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The ITISE 2021 (7th International conference on Time Series and Forecasting) seeks to provide
a discussion forum for scientists, engineers, educators, and students about the latest ideas
and realizations in the foundations, theory, models, and applications for interdisciplinary and
multidisciplinary research, encompassing disciplines of computer science, mathematics, statistics,
forecaster, econometric, etc., related to the field of time series analysis and forecasting.

The aims of ITISE 2021 is to create a friendly environment that could lead to the establishment or
strengthening of scientific collaborations and exchanges among attendees, and, therefore, ITISE 2021
solicits high-quality original research papers (including significant work-in-progress) on any aspect
time series analysis and forecasting, in order to motivate the generation, and use of knowledge and

new computational techniques and methods on forecasting in a wide range of fields.
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Abstract: The article is devoted to the author’s approach and tools for regional industries’ modeling,
analysis and forecasting, following the general idea of splitting time series into four components:
trend, cycles, seasonal component, and residuals. However, the authors introduce new approaches,
models, metrics, and identification algorithms, and the components’ interaction structures, having
included the analysis of 12 industries in 82 regions of Russia. The models and forecast accuracy were
tested on 3-12 month forecasts, thus proving their high accuracy. Therefore, the article proposes not
only new systematic econometric tools but a methodology for decision making, developed to provide
stable and adequate characteristics of complex non-linear evolutionary dynamics of Russian regions.

Keywords: time series; regional economy; forecasting; modeling; medians; wavelets; Russia

1. Introduction

Regional industries, having both spatial and temporal dimensions, represent a com-
plex meso-economic object of analysis [1]. On the one hand, they represent inter-related
socio-economic systems, and their dynamics should be coherent with each other and the
country. On the other hand, the regions’ development level and their connectivity may
vary a lot.

The common equilibrium approach is based on a mechanistic view of economic
systems and is focused on a return to the equilibrium state. However, regional economies
tend to shift to an evolutionary approach based on long-term forecasting [2] and the regions’
abilities to change their economic structures [3]. Researchers also point out that regional
differences in repeatability tend to become a significant factor in effective economic policy
decisions [4].

The research aims at designing tools for modeling and forecasting, in the context
of time series concerning regional industries” dynamics. The acquired results should be
adequate and accurate to provide a facility for decision making and to support sustainable
evolutionary development.

2. Data

As a statistical database, we are using an official data source provided through the
Unified Interdepartmental Information and Statistical System (EMISS) by the Russian
Federal State Statistic Service. The EMISS database possesses operational monthly data on
the production level of each economic industry (real (volume) growth rate, percent) for
each subject (region) of the Russian Federation. The industries are classified hierarchically
by the All-Russian Classifier of Types of Economic Activity (OKVED2). We have chosen
the twelve most important industries in terms of presence in different regions:

1.  Extraction of minerals.
2. Crude oil and natural gas extraction.

Eng. Proc. 2021, 5, 1. https:/ /doi.org/10.3390/engproc2021005001

https:/ /www.mdpi.com/journal/engproc
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3. Mining of metal ores.

4. Manufacturing.

5. Food production.

6.  Petroleum production.

7. Chemical production.

8. Pharmaceuticals and materials used for medical purposes.

9. Rubber and plastic production.

10. Metallurgy.

11.  Computers, electronics and optical production.

12.  Automotive industry. Production of motor vehicles, trailers and semi-trailers.

The data reflect the situation in 82 regions of Russia (except Crimea, Sevastopol,
and the Republic of Chechnya due to lack of statistics), as well as for Russia as a whole.
However, some industries may be not presented in particular regions, so, in total, there are
about 750 time series.

The analysis embraces the period from January 2005 to August 2020. This time
interval seems interesting as it covers important periods and milestones within the Russian
economy’s evolution. It reveals the economic growth in the noughties of the XXI century, the
crisis of 2008-2009, subsequent recession and recovery, the growth of political turbulence,
the adoption of economic sanctions against Russia, and the beginning and extension of the
COVID-19 pandemic.

3. Research Methods
3.1. Approach

To reach the research goal, we defined some approaches to be used in our algorithms
and models. Basically, we are following the idea of splitting time series into trend, cycles,
seasonal fluctuations, and residuals (stochastic component). However, we are trying to
review the details and characteristics of economic objects at the meso-level.

Firstly, the meso-economic systems are non-linear and show evolutionary develop-
ment. So, the simple models such as linear or exponential trends are applicable only for
short periods of time. For longer periods, perspective changes inside the region, as well
as its interrelations with other regions, affect the dynamics and should be appropriately
reflected in the models. We provide a complex of different trends, possessing extremums,
inflection points, asymptotes, asymmetry, and thus, the ability to adapt to such volatility.

Another approach is using points of structural change [5] to reveal the moments
of time where dynamics change drastically and cannot anymore be described by the
same model.

The other important factor is the model residuals. Traditionally, the distribution law
of the residuals is supposed to be normal (Gaussian). However, real economic systems are
rarely normally or even log-normally distributed. The practice shows very different asym-
metric and heavy-tailed distributions. We examined all the above-mentioned industries
and regions and discovered a wide variety of distributions. So, choosing some particular
distribution law or even a fixed set of laws seems inappropriate. It is better to use tools
that are more robust and do not depend upon the distribution law.

One of the basic and robust metrics is the median. Instead of choosing the one “best”
model, we identify many different models, and at each moment of time use the median
of all their fitted values. Thus, we eliminate one of the hardest problems—structural
identification of the model. Using the median effectively filters inadequate models and
provides sustainable fits.

To find the median, it is better to take the maximum possible fits for each point. Using
the bootstrap procedure [6], it is possible to identify a few models with the same structure
(formula) but different parameters. The bootstrap procedure is a common approach to
increase small sample sizes.

The other important point is the criterion used to identify models” parameters. The
most common approach is using the least squares. However, it is very sensitive to outliers
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presented in heavy-tailed distributions. The least absolute deviations method is seen as
more reliable [7]:
Yo Yo = Yi| = min, 6)

where Y} is the original time series, f is time (ordering indices from 1 to 1), Y; is the model’s
fitted values.

On the other hand, for multiplicative residuals, the least absolute percentage devia-
tions seem more correct:

Y, — Y,

n —
) — min. )
=] Y

Unfortunately, the choice between the additive and multiplicative residuals’ structure
is not obvious. The mixed additive-multiplicative structures can also be present. So, we

defined combined measures to minimize both:

1 N
Y 2?:1 |Yf - Yt} + Z?:l

Y- Y
Yi

— min. 3)

The criterion (1) includes two parts to minimize both additive and multiplicative
residuals, but the first part is divided by the time series average Y (which is constant and
does not change extremum position), to underline the parts’ comparability. The same effect
may be achieved by multiplying the second part by Y, but we prefer to use relative values.

It should be also mentioned that all the models and algorithms described below were
implemented in the R language using both the authors’ program code and open-source
libraries.

3.2. Models

The most common models for time series structures appear as additive (2) and multi-
plicative (4):
Y =Ty + Ci + St + ¢4, (4)

Yy =T(1+C)(1+S)(1+e), ®)

where Ty—trend values; C;—cyclical component values; S;—seasonal component levels;
g;—stochastic component.
It is also reasonable to consider mixed additive-multiplicative structures:

Y = (Tt + Ct) St + &4, (6)

Yi =Ty (1+Ct) + St + &1 (7)

The authors” complex of trend models currently includes linear, generalized expo-
nential, power trends, four cumulative logistic (S-shaped) and four impulse logistic (bell-
shaped) trends with different asymmetry settings:

T: = Co + Aot, 8)
Ty = Co + Aot*, )
Ty = Co+ AOCM, (10)
_ Ao
T = Co + 1 ealih)’ (11)
T; = Co + Agarctg(a(t — ty)), (12)
Ty = Co + Agexp(—exp(—a(t —tg))), (13)
Ti = Co + Ag(1 +exp(—a(t —t)))’, (14)
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Ty = Co+ Aoexp<—a(t - t0)2>, (15)
A
Ti=Co+ ———, (16)
1+ Dé(i — to)
Ao 1
Ty = Co + . , (17)
! 0 1T+a(t—ty)* 1+exp(—o(t—to))
Ao 1

Ty =C (18)

——,0(¢
AEERCOTE

All the trend models (8)—(18) use the unified naming of parameters where: Cy is the
vertical shift constant and asymptotic level (if any), Ay is the trend amplitude (vertical
scale), a is the growth/decline velocity (horizontal scale), ty is the horizontal shift (inflection
point for S-shaped trends, extremum point for bell-shaped trends), ¢ is the asymmetry
coefficient. The models differ by their shape, growth velocity, and skewness (symmetric,
fixed asymmetry or free asymmetry).

For each dynamic series, all the trend models are identified through the total sample
length and can grouped by means of structural changes (the points may be different for
each model). Thus, we have up to 22 fitted values for each point in the time series.

As for cycles, we used two general approaches to modeling. The first approach is
based on the E. Slutsky [8] hypothesis that any fluctuations could be presented as a sum of
a few sinus functions with non-proportional frequencies:

T Ttexp(—o(t—ty)’

Cr=Y ;. Aisin(w;t + ¢;), (19)

where A; is the ith sinus amplitude, w; is the sinus frequency and g; is the sinus phase.

This approach is effective for modeling as it gives a well-smoothed model of the
cycles. However, there is no guarantee that the amplitudes, phases, and frequencies that
optimally described dynamics in the past will remain the same in the future. So, the
extrapolation of such a model is simple but unproven. Thus, we turned our attention
to wavelet transformation [9-11]. The wavelet transformation is used widely in signal
processing to eliminate signal noise, but is now adopted in economics and other sciences
for time series smoothing and forecasting.

Wavelets are seen as functions used to identify local non-periodical fluctuations and
monitor their changes through time periods. The time series are decomposed on a few
levels of so-called wavelet and scaling coefficients. These components may vary from high-
frequency ones (representing the “noise”) to lower-frequency components representing
local cycles. The low-frequency components of wavelet decomposition can be easily
modeled and forecasted with ARMA models and reversely transformed back to provide a
smoothed model and forecast.

The variety of wavelet functions’ families is wide. In this study, we used the most
generalized discrete transformation from the wavelet families: Haar, Daubechies, etc. (in
total, 42 wavelet functions).

3.3. Identification Algorithm

Based on the below-mentioned principles, an algorithm to identify time series models
is designed with the following sequence of steps:

1. Preprocessing of the initial time series, removing random outliers and using R’s
standard library, then replacing them with median smoothed values.

2. Determining the structure of seasonal fluctuations (additive or multiplicative).

3. Detecting seasonal fluctuations using the STL function, which returns the smoothed
trend, seasonal fluctuations, and random residuals based on LOESS smoothing. For
multiplicative structures, the logarithms are used.

4. Deseasonalization (removing seasonal fluctuations from the initial series).

5. Determining the structure of cyclic fluctuations.

4
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6.  Building the median trend without structural shifts and without bootstrapping. To
do this, all available types of trends are selected using criterion (1), and the median
value from all trend estimates is taken at each point in the time series.

7.  Detrending (removing a trend from a series).

8.  Fitting cyclic fluctuations to the detrended and deseasonalized data.

9. Removal of cyclical fluctuations from the deseasonalized data.

10. Repeating step 6 but with structural shifts.

11. Repeating steps 7-9 for the newly fitted trend values.

12.  Plotting the median trend with both the structural changes and bootstrapped values.

13.  Repeating steps 7-9 for the newly fitted trend values.

The resulting estimates of dynamics and their components are used for modeling
and forecasting. When studying the Russian regions” dynamics, regional models are built
independently of each other, and general trends are revealed upon the modeling results.

The following methods are applied in the algorithm:

e LOESS smoothing to define seasonal coefficients as provided in the stI function in the
stats package [12];

e The Breusch-Pagan test on heteroscedasticity to separate additive and multiplicative
structures (using the bptest function in the Imtest package) [13];

e  The probabilistic simulated annealing algorithm [14] for finding the global minimum
area and initial estimates of model parameters;

e The RPROP algorithm [15,16], which is used to minimize errors in training neural
networks;
The minimization algorithm implemented in the standard n/m function [17];
Wavelet transformation using the wavelets package;
The ARIMA-models identification algorithm using the forecast package.

4. Results

The identification algorithm was applied for all analyzed time series. The results are
shown in Figure 1.

The top part of the chart shows the original data (black points), fitted values (grey
solid line), median trend fits (black dashed line) and the fits of all of the trends (dotted grey
lines). The middle part of the chart demonstrates the median cycles model. The bottom
part of the chart shows seasonal fluctuations. The titles of the middle and bottom of the
chart appear as structures (‘mult.” is abbreviation for multiplicative).

The example demonstrates a median-declining S-shaped trend, and the “cloud” of all
the trends, depicting possible distributions of fits for estimates at each point. The cycles
clearly show a decline in 2008-2009 (global crisis), 2014-2015 (economic sanctions against
Russia) and 2020 (pandemic). Seasonality achieves its peak in December, and shows slow
growth through the given period. This is one “typical” example of the dynamics, but for
other regions and industries it varies drastically.

Our research goal was, however, not only to obtain the forecasts and models but
also to measure their accuracy. To achieve this, we split the time series into two parts:
one to identify the model (working sample) and the other to measure forecast accuracy
(test sample). At the regional level, short-term and middle term forecasts appear as the
most useful. So, we tested the models on 3, 6, 9 and 12-months forecasts. We also varied
the forecasting year from 2018 to 2020 to generalize the conclusions, and thus, verify the
models” overall accuracy.
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Figure 1. Modeling results for the manufacturing in Perm Krai.
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This study uses two common measures of accuracy. The determination coefficient is
used to measure the modeling accuracy:

o2
Y — Y,
Re =1 0=V j)z (20)
(Y —Y)
The Theil’s coefficient is used to measure the forecast error:
2
Y — Y,

M % 100% 1)

YYi+YY,

For high accuracy, R? is supposed to be above 0.7 and U, below 30%.

Table 1 shows the median estimates of R? and U, among all regions, separated by
industry. The industries are enumerated as mentioned in Section 2.

Judging by the table, the forecast accuracy is generally high. R? estimates are above
0.7, and U, are below 20%, for most industries except for the pharmaceutical, electronic
and computer production, and automotive industries. These industries are highly volatile
at the meso-economic level in Russia, especially the electronic and computer production
industry, which is highly subsidized by the state and depends on government support.
More stable industries such as mineral extraction, manufacturing, the chemical industry
and metallurgy demonstrate low forecast errors. The predictability of the industries’ futures
could be assessed as their stability indicator.
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Table 1. Median estimates for models and forecasts on test samples.
Year 2018 2019 2020 2021
Forecast
Depth, - 3 6 9 12 - 3 6 9 12 - 3 6 8 -
Months
Industry 2 o 2 o 2 o 2
Ne R Uy, % R Uy, % R Uy, % R
1 0.888 4.7 6.4 8.4 10.5  0.908 39 6.6 9.0 103 0910 5.0 9.1 11.5 0.894
2 0966 2.3 4.1 49 6.1 0.973 1.3 2.4 32 3.5 0976 2.2 6.7 7.8  0.956
3 0897 4.4 51 6.6 7.4 0.911 3.6 52 8.3 9.3 0915 6.2 7.6 75 0917
4 0.881 4.3 52 7.0 7.7 0.883 4.0 5.8 6.9 9.8 0.891 4.8 92 116 0.892
5 0.891 3.9 4.8 6.0 7.1 0.893 35 4.8 59 6.8 0.896 4.5 59 7.5  0.905
6 0772 3.1 59 79 8.6 0.797 39 8.6 9.3 9.4 0798 42 101 102 0.791
7 0.851 4.6 6.9 9.5 10.6  0.856 5.0 7.0 10.4 121 0862 72 113 117 0.853
8 0712 123 179 185 180 0.723 8.8 19.0 21.1 259 069 173 288 298 0.725
9 0916 6.8 9.1 9.7 11.7 0916 54 8.2 11.1 119 0916 65 11.3 13.0 0914
10 0846 85 107 120 134 0.851 6.5 9.9 120 148 0858 88 126 142 0.868
11 0.650 140 21.1 266 337 0.581 122 20.2 26.8 347 0582 232 360 386 0.626
12 0864 104 160 228 263 0.859 9.4 15.0 17.8 23.6 0877 134 260 285 0.873

5. Conclusions
The key findings of the research are as follows:

1.  The approaches used to analyze and forecast regional industries” dynamics are jus-
tified. They include time series decomposition, the median approach, increases in
the models’ variety, using weighted additive-multiplicative criterion, and applying
wavelet transformation for cycles.

2. The complex of models and algorithms is designed, upgraded and applied in the
form of a program code in the R language.

3. The designed tools are applied to 12 industries in 82 Russian regions. Decompositions
and forecasts are obtained for each time series. The median trend model shows
general tendencies (growth, decline and bell) and structural change points. Cycle
models define cycle stages and reversion points (peaks, troughs and zero-points).
Seasonal models describe calendar effects and their changes through years.

4. The results’ accuracy is proven by short-term and mid-term forecasts (3—12 months),

even including the pandemic period.

This paper mostly demonstrates individual series analysis. However, more significant

results may be achieved by comparing different regions, both between each other and
with Russia as a whole. In our previous research, we showed that cycles and trends in the
regions are not synchronous [18] but they may be clustered in terms of model type and the
values of parameters.

We plan to continue to develop tools by increasing the trends’ variety, using bootstrap-

ping at all algorithm steps, improving calculation methods, adding interval forecasts, and
analyzing regions’ interactions and neighborhoods.
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and capabilities are tested through a real application.
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1. Introduction

Dynamic behaviours in time events are always quite complex, and their modelling is
often a challenging task. The level of difficulty is accelerated in cases where the dynam-
ics of a system cannot be satisfactorily described by linear models, but more perplexed
non-linear functions are required. Classical time series approaches are not capable of
capturing complex functional behaviours. Even advanced models recently proposed are
not flexible enough and as a result are not easily adjusted to handle more general non-linear
schemes [1-4].

It is also frequently observed that the behaviour changes its general pattern in different
regions of the time space. Such changes may affect either the mean or the variation or both.
A breakthrough in this field took place 40 years ago with the proposal of Markov regime
models and the switching regressions [5]. Such models allow a great degree of flexibility,
and as a result they could be implemented to capture complex dynamic behaviours. The
unobserved state variable associated with such models is an attractive feature directly
related to the switching mechanism of the underlying modelling approach. The resulting
advanced models rely on the Markovian property, which is an easily handled issue in terms
of inferential statistics. Note finally that censoring [6] or semi-Markov approaches [7] may
also be considered in such frameworks.

In this work, within the switching framework, we introduce the classical likelihood
combined with a penalty term controlled by a properly chosen tuning parameter. In
other words, the switching modelling technique is combined with the so-called penalized
likelihood with the parameter estimation being dealt via the Expectation-Maximization
algorithm [8]. Depending on the phenomenon under investigation, a proper switching
model can be used. Two states often suffice to describe the classical dynamic behaviour
of incidence data or epidemics, with one state representing the normal stage of the phe-
nomenon and the other the outbreak stage. In such a case, the frequency (usually of daily
or weekly data) changes (increases) considerably (and in some cases dramatically) when
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the system enters into the second stage. Such a change is considered statistically signifi-
cant, and therefore the unobserved state variable ignites the switch. In addition, possible
covariates may affect the variable of interest, which is denoted by y; and represents either
the frequency or the associated rate.

2. The Modelling

The model used in this work is the 2-state switching model of conditional mean, the
general form of which is given by

P
Xt = s+ ) Pis,Xe—i + €, 1)
i=1

where s, is a switching intercept, ¢;,, i = 1,..., p, are autoregressive (AR) switching
coefficients, s; represents the state variable that takes the values 1 (normal or typical state),
and 2 (the extreme or outbreak state) and ¢; are i.i.d. random variables with zero mean and
variance 2.

If k covariates are allowed to enter into the model, (1) extends to

P k
X = s+ Y P Xi—i+ Y 0, W+ e, (2
iz =1

where 0;;, the coefficient associated with the W; covariate.

Asiis clear from the presentation of the above model, a different set of parameters
is involved for each state considered. It is important to state that the set of covariates
involved in each state may or may not be the same.

3. The Algorithmic Procedure

The approach we choose to follow for modelling phenomena that exhibit a dynamic
switching behaviour consists of three steps, which are briefly discussed in this section.

3.1. Step 1-The Change Point Detection

The detection of a change point in a time series and in general in events over time
constitutes an integral part of time series analysis, since their identification is directly
related to a distributional change. Such changes, even light ones, should cause alarm due
to the fact that they may alter the data generating process in such a way that the process
under investigation may fail to fulfill the purpose for which it is intended. Applications
can be found in most scientific fields from finance and business to engineering, biosciences,
climatology, geosciences etc. [9-11].

The proposed methodology requires a preliminary analysis to identify a set of possible
change points. It should be noted that such analysis involves only the response variable,
and no covariates are involved. The method to be used may be the classical method of
change-point identification [12].

For the change point detection, an offline algorithm is used to examine the entire set of
observations in a single step to recognize where the change occurred. The online approach
could be chosen instead, as long as a certain number of new data are available for the
algorithm to function properly and satisfactorily.

To check the performance of the selected change points, we have used the mean
absolute error (MSE) according to which predicted and actual values are compared. The
general expression is given by

T

1
MSE = — Y (2 —x)%.
S TiZI(Xf Xf)
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3.2. Step 2-The Variable Identification

For the identification of the statistically significant covariates, a kind of model selection
technique can be implemented. In this work, we propose the use of computationally
advanced regularization methods, such as Lasso, Ridge or Elastic-Net with the latter
considered to be a generalization of the former ones that overcomes their disadvantages.
For the interested reader, a number of articles investigate the interrelation of time series
and regularization techniques [13-15].

The generalized regularization method used in this work is given by

Pk
SSE 42TA {a([jz I¢pis, | + 105,1) )
i=1j=1

(5 (e )] >

where SSE is the sum of squared errors or any other loss function chosen by the researcher,

T the sample size, w € [0,1], and A the tuning parameters that result the penalty in the loss

function. Note that « balances the amount of emphasis given to minimize the loss function

versus minimizing the sum of squared coefficients and/or the sum of absolute coefficients.
Observe that the above generalized regularization method is reduced to

e  The Lasso method fora = 1;

e The Ridge method for a = 0; and

e To Elastic-Net fora € (0,1).

Note that a proper weighted version of (3) can be used if it is needed, for instance, to
resolve a heteroscedasticity issue. In such a case, (3) takes the general form

Pk
SSE +2TA {zx( Y Y (ol + w}’\@js,l))

i=1j=1

¢ 0 ; : - -
where w; and w; appropriate weights, i =1,...,pand j =1,... k.

) (§ o 0] o

3.3. Step 3—The Switching

The selected model for each state is obtained together with the parameter estimates
and the associated standard errors.

Note that in practice, we do not know and we do not observe the state s;, but we could
infer it from the observed data. Indeed, although the state variable s; is an unobserved
variable, the process y; is observed. To make an inference about s;, we need to make an
assumption about the process s;, which usually is assumed to follow a first order Markov
chain. For the 2-state case, the probabilities of transition are also obtained. Thus, the
transition probability to state j at time f, given that the process was in state i at the time
point t —1,is given by P(st = j|s; 1 =) = pjj, i,j = 1,2.

4. An Application on Epidemiology

Using a data set of 105 weekly influenza-like-illness (ILI) consultation rate data for
Greece for the period 2014-2016, including a series of meteorological and climatological co-
variates such as temperature and wind, we were able to identify an ideal tuning parameter
A and the best value of the index « in the sense that the minimum mean squared error is
achieved. Figure 1 shows that the ideal value of A is around one (1), while the best value of

11
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« is between 0.5 and 1. A more detailed analysis reveals that A = 1 and « = 0.729, with the
corresponding value of MSE being equal to 0.0734.

Mean-Squared Eror

400
|

300
L

log Lambda

Figure 1. Behaviour for various values of a as opposed to different values of log A and MSE.

Under this setting, the regimes of the data and consequently the form of the selected
models are identified together with the estimates of the parameters involved.

The models obtained with the use of the MSWM R-package [16] are as follows (with
three decimal points):

Regime 1-typical period/state

7 = 146.480 — 0.375t — 37.488sin (%) — 2.682co0s (?)

— 44.002sin (%) — 23.945c0s (?) + 8.330sin (?) — 14.244c0s (%) ©)

-+ 0.035T1 + 15.326T2 — 11.081T3 + 10.042WF — 0.5957; 1.

Regime 2-Outbreak period/state

7t = 19.552 — 0.005¢ 4 18.933sin (%) —10.652co0s (%)

— 5.119sin <%> — 2.244c0s <4nlt> +0.971sin (?) — 0.313cos (?) ©)

—0.236T1 + 4.006T2 — 4.139T3 + 1.657WF + 0.6971;_1.

It is worth mentioning that the same set of covariances are found to be significant for
both regimes together with a first-order autoregressive, a first degree trend polynomial
(linear trend) and a periodic (seasonal) part. The covariates chosen are the minimum,
mean, and median temperature, denoted, respectively, by T1, T2, and T3 and the mean
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of the wind force denoted by WF, implying that the influenza is closely connected to
meteorological / climatological factors like the temperature and the wind.
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Abstract: This paper explores the scaling (size) effect in the seasonal patterns, a proxy for compet-
itive threats, of Airbnb’s host providers, with the aim of understanding possible similarities and
differences. This explorative study uses the city of Milan (Italy) as a case and daily occupancy data
from Airbnb listings for four completed years (2015-2018). A mutual information-based technique
was applied to assess possible synchronizations in the seasonal patterns. Empirical findings show
progressive dissimilarities when moving from single to multiple listings, thus indicating a differ-
entiation correlated to the presence of managed listings. There are fewer differences during the
seasonal periods more centered around leisure clients and they are higher when considering business
travelers. The evidence supports the scaling effect and its ability to reduce the competitive threat
among different hosts.

Keywords: host scaling; seasonal patterns; competition; synchronization; Airbnb; Milan

1. Introduction

This paper explores the scaling (size) effect, focusing on Airbnb’s host providers, with
the aim of understanding the similarities and differences in seasonal patterns. Since the
launch of this commercial peer-to-peer accommodation platform in 2007 [1], Airbnb has
attracted academic debate, especially in the last few years [2]. Airbnb is a web platform
that rents idle assets, called listings (typically rooms, apartments, and houses) that are
owned by hosts, to travelers or guests [3].

There are few studies investigating the supply side (host) [3]. Previous papers cen-
tered on listing performance focused on the scaling effect [4]. In fact, many studies have
distinguished between the host managing only one listing (usually called “mom-and-pop”
hosts or simply single-listing hosts) or more than one (usually defined as “professional”,
“commercial,” or multi-listing hosts) [5]. Generally speaking, the two types of host (single
versus multiple) depict different results, as discussed in more detail in the next section.

However, knowledge about the managerial differences among these two groups is
very limited, despite the ability of the scaling effect to deeply change the hosts’ business
model [6]. Furthermore, the large majority of these studies simply distinguish between
single and multi-listing hosts, without any additional segmentation. Scaling, as usual
in managerial studies [7], in this paper refers to the number of listings managed by one
host. The higher the number of listings, the higher the scaling effect and the opposite. To
contribute to reducing the current gap in the commercial peer-to-peer accommodation
platform literature, the present article explores the ability of scaling to change the seasonal
patterns to measure the degree of similarity and differences among Airbnb hosts. These
similarities and differences are used as a proxy for the competition threat among different
(in size) Airbnb listings (as later discussed in detail in the Methodology). According to
Butler, the definition of seasonality is “a temporal imbalance in the phenomenon of tourism,
(which) may be expressed in terms of dimensions of such elements as numbers of visitors,
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expenditure of visitors, traffic on highways and other forms of transportation, employment,
and admissions to attractions” [8] (p. 332). As clarified in the methodology, the seasonality
is measured considering the daily data and developing a longitudinal (four-year) approach.
The higher the similarity of seasonal patterns, the higher the potential competition among
the Airbnb hosts; the opposite in the case of different seasonal patterns [9]. The current
literature has developed studies exploring the potential disruptive innovation generated
by peer-to-peer accommodation platforms on hotels [10], but any study has explored the
competition among Airbnb listings and, in particular, the role of scaling. Therefore, this
study’s research question focuses on seasonal patterns and the competition threat among
Airbnb hosts.

Research questions: can the scaling effect change the seasonal patterns of Airbnb
hosts? Does the scaling effect reduce or increase the competition among Airbnb hosts?

2. Literature Review

This section is structured in three parts. The first section analyzes the results suggested
in previous studies about Airbnb hosts focusing on the scaling effect. The second section
explores the seasonal patterns of Milan. The third section (based on the previous two)
formulates the hypotheses tested in the empirical findings.

2.1. Host Scaling Effect

Peer-to-peer accommodation platform literature, despite the rising number of contri-
butions [11], is in its infancy, and many research areas are less investigated [12]. One of
them is the qualitative description of the host business model and the scaling effect [13]. For
this reason, this paper has analyzed some adjacent but different supply research streams
and in particular the impact studies on one hand and the determinants of listings results
and pricing strategies on the other.

The impact literature is centered on the effect of Airbnb on hotels [10], tourism destina-
tions [14], and local stakeholders [15], with prevailing attention on housing and long-term
rentals [16]. Although the effects on hotels are contradictory [17], the social transformation
generated by commercial peer-to-peer accommodation platforms is usually described as
relevant. For this reason, the impact studies include a growing area of inquiry exploring
the regulation of peer-to-peer accommodation platforms [18]. Despite the importance of
the impact research, the focus is usually on the whole effect of the hosts; therefore, the topic
of this article (the host scaling effect) is not developed.

A second supply-side research stream has analyzed the determinants of listings results
and the pricing strategies [19]. As anticipated in the introduction, this second area of inquiry
usually considers the host size as an independent variable that can influence, respectively,
the listing results or the pricing strategies. These two distinct sub-topics (performance and
pricing) are now discussed. In both groups, many papers (as later presented) distinguish
between single- and multiple-listing hosts, also called commercial or professional hosts.
The latter (multiple) includes the hosts managing two or more listings.

The determinants of results represent a small research stream that explores the de-
terminants or antecedents of listing performance [20,21], usually operationalized using
review volume or rating [22] or, more rarely, occupancy [20]. It is quite a small area of
inquiry and is separated in this article from the second, wider, research stream that focuses
on pricing strategy. Some studies have considered the number of listings managed by
a host as a relevant independent variable. Xie and Mao have found a trade-off between
host quality and the quantity of her/his listings. In particular, “as the number of list-
ings managed by a host increases, the performance effects of host quality diminish” [21]
(p- 2240). Gunter has investigated the conditions improving the likelihood of obtaining the
superhost badge [22]. The author has found four variables, one of them being the status of
“commercial” Airbnb host.

Moving to the second sub-topic (pricing strategy), many previous studies have con-
sidered the distinction between single-unit and multi-unit hosts [23]. Multi-unit hosts,
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generally speaking, are described as being more proficient in using a dynamic pricing
strategy [24] and in achieving a higher price or revenue (variously operationalized) than
a single-unit host [25]. In the theoretical model created by Chen, Zhang and Liu [26],
the adoption of a flexible pricing strategy leads to higher performance in a large market,
but the accommodation quality is not better. The study of Gibbs et al., reveals that the
host’s experience positively influences the adoption of dynamic pricing [27]. Realistically,
a multi-listing host has more opportunity to improve her/his experience than a single unit
host because the host manages a higher number of transactions [28] and, for this reason,
they have more skills to manage also new start-ups [29]. In another study, professional
hosts achieve a higher price per night. Similarly, professional hosts receive higher rates in
rural Switzerland, intermediate (between rural and urban areas), and in cities [30]. These
findings are confirmed both using a random and a quantile estimation model [31]. Other
authors demonstrate a negative correlation between multi-listing and price but a positive
correlation between professional hosts and revenue per month [32].

However, there are some exceptions. For example, [24] focused on five metropolitan
areas in Canada. Professional hosts show a positive and significant coefficient with the
dependent variable (price), considering all the cases, but the coefficient is negative and
insignificant in the case of Calgary. Similarly, in the study of [33], two cities show negative
and significant correlations with price, while Madrid shows a positive (but not significant)
coefficient. In Hong Kong, multi-listing hosts book at lower price their capacity [34].

These contradictory results can be explained using at least six different arguments.
First, multi-listing hosting reduces social interaction with the guests, which is called
reciprocity [35], and this can generate a drop in price [36]. Second, the correlation coefficient
that tied the multi-listing and rates together is usually small and can therefore suddenly
change from being slightly positive to slightly negative [33]. Third, the studies employ
different frameworks (i.e., hedonic models, regression, quantile analysis, and artificial
neural networks), which can generate different results [37]. Fourth, the relationship can
change [38] in different destination contexts [39], also considering the diverse destination
positioning and governance [40]. Fifth, the studies use a diverse set of control variables that
can influence the relationship between host size and price [31]. Finally, different studies
use diverse dependent variables, and sometimes the relationships change [32].

However, as previously stated, the large majority of studies reveal a positive correla-
tion between multi-listings and rates. Curiously, the vast majority of the analyzed studies,
with the exception of [32], have operationalized the scaling effect only by distinguishing
between single and multiple hosts, without any additional segmentation. In other words, a
host managing two listings is considered similar to a host renting 50 or more listings.

2.2. Milan Seasonal Patterns

This section explores the Milan seasonal patterns. The city is the economic capital
of Italy and previous studies have identified three main market segments attracted by
Milan: (i) business, (ii) trade-fair, and (iii) leisure [41]. Each segment is characterized by
a clear seasonality [42]. During weekdays, the business target is prevalent, while during
weekends the leisure is the main market segment [43]. Some previous articles introduced
the distinction between “working days” and holiday (or “non-working days”) [44]. The
first group (working days) includes, in line with the study of [45], the weekdays not
affected by religious (such as Christmas and Easter) or civil holidays (as Republic Day or
Labor Day). The opposite is for holidays, that include the weekends and all the religious
and civil holiday periods. During holidays, the leisure clients are prevalent, while the
business is the core target of working days [46]. Finally, Milan is a leading European city
for exhibitions. When the local trade-fair center (Fiera Milano) organizes some top events,
the hotels achieve top performance in both occupancy and revenue. For this reason, this
study included these top events that are mainly business-to-business exhibitions able to
attract a large international audience.
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2.3. Hypotheses Development

In this section, some previous insights related to both the number of listings managed
by a host and Milan'’s seasonal patterns are considered as formulating two different groups
of hypotheses, which guide the empirical analysis.

The first group focuses on the scaling effect and explores the degree of synchronization
(the similarity) of the five groups of hosts. The precise meaning of synchronization is
described in the methodology section. However, in order to perceive the meaning of the
proposed hypotheses, a qualitative explanation is anticipated. The synchronization (as the
name itself suggests) evaluates the similarities (differences) in time series [47]. This paper
explores whether the scaling effect is able or not to change the synchronization degree
among different (in size) groups of hosts. Put differently, do small and big hosts show
similar series or does the scale differentiate them?

The hosts are segmented into five groups. As discussed (Section 2.1), previous studies
usually distinguish only between single and multiple listings. However, some recent
studies adopted a more fine-grained classification for multiple listings [48]. In line with
these last papers, the current article distinguishes between: (i) a mom-and-pop host
(single listing); (ii) a host renting two listings; (iii) a host selling three listings; (iv) a
host managing four to 10 listings; (v) a host renting more than 10 listings. The five groups
represent three different scaling effects. Logically, a host managing one to three listings can
organize her/his business without (or by limiting) the employment of external workers.
Four is assumed as the threshold for moving from a personal to a more professional
business model, where professional means the involvement of external collaborators [48].
Finally, as suggested in another study [32], more than 10 can represent new, important
scaling, which can favor more specialization and professionalization in the main business
functions (selling, housekeeping, customer relationship management, and information
technology). In this paper, the scaling effect is considered and can, therefore, improve the
host’s knowledge and managerial skills. For this reason, the following two hypotheses are
formulated.

Hypothesis 1. A rise in the number of listings progressively reduces the synchronization degree
among the five groups.

Hypothesis 2. A rise in the number of listings progressively reduces the synchronization degree
between each group and the overall (sample) mean.

The second set of hypotheses focuses on Milan’s seasonal patterns. As previously
explained, Milan shows a strong demand fluctuation between the holidays, the weekends,
and the days without trade-fair events compared with working days, midweek and days
with trade-fair events [9]. Many previous studies agree that Airbnb listings are mainly
specialized and categorized as leisure [49]. Therefore, Airbnb listings are expected to be
more proficient when leisure clients are more relevant (holidays and weekends) as well as
when the city hosts trade-fair events (many trade-fair guests combine business and leisure).
In another words, when the key target of Airbnb is prevalent (leisure) the differences
among the five groups of hosts (based on their size) are less nuanced. By contrast, when
the key target of the city is business, reasonably smaller hosts are less skilled to serve this
target and, therefore, show different seasonal patterns (and therefore less synchronization
degree) than bigger (scaled) hosts. Therefore, the following three hypotheses are proposed.

Hypothesis 3. The synchronization degree between the five groups and the total is higher during:
3A—the holiday period than the working period; 3B—the weekend period than the midweek period;
and 3C—the trade-fair period than the non-trade-fair period.

The scaling effect should progressively increase the multi-hosts’ ability to serve the
three main Milan segments (leisure, business, and trade-fair guests) differently. In fact,
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these diverse targets have different needs, seasonal patterns, performance metrics and
require diverse host’s skills and services. Therefore, in the six seasonal periods (holiday
and working; weekend and midweek; trade-fair and non-trade-fair events), the scaling
effect is expected to show progressive desynchronization patterns compared with the five
groups. The following six hypotheses are formulated.

Hypothesis 4. The synchronization degree among the five groups progressively reduces during:
4A—the holiday period; 4B—the working period; 4C—the weekend period; 4D—the midweek period;
4E—the trade-fair period; and 4F—the non-trade-fair period.

3. Methodology
3.1. The Sample

This study has chosen the city of Milan due to its prevalent focus on business and trade-
fair clients on one side but in association with its non-marginal presence of leisure travelers
on the other. Previous papers that explore the effects of Airbnbs in Europe are mainly
focused on large leisure cities, such as Barcelona [50] and Venice [51], or mixed leisure and
business destinations, such as Madrid [52], Paris [53], London [54], and Berlin [55].

To explore the scaling and seasonal patterns of Airbnb listings, AirDNA data were
used by the research team, which cover the period of 2014 (from November) to June 2019.
Therefore, the data include four completed years (2015-2018) and support a longitudinal
analysis, in line with some previous studies [56]. Many previous papers have used AirDNA
data [4]. To test the hypotheses, daily data were used, as in other similar studies [57].
AirDNA considers the available and sold listings as well as the price for each day and for
each listing. The sample includes all Milan’s population represented by more than 50,000
listings.

3.2. The Host Segmentation

As anticipated in the section dedicated to the hypotheses” development, the 31,000
listings in Milan are classified into five groups and consider the number of rented listings
(one, two, or three, from four to 10, or more than 10). The segmentation is based on the
difference skills and competences required to manage the increasing number of listings and
the business organizational complexity and it is in line with some previous studies [48].
In this section, additional quantitative data are considered to test the validity of this
segmentation.

Figure 1 reports the host and listing distribution, which shows a clear power-law
pattern. The graph illustrates the long tail with a strong concentration on the right side of
the horizontal axis. Essentially, a handful of hosts manages a wide number of listings.
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Figure 1. Host and listing distribution (number of hosts as a function of number of properties).
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Table 1 reports the descriptive statistics of the five groups; it is structured in five
different vertical sections.

Table 1. Descriptive statistics of the five groups.

2015-2018
Absolute Measures Clusters” Weight Unitary Values
Available Book
Clusters Listings Days Days Revenue o s o o List Av_D Bo_D
Host Gish (Av.D) (Bo.D) (Rev) | Revf%  List% Host% | . post  P' perlist
(/000) (/000) (mil.) fist
P1 24,535 24,535 9702 1950 194 35% 48% 78% 1 395 79
P2 4215 8430 3476 746 72 13% 17% 13% 2 412 89
P3 1289 3867 1666 383 48 7% 8% 4% 3 431 99
P10 1238 6539 2812 709 87 15% 13% 4% 5.3 430 109
P>10 242 7536 2737 878 125 29% 15% 1% 31.1 363 117
PAll 31,519 50,907 20,393 4666 526 100% 100% 100% 1.6 401 92
Performance Performance Scaling
Clusters peRrel‘i'st ADR Occ.(*)  RevPAN Var. ADR Z:Cr ReZ;ZN
P1 7922 100 20.10% 20
P2 8520 96 21.50% 21 —3.50% 6.80% 3.10%
P3 12,352 125 23.00% 29 29.80% 7.00% 38.80%
P10 13,342 123 25.20% Sl —1.50% 9.90% 8.20%
P>10 16,530 142 32.10% 46 15.40% 27.20% 46.70%
PAll 10,328 113 22.90% 26
Legend: (¥) occupancy here is calculated as the ratio between book days over available days.

The first depicts the absolute metrics, and the second shows the relative measures.
The first cluster includes 78% of the hosts, but only 48% of the listings, which generate 35%
of the total revenue. Focusing on this latter figure (revenue), there is a good division among
the remaining four groups: The second cluster is 13%, the third is 7%, the fourth is 15%, and
the last is 29%. The small size of the third cluster in terms of listings (8%), hosts (4%), and
revenue (7%) appears coherent to the managerial description. In fact, this group reasonably
represents the breaking point of the “personal” business model, which is centered around
the work and the competencies of the host. The unitary values (third column) show the
rising ability of the bigger hosts to book a higher number of days, moving form 79 (cluster
1) to 117 days (cluster 5). Generally speaking, the scaling generates approximately an
augment of 10 additional booked days moving from one cluster to the following. The
penultimate column depicts the operating performance indices as occupancy (booked days
divided by available days), the average daily rate (ADR, revenue divided by booked days),
and the revenue per available night (RevPAN, revenue across available days). Focusing on
the revenue per available night, the scaling effect is associated with a progressive rise of
this value. The last column reports the variation of the performance metrics moving from
the first to the last cluster. The revenue per available night shows an impressive growth,
rising to 3.1% (from the first to the second group), 38.8% (from the second to the third),
8.2% (from the third to the fourth), and 46.7% (from the fourth to the fifth), respectively.

3.3. The Method

As anticipated, this paper evaluates the synchronization degree comparing the five
groups of hosts, in order to perceive the similarities and differences. The method developed
by Cazelles has been adopted [47]. It requires three different steps, which are introduced
and described below [58].

The first phase transforms the series (values) in a set of symbols, by comparing each
value with its neighbors’. As reported in Figure 2, there are some possible cases: (i) trough
point, (ii) peak point, (iii) increase, (iv) decrease, (v) stability. These five trends are then
observed comparing couple groups of different hosts (in terms of size).

Formally, these five situations are identified using the following relationships:

(i) through: x(t + 1) < x(t) x(t + 2) or x(t + 1) < x(t + 2) x(t);
(i) peak: x(t) < x(t +2) x(t + 1) or x(t + 2) < x(t) x(t + 1) or x(t + 2) x(t) < x(t + 1);
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(iii) increase: x(t) x(t + 1) < x(t + 2);
(iv) decrease: x(t + 2) x(t + 1) < x(t);
(v) stability: x(t) = x(t + 1) = x(t + 2).
An example of the five situations is reported in Figure 2.

t1 2 t3 t4 t5 t6 t7

Figure 2. The transformation of a time series in symbols (A: through, B: peak, C: increase, D: decrease,
E: stability). Source: adapted from [48].

The second phase is the heart of the analysis and calculates the mutual information
degree. It is a quantitative method that compares two series and evaluates the degree of
similarity (synchronization) or dissimilarity (de-synchronization). “Given the series X and
Y, the mutual information I(X,Y) is calculated as:

I(X,Y) = H(X) + H(Y) — H(X,Y) (@)

where H( ) is the entropy of each series:

H(X) = =) p(x;)loga(p(xi)) 2
and H(X,Y) is the joint entropy of the two series:
H(X,Y) ==Y p(xi,yi)loga(p(xi, i) ®3)

We then normalize the mutual information using;:
U(X,Y) = I(X,Y)/(H(x) + H(Y)) @)

thus U(X,Y) is in the interval [0, 1].
It is easy to demonstrate that if X and Y are independent random variables, then:

H(X,Y)=H(X) + H(Y). ®)

therefore, the “mutual information is zero” [48] (p. 5). To calculate these quantities, Python
scripts adapted from at https:/ /github.com/people3k/pop-solar-sync (last accessed April,
2021) were used.

The last phase evaluates the statistical significance of the values U(X,Y). In line with
previous studies [47] 500 surrogate pairs of series were created, based on a Markov process
(with a one time-step memory), that preserve the structure of the series [48]. Finally, the
five groups of hosts were compared to the corresponding surrogate series and a t-test was
used for evaluating the statistical significance.

4. Findings
The findings are structured in two sub-sections. The first tests the hypotheses focused
on the scaling effect, while the second explores the seasonal patterns.
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4.1. Scaling Effect

Table 2 reports the findings related to the first (synchronization degree among clusters)
and the second hypothesis (synchronization degree between each cluster and the overall
sample). In both hypotheses, the rise of listings is expected to reduce the synchronization
degree. As explained in the methodology section, the synchronization is measured by the
mutual information. The higher the value of the mutual information score, the higher the
similarity and vice versa. A ratio of 0.40 identifies a good similarity (or synchronization),
while a value lower than 0.20 depicts a strong dissimilarity or desynchronization [59-61].
The following columns are based on the comparison between the different clusters and the
500 random series.

Table 2. Mutual information for the five clusters.

Clusters P1 P2 P3 P10 P>10 PAll Mean
P1 1
P2 0.498 1 0.498
P3 0.429 0.377 1 0.403
P10 0.363 0.367 0.337 1 0.356
P>10 0.334 0.308 0.276 0.343 1 0.315
PAll 0.665 0.560 0.499 0.454 0.395 1 0.515

The evidence reported in the first five columns (from P1 to P > 10) is used to test
the first hypothesis. The mutual information of the first cluster (P1) shows a progressive
reduction comparing the single host with cluster P2 (0.498), P3 (0.429), P10 (0.363), and
P >10 (0.334). The other column shows the same pattern. Therefore, the evidence confirms
the first hypothesis that the synchronization among the different clusters reduces as the the
number of managed listings rises.

Moving to the second hypothesis, reading the values of the last line is sufficient. In
fact, the values show a very strong synchronization for the first cluster (0.665), but the
mutual information progressively reduces, moving to P2 (0.560), P3 (0.499), P10 (0.454),
and P > 10 (0.395). The second hypothesis is confirmed, and it implicitly confirms that
the overall sample (PAll) is largely influenced by the first three clusters, which together
represent the 95% of hosts, 72% of listings, and 55% of total revenue.

4.2. Seasonal Patterns

The analysis explores the seasonal patterns characterizing the chosen destination.
The hypothesis focuses on the synchronization degree between the five groups and the
total (PAll) comparing the opposed seasonal patterns: holiday and working; weekend and
midweek; trade fair and non-trade fair. The values are reported in Table 3. The values
should be read while comparing each vertical couple for each cluster. If the synchronization
degree reduces (for each cluster and for each of the opposed seasonal periods), then the
three hypotheses are confirmed. Focusing on Hypothesis 3A, the cluster P1 moves from
0.649 (holiday) to 0.643 (working); P2 from 0.553 to 0.505; P3 from 0.521 to 0.438; P10 from
0.434 to 0.412; and P > 10 from 0.403 to 0.331. The values confirm Hypothesis 3A, which
means that each cluster is more synchronized with the overall sample during the holiday
period rather than the working days (when business is dominant). This evidence confirms
the prevalent specialization of Airbnb listings for leisure rather than business guests. These
results can be extended to the second (Hypothesis 3B) and third (Hypothesis 3C) seasonal
periods. During the last seasonal period (trade-fair), when Milan hosts some events, the
synchronization degree registers as the highest value in all clusters (for example, is 0.860
for P1).
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Table 3. Mutual information between clusters and overall sample during opposed seasonal periods.

P1 P2 P3 P10 P>10
PAIL

Hypothesis 3A
Holiday 0.649 0.533 0.521 0.434 0.403
Working 0.643 0.505 0.438 0.412 0.331

Hypothesis 3B
Weekend 0.721 0.573 0.533 0.472 0.415
Midweek 0.596 0.477 0.413 0.396 0.330

Hypothesis 3C
Trade-fair 0.860 0.801 0.676 0.508 0.513
Non-trade-fair 0.654 0.549 0.490 0.465 0.396

Finally, Table 4 reports the relationships among the five clusters during the different
seasonal periods in order to test the last six hypotheses, according to which the synchro-
nization decreases when the scaling effect rises. Table 4 contains six panels—one for each
seasonal period. Hypothesis 4A focuses on holiday. Reading the table by column, cluster
P1 shows a progressive reduction in the mutual information moving from top (0.47) to
down (0.35). Generally speaking, all the values show this trend with very few exceptions
(three out of 60) identified by the squared cells in Table 4. Therefore, the evidence largely
confirms the six hypotheses.

Table 4. Mutual information for seasonal period.

Holiday (4.A) P1 P2 P3 P10 P>10 Weekend (4.C) P1 P2 P3 P10 P>10
P1 1 P1 1

P2 0.47 1 P2 0.48 1

P3 0.42 0.34 1 P3 0.49 0.39 1

P10 0.35 0.36 0.34 1 P10 0.4 044 0.38 1

P>10 0.35 0.28 0.27 0.29 1 P>10 0.36 0.33 0.3 0.31 1
Trade fair (4.E) P1 P2 P3 P10 P>10 Non trade fair (4.F) P1 P2 P3 P10 P>10
P1 1 P1 1

P2 0.75 1 P2 0.48 1

P3 0.58 0.68 1 P3 0.42 0.36 1

P10 0.43 0.51 0.55 1 P10 0.37 0.37 0.34 1

P>10 0.44 0.47 0.54 0.6 1 P>10 0.34 0.31 0.27 0.33 1
Working (4.B) P1 P2 P3 P10 P>10 Midweek (4.D) P1 P2 P3 P10 P>10
P1 1 P1 1

P2 0.45 1 P2 0.41 1

P3 0.37 0.36 1 P3 0.34 0.3 1

P10 0.32 0.29 0.27 1 P10 0.3 0.27 0.26 1

P>10 0.26 0.24 0.2 0.28 1 P>10 0.25 0.23 0.19 0.26 1

Legend: squared bold values = increase

5. Discussion

The research question of this paper focuses on the relationship between the scaling
effect and the seasonal patterns. The latter are used as a proxy for the competition among
different (in terms of size) Airbnb hosts. Based on the findings previously shown, this
section discusses the main results. Focusing on the overall (annual) seasonal patterns
(Hypotheses 1 and 2), the data confirm that the scaling effect increases the dissimilarities
between the hosts managing a few and many listings, respectively. Realistically, this
evidence supports a progressive competitive reduction among big and small hosts.

The second set of Hypotheses 3 and 4 move from the whole (annual) patterns to the
specific seasonal periods characterizing the destination under study. Generally speaking,
the synchronization degree is higher during the holiday and weekend periods, confirming
the prevalent specialization of Airbnb listings for leisure clients. However, the mutual
information degree registers an important drop moving from single to multi-listing hosts,
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suggesting, also in this case, different (or partially different) business models. By contrast,
during the working and especially midweek periods, the synchronization is lower, and
the dissimilarities augment when comparing mom-and-pop hosts with large multi-listing
providers. Therefore, the progressive reduction in the competition appears more relevant.
These results can be extended to the trade-fair and non-trade fair seasonal periods.

6. Conclusions

The conclusions are articulated in four sections: Some theoretical, as well as practical,
implications are traced, future research avenues are proposed, and some study limitations
are identified.

6.1. Theoretical Implications

As discussed in the introduction and in the literature review, the current studies
largely distinguish only between single- and multi-listing hosts, ignoring the magnitude
of the scaling effect. The findings proposed in this study depict a very different picture,
showing a progressive differentiation in the seasonal patterns correlated to the rise in the
managed listings. The results, therefore, can significantly change the theoretical knowledge
in this field and can re-orient future studies, especially in the sub-field of competition, the
determinants of listing performance, and pricing strategies.

Second, the synchronization degree among the different (in scale) hosts is not homoge-
nous but changes according to the different seasonal patterns of the Milan destination. The
higher the specialization in leisure segments, the higher the competition among the differ-
ent hosts; the higher the specialization in the business segment, the lower the similarities
and, therefore, the competitive pressure.

Finally, this paper introduces important innovations to analyze the competition among
Airbnb listings. The first innovation is to clearly identify the main destination market seg-
ments (in the case of Milan, leisure, business, and trade-fair guests) and the corresponding
seasonal patterns. The second methodological innovation is the use of mutual information
to perceive and measure the degree of synchronization between the series, variously articu-
lated to measure the scaling effect and the identified seasonal periods. This approach can
open new research opportunities in other destination contexts.

6.2. Practical Implications

This paper sheds new light on the competition threat among Airbnb listings consid-
ering their scale. In particular, the findings clearly suggest a progressive reduction in the
similarity of seasonal patterns when the size of the host, measured by her/his listings, rises.
Therefore, the results support identifying different groups in the Airbnb arena that have a
diverse competitive threat according to the specific seasonal period. Therefore, a single
host, according to her/his scaling effect, can create a different competitive set. Furthermore,
the competitive intensity varies according to the specific seasonal period and appears to
be higher when the attracted segments are leisure, which reduces in the case of business
guests.

6.3. Research Avenues

The findings reported open many new research opportunities. Some of them are
discussed in this sub-section. It is surprising that the current peer-to-peer accommodation
platform literature has completely omitted any studies qualitatively exploring the business
models of mom-and-pop and multi-listing hosts. Future research must cover this gap,
identifying the advantages and disadvantages of moving from a limited size to a bigger
scale. This qualitative research can shed light on the main resources and competences that
can be stretched as the scale rises.

A second interesting area of inquiry can explore the competitive threat between
Airbnb listings and hotels. In particular, based on the current findings, this research area
can explore if the listing scaling augments the synchronization degree between Airbnb
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and hotels, thereby increasing the competition and the substitution threat. Furthermore,
the competition intensity can be articulated considering the different seasonal periods
characterizing the destination under study.

A third research avenue focuses on the studies exploring the determinants of per-
formance and pricing strategies. As analytically discussed in the literature review, the
research standard, with very few exceptions, is to segment the hosts into single- or multi-
listings. Based on the current results, future research should investigate more analytical
segmentation and consider different relevant seasonal periods. In fact, the determinants of
the results and rates can change consistently.

Finally, future studies can employ new methods for testing the hypotheses (as Bayesian
Hypothesis Testing) or SARIMA (Seasonal Auto Regressive Integrated Moving Average)
for the seasonal patterns.

6.4. Limitations

This is an explorative paper, which is in line with similar previous studies focused on
competitive threats [62]. It is centered around a single case study. The findings” general-
ization is partially limited. However, the paper adopts a longitudinal approach, creating
a consistent temporal pattern. A future research agenda is called for to verify whether,
within a multi-destination study, the evidence reported is confirmed.
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Abstract: In this work, the land surface temperature time series derived using Thermal InfraRed
(TIR) satellite data offers the possibility to detect thermal anomalies by using the PCA method. This
approach produces very detailed maps of thermal anomalies, both in geothermal areas and in urban
areas. Tests were conducted on the following three Italian sites: Solfatara-Campi Flegrei (Naples), Parco
delle Biancane (Grosseto) and Modena city.

Keywords: thermal anomaly; time series analysis; geothermal site; urban heat island

1. Introduction

Thermal anomalies, i.e., areas where the surface temperature has a value significantly
different from the background, are potentially related to the underground energy sources
or to land use and coverage variations in urban areas where the urban heat island (UHI)
phenomenon can be observed. Current satellite missions, providing imagery in the Thermal
InfraRed (TIR) spectral region at 90-100 m of spatial resolution, provide the potential
to estimate the land surface temperature (LST) and highlight the main surface thermal
anomalies [1-6]. In this work, two case studies were carried out. The first case study is the
detection of thermal anomalies on geothermal active areas (volcanic or not). The second
focuses on the detection of UHISs [7,8]. Both the studies are based on the remote sensing
LST time series. In both the case studies, the thermal anomalies” detection is also inspected
using the principal component analysis (PCA) of the LST time series.

2. Materials and Methods

All the analyses are based on the following two types of data: Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER) and the Landsat 8 satellite data,
with a 90-m and 100-m pixel spatial resolution, respectively, in TIR channels (8-12 um) and
a temporal resolution of 16 days.

In the first study, nighttime ASTER and TIRS/Landsat 8 time series have been pro-
cessed using the following two different methodologies: the Temperature and Emissivity
Separation (TES, [9]) algorithm for ASTER and the Single Channel Algorithm (SCA, in-
verting radiative transfer equation, already tested in [10,11]) for Landsat 8. Two LST time
series have been obtained and the results are cross-compared and validated with ground
measurements. TES and SCA are well-known methodologies and have been used to eval-
uate LST on the following two different test sites with different geological features: the
volcanic area of Solfatara-Campi Flegrei (near Naples, Italy) and the geothermal area of Parco
delle Biancane (near Grosseto, Italy).
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The second case study has been addressed to the characterization of the UHI of the
city of Modena (Italy). The analysis is based on nighttime TIRS/Landsat 8 image time series

processed using the SCA methodology.

The availability of a substantial number of these satellite data for the three test sites

(as reported in Table 1) offered the possibility of obtaining three LST time series over a long
period (Figures 1-3), thus allowing an accurate analysis of thermal anomalies.

Table 1. LST processed for three test sites.

Number of Processed Images

Data
Solfatara-Campi Flefrei ~ Parco delle Biancane Modena City
LST-ASTER 40 20 NA
LST-Landsat 8 55 40 43
TOTAL LST 95 60 43
40
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Figure 3. LST Time series on Modena city (Campus-DIEF) test site. Plot referred to is the red box area.

The relative accuracy of the LST estimates can be assessed in comparison to the ground
measures provided by the ground network that operates independently of the satellites.
Alternatively, the accuracy can be estimated by a cross-validation between the products
obtained with different LST retrieval algorithms and/or for different sensors, even if largely
complicated by the spatial scale mismatch between the satellite sensors and/or the ground-
based sensors. In fact, the areas observed by ground radiometers usually cover small areas,
whereas satellite measurements in the thermal infrared typically cover between 1 and
100 km?. In this case, the following data have been used for the validation steps:

for Solfatara-Campi Flegrei, the ground measurements collected by permanent thermal

o
cameras installed in Solfatara volcano. The images have been reprojected to have the
same point of view as the satellite;

e for Parco delle Biancane, the TIR images acquired using thermal cameras mounted
on drones and collected during three separated field campaigns synchronized with
satellite passages;

e  for Modena, weather stations at the 4 stations around Modena city.

3. Results and Discussion

In both case studies (natural and urban areas), the thermal anomalies’ detection is
inspected using the principal component analysis (PCA) on the LST time series obtained
by processing the satellite data. In this work, analysis on the use of PCA has demonstrated
the possibility of detecting thermal anomalies in studied sites, neglecting the seasonality
effect present in long LST time series. The use of nighttime data has been considered to
remove the “noise” due to the solar irradiation that is strong during the day.

PCA allowed the extraction of the dominant patterns within the time series as the
detection of thermal anomalies, offering a good and easy way to produce very detailed
maps of thermal anomalies, both in geothermal areas and in urban areas (UHI). Thermal
anomalies were detected by considering the first two PCs and selecting three sets of
pixels from the clusters used as endmembers for the maximum likelihood classification.
The position of the cluster, which has been selected considering the PC1 and PC2, is
approximatively the same in the three scatter plots (Figure 4). The thermal anomaly points
(geothermal or UHI), background points (rural areas for UHI) and water points (sea, lakes,
rivers) are grouped in distinct sectors of the scatter plots. This leads to the conclusion that
thermal anomalies can also be individuated using this combination of PC components of
the time series of temperature images derived from satellite imagery.
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Figure 4. PC1 vs. PC2 cluster: Campi Flegrei (left), Parco delle Biancane (middle), Modena City (right).
Yellow line represents the water cluster, red line the background (land, rural areas) and green line
represents the thermal anomaly or warm area due to UHIL.

In Figure 5, the main warm areas are the Solfatara volcano and the lakes that have a
temperature greater than the land during the night.

1484

Lucrino

Solfatara

W Thermal Anomaly
ESRI Satellite

Miseno

Figure 5. The red areas represent the results obtained for Landsat 8 data in the Solfatara-Campi
Flegrei area.

A comparison with a different methodology is also presented, confirming that satellite
data can be a very powerful tool to study surface thermal anomalies quantitatively.

In fact, the result obtained by using PCA (Figure 5) is in agreement with the one
obtained using a different methodology, as described in [11]. In particular, in [11], the
process of removing the seasonal component of temperature time series is considered. The
existence of a thermally anomalous area at the Campi Flegrei site is analyzed by considering
the land surface Median Temperature values greater than a Threshold Value (MTTV) on a
de-seasonalized time series. In [11], the threshold values of +10 (16.36 °C for ASTER and
17.01 °C for Landsat 8), +1.50 (17.19 °C for ASTER and 18.02 °C for Landsat 8) and +2¢
(18.03 °C for ASTER and 19.04 °C for Landsat 8) allowed us to obtain the results showed
in Figure 6. The use of PCA confirms that the process of removing seasonality, applied
in MTTV (Figure 6), is not necessary. The spatial distribution of the thermal anomalies
detected using PCA and MTTYV is coincident, as shown in Figures 4 and 6.
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Figure 6. Maps of MTTV of temperature satellite frame with temperature threshold at +20 (a,b);
modified after [11].

A similar approach to that taken in Solfatara-Campi Flegrei, using PCA as showed
in Figure 4, has been adopted for the Parco delle Biancane area, where validation data
are lacking. An example of the result obtained with Landsat 8 for Parco delle Biancane
is shown in Figure 7. The red areas cover Parco delle Biancane’s geothermal areas that
have a temperature greater than the land during the night. Moreover, the Valle Secolo
and Nuova San Martino Enel Green Power central are also detected. Even though there
are several geothermal centrals in the area analyzed, the two power plants detected as
“thermal anomalies”, together with the Parco delle Biancane area, are, indeed, those with a
high rated power.

Valle Secolo

I Thermal Anomaly
Google Satellite
0 1 2km

Nuova SanMartino- {

a3

Figure 7. Landsat 8—The red polygons represent the results in the Parco delle Biancane area.

Moreover, concerning a UHI, PCA was able to separate the statistics for the rural
environment, built areas and water surfaces without additional information on land cover
(e.g., the classification obtained using VIS/NIR imagery or other land cover databases).
In Figure 8, the results of the UHI phenomenon in Modena city are shown. In particular,
in Figure 8, green represents water (warm) and red represents built (warm) pixels. The
warm areas are included inside the “0” isoline that represents the line that separates

35



Eng. Proc. 2021, 5,5 60f7

warm and cold surfaces (15.4 °C has been assumed as the reference). Similarly, the isoline
corresponding to +2 °C of difference (higher than the reference) has been added and
marked as “2” (dashed line).

Figure 8. Modena city test site: the classes representing warm areas are reported in green and red.

4. Conclusions
The results of these studies furnished some important considerations, as follows:

e the methodologies used to obtain LST also produce reliable temperature estimates in
the very particular case of geothermal anomalies and are usable for near ground air
temperature trends’ analysis;

e  the PCA allows us to extract the dominant patterns within the time series to detect
thermal anomalies, offering a good and easy way to produce very detailed maps of
the thermal anomalies in both geothermal areas and in urban areas (UHI);

o the PCA allows for the differentiation of the surface cover without using other re-mote
sensing images in VIS/NIR or auxiliary classification products. This differentiation
improves the analysis of the thermal behavior of the surfaces.

The two studied cases represent two more demonstrations of the potential of satellite
observations in TIR for environmental applications.
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Abstract: Electric load forecasting is becoming increasingly challenging due to the growing pene-
tration of decentralised energy generation and power-electronics based loads such as heat pumps
and electric vehicles, which adds to a transition to more variable work patterns (accentuated by the
COVID-19 pandemic in 2020). In this paper, three different Machine Leaning models are analysed to
predict the energy load one week ahead for a period of time including the COVID-19 pandemic. It is
shown that, by using the recently proposed TabNet model architecture, it is possible to achieve an
accuracy comparable to more traditional approaches based on gradient boosting and artificial neural
networks without the need of performing complex feature engineering.

Keywords: short-term electricity demand forecasting; neural networks; TabNet

1. Introduction

Electric power load forecasting is widely recognised as a key task for electrical utilities.
Accurate predictions in the short time horizon allow to minimise spinning reserve capacity,
plan the generation of electric power and configure cost-effective battery charging sched-
ules [1,2]. In the past few years several models based on artificial neural networks have
been proposed and shown to be successful for this task [3,4]. Despite this, model selection
is not trivial and heavily depends on several aspects of the specific case under study, such
as the time resolution of the available data, the type of climate of the location and the
required prediction horizon among others. Moreover, the adoption of distributed energy
generation, such as wind turbines and solar photovoltaics, the increasing popularity of
low carbon technologies (specially, electric vehicles) and even unusual events such as the
ongoing COVID-19 pandemic increment the uncertainty and demand levels experienced
by distribution networks.

In this context, the recently proposed TabNet model architecture is analysed and
compared with two state-of-the-art models such as gradient boosting based on decision
trees and deep neural networks (see [3-9]) in the task of predicting the energy load one week
ahead at Stentaway primary substation, UK (the choice of forecast horizon is motivated by
a Data Science Challenge recently hosted by Energy Systems Catapult). It was found that
the performance achieved by TabNet is comparable with the one exhibited by the more
established models, with the advantages of learning directly from the raw data (i.e., no
pre-processing is needed) and requiring minimal feature engineering. In addition, given
the different nature of TabNet’s inductive bias in comparison to more traditional regression
algorithms, a further improvement in accuracy was obtained by combining it with the
traditional models via ensemble methods.

The article is structured as follows. In Section 2, the description and pre-processing of
the employed datasets is given. In Section 3, the three models used for load forecasting are
presented. Section 4 is devoted to the analysis of the obtained results. Section 5 contains
the summary of the work and some future research lines.
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2. Data Description

The historical demand data were collected from the Stentaway Primary substation.
They contained average demand power values measured in Megawatts (MW) spanning
around 2 1/2 years (between November 2017 and July 2020) and totalling slightly more
than 47,000 samples.

Since it is well-known that the weather plays a major role in the energy load, this
dataset was complemented with what is known as reanalysis weather data from six sites
surrounding the substation extracted using MERRA-2 (the data extraction was based
on code available at https://github.com/emilylaiken /merradownload, last accessed on
23 June 2021). Reanalysis is a data processing technique that provides a consistent and
complete estimation of weather variables over a period of interest. The process consisted of
applying modern forecasting techniques to a blend of actual observations with past short-
range weather forecasts, thus imitating for historical data the way in which the day-to-day
forecasts are generated. In this way, estimations for the averaged hourly irradiance (W / m?)
and instantaneous surface temperature (°C) were obtained for six locations that could be
interpreted as weather forecasts. The sites corresponded to grid points on the numerical
weather prediction grid for dates between January 2015 and July 2020.

Both datasets are publicly available at the Western Power Distribution Open Data
Hub site upon login [10].

2.1. Data Pre-Processing

The datasets contained very few erroneous values and gaps (far less than 1% of the
samples) which were meaningfully filled. More concretely, the demand dataset presented
values that were obviously out of range (both too close to zero and too high) for two weeks
in May 2018 and a couple of days in November 2018. All these outliers were replaced by
the demand values of the corresponding days from the previous weeks. Regarding the
weather data, a few missing values were detected for the temperature at location 4 which
were simply filled using the temperature at location 3 since these variables were highly
correlated (the correlation coefficient was >0.98).

Finally, the cleaned datasets were merged after linearly interpolating the weather
variables to 30 min frequency.

2.2. Feature Extraction

An exploratory data analysis was conducted to unveil patterns and factors that could
enhance the predictive value of the original dataset, consisting only of historical demand
data and weather reanalysis data.

The most important group of extracted features was derived by studying the auto-
correlation of the demand (see Figure 1). As the plot reveals, there were strong daily and
weekly patterns in the demand. To account for them, the following features were added to
the dataset:

e Hour of the day, day of the week, day of the month, month and year.

*  Demand values at the same hour for the whole past week.

e Cyclic versions of hour of the day, day of the month and month, which made explicit
the similarity between the end of a period and the beginning of the following one (for
instance, the demand around 12:00 PM of a given day tended to be strongly related to
the demand around 1:00 AM of the next day) by encoding these features as points in a
2D circle (see [5]).

It was also found that the weather variables produced lagged effects on the demand.
After experimenting with different time scales, it was decided to enrich the dataset with
the averages of temperature and solar irradiance over periods of 2, 12 and 24 h to capture
short-term fluctuations, cyclic day and night patterns and daily trends respectively.

Finally, an ad-hoc strategy was adopted to treat bank holidays and the lockdown
period. Specifically, the bank holidays were labelled as a Sunday due to the resemblance
of demand patterns between both kind of days, and the lagged demand values were
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correspondingly shifted to coincide with that of previous Sunday. Since the behaviour
of the demand during lockdown was clearly different from that of regular periods (see
Figure 2), it was decided to distinguish lockdown days with a flag.

The resulting dataset contained approximately 100 features.

Autocorrelation plot for demand

Correlation

50 100 150 200 %0 00 50 400

Lags

Figure 1. Autocorrelation plot for the demand (the lags are measured at half-hour intervals). There
are peaks every 24 h and a slightly higher peak for the same day of the past week.
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Figure 2. Comparison of demand values between the first two weeks of June 2019 and June 2020
(aligned so that the days of the week coincide).

3. Methodology
The main goal was to forecast one week ahead values of demand (load forecast in
MW) using, as model input, its past values in combination with historical and current
weather forecast data. As previously stated, the prediction of energy load during the
outbreak of the COVID-19 pandemic was one of the main challenges in this study. As it
could be expected, the significant change in the energy consumption pattern caused by the
various restrictions imposed by the government made it harder to forecast the load for this
period. In addition, there is no technique for the short-time load forecasting problem that
is known to be superior to all others (see [11]); rather, the best techniques depend heavily
on the particular characteristic of the dataset (including factors such as the type of climate
and the economic activities at the analysed location, the forecast horizon, etc). For these
reasons, three different approaches were contrasted in the present study: gradient boosting
tree ensemble model, artificial neural networks and TabNet. The first two techniques are
known to achieve state-of-the-art results in several practical tasks and were shown to be
successful at short-time load forecasting (see for instance [3-9]). On the other hand, TabNet
is a novel deep neural network architecture specially designed to handle tabular data that
reportedly outperforms or is on pair with standard neural networks and decision trees
based variants [12].
All models were trained to minimise the mean squared difference between the pre-
dicted and the actual values of demand one week ahead. Roughly 1 year of data was used
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(corresponding to the period November 2017-December 2018) as training set, while the
remaining weeks (up to July 2020) were used to validate and asses the models” perfor-
mance using the walk-forward method [2]. Below follows a brief description of each model,
together with the specific features and hyperparameters used in each one of them.

CatBoost: CatBoost [13] is an implementation of gradient boosting on decision trees
developed by Yandex, which quickly positioned itself as one of the standard methods
for learning problems with tabular data, heterogeneous features and complex, non-linear
interactions. Gradient boosting is an ensemble method that iteratively improves weak
predictors (in the case of CatBoost, decision trees) by performing gradient descent greedily
in a certain functional space [14].

All features, both original and extracted, were employed for the CatBoost model.
Except for a few relevant hyperparameters that controlled the complexity and regularised
the model, the default values were used. These hyperparameters were n_estimators
(maximum number of trees), depth (maximum depth of each decision tree), max_bin
(number of splits for numerical features) and rsm (the proportion of the features considered
for each split). Their values were determined by a grid search around initial good values
obtained by heuristics and manual experimentation.

Artificial neural network: Artificial neural networks are inspired by a simplified
model of how biological neural networks work, and are known to have the capability of
learning hidden non-linear and complex pattern in the data. An artificial neural network
consists of a directed graph, organised in layers whose nodes are known as neurons. Each
neuron applies a non-linear transformation to its input based on learnable parameters
and passes the resulting value to neurons in the next layer. These parameters are trained
iteratively using stochastic gradient descent with the aim of generating the desired output.

In contrast to the CatBoost model, it was decided to remove several features to reduce
multicollinearity issues. Among the time-related features, only the cyclic versions were
included and all weather variables were discarded but for the ones corresponding to the
two most uncorrelated locations. The total number of neurons was estimated heuristically
(proportional to the degrees of freedom of the problem) and it was decided to reduce by a
factor of 2 the number of neurons in each hidden layer with the aim of forcing the network
to progressively learn more relevant features. The number of neurons in the first hidden
layer and the number of layers were determined by a grid search. This resulted in an
architecture consisting of four hidden fully connected layers with 64 neurons in the first
layer. The non-linear activation ReLU was applied for all layers, while the Adam optimiser
was used with the default learning rate 0.001.

TabNet: The new architecture proposed by TabNet learns directly from the raw nu-
merical (not normalised) features of tabular data. The normalisation and feature extraction
is somehow embedded in the architecture, since the raw data is filtered by a Batch Normal-
isation layer and several transformers blocks designed to learn relevant features. One of
the salient characteristics of TabNet is the use of a single deep learning block to perform
instance-wise feature selection, consisting of a sequential attention mechanism and learn-
able masks. As a consequence, the accumulated learned weights in this block can be used
to interpret the outputs of the model.

For the TabNet model only the cyclic time-related features, the lagged information
of the demand and the weather variables of the two most uncorrelated location were
employed. The total size of the model was decided by a grid search, following ([12],
Guidelines for hyperparameters), to set the values of the hyperparameters width and steps,
which are respectively, the number of hidden neurons in each block and the number of
hidden blocks.

4. Discussion and Results

The three models considerably beat naive baselines and achieve a steady accuracy
across very dissimilar weeks (see Table 1 below). This is consistent with the existing
literature and the common consensus that models based in ensemble of regression trees
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and neural networks are the strongest predictors for generic regression tasks. Although in
our tests TabNet did not in general outperform the best traditional model, its accuracy was
usually close to it. In addition, since TabNet had an inductive bias of different nature to the
traditional regression algorithms it allowed us to obtain a further improvement in accuracy
by combining it with the traditional models via ensemble methods. Indeed, it was verified
that the simple average of the three models achieved an appreciable higher performance
than any single model (see Table 2).

Table 1. R? scores and root squared errors for the proposed methods. Here the naive baseline consists of predicting the
same as the previous week.

Method R? Score RMSE R? Score (Lockdown) RMSE (Lockdown)
CatBoost 0.9369 0.2156 0.8562 0.2332
Neural Network 0.9311 0.2254 0.8396 0.2463
TabNet 0.9286 0.2295 0.8424 0.2442
Naive Baseline 0.8740 0.3048 0.7198 0.3256

Table 2. R? scores and root mean squared errors for the different averages of the proposed models.

Average R? Score RMSE
CatBoost+TabNet 0.9477 0.1964
CatBoost+Neural Network 0.9492 0.1936
TabNet+Neural Network 0.9423 0.2062
CatBoost+TabNet+Neural Network 0.9511 0.1898

Regarding the prediction for the lockdown weeks, it was found that reducing the
amount of regular samples in the training sets was beneficial for the performance of
the predictive models. Concretely, to generate the predictions on lockdown weeks, only
samples starting from 2019 were considered for the training set. The rationale behind this
decision is that the reduction allows to give more weight to samples corresponding to the
lockdown period. The accuracy attained in this way is comparable to the one obtained for
normal times (see Figure 3 and Table 1).

Lockdown week

— Demand
45 CatBoost A
BbNet ,L’

K
-+ Neural Nemurk!
a0 Baseline

Demand (Mw)

2020-03-22 2020-03-23 2020-03-24 2020-03-25 2020-03-26 2020-03-27 2020-03-28 2020-03-29

Figure 3. Predictions for the first week of lockdown (from 22 March to 28 March). The consumption
pattern is quite different to the one from the previous week.

5. Conclusions

In this study, the performance of the novel TabNet network is compared with two
well-established regression models on a short term load forecasting task. It is shown that it
is possible to obtain comparable performance to these traditional methods but with little to
none feature engineering and data preparation. Moreover, the use of TabNet provides a
further boost in the overall accuracy on this task via ensemble methods.

As a future step, it would be interesting to refine the strategy to predict the energy load
during the lockdown. As some preliminary evidence suggests, training a strong model on
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a regular period and then fine-tuning it using data collected during the lockdown (which
can be seen as an application of the transfer learning technique) could lead to further
improvements in accuracy.
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Abstract: In this paper, we describe a machine learning approach for predicting machine health
indicators with a large time horizon into the future. The approach uses state-of-the-art neural network
architectures for sequence modelling and can incorporate numerical-sensor and categorical data
using entity embeddings. Moreover, we describe an unsupervised labelling approach where classes
are generated using continuous sensor values in the training data and a clustering algorithm. To
validate our approach, we performed an ablation study to verify the effectiveness of each of our
model’s components. In this context, we show that entity embeddings can be used to generate
effective features from categorical inputs, that state-of-the-art models, while originally developed
for a different set of problems, can nonetheless be transferred to perform industrial asset health
classification and provide a performance boost over simpler networks that have been traditionally
used, such as relatively shallow recurrent or convolutional networks. Taken together, we present a
machine health monitoring system that can accurately generate asset health predictions. This system
can incorporate both numerical and categorical information, the current state-of-the-art for sequence
modelling, and generate labels in an unsupervised fashion when explicit labels are unavailable.

Keywords: neural networks; time series; sequence modelling; machine health monitoring; predic-
tive maintenance

1. Introduction

Modern machine health monitoring systems (MHMS) owe much of their recent success
to advances in machine learning algorithms, sensing technologies, and computational
power [1-5]. Such systems make use of historical data collected from the monitored
equipment, which are used to train machine learning (ML) models for evaluating their
health and performance [1], in either a diagnostic or prognostic way, e.g., by remaining
useful life estimation (RUL; e.g., [4,6]).

Historically, MHMS were based on ML algorithms that require hand crafted features.
However, the utility of such models was limited due to the required domain expertise
and inability to cover all spectrum effects, especially nonlinear dependencies in time and
domain-specific effects [1]. A mitigation strategy for this problem is to use neural networks
(NN), which do not require handcrafted features and can be trained using only the input
data (e.g., [1,7-11]).

In the context of sequential data, several NN architecture-types have typically been
applied based on their proficiency in learning the temporal dynamic behaviours of systems.
In this respect, recurrent neural networks (RNNs) have been extensively used to model
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sequential data [12]. Although different variants exist, an RNN is normally constructed as
an NN with a feedback loop from the previous hidden layer of the network to the next:

h(t) = f(h(t — 1), X(t); 6), )

where h(t) and X(t) are the hidden states and inputs to the network at time t, and 0 is the
network parameters.

Although RNNs are typically difficult to train due to issues with vanishing and
exploding gradients [13], this can be mitigated by using gate functions that regulate the
information that passes through the network. This is usually done through long short-term
memory (LSTM) or gated recurrent units (GRU) [12], which, instead of the ordinary RNN
transition function, involve more complex functions that incorporate gate structures that
help regulate the information that passes through the network [14,15]. Other NNs used to
model sequential data that are based on RNNs are echo state networks (ESN) [16,17]. ESNs
mitigate the vanishing gradient problem by eliminating the need to compute the gradient
for the hidden layers of the NN using a sparsely connected RNN called a “reservoir”,
where the weights are not learned via gradient descent [18].

In addition to RNN based architectures, convolutional NNs (CNNs) have also been
used for sequence modelling. CNNs utilize convolutional operations, which are sliding
filters that are applied over the data and enable the NN to extract time-invariant nonlinear
features [19]. Recently it was demonstrated that CNNs coupled with residual connections,
which are connections between an NN layer and a layer it is not directly connected to,
can result in highly accurate models for sequential data [19]. An example of this type of
architecture is the inception-time network [19], which is one of the architectures we imple-
mented in this research and was inspired by the Inception-v4 architecture [20]. Crucially, it
contains “Inception Modules”, where the core idea is to simultaneously apply multiple
convolutional filters of varying dimensions to the input [21].

Finally, the relatively new transformer architecture-type has also been successfully uti-
lized for sequence modelling (e.g., [22]). These models rely on self-attention mechanisms to
model temporal dynamics [23], the most common being the “scaled dot-product attention”,
“dot-product attention”, and “additive attention” [23]. The scaled dot-product attention is
computed via the following equation:

Attention(Q K,V) = softmax((QK"T)/+/(d_k))-V, 2)

where matrices Q, K, and V are generated for each input, and where dk is the dimension of
Q, and K. Dot-product attention is identical except that the scaling factor /(d_k) is not used,
and additive attention is computed using a feed-forward NN with a single hidden layer [23].
Although transformers were developed for natural language processing (NLP) applications
(e.g., German-English translations), they can be adapted for sequential numerical data, in
the simplest case by replacing the embedding layers with fully-connected layers or other
layer types that can transform numerical data (e.g., time delay embeddings [22]). Other
approaches used for sequence modelling include large memory storage retrieval NNs [9],
stacked denoising autoencoders [11], and deep belief networks [8].

Another important issue that arises when developing MHMS stems from the fact that
they are typically developed using supervised learning, where ML models are trained
to classify the health status of assets based on labelled training examples with a known
health status. However, often the relationship between available data and asset health is
not known in advance (i.e., the data is unlabelled) and must be determined using statistical,
ML, or other methods. To address this issue, we developed an unsupervised approach,
where sensor data from the training set was used to generate clusters that represent the
asset health status [24].

Currently, the state of the art (SOTA) for processing sensor data are architectures
for sequential data modelling such as Res-CNN [25], LSTM fully-convolutional NN [26],
inception-time [19], and ResNet [18]. The models were shown to work well on many
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sequence learning tasks (e.g., [19,23], see [18] for a review). Additionally, these new
methods have already been applied in the field of predictive maintenance. For example,
ResNet has been used on wind turbine data [27] and bearing data [28] to predict faults.
Res-CNN has been applied to motor data [29], and fully-convolutional LSTM used on
aircraft engine data [30]. However, to our knowledge, no paper has compared all of the
above methods on a single dataset.

In this paper, we describe an ML approach that was used to predict machine health
with a large time horizon. Due to the nature of our application, we used a two-week horizon,
but the approach can be generalized to other horizons as well. To process the sensor data,
we compare all the SOTA architectures named above. Moreover, we also describe the
results obtained using a simpler NN baseline model based on bidirectional GRU cells
(BiGRU) [24]. Finally, we compared these NN approaches to a random-forest (RF) model,
which is a very popular ML approach not based on NNs that performs well on a variety of
tasks and does not require special processing for categorical variables [31,32]. Additionally,
the inputs to the model are both continuous sensor data and categorical metadata, and we
use K-Means clustering to incorporate prior knowledge of the distribution of the predicted
variable into our model and generate the predicted variable, as we first described in [24].

We first show that this approach can provide superior predictions of machine health
in comparison to a similar model that only incorporates sensor data, similarly to what we
previously reported [24]. Moreover, we demonstrate the superiority of SOTA networks
over the simpler BiGRU architecture as well as a non-NN approach (RF) for classifying
industrial asset health.

2. Methods
2.1. Data

For a more detailed account, see [24]. Briefly, the data consisted of both sensor data
collected approximately every 6 h and categorical metadata, over a period of approximately
2.5 years from 51 vibration sensors. The data were divided into training, validation, and
test sets, so that approximately the first 2 years of data were used for training and the
final 0.5 years of data was split between the validation and test datasets through stratified
random shuffling based on the distribution of the predicted variable (defined below). Note
that due to important data privacy concerns specified by the owner of the data, some
aspects of the data were transformed to maintain data privacy.

2.2. The Predicted Variable

The predicted variable was determined based on the distribution of the sensor data of
the training set, as well as practical specifications provided by the owner of the data and
only very basic domain knowledge. Specifically, the data owner requested predictions of
the systems’ health status two weeks into the future. The full method is described in [24],
but in brief, we integrated prior knowledge of the predicted values into the architecture
of our model so that instead of predicting its value directly, we computed a set of clusters
based on its distribution in the training set. We then labelled all our predicted variables
based on the nearest cluster centroid calculated through the K-Means algorithm. Since our
training data distribution resembled a bimodal distribution, suggesting 2 distinct types of
behaviour (see Figure 1), we used the nearest cluster centroid of two possible clusters as
the predicted variable.
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Figure 1. Distribution of the predicted variable in the training set. The dashed line represents a
Gaussian kernel density estimation of the distribution (reproduced from [24]).

2.3. Modelling

In the current research, we tested several deep NN architectures for modelling the
sensor data (i.e., sequence models). The first was a BIGRU, which we used as a baseline
for comparison to different model architectures, and which we also used in a previous
study [24]. We compared this relatively simple but popular architecture to several SOTA
algorithms as well as a non-NN based approach (RF). First, we trained a transformer

model that was slightly modified from [23], where it was used for English to German

translation tasks so as to be suitable for sequential numerical data, mainly by replacing its
embedding layers with fully connected layers. This stresses the notion that deep learning
models that are developed to solve a certain task can often be rather straightforwardly
adapted to solve a different task, even when the similarity between the tasks is not apparent.
Additional SOTA algorithms that were used were Res-CNN [25], LSTM fully-convolutional
NN [26], inception-time [19] and ResNet [18]. The hyperparameters of the models were
selected by examining the loss function value on the validation set, and the models were

tuned using the logistic loss-function, which is the most commonly used loss-function for
binary-classification problems and is almost universally applied [33]:

L= _% Zi\l Z,M Yij 10g<Pij)/

where p is the predicted class and y is the true class label.

®)

In addition, we were provided with metadata in the form of categorical variables

that identify important aspects in the equipment, such as its specific type. To incorporate
categorical variables in ML models, they are often transformed using one-hot encoding
(OHE), where k new binary features are created for k different categories. However, as we
stated in [24] when the cardinality of the features is high, OHE requires a large number of
computational resources. Additionally, OHE treats the values of categorical variables as
independent of each other and often ignores information about the relationships between
them [34]. In order to circumvent these issues, we used the categorical metadata to learn
entity embeddings, where each categorical variable is mapped to a fixed-size vector space,
with parameters that are learned by the model (see [24,34,35]).

The overall modelling approach is presented in Figure 2. The embeddings were
concatenated to the outputs of the sequence model component and fed to an FC layer with
a rectified linear unit (ReLU) activation function. The outputs of this layer can then be fed
to an additional FC layer with a Sigmoid activation function (i.e., the logistic function).
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A constant learning rate of 0.001 was used with the Adam optimizer, and models were
trained with early stopping, i.e., until we observed an error increase on the validation
set [36].

I Output Predictions I
A

I Fully Connected Layers I

N
~ ~

I Sequence Model I I Entity Embeddings I
A A

I Sensor Inputs I I Metadata I

Figure 2. Overall model architecture.

The models were compared using two very popular classification metrics: the F1-score
and the Matthews correlation coefficient (MCC) [37].

3. Results

All of the analyses were done using the Python programming language [38]. To
assess the importance of the various model components, we performed an ablation study
where we systematically removed the main components of our model and observed
how it affected performance. In this respect, we compared our approach of using entity
embeddings with the BIGRU model to the same model without the embedding inputs.
Moreover, we tested a model where the penultimate FC layer was also removed (the
first layer of the “fully connected layers” component in Figure 2). Finally, we compared
the performance of various sequence models (sequence model component in Figure 2),
including SOTA sequence models, as well as an RF model.

The performance of the experimental conditions is summarized in Table 1. The base-
line BiIGRU model generated an F1 score of 0.876 and an MCC score of 0.747. When entity
embeddings were not included in the model, both F1 and MCC scores dropped. Similar
results were obtained when the penultimate FC layer was removed, and the concatenated
inputs from the BiGRU and embeddings were fed directly into the output layer of the
model. Moreover, a model consisting only of the BiIGRU component of the model achieved
a similar performance, suggesting that the additional FC layer might not be needed when
the additional metadata inputs are not included. When SOTA models were used instead
of the BiGRU baseline, the model demonstrated an increased performance on both F1,
t(4) =4.18,p < 0.01, and MCC, t (4) = 5.43, p < 0.01. RF performed similarly to the BIGRU
baseline on the F1 and MCC metrics. However, it also showed a strong bias towards pre-
dicting Class 1 (98.59% vs. 81.29% accuracy rates for Class 1 and Class 2, respectively). The
F1 differences between SOTA algorithms and RF were marginally significant, t (4) = 2.03,
p = 0.056, and statistically significant when considering only CNN based SOTA algorithms
(e.g., Res-CNN, FCN, inception-time and ResNet), which performed best on our task,
t(3) =4.93, p < 0.01. MCC differences between CNN based SOTA algorithms and RF were
marginally significant after correcting for multiple comparisons, t (3) = 2.55, p = 0.04.
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Table 1. Model Classification Performance.

Model Class 1 Accuracy Class 2 Accuracy Overall Accuracy F1 McCC

BiGRU 85.05 89.6 87.33 0.876 0.747

BiGRU, no entity embed-dings 78.06 92.7 85.4 0.864 0.715

BiGRU, no penultimate FC 78.2 91.8 85.0 0.860 0.707
Only BiGRU 78.36 91.1 84.7 0.856 0.7

Transformer 90.90 85.78 90.26 0.880 0.768

Res-CNN 94.10 87.38 93.26 0.904 0.817

FCN 93.87 90.24 93.42 0.919 0.842

Inception-time 94.63 87.76 93.77 0.909 0.826

ResNet 95.68 85.7 94.43 0.902 0.818

Random-forests 98.59 81.29 89.47 0.890 0.811

4. Discussion

Although fully connected deep learning models have been used in MHMS for many
years [39-42], the use of NN approaches that are specialized for sequence models is a
relatively recent research trend [43,44]. This is somewhat surprising considering that most
industrial data are sensor data, which is by nature sequential. Notably, several studies
used recurrent NNs to estimate RUL [45-49] or performance degradation [7,50-52]. Other
studies have applied CNN models after transforming sensor data to 2-dimensional, similar
to image data that are typically used by CNNSs, in order to classify machine faults [53,54]
or RUL [55,56]. Yet another research direction has been to transform the sensor signals
to the frequency domain before applying CNNs for machine fault diagnosis [21,57-59],
while other studies straightforwardly applied CNNs for monitoring the health status of
industrial assets using the raw sensor data as the input [60-64]. Importantly, none of
the previous studies compared several SOTA sequence models for MHMS on a single
dataset [44,65-68], and the current study was the first to apply them in this context. Such
models are significantly deeper and computationally more complex than those that were
used in most previous studies and were originally developed for applications unrelated to
machine health monitoring (e.g., NLP [23]).

The MHMS described in this paper can incorporate SOTA models as well as combine
sequential and non-sequential inputs to obtain more accurate predictions, as when using
each input type in isolation. Its effectiveness was verified through an ablation study where
the main components of the model were systematically removed or altered. Moreover,
the proposed MHMS makes use of the predicted variable distribution to derive classes
for prediction using unsupervised clustering (see [24]). Such class derivation is especially
important in applications where the theoretical variable, e.g., asset health distribution, is
not known directly. Our proposed algorithm can be used to derive a proxy of the theoretical
variable using a different variable for which the distribution in the training data can be
estimated. Moreover, we tested the various SOTA algorithms on our data. While such
models, e.g., with a single or few LSTM or GRU layer(s), can work relatively well on
industrial tasks, we found that using SOTA models resulted in increased performance
on the metrics that we measured, especially CNN based models. What this suggests is
that while industrial data might contain important unique features, e.g., features that are
representative of industrial asset health might only be discoverable in these data, the SOTA
models developed for seemingly unrelated data and tasks are nonetheless also transferrable
to these data. This is likely because SOTA sequential models are highly proficient at learning
general temporal dynamic behaviour and hence can also be applied here.

In conclusion, we have proposed an MHMS that can handle both numeric and categor-
ical data, can be used in conjunction with SOTA NNs and can be used to predict the health
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status of industrial assets even when a health status variable is not explicitly provided.
Such a system can serve as an integral component of full-fledged predictive maintenance
software systems to provide increased automation for asset health inspection.
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Abstract: This study compares the effectiveness of COVID-19 control policies on the virus’s spread
and on the change of the infection dynamics in China, Germany, Austria, and the USA relying on a
regression discontinuity in time and ‘earlyR’ epidemic models. The effectiveness of policies is mea-
sured by real-time reproduction number and cases counts. Comparison between the two lockdowns
within each country showed the importance of people's risk perception for the effectiveness of the
measures. Results suggest that restrictions applied for a long period or reintroduced later may cause
at-tenuated effect on the circulation of the virus and the number of casualties.

Keywords: COVID-19; regression discontinuity in time and ‘earlyR’ epidemic models; real-time
reproduction number; risk perception; effectiveness of intervention measures

1. Introduction

COVID-19 is an infectious disease caused by SARS-CoV-2, which has been declared a
global public health emergency [1]. As of 29 May 2021, it has affected more than 100million
people and resulted in more than 3.5 million deaths globally (WHO). Governments world-
wide have implemented similarly strict containment and closure policies to mitigate the
pandemic in order to limit the spread of the virus. These restrictive community measures
that limit activities or access to resources, facilities, or institutions have been often referred
to as “lockdown” measures in Asia, Europe, and America [2,3]. Countries exhibited ‘herd
behavior” in response to COVID-19 [2] meaning they applied similar restrictive measures.
However, the effectiveness of these measures has been different between countries. Pre-
vious studies showed that containment measures implemented in countries like China
and South Korea have reduced new cases by more than 90%, which has not been the case
in many other countries such as Italy, Spain, and the United States [4]. The effectiveness
of the social distancing measures was evident in the data of Italy, Germany, and Turkey,
but not clearly in the data of the USA and the U.K. [5]. Thus, the public administration
community needs to embrace international and comparative perspectives on COVID-19 to
inform how governments respond to the crisis, to learn the lessons from more successful
governments, and to advance pandemic crisis management [6]. Up to now and currently,
the situation is still uncertain, even though the COVID-19 vaccine is being used at full
throttle in vaccination campaigns.

Related research shows that policy effectiveness is associated with income groups [2],
regional political trust, and compliance [7], as well as country preparedness, socioeconomic
factors [4], and a country’s values [3]. More and more research has pooled coronavirus data
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and control measures from countries and regions to compare the effectiveness of public
health measures. These studies revealed the requirements needed to enhance scientific
analysis and epidemic modeling, and the social and institutional challenges of operating
in a global crisis [8]. The USA and Germany both are highly affected countries, with
34.1 million and 3.6 million confirmed cases, ranking 1st and 10th worldwide, respectively,
as of 1 June 2021. Austria shares aspects of culture with Germany, and had 0.64 million
confirmed cases as of the same date, ranking 38th worldwide. Nevertheless, the pandemic
spread patterns of Austria and Germany have been different, especially in the second
wave [9]. As for China, The Lancet recognized the quick containment of COVID-19 in
China, which sets an encouraging example for other countries [10]. Moreover, these
four countries have experienced the whole COVID-19 period, with at least two waves of
outbreak, which could help to indicate the long-term effects.

Abundant time series data have been collected, and time-dependent statistical analysis
has been widely applied in the public health policy research. Study on Africa used the
interrupted time series analysis (ITSA) to analyze the effect of border closure on COVID-19
incidence rates (IRs), which revealed that the implementation of border closures within
African countries had minimal effect on the IRs of COVID-19 [11]. The research conducted
in England shows that mental health service delivery underwent sizable changes during
the first national lockdown by using regression discontinuity in time design (RDiT) [12].
Furthermore, the regression discontinuity design (RDD) has been used by Chinese re-
searchers for examining the lockdown policy effects on air quality, which explores the
relationship between anti-epidemic measures and air quality based on the daily data
from 326 prefecture-level cities in China [13] and an early assessment with cross-national
evidence on the causal impacts of COVID-19 on air pollution by using a RDD approach [14].

This study intends to assess the effectiveness of lockdown COVID-19 control policies
on the virus’s spread and on the change of the infection dynamics over a year with the event
of a resurgence of cases, which have been implemented in China, Germany, Austria, and
the USA based on real-time monitoring data and government responses. In this analysis,
the different pandemic waves and the characteristics between countries are addressed. This
comparative analysis aims to provide important lessons to be learnt from the experiences
of these countries. Although the future of the virus is unknown at present, countries
should continue to share their experiences, shield populations, and suppress transmission
to save lives. In the assessment, the Oxford COVID-19 Government Response Tracker
(OxCGRT) was used, which has been also used widely during the pandemic to measure
the policies. We focus on the part of containment and closure, including school closing,
workplace closing, cancelling public events, restrictions on gathering size, closing public
transport, stay-at-home requirements, restrictions on internal movement, and restrictions
on international travel. More details can be seen in Reference [15]. Since the vaccination
program has been well underway since early 2021, there is hope for a gradual return
to normal interaction. However, the virus in different forms poses an ongoing threat.
Therefore, we should learn from the knowledge and lessons generated in the lockdown
period in order to leverage better public policy to enable more resilient and effective public
health services.

2. Data and Methods
2.1. Data Sources

Data used in this analysis are from 1 January to 31 December 2020. We obtained
data on policy interventions from the Oxford COVID-19 Government Response Tracker
(OxCGRT), which has tracked national government policy measures in response to the
COVID-19 pandemic globally for 186 countries, starting from 1 January 2020 (Version 7.0).
The database details are described in the working paper [16]. Our main interest is lockdown
at the city /country-level, such as stay at home orders and restrictions on movement. Data
on COVID-19 daily reported cases were obtained from various official sources, including
the European Centre for Disease Prevention Control (ECDC), the Johns Hopkins University
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Centre for Systems Science and Engineering (JHU-CSSE) and the Center for Disease Control
and Prevention (CDC) [17].

2.2. Epidemics and Regression Discontinuity in Time (RDiT) Model

We used a regression discontinuity in time (RDiT) design to estimate the effectiveness
of lockdown policy interventions. RDiT is extended by the regression discontinuity (RD)
framework that has applications in several fields. Compared to the standard RD framework,
RDiT has been adapted to applications where time is the running variable and treatment
begins at a particular threshold in time. In other words, it uses time as the running variable,
with a treatment date as the threshold. This approach is close to quasi experimental
framework (pre-intervention compared to post-intervention). Papers using RDiT span
fields that include public economics, industrial organization, environmental economics,
marketing, and international trade [18].

The effectiveness of intervention measures is measured by two ways: real-time re-
production number (R;) and counts of cases. R; was estimated by the ‘earlyR” epidemic
model, which is a simplified version of the model introduced by Anne Cori et al. [19].
Parameter estimates were obtained from the early transmission dynamics in Wuhan, China
of COVID-19 project by the China Center for Disease Control and Prevention (CCDC),
and the serial interval distribution had a mean (£SD) of 7.5 + 3.4 days (95% CI, 5.3 to
19) [20]. Since the policy interventions may not have immediate effects, we hypothesized a
14-days lag time for counts of cases to coincide with the approximate incubation period of
COVID-19.

We took advantage of the pandemic-induced lockdowns as an exogenous policy
shock and attempted to retrieve the impact of policy interventions using RDiT approaches.
In this approach, we assume the lockdown'’s start date is when the first “stay at home
requirements” become equal to “2”, which means to mandate not leaving the house with
exceptions for daily exercise, grocery shopping, and ‘essential” trips. Alternatively, this
was also evaluated as when “restrictions on internal movement” become greater than
zero, which means it is recommend not to travel between regions/cities. The usual RDiT
regressions were run, both using a polynomial approach and a local linear approach. The
equation is as follows:

Yir = a; + BiLit + v Xit + f(dir) + &3t 1

where the outcome variables Y (R; or counts of cases) in country i on date t, Y}, is regressed by
treatment variable L;;, a dummy variable for pre/post-intervention, a vector of covariates
Xii, and a flexible nth-order polynomial in f(d;;), and d;; denotes the number of days
from lockdown date. The coefficient of interest, f;, is the treatment effect of the lockdown
interventions on outcome variables in country i. In other words, this is the expected
difference between the outcome variable before and after the lockdown. Additionally, «;
denotes the country fixed effects and ¢;; denotes the error term.

As countries implemented more than one lockdown because of the secondary COVID-
19 waves, we define the first lockdown as the timing of “stay at home requirements”
policy adoption (score becomes equal to “2”) and the second lockdown as the timing of re-
imposition after subsequent policy easing. Table 1 presents two consequent lockdowns and
summarizes the information about the lockdowns in the case study countries during the
research period from 1 January to 31 December 2020, i.e., the date on the lockdown, number
of COVID-cases on that day, and the policy stringency index. Policy stringency index is
one of the composite measures, which combine different indicators into a general index.
The details can be found in the codebook [16]. Although there is a lack of information on
policy implication and demographic or cultural characteristics, the value and purpose of
the indices is to allow for cross-national comparisons of government interventions.
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Table 1. Lockdown time and conditions.

Country Lockdowns Date R; COVID-19 Cases Pollcyli;r;l;gency
China 1st 1 February  1.27 2089 77.31
2nd 10 May 0.93 20 81.94
Germany 1st 21 March 1.09 2365 68.06
2nd 22 October 1.11 5952 60.65
Austria 1st 16 March 0.92 158 81.48
2nd 17 October 1.49 1747 58.8
USA 1st 15 March 1.63 234 41.2
2nd 13 October 1.22 52879 66.2

3. Results

3.1. Estimates of Ry

The estimated R; for all included countries (China, Germany, Austria, and the United
States) from 1 January to 1 December 2020 are shown in Figure 1. It is clear that all
countries were affected by the pandemic after March 2020, and the changing dynamics of
the impacts in the four selected countries was different. China had the highest reproduction
number, while the maximum reproduction number in the other three countries seemed
to be similar. In the early stages, all countries were exposed to extremely high pandemic
risk spread rate, which is indicated in Figure 1, with the highest position of the parameter
Rt in all countries. In the period from March to April, R; gradually declined because of
governmental intervention policies to reduce the pandemic spread.

Among the intervention measures, the lockdowns are perhaps the most stringent.
Table 1 shows that lockdowns in different case study countries were introduced differently.
In China, the first lockdown was implemented on 1 February, i.e., the earliest date of
the four studied countries. In Austria and the USA, the first lockdown started almost
simultaneously, then followed by the lockdown on 21 March in Germany. From March to
May, the curve of R; was flattened; however, it still fluctuated around R; = 1. It is visible
from Figure 1 that after improving the situation as a result of the first lockdown, all four
countries experienced repetitive rush increases of the parameter R; in different subperiods
during March and December 2020. This can be explained by the fact that in each country
the removal of the lockdown led to the return of the highly epidemic situation because of
the insufficient natural immunity among the population.
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Figure 1. Estimated R; of four countries from 1 January to 1 December (14-days smoothed).

Figure 2 shows the trend of 14-days average daily cases during this period. For
China, the epidemic peak passed with the number of new cases steadily declining and the
epidemic under control. The estimated R; shows fluctuations because China is likely to see
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sporadic outbreaks of scattered infections or to experience regional outbreaks. For the USA,
there was an initial infection peak in April, and the rate of new cases dropped somewhat
after the containment interventions. However, it is more of a plateau, and the next peak
came in July. Experiencing the temporarily declining, the second wave bounced, increasing
exponentially after September. For Germany and Austria, the second wave also came after
July, but Austria seemed to control it better.
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Figure 2. Daily case of four countries from 1 January to 1 December (14-days smoothed).

3.2. Owverall Impact of Lockdown Interventions

Figures 3 and 4 show the regression discontinuity in time estimates, including Ry and
daily cases. The horizontal axis displays days before and after the complete lockdown
at d = 0, the vertical axis defines the value of R; (or daily cases) in the respective day on
the horizontal axis. Both show the prima facie evidence of impacts of the first lockdowns.
Especially the R; shows significant discontinuity for these four countries, and it implies
the lockdowns have effects on the spread. Every country had a tendency to flatten R;
after the lockdown. However, the decreasing trend of R; before d = 0 indicates that some
of governmental intervention measures were already implemented before the complete
lockdown, such as “keep distance” or “wear masks”. As for the daily cases, Germany,
Austria, and the USA show a closer discontinuity gap. This can be attributed to the limited
cases before the first lockdown time.

Most RDiT models were of good fit. The country-specific linear interaction and
quadratic interaction regression results are presented in Table 2 (dependent variable is R;)
and Table 3 (dependent variable is daily cases). For China, the R; could decline by 0.988
before the first lockdown, and the lockdown brought a 4.457 decrease, which is strongly
statistically significant. The quadratic interaction regression results were similar, with a
4.432 decrease. For Germany, compared to the slightly increase, the Ry declined by nearly 2
after the lockdown. Austria showed a 1.201 increase before the first lockdown, while there
was a 3.831 decrease after the first lockdown. For the U.S., the R; could increase by 1.879,
while there was a 5.566 decrease after the first lockdown.

As for the analysis of daily cases, the results looked different. For China, the daily
cases would increase 2782.4 if there was no intervention of lockdown. The first lockdown
decrease of 3274.5 daily cases was strongly statistically significant. However, for Germany,
Austria, and the USA, the situation was different. Even though the R; flattened, the daily
cases increased after the first lockdown, with 7162.5, 1473.1, and 37,561.1, respectively. It
seems strange but is in line with the facts.
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Table 2. RDiT of the effects of first lockdown on COVID-19 R; across China, Germany, Austria, and the USA.

Dependent Variable: R;

China Germany Austria USA

@ ) @ () @) (2) 1) (2)
X —0.988 * 0.007 0.240 *** 0.108 *** 0.289 *** 1.201 *** 0.447 *** 1.879 ***
1(X_2) 0.0001 —0.003 ** 0.076 *** 0.119 ***
treatment —4.457 *** —4.432 —2.167 *** —2.059 *** —1.534 *+* —3.831 *** —2.605 *** —5.566 ***
X_treatment 0.999 * 14.458 *** —0.228 *** 0.107 —0.279 *** —1.137 *** —0.448 *** —1.904 ***
I(X_2):treatment 2.240 **+* 0.023 —0.077 *** —0.119 ***
Constant 2.322 —13.358 *** 3.000 *** 2.280 ** 2.403 *** 4.379 ** 3.716 *** 6.819 ***
Adjusted R? 0.329 0.619 0.178 0.164 0.319 0.504 0.319 0.565
F Statistic 8.842 *** 16.567 *** 4.463 *** 2.880 ** 8.493 *** 10.750 *** 8.499 *** 11.171 ***

Note: * p ** p *** p <0.01.
Table 3. RDiT of the effects of lockdowns on COVID-19 daily cases across China, Germany, Austria and the USA.
Dependent Variable: Daily Cases
China Germany Austria USA
1) (2) (1) ) (1) ) (6] (2)

X 526.400 * 2782.400 *** 402.040 *** 550.004 *** 95.700 *** 13.405 2930.453 *** 50.155
I(X_2) 376.000 ** 27.681 *** 0.910 121.134 ***
treatment —1362.27 * —3274.50 *** 5537.66 ** 7162.482 ** 1388.330 ** 1473.104 ** 18,375.940 37,561.110 **
X_treatment —550.325 ** —2909.15 *** 326.664 1701.041 95.463 237.527 2846.793
I(X_2):treatment —373.61 ** 16.871 7.794 153.278
Constant 2105.600 *** 4737.600 *** 2805.675 * 1631.250 19.982 43.648 74.382 163.018
Adjusted R? 0.216 0.475 0.382 0.781 0.447 0.768 0.677 0.789
F Statistic 5.41 *** 9.676 *** 10.901 *** 35.251 *** 13.946 *** 32.729 *** 31.495 *** 32.115 ***

Note: * p ** p *** p < 0.01.

3.3. Comparative Effectiveness of First and second Lockdown

As discussed earlier, many countries implemented more than one lockdown because of
the secondary COVID-19 waves. Therefore, we took the second wave into the consideration
in our research. We compared the R; and daily cases of 25 days before and after each
lockdown. The country-specific quadratic interaction regression results are presented in
Table 4 (dependent variable is R¢) and Table 5 (dependent variable is daily cases).

For China, the effectiveness of the second lockdown was weaker compared to the first
lockdown, with an estimated R; decrease by 1.556 in the first lockdown and increase by
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0.585 in the second lockdown. Meanwhile, the daily cases did not decrease as fast as before
(—24.5 vs. —762.3). In Germany, we found out the effect on the R; was slightly stronger;
R decreased by 0.715 (from 0.827 to 0.112), although it still was positive. Therefore, there
was a significant increase in the daily cases after the second lockdown (4811.651 increase).
For Austria, the effect on R; after the first lockdown and the second lockdown was a 0.564
increase and 0.128 decrease, respectively. It means that the second lockdown contributed to
flattening the Ry curve. Meanwhile, we also saw a decrease of daily cases in Austria, with
108.633 and 254.206, respectively. For the USA, there was a significant increase of R; after the
second lockdown, which had a 4.75 increase. Compared to the first lockdown, the situation
became worse, with a higher R; (1.334 vs. 4.750) and daily cases (—2058.49 vs. 2100.23).

It is noted that the results were related to the baseline, namely, the total confirmed
and infected cases. For China, the first outbreak was the most serious wave during the
COVID-19 period, which affected the country nationwide. Therefore, the first lockdown
quickly smoothed the curve and reduced a large number of cases. The second lockdown
was introduced at regional level to smooth provincial outbreaks. On the other hand, for
Europe and the USA, the pattern was different. The first lockdown in Europe and the
USA was introduced when the cases were growing and the epidemics’ epicenters were
detected in neighboring countries. The second lockdown was implemented to deal with
the domestic outbreak.

Table 4. Compared RDiT of the effects of the first and second lockdowns on COVID-19 R; across China, Germany, Austria,

and the USA.
Dependent Variable: R;
China Germany Austria USA
1st 2nd 1st 2nd 1st 2nd 1st 2nd
X 0.371 *** —0.117 *** —0.282**  —0.065**  —0.359 ***  0.002 —0.874 ***  —2.352***
1(X_2) 0.033 *** —0.005 *** —0.005 ** —0.002 ***  —0.006 —0.001 * —0.041 ***  —0.180 ***
treatment —1.556 ***  0.585 * 0.827 * 0.112 0.564 —0.128 ** 1.334 4.750 ***
X_treatment —0.359 ***  0.141 ** 0.272 *** 0.046 *** 0.336 *** —0.037 ***  0.752 *** 2.282 ***
I(X_2):treatment —0.034 ***  0.004 * 0.005 * 0.003 *** 0.007 0.001 0.044 *** 0.178 ***
Constant 1.986 *** 0.529 ** 0.027 1.014 *** 0.174 1.566 *** 0.771 —2.742 **
Adjusted R? 0.986 0.173 0.854 0.964 0.910 0.903 0.649 0.752
F Statistic 685.674 ***  3.098 ** 59.560 *** 272.104 **  91.812 *** 94.318 *** 19.486 *** 22.653 ***

Note: * p ** p ***p <0.01.

Table 5. Compared RDiT of the effects of the first and second lockdowns on COVID-19 daily cases across China, Germany,
Austria, and the USA.

Dependent Variable: Daily Cases

China Germany Austria USA

1st 2nd st 2nd st 2nd 1st 2nd
X 353.007 *** 7.889 *#* 426.831 *** 646.062 *** 36.538 ** 67.566 * 735.098 *** 735.098 ***
1(X_2) 9.801 ** 0.423 *** 10.875 *** 12.018 1.191 % 4.351 *** 24.305 *** 24.305 ***
treatment —762.321 —24.508 ** —865.244 * 4811.651 **  —108.633 * —254.206 —2058.490 **  2100.234 ***
X_treatment —243.693 —8.009 *** —192.626 **  441.737 110.960 *** 208.117 *** 2100.234 ** —35.416 ***
I(X_2):treatment —20.954 ***  —0.416 *** —24520**  —46.101**  —17.168**  —1.549 —35.416 *** 986.184
Constant 2981.537 ***  31.207 *** 4104.298 *** 9243376 ***  303.808 *** 1558.123 ***  938.363 938.363
Adjusted R? 0.699 0.768 0.942 0.879 0.972 0.981 0.991 0.991
F Statistic 24.255 *** 34.156 *** 162.698 *** 122.417 *** 226.549 *** 521.901 *** 1091.190 *** 1091.190 ***

Note: * p ** p *** p <0.01.

4. Discussion

We offer a retrospective study that provides cross-national evidence on the causal
impacts of policy intervention on COVID-19 spread. A rich database was assembled from
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various sources, which were analyzed with EarlyR and RDiT models. Overall, the results
show that COVID-19-induced lockdowns resulted in a decrease in R; and daily cases,
which varied across different countries. We expected the lockdown could mitigate the
spread of COVID-19, but the results were not satisfactory and should be further explained.
Comparing different countries, China had the most effective lockdown, which could lower
the R; and decrease the daily cases, while the USA, Germany, and Austria had strongly
decreased R; but presented large daily case enhancement. Comparison between the two
lockdowns within each country showed that people's risk perception was relaxed during
the second lockdown, especially in Germany (the increased daily cases were the highest in
the studied countries) and the USA (the increased reproduction number was the highest in
the studied countries).

Our results were similar to the relevant research, which suggested that the stringent
lockdown policies adopted in China, Italy, and Spain were among the most effective
national-scale policies [21]. China also showed the most effective results in our study.
For Germany and Austria, they showed different patterns in our study, although they
share common borders in Central Europe and have substantial cultural, historical, and
economic ties [22]. The differences may be explained in terms of the fact that the power
was consolidated in central governments in Austria, while in Germany, states retain their
autonomy [22]. The USA presented the most unexpected results, and some research
gives further explanations: namely, except for the timing and strictness of implementing
measures [23,24], national culture, economic, and health and social issues also influence
the results [25,26]. Most importantly, our results suggest that restrictions applied for a long
period or reintroduced late in the pandemic would exert, at best, a weaker, attenuated
effect on the circulation of the virus and the number of casualties. Our results support the
conclusion of Haug et al. (2020) that lockdowns should be strict and brief [27].

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Data on policy interventions from the OxCGRT (http:/ /bsg.ox.ac.uk/
covidtracker, accessed on 24 June 2021). COVID-19 daily reported cases were obtained from official
sources, including the ECDC (https://www.ecdc.europa.eu/en/covid-19/situation-updates, ac-
cessed on 24 June 2021); JHU-CSSE (https://github.com /CSSEGISandData/COVID-19, accessed on
24 June 2021) and the CDC (https://covid.cdc.gov/covid-data-tracker/#datatracker-home,
accessed on 24 June 2021).
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Abstract: Periodic series of period T can be mapped into the set of permutations of [T — 1] =
{1,2,3,..., T — 1}. These permutations of period T can be classified according to the relative ordering
of their elements by the horizontal visibility map. We prove that the number of horizontal visibility
classes for each period T coincides with the number of triangulations of the polygon of T + 1 vertices
that, as is well known, is the Catalan number C7_;. We also study the robustness against Gaussian
noise of the permutation patterns for each period and show that there are periodic permutations that
better resist the increase of the variance of the noise.

Keywords: periodic time series; patterns; visibility; triangulation; Gaussian noise

1. Introduction

Periodic or noisy periodic time series appear in many natural phenomena. Strictly
speaking, real signals are approximately periodic and are considered to incorporate a
certain seasonality [1,2]. They can also be solutions of dynamical systems, either discrete
or continuous [3,4]. In practice, periodicity is finite, that is, it appears in a finite set of
points. However, theoretically, these periodic series extend to infinity and, thus, they allow
the consideration of the limit of infinite periods. This paper is focused on the study of
the complete set of periodic natural series for each period T € N. Indeed, there are other
classical approaches, such as, for instance, the Fourier analysis, that provide a complete set
of solutions to this problem. However, our approach does not pretend to surpass them but,
on the contrary, to offer an alternative viewpoint for studying this kind of time series.

A discrete series { X, },en, infinite or not, is said to be periodic if there is a natural
number T such that X, = X, for all n > n;, that is, after a transient period ;. For real
valued series X, there are infinite periodic series for each period T (see Figure 1 for an
example). However, this infinite number of cases can be reduced to a finite number by
means of the application of discrete mappings, such as the horizontal visibility map [5]. It is
worth pointing out that, for the horizontal visibility map, the time scale is not relevant, since
only the values of any pair of points are compared. This means that the same horizontal
visibility pattern is obtained if the time units are either seconds or years or, in the case of
spatial series, either millimeters or kilometers.

2. Permutations of Periodic Series and Their Horizontal Visibility Patterns

A real valued periodic time series can be mapped into a positive integer series in
which the elements within the period are ranked according to their value. For instance,
as shown in Figure 1, a period 4 series with real values:
{...,0.5008842,0.8749973,0.3828197, 0.8269407,0.5008842, .. .}
obtained from the logistic equation, X, =rX,,_1 (1 — X;,_1), n = 1,2..., is mapped into
the positive integer series: {...,4,1,3,2,4,...}. Thus, any real valued time series can be
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transformed using this method. Let us assume that the largest value is fixed as the first
value in each period. Then, if no equal values occur within the period, there are (T —1)!
possible permutations for the period T. Formally, given a periodic series of period T,
we define its permutation pattern as the natural numbers that rank the values within
the period, starting from the largest, that takes the value T. It is worth noting that all of
these permutation patterns are effectively generated by applying the generic function Rank,
a command that is defined in most programming languages.

el olndalaly

12 3 4 5 6 7 8 9 101 1213 %15

sl DHD UHD DHD I

12 3 4 5 6 7 8 9 10 1 1213 % 15

Figure 1. (a) {...,0.5008842,0.8749973,0.3828197, 0.8269407,0.5008842, . ..} is a real-valued time
series obtained from the logistic map X, 11 = r X, (1 — X,;) with initial condition Xy = 0.5, after a
transient period of 10* time steps. The growth rate value is: 7 = 3.5, which corresponds to a period 4
solution. (b) {...,4,1,3,2,(4) ...} is the corresponding permutation set obtained by ranking the val-
ues of the real-valued series. (c) The associated horizontal visibility patternis: {...,6,2,4,2,(6)...}.

All periodic patterns can be obtained as permutations of theset {T —1,T—2,...,2,1}
and studied by applying combinatorial techniques [6,7]. In this context, the question is how
these permutation patterns can be classified with regards to a definite order, for example,
that turns out from the horizontal visibility map [5].

Two points of the series, X; and Xj with i < j, are said to see each other horizontally if

XZ',X]'>Xk Vl<k<] 1)

Since the horizontal visibility algorithm is only dependent on the relative values
between the points of the integer series, it turns out that different permutation patterns
could be classified within the same category. Indeed, the application of the horizontal
visibility map enables a substantial reduction of the set of all permutation patterns.

In practice, for any permutation pattern, we can obtain the associated horizontal
visibility pattern: for each value of the series, we calculate the ordinal of its horizontal
visibility basin, that is, the number of points that are horizontally seen from the said value,
for example, as shown in Figure 1, the horizontal visibility pattern of the permutation
{4,1,3,2,(4)} is {6,2,4,2,(6)}. This means that the largest value has six points in its
visibility basin and the remaining points, 1,3,2 have two, four and two points, respectively,
in their visibility basins.

In order to count the number of horizontal visibility patterns that exist for each
permutation pattern of period T, it is convenient to represent the values of the period
as a convex polygon of T + 1 vertices. To each vertex of this polygon, we assign the
corresponding value of the element of the series and read counterclockwise (see Figure 2).
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If we link the vertices forming the corresponding horizontal visibility graph, the projection
of the edges forms a triangulation of the polygon. If we map each of the permutations into
a polygon and compute their triangulation, we obtain all of the possible triangulations of
these polygons of T 4 1 vertices. For example, Figure 3 depicts the six polygons that appear
for period T = 4. Please note that the label 4 appears twice, in order to close the period.

Figure 2. Tridimensional representation of a labeled heptagon that corresponds to the permutation
pattern of period T = 6: {6,1,3,5,2,4,(6)}. Its horizontal visibility pattern {7,2,3,5,2,3,(7)} is
obtained summing all the edges of the vertices, counting both 6-vertices. The projection of the
horizontal visibility links on the plane yields the triangulation.

a) . b) . ) .
1 1 2
. . 4
2 3 1
3 2 3
1123 @) 11324 1213 @)
d) 4 e) 4 D 4
2 3 3
4 4 4
3 1 2
d 2 (
42314 43124 43214

Figure 3. The six polygon triangulations related to the six possible permutation patterns for the
period T = 4 time series. As can be observed, triangulations (b,d) are equal and correspond to the
same horizontal visibility pattern. On the other hand, the other four triangulations (a,c,ef) have a
unique correspondence (see Table 1).

The triangulation of convex polygons is a classical problem and it is well known
that, for a polygon of T + 1 vertices, the number of possible triangulations is given by the
Catalan number Cy_1:

(2T —-2)!

Cr1 =
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This means that the infinite real valued series of period T can be reduced to Cy_ hori-
zontal visibility patterns. Nonetheless, even after this reduction, the number of horizontal
visibility patterns increase exponentially with the period:

Cr_q ~ 0.021 29T,

For example, for a period T = 20, the number of possible horizontal visibility patterns rises
to 1767263190 ~ 1.810°.

Table 1. The 6 and 24 permutation patterns for period T = 4 and T = 5. These patterns correspond
to 5 and 14 different horizontal visibility patterns. The number of interior pinnacles [6] and their
values are shown in the fourth and the fifth columns.

Period Permutation Pattern H. Visibility Pattern # Pinnacle Max.Pinnacle
4 4123 (4) 6233 (6) 0
4 4132(4) 6242 (6) 1 3
4 4213 4) 5324 (5) 0
4 4231(4) 6242 (6) 1 3
4 4312(4) 5423(5) 0
4 4321 (4) 6332(6) 0
5 51234(5) 72333 (7) 0
5 51243(5) 72342(7) 1 4
5 51423(5) 62523 (6) 1 4
5 54123(5) 55233(5) 0
5 54132(5) 64242(6) 1 3
5 51432 (5) 72432(7) 1 4
5 51342 (5) 72342(7) 1 4
5 51324(5) 62424(6) 1 3
5 53124(5) 54234(5) 0
5 53142(5) 63252(6) 1 4
5 53412(5) 62523 (6) 1
5 54312(5) 63423 (6) 0
5 54321(5) 73332(7) 0
5 53421(5) 72432(7) 1 4
5 53241(5) 63252(6) 1 4
5 53214(5) 53325(5) 0
5 52314(5) 62424(6) 1 3
5 52341 (5) 72342(7) 1 4
5 52431 (5) 72432(7) 1 4
5 54231(5) 64242(6) 1 3
5 54213(5) 54324 (5) 0
5 52413(5) 62523 (6) 1 4
5 52143(5) 63252 (6) 1 4
5 52134(5) 63243 (6) 0

A property that can be immediately deduced from the polygon triangulations is that
the total visibility, Vit (T), of any horizontal visibility pattern is the same for each period [8]:
it is the sum of the edges that appear in the triangulated polygon multiplied by 2:

Vit (T) = 2 (#edges) = 4T — 2.

It can also be proven that, for each period T, the maximum visibility that any per-
mutation pattern can attain is Viuax (T) = T + 2. In addition, the other T — 3 permutation
patterns reach other maxima: T + 1, T, ... (see Table 2). For instance, for T = 4, there are
four permutations with the largest visibility Vy.x(4) = 6 and two permutation patterns
with a maximum visibility of 5. Note that the maximum visibility might not occur for
the largest value. For instance, the permutation pattern {6,5,1,2,3,4} corresponds to the
horizontal visibility pattern: {6,7,3,4,4,4}.

Another property that is worth mentioning is the average visibility of a point for each
period, V [9]. It is obtained from the total visibility of each period divided by the period:

> Vtot(T)
V=—%/——7"
T
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Evidently, it tends to four as T tends to infinity.

Table 2. Number of maximal visibilities for low period series.

T # Max Visib Max. Visibilities

1 4
5
(5,6)
(5,6,7)
(5,6,7,8)
(5,6,7,8,9)
(5,6,7,8,9,10)

0N O Ul =W
NUT = WN -

The correspondence between permutation patterns and horizontal visibility patterns is
not evident, as shown in Table 3. Columns provide the relation between permutations and
horizontal visibility pattens. The first column indicates the number of permutations that
are related univocally to a visibility pattern for each period T (rows). Similarly, the entries
of the second column provide the number of permutations that are related to two visibility
patterns for each period T, and so on. This table forms a reduced schelon matrix with some
internal patterns that deserve to be commented on briefly. The entries of the first column
grow as 27-2 whereas for the second column, they grow as 2T-4, For the first three rows,
the number of columns with non null entries are 2, 3 and 6. Surprisingly, there are some
columns, for example, 7 and 9, which appear for the first time at period T =9 and T = 11,
respectively. Unfortunately, the table is not complete, so no rigorous conclusions can be
drawn for a larger order of columns and rows.

Table 1 also shows the number of maxima (pinnacles) in the permutation patterns [6,10].
For these two periods T = {4,5}, there are permutations that have no maximum, while
others exhibit only one. The former permutations are related one-to-one to a horizontal
visibility pattern. On the other hand, those permutations with one pinnacle can share the
same horizontal visibility pattern. As a matter of fact, if the pinnacle takes the value of 3,
for each horizontal visibility pattern there are two permutations, whereas if this value is 4,
this correspondence is 3 to 1. Table 3 provides this equivalence for each period precisely.

Table 3. Each entry indicates the number of permutations for period T that corresponds to the
number of visibility patterns. For instance, for period T = 5, there are eight permutation patterns
related one-to-one to one visibility pattern. The other two appear each from two permutations and
four come from three different permutations (see Table 1). The sum of each row yields the total
number of visibility patterns for each period. The total permutation patterns for each period are
obtained from each row, multiplying the entry by the value of each column. For example, the sum of
the entries of the second row, for T = 5, gives the Catalan number C4 = 14 and the weighted sum
(8-1+42-2+4-3) equals the number of permutations (T —1)! = 4! = 24.

T\# 1 2 3 4 5 6 7 8 9 10 12 14 15 16 18 20
4 4 1

5 8 2 4

6 16 4 8 8 4 2

7 32 8 16 16 16 8 4 20 8 4

8 64 16 32 32 32 48 8 40 8 48 16 24
9 128 32 64 64 64 96 64 16 80 16 16 96 32 48
10 256 64 128 128 128 192 128 160 160 32 32 192 32 64 96
11 512 128 256 256 256 384 256 320 256 320 64 64 384 64 192 192

3. Patterns of Noisy Periodic Series

As has been described in the previous section, for each period, more than one permu-
tation is reduced to the same horizontal visibility pattern. The question is whether this
equivalence remains when the signal is affected by any kind of noise, in particular Gaussian
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noise. It is expected that, when the intensity of the noise is small, the permutations of the
noisy signal fall in the same visibility class as the non-perturbed time series and, conse-
quently, all have the same horizontal visibility pattern. A similar problem has also been
studied in [9]. Here, we focus on the problem of robustness against noise, for example, how
Gaussian noise affects the permutation patterns as a function of the variance [11].

The way noisy series have been considered is detailed as follows:

(i) For each period T, we generate the (T — 1)! synthetic permutations.

(ii) From each of these patterns, a 1000 * T series is generated.

(iii) To each of these series we add a random variable according to a normal distribution
of null mean and standard deviation (specifically, the R-function rnorm [12]).

(iv) We vary the standard deviation from 0 to 6, with increments of 0.1. Consequently,
61 noisy series are generated from the initial permutation.

(v) The visibility algorithm is applied for all of the 61 series, including the periodic
synthetic series.

(vi) To compare the noisy series with the periodic one, we count the number of
coincidences between each pair of noisy-periodic series.

Figure 4 depicts the proportion of digit coincidences between the horizontal visibility
patterns obtained from the noisy permutations as a function of the variance of the Gaussian
noise for low periods. The same plot for each of the visibility patterns for period T = 4
is presented in Figure 4. The proportion of coincidences is greater in both permutations,
corresponding to the same visibility pattern: {6,2,4,2}.

&

Proportion of Coincidences

0
I
|
|
4
P
'
'
1
1
o
)

Standard Deviation

=

41234) ---- 413209 c4312(9)

Proportion of Coincidences

s 4321(8) -——- 4231(8) 42134
T T T T T |
0 1 2 3 4 5 5

Standard Deviation

Figure 4. (a) Proportion of coincidences (Y-axis) between the digits of the original series formed by
repeated permutations and the noisy series that result after applying a Gaussian noise of standard
deviation referred to in the X-axis. Please note that the level of coincidences achieved for large values
of the standard deviation is compatible with a loss of memory, that is, the loss of any relationship with
the original permutation as it is evident for period T = 1. (b) For T = 4, six visibility permutation
patterns exist. When a time series formed by the repetition of each pattern is perturbed by a Gaussian
noise with a standard deviation given in the X-axis, the proportion of coincidences with the original
series decreases as shown in this figure. Note that the two series formed from the permutation
patterns that correspond to the same horizontal visibility pattern: {6,2,4,2} are more robust against
white noise.
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4. Concluding Remarks

Periodic or noisy periodic patterns appear in data sets from multiple fields of sci-
ence [2]. In particular, a huge amount of data is formed by time series in which a unique
variable, either discrete or continuous, is presented as a function of time that, indifferently,
can also be considered discrete or continuous [3,4]. Many mathematical models also ex-
hibit this oscillatory behavior and have been applied extensively to study its properties.
Visibility algorithms are useful tools for the analysis of univariate series, for example, time
series [13]. In particular, the horizontal visibility map provides analytical results about
different types of series, namely periodic, random, fractional or chaotic [5]. Contrary to
the natural visibility algorithm, the properties derived from the horizontal visibility map
only depend on the ratio between the values of the points of the series, not on the distance
between them. As shown in this paper, this enables a complete reduction of the infinite
number of real valued periodic series to a finite set of visibility patterns. We prove that the
number of horizontal visibility patterns for any period T is given by the Catalan number
Cr_1. Despite this huge reduction, the number of horizontal visibility patterns still grows
exponentially as a function of T.

This exponential growth contrasts with the low number of visibility patterns that are
found in the logistic map [14]. This is a consequence of the form of the field, f(x;r) =
rx (1 — x), which sets the following rules of period doubling bifurcations:

1. If previous values are such that x; < xp, then the new duplicated values verify
X11, X12 < X21, X22-
2. The new points coming from x; and x, must be intercalated in time.

For instance, if these rules are applied to each period in the Feigenbaum cascade, a
sequence of horizontal visibility patterns appears that, at the limit of the infinite period,
converge to the ruler sequence [14,15]. Other unknown integer patterns are to be discovered
in each of the infinite period doubling cascades that occur in the bifurcation diagram of the
logistic and, in general, in unimodal maps.

Lastly, we would like to point out that it is also possible to obtain an elementary peri-
odic pattern that corresponds to a given horizontal visibility pattern. The algorithm seeks
to find a periodic pattern with the minimum positive integers that are compatible with
the horizontal visibility map. Starting from the initial pattern {1,1,1,1,1,1}, the program
recurrently increases these values until the given horizontal visibility pattern is obtained.
For example, for the horizontal visibility pattern {7,2,3,5,2,3, (7)}, associated with permu-
tation: {6,1,3,5,2,4, (6)}, the elementary periodic pattern would be {4,1,2,3,1,2, (4) } Itis
important to remark that this relationship is one-to-one, that is, it is the unique elementary
pattern that yields the given horizontal visibility pattern.
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Abstract: A bootstrap-based hypothesis test of the goodness-of-fit for the marginal distribution of
a time series is presented. Two metrics, the empirical survival Jensen—Shannon divergence (£S]S)
and the Kolmogorov-Smirnov two-sample test statistic (KS2), are compared on four data sets—three
stablecoin time series and a Bitcoin time series. We demonstrate that, after applying first-order dif-
ferencing, all the data sets fit heavy-tailed a-stable distributions with 1 <« <2 at the 95% confidence
level. Moreover, £S]S is more powerful than KS2 on these data sets, since the widths of the derived
confidence intervals for KS2 are, proportionately, much larger than those of £SJS.

Keywords: cryptocurrency; Bitcoin; stablecoin; marginal distribution; heavy-tails; stationary process;
stable distribution; goodness-of-fit; survival Jensen-Shannon divergence

1. Introduction

The empirical survival Jensen—Shannon divergence (£S]S) has recently been proposed as a
goodness-of-fit measure of a fitted parametric continuous distribution [1]. However, the im-
portant issue of hypothesis testing whether the output £S]S value is significant was left open.

To alleviate this problem, we propose a hypothesis test based on the parametric boot-
strap [2,3], and evaluate the method on time series data [4,5]. As a proof of concept, we
chose four cryptocurrency time series, three stablecoin [6] data sets, and, for reference, we
employ a fourth, Bitcoin [7], data set. The stablecoins we chose maintain their “stability” by
being pegged to the dollar, and thus one would expect their volatility to be low. Apart from
the general interest in cryptocurrency time series, it has already been shown that Bitcoin
data are heavy-tailed [8]; thus, demonstrating that stablecoins also exhibit heavy tails is
interesting in its own right. One reason to experiment with heavy-tailed distributions, such
as the a-stable distribution [9] (or simply the stable distribution) employed herein, is that
they pose additional problems compared to, say, the normal distribution (in the special case
when a =2) due to their variance being infinite (in the more general case when a <2).

The rest of the paper is organised as follows: In Section 2, we introduce the £S]S and,
for comparison purposes, also bring in the well-known Kolmogorov—-Smirnov two-sample
test statistic (KS2) [10] Section 6.3. In Section 3, we present a parametric bootstrap-based
goodness-of-fit hypothesis test. Time series do not necessarily comprise independent and
identically distributed (iid) random variables (as is assumed in, say, [11]), so utilising more
general models, such as autoregressive models (as is assumed in, say, [12]), is more appro-
priate when generating time series bootstrap samples. Here, we assume an autoregressive
process of order one [4,5], abbreviated to AR(1), with a-stable innovations, as in [13,14]. In
Section 4, we introduce the cryptocurrency time series we experiment with, and fit them to a
stable distribution after applying first-order differencing to the raw data, to obtain stationary
processes. In particular, we demonstrate that in this case « <2, that is, they are not normally
distributed. In Section 5, we apply the goodness-of-fit hypothesis test of Section 3 to the
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cryptocurrency time series described in Section 4 and discuss the results. Finally, in Section 6,
we provide our concluding remarks. We note that all computations were carried out using
the Matlab software package.

2. Empirical Survival Jensen—-Shannon Divergence

To set the scene, we assume a time series, x = {x1,x2,...,X, }, where x4, for t =1,2,...,n
is a value indexed by time, ¢, for example, modelling the movement of a stock price. More
specifically, a time series of n values is a random sample generated by a stochastic process
that forms a sequence of random variables X = X1,Xj,...,X;;, where each value x; is a realisa-
tion of the random variable X;. The stochastic process X may be a sequence of iids, but, more
often than not, a time series exhibits temporal dependencies between its values, which is
more realistic. We will also assume that the time series is stationary [4,5]. This makes sense
in our context, since we are particularly interested in the marginal distribution of x, which
we suppose comes from an underlying parametric continuous distribution D.

The empirical survival function of a value z for the time series x, denoted by 5(x)|z], is
given by

1 n
:;ZI{M>Z}’ @
i=1

where I is the indicator function. In the following, we will let P(z) = 5(x)|[z] stand for the
empirical survival function 5(x)[z], where the time series x is assumed to be understood
from the context; we will generally be interested in the empirical survival function P, which
we suppose arises from the survival function P of the parametric continuous distribution
D, mentioned above.

The empirical survival Jensen—Shannon divergence (€5]S) [1] between two empirical sur-
vival functions, Ql and Qz, arising from the survival functions Q; and Qy, is given by

£5J5(01,Q2) = / Qi(z < (( )> + Qa(2) 1o <1Q\4A2((zz))>dz )

where

M(z) =3 (01(2) + 0a(2))-

We note that the £S]S is bounded and can thus be normalised, so it is natural to assume
its values are between 0 and 1; in particular, when Ql = Qz its value is zero. Moreover, its
square root is a metric (cf. [1]).

For completeness, we provide the definition of the Kolmogorov-Smirnov two-sample
test statistic ([10] Section 6.3) between Ql and Qz as above, which is given by

KSZ(erQ2):m?x|Ql (2)-Q2(2)], ®)

where max is the maximum function, and |v| is the absolute value of a number v. We note
that KS2 is bounded between 0 and 1, and is also a metric.

Now, for a parametric continuous distribution D, we let ¢ = ¢(D,P) be the parameters
that are obtained from fitting D to the empirical survival function, P. The distribution D may,
in principle, be any continuous distribution, although here we concentrate on the a-stable dis-
tribution, since it allows for the modelling of heavy-tailed data, which poses additional prob-
lems to those of light-tailed data, due to the variance (and possibly the mean) being infinite.
In particular, we have an interest in cryptocurrency data, which is likely to be heavy-tailed [8].

We now let Py = Sy (x) be the survival function of x, for D with parameters ¢. Thus, the
empirical survival Jensen-Shannon divergence and the Kolmogorov-Smirnov two-sample
test statistic, between P and Py, are givenby £S]S (I3,P4,) and KSZ(ﬁ,P¢), respectively. These
values provide us with two measures of goodness-of-fit for how well D, with parameters
¢, is fitted to x (cf. [1]).
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3. A Bootstrap-Based Goodness-of-Fit Hypothesis Test

Our hypothesis test makes use of the parametric bootstrap [2,3]; the pseudocode for the
parametric bootstrap in our context is given in Algorithm 1. It takes as input a time series x,
the distribution D we hypothesise x comes from, and the number of bootstrap samples ; in
the simulations we use the typical value of m = 1000 samples [15]. The algorithm outputs two
vectors, BV-ES]S and BV-KS2. The first contains m £S]S values, fori=1,2,...,m, between
the empirical survival function D;=5(B;) for the ith bootstrap sample, 53;, and the survival
function Py = S4(x) of x, for D with parameters ¢. Correspondingly, the second contains
m KS2 values, fori=1,2,...,m, between 13, and Pp. The bootstrap samples are generated by
an AR(1) process with a-stable distribution innovations [14] (see also [13]), which is more
realistic than assuming that the samples are generated from an iid process, as in [11].

Algorithm 1: Parametric-Boostrap(x,D,m).

1. begin
2. Initialise BV-£S]S and BV-KS2 as the vector, (0,0,---,0), of m zeros;
Let n be the number of values in x;
Letp=¢(D,P);
Let Py =Sp(x);
fori=1tomdo

Generate a bootstrap sample B; = X5 XD e Xy,

where B; is generated from an AR(1) process with innovations

derived from D with parameters ¢;
9.  LetP=5(B));

PN AW

10.  Let BV-ES]S(i)=ES]S(P;,Py);

11.  LetBV-KS2(i)=KS2(P,Py);

12.  end for

13.  return BV-£S]S and BV-KS2 sorted in ascending order.
14. end

As we have assumed that the time series is stationary, the absolute value |p| of the
parameter p of the AR(1) process generating x should be less than one. For the generation
process, we use an estimate p of p, and, as we will see in Section 4, |p| <1 is satisfied for the
data sets we employ, as required. We also add a burn-in period of 100 steps to the AR(1)
process generated, which we found to be sufficient for the data sets we used.

Given the bootstrap vectors, BV-£S]S and BV-KS2, and the output from Algorithm 1,
we can form confidence intervals for £S]S (ﬁ,P(,,) and KSZ(ﬁ,P(p), according to the bootstrap
percentile method ([16] Section 3.1.2), which is the simplest way to construct a bootstrap
confidence interval; see [16] for improvements on the percentile method. We assume that
the significance level we are interested in for a hypothesis test is a percentage, and set the
significance level to 5%, which is the value we will use in Section 5.

Subsequently, for a one-sided test, we would exclude the highest 5% values from the
parametric bootstrap vector, say BV, returned from Algorithm 1, and for a two-sided test
we would exclude from BV the lowest 2.5% values and the highest 2.5% values. For both
£S]S and KS2 only a one-sided test makes sense, since both metrics are bounded below by
zero. Therefore, the null hypothesis is that the distribution of Pis D, and so we reject the
null hypothesis at the 5% confidence level, if £S]S (ﬁ,Pq;) or, correspondingly, KSZ(ﬁ,P(P) is
greater than the upper bound of the constructed confidence interval, depending on which
goodness-of-fit measure we are employing.

4. Cryptocurrencies and Heavy Tails

As a proof of concept, we analysed four time series data sets. These include the
prices of three stablecoins [6]: Tether (https://tether.to, accessed on 1 June 2021), DAI
(https:/ /makerdao.com, accessed on 1 June 2021) and USDC (https://www.centre.io/usdc,
accessed on 1 June 2021), which are all pegged to the dollar. In addition, for comparison pur-
poses, we make use of a fourth time series data set, the price of the archetypal decentralised
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cryptocurrency, Bitcoin [7], the price of which has previously been hypothesised to follow
the heavy-tailed stable distribution [8].

In Table 1, we describe the details of the time series data we used for the empirical
validation of the proposed goodness-of-fit method; the data were obtained from Coin Metrics
(https:/ /coinmetrics.io, accessed on 1 June 2021). For the stablecoins, 1 is subtracted from
the daily closing rate, so that its value is positive if above 1, zero if exactly 1, and negative
if below 1. For analysis purposes we applied first-order differencing [4,5] to all the time
series, that is, we computed the difference between consecutive observations, which is useful
for removing trends, transforming the price time series into a return series (in future work
we will also consider analysing the raw data set without differencing; however, since our
main aim is to introduce the hypothesis test, for brevity and clarity of exposition we will not
consider this further analysis here). The time series, after differencing was applied to the
raw data sets, are shown in Figure 1.

Table 1. Description of time series data used for experimentation; #Values is the number of values
in the time series.

Currency  #Values From Until Closing Rate
Tether 1264 06 January 2017 15 November 2020 daily
DAI 362 20 November 2019 15 November 2020 daily
uUsDC 772 28 September 2018 15 November 2020 daily
Bitcoin 8929 01 January 2020 07 January 2021 hourly
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Figure 1. The time series of the four cryptocurrencies after differencing was applied to the raw data sets.

The a-stable distribution (or simply the stable distribution) [9] has four parameters: (i)
the characteristic exponent a € (0,2]; (ii) the skewness parameter € [—1,1] (when =0, the
distribution is symmetric); (iii) the scale parameter -y; and (iv) the location parameter 4. It
is heavy-tailed unless « =2, when the stable distribution reduces to the light-tailed normal
distribution with §=0. When « < 2, the stable distribution is heavy-tailed, its variance as
well as all its other higher moments are infinite; in the case of « <1, its mean is also infinite.
In the following we will refer to a distribution as stable when « < 2, and normal when a =2.

In Figure 2, we show the histograms of the marginal distributions of the four cryptocur-
rencies overlaid with the curve of the maximum likelihood fit of the normal distribution
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to the data. It is visually evident that the normal distribution is not a good fit for these
data sets. Kurtosis of a distribution, in this case the marginal distribution of a time series,
indicates peakedness and tailedness of the data relative to the normal distribution [17] (for
ease of comparison with the kurtosis of the normal distribution, which is 3, we will subtract
3 from the kurtosis, giving the excess kurtosis). In Table 2, we show the excess kurtosis of the
four cryptocurrencies, which provides further evidence that none of them follow a normal
distribution, and are in fact heavy-tailed.

Tether DAl
150 150

100 100

50 50

(=]

0.1 -0.05 o] 0.05

Frequency

om

=]
=
=

500 0.005

0 "
6 -2000 -1000 0 1000
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Figure 2. Histograms of the marginal distributions of the four cryptocurrencies, each overlaid with
the curve of the maximum likelihood fit of the normal distribution to the data.

Table 2. Excess kurtosis of the four cryptocurrencies.

Currency Excess Kurtosis
Tether 86.0207
DAI 34.6573
UsDC 10.1905
Bitcoin 59.7350

Next, we fitted the stable distribution to the four data sets using the Matlab implemen-
tation provided by [18], which is based on the empirical characteristic function method [19].
The fitted parameters are shown in Table 3, noting that in all cases 1 <« <2, implying that
the means of the marginal distributions are finite but their variances are infinite.

Table 3. Parameters from fits of the stable distribution to the data of the four cryptocurrencies.

Fitted Parameters for Stable Distribution

Currency « B 104 6
Tether 1.0111 0.0019 0.0011 0.0001
DAI 1.1953 0.0821 0.0016 0.0003
UusDC 1.2259 0.0125 0.0003 0.0000
Bitcoin 1.2261 0.0909 27.9685 7.3644
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5. Application of the Goodness-Of-Fit Hypothesis Test to Cryptocurrencies

We apply the bootstrap goodness-of-fit test presented in Section 3, based on the empiri-
cal survival Jensen-Shannon divergence (£S]S) and Kolmogorov-Smirnov two-sample test
statistic (KS2) metrics, to construct 95% confidence intervals for £S]S (13,P¢) and KSZ(ﬁ,Hp ),
where P is the empirical survival function of the input time series and Py is the survival
function of time series x, for D with parameters ¢. When running Algorithm 1, we computed
1000 bootstrap samples, that is, we set m = 1000. Moreover, it can be seen in Table 4 that,
for all data sets, the estimate p of the AR(1) parameter is less than one in absolute value,
implying that the generated bootstrap time series, 3;, are stationary as required.

Table 4. Estimates p of the parameter p of the AR(1) process for the four cryptocurrencies, noting
that, when |p| <1, the process is stationary.

Currency p
Tether —0.3604
DAI —0.4045
usDC —0.4948
Bitcoin —0.0504

In Tables 5 and 6, we show the results of the bootstrap hypothesis test when employing
the £S]S and KS2 metrics, respectively. In particular, for all data sets, both metrics are within
the 95% confidence interval, and thus with 95% confidence we cannot reject the null hypothe-
sis that the marginal distribution of the input time series comes from an a-stable distribution.

The bar chart in Figure 3 shows that for all four cryptocurrencies the width of the confi-
dence interval for the KS2 goodness-of-fit measure is, proportionately, much larger than that
of the £S]S goodness-of-fit measure. Statistical tests using measures resulting in smaller
confidence intervals are normally considered to be more powerful as this implies, with high
confidence, that a smaller sample size may be deployed [20].

Finally, to provide contrast to the stable distribution result, we now hypothesise that
the marginal distribution of the time series is actually normal (i.e., « =2). We see in Table 7
that, for all four cryptocurrencies, we reject the null hypothesis that the marginal distribution
is normal, as both the £S]S and KS2 are outside their respective 95% confidence intervals.

Table 5. Parametric bootstrap results for the £S]S hypothesis test assuming the marginal distribution
is stable; LB, UB, CI, Mean and STD stand for lower bound, upper bound, confidence interval, mean
of samples and standard deviation of samples, respectively.

Parametric Bootstrap for £SJS Assuming a Stable Distribution
Currency LB of CI UBof CI Width of CI ESJS Mean STD

Tether 0.0006 0.0232 0.0226 0.0090 0.0198 0.0741

DAI 0.0030 0.0345 0.0315 0.0156 0.0188 0.0096
usDC 0.0013 0.0247 0.0234 0.0119 0.0133 0.0063
Bitcoin 0.0004 0.0066 0.0062 0.0061 0.0036 0.0016
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Table 6. Parametric bootstrap results for the KS2 hypothesis test assuming the marginal distribution
is stable; LB, UB, CI, Mean and STD stand for lower bound, upper bound, confidence interval, mean
of samples and standard deviation of samples, respectively.

Parametric Bootstrap for KS2 Assuming a Stable Distribution
Currency LB of CI UBofCI Width of CI KS2 Mean STD

Tether 0.0014 0.0308 0.0294 0.0139 0.0289 0.0996

DAI 0.0029 0.0532 0.0503 0.0358 0.0299 0.0136
uUsDC 0.0035 0.0374 0.0339 0.0219 0.0210 0.0093
Bitcoin 0.0008 0.0103 0.0095 0.0088 0.0057 0.0025

40 T T

& 8 &

Percentage difference in confidence interval width
r~
S

Tether DAl usbc Bitcoin
Cryptocurrency

Figure 3. How much larger, proportionately, is the width of the KS2 confidence interval compared
to that of the £S]S?

Table 7. Parametric bootstrap results for the £5]S and KS2 hypothesis tests assuming the marginal
distribution of the time series for the four cryptocurrencies is normal; LB and UB stand for lower and
upper bounds of the confidence intervals, respectively, and we abbreviate £5]S to £ and KS2 to K.

Parametric Bootstrap Results Assuming a Normal Distribution

Currency LB-& UB-& ESJS LB-K UB-K KS2
Tether 0.0001 0.0132 0.1440 0.0004 0.0182 0.2162
DAI 0.0003 0.0240 0.1160 0.0006 0.0330 0.1665
UsDC 0.0002 0.0147 0.0830 0.0002 0.0227 0.1330
Bitcoin 0.0001 0.0067 0.1218 0.0000 0.0085 0.1708

6. Concluding Remarks

We presented a proof of concept of the bootstrap-based goodness-of-fit test on four
cryptocurrency time series, concentrating on the a-stable distribution, which allows for the
modelling of heavy-tailed data. Our results demonstrate that, when first-order differenced,
the marginal distributions of all four time series are all a-stable with & < 2. Moreover, for
both £5]S and KS2, the confidence level of the bootstrap-based test is at the 95% level.
Furthermore, £S]S is more powerful than KS2 on these data sets, since the widths of the
derived confidence intervals for the KS2 measure are, proportionately, much larger than
those for the £S]S measure.
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We emphasise that the proposed goodness-of-fit test may be applied to any marginal
distribution, not just to the heavy-tailed stable distributions. Thus, there is a need to further
establish the validity of the proposed hypothesis test on more data sets and on a variety of
distributions, which may or may not be heavy-tailed. In addition, it would be useful to look
at the assumptions regarding the process underlying the generation of the time series, and
to ascertain how this affects the hypothesis test.
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Abstract: This paper addresses wind speed prediction in the dynamic line rating (DLR) environment.
We have described architecture of the DLR system as well as the main characteristics of nonlinear
forecasting models, such as neural and fuzzy logic networks. Described models were tested and
compared using real data (time series with data on wind speed, wind direction, air temperature,
and solar radiation). The goal was to increase the accuracy and time of short-term prediction. The
results show that neural networks outperform fuzzy logic and that the prediction time interval can
be extended up to several hours, with no major compromise of the accuracy.

Keywords: dynamic line rating; fuzzy logic; neural networks; prediction

1. Introduction

Dynamic Line Rating (DLR) is used to dynamically increase the transmission capacity
of overhead lines (OHL), taking into account their thermal state and ambient conditions.
The DLR system provides more efficient OHL's load utilization and improves existing
assets utilization, which leads to overall cost decrease, and also reduces greenhouse gas
emissions (with the integration of renewable energy resources). It is usually integrated
with the power utility’s supervisory control and data acquisition (SCADA) system, but
a stand-alone solution is also possible [1,2]. Information obtained from the DLR system
can further be processed by the utility’s Energy Management System (EMS).

Besides the main benefit, the increase of the OHL's transmission capacity, DLR system
optimizes the transfer of energy from renewable sources by predicting the production of
energy that comes from these sources. Therefore, DLR system represents an important part
of the energy management system.

Forecasting methods enable the full utilization of DLR systems, allowing operators
to respond in a timely manner in the case of unexpected situations, as well as operational
planning, particularly in the case of renewable energy sources (especially wind turbines)
connected to the grid, and they can also help with the energy trade.

Forecasting is one of the smart grid’s key functionalities that can help with the network
load balancing, optimization of electricity distribution and failure management. Wind fore-
casting is very important for managing the production of electricity in wind farms, as well
as for the forecasting of the allowed transmission line’s current load [3]. Due to its spatial
and temporal variability, it is difficult to accurately predict the wind parameters (speed
and direction). Different methods are used in practice, like numerical weather prediction,
statistical methods that include linear, nonlinear models and hybrid methods, whereas the
statistical linear regression models cannot be used for more accurate forecasting, especially
in the case of rapid and significant changes of wind parameters. Therefore, nonlinear mod-
els such as artificial neural networks and models with fuzzy logic are used. These models
are particularly interesting for short-term forecasting (1-4 h). It should be emphasized that

81

Eng. Proc. 2021, 5, 11. https:/ /doi.org/10.3390/engproc2021005011

https:/ /www.mdpi.com/journal/engproc



Eng. Proc. 2021, 5,11

20f9

the result of the allowed current load forecasting is not supposed to be the value nearest
to the one that is obtained by measuring in real time. It should rather provide for a lower
limit of the permissible load, such that the transmission system operators (TSO) can ensure
that they have the lowest value of the allowed load in real time.

This paper describes basic characteristics of the nonlinear prediction models, as well
as the architecture of the DLR system used for the analysis of the described prediction
models. Test results of wind speed prediction, using the real data, i.e., time series with
data on wind speed, wind direction, air temperature, and solar radiation were presented.
The emphasis is on increasing the accuracy and time of short-term prediction, so several
models based on the neural networks and fuzzy logic were tested and compared.

2. Tested DLR System

The architecture of the DLR system used for the testing consists of three main parts:
(1) a measuring unit (a temperature sensor unit and three weather stations); (2) a DLR
server, and (3) work stations; as depicted in Figure 1.

Work Stations
Maintenance
Configuration
Analysis
Technical Support

DLR system
DLR Server
(Acquisiton Server)
SCADA/EMS
Servers

I I I TCP/IP
A

Z @ @ W@

GPRS Measuring unit (Field site)

Figure 1. Tested DLR architecture.

A measuring unit consists of sensor unit (SU) and three weather stations (WSs). The
sensor unit is mounted on the transmission line and it measures line current, conductor
temperature, tension, and/or sag. The weather station is located near the sensor unit
(usually mounted on the tower of the overhead line), and it measures ambient parameters
(air temperature, solar radiation, and wind speed and direction).

The communication between the sensor unit and acquisition server is provided with
GPRS (General Packet Radio Service). DLR server is connected to a SCADA system via
secure TCP/IP (Transmission Control Protocol/Internet Protocol) connection. The sensors
unit’s locations are determined by the minimal wind speed and minimal ground clearance
(critical spans). Data collected from measuring units are sent to the DLR server, which
processes the data, and determines the conductor ampacity, based on actual conditions of
the OHL and ambient parameters. Processed data, which may include alarms, are sent
to the control system (SCADA) and work stations. Real-time monitoring of particular
OHL's temperature and ampacity, maintenance and configuration of measuring units are
performed by work stations.

With the structure shown, the DLR system brings different benefits such as more effi-
cient utilization of transmission line’s load and operational flexibility of the transmission
system. It improves utilization of the existing assets, reduces greenhouse gas emissions,
through optimal integration of renewable energy resources, and improves the security of
the power grid’s operation in normal operating conditions.
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3. Wind Speed Prediction Modeling
3.1. Artificial Neural Networks

Artificial neural networks (ANNSs) are widely applied to real-life issues in different
areas such as economics, education, engineering, etc. They can be also used for optimization,
intrusion detection, and data classification [4]. Artificial neural networks have already been
utilized for wind speed and wind power prediction, since they are great identifiers of trends
in data and patterns [5]. Several types of neural networks are usually applied for wind
speed prediction such as: feed-forward backpropagation (FFBP), multilayer perceptron
(MLP), recurrent neural networks (RNN), and radial basis function neural networks (RBFN).

ANN:Ss, by definition, represent a massively parallel distributed processor with the
natural ability to memorize experimental knowledge and to use it later. They can learn
from examples (past data), recognize a hidden pattern in historical observations, and
use them to forecast future data values. They consist of several layers of simple process
elements (neurons) that are interconnected. Signals travel from the input layer to the
output layer, usually after traversing one or multiple hidden layers. Connections are
usually characterized with weights that adapt (increase or decrease) as learning process
proceeds. Neurons are the basic elements, and represent the independent computational
units [6]. They process received inputs and calculate the outputs by non-linear functions of
the sum of the inputs (Figure 2). The threshold is used in such a way that a signal is sent
only if the resulting sum of the signals crosses that threshold.

X1 X2
W3
w
1 - threshold
Summing Activation
. . . —>output
junction function P

Figure 2. Neuron—the basic element of the neural network.

Mathematical representation of the neuron function is:

Yk = f(zyzl Wik * Xj + bk)/ ¢))

where x; are the input values, wj, are connection weights, by is the bias value, yj is the
output of the neuron, and f is the neuron transfer function.

Neural networks used in this research are FFBP and MLP. FFBP network, presented
in Figure 3, is one of the most frequently used types of neural networks for short term
predictions of the wind parameters. The advantage of this network is the simple process of
parameters setting. Training is performed with a set of input patterns to be learned and the
desired outputs for each pattern. Once trained, this type of network can recognize similar
patterns very quickly, or the patterns obscured with noise. The back propagation training
algorithm is designed to minimize the mean square error across all training patterns [7].
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Input nodes

Hidden nodes

Connection

Output nodes weights

Figure 3. Feed forward neural network.

MLP represents a subset of feed-forward ANN and the most widely-used ANN. It
consists of a minimum of three layers (input, output, and hidden layers) [8]. MLP is based
on the concept of a feed-forward-flow of information (i.e., the network is organized in
an ordered way) and can perform static mapping between the input and the output. It
uses a backpropagation for training, which is a supervised learning technique. MLP is
fully-connected and each connection between neurons from different layers is associated
with a certain weight. MLP can learn non-linear models and models in real-time (on-line
learning). The main disadvantages of this network are that the MLP networks with hidden
layers produce a non-convex loss function, and there is a possibility of obtaining multiple
local minimums. Consequently, in the case of different random weight initializations there
is a possibility of obtaining different validation accuracies. Some additional complexity
brings the MLPs sensitivity to the feature scaling, and the need to adequately tune a range of
hyperparameters, namely the number of hidden neurons, number of layers, and iterations.

3.2. Fuzzy Logic Networks

Fuzzy logic models use sets of data in which the affiliation of the set is not denoted by
0 and 1, but instead it uses values from the interval between 0 and 1. Member functions
are used to calculate the degree of data belonging to a given set. In addition, logical rules
are used to define the relationship between input and output variables. Depending on the
structure of the rules, there are two types of these models: Mamdani and Takagi Sugeno.
The output is calculated as the weighted average contribution of each rule. According to
the learning method, these models can be classified into five groups: neuro-phase models,
genetic algorithm models, clustering algorithms, gradient descent algorithm models, and
models with space separation algorithm [9,10].

ANFIS (Adaptive Network-based Fuzzy Inference System) model is one of the fuzzy
models frequently used for wind speed and wind power prediction [11]. ANFIS is an ANN
based on Takagi-Sugeno fuzzy inference system. It consists of five layers. The first layer is
called the fuzzification layer and it takes the input values and determines the membership
functions belonging to them. The second layer, denoted as a rule layer, generates the
firing strengths for the rules. The third layer normalizes the computed firing strengths.
The fourth layer takes the normalized values and the consequence parameters and re-
turns defuzzificated values, which are then passed to the fifth layer that returns the final
output [10,12]. In this model, in addition to the number of variables, the number and
parameters of member functions, the number of rules and parameters of linear functions,
are also determined. For wind speed prediction, some authors used ANFIS model with
artificial neural network [13,14].

4. Testing, Results and Discussion

Testing was performed based on the meteorological database that contains meteoro-
logical observations from a weather station located on the transmission line tower, which
is the part of the installed DLR system. The collected data cover ten days in April of 2018.
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The training sequence includes all the data from midnight on 10 April to 6 p.m. (4 p.m.)
at 19 April, depending on the length of the test sequence. The test sequence covers the
period from 19 April at 6 p.m. (4 p.m.), depending on the desired length, to 19 April at
10 p.m. The time resolution of the data is 5-min. All testing was performed in the R-Studio
development environment.

We have tested the following types of models: FFBP, MLP and ANFIS. The “neuralnet”
library was used to create a FFBP neural network relying on the “back propagation” or
“resilient back propagation” methods, with or without weight backtracking, as well as the
modified globally convergent version. MLP model relies on the use of the “nnet” library,
while the testing of ANFIS model was performed using the “frbs” library of functions,
that includes several subtypes that differ in the methods for adjusting model parameters.
The testing was performed with the data taken at 5-min intervals, for different numbers
of prediction points (8, 16, 32, 40 and 64) and with two types of input data: (1) different
meteorological data as ambient temperature, solar radiation and wind speed and wind
direction, and (2) delayed series of wind speed measurements for one, two and three 5-min
measurement intervals. In the case of tested fuzzy-based model, there is also the possibility
of normalizing the input data, changing of the number of prediction points, as well as
choosing the model type.

The comparison is performed by the means of mean absolute error (MAE) value,
depending on the model type, number of prediction points (8, 16, 32, 40 and 64), and the
length of the test sequence (4 and 6 h), and by matching the actual data values of the wind
speed with the predicted ones.

The examples of generated neural networks for eight prediction points for some tested
models are presented in Figure 4.

@

(b) (0)

Figure 4. Neural network with 8 prediction points: (a) FEBP with 4 different inputs; (b) FFBP with 3 different inputs types;

(c) FFBP with 3 same delayed inputs types.

The test results of all tested models are presented in Tables 1 and 2, showing the results
obtained for different number of prediction points, as well as for different lengths of the test
sequence (4 h and 6 h, respectively). Table 1 shows that for the first four models (FFBP and
MLP), the MAE does not change very much as the number of prediction points increases.
Testing also showed that the change of parameters values of “neuralnet” functions for
FFBP model does not affect much the change of the MAE. When increasing the number
of neurons in the hidden layer, it reduces the MAE value, but only to the second decimal
place, while at the same time it prolongs the modeling time. In the case of 6-h test sequence,
with the number of prediction points increased to 64 points and sudden wind speed jumps,
in the test sequence; the results show the increase of the MAE value, as well as stronger
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dependence on the number of prediction points (Table 2). The dependence of the MAE
value on the model type is not very pronounced, while there is a noticeable dependence
on the number of prediction points. The value of the MAE for the ANN models does not
depend much on the type of the model and the number of prediction points, only if there
are no sudden changes of the wind speed value in the test sequence that are greater than
2 m/s. This can be clearly seen from the results shown in Table 1.

Table 1. MAE values for different tested models and different number of prediction points with
a 5-min resolution, and a 4-h test sequence length.

Prediction Points

Tested Models
8 16 32 40

FFBP with four different input types 0.2796 0.2969 0.2755 0.2875
FFBP with three different input types 0.292 0.2586 0.2557 0.2816

FFBP with three same inputs types 0.269 0.25 0.219 0.263

MLP with three same inputs types 0.2786 0.2718 0.2475 0.2879

ANFIS with three dlfferept 1r}puts 0316 0.5069 070244 0.6921

types and with normalization

ANFIS with three same inputs types 0317 0.309 0.679 0.345

and with normalization

Table 2. MAE values for different tested models and different number of prediction points with
a 5-min resolution, and a 6-h test sequence length.

Prediction Points
Tested Models 1ci !

8 16 32 40 64
FFBP with four different input types 0.9267 0.937 0.6755 0.566 0.4615
FFBP with three different input types 0.895 0.947 0.653 0.568 0.4662
FFBP with three same inputs types 0.8353 0.8956 0.6679 0.5827 0.4713
MLP with three same inputs types 0.886 0.879 0.6779 0.594 0.4764

ANFIS with three different inputs types

. o 1.03369 1.6294 0.644 0.6035 1.226
and with normalization

ANFIS with three same inputs types

. . 0.9919 0.9498 0.961 0.6268 0.6586
and with normalization

For the ANFIS fuzzy logic model, for both test sequence lengths (4 and 6 h), test
results have showed that the MAE depends not only on the way the model is generated,
but also on the number of points at which the prediction is made. In comparison with the
neural networks models, this dependence is here noticeable even with a shorter length of
the test sequence. In the case of the large number of prediction points, the tested model
does not provide good results, as it gives a constant output value. The best results were
obtained with the ANFIS model generated with delayed inputs of the same type, and
applied normalization of inputs. The test results have shown that this type of fuzzy model
is not suitable for prediction intervals longer than 1.5 h.

Figures 5 and 6 show the prediction results for different testing models and different
number of prediction points, which are grouped based on the test sequence length. Figure 5
presents the 4-h test sequence (a total of 48 prediction points with a resolution of 5 min),
where graphs present the actual wind speed values as well as the predicted values. Figure 6
shows the results of the extended 6-h long test sequence (with a total of 72 prediction points
and 5-min resolution). Figure 6 shows the results of the extended, 6-h long test sequence
(with a total of 72 prediction points and 5-min resolution).
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Figure 5. Prediction with the 4-h test sequence: (a) FFBP with 4 different input types; (b) FFBP with 3 different input types;
(c) FFBP with 3 same input types; (d) MLP; (e) ANFIS with 3 different input types; (f) ANFIS with 3 same input types.
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Figure 6. Prediction with the 6-h test sequence: (a) FFBP with 4 different input types; (b) FFBP with 3 different input types;
(c) FFBP with 3 same input types; (d) MLP; (e) ANFIS with 3 different input types; (f) ANFIS with 3 same input types.
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We can say that when there are no sudden jumps in the wind speed values (greater
than 2 m/s) in the test sequence, the number of prediction points for neural network models
does not affect much the prediction accuracy, so the prediction can be safely prolonged to
5 h. For the mentioned condition, the prediction accuracy is also not significantly affected
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by the parameters of the model function, i.e., the number of neurons in the hidden layer of
the neural network.

5. Conclusions

In this paper, we have shown the analysis and testing results of the FFBP, and MLP
types of neural networks, as well as the ANFIS type of fuzzy logic network, in order to
investigate which type has best performance regarding the minimal absolute error and
prediction duration of maximum five hours. Test results have shown that both FFBP and
MLP types have similar and good performance especially when the test sequence doesn’t
contain changes of wind speed larger than 2 m/s. Neural networks also outperformed the
tested ANFIS fuzzy logic model.

Future work will be focused on the analysis of additional neural network models such
as the generalized feed-forward neural network (GFNN) and the recursive radial basis
function neural network (RRBFNN), as well as some hybrid models.
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Abstract: This work represents any distribution of data by an Intervals” Number (IN), hence it
represents all-order data statistics, using a “small” number of L intervals. The INs considered are
induced from images of grapes that ripen. The objective is the accurate prediction of grape maturity.
Based on an established algebra of INs, an optimizable IN-regressor is proposed, implementable
on a neural architecture, toward predicting future INs from past INs. A recursive scheme tests the
capacity of the IN-regressor to learn the physical “law” that generates the non-stationary time-series
of INs. Computational experiments demonstrate comparatively the effectiveness of the proposed
techniques.

Keywords: agriculture 4.0; big data; computational intelligence; Intervals’ Number (IN); non-
stationary; prediction regressor model; time-series

1. Introduction

There is a long-term interest in extending the fourth industrial revolution (Industry
4.0) to agricultural production [1]. Regarding viticulture, in particular, the interest is in
minimizing the human presence in the vineyard during production. In the aforementioned
context, the accurate prediction of the grape maturity is critical in order to timely engage
both human labor and equipment for harvest. Newly introduced technologies from asso-
ciated areas such as the Internet of Things (IoT), Big Data, and Artificial Intelligence (AI)
can be combined with autonomous robotic systems in order to collect and interpret data,
monitor and evaluate crop status, and automatically plan effective and timely interventions.
An early in-field assessment of fruit maturity level and therefore an estimation on har-
vest time has the potential to enable sustainable farming by balancing between economy,
ecology, and optimal crop quality [2]. However, the development of autonomous robots
for agricultural applications faces the daunting scale of the data involved [3]. Our special
interest here is in the prediction of grapes maturity level, intended to be integrated into an
autonomous grape-harvester robot [4].

Fruit maturity can be studied as a time-series, where the sequence of maturity data,
mj, my, ..., mp is indexed in time. The objective is to predict future fruit’s maturity
level. A number of different models have been used including linear ones such as classic
autoregressive (AR), moving average (MA), autoregressive moving average (ARMA),
and autoregressive integrated moving average (ARIMA) models; however, those models
typically assume stationary time-series [5,6], and they may fail with non-stationary time-
series regarding maturity, unless a very high order linear model is used to gain an insight
into the system and its underlying laws. The latter needs extensive learning which calls
for long processing time as well as computational resources. Therefore, nonlinear models,
such as Neural Networks (NN), have been proposed to counter forecasting problems [7-9].
The most straightforward approach for an NN model to learn a time-series is to provide
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the samples in time to the input of the NN. However, if the time-series are complex, then
more past samples are needed; the latter usually results in a complex system of multiple
inputs and weights.

This paper uses Intervals’ Numbers (INs) for predicting the maturity of grapes based
on real-world measurements by a parametric IN-regressor model implementable by a
neural network architecture. Note that INs have originally been introduced, under the name
Fuzzy Intervals’ Numbers (FINSs), in the context of fuzzy set theory [10]. The interpretation
of INs was later extended, in the context of the Lattice Computing (LC) information
processing paradigm [11]. In particular, an IN has been defined as a mathematical object
that can be interpreted either as a fuzzy interval or as a distribution of samples; the latter
interpretation implies that an IN can potentially represent all-order statistics [11]. The
mathematical properties of the set of INs have been studied for a long time. An algebra
of INs has been established [10,12,13]. INs have been employed in logic and reasoning
applications [14,15]. Furthermore, they have been employed in interpolation/extrapolation
applications [16].

INs have already been applied to time-series classification applications regarding
electroencephalography (EEG) signals [17]. Recently, INs have been employed toward
predicting the maturity of grapes [18]. This work is a follow-up of [18] with the following
novelties: first, additional computational experiments are carried out using (1) the previous
three and four INs to predict a future IN, (2) fewer data for training; second, a recursive
scheme here demonstrates an IN-regressor’s capacity to learn the physical “law” that
generates the non-stationary time-series of INs regarding grape maturity; third, the problem
of time-series forecasting in agriculture is described, in mathematical terms, as a non-
stationary time-series forecasting problem thus bringing INs to the foreground as an object
for time-series processing in other domains with the advantage that an IN represents a
distribution of data including all-order data statistics.

The layout of the paper is as follows: Section 2 presents two IN-regressor models for
prediction. Section 3 details experimental application results. Finally, Section 4 summarizes
our contribution, and it discusses potential future work extensions.

2. An IN-Regressor Parametric Models for Prediction

Figure 1 displays an IN in its two equivalent representations, namely the membership—
function-representation in Figure 1a and the interval-representation in Figure 1b. More
specifically, the membership—function—representation is identical to a probability distribu-
tion function; therefore, it is amenable to interpretations, whereas its equivalent interval-
representation lends itself to useful algebraic operations in the context of mathematical
lattice theory.

N
o " ) 3

Intensity value Intensity value

(a) (b)

Figure 1. Two equivalent representations of an IN: (a) The membership—function-representation, which is identical to a

probability distribution function, and (b) the interval-representation which lends itself to useful algebraic operations in the

context of mathematical lattice theory.
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The space of INs is known to be a cone in a linear space. Therefore, linear models such
as ARMA models can be developed. The work in [18] has proposed a nonlinear model
in the space of INs implemented by three-layer feed-forward neural network, namely
IN-based Neural Network or INNN for short, with N = 2 inputs. In this work, the number
of inputs of the INNN is increased to N as shown in Figure 2. More specifically, the input
to INNN is an N-tuple (Fi41, ..., Fxin) of INs, where k € {0, ..., n — N} and n is the
total number of INs in a time-series Fy, ..., F,. The INNN is trained to learn mapping
an N-tuple (Fy.1, ..., Fx4n) to the true output IN Fi,n41. In other words, the nonlinear
regressor model implemented by the INNN is trained to learn the physical “law” that
generates the non-stationary time-series of INs regarding grape maturity. More specifically,
a sliding window of size N INs is used at times k€{0, ... , n — N} to generate an N-tuple
(Fi+1, - - Fran) of INs. We point out that an IN in this work represents a grape image data
regarding the maturity of a grape bunch as described in [18].

v1,2(.)

Figure 2. Given a time-series of 7 INs samples, an N x K x 1 forward neural network architecture,
which operates on INs, can implement the proposed IN-regressor. The output £ | 4 at sampling
time k + N, where k € {0, ..., n — N}, is an estimate/prediction of the true IN Fy,x,1 at the next
sampling time.

The architecture in Figure 2 is trained to learn a difference equation that calculates
an estimate ﬁk+N+1 of the true future IN Fj N4 based on N past INs Fy,q, ..., Fin-
Learning involves the calculation of a set of parameters that minimize the error between the
estimate Fy, 1 and the true output IN Fj, 1 induced from a training image. Algorithm 1
describes the training of the INNN based on a genetic algorithm (GA) [18]. In particular,
error minimization is pursued by a GA whose cost function is the metric distance between
the estimate Fj,n1 and the true output IN Fy,y,1. The population of chromosomes is
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a number of parameters including: (a) the set of weights of the neural network, (b) the
parameters of the activation function of each neuron and (c) the set of biases for all neurons.
In this case, the activation function is a sigmoid.

Algorithm 1. IN-Regressor Training by a Genetic Algorithm (GA)

Consider the training data set.

Generate an initial population of parameter sets.

for g generations do

Evaluate individuals using the distance between the IN-regressor computed output IN
(prediction) estimate and the true output IN.

Apply the genetic operators.

6.  end for

Ll i

o

In contrast to the INNN model presented in [18], which used only measured INs as
inputs, the IN-regressor model in this paper uses, in addition, previous predictions as
inputs to calculate predictions for future days. Figure 3 delineates the operation of the
recursive IN-regressor with N inputs. In other words, for the calculation of a maturity
prediction for a particular day, one or more of the input INs is actually a previous prediction.
In this manner, the recursive scheme in Figure 3 tests the capacity of the proposed IN-
regressor to learn the physical “law” that generates a time-series of INs regarding grape
maturity.

Friq
AL

Frio Frin+1

— IN-regressor

Frin

Figure 3. Given a time-series of n INs samples, a recursive IN-regressor estimates/predicts IN
ﬁk+N+1 at time k + N, where k € {0, ..., n — N}, based on past IN predictions such as ﬁk+N etc.

In terms of Computational Intelligence, the proposed IN-regressor model can be
interpreted as a multilayer Fuzzy Inference System (FIS) for deep learning. In conclu-
sion, knowledge is induced from the data in the form of rules; furthermore, fuzzy lattice
reasoning (FLR) explanations of the IN-regressor answers can be given as demonstrated
below.

3. Experimental Results

Grape maturity at harvest time is based on the composition balance of several maturity-
related chemical compounds and sensory attributes such as color and taste [19]. In order to
exploit composition changes and decide on optimal harvest time, it is necessary to perform
sensory assessments, i.e., ripeness evaluation, optimally by using non-destructive methods.
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Toward this end, Red-Green-Blue (RGB) color imaging has been used to calculate the color
intensity distribution on grape images while ripening. More specifically, the green channel
histogram was represented by an IN [18].

This work extends the IN-regressor in [18] whose results are partly presented below
for comparison reasons. More specifically, in [18], only two inputs were used, i.e., N = 2 in
Figure 2; whereas, in this work, additional experiments were carried out using both N =3
and N = 4 in order to study the robustness of the prediction when incrementally more past
data were used for prediction. Moreover, in [18], three different training modes were used,
namely (a) only One (the first) data sample, (b) Every Other data sample, and (c) nearly the
First Half the data samples; whereas, in this work, an additional training mode was used,
that is, (d) nearly the First Third of the data samples were also employed for training in
order to study the robustness of the prediction when incrementally more data were used to
train the IN-regressor. An IN-regressor was trained by the GA in Algorithm 1.

A trained IN-regressor was tested in two different modes, namely “forward” and
“recursive” using all the remaining (non-training) data. During “forward” testing, the
N-tuple of INs inputs to the IN-regressor included exclusively real (true) INs induced from
images, whereas, during “recursive” testing, the N-tuple of INs input to the IN-regressor
progressively included ever more of its previous IN predictions as shown in Figure 3. Both
“forward” and “recursive” testing were preceded by the same training.

Each different training/testing mode has a particular experimental value as explained
in the following. More specifically, One, First Third, and First Half modes use progressively
ever more training data; the Every Other mode indicates the effects of reducing the sam-
pling rate by 2, by sampling every other day. Finally, the recursive scheme, in particular,
demonstrates an IN-regressor’s capacity to learn the physical “law” that generates the
time-series of INs regarding grape maturity toward achieving long-term predictions. In the
experiments below, an interval-representation of an IN included L = 32 levels; moreover,
the time-series of n = 13 INs in [18] was used.

The results for N = 2 have been detailed in [18]. Tables 1-4 detail the results for N = 3.
Table 5 summarizes the results for all training/testing modes for all N =2, N =3, and N = 4.
Table 5 clearly demonstrates that, as N increases, the training error decreases as well as the
corresponding standard deviation due to more accurate predictions. A similar observation
holds for the testing error, for the same reason, even though the testing error is significantly
larger with significantly larger standard deviation. For constant N, as the number of
training data increases, so does the error, due to “curve-fitting” problems; nevertheless,
often the corresponding standard deviation appears to decrease. However, an IN-regressor
demonstrates a good capacity for generalization on the testing data because, for constant
N, as the number of training data increases, the error decreases even though it is clearly
larger than the corresponding training error. Especially promising is the performance of the
IN-regressor in the recursive mode for N = 4 when the First Half of the data were used for
training. Then, an average of 6.65 was recorded with a standard deviation of 2.32 recorded
compared to 4.30 and 0.96, respectively, recorded in the forward mode. The significance
of the latter is that the proposed IN-regressor could potentially make accurate long-term
predictions, thus providing time to engage both human labor and equipment for grape
harvest.
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Table 1. Training/ Testing distance error Average and Standard Deviation using N = 3 inputs. The training set included only
one sample, i.e., a triplet of INs as input and one output.

Training Testing
Forward Recursive
Data Error Data Error Data Error
(F,F, F3) = Fy 0.20
(R, F3,Fy) — Fs 8.53 (B, F,B) - F 13.05
(F3,Fy, Fs5) — Fe 10.68 (F3,Fy, F5) — Fo 14.97
(Fy, Fs5,Fs) = F7 12.40 (Fy b5, F) = F 10.61
(Fs5,Fs,F7) — Fg 9.66 (E5,E,F) — F 12.02
(Fs,F7,F3) — Fo 13.54 (B, B, B5) =+ Fy 19.87
(F7,F3,Fy) — Fpg 15.41 (F7, s, Fy) — Fio 27.01
(Fg, Fy, Fig) — Fi 15.00 (Fs, Fo, Fig) — Fnn 30.48
(Fo, Fio, F11) — Fi2 2.60 (Eo, Fyo, 1) — Fp 19.27
(Fio, F11, F12) — Fis 327 (Fio, Bi1, Fip) — Fiz 21.36
Average 0.20 10.12 18.74
Standard Deviation 0 4.68 6.82

Table 2. Training/ Testing distance error Average and Standard Deviation using N = 3 inputs. Every Other data sample, i.e.,
a triplet of INs as input and one output, was used for training.

Training Testing
Forward Recursive
Data Error Data Error Data Error
(F, B, F) = 2.29
(Ey, F3, Fy) — Fs 4.84 (Fy, F3, Fy) — F5 5.76
(F3,F4, F5) — F 4.56
(Fy, F5,Fg) = F7 4.67 (Fy, F5,E) = F 6.22
(Fs,Fs, F7) — Fg 1.77
(Fs,F7, F3) — Fo 3.53 (Fo, F7, F3) — Fo 23.36
(Fy, Fs, F9) — Fyp 2.87
(Fs, Fy, Fio) — Fi 5.26 (Fs, Fo, Fyp) — Fiy 10.02
(Fy, F19, F11) — Fio 2.93
(Fio, Fi1, F12) — Fis 5.30 (Fio, Fi1, Fi2) — Fiz 3.19
Average 2.89 4.72 9.71
Standard Deviation 1.05 0.71 8.01
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Table 3. Training/ Testing distance error Average and Standard Deviation using N = 3 inputs. The training set included
approximately the First Third of the total number of data samples.

Training Testing
Forward Recursive

Data Error Data Error Data Error
(F,F,F3) = 4 2.69
(F, F3,F) = F5 0.77
(F3,Fy, F5) — F 3.62
(Fy, F5,F) — F7 1.10

(Fs,Fs, F;) — Fg 423 (F5,Fs, F7) — Fg 8.12

(Fs,F7,F3) — Fy 3.97 (Fs, F7, Fs) — Fo 14.48

(F7, Fg, Fg) — Fyp 5.74 ( 8,1—"9) — Fjg 20.75

(Fs, Fo, F19) — Fi1 5.73 ( Fyp) = Py 24.01

(Fy, F9, F11) — Fio 6.37 ( 10,1-"11) — Fip 22.20

(Fro, F11, F12) — Fi3 8.67 ( O,FH,FH) — Fi3 22.34

Average 2.05 5.78 18.65

Standard Deviation 1.34 1.69 6.12

Table 4. Training/Testing distance error Average and Standard Deviation using N = 3 inputs. The training set included
approximately the First Half of the total number of data samples.

Training Testing
Forward Recursive

Data Error Data Error Data Error
(F,F,F3) — 3.15
(F, F3,F) — F5 0.61
(F3,Fy, F5) — F 4.71
(Fy, F5,F) — F 1.20
(F5,Fs, F7) — Fg 1.59

(Fs,F7,F3) — Fy 6.56 (F,Fr,E5) =+ Fy 6.93

(F7, Fs, F9) — Fyp 7.07 (F, Fs,Fg) — Fjg 10.15

(Fs, Fo, F19) — Fi1 6.81 ( £, Fm) — Fq 13.90

(Fy, F9, F11) — Fio 8.12 ( 10,1—"11) — Fip 11.09

(Fyo, F11, F12) — Fi3 3.64 ( 10, F11,F12) — Fi3 13.06

Average 2.25 6.44 11.03

Standard Deviation 1.66 1.67 2.73
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Table 5. Training/Testing distance error Average and Standard Deviation (Std) using N € {2,3,4} inputs for four training
modes: (1) One sample, (2) Every Other sample, (3) First Third of the samples, and (4) First Half of the samples.

N Training Mode Training Error Testing Error (Average/Std)
(Average/Std) Forward Recursive

2 (1) One sample 0.10/0 11.45/9.17 37.87/9.96
(2) Every Other sample 3.21/1.26 10.54/8.74 17.85/11.93
(3) First Third of the samples 5.97/3.28 7.92/3.43 18.54/4.53
(4) First Half of the samples 5.15/3.79 6.84/4.12 7.57/4.87

3 (1) One sample 0.20/0 10.12/4.68 18.74/6.82
(2) Every Other sample 2.89/1.05 4.72/0.71 9.71/8.01
(3) First Third of the samples 2.05/1.34 5.78/1.69 18.65/6.12
(4) First Half of the samples 2.25/1.66 6.44/1.67 11.03/2.73

4 (1) One sample 0.14/0 14.09/3.68 20.21/8.92
(2) Every Other sample 1.95/0.48 4.99/1.95 9.64/4.66
(3) First Third of the samples 0.93/0.32 10.85/4.25 25.89/2.75
(4) First Half of the samples 1.64/0.99 4.30/0.96 6.65/2.32

An N-tuple of INs input to the IN-regressor followed by its corresponding output IN
can be interpreted as a fuzzy rule (i.e., knowledge), of a “Mamdani type” FIS, induced from
the training data as indicated in Figure 4, where Figure 4a shows the rule’s antecedent and
Figure 4b shows the rule’s consequent.

1.0 1 — Estimated output IN
—-—- Real output IN

0.8

0.6 4

0.4 4

0.2 4

0.0 1

25 50 7Y5 160 12IS 1%0 1';5 260
Intensity value

(a) (b)

Figure 4. The first three INs (a) the first three INs Fj, F, and F3, from top to bottom, of the considered time-series of Ins;
(b) estimated out IN £, (shown in solid intervals) computed in the first line of Table 4 versus the real (true) output IN Fy
(shown in dashed intervals).

4. Discussion and Conclusions

Agriculture 4.0 [1], including viticulture, calls for intelligent decision-making. Of
special interest is the accurate prediction of the grape maturity in order to timely engage
both human labor and equipment for harvest. This work has proposed a parametric
regressor, namely IN-regressor, model for grape maturity prediction.

The IN-regressor processes Intervals” Numbers (INs) with the advantage that an
IN represents a distribution of data including all-order data statistics. Hence, instead of
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References

representing the maturity status of grapes by few numbers, e.g., the mean and standard
deviation of a number of measurements, the maturity status of grapes is represented by a
distribution of measurements, i.e., all-order data statistics, toward better decision-making.
A neural network architecture, namely INNN, with N inputs (INs) and one output (IN)
was shown to implement the proposed IN-regressor.

Extensive computational experiment here has demonstrated that an IN-regressor
can accurately predict the grape maturity status, especially for larger N as well for more
training data. Therefore, the IN-regressor be used for predicting the grape harvest time.
Furthermore, especially promising is a recursive IN-regressor scheme for long-term predic-
tion.

The proposed IN-regressor has been interpreted as a deep learning FIS with a capacity
to suggest explanations for its answers by “Mamdani type” fuzzy rules.

Technical future work will pursue one (or more) neural network layer(s) in the input
as a filter that normalizes the effects of taken a grape image at different azimuth /altitude
/distance /lighting conditions, etc. Furthermore, a faster algorithm for optimization will
be pursued instead of a GA. An extension of this work can also demonstrate far more
experimental results using data already acquired on-the-field.

As grapes mature, their image statistics change with time. Therefore, since an IN
represents a distribution of image statistics regarding grape maturity, it follows that a
time-series of INs by definition represents a non-stationary time-series process. Hence, the
proposed IN-regressor can be used for predicting a future probability distribution function
from past probability distribution functions in a non-stationary time-series. Therefore,
apart from agriculture, this work has presented potentially useful instruments for other
application domains including the environment [20], medicine [21], econometrics [22],
stock-market data [23], and other.
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Abstract: Long-run forecasts of telecommunication services” diffusion play an important role in
policy, regulation, planning and portfolio decisions. Forecasting diffusion of telecommunication
technologies is usually based on S-shaped models, mainly due to their accurate long-term predictions.
Yet, the use of these models does not allow the introduction of risk in the forecast. In this paper, a
methodology for the introduction of uncertainty in the underlying calculations is presented. It is
based on the calibration of an Ito stochastic process and the generation of possible forecast paths
via Monte Carlo Simulation. Results consist of a probabilistic distribution of future demand, which
constitutes a risk assessment of the diffusion process under study. The proposed methodology can
find applications in all high-technology markets, where a diffusion model is usually applied for
obtaining future forecasts.

Keywords: diffusion modelling; time-series forecasting; forecast uncertainty; Monte Carlo Simula-
tion; risk estimation

1. Introduction

The study of the diffusion process of telecommunication services is of paramount
importance in understanding the factors influencing the development of telecommunica-
tion networks. For telecommunication service operators, it provides the basis for strategic
decisions, such as technology selection and capacity expansion. Moreover, the derived
knowledge can be used by policy makers and regulators for shaping market competition.

Based on the findings in [1], telecommunications” demand modelling and forecasting
usually involves the use of traditional diffusion theory. Most commonly used diffusion
models include the Bass model, the Fisher-Pry model, the Gompertz models and some
representatives of the logistic variants. With respect to studies not mentioned, examples of
this literature include the work of [2-5] and more recently [6,7].

These S-shaped diffusion models accurately capture the telecommunications’ market
expectations, but do not provide measures for the inherent uncertainty in their forecasts [1].
Consequently, the decision maker is deprived of the ability to estimate the risk (systematic
and/or idiosyncratic based on the diffusion process under study) inherent to the market
under study, as well as to investigate the link between this risk and the market’s competitive
environment.

To cope with this shortcoming, the literature suggests the use of stochastic models,
e.g., Geometric Brownian Motion (GBM). In [8], an error factor with normal distribution
was used to model uncertainty. In [9], GBM is described as a mathematical tool with
the capability of calibrating demand volatility very reasonably and accurately. In [10],
GBM was indicated as a good first approximation for uncertainties. In [11], a GBM
process with a linear expected growth rate was used to model the stochastic nature of
the diffusion process. In [12], GBM modelling was applied to generate sample paths of
demand in the semiconductor manufacturing industry. In the telecommunications” market,
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the relevant literature is quite limited; in [13], four datasets in the energy, transportation,
and telecommunication sectors were analyzed using GBM.

Despite their ability to capture and communicate forecast uncertainties better to
stakeholders, the above stochastic models have also received some criticism; in [14], it was
pointed out that stochastic models cannot capture demand trends as good as S-shaped
models. For GBM applications, this can be accounted for by the constant drift rate, which
varies significantly from the dynamic growth exhibited in new product demand [11]. To
tackle this issue, in [15], a calibrated GBM model with spline interpolation was proposed to
address the problem of stochasticity in forecasting diffusion of a new product with scarce
historical data; the drift parameter is calculated from the forecasted data provided by a
best-fit polynomial model and the volatility parameter is considered equal to the root mean
square error (RSME) of the best-fit function found for the drift. This approach enables the
stochastic model to capture the dynamics of the product’s life cycle; yet, it should not be
used in forecasting because of the polynomial model’s prowess to overfitting.

To consider both dynamic growth and possible stochasticity in the future demand for
telecommunication services, this study suggests the use of an S-curve calibrated generalized
Brownian motion—Ito stochastic process. Dynamic growth is captured by a variable
drift parameter following the diffusion rate provided by the best-fitting S-shaped model.
Furthermore, the diffusion uncertainty is modelled through the volatility parameter, which
is defined as the standard deviation of the percentage error of the best-fitting S-shaped
model. Since an Ito process is used, the proposed model is valid provided the actual
diffusion log changes follow a normal distribution.

The proposed approach offers significant advantages in telecommunications” demand
modelling and forecasting over the existing literature. S-curve diffusion modelling has
proven its ability to accurately capture growth trends in telecommunication services. This
ability is incorporated in the proposed stochastic model by the variable growth rate of the
best-fitting S-curve model, which serves as the drift parameter of the model. The main
advantage, though, lies with the accurate estimation of the volatility incorporated in the
diffusion process under study; the better determination of the data drift highlights the
changes in data due to uncertainty, thus allowing for a better determination of diffusion
uncertainty. If the diffusion process of an entire market is examined, the calculated volatility
reflects the overall market uncertainty, whereas, if the diffusion process of a specific
technology on a provider basis is examined, the calculated volatility corresponds to the
overall technology uncertainty the provider experiences.

The proposed stochastic process can be used in telecommunications” demand fore-
casting. Monte Carlo Simulation is deployed to provide the diffusion forecast. Depending
on the diffusion process under study, through this analysis, the estimation of both the
systematic and the idiosyncratic risk inherent in the telecommunications’ services market
may also be provided. Moreover, when a specific technology for both the overall market
and a provider are examined, through a standard cointegration analysis, the effect of the
overall market uncertainty to the provider uncertainty may also be determined.

To indicate the dynamics of the proposed method, a real-world example, based
on the diffusion of the mobile market in Greece, is provided. Monte Carlo Simulation
outputs of the calibrated stochastic process are compared with the equivalent results from
a standard GBM model. Results validate the enhanced uncertainty measurement and
diffusion forecast hypothesis.

To conclude, this paper addresses the uncertainty determination problem in the
telecommunications” market diffusion processes and the introduction of this uncertainty
in diffusion forecasting. The latter allows the estimation of the idiosyncratic and/or the
systematic risk inherent in the diffusion process under study. In addition, it provides a
way to estimate the effect of the overall market uncertainty to the diffusion of a specific
firm/technology.
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The rest of the paper is organized as follows. Section 2 provides an overview of the
proposed model. Section 3 presents the results, after its application in a telecommunication
market paradigm. Finally, Section 4 concludes.

2. Forecasting Telecommunications’ Services Diffusion under Uncertainty

The aim of this study is to propose a statistical and simulation-based methodology
for forecasting the demand of a telecommunication service in an uncertain and dynamic
environment. This methodology builds upon the use of a calibrated generalized Brownian
motion—Ito stochastic process. The steps taken in performing the proposed forecasting
methodology are represented in Figure 1.

Available
Diffusion Data Validation
Data

y

Best-fit S-curve
Model selection

Stochastic Mode|
Calibration

Forecasting & Risk
Valuation

Figure 1. Proposed methodology.

T

As can be seen in Figure 1, the proposed methodology follows a four-step proce-
dure, comprising Data Gathering and Validation, the Best-fit S-curve Model Selection, the
Stochastic Model Calibration and the Forecasting and Risk Valuation. Details of each step
are provided below.

2.1. Data Gathering and Validation

The first step of the methodology includes the respective data collection about the
telecommunication service diffusion and the validation of this data for use.

Since an Ito process is used, the proposed model is valid provided the actual diffusion
log changes follow a normal distribution. Consequently, a normality test has to be deployed
to determine if the data set is well-modeled by a normal distribution.

2.2. Best-Fit S-Curve Model Selection

The second step of the methodology includes the selection of the S-curve model that
best describes the demand evolution of the diffusion process under study.
The S-shaped diffusion models can be derived from the differential equation repre-
sented in (1).
AN(t)

TZ‘st(N(t))X[K*N(t)] 1

where N(t) represents the penetration estimation, K is the saturation level and J is the
coefficient of diffusion.

From (1), it can be seen that for a diffusion model to produce an estimation, the satura-
tion level K and diffusion coefficient § have to be determined. While the determination of
the saturation level K is most of the times a more straightforward procedure, the diffusion
coefficient involves the estimation of model-specific parameters through data-fitting proce-
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dures, e.g., in the Bass model, described in (2), in which the diffusion coefficient involves
the determination of parameter p—the coefficient of innovation—and parameter g—the
coefficient of imitation.
2 —(p+a)t
Aty = "X ra) qe< )
4\ o~ (p+q)t
N ORET

where m is the market potential, p is the coefficient of innovation and 4 is the coefficient
of imitation.

The estimation of the parameters of the models under evaluation may be achieved
through data fitting, with the use of dedicated software. It should be considered that for an
S-curve model to produce valid results, a considerable amount of data is required.

Following the estimation of the required parameters, the selection of the best-fitting
model is accomplished with the use of forecast accuracy measures, such as the Mean
Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE). Failure to select
the S-curve model that best captures the diffusion process dynamics will have a strong
impact on the validity of the results of the proposed methodology.

2.3. Stochastic Model Calibration

The proposed model is based on a generalized Brownian motion—Ito stochastic
process. The latter was chosen because, unlike GBM, it incorporates drift and volatility
coefficients that are functions of the current state and time.

The Ito process is represented by (3):

dx = a(x, t)dt + b(x, t)dz 3)

where dz is the increment of a Wiener process and a(x,f) and b(x,f) are known (nonrandom)
functions serving as the drift and volatility parameters, respectively.

Equation (3) defines two terms that affect the calculated estimation. The first term
defines that at each time period, the estimated value will drift up by the expected market
growth rate. The second term indicates that a random value, scaled from the volatility
coefficient, will be added to or subtracted from the drift value. Hence, estimations fol-
low a series of steps, which result from the interactions of the above two terms and are
independent of past estimations (a Markov process property).

When stochastic models are used for diffusion modelling, their parameters are esti-
mated based on historical data, e.g., [16]. In few cases, these parameters are considered
variable and are calibrated based on existing data, e.g., [15]. Under the proposed methodol-
ogy, the drift coefficient of the Ito process is calibrated based on the diffusion rate provided
by the best-fitting S-shaped model of Step 1, whereas the volatility coefficient is calculated
after the extraction of the drift trend of the data.

2.3.1. Drift Coefficient Calibration

To incorporate the market dynamic growth into the Ito stochastic process, the drift
coefficient a(x,t) is set equal to the variable market growth rate provided by the best-
fitting S-shaped diffusion model. For S-shaped models providing cumulative penetration
estimation, like the logistic family of models, this growth rate may be calculated at any
given time period t following (4),

N(t) - N(t—1)

R @

whereas for models providing spot penetration growth, like the Bass model, the growth
rate may be calculated using (5).

AN - IN(E-1) N(t)
- - = 5
YHIN(E—1) YHIN(E—1)
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Hence, the proposed Ito process, after calibration, is represented by (6):
dx = p(t)dt +b(x, t)dz (6)

It should be noted that in the absence of volatility (b(x,t) = 0), the results of (6) converge
to the results provided by (1), the S-shaped diffusion model that was used for the forecast.

2.3.2. Volatility Coefficient Estimation

Similar to the work proposed in [15], following the Ito process drift coefficient cali-
bration, the volatility coefficient has to be estimated. Under the proposed methodology,
volatility is defined as the standard deviation of the percentage error of the best-fitting
S-shaped model for u(t). In this way, the volatility coefficient b(x,t) will remain constant
throughout the evaluation period and depends on the residuals of the S-curve fitting
process. These residuals are considered to be a direct result of the inherent uncertainty
in the diffusion process under study. Therefore, the better determination of the data drift
highlights the changes in data due to uncertainty, thus allowing for a better determination
of diffusion uncertainty.

Moreover, based on this view of the residuals of the S-curve fitting process, when a
specific technology for both the overall market and a provider are examined, the effect of
the overall market uncertainty to the provider uncertainty may also be determined. This
may be achieved through a standard cointegration analysis, provided that both residual
data series are integrated of the same order.

2.4. Forecasting and Risk Valuation

Given the best-fitted function to the demand growth as well as the value obtained for
the volatility coefficient, the targeted stochastic differential equation is made based on (7).

dx = p(t)dt + bdz (7)

To generate possible demand forecasts, Monte Carlo Simulation is deployed. Outputs
include the probabilistic distribution of the future demand for the telecommunication
service under evaluation, at a specific time ¢. It is noted that even though there is no
constrain for the forecast period, the larger this period, the higher the data deviations due
to the underlying uncertainty.

Besides the generation of future diffusion forecasts, Monte Carlo Simulation may be
used to estimate the risk inherent to the diffusion process. The calculated probabilistic
distribution constitutes a risk assessment of the forecasted diffusion of the telecommuni-
cation service under study. If the diffusion process of an entire market is examined, the
calculated volatility reflects the overall market uncertainty, thus enabling the estimation of
the market’s systematic risk. On the contrary, if the diffusion process of a specific technol-
ogy on a provider basis is examined, the calculated volatility corresponds to the overall
technology uncertainty the provider experiences. This enables the estimation of the total
technology risk for the provider, which includes both the systematic and the idiosyncratic
technology risk.

Following the risk estimation, the results may be compared to various levels of risk
tolerance. This can help telecommunication providers to adjust their strategy regarding
technology selection and capacity expansion. Moreover, the derived knowledge can be
used by policy makers and regulators for shaping market competition. This concludes the
proposed method.

3. Insights from the Greek Mobile Telecommunications Market

To indicate the dynamics of the proposed methodology, a real-world example, based
on the diffusion of the mobile market in Greece, is provided.

In its current state, the Greek mobile telecommunications market offers a subscriber
the ability to choose between four competing technologies, 2-2.5G, 3G, 4G and 5G. After
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the introduction of VoLTE, all four technologies may be used for both telephony and data
services. These services are included in either prepaid or postpaid packages and are pro-
vided by three companies, namely, CosmOTE, Vodafone and Wind, with an expected new
entrant, Forthnet. The market is regulated by the National Telecommunications and Post
Commission (EETT, https:/ /www.eett.gr (accessed on 28 May 2021)). The responsibility for
drafting legislation is retained by the Greek Ministry for Transport and Communications
(YME, www.yme.gr (accessed on 28 May 2021)).

The data used in the analysis were published by EETT. These involve the number of
active subscriptions per mobile telecommunications service provider from 1998, when the
first mobile telecommunications networks were deployed in Greece, to 2019. These data
for the incumbent operator CosmOTE and the total market are presented in Figure 2.

001 2002 2003 2004 2005 2006

010 2011 2012 2013 2014 2015 2016 2017 2018 2019

e W ETKED e OTE Vodafone wind
Figure 2. Diffusion of mobile services in Greece.

It can be seen that the incumbent operator CosmOTE captures about 50% of the entire
market. The other 50% is split between the other operators, namely, Vodafone and Wind.

3.1. Methodology Application
3.1.1. Data Validation

To be able to apply the proposed methodology, the annual log changes of active
subscriptions must be normally distributed. The Anderson-Darling normality test was
used for this purpose. Results are presented in Figure 3.
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Figure 3. Normality test results.
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As can be seen in Figure 3, both the total market and the incumbent operator CosmOTE
annual log changes of their active subscriptions are not normally distributed. Subsequently,
they cannot be used with the proposed methodology. This is not the case though with
Vodafone and Wind, whose data may be used for future demand forecasting with the
proposed methodology.

3.1.2. Best-Fitting S-Curve Model Selection

For the purposes of this study, four S-curve diffusion models were evaluated: The
Logistic, Fisher-Pry, Gompertz and TONIC models. Moreover, the Mean Absolute Percent-
age Error (MAPE) was selected as a forecast accuracy measure and calculated in each case.
MAPE was calculated for all sets of data and the model for which the smallest statistical
error was calculated is consequently considered to be the most appropriate to be used for
forecasting future diffusion of mobile services. The results are presented in Table 1.

Table 1. MAPE estimation.

S-Curve Model Vodafone Wind
Logistic 6.764817 12.0521
Fisher-Pry 6.764812 12.05204
Gompertz 6.863766 11.57264
TONIC 6.77584 11.57277

Based on the data of Table 1, the best-fitting S-curve model for Vodafone is the Fisher—
Pry model, whereas for Wind, the best-fitting S-curve model is Gompertz. Parameter
estimation for the best-fitting models are given in Table 2.

Table 2. Best-fitting S-curve model parameter estimation.

Vodafone—Fisher-Pry Wind—Gompertz

S 3,674,635 S 2,693,731
a 2.339 a —0.706
b 0.647 b 0.432

3.1.3. Stochastic Model Calibration

Following the proposed methodology, the Ito process was calibrated based on the
data provided by the best-fitting S-curve model. The calculated volatility coefficients are
provided in Table 3. For comparison purposes, the equivalent GBM volatility coefficients
are also included in Table 3.

Table 3. Calculated volatility coefficients.

Provider Ito GBM
Vodafone 8.58% 14.59%
Wind 13.53% 19.87%

It can be seen that the calibration of the Ito process provides results in the smaller
volatility coefficient calculation. This is due to the better capturing of the diffusion trend,
provided by the S-curve model.

3.1.4. Forecasting and Risk Valuation

To complete the analysis, Monte Carlo Simulation was deployed to forecast diffusion
for a period of 6 years (up to 2025). Results were compared with the ones provided by
traditional GBM forecasting.

As can be seen in Figure 4, all possible paths provided by the calibrated Ito process
are below the saturation point of the total market. On the contrary, for both operators,
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traditional GBM forecasting provides a significant number of paths that greatly exceed the
total market saturation point. This is due to the constant drift rate and the higher volatility
coefficient assumed by GBM. Consequently, application results validate the enhanced
uncertainty measurement and diffusion forecast hypothesis; the proposed calibrated Ito
process outperforms the traditional GBM forecasting.

‘ 170 Vodafons GBM Vedafons [

Figure 4. Monte Carlo Simulation results.

Moreover, the calculated probabilistic distribution constitutes a risk assessment of the
forecasted Vodafone and Wind mobile services diffusion. Therefore, it corresponds to the
overall risk experienced by both providers, which includes both the systematic and the
idiosyncratic risk. Results may help telecommunication operators to adjust their strategy.
Furthermore, provided that the proposed methodology could be applied to total market
diffusion data, the market’s systematic risk could be extracted, thus enabling the estimation
of the operators’ idiosyncratic risk.

4. Conclusions

In this paper, a forecast methodology was suggested for capturing both the dynamism
and stochasticity of future demand for telecommunication services. The proposed method-
ology is based on the calibration of a generalized Brownian motion—Ito stochastic process
for use in telecommunications” demand modelling.

Under the proposed methodology, the drift coefficient follows the variable diffusion
rate provided by the best-fitting S-shaped diffusion model. Moreover, the volatility param-
eter is defined as the standard deviation of the percentage error. The calibrated Ito forecast
model permits involving possible uncertainty in predicting future demand. The outputs of
the proposed forecast model consist of a probabilistic distribution of future demand that
constitutes a risk assessment of the forecasted diffusion of the telecommunication services
under study.

The performance of the proposed methodology was tested against traditional GBM
forecasting. A result comparison confirmed the enhanced uncertainty measurement and
the capability of the proposed methodology in demand forecasting in the telecommunica-
tions sector.

The proposed methodology contributes well to developing strategic plans in dynamic
and uncertain markets when a robust scenario analysis is required. In addition, it is
compatible with all S-shaped diffusion models. Therefore, it can be applied over all cases
of the high-technology market, where a diffusion model is commonly used for diffusion
modelling and obtaining future demand forecasts.
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Abstract: A new Big Data cluster method was developed to forecast the hotel accommodation market.
The simulation and training of time series data are from January 2008 to December 2019 for the
Spanish case. Applying the Hierarchical and Sequential Clustering Analysis method represents an
improvement in forecasting modelling of the Big Data literature. The model is presented to obtain
better explanatory and forecasting capacity than models used by Google data sources. Furthermore,
the model allows knowledge of the tourists’ search on the internet profiles before their hotel reserva-
tion. With the information obtained, stakeholders can make decisions efficiently. The Matrix U1 Theil
was used to establish a dynamic forecasting comparison.

Keywords: Big Data; forecasting; Google Trends; cluster

1. Introduction

Big Data is a keyword in digitised markets. Technological development and the
incorporation of analysis tools have meant a structural change for organisations, firms
and institutions. The interpretation and visualisation of complex data are the core of Data
Science [1,2]. Technology companies have the most precious asset in a digitised economic
environment: information as a competitive advantage [3].

This new digital economy involves reducing information barriers in markets where
intermediaries traditionally existed [4]. Consumers, through their searches on the internet,
reveal their intentions. These intentions can be used as a predictive modelling tool for
future demands of certain products. Hotel demand in a globalised market can be described
through searches for potential consumers [5]. Researchers have paid attention to the
selective secondary data sources of the internet network. This means a contribution to
traditional analysis [6,7].

Methodologies currently applied have attempted to examine regularities in consumer
behaviour data [8-10]. The difficulty lies in trying to explain quantitative and qualitative
aspects in the modelling. In the field of time series with high dimensions and complex
Big Data problems, attention has been paid to concepts such as “The Freedman’s Paradox
using an Info-Metrics perspective” [11] or “the power of Text in multidimensional contexts
with high frequency” [12].

This article is interested in constructing a Hierarchical and Sequential Cluster Analysis
(HSCA) for discrete time series. The analysis carried out focused on the decision-making
mechanisms of economic agents for the demand for Hotel Accommodation in Spain
(HADS). In particular, there are several generic words that consumers search for on the
internet that reveal their intention of HADS. Google Trends (GT) provides an amount of
information, which is used in this paper. A better understanding of previous searches can
be translated into modelling inputs for structuring the forecasting of HADS.

The contribution of this paper is an improvement to current articles in the literature.
The previous methodology has been proven to be an adequate input as a predictive tool,
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but it lacks classification and hierarchy by topics. The inclusion of a cluster of keywords
(124) will allow identifying and segmenting potential consumers. The GT search indexes
are for keywords related to tourist interest to visit Spain, and “broad matching” has been
used [13,14]. This modelling could be used on internet forecasting for the tourism industry
and hospitality, among other fields. Once a volume of temporary searches is known,
companies will adjust the offers to their consumers, and there will be a gain in efficiency
in decision-making. This fact allows us to model consumer behaviours and to project the
regularities of the online tourism market.

Periodicity is essential to reveal systematic behaviours. As we previously cited, a
Big Data analysis’s difficulty lies in combining qualitative and quantitative research while
maintaining traditional modelling standards. We will build the predictions on discrete-time-
series variables and seasonal variable dummies (sampling January 2008 to December 2019).

The HSCA method is compared with SARIMA models [15], ADRL + SEASONALITY
model [5], Hierarchical Neural Networks (HNN) [16] and Singular Spectrum Analysis
(SSA) [5,8]. As a model selection criterion for forecasting, we will use the Matrix U1 Theil
decision matrix [5]. The results obtained from the HSCA methodology reveal improvements
in predictive capacity about the other models.

The remainder of this investigation is as follows: Section 1.1 provides a review of
the existing literature on the forecasting of Big Data applied to Tourism; in Section 2, the
theoretical methodology is performed; in Section 3, data analysis of primary and secondary
data sources is done; Section 4 is dedicated to discussing the empirical results obtained after
applying the methods proposed. Finally, Section 5 is for the mains conclusions obtained
and bibliographic references.

1.1. Literature Review

The grouping in time series occurs when we are interested in the collection into
categories or clusters. Nowadays, the application is interesting for finance, economics,
medicine, engineering, or computing [17-19]. Clustering approaches for time series are
time series clustering by features [20-22], clustering models in time series [23-25], or
dependency clustering models [26,27].

Regarding predictive modelling of the use of GT, it should be noted that it is relatively
recent. The new datasets from Google resources are a disruptive change in the traditional
analysis of HDAS worldwide. The model’s predictive capacity evolution was determined
by techniques previously developed by mathematicians and statisticians. The conven-
tional scientific research was joined by technology development, meaning a breakthrough
summarised in Big Data Technologies.

In the scientific literature published using GT in tourism, we would highlight studies
with an extensive literature review [9,10], or new modelling and forecasting developments.
These studies have found standard results in the forecasting techniques concerning other
fields such as parametric and non-parametric techniques [8].

In recent years, authors have published papers with secondary databases from Google.
In addition, Neural Networks, Machine Learning, Statistical Methods, and traditional
Econometrics have been used as forecasting methods in the tourism sector. Recently,
attention has been paid to the spurious relationship between GT Searches and tourism
demand [14].

Hierarchical algorithm approaches for clusters have been applied to tourism but have
always been used to cross-section data. In particular, secondary data obtained from the
travel and tourism competitiveness index are analysed to create clusters. Subsequently, mul-
tidimensional scaling techniques are applied to detect the most and most minor influential
determinants in tourist destinations” competitiveness [28].

Moreover, a causality method called Granger Causality and seasonality testing has
recently been developed, supposing an improvement to Granger’s traditional process
of causality [5,29,30]. Furthermore, a new dimensionless model selection criterion has
recently emerged called the Matrix U1 Theil. This new criterion is a comparative advantage
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compared to usual forecasting criteria such as Root of the Mean Square Error, Mean
Absolute Error, Theil inequality index, and Diebold-Mariano criterion [5].

2. Methods

This methodological section will develop a new cluster criterion named Hierarchical
and Sequential Clustering Analysis (HSCA). This grouping methodology was designed to
classify the amount of information existing on the internet network. HSCA will improve
and overcome the limitations of keywords previously used in econometric modelling [5].
For this, some properties are cited for modelling with large volumes of data. The first
property is Effectiveness and Replicability criteria; the use of HSCA can be replicated in
other fields related to Big Data. A second property, identifying clusters with correlation
and testing criteria, reveals the importance and causality in our explanatory variables’
modelling. A third property, Noise Tolerance and Outliers Values working with large vol-
umes of data, makes the usual theoretical assumptions to be relaxed in favour of accessible
interpretation and usability of the model. Finally, a property, Parsimony Criterion, will
determine the best model with the least number of explanatory variables.

In real Big Data applications, it is not easy to find a single algorithm that meets the
properties described above. The diagram (Figure 1) represents the sequence from a universe
of words related to a variable of interest to predict. The graph shows how the keywords
initially relate to each cluster and the predicted variable.

keyword 1 keyword 1
keyword 2 keyword 2
Cluster 1 Cluster 4
keyword 3 keyword 3

keyword 1 keyword 1

keyword 2 keyword 2

Cluster 2 Variable of interest Cluster 5
keyword 3 keyword 3

keyword 1 keyword 1

keyword 2 keyword 2
Cluster 3 Cluster 6
keyword 3 keyword 3

Figure 1. Clustering scheme for a predictive variable (Variable of interest). Own Elaboration.

2.1. Hierarchical and Sequential Clustering Analysis (HSCA)

In this subsection, we will describe the HSCA method. We could divide the methodol-
ogy into the following sequential steps:

First step: Relevant explanatory variables (keywords;) are selected for forecasting
{keywordsy; € RY; m=1,2,3...;t € T=1,2,3...T}.

In our model, keywords; are words that future consumers search on the internet before
their tourist demand, for instance, Google searches and “broad matching” such as “visit
Spain”, “rent a car in Spain”, or “Weather in Spain” among others. The search words and
clusters obtained from GT will be presented in the data section.

Second step: the words of the first step are organised by clusters (topics).
{keywords,,;; C clustery; Y (clusteryy, clustery ... clustery); 1 =1,2,3...}.

Third step: auxiliary regressions (y; and (keyword,, keywordyyy, . . ., keyword,,;;) are
expressed in natural logarithms) are performed for the same forecasting variable (y;) classi-
fied by the cluster. The hierarchy of each group is determined by its R2. The models present
the same dependent variable, and the explanatory variables are different in each grouping.
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12 j 12
yr = f(clustery;) + 2 aw; 4 Uy = 2 Bmkeyword, 1y + Z a;w; + Uy (1)
i=1 m=1 i=1
12 k 12
ye = f(clustery) + Z Aiw; + Upp = Z Smkeyword,ps + Z Ajw; + oy )
i=1 m=1 i=1
12 0 12
yt = f(clustery) + ZT,-wi + Uy = Z Pmkeyword,,;; + ZTZ-w,- + uyy 3)

i=1

where w; (for monthly datai =1, 2,
the HAC covariance method [31].

w; = —1,
wy = —1,
w; = —1,
w; = —1,

m=1 i=1

..., 12) is a deterministic seasonal dummy and uses

for others w; =0
wy =1 for others w; = 0;
w3 =1 for others w; = 0;

)

wip =1 for others w; =0

Once the regressions and tests of individual significance of the parameters were made,
we determine the most relevant keywords within each cluster. The model selection criteria
that verify the clustering procedure developed in this article are the usual ones from Akaike
(AIC) and Hannan-Quinn [32]. For instance, to contrast any keyword, we define the null
hypothesis as the statement that narrows the model and the alternative hypothesis as the

broader one [32].

12 j 12
yr = f(clustery) + ¥ aw; +uy = Y Bmkeywordyy + Y agw; + uyy
i=1 m=1 =1

Hy: =0
leﬁm;éO

®)

Fourth step: after the most relevant words of each cluster were selected, a final
preliminary auxiliary regression is performed with the most pertinent explanatory variables

of each group.

—~ ~ ~ 12
ye = f(clusteryy) + f(clustery) + - - - + f(clustery;) + Y. Ojw; + ¢ =
i=1

j ~ k ~ ! ~ 12
= Zl Tikeyword, 1, + Zl prkeyword, 5, + - - + 21 wikeyword,,,;; + _Zl Giw; + €
m= m= m= i=

i=

(6)

The model is simplified under the parsimony criterion, seeking the fewest number of
significant explanatory variables with explanatory capacity.

- = ~ 12 =
yt = f(clusteryy) + f(clustery) + - - - + f(clustery) + Y Sw;+ ¢4 =
i=1

5 =

1

~ ~ @)

-~ k - i ~ 12 -
Tikeyword, 1, + ¥ ¢rkeyword, 5, + - -+ ¥ wikeyword,,, + Y dw; + &4
m=1 m=1 i=1

The interpretation of coefficients are elasticities, and the dummy variables are semi-

elasticities [33].

2.2. Comparison of Forecasting and Evaluation

Forecasting and control problems are closely linked. To forecast, we will define the
following expression for our modelling as follows:

j -~ k -~
E(Ypinlxe, wi) = E( Z] Yikeyword, 1, + Z] Prkeyword, o, g, + - -
m= m=

1 —
+ ¥ wikeyword,; , +
m=1
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where & represents the time horizon, and the residuals of the forecasting are white noise

E(€ron|xpn wi) = 0; var(e o |xpsn ;) = 02; cov(e pp|xppn wi) = 0.

€
As a model selection criterion, we will base ourselves on the Matrix U1 Theil decision

matrix. A dimensionless matrix is designed for the decision to select predictive models [5]

3. Data

Data were collected from Jan. 2008 to Dec. 2019. Therefore, we can differentiate two

data sources, on the one hand, the official data sources from the INE (Spanish National
Statistics Institute (Instituto Nacional de Estadistica) https://ine.es/ (accessed on 24 June
2021).) for the predicted variable (HDAS), and the explanatory variables are obtained from

Big Data secondary sources, in particular, from the GT tool.
HDAS presents some relevant characteristics in the time series analysis; it is worth

noting the high seasonality and a growing trend throughout the period analysed (Figure 2)

500 5 S
=3 A A ,’“ A A
) )
400 - =] A f A A n n i\ " I
Ao A n A N " H i 1 n [
L O A R L S A T R A T A O A Y A
\ 1 1 \ 1y ] ] [} 1
K O R L T T A A O A A
’ [N ’ ) ! Voo [ [
[} \ [l [ [ ] h !
1 LY 1 ’ ’ 1 1 ' 1 1 1 ) 1
T I A P S S A N A S N S A S A Y A A S A A A
- ] 1 . v H ) (] 1 1 H
1 [ [ () 1 1 ' \ ' W
1 v/ [ v v V! \ J W ! N, !
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100 ~
------- HADS
0 T T T T T T T T T T T
2016M01 2018M01

2008M01 2010M01 2012M01 2014M01

Figure 2. Number of HADS (January 2008 to December 2019). Data source: INE. Own Elaboration.

From a statistical point of view, it should be noted that the maximum values for
each year occur in the summer season, the highest value in August 2019 with 46,998,612
hotel overnights in Spain, and the lowest value in January 2009 with 11,203,819. For the
144 observations analysed (Table 1), the existence of unit roots (ADF (p-value) = 0.85) and
stationarity variance (KPSS (p-value) = 0.56) should be highlighted [34,35]. The KPSS
(stationary variance) results allow us in our modelling to adjust dummy variables for the

repetitive behaviours of the series (seasonality).

Table 1. Descriptive Statistics and Stationary Analysis of HADS (Jan. 2008 to Dec. 2019). Own Elaboration.
Observations

ADF (p-Value)  KPSS (p-Value)

Minimum
0.85 0.56 144

11,203,819

Mean Maximum

24,989,874 46,998,612

The sample period includes 18,000 contemporary observations. From INE data, there

are 144 for the variable to be predicted (HADS). The search terms related to planning a
visit to Spain were collected from GT and are presented in Table A1 (see Appendix A).
In this document, we worked with 17,856 observations of search variables contemporary
to the HADS variable. The information is summarised in nine clusters with 124 search
terms related to hotel tourism demand from January 2008 to December 2019 for tourists
worldwide. All the keywords were searched using “broad match” and combination with
other terms. e.g., entering “Spain Hotel”, “Spain culture”, and so on [13].

4. Results
In the following section of empirical results, we describe a training period between

January 2008 and December 2018, with a testing sample to forecast 12 months in 2019.
The applied methodology is previously mentioned in Section 3—Table 2 shows the most
relevant keywords within each tourist interest cluster. Regarding the hierarchy, we can
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indicate that all the keywords finally selected in each group are the most descriptive capac-
ity. For example, finding all values between 0.95 and 0.99, highlighting the terms related
to the “social” cluster, which shows that these search engines have a high explanatory
capacity, highlighting “Airbnb”, “Youtube”, “English”, “Tripadvisor”, “Twiter”. However,
the differences between the clusters and their hierarchy are minimal. An aspect to highlight
is that the dummy variables described for systematic seasonality were relevant for all
models in all the sets.

Table 2. Summary of clusters and keywords (broad matching) relevant for HADS. Sample January
2008-December 2018. Own Elaboration.

Cluster Relevant Keywords R-Squared
Sports sport 0.95
Laws visa 0.97
Transport car, flight 0.98
Seasonality summer, winter 0.95
Social Airbnb, Youtube, English, Tripadvisor, Twiter 0.99
Welfare Android, Xiaomi 0.98
Searches low-cost, Spain Tourism, visit Spain 0.98
Culture alcohol, city breaks, monuments, architecture 0.97
Places Beach, Canary Island, Alhambra, Plaza de Espana, Sagrada Familia 0.98

Once the main information clusters were selected to predict the variable of interest,
we carried out final modelling for the set of variables in the groups to choose the best
regressors to evaluate their predictive capacity. In our modelling, we expressed all the
variables in natural logarithms, except the seasonal dummy variables, with the p-values in
parentheses. We obtain the following result as follows:

= 15.90 + 0.08 Airbnb; + 0.06 Apple; — 0.12 car; + 0.03 city_breaks +OO7 light
Y= 1290+ Q8 Airbmbi -+ Q.06 Apples — Qacar + QG3city breaks: + 007 fights )

—0.08 Samsung; + 0.03sport; + 0.13visa; + 0.07 visit_Spain; + Z Yw;
(0.00) (0.01) (0.00) (0.06) i=1

Zﬂwz = 0.10w, + 0.34w3 + 0.50 w4 + 0.69ws + 0.82wg

(0.00) (0.00) (0.00) (0.00) (0.00) (10)
+1 05wy 4+ 1.16wg + 0.90wg + 0.69wqy + 0. 1814)1] + 0. 10w12
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

T = 132; Sample : 2008M01 2018 M12;

Method : Least Squares HAC standard errors & covariance

(Bartlett kernel, Newey — West fixed = 5.0000); (11)
R? = 0.99; Adjusted R?> = 0.99;

AIC = —3.04; P — Value (Wald F — Statistic) =0

The final model selected presents a high explanatory capacity R* = 0.99. All the
parameter interpretations are studied as the percentage increases of the regressors (1%).
For instance, the variable “Airbnb” implies an increase of HADS of 8%; in the explanatory
variables, the variables “flight” and “visit Spain” are interpreted as a 7% increase in HADS.
It is interesting to mention that the variables “Car” (—0.12) have a negative sign and “flight”
(0.07) represents a positive sign. The technological variables (Samsung, Apple), “sports”,
and “City Breaks” are relevant.

The prediction of the final HSCA model is compared to other models cited in the
Introduction section. The comparative graph of the forecasting time series can be seen in
Figure 3.

Table 3 below shows the comparison between the HSCA model and the other predictive
models (ADRL + SEASONALITY, SARIMA, HNN, SSA) using Matrix U1 Theil (values more
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significant than one will indicate better predictive capacity than HSCA; otherwise, we find
values less than 1). The HSCA model shows the best predictive power in testh =3 and h = 6.
For a time horizon of h = 12, it would be below ADRL + SEASONALITY and HNN.

600 1 o = mmm==e HADS Cluster
a ADRL+SEASONALITY SARIMA
500 4 8 HNN SSA
s i ) A "
x 1
400 1 A S T T S L R S
A A ) h N " h HR R IR [
11 X1 1 IR 1 \ v 1 Y I
I n " I 1\ [ I [ I [ [
E L S A Y A Y A S Y A Y S A T A T
PR )\ .\ Py [ L R T A |
PR IR A S U A S A S N N A SO N A A
7 I'- A A I3 YR A \ \J \
(W] v v A% \ '~ N ~
100 - M ~
0 T T T T T T T T T T

2008MmM01 2010MmM01 2012M01 2014mo01 2016M01 2018Mm01

Figure 3. Out-sample forecast HADS h = 12 (January 2018 to December 2019). Own Elaboration.

Table 3. Summary of forecasting accuracy. Out-Sample training Jan. 2019-Dec. 2019. Own Elaboration.

HSCA ADRL + SEASONALITY SARIMA HNN SSA
HSCA (h=3) 1.00 0.39 0.36 0.43 0.15
HSCA (h=6) 1.00 0.50 0.69 0.92 0.39
HSCA (h=12) 1.00 1.14 0.86 113 0.79

5. Conclusions

In the present investigation, a grouping model was developed for hotel accommo-
dation forecasting (HADS). The properties described in the methodological section were
central to the research (Section 3). Databases from primary (INE) and secondary (GT)
sources were studied. The HSCA model shows a forecasting and causality capacity. A
total of 124 Keywords were analysed in a time series from January 2008 to December 2019
(18,000 observations, including HADS). We determined the primary search keywords by
topic (Table 2). The hierarchy of each cluster was also fixed.

Furthermore, this research was compared with other models with high predictive
capacity, such as ADRL + SEASONALITY: SARIMA, HNN and SSA. Analysing the Matrix
U1 Theil results for time horizons i = 3, we found HSCA (coefficients less than 1) as the
best model. For an annual time horizon, we discovered that ADRL + SEASONALITY
(1.14) and HNN (1.13) performed better results than HSCA. Let us compare the causal
explanatory capacity (R? = 0.99). We can say that HSCA is the best since it includes many
more explanatory variables (search topics) than the rest of the models studied. With the
information obtained from the HSCA model, it is possible to adjust tourist profiles based on
their searches. Primary and secondary tourism industries can benefit from this knowledge
of the global market.

We can deduce that previous studies’ explanatory capacity was improved from this
work, providing relevant and novel information to the scientific literature. Furthermore,
this research is the basis for future empirical work related to stakeholders’ Big Data field
and decision-making. Currently, the most developed economies are focused on a digital
environment. Both firms and consumers are expanding their activities on digital platforms,
which makes it possible to measure market actions. Furthermore, the engineering of search
engines such as Google comes from valuable information to improve the predictive capacity
of the models. The results presented in this study refer to consumers’ active search, but
the data generated can generate predictive information for future tourism consumers. The
impact on this type of study’s economy supposes a paradigm shift in traditional tourism

analysis studies.
The study was applied to the tourism field. However, this methodology can be applied to
the finance, insurance or airline field, where decision-making is critical in competitive markets.
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Appendix A

Table A1l. Keywords and clusters correlated with HADS (broad matching). January 2008 to December 2019. Own Elaboration.

Sports Laws Transport Seasonality Social Welfare Searches Culture Places
Sport Taxes Transport Weather Sl.,p;)r;lsg Hospitality Trip Spain Monuments Beach
Football Tax free Flight Winter Mind Environment Visit Spain Musueums Mountain
Basketball Laws Train Summer vegan Spain Relax Spain Tourism Congress Island
A;l;laeitrl‘cs Schengen Roads Autumn English Stress Hotel Spain Study nature
Swimming . . . . . Apartment . Mediterranean
Spain Spain passport Cruise ships Spring French Life style Spain Disco area
Volleyball ; . Helicopter Climate . .
Spain Visa Spain Spain Change Italian Hospital Best travel Concert Canary Island
Tenr}ls SP ain travel Bus Spain Easter Yveek German Apple Spain Resort Food Z00 Spain
Spain insurance Spain
Boxnpg M edical . Car Spain Chrlstm as Facebook Android Spain Ecotourism Wine Andalusia Spain
Spain certificate Spain Spain
Soccer Spain Spal}'\ driving Tolls Spain - Twitter Samsv:lng Family Trip theme Parks Catalonia Spain
license Spain Spain
P_Iockeylon - Motorh'o mes - Tripadvisor Xiaomi Spain low cost mght} ife Alcazar de Toledo
ice Spain Spain Spain
Baseball Hotels.com . . . Spain Monasterio del
Spain B - Spain Huawei Spain Rural Spain architecture Escorial
- - - - Boolgingcom - Agriculture alcohol Palacio Real
pain Spain
- - - - Wimdu - Fishing Spain City Breaks Muralla de Avila
. Livestock Alcazar de
B B - B Kayak Spain B Spain B Segovia
- - - - Airbnb - Blitz - Valencian
Community Spain
- - - - Instagram - - - Plaza de Espana
Teatro Romano de
- - - - Youtube - - - Meérida
. Acueducto de
- - - - Terrorism - - - .
Segovia
. Mezquita de
- - - - Overtourism - - - Cérdoba
Tourism e
- - - - Phobia - - - Sagrada Familia
- - - - Wifi Spain - - - La Giralda
R R B B 3G, 4G and 5G R R R La Alhambra and
Spain Tours
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Abstract: This study is focused on energy production in Albania which involves different types
of infrastructure at the various points of the energy production and distribution chain, as well as
monitoring and early warning systems. At a time of rapid climate change, estimating the appropriate
dimensions and design of such infrastructure and systems becomes crucial. The main objective is to
analyze the seasonality pattern and main external climacteric factors, such as precipitation, average
temperature, and water inflow. This work deals with the seasonality patterns of climacteric factors
affecting energy production and considers different statistical learning methods for prediction.

Keywords: time series; prediction; energy; seasonality; climacteric

1. Introduction

About 20% of the total installed capacity for electricity generation in Europe is from
hydropower [1]. In Albania, the country’s needs for electricity are met mainly by the
hydropower plants and less by the thermo power plants. The hydropower plants provide
about 94% of the produced electricity, while the rest is produced by thermo power plants
that use residual fuel oil as fuel and, in special cases, steam coal. Substantial drought in
recent years has significantly reduced water levels for energy production in the Drin River
cascade, generating by this way the lowest levels for the last 30 years. The cascade built
in the Drin River basin is the largest not only for Albania but also in the Balkans for its
installed capacity and the size of hydro technical works. The Albanian Electric Power
Corporation (KESH), having in operation 79% of the production capacity in the country
from the Drin cascade, manages to supply about 70-75% of the demand for electricity.
KESH is not only one of the producers of electricity from important hydropower sources in
the region, but it is also considered a factor with regional impact on the safety of hydro
cycles [2].

Albania has established ALPEX as its energy exchange and electricity market operator
which marks a further step towards the country’s integration as part of the European
energy market and contributes to improving the investment climate in the country and
attracting foreign investment in the energy sector [3,4]. The Albanian Energy Corporation
(KESH) is the main public producer of electricity in the country and Drin is the longest
river in the Albanian territories, with a length of 160 km. Figures 1 and 2 show the position
of the three HPP situated in Drin river cascade.

The approximate distance between the three HPPs is the same. Therefore, it is very
important to take into account the fact that water flows through the Drin River and
external sources (snowmelt, precipitation, etc.) are exploited through the cascade for energy
production. Fierza, being the first HPP, uses natural inputs to produce energy and serves
as a flow regulator for two ongoing HPPs. The electricity system in Albania is divided
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into three main sectors: the generation, transmission, and distribution sector. In Albania,
the manufacture sector (KESH) produces energy based on the demands of the distribution
operator (OSHE). So, why is it important to forecast power generation from HPPs in
Albania? From this [5] 2018 report, Albania has a great potential for “hydroelectric energy”
with eight main rivers crossing a river basin with over 57% of the current management
extent, with an average altitude of 700 m above the level of sea and a perennial flow of
1245 m3/s, for a combined water supply of 40 billion cubic meters. An overview of the
situation: 2100 MW the total installed capacity; Up to 615 MW of further potential capacity;
above 1785 MW concession warded, eligible for partnerships. The water reserves valuing
per capita second in the whole Europe makes the country offer an average cost of hydro
production starting around 35 Euro/MWh.

Flerzé HPP

27x10°m

Wk :
‘ 43125 Mwe500 MW
}\/\ \ 05x10°m*
2

Vau i Dejiés HPP

cuno'm‘
|

Drin River Basin i
v

Figure 1. Drin cascade and the three main HPP (Source: http://www.kesh.al/en/asset/drini-
cascade/ (accessed on 28 November 2020)).

Figure 2. HPP in Drin cascade: Fierza, Koman and Vau-Dejes (Source: Google Earth).

2. Objective of the Study

Electricity demand and supply depend on many factors, the most important of which
are climacteric indicators. In the production of electricity through hydropower plants,
water resources play an important role. Among the factors that are likely to affect both
variability in the supply and absolute availability of water are decreasing snow cover,
increases in rainfall in hilly areas, drier conditions in the lowlands, as well as reduction
in the capacity of soils to retain water due to land degradation and impacts of multiple
stressors on vegetation and forests. Soil saturation can lead to sudden peaks in water
inflow, even with mild precipitation. Global weather systems are also destabilized, leading
to longer consecutive periods of precipitation or dry weather, as well as changes in how
overall dynamics play out at very local levels due to factors such as topography [6,7]. Thus,
increased weather variability will mean that reducing risk becomes more important than
optimizing infrastructure for typical conditions. Increasing energy production by using half-
empty reservoirs it may not be a problem if this can reduce potential disasters. Although
increased investment costs are mostly the result of measures to decrease vulnerability to
future climate shifts, this may affect infrastructure and supply chains for other options
as well, so that the cost of HPP relative to other energy sources with low Greenhouse
Gases (GHG) emissions is not likely to change noticeably. However, other factors may
change the relative cost and outcomes of investments, such as absolute reduction in water
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availability for a region, increasing opportunities for wind power, considering that weather
systems will contain more energy, and reduced cost of solar technologies, as a result of large
investments in improved technologies globally [8]. The increased anticipated incidence of
extreme events is an argument for choosing numerous small-scale power plants, rather
than investing in large-scale power plants, to reduce the impacts of disasters. Smaller
plants are easier to retrofit and adapt as climate conditions change over the coming years.
Also, it becomes important to ensure energy supply and access with a wider mix and range
of options, both to compensate for seasonal variability and reduced predictability, and to
mitigate impacts of disasters.

One of the main objectives of this study is to analyze the seasonality pattern and
the correlation among some climacteric external factors which may affect the energy
production in the Drin cascade and further use these variables as explanatory variables
in energy production. The prediction of the capacities of energy produced will help the
stakeholders and decision makers (such as the government) to better take precautions
on demand and supply of the energy for the country needs and region. Because Albania
is heavily reliant on hydropower electricity production some vulnerability in the future
may be the reduction of power generation due to severe drought which will result in less
electricity produced by the hydropower plants. The heavy reliance on hydropower sources
may be appropriate for reducing greenhouse gas emissions and improving air quality in
Albania but can increase vulnerability to climate change. During last few years, a decrease
in precipitation was observed and increased temperature in summer season as well. These
changes could reduce annual average electricity output from Albania’s large hydropower
plants (LHPPs) by about 15% and from small hydropower plants (SHPPs) by around
20% by 2050. Global climate change may affect the provision of energy from solar and
wind generation. A likely increase in the global solar radiation and the hours of sunshine
duration will lead to an increase in the use of solar energy for different energy services, but
at the moment the main interest is focused on energy produced by HPP and the capacity
of production. In their study, ref [9] point out that spring shifting to earlier in the season
may leave reservoirs half-empty if managers expect later floods that never arrive, with
adverse consequences for hydropower production and later winter floods is some coastal
areas of the Mediterranean may encounter reservoirs that have already been filled which
may increase downstream flood risk [9,10]. Also, unpredictable reservoir storage could
affect hydroelectric power production and the energy market [11]. There are many research
works focused on seasonality pattern of external factors affecting energy produced by
HPP. A review of these works is presented in [12-14]. The relationship between energy
production season and climacteric variables is also discussed in [15-17].

3. Time Series Analysis

Electricity produced by hydropower plants is likely to be influenced by climatic factors
and their seasonal patterns. It is expected that underlying causal dynamics affecting water
inflow will follow a seasonal pattern (related to snow smelting, precipitation, upstream
water use, capacity of vegetation and soils to retain water), so that correlations to any single
factor will vary over the year. The spatial distribution of precipitation, topography, and
time-lag between the time of precipitation and time of water inflow need to be consid-
ered [18]. Crucially, for the future, domino effects are likely to arise connected to aspects
such as the fact that existing water management systems, reservoirs, and natural bodies
of water that retain water upstream will not be sufficient to handle extended periods of
high precipitation or indeed, peaks connected to extreme weather. This leads to non-linear
situations, and an asymmetry in the impacts of variability in terms of aspects of systems
affected and the time scale. Wet periods (or rapid snow smelting) may also lead to short
term flooding, infrastructure damage, and possibly dam collapse. Also, extended dry
periods will lead to forest fires or collapse of forests due to drought and increase in diseases.
Forests are also exposed to the increased force in wind, avalanches, landslides, and erosion
in mountain areas connected to more intense precipitation. Impacts on forests have long
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term and sometimes irreversible consequences, which thus may affect future dynamics of
hydropower energy production.

In this study, we have considered four time series with monthly observation and
duration from January 1991 to December 2016, in total 312 observations. We considered
the monthly average temperature (Celsius degree. Source World Bank); monthly average
rainfall (in millimeters. Source: World Bank), Water inflow in Fierza (in m3/second, Source:
KESH); and total energy produced by three HPP of Drin cascade (Fierza-Koman-VD
measured in GWh, Source: KESH).

Previous studies were based on the analyses of these variables and their importance in
energy production showing the effect of these variables in energy demand and production,
and how seasonality patterns affect these components of energy sectoring Albania [19].

Observing the four time series in Figure 3, we can agree on the fact that no clear linear
trend is observed and that perhaps a seasonal pattern is present in each of the time series.
The time series have no missing data and the presence of outliers is not significant.

Average Temperature (Clesius Degree

2000
Month (Period: 1991-2016) Honth (Period: 1991-2016)

Iflovs (msec)

2010 19%0 2010

00 2000
Month (Period: 1991-2016) Month (Period: 1991-2016)

Figure 3. Time series of average temperature, average rainfall, water inflow, and energy produced by three HPP in Drin

cascade.

Figure 4 shows the correlation plot among the variables by season. We may notice
that there is a clear positive correlation between inflows in Fierza and production of the
cascade which is most evident and strong during spring season (correlation = 0.664) when
precipitation and snowmelt flows are higher. Inflows in Fierza and rainfalls have a positive
correlation during autumn and winter season (correlation = 0.542). For the water inflow
time series and energy produced in the cascade (from three HPP), we observe a significant
change during 2010. This change will be also analyzed in the seasonal plot below.

Given that Albania is a Mediterranean country where seasons are clearly observed,
we expect seasonality in the pattern of the time series taken into consideration for the
study. For a better view of the correlation among the time series chosen we can also
use the correlation plot. The correlation plot shows a positive correlation between the
energy produced and water inflow (correlation = 0.64). However, because of the fact that
water inflow is not mainly affected by the precipitations we observe a low value of the
correlation between production and rainfall. A negative correlation, also with a low value
(correlation = —0.38) is observed between the production and the average temperature.

Given the monthly frequency of our data and the efficiency of such predictions in
long term, we decided to use as training set 80% of the observations and as testing set
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20% of the observations. Another issue was to take the observation for year 2010 in our
train dataset. So, we decide to have this representation 80% (250 observations) and 20% (62
observations).

Inflow Fierza-average msek  Production cascade-total (GWh) Rainfall -average (MM) Temperature -average (Celsius) Season

0.009- Corr: 0.639™ Corr: 0.397™* Corr: -0.477™
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0006~ Spring: 0,664 Spring: 0.172 Spring: -0.047
0.003- Summer: 0.526*** Summer: 0.389%** Summer: -0.641*** [
Winter: 0.611* Winter: 0.542*** Winter: 0.156
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Figure 4. Correlation plot, Boxplot and density plot of the time series (Significance codes: * low
correlation; ** average correlation; *** considerable correlation) (Source: Authors).

The seasonality of the monthly average temperature was confirmed by the seasonal
graphs in Figure 5. The minimum average temperature is observed during winter and
spring and the maximum average temperature is observed during the summer (July and
August). The monthly average rainfall time series also expose presence of seasonality with
high levels of rainfall during the wet months of autumn, winter and spring and with low
levels during the summer. Carefully observing the seasonal plot for the time series of the
water inflow, we can see the pattern of the time series for year 2010 which is significantly
seen (in the two first seasonal plots) with high levels in almost all the months. We also
observe high levels of inflows during the first months and the last months of the year. This
phenomenon may be due to the increase in the level of inflows from natural causes such as
precipitation and temperature which affects the snow melting and increase by this way the
water level of the river Drin. We mention here again that the river cascade is positioned in
the north side of Albania (the Alps). In the energy production time series, we also observe
the same behavior as in the water inflow with high levels of production during the first
months and the last months of the year. This is because the energy produced by HPP is
positively correlated with the levels in the basin and water inflow.

200-

Odt  Nov Dec s Fe Ma A My Jin i A S
Monthly average rainfal, 1991-2016

(@ (b)
Figure 5. Seasonal plot of the time series: (a) monthly total production; (b) monthly average rainfall)
(period: 1991-2016) (Source: Authors).
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4. Results
4.1. Models

The statistical time series models such as Naive, autoregressive integrated moving
average (ARIMA) [20] and exponential smoothing (Holt-Winters, ETS [21]) are most com-
monly used when it comes to monthly prediction especially with seasonality patterns.
They have also become as popular as they are suitable for non-professionals, and they
offer high accuracy and efficiency when it comes to non-complex time series data. Many
competitions have shown that these methods outperform machine learning methods in
many situations [22-24]. The advantage of classical univariate prediction methods is that
they perform well when the volume of the data is considerable [25]. Neural networks are
becoming more and more popular due to their ability to consider complexity and historical
patterns in time series, being used as alternatives in different situations [26]. In this study
our focus was to understand the relation between the external climacteric factors affecting
the energy production by HPP. Below, we provide some results when using some statistical
methods and neural networks with external variables which is the challenge for the future
of our study.

We started by modeling our time series as a univariate time series and we also
considered some statistical models using external factors among those presented above.
Because the energy production time series show no linear trend, we decided not to go for
the standard models such as naive or drift because of the non-satisfactory visual results in
prediction. ARIMA models consider in particular the linear behavior of the time series and
stable seasonality; the ETS model takes into consideration the main components and in
particularly the seasonality nature of the time series. Artificial Neural Networks (ANNs)
are special mathematical models used also in prediction. They allow complex nonlinear
relationships between the dependent variable and the independent(s) variable(s) used as
explanatory variable(s). Neural networks are not based on an explicit stochastic model,
so in most of the time we obtain prediction intervals by simulating future sample paths.
The training process ofan ANN will depend on the activation function and the method
used for finding the opportune weights recursively. Occasionally, we begin the training
process of an ANN by choosing randomly the input values and then apply weights to each
observation that will pass on information to a hidden layer where the information will be
handled by an activation function. There are many studies on the performance of ANN in
different types of data [27,28].

During the time series models progressions a considerable research is also made in
the hybridization between ANN and classical time series models, in order to consolidate
and benefit from the advantages of both models [29,30]. The automotive process is very
easy in R, so we used forecast libraries which offer many facilities of these models [21,31].

4.2. Model Performance Measures

The accuracy of the models is evaluated based on accuracy measures such as error
measures and information criteria. Bias and accuracy are then analyzed for every model and
based on a critical judgment we have given our proposals for future work. The selection of
the “best” model between all proposed was affected also on subjective indicators observed
in the behavior of the time series such as seasonality [32,33]. Here, we used Mean Error
(ME), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), symmetric
MAPE (sMAPE), and Root Mean Square Error (RMSE), calculated from the equations
below:

18,
MAE = 3 |X - Xi| @
i=1
18
ME = ;Z (Xr —Xi) (2)
i=1
18 X — X
MAPE = | =Y =1 -100% 3
(z; - ) ®
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i=1

where X; denote the observation at time f and X; denote the estimated time series. Also,
we graphed the fitted values (January 1991 up to January 2013) and the predicted values
and compared them graphically with the testing time series (starting from February 2011
up to December 2016). For forecast of neural net models with external regressors, we need
to have future values of the external regressor to be fed in the forecast function. We can use
the test values for the inflow regressor. More than one external regressors can be used in
the forecast procedure of neural network models. Error measurements should be small
if the predicted values are close to the true values and will be large otherwise. The error
measurements expressed in Figure 6 are computed using the training set used to fit the
model and are referred to as the training errors. In general, we are focused on the accuracy
of the predictions that we obtain when we apply a method to previously unseen test set,
so we also calculate and evaluate the performance of the model based on out of sample
set. From Figure 6, we observe that the Neural Network model (NNETAR) has the lowest
values of the errors for the in-sample set compared to all the other models considered. We
know that there is no guarantee that the method with the lowest training error will also
have the lowest test error so we should evaluate the accuracy of the model based also in
out-of-sample performance. Over fitting happens commonly when our statistical learning
procedure is trying hard to discover patterns in the training set and we notice in most of
the time low values for training set which are accompanied by large values for the testing
set. Nonetheless, because many statistical learning methods seek to minimize the training
error, we almost always expect these values to be smaller than the testing errors. Bias is
also important when it comes to improving forecasting accuracy [34]. Bias is calculated as
the average of the difference between the real values (y;) and the predicted values (¥;) by
the model: bias = mean(y; — ;).

Nov  Dec s Feb Mar ep Ot Nov  Dec

=

A My Jn i Aug
Monthly average inflow, 1991-201

(a) (b)

Mar Ao May Wm  Ju Alg Sep Ot
Monthly average temperature, 1991-2016

Figure 6. Seasonal plot of the time series: (a) monthly average temperature; (b) monthly average
inflow) (period: 1991-2016) (Source: Authors).

Figure 7 shows the situation of the in-sample and out-of-sample bias and accuracy
(RMSE) for the proposed models. We notice that among the models, NN in both cases
(in-sample and out-of-sample) has the lowest values of accuracy (RMSE) and bias (very
close to 0). The fact that this model offers good performance indicators, in both sets, ranks
it among the best models to be used for forecasting purposes. The artificial neural network
learns using the patterns of the time series seasonal cycles.
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Figure 7. Error values for different models (in sample errors) (Source: Authors).

Figure 8 shows the comparison of accuracy versus bias of the proposed models for
in-sample and out-of-sample data. We may observe that NNETAR has better accuracy
and the lower bias for both in-sample and out-of-sample data compared to other models.
Figure 9 shows the test data and forecasts according to each method reviewed in this study.
Here, too, we graphically note the goodness of the NNETAR method in the prediction of
monthly seasonal time series.

In-sample accuracy~bias Out-of-sample accuracy~bias
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Figure 8. (a) In-Sample; (b) Out-of-sample: accuracy versus bias of the proposed models.
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Figure 9. Predictions and testing data (Source: Authors).
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5. Conclusions

Electricity produced by hydropower plants is likely to be influenced by climatic factors
and their seasonal patterns. As such, analyzing these patterns and the correlation among
climacteric external factors is becoming one of the challenges to obtain accurate predictions
of the amount of energy a hydropower plant could produce during a given season. Many
statistical learning techniques are used to obtain accurate predictions such as ARIMA,
ETS, NN, TBATS, STLM, etc. In this study, we analyzed the seasonality of patterns of the
monthly average temperature, monthly average precipitations, monthly average inflow
in the first HPP, and the total monthly amount of energy produced in the cascade of Drin
River positioned in the Alps of Albania.

We are aware of the enormous work to be done with the data presented here, especially
for the energy production by HPP which is highly affected by climacteric factors. We have
considered many models which are chosen based on the seasonality cycles of the data.
Among the models we tested, we observed and confirmed that neural networks have
managed to capture these seasonal cycles and providing good forecasts for monthly energy
produced in the cascade. At the end of this work, we must admit that there is always
uncertainty that will affect our predictions and there is always a challenge to obtain better
predictions through hybrid machine learning models.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.
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Abstract: The increasing integration of renewable energy sources into the existing energy supply
structure is challenging due to the intermittency typical of these energy sources, which implies
problems of reliability and scheduling of grid operation. Concerning solar energy, the solar forecast
tool predicts the photovoltaic (PV) power production and therefore permits a more efficient grid
management. In this paper, the combination of clustering techniques and ANNSs (Artificial Neural
Networks) for day-ahead PV power forecast is analyzed. Clustering techniques are exploited to
divide a dataset into different classes of days with similar weather conditions. Then, a dedicated
ANN is developed for every group. The main goal is to assess the forecast improvement determined
by the combination of ANNs and dataset clustering methods. Different combinations are compared
on a real case study: a PV facility in SolarTech™B, in Politecnico di Milano.

Keywords: power forecast; photovoltaic; artificial neural network; clustering; clearness index; k-
means; classification; random forest

1. Introduction

The ongoing energy transition is progressively redefining structure and arrangement
of the current energy system. A crucial challenge is represented by the large penetration of
RES (Renewable Energy Sources) into the existing power supply structure. A grid operator
should be able to ensure the balance between the electricity production and consumption
any moment, accommodating expected and unexpected changes on both sides. RES have
dynamic nature and large variability depending on geographical locations and weather
conditions. For instance, concerning PV (photovoltaic) plants, the power output depends on
several meteorological variables such as solar irradiance, air temperature, cloud variation,
wind speed and so on, intrinsically intermittent and non-controllable: these aspects imply
problems of reliability, stability, and scheduling of the power supply structure [1].

Reliable forecast tools allow the prediction of the expected power production and its
fluctuations, leading to a more efficient grid management [2]: for this reason, power forecast
research field is presently receiving unprecedent attention from the scientific community.
The current work is focused specifically on day-ahead PV power forecast.

According to literature, solar forecast methods can be categorized in: statistical meth-
ods, physical methods, Machine Learning (ML) methods and hybrid methods [2—4]. Statisti-
cal methods are capable, given a time series of historical data, to reconstruct the relationship
between solar irradiance or PV power output and meteorological parameters. Moreover,
they do not require physical knowledge about a system to model it [3]. Physical methods,
mainly consisting of Numerical Weather Predictions (NWP), model the interactions be-
tween solar radiation and atmospheric components by means of differential equations and
do not require historical data [5,6]. ML methods mimics the capability of human brain to
learn from experience and can solve even problems which cannot be represented explicitly.
As with statistical methods, to perform a prediction, they require historical data but not
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physical knowledge of the modeled system [2]. Artificial Neural Networks (ANNs) are a
ML method commonly involved in PV power forecast. Finally, hybrid methods consist of
combinations between other forecast methods, with the purpose of solving the weaknesses
of individual ones and benefiting from their advantages [7,8].

In the current work, as forecast models, several combinations between ANNSs and clus-
tering techniques are proposed. Clustering is an unsupervised machine learning technique
that allows the partitioning of a dataset into groups of samples presenting similarities [9,10].
In the following, different clustering criteria are applied to divide the days in a dataset
into different classes according to their weather conditions. Once a partition is defined, a
specific ANN is developed for every cluster: each ANN is trained using only samples be-
longing to a certain cluster and is used to forecast PV power production only in the weather
conditions typical of that cluster. The similarity between PV power curves registered in
similar weather conditions is therefore exploited to construct optimized forecast models.

The aim of this paper is to assess whether it possible to improve the training of artificial
neural networks for day-ahead PV power forecast by dividing a dataset through clustering
techniques and, in the case of a positive answer, to identify the best-performing dataset
partition in terms of forecast accuracy between the proposed ones.

2. Case Study and Procedure

Different combinations between clustering techniques and artificial neural networks
are tested, validated, and compared on a real case study: a PV facility in SolarTechAB, at
Politecnico di Milano [11]. However, the proposed procedure is valid for PV plants of all
sizes. The available dataset contains historical data about measured power and predicted
weather parameters, namely temperature, global horizontal irradiance, global plane-of-
array irradiance and wind speed. The predicted weather parameters are provided as input
to the proposed prediction models, whose output is compared with the measured power
data to assess the forecast performance. Data are recorded on an hourly basis for a total
amount of 840 days in the time span comprised between January 2017 and September 2020.

The overall PV power forecast process can be summarized as the iterative multi-
step procedure represented in Figure 1. In the following, details about every single step
are provided.

Weather Forecast

Clearness index calculation
PR TR T Clustering

Performance on the whole dataset

Figure 1. Proposed forecast procedure.
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2.1. Clustering Phase

In the clustering phase, to obtain a proper partition, the daily clearness index (Kj)
is employed in clustering as meaningful parameter for day type estimation [12-14]. It is
defined as:

=G/Gy 1)

In the equation, G is the daily global horizontal irradiation, while Gy represents the corre-
sponding daily extraterrestrial horizontal irradiation. Hence, K; is a dimensionless quantity
employed in day type clustering thanks to its capability to remove the seasonal depen-
dence from solar irradiation, isolating the information content about weather conditions [9].
Large values of clearness index indicate clear sky conditions, while low values represent
overcast sky conditions. Starting from the previously described dataset, the K; value for
each day is computed by means of the same procedure applied by ESRA (European Solar
Radiation Atlas) [15].

Then, four different dataset division criteria are proposed, namely: FT-A, FT-B, KM-3,
and KM-2. All the approaches are based on the clearness index K; and, as previously men-
tioned, aim to divide the dataset in classes according to weather conditions of single days.

FT-A (Fixed Threshold set A) and FT-B (Fixed Threshold set B) are not properly
clustering algorithms, but they perform a partition relying of fixed threshold values of
clearness index defined in scientific literature [16,17]. In detail, they divide the dataset in
three different weather classes based on the thresholds summarized Table 1.

Table 1. Clearness index partition.

Weather Conditions FT-A FT-B

Sunny K: > 0.45 K; > 0.65
Partially cloudy 0.25 < Ky < 0.45 0.35 < Kt < 0.65
Cloudy K; < 0.25 K; < 0.35

Both KM-3 and KM-2 are based on the k-means clustering algorithm. The choice of
k-means instead of other possible clustering algorithms is related to its simplicity in imple-
mentation and its efficiency. It is worth noticing that the application of k-means algorithm
based on a single parameter (i.e., the clearness index) corresponds to a fixed-thresholds-based
partition where the thresholds are set automatically by the algorithm instead of by an external
intervention (as in FT-A and FT-B). The difference between KM-3 and KM-2 consists of the
choice of the number of clusters (K). KM-3 adopts K = 3 for a homogeneous comparison
with the fixed-thresholds-based approaches (i.e., FT-A and FI-B). KM-2 exploits some proper
indexes to select the best possible dataset partition in terms of clustering quality, namely:
Silhouette index, Davies-Bouldin index and Calinski-Harabasz index.

Given a generic dataset X = {Xy, Xy, ..., Xy}, containing N elements and partitioned
into K clusters C = {Cy,Cy, ..., Ck}, these indexes can be computed as follows.

The Silhouette index [18] (computed as global value) is defined as:

K 1 mj a]
— ()
VLo D i )

max{af,b]}

z \

In the equation: m; is the number of elements in the generic cluster Cj; af is the average
distance between the iy, element in the cluster C; and the other elements in the same cluster;

b; is the minimum average distance between the iy, element in the cluster C; and all the
elements belonging to clusters Cy, with k = {1,2,...,K} and k # j. The optimal number of
clusters is the one that maximizes the value of Silhouette index.
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The Davies-Bouldin index [18] is defined as:

_B(C) = 8(C)

6(Ci, Gj) ©

1 K

DB(C) = —-) m
(©) =% Lme

In the equation: A(G;) is the within-cluster distance; 6(C;, C;) is the between cluster distance.
The optimal clustering solution is the one that minimizes the Davies-Bouldin index value.

The Calinski-Harabasz index [19] is defined as:

LK mi |G —G|? N-K

CH(C) = .
TR Exee, IX=Gil[p K=1

4)

In the equation: m; is the number of elements in the cluster C;; G; is the barycentre of
the cluster C; (in the case of k-means clustering, it corresponds to the centroid); and G is
the barycentre of the entire dataset (the overall mean of the data). The optimal clustering
solution is the one that maximizes the value of Calinski-Harabasz index.

These indexes are computed in function of different numbers of clusters and, applying
a majority voting procedure, K = 2 is selected as the optimal dataset partition.

2.2. Extraction Phase

The extraction phase corresponds to the extraction of a test day, consisting of 24 consec-
utive hourly samples, from the initial dataset. This day constitutes the test set on which the
prediction performance is computed. The cluster of origin of the extracted day is assumed
to be unknown, as it would be in a real day-ahead power forecast. For a complete and
reliable prediction performance assessment, all days available in the dataset are extracted
one by one in different iterations.

2.3. Classification Phase

In the classification phase, the most suitable cluster for the test day is identified. Once
labeled, the test day is assigned to the proper ANN, which perform the power prediction
in the test day weather conditions. Therefore, this phase represents an additional step with
respect to the single-network-based forecast, where the inputs are directly provided to the
unique ANN available. As classifier, the random forest model is chosen, among all the
possible algorithms, thanks to its flexibility, fast implementation, and easy tuning [20]. The
classifier optimization consists of a proper selection of number of trees and input features
based on out-of-bag classification error. The optimal configuration consists of a structure
with 60 trees that takes global horizontal irradiance and global plane-of-array irradiance as
input features.

2.4. Prediction Phase

Lastly, in the prediction step, different neural networks are developed to predict the
PV power output in the extracted test days. Two different approaches are adopted, namely
NN-Clust and NN-Std.

NN-Clust represents the clustering-based approach. In this approach, only days
belonging to the same cluster of the test day are used or the training of each ANN. Then,
the trained ANN predicts PV power output for the test day, characterized by weather
conditions similar to those of samples involved in training. For the training of each
ANN, 10% of samples contained in a given cluster is randomly extracted as validation
set, while the remaining 90% constitutes the training set. Moreover, an ensemble of 10
independent trials is implemented to enhance the generalization capability of the model.
To optimize the hidden layer size, a sensitivity analysis is carried out for every ANN
corresponding to a different cluster. In practical terms, the sensitivity analysis studies the
trade-off between performance and computational cost, analyzing the value of the Mean
Square Error in function of a variable number of hidden neurons. The predicted weather
parameters available in the dataset, namely temperature, global horizontal irradiance, and
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global plane-of-array irradiance and wind speed, are provided as input features to all
the networks.

On the other hand, NN-Std represents the most common forecast approach in scientific
literature, involving a single neural network, and it is developed for comparison with the
previously described clustering-based approach. For the sake of a fair comparison, NN-Std
must present several similarities with NN-Clust: same number of neurons in the hidden
layer, same input features and same days predicted as test. The crucial difference between
NN-Clust and NN-5td is that the latter is trained with days extracted from all clusters.

3. Error Metrics

Given a forecast output P and an observed output P several error metrics are defined
and adopted in this work for performance evaluation.

The Normalized Mean Absolute Error (NMAE) estimates the average magnitude of
the errors for a set of N predictions divided by the plant net capacity C:

1 Y p,-P
NMAE%:ﬁ-th%-loo (5)

The Root Mean Square Error (RMSE) is computed using the square of the difference
between observed and predicted values, and therefore penalizes large gaps:

The normalized Root Mean Square Error (nRMSE) corresponds to the ratio between
RMSE and the maximum observed power output in the considered time frame:

RMSE
nRMSEe, = (B 100 )

The Weighted Mean Absolute Error (WMAE) is based on the total energy production:

N .
P, — P
WMAE., = L1 |Pn = Pl 8)

Z;I,\]:] Ph

Finally, the Envelope-weighted Mean Absolute Error (EMAE), introduced in [21], aims
to provide a measure of forecast accuracy in the interval between 0% and 100%:

il [Py — Byl

EMAEy, = —=h=11h
Y-t max(Py, Py))

)

4. Results and Discussion

The groups identified by the different dataset partitioning methods proposed are
different and quite unbalanced in terms of numerosity, as reported in Table 2. In general,
the cluster corresponding to sunny conditions is the largest while the others, in comparison,
contain much less elements. The only exception is represented by FT-B, providing a
more homogeneous grouping where sunny days and partially cloudy days clusters have
comparable size. The numerosity of a cluster is relevant by the point of view of the forecast:
ANN:s trained using too few elements could present poor generalization performance.

Concerning the forecast accuracy, several comparisons are performed. First, the
NN-Clust models developed are compared to the corresponding NN-5td to evaluate
the performance enhancement allowed by the proposed methodology. The performance
improvements computed according to all the evaluation metrics are reported in Table 3.
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Table 2. Clusters numerosity with different partitions.

Weather Conditions FT-A FT-B KM-3 KM-2
Sunny days 641 339 511 618
Partially cloudy days 125 369 193 -
Cloudy days 74 132 136 222
Total 840 840 840 840

Table 3. Performance improvement given by NN-Clust with respect to NN-Std.

Method Cluster ANMAE ARMSE AnRMSE AWMAE AEMAE

KM-3 3 6.0% 3.9% 7.9% 7.0% 4.2%
KM-2 2 4.6% 1.9% 6.5% 6.0% 3.4%
FT-A 3 3.9% 2.0% 5.4% 5.2% 3.2%
FT-B 3 5.8% 3.3% 7.1% 6.1% 3.9%

Independently from the error metric and the dataset partition considered, the ap-
proach involving clustering (i.e., NN-Clust) outperforms the one based on a single-network
prediction (i.e.,, NN-5Std). The largest improvement recorded consists of an error reduction
of 7.9% in nRMSE with KM-3, while smallest one consists of an error reduction of 1.9% in
RMSE with KM-2. Therefore, weather type clustering is demonstrated to be effective and
beneficial when combined to ANN with the goal to optimize their training.

Then, a comparison between different dataset partitioning criteria, always in terms of
prediction performance, is carried out and visually represented in Figure 2. The spider-
web chart is represented normalizing all the error metrics, i.e., dividing them by the
corresponding maximum recorded value.

—8—KM-3
KM-2

1.00 FT-A
—&—FTB

| NMAEI

Figure 2. Comparisons between different partitioning methods.

Comparing all the approaches that divide the dataset in 3 clusters, it is observed that
the clustering-based approach, i.e., KM-3, outperform both FI-B and FT-A, based on fixed
threshold values of clearness index. Therefore, at equal number of clusters identified, the
clustering-based methods exhibit better performance.

On the other hand, comparing the clustering-based approaches, i.e., KM-3 and KM-2,
four error metrics out of five highlight the superiority of clustering method KM-3, even if
the error reduction allowed with respect to KM-2 is always limited. This means that the
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Figure 3. Forecast and actual power curves in: “best” (a) and “worst” (b) sunny days, “best” (c) and “worst” (d) partially

optimal dataset partition in terms of clustering quality does not necessarily imply the best

prediction performance of the forecast model.

Among all the dataset partitioning methods considered, KM-3 reveals to be the best-

performing one by the point of view of forecast accuracy.

Lastly, the “best” and “worst” days in terms of forecast performance, corresponding
respectively to minimum and maximum recorded values of EMAE, are extracted and
analyzed for each cluster identified by KM-3, i.e., the best-performing partitioning criterion.
For these days, the actual power curve (P;) and the ones forecast by NN-Clust and NN-Std

approaches are depicted and compared in Figure 3.

Sunny Days - Best Forecast

Sunny Days - Worst Forecast

cloudy days, and “best” (e) and “worst” (f) cloudy days.
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In the “best” case for sunny days, both NN-Clust and NN-Std approaches accurately
approximate the smooth power curve typical of sunny days. The “best” partially cloudy
day presents an actual power trend not as smooth as a typical sunny day, but not even
much irregular. Indeed, this day shows one of the highest clearness index value (0.53)
among the partially cloudy days cluster. The forecast curves accurately approximate the
actual one except for a small region around the central hours of the day, where NN-Clust
clearly outperforms NN-Std. The “best” cloudy day presents the irregular PV power trend
typical of overcast sky conditions. NN-Clust outperforms NN-5td in terms of forecast error,
but both models are capable of accurately approximating the actual trend.

The “worst” days always correspond to errors in weather forecast, when the real weather
characteristics of a given day turned out to be completely different from the expected ones. In
this condition, the forecast power either strongly overestimate or underestimate the measured
one. It is, therefore, observed that with inaccurately predicted weather parameters in input to
an ANN, the forecast performance exhibits a heavy deterioration.

5. Conclusions

With the increasing RES penetration in the energy mix, reliable forecast tools allow
the prediction of the expected power production and its fluctuations, leading to a more
efficient grid management. The current work focuses on PV power output prediction
and proposes several combinations of ANNs and clustering techniques for an enhanced
day-ahead forecast. The aim of this work is to assess whether it possible to improve
the training of artificial neural networks for day-ahead PV power forecast by dividing a
dataset through clustering techniques and, in the case of a positive answer, to identify the
best-performing dataset partition in terms of forecast accuracy between the proposed ones.
The methodologies proposed are tested and validated on a real case study, a PV facility
located in Politecnico di Milano, the SolarTech“AB.

The conclusions drawn from the analysis of the results are summarized in the following:

e The proposed procedure, based on a day type clustering according to weather con-
ditions, is beneficial for ANNSs training. Indeed, the performance obtained with
clustering-based approaches always outperform those of their non-clustering-based
counterpart. The NN-Clust (clustering-based) approach based on KM-3, i.e., the best-
performing combination, presents an improvement of 4.2% in EMAE with respect to
the corresponding NN-Std (non-clustering-based) approach.

e  Comparing all the approaches identifying a constant number of clusters (i.e., FT-A,
FT-B and KM-3, identifying K = 3 clusters), it is observed that the clustering-based
partition is more effective than clearness-index-fixed-threshold-based ones in terms of
forecast performance.

e Comparing the clustering-based approaches (i.e., KM-3 and KM-2), it is observed that
the optimal dataset partition in terms of cluster quality do not necessarily lead to the
best forecast result. Therefore, a partition showing good scores according to a quality
evaluation criterion do not necessarily imply a good effectiveness in an application.

e The forecast performance is strongly influenced by the inaccuracies in weather param-
eters prediction, which can heavily affect the final result.
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Abstract: In this research, a new uncertainty method has been developed and applied to forecasting
the hotel accommodation market. The simulation and training of Time Series data are from January
2001 to December 2018 in the Spanish case. The Log-log BeTSUF method estimated by GMM-
HAC-Newey-West is considered as a contribution for measuring uncertainty vs. other prognostic
models in the literature. The results of our model present better indicators of the RMSE and Ratio
Theil’s for the predictive evaluation period of twelve months. Furthermore, the straightforward
interpretation of the model and the high descriptive capacity of the model allow economic agents to
make efficient decisions.

Keywords: Time Series; forecasting; bernoulli; ratio theil; generalised method of moments

1. Introduction

Statistical Learning is a branch of science that is based on learning patterns and iden-
tifying structures in data collection. Researchers develop theories using algorithms from
Statistics, Mathematics, Machine Learning, Artificial Intelligence, Deep Learning, or mixed
models. The applications of these methodologies are fundamental tasks of the description
of the study and forecasting. The main difference, according to the statistical analysis, is
the lack of a prior assumption of information and that knowledge is obtained from the
data. In this paper, we will focus on the connection between Statistical Learning Theory
and Econometrics [1].

The methodologies based on the use in the measurement of uncertainty can be clas-
sified into three broad categories: survey-based, model-based, and using economics and
financial indexes as proxies [2]. Historically, the development of uncertainty measures
has been based on the study of variance and its main distribution moments. The use of
Entropy as an information measure has led to contributions in the field of uncertainty
study [3]. Information Theory supposes the ordering of the results and the derivation in
new conclusions. Maximum Entropy expresses the greatest uncertainty concerning the set
of information analyzed [4]. Entropy, based on the Shannon Entropy concept [5], is a power-
ful tool for approximating exponential distributions and groups of families [6]. Despite the
versatility and flexibility of the uncertainty study, it has not been widely used in empirical
economic studies. The reason for this may be that the Statistical Learning approach has not
been developed following an orthodox approach. In this study, we propose a sequential
method for identifying uncertainty patterns in dynamic decision-making by agents based
on an uncertainty function that we will call Bernoulli Time Series Modeling (BeTSM). The
empirical application of this work is in the prediction of tourist hotel accommodation in
Spain for decription (January 2001 to December 2018) and the out-sample period January
to December 2019.

A theoretical framework is developed, and the dataset used to obtain the result
was the case of Tourism markets for accommodation in Spain. In particular, we will
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model the decision of tourist accommodation in choosing apartments versus hotels. On a
monthly database, the National Statistical Institute (INE) of Spain offers statistics related to
tourism based on the National Survey of Tourist Accommodation. This database has been
important in the study of the tourism market, assuming that this study is a methodological
contribution on the disaggregated behaviour of uncertainty and the study of unobserved
components of the Time Series [7]. The empirical results reveal an interesting cyclical
movement of seasonality in decision-making. In the training period between January 2001
and December 2018, we have observed repetitive patterns: in the low season months for
Spanish tourism there was less uncertainty and in the months of high demand, there was
greater uncertainty in tourist decision-making. The study and description with forecasting
tasks imply contributions for researchers or policy-makers.

In this article, we extend the use of BeTSM to a causality model with the use of the
uncertainty factor based on the variance of BeTSM. We will call the uncertainty factor
Bernoulli Time Series Uncertainty Function (BeTSUF), and it will be inserted in the pre-
dictive model called log-log BeTSUF. The easy interpretation with elasticities and the
predictive capacity characterizes this method. Due to the simultaneous causality that oc-
curs in the causal model, we will work with the Generalised Method of Moments corrected
by the weighting of the Heteroskedasticity and Autocorrelation Consistent matrix (GMM +
HAC-Newey-West). This method of estimation, based on a matrix of instruments, allows
obtaining consistency properties of the estimated parameters. The results of our forecasting
model improve the data of models contrasted in the tourism forecasting literature such as
the Entropy model [8], Seasonal Autoregressive Integrated Moving Average (SARIMA) [9]
and Autoregressive Distributed Lags extended to Seasonality (ARDL + Seasonality) [10].
The results of Ratio Theil’s (RT’s Uy) verify these empirical results. In this paper, we work
with models with Seasonality mainly because previous studies of uncertainty analysis have
demonstrated their existence [8].

The remainder of this investigation is as follows: Section 1.1 provides a review of the
existing literature on the forecasting Tourism; in Section 2, the theoretical methodology is
developed; in Section 3, data analysis of Open Data sources is done, as is the application of
the modeling; Section 4 is dedicated to the main conclusions obtained after applying the
methods proposed. Finally, bibliographic references are shown.

1.1. Literature Review

This subsection cites and reviews the relevant literature and the most-used models
in hotel accommodation forecasting from the last 50 years. There are great reviews of the
literature that highlight the predictive capacity of the models in Time Series, Econometric
Modeling, Neural Networks or other relevant frameworks in the tourism field [11-14]. In
the big data field, there are also several reviews applied to tourism forecasting [15-17].
As we referred to before, three forecasting models are extracted from the review that we
will use as a comparison for our contribution to the literature: Entropy Model, Seasonal
Autoregressive Integrated Moving Average (SARIMA), and Auto-regressive Distributed
Lags extended to Seasonality (ARDL + Seasonality).

In our work, we performed measurements for binary choices of tourist accommoda-
tion. The use of a binary choice series can occur in many areas where the temporary
problem to solve could be used in chemical, industrial, or socio-economic processes.

Some discrete Time Series methods, such as the Poisson distribution approach (model
for counts), or continuous methods with a constant coefficient of variation (e.g., gamma)
have been developed [18] for the use of clinical trial comparing the evaluation of logistic
regression and Cox Regression with binary results in a fixed period [19]. For a better
reading of these processes, deeper readings are recommended [20].

In the area where we will develop our empirical study, tourist accommodation mar-
kets and their decisions are unexplored using Bernoulli distribution in Time Series as far as
our knowledge reaches. The development of the BeTSM is a contribution to the literature
applied to Social Sciences. The crossover study of tourist accommodation in Hotels and the
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appearance of a competitor, such as a tourist apartment, has not been widely addressed
in the measurement of final accommodation decisions. Researchers on tourism accommo-
dation markets have focused their attention on the appearance since the global crisis of
2008 in studies of applications of apartment tourist offers such as Airbnb [21], apartment
prices [22], the quality of accommodation services [23], and the effect of images on the final
accommodation decision [24]. For more detail on forecasting and tourist accommodation,
the reader has bibliographic reviews of papers at the beginning of this section.

In the field of Statistical Learning applied to the measurement of uncertainty in tourist
accommodation, the introduction of Entropy in decision-making stands out. Of particular
interest is the use of the Shannon Entropy dynamic to quantify the randomness in the
decision between tourist accommodation in apartments and hotels. The authors highlight
the descriptive and predictive goodness compared to the SARIMA predictive models,
the measurement of the improvement in forecasting capacity is carried out with RT’s
U [8]. This relative ratio can be classified in the measurements of goodness of the ex-post
prediction by its interpretability [25]. It should be noted that previous studies of Entropy
applied to tourism reveal a cyclical behaviour compatible with seasonal flows [8].

From the reviewed literature, we observe in the empirical results section that our
model shows improvements in the forecasts made for the Spanish hotel market. In the next
sections, we will detail the theoretical modeling that we will apply in later sections.

2. Methods

In this methodological section, we will focus on the theoretical development of BeTSM.
This modeling allows the descriptive, control and forecasting tasks to be carried out on
events with two possible Time Series results. Once we have described the modeling of
the temporal choice options, we will work with a log-log model of Time Series to perform
forecasting. For this, we will introduce an uncertainty factor described by Bernoulli Time
Series Uncertainty Function (BeTSUF). The inclusion of this factor implies simultaneous
causality for the log-log model, violating the usual assumption of exogeneity in econo-
metric models. We propose the GMM + HAC-Newey-West matrix. Forecasting tasks
will be compared with automatic TRAMO-SEATS for SARIMA models [26] and causality
models such as Autoregressive Distributed Lags Extended to Seasonality, in addition to the
causality model with Entropy factor [27]. For the evaluation of the prediction, we propose
the Root Mean Squared Error (RMSE) criterion and the relative dimensionless criterion of
RT’s Uy [10]. In the following paragraphs, we will describe the application methodology
in the empirical section.

2.1. Bernoulli Time Series Modeling

In this subsection, we will define a binary decision mathematically over time. Suppose
we are in a mutually exclusive and binary random situation in a timet =1, ..., T. For the
application of our model in real cases, we will assume that in each monthly period, the
tourist market decides between staying in a hotel or in a tourist apartment.

Let us consider that the temporary binary realization takes a value of zero or one,
assuming that each temporary decision is individual and independent of the previous one.
In a period the Bernoulli density function X; ~ Be (p;) could be expressed as follows:

flx) =p(1—p)' ™ = {0,1} 1)

Given the values of x; in each time ¢, the formulation would be:

1—p; for xr=0
flxep) = pr for x =1 )
0 in other cases

Probability of a successful event is defined (It would be expressed by the number of
times “n;” or “m;” that an event occurs V f and the number of possible cases (11; + m1;) in that
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period. Alternatively, we can define the opposite event 1 — p; = m;/ (n¢ + my). In our work
“ny” represents numbers of overnight hotels and “m;” represents te numbers of overnight
apartments p; = n¢/(ny +m;) V t. For our work, we propose a chronologically ordered
distribution of independent random variables called Bernoulli Time Series Modeling
(BeTSM), proportioning information from each period, , on the probability of an event.

For this work, we are interested in measuring the uncertainty in each period ¢; for
this, we will use the contemporary variance of each event defined by the expression
var[x;] = pi(1 — p;). Situations of uncertainty can be summarized with a minimal variance
var[x;] = 0if p; = 0 and a maximum variance var[x;] = 0.25 if p; = 0.5.

The chronologically ordered distribution of var|x1], var[xz], ... ,var[x;] is named the
Bernoulli Time Series Uncertainty Function (BeTSUF).

In the example that we will develop in the empirical section, we will define the
probability of success equal to the one for accommodation in hotels. Otherwise, we will
consider that accommodation is produced in a tourist apartment. The sequence of all data
collected chronologically will assume that the variance of this series will determine our
Time Series (BeTSM) and the measurement of uncertainty. The ordering of the sequences
of variances will represent what we have theoretically called BeTSUF.

2.2. Log-Log Modeling BeTSUF: Estimated by Generalized Method Moments HAC-Newey-West
(GMM + HAC-Newey-West)

In a random context, we propose the introduction of the BeTSUF to carry out fore-
casting and control tasks. A statistical problem generated by the use of the uncertainty
factor is the endogeneity of the regressors due to simultaneous causality of variables,
not fulfilling the exogeneity and relevance conditions usually required for the estimation
by the Instrumental Variables method. Furthermore, in the case of the existence of het-
eroscedasticity, we find a problem of efficiency in the parameters estimated. For this, we
propose the estimation method Generalized Method of the Moments with the efficient
residual matrix of Heteroskedasticity and Autocorrelation Consistent (HAC-Newey-West).
HAC-Newey-West estimators of the variance-covariance matrix circumvent this issue [28].
For the theoretical development, we will rely on matrix expressions. Our modeling would
be as follows:

Y = XB+ BeTSUFJ + ¢ 3)

where X and BeTSUF are the matrices of explanatory variables (endogenous and exogenous
expressed in logarithms with base 10). § and ¢ are the vector of parameters to be estimated
consistently through GMM + HAC-Newey-West. For this estimation, it is necessary to
use a list of instruments. Z is the matrix of instruments that must satisfy the relevance
condition (cov(X, Z) # 0) and exogeneity of the instruments (cov(Z,€) # 0). The range
condition must be fulfilled for the model to be at least identifiable [29]. The estimated
parameters are obtained from the following expression:

~GMM —~—1 -1 ~—1
B :<X'ZQ Z'X) (X’ZQ Z'Y) (4)

~ ~2
The matrix of the residuals is defined Q) = Y Z[Zé €4, which allows us to obtain

T
t=1

~GMM
the estimators S efficiently. In testing the orthogonality of the instruments (null
) o GMM ,~GMM\'~=1/ _ _GMM
hypothesis E(Z;e;) = 0), we use the test statistic | =(Z'¢ Q Z'e /t.
The residuals of the statistic are obtained from the estimation by GMM + HAC-Newey-
_GMM ~GMM ~GMM
West ¢ =Y-XpB — BeTSUF o . Finally, the asymptotic distribution of the
statistic is JOMM ~ X%sz where m is the number of instruments and k is the number of
a

endogenous regressors. Once the estimation of the f and ¢ parameter vectors has been

144



Eng. Proc. 2021,5,17

50f 10

carried out by the GMM + HAC-Newey-West, we can guarantee the asymptotic consistency
property of the estimators [30,31].

For the empirical application, our dependent variable will be the number of hotel
overnight stays. The explanatory variable will be the number of accommodations in tourist
apartments and also the uncertainty factor BeTSUEF. In subsequent sections, we will work
with the model expressed in logarithms called log-log BeTSUF.

2.3. Accuracy of the Predictive Capacity of the Models
We propose an evaluation for the time horizon i = 12 with the value predicted

Jt+5 and real value ;.. Specifically, we use two model selection criteria based on the
prediction; on the one hand, we will use the Root Mean Squared Error (RMSE) [25]:

a 2
Y (Gesh — Yesn)
h=1

RMSE = ; (5)

On the other hand, we will propose the relative criterion RT’s U;, which is designed to
perform model comparisons for prediction periods with the time horizon /. The benchmark
is based on the concept of inequality of Theil U; [32] and developed for forecastings
comparisons between the results of modeling [10]:

N 2 1/2
{;17‘2 (Yr4n —J140) }

i=1

U = N ) 1/2 N R 1/2 ©)
R+ [FEra?]
i= i=
uyzt
! M
RT'sy,y, = 711{"' ?)

The values of the RT’s U; will determine which model has the most significant
predictive capacity if it is equal to one; the models i and j will present the same predictive
power. For values greater than one, the numerator model will show a worse predictive
capacity than the denominator. For values between zero and one, the numerator model
will present a better predictive capacity. In the next empirical section, we will show a
comparative table with the most outstanding results in an annual forecast.

3. A Case Study in the Social Sciences: The Dichotomy of Choice between Hotels and
Tourist Apartments

In this section, we divide two subsections: on the one hand, data and correlations,
and on the other hand, empirical results. The first part presents the variables under study
and the instruments for the estimation of elasticities; in the second subsection, we apply
modeling to these data. For our analysis, we have modeled the contemporary choice in
the field of empirical application in the tourism sector. The objective is to analyze how
the probabilities of accommodation in one place or another are distributed through the
market for hotel demand and tourist apartments in Spain. With the temporal analysis, we
will observe how tourists in the Spanish market reflect their housing interests in terms of
probabilities.

3.1. Data and Correlations

In this subsection, we will carry out an analysis of the modeling presented in the
previous sections. In particular, Open Data resources available in the INE for the application
of the statistical model in the field of social sciences. We will consider a monthly training
analysis period from January 2001 to December 2018, the evaluation of the predictive
capacity will be carried out for all the months of 2019. The descriptive statistics are those
shown in Table 1.
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Table 1. Descriptive Statistics (January 2001 to December 2018). Own Elaboration.

Yy Xt BeTSUF;
Mean 22,934,393 5,891,936 0.163905
Median 21,721.214 4,858,973 0.162965
Maximum 46,657,187 12,520,497 0.221206
Minimum 9,797,644 3,302,242 0.118740
Std. Dev. 9,463,750 2,433,807 0.023312
Skewness 0.565925 1,234,384 0.312166
Kurtosis 2.330 3.408 2.441
Observations 216 216 216

In Table 1, we identify the variable y; as the number of hotel accommodations, the
variable x; as the number of accommodations in tourist apartments and BeTSUF; is the
uncertainty factor described in the methodological section.

The descriptive data with 216 observations without missing values are for the training
period and the aggregate data from the Spanish Tourism market. The descriptive statistics
in the table indicate the maximum values of the accommodations found at their maximum
values in August 2017. On the other hand, the maximum value of the uncertainty factor
is given in January 2001. The minimum amounts are different chronologically for the
different variables, for the hotel demand Time Series it occurs in December 2001, for the
tourist apartments demand it happened in January 2010 and for the uncertainty factor
in May 2012. As for the Skewness and Kurtosis, we can highlight that the three series
present positive asymmetry and this could be determined by the strong seasonality where
the predominant months are June, July and August compared to the remaining nine that
generally show lower values.

Referring to the methodological section, with the modeling that we present, we must
use instrumental variables for the variables of our model due to simultaneous causality.
In the following Table 2, the correlations between the explanatory variables of our model
are presented (x¢, BTSUF;) and the list of instruments: rural apartments (zy4,z1;—1) and
accommodation in campsites (2, zo;—1).

Table 2. Cross correlations for explanatory and instruments variables. Sample January 2001-
December 2018. Own Elaboration.

xt BTSUF; e o s -~
Xt 1.00 (----)
BTSUF 0.15 (0.03) 1.00 (----)
1 074 (0.000  —024(0.00)  1.00(----)
2t 094(0.000  0.03(061)  084(0.00)  1.00(----)
11 038(0.00)  —0.39(0.00)  049(0.00)  033(0.00)  1.00(----)
-1 066 (0.00)  —0.13(006) ~ 053(0.00)  056(0.00)  0.84(0.00)  1.00(----)

In Table 2 of cross-correlations, we can observe that all the instruments meet the
relevance conditions since all the instrumental variables are correlated with the regressors.
In Table 2, we find the value of the statistic and in parentheses the p-value under the
hypothesis of no correlation between explanatory variables and the list of instruments. The
results present all p-values less than 0.05, the correlation between contemporary camping
sites and the uncertainty factor (0.61) being the only one greater. For the rest of the lagged
variables, the relevance assumption is fulfilled. Taking this matrix into account, we can
consider that a priori the list of instruments is valid for estimating through the GMM +
HAC-Newey-West method.
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3.2. Empirical Results

In this subsection, we work with the application of the data collected to the modeling
log-log BeTSUF described in the methodological section. Given the results of the correlation
matrix in Table 2, we proceed to carry out the estimation through the GMM + HAC-Newey-
West. The estimation and training period of the model is for 216 months (from 2001 to
2018). The purpose of establishing an analysis period with sample prediction is to obtain a
robust model to face a prediction scenario with the most significant guarantees.

In our model (8) the parameters estimated should be interpreted as elasticities. From
the results obtained, we can verify the signature of the estimated parameters, the contrast
z-statistic obtained in the consistent HAC matrix is shown in parentheses. Values greater
than +2 imply that parameters are significant in the modeling. The modeling of resids
present a white noise structure with a Seasonal Autoregressive structure SAR(1,12). Given
this modeling log-log BeTSUF, we can highlight the high explanatory capacity R* = 0.998.

In this case, the model presents overidentification; the contrast | allows us to contrast
the exogeneity of the instruments. Taking into account that the empirical value shows a
probability of 0.1517, we cannot reject the hypothesis of exogeneity of the instruments with
a 95% confident.

logy: = —1.2077 4+ 0.9869 logx; — 1.5317 log BeTSUF + /s\f
(~7.1837)  (138.7423) (—40.7203)

R? = 0.9998; Prob ] — Statistic = 0.1517

e =05316¢;_1 4+ 0.8149¢ ;_10 + & ®)
(7.0338) (7.0338)

Sample of Estimation : 2001.1 to 2018.12

Instruments list : log(z1;),10g(z1t-1),10g(z2:), log(za1—1)

According to the validation of the model log-log BeTSUF, we proceed to interpret the
estimated parameters of the model. The first aspect to highlight is that the signs obtained
are as expected; the relationship between hotel accommodation and tourist apartments is
positive. The elasticity is 0.9869, which implies a direct relationship between both variables
analyzed. Second, the inverse relationship between BeTSUF and the hotel accommodation
variable should be highlighted. According to our model, we can interpret that when there
is more significant uncertainty, hotel accommodations lose demand in favour of tourist
accommodation. In particular, when there is an increase of one per cent in uncertainty,
hotel accommodations decrease their demand by 1.5317 ceteris paribus.

After analyzing the descriptive capacity of the model and its validation, we will focus
on the forecasting capacity and its comparison with other forecasting models through
RMSE and RT’s Uj. Regarding our causal model estimated through GMM weighted by
HAC-Newey-West, it is worth highlighting the goodness of the predictive capacity of the
model based on the scale of the data.

The forecasting period is between January 2019 to December 2019. According to Table 3,
our model log-log BeTSUF presents the minimum values (78,507.36) of the widespread
RMSE criterion, giving a better predictive capacity compared to forecasting models. The
Entropy model (107,581) showing proximity in terms of the predictive power of a complete
cycle of twelve months. The rest of the models present very high values, which are
considered worse than the model exposed to our work.

Table 3. Summary of forecasting accuracy (RMSE). Out-Sample training January 2019-December
2019. Own Elaboration.

log-log BeTSUF Entropy ADRL+Seasonality ~ SARIMA
RMSE (h =12) 78,507.36 107,581 1,524,295 1,528,357

As a relative measure of prediction calculation, we observe the RT’s Uy of the esti-
mated models in Table 4. It should be noted that all are greater than 1, and our benchmark
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method is the model exposed in our methodological development. The scores obtained
for the ADRL + Seasonality and SARIMA methodology are widely worse (19 times worse)
than our estimated model with the uncertainty factor. The closest model compared to our
benchmark method is that of Entropy, taking a value higher than 1.37 times.

Table 4. Summary of forecasting accuracy (RT’s Uy). Out-Sample training January 2019-December
2019. Own Elaboration.

log-log BeTSUF Entropy ADRL+Seasonality ~ SARIMA
19.0699

RT'sUy (h=12) 1 1.3696 19.0210

The following Figure 1 shows the predictions with a time horizon of twelve months.
From a graphic point of view, it is difficult to differentiate between models, but the use
of ratios allows us to quantify the benefits of our model proposed in the methodological
section. In Table 4, we can verify that the best model is the log-log BeTSUEF. Finally, in the
conclusions section, we will specify the advantages, advances and limitations of the use of

this proposed methodology.

600 -
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Figure 1. Out-sample forecast hotel accommodation h = 12 (January 2019 to December 2019).

Own Elaboration.

4. Conclusions

In the scientific article, we have developed modeling under the assumption of BeTSM
with Application to Accommodation Tourism Demand. The objective covered is to create
a Statistical Learning approach through the analysis of behavioural patterns of the Hotel
accommodation market, in particular, we have modeled the market decision between
hotel accommodation and tourist apartments with data from INE Spain. The use of
the uncertainty factor described in the methodological section allows us to analyze how
unobservable information BeTSUF is transmitted from one variable to another in the sense
of causality. In theoretical terms, it assumes that an applied quantity function is used
instead of a state counter such as Entropy [8].

Log-log BeTSUF is worth highlighting robust theoretical and empirical properties. The
property of consistency of the estimators of the explanatory variables of the model and the
efficient use of the residuals to carry out inference tasks with GMM + HAC-Newey-West,
giving a solution to the problem of causal simultaneity found in the theoretical modeling.

According to our results, we have found a high explanatory capacity of the model
with a high R? = 0.998. The easy interpretability measured in elasticities, from which we
can deduce that the variables of hotel accommodation and tourist apartments present a
unitary elasticity (0.9869); the uncertainty factor provides added value in the modeling,
knowing that the unitary elasticity of this uncertainty factor allows us to see the transfer of
information that occurs from one variable to another. Meaning that an increase of 1% in
uncertainty presents a decrease of 1.5317 in demand for hotel accommodation in favour
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of the apartments; regarding the predictive capacity, our modeling log-log BeTSUF gave
the lowest RMSE and the best relative criterion of RT’s Uj for the models presented in this
paper for the same period of forecasting.

This study provides knowledge about the uncertainty that has to be measured. As it
was introduced in this article, it is possible to consider this modeling to explain situations
in Computer Science, Engineering, Physics, Mathematics and many other applications.

As can be seen, taking into account the possible limitations that the researcher could
find with the application of this technique, this article contributes to the scientific literature
and adds forecasting tools. The study exposed continues to open the field of forecasting
and control for the advancement of these techniques from a theoretical and empirical
point of view. This debate should always be based on robustness criteria, which implies
sensitivity to changes in specific factors to be tested and insensitive to changes in outliers
in practice. The work developed is in the context of uncertainty, and this work has been a
contribution to a real forecasting problem [33].
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Abstract: In this paper, we want to find a continuous function fitting through the discrete covariance
sequence generated by a stationary AR process. This function can be determined as soon as the
Yule-Walker equations are found. The procedure consists of two steps. At first the inverse zeros of the
characteristic polynomial of the AR process must be fixed. The second step is based on the fact that an
AR process can also be seen as a difference equation. By solving this difference equation, it is possible
to determine a class of functions from which a candidate for a continuous covariance function can be
determined. To analyze if this function is applicable as a positive definite covariance function, it is
analyzed mathematically in view of the power spectral density compared to the characteristics of the
power spectral density for the discrete covariances. Then it is shown that this function is positive
semi-definite. At the end, a simulation of a stationary AR(3) process is elaborated to illustrate the
derived properties.

Keywords: AR process; continuous covariance function; Fourier transform; power spectral density;
positive definiteness; signal prediction

1. Introduction

In geodesy the observations or analyzed signals are often discrete measurements
which repeat at regular distances. For example, deformation observations (repeating in
time) or data from satellite missions such as GOCE (repeating in time and space). It is
a common way to describe regular and equidistant signals by auto regressive moving
average (ARMA) processes [1-5].

Within this contribution we focus on the analysis of the AR part. This AR part defines
the causal link between an observation and its predecessors. Additionally, Least Squares
Collocation (LSC) (see e.g., [6-8]) and kriging [9,10] are benefiting from the use of AR
processes. For example, the inverse of a covariance matrix, based on AR process, is a band
matrix witch bandwidth equals the order of the AR process (see e.g., [11]).

However, to activate the full potential of LSC a continuous covariance function is
indispensable. With this function it will be possible to predict a pseudo signal between the
observations. Furthermore, it is possible to predict the signal outside the observation field
and not only for a multiple of the sampling rate. Moreover, refs. [12,13] used a continuous
covariance function to switch from one functional to another (Like using sea level heights
to calculate sea level changes which are proportional to the stream velocity).

In this paper, we want to find an analytical description of a continuous function fitting
through the discrete sequence of covariances generated by any stationary AR process. This
function is derived from the coefficients of the AR process and the discrete covariances
using a system of equations with a unique solution. The resulting function should be
positive definite, and its spectrum is expected to correspond to the spectrum of the discrete
AR process. It will turn out that this function is the continuous solution of the difference
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equation and correctly interpolates the discrete covariance sequence with appropriate basis
functions, indeed following sampling theory/convolution theorem. In the end an example
is given by a simulated AR process and the accompanying continuous covariance function
as well as the two spectra are estimated.

2. Continuous Covariance Function

To find a suitable covariance function for any stationary AR process the definition of
AR processes is a good starting point. Especially the transfer from the AR process to the
difference equation approach will lead us to the continuous representation we looked for
(The following definitions could be found in [14-18]. Here the notation of [17] is used).

2.1. Construction of a Continuous Covariance Function

The process S; is called one-dimensional AR process of order p (AR(p) process) if it is
described by the recursive equation

St = qut,l + thStfz + ...+ DépSt_p + (St (1)

where a1, a3, ..., ap are the coefficients of the AR process and &; is a i.i.d. sequence with
variance Ug [17] (p. 58, Equation (3.4.31)). We assume that &, # 0, as otherwise the AR(p)
process is also an AR(p — 1) process so that AR(p) is not well-defined (In addition, if &) = 0
some formulas in this paper cannot be used).

An important quantity is the zeros ({;) of an AR(p) process defined by the zeros of the
characteristic polynomial

x(x) =1—axt —apx® — .. — apx? )

=@ -0)x—-0)-(x=0p),

see e.g., [17] (p. 58, Equation (3.4.32)).
An alternative definition is given by the auxiliary equation if we interpret the AR process
as a difference equation which has the general solution (see [19], p. 134, Equation (3.33))

b(x) = xP —axP ! —apxP 2 — . — ap (3)

= (x = p1)(x — p2)--(x = pp)

These zeros p; only occur as real values or in pairs of complex conjugated zeros. Bear
in mind that the zeros of the characteristic polynomial from Equation (2) are linked to the
zeros of the auxiliary equation (cf. Equation (3)) by {; = 1/p;. AR processes are stationary
if and only if the {; are outside the unit circle, such that |p;| < 1. In the following we will
restrict to p; for simplicity.

With this definitions in mind, the discrete covariances %; of an AR(p) process, are linked
with each other by the Yule—Walker (YW) equations (see e.g., [17], p. 59, Equation (3.4.36)), i.e.,

o =%y + 0¥y + o+ apZy + o )
Z] = Dtlz‘/-,l‘ + D(zzlj,z‘ + ..+ apZU,p‘ lf] 7& 0. (5)

The YW equation of higher order than 0 (Equation (5)) are basically homogeneous
difference equations of order p,

Z]‘ — 0(12”,” — 0(22‘];2‘ e aPZU,p‘ =0. (6)
The general solution to the difference equation can be expressed by the powers of the

zeros p; of the auxiliary Equation (3). The particular solution is fixed by the boundary con-
ditions using the discrete covariances determined from the YW equations (cf. Equation (5)),
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5=) Ap) %)
=1

Here A are coefficients which are complex if and only if the corresponding p; is
complex. Furthermore, if there is a pair of complex conjugated p; then A; occur also as
complex conjugated pairs (see e.g., [18], p. 134, Equation (3.5.44) or [19], p.163, f.).

At this point a new but now continuous function is defined, which can be seen as the
continuous covariance function (k) : R — R for any AR(p) process,

L
y(h) =) Ay ®)
=1

Here A; and p; are the same as in Equation (7), but the domain changed. j € Ny is
replaced by h € R.

Attentive readers will have noticed that (k) is complex if any p; € R™. Then
v(h) € Cforall h ¢ Ny. One important convention that will help with this inconsistency is
the use of the real part Re(7(h)) of the complex function (see Figure 1). This condition will
not have any impact if y(h) is real (what is mostly the case), and furthermore a covariance
function for real valued signals is defined to be a function in R not in C.

Correlations of the pole -0.8 with different Correlation funktions

X Discrete Correlations
= real part of the correlation funktion
== imagenary part of the correlation funktion
sum of the real and imagenary part of the correlation funktion

45 I I I I I I |

3 4
distance

o
-3
~

Figure 1. Real part, imaginary part and sum of both parts of a complex covariance function of an AR
process with pole —0.8.

2.2. Properties of the Continuous Covariance Function

Since with 7 (h) from Equation (8) a suitable function is found to fit through the
discrete covariances from Equation (7), we want to analyze the power spectral densities
of the continuous and the discrete functions. On this basis we can demonstrate that the
Fourier transform of the continuous covariance function is positive semi-definite.

Initially the problem restricted to AR processes of order 1 and order 2 with two
complex conjugated zeros. On the one hand any AR(p) process can be dissected into a
product of AR(1) and AR(2) processes. This is a linear function, so the power spectral
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function is the product of the corresponding AR(1) processes and AR(2) processes. On
the other hand, Equation (8) shows that the covariance function is a weighted sum of the
real valued zeros, or pairs of complex conjugated zeros. So, the zeros are also in a linear
relation, and so is the Fourier transform. So, it is only necessary to examine the spectrum
and the Fourier transform for the first order AR process and second order AR process with
two complex conjugated zeros.

For these specific types of AR processes there is an analytical solution to switch from
AR coefficients «; to the zeros p; (see [20]),

for order p = 1 ay = p )

a1 =p1+p2
Xy = —p1p2

and for order p =2 { with p; = p5. (10)

2.2.1. Power Spectral Density

The power spectral density for an AR(p) process is well known (see e.g., [16], p. 244,
Equation (11.20)) and is described by the transfer function

2
= 40-5 .
‘1 _ Z;’:] lxle—i27wl|2

H2(v) 11)

In consideration of Equations (9) and (10) the power spectral density for any AR(1)

process and AR(2) process with complex conjugated zero can be calculated explicitly. So,
the power spectral density AR(1) process is generated via

2
T

= . 12
1 —2py cos(2mtv) + p3 (12)

H(v)

For the AR(2) process with zeros p; = p3 the power spectral density is a little more
complicated and turns out to be

HA(v) =
o2
£ 2 (19)
1—2(py + p2) cos(27v) + p1p2(2 +2cos(4rv) — (p1 + p2) cos(27v) + p1p2) + p7 + P35
Using the Fourier transform of the covariance function vy (h)
P —2In
PW) = F) ) = LA ) (19

S (n(p)* + (2)?

is an alternative way to derive the power spectral density (For further derivations of the
Fourier transform see Appendix A). However, H?(v) # T'(v). Especially Equation (11)
shows #2(v) as a function whose only parameter v arise as power of the complex function
e~27 Therefore H2(v) is a repetitive function with period 1. In contrast, Equation (14)
shows I'(v) is aperiodic function with nglolo I'(v) = 0. To understand this circumstance two
theorems are of importance:

1. The discrete covariances of an AR(p) process (¥;) are equivalent to the product of the
Dirac comb with the continuous covariance function -y (k).

2. The convolution theorem shows that multiplication in time domain results in convo-
lution in frequency domain.

Combining these two pieces of information shows indeed that #2(v) # T'(v) but

H2(v) =T(v) * ( i 5(x — k)) (15)

k=—o0
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where Y _ 6(x — k) is the Dirac comb of distance 1 and I'(v) * (L3> _, 6(x —k)) is the
convolution of I'(v) and the Dirac comb. The transitions from continuous functions to
discrete sequences as well as the resulting Fourier transforms are shown in Figure 2 (For a
more detailed method of calculation for AR(1) and AR(2) processes see Appendix C).

Flv(h)}(v)
"}'(h] = ?:1 A[Plh‘ P(V) _ Z?:l Ail —2In(py)

T

heR n(p;)>+(2m)
F-UT(w)}(R)
TR k) 3 o Bz — )
(multiplication (convolution
Dirac comb Dirac comb
with distances dx) with distances du/)
F{Zjhie} ()
5= A ‘ 52
J =1 1 ’HE(I/) —_ W
jeN B
FHHw)}0)
. R (Wiener-Khintchine-theorem) i
time-domain frequency domain

Figure 2. Magic square for the convolution of a continuous covariance function with a Dirac comb.

2.2.2. Positive Semi-Definite Function

Equation (15) shows that knowing if H2(v) is positive semi-definite is not sufficient
to guarantee that the Fourier transform of the continuous function (%) is positive semi-
definite too. Therefore, the explicit Fourier transforms of the AR(1) and AR(2) process
are derived here. For the case of the AR(1) process it is easy to see that for the Fourier
transform of the covariance function 7 (/)

_ —2In(p)
~ 1=72(In(p))* + (27v)

I'(v) 5 >0 VveR. (16)

holds (For the derivation of this formula see Appendix B.1). Neither the squared terms
could be less than 0 nor 1 — p? or — In(p) due to the fact that p lies within the unit circle.

For the AR(2) process things are not that obvious. In Appendix B.2 it is demonstrated
that the Fourier transform of y(h) is

) —okp —2In(p1)
Hlv) = 2ke ( (p2— p1)(1— p?)(1 — p1p2) (In(p1))? + (27“/)2) "

To work with complex valued fractions, it is necessary to eliminate the imaginary part
in the denominator. This is done by multiplying each term of the sum with the complex
conjugated denominator divided by itself. Afterwards it is simple to pick the real part. To
simplify the formula, we use the polar coordinates p; = re'?, and py = re™™ with0 < r < 1
and 0 < ¢ < 7. So, it can be shown that the numerator is positive (I'(v) > 0) if and only if

—In(r) coth(—1In(r)) > ¢ cot(¢) (18)
—_—
=f(r) =g(9)

The function f(r) and g(¢) are displayed in Figures 3 and 4 (Since g(¢) = g(—¢), the
negative values of ¢ are not needed). On the one hand f(r) is a declining function with
infimum 1. On the other hand, the function g(¢) is also declining, with a maximum of 1.
Thus, infimum f(r) > max g(¢), which evaluate that Equation (18) is always satisfied.
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Figure 3. The function f(r) = — In(r) coth(—1In(r)) for 0 < r < 1.
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Figure 4. The function g(¢) = ¢ cot(¢) for 0 < ¢ < 71, and an enlarged section of the beginning.

3. Simulation

To visualize the results from Section 2 of an AR(3) process with two complex con-
jugated zeros was generated as an example. First to guarantee stationarity the roots are
chosen as

P —0.252 — 0.126i
p2| = | —0.252+0.126i .
Ps 0.306

Let the variance of the white noise be 02 = 1. After deriving the coefficients a;,
I € {1,2,3}, using Equation (3), we estimate the discrete covariances (Z)) of the AR(3)
process by the reorganized YW equations (see [21], p. 32, Equation (183)). With Equation (8)
a continuous function -y(h) is fitted through the discrete covariances (see the left upper
corner of Figure 5). Subsequently the power spectral density is set first by Equation (11)
using the coefficients a; and secondly by Equation (14). For the second step the coefficients
A are estimated by solving the system of equations

%o 11 1[4
il =|p1 P2 p3||Az2|- (19)
b2 I P A A 6

Here the zeros p; and covariances X; are known. Each row represents Equation (7) for
I € {1,2,3}. The coefficients A; are used in Equation (8) to estimate the power spectral
density of the continuous covariance function. It must be mentioned that this example is
an extreme one where the Fourier transform of the continuous covariance function has
high values for frequencies higher the Nyquist frequency v, = 0.5. The Fourier transform
of the continuous covariance function is not periodic at all (compare right upper corner of
Figure 5). However, periodicity is the characteristic of the spectral density of a discrete AR
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process. Therefore, the periodicity is a result of the convolution of the Dirac comb and T'(v).

Continuous covariance
function
F{y(h) Hr)

FHT(v)}(h)

[

2 3 4
distance ()

E LA —k)
(multiplication
Dirac comb

with distances dx)

Discrete covariances

FiZlar} w)

Fourier transform of the continuous
covariance function

-1 o 1
frequency {v)

*Zif‘[i_L 8z —k)
(convolution
Dirac comb
with distances dv)

Fourier transform of the discrete
covariances

WL

3

.

FHH )}()
(Wiener-Khinichine-theorem)

2 3 4
distance (h) 2 40 42
frequency (v)

time-domain frequency domain

Figure 5. Magic square for a convolution of a continuous covariance function of an AR(3) process
with a Dirac comb.

4. Conclusions and Outlook

In this paper, it was shown that the choice of a valid continuous covariance function
for AR(p) processes is given by the function

||
-

P
() =) Ap
1=1
Here h € R is the lag, p; are the roots of the characteristic polynomial, and A; follows
from the unique solution of Equation (14) for p arbitrarily chosen discrete covariances %; ,
p ij (with ji € Ny, and Ji #+ jkei #+ k):

jar s
il Uni

A PPy Ph X,

Al _ ;P Pl | Ze

Ap pllf’ plzp p]pl” Z]p

Due to the convolution theorem, the power spectral density of (/) might be different
to the power spectral density of the discrete AR(p) process. Nevertheless, the proof was
given that y(h) is still positive semi-definite (cf. Section 2.2.2), and consequently meets all
conditions for a suitable covariance function. The Fourier transforms I'(v) and H?(v) may
not vary much for v € [—1,1] and the simulation (see Section 3) is an extreme example.
Anyway 7y(h) is an exponential function, so it is easy to use it as functional for covariance
function propagation or LSC.

In further works the continuous covariance function (k) could be extended to a
function for an autoregressive moving average (ARMA) process to examine its properties.
It is not yet demonstrated that the oscillation of Re(y(h)) leads towards the minimal
frequency if there is a real negative zero (p; = 0 for any /).
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Appendix A. General Fourier Transform of an AR(p) Process

In this part the Fourier transform of a function y(h) = Zle A,p}h‘ with h € R

is computed,

oo P . r 0 . 0 .
F(v) _ / ZAzP;hl‘ZIZMhdh _ Z AZ/ p,’he’Z”Vhdh +/ p;tetznvhdh
=1 I=1 s —®

1 1
—In(p;)—i2mtv —In(p)+i27v

- —2In(p;)
= LA+ @)

Please note that A; and p; might be complex, but this will not have any influence on
the equations.

Appendix B. Explicit Fourier Transform of the AR(1) Process and AR(2) Process with
Two Complex Conjugated Zeros

In this section, the explicit Fourier transform I'(v) of the continuous covariance func-
tion 7y (h) for the orders p = 1 and p = 2 are given as function of &, and the zeros p;.

Appendix B.1. Fourier Transform of the Continuous Covariance Function of AR(1) Processes

First the discrete covariance ¥y must be computed as function of the zero p;. This is
done by the reorganized YW equations (see [21], p. 32, Equation (183)):

(G 5]+ 3) 17 =)

1 -1 —q —0'3 ZO
R Lal 4” 0 %

=2y =

o?
_ 2
1—af

Further Equation (7) gives £y = A; and in combination with Equation (9) the deduc-
tion is
2

J¢

A= —.
1-p
Insert A; in Equation (14) for order p = 1 to obtain

_ 7 —2In(p1)
) = T ) + )

158



9of11

Eng. Proc. 2021, 5,18

Appendix B.2. Fourier Transform of the Continuous Covariance Function of AR(2) Processes with

Two Complex Conjugated Zeros
Like in the last subsection the discrete covariances Xy and X1 are computed by the

reorganized YW equations:

1 0 0 0w ]\ '[-o? Yo
o -1 0 + 10 [1%) 0 0 = 21
[1%) nq —1 0 0 0 0 22
2 1—a 2
ARG ) Ule N 21 a1 =|Z1]-
_D(2+112+1Xz( +061)+111— zx%—oc%—i—ocz 5,

With the transformation from &y, a5 to py, p2 (cf. Equation (10)) the discrete covariances
are set by
_ ~(1+pip2)od _ —(p1 + p2)o?

Xo= 12 2 L= 2 :
(1 =D = p3) (1= p1p2) (i =D =p) (1= p1p2)
This time Equation (7) is an equation system in the two variables A; and Aj. Here the

first and second discrete covariances (X, £1) are used:
El-l Al =)0 n) B
pu} p1 p2] A2 A p1 P2 P
Al 1 p2 =1 [0
AR |

A pp—pilm
éAlzpzzo—Zl; :>A2:P120—21
P2—p1 p1—p2
Including the solution for X and X to obtain A; and Aj; as function of p; and p»
leads to
_ 2 _ 2
A = plie ; Ay = PZUZ—e
(p2 = p1)(1 = p1)(1 = p1p2) (1= p2)(1=p3)(1 = p1p2)

Due two p; = pj, inserting A1 and A in Equation (14) leads to the sum of two
complex conjugated values. This is equally to two times the real part of the complex value:
—2In(p2)

—21In(py) ,
(In(p))* + (27v)°

H(In(p1)? + (2v)?
_ e —ZIH(pl)
=R ( Yn(p1))? + (2m/)2>
—2Re —Ep —2In(py)

(p2 — p1)(1 = p2)(1 — p1p2) (In(p1))* + (271v)?

Appendix C. Convolution of the Fourier Transform of a Continuous Covariance

Function of an AR Process with a Dirac Comb
The convolution theorem means if F(v) and G(v) are the Fourier transforms of the

function f(h) and g(h), then
F{f(g(h)}(v) = F(v) * G(v).
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In this context, f(x) = y(h) (see Equation (8)) and F(v) = I'(v) (see Equation (14)).
For g(x) = Y32 _, 6(x — k) (the Dirac comb of distance dx = 1) the Fourier transform is
again a Dirac comb of distance dv = 1/dx = 1. So, in the time domain is the same function
as in the frequency domain (for v = x: G(v) = g(x)). Using these results leads to

]—'{'y(h) i §(x—k)}(v) F(v)*( i 15(v—k)>

k=—c0 k=—o0

= /oo F(u)( i 25(uvk)>du

S k=—o0

9y [ rwste- v

Y T(v+k)

(g> Z /_oo,y(h)efiZm/hefiZHkhdh

k=—00"

4 00 oo . .
_ ZAZ Z /_ pl\h\eﬂvaheﬂanhdh.

1=1 k=—00

In step (i) the sum and the integral are exchanged. Step (ii) represents the ability of the
Dirac impulse that [ f(1)é(u — x)du = f(x). Finally, (iii) uses the frequency shift of the
inverse Fourier transform (see e.g., [16], p. 26, Table 2.2). Using this function to compute
the power spectral density for an AR(1) process will result in Equation (12) or in the case of
an AR(2) process with two complex conjugated zeros in Equation (13).
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Abstract: The publication is devoted to studying asymptotic properties of statistical estimates of the
distribution parameters # € R7 of a multidimensional random stationary time series z; € R", t € Z

A0 [— - T
satisfying the strong mixing conditions. We consider estimates u,, <zn> ,Zn = (z—f, e, Z;l;) € R

that provide in asymptotic 7 — co the maximum values for some objective functions Qj <zn su,

which have properties similar to the well-known property of local asymptotic normality. These

estimates are constructed by solving the equations J, <zn;u = 0, where J, (zn; u> are arbitrary

functions for which &, (z,,;u) — gradQj (zn;u + n’1/2h> — 0 (n—0c0)in Py, <z,,>—probability
h

b [—
uniformly on u € U, were U is compact in R7. In many cases, the estimates u, (Zn> have

AQ -
the same asymptotic properties as well-known M-estimates defined by equations u, (z,,) =

arg maxQy (zn ; u) but often can be much simpler computationally. We consider an algorithmic
uel
A =
method for constructing estimates u,, | z,; |, which is similar to the accumulation method first pro-
posed by R. Fischer and rigorously developed by L. Le Cam. The main theoretical result of the article
A =
is the proof of the theorem, in which conditions of the asymptotic normality of estimates u,, (z ,,) are

formulated, and the expression is proposed for their matrix of asymptotic mean-square deviations
A /= A8 [— T

lim nE,W{ (u <z,,) — u) (u (z,,) - u> }

n—oo

Keywords: random time series; estimation of distribution parameters; local asymptotical normality;
function of estimation quality; asymptotically efficient estimates

1. Introduction. Methods of Construction Asymptotically Efficient Estimates for
Parameters of Stationary Time Series

In applications of mathematical statistics to modern problems of data analysis in
natural science and technology, it is often impossible to use the classical observation
models in the form of a sequence of independent identically distributed random variables
(ii.d. model). As a rule, the i.i.d. model does not provide sufficient accuracy of statistical
inferences about the unknown parameters of the investigated physical processes, distorted
by noise, if both of them are stationary random processes.

Thus, it is important to generalize the classical results of the statistical theory of
parameter estimation, developed for the i.i.d. model, in order to apply them to actual
practical problems in the analysis of real physical processes.
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In modern systems for analyzing physical wave fields, a large number of parameters
are simultaneously measured, and many sensors are used to improve the accuracy of the
analysis. That is, multidimensional time series z; € R™, t € Z are subjected to statistical
processing, and vector parameters are estimated as a result of this processing.

For many statistical models of multivariate time series, it is impossible to synthesize

aef /—
statistically efficient estimates u, ( z, | of vector parameters u for which the standard
deviation matrices are minimal for any finite size n of observations and are equal to the
inverse Fisher information matrix:

K () = E{ (8 (=) =) (3 (=) - )T} — 1w, 8
where [, (u) = Riﬂ (Vupz,n (;,l; u>> <Vupz,n (;n; u>>Tp;} (;n; u>d ;n;

_ T _ _ N\T
Xp = (x?,...,x}) € R™; Vyup: (x,,;u)z (aiukpz<xn;u>, ke 1,q> ;

Pz (xn ; u) is the probability density of the observations z;,.
Aae /—
At the same time, asymptotically efficient (AE) estimates u,, zn) can be constructed
for a wide class of multivariate time series with interdependent elements z; possessing a
strong mixing property [1]. For AE-estimates, equality (1) is attained asymptotically for
n — oo:

Aae /— Aae /— T
Kae(u) = nlglgonE”’u{ <un <2n> — u) <un <Zn> — u) } = nlgrgon]’?l(u)

They can be found in the class R of regular estimates 12(;,,> for which the random

A
quantities /n <u (z,,) — u> ,u € U have limit distributions with finite second moments.

This statement is one of the results of the extensive asymptotic theory of statistical inference
for random time series, which is most fully presented in [2]. Fundamental results in this
theory were obtained in the known publications [3-6]. In these books, sufficient conditions
were established under which AE-estimates exist for many probabilistic models of random
time series and continuous processes.

The main condition under which the AE-estimates can be constructed is the local

asymptotic normality (LAN) of the likelihood ratio L, | z, | of observations z, [3]. It

means that the likelihood ratio of the observations z;, admits the following asymptotic
expansion:

_ Pzn <;n; u—+ ”71/2}1) _ 1 _
Ln<zn> =1In =hTAn<z,,;u> —Eth"n(u)h-l-oc,,(z,,;u,h),

Pzn (;n ; u)
)

where 1Lm T,(u) =T(u) = lgn n=1,(u); Ay <;n; u> € R1 is a family of statistics for
n—r00 n—00

which probability distributions tend as n — o to the g-dimensional Gaussian distribu-
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tions with the parameters (0,T'(#)) uniformly inu € U; a, (zn; u, t> — 0 (n— c0)in

dp, <;n> -probability uniformly in # € U; |h| < ¢ where ¢ is any number.

Many publications, for example, [7-14], have been devoted to proving the LAN
property for various probabilistic models of time series other than the i.i.d model. The
results of research in this direction, obtained up to the end of the twentieth century, are
summarized in the monograph [2]. It was shown that the LAN property is inherent in a
wide class of multidimensional time series and continuous random processes.

The formulation of the LAN condition (2) largely determined the further development
and practical applications of the asymptotic estimation theory. In the well-known mono-
graph [6], it is shown that under the LAN condition, the maximum likelihood estimate
belongs to the class R of regular statistical estimates and is an AE-estimate.

At the same time, using the decomposition (2) of the likelihood function of observa-
tions, new AE-estimates were constructed, which differ from the traditional maximum
likelihood estimates and are computationally simpler. An elegant and, in many cases, the
most computationally simple method for constructing AE-estimates, was proposed in [3,4].
It is based on R. Fisher’s [15] idea of “improving” the quality of some “simple” estimate
to the quality of an AE-estimate. In mentioned publications, L. Le Cam showed that the
AE-estimate can be obtained using the equation:

i (20) =2 (2) =120 (i (20) ) (2ot () ). )

where uj; (z n) is an arbitrary /n-consistent estimate of the parameter u for which the

quantities \/n <u* (zn> - u), u € U, n € Z have the property: for any ¢ > 0 there is
Ce > 0,such that sup {Pn,u{

o [l (o) ) ) <

Note that Equation (3) defines a whole class of AE-estimates, the quality of which is

asymptotically equivalent to the quality of the ML-estimate, since A, (z,,; u ), Iy(u) in

the LAN expansion (2) and the \/n-consistent estimate u; zn> are not unique functions.

For this reason, in many practically important cases, formula (3) allows one to obtain
AE-estimates, which are computationally much simpler than ML-estimates.

2. Construction of M-Estimates for Parameters of Stationary Time Series with Suitable
Asymptotical Properties
The AE-estimates have some disadvantages from the point of view of practical appli-

cations. First, they can be synthesized only if the probability density p;,- < Xn; u> of the

observations z; is fully known. In practice, some important details of this density are often
not fully defined. Only a certain class K is known to which this density belongs. Second,

the quality of AE-estimates is often unstable to deviations of the actual density py, - | x,;u

from the assumed one for which they were synthesized. Even a small deviation from the
expected density can lead to a significant loss in the accuracy of the AE-estimate.

In the publications [16,17], methods were developed for constructing estimates that
are robust to changes in the distribution of observations, and in many applications, such

A
robust estimates are preferable to AE-estimates. A robust estimate u (z,,) is constructed
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by finding the global maximum of a certain objective function Qj, (;n ; u) (a criterion of

estimation quality), which differs from likelihood function:

;\4(;”) =arg n&axQn <;n;u>. (4)
uec

In addition to robust estimates, estimates synthesized using Equation (4) arise in
other problems of mathematical statistics. The examples include Bayesian estimation
problems, estimation problems with interfering (nuisance) parameters, problems arising in
the analysis of natural and economic dynamical systems.

The estimates obtained as the maxima of some objective functions Q; ( z,; u) were

called “M-estimates”. Apart from books [16,17], they were considered in many other
publications, for example, in [18,19]. In most of these publications, the M-estimates were
constructed and analyzed for the i.i.d. model of random observations.

The authors are not aware of publications in which the asymptotic properties of M-
estimates were studied with a sufficient level of mathematical rigor for multidimensional
stationary random time series that have a strong mixing property. The authors are also
unaware of publications devoted to the construction of computationally simple estimates
that are asymptotically equivalent in quality to M-estimates.

In this paper, we consider an approach to solving these problems from the standpoint
of view of the asymptotic theory of statistical inference [2], which is based on Le Cam’s
concept of local asymptotically normality.

We suppose that random objective function Q, <zn; u) is twice differentiable in Py, ;-
probability with respect to components of the vector u € U; that is, there exist the following

family of vector statistics d, (zn ; u) and matrix function F, <zn ; u> :

_ _ _ T _
dy (zn}u> = dn,k zn/'u) = %,I(Qn <Zn;u)r ke ﬂ) = VuQnu (zn;u> € RY, )
_ _ _ 5
Fn<zn;u = a%,dn,k<zn;u>, kle ﬁ] = AuQn<zn;u> € R,

In this case, the M-estimate (4) is one of the roots 1, (z”) of the following equation system

d, (;n;u> =0. (6)

AO [—
In this paper, we show how to find the estimate u, (zn , which is a root of the

with respect to the parameter u:

equation system (6), and, at the same time, it is an /n-consistent estimate of the parameter
A5 -
u. It is proved in Theorem 1 that under certain restrictions, such an estimate 1, (zn> can

be found using the algorithm

" (Z) —u (E) — iR, (u:: (Z> ) 5 (Zn;u:: (Z>) @)

where &, (z,,;u) =n—12g, (z,,;u); D, (u) = n‘lEu{Fn (zn;u> }; u, <zn> is any /n-
consis- tent estimate of the parameter u.
Conditions are formulated in Theorem 1 on the family of statistics J, (z,, ; u> and the

sequence of the matrix functions ®,,(u) that are sufficient for the asymptotic normality of
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AO [—
the estimate (7): £{ﬁ<uﬂ (zn> - u) } — N(0,D(u)) (n — c0), where the asymptotic
A0 /= A [ T
covariance matrix D(u) = JEEIOHE“ (un (zn> — u) (un <zn> — u) is equal to

D(u)= &~ () ¥ (1) D~ (u)¥ () = }%Eu{én <Zn;u>53 <Zn;u> }@(u) = lim @ (u).

The corollary of Theorem 1 describes a method for constructing another estimate

e
u, <z,,) that has the same asymptotical distribution as the estimate (7) but does not require

an auxiliary /n-consistent estimate uj; [ z,

Note that the statements of Theorem 1 and the corollary were formulated earlier
in [20]. In our paper, the above statements are proved under more general assumptions,
and simpler proofs are given.

Theorem 1. A. There exists a \/n-consistent estimate u}, <zn> of the parameter u.

B. Let the family of statistics 8, | zy,u | € R™, u € U, and the sequence of positive definite
symmetric q X g-matrix functions @, (u) satisfy the following constraints:
B1. For each value of the parameter u € U, the sequence of statistics d, (z,,, u> is asymptoti-

cally normal with zero mean and the covariance matrix ¥ (u):
2{5;1 <;n1u> } — N(0,¥(u))(n — )

where ¥ (u) = lijn Eu{én <;n, u) 5,{ <;,,,u
n [}

B2. For each value of the parameter u € U, the following asymptotic expansion of the statistic
O <z,,, u> holds:

Oon (;n;u—i-n*l/zh) =0, (;n;u> + @y, (u)h + By <;n;u,h>, |h| < ¢ for Vc;

where  sup P,,,,,{
uel, |h|<c

Bn (;n;u,h>‘ > s} — 0(n — o) foranye > 0;

inf det®,(u) > d; limsup|®; (1) — @ (u)|| = 0; sup||® L (u)| < C;
neZt, ucl n=eueu ucll

@~ L(u) is a continuous function of u € U.
Then the following statement is true:

For any \/n-consistent estimate u}, <zn> of the parameter u € U, the statistic

i (2) = (2) =20 (13 (2 ) ) (2w (20 ) ®)

is the \/n-consistent and asymptotically normal estimate of the parameter u € U with the moments
(0,D(u)):

£{\/ﬁ<uo <Zn> - u>} 5 N(0,D(u)) (1 — )
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where D(u) = @1 (u)¥ (u) @1 (u).

~5 [~ -
Corollary 1. (a) Let, forany n € Z*, a statisticu, | z, | be the root of the equation &y, (zn; u) =
0 with respect to the parameter u € U with probability equal to 1.
5[
(b) Let the statistic u,, <2n> also is a \/n-consistent estimate of the parameter u € U. Then

~0
the statistic u,, <zn> is asymptotically normal with the moments (0, D(u)).

Remark 1. (a) The statement similar to Statement (T1) of Theorem 1 was proved in [3,4] in the case

when the objective function Q, <;n ; u) is the likelihood function of ;" having the LAN property

(2). In this case &y <zn; u) =A, <zn;u>, the matrix function ®,,(u) = T, (u) and

z{An (_) } s N(O,T()) (1 — co);T(a) = Tim 11T, (u),

n—oo
where J,,(u) is the Fisher matrix. It follows from Theorem 1, that in this case
D(u) =T (@)L ()T (u) =T (u).

Consequently, the statistic

" <Z> —u (Z) e (u:: <;> ) Ay (Zn;u: <;)>

is asymptotically normal with the parameters (0,1 (u)), and hence, it is the asymptotically efficient
estimate of the parameter u.

(b) It follows from the corollary of Theorem 1 that a statistic ﬁf (;n> , which has the property:

Ay zusuy, zn> = 0 with probability equal to one, and at the same time is a \/n-consistent esti-
mate of the parameter w € U, is asymptotically normal with the moments (0,T (u)). Consequently,

~A
the statistic u,, <zn> is the asymptotically efficient estimate of the parameter u € U.

Thus, Theorem 1 is, in some sense, an extension of Le Cam’s results to the case of
an arbitrary objective function Q; | z,; u) whose gradient satisfies conditions B1, B2 of

Theorem 1.

3. Proof of Theorem 1
In the course of proving Theorem 1, we will omit, if it is obvious, the dependence of

functional quantities on the observations z, and sometimes denote their dependence on
the parameter u by a subscript.

A
In these notations, the definition of the estimate u, <zn> can be written as

A
p= 1y, — 02D ()6 (u).
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Then we can write the following chain of equalities:

ﬁ(&n - ) = V(s — ) — &y ()6 (1) =
= 0 () (ar) + [V — ) — O ()0 () + B (woaw)] = )
= 7¢'7;1 (u)fsn (”) + ‘:n,u(u:)'

where &, (1) = /n(u — u) + ®; (1) [— 8, (165) + 8, (u)]. It follows from (9):
Dy (103) S ()= = (11,) + 0 () + Py (1) /11 (14, — )= (1) (10)
By denoting t;;,, = v/n(u;, — u), we obtain from (10):
O (1 4 Tl /1) — Ou (1) = oy (1 + Tl V1) Ty — P (Toa), (11
where the random quantities 7;;,, n € Z", u € U have the property: for any ¢ > 0 there is
Se > 0suchthat sup [Puu{|7i,| > Sc}] <e

ucl,neZt
At the same time, from condition B2 of Theorem 1, we obtain:

On (gn;u + n_1/2h> — 0y <;n; u) =9, (u)h + ﬁn,u (gn; h) ’ (12)

where  sup Pn,u{ Biu (;n;h> ’ > s} — 0 (n — ).
ucl, |h|<c

The comparison Equations (11) and (12) allow us to prove the following Lemma.

Lemma 1. Under the conditions of Theorem 1, the following convergences take place for any € > 0:
(a) im supPuu{|onu(uy;)| > €} =0, (b) im supPpu{|Cnu(u;)| > €} = 0.
Wﬁooueu nﬁooueu

The proof of Lemma 1 is given in Section 5.
The following statement will be needed below.

Lemma 2. Let some random variables ¢, and 11, have the properties:
(a) V}igrgoﬂn{¢n} = J%P,&(p,, < x} = F(x); (b) forany e > 0 J%Pn{\q,i\ >e}=0.
Then ,}EXJOE”{(P” +in} = J%Pn{¢n + 1y < x} = F(x).

The proof of Lemma 2 is quite simple, and we omit it.
Taking into account Equations (9)-(12) and statements of Lemmas 1 and 2, we can
write the following equalities:

s{ﬁ(&n - u> } = lim {1 (), () + G} = fim {7 (w)on (w)

where the existence of the limits follows from conditions B1, B2 of Theorem 1. According
to conditions B1 of Theorem 1, we have:

nlgngoﬂ{én(u)} = N(0;'¥(u)) where ¥(u) = nli_r)lgoEn{Jn(u)JE(u)}

Therefore:

lim £{®, ()6, (u) } =N(0; D(u)), where D(u) = @~ (u) ¥ (u) @~ (u). O

n—oo

169



Eng. Proc. 2021, 5,19

8 of 10

4. Proof of Corollary

5 /—
Under the conditions B1, B2 of Theorem 1, the statistic ;n (zn> in Equation (8) is

asymptotically normal with the moments (0, D(u)) for any \/n-consistent estimate u; (zn) .

Consequently, due to condition (b) of the corollary, the statistic

o (Z) _ (Z) +a12gt (ai (L))a (Z,,;;i (Z))

is asymptotically normal with the moments (0, D(u)).

N ~0 [
But by virtue of condition (a) of the corollary, we have that u,, (z,,) =u, (z,,) with

e
probability equal to one. Hence, the statistic u,, <zn> is asymptotically normal with the
moments (0,D(u)). O

5. Proof of Lemma 1

(a) For any ¢ > 0,9 >0 and u € U, we can write the following equation:

Puu{lonu(Ti)| > e} =

* * * « 13
= Puu{lona(T)] > 0 [T] < 0} + Pradloua(@)] > e 55 > ). )

Let denote Py ({|onu(Tr)| > €} | {|7r.] <q}) the conditional probability of the
event {|puu(7;)| > ¢} under the condition of the event {|7;,| < q}. Then (13) can be
rewritten as:

Puu{lonu(T) > €Y= Puu({lonu(T)| > €} [ {|Tra] < a})Puad |Tul <)+ (14)
+Pn/u({|pn,u(TrT>| > 8} | {‘Tv’;/ul > q})Pn/u{|T;,u{ > q}

According to (11), there is C; > Osuch that sup  [Pyu{|7;,| > Cc}] < & for any

uel, neZ*
€ > 0. It follows then from (14) that forany e > O and u € U

Puu{lonu(Ty)| > €}<Pn,u({|Pn,u(T;)| > e} {|T;u‘ < CE}), (15)

where p (Tir,) = 8u (4 Tl /1) — 84 (1) — @, (u+ T/ /1) Trrye
According to (12), forany e > 0, u € U and |h| < C;

suan,u{ Buu <;n;h>‘ > s} — 0 (n — ), (16)

ucl

where By zu; h> =6, (z,,;u +n12p) — 5§, ;n;u — @, (u)h,
It follows from (15), (16) that for any £ > 0 nlgn supPpu{|onu(1y)| > €} =0.
“ucl

(b) Since & (1) < || Pyh (1) |onu (1), to prove statement (b) of Lemma 1, it suf-
fices to check that ||®;, () || is bounded in probability. Since ®; * (1) satisfies conditions
B2 of Theorem 1, for any € > 0 there exists C¢ > 0 that for all n the following inequality
holds: Py {||®;L(u;)| > Ce} < e. So, we can write:

Pou{|8nu(u)| > €} =Puu({|onu(u})| > €} N (|\q>;}4(u;;)“ < Ce))+
P ({lonu ()| > €} 0 {[| @ (u3)[| > Ce}) <
< P ({lona ()| > €} 0 (190 (u3) ]| < Ce)) +e

Since |py,n (1};)| satisfies statement (a) of Lemma 1, one can find a number N; such that

sup  Pyu{|Cun(uj)| > et<2e. O
uel, n>Ng
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6. Conclusions

The paper investigates the asymptotic properties of statistical estimates for the vector
parameter u € R7 of a stationary multidimensional random time series z; € R™, t € Z

satisfying the strong mixing conditions. We have considered estimates u (z,,) that are
. . - - T - .

solutions of the equations V,Qy (zn;u> =0, z, = (z?, ...,z})", where Qy <zn;u> is

some objective function for which V,Q, (zn ; u) satisfies the constraints of Theorem 1.

We have proved that under these constraints, the estimates u <zn are /n-consistent and
asymptotically normal with a limit covariance matrix uniquely determined by the objective
function Q| z;u ).

The results of this paper are a generalization of the methods for constructing and
analyzing the asymptotic properties of M-estimates, which were previously studied for the
case of independent identically distributed observations.
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Abstract: Many geodetic measurement data can be modelled as a multivariate time series consisting
of a deterministic (“functional”) model describing the trend, and a stochastic model of the corre-
lated noise. These data are also often affected by outliers and their stochastic properties can vary
significantly. The functional model of the time series is usually nonlinear regarding the trend pa-
rameters. To deal with these characteristics, a time series model, which can generally be explained
as the additive combination of a multivariate, nonlinear regression model with multiple univariate,
covariance-stationary autoregressive (AR) processes the white noise components of which obey
independent, scaled t-distributions, was proposed by the authors in previous research papers. In this
paper, we extend the aforementioned model to include prior knowledge regarding various model
parameters, the information about which is often available in practical situations. We develop an
algorithm based on Bayesian inference that provides a robust and reliable estimation of the functional
parameters, the coefficients of the AR process and the parameters of the underlying t-distribution. We
approximate the resulting posterior density using Markov chain Monte Carlo (MCMC) techniques
consisting of a Metropolis-within-Gibbs algorithm.

Keywords: multivariate time series; nonlinear Bayesian regression model; AR process; scaled t-
distribution; partially adaptive estimation; robust parameter estimation; GNSS time series

1. Introduction

Adjustment calculus offers a rich toolbox of statistical models and procedures for pa-
rameter estimation and hypothesis testing based on given numerical observations (cf. [1]).
Such models usually consist of a deterministic functional model (e.g., a linear model de-
scribing some trend function), a correlation model (e.g., in the form of a variance-covariance
matrix or an autoregressive (AR) error process), and a stochastic model (i.e., a probability
distribution of the observation errors or the innovations of the AR error process). The
stochastic model is often taken to be some multivariate normal distribution, which, how-
ever, easily leads to erroneous estimation results if the observations are afflicted by outliers.
To take outliers into account, the normal distribution can be replaced by some outlier
distribution, for example, a heavy-tailed t-distribution (cf. [2]). A multivariate time series
model, including a nonlinear functional model and an autoregressive observation error
model with t-distributed innovations, was suggested and investigated in [3] and [4]. A
shortcoming of that model is that it does not include prior knowledge about the parameters
of the functional, correlation or stochastic model, the information about which may readily
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be available. Therefore, the current paper describes a Bayesian extension of that time
series model, which can be expected to result in more robust and more accurate parameter
estimates (cf. [5]).

A general Bayesian estimation approach in the specific context of models based
on the t-distribution was introduced by [6]. Due to the complexity of such a model, the
posterior density function must be approximated numerically or analytically. For numerical
approximation, Monte-Carlo (MC) simulation and, in particular, Markov-Chain Monte-
Carlo (MCMC) methods, which are suitable also for multivariate distributions, have been
applied routinely (cf. [7]). In particular, the Gibbs sampler and the Metropolis-Hastings
algorithm have been employed for (non-robust) Bayesian estimation of the parameters
of a linear functional model with autoregressive moving-average (ARMA) and normally
distributed errors [8]. MCMC methods have also been applied in the context of the robust
Bayesian estimation of ARMA models [9] and AR models [10], with one additional (directly
observed) mean parameter in the functional model. In both studies, outliers within the
auto-correlated errors and within the uncorrelated innovations were modeled as normally
distributed random variables with variances inflated by unknown multipliers. Thus, the
stochastic error model was based on a discrete mixture of normal distributions, not on
the t-distribution. To incorporate an automatic model selection procedure regarding the
AR/ARMA model into the adjustment, the preceding studies also included unknown index
parameters, taking the value 0 in case the corresponding AR (or MA) coefficient is 0 (or not
significant) and taking the value 1 otherwise. Prior distributions for all of the parameter
groups and the likelihood function for the data were fixed, and sampling distributions were
then derived in order to obtain a numerical approximation of the posterior distribution
for all the unknowns. In [11], an MCMC-based computational algorithm was proposed,
to facilitate Bayesian analysis of real data when the error structure can be expressed as a
p-order AR model.

The paper is organized as follows: First, the Bayesian multivariate time series model
with AR and t-distributed errors is described in detail in Section 2. It is shown how the
generic deterministic functional model, the AR process and the t-distribution model are first
combined to a likelihood function and how prior information about the model parameters
to be estimated is taken into account by means of a specified prior density. Here, we denote
unknown parameters with Greek letters, random variables with calligraphic letters, and
constants with Roman letters. Furthermore, we distinguish between a random variable
(e.g., Lt) and its realization (I;). Matrices are shown, as usual, as bold capital letters and
vectors as bold small letters. Section 3 outlines an MCMC algorithm for determining the
posterior density of the unknown parameters of the functional model, the coefficients of the
AR process and the scale parameter, as well as the degrees of freedom of the t-distribution.
In Section 4, a time series model for GNSS observations of a circle in 3D is proposed,
and the results of a Monte Carlo simulation are discussed. These findings are used to
evaluate the performance of the implemented Metropolis—Hastings-within Gibbs algorithm
in this scenario.

2. The Bayesian Time Series Model

We assume that an N-dimensional time series (£;) = ([£L1; -+ L] T) is observed
at equi-spaced time instances t without data gaps. The observation model consists of the
three interconnected model components,

Lit = hie(Br,--- Bm) + &kt (1)

Ext = 0181+ -+ Wpp Ehp—p T Uk, (2
ind.

U | 97, v "™ 1, (0,97, v, ©)
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where (1) defines the “observation equations”, (2) the “error equations” and (3) defines the
probability distribution of the innovations. The parameters of this observation model are
combined within the vector,

0= [ﬁT al T VT] T, @
with
B=1B1 - Bul &)
o= [af ] = fma o mp  ana e anp]l (©6)
p=1[p - #’N]T 7)
v = [1/1 s VN} T. (8)

On the one hand, the parameters 0 are treated as variables of the likelihood function
frje(L16), defined by the observation model (1)~(3). On the other hand, the parameters 8
are viewed as a realization of a random vector @, having a specified pdf independent of the
observables. According to the Bayes theorem, this prior density fg(8) and the likelihood
function fzg(L|8) are connected to the posterior density fg| (8|L) via proportionality re-
lationship

foic(8IL) « fo(6) - frio(L|6), ©)

which serves as the foundation of the inference of the parameters and the adjustment of
the observations. The details of this model are described in the following.

The observation equations: Equation (1) reflects the idea that geodetic measurements
Ly ; are approximated by a “deterministic” model using mathematical functions /¢ (8),
which are assumed to be partially differentiable. The index k refers to the time series
surveyed by the kth sensor or sensor component, and the time instances t = 1,...,n are
the same for all sensors. In some applications, the functional model i ;(B) takes the form

it (B) = Xy 1B, (10)

of a “linear model”, where X denotes the design matrix and has a full rank. Since geodetic
observables can generally not be modeled using a deterministic model alone, random
deviations & ; are added to absorb the remaining effects. It is assumed that the instruments
used to survey the observables are calibrated, so that no systematic errors occur. Thus, the
expected values of the random deviations are assumed to be 0.

The error equations: Equation (2) is included to take account of auto-correlations
within each of the N time series. Since the different sensors or sensor components may have
different noise characteristics, AR processes, with individual orders py, ..., py and sets of
coefficients a1, ..., &y, are selected. The noise characteristics are assumed to be constant
throughout the measurement period. For practical purposes, the AR processes considered
are therefore required to be (asymptotically) covariance-stationary. The random variables
Uy are referred to as “innovations”. Since the observation window is finite, ranging from
t =1,...,n, the error equations involve errors at times t = 0, —1, .... To ensure asymptotic
covariance-stationarity and the computability of the recursive equations, these quantities
are set as equal to O (cf. [12]). This initial distortion of the AR process fades out as the
process advances in time.

The stochastic model: The innovations of an AR process are usually assumed to be
Gaussian white noise. Since the assumption of normal distributions is unrealistic in some
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geodetic applications, for example, due to outliers, the heavy-tailed t-distributions are
employed here. These are defined by the probability density function (pdf),

I G I A
0= e o

where I' is the gamma function. Since the expected values of the random deviations & ;
should be 0, we can also restrict the location parameter y to 0. Since the noise of differ-
ent sensors or sensor components may exhibit different levels of variance and outliers,
each time series involves a t-distribution with individual scale parameter y? and degree
of freedom (df) v;. It should be mentioned that the alternative usage of a multivariate
t-distribution (as defined in [2]) involves a single df and would therefore not allow for the
modeling of distinct outlier characteristics within the different time series.

The likelihood function: A likelihood function f.|g(L|@) can be obtained by combin-
ing the observation Equation (1), the error Equation (2) and the stochastic model of the
innovations (3). To do so, the well-known method of conditional likelihoods in connection
with AR processes with various forms of non-Gaussian innovations is applied (cf. [13-15]).
Assuming the AR processes to be invertible, the error Equation (2), in terms of their
numerical realizations, can be rewritten as “innovation equations,”

Up = Chp — Mk 1€kt—1 — - — Rk p, Chi—py- (12)
As the errors ¢; ; contained in the observation Equation (1) can be expressed as
et = lit — it (B), (13)
the innovation Equation (12) become
e = e — 01 (Ckp1 — e 1(B)) — -+ — g (Ut — Mip—p, (B))- (14)

The conditional likelihood function is then obtained as the product of the univariate
pdf (11), evaluated at all the stochastically independent innovations u;; with location
u = 0, associated scale factor 1/’1% and df v, that is,

r(Vk+1) u%, 7'1211
L(6|L) = fre(L|6) = H]H T i [1+th1’7£} . (15)

For the purpose of maximum likelihood (ML) estimation, the logarithm of this likeli-
hood function is easier to handle (see [3]). In that contribution, a computationally conve-
nient ML estimation of the model parameters was achieved by rewriting the t-distributions
as conditional normal distributions with latent variables; these variables play the role of
weights in an iteratively reweighted least-squares algorithm. As the main innovation of
the current contribution, the likelihood function (15) is incorporated into a Bayesian model
instead, which is described in the following.

The Bayesian model: In this contribution, both informative and non-informative prior
information is considered. The result of using a fully non-informative prior is that the
posterior density follows directly from the likelihood function. In the case of an informative
prior, a joint pdf must be specified for the random vector ©. This task is simplified by the
assumption of stochastic independence of the parameter groups g, «, ¢ and v, so that the
factorization property,

fo(8) = fo(B,« ¥,v) = fo(B)fo(x)fe(¥)fo(v), (16)
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holds. Consequently, individual prior densities can be specified for these parameter groups.
As the prior density of B depends on the selected functional model /(), its specification is
fixed after the introduction of the application example in Section 4. In contrast, the prior
densities for &, 1 and v do not depend on the choice of the functional model but mainly on
the precision of the sensors or instruments employed. In the case that no prior information
is available for the employed sensors or instruments, it is still possible to define prior
densities for these three groups of parameters. Due to the assumption, in connection with
the error Equation (2) and the stochastic model (3), that the N time series is stochastically
independent, the prior density can be further simplified to

fo(a) = fo(a1)fe(a2) - fo(an), 17)
fe(y) = fo(p1)fo(¥2) - - fo(yn), (18)
fo(v) = fe(v1)fe(v2) - fe(vn)- (19)

Consequently, as far as the parameters ¢ and v are concerned, only univariate prior
densities fg () and fe (v4) need to be specified. When it is known that the scale factor i
is between min and Pmax, the prior density defining the continuous uniform distribution
U (¢min, Pmax) can be used as a weak form of prior information. The specification of the
prior for the df v, can be based, on the one hand, on the requirement vy > 2, so that
the variance of the t-distributed random variables is defined. On the other hand, the
t-distribution is practically indistinguishable from a normal distribution for dfs greater
than 120 (cf. [16]), so that the upper limit v, < 120 can be fixed. In the absence of further
information about the dfs, the prior density defining the continuous uniform distribution
U(2,120) is reasonable. The auto-correlations of a time series may, for instance, be induced
by calibration corrections within the measurement device, by movements of the measured
object, or by a combination of the two effects. Therefore, a general definition of the prior
density of the AR coefficients is not trivial. For this reason, a non-informative prior density
is specified under the additional assumption that all of the AR coefficients are stochastically
independent.

3. The Developed MCMC Algorithm

Because of the use of the Student distribution for the white measurement noise
(Equation (15)), an analytical solution of the posterior density based on the Bayes theorem
(Equation (9)) is not possible, so it can only be solved numerically. The general solution
approach is based on generating a so-called Markov Chain for the unknown posterior
density using the MCMC method. MCMC algorithms are commonly used in all fields of
statistics because of their versatility and generality. When an MCMC method is applied to
solve the posterior density function given in (9), it is usually realized with a Gibbs sampler.
An implementation of a Gibbs sampler relies on the availability of the complete conditional
pdfs of all parameters of interest in our particular problem (cf. Equation (4)). However, the
complete conditional pdfs of all parameters of interest are not readily available. In such
cases, a Metropolis—-Hastings (MH) method can be incorporated within a Gibbs sampler to
draw samples from the parameters, the full conditional pdf of which cannot be analytically
determined. In this paper, we demonstrate the development of such an algorithm, known
as Metropolis—Hastings-within Gibbs. In this algorithm, the Gibbs sampler is used to
generate the Markov Chain for 6| L, and within the Gibbs sampler the MH algorithm is
used to generate random numbers. For a clearer presentation, the solution algorithm
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is encapsulated by two separate functions. For the Gibbs sampler, the outer function is
given by,

for:j=1,...,M (20)

Draw ¢/|g/ v/ "L a/ 1 L ~ fo|c(¥|B, v, e, L

Draw f/|¢/, v/, &), L ~ foc(Blg,v,e L

Draw v/|8/, ¢/, 0/, L ~ foic(v|B ¢, e, L

Draw o/ |8/, ¢/, v/, L ~ fo|c(x|B ¢, v, L

—_— — — ~—

where M is the length of the MCMC. Such a Markov chain ensures the convergence of the
distribution of the samples to the target distribution after a few burn-in periods V [17].
We observe that the full conditional pdf shown in (20) does not fit to any known pdf and,
therefore, we cannot directly draw samples from it.

However, there are two challenges to calculating the conditional posterior densities.
The first challenge is that it results from the likelihood function and the prior density.
Consequently, changing the distributional assumption for the prior density results in a
new conditional posterior density. While this challenge can be overcome with a small
amount of effort, the second challenge is much more fundamental. For the calculation of
the conditional posterior densities, several integrals have to be solved and this may not be
analytically possible. To overcome these challenges, the MH algorithm is used to draw the
required random numbers. The general algorithm for drawing a random number 9{ from
the posterior density fg| - (6|L) follows from the following steps:

i—1
1. Generate: 67" ~ N (9{ ')‘91') (21)
. . . T
2. Set: 0™ = [0],6h,...,07°",..., 0,0,
. . . AT
6ot = [0, 0L,...,0] ..., 0, 0]

f@(eneW)L(enew‘L)

fo <901d>L<901d|L>
4. Accept or Reject: T ~ U(0,1)

ifr<g: 6 =orew

) .
else : Gf = 9{ ,

3. Calculate: ¢ = min |1,

where m in Equation (22) denotes the length of the parameter vector. The results of the
Metropolis-Hastings-within Gibbs are M random realizations of the unknown parameters
B, &, p and v from the posterior density fg|. (6|L). The estimated values 8 for the unknown
parameters with their variance—covariance matrix (VCM) result from (cf. [5]):

i 1 M i e 1 M i A i A
imw-v X b Zﬂas—mgﬂ("f*f’f)(f’f"s)- @

4. Closed Loop Monte Carlo Simulation
4.1. The Framework of the Simulation

In our Closed Loop Monte Carlo simulation (CLS), we rely on the real-world appli-
cation demonstrated in [3], in which we used a multi-sensor-system (MSS) composed of
a laser scanner and two firmly attached pieces of GNSS equipment (see [18] for details).
We consider a multivariate, non-linear regression model in terms of a circle in N = 3
dimensions that has the following six parameters: two for the orientation (¢ and w) of
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B=[cx ¢y ¢

its unit normal vector; one for the radius (r); and three for the circle center (cy, ¢y, cz). The
observable 3D circle points are described by

Ly := It = hy4(B) = rcos (k¢) cos (@) + cx (23)
Lyt =1y = hy(B) = rcos (i) sin (¢) sin (w) 4 rsin (k;) cos (w) + ¢y (24)
Iy :=1I3¢ = h3(B) = —rcos (k) sin (@) cos (w) + rsin (k;) sin (w) + ¢z, (25)

with t+ = 1,...,2000 and where x; = Z%T% - t represents fixed rotation angles around the
z-axis. In this simulation, the functional parameters are the circle parameters g, which
were assumed to take the true values

rw ¢]" =[17160 30120 10640 30.0 0.0019rad —0.0013 rad] . (26)

The random deviations &£ were generated by the AR(2) processes

2
ekt = Z X jCk,t—1 + Uk, fork=1,2,3, (27)
j=1

with true coefficients
K11 = 0.57, K12 = 0.11,1){2[1 = 0.67, Ko = 0.22, X31 = 0.35, X372 = 0.55.

The innovations of these processes are sampled from the scaled t-distributions

ind.
i by (0,97), (28)

with true scale parameters

Po=1 =02, Yy =y =02, o= ¢y =04

and true dfs
vyi=v1 =8, vy:i=1n =10, v;:=v3=4.

In Equation (16), the prior density has been introduced for the general Bayes model.
In this simulation, only prior densities for the functional parameters © (see Equation (26))
are assumed to be known:

fo(B) = fo(cx ¢y cz) fo (1) fo(w) fo (@) (29)

In Equation (29), we assume that the prior information for the center of the circle, the
radius and the angles are independent of each other. The reason for this assumption is
that this information is obtained from data sheets or from calibrations. These are specified
as follows.

The prior density of the circle center: The prior for the center of the circle is the
knowledge that it must be located approximately in the middle between the observations
constituting a circle. The location parameter y. for the definition of the prior density of the
circle center is thus dependent on the observations. Therefore, we consider the prior of the
circle center as weak prior information. Hence, we use the identity matrix as a VCM for L.
The uncertainty of a coordinate component of the prior information of the circle center is
thus significantly larger than the assumed measurement precision of a single observation.
As a pdf for the prior fg (cx, Cy, cz), the multivariate normal distribution is assumed with
the expected value yi. and VCM Z..

The prior density for the radius: The prior information for the radius of the circle is
the result of a calibration measurement using a laser tracker. The manufacturer specifies the
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accuracy of a single point measurement with this instrument as the maximum permissible
error of MPEyy . = +15um + 6%. During the measurement, the diameter of the wing,
on which the GNSS antenna was mounted, was determined. For this purpose, the 3D
coordinates were measured on the left and right hand side and the Euclidean distance
was calculated, which corresponds to the diameter. In total, the radius was estimated four
times in this way. By averaging these results, 1, = 30.0026 was obtained as the location
parameter for the prior density of the radius. The scale parameter for the prior is the result
of the standard deviation ¢, = 0.0043 of the four determined radii of the laser tracker
measurement. The measurement results of the laser tracker are assumed to be normally
distributed. Hence, the normal distribution is assumed for the prior density of the radius
of the circle.

The prior density for the rotation angles: The prior information for the rotation angles
is derived from the instrument’s levelling. The manufacturer specifies the accuracy of
the bubble level as £0.0047 rad for a 99.9% confidence interval. It is assumed that this
information refers separately to one vial axis, so that fg(w) and fg(¢) are independent of
each other. Due to the specification of the accuracy by means of the confidence interval, the
uniform distribution is used as the prior family for the angles. The limit of the confidence
interval is used as the limit for the uniform distribution, from which follows a,, = —0.0047
rad and b, = 0.0047 rad. This results in the prior density:

a, < w < by

1
fo(w) = { bt . (30)

0 else
For ¢, the density of the prior is identical to that of the previous formula.

4.2. Results of the Simulation

The results described in this section were achieved with M = 10, 000 iterations and a
burn-in period with V = 3000 for the MCMC algorithm. We compare in the following three
estimation procedures: Bayesian informative (Bayes Inf) using prior knowledge about the
functional parameters 8, Bayesian non-informative (Bayes Non-Inf) without using prior
knowledge about B and the EM (expectation—-maximization) algorithm developed in [3].
Before the results of the three estimation methods from the entire CLS are compared, the
result of the Bayes Non-Inf solution is considered in more detail. For this purpose, the
result of the Markov chains from a single simulation solution is considered in Figure 1. In
total, Markov chains were generated for 18 unknown parameters. Figure 1 only shows a
representative selection of the results and is limited to the results of the z-component and
only one rotation angle. For the other components, the generated chains correspond to the
behavior of the z-component. The green dashed line in Figure 1 shows the true value of
the parameters used to generate the simulated observations. The red dashed line, or the
red cross on the secondary diagonal, show the estimated parameters resulting from the
Markov chains. On the diagonal, the distribution of the generated random numbers of the
chain is shown as a histogram. The histograms show how the generated random numbers
scatter around the estimated parameter and that the true value is close to the estimated
parameter. The secondary diagonal of the figure represents the scatter of the generated
random numbers depending on two parameters. From this distribution, the correlation of
the generated chain between two parameters can be calculated. A dependency can be seen,
especially for the scaling parameter and the df of the z-components. This also holds for the
coefficients of the AR(2) process of the z-component. The same can be noticed for the x-
and y-components. For all other parameters, the major axes of the ellipse are rather parallel
to the axes of the expected values, which corresponds to a correlation around zero. The fact
that, for example, the scale parameter and the df show stronger correlation behavior is also
to be expected. The reason for this is that, with a smaller scale factor, more observations
lie in the tails of the distribution, which leads to a smaller df. In contrast, if the scaling
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factor is large, there are fewer observations in the tails of the distribution, so a larger df can
be selected.

To compare the results of the three approaches, the adjusted observations I are used in-
stead of the estimated parameters 3. The reason for this is that, in all estimation procedures,
the estimated parameters are closer to the nominal value of the simulation parameters and,
therefore, it is difficult to judge which approach produces the best results. On the other
hand, the predicted observations I include the cumulative estimation uncertainties of all
parameters f, allowing for an easier comparison. Furthermore, we restrict ourselves here
to the representation of the z-component because I, is most sensitive to inaccuracies in the
estimated angles @ and ¢. The results for the x- and y-components show a result similar to
that of the model shown in Figure 2 for the z-component.

Before discussing the results of the three approaches, Figure 2 is first explained. The 1
were calculated with the estimated parameters B using Equation (25). Subsequently, the
1, were reduced by the true value for the observations E(I), which is why the predicted
observations scatter around 0. The dashed line is the mean value of observation / ;, which
results from the 10,000 results of the CLS for one observation t. The dashed blue line of the
mean value of the EM algorithm cannot be seen in the figure because it is overlaid by the
dashed red line. The colored area shows, for observation t, the 95% confidence interval
that results from the 10,000 predicted observations lAz,t. The colored lines >0 show the
maximum deviation from the true value for the observation fZ,t that appeared in the 10,000
simulations. The colored lines <0 show the minimum deviation from the true value for the
corresponding approaches.

B&g

Frequency

Frequency
~ 888

Figure 1. Result of the generated Markov chain after burn-in for Bayes Non-Inf: The main diagonal shows the distribution
of the generated random numbers of a parameter. The secondary diagonal shows the correlation behavior of the generated
random numbers at time j between two parameters.
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l.— E(lz) [em)]

o 200 a0 00 00 200 1200 1600 1800 2000

Obser;;n;tion ¢
Figure 2. Result of the 10,000 CLS for the 2000 predicted observations of the z-component I, of the
EM algorithm, Bayes non-informative (Bayes Non-Inf) and Bayes informative (Bayes Inf).

It is expected that the result of the EM algorithm is identical to the Bayes Non-Inf
solution. This can be seen clearly in the result of the mean, where the two dashed lines (blue
and red) overlap almost completely and only deviate from each other by a maximum of
~0.002 cm. Furthermore, the mean values of the two estimation procedures are identical to
the nominal value of 0 for all predicted observations within 10~2 cm. This deviation can be
explained by the fact that the CLS was only performed 10,000 times and not infinitely often.
For the confidence interval of the EM and Bayes Non-Inf solution, a similar behavior can be
seen as for the mean value. For most observations f, the two confidence intervals overlap
almost perfectly and, only for a few observations, a difference of at most ~0.05 cm can be
identified. However, this identical behavior is not seen in the maximum and minimum
deviations of the blue and red lines, where the Bayes Non-Inf solution more often has
smaller minimum deviations than the EM results. The reason for this has not yet been
analysed in more detail and will be addressed in future work.

In the result of the mean value of Bayes Inf, a deviation from the mean value of EM
and Bayes Non-Inf can be seen. The solution of the mean value of Bayes Inf oscillates
cyclically around the nominal value of 0 with a maximum deviation of £0.05 cm, whereby
this deviation is smaller by a factor of 10 than the scale factor ¢, of the measurement
noise. The mean values of the EM and Bayes also oscillate around 0, but this is smaller
by a factor of 100 and therefore cannot be seen visually in Figure 2. The influence of the
prior information fg () on the observations /. ; can be seen well in the confidence interval
and the lines marked in black. These are clearly closer to the true value than in the EM
algorithm and Bayes Non-Inf. It is of particular interest that the maximum deviation lies in
the 95% confidence interval of EM and Bayes Non-Inf. This is not always the case for the
minimum deviation of Bayes Inf, but the black line is still closer to zero than the blue and
red lines. The reason for this is mainly due to the prior information for the angles fg(w)
and fg (¢), which improves the estimation of w and ¢.

To compare the results 1y, iy and I, of the three approaches, the RMSE of the true
observations is calculated for each CLS result. From these RMSE values, the statistical
measures in Table 1 were calculated for each approach. All results in the table show the
same behavior as the results previously displayed in Figure 2. The EM and Bayes Non-Inf
results are almost identical, with the small deviation explained by the different methods
used to estimate the parameters. In the Bayes Inf solution, however, all statistical measures
are smaller. For the mean, the RMSE of Bayes Inf is about 37% smaller than the RMSE of the
EM algorithm, and for the median the difference is slightly larger, at about 41%. Only for
the maximum RMSE value from the 10,000 simulations is the difference between EM and
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Bayes Informative significantly smaller at about 13%, but the maximum RMSE of Bayes Inf
is still significantly smaller than the result from EM.

Table 1. Root-Mean-Square-Error (RMSE) for the predicted observations to the true observations.

Methode Mean [cm]  Median [ecm] Min[cm] Max[em] o [em]
EM 0.107 0.103 0.013 0.337 0.041
Bayes Non-Inf 0.104 0.100 0.012 0.303 0.040
Bayes Inf 0.067 0.060 0.004 0.290 0.032

5. Conclusions

To achieve an Bayesian adaptive robust adjustment of a multivariate regression time
series with outlier-afflicted /heavy-tailed and autocorrelated errors, we described the theory
and implementation of an MCMC based approach consisting of a Metropolis-within-Gibbs
algorithm. In particular, the Gibbs sampler and the Metropolis—-Hastings algorithm have
been employed for robust Bayesian estimation of the parameters of a non-linear functional
model with AR and t-distributed errors. An advantage of this procedure compared to
the EM algorithm, besides the capability to process additional prior knowledge, is that
the approximation of the posterior model parameters is feasible without linearization of
the functional model. Furthermore, the approximation of the VCM £¢ of the estimated
parameters can be derived directly from the generated chains. CLS showed that the
bias of the parameter estimates and the adjusted observations, as well as the RMSE, are
significantly reduced when an informative Bayesian approach is used, but only under the
condition that good prior information, that is, information that contains the true value,
is assumed to be known. Otherwise, the prior can also have the opposite effect and may
cause the estimated parameters to deteriorate.
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Abstract: GNSS systems allow precise resolution of the geodetic positioning problem through
advanced techniques of GNSS observation processing (PPP or relative positioning). Current instru-
mentation and communications capabilities allow obtaining geocentric and topocentric geodetic high
frequencies time series, whose analysis provides knowledge of the tectonic or volcanic geodynamic
activity of a region. In this work, the GNSS time series study was carried out through the use and
adaptation of R packets to determine their behavior, obtaining displacement velocities, noise levels,
precursors in the time series, anomalous episodes, and their temporal forecast. Statistical and analyt-
ical methods were studied, for example, ARMA, ARIMA models, least-squares methods, wavelet
functions, and Kalman techniques. To carry out a comparative analysis of these techniques and
methods, significant GNSS time series obtained in geodynamically active regions (tectonic and/or
volcanic) were considered.

Keywords: GNSS time series analysis; statistical methods; R software

1. Introduction

GNSS systems (GPS—USA, Glonass—Russia, Galileo—European Union, and Beidou—
China), initially designed for land, sea, and air navigation, possess the ability to use specific
and advanced techniques and methods to provide precisions sufficient to evaluate the
movement of tectonic plates, the volcanic activity, or possible hillside landslides from the
velocities obtained in positioning successive subcentimeter precision.

Geodynamic GNSS geodetic networks are based on permanent stations that operate
continuously, even for high sample rates. The positions obtained make up time series, ini-
tially in geocentric Cartesian coordinates (X, Y, Z). To facilitate the notion of displacement
on the surface of the Earth, these coordinates are transformed into a topocentric system
(e,n,1). The analysis of these series provides the displacement velocity vector as well as
the anomalies that may have occurred in the time period defined by the series. For this,
and according to the objective of the study, different analytical or statistical methods of
time series analysis were used.

In this work, a review of geodetic time series analysis methods and techniques is
presented, and the GNSS positioning of some stations of the SPINA network (South of
the Antarctic Peninsula and North of Africa) that present very significant particularities,
are evaluated, e.g., SEVI (Seville) and CAAL (Calar Alto, Almeria). The R language was
used to design and develop new applications and/or adapt existing packages to the case of
topocentric time series. Finally, a comparative analysis of the techniques and methods used
was carried out, and the optimal procedure was proposed for the cases studied, taking into
account the results obtained.
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2. Time Series GNSS Geodetics

GNSS data were analyzed by using scientific software Bernese v5.0 [1]. Along with the
parameter estimation process, carrier phase double difference data were used in ionospheric
delay—free mode. Tropospheric errors were handled by using a combination of the a priori
Saastamoinen model [2] and Neill mapping functions [3]. Tropospheric parameters were
estimated hourly, and ambiguities were fixed for the baseline by using the ionosphere-free
observable with an a priori ionospheric model for determining the wide lane ambiguity [4].
Ocean tide loading displacement corrections from the Onsala Observatory were also
introduced. Normal equations were computed for each daily solution.

It was considered as a VILL reference station (Villafranca) because it belongs to
the IGS network and, therefore, has geocentric coordinates and high precision ITRF2008
velocities [5]. The result of this treatment was a geocentric Cartesian time series (X, Y, Z)
of subcentimeter accuracy. For their geodynamic interpretation, they were transformed
into topocentric coordinates (east, north, elevation). In Rosado et al. 2019 [6], the algorithm
used for this coordinate transformation is described in detail.

3. Statistical and Analytical Methods and Techniques

Topocentric GNSS time series are affected by various sources of error from the spatial
constellation, the GNSS signal propagation medium, and the tracking station. Therefore,
the precision of the ephemeris, of the corrections of the satellite oscillators, of the parameters
of the Earth’s rotation; the influence of the ionosphere and the troposphere; station stability,
multipath effect, electromagnetic signal interference, etc., decisively influence the quality of
the calculated time series. The existence of anomalous observations, the loss of observations
due to obstacles, the noise introduced by other signals, etc., make a prior descriptive
analysis of the series obtained necessary. Through this analysis of the raw series, outliers,
gross errors, and, especially, the noise level of the series were detected. These parameters
recommended an a priori methodological procedure to be followed.

To eliminate or reduce the noise level of the series, various time series filtering tech-
niques were considered, methodologically grouped into initial filters (1-¢, 2-¢, Outlier
R), analytical filters (Kalman, wavelets), and statistical filters (ARMA/ARIMA). Once
this process was carried out, adjustment techniques were applied in order to extract the
information on the geodynamic behavior of the GNSS series considered. In this process,
it was essential to clearly define the objective pursued and the series to be analyzed. A
distinction was made between the horizontal components (east, north) and, on the other
hand, the vertical component (elevation) between linear and non-linear behaviors, between
series that present anomalies due to events of a tectonic or volcanic nature, etc. All this
made it impossible to establish a single procedure for each and every one of the GNSS
geodetic series. Rather an adaptation of techniques and methods was carried out according
to the geodynamic process under study. Figure 1 shows the adjustment techniques used
in this work: linear adjustment, Create and Analyze Time Series (CATS), Seasonal-Trend
Loess Decomposition (STL), Kalman Adjustment, and ARMA /ARIMA. These procedures
developed were all carried out in R software.

These procedures are succinct and conceptually described below, resulting, however,
in a greater depth in those that, due to their specificity, are practically exclusive for the
GNSS series.
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Figure 1. Scheme of statistical and analytical techniques and methods for the treatment of GNSS
time series.

3.1. Initial Filters of the Series

The objective of any initial filtering, which was applied to the GNSS series, consists
of the elimination of data with very different values, outliers, from the rest of the series.
The 10 and 20 filters are based on the distance of the series points from a simple linear
regression line. Depending on the chosen filtering, a greater (10) or less (20) number of
data is eliminated from the series. In the case of non-linear series, this process is carried
out by linear sections within the series. On the other hand, R contains a package, forecast,
to filter time series data that are based on the Box-Cox transform [7,8], which is done by
the tsoutliers() function. It was used to achieve greater linearity, homoscedasticity, and a
tendency to a normal distribution of the values of the series.

3.2. Predictive Filtering: Kalman, ARIMA, ARMA
3.2.1. Kalman

For this filtering, it is necessary to know what the dynamic linear models are like.
Assuming they are known, we proceed to define the Kalman filtering. The Kalman filter is
of a predictive—corrective type; as the parameter 6; that determines the state of the model
at time t is calculated, and the estimation of the observations of the series is calculated [9].
Assuming 6y ~ N(mg, Cp):

0r = Geby—1 + i + RiW;

To calculate the estimate of the data of the series, the following is used:
yr = Fibr +dy +v;
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3.2.2. ARIMA Model

ARIMA (integrated moving average autoregressive) models are given by the
ARIMA(p, d, q), deal with stationary time series, and are made up of three models: the
autoregressive (AR), the integrated (I), and the mean mobile (MA) model, which are de-
fined, respectively, by p, d, and q. By uniting these three models, we get the ARIMA model,
which is given by:

9p(B)(1 — B)'Y; = g + 6,(BJer

where ¢; represents the errors produced at time t and Y; of the data of the series.
Additionally:

¢p(B) =1—¢1B—¢2B* — ... — ¢pBF
0,(B) =1— 6B —0,B> — ... — 6,B"

where B is the delay operator.

3.2.3. ARMA Model

ARMA models, defined by ARMA(p, q), deal with non-stationary series and are given
by the union of autoregressive models (AR (p)) and moving average models (MA (q)).
Therefore, by joining the expressions of both models, we obtained the expression of the
ARMA model:
9p(B)Y: = go + 6,(B)e

where ¢;,(B) and 6,(B) are defined in the same way as in the ARIMA model.

3.3. Wawvelet Analysis

The wavelet transform decomposes a signal using functions (wavelets) well localized
in both the physical space (time) and spectral space (frequency), generated from each other
by translation and dilation [10]. The wavelet continuous transform tries to express a signal
x(t), continuous in time, by an expansion of proportional coefficients to the inner product
between the signal and different scaled and translated versions of a function prototype .
This function, known as the mother wavelet or wavelet function, provides a decomposition
of the data in the time-frequency plane, along with successive scales. This time-frequency
transformation depends on two parameters, the scale parameter a, which is related to the
frequency, and the time parameter b, related to the translation of function ¢ in the time
domain. The continuous wavelet transform is obtained by:

1 [ t—b
T(a,b) = — Hy(—=
CWT(ab) = = [ >
where 1 is the mother wavelet.

3.4. CATS Analysis

CATS adjustment (Create and Analyze Time Series) is based on stochastic analysis of
the GNSS series using Maximum Likelihood Estimation (MLE). This estimate is optimal
for the study of noise in a time series. This method makes it possible to simultaneously
estimate the noise amplitudes, the linear trend, the periodic signal, and the amplitudes of
the existing discontinuities, as well as the uncertainty of these parameters [11]. This setting
makes it possible to differentiate between the linear and non-linear parts of the series. The
linear part includes the calculation of outliers, the trend, sudden jumps (e.g., earthquakes),
and sinusoidal terms. In non-linearity, different types of specific noise models are solved,
e.g., white noise and power noise. For the analysis of the GNSS coordinate series, the
following functional model is considered:

2 n
x(t) =a+bt+ ) (Asin(wjt) + Beos(w;jt)) + Y C;H(t — T))
j=1 j=1
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where x is the value of the GNSS coordinate at time ¢; a is the initial value; b is the velocity;
w1 and w, are the angular frequencies of the annual and semi-annual harmonic components;
and A; and B; are the amplitudes of the sine and cosine, respectively. The coefficients C;
are the magnitudes of the discontinuities described by the following Heasivide function:

0 sit<O0
H(T)*{ 1 sit>0

and the time instant of the discontinuity T;. The number of discontinuities in each series is
given by n. Therefore, the parameters to be estimated are the initial value a, the velocity b,
the sine and cosine amplitudes of the annual and semi-annual harmonic components A;
and Bj, and the coefficients C; of the magnitudes of the discontinuities considered.

To estimate the noise components using the MLE, the probability function is maxi-
mized by fitting the covariance matrix of the data. The resulting expression is given by:

ik(6,C) = ——__g0507C1s
(271) 2 (detC)2

Taking the natural logarithm, we obtain:
MLE = In[lik(6,C)] = f%[ln(detc) +0TC719 4 Nin(2r))

where N is the number of epochs or observations, C is the covariance matrix of the data,
and 9 are the post-fit residuals of a model applied to the original series using least squares
with the same covariance matrix C.

Therefore, we are going to assume that the matrix C is a combination of two sources
of error, a white noise component and a power series noise component, so that:

C=al+b;

where a,, and b, are the amplitudes of white noise and color noise, respectively. The
identity matrix, I, is the covariance matrix of the white noise evoking independence in the
time of this type of process. The matrix J; is the noise covariance matrix of a power series
with a spectral index k and is calculated by means of fractional models integrated in such a
way that:

Jo=TT"

where T is a transformation matrix obtained from:

o 0 0 - 0
Py o 0
T=AT*4=| ¥ 1 o

o O

ll]n.—l llJn'—z llJn'—s ll;o

where AT is the sample interval and,
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Therefore, using MLE, we could fit the coordinate time series to a standard model
accurate acoustic by estimating the noise amplitudes for a model, assuming that it is a
combination of white noise and power series noise (WN + PLN, is say, White Noise +
Power-Law Noise). This approach is based on the recent general formula of the covariance
matrix for a power series process, allowing us to estimate noise amplitudes and spectral
index together with the rest of the parameters of the station’s motion model.

The stochastic properties and the linear parameters were adjusted together in one
way, iterative through a function, to maximize them. The function to be maximized chose a
model noise level and estimated the linear parameters, on which a new set of waste was
calculated. Using these residuals and the covariance matrix, the value of likelihood and a
new noise model with a higher likelihood value were chosen. This process was repeated
until the likelihood function reached its maximum value.

3.5. STL Decomposition

STL decomposition (Seasonal and Trend decomposition procedure based on Loess)
additively decomposes a time series into its three components trend, seasonality, and
irregularities [12]. The time series can contain gaps due to various factors. These do not
have a negative influence on the decomposition of the time series. Local regression (Loess)
was used to estimate the three components of the series. STL decomposition consisted of
two processes: internal and external. In the internal process, in each position, the values
of the trend and seasonality components were estimated and updated with the Loess
regression. In the external process, the irregularities component of the series was obtained.
The trend and seasonality components were smoothed. However, both components were
affected by the variation of the series, which could be solved by applying a filter to the
seasonality component. This filter was composed of three models of moving averages and
the Loess regression [12].

4. Application of Methodology Developed and/or Adapted R
4.1. Description of Selected Series from the Spina Network

Selected time series came from permanent geodetic stations located in the south of the
Iberian Peninsula and North Africa, which constitute the SPINA network. This geodetic
network is composed of 7 networks of permanent GPS stations: RAP, MERISTEMUM, IGS,
IGN, REGAM, RENEP, and ERVA. Each of these networks is made up of GPS stations
located in Andalusia, Murcia, the Valencian Community, the south of Portugal, and the
north of Africa [10]. We used the position time series derived from daily observations and
processed the positioning with respect to the IGS station located in Villafranca (VILL) to
get site displacements. Figure 2 shows the horizontal displacement rates at GPS sites in
the south of the Iberian Peninsula and North Africa, estimated from GPS time series data
(January 2005 to January 2014) [13]. All GPS solutions were realized in the ITRF2005 global
reference frame.
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Figure 2. Horizontal displacement rates at GPS sites in the south of the Iberian Peninsula and North
Africa, estimated from GPS time series data with 95% confidence level error ellipses. Different colors
are used for different networks. The red rectangles indicate the selected stations. Adapted from [13].

4.2. Results

East

20

The filters explained in this work were applied to the time series of the SEVI and

CAAL stations. Figures 3—-6 show the results of the SEVI station and, Figures 7-10 show
the results of the CAAL station.
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Figure 3. Topocentric time series east, north, and the elevation of the SEVI station with Outlier R filter. Red dots indicate
RAW series and blue line indicates Outlier R filter.
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Figure 4. Topocentric time series east, north, and the elevation of the SEVI station with the wavelet filter result (first line)
and the Kalman filter result (second line). Red dots indicate Outlier R series and blue line indicates filter.
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Figure 5. Topocentric time series east, north, and the elevation of the SEVI station with the ARMA filter result (first line)
and the ARIMA filter result (second line). Red dots indicate Outlier R series and blue line indicates filter.
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Figure 6. Topocentric time series east, north, and the elevation of the SEVI station with the CATS result (first line), the STL
decomposition result (second line), and the STL decomposition to CATS result (third line). In the CATS series, black dots
indicate the Outlier R series and red line indicates the CATS result.
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Figure 7. Topocentric time series east, north, and the elevation of the CAAL station with Outlier R filter. Red dots indicate
RAW series and blue line indicates Outlier R filter.

192



Eng. Proc. 2021, 5,21 9of11

East North

= 0ss-
[ s
o
>
]
00e-
0c0-
oco-
208 0 e 0 2oe 0 e 2 2o 0 e e
otz
c ..
S oo 0ss-
<
00s- 00s
0c0-
oco-

2008 2010 2012 2014 2008 2010 2012 2014 2008 2010 22 204

Figure 8. Topocentric time series east, north, and the elevation of the CAAL station with the wavelet filter result (first line)
and the Kalman filter result (second line). Red dots indicate Outlier R series and blue line indicates filter.
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Figure 9. Topocentric time series east, north, and the elevation of the CAAL station with the ARMA filter result (first line)
and the ARIMA filter result (second line). Red dots indicate Outlier R series and blue line indicates filter.
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Figure 10. Topocentric time series east, north, and the elevation of the CAAL station with the CATS result (first line), the
STL decomposition result (second line), and the STL decomposition to the CATS result (third line). In the CATS series,
black dots indicate the Outlier R series and red line indicates the CATS result.

5. Conclusions

GNSSS time series analysis seeks to know the behavior and level of existing geodynamic
activity. The geodynamic model is obtained from the velocities of the displacements of
each station in the region. That is the starting point for the calculation of the stress and
strain models. The GNSS experimental process involves multiple factors that can introduce
deviations and dispersions in the values of the GNSS series and, consequently, in the
models and results obtained.

In this work, a brief review of analysis techniques and methods for GNSS time series
was carried out. Filtering, filtering-fitting, and fitting techniques were analyzed. The need
for a descriptive analysis of the RAW series was previously established. Anomalous values,
gaps, and dispersion of the series were detected. It was also used to detect changes in the
trend or seasonality of the GNSS series.

Among the exclusive filtering techniques, outliers R was more effective and adaptable
for both linear and non-linear series, whereas the processes 1 sigma and 2 sigma, especially
in non-linear cases, were not applicable to the entire series.

The following were considered as filtering-fitting techniques: Kalman,
ARMA /ARIMA, and wavelets. The Kalman and ARMA filters presented more dispersion
in the result than ARIMA and wavelets. In series fitting, Kalman and ARIMA obtained
smoother curves than ARMA and wavelets, and, therefore, they were more effective in
forecasting series. ARIMA and wavelets better adjusted those internal changes in the series
providing information on the level of geodynamic activity and the possible detection of
seismic events.

CATS-R software provided a series of adjustments, adapted to controlled changes on
antenna changes, receivers, firmware, etc. It is a very reliable technique when calculating
velocities and, especially, when fitting the elevation component. The STL package that
allowed decomposition of the time series into trend, seasonal, and reminder and was
analyzed and applied. Its versatility and precision were verified once any of the other
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techniques had been applied and the series had been purified of adverse effects (outliers,
gaps, dispersions, deviations, etc.).

Finally, there is no standardized procedure for any time series. Really, the descriptive
analysis informs about the processes to consider in its treatment.

Data Availability Statement: Data supporting reported results can be found at http://www.ign.es,
https:/ /www.epncb.oma.be, https://renep.dgterritorio.gov.pt, https:/ /sitmurcia.carm.es, https:
//www.juntadeandalucia.es and http:/ /icv.gva.es.
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Abstract: This paper presents a systematic review of Python packages with a focus on time series
analysis. The objective is to provide (1) an overview of the different time series analysis tasks and
preprocessing methods implemented, and (2) an overview of the development characteristics of the
packages (e.g., documentation, dependencies, and community size). This review is based on a search
of literature databases as well as GitHub repositories. Following the filtering process, 40 packages
were analyzed. We classified the packages according to the analysis tasks implemented, the methods
related to data preparation, and the means for evaluating the results produced (methods and access
to evaluation data). We also reviewed documentation aspects, the licenses, the size of the packages’
community, and the dependencies used. Among other things, our results show that forecasting is by
far the most frequently implemented task, that half of the packages provide access to real datasets
or allow generating synthetic data, and that many packages depend on a few libraries (the most
used ones being numpy, scipy and pandas). We hope that this review can help practitioners and
researchers navigate the space of Python packages dedicated to time series analysis. We also provide
an updated list of the reviewed packages online.

Keywords: time series analysis; Python; review

1. Introduction

A time series is a set of data points generated from successive measurements over time.
The analysis of this type of data has found application in many fields, from finance to health,
including the monitoring of computer networks or the environment. The current trend of
reducing the cost of sensors and data storage, the increasing performance of Big Data and
data analysis technologies such as machine learning or data mining, are opening up more
and more possibilities to acquire and analyze temporal data. Moreover, as the number of
time series analysis application cases rises, more and more data scientists, data engineers,
analysts, and software engineers have to use dedicated time series analysis libraries.

In this article, we systematically review Python packages dedicated to time series
analysis. Python is one of the programming languages of choice for data scientists (See the
different surveys performed by Kaggle from 2017 until 2020: https://www.kaggle.com/
kaggle-survey-2020 (accessed on 24 June 2021). Data scientists are not only responsible for
analyzing data; their task is also to ensure that services based on these analyses reach a
sufficient level of maturity to be deployed and maintained in production. In this context,
we review not only the analysis tasks implemented in the packages, but also several
factors external to the tasks themselves, such as which dependencies are used or how big
the community behind the development of the package in question is. Our goal is not
to evaluate the quality of the implementations themselves but to provide a structured
overview that is useful for data scientists confronted with time series analysis (and faced
with having to choose which packages to rely on), the scientific community, and the
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community of Python developers working in this field. This paper is structured as follows:
Related work is introduced in Section 2; the search methodology and the search results are
described in Sections 3 and 4, respectively; threats to validity are discussed in Section 5;
and Section 6 concludes the paper.

2. Related Work

Time series analysis is a broad research field covering many application domains.
The literature contains many reviews, either focusing on analysis tasks and methods (see,
for instance, these reviews on forecasting [1-4], clustering and classification [5-9], anomaly
detection [10-12], changepoint analysis [13-15], pattern recognition [16,17], or dimension-
ality reduction [18]) or focusing on a specific application domain (see, for instance, these
surveys on finance [19], IoT and Industry 4.0 [20-22], or health [23]). Over time, several
formal definitions and reviews of time series analysis tasks have been published; see,
for example [24-26].

However, existing implementations (software packages or libraries) are often listed—
usually in a non-systematic way—in textbooks (like [27,28] for R, or [29] for Python) or gray
literature (for example, Towards Data Science (https:/ /towardsdatascience.com/), KDnuggets
(https:/ /www.kdnuggets.com/) or Machine Learning Mastery (https:/ /machinelearningmastery.
com/), and few papers actually systematically review packages or libraries in a specific
language. For example, Ref. [30] reviewed packages for analyzing animal movement data
in R, and [31] surveyed R packages for hydrology. With respect to Python, we found several
reviews of packages for different domains: social media content scrapping [32], topological
data analysis [33], or data mining [34]. For time series analysis in Python, the only related
work we could find is [35], where the authors review packages focusing on forecasting.

There is, to the best of our knowledge, no systematic review of Python packages for
generic time series analysis.

3. Methodology

We conducted a systematic literature review according to [36]. However, these guide-
lines focus on printed literature, not on software packages. Hence, we adjusted these
methods. Our search process is illustrated in Figure 1. We conducted a search in both
literature databases and code repositories (GitHub). The following sections provide more
details on the different steps of the search itself.

Github search | 115 [ Removing | s1_| 1saPython 7 5 Focuses
(C:1, 2.1, 2.2) duplicates Package? | ——>|  on time
1,212 (c23) series" (IC3)

Literature Checking Removing
search (IC:1,3) | 104 | Github (IC2.%) 12 duplicates
Generic vs

o ] B

40 | specific (IC4) ( )

Figure 1. Search and filtering process overview. Edge labels indicate the number of repositories left

after each step.

3.1. Research Questions

We already stated our goal and the context we set for this review in the introduction.
We formalize this context as follows: We want to analyze Python packages dedicated
to time series analysis for the purpose of structuring the available implementations (we
explicitly exclude the purpose of evaluating them) with respect to the implemented time
series analysis tasks from the viewpoint of practitioners in the context of building data-
driven services on top of these implementations. Our research questions are:
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e RQ1 Which time series analysis tasks exist? And which of these are implemented in
maintained Python packages?

e RQ2 How do the packages support the evaluation of the produced results?

e RQ3 How do the packages support their usage, and what insights can we gain to
estimate the durability of a given package and make an informed choice about its
long-term use?

3.2. Inclusion Criteria

To guide our review and filter relevant packages, we defined the following inclusion
criteria (IC): The package should be open source, written in Python, and available on
GitHub (IC1). The package should be actively maintained (last commit within less than
6 months) (IC2.1); it should have more than 100 GitHub stars (IC2.2); and it should be
listed in PyPI (PyPl is the Python Package Index, a repository of software for the Python
programming language, see https://pypi.org/) and be installable via pip (pip is the
Python Package Installer, see https://pip.pypa.io/en/stable/) or conda (conda is a Python
package management system and environment management provided by the Anaconda
distribution, see https://docs.conda.io/en/latest/) (IC2.3). The package should explicitly
target time series analysis (IC3). We excluded packages that can be used for time series
analysis (as building blocks) but whose main purpose is not time series analysis per se
(for example, generic scientific computing packages such as scipy or numpy, packages
dedicated to data manipulation or storage such as pandas, or generic machine learning
or data mining packages such as scikit-learn). Finally, we focused our search on packages
offering methods that tend to be domain-agnostic (IC4) and excluded domain-specific
packages. Domain-specific packages are packages aiming to solve time series analysis in
a specific domain (for example, audio, finance, geoscience, etc.). They usually focus on
specific types and formats of time series and domain related analysis tasks.

3.3. Searching Open-Source Repositories in GitHub

In order to filter GitHub repositories, we selected a list of topics (https://github.
com/topics (accessed on 1 March 2021)), filtered the results by language (Python, IC1),
by number of stars (at least 100, IC2.2), and considered only repositories that were updated
after July 2020 (IC2.1).

In order to select a list of relevant topics, we first manually selected a list of eight
Python packages known to be used in time series analysis (i.e., a seeds set): pandas, numpy,
scipy, statsmodel, ruptures, tsfresh, tslearn, and sktime; as well as a sample of the packages
using the topic “time-series”. We examined the topics used by these packages and then
extended this list of topics with different spellings while manually double-checking their
existence in GitHub. We considered a total of 16 different topics (see Table 1). The first
search led to a total of 115 repositories.

Table 1. List of topics used to conduct the search on GitHub.

time-series time-series-regression signal-processing time-series-classification
time-series-analysis time-series-forecast time-series-visualization — time-series-decomposition
time-series-forecasting  time-series-data-mining timeseries timeseries-forecasting
time-series-prediction  time-series-segmentation timeseries-analysis time-series-clustering

3.3.1. Removing Duplicates

We found 24 unique repositories that were duplicated (i.e., listed in more than one
topic). After duplicate removal, 81 unique repositories remained.

3.3.2. Checking If the Repository Contains the Code of a Python Package

We restricted our search to packages that are referenced by PyPI and can be installed
with pip or conda (IC2.3). Note that the repository name might not reflect the package
name (if one exists). For example, the repository https:/ /github.com/PyWavelets/pywt
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(accessed on 24 June 2021) contains the source code for the package named pywavelets.
The repository https:/ /github.com/angus924/rocket (accessed on 24 June 2021) does not
contain the source code for the Python package rocket. We therefore checked each of
the 81 repositories manually and excluded 22 repositories, which yielded a total of 59
remaining repositories that contain the source code of a Python package.

3.3.3. Including only Packages Focused on Time Series Analysis

Finally, we manually checked whether the focus of the package is time series analysis
(IC3). After exclusion, 47 remaining packages were kept for further analysis.

3.4. Searching Scientific Bibliographic Databases

The search for packages only in a repository might not be sufficient to cover all
existing packages. For example, one of our seed packages (namely tsfresh) was not
uncovered by the search. Hence, we extended our search to existing literature and
software databases (in march 2021). We used the bibliographic databases IEEE Xplore
(https:/ /ieeexplore.ieee.org), ACM Digital Library (https://dl.acm.org/), Web of Sci-
ence (https://www.webofknowledge.com), and Scopus (https://www.scopus.com/),
as well as the Journal of Open Source Software (JOSS) (https:/ /joss.theoj.org/), and Zen-
odo (https://zenodo.org/). For IEEE Xplore, ACM Digital Library, Web of Science, and
Scopus, we limited ourselves to the search string ¢ ‘Python’’ AND ¢‘time series’’in
the document title. For the Journal of Open Source Software (JOSS), we first used the
key words ¢ ‘time series’’ and then filtered the results by language (the query used is:
https:/ /joss.theoj.org/papers/search?q=time+series (accessed on 1 March 2021)). For Zen-
odo, we also used the search string ¢ ‘Python’’ AND ‘‘time series’’, limited the search
to the software category and removed the duplicates (e.g., different versions of the same
software). The full query for Zenodo is: https:/ /zenodo.org/search?page=1&size=200&q=
%22time%20series %22%20AND%20%22python%22&sort=mostrecent&type=software (ac-
cessed on 1 March 2021). We only included references that matched our inclusion criteria
IC1, IC2.*, and IC3. Table 2 summarizes our search results.

Table 2. Literature search results.

Data Source Number of Hits Number of Included Documents Included References
IEEE Xplore 1 0
ACM Digital Library 2 1 [37]
Web of Science 10 4 [37-40]
Scopus 12 4 [37—-40]
JOSS 21 1 [41]
Zenodo 68 6 [42-47]

We manually cross-checked the results obtained from GitHub with the results obtained
by our literature search. Out of the eleven packages resulting from our literature search,
only five repositories were not already in the GitHub search results: tsfresh, neurodsp,
EoN, nolds, and pastas.

3.5. Snowballing

In order to extend our search, we used a snowballing approach. We first manually
reviewed the package documentations in order to find links to other similar packages. Only
two packages—tsfresh (https:/ /tsfresh.readthedocs.io/en/latest/text/introduction.html#
what-else-is-out-there (accessed on 24 June 2021)) and sktime (https://www.sktime.org/
en/latest/related_software.html (accessed on 24 June 2021))—actually document related
packages. Second, we manually reviewed the documentation and the GitHub repositories
of all packages to find related publications. We then reviewed the papers to find new
packages (i.e., we performed a single backward snowballing pass). Out of a total of
79 packages, 15 new packages were included after the snowballing phase, for a total of
67 packages.
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3.6. Generic vs. Domain-Specific Packages (IC4)

Finally, we classified the packages in two categories: domain-specific and generic.
As previously defined, we consider domain-specific packages to be packages aiming to
solve time series analysis in a specific domain (for example, audio, finance, geoscience, etc.)
and generic packages as those offering methods that tend to be domain-agnostic. Out of the
67 packages, 27 packages were categorized as domain-specific and 40 packages as generic.

3.7. Data Extraction and Categorization

We manually extracted relevant information about the packages from their documen-
tation pages and code. For the categorization, we used an iterative, bottom-up approach.
Two researchers first proposed category definitions and then categorized the packages.
A third researcher was responsible for resolving disagreements. Iterations were performed
until the categories and results were consolidated.

4. Results
4.1. RQ1: Implementation of the Time Series Analysis Tasks

To answer our research question RQ1, we first reviewed the task definitions present in
the literature and then analyzed the 40 packages classified as generic to extract information
about which tasks have been implemented in the packages.

4.1.1. Task Definitions

Time series analysis tasks are formally defined in the literature. Reviews like [24-26,48]
define the following tasks: Indexing (query by content): given a time series and some simi-
larity measure, find the nearest matching time series [24-26]. Clustering: find groups (clus-
ters) of similar time series [24-26,48]. Classification: assign a time series to a predefined
class [24-26,48]. Segmentation (Summarization): create an accurate approximation of a
time series by reducing its dimensionality while retaining its essential features [24-26,48].
Forecasting (Prediction): given a time series dataset up to a given time ¢#,, forecast the next
values [24,25]. Anomaly Detection: find abnormal data points or subsequences (also called
discords) [24,25]. Motif Discovery: find every subsequence (called motif) that appears
recurrently in a time series [24,25,48]. Rules Discovery (Rule Mining): find the rules that
may govern associations between sets of time series or subsequences [25,48].

Esling and Agon also define implementation components [24]: preprocessing (e.g.,
filtering noise, removing outliers, or imputing missing values), representation (e.g., di-
mensionality reduction, finding fundamental shape characteristics), similarity measures,
and indexing schemes.

4.1.2. Implemented Tasks

While analyzing the packages, we found packages explicitly mentioning the tasks
corresponding to our literature review. We found 20 packages explicitly providing forecast-
ing methods (T1), 6 packages providing classification methods (T2), 6 packages providing
clustering methods (T3), 6 packages providing anomaly detection methods (T4), and 4
packages providing segmentation methods (T5). We classified four packages under the
category pattern recognition(T6), encompassing both indexing and motif discovery tasks.
We also classified five packages under the category change point detection (T7), which was
not in our literature review. Finally, we could not find any package explicitly mentioning
the rules discovery task.

Considering the implementation components, we found 4 packages explicitly pro-
viding dimensionality reduction methods (DP1), 17 packages explicitly providing missing
values imputation methods (DP2), 16 packages explicitly providing decomposition methods
(e.g., decomposing time series into trends, seasonal components, or frequency components)
(DP3), 24 packages explicitly providing generic transformation and features generation meth-
ods (DP4), and 7 packages explicitly providing methods for computing similarity measures
(DP5). Table 3 gives an overview of our categorization of the packages.
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Table 3. Classification of packages. Tasks: T1 (forecasting), T2 (classification), T3 (clustering), T4 (anomaly detection),
T5 (segmentation), T6 (pattern recognition), T7 (change point detection). Data Preparation (also called implementation
components): DP1 (dimensionality reduction), DP2 (missing values imputation), DP3 (decomposition), DP4 (preprocessing),
DPS5 (similarity measures). Evaluation: E1 (model selection, hyperparameter search, feature selection), E2 (metrics and
statistical tests), E3 (visualization). Datasets: D1 (synthetic data generation) and D2 (contains datasets). Documentation: Dol
(dedicated documentation), Do2 (notebook: directly executable (+), present (*)), Do3 (API reference), Do4 (install guide),

Do5 (user guide).
Package Tasks Data Preparation Evaluation Data Documentation
Name T1 T2 T3 T4 T5 Te6 T7 DP1 DP2 DP3 DP4 DP5 E1 E2 E3 D1 D2 Dol Do2 Do3 Do4 Do5
arch + + + o+ + * + + +
atspy + + + + + o+ o+ + + +
banpei + + + +
cesium + + * + +
darts + + + + + o+ o+ + + + + +
deeptime + + + + + + o+ + + + + +
deltapy + + + + + + + + + +
dtaidistance + + + + + + + +
EMD-signal + + + + + + +
flood-forecast + + + + + + + +
gluonts + + + + o+ o+ o+ + + + +
herystalball + + + + + o+ + + + * + + +
hmmlearn + + + + * + +
hypertools + + + + + + * + + +
linearmodels + + * + +
luminaire + + + + + + + + +
matrixprofile + o+ o+ o+ + + + + + + + +
mcfly + + + + + +
neuralprophet — + + + + + + * - N
nolds + + + + + + + +
pmdarima + + + + + o+ + * + +
prophet + + + + o+ + * + + +
pyaf + + + + + o+ o+ + + + + +
pycwt + + + + + + +
pydim + + o+ + * + + +
pyFTS + + + o+ o+ o+ + + + +
pyodds + + o+ o+ + * + + +
pytorchts + + + + o+ + + + + + +
pyts + + + + + + + + o+ + + + * + +
PyWavelets + + + + + * + + +
ruptures + + + + + + + +
scikit-multiflow + + + + + + o+ + + * + +
seglearn + + + * + + +
sktime + + + + + + + + + + o+ + + * + + +
sktime-dl + o+ + + +
statsmodels + + + + + o+ o+ + + + * + + +
stumpy + + + + * + + +
tftb + + + o+ o+ + + + + +
tsfresh + + + o+ + + + + +
tslearn + o+ + + + + + + + + +
Total 20 6 6 6 4 4 5 4 17 16 24 7 13 23 25 16 19 34 30 28 40 37

TIL T2 T3 T4 T5 Te T7 DPl1 DP2 DP3 DP4 DP5 El1 E2 E3 D1 D2 Dol Do2 Do3 Do4 Dob

Tasks Data Preparation Evaluation Data Documentation
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Forecasting is by far the most frequently implemented task. There is no significant
difference, in terms of number of packages, between the other tasks. However, we need
to be cautious when interpreting these numbers. First, the tasks as formally defined in
the literature might not be explicitly mentioned in the packages documentation or code.
Second, the delineation between a task and the methods used to implement it is sometimes
blurry and context dependent. For example, one can perform change point detection
for the sake of finding time points where some time series properties change and, as a
consequence, raising alarms in a production system, or use it as a preprocessing step for
segmenting a time series into different phases. Another example are forecasting models,
which can also be applied for outlier detection.

4.2. RQ2: Evaluation of the Produced Results

To answer our research question RQ2, we extracted information about the evaluation
of the outcomes produced by the packages. We came up with two main clusters: functions
that facilitate the evaluation itself (E1, E2, E3) and functions for either generating synthetic
data or downloading existing datasets (D1, D2). We found 13 packages explicitly providing
methods for model selection, hyperparameter search, or feature selection (E1), 20 packages
explicitly providing evaluation metrics and statistical tests (E2), and 25 packages providing
visualization methods (E3). Concerning the data, we found 16 packages explicitly providing
functions for generating synthetic time series data (D1), and 19 packages providing access
to time series datasets (D2). A large majority of the packages provide a way to evaluate the
results produced. Only 4 packages have not been classified in any of the E or D classes.

4.3. RQ3: Package Usage and Community

To answer our research question RQ3, we extracted information about the documenta-
tion, the dependencies, and the community supporting the packages. For instance, GitHub
provides many statistics about a repository (e.g., the number of stars, forks, issues) that can
be used to get a first idea of the liveliness of the different packages. We used the number of
GitHub stars and forks to estimate the community behind each package. Figure 2a shows
the distribution of stars and forks for all 40 packages. Another piece of information that is
relevant to practitioners are the licenses under which the implementations are available.
Figure 2b shows the distribution of the licenses used among the 40 repositories.

—— stars
~=- forks MIT License

~-~ prophet (12256, 3506)
statsmodels (5931, 2144)

10°

Other

o
A

7 tsfresh (5326, 846)
"7 sktime (3467, 426) BSD 3-Clause "New" or "Revised" License

" hmmlearn (2185, 633) Apache License 2.0

10%
None

Stars (log scale)
Forks (log scale)
Licenses.

GNU General Public License v3.0
BSD 2-Clause "Simplified" License

GNU Lesser General Public License v3.0

102

0 5 10 15 20 25 30 35 40 0 2 4 6 8 10
Package rank Number of repositories

(@) (b)
Figure 2. (a) Distribution of stars and forks for all 40 repositories (log scale). The repositories
are ranked by the number of stars, in descending order. (b) Distribution of licenses (number of
repositories per license). None means that no license information was available from GitHub directly.

We also investigated the dependencies used by each of the selected 40 packages. We
used the Python program johnnydep (https://pypi.org/project/johnnydep/ (accessed on
24 June 2021)) to automatically collect the dependencies without installing the packages
directly. We only looked at direct dependencies required for the installation of the package.
We did not consider specific installation options such as dev or test. We did not search for
all dependencies recursively. Here is an example of how we called the program johnnydep
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PACKAGENAME --fields=ALL --no-deps --output-format=json. The dependencies of two
packages could not be retrieved automatically (cesium and deeptime). We also manually
cross-checked the dependencies and filled in the missing ones. Table 4 shows which
dependencies are used the most by the packages.

Table 4. Ranking of the most frequently used dependencies.

Package Name Used Rank Package Name Used Rank

numpy 37 1 torch 6 8
scipy 30 2 numba 6 8
pandas 23 3 cython 6 8
scikit-learn 21 4 tensorflow 5 9
matplotlib 16 5 seaborn 4 10
statsmodels 8 6 future 4 10
tqdm 7 7 joblib 4 10

Almost all packages (37) depends upon numpy. The top 5 dependencies are numpy,
scipy (scientific computing), pandas (data manipulation), scikit-learn (machine learning),
and matplotlib (visualization).

Finally, we investigated five documentation aspects (Do1-Do5). We found that 30 pack-
ages provide a separate documentation page (Dol). The other ten packages use the
README of the repository file as documentation. 18 packages provide notebooks directly
executable without installation via a link to either mybinder.org (https://mybinder.org/)
or Google Colab (https:/ /colab.research.google.com/ (accessed on 24 June 2021)) (Do2 +),
12 packages provide stand-alone notebook files to be downloaded (Do2 *), and 10 packages
do not provide any notebook file at all. 28 packages provide an API reference (Do3). All
packages provide an installation page (Do4) and almost all packages (38) provide user
guides in the form of static examples or tutorials.

5. Discussion and Threats to Validity

In this section, we discuss the choices we made and that may affect the validity of
this review.

This review focused on GitHub. Gitlab and Sourceforge were checked manually,
but we decided not to include them as sources due to the insufficient number of results.

We limited ourselves to packages with at least 100 stars. This somehow arbitrary
limit led us to exclude packages with a number of stars close to 100 (e.g., the stingray
package with 93 stars at the time of the search). We excluded packages that were not
maintained but might have been relevant for practitioners. An example is the pyflux
package (forecasting). We also excluded repositories that are not Python packages. This
led us to discard interesting repositories like ad_examples (which provides state-of-the-art
anomaly detection methods) and many repositories containing code scripts associated with
scientific papers.

Concerning the search process, we used a mix of literature databases and GitHub top-
ics together with a snowballing approach to find relevant packages. The reason forthis was
that several known packages could not be found automatically. For example, the package
cesium does not list any topic and therefore was not found in our first GitHub search. It
was found after snowballing. Another example is tsfresh, which was missing in the first
GitHub search and was found in the literature search. The problem may be the language
filter (strictly Python), as tsfresh lists some of the topics we searched for (“time-series”).

We tried to automate some of the tasks (e.g., filtering repositories that contain Python
packages or finding the dependencies), using both PyPI and GitHub API, or the johnnydep
tool. There were false positives and false negatives. This led us to manually cross check the
results obtained from our automated search.

Whether a package focuses on time series analysis or not can sometimes be fuzzy.
For example, we decided to leave the topic of survival analysis out of this review. We
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initially found two packages: lifelines and scikit-survival. The same applies to the boundary
between generic and domain-specific packages. We took a conservative approach to keep
our survey sufficiently focused.

As already mentioned above, the definition of what should be regarded as a task
vs. an “implementation component” is difficult, as a strict boundary may not even exist.
Moreover, it is sometimes not clear what methods the packages provide without actually
installing them and testing them. Indeed, the documentation might not be complete or
the vocabulary used may differ from one package to another. One solution was to check
the code itself. Here again, the search strings used play an important role in avoiding
false negatives.

6. Conclusions

This paper presented a systematic review of Python packages dedicated to time series
analysis. The search process led to a total of 40 packages that were analyzed further.
We proposed a categorization of the packages based on the analysis tasks implemented,
the methods related to data preparation, the means for evaluating the results produced,
and the kind of documentation present, and also looked at some development aspects
(licenses, stars, dependencies). We also discussed the search process with its possible
bias and the challenges we encountered while searching for and reviewing the relevant
packages. The scope of this survey does, however, not include any evaluation of the
implementations or the results they would produce, for example, on benchmark datasets.
We hope that this review can help practitioners and researchers navigate the space of
Python packages dedicated to time series analysis. Since the packages will evolve, we
plan to maintain an updated list of the reviewed packages online at https:/ /siebert-julien.
github.io/time-series-analysis-python/.
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Abstract: GNSS geodetic time series analysis allows the study of the geodynamic behavior of
a specific terrestrial area. These time series define the temporal evolution of the geocentric or
topocentric coordinates obtained from geodetic stations, which are linear or non-linear depending,
respectively, on the tectonic or volcanic-tectonic character of a region. Linear series are easily modeled
but, for the study of nonlinear series, it is necessary to apply filtering techniques that provide a
more detailed analysis of their behavior. In this work, a comparative analysis is carried out between
different filtering techniques and non-linear GNSS time series analysis: 1sigma—2sigma filter, outlier
filter, wavelet analysis, Kalman filter and CATS analysis (Create and Analyze Time Series). This
comparative methodology is applied to the time series that describe the volcanic process of El Hierro
island (2010-2014). Among them, the time series of the slope distance variation between FRON (El
Hierro island) and LPAL (La Palma island) stations is studied, detecting and analyzing the different
phases involved in the process.

Keywords: GNSS time series analysis; wavelet analysis; El Hierro volcanic process

1. Introduction

GNSS-GPS systems are very effective tools in the study of the geodynamic behav-
ior of a region. From the processing of the GPS observations, geodetic time series of
sub-centimetric accuracy are obtained. The analysis of these time series is essential to
understand the geodynamic behavior, even distinguishing between tectonic and volcanic
activities in those places where the geodynamics presents these or other complex situations.

In this work, a mathematical procedure is established for the study of nonlinear
geodetic time series. The methodology consists of a pre-treatment of the time series to
eliminate anomalous values that disturb the subsequent adjustments. This is performed
using the Outlier R filter. To these filtered series, the analytical Kalman and wavelet filters,
the statistical ARMA and ARIMA filters, and the CATS and STL techniques of linear fitting
are applied.

This methodology is applied to the time series obtained from the FRON station,
located on El Hierro island, in the Canary Islands. These series span from 2010 to 2014;
therefore, they reflect the volcanic process that began on the island in July 2011. Due to the
volcanic-tectonic geodynamic behavior of the region, the time series present non-linear
characteristics. As a comparison, the time series of the IZAN station on Tenerife island are
shown, which are not affected by volcanic activity. Therefore, these time series are linear.

2. Site Description

El Hierro island is located southwest of the Canary archipelago. The island’s morphol-
ogy has been interpreted as a triple volcanic rift: NE, NW and S rifts, with axes diverging
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about 120°, Figure 1 [1]. In July 2011, an increase in surface deformation and seismicity on
the island was detected. The climax of this unrest was a submarine eruption first detected
on 10 October 2011 [2], and located at about 2 km SW of La Restinga, the southernmost
village of the El Hierro island. The eruption ceased on 5 March 2012, although deformation
and seismic activity did not cease after the eruption [1].
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Figure 1. Map of the El Hierro island. The GPS stations of the UCA-CSIC-IGN geodynamic network
in El Hierro, the IZAN GPS stations in Tenerife island, the LPAL in La Palma island, and the seismic
stations are shown.

On the island, there was only one geodetic benchmark from which global navigation
satellite systems (GNSS) provided continuous and publicly accessible data from the begin-
ning of the volcanic unrest. This is the FRON station, located at the Frontera municipality
in the El Golfo valley, and maintained by the Canarian Regional Government. Because of
the ground deformation detected there through geodetic processing of global positioning
system (GPS) data, other GNSS-GPS receivers were deployed by the Spanish National
Geographic Institute (IGN) throughout a geodetic benchmarks’ network designed by the
Laboratory of Astronomy, Geodesy and Cartography of Cadiz University (Figure 1). A
first set of four benchmarks in the El Golfo valley was continuously observed near the
end of July, forming an almost straight line (HI01, HI02, HIO3, and HI04), but it was only
later near the eruption’s start that four other benchmarks were continuously observed,
forming a three-tipped star covering all of the island spatially (HI00, HI05, HI08, and HI09).
In addition, HI10 was continuously observed, while three others were only periodically
observed (HI06, HIO7 and HI11) [2,3].

In the rest of the islands of the Canary archipelago, there are other permanent GNSS—
GPS stations managed by the IGN, among them IZAN on Tenerife island and LPAL on La
Palma island. The LPAL station also belongs to the international IGS network (Figure 1).
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3. Methodology

The evolution of the eruptive process has been studied from the analysis of the geodetic
time series of the GNSS-GPS stations located on the islands. The GPS observations have
been processed using the Bernese scientific software v5.0 [4]. The IGS LPAL station (La
Palma island) has been used as a reference station, in sessions of 24 h and 30 s of sampling
frequency, using the ITRF2008 reference frame [5]. For each observation session, geocentric
coordinates (X, Y, Z) have been obtained with sub—centimeter accuracy. From a given initial
time, the time series of the topocentric coordinates (east, north, up) and the time series of
the distance variation between the reference station, LPAL, and the corresponding station
have been built.

These time series can be linear or non-linear depending on the tectonic or volcanic-
tectonic character of a region. Figure 2 shows the topocentric time series and distance
variation time series between the LPAL-IZAN and LPAL-FRON stations from 2010 to
2014. The IZAN station, located on Tenerife island, is not affected by the volcanic process
of El Hierro; therefore, it presents a linear behavior in all its components (Figure 2a).
On the contrary, the FRON station is located on El Hierro island, so its time series are
non-linear (Figure 2b). Linear series are easily modeled but, for the study of nonlinear
series, it is necessary to apply filtering techniques that provide a more detailed analysis of
their behavior.

() IZAN Station FRON Station

Distance (m)

02 L 02k
20105 2011 20115 2012 20125 2013 20135 2014 20105 2011 20115 2012 20125 2013 20135 2014

Figure 2. Topocentric time series and distance variation time series between LPAL stations and (a)
IZAN, Tenerife island, and (b) FRON, El Hierro, from 2010 to 2014.

The methodology is summarized in Figure 3. For a better understanding, the distance
variation time series between FRON and LPAL is shown with the result of each technique,
but the next section shows the result for all the time series of FRON station.

First, a descriptive analysis of the raw data is carried out (Figure 4a). Thus, an initial
visualization of the data is carried out, detecting errors due to different causes both physical
and instrumental. Due to these anomalous data, it is necessary to treat the time series to
eliminate outliers and noise that distort the subsequent analysis. For this reason, an initial
filtering of the data is carried out using the Outlier R filter (Figure 4b). The objective of
this filter is to ensure that the filtered series has linearity, homoscedasticity and follows a
normal distribution. To achieve this objective, this filter uses the Box-Cox transform [6].
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Figure 3. Scheme of the methodology.

Subsequently, different analytical filtering techniques are applied to the filtered time
series: Kalman and wavelet. The Kalman filter is an algorithm for updating, observation
by observation, the linear projection of a system of variables on the set of available infor-
mation, as new information becomes available. The Kalman filter makes it possible to
easily calculate the likelihood of a linear, uni-equation or multi-equation dynamic model,
estimating the parameters of the model, as well as obtaining predictions from these types
of models [2,7]. The application of this filter to the time series is shown in Figure 4c.

Wavelet techniques allow to divide a complex function into simpler ones and study
them separately. To apply the wavelet transform to a series of numerical data, it is necessary
to implement the discrete wavelet transform (DWT) [8]. The objective of applying the DWT
to a vector is to obtain a transformed vector that has in the middle, known as the high
part (details), the same high—frequency information as the original vector and, in another
half, known as the low part (approximations), the low—frequency information. Wavelet
transforms comprise a large set of shapes. Over time, different versions of wavelets have
been developed, which have given rise to families of wavelets [9]. In this work, the Coiflets
family has been used, and specifically, the Coiflets of order 5. The result of this technique is
shown in Figure 4d.
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On the other hand, statistical filters are applied: ARMA and ARIMA. The ARMA
model is given by the composition of autoregressive models (AR) and moving average
models (MA). On the other hand, the ARIMA model results from the union of the autore-
gressive (AR), integrated and moving average (MA) models [10]. The results of both filters
are shown in Figure 4ef, respectively.

Finally, as adjustment and forecasting techniques, a linear adjustment, the CATS
adjustment and the STL decomposition are performed. In order to carry out a linear fit
and due to the non-linear characteristics of the time series, it is necessary to carry out
this fit in parts (Figure 4g). The CATS adjustment (Create and Analyze Time Series) [11]
consists of decomposing the time series in order to calculate the trend, the amplitudes of
the sinusoidal terms and the magnitudes of the discontinuities that the series presents [8]
(Figure 4f). On the other hand, the STL decomposition (Seasonal and Trend decomposition
procedure based on Loess) decomposes a time series into its three components: trend,
seasonality and irregularities using local regression (loess) [12].

FRON Station - Distance variation FRON-LPAL

01 — § o1 : ;

oS 2om 20Ms W2 25 2015 2ms  20u Wi0s  2en  zoms | g aes 21 21 20w

e

Figure 4. Distance variation time series between FRON and LPAL (a), with the results of the filters:
(b) Outlier R, (c) Kalman, (d) wavelet, (e) ARMA, (f) ARIMA, (g) linear fit, (h) CATS fit and (i) STL
decomposition.
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4. Results

Figure 5 shows the results of applying the filters exposed in the methodology to the
topocentric time series east (a), north (b) and height (c) of the FRON station, and to the
distance variation between FRON-LPAL (d). The figures show: outlier R series (blue),
wavelet series (red), Kalman series (pink), ARMA series (green), ARIMA series (orange),
CATS series (light blue). The earthquakes of magnitude greater than 4 (light green color)
that occurred in the region between 2011 and 2014 are also represented, obtained from the
seismic catalog provided by the IGN (www.ign.es, accessed on 1 June 2021). The black line
represents the earthquake of magnitude 5.1 that occurred on 27 December 2013.
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Figure 5. Topocentric time series east (a), north (b) and height (c) of the FRON station, and the
distance variation between FRON-LPAL (d). They show: Outlier R series (blue), wavelet series (red),
Kalman series (pink), ARMA series (green), ARIMA series (orange), CATS series (light blue). The
earthquakes of magnitude greater than 4 (light green color) that occurred in the region between 2011
and 2014 are also represented, and the earthquake of magnitude 5.1 that occurred on 27 December
2013 is represented in black.

Data Availability Statement: Data supporting reported results can be found at http:/ /www.ign.es,
https:/ /www.epncb.oma.be and http:/ /www.grafcan.es.
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Abstract: Window operation is among one of the most influential factors on indoor air quality (IAQ).
In this paper, we focus on the modeling of the windows’ opening state in a real open-plan office with
five windows. The IAQ of this open-plan office was monitored over a whole year along with the
opening state of the windows. A k-Nearest Neighbor (k-NN) classification model was implemented,
based on a long time series of both indoor and outdoor monitored environmental factors such as
temperature and relative humidity, and CO, indoor concentration. In addition, the month, the day of
the week and the time of the day were included. The obtained model for the window state prediction
performs well with an accuracy of 92% for the training set and 86% for the testing set.

Keywords: k-nearest neighbor classification; time series; autocorrelation function; indoor environ-
ment; windows state prediction

1. Introduction

Indoor air quality (IAQ) is, nowadays, an essential research topic, as we spend more
than 90% of our time indoors [1]. The opening state of windows has an important influence
on IAQ; therefore, it is necessary to understand and model the relationship between
them [2].

Previous studies mostly used logistic regression to compute the correlation between
the probability of a window opening and environmental stimuli to predict the probability
of a window opening/closing event [3,4]. For this approach, all the observations need to
be independent, and the outcomes of the model are usually complex equations which may
not be easily understandable and interpreted.

In the last decades, many studies have used Machine Learning (ML) and their research
application to the environment is not an exception. In 2014, D’Oca et al. tried to apply
ML by using a data-mining approach to discover patterns of window opening and closing
behavior in offices [5]. In this study, a huge amount of detailed data was needed and the
authors mainly focused on obtaining distinct behavioral patterns of the window tilting
angle, instead of for its opening state for a group of windows as was the case in our
study. Many ML algorithms, such as Decision Trees, Support Vector Machines, k-Nearest
Neighbor and Ensemble classification, can be applied for our study case. The k-NN
classification is recommended as ‘a theoretically optimal method of classification” [6].
Indeed, the best results were obtained on our case by using k-NN classification. To the
best of our knowledge, this method has not yet been applied to predicting the state of
window opening, but it has recently been used in a related topic of IAQ, which is occupancy
detection [7]. This paper presents the ability of a k-NN classifier to predict the state of
window opening in an open-plan office, as presented hereafter.
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2. Methodology
2.1. Study Case and Parameters Selection

The studied open-plan office is located in the suburban town of Champs-sur-Marne,
France. The surface and the volume of the office are 132 m? and 364 m3, respectively; it is
used by 6 to 15 people, from 8:00 a.m. to 6:00 p.m. from Monday to Friday.

Measurement devices were installed inside and outside the office. The monitoring
was performed over a full year, in 2014. Temperature (T), relative humidity (RH), carbon
dioxide (CO,) and particulate matter were monitored every minute, during the whole year.
The five windows of the office were equipped with sensors that detected each opening or
closing event [8].

According to some previous studies, the outdoor temperature and indoor CO; con-
centration were the two most important variables in determining the probability of open-
ing/ closing windows, followed by indoor air temperature, and outdoor and indoor relative
humidity [3,4,9]. In addition, non-environmental factors, that is, seasonal change, time of
the day and personal preference, also affect the window-opening probability [10]. Thus,
in our model, the following variables were used: month, day of the week, time of the
day, indoor CO, concentration, and both indoor and outdoor temperature (T) and relative
humidity (RH). The main statistics of these environmental parameters are displayed in
Table 1.

Table 1. The statistics for the environmental parameters.

Indoor CO, IndoorT OutdoorT Indoor RH Outdoor RH
Features

(ppm) Q) (@) (%) (%)
Max value 1144 31.3 35.6 74.6 100.0
Min value 416.8 15 —43 18.3 26.9
Mean value 501.1 23 13.5 442 82.2
Median value 480.5 224 13.5 429 86.7
Std value 64.3 2.3 6 9.3 16.2

In order to obtain more information about the monitored time series, the autocorrela-
tion function (ACF) was calculated (using hourly averaged data). The ACF of a time series
Y (t) provides a measure of the correlation between y; and y;x, wherek =0,...,K (k € Z,
K is not larger than T/4) and y; is assumed to be the realization of a stochastic process.
According to [11], the autocorrelation 7 for lag k is:

Ck

Ty = a/ (1)

where:
1 T—k
w=7 L= D) @
and ¢ is the sample variance, ¥ is the sample mean of the time series; T is the number
of observations.

Figure 1 presents the ACFs for all the quantitative variables used in this study.

From the results presented in Figure 1, one can notice that the state of the environment
at one sample (hour) has the highest correlation with the next sample. In other words,
the previous hour of environmental data also has an important impact on the current
information. Therefore, this implies that the previous hour of environmental data also
has an important impact on the current state of the window. Hence, we decided to use
the information on both the previous and current samples for the input to the predicting
model.
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Figure 1. Autocorrelation values of environmental variables: (a) temperature, (b) relative humidity,
and (c) Carbon dioxide concentration.

We notice that the autocorrelation becomes zero after around 8 h for indoor CO,
and outdoor RH. By contrast, indoor RH decreases very slowly. The same pattern can
be found for outdoor, and also indoor, air temperature. This reveals the persistence of T
and RH indoors, which means that a value at time t of the temperature or indoor relative
humidity can have an impact on a value a long time later. We also note that the ACF of
the CO; concentrations and RH outdoors becomes negative and remains at low levels,
then switches back to positive values after a lag of 17 h. As for T outdoors and RH indoors,
the autocorrelations persist in the positive for long delays. In general, temperatures and
humidity depict the same structures of spectral variability as CO,: two fundamental
frequency peaks at (24 h)™ and (12 h)™. The ACF of CO, and outdoor RH alternates sign
every 8 h on a lag of 24 h. This implies that, instead of using the information from the

‘previous hour’, in the real-time system, we could use the values of the environmental data

from ‘the previous 24 h’ as an input for this model, which are much easier to access than
the ‘previous hour’ data for a real-time application.

2.2. Classification Model Implementation

The hourly averaged values of the selected parameters were used. A linear interpola-
tion was applied in order to replace missing values. Then, the responses were categorized
into four different groups, labelled as follows:

e ALL CLOSED: less than 1 window is opened (N < 1)

e MOSTLY CLOSED: from 1 to less than 2 windows are opened (1 < N < 2)
e MOSTLY OPENED: from 2 to less than 4 windows are opened (2 < N < 4)
e ALL OPENED: 4 windows or more are opened (N > 4)

The non-environmental parameters’ distribution profiles and the initial statistics of
these four groups during the year 2014 are displayed in Figure 2.
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Figure 2. Distribution profile of window opening according to the (a) Month, (b) Hour of the day and (c) Day of the week.
(d) Statistics for window opening categories.

Firstly, the time series data was divided into sets of consecutive 23 h periods. Next,
every 20 first hours of each set were used for training and the other 3 h were used for
testing. This results in 7600 h for the training and 1140 h for the testing set (380 sets in
total). The reason for choosing a set of 23 h instead of 24 h was that we wanted to achieve
an equal distribution of the ‘time of the day’ in both training and testing sets. This can
avoid only training on the same specific hours (1 a.m. to 9 p.m., for example, and always
testing on the same 3 h in the evening, starting from 10 p.m.).

A Classification Learner Application provided by Matlab software via the Statistics
and Machine Learning Toolbox was used to build the classifier. This application trains
models to classify data using supervised machine learning. Based on the amount of data
that we have, we applied a 10-fold cross validation for the training step, which helps us
to limit the overfitting problem. Regarding the setting parameters of our classification
model, the Euclidean distance was adopted. Concerning the number of nearest neighbors,
for k = 1, we archived the highest accuracy, so the label of a ‘nearest neighbor” is selected.

3. Results and Discussion

The output of the Classification Learner App shows that a fine k-NN model has been
obtained with an accuracy of 92.2%. Using this trained k-NN classifier, we predicted the
testing set and compared it to the monitored value, obtaining a value of 86.1% for accuracy.
A confusion matrix for this test set is displayed in Figure 3. The highest recall value (true
positive rate) is obtained when predicting the ‘ALL CLOSED’ state of the group of windows
(93.9%) while the lowest belongs to the ‘MOSTLY OPENED’ label (only 70.3%). Regarding
precision values (positive predictive values), the highest value is still obtained by the ‘ALL
CLOSED’ state; however, the lowest value corresponds to the ‘ALL CLOSED’ label.

In addition, the statistics for the accuracy of each month, the hour of the day and the
day of the week in the testing set are shown in Tables 2—4, respectively, where the lower
values mostly belong to the summer season (Jun-Sep, except for April), day-time periods
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(10 a.m.=5 p.m., except for 4 p.m.) and the working day (Mon-Fri), which mostly contains

the labels “ALL OPENED’ and ‘"MOSTLY OPENED’.

Recall
ALL CLOSED 604 23 3 13 6.1%
MOSTLY CLOSED 33 212 7 12 19.7%
» ALL OPENED 3 6 45 7 26.2%
3
o
)
= MOSTLY OPENED 16 20 15 121 29.7%
Precision AN G 79.1%
7.9% | 18.8% | 35.7% | 20.9%

Predicted class

Figure 3. Confusion matrix, precision and recall value (in percentage %) for each label of the test set.

Table 2. The statistics for the accuracy of each month in the testing set.

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov  Dec
No. of samples 96 87 96 96 96 93 99 96 93 99 93 96
Accuracy 099 091 0.85 0.77 0.92 0.83 0.77 0.76 0.71 0.89 0.97 0.98
Table 3. The statistics for the accuracy of each hour of the day in the testing set.
Hour 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th  12th
No. of samples 44 44 46 48 49 49 48 48 48 48 48 48
Accuracy 0.91 0.91 0.96 0.96 0.96 0.98 0.98 096  0.90 0.67 0.73 0.81
Hour 13th  14th  15th 16th 17th  18th  19th  20th  21st 22nd 23rd  24th
No. of samples 48 48 48 48 48 48 48 48 48 48 47 45
Accuracy 0.85 0.81 0.85 0.90 0.79 0.88 0.81 073 081 0.85 0.89 0.78
Table 4. The statistics for the accuracy of each day of the week in the testing set.
Day Mon Tue Wed Thu Fri Sat Sun
No. of samples 162 161 166 162 164 161 164
Accuracy 0.86 0.84 0.83 0.84 0.76 0.96 0.93

Even though the accuracy of the training set is not so high, this is explained by
the unequal proportion in each label group, especially the small amount for the “ALL
OPENED’ label (6.3% as in Figure 2b). Therefore, the model tends to ‘learn well” with
other dominant labels more than with this label. In the future, we can improve this by
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having an unbiased data set or by providing different weights for each label to penalize
misclassification. In addition, the initial set of variables could include the rate of variation
of the environmental factors to help improve the performance of the model.

4. Conclusions

In this study, we have obtained a k-NN classification model to predict the opening
state for a group of windows in an open-plan office by using both environmental and
non-environmental parameters of previous and current samples, including: month, day
of the week, time of the day, indoor CO, concentration, and both indoor and outdoor
temperature and relative humidity. A validation test has been used to compare the outputs
of the model and the measured window states observed during the year 2014. We could
then use this model by including it in real-time indoor air quality prediction, in order to
optimize the action to be taken to reduce the exposure of the occupants.
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Abstract: In this paper, we use the Logarithmic Mean Divisia Index (LMDI) to apply decomposition
analysis on Carbon Dioxide (CO;) emissions from transport systems in seven Eastern European
countries over the period between 2005 and 2015. The results show that “economic activity” is the
main factor responsible for CO, emissions in all the countries in our sample. The second factor
causing increase in CO, emissions is the “fuel mix” by type and mode of transport. Modal share and
energy intensity affect the growth of CO, emissions but in a less significant way. Finally, only the
“population” and “emission coefficient” variables slowed the growth of these emissions in all the
countries, except for Slovenia, where the population variable was found to be responsible for the
increase in CO, emissions. These results not only contribute to advancing the existing literature but
also provide important policy recommendations.

Keywords: CO, emissions; transport sector; LMDI; economic activity; modal share; energy intensity;
Eastern Europe

1. Introduction and Theoretical Background

Recent studies by the European Environment Agency suggest that transport activities
contribute 28.5% of total CO, emissions, and around 33.1% of final energy consumption in
the European Union. Emissions from this sector have increased from 945.1 million tons in
1990 to 1169.6 million tons in 2015. On the other hand, the share of renewable energy used
for transport in the EU rose from 7.4% in 2017 to 8.1% in 2018, which is well below the EU
target of 10% set for 2020. Overall, some EU countries have succeeded in reducing their
own emissions, while others are still struggling to achieve such objectives, notably Eastern
European countries.

Many tools have been developed by economists and mathematicians to study the
relationship between transport activities and their environmental effects, and to examine
key factors that are thought to contribute to CO; emissions in particular.

The first theory in this regard is based on the Granger causality and Co-integration
approach. This method examines the effects of a wide range of variables (urbanization,
energy consumption energy efficiency, car ownership, economic activity, etc.) on CO,
emissions from the transport sector. Studies include Gonzales and Marrero [1], Lu et al. [2]
and Abbes and Bulteau [3].

Another theory focuses on optimization, either to forecast energy demand and CO,
emissions, or to analyze energy planning for sustainable development [4-6].

Finally, the most widely used technique is the decomposition methods based on the
redefined Laspeyres index method developed by Sun [7] and the Logarithmic Mean Divisia
index method (LMDI; Ang and Choi [8]). At the beginning, the decomposition technique
has been used to assess the total energy consumption caused by the energy crisis. Later,
this technique was generalized for uses and applications in other sectors, particularly the
transport sector, in the 1990s and 2000s. This method allows us to quantify the contributions
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of various factors to CO, emissions from the transport sector. The basic idea is that transport
CO; emissions is the sum of CO, emissions from each transportation mode. To extend the
analysis, other sub-category levels can be added, such as the decomposition of emissions
from the ith transportation mode to emissions coming from fuel type j in year t. Other
variables such as population, energy consumption, motorization and economic growth can
be introduced into these sub-categories to denote the various “effects” that contribute to
transport CO, emissions.

One of the first works to use the decomposition method is that of Scholl et al. [9]
who studied CO, emissions from passenger transport resulting from changes in transport
activity, modal structure, CO, intensity, energy intensity and fuel mix in nine OECD
countries between 1973 and 1992. One year later, Schipper et al. [10] used decomposition
analysis to explain the change in energy consumption and carbon emissions from freight
transport in 10 industrialized countries from 1973 to 1992, by introducing the following
factors: transport activity, modal share and energy intensity. The two studies by Timilsina
and Shrestha [11,12] were conducted in 12 countries in Asia, and 20 countries in Latin
America and the Caribbean during 1980-2005.

Similarly, Papagiannaki and Diakoulaki [13] studied the variation in CO, emissions
from passenger cars using decomposition analysis in Greece and Denmark over the period
between 1990 and 2005. The variables used are car ownership, type of fuel mixture,
annual mileage travelled, engine size or capacity, car engine technology, economic growth
and population. The LMDI-I method was applied by Wang et al. [14] in China between
1985 and 2009, in order to obtain a decomposition of CO, emissions from transport. For
the same country but with a different period from 1995 to 2006, Wang et al. [15] used
the full decomposition approach to construct a decomposition model that summarises
the impact of road freight transport-related factors on carbon emissions, and to predict
its trend. In addition, Andreoni and Galmarini [16] used the decomposition analysis
to investigate the main factors influencing CO, emissions from transport activities in
the maritime and aviation sectors in 14 EU Member States, and in Norway. Similarly, a
decomposition model was applied in Sweden by Eng-Larsson et al. [17]. They analysed the
relationship between economic growth, freight transport, energy consumption, transport
intensity and fuel carbon intensity. Guo et al. [18] presented the characteristics of CO,
emissions from the transport sector in 30 Chinese provinces and analyzed the driving
factors behind these emissions using the LMDI method. More recently, Fan and Lei [19]
constructed a generalized multivariate Fisher’s index decomposition model to identify
potential drivers of carbon emissions in Beijing’s transport sector from 1995 to 2012. Given
the results, economic growth, energy intensity, and population size are considered to
be the main drivers of CO, emission increases in the transport sector. Finally, to assess
the Moroccan road transport sector from an environmental perspective, Kharbach and
Chfadi [20] quantified the contributions of some key factors to CO;, emissions from the
sector using decomposition analysis for the period 2000-2011.

2. Specification of the Model and Results

Understanding the impact of transport activities on the environmental quality is
becoming increasingly important as general environmental concerns are making their way
into the main public policy agenda in the EU. To this end, time series variables from 2005 to
2015 were used in seven Western European countries (Bulgaria, Estonia, Latvia, Lithuania,
Poland, Romania and Slovenia) to investigate the factors affecting CO, emissions from
the transport sector. The annual data have been extracted from the Eurostat database and
European Commission Reports.

We use then the Logarithmic Mean Divisia Index, both in its additive and multiplica-
tive form, to investigate the effect of several factors thought to be responsible for CO,
emissions in the transport sector.
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2.1. The Model and the Variable

The decomposition methods allow us to quantify the contributions of various factors to
CO; emissions from the transport sector. The basic idea is that transport CO, emissions are
the sum of CO, emissions from each transportation mode. To extend the analysis, other sub-
categories levels can be added, such as decomposing emissions from the ith transportation
mode, to emissions coming from fuel type j in year ¢. Other variables such as population,
energy consumption, motorization and economic growth can be introduced into these
sub-categories to denote the various “effects” that contribute to transport CO, emissions.

Mathematically, the application of a Divisia decomposition analysis in transport
involves the use of the following equation:

CO2 =) CO2 (1)
L]
where CO2; are transport sector emissions in a given country in year t. i, which denotes the
mode of transport (road, air, rail, sea and, finally, pipeline transport), and j, the type of fuel
(i-e., diesel, motor gasoline, biofuels and kerosene).
Equation (1) can further be decomposed to include other sub-categories of variables:

CO2j; CEj  CEy  CE: _ GDP
€02 = IZ]: CEy  CEy * CE; ~ GDP * POP,

x POP; @)

CE refers to energy consumption, GDP is the gross domestic product and POP the population.
Finally, Equation (2) is written:

CO2; = EEC,‘# X Rci]'t X RM;; X [Ey X GDP; x POP; (3)
ij

where ECjj; is the emission coefficient or CO; intensity of a fuel j from the ith transport
mode in year t;

RC,v]-t refers to the fuel mix (i.e.,, share of consumption of a fuel j in the ith
transportation mode);

RM; is the modal mix given by the energy consumption of the ith transport mode to
the total energy consumption of the transport sector;

IE; refers to Energy intensity of transport for year f (total energy consumption from
transport to GDP);

GDP; measure the GDP per capita; and finally,

POP; is the population of the country under study in year .

According to the additive form of the LMDI (Ang, [21,22]), the change in CO; emis-
sions can then be calculated using the formula:

ACO2 = CO2t — CO24_1 = AEC 4+ ARC 4+ ARM + AIE + AGDP + APOP 4)

The decomposition of each effect between the year t and t-1 is given by the
following formulas:

ECijs
AEC =Y AEC;; =Y L(CO2; 2 1)1 d
C IZ]: Cij IZ]; (CO2jj;, CO24js 1) n<ECijf1> (5)
ARC = Y ARCy; = Y. L(CO2j,CO2jt 1) In RGij )
AR - A RCijt-1
RM;
ARM = Y ARM;; = ¥ L(CO2;j;, CO2 1) 1n<W> @)
ij ij it—1
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IE;
AIE = ZJAIEIJ N Z]L COZijr, CO2ijt1) ln< Et—l) o
GDP;
AGDP = ;jAGDPj]‘ = %:L(COZ[/}, COZijt_l) ln<GD7Pf7]> (9)
POP;
APOP =} |APOP;; = } | L(CO2, CO2ijr1) ln<POPt—1> o

ij ij
Equation (4) can finally be extended:

CO2; — CO2;_ l_zL(coz,/t,cozw 1)1n< Eic,ﬂ )+

¥ L(CO2;,CO2; 1)ln(RC 1) + LL(CO2, COZp1) In( i ) +

L] L] (11)
L L(CO2, CO2p 1)1n(,E )+2L(coz,][,coz,]t 1)ln(GDP )+

L

OP,
EL(Cozm, CO2jt 1) 111(71,Oﬂj1 )

Given that: ,
Lia,b) = gDy if a#b a2
=a ifa="b

We have the next condition:

(CO2;4~CO2 1) .
(lnCOZ,/tflnCOZ,/t 5 if COZyj # CO2jt

= CO2 if CO2j = CO2js

(Coztjt/ Cozl]t 1) (13)

2.2. Empirical Results

In the following, we explain the results obtained by applying the additive form of
LMDI (Equation (4)) after the calculation of the net effect of each variable in our model.

The average annual change (Table 1) is based on the calculation of the annual change
in CO; emissions for the study period. The results show that all the countries in our sample
have experienced strong growth in CO, emissions from the transport sector. Economic
activity (i.e., GDP per capita) is the major factor causing the increase in these emissions,
while the population variable was found to be an important factor explaining the decrease
in CO; emissions, except for Slovenia.

Table 1. Average annual change in CO, emissions and underling factors.

Country Variation of CO,; Emissions EC RC RM IE GDP POoP Main Factors
Bulgaria 261 —24 —18 82 33 241 —53 RM, IE, GDP
Estonia 39 -8 12 —6 6 41 —6 RC, IE, GDP
Latvia 14 —40 12 —15 7 86 —36 RC, IE, GDP
Lithuania 97 —57 21 -2 39 158 —62 RC, IE, GDP
Poland 1054 —211 —6 0 —345 1637 —21 GDP
Romania 363 —51 12 —53 107 448 —100 RC, IE, GDP
Slovenia 86 -9 16 —15 47 31 16 RC, IE, GDP, POP

Source: Calculation of the author.

As shown in this table, energy intensity (IE) increases the CO, emissions in all the
countries except Poland. In the latter, the consumed energy per unit of GDP was reduced
during the study period. The results show that Poland is also an exception when it comes
to the emissions of CO, per unit of consumed fuel (variable EC).

It is also important to note that the modal mix RM contributed directly to the decline
of CO, emissions in most countries in our sample. However, the impact of this factor is
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relatively small: 13% (45 mt instead of 39 mt) for Estonia, 2% (99 mt instead of 97 mt)
for Lithuania, 12.7% (416 mt instead of 363 mt) for Romania and 15% (101 mt instead of
86 mt) for Slovenia. For Latvia, the impact of this factor is important as it contributes to
the deterioration of emissions by a significant value. Similarly, this factor is an important
contributor to the increase in CO, emissions in Bulgaria due to the national policy of this
country consisting of the absence of a rigorous control of vehicle age and emissions. This
factor (RM) has no impact on the growth of CO, emissions from transport in Poland. As
mentioned above, the annual improvement of the energy intensity of transport also had
a considerable impact on the increase in emissions in our sample; the adjustment of this
factor comes from the adjustment of diesel consumption (Table 2).

Table 2. Fuel indicators in the transport sector.

2005 2015
Country Total Diesel Moto'rs Bio-Fuels Kerosene Total Diesel Moto.rs Bio-Fuels Kerosene
Gazoline Gazoline
Fuel Share
Mtoe ! % Mtoe %

Bulgaria 2.6 65.4 269 0 7.7 3.426 64.2 25.7 4.3 58
Estonia 0.7 50 429 0 7.1 0.854 65.6 282 0.4 5.8
Latvia 1.055 58.3 36 0 57 1.314 69.2 18.3 1.9 10.6

Lithuania 1.445 68.8 27.7 0 35 1.97 76.1 15.2 3.6 5.1
Poland 12.47 55.3 423 0 24 17.3 59.5 31.9 4.5 41

Romania 4.1 58.6 39 0 24 5.74 68.1 232 35 52

Slovenia 15 52 46 0 2 1.822 72.3 239 1.6 22

Emission Coefficient
Mt? % Mt %

Bulgaria 7.5 72 26.6 0 14 9.41 78.6 18.1 22 11
Estonia 2.025 56.8 42 0 12 2.3745 71.2 27.3 0.2 13
Latvia 293 64.9 374 0 1 3.185 78.5 18.8 1.1 1.6

Lithuania 4.225 74.6 24.8 0 0.6 5.15 83.5 13.6 19 1
Poland 354 58.5 41.2 0 0.3 46 649 322 2.7 0.2

Romania 11.75 62.6 37 0 0.4 15.45 72.8 247 1.9 0.6

Slovenia 4377 57.1 425 0 0.4 5.41 77.3 214 0.9 0.4

Source: Calculation of the author. ! Mtoe: Million Tons of Oil Equivalent; > Mt: Millions of tons.

The emission coefficient has a negative influence on the growth of CO, emissions in
all the countries in our sample, so this influence is very important. This factor can vary
the average increase in emissions, which would have been 8% higher in Bulgaria (285 mt
instead of 261 mt), 17% higher in Estonia (47 mt instead of 39 mt), 286% in Latvia (54 mt
instead of 14 mt), 37% in Lithuania (154 mt instead of 97 mt), 17% in Poland (1265 mt
instead of 1054 mt), 12% in Romania (414 mt instead of 363 mt) and 9% in Slovenia (95 mt
instead of 86 mt).

3. Conclusions

In this study, we have carried out a decomposition of transport CO, emission elements
using the Divisia index in its additive and multiplicative forms and some EU countries as
the sample.

According to the results found using the LMDI method, economic activity is the main
factor responsible for CO, emissions in all countries in our sample. Fuel mix is the second
most important CO, emitting factor. Modal share and energy intensity also affect CO,
emissions, but to a lesser extent. On the contrary, the emission factor and population
variables reduced the growth of these emissions. Note that all variables have met their
respected signs, respectively, except for the population factor in the case of Slovenia.

Since the exchange of goods within and between EU countries is intense, this explains
the important impact of the economic activity on CO, emissions. Decoupling the increase in
CO; emissions from economic growth and transport energy demand remains an important
issue within the EU economies. On the one hand, implementing intelligent transport
systems and encouraging the use of environmentally friendly transport modes and energies
are still valid strategies. On the other hand, many other measures (fuel taxation, subsidies
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and other fiscal instruments, registration tax, etc.) are not yet in place in the majority of the
countries in our sample (Bulgaria, Estonia, Lithuania and Poland, for example).

Cleaner fuels and CO;, efficient cars are also needed in all countries. Unfortunately,
according to OECD statistics (2017), the level of investment in transport infrastructure is
less than 1% of GDP.

Data Availability Statement: Eurostat; European Union statistical Pocketbooks.
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Abstract: The world changes at incredible speed. Global warming and enormous money printing are
two examples, which do not affect every one of us equally. “Where and when to spend the vacation?”;
“In what currency to store the money?” are just a few questions that might get asked more frequently.
Knowledge gained from freely available temperature data and currency exchange rates can provide
better advice. Classical time series decomposition discovers trend and seasonality patterns in data. I
propose to visualize trend and seasonality data in one chart. Furthermore, I developed a calendar
adjustment method to obtain weekly trend and seasonality data and display them in the chart.

Keywords: calendar adjustment; business week; seasonal plot

1. Introduction

Economic digital transformation, and Green Call are current European Commission
programs that have a billion-euro budget. There are still sites, where there are published
raw data and either no or weak or paid statistics.

One example is meteorological weather data. Latvia pays for data gathering at meteo
stations all over the country, but statistics are for money. While tourism has been suffering
big losses recently, that could be improved so that people are more informed about local
weather conditions.

Another example is currency exchange rates. European Central Bank publishes
raw data and their charts (https://www.ecb.europa.eu/stats/policy_and_exchange_rates,
accessed on 25 June 2021), but there is no information regarding trends and seasonal-
ity patterns. Furthermore, in the charts, weekly data frequency is missing. The UK’s
favorite currency site has more charts, statistics, and trend information (https://www.
exchangerates.org.uk, accessed on 25 June 2021), but there is also missing calculated trend
and seasonality patterns and weekly data charts. Figure 1 shows data visualization exam-
ples from ECB and UK currency exchange sites.

Trend and seasonality pattern discovery and their visualization is described and
summarized in the free online book “Forecasting: Principles and Practice” written by
Hyndman and Athanasopoulos [1]. With many solutions for everyday forecasting needs,
in chapter 12 there are also mentioned issues that are challenging to tackle. One of them
is weekly data processing. I also tried to find satisfactory weekly data analysis on the
Internet, but unsuccessfully. To deal with this issue, I thought of the weekly data calendar
adjustment method and seasonal plot enrichment with seasonality calculations. This paper
reports on my progress so far and provides some calculations of the proposed method.

In this paper, I take formulas from the book’s chapter 6, on time series decomposition.
Meteorological data are from the Latvia meteo site for the city Liepaja (https:/ /www.meteo.
lv/meteorologija-datu-meklesana, accessed on 25 June 2021). Currency exchange rates are
from the ECB site. ECB publishes current rates for 32 currency pairs.
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Euro foreign exchange reference rates: 18 January 2021
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Figure 1. Examples from currencies exchange rates sites. (a) ECB exchange rates. (b) UK’s site trend statistics.

2. Proposal

Data in seasonal plots provide a lot of information in a small space. Time series
highs and lows in different periods of time, when expressed using blocks of plain text or
tables, are lengthy and overwhelming. Time series decomposition in trend and seasonal
components provide additional quantitative characteristics, which are usually plotted in
separate graphics. I suggest adding a seasonality component to seasonal plot.

Time series decomposition can be applied to monthly data. I propose also incorpo-
rating the decomposition into more frequent time periods. Therefore, I introduce the time
period keews, which are similar to weeks, but with better calendar characteristics. It is
much easier to perform the calculations if a year, instead of average number of weeks 52.18,
has exactly 48 keews, and each month is 4 keews.

Seasonal plot with seasonal component is described in Section 2.1, calendar adjustment
with keew in Section 2.2, more complex case for currency exchange rates in Section 2.3.

2.1. Temperature Seasonal Plot

Time series decomposition equation is y; = S; + Tt + Ry, where y; is the data, S;
is the seasonal component, T; is the trend-cycle component, and R; is the remainder
component, all at period t. Python library Statsmodels has freely available formula im-
plementation (https:/ /www.statsmodels.org/stable/generated /statsmodels.tsa.seasonal.
seasonal_decompose.html, accessed on 25 June 2021).

Liepaja is a city in western Latvia, located on the Baltic Sea. It is a popular summer
vacation destination due to sandy beaches and music festivals. Figure 2 shows an example
of Liepaja monthly temperature seasonal plot with added seasonality estimation. The
monthly data consists of the average actual temperature in Liepaja at 12 o’clock each day.
The seasonal plot includes last 5 years of data so as not to become too overwhelming.
The figure shows that the hottest month is August and trend of the last three years is a
temperature increase by approximately a degree.
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Figure 2. Liepaja monthly temperature seasonal plot.

The used time series decomposition model is a naive approach from 1920s and more
sophisticated models are proposed. In this paper, I focus on decomposition possibilities
in general, but in each case should be considered usage of more specific decomposition
models [2-4], etc.

2.2. Calendar Adjustment with Keew

Current Python decomposition formula implementation has no clear way of doing
calculations for weeks. There is parameter period that can be provided, but in a year, the
average number of weeks is 52.18. I propose to introduce a concept of time period—keews.
In this case, a year will have exactly 48 keews, and each month—4 keews.

Four keews will be in one month boundaries and they will end on the following
month days:

1. The 4th keew will end on the month’s last day;
2. The 2nd keew will end in the middle of month on day 15;
3. The 3rd keew will end on the following days:

(a) For months with 31 days, it will be day 23, so that 4th keew and 3rd keew will

be equally 8 days long;

(b)  For months with 30 days, it will also be day 23, so that all months but February

will have the same 3rd keew end day;

(o) For February, the 3rd keew will end on day 22.

4. The 1st keew will end on day 7 with no additional consideration.

Table 1 gives a summary of keews.

Table 1. Keews.

Keew 1 Keew 2 Keew 3 Keew 4

Day 1-Day 7 Day 8-Day 15 Day 16-Day 23 Day 24-End of Month
February 22 February 23

7 days 8 days 7,8 days 6,7,8 days
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Keews consist of all days in their month-day range.

Figure 3 shows an example of corresponding Liepaja keew temperature seasonal plot
with seasonality estimation. This is more precise picture for summer tempretures in Liepaja.
It shows that the hottest keew is at the end of July and that summers in Liepaja can also
have colder keews in June. This should be taken in consideration when planning vacations.

Liepaja

Year
— = B - — = — Seasonal
10———— . — 2016
I B = — —2017
—2018
—2019
2020

Temperature
o

-10

5 10 15 20 25 30 35 40 45
Keew

Figure 3. Liepaja keew temperature seasonal plot.

2.3. Exchange Rate Seasonal Plot with Seasonality Estimation

More complex data is currency exchange rates. Exchange rates by ECB are given on
business days. Exchange rates can have different strong trends during a year. I propose to
also display these data with keew seasonal plot together with seasonality estimation.

Due to the fact that data are only for business days, keews will have less meaningful
days. For the last 5 years, there are keews with 3 business days in 1% cases, 4 business days
in 8% cases, 5 business days in 48% cases and 6 business days in 43% cases. The good thing
is that the majority of keews have 5 and 6 business days.

Figure 4 shows exchange rates for EUR/USD currency pair in a keew seasonal plot
with seasonality estimation. In this case, seasonality is calculated with Python decomposi-
tion multiplicative model, seasonal mean is the arithmetic mean of the 1st keews of years.
To add the seasonal component to seasonal plot, it should be expressed in seasonal plot
scale; therefore, in the figure, the seasonality line is given by multiplying the seasonality
component with the seasonal mean. Year trend lines show exchange rates on the last
business day in the keew.

In general, the keews end dates are suitable for keeping in one month boundaries. It
is then easier to compare the displayed results with month estimations. However, different
keews end dates can be chosen to better suit further prediction needs. Furthermore,
some research on Forex calendar effects show that not all business days are equal one to
other [5-8].
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Figure 4. Exchange rate keew seasonal plot.

3. Results

Firstly, the purpose of the statistics calculation is to ascertain that keew trend and
seasonality characteristics are similar to monthly estimations. Secondly, it is to find the best
seasonality estimations to include in the seasonal plot.

I pick the best model by testing different types of models and data forms. Calculations
are based on classical decomposition. It has two forms: an additive decomposition and a
multiplicative decomposition. As the purpose is to find and use only seasonal components,
then data in models also can be in different forms. I choose to test the usual end of the
period data, and also period arithmetic mean and 1st and 3rd quartile arithmetic mean.

Trend and seasonality strength can be measured as described in Hyndman and Athana-
sopoulos, 2018 Chapter 6.7 [1].

The results are labeled in the following way:

F—strength of decomposition component;

Fr—strength of trend;

Fs—seasonal strength;

F4—additive decomposition model strength;

Fyj—multiplicative decomposition model strength;

Fg—strength calculated on end of period data;

Fy—strength calculated on arithmetic mean data;

Fp—strength calculated on 1st and 3rd quartile arithmetic mean data.

O NI LN

Fspe means Seasonal component strength calculated with multiplicative decomposi-
tion model on end-of-period data.

A keew seasonal plot is a suitable way of presenting data for 5 years, so all time series
is analysed starting from year 2015. One ECB currency pair exchange rates does not have
data for the whole period; therefore, it is omitted. Another one seasonal component data
values are all equal to 0, so it is omitted too.

3.1. Monthly Trend and Seasonality
The strength of the trend is bigger than seasonal strength in all data sets.
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The strength of trend differs most between additive and multiplicative decompositions.
Multiplicative decomposition models has average strength ~0.97, while additive average
is ~0.81. The best strength of trend average results is for Fryn = 0.974.

Seasonal strength is approximately the same in all data sets. The best seasonal strength
average results is for Fspy ~ 0.26.

3.2. Business Weekly Trend and Seasonality

The results of business weekly data analysis are similar to monthly data analysis. The
strength of the trend is bigger than seasonal strength in all data sets.

The strength of the trend differs most between additive and multiplicative decomposi-
tions. Multiplicative decomposition models have an average strength of ~0.971, while the
additive average is ~0.806. The best strength of trend average results are for Fryn ~ 0.971.

Seasonal strength is approximately the same in all data sets. The best seasonal strength
average results are for Fspp ~ 0.266.

For example, data sets the best seasonal estimation to add in keew seasonal plot is
from multiplicative decomposition calculated on 1st and 3rd quartile arithmetic mean data.
As the difference between models seasonal estimations are not considerable, all of them
can be used in data plotting.

4. Conclusions

Keew seasonal plot with added seasonality estimation provides more detailed view on
data, while maintaining at least several characteristics of monthly estimations. Predictions
can be based on five year history observations plotted in one chart. In the coming months,
I will also work on proposing calendar adjustments for businesses’” daily trends and
seasonality, and I will search for the best chart to display them.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Meteorological data are from the Latvia meteo site for the city Liepaja
(https:/ /www.meteo.lv/meteorologija-datu-meklesana, accessed on 25 June 2021). Currency ex-
change rates are from the ECB site (https://www.ecb.europa.eu/stats/policy_and_exchange_rates/
euro_reference_exchange_rates/html/index.en.html, accessed on 25 June 2021).
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Abstract: Eutrophication in fresh water has become a critical challenge worldwide and chlorophyll-
a content is a key water quality parameter that indicates the extent of eutrophication and algae
concentration in a body of water. In this paper, a forecasting model for the high accuracy prediction
of chlorophyll-a content is proposed to enable aquafarm managers to take remediation actions against
the occurrence of toxic algal blooms in the aquaculture industry. The proposed model combines
the ensemble empirical mode decomposition (EEMD) technique and a deep learning (DL) long
short-term memory (LSTM) neural network (NN). With this hybrid approach, the time-series data
are firstly decomposed with the aid of the EEMD algorithm into manifold intrinsic mode functions
(IMFs). Secondly, a multi-attribute selection process is employed to select the group of IMFs with
strong correlations with the measured real chlorophyll-a dataset and integrate them as inputs for the
DL LSTM NN. The model is built on water quality sensor data collected from the Loch Duart salmon
aquafarm in Scotland. The performance of the proposed novel hybrid predictive model is validated
by comparing the results against the dataset. To measure the overall accuracy of the proposed novel
hybrid predictive model, the Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean
Square Error (RMSE), and Mean Absolute Percentage Error (MAPE) were used.

Keywords: water quality; aquaculture; forecasting; chlorophyll-a time-series data; deep learn-
ing LSTM

1. Introduction

Eutrophication in freshwater bodies is an organic process usually caused by the
increased enrichment of nutrients which can pollute water quality and adversely affect
aquatic ecosystems. The extent of eutrophication in fresh water can be estimated through
chlorophyll-a concentration monitoring. In the aquaculture industry, this natural process
of nutrient enrichment also results in structural changes to the aquatic ecosystem through
increased algae production, the depletion of fish species, and the prevalent degradation
of overall water quality [1,2]. Chlorophyll-a concentration is representative of the state
of freshwater quality and has generally been used as a key indicator for measuring algal
blooms [3].

According to Gao and Zhang [4], eutrophication has become a ubiquitous fresh-water-
quality pollutant in China. Similarly, a study conducted by Jules et al. [5] estimated the
annual damage costs of the eutrophication of fresh water in England and Wales to be
$105-160 million (£75.0-114.3 m). Given the link between the adverse effect of eutroph-
ication in freshwater and the stagnation of wild fishery populations, the aquaculture
industry has emerged as a crucial means of providing protein to our constantly growing
population. Therefore, the monitoring of water quality parameters (for instance, algal
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biomass and cyanobacteria) through chlorophyll-a concentration is increasingly favoured
over laboratory analysis and similar traditional methods because of the high cost and
labour-intensive requirements associated with them [6]. The effective monitoring and pre-
diction of chlorophyll-a concentrations is a promising approach for the routine estimation
of phytoplankton biomass in the aquaculture ecosystems of the Nile tilapia (Oreochromis
niloticus) [7]. Sensory monitoring of the chlorophyll-a concentration is an effective approach
for reliably assessing the trophic state of freshwater bodies given its strong affinity to the
abundance of phytoplankton, cyanobacteria, and biomass, which affect the turbidity and
general colouration of fresh water [8].

Several studies have been conducted to establish a means of coping with water quality
impairments caused by algal biomass using conventional numerical modelling methods,
least squares support vector regression (LSSVR), neural networks methods such as Radial
Basis Function neural network (RBENN), Back Propagation neural network (BPNN) al-
gorithms, and machine learning methods to predict chlorophyll-a concentrations as an
indicator for future water quality changes [9-12]. However, the challenge with traditional
numerical methods, LSSVR, and neural networks such as RBFNN and BPNN is the inherent
weakness of the long-term dependency problem. Research has shown that deep learning
long short-term memory (LSTM) neural networks can overcome the above-mentioned
weakness and can provide efficient applicability and reliability for water quality parameter
prediction [13,14]. Additionally, combining the ensemble empirical mode decomposi-
tion (EEMD) method with deep learning LSTM neural network has demonstrated clear
advantages over traditional LSTM neural networks in terms of improved water quality
parameter prediction accuracy in the aquaculture environment [13]. In this paper, a novel
deep learning-based hybrid chlorophyll-a prediction model for the aquaculture industry
is proposed.

2. Data Source
2.1. The Study Area Description and Datasets Analysis

Loch Duart is an independent Scottish salmon aquafarm industry, which has its
headquarters in Scourie, Sutherland, in north-west Scotland. The salmon farming company
owns and operates eight sea-sites and two hatcheries in Sutherland and the Outer Hebrides.
In Loch Duart, salmon are hatched and grown in the cold, clear fresh water of north-west
Scotland. The salmon farming company annually harvests approximately 5000 tons of fresh
salmon. Chlorophyll-a (ug/L) time-series data were collected via a TriLux multi-parameter
sensor probe. The sensor deployment took place at one of their sheltered sites along the
coast (see Figure 1a). The telemetry unit was secured to the metal walkway around the
outside of the net pens and the sensor was situated on the outside of one of the outermost
pens, nearest to the feed barge.

A TriLux multi-parameter fluorometer/sensor (see Figure 1b) developed by Chelsea
Technology Group was used for measuring and collecting a total of 22,708 sets of a
non-linear, non-stationary water-quality parameter time-series dataset at Loch Duart
salmon aquafarm between May and October 2020. The water quality parameters include
chlorophyll-a (470), turbidity, and chlorophyll-a (530).

Generally, the 470 channel measures chlorophyll fluorescence from direct excitation of
chlorophyll-a that usually strongly correlates with phytoplankton biomass in freshwater.
Table 1 shows the list of other sensors developed by Chelsea Technology Group and the
corresponding parameters that each of them measures.
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Figure 1. (a) Installation site of the TriLux multiparameter fluorometer at the salmon aquafarm, with the inset image
depicting the larger part of the salmon cage; (b) Chelsea Technologies’ TriLux multiparameter fluorometer which monitors

three key algal parameters in a single probe [15].

Table 1. Chelsea Technology Group Fluorometers/sensors and the parameters they measure [6].
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2.2. Data Pre-Treatment, Filling and Correction

Water-quality parameter time-series dataset defects usually result in excessive devi-
ation between the measured original water-quality parameter values and the prediction
results. The basis of accurate time-series analysis and the development of effective and reli-
able predictive models is high-quality sample data. To provide a concise, accurate dataset
for the prediction model and improve prediction accuracy, the measured water-quality
parameter data was carefully pre-processed. Generally, the issue of missing data is often
inevitable with automatic water quality monitoring systems. The water-quality parameters
like turbidity, chlorophyll-a (470), and chlorophyll-a (530) were automatically measured
for 10 months at 10 min intervals. To fill in any missing data, a filling-in approach called
linear interpolation algorithm [16] is applied to achieve a better estimation effect that can
accurately approximate the missing data values. In data analysis, a linear interpolation
algorithm assumes the ratio of two separate known data and a single unknown datum to be
a linear interrelation. Therefore, to obtain the missing, unknown water quality parameter
value, the linear interpolation technique applies the slope of the presumed line to compute
the time-series dataset increment.

Definition 1. Time series nature of the measured parameter (Chlorophyll-a (470)).

The automated water quality sensory system at Loch Duart salmon aquafarm mea-
sures the time series water quality parameters at a constant time interval everyday which
can be denoted as f3, so that n length time-series of the measured parameters’ datasets is
defined as (1)

Si,n = {(Xi, 1/ Tl)r (Xi, 27 TZ)/ Tty (Xi, ns Tn)} (1)

where X; ; represents the values of the measured i/ time-series water-quality parameters
by the automatic sensory system at time T; (1 <i < 8, 1 <1 < n), so that for a given Tj,
the sampling time interval is constant at AT = (T;; 1 — T;) = 5 min. Therefore, if the
original value X; ; is missing, its estimated value X; ; can be obtained with the problem
of minimum, which is given as }X,—l 1 — Xi 1|, changed into the missing value estimation
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problem. Based on the measured data X; , and X; , at time T; , and T; ,, respectively,
the linear imputation function L(t) could be formulated for the time-series water-quality
parameter monitoring systems as:

L(t) = X; » + w (=T ) @)
i, x Ti,xfTi i, x)-

Y

For any missing time-series water-quality parameter data at any given moment,
the linear interpolation algorithm firstly finds the two closest moments T; , and T; ,,
(T,', x <t<T y) , and estimates the lost data value at time t with the help of the known mea-
sured data X; , and X; of T; y and T; y moments based on Equation (2), i.e., X, = L(t).

3. Proposed Model

The EEMD technique and deep learning LSTM NN were merged to form the chlorophyll-
a hybrid prediction model. A detailed implementation processes of the applied EEMD
technique is shown in full in [13]. The LSTM deep learning NN approach is described in
full detail in Section 3.1. The original chlorophyll-a (470) dataset is decomposed effectively
by the application of the EEMD technique into 1 disparate IMFs and a residual item. The
IMF components that are contained within individual frequency bands are independently
different and usually change with the variation of the chlorophyll-a (470) time-series data
x(t). Likewise, the trend of x(t) is generally demonstrated by the corresponding ensemble
residual item as the output of the decomposition process implementation.

3.1. Deep Learning LSTM Neural Networks

Deep learning LSTM NNis are a special type of recurrent NN (RNN) with significant
improvement in the ability to learn long-term dependencies which gives it an advantage
over other artificial neural networks such as BPNN and RBFNN. Figure 2a illustrates
a typical schematic diagram of a traditional RNN node with the previous hidden state
represented by h;_1, activation tanh function, current input sample by X;, current output
by ht, and the current hidden state by /;. As depicted in Figure 2, all RNNs generally
have the form of a chain of repeating modules of NNs. These repeating modules generally
have a very basic structure in standard RNNS, like a single tanh layer only. However, a
deep learning LSTM which stores information with the aid of purpose-built memory cells
maintains similar chain-like structure, but with a differently structured repeating module
(see Figure 2b).

() ® )
® t AP

v

©

S

@

v

b —c 2 rﬁJ@I\
A Lebgll) A

(3] ® ©

(b)

Figure 2. (a,b): Typical schematic diagram of (a) Traditional RNN node, and (b) Chained LSTM blocks.
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The equations below illustrate the calculation processes involved in deep learning
LSTM NNs.

(a) Forget gate equation:

F = o(wf x [hp_1, Xi] + bf) G)

where F; represents a vector that has a range from 0 to 1 as its values; Wf, o, and b i
represent the weight matrices, sigmoid function, and the bias of forget gate, respectively.
The ¢ is used to find out whether the new information is unnecessary, in which case the
information ignored and discarded, or necessary and used for updating. Finally, the tanh
function is used to add weight to individual values that pass and determines their level
of relevance, and ranges from —1 to 1. Inside the input gate and the output gate, same
operations are repeated, which are shown in (4)—(7).

(b) Input gate equations:

I = (Wi x [hy_1, Xi] + b;) @
I = tanh(W; x [h;_1, X¢] + b)) ®)

(c) Output gate equations:

O = (T(Wo X [ht,l,Xt] + bo) (6)
hy = O X tanh(Ct) (7)

(d) Cell state equation:
Co={(FxC1)+ (<L)} 8)

where W; and W, denote the weight matrixes, b; and b, denote the bias vectors of the
network of both input gate and output gate, and the hyperbolic tangent function is denoted
by the tanh function.

3.2. Proposed Water Quality Prediction Model

The proposed hybrid EEMD-LSTM deep learning NN-based water-quality param-
eter prediction model is depicted in Figure 3. With the proposed novel water quality
forecasting model, the measured real water-quality parameter content dataset undergoes
decomposition processes into disparate components by applying the EEMD method for the
purpose of improving the prediction accuracy of the proposed predictive model. The full
procedures demonstrated in Figure 3 show the three important steps which were followed
in developing the novel hybrid water quality parameters prediction solution. Firstly, the
water quality parameters dataset x(t) generates multiple, distinct IMF components and
a corresponding residue Ry (t) from the decomposition processes via the applied EEMD
method in the input layer of Figure 3. The decomposition of x(t) is carried out by means of
an iterative sifting procedure as given below:

N
x(t) = Y IME(t) + Ry(t) ©)
i=1

Subsequently, the separate IMF components and their corresponding residue undergo
a process of normalization in the second step and are then used for prediction by the DL
LSTM in the hidden layer of Figure 3. Lastly, in step three, individual prediction results
undergo a reverse normalization process before they are efficiently combined together with
the aid of a summation operation by the summation function to get the final predicted
values as shown in the output layer of Figure 3. As clearly illustrated using the extended
forecasting model with multiple hidden DL LSTM layers (LSTM; 1, LSTM; 5, ... , LSTMy, 1,
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up to LSTMp, ) in Figure 3, individual hidden layers of the stacked DL LSTM are equipped
with multiple memory cells which earn the proposed prediction model the name “deep
learning” NN [17].

| Measured real water quality parameters dataset ‘

1

Data Decomposition through EEMD technique ‘

Input
Layer

|
Model l
Training Normalized
values
Hidden Optimization L 2
Layer of Weight and  #em| Loss
- Calculation
Deviation

/

Model Output
f &

Output : I 4
Layer Summation
Function
Final
Prediction

\ Value /

Figure 3. Proposed hybrid EEMD-LSTM deep learning water quality prediction Model.

4. Performance Evaluation

For the evaluation of the proposed hybrid EEMD-LSTM deep learning water-quality
prediction model, four performance evaluation metrics were introduced to evaluate its pre-
diction accuracy. These metrics include MAE, MSE, RMSE, and MAPE. The mathematical
formulae are expressed as follows:

n

MAE = %DM,- —F| (10)
i=1
l n

MSE = Y (M; —F)? (11)
i=1
1 »

RMSE = /= Y (M; — F; 12
ni;( i— ) (12)
1 & M;—F

MAPE = ~ L1 13
”,:21 M (13)

In (10)-(13) above, n denotes the number of data points in the dataset, and V; and F;
represent the measured real chlorophyll-a values and the forecasted values, respectively.
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The closer these four performance evaluation metrics tend towards 0, the higher the overall
forecasting and fitting accuracy of the proposed solution.

5. Results and Discussions

In this study, decomposing the Chelsea’s TriLux multiparameter fluorometer measured
chlorophyll-a content dataset is an intrinsic aspect of the novel prediction model for
ensuring high short-term prediction accuracy. The EEMD method decomposes the real
chlorophyll-a content dataset into seven individually stable IMF components (IMF 1-7)
and one residual item as depicted in Figure 4a,b. The obtained IMFs from the original
chlorophyll-a (470) dataset decomposition with the EEMD method is shown in Figure 4a,b.

. . . . oF T T T T T T T T =
<
5 Measured Chlorophyll-a (470) (mgfL) | L g
5 1 =
2] M i M 2k
L . 1F
T T T T o
g o\~
o PRI
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= SR ° 2
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05 ) L | L L ) L L 29 ok
04 F T T = T T T T l T ] E. =
o 02 v N
L O [t o WM‘JW’”""““ \Im [ e 2F S
= 0z2f | ‘ | | [ 4 ~ \
i ] w ool pe i
0.4 i L i i i i i i i
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A 11
- T | il 8 _10F T T T T T T -
£ o frserae ol ey ] 3
=41 | L 1y 1 e |
i N 5 - 1
2 1 I ! 1 1 1 L 1 'I L L L L L 1 B E—

28/05

12/06  27/08

11/08
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26/08
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110

26/10

(b)

28/05 12/06 27/06 11/08 26/08 10/09 25/08 11/10 26/10

Figure 4. (a,b). Chlorophyll-a (470) dataset decomposition through the EEMD method showing (a) 1 to 3 of the resultant 7
IMFs, and (b) 4 to 7 of the resultant 7 IMFs.

The graphs in Figure 5a,b clearly show that the novel hybrid forecasting model
provided good results for short-term (6 h) and long-term (24 h) forecast scenarios. With
chlorophyll-a (470) concentration data, the matching trends in both Figure 5a,b further
show that the model can successfully predict, with a high level of accuracy, the presence of
algal bacteria such as cyanobacteria, which is a harmful alga that produces odorous and
toxic substances leading to severe problems for different species of fish in the aquaculture
industry.

The proposed model improved the prediction accuracy due to the application of the
EEMD method, which enabled the predictive model to manifest the temporal features of
the chlorophyll-a (470) content time-series data. This was done through the multi-feature
selection process of the EEMD method which allowed for the selection of certain groups
of IMFs that strongly correlate with the Chelsea’s TriLux multi-parameter fluorometer
measured chlorophyll-a data and integrate them into inputs for the deep learning LSTM
neural network. Table 2 and Figure 6 present the error statistics for both 6 h and 24 h
forecast results. Although these are minimal errors, the overall prediction accuracy could
be further improved with an increase in data availability because the deep learning LSTM
chain structure tends to be more complex and performs better with big data.
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Figure 5. (a,b). Performance comparison of real Chlorophyll-a (470) parameter values and the predicted values: (a) half-day
(6 h), and (b) one day (24 h) prediction results.

Table 2. Error statistics for 6 h and 24 h chlorophyll-a (470) content prediction.

Error Statistics 6 Hour Prediction 24 Hour Prediction
MSE 0.0013 0.0019
MAE 0.0277 0.0337
RMSE 0.0356 0.0417
MAPE 0.0070 0.0076
0.1 T |
I MAE
0.09 - I VSE | -
I RVISE
[ MAPE | |
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Chlorophyll-a (470) content Prediction Error Statistics
o
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Figure 6. Chlorophyll-a (470) content prediction error statistics for 6 h and 24 h.

6. Conclusions

Timely prediction of toxic algal blooms with the help of real chlorophyll-a (470)
sensor time-series data in aquatic ecosystems can allow for the effective operation and
management of the aquaculture industry by providing useful information that can facilitate
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the decision-making process in aquafarming. In this study, we present a novel hybrid
model to forecast chlorophyll-a content through the combination of the potential of the
EEMD technique and a DL LSTM neural network approach. The actual experimental data
from Loch Duart Salmon aquafarm show that the proposed model provides impressive
results with high prediction accuracy. For future work, varieties of water quality parameter
time-series datasets measured from different aquafarming sites will be considered to
broaden the application horizon of the proposed forecasting model.
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Abstract: This paper investigates the research question of whether the principle of parsimony carries
over into interval forecasting, and proposes new semiparametric prediction intervals that apply the
block bootstrap to the first-order autoregression. The AR(1) model is parsimonious in which the
error term may be serially correlated. Then, the block bootstrap is utilized to resample blocks of
consecutive observations to account for the serial correlation. The Monte Carlo simulations illustrate
that, in general, the proposed prediction intervals outperform the traditional bootstrap intervals
based on nonparsimonious models.

Keywords: block bootstrap; interval forecasting; principle of parsimony; semiparametric

1. Introduction

It is well known that a parsimonious model may produce superior out-of-sample point
forecasts compared to a complex model with overfitting issue, see [1]. One objective of
this paper is to examine whether the principle of parsimony (POP) can be extended to
interval forecasts. Toward that end, this paper proposes a semiparametric block bootstrap
prediction intervals (BBPI) based on a parsimonious first-order autoregression AR(1). By
contrast, the standard or iid bootstrap prediction intervals developed by Thombs and
Schucany [2] (called TS intervals thereafter) are based on a dynamically adequate AR(p),
where p can be large.

A possibly overlooked fact is that there is inconsistency between the ways of obtaining
point forecasts and interval forecasts, in terms of whether POP is applied. When the
goal is the point forecast, the models selected by information criteria of AIC and BIC are
typically parsimonious, but not necessarily adequate (see Enders Enders [3] for instance).
However, POP is largely forgone by the classical Box-Jenkins prediction intervals and the
TS intervals; both require serially uncorrelated error terms, and the chosen models can be
very complicated.

This paper attempts to address that inconsistency. The key is to note that the essence
of time series forecasting is to utilize the serial correlation, and there are multiple ways to
do that. One way is to use a dynamically adequate AR(p) with serially uncorrelated errors,
which is fully parametric. This paper instead employs a parsimonious AR(1) with possibly
serially correlated errors. Our model is semiparametric since no specific function form is
assumed for the error process. Our semiparametric approach of leaving some degree of
serial correlation in the error term is similar to the famous Cochrane-Orcutt procedure of
Cochrane and Orcutt [4].

We employ the AR(1) model in order to generate the bootstrap replicate. In particular,
we are not interested in the autoregressive coefficient, and for our purposes, it becomes
irrelevant that the OLS estimate may be inconsistent due to the autocorrelated error. Using
the AR(1) has another advantage: the likelihood of multicollinearity is minimized, which
can result in a more efficient estimate for the coefficient. On the other hand, we do want
to make use of the correlation structure in the error, and that is fulfilled by using the
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block bootstrap. More explicitly, the block bootstrap redraws with replacement random
blocks of consecutive residuals of the AR(1). The blocking is intended to preserve the time
dependence structure.

Constructing the BBPI involves three steps. In step one, the AR(1) regression is esti-
mated by ordinary least squares (OLS), and the residual is saved. In step two, a backward
AR(1) regression is fitted, and random blocks of residuals are used to generate the bootstrap
replicate. In step three the bootstrap replicate is used to run the AR(1) regression again
and random blocks of residuals are used to compute the bootstrap out-of-sample forecast.
After repeating steps two and three many times, the BBPI is determined by the percentiles
of the empirical distribution of the bootstrap forecast (In the full-length version of the
paper, which is available upon request, we discuss technical issues such as correcting the
bias of autoregressive coefficients, selecting the block size, choosing between overlapping
and non-overlapping blocks, and using the stationary bootstrap developed by Politis and
Romano [5]).

We implement the Monte Carlo experiment that compares the average coverage
rate of the BBPI to the TS intervals. There are two main findings. The first is that the
BBPI dominates when the error term shows a strong serial correlation. The second is
that the BBPI always outperforms the TS intervals for the one-step forecast. For a longer
forecast horizon, the TS intervals may perform better. This second finding highlights a
tradeoff between preserving correlation and adding variation when obtaining the bootstrap
intervals. The block bootstrap achieves the former but sacrifices the latter.

There is a growing body of literature on the bootstrap prediction intervals. Important
works include Thombs and Schucany [2], Masarotto [6], Grigoletto [7], Clements and Taylor [8],
Kim [9], Kim [10], Staszewska-Bystrova [11], Fresoli et al. [12], and Li [13]. The block
bootstrap is developed by Kiinsch [14]. This work distinguishes itself by applying the
block bootstrap to interval forecasts based on univariate AR models. The remainder of the
paper is organized as follows. Section 2 specifies the BBPI. Section 3 conducts the Monte
Carlo experiment. Section 4 concludes.

2. Semiparametric Block Bootstrap Prediction Intervals

Let {y:} be a strictly stationary and weakly dependent time series with mean of zero.

In practice, y; may represent the demeaned, differenced, detrended or deseasonalized

series. At first, it is instructive to emphasize a fact: there are multiple ways to model a time

series. For instance, suppose the data generating process (DGP) is an AR(2) with serially
uncorrelated errors:

Ve = Prye—1 + oy + ey, (€

where ¢; can be white noise or martingale difference. Then, we can always rewrite
Equation (1) as an AR(1) with new error v, and the new error follows an AR(1) process, so
is serially correlated:

Yt = Py vt @
v = Ut (C)
where ¢; = p+ ¢ and ¢, = —p¢ by construction. The point is, the exact form of the

DGP does not matter. In this example, it can be AR(1) or AR(2). What matters is the
serial correlation of y;, which can be captured by Equation (1), or Equation (2) along with
Equation (3) equally well. This example indicates that it is plausible to obtain forecasts
based on the parsimonious AR(1) model, as long as the serial correlation in v; has been
accounted for, even if the “true” DGP is a general AR(p).

There is concern that the estimated coefficient of ¢ in Equation (2) will be inconsistent
due to the autocorrelated error v;. However, this issue is largely irrelevant here because
our focal point is forecasting y, not estimating the coefficient. One may use the generalized
least squares method such as Cochrane-Orcutt estimation to mitigate the effect of serial
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correlation bias. Our Monte Carlo experiment shows that the proposed intervals perform
well even without correcting the serial correlation bias.

Using the parsimonious model (2) has two benefits that are overlooked in the fore-
casting literature. First, notice that y;_; is correlated with y;_». As a result, there is the
issue of multicollinearity (correlated regressors) for Equation (1), but not Equation (2). The
absence of multicollinearity can reduce the variance and improve the efficiency of ¢, which
explains why a simple model can outperform a complicated model in terms of out-of-
sample forecasting. Second, it is well known that the autoregressive coefficient estimated
by OLS can be biased—see Shaman and Stine [15], for instance. As more coefficients need
to be estimated in a complex AR model, its forecast can be less accurate than that of a
parsimonious model.

2.1. Iterated Block Bootstrap Prediction Intervals

The goal is to find the prediction intervals for future values (Y41, Yn+2,-- - Yuth),
where /1 is the maximum forecast horizon, after observing QO = (y,...,yx). This paper
focuses on the bootstrap prediction intervals because (i) they do not assume the distribution
of y,,+; conditional on () is normal, and (ii) the bootstrap intervals can automatically take
into account the sampling variability of the estimated coefficients.

The TS intervals of Thombs and Schucany [2] are based on a “long” p-th order autoregression:

Vi =1y 1+ Py 2+ ..+ Ppyi—p +er (4)

The TS intervals assume that the error ¢; is serially uncorrelated, because the standard
or iid bootstrap only works in the independent setting. This assumption of independent
errors requires that the model (4) be dynamically adequate, i.e., a sufficient number of
lagged values should be included. It is not uncommon that the chosen model can be
complicated (e.g., for series with a long memory), which contradicts the principle of
parsimony.

Actually, the model (4) is just a finite-order approximation if the true DGP is an
ARMA process with AR(co) representation. In that case, the error ¢; is always serially
correlated no matter how large p is. This extreme case implies that the assumption of
serially uncorrelated errors can be too restrictive in practice.

This paper relaxes that independence assumption, and proposes the block bootstrap
prediction intervals (BBPI) based on a “short” autoregression. Consider the AR(1), the
simplest one:

Yt = Prye—1 + s ©®)

Most often, the error v; is serially correlated, so model (5) is inadequate. Nevertheless,
the serial correlation in vy can be utilized to improve the forecast. Toward that end, the
block bootstrap will later be applied to the residual

O =yt — Prye—, (6)

where ¢ is the coefficient estimated by OLS.

But first, any bootstrap prediction intervals should account for the sampling variability
of ¢;. This is accomplished by running repeatedly the regression (5) using the bootstrap
replicate, a pseudo time series. Following Thombs and Schucany [2] we generate the
bootstrap replicate using the backward representation of the AR(1) model

Yr = 01y +ur. @)
Note that the regressor is lead not lag. Denote the OLS estimate by ;, and the residual

by i :
I = yr — 01yit1, ®)

then one series of the bootstrap replicate (v, ...,y;) is computed in a backward fashion as
(starting with the last observation, then moving backward)
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Vi =Yuyi =60 +4af, (t=n—1,..1). €)

By using the backward representation we can ensure the conditionality of AR forecasts
on the last observed value y,. Put differently, all the bootstrap replicate series have the
same last observation, y;, = y,. See Figure 1 of Thombs and Schucany [2] for an illustration
of this conditionality.

In Equation (9), the randomness of the bootstrap replicate comes from the pseudo
error term i}, which is obtained by the block bootstrap as follows:

1. Save the residual of the backward regression #; given in Equation (8).
2. Let b denote the block size (length). The first (random) block of residuals is

By = (@, firs1s - - - Bit4b—1), (10)

where the index number 71 is a random draw from the discrete uniform distribution
between 1 and n — b + 1. For instance, let b = 3 and suppose a random draw produces
i1 = 20, then By = (119, fia1, f122). In this example the first block contains three consec-
utive residuals starting from the 20th observation. By redrawing the index number
with replacement we can obtain the second block By = (i3, #ljp11, - .., Bip+p—1), the
third block B = (i3, #1341, - - -, i3.45—1), and so on. We stack up these blocks until
the length of the stacked series becomes #. i1 denotes the f-th observation of the
stacked series.

Resampling blocks of residuals is intended to preserve the serial correlation of the
error term in the parsimonious model. Generally speaking, the block bootstrap can be
applied to any weakly dependent stationary series. Here it is applied to the residual of the
short autoregression.

After generating the bootstrap replicate series using Equation (9), next, we refit the
model (5) using the bootstrap replicate (y3, .. .,y;). Denote the newly estimated coefficient
(called bootstrap coefficient) by ¢i. Then, we can compute the iterated block bootstrap
I-step forecast §;, , | as

In= yn/ﬁzﬂ = @T?:H—l +97, (I=1...h) 1)

where the pseudo error 9} is obtained by block bootstrapping the residual (6). For example,
let h = 8,b = 4. Then two blocks of residuals (6) are randomly drawn, and they are
By = (0i1,91111,91112,91143), B2 = (912, Di2 11, Diz 12, Din13). Notice that 9} in Equation (11)
represents the [-th observation of the stacked series

Jy A oA A A PN R A
{07 H=1 = {011, i1, 01142, Din 43, 02, Din 11, Ding2, Din 43 - (12)

The ordering of By and B, in the stacked series (12) does not matter. It is the ordering
of the observations within each block that matters. That within-block ordering preserves
the temporal structure.

Notice that the block bootstrap has been invoked twice: first it is applied to 7; (8),
then it is applied to 9; (6). The first application adds randomness to the bootstrap replicate
yt; whereas the second application randomizes the predicted value §; ;.

To get the BBPI, we need to generate C series of the bootstrap replicate (9), use them
to fit the model (5), and use Equation (11) to obtain a series of the iterated block bootstrap
I-step forecasts

{0} (13)
where i is the index. The [-step iterated BBPI at the « nominal level are given by
1- 1
I — step Iterated BBPI (IBBPI) = {1]:“ (%),y”,;, (%)] (14)
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where J; |, <1_T"‘> and 77 <1+T”‘) are the (1_7“) 100-th and (H’T"‘) 100-th percentiles of the

empirical distribution of {§;_ (i)} ;. Throughout this paper, we let & = 0.90. To avoid the
discreteness problem, one may let C = 999, see Booth and Hall [16]. In this paper we use
C = 1000 and find no qualitative difference.

Basically, we apply the percentile method of Efron and Tibshirani [17] to construct the
BBPI. De Gooijer and Kumar [18] emphasize the percentile method performs well when
the conditional distribution of the predicted values is unimodal. In preliminary simulation,
we conduct the DIP test of Hartigan and Hartigan [19] and find that the distribution is
indeed unimodal.

2.2. Direct Block Bootstrap Prediction Intervals

We call the BBPI (14) iterated because the forecast is computed in an iterative fashion:
in Equation (11), the previous step forecast §; ,, _; is used to compute the next step 7, , ;.
Alternatively, we can use the bootstrap replicate (y;, . . .,¥};) to run a set of direct regressions
using only one regressor. In total there are h direct regressions. More explicitly, the /-th
direct regression uses y; as the dependent variable and y; _; as the independent variable.
Denote the estimated direct coefficient by p;. The residual is computed as

M =Yi =PIy (15)
Then, the direct bootstrap forecast is computed as
Tkt = 07y + i (16)

where #);' is a random draw with replacement from the empirical distribution of 7 ;. The
I-step direct BBPI at the « nominal level is given by

| — step Direct BBPI (DBBPI) = [gﬁil(b%),ﬁﬂi;(l%)] 17)

n+l
empirical distribution of {y”fli[(z) R
There are other ways to obtain the direct prediction intervals. For example, the
bootstrap replicate (y3,...,y;) can be generated based on the backward form of direct
regression. Ing [20] compares the mean-squared prediction errors of the iterated and direct
point forecasts. In the next section, we will compare the iterated and direct BBPIs.

where 74 (%) and yAzj_ ! (%) are the (%) 100-th and (#) 100-th percentiles of the

3. Monte Carlo Experiment
3.1. Error Distributions

This section compares the performances of various bootstrap prediction intervals
using the Monte Carlo experiment. First, we investigate the distribution of error terms.
Following Thombs and Schucany [2], the data generating process (DGP) is an AR(2):

Yt = P1yr-1 + P2y + up (18)

where ¢; = 0.75,¢p = —0.5,t = 1,...,55. The error u; follows an independently and
identically distributed process. Three distributions are considered for u;: the standard
normal distribution, the exponential distribution with mean of 0.5, and mixed normal distri-
bution 0.9N(—1,1) + 0.1N(9,1). The exponential distribution is skewed; the mixed normal
distribution is bimodal and skewed. All distributions are centered to have zero mean.

We compare three bootstrap prediction intervals. The iterated block bootstrap pre-
diction intervals (IBBPI) are based on the “short” AR(1) regression (5) and its backward
form (7). The TS intervals of Thombs and Schucany [2] are based on the “long” AR(2)
regression (18) and its backward form. Finally, the direct block bootstrap prediction in-
tervals (DBBPI) are based on a series of first-order direct autoregressions. Each bootstrap
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prediction intervals are obtained from the empirical distribution of 1000 bootstrap forecasts.
That is, we let C = 1000 in Equation (13) for the IBBPI, and so on. For the IBBPI and DBBPI,
the block size b is 4. The TS intervals use the iid bootstrap, so b = 1.

The first 50 observations (n = 50) are used to fit the regression. Then, we evaluate
whether the last five observations are inside the prediction intervals. That is, we focus on
the out-of-sample forecasting. The main criterion for comparison is the average coverage
rate (ACR):

m
ACR(h) = m ™! Y 1(yusn € Prediction Intervals) (19)
i=1
where 1(.) denotes the indicator function. The number of iteration is set as m = 20,000. The
forecast horizon & ranges from 1 to 5. The nominal coverage « is 0.90. The intervals whose
ACR is closest to 0.90 are deemed the best.

Figure 1 plots the ACR against &, in which the ACRs of the IBBPI, TS intervals, and
DBBPI are denoted by circle, square and star, respectively. In the leftmost graph, the error
follows the standard normal distribution. It is shown that the ACR of the IBBPI is closest
to the nominal coverage 0.90, followed by the TS intervals. The DBBPI have the worst
performance. For instance, when /1 = 5, the IBBPI has ACR of 0.883, the TS intervals have
ACR of 0.854, and the DBBPI has ACR of 0.829.

Normal Distribution Exponential Distribution Mixed Normal Distribution
0.89 T T 0.89 T T 0.9 T T
—e— IBBPI —oe— IBBPI —oe— IBBPI
—8—TS —=—TS —=—TS

0.88 - —*— DBBPI 4 0.88| —+— DBBPI q 0.89}| —*— DBBPI 4
0.87 b

0.87 1 0.881 b
0.86 1

0.86 b 0.871 b
0.85 1

0.85F b 0.86 b

5 S osaf 18
< < <

0.84 1 1 0.85- 1
0.83 1

0.831 1 0.84r 1
0.82 1

0.82 1 b 0.83 1 b
0.81 1

081f 1 0.8k | os2f 1

0.8 L L 0.79 L L 0.81 L L
0 2 4 6 o 2 4 6 o 2 4 6
h h h

Figure 1. Error Distributions.

The ranking remains largely unchanged for the exponential distribution (in the middle
graph) and mixed normal distribution (in the rightmost graph). Overall, Figure 1 indicates
that (i) the IBBPI has the best performance, and (ii) the DBBPI has the worst performance.
Finding (ii) complements Ing [20], which shows that the iterated point forecast outperforms
the direct point forecast. Finding (i) is new. By comparing the three graphs in Figure 1, we
see no significant change in ACRs as the error distribution varies. This is expected because
all intervals are bootstrap intervals that do not assume normality.

3.2. Autoregressive Coefficients
Now, we consider varying autoregressive coefficients in Equation (18):

¢ =0.75,¢ = —0.5 (stationary AR(2)) (20)
$1=10,¢, = —024 (stationary AR(2)) (21)
¢ =12,¢p = —0.2 (non-stationary AR(2)) (22)
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where t =1,...,55and u; ~ 1idn(0, 1). The leftmost graph in Figure 2 looks similar to that
in Figure 1 because the same DGP is used. In the middle graph we see no change in the
ranking. The rightmost graph is interesting, where the sum of autoregressive coefficients is
1.2 — 0.2 = 1. Therefore, the series becomes nonstationary (having unit root). Obviously,
nonstationarity causes distortion in the coverage rate, particularly when / is large. In light
of this, we recommend applying the prediction intervals to the differenced data if unit
roots are present. It is surprising to see the direct intervals are the best in the presence
of nonstationarity, which may be explained by the fact that they are based on the direct
regression (More simulations can be found in the full-length version of the paper where we
examine the effects of sample sizes and sizes of blocks, and we compare block bootstrap
intervals vs stationary bootstrap intervals, and overlapping vs non-overlapping blocks).

phi1 = 0.75; phi2 = -0.5 phit = 1.0; phi2 = -0.24 phi1 =1.2; phi2 = -0.2
T

T T 0.88 T 0.88 T T
—6— IBBPI —o— IBBPI
—8— TS —8a— TS

0.88| L. —*—DBBPI ] os87f —+— DBBPI

0.86 b

0.87 1

0.841- b
5082’ 1
Q 0.

0.8 1

2 4 6 0 2 4 6 o 2 4 6
h h h

Figure 2. Autoregressive Coefficients.

3.3. Principle of Parsimony
So far the DGP has been the AR(2). Next we use an ARMA(1,1) as the new DGP:

Ye = Py +up+0up_q (23)

wheret =1,...,55and u; ~ 1idn(0,1). In theory, there is AR(c0) representation for this
DGP. Thus, any AR(p) model is a finite-order approximation.

We verify the principle of parsimony (POP) in two ways. Figure 3 compares the
iterated block bootstrap prediction intervals based on the AR(1) regression, to the TS
intervals based on the AR(2) regression (TS2, denoted by diamond), the AR(3) regression
(TS3, denoted by square) and the AR(4) regression (TS4, denoted by star). For the TS
intervals, we do not check whether the residual is serially uncorrelated. That job is left to
Figure 4.

Figure 3 uses three sets of ¢ and 6. We see the block bootstrap intervals have the best
performance in all cases. The performance of the TS deteriorates as the autoregression gets
longer. This is the first evidence that POP may be applicable for interval forecasts.

The second evidence is presented in Figure 4, where the TS intervals are based on
the autoregression whose order is determined by the Breusch-Godfrey test, which is
appropriate since the regressors are lagged dependent variables (so the regressors are
not strictly exogenous). This is how the model selection works. We start from the AR(1)
regression. If the residual passes the Breusch-Godfrey test, then the AR(1) regression is
chosen for constructing the TS intervals. Otherwise, we move to the AR(2) regression,
apply the Breusch-Godfrey test again, and so on. In the end, the TS intervals are based on
an adequate autoregression with serially uncorrelated errors.
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phi = 0.4; theta = 0.2
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Figure 3. Parsimony I.
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Figure 4. Parsimony II.

In the leftmost graph of Figure 4, ¢ = 0.4,0 = 0.2. We see the BBPI outperforms the
TS intervals when /1 equals 1 and 2; for higher / their ranking reverses. In the middle and
rightmost graphs, more serial correlation is induced as 6 rises from 0.2 to 0.6, and as ¢ rises
from 0.4 to 0.9. In those two graphs, the BBPI dominates the TS intervals.

The fact that the BBPI fails to dominate the TS intervals in the leftmost graph indicates
a tradeoff between preserving serial correlation and adding variation. Remember that the
BBPI uses the block bootstrap that emphasizes preserving serial correlation. By contrast,
the TS intervals use the iid bootstrap, which can generate more variation in the bootstrap
replicate than the block bootstrap.

Keeping that in mind, then the leftmost graph makes sense. In that graph, 6 is 0.2,
close to zero. That means the ARMA(1,1) model is essentially an AR(1) model with weakly
correlated errors. For such series preserving correlation becomes secondary.

Therefore, the TS intervals may perform better than the BBPI in the presence of weakly
correlated errors. It is instructive to consider the limit, when the serial correlation becomes
0 and the error term becomes serially uncorrelated. Then, the block size should reduce
to 1, and the block bootstrap degenerates to the iid bootstrap, which works best in the
independent setting.
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Finally, from Figures 3 and 4 we notice that when # = 1, the BBPI always outperforms
the TS intervals, no matter the serial correlation is weak or strong. This fact adds value to
the BBPI for the short-horizon forecasts.

4. Conclusions

This paper proposes new prediction intervals by applying the block bootstrap to the
first-order autoregression. The AR(1) model is parsimonious in which the error term can be
serially correlated. Then, the block bootstrap is utilized to resample blocks of consecutive
observations in order to maintain the time series structure of the error term. The forecasts
can be obtained in an iterated manner, or by running direct regressions. The Monte Carlo
experiment shows (1) there is evidence that the principle of parsimony can be extended
to interval forecast; (2) there is a trade-off between preserving correlation and adding
variation; (3) the proposed intervals have superior performance for one-step forecast.
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Abstract: At present, different methods are used for processing GPS time series data obtained from a
network of GNSS stations. Solutions converted to velocity and displacement allow the generation of
different geodynamic models in areas influenced by tectonic and volcanic activity. This study focuses
on the comparative analysis of the solutions obtained through different processing techniques: Precise
Point Positioning (PPP) and Relative Positioning using specialized scientific software (Bernese 5.2).
Another important objective of this study is the analysis of the convergence of linear and non-
linear time series to determine the accuracy in each component (east, north, up), in addition to the
application of statistical techniques and data filtering (1-sigma, 2-sigma, kalman, wavelets, and CATS
analysis) to check the behavior of the series. These processing and analysis techniques will be applied
to different series obtained from the main stations used for tectonic and volcanic monitoring in the
Central America region (Guatemala, El Salvador, Honduras, Nicaragua, and Costa Rica) in order to
establish a regional geodynamic model.

Keywords: GNSS data filtering techniques; GNSS time series analysis; CATS analysis; geodynamic
model

1. Introduction

GNSS (Global Navigation Satellite Systems) are passive navigation systems based on
radio-frequency-emitting satellites providing a space-time reference frame with continuous
global coverage that is available to any number of users, regardless of existing atmospheric
conditions. GNSS networks are defined as a set of GNSS satellite continuous tracking
stations called CORS (Continuous Operating Reference Stations) that are strategically
distributed in specific territories, providing real-time or post-processing services to solve
the problem of absolute geodetic positioning to any users located in the territory or adjacent
areas. There is an international GNSS network known as the IGS (International GNSS
Service) which contributes to the International Terrestrial Reference Frame (ITRF). IGS
stations are used as reference stations for any geodetic or geodynamic process research
anywhere on Earth [1].

This work focuses on the study of the geodynamic behavior of the Central America
region (Guatemala, El Salvador, Honduras, Nicaragua, and Costa Rica), a highly active area
in terms of natural hazards due to different geological phenomena (earthquakes, volcanic
eruptions, tsunamis, landslides, floods, etc. Different permanent and semi-permanent
GNSS-GPS station networks, such as COCONet (Continuously Operating Caribbean GPS
Observational Network) and IGS, are used as measurement instruments, providing free
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access to the data. The purpose of this study is to determine an absolute regional geo-
dynamic model obtained from GPS data processing and analysis techniques (PPP and
Relative) as well as the application of specific data filtering techniques (1-sigma, 2-sigma,
kalman, wavelets, and CATS analysis) [2] to determine the displacement at strategic points
in the area, thus obtaining the deformation of the Earth’s surface. The GNSS stations used
are: GUAT (Guatemala), SSIA (El Salvador), TEG2 (Honduras), MANA (Nicaragua), JAPO
(Nicaragua), CN22 (Nicaragua), CN30 (Nicaragua) and VERA (Costa Rica).

2. Site Description
Geodynamic Framework of the Central America Region

The Central America Region is subject to the interaction of the Caribbean, North
America, Cocos and Nazca tectonic plates, whose relative velocity is 2 to 9 cm per year. It
is also responsible for the active volcanism in the region and the high rate of shallow and
intermediate seismicity. Seismic events recorded with magnitudes from 5.5 to 7.9 on the
Richter scale have occurred in this region, causing a great deal of destruction; the seismic
sources are due to active interplate and intraplate tectonics.

There are important seismotectonic structures that occur intraplate: the Nicaraguan
depression, the Polochic-Motagua fault system in Guatemala. The subduction zone is
the main tectonic structure and source of seismic and volcanic activity in the countries
of the region. It extends along the coasts of Central America on the Pacific. The zone of
Wadati-Benioff, the volcanic arc, has a dip towards the northeast with angles of 60° to 80°
and seismicity at a depth of up to 200 km.

The Mesoamerican trench includes segments of 100 and 300 km length that are distin-
guished in their strike and dip angle [3]. The seismic occurrence rate in the Mesoamerican
trench [4] establishes that the most important seismic events have occurred in the trench
segments off the coast of Guatemala, El Salvador, and Nicaragua. In this environment,
there are also volcanic hazards associated with the collapse of large volumes of volcanic
buildings, as in Vulcanian, Plinian, and Strombolian eruptions. The frequency of volcanic
collapses in Central America is scarcely known due to the absence of precise dating of the
deposits [5]. The main risk is due to the movement of large amounts of debris that can
move towards nearby populations with the risk of being buried and resulting in loss of
human life.

3. Methods, Techniques, and Results
3.1. GNSS-GPS Data Processing Methods and Presentation of the Regional Geodynamic
Model Obtained

The geodetic positioning method PPP (Precise Point Positioning) uses GNSS data
from a single station and is therefore independent of other reference stations. This tech-
nique achieves its maximum precision (centimeter) using auxiliary data provided by IGS:
ephemeris, clock corrections, Earth orientation parameters, atmospheric refraction parame-
ters (ionosphere, troposphere), etc. [6]. One of the peculiarities of this technique is that it
necessarily requires solving the ambiguities of the satellites in order to guarantee precise
coordinates, as it is made by the JPL GIPSY software. In this study, Bernese 5.2 scientific
software was used to process daily (24 h) GPS data from 8 permanent and semi-permanent
stations with an observation sample rate of 30 s [7].

In stations influenced by the tectonic-volcanic effect, relative data treatment and
processing was carried out, making use of simultaneous measurements of the different
satellites in order to recognize and cancel orbital errors, satellite clock errors, and means
of signal propagation (troposphere and ionosphere) through double satellite-receiver dif-
ferences. This method makes it possible to calculate the difference between two positions
with subcentimeter accuracy, thus requiring that one of the stations be recognized through
a reference frame. The best accuracies are obtained with the relative processing technique,
which focuses on calculating the distances between the GPS antenna and the satellite
through the carrier wave itself by means of interferometric processes [8]. The final calcula-
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tion is obtained by combining this method with the differential method; that is, one of the
receivers must be on a point with known and reliable coordinates [9].

With regard to geodetic control, the variations of the absolute coordinates obtained
through a geodetic calculation and adjustment process are analyzed in both Cartesian
coordinates (X, Y, Z) and topocentric (east, north, up) using different techniques that
guarantee millimeter-level precision to provide optimal results for regional tectonic or
volcanic surface deformation parameters [10] of the region. This implies the use of precise
auxiliary parameters such as precise ephemeris, corrections of the satellite clocks and the
tropospheric models, as well as data processing and filtering methods capable of jointly
managing the results. Figure 1 shows the absolute geodynamic model obtained from the
analysis of the stations time series: GUAT, SSIA, TEG2, MANA, JAPO, CN22, CN30 and
VERA. The Table 1 contains coordinates and velocities of the GNSS stations analyzed.

—p 10mm/yr

Figure 1. Geodynamic model of the Central America region.

Table 1. Coordinates and velocities of the GNSS stations.

Station Lon Lat Ve (m/yr) Vn (m/yr) Vu (m/yr)
MANA —86.2490012 12.1489402 0.007 0.010 —0.004
JAPO —85.6784012 11.5259143 0.009 —0.003 0.004
CN30 —83.7720477 11.9935771 0.008 0.000 —0.015
CN22 —87.0446810 12.3841118 0.001 0.009 —0.012
GUAT —90.5053700 14.4559600 0.005 0.003 0.000
SSIA —89.1430700 13.7100400 0.008 0.005 —0.002
VERA —84.8685000 10.8539000 0.000 —0.009 —0.004
TEG2 —87.2056000 14.0901000 0.008 0.005 0.000

3.2. GPS Data Filtering Techniques and Analyzed Linear and Non-Linear Time Series

The previous model was obtained from the data processing (PPP and Relative) and a
further analysis of the linear and non-linear time series. It was carried out using different
mathematical and statistical techniques for detecting the behavior of the series once the
outliers were filtered. Such outliers can introduced by the physical environment or by the
instrument itself. The use of the different filtering techniques (1-sigma, 2-sigma, kalman,
wavelets, and CATS analysis) applied to each time series minimizes noise and improves the
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resolution or accuracy of the results, more specifically in the determination of the velocity
or displacement parameter in the east, north, and elevation components of each point. The
filtering techniques used initially are 1-sigma and 2-sigma to search for anomalous values,
considering their deviations through a linear regression method. Then we apply a Kalman
predictive-corrective filter and in turn perform a harmonic analysis using the wavelets
filtering technique (Figure 2) in order to reduce the noise in these series. Finally, for the
calculation of the displacement parameter, correction of offsets, and definition of the series
trend, we use the CATS analysis software (Create and Analyze Time Series) (Figure 3),
proving to be the one that best fits the geodynamic model.

East (m) 2-Sigma filter North () 2-Sigma filter Tp (m) 2-Sigma filter

7
Tears Tears Years

East (m) Wavelers filter North (m) Wavelets filter Up (m) Wavelers ilter

Years 2% e i 2008 e e Years

Figure 2. MANA time series solutions, with 2-sigma and wavelets filtering applied.

East (m) CATS analysis North (m) CATS analysis Up (m) CATS analysis

Years Years Years

Figure 3. MANA time series solutions, with CATS analysis software applied.

3.3. Analysis of VERA Time Series Solutions

We observed an important change in the displacement of the VERA station, specifically
in the horizontal component (east, north) produced by the earthquake occurring on
5 September 2012, 8 km northwest of Simara, Guanacaste province, Costa Rica; the east
seismic event had a 7.6 magnitude and 18 km depth (Figure 4). Table 2 shows the final
velocities values (east, north, up) from the VERA GNSS station in three different phases
(absolute series, pre-seismic phase and post-seismic phase).

Table 2. Velocities of the VERA station in three different phases.

Time Ve (m/yr) Vn (m/yr) Vu (m/yr)
RAW (Black) 0.0001 —0.0091 —0.0041
PRE-S (Blue) 0.0014 0.0134 —0.0028

POST-S (Green) 0.0083 0.0034 —0.0041
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East(m) Ve-00001 .. North{m) Vi =-0,0091 . Up(m) Vu=-0,00a1
o 0,0 0,0

¢ W*w

East(m) Ve-0,014 Norte(m) Vn=0,0134 Up(m) Vu=-0,0028
o 0.06 0,06

2010 2011 2012 2013

East(m) Ve -0,0083

North{m) Vn=-0,0034 up(m)

Figure 4. VERA time series in three different phases. This figure shows the changes in series
trend (absolute series “black”, pre-seismic series “blue” and post-seismic series “green”) GNSS data
analyzed: 2008-2019.

3.4. Analysis of JAPO Time Series Solutions

The JAPO station, located on the Concepcién Volcano of Ometepe Island, Nicaragua,
is used to monitor volcanic activity and is part of the Conceptepe GNSS Network. The
Concepcién volcano has permanent activity, and around it there are many landslides
that cause a great deal of destruction. In the JAPO time series (non-linear), changes in
displacement can be observed due to the continuous volcano activity (Figure 5). Table 3
shows the final velocities values (east, north, up) from the JAPO GNSS station using CATS
analysis technique.

Table 3. Velocities of JAPO station using CATS analysis.

Station Ve (m/yr) Vn (m/yr) Vu (m/yr)
JAPO 0.0094 —0.0027 0.0037
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Figure 5. JAPO time series, station located on the Concepcién volcano, Ometepe, Nicaragua. GNSS
data analyzed: 2010-2017.

4. Conclusions

This work shows the geodynamic behavior of the Central America region and adjacent
areas. It also studies the quality of the observations of the reference stations and permanent
and semi-permanent GNSS vertices to guarantee maximum precision (subcentimeter) in
the time series obtained.

JAPO, VERA, and CN30 stations show changes in their behavior due to being influ-
enced by volcanic activity, earthquake occurrence, or the lack of observations, respectively.

GNSS data filtering and fitting techniques (1-sigma, 2-sigma, wavelets, and CATS
analysis) improve the precision of the results by eliminating offset in the components (east,
north, up) of a data series; however, its application in nonlinear series can give incorrect
solutions. Despite being included in the IGS network, the MANA permanent station, being
immersed in the area of greatest seismic activity, means that it does not meet the necessary
requirements for geodynamic surveillance in real time.

The VERA station is subject to constant changes in its displacement due to the different
earthquakes that have occurred in the area due to local faulting and the Cocos—Caribe plate
collision, one of the most important earthquakes in recent years occurring on 5 September
2012, 8 km northwest of Sdmara, Guanacaste province, Costa Rica, with a magnitude of 7.6
and a depth of 18 km.

The JAPO time series shows changes in displacement due to the continuous activity
of the Concepcién volcano and the landslides that occur in this area. The permanent JAPO
station is very important for the surveillance and monitoring not only of the Concepcién
volcano, but also for Maderas volcano located at the southern end of the Ometepe is-
land. However, better solutions could be obtained using other processing techniques and
reference stations with precise coordinates.

Data Availability Statement:

— GPS data of the MANA, GUAT, SSIA and TEG2 stations belong to the IGS network and are
available at the following link: https://geodesy.noaa.gov/CORS/data.shtml.

— GPS data of the CN22, CN30, and VERA stations belong to the COCONet network and are
available at the following link: http://coconetserver.ineter.gob.ni/coconetgsac/.
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— GPS data of the JAPO station belong to the Conceptepe network of INETER (Instituto
Nicaragiiense de Estudios Territoriales), Universidad de Cadiz (manuel.berrocoso@uca.es). Data
belong to a research project and are not public.
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UNAVCO (Continuously Operating Caribbean GPS Observational Network), INETER (Instituto
Nicaragtiense de Estudios Territoriales). We especially appreciate the contributions and suggestions
of the editors and reviewers who helped improve this manuscript.
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Abstract: Picking an appropriate parameter setting (meta-parameters) for visualization and embedding
techniques is a tedious task. However, especially when studying the latent representation generated
by an autoencoder for unsupervised data analysis, it is also an indispensable one. Here we present a
procedure using a cross-correlative take on the meta-parameters. This ansatz allows us to deduce
meaningful meta-parameter limits using OPTICS, DBSCAN, UMAP, t-SNE, and k-MEANS. We
can perform first steps of a meaningful visual analysis in the unsupervised case using a vanilla
autoencoder on the MNIST and DeepVALVE data sets.

Keywords: dimension reduction techniques; multi-dimensional spaces; big data; time series;
autoencoder

1. Introduction

High-dimensional data creates the need for simplification, of which low-dimensional
embeddings as well as data visualization constitute two closely related methodologies.
Their goal is to preserve the main patterns within the data and obtain a less complex
data representation, which for two or three-dimensional embeddings grants also direct
visual access on the data. It is well known that finding a low-dimensional data embedding
is a meticulous, parameter- and data dependent task for which optimization may be
difficult [1]. However, in our approach, we take into account that even the visualization
space for an appropriate embedding is related to a set of visualization parameters, which
we call meta-parameters.These are not directly optimized over, but introduce bias in the
visualization itself when chosen poorly. One example the reader might know is the fact
that DBSCAN suffers from the curse of dimensionality, when the minimal number of
neighboring points nsamples is chosen unfortunately [2,3]. For our investigation, we chose
the challenging setting of data (namely MNIST [4] and DeepVALVE [5]) compressed within
the latency space of an autoencoder.

1.1. Why Are Autoencoders Interesting?

The idea of autoencoders exists for more than 30 years [6] and the applications are
presently widespread. They range from generalization to classification tasks, denoising,
anomaly detection, recommender systems, clustering and dimensionality reduction with
stunning results [7,9-13]. Within this work, we focus on the latter two use cases, wherein
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autoencoders perform unsupervised feature extraction and dimensionality reduction [14,15].
Autoencoders consist of an encoder-decoder structure as explained in Figure 1.

> Encoder > > | Decoder b

Input
Latent
Space

Reconstructed

Figure 1. Architecture of an autoencoder. The left side constitutes the encoder while the mirror
image around the middle is called decoder. The exact composition of the layer structure is given in
Appendix A.

To achieve their above-mentioned goal, the data is embedded within a latency space
via the encoder. Usually, the latent dimension is much smaller than the one of the original
data set. This kind of setting is also known as bottleneck architecture. From this embedding,
the original data representation is reconstructed by the decoder. The system is trained by
minimizing the reconstruction error. Conceptually, autoencoders can be seen as a nonlinear
generalization of PCA [16]. Under postulation of the manifold hypothesis [17], in some
settings, they are supposed to learn the intrinsic low-dimensional data manifold embedded
(nonlinearly) into the high-dimensional data observation space. Even more, in this vein
they can be interpreted as a nonlinear embedding approach on their own. In the context
of unlabeled high-dimensional data sets and especially time series, autoencoders have
shown to be powerful tools for unsupervised analysis tasks [15,18]. Yet it has become clear
in several applications that the “classical” loss term might not be enough to capture the
desired behavior [19]. For this reason, some researchers try to ameliorate the reliability and
efficiency of their autoencoder models by introducing additional, task dependent loss-terms
(e.g., Ref. [20] introduced a topological loss term to preserve connected components within
the data; Ref. [21] introduced a perceptual loss to improve image classification; Ref. [22]
introduced a loss term to fix class centroids within a classification task).

1.2. Our Approach

In this work, we approach this problem upside down. We develop methods to
investigate the autoencoder’s capability to conform to the manifold hypothesis in a visual
and qualitative way, which integrates into the general trend of visualization methods
gaining more importance over the last while [23-25]. Our goal is to give data scientists a
non-mathematical and interpretable tool at hand to monitor and supervise the nonlinear
embedding process whose result constitutes the latency space. To do so, we proceed as
follows: First, we must formulate our concepts. To make clear what is new to our approach,
we must distinguish it from classical parameter and hyperparameter tuning models.

Definition 1 (Parameters). Parameters are the quantities that determine the actual shape of the
data manifold.

Intuitively, parameters determine the “physics” of our data under consideration. In
the case of our autoencoder, they are given by the trainable weights.

Definition 2 (Hyperparameters). Hyperparameters are the quantities that determine the perfor-
mance, the setup, and the training of our neural, data driven model in a metrisable way.

A summary of our autoencoder model and the corresponding hyperparameters can
be found in Tables Al and A2 in Appendix A. The decoder is just a mirror in our case.

(Although sometimes a weight tie is implemented too, we adhere from this technique here).

264



Eng. Proc. 2021, 5, 30

30f17

Definition 3 (Meta-parameters). Meta-parameters are the quantities that determine the perfor-
mance of our neural, data driven model in a non-metrisable way.

So, it becomes clear why standard (hyper-)parameter optimization methods cannot
be applied to the present purpose: Lacking a metric, there is now quantifiable (stochastic)
optimization procedure to find an optimal embedding. For this reason, we took a step back
on to a qualitative level and performed a cross-correlative study including t-SNE, UMAP,
k-MEANS, DBSCAN and OPTICS.

1.3. Embedding and Visualization Methods

The use of visualization methods to analyze structures of interest for a higher-
dimensional space by a visual inspection of a lower-dimensional embedding has become
a popular approach in recent years, compare [26-35]. Usually, embedding schemes are
classified and distinguished based on their embedding properties, e.g., to discriminate linear
and nonlinear embeddings. Thus, to cover an appropriate set of embedding techniques for
reasons of comparison, our approach covers a comparative study of different embedding
techniques. In the following, a short description of these methods is given. Table A3 in
Appendix B states the meta-parameters and their default values.

1.3.1. t-SNE

The t-SNE algorithm assigns mutual “neighborhood”-probabilities based on a distance
metric (most commonly the Euclidean one) between points, and successively tries to
minimize the Kullback-Leibler divergence. The most important hyperparameter is the
perplexity, which defines the minimum number of neighborhood points. However, the
hyperparameters of the intrinsic optimization algorithm also have crucial impact on the
final 2- or 3-dimensional embedding [36,37].

1.3.2. UMAP

This algorithm represents an advancement with respect to t-SNE by constructing a
“fuzzy simplicial complex” on the data. However, choosing the appropriate radius for
the related Céch complex is a meticulous task. Additionally, the choice of the metric and
the minimum number of neighboring points determine the resulting 2- or 3-dimensional
embedding. Like t-SNE, UMAP’s dependence on the metrified minimum point distance
makes it prone to the curse of dimensionality [38].

1.3.3. k-MEANS

K-Means minimizes the metric distance of data points to predefined cluster centers.
This also constitutes its major drawback, aside from not being able to identify noise and
imposing complexity on all cluster shapes [39].

1.3.4. DBSCAN

Unlike k-MEANS, DBSCAN is a density-based method able to identify noise and
clusters of all shapes. Its main hyperparameters are ¢, the critical value for which points are
seen to belong to the same cluster, and #gamples, the minimum number of points that shall
belong to one cluster. As € is chosen globally, DBSCAN has its difficulties with clustering
heterogeneous data [40].

1.3.5. OPTICS

OPTICS has many commonalities with DBSCAN. The most substantial difference to
DBSCAN is that € is chosen from a dendrogrammatic graph called the reachability plot. This
is based on one of its two main parameters: the reachability distance. This expresses the
smallest distance for an object p with respect to another object o, such that p is directly
density-reachable from o if 0 is a core object. Intuitively, a core object is one that lies in
the € vicinity of gamples- The reachability plot depicts the reachability distances for each
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object in the cluster ordering. Clusters within the data set are regions where the reachability
distance between points are small, so they correspond to “valleys” within the reachability
plot. The reachability plot is rather insensitive to € and #gamples, but if € is too small, then
too many points will have an undefined reachability distance. In contrast to DBSCAN,
OPTICS has difficulties when clustering homogeneous data [41].

1.4. Organization and Contribution of the Paper

The main part of our work is given by Section 2, where we elaborate on the nature of
our cross-correlative approach before demonstrating how our iterative and interactive cross-
study systematically leads to more stable meta-parameter settings on MNIST in Section 2.1.
Secondly, we apply our procedure to the DeepVALVE time series data in Section 2.2. In
Section 3 we study the visualizations generated by the found meta-parameters. Finally, in
Section 4, we conclude on the range of visualization meta-parameters and their connection
to unsupervised learning. The contributions of this work are

e autoencoder study on DeepVALVE data set

e  cross-correlative study of embedding technologies

e  procedure to gain manageable meta-parameter ranges
e  visual analysis of autoencoder latency spaces

2. Cross-Correlative Study on Meta-Parameters

For our comparative meta study of dimension reduction algorithms, we define the
meta-parameters O, to be
O = U Gm,- ’ 1)
iel
where I is the space of values the individual meta-parameters 0,,, may take, see Table A3.
A meta-parameter set of a concrete visualization might be a k-dimensional vector embedded
into a k-dimensional meta-parameter space. To elucidate this, considering multi-parameter
visualization such as the radial visualization method introduced by [42], one faces a (meta-)
parameter space k with 2n parameters (k = 2n), n being the number of data dimensions.
Finding a good meta-parameter combination introduces generally an NP-hard issue to
optimize the meta-parameters in k-dimensions (within the single algorithm regime). Thus,
our working hypothesis states insight can be gained about 0,, by cross-studying 6, from a
multi-algorithmic point of view:

Om = Gm,&’( = U emi,ﬂj ’ (2)
ieZ; AjeA

where A denotes the set of algorithms and 0,,, #, denotes the m;-th meta-parameter of
algorithm A;. Doing so saves the trouble of solving the (k-dimensional) meta-parameter
problem for one specificalgorithm. Instead, we iter-and interactively tune 0,4, mutually to
approach a valuable embedding and visual representation for the data in touch. Let Rethod
be the range for the cardinality of cluster centers with respect to one of the methodologies
as quoted above. Then our evaluation results in a cross-correlative range matrix

t-SNE UMAP k-MEANS DBSCAN OPTICS
t-SNE Ri-SNE OtSNEUMAP  OtSNEkM  OwSNEDBS  Ot-SNEOPT
UMAP  |5UMAP,t-SNE Rumar OuMAPkM  OUMAP,DBS OUMAP,OPT
R= kM OK-MESNE  Ok-M,UMAP Rim Ok-M,DBS dmorr |- 3
DBS ODBSt-SNE ~ ODBS,UMAP  ODBSk-M RpBs ODBS,0PT
OPT OOPT4#SNE  OOPT,UMAP  OOPTk-M O0OPT,DBS Rort
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Herein, 6; ; denotes the intersection of the range of cluster center cardinalities for two
methods i, j:

0ij =Ri ﬂ R;. “4)
By definition, the matrix in Equation (3) is symmetric around the diagonal. The goal is

now to find the minimum of the 6; ; to come as close to the true intrinsic dimension of the
data manifold as possible.

2.1. MNIST

The MNIST data set is a well-known image data set containing the digitalization of
around 60,000 handwritten digits from zero to nine. Many studies performed with this
data set may be found in the literature [43,44]. Therefore, we omit any additional details of
this data set except the fact that it is labeled, i.e., for each picture we know which digit is
actually depicted. We start our analysis with the reachability plot for the OPTICS algorithm.
For computational reasons we fix € to 3.5, see Appendix C.1.

As shown on the right-hand side of Figure 2, no meaningful structures can be found
for ngamples < 15 as all points are qualified as noise, which refines the order of magnitude
mentioned in [41] for meaningful nsamples- The general features of the reachability plot
itself are known to be stable under some (meaningful) variations of the meta-parameters e
and ngamples [41]. Valleys in this plot, as shown on the left-hand side of Figure 2, may be
connected to clustered structures in the studied latency space as explained in Section 1.3.
Tuning € = 1.85, i.e., the red dashed line in Figure 2, we can identify at least six independent
structures at the same resolution scale. We also show other, rather poorly tuned values for
€, ie., € € (1.50,1.85,2.50), indicated by the black dashed lines.

3.5
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0 imi <]
Qa5 Upper Limit %
z 00
Z b
j:-D" 2.0 / ) /V Fine Tuned 'é
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o115
’ i
1.0 . ! |
0 10,000 20,000 30,000 40,000 50,000 60,000 10 20 30 40 50
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Figure 2. Left: Reachability plot for the OPTICS algorithm on MNIST. This plot is produced using
€ = 3.5and nigamples = 25. Right: The number of identified noise points as well as the number of found
clusters as function of ngamples for OPTICS. We display different selections with e € (1.50,1.85,2.50)
indicated by the dashed, solid, and dotted line, respectively. The green dashed lines indicate the
limits deduced so far.

To bolster this observation, we study the 2D embeddings as computed by t-SNE and
UMAP in Figure 3. By eye we can see that both methods give a different perspective on
the structure of the latent space. Using t-SNE alone we might identify between six and
eleven structurally independent components. On the other hand, UMAP would provide
us with six or maybe seven independent structures. Especially the derived upper bounds
are very subjective. How should the gaps actually look to be counted as independent? At
this point we see how the cross-correlative nature of our approach adds value. By now
we have clearly established a lower limit of six cluster structures using Figure 2 (left) and
Figure 3 (left and middle). In addition, we have limited 7gamples > 15. At the right-hand
side of Figure 2, we show the number of identified clusters as well as the noise ratio for
OPTICS as a function of nsamples for different values of . We observe that it actually is the
fine-tuned e run which yields the best signal-to-noise ratio while simultaneously respecting
the derived lower limits on 71gjster- Indicating the so far deduced boundaries by green
dashed lines we can set an upper limit on the number of identified clusters. Again, we
have settled for rather conservative boundaries by working with nigamples > 15. Using the
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best signal-to-noise ratio, both from Figures 2 and 3, yields #1samples = 20 and thus an upper
bound of 13 clusters instead of 18. Using this knowledge, let us study the next embedding
tool on our list: DBSCAN. As OPTICS and DBSCAN are closely related we can use the
already identified values of € and nsamples as starting points. This greatly reduces the
meta-parameter space to be explored. Indeed, as we can see in Figure 3, DBSCAN favors
slightly higher € and lower values of n1samples than OPTICS. However, as OPTICS requires
values for € and 71samples high enough to not fall into the unstable regime, one should also
choose 71samples for DBSCAN not too low. This “unstable” behavior can be observed also in
Figure 3 for values of figamples < 15. Hence we transfer the OPTICS limit to DBSCAN here
and arrive at a fine-tuned limit of 11 clusters. So, in total we find

11 < Adusters < 18
1.5 < eorrics < 2

15 < fgamples,oPTICS < 25
19 < eppscan < 22

15 < fsamples, DBSCAN < 20 ()

Again, we emphasize that wherever necessary we use very conservative heuristics.

Therefore, the suggested limits in Equation (5) capture the full structure of the latent

representation as produced by our autoencoder.

2
3

15

s
S

t-SNE Dim 2
N

e e ° ° °
UMAP Dim 2

1
b
S

-40

-5

X N
-
N

=~

60 -40 -20 0 20 40 60
t-SNE Dim 1

-5

0 5 10 15
UMAP Dim 1

noise ratio
o o o
> o o

o
¥

o
o

20 40 60

Nsamples

Figure 3. Left and Middle: Structure of the latent space distribution of MNIST as identified by the
t-SNE respectively UMAP embedding. Right: ngj,ster (blue) and noise ratio (red) as a function of
Nsamples With € = 1.85 (dashdot), € = 2.0 (dashed), € = 2.2 (solid), and € = 2.5 (dotted) for DBSCAN.
The green dashed lines indicate the limits deduced so far.

2.2. DeepVALVE

The DeepVALVE data set consists of a series (in total around 25,000) of random opening
and closing events of an industrial valve as described in [5]. A part of these events is shown
in Figure 4.

I[mA]

R oo Pt

(10725

Figure 4. Part of the DeepVALVE time series data set: The blue line represents the measured electrical
current driving the engine of the valve.
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The allowed labels are: START, LOSE, LINEAR, STUCK, END. Thus, as in the case
of MNIST, we have a completely labeled data set where we know the cluster cardinality
beforehand, see Appendix D for more examples. As we deal with a time series data set, we
must specify the way we feed our data to the neural network. Denoting our time series
with Xo.1, we extract windows at time step t of window size w, i.e., X;—w:. A batch is then
created by randomly sampling t. As in this case our latent space is three-dimensional, we are
actually able to plot it. The found structure for w = 10 is shown in Figure 5. We observe an
ellipsoidal structure which is typical for quasi-periodic structures, as indicated in [45]. This is
not surprising regarding the recurring opening and closing events of the valve. Now we want
to apply the investigative pipeline we developed in Section 2.1. Hence again we start with the
OPTICS reachability plot in Figure 6. We can identify several bigger and smaller structures.
The reachability graph yields at least three or even four and more structures.

Latent D3

o
N
[

Upper Limit

o
N
=3

o
o
«

Reachability Distance
s ¢
S

noise ratio

|
.

<
=3
S

2,000 4,000 6,000 8,000 ; 5 5
Npoints Nsamples

Figure 6. Left: Reachability plot for the OPTICS algorithm on DeepVALVE. This plot is produced

using € = 0.25 and ngamples = 25. Right: Noise ratio and number of found cluster as deduced from

the OPTICS reachability plot as a function of ngamples with € € [0.009,0.014].

Adding the knowledge of Figure 7 we can estimate the lower limit of identified
structures as four. Following Section 2.1 one can estimate nigamples > 20 from the signal-to-
noise ratio on the right-hand side of Figure 6. Again, we fine-tune € using the reachability
graph. We identify e = 0.02 using this optical procedure. On the right-hand side of Figure 6
we show runs with different fine-tuned e values. Indeed, the visual tuning turns out to be
not sensitive enough and the actual range for epsilon is rather in the range of 0.01. We use
this figure to estimate the upper limit of identified clusters to be 13.
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Figure 7. Left and Middle: Structure of the latent space distribution of DeepVALVE as identified by
the t-SNE respectively UMAP embedding. Right: The number of identified noise points as well as
the number of found clusters as function of ngamples for DBSCAN. We display different selections
with e € (0.03,0.06,0.1,0.2,0.3) indicated by the dashed, dotted and solid line, respectively. The green
dashed lines indicate the limits deduced so far.

In Figure 7 one can observe the (within the context of temporal data emerging) fact
that outliers can be detected with UMAP more easily than with t-SNE [46,47]. In addition
to that, UMAP also preserves global structures better than t-SNE, although there are more
advanced methods such as dynamic t-SNE including a notion of temporal coherence that
allows for better cluster separation [48]. Summing up, from the t-SNE plot, in view of
cluster sizes and distances with no specific meaning, one can identify (conservatively
estimated) 7 clusters. However, the UMAP plot in the middle of Figure 7 indicates around
5 clusters. Using the limits deduced so far we study DBSCAN on the right-hand side of
Figure 7. As with MNIST we observe that DBSCAN prefers slightly different values for e.
So, in total we find

4 < Neusters < 13
0.009 < eorrics < 0.013
20 < Tsamples,0PTICS < 50
0.03 < eppscaN < 03
10 < fgamples, DBSCAN < 20 (6)

3. Visualization of Clustered Data

In Section 2 we estimated the meta-parameters of our benchmark data set MNIST and
our testing case DeepVALVE within Equations (5) and (6) respectively. However, how does
this help us to gain a better visual understanding of the data set under investigation? Using
our set of meta-parameters, we can now study the t-SNE and UMAP embeddings for our
OPTICS, DBSCAN and k-MEANS clustering methods to obtain a first grasp on how well
the data are classified and separated within the latent space. From Equation (5) we chose
settings as disclosed in Table 1.

Table 1. Meta-parameters used for the visualizations in Figure 8-11.

Method MNIST DeepVALVE

OPTICS € = 1.85, Msamples = 20 e =0.012, Msamples = 25
DBSCAN € = 2.0, gamples = 20 € = 0.2, nsamples = 15
K-MEANS Nelusters = 11 Nelusters = 6

In Figure 8 we show the clusters found by OPTICS, DBSCAN, and k-MEANS pro-
jected onto the t-SNE embedding. We observe that both OPTICS and DBSCAN exhibit
oversimplification as has already been visible in Figure 3. Additional structures are only
indicated, as few points have been assigned to them. K-MEANS, however, though able

270



Eng. Proc. 2021, 5, 30

9 of 17

to resolve much more substructure, tends also to split certain structures which the other
methods clearly identified as belonging together. The reason is that the predefiniton of
cluster cardinalities introduces some bias. We observe a similar behavior when using the
UMAP embedding in Figure 9 instead. This provides us with the possibility of a direct
comparison between t-SNE and UMAP embeddings, which is not possible a priori.

t-SNE Dim 2
°
t-SNE Dim 2
t-SNE Dim 2

4060 60 -40 -

20 0 20
-SNE Dim 1

-20 0 20
t-SNE Dim 1
Figure 8. T-SNE embedding of the latent space of our MNIST autoencoder. In color the points

belonging to identified cluster structures. From left to right: OPTICS, DBSCAN, k-MEANS.

15 15 15 ‘
10 10 10 — .
o « « I
E £ £ o %
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0 0 4 b
-5 -5 -5
-5 10 15 -5 10 15 5 10 15

0 5 0 5 0 5
UMAP Dim 1 UMAP Dim 1 UMAP Dim 1

Figure 9. UMAP embedding of the latent space of our MNIST autoencoder. In color the points
belonging to identified cluster structures. From left to right: OPTICS, DBSCAN, k-MEANS.

Let us now apply the same procedure to our test data set DeepVALVE. Again, using
the values from Table 1 we project the found clusters onto the t-SNE, respectively the
UMAP embeddings. In Figures 10 and 11 we can see real structural differences of the
DeepVALVE dataset to the MNIST dataset, Figures 8 and 9. Figure 10 (left and middle)
clearly reveals that OPTICS is much more sensitive to heterogeneities within the data.

TSNE D2
TSNE D2
TSNE D2

“TSNEDL T T 7 © 7 UTsNEpr T T 7 © 7 T TSNED1

Figure 10. T-SNE embedding of the latent space of our DeepVALVE autoencoder. In color the points
belonging to identified cluster structures. From left to right: OPTICS, DBSCAN, k-MEANS.
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Figure 11. UMAP embedding of the latent space of our DeepVALVE autoencoder. In color the points
belonging to identified cluster structures. From left to right: OPTICS, DBSCAN, k-MEANS.

This can be an advantage but also a disadvantage: As DeepVALVE is a huge data
set with densely distributed points, density-based clustering methods—and especially
OPTICS—find more clusters for smaller training sets. For DeepVALVE, We observed a
huge difference between 10,000 and 60,000 points (10,000 depicted in Figure 10). The reason
is that larger distributions become “filled in” the more samples are drawn from the true
distribution. k-MEANS, on the other hand, constitutes a biased version of clustering, which
reveals itself for the MNIST as well as for the DeepVALVE data set within the t-SNE as
well as within the UMAP embedding. A comparison of Figures 10 and 11 reveals the main
advantage claimed for UMAP in the literature: That it can depict and preserve (global)
similarities better [49]. This is even more critical for time series than for image data, as
time series segmentation often exhibits not as many labels as classification tasks for image
data. Hence the procedural error by choosing wrong cluster cardinalities rises significantly.
Thus, our pipeline involving the cross-correlative usage of clusterings and embeddings
raises awareness of this fact as well as giving a first hint onto the scale at which cluster
center cardinalities can be expected.

4. Conclusions

Summing up what we have done and learned so far, we can identify four main benefits
of our approach:

() We developed a pipeline to obtain a visual grasp on the generalization capacity of
a vanilla autoencoder.

(ii) We use clustering and embedding methods in a cross-correlative way to fine-tune
their observational capabilities.

(iii) This cross-correlative ansatz allows better capture of the interrelation between the
(transformed) data and the visualizations and embeddings.

(iv) Doing so, structural differences between data sets become apparent, which allows

obtaining a first apprehension of an unknown data set without prior knowledge.

4.1. The Generalization Capacity vs. the Manifold Hypothesis

One should keep in mind the reason for investigating the latency space in this detailed
fashion: We want to have a grasp on the generalization assumption. This is connected, but
not identical to the manifold hypothesis as presented in the introduction. For both of our
data sets we know the cluster center cardinalities beforehand and hence we can evaluate the
individual performance of our clustering algorithms on the latent space. However, if this is
not the case—which it should be for unsupervised learning tasks—our cross-correlative
ansatz can give a first hint.
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4.2. Meta-Parameter Fine-Tuning

In Equations (5) and (6) we present the results of our (visual) meta-parameter fine-
tuning. Especially Figures 2 and 6 reveal how visual investigation ameliorates our results.
Although these clustering and embedding methods work well within certain ranges of
parameters, as e.g., Ref. [41] points out and investigates in detail for OPTICS, visual methods
and their consecutive analysis can really suffer from poorly chosen meta-parameters. So,
by working in a cross-correlative way one introduces a level of quantitivity that one would
completely loose when restricting to one method.

4.3. Interrelation between Data and Methodology

In Figure 12 the latent space of the DeepVALVE dataset is investigated using our
three different clustering methods, and one can clearly see that something goes wrong
for OPTICS. So why is this the case? DeepVALVE is a dense temporal data set, and one
would expect the clusters corresponding to the temporal labels to lie at the “edges” of the
quasi-periodic structure depicted in Figure 12. However, unlike DBSCAN, OPTICS uses not
a point value, but a hierarchical scale range for the reachability distance. Thus, if we have a
really dense data set and comparatively few samples to estimate its distribution, it might
identify large parts of the data set as noise. This can happen neither with DBSCAN nor
k-MEANS. Henceforth, we have another demonstration that also visual methods should be
taken with a grain of salt at least in the unsupervised case.

4.4. Structural Differences between Data Sets

In Sections 2.1 and 2.2 we studied two structurally different data sets with the same
analysis pipeline as developed in Section 2. Although MNIST constitutes a 2D image
dataset, DeepVALVE consists of temporal measurements of a physically non-trivial process
and hence exhibits more structure, as depicted in Figure 4. This is clearly visible from the
clustering parameters € and ngamples, indicating DeepVALVE is a much denser data set than
MNIST, as well as from the respective visualizations. Especially in Figure 8 to Figure 11
this shows itself, as discussed in Section 3.

4.5. Future Outlook and Comparison to Other Work

In [46] a deep convolutional autoencoder was used as a dimensionality reduction
method for the subsequent 2D visualization using PCA, UMAP and t-SNE. They too
developed a pipeline for a quantitative investigation; however, in contrast to our work,
they did not use the visualization and embedding methods in a cross-correlative way.
As our results indicate, e.g., in Figures 2 and 6, this adds value to the inter-correlated
usage of density-based clustering methods. For future investigation, we plan to migrate
our visual meta-parameter selection pipeline (partly) to the hyperparameter learning
level. Especially the qualitative analyses in Figures 2 and 6 would profit from a deeper,
quantitative treatment. Furthermore, we would like to investigate the conjunction between
the cardinality of training samples necessary to obtain a “good” estimate on the data
distribution and data density in a more sophisticated manner. Especially temporal data
sets are prone to heterogeneities that even have physical meaning rather than just being
clustering or embedding artefacts. Having performed this comprehensive study, we are
keen to walk one step further on this road.
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Latentp3

Latent D3

Figure 12. 3D presentation of the latent space of DeepVALVE dataset using OPTICS, DBSCAN,
K-Means clustering, respectively.

Data Availability Statement: MNIST is available from http://yann.lecun.com/exdb/mnist/. DeepValve
is a company-internal IAV dataset. It will be published in an anonymised fashion following
this publication.

Appendix A. Autoencoder Hyperparameters and Architecture for Reproducibility

In Table A1 our choices for the autoencoder hyperparameters are listed. Please note
that if not mentioned otherwise, the default values of PyTorch (Version 1.8.1) are used.

Table Al. The hyperparameters used for training our model.

Hyperparameter Values
Learning Rate 0.001
Optimizer Adam
Random Seed 0
Activation Function of hidden layers ReLU
Activation Function of output layer Sigmoid
Epochs 100
Batch Size 100
Loss Mean Square Error

Table A2 summarizes the encoder-decoder structure of the autoencoder as well as the
final validation loss.
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Table A2. Architecture of the encoder chosen for the given data set and achieved validation loss. The
architecture numbers represent the number of neurons per layer.

Data Set Input Size Architecture Lyal
MNIST 784 400 — 8 2.16 x 1072
DeepVALVE 10 16—>8—3 2.1x107°

Please note that the decoder is a mirror of the encoder. Therefore, we omitted the
numbers in Table A2.

Appendix B. Meta-Parameter Default Values

Table A3. List of meta-parameters used in this study.

Embedding Method Meta-Parameters Used and Their Default Values
t-SNE Ncomponents = 2, randomstate = 0
UMAP Npeighbors = 15, ming;st = 0.1
DBSCAN € = 0.5, nsamples = 5
OPTICS €=20, Nsamples = 5

clusters = 8, init = ‘random’,
K-Means Minit = 20, itermax = 300, tol = 1x 1074,
randomggate = 0

Appendix C. Additional Material for MNIST
Appendix C.1. Reachability Plots
In Figure A1 we show additional plots using different values for 71samples and e.
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Figure A1. OPTICS reachability plot for MNIST using. Left upper: € = co and fgamples = 25. Right
upper: € = 3.0 and fgamples = 15. Left lower: € = 3.0 and ngamples = 20. Right lower: € = 3.0 and
Nsamples = 35

As stated in [41] the key features of this plot are rather stable against different choices
of the meta-parameters.

Appendix C.2. Reconstructed Digits

For MNIST we can qualitatively check the identified structures. For all three clustering
approaches we construct a cluster center. For k-MEANS this is done automatically by the
algorithm. On the other hand, for OPTICS and DBSCAN we just use the center of mass of
all points belonging to a given cluster. We then reconstruct the images by sending these
points through the decoder.
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In Figure A2 we present the reconstructions corresponding to the right-hand side
of Figure 8, respectively Figure 9 in the main text. We observe that indeed most of the
digits could be identified. However, digit 4 is missing, while digit 1 and 9 are doubled. A
behavior we already observed in Section 2.1.

74410

)

L

Figure A2. Reconstructed images of the centroids of the cluster using K-Means clustering with

Nelusters = 11.

Once we increase the allowed number of clusters to 7ncysters = 18, as shown in
Figure A3, we observe that now all digits are present. However, we also have quite some

ne
1ol

Figure A3. Reconstructed images of the centroids of the cluster using K-Means clustering with

Nelusters = 18.

As displayed in Figure A4 a similar behavior emerges when we use DBSCAN instead.
Using the values from Table 1 we recover most digits except 8 and 9. Again for the other
digits we have several clusters they belong to.
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Figure A4. Reconstructed images of the centroids of the cluster using DBSCAN clustering with
€ = 2.0 and ngamples = 20.

Finally in Figure A5 we show the reconstructed digits for OPTICS. Again, we observe
missing digits, 3 and 5 this time, as well as two versions of 4.

74014

Figure A5. Reconstructed images of the centroids of the cluster using OPITCS clustering with e = 1.85
and ngamples = 20.

Interestingly, k-MEANS has trouble locating different digits when compared to OPTICS
and DBSCAN. The latter two behave rather similar again.
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Appendix D. Additional Material for DeepVALVE
In Figure A6 we show additional labeled data samples from [5].

Sample 10 Sampie 11 Sampie 16

1ma)
1tma)

sl as : sl

Figure A6. Additional labeled data samples for DeepVALVE.
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Abstract: Two-sample and independence tests with the kernel-based MMD and HSIC have shown
remarkable results on i.i.d. data and stationary random processes. However, these statistics are not
directly applicable to nonstationary random processes, a prevalent form of data in many scientific
disciplines. In this work, we extend the application of MMD and HSIC to nonstationary settings by
assuming access to independent realisations of the underlying random process. These realisations—
in the form of nonstationary time-series measured on the same temporal grid—can then be viewed
as ii.d. samples from a multivariate probability distribution, to which MMD and HSIC can be applied.
We further show how to choose suitable kernels over these high-dimensional spaces by maximising
the estimated test power with respect to the kernel hyperparameters. In experiments on synthetic
data, we demonstrate superior performance of our proposed approaches in terms of test power when
compared to current state-of-the-art functional or multivariate two-sample and independence tests.
Finally, we employ our methods on a real socioeconomic dataset as an example application.

Keywords: two-sample test; independence test; random process; nonstationary; kernel methods

1. Introduction

Nonstationary processes are the rule rather than the exception in many scientific
disciplines such as epidemiology, biology, sociology, economics, or finance. In recent years,
there has been a surge of interest in the analysis of problems described by large sets of
interrelated variables with few observations over time, often involving complex nonlin-
ear and nonstationary behaviours. Examples of such problems include the longitudinal
spread of obesity in social networks [1], disease modelling from time-varying inter- and
intracellular relationships [2], behavioural responses to losses of loved ones within social
groups [3], and the linkage between climate change and the global financial system [4]. All
such analyses rely on the statistical assessment of the similarity between, or the relationship
amongst, noisy time series that exhibit temporal memory. Therefore, the ability to test the
statistical significance of homogeneity and dependence between random processes that
cannot be assumed to be independent and identically distributed (i.i.d.) is of fundamental
importance in many fields.

Kernel-based methods provide a popular framework for homogeneity and indepen-
dence tests by embedding probability distributions in RKHS [5] (Section 2.2). Of particular
interest are the kernel-based two-sample statistic MMD (MMD) [6], which is used to assess
whether two samples were drawn from the same distribution, hence testing for homogeneity;
and the related HSIC (HSIC) [7], which is used to assess dependence between two random
variables, thus testing for independence. These methods are nonparametric, i.e., they do
not make any assumptions on the underlying distribution or the type of dependence.
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However, in their original form, both MMD and HSIC assume access to a sample of i.i.d.
observations—an assumption that is often violated for temporally-dependent data such as
random processes.

Extensions of MMD and HSIC to random processes have been proposed [8,9]. Yet, these
methods require the random process to be stationary, meaning that its distribution does
not change over time. While it is sometimes possible to approximately achieve stationarity
with preprocessing techniques such as (seasonal) differencing or square root and power
transformations, such approaches become cumbersome and notoriously difficult, particu-
larly with large sets of variables. The stationarity assumption can therefore pose severe
limitations in many application areas where multiple nonstationary processes must be
taken into consideration. When studying the relationships of climate change to the global
financial system, for example, factors such as greenhouse gas emissions, stock market
indices, government spending, and corporate profits would have to be transformed or
assumed to be stationary over time.

In this paper, we show how the kernel-based statistics MMD and HSIC can be applied
to nonstationary random processes. At the heart of our proposed approach is the simple, yet
effective idea that realisations of a random process in the form of temporally-dependent
measurements (i.e., the observed time series) can be viewed as independent samples from
a multivariate probability distribution, provided that they are observed at the same points
in time, i.e., over the same temporal grid. Then, MMD and HSIC can be applied on these
distributions to test for homogeneity and independence, respectively.

The remainder of this paper is structured as follows. After discussing related work
in Section 2, we introduce our applications of two-sample and independence testing
with MMD and HSIC to nonstationary random processes in Section 3. We then carry out
experiments on multiple synthetic datasets in Section 4 and demonstrate that the proposed
tests have higher power compared with current functional or multivariate two-sample and
independence tests under the same conditions. We provide an example application of our
proposed methods to a socioeconomic dataset in Section 5 and conclude the paper with a
brief discussion in Section 6.

2. Related Work

Two-sample and independence tests on stochastic processes have been widely studied
in recent years. Under the stationarity assumption, ref. [8] investigate how the kernel
cross-spectral density operator may be used to test for independence, and [9] formulate
a wild bootstrap-based approach for both two-sample and independence tests, which
outperforms [8] in various experiments. The wild bootstrap in [9] approximates the null
hypothesis Hy by assuming there exists a time lag 7 such that a pair of measurements at any
point in time ¢, (x;, y;)¢, is independent of (x;,y;)¢+s for s > 7. This method is applicable to
test for instantaneous homogeneity and independence in stationary processes but requires
further assumptions to investigate noninstantaneous cases: a maximum lag M < 7 must
be defined as the largest absolute lag for the test. This results in multiple hypothesis testing
requiring adjustment by a Bonferroni correction. Further, ref. [10] have applied distance
correlation [11], a HSIC-related statistic, to independence testing on stationary random
processes.

Beyond the stationarity assumption, two-sample testing in the functional data analysis
literature has mostly focused on differences of mean [12] or covariance structures [13,14].
However, ref. [15] have developed a two-sample test for distributions based on generali-
sations of a finite-dimensional test by utilising functional principal component analysis,
and [16] have derived kernels over functions to be used with MMD for the two-sample
test. Independence testing for functional data using kernels was recently proposed in [17]
but assumes the samples lie on a finite-dimensional subspace of the function space—an
assumption not required in our work. Moreover, ref. [18] have developed computationally
efficient methods to test for independence on high-dimensional distributions and large sam-
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ple sizes by using eigenvalues of centred kernel matrices to approximate the distribution
under the null hypothesis Hy instead of simulating a large number of permutations.

3. MMD and HSIC for Nonstationary Random Processes
3.1. Notation and Assumptions

Let {X;} and {Y;} denote two nonstationary stochastic processes with probability laws
Px and Py, respectively. We assume that we observe m independent realisations of {X;}
and n independent realisations of {Y;} in the form of time series measured at Tx and Ty

time points, respectively. Said differently, the data samples X = {x;}!" ; g P are a set of
nonstationary time series, x; = {x;1,..., Xi Ty }, arriving over the same temporal grid, and

similarly for Y = {y;}I"; - py with yi = {¥i1,---,¥i1,}- Note that the measurements
x;¢ and y; ; are not independent across time (we use the terms ‘sample’ and ‘realisation’
interchangeably to denote x; and y; and the term ‘measurement’ to denote the temporally
dependent vectors x;; and y; ;).

We may view the realisations x; and y; as samples of multivariate probability distri-
butions of dimension Tx and Ty, respectively, which are independent at any given point
in time, ie, x;; L xj;and y;; L y;; Vt and Vi # j. Consequently, we can represent
these distributions by their mean embeddings yix and py in reproducing kernel Hilbert
spaces (RKHSs) and use these to conduct kernel-based two-sample and independence tests.
Given a characteristic kernel k, i.e., the mean embedding u captures all information of
a distribution P [19], the dependence between measurements in time is captured by the
ordering of the variables, and the fact that any characteristic kernel k is injective, thus
guaranteeing a unique mapping of any probability distribution into a RKHS [20].

For homogeneity testing (Px L Py), we use the kernel-based MMD statistic and require
equal number of measurements T = Tx = Ty but allow different sample sizes, m # n.
For independence testing (Pxy Z PxPy), we employ the related HSIC, and in this case
number of measurements can differ, but we require the same number of realisations,
m = n. We now describe how two-sample and independence tests can be performed under
these assumptions.

3.2. MMD for Nonstationary Random Processes

Letk: RT x RT — R be a characteristic kernel, such as the Gaussian kernel k(x,y) =
exp (—||x — y||>/c?), which uniquely maps Py and Py to their associated RKHS H via the
mean embeddings jix := [ k(x,-) dPx(x) and py := [k(y,-) dPy(y) [5] (Section 2.1). The
MMD between Py and Py in Hk is defined as [6]:

MMD? (Hy, Px, Py) = [ux — pyll3, >0, with equality iff Px = Py. 1)

Given samples X and Y, MMD?(H;, Px, Py) can then be approximated by the following
unbiased estimator [6]:

xl,x/

mom ., mon k(xi,yi
iy - B G LR SRS o
j#i =

Henceforth, we drop the implied H for ease of notation.

Using M/M\Di (X,Y) as a test statistic, one can construct a statistical two-sample test for
the null hypothesis Hy : Px = Py against the alternative hypothesis Hy : Px # Py [21].

Let a be the significance level of the test, i.e., the maximum allowable probability of
falsely rejecting Hy and hence an upper bound on the type-I error. Given g, the threshold ¢,
for the test statistic can be approximated with a permutation test as follows. We first gener-
ate P randomly permuted partitions of the set of all realisations X U'Y with sizes commensu-
rate with (X,Y), denoted (X,,Y;), p =1,..., P. We then compute I\TI\FDi (Xp,Yp), Vp, and
sort the results in descending order. Finally, we select the statistic at position (1 — a) x P
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as our empirical threshold ¢,. The null hypothesis Hy is then rejected if mﬁ (X,Y) > éa.
For a computationally less expensive (but generally less accurate) option, the inverse cu-
mulative density function of the Gamma distribution can be computed to approximate the
null distribution [22].

3.3. HSIC for Nonstationary Random Processes

Let Py denote the joint distribution of {X;} and {Y;}, and let % and G, be separable
RKHSs with characteristic kernels k : R™ x R™ — Rand I : RTY x RTY — R, respectively.
HSIC is then defined as the MMD between Pxy and PxPy [7]:

HSIC(Hk, g, ny) = MMDZ(Hk ® G, Pxy, Pxpy) 3)
=[xy — px ® VY”%'MCQI > 0, with equality iff Pxy = PyPy.

Here, ® denotes the tensor product. Recall that we assume an equal number of
realisations m for both processes, and let K, L € R™*"™ be the kernel matrices with entries
kij = k(xi,xj) and l;j = I(y;,y;j), respectively. Given ii.d. samples (X,Y), an unbiased
empirical estimator of HSIC(Hy, G;, Pxy) is given by [23] (Theorem 2):

1'K11'l1 2
(m—1)(m-2) m—2

HSIC, (M, G, XY) = [trace(f(i) + 1TI~(t1], (4)

1
i —3)
where K = K — diag(K) and L = L — diag(L), and 1 is the m x 1 vector of ones. To ease
our notation, we henceforth omit the implied #y and G;.

To test HSIC, (XY) for statistical significance, we define the null hypothesis Hy : Pxy =
PxPy and the alternative H; : Pxy # PxPy. We broadly repeat the procedure outlined
in Section 3.2 by bootstrapping the distribution under Hy via permutations, with the
distinction that we only permute the samples {y;}"" ;, resulting in Y,, p € [1, P], whilst the
{x]'};-":1 are kept unchanged [7]. HSIC, (XY) is then computed for each permutation (X, Y,)
and the empirical threshold ¢, is taken as the statistic at position (1 — «) x P. The null
hypothesis Hy is rejected, if HSIC, (XY) > &.

3.4. Maximising the Test Power

The power of both MMD-based two-sample and HSIC-based independence tests is
prone to decay in high dimensional spaces [24,25], as in our setting where each measure-
ment point in time is treated as a separate dimension. Hence, we describe here how a
kernel k can be chosen to maximise the test power, i.e., the probability of correctly rejecting
Hy given that it is false. First, note that under H; both I\Mi(x, Y) [21] (Corollary 16) and
HSIC, (XY) [7] (Theorem 1) are asymptotically Gaussian:

2
WD (X, Y) ~MMDA(P By) D 0 0 ®
VorMP (Px, Py )

HSIC, (XY) — HsIC(Pxy) R

V> (Pxy) N, ©

where VMMP (Py, Py) and Vi5I¢(Pxy) denote the asymptotic variance of I\TM\Di (X,Y) and
HSIC, (XY), respectively [26] (Section 5.5.1 (A)).

Given a significance level «, we define the test thresholds c}™P

o
Hy if Mi(x, Y) > cA™P or HSIC, (XY) > cH9'C. Following [27], the test power is defined
in terms of Py, the distributions under H;, with equal sample sizes m = 1 as:

and ¢! and reject
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AMMD 2 __MMD
P, (mﬁ(x,\() > > D, g MMDZ(Px Py) — ™/ m @)
m VP (Py, Py)
o AHSIC HSIC ]P) __ ~HSIC
P, <HSICu(XY) > ) Lo (Bxy) = /m ) ®)
m Vi (Pxy)

where @ is the cumulative density function of the standard Gaussian distribution and
where ¢, — ¢, with increasing sample size. To maximise the test power, we maximise the

argument of ®, which we approximate by maximising Mi(X, Y)/ 1/ Va™MP(X,Y) and

minimising &™P / <m \/ VMMD (X, Y)) for (7), and similarly for (8). The empirical unbiased
variance VY™P(X,Y) in (7) was derived in [27], and we use [23] (Theorem 5) for V15IC(XY)
in (8).

We perform this optimisation by splitting our samples (X, Y) into training and testing
sets, of which we take the former to learn the kernel hyperparameters and the latter to
conduct the final hypothesis test with the learnt kernel.

4. Experimental Results on Synthetic Data

To evaluate our proposed tests empirically, we first apply our homogeneity and
independence tests to various nonstationary synthetic datasets. We report test perfor-
mance using /1, the percentage of rejection of the null hypothesis Hy, which becomes the
test power once Hj is false, by repeating the experiments on 200 trials (i.e., 200 indepen-
dently generated synthetic datasets). We provide 95% confidence intervals computed as

14+ 1.96,/A(1 — f2) /200.

4.1. Homogeneity Tests with MMD
4.1.1. Setup

We evaluate our MMD-based homogeneity test against shifts in mean and variance of
two nonstationary stochastic processes {X;} and {Y;} by establishing if they are correctly
accepted or rejected under the null hypothesis Hy : Px = Py. For ease of comparison,
we adopt the experimental protocol of [15] and consider two stochastic processes based
on a linear mixed effects model. We generate independent samples X = {x;}/"; and
Y = {yi}/_, on an equally spaced temporal grid of length Tx = Ty = T in the interval
Z=10,1],

K K
Xip = ux(H) + Y Cxip ox(t) +exip and yip = py() + Y Svie e(t) +evip, )
k=1 k=1

where we set K = 2 with Fourier basis functions ¢;(t) = /2sin(27tt) and ¢(t) =
V2 cos(27tt). The coefficients ¢xix and Jy, ;. and the additive noises ex; ¢, €y; are all inde-
pendent Gaussian-distributed random variables with means and variances specified below.

We evaluate the test power against varying values of shifts in mean and variance
as follows:

*  Mean shift: px(t) = t and py(t) = t + ,t>. The basis coefficients are sampled as
&xinr Gyip ~ N(0,10) and &x; 5, &y;n ~ N(0,5), and the additive noises are sampled
as €x;¢, €Yit ™~ N(O, 025)

e Variance shift: We take px(t) = puy(t) = 0, and introduce a shift in variance in the
first basis function coefficients via &x;; ~ N(0,10) and &y;; ~ N(0,10 + é;). The
second coefficients are sampled as &x; », Gy;» ~ N(0,5), and the noises as ex; s, €y ~
N(0,0.25).

The coefficients J;, and é, for mean and variance shifts, respectively, determine the

departure from the null hypothesis. Setting J;,, 6o = 0 means H is true, whereas d;, 60 > 0
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means H) is false. Although this is not a necessity, we set the number of independent
samples of {X;} and {Y;} to be equal, m = n. To test for statistical significance, we follow
the procedure described in Section 3.2 and perform permutation tests of P = 5000 partitions
for varying values of J, and J, and different sample sizes m = 100, 200, 300, 500.

4.1.2. Baseline Results without Test Power Optimisation

Our baseline results are obtained with a Gaussian kernel k(x,y) = exp (—||x — y||>/c?)
with bandwidth ¢ equal to the median distance between observations of the aggregated
samples. Figure 1 shows how our method (solid lines) compares to [15] (dashed lines) for
T = 100 discrete time points. For all sample sizes, the type-I error rate lies at or below the
allowable probability of false rejection &, and our method significantly outperforms [15]
for nearly all levels of mean and variance shifts. Both shifts become easier to detect for
larger sample sizes. Particularly strong improvements are achieved for mean shifts: our
method makes no type-II errors for dy > 3 on m = 100 samples, whereas [15] only reach
such performance with m = 500 samples and 6, > 4.5. We obtain similar test power results
(see Appendix A.1) for coarser realisations with T = 5,10, 25,50 over the same interval
Z=1[01].

MMD, Variance shift, T = 100

80

)
3

% rejection of Ho
&
8

MMD, Mean shift, T = 100

e 100 =7
7 .
7
’
’

7 80
°
T
k]
2 0
2
k¥t
kA
2 0

— m=n=100 2 — m=n=100

—— m=n=200 — m=n=200

— m=n=300 — m=n =300

m =n =500 20 m = n =500

—— Our baseline method —— Our baseline method

~—- Pomann et al. (2016) —=- Pomann et al. (2016)

— = o )

3 4 5 6 7 8 0 5 10 15 20 25 30
Mean shift 6, Variance shift 6o

Figure 1. Results of our MMD-based homogeneity test for nonstationary random processes: percentage of rejected Hy as
mean shift (left) and variance shift (right) are varied. Our baseline method (solid lines) is compared to [15] (dashed lines)
for different sample sizes m = n = 100,200, 300,500 and T = 100 discrete time points.

4.1.3. Results of the Optimised Test

Next, we apply the method described in Section 3.4 to maximise the test power. Specif-
ically, we search for the Gaussian kernel bandwidth ¢ (over spaces defined in Table A1
in Appendix A.2), that maximises the argument of ® in our approximations of (7) on our
training samples. For demonstrative purposes, we choose to split our dataset equally into
training and testing sets although other ratios may lead to higher test power. Figure 2
shows the results of the optimised test (dotted lines) against the baseline results (solid
lines) and the results of [15] (dashed lines) for m = 100 and m = 200 samples and T = 100
discrete points in time. We find that the test power is significantly improved by our optimi-
sation for the detection of mean shifts. For instance, test power rises fourfold for 6, = 1
and m = 200 compared to our baseline method. Furthermore, we have no type-II errors
once 6, > 2 for m = 100, as compared to 6, > 3 for our baseline test and 6, > 6.5 for [15].
In its current form, however, our optimisation does not yield higher test power for the
detection of variance shifts, a fact that we discuss in Section 6.
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Figure 2. Results of homogeneity test with optimising for test power: percentage of rejected Hy for mean shift (left) and
variance shift (right) for sample sizes m = n = 100,200 and T = 100 discrete time points. Our optimised test power method
(dotted lines) is compared to our baseline method (solid lines) and [15] (dashed lines).

4.2. Independence Tests with HSIC
4.2.1. Setup

To test for independence, the null hypothesis is Hy : Pxy = PxPy. We assume we

observe measurements x; ; and y; ; over temporal grids of length Tx and Ty in the interval

= [0,1], respectively. To measure type-I and type-II error rates, we use the following
experimental protocols, partly adopted from [7,18,28]:

e Linear dependence: X is generated as in (9) with pix(t) = t, basis coefficients {x;; ~
N(0,10), &x;o ~ N(0,5), and noise ex;; ~ N(0,0.25). The samples of the second
process are Y = {x;1 + €;}" | where ¢; ~ N'(0,1), as in [18].

e Dependence through a shared coefficient: X and Y are generated as in (9) with px(t) =
py(t) = t and independently sampled x; 1, {y;1, €xit €yir as in the mean shift
experiments of Section 4.1, but where the stochastic processes now share the second
basis function coefficient: {x;, = Cy;o-

e Dependence through rotation: We start by generating independent X and YO as in )
with jx(t) = py(t) = t and ex;y, ey;y ~ N(0,0.25), but with x;, and gy, drawn
from: (i) student-t, (ii) uniform, or (iii) exponential distributions [28] (Table 3). We
next multiply (X(©,Y(©)) by a2 x 2 rotation matrix R(6) with 8 € [0, 77/4] to generate
new rotated samples (X, Y), which we then test for independence. Clearly, for 6 = 0
our samples (X, Y) are independent and as 6 is increased their dependence becomes
easier to detect (see [7] (Section 4) and Figure A3 for implementation details).

Statistical significance is computed using P = 5000 permutations of Y whilst X is
kept fixed to approximate the distribution under Hy. Test power is calculated for varying
= [5,10,25,50,100] and different sample sizes m = n.

4.2.2. Baseline Results without Test Power Optimisation

Our baseline results are computed using a Gaussian kernel with ¢ equal to the median
distance between measurements in the corresponding sample. Figure 3 (left) shows the
results of our test on the linear dependence experiments, which demonstrate, due to
Ty = 1, how dependencies between individual points in time and an entire time series can
be detected. We Compare our method to: (i) a statistic explicitly aimed at linear dependence,
SubCorr = - " Corr (i b iz 1, Y), where Corr( -) is the Pearson correlation coefficient;

and (ii) SubHSIC = T Z, lHSICu {x, #1721, Y). For both of these methods, the distribution
under Hj is also approx1mated via permutatlons. We find that SubCorr outperforms
the other methods in experiments with sample sizes m < 20, and SubHSIC achieves
comparable results to our method. The results for Tx = [25,50,100] (see Appendix A.1)
are similar.
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Figure 3. Results of the HSIC-based independence test: Test power for linear dependence (left) and dependence through
shared coefficients (right) as sample size is varied for various numbers of time points. For the linear dependence, we
compare our baseline results to SubCorr and SubHSIC; for the shared coefficient, we compare against two spectral
approximations [18] (Section 5.1).

Figure 3 (right) displays the power of our independence test for the case of dependent
samples through a shared coefficient for varying sample sizes m and measurements T.
We compare our results to two spectral methods [18] that approximate the distribution
under Hy using eigenvalues of the centred kernel matrices of X and Y: spectral HSIC uses
the unbiased estimator (4) as the test statistic with the eigenvalue-based null distribution;
and spectral RFF uses a test statistic induced by a number of random Fourier features
(RFFs) (set here to 10) that approximate the kernel matrices of X and Y. Our method and
spectral HSIC achieve 20 — 50% improvement in test power compared to spectral RFF.
For small numbers of samples (m < 15), our method outperforms spectral HSIC, which
converges to the performance of our method with increasing sample size, as we would
expect it [22] (Theorem 1).

Figure 4 shows the rotation dependence experiments, where 6§ = 0 corresponds
to the null hypothesis (independence) and 6 > 0 to the alternative. The distribution
hyperparameters for {x; , and Gy;  are detailed in Appendix A.3, and we set Tx = Ty =
T, although equality is not required. As expected, dependence is easier to detect with
increasing 6. We observe that denser temporal measurements do not result in enhanced test
power. Note that the test power is highly dependent on the distribution of the coefficients
of the basis functions ¢x; r, Cy;-

4.2.3. Results of the Optimised Test

The test power maximisation was applied to the rotation dependence experiments
by searching for optimal Gaussian kernel bandwidths ox and oy over predefined intervals
(specified in Appendix A.2). Figure 4 shows that the test power is improved when the basis
function coefficients are drawn from uniform distributions. In this case, the percentage
of rejected Hy is 20 — 40% higher for 6 between 0.2 and 0.75 x /4, but it levels off at
95% once 6 > 0.75 x 7r/4, which is the same level achieved by our baseline method for
6 > 0.85 x 7r/4. With our current test-train split, our optimised test does not improve
the test power if the basis function coefficients {x; ; and y; are drawn from student-t or
exponential distributions.
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Figure 4. Results of the HSIC-based independence test: Percentage of rejected Hy in rotation dependence experiments for different

number of discrete time points T and coefficients {x;, and Jy;; drawn from three distributions: (i) student-t, (ii) uniform, and
(iii) exponential (see Appendix A.3). The sample size is m = 200. The violet dotted lines are the results of our test power maximisation.

5. Application to a Socioeconomic Dataset

As a further illustration, we apply our method to the United Nations’ socioeconomic
Sustainable Development Goals (SDGs) (see Appendix A.4 for details). Specifically, we
investigate whether some so-called Targets of the 17 SDGs have been homogeneous over the
last 20 years across low- and high-income countries and whether certain SDGs in African
countries exhibit dependence over the same period. In both settings, we assume countries
are independent.

For our homogeneity tests, we classify countries into low- and high-income according
to [29]. We use temporal data of 76 Targets for which [30] provides data collected over
the last T = 20 years for m = 30 low-income countries and n = 55 high-income countries.
Applying our baseline method without test power optimisation, we find that, out of the
76 Targets we have data available for, only 38 have had homogeneous trajectories in low-
and high-income countries. For instance, whereas the ‘death rate due to road traffic injuries’
(Target 3.6) has been homogeneous between these two groups, the ‘fight the epidemics of
AIDS, tuberculosis, malaria and others’ (Target 3.3) has not been homogeneous in low- and
high-income countries.

For our independence tests, we consider temporal data from m = n = 49 African
countries over T = 20 years and test any two Targets for pairwise independence. Of
the total 2850 possible pairwise combinations, the null hypothesis of independence is
rejected for 357. As an illustration, we examine the dependencies of ‘implementation of
national social protection systems’ (Target 1.3) with ‘economic growth’ (Target 8.1) and the
‘proportion of informally employed workers’ (Target 8.3). Applying our baseline method,
we accept the null hypothesis of independence between Target 1.3 and 8.1, i.e., we find
that the ‘implementation of national social protection systems’ has been independent of
economic growth. In contrast, we find that Target 1.3 has been dependent on the ‘proportion
of informally employed workers’ (Target 8.3).

6. Discussion and Conclusions

Building on ideas from functional data analysis, we have presented approaches to
testing for homogeneity and independence between two nonstationary random processes
with the kernel-based statistics MMD and HSIC. We view independent realisations of the
underlying processes as samples from multivariate probability distributions to which
MMD and HSIC can be applied. Our tests are shown to outperform current state-of-the-art
methods in a range of experiments. Furthermore, we optimise the test power over the
choice of kernel and achieve improved results in most settings. However, we also observe
that our optimisation procedure does not always yield an increase in test power. We leave
the investigation of this behaviour open for future research with the possibility of defining
search spaces and step sizes over kernel hyperparameters differently or of choosing a
gradient-based approach for optimisation [27]. Our results show that small sample sizes of
less than 40 independent realisations can already achieve high test power and that denser
measurements over the same time period do not necessarily lead to enhanced test power.
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The proposed tests can be of interest in many areas where nonstationary and nonlinear
multivariate temporal datasets constitute the norm, as illustrated by our application to test
for homogeneity and independence between the United Nations’ Sustainable Development
Goals measured in different countries over the last 20 years.

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable

Data Availability Statement: The socioeconomic dataset is freely available at [30].

Appendix A

Appendix A.1. Results for Realisations with Varying Number of Time Points, T
MMD We show here the results for mean and variance shifts for m = n = 100, but the
results are similar for all tested sample sizes m = n = 100,200, 300, 500,

MMD, Mean shift, sample size = 100 MMD, Variance shift, sample size = 100

100

80 80

2
3

=3

S

% rejection of Ho

IS
S

% rejection of Ho
IS
8

20

3 5 6 7 8 0 5 10 15 20 25 30

a
Mean shift 5, Variance shift 65

Figure Al. Results of MMD-based homogeneity test with T = [5,10,25,50,100]: Percentage of rejected Hj for mean
shift (left) and variance shift (right) for sample sizes m = n = 100 and T discrete time points in d = 1 dimensions.

HSIC Experiments for linear dependence and dependence through shared second basis
function coefficient for various T. We find that the granularity of measurements over time
does not influence the text power significantly.

HSIC, Linear dependence HSIC, Shared coefficient
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80 80

60 60

40

Test power x 100

40

Test power x 100

20 20

5 10 15 20 25 30 35 40 5 10 15 20

25 30 35 40
Sample size

Sample size

Figure A2. Results of the HSIC-based independence test: Test power for linear dependence (left) and dependence through
shared coefficient (right) as sample size is varied for various numbers of time points T = [5,10, 25,50, 100].

A.2. Test Power Maximisation

MMD For mean shift experiments for MMD, we predefine a linear search space with
11 values for the Gaussian kernel bandwidth ¢ due to the dependence on ¢, and similarly
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for variance shift experiments (both stated in Table A1). These search spaces resulted from
extensive manual explorations for all shifts and sample sizes. We acknowledge that the
test power may be further improved with search spaces of finer granularity.

HSIC We define search intervals of both ox and oy across all angles 6 but different
for the student-t, uniform, and exponential distributions. For student-t and exponential
distributions, both ox and ¢y were chosen as 20 evenly spaced numbers on a linear scale
between 1 and 20. For uniform distributions, both ox and oy were chosen as 40 evenly
spaced numbers on a linear scale between 1 and 40. These search spaces resulted from
extensive manual explorations for all angles and distributions. We acknowledge that the
test power may be further improved with search spaces of finer granularity.

Table Al. Linear search spaces for bandwidth ¢ in MMD mean (left) and variance (right)
shift experiments.

s 0-2 2.25-3 3.25-5 5.5-8 s 04 5-14 15-32
" Step Size = 0.25 Step Size = 0.5 7 Step Size=1
1 6 11 16 10 20 30
3 8 13 18 12 22 32
s 5 10 15 20 s 14 24 34
& 7 12 17 22 £ 16 26 36
g 9 14 19 24 g 18 28 38
g 11 16 21 26 £ 20 30 40
S 13 18 23 28 5 22 32 2
5 15 20 25 30 5 24 34 44
? 17 22 27 32 ? 26 36 46
19 24 29 34 28 38 48
21 26 31 36 30 40 50

Appendix A.3. Distribution Specifications for Basis Function Coefficients in Rotation Mixing

Table A2. Specifications of distributions for the rotation mixing. They are a subset of the distributions
in [28] (Table 3), and Z is a proxy for both X and Y.

Fourier Basis Function Coefficients

Distribution
Szi1 Czi2
Exponential A=15 A=3
Student-t v=3 v=>5
Uniform U[-10,10] U[-5,5]
(i) Student-t (ii) Uniform (iii) Exponential
6=0 6=m12 o=m1z 6=0 6=m12
X X
6=n/4 6=n/6

Figure A3. Illustration of X and Y with (i) student-t, (ii) uniform, and (iii) exponential basis function coefficients being mixed by
different rotation angles 6, ordered clockwise by increasing 6.

A.4. SDG Dataset

Data of the Indicators measuring the progress of the Targets of the SDGs can be
found at [30]. Each of these Indicators measures the progress towards a specific Target.
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For instance, an Indicator for Target 1.1, ‘by 2030, eradicate extreme poverty for all people
everywhere, currently measured as people living on less than $1.90 a day’, is the ‘proportion of
population below the international poverty line, by gender, age, employment status and geographical
location (urban/rural)’. Each of the Targets belongs to one specific Goal (e.g., Target 1.1
belongs to Goal 1, “end poverty in all its forms everywhere”). There are 17 such Goals, which
are commonly referred to as the Sustainable Development Goals (SDGs). We compute
averages over all Indicators belonging to one Target for our analyses in Section 5.

The dataset of [30] has many missing values, especially for the time span 2000-2005.
We impute these values using a weighted average across countries (Where data is available)
with weights inversely proportional to the Euclidean distance between indicators.
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Abstract: The output gap, the difference between potential and actual output, has a direct impact on
policy decisions, e.g., monetary policy. Estimating this gap and its further analysis remain the subject
of controversial debates due to methodological problems. We propose a local polynomial regression
combined with a Self-Exciting Threshold AutoRegressive (SETAR) model and its forecasting extension
for a systematic output gap estimation. Furthermore, local polynomial regression is proposed for the
(multivariate) OECD production function approach and its reliability is demonstrated in forecasting
output growth. A comparison of the proposed gap to the Hodrick-Prescott filter as well as to
estimations by experts from the FED and OECD shows a higher correlation of our output gap with
those from those economic institutions. Furthermore, sometimes gaps with different magnitude and
different positions above or below the trend are observed between different methods. This may cause
competing policy implications which can be improved with our results.

Keywords: business cycles; nonparametric methods; output gap; trend identification

JEL Classification: C14; C22; E31; E52

1. Introduction

Since the influential work of [1], the output gap and its reliability have been widely
discussed. Also, the importance of gap estimations for “conjunctural and monetary policy
analysis” ([2], p. 2) is undisputed. The difficulties in the estimation of potential output
are summarized by [3]. They distinguish three methods for its estimation: (i) statistical,
(ii) production function and (iii) structural approaches. Ref [2] show that some statistical
methods produce unreliable real-time estimates of the gap. These unreliable output gap
estimates have induced unfavorable monetary policy activities, as [4] demonstrate for the
UK. Thus, monetary policy recommendations need to be treated carefully as they depend
heavily on the estimation method used for potential output.

The following four reasons for instable output gap estimations: (i) influence of first
estimates on policy decisions, (ii) forecast errors, (iii) data revisions and (iv) varying
decompositions of trend and cycle are identified by [5]. We focus on reducing the effects of
(iv) by applying a new decomposition method and of (ii) by using more information, e.g., a
regime-switching SETAR model. Furthermore, higher correlations of the recent proposal
with output gaps from policy institutions and an improvement in the accuracy of output
growth forecasts using the new output gap underline its reliability.

Since no true output gap exists one must rely in accordance with [6] on estimates
without having an unambiguous definition from theory. Their paper summarizes numerous
methods used to estimate the output gap, e.g., the Hodrick-Prescott (HP) filter, the [7]
filter, and the [8] (BN) decomposition (see [9]). They distinguish between univariate
time series methods and multivariate methods. Although multivariate methods process
information from additional explanatory variables, ref [6] conclude that no multivariate
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model outperforms its univariate competitors. One of the most widely used methods for
output gap estimations, employed e.g., by the European Commission (EC) and (indirectly)
by the OECD, is the HP filter introduced by [10]. Using this penalized spline smoother
results in very different gaps depending on the arbitrarily selected smoothing parameter
A ([1]), yielding somewhat arbitrary, either negatively or positively, output gaps [11].
Recently, the HP filter is criticized by [12] for causing problems at an unknown amount
of boundary points. This becomes obvious once new data is available, which results in
significant output gap revisions and reduces real-time reliability.

As mentioned by [13], many detrending methods perform poorly at time series end-
points, which results in output gaps that are sensitive to large revisions. This is also
proposed by [1], who argue that the vast majority of output gap revisions are attributable
to the boundary problems of detrending methods. This view contrasts with the expectation
that data revisions are the primary source of uncertainty, whereas in line with [2] model
and estimation uncertainty are much smaller. Further discussions on improvements of
the FED output gap estimates and purely statistical methods over the last decades can
be found in [13]. Nevertheless, they also confirm the poor reliability of solely statistical
methods over the whole period and add that the accuracy of output gap estimates depends
on the period under investigation, while the last decade eases gap estimation.

In order to estimate a reliable output gap accurately, an identification of trend and
cycle is a prerequisite ([5]) and needs to be combined with the systematic analysis of the
gap component. Therefore, any analyses need to provide additional information that
can be used to estimate a more precise output gap. To use all available information in
the sense of applying a two-sided filter, the local polynomial regression of [14] may be
a better alternative for estimating the output gap. This method in its local linear (LLR)
version also improves the estimation quality at boundary points, since an asymmetric
boundary kernel is introduced to enhance the estimation quality at time series endpoints
(real-time reliability). Moreover, the LLR allows for short-range dependence between trend
and cyclical movements as required by [9] who analyze the revision properties of the BN
decomposed output gap. The use of a (semi-)SETAR model provides additional information
for the output gap. We then extend the method to forecast output gaps. Moreover, the
univariate LLR of [14] is extended to multivariate analysis to examine the contribution of
multivariate methods. Besides introducing this methodology, we also compare the gaps
produced using the LLR with those using the HP filter for (i) statistically based estimations
and (ii) the production function approach used by the OECD. Finally, the output gap
estimated by experts from the FED and OECD is used as a benchmark. However, since no
original gap exists, the comparison with external criteria on the appropriateness of the gap
is difficult.

Section 2 presents the nonparametric LLR. Section 3 shows its application and com-
pares it to the HP gap. Section 4 combines output gaps and semi-SETAR models by
comparing different methodologies to those of the FED and the OECD by extending the
univariate LLR approach to a multivariate method. Section 5 shows the predictive power
of the new gap for output growth. Section 6 concludes.

2. Local Linear Regression

In the introduction, the HP filter is criticized for its suboptimality at boundary points.
The LLR has automatic boundary correction [15], ensuring that asymptotic properties of
the estimators in the interior still hold at boundary points. We focus on the estimation
quality at these points and use an asymmetric boundary kernel to obtain stable boundary
estimates, which are the key to obtaining reliable real-time output gap estimates. Ref [14]
use an additive component model:

Y = m(x¢) + &, (1)

296



Eng. Proc. 2021, 5,32

3o0f11

where Y} is a sequence of macroeconomic time series with time t = 1,...,T, x; = t/T
denotes the rescaled time, m(x) is some smooth function and &; denotes a zero mean
stationary process.

Thus, a data-driven local polynomial estimator for the smooth trend function is used
in line with [14] without any parametric assumptions on ¢;. Under the assumption of
short-range dependence the authors use the following Equation (2) for estimating the trend
m(x¢) by minimizing the locally weighted least squares:

L 2 1\’ Xp— X
A

where W(u) = Cyu(1—u?)"1_ (1), w = 0, 1, ... is the weight function (a second
order kernel on [—1, 1]) and % is the (relative) bandwidth. In Equation (2) the bandwidth
determines the smoothness of the trend and is the counterpart to HP’s A. Minimizing
Equation (2) yields any v-th derivative of n(x), defined as m(®)(x) (v < p). If p — v is
odd, the linear smoother 7(?) (x) has automatic boundary correction and the bias is of
order k — v. We use the Epanechnikov kernel as the weight function, which is optimal in
the MSE sense. The resulting trend estimates are /(%) (x) = v!B,, wherev =0, 1, ..., p.
Since the local linear estimator, where p = 1, results in the most stable boundary estimates
(for two-sided filters), it seems a logical choice for estimating the output gap. In order to
estimate the bandwidth in a data-driven manner, we follow [14], where the bandwidth is
estimated by minimizing the asymptotic mean integrated squared error (AMISE):

I{m(")]ﬁz 27c(dy — cp)R(K
— j2(k=0) f(dy — ) R(K)
AMISE(h) = h T o

®)

The corresponding optimal bandwidth / for estimating m(x) on [0, 1] is chosen using:

1
B — ( 20+1 ercf[k!]z(db - Cb)R(K)> G T-1/(2k+1),

4
2o R ?

where I [mk} = fc'zl’ {m(k) (x)] 2dx, Bok) = fil u¥K(u)du, and R(K) = f—ll K?(u)du, and K
is the asymptotically equivalent kernel in the interior. Furthermore, v is the order of the
derivative and k = p + 1, so that m is k-times continuously differentiable. c; = f(0) is the
value of the spectral density of &; at the origin, with f(A) = 1/27Y° vz (l)e™ ™, —m <
A < 7. The dependence structure is fully captured by the bandwidth. The values ¢, and
dy, can be chosen to select the bandwidth using only observations between these bounds.
Details of the data-driven IPI are described in [15]. To address the criticism of [12,16], an
asymmetric boundary kernel is used to weight the boundary points and the bandwidth at
the boundary is kept constant such that the asymptotic properties at the boundary are the
same as in the interior [17].

3. Output Gap Estimation Using the LLR

In this section, the LLR is used to estimate the output gap for the US economy without
any parametric model assumptions of the output gap component. Therefore, quarterly
US GDP vintages from 1947.1 to 2018.3 and annual US GDP from 1790 to 2018 by [18] are
used. To contrast our results with those of [1,19], we follow their definitions. Thus, the final
estimate of the output gap is defined as the detrended last available vintage (2018.3). Using
the LLR for every vintage and collecting each endpoint estimation delivers a new time
series that is defined as “the real-time estimate of the output gap” ([1], p. 571). As in [19],
the last 2 years are not used to ensure that the comparison is not biased by the last vintages.
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Figure 1 shows the real-time output gap estimates of the LLR compared to those of the
HP filter (A = 1600) for quarterly US GDP data. The HP filter and the LLR could be quite
similar if A is chosen correctly, which can also be detected in the resulting output gaps.
Nevertheless, these approaches sometimes yield very different output gaps. In some cases,
only the magnitude of the gaps differs, whereas in others the sign is contradicting. The
HP gap is slightly smaller for the period from 1966.1 to 2018.3. This is obvious especially
since the 2000s. These observations confirm the analysis of [1], where different detrending
procedures yield various output gaps.

Real-time output gap LLR vs. HP 1966.1-2018.3

T
1970

T T
1980 1990 2000 2010 2020

Year

Figure 1. Real-time output gap estimation for quarterly US GDP data from 1966.1 to 2018.3 using the local linear regression
(black) and the HP filter (red).

An even more stable real-time estimation of the gap is possible by using the LLR, since
the trend is estimated appropriately with regard to the data-driven degree of smoothing
and the introduced boundary correction increases the reliability of the output gap. The
poor performance of the HP filter during periods of increased cyclical variation is examined
by [20,21]. They conclude that using an unreliable detrending method such as the HP
filter results in crises that are shown to be less intense than they actually are because most
changes are attributed to trend movements. This presumable underestimation of the output
gap using the HP filter is evident in Figure 2, where the gaps are shown for the Great
Depression using data from 1790 to 2018. In this figure, the LLR (black) and the HP trend
with A = 6.25 (red) are shown for annual observations (grey line) from 1920 to 1960. The
HP filter gap (red area) is significantly smaller than that estimated with the LLR (blue area).
This may be a hint for the underestimation properties of the gap proposed by [20,21]. It is
important to note that the amplitude of the HP filter can be adjusted using different values
of A. Nevertheless, for the LLR the bandwidth estimation is data-driven, so the arbitrary
choice of A is not necessary. To summarize, the data-driven selection and the stable and
automatic boundary correction demonstrate the advantages of the LLR. The effects due to
parameter, model and data uncertainty in the sense of [2] are per definition lower using the
HP filter, but these smaller effects may not reflect the true output gap.
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Differences in output gap estimations using HP and LLR for LN-US GDP 1920-1960

LN-US GDP

1930 1940 1950 1960

Year

Figure 2. Estimation of the LLR (black) and the HP trend (red) with its corresponding gap estimations (blue area for LLR
gap and red area for HP gap) and the original observations (grey) for US GDP from 1920 to 1960.

Since crises are unusually volatile transitory events, it is expected that the HP filter,
which assumes a constant signal-to-noise ratio, performs less reliable in those periods.
Although the IPI captures heteroscedastic events due to minimization of the AMISE, we
improve the LLR by implementing a version that is able to leave those periods out for
bandwidth selection.

The possible underestimation heavily influences monetary policy by, e.g., central
banks, that in turn under- or overshoot with their interventions. Moreover, the different gap
estimations influence the timing of policy actions. The HP filter has a similar disadvantage
as one-sided filters. [16] argues in the setting of bandpass filtering that the underestimation
of the output gap using these methods is a substantial error. A similar analysis for the
period of the financial crisis around 2007 /2008 shows that the estimated output gaps get
smaller after the 2000s. As expected, the gap is significantly smaller than that estimated
during the Great Depression, independent of the detrending approach, with neither method
showing a significant gap for the recent period.

Various sources of uncertainty for gap estimation are identified by [2]. To analyze
parameter uncertainty and parameter instability, we compare the final estimates and the
real-time estimates of the output gap in Figure 3, which compares the real-time LLR gap
(black) to the final LLR gap (green). Further, the real-time gap estimated with the HP filter
(red) is compared to the final HP gap (blue). The differences between the real-time LLR
gap (black) and the final LLR gap (green) partly reflect these different uncertainties. It
is argued that a higher correlation between final and real-time estimation shows a lower
level of revisions [2]. The calculated correlation for the LLR is 0.2949 and that for the
HP filter is 0.5083. This discrepancy can be explained by the data-driven nature of the
LLR, where the bandwidth changes slightly with every new observation point because
the bandwidth depends on the sample size T (Equation (3)). By contrast, the smoothing
parameter for the HP filter is fixed at A = 1600, which causes no additional revisions to the
gap estimates. Consequently, the correlation for the HP filter gap is higher per definition.
However, the revision properties show that the LLR is appropriate for the ex post analysis
of the output gap.

299



Eng. Proc. 2021, 5,32

60f 11

HP, data-driven local linear real-time vs. final gap estimates 1966.1-2018.3
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Figure 3. Real-time LLR (black) and final LLR (green) output gaps compared to real-time HP (red) and final HP (blue)
output gaps estimation for quarterly US GDP data from 1966.1 to 2018.3.

4. Models for the Output Gap Component

The proposed AMISE-optimal decomposition may identify a more systematic cyclical
component that needs to be analyzed during the further estimation of the output gap.
Therefore, SETAR is used to further analyze the characteristics of the two different (LLR vs.
HP) output gap series.

4.1. Semi-SETAR Model

To verify that the deterministic LLR combined with a further model for the gap
component produces a more stable output gap, we fit different SETAR(k,p,d) models, as
introduced by [22,23], to the residuals and their growth rates (LLR and HP gaps):

& = <Péj) + 4’?‘)@71 — = 47;7].)@7}7 + ﬂgj)/ ifyj <G < 5)

Residuals ¢; are estimated by past realizations ¢t—p and autoregressive coefficients

(,bl(jj ) such that the threshold variable ¢t—q with d depicting the delay parameter lies in the
()

range of y;_1 up to 7; dividing the domain of ¢;_ into j regimes. a,”” are white noise errors.
Trend and cycle are estimated using the LLR and HP filter and gaps are further analyzed
with a SETAR model (We focus on the results for annual data as they are mostly used for
cyclical analysis, see [2]). This modified and more systematic output gap identification has
its merits for accurately timed policy actions, as additional information reduces problems
affiliated with unsuitable policy activities [4].

In line with [14], we allow for two different regimes (j = 2) which are separated
by the threshold zero in a high regime (HR) for expansions and a low regime (LR) for
recessions. Moreover, different orders p = 1, 2, 3 of the AR part are tested and the
delay parameter is set to d = 0. The results are displayed in Table S1 in the supplement
material. It is evident that the coefficients are larger for the SETAR models fitted to the
LLR output gap. Both coefficients are significantly different from zero. Whereas ¢, . =
0.9235 implies that the next observation will be roughly the same within the same régime,
¢1“}{ p = 0.3345, which is much lower in magnitude, implies a much lower probability of
similarity to the last observation Y;_;. Thus, the LLR shows more systematic and larger
gaps. By contrast, the HP filter gap implies more short-lived differences between actual
and potential output. Using the —0.04 gap observed in 2010 leads to a gap of LLR that is
three times the magnitude of that calculated using the HP based SETAR model (in absolute
terms) and it lasts for a longer period when calculated with the LLR. The growth rates are
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analyzed in Table S2 in the supplements. The additional information provided by the LLR
shows a long-lasting and significant expansion regime resulting in more accurately timed
intervention of monetary policy makers (central banks). This drawback of the HP filter is
ascribed to the arbitrarily selected smoothing parameter.

4.2. The OECD Approach and the Multivariate LLR

Since the true output gap is not observable, a valuation is difficult but a comparison
with a methodological framework used by experts is straightforward. To demonstrate
the performance of the LLR output gap estimations, we compare it to the output gap
calculated by the OECD Economics Department. Using a Cobb-Douglas production
function approach, [24] calculate potential output by using the trend components of labor
efficiency (LE), a population between 15 and 74 (POP), and labor force participation
rate between 15 and 74 (LFPR) obtained with a cyclical adjustment and the HP filter,
with A = 100. The unemployment rate is considered and filtered through the Kalman
filter, where the productive capital stock (PK) enters the estimation without detrending.
Following Equation (4) of [24], potential GDP (PGDP) is estimated by:

- LFPR UNR\1" (1-a)
PGDP = LE~POP~W~(1—W>} (PK)" Y. (6)

To compare the OECD gap to the LLR gap, we adjust the estimation method of [24] by
replacing the HP components in their Cobb-Douglas production function in our Equation
(6) by the trend obtained using the LLR. Therefore, we extend the LLR to a multivariate
approach. Afterwards, we determine potential output and finally the output gap. Figure 4
displays the OECD output gap approach using the LLR for detrending (green) together
with the OECD gap using the HP filter (blue). Again, both estimated output gaps are quite
similar and the magnitude is not significantly different, except during the Great Recession,
where the OECD gap shows a much larger cycle. From 2008 onwards, the amplitude of the
HP-filtered output gap is much larger than that of the LLR-based gap. Surprisingly, these
results show that the LLR seems to have a higher variability than the HP trend since the
Great Recession, which may be explained by additional cyclical adjustment used in [24].
However, the LLR needs no cyclical adjustment before detrending, is fully data-driven and
more stable at boundary points in real-time applications.

Comparison of LLR, HP, OECD and FED US output gap 1985-2019

1990 1995 2000 2005 2010 2015 2020

Year

Figure 4. Comparison of univariate LLR (black) and HP filter (red) output gap with the OECD output gap using the LLR
(green) and the HP filter (blue) together with the FED output gap (turquoise).
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4.3. Comparison of Univariate EC and Multivariate OECD Approach

Multivariate methods, like the OECD production function approach, do not signif-
icantly enhance the quality of output gap estimation but impose additional structural
assumptions [6]. Univariate time series methods, as used by the EC and the LLR, per-
form quite reasonably. To compare univariate and multivariate methods and to show the
performance of the LLR in both types of applications, Figure 4 displays the gaps using
the LLR (black) and the HP filter (red) for the final time series and the output gaps using
the production function approach with the LLR (green) and the HP filter (blue). The
output gap estimates from the FED (turquoise) are displayed as a benchmark in accordance
with [13]. Obviously, both final univariate output gaps yield quite similar results (as for
quarterly data). The gaps produced using the OECD approach are larger, although both
multivariate gaps show similar dynamics. Those dynamics are also in line with the FED
output gap. Surprisingly, the differences between the FED output gap and the OECD HP
gap increase after 2014. It is important to mention that the frequency of the FED data is
quarterly, thus the variability is larger than in the other series. However, using the HP
filter and the additional cyclical adjustments of [24] produces a significantly larger gap
than using the LLR. The LLR delivers output gap results in univariate and multivariate
approaches that are in between those using the HP filter. Thus, the HP time series method
may underestimate the gap while the HP OECD approach may overestimate it. This could
be an argument in favor of the data-driven LLR, which is less arbitrary than the HP filter
with regard to the degree of smoothness and produces more stable boundary estimates. As
mentioned by [19], output gaps estimated by policy institutions provide a good benchmark
to compare gaps. Thus, gaps from economic experts may be more reliable compared to
purely statistical approaches [13]. They demonstrate that the FED use an evaluated and
weighted average of statistical and structural methods. Table 1 shows the correlation
coefficients for the LLR and HP based output gaps with those of the FED and the OECD.
The correlation coefficients between the proposed LLR approach and the expert gaps are
significantly higher than using the real-time HP filter gap. Using the LLR depicts the gaps
estimated with economic expertise more reliably than using the HP filter. In other words,
the LLR reflects the output gap benchmark provided by policy institutions more precisely
than the HP filter.

Table 1. Correlation between real-time LLR and HP gaps with ex post gaps from policy institutions.

Output Gap FED OECD
LLR 0.6488 0.7071
HP 0.5071 0.5678

5. Forecasting and Evaluating Output Gaps

Among others, ref [25] use forecasting methods to estimate revisions in potential
growth. Since the semi-SETAR model is able to reproduce cyclical features in recessions
and expansions, extending it to forecast gaps is straightforward.

5.1. Output Gap Forecasting Using the Semi-SETAR Model

We use the LLR and the SETAR model to forecast the output gap. Firstly, the trend
is estimated and removed from the original observations (Equation (1)). Secondly, a
SETAR model is fitted to the residuals (Equation (5)). Finally, the SETAR model is used
for forecasting using the SETAR(2,3,0) model and quarterly US GDP data. The forecast
horizon is set to five quarters (k = 5), so the training set ranges from 1947.1 to 1966.1. The
series are forecasted (in sample) by recursively updating the sample by one observation
starting in 1966.1. To capture different uncertainties, we use a bootstrap method with
n = 10,000 to forecast the future paths of US output [23]. The forecast results are depicted
exemplarily for the sample ending 2017.3 (last in sample forecast) in Figure S1 in the
supplements. Compared to the original observations, the semi-SETAR model is able to
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forecast the output gap quite well for the first year. Original observations and forecasts
are nearly identical from 2017.3 to 2018.2 (The detailed results for every forecast value
between 1966.1-2018.3 are available upon request). To validate the forecast performance,
we calculate the mean absolute scaled error (MASE), which is MASE = 0.5952 in this case.
Thus, the semi-SETAR model improves forecast performance and delivers a reliable output
gap forecast by including information from two regimes.

5.2. Predictive Power of the LLR Output Gap for Output Growth

Problems in evaluating the output gap due to a missing true gap can be overcome by

the evaluation of the forecasting performance of the output gap for output growth [26].

use This idea is used by [19] by arguing for a negative correlation between gaps and future

growth. They use the following equation to predict output growth using the estimated
real-time gap:

Yerk =Yt = &+ e+ €pppe 1 @)

where vy, — y; is output growth, ¢; is the estimated real-time output gap using either the
LLR or HP filter and €, |; displays the forecast error. The forecast horizonisk =1,...,8.
Due to the trend-reverting properties, < 0 is expected [19,26]. The OLS estimates
show the expected signs for LLR- and HP-filtered gaps and are significantly negative for
k=1,...,8.

By comparing the relative RMSEs in Table 2, a small improvement in forecast accuracy
is found using the LLR real-time gap. Surprisingly, the gains are higher the larger the
forecast horizon is. Compared to the forecasting performance when using the HP gap, the
LLR gap improves the forecast accuracy of output growth. A similar exercise can be carried
out for inflation. However, in accordance with [13] output gaps usually do not improve
inflation forecasts and are hence omitted.

Table 2. Relative RMSEs for output growth forecasts evaluation using LLR and HP real-time gaps.

Horizon 1 2 3 4 5 6 7 8
LLR/HP  0.9999 1.0031 1.0074 1.0058 0.9958 0.9842 0.9717 0.9612

6. Policy Implications and Conclusions

We argue for a more detailed and systematic output gap analysis by combining output
gap estimation and SETAR models. Using this additional information, the improved
estimation quality at boundary points and the LLR result in an improved estimation
of the output gap compared to the standard HP-filtered gap. This is demonstrated by
a comparison of both statistically based methods with those estimated with economic
expertise by the OECD and the FED. The LLR output gap shows a higher correlation
with the OECD and FED gap than the HP filter does. This is partly attributable to the
data-driven selection of the bandwidth, which improves the disadvantage of the arbitrary
selection in the HP filter. In addition, the HP time series filter attributes more originally
cyclical fluctuations to the trend and leaves a too-small gap component, a misspecification
that may impede an appropriate real-time gap estimation. Within the OECD approach, we
observe the other extreme of a large output gap using the HP filter in combination with the
production function approach. While the LLR is successfully extended to the multivariate
production function approach, it performs similarly to the OECD method. Extending
the semi-SETAR model improves output gap forecasts using additional information from
different growth regimes. Using the proposed output gap for forecasting output growth,
the LLR real-time gap performs better compared to the HP gap, in the sense that it has a
larger predictive power for output growth. These results modify the timing and magnitude
of monetary policy decisions as the new model allows a more reliable output gap estimation
than the HP filter.
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Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/10
.3390/engproc2021005032/s1. Table S1: Estimated model parameters for SETAR(k,p,d) model US
GDP 1790-2018 using LLR and HP filter for the residuals. Table S2: Estimated model parameters for
SETAR(k,p,d) model US GDP 1790-2018 using LLR and HP filter for the residual growth rates. Figure
S1: SETAR(2,3,0) point forecast of the output gap (red dashed) together with the original data (black
dotted) for 2017.3-2018.4 using the LLR for quarterly US GDP (black solid) 1947.1-2018.3.
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Abstract: In this paper, we discuss the statistical coherence between financial time series in terms
of Rényi’s information measure or entropy. In particular, we tackle the issue of the directional
information flow between bivariate time series in terms of Rényi’s transfer entropy. The latter
represents a measure of information that is transferred only between certain parts of underlying
distributions. This fact is particularly relevant in financial time series, where the knowledge of
“black swan” events such as spikes or sudden jumps is of key importance. To put some flesh on
the bare bones, we illustrate the essential features of Rényi’s information flow on two coupled
GARCH(1, 1) processes.

Keywords: Rényi’s transfer entropy; financial time series; GARCH processes

1. Introduction

The linear framework for measuring and testing causality has been widely applied
in a number of fields. In finance, one typically uses Granger’s linear regression model to
study the internal cross-correlations between various market activities. The correlation
functions have, however, at least two limitations. First, they measure only linear relations,
although it is clear that linear models do not faithfully reflect real market interactions.
Second, all they determine is whether two time series (e.g., two stock-index series) have
correlated movement. They, however, do not indicate which series affects which, or in other
words, they do not provide any directional information about cause and effect. However,
there is extensive literature on causality modeling that goes beyond the linear regression
model, e.g., applying and combining mathematical logic, graph theory, Markov models,
Bayesian probability, etc. (for an extensive review see, e.g., [1]). We will focus here on the
information-theoretic approaches, which understand causality as a phenomenon that can
be not only detected or measured but also quantified. A particularly important quantifier
of the information flow between two time series is the so-called transfer entropy (TE).

In his 2000 seminal paper, Schreiber [2] used Shannon’s information measure to formu-
late the concept of TE, which is a version of mutual information operating on conditional
probabilities. TE is designed to detect the directed exchange of information between
two stochastic variables, conditioned to common history and inputs. An advantage of
information-theoretic measures, in comparison with, say, the standard Granger causality, is
that they are sensitive to nonlinear signal properties, as they do not rely on linear regression
models. A limitation of TEs is that they are, by their very formulation, restricted to bivariate
situations. In addition, information-theoretic measures often require substantially more
data than regression methods. It can be also shown that for Gaussian variables, Granger
causality and transfer entropy are entirely equivalent [3]. For a comparison of TEs with
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other causal measures, including various implementations of the Granger causality, see,
e.g., Ref. [4].

Shannonian TE was generalized to the class of #-Rényi transfer entropies by Jizba et
al. in Ref. [5]. The corresponding Rényi TE can be defined in much the same way as its
Shannonian counterpart. In particular, one can utilize the concept of mutual information
of the order & to quantify the directed exchange of information. Because Rényi’s entropy
(RE) works, unlike Shannon’s entropy, with rescaled distributions, it allows addressing
information flow between different parts of underlying distributions in bivariate time series.
Consequently, Rényi’s TE provides more detailed information concerning the excess (or
lack) of information in various parts of the underlying distribution resulting from updating
the distribution on the condition that a second time series is known. This is particularly
relevant in the context of financial time series, where the knowledge of tale-part (or “black
swan”) events such as spikes or sudden jumps bears direct implications, e.g., in various
risk-reducing formulas in portfolio theory.

In order to quantify the strength of Rényian information flow and its directionality
from high-quality time series data, special care has to be taken to select suitable estimators
of Rényi’s entropy. The aim of this paper is to demonstrate that the estimator introduced by
Leonenko et al. [6] is an appropriate instrument for this task. We illustrate this by analyzing
Rényi’s information flow between two coupled GARCH(1,1) processes.

The paper is organized in the following way. In Section 2, we discuss some essentials
from Rényi’s entropy and the ensuing Rényi transfer entropy. Section 3 introduces the
concept of effective transfer entropy and briefly discusses the pros and cons of Leonenko et
al.’s Rényi entropy estimator. In Section 4, we set up our model system, namely a system
of two coupled GARCH processes, that will serve as generating processes for bivariate
time series to be analyzed. Section 5 is dedicated to the analysis of the effective Rényi’s
TE for coupled GARCH(1, 1) processes. Finally, in Section 6, we provide some concluding
remarks and propose some further generalizations.

2. Rényi Transfer Entropy

In this section, we briefly review some essentials of Rényi’s entropy and ensuing
directional information flow that will be needed in following sections.

2.1. Rényi Entropy

Rényi’s information measure (also known as Rényi’s entropy) was introduced by Rényi
in his seminal 1961 paper [7] as a one-parameter generalization of Shannon’s entropy. Let
« > 0, then Rényi’s entropy of a probability distribution function P associated with a
discrete random variable X is defined as

H,[P] = ﬁlog2 Z p*(x). (1)

xeX

In particular, for « = 0, we obtain the so-called Hartley entropy, while the cases with
« = 2 and & = o0 yield the collision entropy (that is closely related to correlation dimension)
and the Min-entropy, respectively. Note that for « = 1, Rényi’s entropy converges to
Shannon’s entropy by the L'Hospital rule. It can be shown [8] that Rényi’s entropy is a
non-negative, monotonically decreasing function of «, thus

Hy > Hy > Hy > Hywo > 0. ®
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Particularly important in our following considerations will be the so-called conditional
Rényi entropy that is defined as [8,9]

1 Trexyey PH(xY)

H,[P|Q] T—a'°8 1 pily)

1
1—uw

log, Y puly) Y- p*(xly), ®)

yeYy xeX

where Q is a probability distribution function of a random variable Y, and p,, defined as

_ ')
) = & )

is known as escort distribution [10]. The latter is also termed as a “zooming” distribution
because it scales (deforms and re-emphasizes) different parts of an underlying distribution
function P. In particular, for & < 1, the central part of the distribution is flattened, i.e., high-
probability events are suppressed, and low-probability events are emphasized. This effect
is more pronounced for smaller . In the opposite situation when a > 1, low-probability
events are suppressed, and high-probability events are emphasized. Thus, for & — 0, the
escort distribution tends to a uniform-like shape and « — +co to a very platykurtic (Dirac’s-
¢ function like) distribution. Because this behavior is also true for the conditional RE, it
will be seen that REs are instrumental in the understanding of (directional) information
flow between bivariate time series.

4)

2.2. Shannon’s and Rényi’s Transfer Entropies

The concept of transfer entropy was introduced by Schreiber in Ref. [2] and indepen-
dently under the name conditional mutual information by Palu$ in Ref. [11]. According to
these, TE represents a measure of a directional (Shannonian) information flow defined by
means of Kullback—Leibler divergence on conditional transition probabilities of two Markov
processes X and Y as

0 k)
Tooy(bl) = Y pasrn ), xi) log, ng) )
reXyey PYniilyn’)
Here [ and k denote Markov orders of Y and X processes, respectively, e.g., xfik) =
(x4, s Xy—g41). For independent processes, TE is equal to zero. It is also not a sym-
metric measure as mutual information is; therefore, Ty_,x # Tx_.y, which becomes clear if
we rewrite (5) as

Ty (k1) = Hyarlyd) — Hyan ), x0). 6]

Now we can use Equation (6) to define Rényi’s transfer entropy (RTE). Substituting H,
instead of H, we obtain [5]

D)y, a 0

R o1 L Pa (W )p* Wt lyn’)

Tuxoy(bl) = =2 loga = =20 Gy o~ @ W @)
Yoa(n’ X0 ) p* (Ynsalyn’, xn”)

It can be checked that Definition (5) is a special case of (7) for « = 1, which we will refer to
as Shannon’s transfer entropy (STE). Most of the aforementioned properties of STE are still
valid also for RTE. The most important difference is that the zero values of RTE for a # 1
do not imply the independence of processes X and Y (i.e., that all order cross-correlations
are zero); however, if X and Y are independent, RTE is zero for any «. In addition, in
contrast to the Shannonian case, RTE can also have negative values. The reason for this is
not difficult to understand. For instance, for, « < 1, the negativity of T;f,x _}Y(k, 1) simply
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means that the knowledge of historical values of both X and Y flattens the tail part of the
anticipated distribution function for the price value y,,; 1 more than the historical values of
Y alone would do. In other words, extra knowledge of the historical values of X shows that
there is a greater risk in the next time step of Y than one would expect by only knowing
the historical data of Y. In this sense, Tf,x _y (k1) represents a rating factor that quantifies
a gain or loss in the risk concerning the behavior of Y at the future time y,,; after the
historical values of X until x,, were accounted for [5]. This information can be further used
in financial decisions concerning risk analysis, portfolio selection, or in derivative pricing.

3. Financial Data Processing and Rényi Entropy Estimation

Financial data recorded on stock markets are typically nonstationary, discrete, and
with periods of no trading activity. The last two factors can be dealt with technically by
means of pertinent data processing methods. The nonstationarity might be problematic for
the Markov assumption that we used in the definition of the transfer entropy; however,
this is typically solved by introducing a new variable that can be thought of as asymptotic
stationary [12].

Following Samuelson’s work on geometric Brownian motion [13], it has become clear
that the asset log-return (rather than raw return) is the relevant financial variable. So, for
our future convenience, it is suitable to define the log-return associated with X as

X
Ryr = log(ﬂ), ®)

where x; is the value of the process X at time £.

Another problem that might hinder the correct estimation of the transfer entropy is
a limited number of the recorded data. To this end, Marchinski et al. introduced in [12]
effective transfer entropy, which, for Rényi’s TE, can be rewritten in the form

R eff _ TR _ TR
Toxoy = Toxoy = Toxgumeasy” (€)]

Effective RTE is thus a difference between two RTEs, where the second one is computed
on the shuffled X series. Here the shuffling is performed in terms of the surrogate data
technique [14]. In essence, a surrogate data series has the same mean, the same variance, the
same autocorrelation function, and, therefore, the same power spectrum as the original
series, but phase relations are destroyed. Consequently, all the potential correlations
between X and Y are removed, which implies that Tﬁxshumed _,y should be zero. In practice,
this is typically not the case, despite the fact that there is no obvious structure in the
data. The nonzero value of th,X;humed _,y must then be a consequence of the finite dataset.
Definition (9) then simply ensures that pseudo-effects caused by finite values of k and / are
removed.

By its very definition, effective RTE is not symmetric in X and Y. So, in order to
visualize and quantify the disparity between the X — Y and Y — X flow, it is convenient
to define the balance of flow or net flow of effective RTE as

Tﬂgi;“ = th,/)?iy - Tffix . (10)

The concept of the balance of flow of effective RTE will be employed in Section 5.

In their original work, Marchinski et al. [12] employed effective STE to compute the
information transfer between two financial time series. They also used a partitioning
method to discretize their financial data. This is a good first approach to data processing
that was also employed in our earlier work [5]. However, partitioning can cause the
loss of valuable correlations present in the data. That is why, in the following, we test
another method of data processing and evaluate RTE using estimators for Rényi’s entropy
introduced by Leonenko et al. [6].
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3.1. Rényi’s Entropy Estimation

Estimators of Shannon’s entropy based on the k-nearest-neighbor search in one-
dimensional spaces were studied in statistics already almost 60 years ago by Dobrushin [15]
and a short while later by Vasi¢ek [16]. Unfortunately, they cannot be generalized directly
to higher-dimensional spaces, and hence, they are inapplicable to TEs. Presently, there
exists a number of suitable entropy estimators—most of them in the Shannonian frame-
work (for a review, see, e.g., [17]). Here we will present the k-nearest-neighbor entropy
estimator for higher-dimensional spaces introduced by Leonenko et al. [6]. The latter is
not only suitable for RE evaluation but it can also easily be numerically implemented so
that RTE can be computed in real time, which is clearly relevant in finance, for instance, in
various risk-aversion decisions. An explicit empirical analysis based on this estimator will
be presented in Section 5.

Leonenko et al.’s [6] approach is based on an estimator of RE from a finite sequence of
N points, and it is defined as
r(k) "
T(k+1—a)Tl-2(% +1)

N A\ m(l—a
¥ (o)™ >>1og2N]_ an

i=1

~ 1
HNjo = 1z log, (N-1)

Here I'(x) is Euler’s gamma function, m is the dimension of the dataset space, and
p}(cl) is the distance from data i to the k-th nearest data counterpart using the Euclidean
metric. The estimator thus depends on the number of data in a dataset N and the rank of
the nearest neighbor used k.

Advantages of Estimator (11) in contrast to the standard bin method that estimates

probability within a range are:

®  Relative accuracy for small datasets;
e Applicability for high-dimensional data;
¢  Combining the set estimators provides statistics for estimation.

The disadvantage of the method is the computational complexity of the algorithm
and the complicated data container. The algorithm can, however, be optimized so that it
can run in real time. We can also stress that in contrast to other RE estimators, such as the
fixed-ball estimator [17], Estimator (11) is not confined to only a certain range of « values.

Estimators of the average and standard deviation for a dataset of size N and the
parameter of RE « with Bessel correction are defined, respectively, as

7 Zn:lﬁNkc\'
HN,ﬂc = k n =,

" ~ _ 2
21 (Av ke — Hna)
OHy, = N_1 , (12)

where 7 is the highest order of the nearest data counterpart. Theoretically, we should use
n = N, but such a set up would require an enormous amount of computer memory to
hold the distances. So, in our calculations, we used n = 50, which turned out to be a good
compromise between accuracy and computer time.

4. Model Setup: Coupled GARCH Processes

Assuming independent events, as it is typically done in the financial context, is
not very realistic. To capture time dependence between different log-returns, it is often
convenient to assume that volatility (the square root of the variance of log-returns) for
a given financial asset is a time-dependent stochastic process. This assumption is called
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heteroskedasticity, where each term in the time series is described with a generally different
variance. Typically, asset returns are not even close to being independent and identically
distributed, and their distributions are often heavy-tailed. Another observed fact is a
tendency that large changes in prices are followed by large changes and small changes
by small changes. This is known as volatility clustering. A stochastic process that is able
to capture distributional stylized facts (such as heavy tails or high peakedness), as well
as the time series stylized facts (such as volatility clustering), was introduced by Engle in
1982 [18] under the name autoregressive conditional heteroskedasticity or simply ARCH.

In Engle’s original ARCH(gq) model, the conditional variance at time t, i.e., 0't2, was
postulated to be a linear function of the squares of past g4 observations modeled by a
stochastic process x; ~ N(0,07). Unfortunately, in many applications of the ARCH model,
a long lag length, and therefore a large number of parameters, is required. This makes
the parameter estimation quite impractical. To circumvent this problem, Bollerslev [19]
generalized the ARCH process to the so-called generalized ARCH (or simply GARCH)
process. The latter is (similar to ARCH) a linear function of the squares of past observations
plus the linear combination of the past values of variances. For instance, the GARCH(g, p)
process specifies the conditional variance as follows:

0 =g+ axf 4 o+ oagxt, + Profg + o+ Bpoi (13)

whereag > 0,4; >0 (i=1,...,9)and By > 0 (k =1,...,p) are control parameters. It is
also common to require that the covariance stationarity condition holds, which implies
that 2?:1 a; + Z}};l Bk < 1 (see, e.g., [19]). In most empirical applications, it turns out that
the simple choice p = q = 1 is already able to correctly grasp the volatility dynamics of
financial data.

To test RTE with the RE estimator (11), we will examine two GARCH(1, 1) processes
with unidirectional coupling. The stationary coupling parameter € will allow us, in turn, to
probe how the information flows between the two GARCH(1, 1) processes change with the
coupling strength. To be more specific, let us consider two coupled GARCH(1, 1) processes.
In particular, let x; ~ N(0,07) be a GARCH(1, 1) process with &g = 0.2, a; = 1 = 0.4 and
yt ~ N(0,%7) be a GARCH(1, 1) process with &g = 0.3, &1 = B = 0.35 such that
o= a0+ aayig + Pusig +oexi . 14)

In this way, the coupling between stochastic variables is not direct but mediated
through variance. Nonlinear coupling in variances of the GARCH processes is a good
approximation of the possible couplings in real-world market data in which one asset, say
X, can cause volatility 7 = 1(X) that will in turn influence another asset, say Y. For future
convenience, we will refer to process X as the master process and to Y as the slave process.

5. Analysis of Effective RTE for Coupled GARCH(1, 1) Processes

In this section, we use Estimator (11) for Rényi’s entropy to compute effective RTE
(9) between coupled GARCH(1, 1) processes (13) and (14). The calculations are performed
directly on log-returns (8) rather than on amplitudes. A typical dependence of RTE (7)
on both « and the coupling strength € is depicted in Figure 1. Ensuing effective RTEs
(9) with different Markov parameters are presented in Figure 2. In order to quantify the
master-slave relationship in terms of information flow, the balance of flow (10) is calculated
(see Figure 3). Respective standard deviations are depicted in Figure 4.
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([0,1],11,10,1,2,3,4,5,6))

0

R
e

Figure 1. Transfer entropy th,Xay(ZJ) = T(R)a,XHy([O, 1],(1],[0,1,2,3,4,5,6]), where X and Y
are GARCH processes described in Section 4. The coupling strength ¢ € {0.1,0.2,...,2} is on the
horizontal axis, and the transfer entropy is on the vertical axis. Each graph represents a different
value of « € {0.7,0.8, ..., 1.9}.

Figure 2. Effective transfer entropy Tfﬁiy(k,l) = T(R),,‘,X%y([o, 1,..,.k—1],[1,[0,1,...1 = 1]),
where (k1) = (2,2), (2,4), (4,2), (4,4), (2,11), (11,11) from left to right and from top to bottom. The
coupling parameter € is on the x-axis.
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Figure 3. Balance of effective transfer entropy Tﬁ’;(’ﬂf{ff(k,l ) for (k1) = (2,2), (2,4), (4,2), (4,4),
(2,11), (11,11) from left to right and from top to bottom. Coupling parameter € is on the x-axis.

Based on experience with STE, one could anticipate that RTE Tf’}gfiy (see also Figure 1)

should increase with the growing value of the coupling parameter €. This expectation
is indeed confirmed for « > 1. In fact, even though the trend is noisy, we can detect a
clear upward drift. This can be interpreted as an increase in the information flow between
central sectors of the underlying empirical distributions. On the other hand, for a < 1,
the drift seems to be missing or even decreasing. This fact will be commented on shortly.
The aforementioned type of behavior persists even when larger Markov parameters are
considered, cf. Figure 2. The smallness of the X — Y information flow can be attributed to
the indirect (nonlinear) coupling between X and Y.

From the results depicted in Figure 2, we can study how the increase in values of the
Markov parameters in the respective time series influences the value of effective RTE. It can
be observed that when historical values of the slave process Y are included, information
flows improve (stabilizes) significantly. On the other hand, conditioning on the additional
historical values of the master process X does not seem to change the information flows
notably. However, for large histories, it stabilizes the results, as can be seen from the
comparison of (2,11) and (11,11) in Figure 2.
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Figure 4. Standard deviation of the balance of effective transfer entropy Tf ’)?iiff(k, 1) for (k1) =

(2,2),(2,4), (4,4), (11,11) from left to right and from top to bottom. With € on the x-axis.

The balance of effective transfer entropy presented in Figure 3 exhibits an increasing
function of the coupling parameter € for « > 1. Contrary to that, for « < 1, it is a stagnating
or decreasing function with large fluctuations. The trend is most distinguishable for
(k,1) = (11,11). Thus, one can conclude that the deterministic behavior is bared by a« > 1
and is stochasticity captured by &« < 1. Positive values of the balance of ERTE suggest
higher information flows from the master process to the slave process than in the opposite
direction. Therefore, (11,11) confirms the omnipresent master—slave relationship.

Standard deviations of the balance of effective transfer entropy in Figure 4 reveal
statistical stability of results for & > 1 in contrast to regime & < 1. The typical size of
fluctuations in the latter case is about 5 — 10 times larger than in the previous one. However,
the results show instability in the results for various strengths of interaction among the
time series . We admit that this is an effect of the insufficient size of datasets or missing
statistics of datasets.

6. Conclusions
6.1. Summary

In this paper, we performed extensive computer calculations of the novel method to
calculate Rényi’s transfer entropy that was applied to a coupled GARCH time series. We
performed analogous analysis on the surrogate datasets. Based on that, we calculated the
statistics of the balance of effective Rényi transfer entropy.

Analysis of the two-dimensional GARCH process where one dimension influences the
latter using Rényi’s transfer entropy using the nearest order estimators provides insight
into the flow of information within the system. Transfer entropy expectably increases
with the increasing strength of the interaction, and the rate increases with the increasing
indices of memory. Particularly, it increases with the memory of the time series where
the interaction is heading. This observation follows for effective transfer entropy and the
balance of effective transfer entropy.
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6.2. Perspectives and Generalizations

Transfer entropy is a powerful tool to reveal the strength and direction of information
flow in a time series. In combination with the effective use of computer power and modern
advancements in the mathematical theory of entropy calculation, it is a better tool to
investigate nonlinear causality than the Granger test that is limited to Gaussian time series
with linear causality. The advantage of using Rényi’s entropy with parameter « is its ability
to detect informational flow during extreme events, such as sudden jumps. This is because
Rényi’s entropy gives an emphasis on the tails or the center of the probability distribution.

Using the complex algorithm on financial datasets can be a potent tool to reveal
information flows among, e.g., different stocks or other valuable assets. It can be also used
as a precursor of instability or critical behavior in international markets.
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Abstract: This paper presents an analysis of the long-term dynamics of the terms of trade of primary
commodities (TTPC) using an extended data set for the whole period 1900-2020. Following our origi-
nal contribution, we implement three approaches of time series—the finite mixture of distributions,
the Markov finite mixture of distributions, and the Markov regime-switching model. Our results
confirm the hypothesis of the existence of a succession of three different dynamic regimes in the
TTPC over the 1900-2020 period. It seems that the uncertainty characterising the long-term dynamic
analysis of TTPC is better taken into account with a Markov hypothesis in the transition from one
regime to another than without this hypothesis. In addition, this hypothesis improves the quality of
the time series segmentation into regimes.

Keywords: commodity prices; terms of trade; long-term fluctuations; structural breaks; finite mixture
of distributions; finite Markov mixture of distributions; Markov switching models

1. Introduction

One of the main conclusions emerging from the abundant literature dedicated to the
study of the long-term evolution of primary commodities’ prices is that structural breaks
constitute an essential characteristic for the comprehension of the long-term dynamics of
terms of trade of primary commodities. Empirical studies of price volatility assess a high
level of uncertainty, especially in the post-2008 boom research [1]. However, this literature
appears inconclusive on the question of the identification of structural breaks. In this
paper, we explore this question by implementing three time series approaches—that have
not been, to our knowledge, considered in this literature—for detecting these breaks. We
identify structural breaks as the endpoints of the time periods obtained by clustering the
data (mixture distributions) or as the endpoints of the regimes (Markov switching regimes).
Following our original contribution [2] to the empirical literature on the Prebisch-Singer
hypothesis [3,4] of a secular decline in the terms of trade of primary commodities (TTPC),
in this paper, we consider an extension of our approaches to the whole period of 1900-2020.
The data correspond to the Grilli and Yang Index, here after {GYf}t:tl, ..ty see [5,6]. The
three approaches of time series we implement—the finite mixture of distributions, the
Markov finite mixture of distributions and the Markov regime-switching model—converge
in the detection of three different regimes over the 1900-2020 period.

The three following sections of the paper present the methodology and results of,
respectively, a finite mixture of distributions approach (Section 2) a finite Markov mixture
of distributions approach (Section 3) and a Markov switching model approach (Section 4).
The last section is dedicated to the discussion and conclusion (Section 5).
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2. A Finite Mixture Distributions Approach

To investigate the hypothesis that the time series {GY},_,  , follows different
periods over 19002020, we first used a finite mixture of distributions with normal compo-
nents, as a way of putting similar data points (years) together into clusters (which we call
regimes). Clusters are represented by the components” distributions of the mixture. The
idea is that the years that exhibit the same behaviour belong to the same cluster and come
from the same distribution.

A very detailed account of the practical aspects of Markov Chain Monte Carlo (MCMC)
for mixture of distributions is given in Frithwirth-Schnatter [7]. The Handbook of mixture
analysis [8] provides an overview of the methods of mixture modelling.

2.1. Methodology

A finite mixture of normal distributions can be defined as follows:

f) = iy nifi (y, Wi 0?) with YO0 i =1,

where:

K is the number of components,
7; is the mixing weight of the ith component, f; is a normal component distribution of

mean y; and variance 07

In this approach, three kinds of statistical inference problems have to be considered:
The specification of the number of components K,

e The component parameters (y;, 07) and the weight distribution (71, ..., 17x) should
be estimated from the data, Finally, we must assign each observation of the time series,
{GYi},y,, ., 1 to @ certain component of the mixture model by making inference on
a hidden vector indicator S = (Sy,, ..., Sy ).

To estimate the parameters of the components and the weights, we use Bayesian
estimation [9] with MCMC [10] and a two block Gibbs sampling algorithm [7]:

(1) Parameter simulation conditional on the classification § = (S¢,, ..., Sty ):

a.  Sample the weights # = (11, ..., k) from a Dirichelet posterior p(#|S),

b.  Sample the variances ¢ in each group i, from an inverted Gamma distribution
G1(ci(8),Ci(8)),
c. Sample the means y; in each group 7, from an inverted Gamma distribution

G1(bi(S), Bi(8))
The precise form of b;(S), B;i(S), ci(S), Ci(S) depends upon the chosen prior distribu-
tion family.

(2) Classification of each observation y; conditional on knowing u = (y1,..., px),

o? = (od,..., F) and = (m, .., 17K):

2 1 { (vi— ) }
B0, Yi) & expy — Mk
1> 27'(0,? 2‘71%

P(S,:k

The number of components may be known or unknown. In our case, the number of
components is unknown, and our model selection is based on marginal likelihood [11].
In the academic literature, the unknown number of regimes taken into account is three at
most. To determinate the best model, we expand the number of potential regimes to five.
Thus, we chose the model with the largest marginal likelihood, approximated by three
estimators [7]:

e  Rlis the estimator obtained by reciprocal importance sampling,
e  ISis the estimator obtained by importance sampling,
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e  BSis the estimator obtained by bridge sampling techniques.
For computing purposes, we use the Matlab library Bayesf 2.0 in this publication.

2.2. Results

The results are presented in the following four sections. First, we confirm the ex-
istence of three different components in the mixture. Then, we present the statistical
parameters (mean, standard deviation, and weight) of each distribution, associated to the
correspondent regime (regimel: 1900-1921; regime 2: 1922-1985 and 2006-2020; regime 3:
1986-2005). The third sub-section presents a point representation of posterior draws. The
fourth sub-section clusters the data based on MCMC draws.

In all Monte Carlo simulations using posterior draws, we use 1,000,000 draws after a
burn-in of 100,000 draws.

2.2.1. The Choice of the Number of Components

If K is not too large, the different estimators should approximatively agree. As
K increases, we observe that, the reciprocal importance sampling and the importance
sampling estimators are less precise than the bridge sampling estimator, although all
three select the same number of components: among the considered models (number of
components < 5), the model with the largest marginal likelihood is a mixture of three
normal distributions.

Thus, the results (Table 1) for the mixture of distribution models confirm the accuracy
of the hypothesis of the existence of three different components, as already established in
our previous analysis for the 1900-2016 period.

Table 1. The choice of the number of components according to three estimators—Source: authors.

Estimators K=1 K=2 K=3 K=4 K=5
RI —20.6488 —21.8398 —~16.9335 —17.3682 —21.2979
Standard error ~ 8.2511 x 107> 1.0581 x 1073 32659 x 1073 6.9481 x 1072 5.1914 x 107!
s —20.6488 —21.8456 —16.9402 —17.1843 —19.2823
Standard error  8.0611 x 10> 26576 x 1073 4.2801 x 1073 1.0072 x 1071 1.199 x 10!
BS —20.6489 —21.8402 —~16.9316 —17.1489 —17.7954

Standard error 5.581 x 107° 72275 x 107%  9.0533 x 107* 24614 x 1073 6.2907 x 1073

2.2.2. The Parameters of the Mixture of Three Normal Distributions

The components of the mixture differ mainly in the mean. Components 2 and 3 have
nearly the same variance, whereas the first component has a variance that is slightly higher
(Table 2).

Table 2. Weight, mean, and standard deviation of each distribution—Source: authors.

Parameters of the kth Component Distribution 1 Distribution 2 Distribution 3
Weight 0.3238 0.4945 0.1817
Mean 4.9091 4.5876 4.1829
Standard deviation 0.0246 0.0096 0.0153

2.2.3. The Point Process Representation of Posterior Draws

To produce sampling representations of the posterior draws, {],t(’”)} - M,
m=1, ...,
the number of draws) is plotted against {(72(”')} . . This scatter plot is closely
m=1, ...,

related to the point process representation of the underlying mixture distribution. A finite
mixture distribution from a fixed parametric family has a representation as a marked
point process [12]. Here, we use point process representation (Figure 1) of draws from the
posterior density. Three clusters of draws are distinguished, they will scatter around the
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three points corresponding to the true point process representation, with the spread of the
clouds representing the uncertainty of estimating the points (Figure 1).

Point process representation - K=3

o (variance)
s o
o o
& 8

4.4 46 4.8 5 5.2
1t (mean)

Figure 1. Point process representation for K = 3—Source: authors.

2.2.4. Clustering the Data

We perform clustering of the data into three groups (Figure 2) based on the MCMC
draws. Three criteria are used:

The Bayesian maximum a posteriori (MAP),

The similarity matrix based on the posterior similarity,

The misclassification rate.

Tims seriss ssgmentation based on Bayesian MAP.

fo0 w0 10 9w 0 190 160 w0 1980 W0 000 200 0:0

0 W0 tem 9% 180 190 1960 90 1980 W0 000 200 3020
“Time series segmentation based on the Similarity Matrix

o w0 im0 @ te0 190 190 W 10 W 000 200 00

Figure 2. Time-series segmentation according to three methods.

Three regimes are confirmed, (1900-1921; 1922-1985 and 1986-2020; 1986-2005). The
second regime is interrupted by the regime 1986-2005, which represents the lowest level in
the terms of trade of primary commodities (see Section 5). However, we observe that some
years have an ambiguous cluster membership.

3. A Finite Markov Mixture Distributions Approach
3.1. Methodology

In the finite mixture models approach, we assign each observation of the time series
{GYi},—y,, . 1 to @ certain component of the mixture model by making inference on a
hidden vector indicator § = (S¢,, ..., Sty ). Now, we suppose that this allocation vector is
a hidden Markov chain, GY; = pug, + &; where ¢; is a zero-mean white noise process with
variance o2, which is a special case of interest of finite Markov mixture of distributions.
Now, the transition probability matrix T of the hidden Markov chain S = (S, ..., St ) is
unknown and need to be estimated from the data. We suppose that the Markov chain is
aperiodic and starts from its ergodic distribution 7 = (i1, ..., #x):

P(Sn = Kk|T) = 1k
and the transition probability matrix T is defined by:
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Y"ji:P(SHl =j|St=i)fori, j=1,..., Kandt=1ty, ..., ty— 1.

What is the relation between finite mixture distributions and finite Markov mixture
distributions? In fact, every finite mixture of distributions may be considered of as a limiting
case of a finite Markov mixture of the same family of distributions where S = (S, ..., Si)
is an i.i.d. random sequence and where the transition probabilities are all equal to #.

3.2. Results

The results are presented in the following three sub-sections. We present the statis-
tical parameters (mean and standard deviation) of each distribution, associated to the
correspondent regime (regimel: 1900-1921; regime 2: 1922-1985 and 2006-2020; regime 3:
1986-2005) and transition probabilities from one regime to another one. The second sub-
section presents a point representation of posterior draws. The third sub-section clusters
the data based on MCMC draws.

3.2.1. The Parameters of the Markov Mixture of Three Normal Distributions

The components of the mixture differ mainly in the mean but have nearly the same
variance (Table 3).

Table 3. Mean and standard deviation of each distribution.

Distribution 1 Distribution 2 Distribution 3
Mean 5.0099 4.6265 4.1822
Standard deviation 0.0110 0.0142 0.0134

The transition probabilities Tyq, Tp, T33 are high (Figure 3, Table 4), which indicate
that is difficult to change from on regime to the other.

Posterior draws for transition matrix
1

05 05 05
sty B

0 0 0
o 5 10 o 5 10 ) 5 10
10° <10° «10°

! | m———

05 05 05
N o ———
o 5 10 o 5 10 o 5 10
x10° <10° %10°
1 ' " I

05 05 05

o ey o
o 5 10 (] 5 10 o 5 10
x10° <10° %10%

Figure 3. Posterior draws for transition probability matrix T—Source: authors.

Table 4. Transition probability matrix T from posterior draws—Source: authors.

Regime 1, t Regime 2, t Regime 3, t
Regime 1, +1 0.9384 0.0167 0.0284
Regime 2, +1 0.0483 0.9637 0.0571
Regime 3, t + 1 0.0133 0.0196 0.9146

3.2.2. Point Process Representation of Posterior Draws

We observe that this time, the clusters obtained with the point process representation
of posterior draws in the case of a Markov finite mixture (Figure 4) are well-separated
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and have less dispersion compared with that of the clusters obtained in the case of a finite

mixture of distributions. The shapes of the clusters are also different.

0.08

2

o (variance)
e = e e e e o
5 & © © B © ©o
2 8 8 B & & S

o
IS

Figure 4. Point process representation for K = 3—Source: authors.

Point process representation - K=3

4.2 4.4 46 48 5
4 (mean)

3.2.3. Clustering the Data

We confirm the existence of the three regimes previously found (1900-1921; 1922-1985
and 1986-2020; 1986-2005). This time, all the years have a perfect cluster membership. The
periods of the regimes are well defined (Figure 5).

55

Time series segmentation based on Bayesian MAP

45

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020
Time series segmentation based on the Misclassification Rate

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020
Time series segmentation based on the Similarity Matrix

4
1900 1910
55
45
4
1900 1910
55
45
4
1900 1910

Figure 5. Time-series segmentation according to three methods.

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020

4. A Markov Switching Model Approach
4.1. Methodology

A finite Markov switching (MS) model assumes that the dynamics of a data series,
by’ depend on a discrete latent variable S, postulated to follow a Markov chain
with realizations in {1, ..., K}. This model was popularized by Hamilton [13,14] who
applied the Markov-switching approach to model the probability of a recession in the
U.S. economy. In this model, the economy alternates between two unobserved states
of economic expansion and recession according to a Markov chain process. The model
assumes constant transition probabilities for the unobserved states, which, in turn, imply
constant expected durations in the various regimes. A general representation is given by:

{yf}f:tl,

where:

p . q i r
yi=Cs,+ Y X+ Y Bi(SHX 4+ Y (S )y + &
iz iz =

yt denotes the series observed,
X/ are the independent regressors with fixed effects,
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X" are the independent regressors with random effects,
yi—i these variables represent the autoregressive part of model,
¢; are independent variables with N (0, UEZ,St) distribution,
St is modelled by a homogeneous Markov chain with K states.

The transition probabilities verify:
P(Sgy1 =j|St =1i)=P(Sy =j|S1 =1i),fort =t, ..., ty —land fori,j=1,..., K (homo-
geneity of the chain).

Fori=1,...,K:

Zle P(Spsq = IS = i) = 1.

We consider only the case where there is no fixed or random effects and no autore-
gressive part in the model.

Essentially, two computational approaches can be used for the estimation of Markov-
switching models. One approach involves maximising the log-likelihood, a function of
the transition probabilities, subject to the constraint that the probabilities lie between 0
and 1 and sum to unity. This can be done with the EM algorithm [15], but the non-linear
programming approach [16] can also be used. We mobilise this last approach implemented
in Oxmetrics. An alternative approach involves using Bayesian estimators with MCMC
methods.

4.2. Results

The results of a three-regime model based on the terms of trade of commodities are
shown in Tables 5 and 6, and Figure 6. There is a perfect match with the previous results,
notably concerning the identification of three regimes over the exact same sub-periods.

Table 5. Statistical characteristics of regimes—Source: authors.

Regimes Coefficient Standard Error t-Value p-Value
Regime 1 5.01765 0.02014 249. 0.000
Regime 2 4.63002 0.01365 339. 0.000
Regime 3 4.18067 0.02514 166. 0.000

Table 6. Transition probability matrix.

Regime 1, t Regime 2, t Regime 3, t
Regime 1, +1 0.95451 0.0000 0.0000
Regime 2, t +1 0.045485 0.98722 0.048562
Regime 3, + 1 0.0000 0.012781 0.95144

— Ln(GY) —— Fitted
2 Regime 3

438

4.6}

44

42

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020

Figure 6. Change of regime in the evolution of the terms of trade for primary commodities (Neperian
logarithm, 1900-2020)—Source: authors.
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5. Discussion and Conclusions

The existence of different regimes appears robust to various changes in the data
span. Indeed, considering data from 1900 to 2010, or 1900 to 2014, or 1900 to 2016 or
1900 to 2020 on the same {GYt}t=t1, .., ty index leads to the same representation, with
the same break dates (1921, 1986, 2006). The approach using a Markov finite mixture
of distributions and the approach using a Markov switching model give very similar
results. These two methods differ essentially in the computational aspects. The former
uses Bayesian estimation with MCMC and the later involves maximising the log-likelihood.
The fact that each observation of the time series {GY:},_, is assigned to a certain
component of the Markov mixture model by making inference on a hidden Markov vector
indicator, improves the results obtained with the finite mixture model. This time, all years
have a perfect cluster membership.

These three approaches applied to the extended 1900-2020 data set confirm the identi-
fication of a succession of three different dynamic regimes in the TTPC over the 1900-2020
period. The third regime (1986-2005) is still characterized by the lowest level of terms of
trade of the whole period, and the return to the second regime after 2005 is associated with
a price significantly higher (56.7% higher). Such an upward shift in primary commodities’
prices is unprecedented at the scale of the 20th century and questions more specifically the
hypothesis of a secular decline in the terms of trade of primary commodities. Indeed, the
entry into a higher level of prices contradicts the hypothesis of a secular decline. However,
from 1900 to 2006, this decline manifested itself through the succession of regimes with
a lower average level of primary commodity terms of trade, but not in a continuous way.
Moreover, data from 2020 for TTPC do not exhibit a specific pattern, leaving open the
question of the effect of COVID on the long-term dynamics of primary commodity prices.
Therefore, the dynamics behind the evolution of primary commodities in the long-run call
for alternative explanations and a change of perspective.

This paper contributes to this change of perspective by considering (and confirming)
the existence of three changes in regime in the long term (121 years). Yet, an operational
theory of long-term dynamic regime change in primary commodities’ terms of trade is still
to be constructed.

Following the methodologies used in this present paper, a promising perspective
appears to be the introduction of explanatory variables (such as the GDP of main countries,
the share of emerging countries in the global GDP, and various indices of real interest rate
and exchange rates) in a Markov switching model, in order to identify the incidence of
these covariates on the dynamic regimes.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Data Available at https:/ /www.cemotev.uvsq.fr/base-de-donnees.
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Abstract: The COVID-19 pandemic has left a mark on nearly all events since the start of the year
2020. There are many studies that examine the medical, economic, and social effects of the pandemic;
however, only a few are concerned with how the reactions of society affect the spread of the virus. The
goal of our study is to explore and analyze the connection between the communication of pandemic
sceptics and the spread of the COVID-19 pandemic and its caused damages. We aim to investigate
the causal relationship between communication about COVID-19 on social media, anti-mask events,
and epidemiological indicators in three countries: the USA, Spain, and Hungary.

Keywords: COVID-19; sceptics; social media; Twitter; sentiment; VAR; Granger causality; govern-
ment stringency

1. Introduction

Coronavirus is the latest of many infectious diseases affecting humanity throughout
history that have reached the state of a pandemic. Pandemics, by definition, affect large
regions across continents or even the whole world; thus, even in case of a low mortality
rate, the number of casualties can reach millions in a relatively short time period. The
COVID-19 outbreak is among the deadliest pandemics of the last hundred years, only
outdone by HIV/AIDS (human immunodeficiency virus infection and acquired immune
deficiency syndrome) [1].

However, the COVID-19 pandemic is the first to occur since social media became
widespread. The swine flu (HIN1) outbreak, being the most recent one, happened between
2009 and 2010 [2], but at that point, Facebook had just started its rise in popularity, and
other platforms that are well known today (i.e., Twitter, Reddit, Instagram) had barely
started to gain popularity [3]. HIV is an exception, as it still costs around 800 thousand
lives per year because of its high mortality rate, but it has infected far fewer people than
the other mentioned pandemics [4]. Additionally, HIV was the focus of attention in the
1980s and 1990s, but it has not been covered in the media too often in recent years.

This means that COVID-19 is the first pandemic about which an immense volume of
online written communication exists, which can be analyzed with the help of different text
mining solutions. Never before has the opportunity been presented to examine the opinion
of the masses regarding such events; thus, this is a completely new field of research, and
in this relatively short time period, there have not been many investigations exploiting
its potential. There are many studies about social communication during the pandemic,
including false news and its impact on the pandemic and vice versa [5,6]; however, these
usually focus on a single conspiracy theory, a set of news, or a small group of events instead
of long-running time series.

Our research aims to examine the connection between social responses and pandemic-
related events in the USA, Spain, and Hungary. We examined the most prevalent social
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platforms of each country and collected a large volume of COVID-19-related comments
and their timestamps. Sentiment analysis was used to process this text-based data source;
thus, it was possible to create a sentiment time series for each language group.

Reliable corona-related pandemic data are available on the Our World in Data (OWID)
site in a research-friendly form [7]. Regarding the activity of deniers, we manually collected
a list of significant demonstrations and assemblies from different news sources. We only
considered “offline” events as these are the ones that could have directly influenced the
number of infections.

We compared the sentiment time series with the events and corona-related time series
by applying an augmented vector autoregression (VAR) model according to the Toda—
Yamamoto procedure [8] on the examined time series in each country separately. Granger
causality models have been successfully applied in order to assess the economic and fi-
nancial effects of the COVID-19 pandemic, for example, by [9] and [10]. We show that the
volume of the online comments and the sentiment index had a significant mutual relation-
ship with the official epidemiological indicators. The characteristics of these relationships
differed along countries and waves of the pandemic. In Spain, the antimask events had a
significant effect on the volume of comments during the first wave and on sentiment in the
second wave.

2. Data Sources

For constructing sentiment time series, we need textual data obtained from represen-
tative sources. Every target country has some preferred social media sites, such as forums,
microblogging sites, or even comment sections of their leading news sites. The most impor-
tant social media site is Facebook, and Twitter is also in the top 20 in every country except
in Hungary, according to Similarweb [11]. The contents of these platforms could be a good
starting point to examine social reactions about pandemic events and vice versa. As the
most widely used search service in the world, Google cannot be ignored either: not only
do the topics searched show an increased interest in the COVID-19 pandemic, but they can
give us an idea of the focal points of interest. These platforms together are appropriate
sources for text mining research studies, which can transform human sentiments into data,
map the topics, and find the most influential ones.

In the examined countries, for data source, the common ground could have been
Facebook [11]. However, Facebook is not an easy option for text mining research studies
since the Cambridge Analytica scandal [12], so Twitter was chosen as a source for mining
sentiments for the English and Spanish languages. Because Twitter is not so popular in
Hungary, gyakorikerdesek.hu (hereinafter referred to as FAQ) was used for this country
as a text mining source. This is a Q&A-type website, which is the 31st most visited site in
Hungary.

Twitter provides an API for researchers under friendly conditions, and there is a
project named Twitter Stream Grab by Archive Team that allowed us to download all
tweets for the examined period [13]. FAQ does not provide API for grabbing data, so we
developed an application for scraping purposes. During scraping, the software collects
questions and answers from two relevant categories: health and politics [14].

A series of corona-sceptic events were collected manually based on the collections
of national Wikipedia pages related to coronavirus and on the Google Labs search terms
related to coronavirus [15].

From the times series published on the website OurWorldInData.org, three are used to
describe the pandemic situation. The first time series is the rate of positive coronavirus tests.
Itis used to describe the spread of the virus. This is in line with WHO recommendations [16].
The severity of the pandemic is described by the daily number of deaths per million
people. The daily values of the government stringency index are also considered to
examine whether the sentiment of the online public is reacting to government measures
or vice versa. The index is calculated by the Oxford Coronavirus Government Response
Tracker (OXCGRT) project. This is a composite measure based on nine response indicators,
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including school closures, workplace closures, and travel bans, rescaled to a value between
0 and 100 (100 = strictest) [17].

The time periods examined were different for each country to ensure an adequate
level of variance in each time series as the start of the pandemic differed for each examined
country. For example, in the US, the number of deaths was 0 on most days until 13 March
2020, and testing data were only available since 7 March 2020, so 13 March 2020 was used
as a starting point. The number of daily deaths per million people was quite scarce for
Spain. There were two negative values on 25 May and 12 August that were imputed as 0.
There was a weekly seasonality for 0 entries. Therefore, we took a 7-day moving average
of daily new deaths per million people for Spain. The end point for all these time series
was 31 December 2020, as the focus of our investigation was the past year.

Descriptive statistics for each examined time series are available in Table 1. To check
for outlier effect, a mean trimmed off the bottom and upper 10% was used. Outliers had no
great effect on the examined time series.

Sentiment in US tweets was the most negative on an average day with low standard
deviation, while the mean sentiment in Spain seemed to be the highest, though still a
negative value. Hungary had the greatest standard deviation in its sentiment index.

Table 1. Descriptive statistics for all of our examined time series.

Variables No of Obs. Mean St. Dew. Tr. Mean
Positive rate USA 282 0.08 0.04 0.07
Deaths per million USA 282 3.61 2.30 3.33
Stringency USA 282 68.63 5.41 69.15
Entry count USA 282 3580.59 2166.54 3199.61
Sentiment USA 282 —0.46 0.12 —0.46
Positive rate ESP 282 0.06 0.04 0.06
Deaths per million ESP 246 2.59 2.41 2.31
Stringency ESP 246 66.37 9.48 66.39
Entry count ESP 246 644.04 269.15 627.54
Sentiment ESP 246 —0.09 0.11 —0.09
Positive rate HUN 246 0.08 0.09 0.06
Deaths per million HUN 284 3.47 5.51 2.26
Stringency HUN 284 59.45 12.58 59.62
Entry count HUN 284 88.25 60.45 81.93
Sentiment HUN 284 —-0.13 0.19 —-0.14
3. Methods

The data on Twitter Stream Grab are available on a monthly basis, and there is one
compressed JSON file for every minute, so to examine a whole year, more than half a
million files must be processed. A time frame between 01/03/2020 and 31/12/2020 was
chosen according to the availability of pandemic data from OWID. Datasets contained time
data, text, detailed user data, and language index. There were two important limitations:
we did not have data about the specific followers for a given user, and there was no precise
location data; we could only rely on user-supplied information. In order to reduce the data
size, we filtered out relevant tweets based on a few selected keywords, which were grabbed
from Google Labs Corona search terms [15]. English-language tweets were narrowed down
to the United States based on user-defined location, and a 10% random sample was taken
for Spanish-language tweets. The extracted data were transformed into comma-separated
files, which can be easily imported into other systems. The texts scraped from FAQ for
Hungarian-language analysis did not needed further preprocessing, as the scraper software
was designed specifically for this research and had taken the necessary steps.

After extracting tweets and comments, the texts were cleaned and prepared for senti-
ment analysis. For stemming and lemmatization, the hunspell package was utilized, which
is a spell checker and morphological analyzer originally designed for the Hungarian lan-
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guage, but it performs well in English and Spanish also [18]. For examining sentiments
regarding the pandemic, collected text entries should be labelled with polarity: negative or
positive. To do this, a dictionary-based sentiment analysis was applied.

There could be some structural breaks in each time series due to the different char-
acteristics of the first and second waves of the pandemic. Therefore, we should identify
possible structural breaks in each examined time series that best separated the first and
second waves of the pandemic.

When investigating Granger causality, it is advisable to fit a model separately on
sections defined by structural breaks to ensure stability [8]. To identify structural breaks,
the breakpoint function from the strucchange R package was utilized [19]. If we assume
that the number of breakpoints in a linear trend for a time series is b, then the breakpoint
function estimates the location of b breakpoints by minimizing the residual sum of squares
(RSS) of a linear model where the slope of the trend can change b times. The optimal b is
chosen by the Bayes-Schwarz information criterion (BIC) as this IC prefers the sparsest
models. This was preferable for us as we had a relatively small number of observations for
each country already, so we should avoid overparameterization.

After determining the breakpoints, we fit VAR models for each country and each wave
separately to discover the Granger causality between the time series in both waves of the
pandemic. A vector autoregression (VAR) process with k endogenous and m exogenous
variables can be considered a system of equation with k equations. Model parameters
are estimated by OLS. See [20] for details. Maximum lag of the endogenous variables is
denoted by p.

However, the typical Granger causality test based on the classical VAR model cannot
be relied on when one or both time series are nonstationary, which could lead to spurious
causality [21]. Thus, an augmented Dickey-Fuller (ADF) test was employed. Besides, a
Kwiatkowski-Phillips—Schmidt-Shin (KPSS) test, in which the null hypothesis is station-
arity, was also conducted as a cross-check. To handle the possible integration in our time
series, the VAR models were set up according to the Toda—Yamamoto (TY) procedure [8]
using the levels of the data without differencing and adding g extra lags if the maximum
order of integration was q. The advantage of the TY procedure is it saves the cointegration
test and prevents pretest bias. However, there was a need to ensure that the VAR models
of each country were specified in a way that there was no serial correlation in the residual
values. This was tested by the portmanteau test.

In the optimal VAR models, Wald tests of Granger causality were applied. The null
hypothesis is that the coefficients of the first p lagged values of endogenous variables in
each equation are 0 after being tested. The reason for including the coefficient of the lags
from p + 1 to q is that the additional lagged values are to fix the asymptotic so that the
Wald test statistics under the null hypothesis follow asymptotical chi-square distribution.
Rejection of the null hypothesis of the Wald test implies a Granger causality.

4. Models

For our investigations, three countries were considered. The English-language tweets
were narrowed down to tweets originating from the USA, so epidemiological and gov-
ernment stringency indicators of the US were considered here. For the Spanish-language
tweets, the indicators of Spain were considered as during the first wave of the pandemic,
Spain was the hardest-hit Spanish-speaking country. By 30 June 2020, the cumulative
number of deaths per million was 606 in Spain and 297 and 215 in Chile and Mexico,
respectively. During the second wave, the pandemic situation in Latin America became
more serious, so the effects of COVID-related tweets from other Spanish-speaking coun-
tries could act as confounders. Managing these issues is part of our further research. The
indicators of Hungary were considered for the Hungarian language.

Sentiment dictionaries were gathered from different sources: Bing for English, TASS
for Spanish, and PrecoSenti for Hungarian [22-24]. Further processing was performed with
R using the tidytext and dplyr packages.
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Figure 1 shows that the basic sentiment in Spanish-language tweets was more positive
than in English-language ones. The daily count of tweets followed the usual trend of
a scandal: at the beginning of the pandemic, we could experience a large volume of
comments about corona-related topics, and the numbers started to fall during the year
even at the time of the second wave.

Sentiment swings Average sentiment

9-

b it 5
2- ' |
o

05-

scale(sentiment)
sentiment

Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
date date

Language — English Spanish — Hungarian Language — English Spanish — Hungarian

Figure 1. The tendencies in sentiment time series are relatively similar in the three examined datasets;
however, the average sentiment is higher in Spanish- and Hungarian-language tweets than English-
language contents.

The breakpoint function from the strucchange package identified two to four breaks
in the time series based on the BIC. These breakpoints needed to be narrowed down, as
four breakpoints would partition our sample into parts with very small sizes. To select the
breakpoints that best separated the two waves, the breakpoints of the positive rate in each
county were examined in more detail as this was the measure describing the spread of the
pandemic in line with WHO recommendations [16].

The breakpoints of the positive rate in each county are examined in more detail in
Figure 2 to define sections on which the Granger causality between the time series is
examined by fitting VAR models.

We can see that in Spain and Hungary, we could easily select the structural breakpoint
that best separated the start of the second wave of the pandemic. It is also noticeable that
Hungary had quite a long period in the summer where the positive rate stagnated on
a lower level before the second wave started in September. However, we did not wish
to separate this period from the first wave as three breakpoints would result in small
subsamples. That is why we also ignored the break that marked the peaking of the second
wave. In Spain, the second wave started around the middle of summer, much earlier than
in Hungary. We disregarded the other breakpoints marking different periods in the first
and second waves as splitting along these would result in small subsamples just like in the
case of Hungary.

USA Spain Hungary
020- | .
| 0.10- .
2
& 0.15- .
2 | .
[
2 .
B 0.10- | 0.05- =
o
o .
| /
0.05- .
' ' ' ' 0.007 [ ' ' 0.0+ ' ' - ' '
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Figure 2. The positive rate for the three examined countries. Structural breakpoints are marked with
dotted lines. The breaks marked with red are the ones that best separate the first and second waves
of the pandemic. In the US, a custom breakpoint is added to separate the two waves marked with a
dashed red line.
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The case of the US was more complicated as it had a short flare of the pandemic in the
middle of summer and the second wave started in late October. To preserve the sample
size, we considered the short flare in positive rate in the summer as an aftershock of the
first wave and defined a custom breakpoint on 20/09/2020, marked by the dashed red line
in Figure 2. We separated every examined time series into two parts, representing the first
and second waves of the pandemic according to the country-specific breakpoints selected
as shown in Figure 2.

As we had five time series for each country, we had k = 5 endogenous variables.
Dummy variables were used as exogenous variables to account for day-of-the-week effect.
One more dummy exogenous variable represented whether there was an antimask event
with at least 100 participants at time t for each country, making m = 6 + 1 = 7. The number
of p lags will be chosen later.

Based on the results of the ADF and KPSS tests, taking the first difference of each time
series mostly eliminated the unit root. The only exceptions were the stringency time series
in the US and the positive rate for Spain and Hungary during the first wave, according
to the KPSS test, but only on & = 10%, not on & = 5%. The ADF test rejected the Hy of the
unit root on all common significance levels in these cases. Thus, the maximum order of
integration was set to 1.

The VAR models were set up according to the TY procedure to account for the first-
order integration. First, we determined the appropriate lag length for the endogenous
variables. Based on the Akaike information criterion, Hannan—-Quinn information criterion,
Bayes—-Schwarz criterion, and final prediction error, lags p = 1 and p = 2 were recommended.

From the results of a portmanteau test controlling for dynamic stability, it was ob-
served that lag 2 removed residual serial autocorrelation at 1% for all VAR models except
for Hungary during the first wave. As accepting the Hy of no serial correlation in the
residuals was not convincing on all common significance levels, adding more lags could be
considered, but we already had a larger parameter-sample size ratio with the dummies
and the two lags for each variable (17 + 1 parameters for each equation, which is slightly
less than fifth of the number of observations (circa 160 and 120 for each wave) in all three
countries). The VAR models could be considered stable, again except for Hungary during
the first wave, as all roots of the characteristic polynomials were inside the unit circle.
Detailed diagnostic results for each VAR model are shown in Table 2.

Table 2. Model diagnostic results for the examined VAR(1) and VAR(2) models.

Lag=1 Lag=2
Setup Portmanteau Test Range of Roots of Portmanteau Test Range of Roots of
p-Value Characteristic Polynomials p-Value Characteristic Polynomials

USA-1st wave 0.0213 0.508-0.940 0.0596 0.196-0.948
USA-2nd wave 0.8364 0.565-0.902 0.9043 0.038-0.901
Spain-1st wave 0.8667 0.154-0.971 0.9108 0.129-0.962
Spain-2nd wave 0.0369 0.095-0.945 0.0849 0.189-0.936
Hungary-1st wave 0.0005 0.093-1.014 0.0001 0.070-0.992
Hungary-2nd wave 0.1067 0.053-0.980 0.2559 0.094-0.959

Lag p = 2 was chosen for the VAR models, and one more lag into each variable was
added to every equation, given that the maximum order of integration was 1. Therefore,
the augmented VAR models proposed by the TY procedure were constructed, and the
Granger causality tests were executed.
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5. Results

Results of the Granger causality tests are shown in Table 3. Granger causality in
Hungary during the first wave was not investigated as the underlying VAR model was not
stable, and it had significant residual serial autocorrelation.

Table 3. Significant Granger causalities found in each examined VAR(2). For each causal relationship,
the most significant lag in the appropriate VAR equation and the sign of this lag’s coefficient are
given in brackets.

Setup Significant Granger Causalities

Stringency -> entry count * (lag = 1; sgn = +)
Sentiment -> entry count * (lag = 2; sgn = +)
Positive rate -> deaths per million ** (lag = 2; sgn = +)
Entry count -> deaths per million ** (lag = 1; sgn = +)

USA-1st wave

USA-2nd wave Positive rate -> stringency ** (lag = 2; sgn = +)

Deaths per million -> sentiment * (lag = 1; sgn = —)
Deaths per million -> entry Count * (lag = 1; sgn = +)
Entry count -> deaths per million ** (lag = 1; sgn = +)
Deaths per million -> stringency *** (lag = 2; sgn = +)

Spain-1st wave

Entry count -> stringency * (lag = 2; sgn = +)

Spain-2nd wave
Entry count -> deaths per million ** (lag = 1; sgn = —)

Hungary-1st wave -

Entry count -> stringency ** (lag = 1; sgn = +)

Hungary-2nd wave
Deaths per million -> entry count ** (lag = 1; sgn = —)

* Significant at 10%, ** significant at 5%, *** significant at 1%.

Table 3 shows that more significant Granger causal relationships could be found
during the first wave of the pandemic than during the second. This is not surprising as the
novelty of the virus posed more challenge during the first wave as decision makers and
health professionals had to operate under limited information. Therefore, it is logical that
we can find a higher number of relationships between our examined time series during
the first wave. Unfortunately, owing to lack of a well-specified model for Hungary, this
conclusion can only be made for Spain and the US.

In the US, the two most significant relationships were those between Twitter entry or
post count and deaths per million and between positive rate and deaths. It seems that if
the test positive rate increased, mortality usually followed 2 days later. This relationship
was not significant at any of the common significance levels during the second wave,
which suggests that the situation had improved by that time. During the second wave, we
could also find that the increase in the rate of positive tests caused a stricter government
response. This suggests that by the second wave, the US government started to react
faster to changes in the pandemic situation. In the first wave, an increase in government
stringency caused the count of Twitter entries to rise a day later. This can confirm that
the US population was quite concerned with government response, so the measures were
debated on Twitter. This finding is further supported by the fact that 2020 was election
year in the US, so it is natural that government actions were under more scrutiny. These
debates happened during the hardest days of the pandemic in the US, which is reflected in
the significant Granger causality of Twitter entry count on mortality. Lastly, we observed
that an increase in Twitter sentiment caused an increase in the number of posts 2 days
later. It can be theorized that some positive messages about the pandemic could spread fast
in the US, where the population grew frustrated with the lockdowns [25]. The antimask
event exogenous variable had no significant effect on any of the endogenous time series in
the US.
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In Spain, during the first wave, the most significant Granger causality was the one
that showed government stringency increasing 2 days after the deaths per million people
increased. Therefore, the Spanish government reacted based on mortality, not on the rate
of positive tests as the US government did. The less significant relationships showed that
the number of tweets increased, and Twitter sentiment declined 1 day after an increase
in mortality. Therefore, the increase in government stringency can be also considered an
indirect reaction to public sentiment. This seems to suggest that in Spain, the public had
some effect on stringency measures, namely, triggering a stricter response. The signiﬁcant
Granger causality of Twitter entry count on mortality suggests that the increased Twitter
traffic happened during the hardest days of the pandemic in Spain, similar to the US. These
findings seem to confirm the findings of [26,27], who suggest that public opinion had a
part in reintroducing strict government measures during the summer of 2020. During the
second wave, the effect of Twitter entry count on government stringency remained with
a lag of 2 days, although the rest of the Granger causalities in the first wave had become
insignificant except for the relationship of Twitter entry count and deaths per million.
However, the directions of this relationship changed. It now shows the decrease of deaths
per million a day after the number of tweets increases. This might be because Twitter
activity concentrated on the peak of the second wave, after which mortality decreased
somewhat. In Spain, antimask events had an echo on Twitter, as their exogenous variable
had a significant positive effect on Twitter entry count in the first wave and a significant
negative effect on Twitter sentiment in the second wave—however, in both cases only at
10%. Therefore, it can be theorized that during the first wave, the increased Twitter entry
count that had a significant effect on mortality was partly due to these antimask events.

We only had a stable and well-specified VAR model for Hungary during the second
wave, so only the results of this model are discussed. We had two significant Granger
causalities—both effects significant at 5%, but not at 1%. The number of posts on Hungary’s
FAQ page seemed to be followed by an increase in government stringency a day later. This
effect is something similar experienced in Spain, as public opinion was critical of the late
government response during the second wave in Hungary [28]. We also found that there
was a decrease in the number of FAQ posts a day after deaths per million increased. This is
something similar to Spain’s second wave: posting activity was concentrated on the peak
of the second wave where mortality was highest, after which posting activity somewhat
decreased. The antimask event exogenous variable had no significant effect on any of the
endogenous variables in Hungary.

These VAR models can also be used to make short-period forecasts for any of the
endogenous time series based on the other variables in the model. Therefore, for example,
government stringency and mortality in Spain can be estimated based of Twitter entry
counts of the previous day. However, this direction was not investigated further due to
page limits.

6. Summary

Based on our results, the relationships between social media communication and
epidemiological indicators were stronger during the first waves of the pandemic than
during the later ones.

The US results were heavily influenced by the presidential election throughout the
whole year, as the volume of Twitter comments reacted to government stringency in the
first wave, but the sentiment did not seem to be affected. By the second wave, government
stringency started to react to changes in the positive rate.

During the first wave of Spain, government stringency along with Twitter volume
and sentiment all reacted to changes in the mortality rate. Government stringency lagged 2
days behind the changes, while the Twitter events followed only 1 day late. During the
second wave, this relationship was reduced to government stringency reacting to Twitter
traffic with a delay of 2 days. It is important to note though that around the second wave
of Spain, the first wave of Mexico started as well; thus, Spanish Twitter comments might
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reflect this. Antimask events also had some influence on Twitter traffic, but mainly around
the first wave.

In Hungary, our model was not stable for the first wave. However, the discovered
relationships were very similar to what we experienced in Spain, as government stringency
reacted to the volume of comments on the Hungarian FAQ. The reason for the lack of stable
results in the first wave was probably the fact that even though there was a huge media
hype in the spring of 2020, the number of confirmed cases was considerably lower than in
the other waves.

A number of opportunities for further development have been identified. We would
like to achieve greater heterogeneity across source platforms in order to reduce the effects
of Twitter’s typical “telegram” style. As an effect of abbreviated and compressed tweet
texts, inaccuracies resulting from dictionary- and word-based text mining methods are
presumably present. Another problem with Twitter is the unbalanced age distribution:
only 10% of Twitter users are above 50 years [29]. It follows from all of this that it would
be advisable to conduct the research based on the content of the much more widely used
Facebook platform, or if it is not possible, then additional country-specific sources need to
be utilized.

To identify corona topics and conspiracy theories, the utilized tool should be topic
modelling; then social network analysis (SNA) can be performed along with topic mod-
elling results. With SNA, we will examine how these topics spread. Finally, it will be
possible to compare the results with the official WHO data collected during the pandemic;
thus, we can analyze the impact of society on the pandemic and the impact of the pandemic
on society.
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Abstract: The availability of massive amounts of temporal data opens new perspectives of knowledge
extraction and automated decision making for companies and practitioners. However, learning
forecasting models from data requires a knowledgeable data science or machine learning (ML)
background and expertise, which is not always available to end-users. This gap fosters a growing
demand for frameworks automating the ML pipeline and ensuring broader access to the general
public. Automatic machine learning (AutoML) provides solutions to build and validate machine
learning pipelines minimizing the user intervention. Most of those pipelines have been validated
in static supervised learning settings, while an extensive validation in time series prediction is still
missing. This issue is particularly important in the forecasting community, where the relevance
of machine learning approaches is still under debate. This paper assesses four existing AutoML
frameworks (AutoGluon, H,O, TPOT, Auto-sklearn) on a number of forecasting challenges (univari-
ate and multivariate, single-step and multi-step ahead) by benchmarking them against simple and
conventional forecasting strategies (e.g., naive and exponential smoothing). The obtained results
highlight that AutoML approaches are not yet mature enough to address generic forecasting tasks
once compared with faster yet more basic statistical forecasters. In particular, the tested AutoML
configurations, on average, do not significantly outperform a Naive estimator. Those results, yet
preliminary, should not be interpreted as a rejection of AutoML solutions in forecasting but as an
encouragement to a more rigorous validation of their limits and perspectives.

Keywords: AutoML; time series forecasting; benchmarking; frameworks

1. Introduction

The pervasiveness of electronic devices enables the collection of temporal data (about
production, development, sales) at a growing rate. Extracting actionable knowledge from
temporal data requires specific technical skills, yet the growing availability of data is not
accompanied by an equivalent increase in the number of experts able to analyze them, thus
reducing their potential impact.

Automated machine learning (AutoML) [1] aims to fill this gap by automatizing
the different phases of data analysis and providing suitable solutions for data scientists,
practitioners and final users. AutoML approaches can help obtain a glimpse of knowledge
about new data, for example, suggesting the optimal model to use. Data may also be too
noisy or of poor quality, in which case AutoML would quickly reflect it, by showing failure
in multiple pipelines, saving the data scientist a lot of time.

However, finding a procedure that automates the entire ML process for forecasting is
a risky endeavor. Time series data have constraints and peculiarities (e.g., trend and sea-
sonalities, outliers, drifts, abrupt changes) to handle in specific ways, often not compatible
with more traditional tabular data. Furthermore, most AutoML approaches rely on the
assumption that the higher the degree of search in the hyperparameter space, the better the
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final result. Now, in large dimensional and noisy settings, pushing the degree of grid search
too far leads inevitably to a high degree of variance of the returned solution, which, if not
adequately assessed with external validation data, could be prone to overfitting [2]. This is
particularly the case of large dimensional settings like the ones that can be encountered in
multivariate forecasting. In those cases, embedding, i.e., the transformation in a tabular
form for supervised learning, produces high-dimensional input datasets. Automatizing
the feature selection phase without accounting for an external validation set can be detri-
mental, returning over-optimistic assessment of the generalization accuracy of the chosen
set of features.

Thus far, the main comparative studies on AutoML solutions are [3-8]. They generally
compare various frameworks against each other on standard supervised learning tasks.
Results show high variance [3], or no significant difference between models [7], although
more recent comparisons appear to favor AutoGluon [8], suggesting the importance
of feature preprocessing. However, frameworks tend not to significantly outperform
traditional models (e.g., random forest within 4 h [4]) nor humans in easy classification
tasks [5].

This paper assesses the capabilities of four AutoML frameworks (AutoGluon, H,O,
TPOT, Auto-sklearn) with respect to conventional statistical forecasting strategies (naive,
exponential smoothing, Holt-Winter’s). This issue is particularly important in the fore-
casting community, where the relevance of machine learning approaches is still under
debate [9]. In order to provide a fair comparison, we took advantages of the possibility
provided by AutoML packages to limit the allowed computational time. The goal is to show
experimentally the effectiveness of known AutoML frameworks on time series forecasting,
challenging the framework by limiting their computational time and comparing the results
with fast conventional forecasting strategies. In particular, the main contribution of this
manuscript are:

® A description of several state-of-the-art AutoML frameworks;

e The comparison between several state-of-the-art AutoML frameworks on univariate
and multivariate time series forecasting on different horizons;

®  The assessment of their effectiveness against conventional forecasting strategies such
as naive and exponential smoothing on comparable scale times.

Note that the constraint on the execution time is not simply an experimental decision
but it reflects a criticism of the authors about the continuous increase of computing re-
sources required by ML methods (notably deep learning). Since this resource consumption
is not necessarily followed by a correspondent improvement of the overall performances,
we think it is time for the forecasting community to investigate the trade-off between
time (and energy) consumption vs. accuracy. The paper is organized as follows: Section 2
introduces the problem formulation, while Section 3 describes the adopted AutoML frame-
works. The benchmarking experiments are described in Section 4, with the discussion and
conclusions in Section 5.

2. Machine Learning and Forecasting

A multivariate and multitemporal model f aims at learning the mapping between past
values and future values of an N-variate time series. Given a time resolution At = t; — t; 4
at time instant ¢, a lag L and a forecasting horizon h, the temporal dependency can be
represented in the embedded form:

Yit+1r - Y tn Yit—L+1s- - Y1t

YNt+1, -+ YN t+h YN t—L+1/+-- YNt

)

The multi-input multi-output nature of (1) suggests the adoption of a multi-output ap-
proach (e.g., neural networks). However, since most learning algorithms available in
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AutoML frameworks are single-output, we will decompose the MIMO problem in a se-
quence of N multiple-input single-output (MISO) tasks:

Y1t—L4+1s- - Y1t
(Vi1 -V ) = fia
YNt—L+1s- - YN

Yit—L+1,--- Y1t
( YNt+1s-+ - YN t+h ) = fin
YNt—L4+1/-- - YNt

If we assume that there is no significant cross-series dependency, we may further decom-
pose (2) into a set of N single-input, single-output (SISO) tasks:

(yl,t+1,~ . ~ry1,t+h) = le(yl,tfulw . -/yl,t)
- ®

(UNfs1s - YNtn) = N(YUNE—L 41 YNE)

The above formulations make the natural adoption of supervised learning pipelines [10],
which are typically composed of the following steps:

1.  Preprocessing : the observations are cleaned, normalized and rescaled. Missing data
can be removed or replaced. New features may be produced by means of feature
engineering [11].

2. Dimensionality reduction: this step aims at reducing the input dimension, to diminish
the computational burden and avoid numerical and statistical issues [12].

3. Model estimation: this step estimates from the available data the input-output rela-
tionship.

4. Performance assessment: the model performances are validated by means of a valida-
tion set, a subsample of the observed data that is kept aside to verify the ability of the
model previously trained to correctly predict new unseen samples. This is followed
by an analysis of the distribution of performance measures.

It is important to remark that those steps are either skipped or extremely simplified in
conventional forecasting strategies (e.g., exponential smoothing) with an evident gain in
terms of computational time.

2.1. Conventional Statistical Approaches

Those methods provide a quick insight to the behavior of a time series and are efficient
to compute. The simplest approach is the naive: the time series forecast at time t 4 1 is
provided by the last available observation at time ¢. Another simple technique is the mean
model, where the forecast at time ¢ + 1 is the average of all previous observations up to
time t. Exponential smoothing is an approach proposed by [13,14], based on exponentially
decaying weighted averages of past observations. The approach favors recent observations,
and its speed and reliability made it successful. A basic version is the simple exponential
smoothing (4), suitable for data with no clear trend or seasonal pattern. 0 < a < 1is the
smoothing parameter that controls the rate at which the weights decrease.

Trire = ayr +a(l— )y +a(l— )’y o+ “)

Holt and Winters [15] extended the method to capture trends and seasonality. The Holt-
Winters seasonal method comprises the forecast equation and three smoothing equations
(level, trend, seasonality). A corresponding multiplicative version exists [16]. When the
seasonal variations are roughly constant, the additive method is preferred, and when the
seasonal variations are changing proportional to the level of the series, the multiplicative
method is chosen. By considering variations in the combinations of the trends and seasonal
components, nine exponential smoothing methods are possible [17-19].
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3. AutoML Frameworks

This section sketches the AutoML frameworks we selected for the experimental
comparison. All of them provide the possibility to limit their execution time, enabling a
fair comparison with faster statistical methods (Section 2.1).

H>O0 is a distributed machine learning platform. Its AutoML module [20] covers a
large selection of candidate models, including two stacked ensembles of all the trained
models and of the best model of each family, respectively. It provides a simple and highly
customizable interface where the user can specify the maximum time of the AutoML
process or the maximum number of models to build in an AutoML run. The available ML
algorithms are distributed random forest, including both random forest and extremely
randomized trees; generalized linear models, XGBoost gradient boosting machine, H,O gra-
dient boosting machine, and deep neural network. Preprocessing is limited to automated
target encoding of high dimension categorical variables.

Auto-sklearn [21] is a Python library for AutoML built on top of the scikit-learn
library [22]. It uses 15 learners (notably k nearest neighbors, gradient boosting, stochastic
gradient descent, random forest, AdaBoost), 14 feature preprocessing methods, and 4 data
preprocessing methods. It leverages meta-learning by evaluating a set of meta-features
(e.g., statistics about the number of data points, features) over hundreds of datasets and
storing the most accurate related configurations. It also adopts Bayesian optimization to fit
a probabilistic model to capture the relationship between hyperparameter settings and their
measured performance. Additionally, it uses ensemble selection, a greedy procedure that,
starting with an empty ensemble, iteratively adds the model that maximizes the ensemble
effectiveness. Its data preprocessing includes one-hot encoding, imputation of missing
values and normalization. Its feature preprocessing performs feature selection via principal
component analysis, singular value decomposition and other methods.

AutoGluon [8] is a Python library for AutoML dealing with text, image, and tabular
data. The set of learners includes neural networks, LightGBM boosted trees, CatBoost
boosted trees, random forests, extremely randomized trees, and k nearest neighbors. Its
preprocessing is split into model-agnostic preprocessing, including features categorization
and treatment (e.g., encoding of categorical variables), and model-specific preprocessing
applied on a copy of the data passed to each model. Multi-layer stack ensembling and
repeated k-fold bagging are used to combine the base learners.

TPOT [23] is a tree-based pipeline optimization tool that automatically designs and
optimizes ML pipelines using genetic programming (GP) [24]. It wraps the scikit-learn
library [22], and offers the following models: decision tree, random forest, eXtreme gra-
dient boosting, logistic regression and k nearest neighbor. The preprocessing and feature
selection functionalities include standard scaler, randomized PCA, SelectKBest, and recur-
sive feature elimination. Each ML pipeline is treated as a GP primitive, and GP trees are
constructed from them. The process starts by generating 100 random tree-based pipelines
and evaluating them, while for every generation, the top 20 are selected to maximize
accuracy and minimize the number of operators. Each of the top 20 pipelines produces
five copies with cross-overs or random mutations over the individual components of the
pipeline. The whole procedure is repeated for 100 generations.

4. Experimental Benchmark

This section introduces the time series benchmarks, the methodology and the evalua-
tion metrics and the results. We consider two public datasets made available in [25]. The
format of the dataset has been adapted to ease research related to multivariate time series.
A link can be found in the footnotes of Section 5.

e  Electricity consumption: the original dataset (https://archive.ics.uci.edu/ml/datas
ets/ElectricityLoad Diagrams20112014, accessed on 30 March 2021) contains electricity
consumption of 370 clients recorded every 15 min from 2011 to 2014. The preprocessed
dataset contains hourly consumption (in kWh) of 321 clients from 2012 to 2014.
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e Exchange rate: the dataset (possible source: https://fred.stlouisfed.org/series/EXU
SEU, accessed on 3 March 2021) is a collection of the daily exchange rates of eight
foreign countries, including Australia, Great Britain, Canada, Switzerland, China,
Japan, New Zealand and Singapore. The considered time ranges from 1990 to 2016.

We benchmark four AutoML frameworks against simple and conventional forecasting
strategies by adopting a SISO (3) approach for univariate forecasting and a MISO (2)
approach for multivariate forecasting. The rationale behind the choice of MISO over MIMO
(1) is that not all AutoML frameworks provide the possibility of predicting multiple-output,
and this would not have produced a fair comparison. An additional reason is the intrinsic
univariate nature of conventional methods such as naive or exponential smoothing: a
MISO approach provides a more natural comparison by predicting only one variable. For
the univariate case, we decide to work with the first available variable, without loss of
generality. The choice of additional variables for the multivariate case is made as follows:
starting from the first variable, we pick its N most correlated variables, and we forecast on
the first variable.

Preprocessing: we do not perform any data preprocessing for three reasons. First,
data are already in a format that does not need particular treatment. Second, some AutoML
frameworks, as mentioned in Section 3, include some data preprocessing. If this improves
the performances, the corresponding framework should be rewarded. Third, this work
aims at benchmarking models, rather than maximizing the correctness of forecasting: as
long as all models are provided with the same data, the benchmark is fair.

AutoML: the selected frameworks treat tabular data in a supervised learning setting.
They hence require an embedding for the time series (see Section 1). The lag parameter
for the embedding was fixed at L = 5, and future work will explore other values. Since
one of the two time series considered contained at most eight variables, we decided to set
the possible number of variables to v € [1,3,5,8]. The values for the horizon have been
fixed to I € [1,2] and the time allowed for each AutoML framework was limited to ¢ =
[60's, 120 s, 300 s]. These values are low with respect to standard AutoML times for an
optimal exploration of the space of parameters, but the comparison with particularly fast
methods requires those limitations. Longer time frames will be considered in future work.
The combinations of all tested parameters are presented in (5), and one experiment has
been carried out for each of them. No additional parameter has been set to the frameworks.

Auto-sklearn 1 variable

AutoGluon 3 variables Horizon 1 T}me 60

X . . x | Time120s (5)
H20 5 variables Horizon 2 Time 300
TPOT 8 variables tme S

Conventional forecasting strategies: we consider the naive predictor as our baseline,
and from the exponential smoothing family, we choose the simple exponential smoothing
and four variations of Holt-Winters. We focus on Holt-Winters because of its historical
effectiveness in forecasting [15]. The mentioned variations are summarized in Table 1.

Table 1. Exponential smoothing-approaches considered in this work, specifying the nature of their trends and seasonal

components.
Method Trend Comp. Seasonal Comp.
Simple exponential smoothing None None
Additive Holt-Winters” method Additive Additive
Multiplicative Holt-Winters” method Additive Multiplicative
Additive Holt-Winters” damped method Additive damped Additive
Multiplicative Holt-Winters” damped method Additive damped Multiplicative
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Train, validation and metrics: We consider the absolute error, i.e., the absolute differ-
ence between the real value y; and the predicted value §;. Our validation strategy divides
the time series into three equal fragments, considering one additional third at each iteration.
The last 16 points of this set are considered as the validation set, while all the previous
points are the train set. This results in a total of 48 test points from 3 different areas of the
time series.

Experimental Results

Figures 1-4 show critical distance plots, i.e., a graphical representation of the results of
the Friedman statistical test (with post hoc Nemenyi test), as suggested in [26]. The methods
are ordered according to their performance from left to right (left is better), while the black
bar connects methods that are not significantly different (at p = 0.05). The nomenclature
chosen follows the pattern framework_variables_time. A selection of models is shown in
Figures 1-3; in particular, we plot the most and least performing variant for each AutoML
framework and all the conventional methods. Figures 1 and 2 present the methods ranking
over the electricity and exchange time series, respectively, averaging over different horizons.
Figure 3 represents the average over both time series. The same results of Figure 3 are
presented in Figure 4, but the 20 most performing models are considered. Table 2 presents
the win/losses of all studied approaches with respect to the naive predictor. In all cases,
the metric considered is the absolute error. This analysis highlights the following results:

e  Short-range training times (in the order of few minutes) are not sufficient for the
AutoML frameworks considered to significantly outperform conventional methods
(Figure 3). For short-horizons quick forecasting, it might therefore be convenient to
rely on the latter.

e In terms of training time, 120 s seems to allow slightly better generalization ability
than 60 or 300 s (Table 2). This might indicate that with 60 s, the models tend to
underfit and with 300 s to overfit the observations.

e All traditional methods dominate every AutoML method in terms of wins count
with respect to the naive (Table 2), which reflects the strong forecasting ability of the
exponential smoothing family of methods. It could be appropriate to consider those
methods as a baseline.

*  Moving from a univariate SISO to multivariate MISO approach does not improve
the performances of any method despite that the variables are added by maximizing
correlation. This seems to suggest a lack of effectiveness in the feature selection
approaches of the AutoML frameworks, when implemented.

—
1 2 3 4 5 6 7 8 9 101 1z 13 14
autogluon v 3005 ——— — autosklearn_v8 120s
autogluon_vs_60s hZo w5_120s
Holt-Winters (add-add onal) I ftpot_vB_60s
Naive autoskleamn_vl_300s
Holt-Winters (add-add-seasonal) - damp tpot w1 1205
SimpleExpSmocthing Holt-Winters (add-mul-seasonal) - damp
Holt-Winters {add-mul onal) hZo_vl_120s

Figure 1. CD plot—selected models comparison of the absolute errors over the validation set for the
electricity time series.
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Haolt-Winters (add-mul-seasonal) —— —————— autogluon_vE_60s
Holt-Winters (add-add-seasonal) —— L hZo w3 Bls
autogluon_vl_300s tpot_vs_120s
Holt-Winters {add-add-seasonal) - damp hZo_vl_B0s
Maive SimpleExpSmocthing
tpot vl 120s autosklearn_vl_120s

Figure 2. CD plot—selected models comparison of the absolute errors over validation set for the
exchange time series.

D
—
1 2 3 4 5 6 7 8 9% 10 11 1z 13 14
autogluon_vl 3005 —MM — autosklearn_v3_g0s
Holt-Winters {add-add-seasonal) — ——— hZo_v5_120s
Naive —M - tpot_v3 60s
Holt-Winters (add-add-seasonal) - damp autogluon_ve_60s
Holt-Winters [add-mul-seasonal) autosklearn_vl_300s
Holt-Winters (add-mul-seasonal) - damp tpot vl 1205
SimpleExpSmocthing hZo_vl_60s

Figure 3. CD plot—selected models comparison of the absolute errors over validation set for both
time series.

D
A
12345678 5101112153141516171519 20
[ N L
autogluon_vl 300s autosklean_v3_g0s
Holt-Winters (add-add-seasonal) ——— — autosklearn_vB_120s
autogluon_vl_60s —— ——— autoskleamn_vB_&0s
autogluon vl 1208 ——— - autosklearn_vB_300s
Naive ————— | ' autosklearn_v5_60s
Holt-Winters (add-add-seasonal) - damp —— ——————— autoskleamn_v3_120s
Holt-Winters (add-mul-seasonal) — ——— autoskleam_v5_120s
autogluon_v3 3005 ——— ————— autoskleam_v5_300s
Holt-Winters (add-mul-seasonal) - damp —— L————————————————— hZo w5 120s
autogluon_v3_120s autosklearn_v3_300s

Figure 4. CD plot—top 20 models comparison of the absolute errors over validation set for both
time series.
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Table 2. Win/loss count with respect to the naive approach presented in Section 2.1. The counts are made over the four case
studies considered: electricity and exchange time series for 1-step ahead and 2-steps ahead forecasting. The nomenclature

chosen follows the pattern framework_variables_time, and the metric considered is the absolute error.

Model Wins Losses Model Wins Losses
Holt-Winters (add;-add) 146 46 h20_v3_300s 66 126
Holt-Winters (add-add) 146 46 autogluon_v3_300s 65 127
SimpleExpSmoothing 139 53 tpot_v3_60s 65 127
Holt-Winters (add;-mul) 138 54 h20_v5_60s 65 127
Holt-Winters (add-mul) 138 54 h20_v3_60s 63 129
h20_v1_120s 80 112 h20_v8_60s 62 130
h20_v1_300s 79 113 tpot_v5_60s 62 130
autosklearn_v1_300s 75 117 autosklearn_v1_60s 61 131
h20_v1_60s 75 117 tpot_v8_60s 60 132
h20_v8_120s 74 118 autogluon_v5_300s 60 132
autogluon_v1_300s 74 118 tpot_v8_120s 60 132
tpot_v1_120s 74 118 autogluon_v8_300s 59 133
tpot_v8_300s 74 118 autogluon_v8_120s 59 133
autogluon_v1_60s 73 119 autogluon_v5_120s 59 133
tpot_v1_60s 72 120 autogluon_v8_60s 57 135
tpot_v1_300s 71 121 autogluon_v5_60s 53 139
h2o0_v5_300s 69 123 autosklearn_v3_300s 51 141
autogluon_v1_120s 69 123 h20_v5_120s 50 142
autogluon_v3_120s 69 123 autosklearn_v5_300s 36 156
h20_v8_300s 68 124 autosklearn_v3_120s 18 174
tpot_v5_120s 67 125 autosklearn_v5_120s 17 175
autogluon_v3_60s 67 125 autosklearn_v5_60s 14 178
autosklearn_v1_120s 67 125 autosklearn_v8_300s 14 178
tpot_v5_300s 66 126 autosklearn_v8_60s 9 183
tpot_v3_300s 66 126 autosklearn_v8_120s 5 187
tpot_v3_120s 66 126 autosklearn_v3_60s 2 190
h20_v3_120s 66 126 Naive Base Base

5. Conclusions, Recommendations and Future Work

Automated machine learning is a promising research direction aiming to support
practitioners in unleashing the potential of ML for data science. Various frameworks
currently exist, and they differ by their feature selection, model selection and parameter
optimization approaches. With sufficient time and resources, they have been showing
excellent results in several learning problems.

This paper supports the idea that it is probably too soon to consider them as a full-
fledged solution for time series forecasting. In particular, we deem that most solutions
hang more on the complexity and comprehensiveness side than on the one of a rigorous
validation of the added value with respect to simpler, yet less prone to overfitting, solu-
tions. This is particularly delicate in forecasting settings where the high noise, the large
dimension and the small number of samples would advise for a more cautious attitude
with respect to complex automatic solutions. Our conclusion is supported by a benchmark
of selected AutoML frameworks against simple statistical methods like naive and Holt-
Winter’s. The obtained results suggest that, in the short term, AutoML frameworks do not
significantly outperform traditional methods, and relying exclusively on them might not
be the optimal solution.

On the basis of the results obtained, we would like to make some recommendations to
the AutoML community. It is important that any automatic selection strategy is supported
by an external validation dataset, including significance tests with respect to simple and
naive strategies. In the case of limited data, permutation strategies may be adopted to
assess the added value of complex ML pipelines, as well. Last but not least, we deem
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that AutoML tools should have a pedagogical role with respect to end users by educating
them in terms of the trade-off between accuracy and computational resource (and energy)
consumption. For instance, a graphical representation of the cost-benefit ratio could help
in that sense.

Further work will assess the impact of longer computational time allowed to the
AutoML models (in the order of hours or days) and repeat the tests for larger horizons,
where traditional methods might suffer. AutoML frameworks also offer deep customization
to improve their performance, which has not been considered in this work and will be
studied. Additionally, an analysis of other frameworks that offer time-series-specific
treatments is foreseen.
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Abstract: In time series analyses, covariance modeling is an essential part of stochastic methods
such as prediction or filtering. For practical use, general families of covariance functions with large
flexibilities are necessary to model complex correlations structures such as negative correlations. Thus,
families of covariance functions should be as versatile as possible by including a high variety of basis
functions. Another drawback of some common covariance models is that they can be parameterized
in a way such that they do not allow all parameters to vary. In this work, we elaborate on the affiliation
of several established covariance functions such as exponential, Matérn-type, and damped oscillating
functions to the general class of covariance functions defined by autoregressive moving average
(ARMA) processes. Furthermore, we present advanced limit cases that also belong to this class and
enable a higher variability of the shape parameters and, consequently, the representable covariance
functions. For prediction tasks in applications with spatial data, the covariance function must be
positive semi-definite in the respective domain. We provide conditions for the shape parameters
that need to be fulfilled for positive semi-definiteness of the covariance function in higher input
dimensions.

Keywords: ARMA processes; covariance function; stochastic modeling; time series analysis; Matérn
covariance function; positive definiteness

1. Introduction and Related Work

Signal covariance modeling is an important part of stochastic methods [1]. In covari-
ance modeling, the choice of the type of covariance function is commonly separated from
the actual estimation of its shape parameters. Thus, the estimated covariance model quite
strongly depends on the assessed basis functions. From this standpoint, it is desirable to
have a very general class of covariance functions that can represent very different shapes
with a single functional model and thus includes a large set of possible basis functions.
A drop towards negative correlations, i.e., the so-called hole effect [2], is a widespread
phenomenon in real-world datasets.

The Matérn family of covariance functions [3] finds application in many fields such
as machine learning [4], environmental sciences, and geostatistics [5,6]. Simultaneously, a
very similar class is known as Markov models, e.g., [6-8]. For instance, the combination
of a degree-two polynomial and an exponential function is known as the third-order
Markov model.

In geodetic time series analysis, many standard covariance models have been intro-
duced early. For instance, the authors of [9] provided an application of a simple case of
the Matérn covariance function to describe the stochastics of the gravity field. The authors
of [10] and [11] introduced second- and third-order Markov models in the geodetic con-
text; see also [12]. The author of [13] used the exponentially damped cosine in a geodetic
application. Later, the second-order Markov model was applied to altimetry data [14,15].
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On the other hand, Markov models are also referenced by different names. e.g., the
respective models can be derived from Radon transforms of the exponential model, cf. [16]
(p-85). In the literature, these models are also denoted as second-order autoregressive
(SOAR) models and third-order autoregressive (TOAR) models; see e.g., [8,17-21]. Despite
the uncertain terminology in the literature, we distinguish between second-order Gauss—
Markov (SOGM) models as in [22,23] and second-order Markov (SOM) models [7,8,10],
whereas both models share the property of being second-order autoregressive (SOAR) or
second-order ARMA models.

In [23], it was shown that the covariance function of AR and ARMA processes with
unique poles corresponds to a sum of SOGM process covariance functions, which are
a combination of an exponential function and cosine and sine terms. However, if the
autoregressive poles are repeated, the correspondence to SOGM models does not hold
anymore. Instead, a higher pole-multiplicity introduces polynomials as basis functions
into the family of covariance functions. This more general family is commonly related back
to [24] (p. 543) where a family of covariance functions constructed by polynomial functions
and exponential damping terms is derived from ARMA models. Whilst the family is mostly
introduced in the literature only for real poles, it has a complete set of covariance functions
of oscillating type, which is discussed in this work. Examples of this general class appear
very sparse in the literature, e.g., in [2] or in a short note on oscillatory Matérn covariance
functions in [25] (Section 2.3.3) but never the complete variety of this class. In this work,
we merge many known covariance functions to a combined family of covariance functions,
namely the ARMA models.

Next to the variety of basis functions involved in the construction of a covariance
function, it is essential for the function’s flexibility to allow all shape parameters to vary. By
this requirement, one can define a family of covariance function, e.g., the class of Markov
models. The reference with the most complete variety of functions belonging to this class
is [5] (known as Buell’s function of index 3; see also [6]) who provides that model with
enhanced variability of parameters, which is the general idea in this paper.

In this work, these two extensions to the standard covariance models are introduced
as part of the family of non-repeated and repeated poles ARMA models. Hence, starting
from the Matérn-type covariance models, it is intended to provide both a variety of basis
functions and variability of the shape parameters to achieve the most general family of
covariance functions.

Another aspect is the necessity of covariance functions being positive semi-definite.
For applications with data in higher dimensions, e.g., spatial data, the reduction to a one-
dimensional distance-like norm (e.g., Euclidean) does not guarantee positive definiteness
of the covariance function in the higher dimension. Instead, the Bochner theorem extends
to the Hankel transform being positive [1,26]. We derived the conditions among the shape
parameters that ensure positive semi-definiteness of the covariance function in higher
input dimensions.

2. The Family of Non-Repeated Poles ARMA Models

Reference [23] presents elegant parametrizations and fitting procedures for the family
of covariance functions defined by autoregressive moving average (ARMA) models. The
family is based on covariance functions defined by SOGM processes given in one of the
two following parametrizations:

2
_ v —CT _ 1 >
y(1) = cos(7) e “fcoslat—n)  witha,c>0and || < /2 1)
2
— T aGwr _r2 - ith0 < ¢ <
cos(n) e cos< 1-C2woT 7]) with0< <1, wy>0. 2)
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In more detail, the interpolating function to the discrete covariances of an AR(p) pro-
cess is given by the following finite weighted sum of exponentiated (unique) autoregressive

poles p1,p2,..., pp:
’)r(T):A1pf+A2p§+...+App; with p; € C A €C, 3)

cf. [27] (Equation (5.2.44)) and [28] (Equation (3.5.44)), which can be mathematically con-
verted to the representation of Equation (2); see [23]. Equation (3) corresponds to either a
pure AR(p) process or an ARMA(p,q) process, depending on whether the weights A; are
purely, i.e., uniquely, determined by the autoregressive poles p;. The two-step approach
in [23] starts with an estimation of the autoregressive process parameter and concludes
with the fitting of weighting coefficients of the interpolating function.

Positive Definiteness in Higher Dimensions

The application in spatial domains requires positive semi-definiteness of the covari-
ance function in higher dimensions R?, which is derived here.

Starting from the simple exponentially damped cosine, e.g., [16] (p. 92), the SOGM
covariance function is a generalization with three parameters, i.e., additional phase, see [23]
for details on the parametrization. Similar to [29] (p. 26), positive semi-definiteness con-
straints on the parameters can be followed from [30] and amount to

1727§+acos(g)-d @

as an additional condition to the requirement ;7 < asin({), cf. [23]. The permissible area
of parameters is illustrated in Figure la and is visibly restricted more and more with
increasing dimension.

n
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Figure 1. Permissible areas for parameters. For each dimension, the permissible area becomes a
subset of that of the lower dimension. (a) Permissible areas of the parameters { and 7 in different
dimensions 1 to 3. (b) Permissible areas of the weights ¢ and ¢, in different dimensions 1 to 3 shown
for fixed parameter ¢ = 1.

3. Generalization to Repeated Poles ARMA Models

Prior to providing the methodology of repeated poles ARMA processes, we introduce
the basics of the Matérn family of covariance functions. The Matérn family of covariance
functions can be parameterized in a way such that similarities to the ARMA models
become clear.

3.1. The Half-Integer Matérn Covariance Function

The Matérn class of covariance Functions [3,4] defines a covariance functions with the
two shape parameters c (scale of correlation length) and order v. The Matérn covariance
function is defined as
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O K fer) ©)

_ 29l-v
'YMat,v(T) =02 r(ll)

and, in the case of half-integers v, simplifies to a combination of a polynomial of degree
p=v—1/2 and an exponential function [4,6]. For the first four half-integers, we have

T cT

Mat1/2AT) =07 e T, MvaraT) =02 (1+cT)e T,

2
C _
YMat5/2(T) = o? <1 +cT+ 3 T2> e “Tand ©)

2¢2 A _
TMat7/2T) = o? <1 +cT+ 5 %+ G T3> e °T.

Note that the attenuation factor c also builds the coefficients of the polynomial.

3.2. Repeated Poles ARMA Models

Equation (3) holds only for the simple case assuming that the autoregressive process
has distinct roots. When there are repeated real (positive or negative) poles or repeated
complex conjugate poles, special cases have to be considered. Derived from the solution
to the difference equation of the autoregressive relation for repeated poles, cf. e.g., [31]
(Chap. 3.7), the required basis functions are summarized as one of the following cases of
covariance sequences 7y at discrete lags k, either

Yk = <co+c1k+...+cm,1k”1*1)ﬁk (7)
forp:=p1=pr=...=pmw €RT,0r
Yk = <co +eok+.. Fep km*l)|f1|kcos(7'rk), 8)
for the case p:=p1 =pr=...=pu € R, or finally
Y = <C0+Clk+~--+C171k171)|ﬁ|k cos(ak—1) ©)
for p:=p1=...=p=pj,=...=p5 € C. mrepresents the multiplicity of real roots, !

represents the pairwise complex conjugate roots, and ¢; is the weights. As a result, these
formulae correspond to multiplication and exponentiation of complex-valued weights
A; and poles p similar to Equation (3) and with the same correspondences ¢ = —In(||),
a=|arg(p)|, and |n;| = |arg(A;)|; see [23] (Sections 4.3 and 5.1). However, for repeated poles,
e.g., as visible from Equation (7), the summation is performed in the following way

= AP Ak Pt A KR (10)

Although the solution to the difference equation holds for discrete 1y, we pursue a
reinterpretation as a continuous covariance function (7); see [23] (Section 4.3), and use the
mathematical elegance of Equation (10) also for the analytical covariance function defined
by AR or ARMA models.

From Equation (7), it is evident now that the Matérn covariance functions of or-
der v=p +1/2 correspond to ARMA models with m = p repeated real poles p = e™*.
As known, from the Matérn family, with increasing order v, the squared-exponential
(Gauss-type) covariance function is asymptotically reached. Hence, with increasing pole
multiplicity, an increasingly lower slope at the origin is realized.
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3.3. Bounds for the Polynomial Coefficients of Markov Models

For the purpose of increasing the flexibility, we adopt the half-integer Matérn covari-
ance function but with arbitrary polynomial coefficients. This approach is followed in [5]
with his function of index 3; see also [6]. Similar to [5], we intend to construct a general
model with arbitrary weights ¢;

A7) :02(1+clr+czrz+...+cm,1 T’"*1> e T, (11)

e.g., with third-order yrom(t) = 0?(1+4 ¢1 T+ c2 T2) €77, which we denote as a third-
order Markov (TOM) model.

As known from [23] (Section 5), allowing arbitrary weights between the basis functions
creates a correspondence to ARMA models, i.e., introducing a moving average part. Hence,
the covariance functions of index 3 of [5] as well as yrom(T) also have triple real poles, but
they correspond to ARMA(3,q) processes with triple real poles but with unknown order of
the moving average part here.

Note that, due to the fixed polynomial coefficients, the Matérn covariance functions
determined by ¢ are automatically positive definite for ¢ > 0, which makes them simple
and easy to handle. However, Markov models with adjustable coefficients exhibit greater
flexibility, and they are viable for practical use if the bounds of the coefficients for positive
(semi)-definiteness are known.

As in [6] (Equation (14)), we can construct the general model with arbitrary weights c;
and ¢, from a combination of the half-integer Matérn models Equation (6). The correspon-
dence is

c
(1 +oT+o TZ) e T = (1 - ?1) Mat1/2(T)+
12)
C1 3C2 3C2 (
(* - T) IMat,3/2AT) T —5 YMat5/2T) -
c c
In the d-dimensional space, the general Matérn covariance function has the

Fourier transform

(13)

cf. [32] (Equation (4.130)), which, weighted as in Equation (12) and simplified (cf. [6]), yields

I(1/24d/2 2
=12 nl(i/z (CZ+52))5/2+d/2 ( (1-2) ¢ (F+s)" +

(%1_3%> (1+4) S (+5%)  + (14)
(3) A+d)(3+d) S )

From this, bounds for the non-negativity conditions can be derived. In detail, c; can
lie within the bounds defined by the functions

o c(2cd + 6¢ +cyd —3c1) | 2cy/(c1 —¢)(cd + 3c + 2c1d) (d + 3)
2T 9(d+1) 9(d+1) ’

(15)

which form the shape of an ellipsis added to a straight line. If ¢; is larger than ¢; > —c(2d +
3)/(d(d +2)), the domain extends to the straight line lower bound ¢; > —(c(c+c1d))/
(d(d+1))and up to ¢; < cand ¢y < c?/3; see Figure 1b.
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3.4. Oscillatory Repeated Poles ARMA Models

It is intuitive to combine the Matérn covariance function with an oscillating function
in order to create a more versatile function; see [25] (Section 2.3.3). Hence, by multiplying
Equation (11) with a cosine of frequency a and phase 7, we have the following:

A1) = o? (1 T4 ey Tl_l) e ‘T cos(at —1) (16)

We define the general class of repeated poles ARMA covariance functions with
I=v +1/2 times repeated complex-conjugate pairs of poles given by

Pijes = e (cos(a) i sin(a)) an

and thus autoregressive order p =2I. Again, the moving average parameters, i.e., also the
dependence of weights ¢; on poles and zeros of the ARMA process, are not derived here,
cf. [23].

When combining the covariance models of Sections 2 and 3.3, the conditions of positive
definiteness are the joint requirements of both types, i.e., Figure 1a,b.

4. Application to Altimetry Data: A Demonstration

The following empirical covariance function of a two-dimensional geodetic application
shall serve as a small example to demonstrate the necessity of different covariance functions
presented in this work. Here, we interpret a time series of sea level anomalies (SLA)
along the altimeter track as a stationary stochastic field in planar approximation, i.e., two-
dimensional domain. To obtain SLA, sea surface heights observed by the Envisat satellite
launched and operated from 2002 until 2012 by the European Space Agency were reduced
by a long-term mean sea surface model (in this case, CNES-CLS11, [33]) interpolated along
the satellites ground track. For the demonstration example, we extracted a subset of 10,905
observations in a local area of the North Atlantic ocean of cycle 13 (13 January 2003 to 17
February 2003); see Figure 2. We computed empirical estimates of the isotropic covariance
function averaged for equidistant lags (AT = 0.2°) and by using the biased estimator (see
the black dots in Figure 3).

-80° -60° -40° -20° 0

& x
60" 60"

LA ‘\\Wﬁ

-80° -60° -40° -20°

-1.00 -0.75 -050 -0.25 000 025 050 075 1.00
[m]

Figure 2. Subset of the SLA data used for the example.

352



Eng. Proc. 2021, 5,37

7 of 9

0.035 |- . empirical covariances ’
o 030' ——  double real pole ARMA(2,q)-model | |
: —— triple real pole ARMA(3,q)-model

0025 — quadruple real pole ARMA (4,q)-model

B3 ’ — quintuple real pole ARMA(5,q)-model

0020

.

“0.015

w0

<

£ 0010

&

8 0.005

| |
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

o
ot
[
o
o
[

distance 7 [°]

Figure 3. Functions of the type in Equation (11) with different orders fitted to the empirical covari-
ances.

For Figure 4, we fit functions of the type in Equation (16) with different orders to the
empirical covariances. These ARMA models do not experience an improvement from the
higher pole multiplicity because the oscillatory nature of the complex poles ARMA model
already nicely captures the hole effect. The higher-order models slightly improve the very
long-range correlations.

T I I I I I
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Figure 4. Functions of the type in Equation (16) with different orders fitted to the empirical covari-
ances.

For demonstration purposes, different types of covariance functions belonging to
the family of (repeated pole) ARMA models are fitted to the empirical estimates gj of
the covariances 7 from lag k = 1 up to k = 34 using non-closed-form solvers. We used
the GNU Octave’s nonlinear minimization routine fmincon, cf. [34] and implemented a
constrained least squares fitting.

In a first plot, we fit repeated real pole ARMA models, i.e., Equation (11), of orders
p =2,3,4and 5. These correspond to linear combinations of Matérn covariance functions,
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where some Matérn functions can even be subtracted in the combination. The number of
fitted parameters, i.e., o, ¢, and cj, are 3,4,5,and 6. The order g of the moving average part
is not determined here. All results are estimated to be positive semi-definite in R?.

Figure 3 shows that the polynomial component of the covariance function can success-
fully capture the negative correlations. The quality of fit gets better with increasing order
and is sufficient for the fifth-order model. We are aware that the nugget y(0) — go (white
noise variance component) is quite different for the estimated models, but that is because
we did not restrict it by a priori knowledge.

5. Summary and Conclusions

The example demonstrates that relatively complex correlations structures can also be
captured by simple covariance models such as Markov models. Enhanced flexibility is
achieved by adjustable polynomial coefficients, which makes them favorable to the Matérn
covariance function, especially for modeling negative correlations as in the example. The
underlying methodology of ARMA processes builds the general family for all of these
covariance functions and thus also holds out the prospect of suited optimization methods
such as the Yule-Walker equations, cf. [23].

In addition, we provide bounds for all parameters of the ARMA covariance models in
order to ensure positive semi-definiteness in the respective domain of the data. In general,
this work demonstrates the necessity for a large variety of basis functions collected in a
family of covariance functions as well as suited fitting procedures. Tailored optimization
problems for the repeated poles ARMA models are still an open research field.
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Abstract: In the age of AI, companies strive to extract benefits from data. In the first steps of data
analysis, an arduous dilemma scientists have to cope with is the definition of the ‘right” quantity
of data needed for a certain task. In particular, when dealing with energy management, one of the
most thriving application of Al is the consumption’s optimization of energy plant generators. When
designing a strategy to improve the generators’ schedule, a piece of essential information is the future
energy load requested by the plant. This topic, in the literature it is referred to as load forecasting, has
lately gained great popularity; in this paper authors underline the problem of estimating the correct
size of data to train prediction algorithms and propose a suitable methodology. The main characters
of this methodology are the Learning Curves, a powerful tool to track algorithms performance whilst
data training-set size varies. At first, a brief review of the state of the art and a shallow analysis of
eligible machine learning techniques are offered. Furthermore, the hypothesis and constraints of the
work are explained, presenting the dataset and the goal of the analysis. Finally, the methodology is
elucidated and the results are discussed.

Keywords: learning curves; energy load forecasting; time series; training-set size

1. Introduction

The advent of electricity markets and the progress in Renewable Energy Sources (RES)
have changed the nature of electricity production and consumption [1]. In order to increase
the RES share and to use energy more effectively, energy system flexibility needs to be
improved, for example, by means of enabling the demand-side management [2]. In this
framework, electricity load prediction is required as an essential part in the energy industry
to manage load fluctuations and aleatory RES [3]. Load forecasting is a useful and practical
tool for efficient energy management, safer grid operation, and optimal maintenance
planning. An accurate load forecasting is a key element to improve the environmental
impact, sustainability, and cost-effectiveness of smart grids.

Electricity load prediction is vitally essential for the industries in deregulated
economics [3]; load forecasting is necessarily implemented in Energy Management Sys-
tems (EMS) that optimally control appliances. An increasing number of numerical ap-
proaches has been proposed for energy prediction. A lot of models have been used and
a coarse clustering is usually adopted in review articles: Statistical models, time series
analysis, Machine Learning (ML), and Deep Learning (DL) [1,3]. Wei et al. [4] propose a
review of data-driven approaches for the prediction and classification of buildings energy
consumption; a comparison among white-box, grey-box, and black-box approaches for
predicting consumption is described. White-box models lean on a complete knowledge
of the physics of the systems while black-box models are completely data-driven and
require historical data. Grey-box models are a hybrid solution between the other two. The
paper focuses on data-driven models and, above all, describes Artificial Neural Networks
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(ANNS), Support Vector Machines (SVMs), and statistical regression. Yildiz et al. [5] cover
the same subject, indeed they emphasize the broad application of ANNs and SVMs but,
moreover, also Auto-Regressive (AR) models are cited; in particular the Auto-Regressive
Integrated Moving Average (ARIMA) is defined as one of the most used techniques in
load forecasting. In the latest years, by means of a greater computational power, many
researchers started to apply Deep Learning techniques in order to improve load forecast-
ing precision: Zhang et al. [6] details a variety of DL models like Restricted Boltzmann
Machines (RBMs), Deep Belief Network (DBN), and RNN (Recurrent Neural Networks).
Another novel algorithm taken into consideration is Extreme Gradient Boosting (XGBoost)
that couples great performance with low execution time.

A plethora of researchers focused on model selection and hyper-parameters optimiza-
tion; Khalid et al. [7] classify optimization methods for algorithm hyper-parameters in two
groups: Nature-inspired approaches and statistical methods.

Recently, many companies have developed EMS whose services are based on data
collection and artificial intelligence algorithms; load forecasting represents one of the most
implemented service. Hence when an EMS business model is developed, a crucial point
is the available amount of data. Once the model for prediction is selected, finding the
trade-off between the volume of data and goodness of forecast is still a challenge. If the
appropriate volume of training data can be coupled with the forecasting algorithm, the
EMS has a robust load forecasting model. This aspect could be of great interest among
companies developing services based on ML routines; indeed, when implementing an
intelligent platform in a customer plant, estimating the monitoring period needed to collect
data is significant to build an efficient business model. A powerful tool to tackle this
estimation is to build Learning Curves (LCs).

A learning curve shows the measure of predictive performance on a given domain as
a function of the training sample size. Reviewing learning curves of models can be used to
diagnose problems with learning, such as underfitting or overfitting, as well as whether the
training and validation datasets are suitably representative. Building an overly complex
model leads to high variance error in prediction, but a too simple model has a high bias
error. The opportunity of training the model with the proper number of observations leads
to finding the architecture with an optimal trade off between variance and bias errors [8].
Although the learning curves are promising, in the literature they have been mainly applied
to other types of data, with non correlated observations [9-12]. Hence in this context, the
present work tries to bridge this research gap applying the learning curves procedure to
time series.

The remainder of the paper is structured as follows. Section 2 presents a state of
the art on Learning Curves and a background for this analysis. Proposed methodology
is described in Sections 3 and 4 presents results and discussion. Finally, conclusions are
provided in Section 5.

2. State of the Art

Learning curves aim to compare the generalization performance of an algorithm as
a function of training-set size. A learning curve shows the validation and training score
of an estimator for different numbers of training samples. It is a tool to find out how
much the estimator benefits from adding more training data and whether it suffers more
from a variance error or a bias error [13]. Over two decades ago in machine learning
research, the analysis of learning curves was a widespread tool for comparisons of Machine
Learning techniques [14]; nowadays, it is rarely presented. Moreover, time-series LCs are
not commonplace mainly because procedure presents some issues [15].

A common procedure for building LCs is implemented in the function named learn-
ing_curve of scikit-learn [13], a mainstream Python library. The just mentioned learn-
ing_curve function needs an estimator, the number of training observations that will be
used to generate the LC, and the number k of fold to split data while using the k-fold
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Round 1

Validation accuracy 93%

validation strategy. This strategy splits the whole dataset k times, each time a different
train-set and validation-set are extrapolated (Figure 1).

Round 2 Round 3 Round 10

[l Training set
[ Vvalidation set

Validation accuracy 90%  Validation accuracy 91% Validation accuracy 95%

Final accuracy = Average (Round1, Round2, ..., Round10)

Figure 1. Example of k-fold validation with k = 10.

k-fold validation is a particular type of cross-validation (CV), a validation technique for
assessing how the results of a statistical analysis will generalize on an independent dataset.
Subsets of the training-set, whose size will be incremented after each k-fold validation, will
be used to train the estimator and a score for each training subset size and for the test-set
will be computed. Afterwards, the scores will be averaged over all k runs; in the end, two
over-k-runs averaged score (both for train and test) will be obtained for each training subset
size [13].

In the literature, there is not an extensive discussion of the LC subject. Most of the
articles dealing with it refer to different fields of application. Ning et al. [12] test how
the performance of Deep Convolutional Neural Networks (DCNNSs) are affected by the
size of the training-set in an image segmentation task: Six training-sets are considered
and the performance of the DCNN trained with the larger dataset is used as the baseline.
Zhu et al. [16] investigate the question of whether existing object recognition detectors
will continue to improve as data grows, or saturate in performance due to limited model
complexity. Beleites et al. [9], Figueroa et al. [10], and Hess and al. [11] study the
importance of LCs in classification problems applied to the biomedical field where it is
very difficult to obtain big datasets for training the estimator. All these analyses take into
account independent samples, this means that the training-set can be enlarged, shuffled,
and split without considering the samples order. However, this hypothesis is not valid
when dealing with time-series.

Several strategies have been proposed in the literature for performance estimation of time-
series and currently there is no consensual approach [17]. Out-of-Sample (OOS) approaches
hold out a test-set in order to test a model on a never-seen portion of data. Train/test split
can be faced with a different procedure: Sliding window or growing window [18]. OOS
methods always retain the temporal order to guarantee the preservation of correlation
among observations. In order to produce a robust estimation of predictive performance,
Tashman [19] recommends applying OOS strategies in multiple test periods. Thus, by using
OOS, the benefits of CV, especially for small datasets, cannot be exploited [20]. In general,
CV is a common strategy both for model selection and for testing the generalization
performance of an algorithm [21]. A fundamental hypothesis of CV is independence
and identical distribution (i.i.d.) among observations. However, time-series has serial
correlation in the data, possible non-stationarities, and time ordering, which forces not to
use future data to predict the past; consequently the application of CV to time-series is
not straightforward. There are several revised CV approaches designed for time-series; a
wide review is presented from Bergmeir et al. [22]. Most common procedures are blocked
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CV and hv-block CV. Blocked CV has no initial random shuffling of data, and divides
observation in K blocks as in k-fold CV; time order is kept within each block, although is
broken across them [18]. h-block CV is a non-dependent cross-validation, as it leaves out
the possibly dependent observations and only considers data points that can be considered
to be independent [20].

Cerqueira et al. [18] compare different approaches on both stationary and non-
stationary time-series. They conclude that CV procedures are suitable for stationary
time-series but are not compliant with real data and with potential non stationarities; thus,
OOS applied in multiple testing periods is recommended. Stizen et al. [15] present a
procedure for time-series learning curves based on reconstructive CV; it combines OOS
estimation and imputation of missing data at random by means of techniques like Kalman
filtering [23].

3. Proposed Methodology

In this section, the building of learning curves is explained. As mentioned above, a
cross-validation method is applied in a learning curves procedure in order to select the
optimal number of observations needed for training a forecast algorithm. The aim of the
proposed procedure is to present an adaptable methodology that can cope with all types of
algorithms and all types of time-series data. The proposed methodology consists of three
main steps: Data collection, algorithm selection, and building of learning curves. All these
stages are described in the following sections.

3.1. Data Collection

When approaching a problem of energy load forecasting, the first activity to be
performed is represented by data collection. Even if, lately, the words artificial intelligence
and big data are mainstream, this does not mean that every facility manager arranges a data
storage routine. Often data are monitored by means of a local Human-Machine-Inteface
(HMI) by maintenance operators, whose goal is to check real-time behavior of the plant
without a compulsory need of heaping data in an accessible structure.

Usually, many kinds of features can affect the energetic behavior of a plant and they
can be grouped in the following short list:

e  Field measurements like energy consumption or plant temperatures. These signals
are collected by a field device (e.g., a PLC or a remote I1/O);

e  Management details like hotel reservations or hospital occupants. These numbers are
collected by ERP softwares or, in the worst case, by hand-written registers;

e Weather measurements and forecasts like external temperature or wind speed. These
values are collected by weather stations or directly downloaded from the web.

All the above-mentioned data must be aggregated in a central entity whose task is
to forward an average value to a database located in cloud or in a local server. The real
importance of each measurement and its correlation with the load to be predicted is strictly
dependent on the plant’s use case; when the monitored plant satisfies the energetic needs
of a hotel then it is very useful to acquire for example the rooms reservation, the meeting
room usage, and the external weather. Otherwise, when the building under investigation is
a parking lot, it is helpful to know the period of the year and the parking spots occupation.
A third example is represented by a manufacturing factory where the most important Key
Performance Indicator (KPI) is the produced quantity of goods. In the real world, the
machine learning engineer in charge of developing the ad-hoc model to predict energy
load forecasting will not have access to all these information; most of the time model
inputs will consist of the date and external temperature. Another important feature of data
shape is granularity: In Italy, the energy market regulator [24] imposes to work with values
averaged every hour or, in some cases, every 15 min. In order to maintain generality, in this
paper measured signals are sampled every hour and the considered features are the most
likely to be available: Date, external temperature and, of course, energy load consumption.
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3.2. Algorithms Selection

When discussing forecasting, it is crucial to define the time interval to be forecasted;
as Hammad et al. list in [25] there are four types of forecasting horizon:

e Long-Term Load Forecasting (LTLF), time interval ranges from one year to
20 years ahead;

e  Medium-Term Load Forecasting (MTLF), time interval ranges from a week up to
a year;
Short-Term Load Forecasting (STLF), time interval ranges from one hour to a week;
Ultra/Very Short-Term Load Forecasting (VSTLF), time interval ranges from a few
minutes to an hour ahead and is used for real-time control.

In this paper, the goal is to predict the energy load forecasting of the next day, so it
is a STLF problem. This assumption is not a required hypothesis for the methodology
proposed in Section 3.4. As briefly introduced in Section 2, in the latest 40 years many
methods have been developed and used for time-series forecasting and, in particular, for
energy STLE. Makridakis et al. in [26] make a coarse division between statistical and ML
methods; this kind of grouping method is widely used and, more in-depth forecasting
model can be detailed as follows: Statistical Methods, ML Methods, and DL Methods.

®  Statistical Methods are historically the most used because of their easy implementation
and fast execution, and among these ARIMA and Holt-Winter methods are very
popular. These approaches usually work better when dealing with low-frequency
signals and when the target variable understays the hypothesis of time-invariance:
Both statements are not compliant with the object of this paper.

®  Machine Learning Methods had great promise at the beginning of 21st century and
represent a good trade-off between performance and computational costs. Among
the ML group, in this paper three techniques have been selected: Support Vector
Regressor (SVR) because it is the most simple and understandable algorithm, Extreme
Gradient Boosting (XGBoost) [27] because it is a novel algorithm able to outperform
state-of-the-art techniques in many competitions, and Multi-Layer Perceptron (MLP)
because it is often used as a load forecasting benchmark.

*  Deep Learning Methods and in particular Recurrent Neural Networks (RNNs) could
act as a central character in the short-term energy load forecasting because of their
affinity with time-series and their well-known high performance; on the other hand,
the hard hyper-parameter tuning phase risks a change in the focus of the work.
Indeed, in order to face the LCs subject, it is important to train models with pre-
selected hyper-parameters whose value can be considered correct by the authors with
a high confidence degree.

3.3. Hyper-Parameters Selection

When building ML models to proceed with the LCs methodology, a strict hypothesis
must be met: All hyper-parameter’s values must be tuned and then fixed to a defined
value. In other words, optimization routines like randomized search [28] or grid search are
not compliant.

In Section 3.2, the selected techniques used in this paper have been introduced: SVR,
XGBoost, and MLP. Below, an extensive description of the settled hyper-parameter is
reported.

The first algorithm selected is SVR; the SVR Scikit-learn library [29] has been used and
four parameters have been tuned:

C = 1, the regularization parameter;

epsilon = 0.1, the epsilon-tube within which no penalty is associated;
kernel = 'rbf’, the kernel type to be used in the algorithm;

v = 0.08, the kernel coefficient.

The second algorithm taken into analysis is XGBoost; the Scikit-learn Wrapper inter-
face for XGBoost [30] has been implemented and four parameters have been tuned:
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max_depth = 4, maximum tree depth for base learners;
learning_rate = 0.1, boosting learning rate;

A =1, regularization term on weights;

n_estimators = 100, the number of gradient boosted trees.

The third developed algorithm is a two-layer MLP; the Scikit-learn library for MLP [31]
has been exploited and four parameters have been tuned:

hidden_layer_sizes = 8, one hidden layer with 8 neurons;
activation = 'relu’, activation function for the hidden layer;
a=10"7, regularization term;

batch_size = 1, size of minibatches for stochastic optimizers.

3.4. Building of Learning Curves: The Proposed Methodology

As underlined in Section 3.1, a multivariate time-series with 1 independent variables
and only one dependent variable is analyzed with each observation of an independent
time-series being x € R" and observations of dependent target variable are y € R. At
time t; € RS, x(t;), and y(t;) represent the observations of independent and dependent
variables; g is considered as the first time sample available in the dataset. In this specific
case, i/ is the time-series for energy load. A list of training-set size to test have to be defined
since the generalization performance have to be shown as a function of the training-set
size. The training-set size list has q elements; each p; with j € [1, ..., q] is a training-set size.
The test-set size d is fixed to a constant value and does not vary during the whole learning
curves procedure. As cited in Section 3.2, the testing period considered in this work has a
one-day length because the aim is a day-ahead load prediction. Moreover, the day of test
immediately following the training-set is adopted. This is not a lack of generality, rather a
different size for test-set can be applied and can be shifted from the end of training-set, as
long as time order is retained.

By means of an OOS approach, a part of available data is used to fit the model,
a different part to test it and assess the performance of the prediction algorithm. This
procedure is repeated for each training-set size in the aforementioned list.

If p; is the training length, a set of p; consecutive observations is used for training the
model and the following set of length d is used for testing purposes. The analyzed sets are:

x(t;)
y(t)

and the test-set, if d is length for testing, is:

(ti +pj)

< X
<y <y(ti+pj)

x <
y <

x(ti+pi+1) <x<x(t+pj+1+4d)
y(ti+pi+1) <y <ylti+pj+1+4d).

In order to produce a robust estimation of forecasting performance, for the same p;
length of training, this strategy is applied in multiple test periods with a sliding window ap-
proach (Figure 2). It is worth underlining that, as the methodology is conceived, whenever
the test-set is shifted, the training-set slides.

A statistically significant k number of tested days has to be chosen. In the period from
to + pj to the end of the multivariate time-series, k tested days are chosen in a uniformly
distributed and random way. The selection of k should be a trade off between the maximum
p;j training size and the possibility of testing an heterogeneous number of data portions also
according to seasonality and trend in the time-series. Since in the present work one year
of data is available, k = 30 is enough to evaluate the algorithm generalized performance;
this number of tested days allows to mitigate the sensitivity of error to different phases
of a business cycle. Every time a sliding window is tested a metric has to be evaluated in
order to compute y forecasting error for both the training-set and test-set. Different metrics
can be used as a performance indicator, i.e. Root Mean Squared Error (RMSE) or Mean

362



Eng. Proc. 2021, 5,38

7 of 10

Absolute Error (MAE); they all have different shortcomings and merits. Mean Absolute
Percentage Error (MAPE) has been used since it is scaled to the original y value and gives
an intuitive interpretation of error. MAPE, for training of the m-th day is expressed by the
formula: )
i mo__ nm
MAPEm,tmin = Z M
i1 Y
where y" is the actual value and §}" is the forecast value. For training, for example, it is
computed over all the p; observations of the training set. The aforementioned procedure is
performed k times for each p; training set size obtaining k MAPE error values for testing
and k reconstruction errors of training. The average value ¢, of MAPEs for testing and
training is reported in a learning curve graph. For training MAPE is computed as:

O]

1 k
€k train — % Z MAPEm,tmin~ (2)
m=1

For the testing MAPE, the procedure is the same, but it is computed over d time-steps
of the testing set as follows:

T Rt ®)

To plot the learning curves, the mean value of training errors and the mean value of
test errors are taken; accordingly only two error scores for each training set size are plotted.
Moreover, in order to show the scatter of data, the variance of error for both the training
and testing curve is depicted by means of a colored shade.

Further details are reported in the implementation code available at [32].

dataset

i

I [ |
'

train set p; test set d

Figure 2. Scheme of proposed methodology.

4. Discussion and Results

In this work the proposed procedure is applied to the “ASHRAE-Great Energy Predic-
tor III” competition data [33]; in particular, one year of hourly sampled data of a parking
building (building id: 1215) has been selected. The target dependent variable is the electric
load and the independent variables are:

e The time of the day as a cyclical variable (sine and cosine);
e The day of the week one-hot encoded;
e The month of the year as a cyclical variable (sine and cosine);
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e The outdoor air temperature.

The training sizes p; range from 2 weeks to 36 weeks within a span of 2 weeks.

Figure 3 shows LCs obtained with the XGBoost algorithm. When the training-set size
is small, the training error is lower since the information variance to be learnt is tiny. As a
consequence, the model has no generalization capability and its test error is high. When
the training set size increases, training MAPE increases and test MAPE decreases. Adding
training data helps to reduce bias error. Training and test curves are very close between
20-28 training weeks. This narrow gap shows a low variance error: Training data are fitted
well and the algorithm can generalize on unseen data. The gap increases for a training size
higher than 28 weeks, which may indicate an overfitting problem. In this case, a training
size of 24 weeks seems to be a good compromise for XGBoost.

Learning Curves XGBoost

18

16
14

MAPE [%]
=
o o O

H

—— Training score
—— Test score

W
////,

20.0

17.5

15.0

125

MAPE [%]

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
Train size [weeks]

Figure 3. Learning curves obtained with the XGBoost algorithm.

LCs for the SVR algorithm are shown in Figure 4. Bias error slightly but progressively
decreases with a training set size; variance error reaches its minimum between 20 and
28 weeks. Hence, an appropriate training set size is 24 weeks.

Learning Curves SVR

—— Training score
—— Test score

M

[ o B

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
Train size [weeks]

Figure 4. Learning curves obtained with a SVR algorithm.

The same performance is presented from MLP whose LCs are plotted in Figure 5.
Adding training data to small train dataset leads to increase the training error and decrease
test error. This is mainly due to a reduction of bias error. The bias-variance dilemma is
settled between 20 and 24 weeks of training. The appropriate training set size could be
20 weeks for MLP with two layers and hyperparameters as described in Section 3.3.
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If learning curves are characterized by high training and test errors according to
domain knowledge, the model may seem to suffer of a high bias error. Getting more
training data will not help much. In this particular case, the desired MAPE is around 6%;
while XGBoost reaches this target, SVR and MLP seem to suffer from underfitting. This
problem highlights that SVR and MLP models have been tuned with simple architectures.

Learning Curves MLP

22.5
—— Training score
20.0 —— Test score
175
< 15.0

MAPE [%
=
N
3}

W
" e —————

5.0

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
Train size [weeks]

Figure 5. Learning curves obtained with the MLP algorithm.

5. Conclusions

In this paper a procedure to analyze learning curves for time-series is presented; it
aims to show a generalized performance of an algorithm with different training set sizes.
The procedure retained time order and allowed to test heterogeneous samples for each
training-set size. The performance estimation was analyzed in an Out-of-Sample approach
with a sliding window. This methodology is suitable for real world data with potential
non-stationarities. The developed procedure could be applied to any kind of data or
algorithm.

The proposed methodology was applied to electrical load forecasting of a parking
building. Learning curves were obtained with three different regression algorithms; namely
XGBoost, SVR, and MLP. This analysis underlines how learning curves could give infor-
mation about training and test as a function of a training set size and how to choose an
appropriate size of data to cope with the bias-variance problem.

The full code is available at [32] in order to guarantee the reproducibility of the
presented procedure.

As a next step, this research could be used as a tool for evaluating the estimator
architecture by using different sets of hyperparameters to build LCs guides to understand
their impact on the learning process.
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Abstract: Wind power forecasting is a tool used in the energy industry for a wide range of applica-
tions, such as energy trading and the operation of the grid. A set of models known as decomposition-
based hybrid models have stood out in recent times due to promising results in terms of performance.
As many publications on this matter are found in the literature, a comparison of these models is
difficult, because they are tested under different conditions in terms of data, prediction horizon, and
time resolution. In this paper, we provide a comparison unifying these parameters using the main
decomposition algorithms and a set of artificial neural network-based models for very short-term
wind power forecasting (up to 30 min ahead). For this purpose, a case study using data from an Irish
wind farm is performed to analyze the models in terms of accuracy and robustness for a variety of
wind power generation scenarios.

Keywords: very short-term wind power forecasting; decomposition-based hybrid models; artificial
neural networks; data-driven forecasting models

1. Introduction

Wind power forecasting (WPF) is a tool of importance for practitioners in the wind
energy industry, and it accomplishes different tasks depending on the time horizon, from
reserve requirement decisions [1] to energy trading [2].

Several standards are found in the literature to classify WPF models with respect to the
forecast horizon. One of the most well-known conventions is presented in [3], in which four
time horizons are defined: very short-term (up to 30 min ahead), short-term (from 30 min
to 6 h ahead), medium-term (up to 1 day ahead), and long-term (more than 1 day ahead)
horizons. For medium- and long-term forecasts, physical models are preferred, whereas
statistical models are used for very short- and short-term horizons, as they are easier to
model and less computationally expensive than physical-based approaches. Among the
statistical models, a family of models known as decomposition-based hybrid models has
gained the attention of wind forecasting practitioners, with more than 100 papers on this
topic having been published [4]. These models have a preprocessing step in which the
complexity of wind power time series is avoided by decomposing the signal into a set of
more stationary components (usually known as modes). However, as the literature on this
type of models is already very extensive, it is difficult to determine which of these models
are more suitable for very short-term and short-term forecasts, as they are tested under
datasets of different nature, length, and resolution. In addition, the resulting components
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are usually fit using a broad variety of artificial neural networks (ANNSs), whose capacity
to identify and model the features of wind power time series differ depending on the
intrinsic characteristics of the type of ANN. Taking all these aspects into consideration, the
aim of this article is to provide a case study where (1) the state-of-the-art decomposition
techniques are considered to decompose wind power time series, (2) a set of ANN models
are used to train the resulting modes, and (3) a time-scale classification of the models for
very short-term wind power forecasts using common criteria is presented.

The paper is organized as follows: Section 2 introduces the main elements of
decomposition-based hybrid models; Section 3 describes the data used in this study;
Section 4 presents the results; and Section 5 provides the concluding remarks of this paper.

2. Methodology

In this section, the main decomposition algorithms and ANN-based forecasting models
are described, as well as the metrics used to analyze the performance of the models.

2.1. Decomposition-Based Hybrid Models

Decomposition-based hybrid models decompose the original time series into a set
of more stationary modes that are easier to handle. In terms of forecasting, ANNs allow
us to exploit diverse features of the data, such as recurrent neural networks (RNN) or
convolutional neural networks (CNN). The main structure for this family of models is
shown in Figure 1: (1) the wind power time series is decomposed into a set of modes; (2) a
forecasting model is built independently for every mode; and (3) the wind power forecast
is estimated by adding the values of all modes.

WP TIME

SERIES

FORECASTING
—>  MODE 1 MODEL 1
: FORECASTING
;[ MODE2 MODEL 2 :
DECOMPOSITION |— > PREDVIVCPTION
FORECASTING
—» MODE N MODEL N

EMPIRICAL MODE DECOMPOSITION (EMD)
ENSEMBLE EMPIRICAL MODE
DECOMPOSITION (EEMD)
VARIATIONAL MODE DECOMPOSITION (VMD)

FEEDFORWARD NEURAL NETWORK (FFNN)
LONG SHORT-TERM MEMORY (LSTM)
GATED RECURRENT UNIT (GRU)
CONVOLUTIONAL NEURAL NETWORK (CNN)
TEMPORAL CONVOLUTIONAL NETWORK (TCN)

Figure 1. Flowchart for decomposition-based hybrid models.
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Two of the most common decomposition techniques are empirical mode decompo-
sition (EMD) [5] and variational mode decomposition (VMD) [6]. The wind power time
series are decomposed into modes as

K
y(t) =Y w(t) ¢y
k=1

where yy (t) is the k-mode extracted from the data. The modes, also known in the literature
as intrinsic mode functions (IMFs), can be expressed as amplitude-modulated—frequency-
modulated (AM-FM) signals [6,7]:

k() = Ar(t) cos gy (t),  Ax(t), ¢ > 0Vt 2)

where ¢ (t) is a non-decreasing function. The main assumption is that the variation of Ay
and ¢}, is slower than the variation of ¢ (). Thus, every mode y;(t) can be considered as a
harmonic signal with amplitude Ay and frequency ¢;, for a sufficiently long time interval
[t —&,t+ 6] where 6 = 2¢/ ¢, [7].

The EMD algorithm extracts these modes as described in the following four steps:
(1) local maxima and minima are located in the time series data y(t) and then interpolated
to build an upper and a lower envelope, respectively; (2) the mean value m(t) of these
envelopes is determined, and the first component H; is built by subtracting this value
from the original time series y(t); (3) these two steps are repeated until the stopping
criterion is satisfied, and in this case, H; will be equivalent to the first mode y; (t) and the
residue to y(t) — Hj, the difference between the original time series and the first mode;
and (4) steps 1-3 are repeated with the residues until all of the modes and the last residue
are computed.

Mode mixing and aliasing can occur when the EMD algorithm is applied to decom-
posed the data [8]. A variation of the original EMD approach known as ensemble empirical
mode decomposition (EEMD) [9] was proposed to overcome this: a set of trials following
the EMD algorithm are performed, but mixing the original time series y(t) with Gaussian
white noise. Thus, the EEMD algorithm is developed in four steps: (1) Gaussian white
noise is added to the original data, (2) the EMD algorithm is applied to the data mixed
with white noise, (3) steps 1-2 are repeated using different white noise series, and (4) the
final decomposition is obtained calculating the mean value of all trials. This way, the white
noise series cancel each other, and the risk of mode mixing is significantly reduced.

On the other hand, VMD is a non-recursive signal processing method designed
for decomposing non-stationary signals. The decomposition takes place by means of a
constrained variational problem to calculate the bandwidth of each mode. This process
consists of three steps: (1) the Hilbert transform is used to obtain the unilateral frequency
spectrum for each mode, (2) an exponential tuned to the estimated center frequencies is
used to shift every mode’s frequency spectrum to baseband, and (3) the bandwidth of
each mode is identified using the H' Gaussian smoothness of the demodulated signal. As
suggested in the original paper [6], the constrained variational problem can be transformed
into an unconstrained problem by introducing a quadratic penalty term and Lagrangian
multipliers A as follows:

2

+

Tt 5

K
L{{yx} {wi},A) = ak_zl

o] (000 + 2 ) et e

2

v - et
k=1

2

K
+ <A(t),y(f) -y yk(t)> ®3)
k=1

where y(t) is the original time series, {y,} is the set of all modes, {wy} is the set of the
respective center frequencies, (t) is the Dirac function, * denotes a convolution, |[|3
denotes a squared L?-norm, and « denotes the balancing parameter of the data fidelity
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constraint. Then, this unconstrained problem is solved by using a technique known as the
alternate direction method of multipliers (ADMM) [10,11], which allows one to obtain the
modes y; and the center frequencies wy with the following expressions:
. . A
9(w) = T di(w) + 252

1+ 20(w — wy)?

4)

7 @) =

ntl _ foww‘?k(w”zdw
, o~ |k (w) [Pdw

where §(w), Jx(w), and A(w) are the Fourier transformations of y(t), yc(t), and
A(t) respectively.

Regarding the forecasting models, the basic ANN structure is known as a feedforward
neural network (FFNN), which is composed of a set of three layers (input, hidden, and
output layers), and the information is propagated forward to the output layers using the
backpropagation algorithm [12]. Given an input x = {x1,...,x;} and a hidden layer with
h neurons, the output is of the form

®)

3
Y Bip(wix +b;) (6)

i=1

where f; represents the weights resulting from connecting the hidden and output layers
(output weights), w; the weights connecting the input and hidden layers (input weights), b;
the biases of the neurons in the hidden layer, and ¢ the activation function.

Other types of ANNSs can learn spatial and temporal features of time series data. For
instance, RNNs take into consideration temporal patterns by maintaining an internal state
in order to process a sequence of inputs. In order to process long-term dependencies,
advanced RNN structures, such as long-short term memory (LSTM) [13], and gated re-
current units (GRU) [14] should be implemented, as basic RNNs experience vanishing
and exploding gradients in this scenario [15]. On the other hand, spatial features can be
extracted using CNNs. Both temporal and spatial features can be considered simultane-
ously by combining RNN and CNN structures [16], resulting, for instance, in CNN-GRU
and CNN-LSTM models. Temporal and spatial features are also taken into consideration
in temporal convolutional networks (TCN) [17], in which the convolutions are causal,
meaning that the outputs are only related to the current and previous inputs.

All of the decomposition algorithms and ANN-based models can be combined to build
any decomposition-based hybrid model. To make this study as comprehensive as possible,
21 models in total are considered for the simulations, resulting from the combination of
the 3 decomposition algorithms (EMD, EEMD, and VMD) and the 7 forecasting models
(FFNN, GRU, LSTM, CNN, CNN-GRU, CNN-LSTM, and TCN) introduced in this section.

2.2. Performance Evaluation

The performance of the models is measured using one of the most widespread metrics
in the WPF literature [18], the mean absolute error (MAE):

MAE =

Z|=
1=

[9i — il (7)

i=1

where N indicates the number of samples over the testing set, y; the value of wind power
measurements, and §J; the value of the forecasts. To facilitate the understanding of the error
measures, MAE values are normalized by the total capacity of the farm and, therefore, the
normalized MAE (NMAE) is used from here onwards to report the results.
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3. Data

A dataset containing historical wind power measurements from an Irish wind farm
is used to carry out the simulations. Data were collected from 1 January 2017 to 30 June
2019 at a 10 min resolution. In order to benchmark the models in the most comprehensive
manner, the data are divided into one-year long sets, where the first eleven months are
used for training and validation and the last month as the testing set.

Figure 2 shows all of the testing sets, in which the fluctuating nature of wind power
can be observed clearly from DS-1 to DS-8. This variety of wind power generation scenarios
allow us to examine the performance of the models not only in terms of accuracy but in
terms of robustness. Furthermore, large periods where the wind farm has been halted can
be observed in the testing sets corresponding to DS-9 and DS-10.
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Figure 2. Testing sets considering different periods of the dataset.

4. Results

Every model was run five times for every dataset, although the results coming from
training the models using the datasets DS-9 and DS-10 are omitted in this Section, as the
corresponding testing sets contain large periods where the wind farm is halted, which may
bias the evaluation of model performance. Thus, a total of 40 simulations were performed
for all models, meaning that the models were trained 40 times, yielding different numerical
results every time due to (1) the use of different subsets of data and (2) random initialization
of the weights of the ANN structures, which influences the training process [19]. This way,
the parameters learned by the model in the training stage vary even if the same training
data are fed to the model.
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Using either VMD, EMD or EEMD, data were divided into six modes, which were all
trained under the same conditions. Regarding the parameters, the models were trained
using a batch of size 64 for 100 epochs, using early stopping [20] to halt the training if
necessary to avoid overfitting. The hidden layer of the FFNN and RNN-based models have
50 neurons in total; the CNN layers are set with 50 filters with a kernel size = 6; and the
TCN layers are formed by 50 filters with dilation factors d = 1, 2, and 4 and a filter size k = 6.
The MIMO (multiple-input multiple-output) strategy [21] was implemented to output a
vector with the whole sequence of forecasts, so only one model needed to be trained for all
horizons. In this case, the models took the previous 72 steps as the input, representing the
previous 12 h using 10 min data resolution, and produced a vector containing 36 values,
which are equivalent to the next 6 h in 10 min intervals.

As only very short-term WPFs were considered in this study, the results reported
correspond to 10-, 20-, and 30-min-ahead forecasts, which are equivalent to output forecasts
1,2, and 3 steps ahead with the 10 min resolution data used in this study. Some examples
of these simulations are shown in Figure 3, where 30-min-ahead forecasts are shown for
DS-1, DS-2, DS-5, DS-6, and DS-8 using two of the models with better performance: the
VMD-GRU and the VMD-CNN-LSTM models.

The average value of the NMAE over all the simulations is shown in Table 1. In terms
of the decomposition algorithm, VMD proves to be the better than EEMD and EMD at
decomposing wind power time series, as the performance using VMD is higher than that
of the others in terms of accuracy, regardless of the ANN model used. Among these, the
models where the temporal patterns of data are considered exhibit the best performance: an
average NMAE value of 0.42 with the VMD-CNN-GRU model for 10-min-ahead forecasts;
0.59 with the VMD-GRU model for 20-min-ahead forecasts; and 0.91 with the VMD-GRU,
VMD-CNN-GRU, and VMD-CNN-LSTM models for 30-min-ahead WPFs. Thus, adding
the CNN layer prior to either the LSTM or GRU layer does not result in any significant
improvement of performance.

Figure 4 provides additional information with respect to model performance, showing
the distribution of the NMAE values over the simulations for 10-min-ahead WPFs. The
combination of VMD with both GRU and LSTM structures, including the CNN-GRU and
CNN-LSTM structures, appears to be the more robust among all models, as the variability
is very low in terms of model performance. Furthermore, it proves the adaptability of these
four models to different training and testing sets of wind power. On the other hand, EMD-
and EEMD-based models not only show lower accuracy but also higher variability, which
indicates a lower deg