictor input as defined by the prediction mode and number
of prediction bands. Hence, weight exponent offsets can be seen as an extension to the learning rate
control provided through νmin and νmax.

320



Remote Sens. 2019, 11, 1390

A brute force approach has been followed to understand the potential gains that could yield
well-informed choices of weight exponent offsets for some of the corpus images. The procedure
employed is as follows. First, optimal values for νmin and νmax are found through exhaustive search.
Then, all choices of weight exponent offsets are tested for the first image band. The best choice is kept
for that band, and the same procedure is repeated for each remaining band, one by one, until all weight
exponent offsets are set.

Results are reported in Table 4. When a fixed damping value is used for an entire image, as studied
in this article, the potential coding performance gains obtained by weight exponent offsets are scant.

Table 4. Data reductions obtained for weight exponent offsets set through exhaustive search.

Image Data Reduction (%)

AVIRIS Yellowstone Scene 0 raw 0.3%
Landsat Agriculture 0.2%
MODIS 500 m A2001123.0000 0.5%
Pleiades Montpellier Misreg0 0.1%
Vegetation 1 1b 0.3%

Nonetheless, given that good choices for νmax vary from instrument to instrument, it is foreseen
that an end-user may want to adjust the predictor learning rate for each image band. In particular,
the end-user may want to do so whenever different per-band noise profiles recommend the use of
different per-band sample representative damping values, or for images with large signal energy
variation among bands. The authors have observed gains of up to 7% in a synthetic scenario where an
instrument with large energy variations is simulated. For this purpose, a synthetic image is produced
from a high SNR image by simulating 32 consecutive very dark bands followed by 32 consecutive very
bright bands. Gains are observed when the synthetic image is encoded with band-dependent absolute
error limits so that both dark and bright bands are encoded at roughly 1.5 bits per sample. However,
setting per-band damping values requires a careful instrument modeling, which is out of the scope of
this article.

3.5. Entropy Encoder

Issue 2 incorporates a new hybrid entropy encoder in addition to the sample-adaptive and
block-adaptive encoders available in Issue 1. At high rates, the hybrid encoder encodes most samples
using a family of codes that are equivalent to those used by the sample-adaptive coder, and thus has
nearly identical performance [22]. However, the hybrid encoder has substantially better performance
than the Issue 1 entropy encoders at low bit rates (Figure 12).

The sample-adaptive encoder is unable to reach rates lower than 1 bit per sample (due to design
constraints), whereas the block-adaptive encoder is able to do so, but with non-negligible rate overhead
over the hybrid encoder. In addition, the block-adaptive encoder may have poor performance when
encoding in band interleaved by pixel (BIP) order, because samples from different bands (which may
have different statistical behavior) are jointly encoded in the same block. Setting encoding order to band
sequential (BSQ) encoding order somewhat mitigates these issues. However, the use of BSQ encoding
order may not be suitable for all instruments due to large buffering requirements when acquisition
order is not BSQ. In this case, similar performance may be often obtained by band interleaved by
line (BIL) encoding order (Figure 13).

Code selection statistics used by the hybrid entropy coder are periodically rescaled at an interval
determined by parameter γ∗; this is the parameter that has the most significant impact on hybrid
entropy coder performance. Within each band, each time rescaling occurs, an additional bit is output
to the compressed bitstream so that the decompressor can reconstruct the code selection statistics.
At lower bit rates, this overhead can become significant, and larger values of γ∗ are required to
diminish its impact. This can be seen in Figure 14, where γ∗ is varied. Results are reported in relation
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to the obtained data rate by adjusting the absolute error limit constant A∗ (via trial-and-error) to
achieve bit rates of approximately 0.1, 0.5, 1, 2, 3, and 4 bits per sample for the optimal γ∗ value.
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Figure 12. Compressed data rate for each entropy encoder as a function of absolute error limit
constant A∗ as the absolute value (top) and relative increases over the hybrid entropy encoder (bottom).
Parameters for the sample-adaptive encoder are K = 0, γ0 = 1, and γ∗ = 6. Parameters for the
block-adaptive encoder are J = 64 and r = 4096.

0 4 8 12 16 20 24 28 32
Absolute Error Limit Constant, A∗

0.0

0.5

1.0

1.5

R
at
e
In
cr
ea
se

(%
)

AIRS

MODIS night

AVIRIS 16-bit raw

Landsat

CRISM FRT

Hyperion raw

AVIRIS-NG raw

HICO

IASI

Figure 13. Change in compressed data rate for the block-adaptive entropy encoder when encoding
in BIL order relative to when encoding in BSQ order. Parameters for the block-adaptive encoder are
J = 64 and r = 4096.

The results suggest the use of γ∗ ≈ 6 for a high rate and to transition to larger γ∗ values at rates
below 1 bit per sample. At high compressed data rates, these results are comparable to those for the
sample-adaptive encoder due to their similar operation. Inflection points are due to the logarithmic
nature of the parameter, where a one-unit increase doubles the size of the renormalization interval
and makes local statistics less important to the entropy encoder. For instance, this explains the CRISM
FRT plot, where the results tend to stabilize as γ∗ grows.

Results regarding the operation of the block-adaptive encoder under near-lossless mode for
high compressed data rates are now reported. The encoder operation is controlled by the reference
sample interval parameter, r, and the block size parameter, J, with results reported respectively in
Figures 15 and 16. The reference sample interval enables efficient encoding of “zero-block” runs
(sequences of blocks of zero values). However, the practical effects of this parameter are negligible
except for combinations of very small values of r with high values of A∗. Regarding the block size
values, for small absolute error limit constant values, where it makes sense to use the block-adaptive
encoder, employing a block size of 64 yields better performance, even if this trend is reversed for larger
A∗ values.
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Figure 14. Change in compressed data rate (i.e., relative to an optimal selection of γ∗) as a function of
rescaling counter size γ∗.
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Figure 15. Average compressed data rate when employing the block-adaptive entropy encoder as a
function of absolute error limit constant A∗. Results are relative to r = 4096. Block size J is set to 64,
and images are encoded in BIL order.
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Figure 16. Change in compressed data rate when employing the block-adaptive entropy encoder for
multiple block sizes J as a function of absolute error limit constant A∗. Results are relative to J = 64.
Reference sample interval r is set to 4096, and images are encoded in BIL order.

4. Conclusions

This article examined performance trade-offs among key parameters and options in the new Issue 2
of “Low-Complexity Lossless and Near-Lossless Multispectral and Hyperspectral Image Compression.”

The behavior of the new near-lossless capability was studied along with the effects of four key
new features: narrow local sums, sample representatives, weight exponent offsets, and the new hybrid
entropy encoder.
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Regarding narrow local sums, their use tends to incur a minimal to moderate coding performance
penalty. In particular, this penalty tends to be fairly small for column-oriented local sums when image
height is large.

In the study of sample representatives, for many images, well-chosen nonzero values of
parameters φz and ψz were shown to provide a noticeable improvement in compression performance
compared to the obvious alternative of setting the sample representative equal to the center of the
quantizer bin (achieved by setting φz = ψz = 0). However, at larger values of φz, performance becomes
more sensitive to prediction adaptation rates as controlled though νmin and νmax. It is recommended
to decrease νmax as φz increases.

Concerning the use of weight exponent offsets, for the images tested in this article and in
combination with band-independent sample representative parameters, the use of nonzero weight
exponent offsets has shown scant performance increments. The significant band-to-band variation in
signal energy needed to motivate the use of nonzero weight exponent offsets may be uncommon in
practice, based on the images in the corpus.

Regarding the variables controlling data widths in the predictor, the recommended value for
Ω is 19 bits. For very small absolute error limits, this value can be lowered down to 11 bits with a
rate increase of less than 5% for the images tested. Parameter R can be set one or two bits below the
proven invariance threshold at insignificant rate variations. Setting values larger than necessary yields
no benefits.

Finally, under near-lossless compression, the hybrid entropy encoder has shown substantial
coding gains compared to the legacy coding options, particularly as the maximum allowed error
increases. Experimental results suggest that higher values of γ∗ improve performance at lower bit
rates. Regarding the block-adaptive entropy encoder, larger block sizes have been shown to yield
improved coding performances when the maximum allowed error was small.
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Abstract: The high complexity of the reconstruction algorithm is the main bottleneck of the hyper-
spectral image (HSI) compression technology based on compressed sensing. Compressed sensing
technology is an important tool for retrieving the maximum number of HSI scenes on the ground.
However, the complexity of the compressed sensing algorithm is limited by the energy and hardware
of spaceborne equipment. Aiming at the high complexity of compressed sensing reconstruction
algorithm and low reconstruction accuracy, an equivalent model of the invertible transformation is
theoretically derived by us in the paper, which can convert the complex invertible projection training
model into the coupled dictionary training model. Besides, aiming at the invertible projection training
model, the most competitive task-driven invertible projection matrix learning algorithm (TIPML) is
proposed. In TIPML, we don’t need to directly train the complex invertible projection model, but
indirectly train the invertible projection model through the training of the coupled dictionary. In
order to improve the accuracy of reconstructed data, in the paper, the singular value transformation
is proposed. It has been verified that the concentration of the dictionary is increased and that the
expressive ability of the dictionary has not been reduced by the transformation. Besides, two-loop
iterative training is established to improve the accuracy of data reconstruction. Experiments show
that, compared with the traditional compressed sensing algorithm, the compressed sensing algorithm
based on TIPML has higher reconstruction accuracy, and the reconstruction time is shortened by
more than a hundred times. It is foreseeable that the TIPML algorithm will have a huge application
prospect in the field of HSI compression.

Keywords: compressed sensing; hyperspectral image; invertible projection; coupled dictionary;
singular value; task-driven learning

1. Introduction

Spectral images with a spectral resolution in the 10-2 order of magnitude are called
hyperspectral images (HSI). HSI is one of the main components of modern remote sens-
ing [1]. In recent decades, the popularity of hyperspectral technology has continued to
rise. One of the main reasons for the higher visibility of hyperspectral imaging is the
richness of the spectral information collected by this sensor. This function has positioned
the hyperspectral analysis technology as the mainstream solution for land area analysis
and the identification and differentiation of visually similar surface materials. Therefore,
hyperspectral technology has become more and more important and is widely used in
various applications, such as precision agriculture, environmental monitoring, geology,
urban surveillance and homeland security, food quality inspection, etc. However, hyper-
spectral image processing is accompanied by a large amount of data management, which
affects real-time performance on the one hand, and, on the other hand, the demand for
on-board storage resources. In addition, the latest technological advances are introducing
hyperspectral cameras with a higher spectrum and spatial resolution to the market. From
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the perspective of onboard processing, communication, and storage, all of these make
efficient data processing more challenging [2–5].

In order to solve the storage and transmission problems that need to be faced in
processing multi-dimensional hyperspectral image data, data compression technology is
usually selected. The original digital signal is refined and expressed, and its storage space
and transmission bandwidth requirements are reduced by data compression technology.
However, in traditional data compression technology, a large amount of redundant data
is collected, and then compression technology is used to remove these redundant data.
Although the redundant information of data is reduced, huge resources are wasted in this
process [6].

Compressed Sensing (CS) theory was proposed in 2006 [7], and was widely used
in wireless networks, imaging technology, target positioning, the direction of arrival
estimation, and other fields [8,9].

As shown in Figure 1, in the compressed sensing technology, data compression is set
up at the signal acquisition end, the information characteristics of the data are directly
collected, and the original signal is reconstructed with high precision at the reconstruction
end.

Figure 1. Block diagram of compressed sensing.

As shown in Equation (1), compressed sensing theory shows [7] that an over-complete
dictionary D∈Rm×s is used, so that the original signal x is sparse enough under dictionary D,
and its sparse coefficient is expressed as α∈Rs. Equation (2) is the mathematical expression
of compressed sensing. The original signal is observed by the observation matrix Φ∈Rd×m

to obtain the observation signal y∈Rd (d � m). In this process, signal compression is
realized. When the dimension d of the observation matrix is higher than a certain lower
limit, the original signal x can be uniquely reconstructed from the observation signal y [10].

x = Dα (1)

y = Φx (2)

In CS theory, the compressibility, sparsity, and incoherence of the signal are fused, and
in addition, compression and sampling are combined. The measurement signal is projected
into the observation space containing all the effective information of the signal so that the
sparse signal of limited dimensions can be sampled at a sampling frequency far less than
the Nyquist theorem requires, making it possible to sample less than twice the original
signal bandwidth [11].

The compression rate and reconstruction accuracy of the CS system mainly depend
on the following three aspects:
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(1) Sparse expression

To express the signal in a refined manner, the signal is usually transformed into a
new basis or framework, which is also called a dictionary. The more sparsely the data is
represented by the dictionary, the larger the compression ratio can be obtained under the
condition of ensuring the image reconstruction error. Therefore, dictionary learning plays
an important role in data compression based on sparse decomposition. At present, the
commonly used dictionaries in compressed sensing include the discrete cosine transform
(DCT) dictionary [12,13], the discrete wavelet transform (DWT) dictionary [9,14], and the
K-SVD dictionary [15–17], Gabor dictionary [15], CDL dictionary [18], etc.

(2) Establishment of measurement matrix

When the original signal is compressed by the observation matrix, it must obey
the Restricted Isometry Property (RIP). Under RIP conditions, the dimension d of the
observation matrix of the CS system must be higher than a certain limit value. At the
same time, the measurement matrix Φ and the sparse basis D meet incoherence, and the
observation signal y can be uniquely reconstructed [7]. At present, in compressed sensing,
the commonly used measurement matrices include random Gaussian matrix, random
Bernoulli matrix, random Fourier matrix, and random Hadamard matrix [19,20], etc.

(3) Sparse reconstruction

The signal reconstruction problem of compressed sensing is to solve the underdeter-
mined equations y = Φx to obtain the original signal x based on the known measurement
value y and measurement matrix Φ. In order to ensure that the original signal is efficiently
and stably reconstructed, many excellent sparse signals have been proposed. Commonly
used sparse reconstruction algorithms include Orthogonal Matching Pursuit (OMP), Stage-
wise Orthogonal Matching Pursuit (StOMP), Compressive sampling matching pursuit
(CoSaMP), Regularized Orthogonal Matching Pursuit (ROMP), Generalized Regularized
Orthogonal Matching Pursuit (GROMP), Smoothed Projected Landweber (SPL) [21–25],
etc.

Although compressed sensing technology has been proven to have great research
significance in data compression, however, the features of HSI are complex. In order
to improve the sparsity of the signal, the redundant dictionary with high redundancy
is used as its sparse domain. When HSI is reconstructed, a large number of iterative
calculations and inversion operations are required, and the traversal process of finding the
optimal atom in each iteration is very time-consuming. A lot of time will be wasted in the
sparse reconstruction process, which greatly limits the application of compressed sensing
technology in the field of HSI compression.

Aiming at the time-consuming and low reconstruction accuracy of the reconstruction
algorithm of compressed sensing technology, in the paper, we proposed a task-driven
invertible projection matrix learning algorithm. The problems of long reconstruction time
and insufficient reconstruction accuracy of HSI compression algorithm based on solving
compressed sensing are solved by our proposed algorithm.

In the algorithm proposed in this paper, prior knowledge of data is used to train
an invertible projection matrix U∈Rd×m. The projection matrix can project the original
signal x into the low-dimensional observation signal y, and the projection formula can be
expressed as y = Ux. Different from the traditional observation matrix Φ, the process in
which the original signal x is projected by the projection matrix U to the low-dimensional
observation signal y is invertible, and the inverse process can be expressed as x’ = UTy,
where UT represents the transposition of U, and x’ is the reconstruction signal. Compared
with the sparse reconstruction of traditional compressed sensing, when the algorithm
proposed in this paper is used to train the projection matrix U as the observation matrix of
the compressed sensing algorithm. In the signal reconstruction process, there is no need
to perform tedious iteration and inversion operations, which results in a lot of time being
saved and increases the real-time performance of the compressed sensing algorithm.
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On the basis of this algorithm, we study a hyperspectral compressed sensing algorithm
based on a task-driven invertible projection matrix learning algorithm. In order to prove
the effectiveness of the algorithm proposed in this paper, this algorithm was compared
with the most competitive compressed sensing algorithm based on DCT dictionary, CDL
dictionary, and K-SVD dictionary. Besides, in order to verify the real-time performance
of the signal reconstruction process of the compressed sensing algorithm based on the
algorithm proposed in this paper, in the experiment, this algorithm was compared with the
current best compressed sensing reconstruction algorithm, such as OMP, StOMP, CoSaMP,
GOMP, GROMP, and SPL, etc. [21–25].

2. Principles and Methods

2.1. Constraints on Invertible Projection Transformation

Assuming that the projection matrix U∈Rd×m, the original signal x∈Rm×1 can be
accurately reconstructed from the low-dimensional signal y by the projection transposed
matrix UT, and the solution to the projection matrix U can be described as

U = argmin
U

∥∥∥x − UTUx
∥∥∥2

F
(3)

Model (3) can be equivalent to

U = argmin
U

∥∥∥x − UTUx
∥∥∥2

F

= argmin
U

∥∥∥xTx − xTUTUx
∥∥∥2

F

= argmin
U

∥∥∥xTx − yTy
∥∥∥2

F

(4)

where x is the high-dimensional original signal, and y = Ux, y is the low-dimensional signal
of the high-dimensional original signal x.

The high-dimensional signal x and its low-dimensional signal y have the same or
similar sparse representation coefficients α∈Rs×1 [26]. It can be described as{

x = Dα
y = Pα

(5)

where D∈Rm×s is the high-dimensional dictionary of high-dimensional signal
x, P∈Rd×s(d<<m) is the low-dimensional dictionary of low-dimensional signal y, and
dictionary P is constructed by D through linear projection mapping U. The projection
formula is P = UD [26].

Therefore, model (3) can be described as

U = argmin
U

∥∥∥x − UTUx
∥∥∥2

F

= argmin
U

∥∥∥αTDTDα − αTPTPα
∥∥∥2

F

= argmin
U

∥∥∥DTD − PTP
∥∥∥2

F

= argmin
U

∥∥∥DTD − :UD)TUD
∥∥∥2

F

(6)

From the derivation process of model (6) we can know that the optimal projection
matrix U under model (3) is equivalent to the optimal value under model (6). Since the high-
dimensional dictionary D can be regarded as fixed when solving model (6), the optimal
projection matrix U in the solution model (6) can be regarded as the optimal P = UD, so
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that model (6) is obtained the minimum Frobenius norm. The problem of calculating the
projection matrix U can be converted to calculating the low-dimensional matrix P indirectly,
which can be described as

P = argmin
P

∥∥∥DTD − PTP
∥∥∥2

F
(7)

In model (7), P can be considered as a principal components analysis (PCA) dimen-
sionality reduction of dictionary D. Although PCA has the best performance in the sense of
mean square error, the PCA algorithm requires the covariance matrix of the signal to be
calculated in advance, and many covariance calculations are required. Different from the
idea of PCA, the low-dimensional dictionary P(P = UD) is trained by model (7) to make
model (7) obtain the optimal value. From the derivation process of model (6), we can know
that this projection matrix U is also the optimal value of model (3). Therefore, Equations (3)
and (7) have the same extreme points. In the process of training model (7), in order to
ensure sufficient reconstruction accuracy of the signal, we only need to ensure that model
(7) obtains the optimal value, then model (3) will also be optimal. Model (3), in order to
solve the invertible transformation problem, is converted to the problem of solving model
(7), that is, extracting principal components from dictionary D. In order to ensure that more
principal components of high-dimensional dictionary D are retained in low-dimensional
dictionary P, dictionary D is required to concentrate energy. We will give a solution in
Section 2.2.

2.2. Singularity Transformation

For a general dictionary after dimensionality reduction, more principal components
cannot be retained [16], so the singular value decomposition of dictionary D can be de-
scribed as

D = MΛVT =
[

Mh Ml
][ Λh 0

0 Λl

][
Vh Vl

]T (8)

where M is the left singular matrix of matrix D, Λ is the singular value of matrix D, V is
the right singular matrix of matrix D, and Λh is the first h rows and h columns of Λ.

Take U = Mh
T, then

DTD = VΛTΛVT = V(Λh
TΛh + Λl

TΛl)V
T (9)

PTP = (UD)TUD = VhΛT
h ΛhVT

h (10)

Therefore, the first h singular values Λh of the matrix D are larger (the last l singular
values Λl are smaller and not 0), and more principal components of the high-dimensional
dictionary D are retained in the low-dimensional dictionary P, in other words, || DTD –
PTP ||F

2 is smaller.
In order to make the first h dimension of dictionary D gather more energy, it should

satisfy:

(1) The expression coefficient of signal x under dictionary D is sparse enough;
(2) the first h singular values of dictionary D are large enough, and the last l singular

values are small enough, and the value is not 0 [16].

The singular values often correspond to the important information implicit in the
matrix, and the importance is positively related to the magnitude of the singular values.
The more “singular” the matrix is, the less singular value contains more matrix information,
and the smaller the information entropy of the matrix, and the more relevant its row
(or column) vectors are [27]. Aiming at the characteristics of matrix singular values, in
the paper, matrix singular transformation is proposed to increase the redundancy of the
dictionary without reducing the expressive ability of the dictionary and the rank of the
matrix.

The singular value transformation matrix Θ is defined as
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Θ(t, r) = Q(1, 0) . . . Q(n − t + 1, r) . . . Q(n, r)︸ ︷︷ ︸
t

=

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 . . . r . . . r
0 1 . . . 0 . . . 0
0 0 . . . 0 . . . 0
0 0 . . . 1 − r . . . 0

. . . . . . . . . . . . . . . . . .
0 0 . . . 0 . . . 1 − r

⎤⎥⎥⎥⎥⎥⎥⎦
n×n

(11)

where, the variables t and r are transformation adjustment parameters, and Q(i, r) repre-
sents the values of the first row and the i-th row of the i-th column vector of the unit square
En×n are r and 1 − r, respectively.

Let the dictionary D = [d1 d2 d3 . . . dn] and the original data set be X = [x1, x2, . . . ,xn]
(xi∈Rm). Assuming data xi under dictionary D indicates that the sparse coefficient has four
non-zero terms, expressed as αi = [ . . . ao . . . am . . . ap . . . aq . . . ]T (αi∈Rs). The regulating
parameter of singular value transformation t = n − 1.

The result of dictionary D undergoing singular value Θ transformation is:

D̂ = DΘ(n − 1, r) =
[

d1 dw2 . . . dwn
]

(12)

and
dwk = rd1 + (1 − r)dk (13)

Assuming that the data xi under the dictionary D̂ represents the sparsity coefficient
β = [b1 b2 b3 . . . bn]T, then:

Dαi = aodo + amdm + apdp + aqdq (14)

D̂β = b1d1 + b2dw2 + . . . + bndwn] (15)

xi = Dαi = D̂β (16)

According to Equations (14)–(16), it can be determined that the coefficient of data xi is
still sparse under dictionary D̂, and the sparse coefficient is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1 =
r(ao+am+ap+aq)

1−r
bo =

ao
(1−r)

bm = am
(1−r)

bp =
ap

(1−r)
bq =

aq
(1−r)

bi
i �=1,o,m,p,q

= 0

(17)

Therefore, not only the redundancy of dictionary D can be increased by the singular
value Θ transformation, which makes the energy of dictionary D more concentrated, but it
also hardly affects the expression ability of dictionary D.

2.3. Task-Driven Invertible Projection Matrix Learning

In order to obtain a reversible projection transformation, we have to use prior knowl-
edge to solve the invertible projection matrix. However, as we all know, it is very difficult
to solve the low-dimensional invertible projection matrix U directly. Fortunately, it has
been proven in Section 2.1 that the low-dimensional invertible projection matrix U can be
solved indirectly by solving model (7). Model (7) is the problem of extracting principal
components from dictionary D. Based on the theory in Section 2.2, a task-driven invertible
projection matrix learning algorithm (TIPML) is proposed. In this algorithm, dictionary
learning and singular value Θ transformation are used as the core of the algorithm, and a
dual-loop iterative training mechanism is established based on the core.

332



Remote Sens. 2021, 13, 295

As shown in Figure 2, in order to ensure that more principal components of high-
dimensional dictionary D are retained in the low-dimensional dictionary P. In TIPML, the
singular value Θ transformation is first used to make the energy of the dictionary D more
concentrated. Next, the sparse representation coefficient A of the training data under the
low-dimensional dictionary P is used to train the high-dimensional dictionary D. In this
step, the low-dimensional dictionary P is used to train the high-dimensional dictionary D,
which further increases the coupling between the two dictionaries and lets the principal
components of the high-dimensional dictionary D be more retained in the low-dimensional
dictionary P.

Figure 2. Block diagram of TIPML (task-driven invertible projection matrix learning algorithm).

The specific implementation steps of the TIPML algorithm are shown in Algorithm 1.

Algorithm 1: TIPML

Input: Training data set X, number of iterations T, the singular value Θ transformation parameter
t,r, low-dimensional dictionary P dimension h, Signal sparsity K, and dimension of the data
column N.
Output: Projection matrix U.

1: Initialization: Split the data set X into data columns xi (N × 1), I = 1,2, . . . , i is the index of the
data column xi. Assuming X = [x1, x2, . . . , xn] (xi∈RN). The initial dictionary D is set as a DCT
dictionary, D = [d1, d2, . . . ,dn], (di∈RN).

2: Repeat
3: Do singular value Θ transformation to dictionary D: D = DΘ(t,r).
4: Singular value decomposition: D = MΛVT.
5: Calculate low-dimensional dictionary: P = Mh

TD.
6: Based on the low-dimensional dictionary P, the OMP algorithm is used to sparse the data set
X to obtain the sparse coefficient A = [a1, a2, . . . ,an], update the index j = 1 of the dictionary atom.
7: Repeat
8: The error is calculated: Ej = X − ∑

l �=j
dlal

T.

9: The error is decomposed by SVD (rank-1 decomposition) into: Ej ≈ uλvT.
10: Update dictionary: dj= u, Update sparsity coefficient: aj= λv.
11: j = j + 1
12: Until j > n
13: Until ∑i Λh

∑i Λ is big enough, or reach the maximum number of iterations T.
14: Calculate the projection matrix: U = Mh

T.
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3. Simulation Experiment and Results

In order to verify the effectiveness of the algorithm proposed in this paper, the AVIRIS
hyperspectral data image Indian Pine dataset [28] was selected as the experimental dataset.
These hyperspectral data include 220 bands, and each pixel is stored in a 16-bit integer
format. In the experiment, the most competitive sparse expression dictionary and recon-
struction algorithm in compressed sensing were selected and compared with the algorithm
proposed in this paper. Sparse expression dictionaries included DCT dictionary, KSVD
dictionary, and CDL dictionary, and reconstruction algorithms included StOMP, OMP,
GOMP, GROMP, CoSaMP, and SPL. Besides, the data compression algorithm PCA [29] has
also been selected for comparison with the algorithm proposed in this paper. The average
peak signal-to-noise ratio (PSNR), Spectral Angle Mapper (SAM), and reconstruction time
T were selected as the evaluation indicators of the experiment, and the PSNR and recon-
struction time T of the reconstructed image was obtained by setting different sampling
rates (SR). The software and hardware environment of the test experiment are CPU: Intel(R)
Core (TM) i7-9750H 2.6GHz, 8GB memory, and Windows 10 and MatLab 2019a.

The PSNR calculation formula is

PSNR = 10log10

⎛⎜⎜⎜⎝ MAX2

1
m•n

m,n
∑

i=1,j=1
[x(i, j)− x′(i, j)]2

⎞⎟⎟⎟⎠ (18)

where x is the original image, x’ is the reconstructed image, m and n respectively represent
the length and width of the image, and MAX is the maximum value of image pixels.

The sampling rate calculation formula is

SR =
Mλ

Nλ
(19)

where Nλ is the dimension of the original data, and Mλ is the dimension of compressed
sensing sampling.

The SAM calculation formula is

SAM = cos−1 xTx′

(xTx)
1
2 (x′Tx′)

1
2

(20)

where x is the original image, x’ is the reconstructed image, xT and x’T are the transpose of
matrix x and x’, respectively, and cos−1 is the arc cosine function.

As shown in Figure 3, the simulation experiment mainly included three stages, namely
offline learning, data sampling (encoding), and data reconstruction (decoding). In the
experiment, the data of the Indian Pine data set was divided into two parts: The training
data set and the test data set. The transformation adjustment parameters of the TIPML
algorithm were set to ‘t = 255′ and ‘r = 0.3′. In addition, the data set was processed in blocks
with a block size of 16 × 16, and each small block was arranged into a column vector with
a size of 256 × 1. First, the training set Z was used as the TIPML training sample to obtain
the projection matrix U. Then, the projection matrix U was used as a reduced-dimensional
sampling matrix of the test data X to obtain the observation data Y. Finally, the transposed
UT of the projection matrix was used to back-project the low-dimensional sampling data Y
to obtain the reconstructed data.
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Figure 3. Flow chart of simulation experiment.

As shown in Figures 4–6, the PSNR of the reconstructed image of the algorithm
proposed in this paper, CDL-OMP algorithm, and KSVD-StOMP algorithm under different
sampling rates (SR) are respectively given. By comparing the reconstructed images, it can
be known that the KSVD-StOMP algorithm has the lowest image reconstruction accuracy
at the same sampling rate. The reconstruction accuracy of the algorithm proposed in
this paper is visually similar to that of the CDL-OMP algorithm. At low sampling rates
(SR = 0.1), there is still a good reconstruction effect.

Figure 4. The original image and reconstructed image with band number 180, the compressed sensing algorithm is based on
the TIPML algorithm, (a)The original images; (b) The sampling rate of the reconstructed image is SR = 0.1; (c) The sampling
rate of the reconstructed image is SR = 0.2; (d) The sampling rate of the reconstructed image is SR = 0.3; (e) The sampling
rate of the reconstructed image is SR = 0.4; (f) The sampling rate of the reconstructed image is SR = 0.5.

Figure 5. The Original image and reconstructed image with band number 180, the compressed sensing algorithm is based
on the CDL-OMP algorithm, (a) The original images; (b) The sampling rate of the reconstructed image is SR = 0.1; (c) The
sampling rate of the reconstructed image is SR = 0.2; (d) The sampling rate of the reconstructed image is SR = 0.3; (e) The
sampling rate of the reconstructed image is SR = 0.4; (f) The sampling rate of the reconstructed image is SR = 0.5.
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Figure 6. The Original image and reconstructed image with band number 180, the compressed sensing algorithm is based
on KSVD-StOMP algorithm, (a) The original image; (b) The sampling rate of the reconstructed image is SR = 0.1; (c) The
sampling rate of the reconstructed image is SR = 0.2; (d) The sampling rate of the reconstructed image is SR = 0.3; (e) The
sampling rate of the reconstructed image is SR = 0.4; (f) The sampling rate of the reconstructed image is SR = 0.5.

As shown in Figure 7, at different sampling rates, the original spectral line and
the reconstructed spectral line at the (256, 1) pixel point, the experimental comparison
methods are the algorithm proposed in this paper, CDL-OMP algorithm, and KSVD-StOMP
algorithm. Comparing the experimental results, it can be seen that when the sampling rate
SR = 0.2 in Figure 7b, the reconstructed spectrum line of the algorithm proposed in this
paper almost coincides with the original spectrum line. When the sampling rate is low, the
reconstructed spectrum of the proposed algorithm and the original spectrum have some
errors, but the reconstruction effect is still slightly better than the CDL-OMP algorithm,
and far better than the KSVD-StOMP algorithm. This is because when SR = 0.1 in Figure 7a,
the dimension of the projection matrix Mλ = 26, which is much smaller than the original
signal dimension Nλ = 256. When the original signal is projected into a low-dimensional
space, too much information is lost, resulting in reduced reconstruction accuracy.

Figure 7. The original and reconstructed spectral lines of the pixel at coordinates (256, 1). From top to bottom, they are
TIPML algorithm, CDL-OMP, and KSVD-StOMP. From the first column to the fourth column (a) The sampling rate SR = 0.1;
(b) The sampling rate SR = 0.2;(c) The sampling rate SR = 0.3;(d) The sampling rate SR = 0.4.

In order to further verify the superiority of the algorithm proposed in this paper, more
compressed sensing algorithms and PCA algorithm were selected. As shown in Table 1,
the PSNR under the same sampling rate in the table is the average of all PSNRs of 220-band
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images. The results in the comparison table show that the reconstructed image accuracy of
the compressed sensing method based on the algorithm proposed in this paper is better
than other algorithms, and it still has a higher reconstruction accuracy at low sampling
rates.

Table 1. The reconstructed average peak signal-to-noise ratio (PSNR) (dB) of hyperspectral images in
all bands under different sampling rates.

Methods
Sampling Rate

0.1 0.2 0.3 0.4 0.5

Ours 61.20 63.39 64.17 64.86 65.63
PCA 54.09 56.15 57.84 59.46 61.10

KSVD-StOMP 51.06 54.10 59.21 60.87 61.51
KSVD-OMP 31.37 28.30 26.93 27.08 27.20

KSVD-GOMP 33.85 30.31 29.02 28.61 28.74
KSVD-GROMP 34.39 33.59 33.57 35.04 35.72
KSVD-CoSaMP 48.70 49.61 50.30 50.18 50.26

DCT-SPL 38.27 46.83 54.10 58.81 60.70
DCT-StOMP 30.44 30.97 31.52 32.17 32.96
CDL-StOMP 60.67 63.06 63.33 63.33 63.33
CDL-OMP 60.67 63.06 63.33 63.33 63.33

CDL-CoSaMP 48.79 49.93 49.94 49.94 49.94
CDL-GROMP 14.83 22.90 28.39 33.27 37.21
CDL-GOMP 9.19 13.73 17.85 21.60 24.74

As shown in Table 2, the SAM under the same sampling rate in the table is the average
of all SAMs of 220-band images. For the convenience of comparison, the SAM data in the
table is displayed in the form of scientific notation. The results in the comparison table
show that the reconstructed image SAM still has a lower SAM at low sampling rates. In
other words, the reconstructed spectrum is more similar to the original spectrum.

Table 2. The reconstructed average Spectral Angle Mapper (SAM) (Scientific notation) of hyperspec-
tral images in all bands under different sampling rates.

Methods
Sampling Rate

0.1 0.2 0.3 0.4 0.5

Ours 1.17 × 10−8 1.16 × 10−8 1.18 × 10−8 1.18 × 10−8 1.14 × 10−8

PCA 1.20 × 10−8 1.19 × 10−8 1.22 × 10−8 1.21 × 10−8 1.18 × 10−8

KSVD-StOMP 8.39 × 10−4 1.16 × 10−8 1.19 × 10−8 1.18 × 10−8 1.15 × 10−8

KSVD-OMP 1.45 × 10−1 6.06 × 10−3 5.03 × 10−4 1.18 × 10−8 1.32 × 10−3

KSVD-GOMP 5.34 × 10−2 1.15 × 10−8 4.82 × 10−3 1.18 × 10−8 1.97 × 10−3

KSVD-GROMP 1.22 × 10−3 1.16 × 10−8 3.19 × 10−2 1.17 × 10−8 1.07 × 10−2

KSVD-CoSaMP 1.16 × 10−8 1.16 × 10−8 1.19 × 10−8 1.16 × 10−8 1.15 × 10−8

DCT-SPL 1.14 × 10−8 1.18 × 10−8 1.15 × 10−8 1.17 × 10−8 1.15 × 10−8

CDL-StOMP 1.17 × 10−8 1.16 × 10−8 1.19 × 10−8 1.17 × 10−8 1.15 × 10−8

CDL-OMP 1.17 × 10−8 1.16 × 10−8 1.19 × 10−8 1.17 × 10−8 1.15 × 10−8

CDL-CoSaMP 1.65 × 10−3 7.16 × 10−1 1.18 × 10−8 1.75 × 10−2 8.31 × 10−2

CDL-GROMP 4.55 × 10−4 1.20 × 10−4 1.32 × 10−3 9.83 × 10−4 2.88 × 10−4

CDL-GOMP 4.55 × 10−4 1.20 × 10−4 1.32 × 10−3 9.83 × 10−4 2.88 × 10−4

For compressed sensing algorithms, the running time T of the reconstruction algorithm
is a very important evaluation index. As shown in Table 3, the running time T under the
same sampling rate in the table is the mean value of the running time of 220-band image
reconstruction, and the time unit recorded in the table is milliseconds. By comparing the
experimental results, it can be seen that the running time T of the algorithm proposed in
this paper is much lower than that of the traditional compressed sensing algorithm, and the
running time is shortened by at least a hundred times. This is because the projection matrix
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U trained by the algorithm proposed in this paper is approximately invertible. In the
reconstruction process, only the low-dimensional sampling matrix Y is left multiplied by
UT. However, traditional compression sparse reconstruction algorithms require multiple
matrix inversion and iterative operations. These operations are very time-consuming.
Therefore, the real-time performance of the algorithm proposed in this paper is much
higher than other algorithms. Besides, compared to data compression algorithm PCA,
when we know the covariance matrix of the source in advance and find the eigenvalues, the
time consumption of the TIPML algorithm is similar to that of the PCA algorithm. However,
in practical applications, the covariance and eigenvalue of the source are unknown. We
need to calculate the covariance and eigenvalue of the source, which will cause a lot of time
to be consumed. Therefore, compared to traditional compressed sensing algorithms and
traditional PCA data compression algorithms, the TIPML algorithm is more competitive.

Table 3. The reconstructed average time (millisecond) of hyperspectral images in all bands under
different sampling rates.

Methods
Sampling Rate

0.1 0.2 0.3 0.4 0.5

Ours 0.3 0.3 0.4 0.4 0.4
PCA 0.3 0.4 0.4 0.4 0.4

KSVD-StOMP 210.8 443.7 667.1 934.6 1235.0
KSVD-OMP 264.9 401.8 545.3 594.0 613.5

KSVD-GOMP 101.7 170.4 206.2 246.8 252.3
KSVD-GROMP 84.6 131.7 181.0 186.7 189.3
KSVD-CoSaMP 302.7 527.7 597.3 829.7 877.4

DCT-SPL 354.8 355.1 354.8 357.0 359.1
DCT-StOMP 199.4 437.6 732.2 1085.2 1517.4
CDL-StOMP 228.2 503.3 763.0 1054.0 1384.2
CDL-OMP 209.5 462.7 696.1 955.6 1261.4

CDL-CoSaMP 341.3 553.0 635.0 895.7 943.9
CDL-GROMP 75.5 111.8 150.4 153.0 157.3
CDL-GOMP 167.7 253.3 317.4 365.8 375.5

4. Conclusions

HSI is the main tool for remote sensing and earth observation. The amount of valuable
industrial and scientific data retrieved on the ground can be greatly increased by data
compression technology. The resources of spaceborne equipment are very precious, and
compression is placed on the sampling end by compressed sensing technology, which
can save a lot of time and resources for hyperspectral imaging technology. Therefore,
compressed sensing technology has huge application prospects in the field of hyperspectral
compression. However, compressed sensing technology needs to solve underdetermined
equations. In traditional algorithms, a lot of time and storage resources are spent in the
sparse reconstruction process. Therefore, the high complexity of data reconstruction is also
the biggest drawback of compressed sensing technology.

Aiming at the high computational complexity of compressed sensing technology and
insufficient reconstruction accuracy, a task-driven invertible projection matrix learning
algorithm was proposed by us. Our main contribution:

(1) Derived the equivalent model of the invertible projection model theoretically, which
converts the complex invertible projection training model into a coupled dictionary
training model;

(2) proposed a task-driven invertible projection matrix learning algorithm for invertible
projection model training;

(3) based on a task-driven reversible projection matrix learning algorithm, established
a compressed sensing algorithm with strong real-time performance and high recon-
struction accuracy.
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Experimental verification has shown that the compressed sensing technology based
on the algorithm proposed in this paper not only has higher reconstruction accuracy than
traditional compressed sensing technology, but also has improved real-time performance
by more than a hundred times. It is foreseeable that the algorithm proposed in this paper
will have great application prospects in the field of hyperspectral image compression. In
addition, the algorithm proposed in this paper can’t only be used in the fields of one-
dimensional signal compression, two-dimensional image compression, and data denoising,
but it will also have greater research value on hardware platforms such as FPGA and
embedded devices due to its extremely low the complexity.
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Abstract: The capacity of the downlink channel is a major bottleneck for applications based on remote
sensing hyperspectral imagery (HSI). Data compression is an essential tool to maximize the amount
of HSI scenes that can be retrieved on the ground. At the same time, energy and hardware constraints
of spaceborne devices impose limitations on the complexity of practical compression algorithms.
To avoid any distortion in the analysis of the HSI data, only lossless compression is considered in this
study. This work aims at finding the most advantageous compression–complexity trade-off within
the state of the art in HSI compression. To do so, a novel comparison of the most competitive spectral
decorrelation approaches combined with the best performing low-complexity compressors of the
state is presented. Compression performance and execution time results are obtained for a set of
47 HSI scenes produced by 14 different sensors in real remote sensing missions. Assuming only
a limited amount of energy is available, obtained data suggest that the FAPEC algorithm yields the
best trade-off. When compared to the CCSDS 123.0-B-2 standard, FAPEC is 5.0 times faster and
its compressed data rates are on average within 16% of the CCSDS standard. In scenarios where
energy constraints can be relaxed, CCSDS 123.0-B-2 yields the best average compression results of all
evaluated methods.

Keywords: multispectral; hyperspectral; CCSDS; FAPEC; data compression; transform

1. Introduction

Hyperspectral imaging (HSI) is one of the main components of modern remote sensing [1].
In recent years, new public and private organizations have joined the remote sensing ecosystem [2].
As a result, the number of deployed HSI sensors has grown significantly, especially for Earth
Observation tasks, and this trend is predicted to continue in the future [3]. Parallel to this
increment of active sensors, substantial efforts are being devoted to improving the analysis of scenes
obtained with HSI sensors [4]. Classification, unmixing, and segmentation are among the problems
currently more actively researched [4–15]. Thanks to the increased availability of HSI data and the
accuracy of their interpretation, many commercial and scientific applications are becoming feasible,
and attainable for a larger base of users. Some of the most widespread applications include resource
management, e.g., in agriculture, mining. and forestry; geological structure observation; and disaster
monitoring and response coordination [2,16–18].

One of the main bottlenecks when retrieving HSI information from spaceborne sensors is
the downlink channel capacity [19]. This bottleneck is emphasized by the large size of HSI data.
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Retrieved scenes typically contain from tens to hundreds of spectral bands. For comparison,
traditional color images contain only three bands. The inclusion of more than three bands is needed for
a more detailed observation of the electromagnetic spectrum, but they multiply the number of samples
produced by the sensor. Furthermore, newly deployed sensors also tend to exhibit larger spatial
resolutions, i.e., a higher number of samples per spectral band. As a result, the latest sensors—such as
NASA’s HyspIRI—can produce up to 5 Terabytes of data per day [20], i.e., significantly more than can
be transmitted through existing space links [19].

In order to maximize the effective capacity of downlink channels, compression is routinely
employed to reduce the volumes of data to be transmitted [19]. In particular, lossless compression
allows data volume reduction, while at the same time enabling perfect reconstruction of the scenes.
Thus, decompressed scenes will produce the exact same result as the original scenes when subject to
any deterministic analysis algorithm. This includes most classification, unmixing, and segmentation
algorithms [4].

This paper investigates two aspects of lossless compression specific to HSI remote
sensing—spectral band redundancy—and the performance of low-complexity algorithms. Redundancy
among spectral bands in HSI is typically higher than in traditional color images. Thus, to attain
competitive coding efficiency, it is paramount to effectively exploit this redundancy. In turn,
low complexity in the compression pipeline, including the spectral decorrelation stage, is needed
due to the limitations in spendable energy and available hardware in spaceborne sensors [19,21].
These two aspects of compression must be jointly considered so that obtained conclusions are relevant
in practical remote sensing HSI scenarios.

Hereafter, a selection of the best performing, reversible spectral decorrelation transforms is
studied, including the integer wavelet transform (IWT [22]), the pairwise-orthogonal transform
(POT [23]), and the regression wavelet analysis (RWA [24]) transform. These transforms are evaluated
in combination with some of the most competitive low-complexity compression algorithms including
the Fully Adaptive Prediction Error Coder (FAPEC [25]), the CCSDS 122.1-B-1 standard [26], and the
well-known JPEG-LS [27] algorithm. For completeness, the aforementioned transform-compressor
combinations are also compared to CCSDS 123.0-B-2 [28] and M-CALIC [29], which exploit
redundancy across bands by means of prediction. This work extends upon our previous work [30]
by considering a wider selection of spectral decorrelation transforms, compression algorithms,
and test scenes. This provides a more complete analysis of the state-of-the-art and increases the
significance of the obtained results Note that, even though hardware implementations have been
described for some of the aforementioned algorithms (see, e.g., in [31–33]), this study focuses on
software implementations. This approach is consistent with the current trend in Earth Observation,
in which constellations of small satellites and cubesats (mainly from the private sector) are being
deployed [2]. These constellations often employ commercial-off-the-shelf hardware [3], as opposed
to the custom hardware implementations traditionally used in larger satellites launched by space
agencies. By analyzing the efficiency of software implementations, results become more relevant to the
foreseeable future of Earth Observation.

The rest of this paper is structured as follows. Section 2 contains a summary of the spectral
decorrelation transforms and compression methods considered for this study. Section 3 presents
and analyzes experimental results based on a comprehensive corpus of real hyperspectral scenes.
Conclusions are drawn in Section 4.

2. Methods and Materials

State-of-the-art data compression algorithms often consist of two conceptually separated parts:
data decorrelation and entropy coding. Data decorrelation exploits the fact that neighboring pixels—either
within a band or across several of them—tend to have similar values. Decorrelated samples normally
exhibit less variability, i.e., lower entropy rates. The entropy coding stage then compacts decorrelated
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samples in a reversible way. The output compressed data size depends directly on the entropy of those
samples, hence the importance of effective decorrelation.

This work focuses on compression pipelines in which decorrelation is divided into two consecutive
stages: spectral and spatial decorrelation. Typically, scenes are first processed along the spectral
axis, although some compressors invert this order or skip some of the stages. The resulting
transformed bands are often processed separately, i.e., they are spatially decorrelated and entropy
coded. The compressed data obtained for each band is then packed together to form the final
compressed bitstream, which can also be output to a file. A diagram of this general design is provided
in Figure 1. This approach allows combining and comparing different methods for each stage in order
to get the best compression results. At the same time, it helps to obtain an overall low-complexity
algorithm. As discussed in the introduction, both aspects are critical for HSI remote sensing.

The remainder of this section provides some background on the spectral decorrelation methods
considered in this study in Section 2.1. The spatial decorrelation and entropy coding algorithms
with which they are combined are described in Section 2.2. In order to obtain representative
results, a comprehensive corpus of hyperspectral scenes has been selected. This corpus is presented
in Section 2.3.

Figure 1. Main stages of transform-based hyperspectral scene compression.

2.1. Spectral Decorrelation Methods

Spectral decorrelation transforms are applied to co-located samples across different spectral bands.
This process is repeated until all spatial positions are decorrelated. Three spectral transforms have been
selected for this work due to their competitive decorrelation-complexity trade-offs: the integer wavelet
transform (IWT), the pairwise-orthogonal transform (POT), and the regression wavelet analysis (RWA)
transform. These are briefly described next in chronological order of publication.

The IWT [22] is a well-known discrete wavelet transform (DWT). It is a linear, multilevel filter that
produces integer coefficients. This allows reversible transformation, which is required to attain lossless
compression. In each level, the IWT filter separates the input signal into so-called low-frequency
and high-frequency sub-bands. After that, the low frequencies of one level are the input of the next
level. In this work, five levels of the LeGall 5/3 integer wavelet decomposition are employed except
for the FAPEC compressor described below, which applies three levels of 9/7-M integer wavelet
decomposition. One important property of the IWT is that it can be implemented very efficiently using
so-called lifting steps [34]. This approach significantly reduces the number of arithmetic operations
needed per input sample, thus enhancing throughput.
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The POT [23] is a low-complexity, reversible approximation of the Karhunen-Loève Transform
(KLT). The KLT provides perfect decorrelation, i.e., zero covariance between different spectral
bands, which normally results in very high compression performance. However, the KLT is generally
considered too computationally intensive for low-complexity scenarios. In turn, the POT offers much
lower computational cost, while trying to reach the compression performance gains of the KLT.
To achieve this goal, the POT applies a divide-and-conquer strategy that decorrelates band pairs in
a multilevel structure. This is opposed to the KLT, which decorrelates all spectral bands simultaneously.

The RWA [24] is a reversible transform that operates in two steps. First, a reversible wavelet
transform is applied along the spectral axis. The Haar wavelet is used for this purpose due to its
low computational cost and reasonable decorrelating power. In the second step, pyramidal nonlinear
estimators are used to predict coefficients in high-frequency sub-bands using coefficients from
low-frequency sub-bands.

2.2. Low-Complexity Compression Methods

In this study, three compression algorithms are applied after each of the spectral decorrelation
transforms described in Section 2.1: CCSDS 122.1-B-1, FAPEC, and JPEG-LS. Two additional
compressors are considered in the study, CCSDS 123.0-B-2 and M-CALIC, which do not exactly
follow the structure depicted in Figure 1. Instead, they apply their own spectral decorrelation methods,
so they are not combined with any of the aforementioned spectral transforms. FAPEC also follows
a slightly different approach, as described later in this section.

The CCSDS 122.1-B-1 [26] standard (hereafter CCSDS 122.1) was proposed by the Consultative
Committee for Space Data Systems (CCSDS) as an extension to the CCSDS 122.0-B-2 standard [28]
(All CCSDS standards are available free of charge at https://public.ccsds.org/Publications/default.
aspx). The CCSDS agglutinates the most important space agencies in the world, as well as other
important space industry actors, with the goal of creating state-of-the-art standards for space
communications. The CCSDS 122 standard follows closely the structure shown in Figure 1. Both the
IWT and the POT are available in the spectral preprocessing stage, as well as a no-transform option
that allows combination with other transforms including the RWA. In the spatial decorrelation stage,
CCSDS 122.1 employs a 5-level 2D 5/3 IWT, which is then followed by a bitplane encoder. Note that
the advantages of bitplane encoding are most evident for lossy compression, although this coding
regime is not explored in this study.

FAPEC [25] contains a highly efficient entropy coder that works in a block-wise manner. In each
block, the probability density function of its samples is computed, and used to determine which of
the available coding modes to use. High-entropy blocks are output without further processing to
reduce computational complexity and avoid data expansion. Samples in medium-entropy blocks are
encoded using variable-length codes. Several code tables are available depending on the statistics of
each block. Low-entropy blocks, where most samples are in {−1, 0, +1}, are divided in groups of
six samples and compressed using fixed-length codes. Finally, runs of 5 or more zeros are encoded
using run-length coding. The block-wise code selection of FAPEC is highly robust to outliers and
other noise sources in the data, while being suitable for the complexity restrictions of space hardware.
This entropy coder is applied to the samples after decorrelation. When no spectral transform is selected,
decorrelation consists in 3 levels of 2D 9/7-M IWT. When the POT or the RWA are selected, they are
applied before the same 2D IWT. For the IASI instrument, a unit-delay predictor is used instead of the
2D 9/7-M IWT, due to the better performance observed empirically. Note that, in its current version,
FAPEC does not directly support the application of only spatial 2D IWT to scenes with more than
one band. Therefore, to apply the 2D IWT in the aforementioned cases, scenes are compressed as
a single band of width w and height h · z, where w, h and z are the width, height and number of
bands of the original scene, respectively. This reorganization is performed after the spectral transform,
when one is applied. Finally, when the IWT is selected, two different approaches are used based
on the number of spectral bands. If the scene contains 22 bands or fewer, three spatial 2D 9/7-M
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IWT decomposition levels are applied on each image band, and then the unit-delay differentiator is
applied along the spectral axis. If the scene contains 23 or more bands, the unit-delay differentiator is
substituted by three levels of 9/7-M IWT, also along the spectral axis. Hence, regardless of the number
of bands, FAPEC does not exactly follow the diagram shown in Figure 1 when the IWT is selected.
Details and justification of this design decision are provided in [25,35]. Note that this approach is in
contrast to CCSDS 122.1 with the IWT, which always applies spectral decorrelation before the spatial
2D IWT. In all cases, FAPEC is invoked with parameters -chunk 128M -bl 128 -mt 1 -ow -noatt
-be, adding -dwt when the spectral IWT is selected. This sets the block size to 128 samples, and forces
a single thread of execution. In addition, parameter -signed is used when appropriate.

The JPEG-LS [27] is a well-known compression standard that offers lossless compression, not to
be confused with JPEG. JPEG-LS uses a simple predictor to spatially decorrelate input samples.
This predictor uses only three of the nearest neighboring pixels, namely, those at the North, West,
and Northwest positions with respect to the pixel being coded. Entropy coding is performed
using Golomb-Rice codes, in combination with context modeling to further improve compression
performance. Context modeling uses one additional neighbor, situated at the Northeast position
relative to the current pixel. An additional run-length coding mode is also available for low entropy
distributions. In this work, the reference implementation (Available at https://github.com/thorfdbg/
libjpeg) is employed, using parameters -ls 0 -m 0. As JPEG-LS does not support compression of
more than three spectral bands, scenes are compressed as a single band of with w and height h · z,
as described above for CCSDS 123.0-B-2.

The CCSDS 123.0-B-2 [28] standard is the latest compression algorithm published by the
CCSDS. Unlike FAPEC, CCSDS 122.1, and JPEG-LS, CCSDS 123.0-B-2 combines spectral and spatial
decorrelation in a single prediction stage (Note that FAPEC provides a prediction-based multiband
algorithm that combines spatial and spectral decorrelation, as described in [25]. Notwithstanding,
this paper focuses on transform-based compression, so this alternative mode is not considered).
This prediction stage uses so-called local sums and local differences, computed from neighboring
pixels from the same and previously coded bands. These are combined to obtain a prediction of
the current pixel based on a weighted average. Weights employed for prediction are automatically
updated based on the encoded values. CCSDS 123.0-B-2 allows three different entropy coders to
compress the prediction errors of the previous stage: block-adaptive, sample-adaptive, and hybrid.
The hybrid is the latest entropy coder published by the CCSDS, and is designed to yield competitive
performance for a wide range of data entropies. This coder updates two variables—the accumulator
and the counter—whenever a sample is coded. These variables provide an adaptive estimation of
the data source’s entropy. This estimation is used to determine what coding mode is to be used for
the current sample. In addition to Golomb power-of-two coding, 16 variable-to-variable codes are
defined for low-entropy scenarios. In this work, the default parameters described in [36] are used for
CCSDS 123.0-B-2.

M-CALIC [29] is the last compressor considered in this work. Spectral decorrelation is performed
by linear prediction using co-located samples in previous bands. Prediction errors are then compressed
using an adaptive arithmetic coder with 256 defined contexts. These contexts implicitly perform spatial
decorrelation by using neighboring samples at the same spectral band to determine the coding context
to be used.

2.3. Test Corpus

In order to obtain a representative corpus of test scenes, 47 scenes have been selected from those
available in the “CCSDS MHDC” image corpus, which has been assembled over the years by the
Multispectral Hyperspectral Data Compression Working Group (MHDC WG) of the CCSDS to provide
a suitable testing framework for the compression of satellite images (See https://cwe.ccsds.org/sls/
docs/SLS-DC/123.0-B-Info/TestData/README.txt for futher details.). These images were obtained
by 14 different instruments deployed in real missions. Both hyperspectral and multispectral scenes are
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used so that results are illustrative of currently deployed sensors. The corpus includes mainly raw
(unprocessed) scenes and some calibrated scenes. Dynamic ranges vary from 8 to 15 bits per sample,
although most scenes employ at least 12 bits per sample. Note that all scenes are stored in files using
2 bytes per sample, regardless of the actual dynamic range. A summary of the selected scenes and
their properties is provided in Table 1. For illustrative purposes, crops of two sample scene bands are
shown in Figure 2. Moreover, the zero-order entropies of each spectral band of three different scenes
are plotted in Figure 3. All scenes are publicly available (Download links for the test scenes can be
found at at http://cwe.ccsds.org/sls/docs/sls-dc/123.0-B-Info/TestData), except for those produced
by the IASI and MSG instruments due to licensing restrictions.

(a) (b)

Figure 2. Crops (512 × 512) of two scenes from the test corpus. (a) Band 0 of the vgt_1b scene from the
Vegetation sensor; (b) band 5 of the agriculture scene from the Landsat sensor (over Northern Mexico).
Scene brightness has been adjusted for display purposes.

(a) (b) (c)

Figure 3. Zero-order entropies in bits per sample for each band. (a) gran9 scene, AIRS instrument
(Pacific Ocean, Daytime); (b) mantar_Rad_rmnoise scene, SFSI instrument (human-made targets);
(c) Geo_Sample scene, Hyperion instrument (over Goldfield/Cuprite, Nevada).
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Table 1. Summary of employed test corpus scenes and some of their properties.

Instrument Scene Type Dynamic range (bits) #Bands Width Height #Scenes

AIRS raw 12 1501 90 135 1

AVIRIS
raw 15 224 680 512 1
raw 10 224 614 512 1
calibrated 13 224 677 512 1

CASI raw 12, 13, 15 72 406 1225 3

CRISM

raw 11 107 640 510 2
raw 12, 13 438 640 510 2
raw 12, 13 545 640 510 2
raw 13 545 320 450 2
calibrated 11 74 64 2700 2

Hyperion raw 12 242 256 1024 3

IASI L1C calibrated 15 8461 60 1530 1

Landsat raw 8 6 1024 1024 3

M3 raw 12 260 640 512 2
raw 11, 12 86 320 512 2

MODIS

raw 12 17 1354 2030 2
raw 12, 13 14 1354 2030 2
raw 12, 13 5 2708 4060 2
raw 12 2 5416 8120 2

MSG calibrated 10 11 3712 3712 1

PLEIADES calibrated 12 4 224 2465 1
calibrated 12 4 224 2448 3

SFSI calibrated 15 240 452 140 1
raw 9, 11 240 496 140 2

SPOT5 calibrated 8 3 1024 1024 1

Vegetation raw 10 4 1728 10,080 2

3. Experimental Results

Experimental results for the aforementioned spectral decorrelation methods and compression
algorithms are presented in this section. The POT implementation of CCSDS 122.1 is also applied to
FAPEC and JPEG-LS. The IWT implementation of CCSDS 122.1 is also applied to JPEG-LS, while FAPEC
uses its own. All implementations are in C/C++, except for the RWA transform, which is available as
Matlab code (The RWA can be downloaded from http://gici.uab.cat/GiciWebPage/downloads.php).
All time measurements are obtained as the average over 10 repetitions on a dedicated Intel(R) Core(TM)
i7-8700 CPU @ 3.20 GHz machine, using a single thread for the experiments. The user and system CPU
times are considered here (as opposed to real time) to remove measurement dependencies on the data
storage hardware.

3.1. Spectral Transforms

Two important properties of the spectral decorrelation transform described in Section 2.1 are
analyzed next: transformed entropy and dynamic range expansion.

Entropy rates before and after spectral decorrelation provide valuable information about how
much redundancy is removed. Entropy is defined as −∑i pi · log2(pi), where pi is the probability of
the i-th sample value. This probability is computed empirically based on each symbol’s observed
frequency. The distribution of zero-order entropy for the original and transformed scenes are shown in
Figure 4a. The vertical axis of the figure indicates the fraction of the images whose entropy falls within
the range indicated by the width of each vertical bar. Note that a relative frequency of 1 is equivalent
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to 100% of the images. No attempt is made to measure spatial redundancy present within the scene
bands. Note that some of the analyzed spectral transforms produce side information, namely, the POT
and the RWA. For these, the size of the side information is added to the zero-order entropy. Results are
expressed in bits per sample (bps), where each pixel of each spectral band is considered a different
sample. As expected, all spectral transforms reduce entropy rates. After the IWT, average entropy
for all 47 scenes is 1.1 bps lower with respect to the average entropy of the original scenes. In turn,
the POT and the RWA transform reduce entropy rates by 2.3 bps and 2.6 bps, respectively.

(a) (b)

Figure 4. Property histograms for original and spectrally decorrelated scenes. (a) Entropy including
side information; (b) dynamic range. Solid dots represent average values and horizontal lines span
two standard deviations.

The dynamic range of an scene is hereinafter defined as the maximum number of bits required to
store any of its samples. Transformed scenes typically exhibit larger dynamic ranges. This expansion
is of interest because larger samples may slow down compression, e.g., when a bitplane encoder is
employed or when additional bytes are needed to represent each sample. The distribution of dynamic
ranges for the original and transformed scenes are shown in Figure 4b. The vertical axis indicates
relative frequency as defined for Figure 4a above, considering dynamic range instead of entropy.
All transforms introduce relatively small dynamic range expansions for the test corpus. The IWT
introduces the largest expansion of all tested transforms, i.e., 0.60 bps. The POT and RWA transform
both increase it by 0.23 bps. It is worth noting that all transformed scenes have dynamic ranges of
16 bits or less. Thus, compressors applied after these transforms need not support sample sizes beyond
2 bytes.

3.2. Lossless Compression Rates

Compressed data rates for the spectral transforms and compressors described in Section 2 have
been obtained for all scenes of the test corpus. Table 2 shows average results for each instrument
expressed in bps. Average results for all scenes are also shown for ease of comparison. Note that
these averages are obtained as the arithmetic mean of the bps for each scene, and this mean is not
weighted based on the number of samples of each scene. Consistent with the previous section, bits per
sample are obtained assuming that each pixel of each spectral band is a different sample. For ease of
comparison, Figure 5 displays the compression efficiency of all tested compressors, relative to that of
CCSDS 123.0-B-2, averaged for each instrument. This relative efficiency is defined as the compressed
data size of CCSDS 123.0-B-2 divided by the compressed data size of each algorithm, including side
information when applicable.

348



Remote Sens. 2020, 12, 2955

(a) (b)

(c) (d)

Figure 5. Average compression efficiency relative to CCSDS 123.0-B-2 for each instrument. Values larger
than 1 indicate better performance than CCSDS 123.0-B-2. (a) FAPEC compressors; (b) CCSDS 122.1
compressors; (c) JPEG-LS compressors; (d) M-CALIC compressor.

The lowest average compressed data rates, i.e., those with smallest compressed files, are obtained
with the CCSDS 123.0-B-2 standard. This can be explained by the fact that CCSDS 123.0-B-2 uses
the most complex decorrelation approach and entropy coding mechanism of all tested compressors.
Both decorrelation and entropy coding are adaptive at the sample level, which improves compressed
data rates. As discussed in the next section, this is also at the cost of slower execution times.
When combined with the most advantageous spectral decorrelation strategy (when applicable),
compressors sorted by compressed data rates averaged for all test images are CCSDS 123.0-B-2
(4.84 bps), JPEG-LS (5.01 bps, IWT), M-CALIC (5.27 bps), CCSDS 122.1 (5.46 bps, POT), and FAPEC
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(5.54 bps, POT). Thus, on average, the best configuration of all codecs are within 16% of
CCSDS 123.0-B-2.

Table 2. Average lossless compression rate in bits per sample. Column No indicates compression is
applied to the original scenes. Results include side information overhead when applicable. The best
average results per instrument are highlighted in bold face.

FAPEC CCSDS 122.1 JPEG-LS CCSDS M-

123.0-B-2 CALIC

Corpus No IWT POT RWA No IWT POT RWA No IWT POT RWA No No

AIRS 7.18 5.27 5.15 6.75 6.92 5.03 4.65 6.74 6.35 4.63 4.76 6.43 4.11 4.19
AVIRIS 7.12 5.20 4.88 4.40 7.08 5.18 4.84 4.46 6.89 4.98 4.73 4.27 4.36 4.43
CASI 8.53 6.76 6.75 6.24 8.46 6.66 6.67 6.29 8.17 6.40 6.51 6.07 6.06 6.10
CRISM 6.19 5.48 5.57 5.69 6.17 5.41 5.33 5.76 5.44 4.36 4.60 4.92 3.89 5.69
Hyperion 5.25 4.72 4.59 4.41 5.28 4.66 4.51 4.52 4.91 4.34 4.37 4.27 4.25 4.31
IASI 9.56 7.73 8.20 8.83 9.57 7.52 7.50 8.83 8.88 6.97 7.69 8.36 6.74 6.87
Landsat 4.02 3.92 3.80 3.66 4.04 3.88 3.81 3.73 3.83 3.66 3.64 3.53 3.36 3.47
M3 5.04 4.05 4.10 4.23 5.07 4.04 4.03 4.31 4.38 2.93 3.12 3.24 2.65 4.51
MODIS 6.77 6.71 6.25 6.77 6.67 6.83 6.46 6.73 6.03 6.06 5.77 6.04 6.66 5.90
MSG 3.93 4.13 4.03 3.98 3.90 4.18 4.00 4.04 3.79 4.08 3.91 3.89 3.52 3.67
PLEIADES 7.74 7.45 7.83 7.39 7.66 7.48 7.60 7.32 7.43 7.28 7.56 7.11 7.20 7.17
SFSI 4.88 4.70 4.43 4.39 5.02 4.59 4.45 4.52 4.56 4.21 4.21 4.17 4.02 4.13
SPOT5 5.70 5.65 5.35 5.31 5.66 5.72 5.30 5.30 5.51 5.56 5.21 5.15 5.28 5.19
Vegetation 5.60 5.33 5.44 5.52 5.52 5.44 5.36 5.48 5.33 5.28 5.22 5.27 5.11 4.93

All scenes 6.26 5.61 5.54 5.59 6.23 5.60 5.46 5.62 5.75 5.01 5.05 5.11 4.84 5.27

For some of the instruments considered separately, CCSDS 123.0-B-2 yields larger differences
when compared to the most advantageous transform for each compressor. For example, rates 53%
better than FAPEC and CCSDS 122.1 are observed for M3 scenes, 41% better than FAPEC and 37%
better than CCSDS 122.1 for CRISM data, and 25% better than FAPEC for the AIRS instrument. On the
other hand, some combinations outperform CCSDS 123.0-B-2 for other instruments, e.g., JPEG-LS with
the POT is 13% better for MODIS and with the RWA transform is 2% better for AVIRIS.

Regarding the optimum transforms for each compressor, FAPEC typically performs best with the
POT or the RWA transform. On average, the POT provides a compression gain of 0.72 bps as compared
to not using any transform, 0.07 bps better than using the spectral IWT. In turn, the RWA transform
yields average bitrates 0.05 bps higher than using the POT transform, although the RWA provides the
best results for 8 of the 14 tested instruments. CCSDS 122.1 achieves the best rates when using POT for
two-thirds of the instruments, with RWA leading on the rest. Finally, JPEG-LS benefits specially from
RWA on half of the tested instruments, with the IWT on less than a third, and with the POT on just
two instruments.

Consistent with the entropy reduction results shown in Section 3.1, all tested transforms typically
improve average compressed data rates. There are only a few exceptions on specific instruments and
compressors, such as MSG (where the use of a spectral transform always leads to worse results) or
MODIS with several combinations (CCSDS 122.1 with IWT or RWA, and JPEG-LS with IWT or RWA).
Moreover, PLEIADES and SPOT5 exhibit a few exceptions. Results suggest that instruments with
a small number of bands or a high spatial resolution are prone to get worse lossless compression rates
when prepending some of these spectral decorrelation transforms.

In general, the best transform for spectral decorrelation is compressor-dependent. This is due
to the different assumptions made in the design of the different algorithms on the distribution of
the samples. Furthermore, each transform spreads the noise present in the least significant bits of
the original samples differently, e.g., due to sensor shot noise. Notwithstanding these differences,
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average results for all transforms are within 0.16 bps and 0.10 bps for CCSDS 122.1 and JPEG-LS,
respectively. Note that results for CCSDS 123.0-B-2 and M-CALIC after spectral decorrelation are
not presented, because both compressors are designed assuming pixel distributions typical for the
original domain.

Table 3. Average compression time in seconds. Column No indicates compression is applied to the
original scenes. Results include spectral transformation times when applicable. Best results for each
instrument are highlighted in bold font.

FAPEC CCSDS 122.1 JPEG-LS CCSDS M-

123.0-B-2 CALIC

Corpus No IWT POT RWA No IWT POT RWA No IWT POT RWA No No

AIRS 0.81 0.25 2.67 2.26 14.28 11.66 11.39 11.32 2.48 4.59 5.17 4.61 1.55 15.46
AVIRIS 2.44 1.16 7.20 6.71 55.32 45.17 46.56 42.93 9.97 11.43 13.76 13.08 7.32 61.33
CASI 1.08 0.56 3.48 2.88 30.31 25.77 27.60 25.87 4.97 5.69 7.00 6.30 3.53 30.55
CRISM 3.25 1.30 9.28 9.57 66.32 63.61 67.18 69.52 11.51 14.21 17.18 17.47 7.11 77.90
Hyperion 2.15 0.87 6.97 6.05 39.14 36.16 38.14 38.33 7.63 9.76 12.11 11.22 6.36 52.33
IASI 9.87 14.73 120.43 208.01 723.38 615.70 623.41 751.97 117.99 175.99 217.58 301.01 82.63 724.83
Landsat 0.16 0.09 0.49 0.38 3.43 3.34 3.57 3.38 0.71 0.87 1.03 0.91 0.65 4.39
M3 1.54 0.71 4.79 4.62 31.53 29.18 31.34 32.12 5.67 7.16 8.79 8.74 4.00 40.89
MODIS 1.82 1.63 4.48 4.00 42.26 42.50 42.85 42.53 6.99 8.58 9.66 9.16 5.69 39.55
MSG 4.85 4.38 12.78 11.74 81.68 86.69 91.35 87.04 16.38 21.41 24.84 23.96 15.33 114.45
PLEIADES 0.07 0.05 0.23 0.13 2.22 2.19 2.30 2.20 0.38 0.46 0.53 0.43 0.29 2.05
SFSI 0.44 0.21 1.53 1.37 9.94 8.99 9.66 9.48 1.79 2.30 2.87 2.69 1.62 13.18
SPOT5 0.07 0.05 0.22 0.16 2.12 2.17 2.16 2.10 0.39 0.48 0.53 0.47 0.32 2.04
Vegetation 2.23 2.02 5.48 4.46 47.40 46.51 49.74 47.38 8.66 10.58 11.95 10.98 7.06 47.86

All scenes 1.97 1.30 7.55 9.15 52.49 48.28 50.08 52.76 9.04 11.81 14.23 15.73 6.51 57.55

Table 4. Average decompression time in seconds. Column No indicates decompression is applied to
the original scenes. Results include inverse spectral transformation times when applicable. Best results
for each instrument are highlighted in bold font.

FAPEC CCSDS 122.1 JPEG-LS CCSDS M-

123.0-B-2 CALIC

Corpus No IWT POT RWA No IWT POT RWA No IWT POT RWA No No

AIRS 0.74 0.27 2.38 1.14 10.05 8.07 7.58 7.19 2.43 4.34 4.73 3.40 1.86 13.62
AVIRIS 2.35 1.11 6.35 3.81 38.27 30.76 31.11 27.77 9.91 11.04 12.62 9.82 8.56 55.63
CASI 1.02 0.52 3.00 1.70 21.04 17.65 18.49 17.10 5.01 5.60 6.51 5.06 4.10 27.99
CRISM 3.18 1.28 8.11 5.01 44.05 42.32 43.79 44.78 11.30 13.76 15.59 12.68 8.51 71.52
Hyperion 2.20 0.91 6.22 3.45 26.63 24.96 25.62 24.95 7.30 9.39 10.89 8.15 7.49 46.73
IASI 12.43 18.24 106.99 176.51 522.67 445.48 429.82 568.51 118.92 168.05 200.70 265.14 95.24 682.36
Landsat 0.16 0.09 0.45 0.27 2.19 2.21 2.29 2.11 0.67 0.89 0.94 0.76 0.72 4.05
M3 1.56 0.71 4.20 2.54 19.34 18.12 19.13 19.48 5.41 6.93 7.96 6.40 4.81 36.87
MODIS 1.72 1.53 3.97 2.81 28.74 29.96 29.05 28.80 6.95 9.21 9.09 7.93 6.49 37.32
MSG 4.80 4.26 11.40 8.21 52.00 57.06 58.33 53.58 15.76 21.24 22.80 19.54 17.64 102.83
PLEIADES 0.06 0.04 0.19 0.10 1.52 1.55 1.58 1.51 0.38 0.48 0.51 0.40 0.31 1.92
SFSI 0.45 0.22 1.34 0.78 6.38 6.15 6.35 6.04 1.72 2.21 2.59 1.99 1.85 11.78
SPOT5 0.07 0.04 0.19 0.13 1.42 1.53 1.42 1.41 0.37 0.52 0.48 0.42 0.34 1.87
Vegetation 2.11 1.96 4.94 3.41 31.12 31.53 31.65 31.08 8.31 10.99 11.08 9.62 8.04 44.01

All scenes 1.98 1.35 6.67 6.51 35.87 33.23 33.30 35.93 8.93 11.58 13.06 12.82 7.59 53.11

3.3. Throughput Results

The throughput yielded by the compressors described in the previous section is analyzed next.
Average compression times for each instrument and for all scenes is provided in Table 3. Execution time
is measured as the total user and system time reported by the operating system (Ubuntu 18.04 LTS).
This is to avoid dependencies with the employed storage medium, and to provide a better surrogate
for energy consumption in the comparison. It should be highlighted that all tested compressors are
software implementations. Some differences in the level of optimization of these implementations
were observed, also between different compression modes of the same algorithm.

The fastest of all tested compressors is FAPEC. When executed without any spectral decorrelation
transform, it is 3.30 times faster than the next fastest non-FAPEC compressor, i.e., CCSDS 123.0-B-2.
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When the IWT is applied both spatially and spectrally with FAPEC, it is 5.0 times faster than
CCSDS 123.0-B-2. The faster execution speed with the IWT, as compared to not using any spectral
decorrelation, is due to the better decorrelation power of the IWT, and its low computational complexity.
After applying the IWT, the entropy coder has to deal with a more favorable distribution of input
symbols. This results in the emission of fewer bits per sample, and contributes to requiring shorter
execution times. Thanks to the low complexity of the IWT, the execution time improvements due to its
decorrelation power often outweigh the cost of applying this transform.

When compared to the fastest configuration of CCSDS 122.1 and JPEG-LS, FAPEC with the
IWT is 37.1 times and 7.0 times faster, respectively. CCSDS 122.1 achieves average execution times
significantly slower than FAPEC, JPEG-LS, and CCSDS 123.0-B-2. This is explained by the use of
a bitplane encoder which imposes several passes on each sample when implemented on software.
In turn, M-CALIC is the slowest of all tested compressors, 9.1% slower than the slowest configuration
of CCSDS 122.1. These results can be explained by the use of an arithmetic coder in the entropy
coding stage of M-CALIC. It is also interesting to analyze average compression time as a function
of the employed spectral transform. As can be observed, compression using the IWT is faster than
compression using the POT or the RWA transform. This is due to the lower complexity of the IWT.
For the CCSDS 122.1 and JPEG-LS compressors, coding with the IWT takes respectively 3.7% and
17.0% less than with the fastest of POT and RWA. Significantly larger differences are observed for
FAPEC and the IWT. As mentioned before, this can be explained by the use of a more efficient
implementation of the IWT, more tightly integrated in the compression pipeline. For most instruments,
the RWA attains higher throughput than the POT. Notwithstanding, the throughput of RWA for
the IASI instrument is significantly lower due to the very high number of bands, which makes the
throughput of POT better on average. For completeness, average decompression times—including
inverse spectral transformation, when applicable—are presented in Table 4. Decompression times are
generally lower than compression times. An exception to this is CCSDS 123.0-B-2, whose entropy
decoder processes data in inverse order [28]. Another exception is FAPEC with the spectral IWT.
This is due to an asymmetry between the optimization degree of the compressor (meant to be executed
onboard spacecraft hardware) and the decompressor (meant to be executed on the ground).

Additional analysis is devoted to jointly compare compression performance and execution
times. Figure 6a provides average compression speed as a function of the obtained compressed
data rates for a selection of spectral transforms and compressors. For each compressor, the spectral
decorrelation method that yields the best average compressed data rate is included. FAPEC with the
IWT is also included for completeness. Figure 6b shows average decompression speed as a function
of the obtained compressed data rates for the same selection as Figure 6a. For medium and low
compression throughput, i.e., below 12 × 106 samples/s, CCSDS 123.0-B-2 dominates over JPEG-LS
with spectral IWT, CCSDS 122.1 with spectral POT, and M-CALIC and FAPEC with the POT. It can
also be observed that FAPEC with the spectral IWT yields significantly higher compression speeds,
reaching 60 × 106 samples/s on average. As discussed above, the additional speed is traded for
about 16% higher compressed data rates. Decompression throughput follows a pattern similar to
compression, with the difference that most compressors achieve higher speeds. As execution speed is
directly related to energy consumption, and assuming energy is a limited resource in the system where
compression is to be performed, results suggest that FAPEC yields the most desirable trade-off when
energy and compression performance are jointly considered.
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(a) (b)

Figure 6. Average (a) compression and (b) decompression speed as a function of the compressed data
rate for all scenes in the corpus. The spectral decorrelation transform applied to the data is shown
between brackets, and Original indicates no transform. When applicable, speeds include the spectral
decorrelation stage times, and compressed data rates include side information overhead.

4. Conclusions

Hyperspectral imaging (HSI) is a staple tool of remote sensing and Earth observation.
Data compression can significantly increase the amount of valuable industrial and scientific data
retrieved on the ground. In particular, scene compression based on spectral decorrelation transforms
enables important bitrate reductions at a reasonable computational complexity. This work presents
a thorough analysis of the IWT, the POT, and the RWA transform as spectral decorrelators,
in combination with FAPEC, CCSDS 122.1, and JPEG-LS coding techniques. Results for
CCSDS 123.0-B-2 and M-CALIC are also shown for completeness. Compression rates and speeds on
a large variety of scenes have been analyzed here, considering only lossless regimes. This analysis was
based on software implementations, which enable more flexibility than their hardware equivalents
(when available), especially on small satellites and cubesats. To the best of our knowledge,
such a thorough comparison is not previously available in the literature. Experiments suggest that
the use of a spectral decorrelation transform improves compression rates for most HSI instruments.
The most advantageous transform depends on each kind of instrument and on the compressor to be
used. Both the POT and the RWA transform can provide significantly better compression rates than
IWT in specific cases, yet at a higher computing cost. Results indicate that the best trade-off is attained
by the IWT followed by FAPEC. On average, this combination produces compressed data rates within
16% of CCSDS 123.0-B-2, which typically yields the smallest compressed data volumes. At the same
time, FAPEC with its IWT is 5.0 times faster than CCSDS 123.0-B-2.
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The following abbreviations are used in this manuscript.

bps Bits per sample
CALIC Context-based, Adaptive, Lossless Image Coder
CCSDS Consultative Committee for Space Data Systems
DWT Discrete Wavelet Transform
FAPEC Fully Adaptive Prediction Error Coder
HSI HyperSpectral Imagery
IWT Integer Wavelet Transform
POT Pair-Orthogonal Transform
RWA Regression Wavelet Analysis
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