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Recent advances in sensor technology have allowed us to develop many interest-
ing applications and enhance the quality of human life. In particular, imaging sensors
have been regarded as critical elements in achieving high-level imaging methods such as
laser-based imaging, ultrasound imaging, and X-ray imaging, as well as non-destructive
inspection imaging, contributing to high sensitivity, real-time display, and compact imple-
mentation. These cutting-edge sensing technologies are a crucial player in the biomedical
and industrial fields.

The purpose of this Special Issue is to cover some of the recent developments in
imaging sensors and their applications. The Special Issue has been co-organized by Prof.
Changho Lee, Department of Nuclear Medicine, Chonnam National University Medical
School, Korea, and Prof. Changhan Yoon, Biomedical Engineering, Inje University, Korea.
In this Special Issue, 17 original papers and two review papers have been published [1–19].
Most of the papers (15 papers) are in the field of biomedical engineering and four papers
are related to the field of industrial applications.

Photoacoustic imaging is an emerging technology that combines optical contrast and
ultrasonic resolution. This technology allows us to visualize functional information deep
inside the body with high spatial resolution, which was not possible with a pure optical
imaging modality. To further increase the depth-of-field, T. P Nguyen et al. proposed
a multifocal point transducer for photoacoustic microscopy [1]. This work fabricated
the multifocal point transducer with seven focal points by separated spherically focused
surfaces. J. Jang et al. presented a transrectal ultrasound and photoacoustic probe for
prostate cancer detection [2]. The goal of this work was to develop a transrectal hybrid
probe, of which the size is similar to that of the currently used transrectal ultrasound
transducer. T. T. Mai et al. performed a pilot study to monitor peripheral vascular dynamic
to investigate the side effects of carfilzomib using quantitative photoacoustic imaging [3].
Additionally, new tracking and visualization using fast photoacoustic microscopy have
been proposed to perform the safe and accurate navigation of balloon catheters for arterial
stenosis dilatation, coronary artery disease, and gastrointestinal tracking applications [4].
R. Manwar et al. proposed the photoacoustic imaging approach to estimate the maximum
thickness of the skull [5].

Many research papers have been published in the field of conventional medical imag-
ing. High-resolution imaging techniques based on synthetic aperture and plane wave
have been proposed for ophthalmic and abdominal applications and their performances
were evaluated through ex vivo and in vivo studies [6,7]. C. Z.-H. Ma et al. proposed a
new protocol of measuring bilateral back muscle stiffness along the thoracic and lumbar
spine with ultrasound imaging [8]. In this work, they ascertained that ultrasound shear-
wave elastography and a tissue ultrasound palpation system produced reliable results
for measuring back muscle stiffness. K. Kim et al. introduced an advanced bandwidth
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expander circuit composed of unique switching designs to support a wide range of the
transducer with a single ultrasound imaging system [9]. In addition, two comprehensive
review papers have been published in this Special Issue. One is about the recent develop-
ment of super-resolution ultrasound imaging and another is about the limitation of clinical
elastography diagnosis [10,11].

J. Kang et al. proposed a brain tumor classification method based on a combination of
deep features and machine learning classifiers [12]. In this work, they tried to adopt the
theory of transfer learning and utilized various pre-trained deep learning algorithms to
acquire crucial deep features of brain magnetic resonance imaging data. For the remote
sharing economy, two-photon laser scanning microscopy based on the internet of things
was proposed as a remote research equipment sharing system [13]. Using the internet of
things modules, they developed a web service system where data are transmitted to and
received from remote users and installed in the two-photon laser scanning microscopy.
S. A. Saleah et al. presented a new quad-scanner-based optical coherence tomography for
visualizing the full-directional volumetric structure [14]. H. Wu et al. proposed a new
approach for measuring the adjustable volumetric frequency and phase information of the
human chest and abdomen surface regardless of motion artifacts [15].

For industrial applications, J. Lee et al. proposed a novel around view monitoring
calibration method to avoid conventional exhaustive procedures which includes accurate
positioning and estimating the calibration boards surrounding the vehicle [16]. This method
only requires four pieces of random calibration information based on the correct position
of individual calibrating boards. G. Lefever et al. investigated the effectiveness of elastic
waves for a non-destructive testing method of cementitious samples and revealed their
composites of the inner structure at the microscale [17]. K. A. Tiwari et al. presented a new
analysis method of wave patterns from the macro-fiber composite transducer to overcome
the limitation of accuracy issue of the previous analytical model [18]. They confirmed that
the proposed model enhanced the analytical modeling for directivity pattern estimation. A
multi-wavelength fluorescence LiDAR system was proposed for vegetation monitoring
in forestry and agricultural applications [19]. The authors extended the system to the
multi-channel fluorescence detection of laser-induced fluorescence based on the LiDAR
scanning and ranging mechanism.

Funding: An NRF grant funded by the Korean government (MSIT) (NRF-2019R1F1A1062948 and
NRF-2019R1A2C1089813) and Bio & Medical Technology Development Program of the NRF funded
by the Korean government (MSIT) (NRF-2019M3E5D1A02067958).

Acknowledgments: The Guest Editors thank all the authors, reviewers, and members of MDPI’s
editorial team whose work has led to the publication of this Special Issue.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Nguyen, T.P.; Nguyen, V.T.; Mondal, S.; Pham, V.H.; Vu, D.D.; Kim, B.; Oh, J. Improved Depth-of-Field Photoacoustic Microscopy
with a Multifocal Point Transducer for Biomedical Imaging. Sensors 2020, 20, 2020. [CrossRef] [PubMed]

2. Jang, J.; Kim, J.; Lee, H.J.; Chang, J.H. Transrectal Ultrasound and Photoacoustic Imaging Probe for Diagnosis of Prostate Cancer.
Sensors 2021, 21, 1217. [CrossRef] [PubMed]

3. Mai, T.T.; Vo, M.; Chu, T.; Kim, J.Y.; Kim, C.; Lee, J.; Jung, S.; Lee, C. Pilot Study: Quantitative Photoacoustic Evaluation of
Peripheral Vascular Dynamics Induced by Carfilzomib In Vivo. Sensors 2021, 21, 836. [CrossRef] [PubMed]

4. Kim, J.; Mai, T.T.; Kim, J.Y.; Min, J.; Kim, C.; Lee, C. Feasibility Study of Precise Balloon Catheter Tracking and Visualization with
Fast Photoacoustic Microscopy. Sensors 2020, 20, 5585. [CrossRef] [PubMed]

5. Manwar, R.; Kratkiewicz, K.; Avanaki, K. Investigation of the Effect of the Skull in Transcranial Photoacoustic Imaging: A
Preliminary Ex Vivo Study. Sensors 2020, 20, 4189. [CrossRef] [PubMed]

6. Lim, H.G.; Kim, H.H.; Yoon, C. Synthetic Aperture Imaging Using High-Frequency Convex Array for Ophthalmic Ultrasound
Applications. Sensors 2021, 21, 2275. [CrossRef] [PubMed]

7. Bae, S.; Jang, J.; Choi, M.H.; Song, T.-K. In Vivo Evaluation of Plane Wave Imaging for Abdominal Ultrasonography. Sensors 2020,
20, 5675. [CrossRef] [PubMed]

2



Sensors 2021, 21, 3970

8. Ma, C.Z.; Ren, L.; Cheng, C.L.; Zheng, Y. Mapping of Back Muscle Stiffness along Spine during Standing and Lying in Young
Adults: A Pilot Study on Spinal Stiffness Quantification with Ultrasound Imaging. Sensors 2020, 20, 7317. [CrossRef] [PubMed]

9. Kim, K.; Choi, H. Novel Bandwidth Expander Supported Power Amplifier for Wideband Ultrasound Transducer Devices. Sensors
2021, 21, 2356. [CrossRef] [PubMed]

10. Chen, Q.; Song, H.; Yu, J.; Kim, K. Current Development and Applications of Super-Resolution Ultrasound Imaging. Sensors 2021,
21, 2417. [CrossRef] [PubMed]

11. Rus, G.; Faris, I.H.; Torres, J.; Callejas, A.; Melchor, J. Why Are Viscosity and Nonlinearity Bound to Make an Impact in Clinical
Elastographic Diagnosis? Sensors 2020, 20, 2379. [CrossRef] [PubMed]

12. Kang, J.; Ullah, Z.; Gwak, J. MRI-Based Brain Tumor Classification Using Ensemble of Deep Features and Machine Learning
Classifiers. Sensors 2021, 21, 2222. [CrossRef] [PubMed]

13. Park, E.; Lim, J.; Park, B.C.; Kim, D. IoT-Based Research Equipment Sharing System for Remotely Controlled Two-Photon Laser
Scanning Microscopy. Sensors 2021, 21, 1533. [CrossRef] [PubMed]

14. Saleah, S.A.; Seong, D.; Han, S.; Wijesinghe, R.E.; Ravichandran, N.K.; Jeon, M.; Kim, J. Integrated Quad-Scanner Strategy-Based
Optical Coherence Tomography for the Whole-Directional Volumetric Imaging of a Sample. Sensors 2021, 21, 1305. [CrossRef]
[PubMed]

15. Wu, H.; Yu, S.; Yu, X. 3D Measurement of Human Chest and Abdomen Surface Based on 3D Fourier Transform and Time Phase
Unwrapping. Sensors 2020, 20, 1091. [CrossRef] [PubMed]

16. Lee, J.H.; Lee, D. A Novel AVM Calibration Method Using Unaligned Square Calibration Boards. Sensors 2021, 21, 2265. [CrossRef]
[PubMed]

17. Lefever, G.; Snoeck, D.; Belie, N.D.; Vlierberghe, S.V.; Hemelrijck, D.V.; Aggelis, D.G. The Contribution of Elastic Wave NDT to
the Characterization of Modern Cementitious Media. Sensors 2020, 20, 2959. [CrossRef] [PubMed]

18. Tiwari, K.A.; Raisutis, R. Mazeika, L. Analysis of Wave Patterns Under the Region of Macro-Fiber Composite Transducer to
Improve the Analytical Modelling for Directivity Calculation in Isotropic Medium. Sensors 2021, 21, 836.

19. Zhao, X.; Shi, S.; Yang, J.; Gong, W.; Sun, J.; Chen, B.; Guo, K.; Chen, B. Active 3D Imaging of Vegetation Based on Multi-
Wavelength Fluorescence LiDAR. Sensors 2020, 20, 935. [CrossRef] [PubMed]

3





sensors

Article

Novel Bandwidth Expander Supported Power Amplifier for
Wideband Ultrasound Transducer Devices

Kyeongjin Kim and Hojong Choi *

��������	
�������

Citation: Kim, K.; Choi, H. Novel

Bandwidth Expander Supported

Power Amplifier for Wideband

Ultrasound Transducer Devices.

Sensors 2021, 21, 2356. https://

doi.org/10.3390/s21072356

Academic Editor: Changho Lee

Received: 17 February 2021

Accepted: 25 March 2021

Published: 28 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology,
350-27 Gumi-daero, Gumi 39253, Korea; 20196092@kumoh.ac.kr
* Correspondence: hojongch@kumoh.ac.kr; Tel.: +82-054-478-7782

Abstract: Ultrasound transducer devices have their own frequency ranges, depending on the appli-
cations and specifications, due to penetration depth, sensitivity, and image resolution. For imaging
applications, in particular, the transducer devices are preferable to have a wide bandwidth due to the
specific information generated by the tissue or blood vessel structures. To support these ultrasound
transducer devices, ultrasound power amplifier hardware with a wide bandwidth can improve the
transducer performance. Therefore, we developed a new bandwidth expander circuit using specially
designed switching architectures to increase the power amplifier bandwidth. The measured band-
width of the power amplifier with the help of the bandwidth expander circuit increased by 56.9%.
In addition, the measured echo bandwidths of the 15-, 20-, and 25-MHz transducer devices were
increased by 8.1%, 6.0%, and 9.8%, respectively, with the help of the designed bandwidth expander
circuit. Therefore, the designed architecture could help an ultrasound system hardware with a wider
bandwidth, thus supporting the use of different frequency ultrasound transducer devices with a
single developed ultrasound system.

Keywords: bandwidth expander; ultrasound transducer device; power amplifier

1. Introduction

Ultrasound transducers are the main sensor devices used in ultrasound systems [1].
Different types of ultrasound transducers are used, depending on their applications and
specifications [2]. Engineers have manufactured ultrasound transducers with the required
diagnostic applications. For diagnostic applications with different positions and locations,
the imaging resolution and sensitivity performance are merits in the evaluation of ul-
trasound systems [3]. Typically, lower-frequency ultrasound transducer devices have a
higher penetration depth and lower imaging resolution than higher-frequency ultrasound
transducer devices [4]. Smaller-sized ultrasound transducer devices for intracardiac and
intravascular applications need to be used such that the penetration depth of the devices is
lower, but a higher imaging resolution could be preferable [5].

Figure 1 shows the penetration depth and imaging resolution for an ultrasound
diagnostic analysis. Since the imaging resolution and penetration depth have a trade-
off relationship, ultrasound transducers with smaller piezoelectric elements are used
depending on the body parts [6]. For the heart and abdomen areas, 2–3 and 3–5 MHz
transducer devices are preferable because of the penetration depth [5,7]. For the eyeballs
and breast and thyroid areas, 7.5–12 MHz and 7.5–13 MHz transducer devices are used
due to their relatively high imaging resolutions [5,7]. In particular, for peripheral blood
vessels and digestive tract areas, small transducer devices with a high frequency, such
as 15–30 MHz, are used because of the higher imaging resolution, which reduces the
penetration depth [8–10].

Sensors 2021, 21, 2356. https://doi.org/10.3390/s21072356 https://www.mdpi.com/journal/sensors
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Figure 1. Penetration depth and imaging resolution for ultrasound diagnostic analysis.

Figure 2 shows the ultrasound transducer probes (devices) used in ultrasound sys-
tems for specific applications [7,11]. Each ultrasound transducer probe has different
frequency characteristics and shapes; thus, different anatomical cross-sectional images
are obtained [11,12]. However, only one ultrasound system may not cover the transducer
probes with different frequency ranges.

 

Figure 2. Transducer devices for various applications.

Various classes of power amplifiers have been developed for different types of ultra-
sound transducer devices. In power amplifiers, the input signals are amplified by active
devices, which we call metal-oxide-semiconductor field-effect transistors (MOSFETs) or
lateral-diffusion metal–oxide semiconductors (LDMOSs) [13]. Depending on the direct
current (DC) bias voltages, the output currents generated by the active devices are fully
or partially conducted during a single period of time [14]. This fundamental concept is
used to categorize power amplifier classes, such as classes A, B, and C. In the Class A
power amplifier, the operating bias voltage is located in the middle of the DC load line
to minimize signal distortions [15]. Therefore, the active device in the power amplifier
has a heavy load because the active device continues to operate regardless of the input
signal [16,17]. Power is consumed continuously as long as an active device is operating.
However, signal distortion by an active device is minimized, resulting in an output signal
with high linearity [18]. In Class B power amplifiers, the bias voltage is located near the
middle of the DC load line, and thus, the active device operates only for half the period of
the signal [17]. Therefore, the active device operates for only half a period, which causes
signal distortion, although the power consumption of the active device is reduced, com-
pared to that of the Class A power amplifier. Class C power amplifiers operate for less than
half a period of the signal because the bias voltage of the DC load line is lower than that of
Class B amplifiers [13]. Therefore, the distortion of the signal is extremely high, whereas
the power consumption of the active device is quite low. In addition, Class AB power
amplifiers operate between Class A and B power amplifiers. In addition, there are other
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types of power amplifiers, such as Class D and Class E, which use harmonic components
or modulated waveforms [19].

The Class B power amplifiers operate at only half of the pulse cycle, which has a
much shorter time than Class A and Class AB power amplifiers. Therefore, Class B power
amplifiers have much lower power consumption than those of Class A and Class AB power
amplifiers, and thus, they have a higher efficiency [20]. The Class B power amplifier has
lower signal distortions than the Class A power amplifier. Therefore, wire-type ultrasound
machines have a Class A power amplifier because of the AC power cord [2]. Class B or
Class C power amplifiers are preferable for mobile or portable ultrasound systems due
to their limited battery modules [6]. Several studies related to power amplifiers have
been conducted on ultrasound-transducer devices. For ultrasound signals, the burst or
modulated waveforms with a limited time period and non-continuous signals are used. A
typical Class A power amplifier was developed for ultrasound imaging applications [21].
A Class B power amplifier was developed to reduce the signal distortion [22].

There are a few studies of the power amplifiers used for ultrasound applications.
There is a Class C power amplifier used for a 25 MHz transducer. This amplifier has high
efficiency with high signal distortions. Therefore, the proposed circuit was developed to
compensate for signal distortions [23]. Class D amplifier was developed for low-frequency
piezoelectric transducers [24]. This amplifier was used for the high signal distortion
and high-efficiency system. The Class E power amplifier was developed to improve the
efficiency of low-frequency inductive piezoelectric converters [25]. As mentioned, various
power amplifiers with various characteristics are used because all the amplifiers cannot
satisfy some parameters of the signal distortion and the bandwidth. In ultrasound systems,
transmitter and receiver architectures support ultrasound devices. The power amplifier in
a transmitter is typically used in the last stage of electronics [2]. Thus, the bandwidth of
the power amplifier only covers the specific transducer probes with their limited frequency
ranges because the bandwidth of the power amplifier electronic devices decreases as
the operating frequency of the power amplifier increases. This indicates that the output
signals working at frequencies higher than the center frequency may deteriorate the image
quality. Therefore, we first proposed a bandwidth-expander circuit for power amplifiers
and various ultrasound devices.

There are several ways to increase the bandwidth of the power amplifier output.
Impedance matching improves the amplitude and bandwidth of the power amplifiers
and ultrasound transducers [26]. The output power can be increased through impedance
matching, thus increasing the echo amplitude or the echo bandwidth of the ultrasound
transducers [26]. However, the impedance of the ultrasound transducer varies significantly
according to the frequency [27]. Furthermore, transducers are manufactured to have differ-
ent central frequencies and resonance/anti-resonance frequency ranges [28]. Therefore, it
can be difficult to match the impedance magnitudes within the desired frequency ranges
for several ultrasound transducers.

Another method is to lower the gain and increase the bandwidth of the power amplifier
by using a feedback loop circuit [14]. This method a fundamental approach for increasing
the bandwidth of a power amplifier. This method can reduce the gain of the power
amplifier and increase the bandwidth [16]. Thus, several-stage power amplifiers need to be
utilized to increase the gain and bandwidth. As the number of stages increases, various
problems such as a time delay and signal distortions due to line resistances and parasitic
nonlinear components could affect the performance of the power amplifiers [29]. Moreover,
there could be a bandwidth expansion limit because space and cost are finite in terms
of manufacturing.

In this study, we developed a circuit that can enlarge the bandwidth and minimize
the signal loss, thus applying it to a single-stage power amplifier. In our proposed circuit,
the bandwidth can be improved by lowering the input poles of the power amplifiers. The
designed circuit works as a switching mode that is simply turned on/off with DC power.
This method can be useful to improve the bandwidth of the power amplifier and minimize
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the signal loss, thus supporting higher-frequency ultrasound devices. Section 2 describes
the theoretical background and analysis of the proposed circuit and the power amplifier.
Section 3 presents the measured performance and a discussion of the proposed circuit with
several ultrasound transducers. Section 4 provides some concluding remarks regarding
this research.

2. Materials and Methods

The designed bandwidth expander (BWE) is a type of switching circuit operated by
different applied DCs. It is located before the lateral-diffusion metal-oxide-semiconductor
field-effect transistor (PD57018-E, LDMOSFET, STMicroelec-tronics, Geneva, Switzerland),
which is a type of high-voltage MOSFET (BSS123, active device in BWE) in the input
port of the amplifier. When the active LDMOSFET device in the amplifier operates under
higher-voltage amplitudes than a certain bias voltage, the amplifier is applied to the gate
of the LDMOSFET [30]. Therefore, the drain and source of the MOSFET are applied such
that the input impedance of the amplifier is changed accordingly. In addition, by adjusting
the input impedance, the input poles of the amplifier can be tuned. The total transfer
function of the amplifier is expected to increase by integrating the BWE circuit with the
amplifier. Therefore, the amplifier with the help of the BWE has a higher output amplitude
and wider bandwidth.

2.1. Designed Power Amplifier and BWE Schematic Diagram

Figure 3 shows an amplifier combined with a BWE circuit for the ultrasound trans-
mitter. Table 1 shows the resistor, capacitor, and inductor elements of the amplifier, except
for the LDMOSFET shown in Figure 3. The LDMOSFET (PD57018-E, STMicroelectronics,
Geneva, Switzerland) was used as the core component of the amplifier. The simulation
was conducted to make the impedance matching suitable for the 15 MHz transducer. In
Figure 3, VB is the main gate-source operating point of the LDMOSFET. In addition, LC1
and LC2 are choke coil inductors that prevent the inflow of the alternating current (AC)
into the DC power supply [31]. The components used in the input line (LG1, LG2, CG1,
CG2, and RG1) and the components used in the output line (LD1, LD2, CD1, CD2, and
RD1) are tuned to be compatible with the 15 MHz transducer and to achieve the values
below −10 dB of S (1,1) and S (2,2). In addition, they need to block the DC current from
VGG and VDD using CG2 and CD2. If AC input voltages enter the DC power supply,
oscillations may occur [32]. The polarizing electrolytic capacitors CG3 and CD2 are helpful
in providing a constant direct voltage [33]. The ceramic capacitors CG4, CG5, CD4, and
CD5 were used to reduce noise as bypass capacitors. The bias voltage was adjusted to
operate through the voltage distributions of RG2 and RG3. The bias voltage equation at VB
is as follows [34,35]:

VB = VGG × RG3
RG2 + RG3

. (1)

Table 1. Numerical values of the circuit elements of Figure 3.

Components Values Components Values

RG1 200 ohm CD2 850 μF
RG2 1000 ohm CD3 220 μF
RG3 Variable resistance CD4 1000 pF
RD1 200 ohm CD5 100 pF
CG1 550 pF LG1 21 nH
CG2 340 pF LG2 1000 nH
CG3 220 μF LD1 130 nH
CG4 1000 pF LD2 500 nH
CG5 100 pF LC1 1 μH
CD1 340 pF LC2 1 μH
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Figure 3. Designed amplifier schematic diagram.

In ultrasonic diagnostic equipment, the frequency of the input signal and the cycle
of the burst wave were adjusted such that the Q factor used for providing an appropriate
image quality was calculated [1]. Assuming that the LDMOSFET operates in the saturation
region, the changes in the pole and transfer function can be estimated. As shown in Figure 3,
the BWE circuit has little effect on the impedance. However, if a DC voltage is applied and
operated, the input impedance changes. Therefore, the input pole changes. As the input
pole is varied, the transfer function according to the frequency changes, and the output
amplitude and bandwidth are changed. This concept is proved through several equations.

Figure 4 shows a schematic diagram of the designed BWE to show the circuit element
values. Table 2 shows the numerical values of the resistors, capacitors, and inductor
elements in Figure 4. R1 and R3 were used to be tuned to have proper voltage distribution
and power consumption because M1 needs to be operated properly. The input signal was
connected to the gate of M1 to form a feedback loop and can cause oscillation to be blocked
through L1. However, the too high value of inductance may distort the input signal, so
we properly selected the inductor value. R2 and C1 play a major role to lower the input
impedance because the drain and source of M1 are shorted. If the impedance is too low,
signal amplitude can be reduced. Thus, we properly selected those values for an input
signal of 15 MHz. This circuit is added to the circuit, as shown in Figure 3, and thus the
amplifier performance by applying different constant DC voltages is changed depending
on the MOSFET (M1, BSS123) operation. When this circuit is assumed to be an ideal current
source or ideal switch, the DC bias voltage VB1 in the BWE circuit operates the transistor,
M1, as described below [36–38]:

VB1 =
(

VDC − VD1(TH) − VSD

)
× R2||R2

R1 + R2||R2 + R3||R3
, (2)

where VD1(TH) and VSD are the threshold voltage and drain-source diode forward voltage,
respectively. Above a certain voltage, VB1 shortens the drain and source of M1. As the
drain and source voltages at M1 are short-circuited, C1, R2, and L1, and the capacitance
and on-state resistance inside M1 are connected in parallel to the input impedance.
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Figure 4. Schematic diagram of designed bandwidth expander (BWE) circuit.

Table 2. Numerical values of the circuit elements of Figure 4.

Components Values Components Values

R1 150 ohm C3 1000 pF
R2 750 ohm C4 100 pF
R3 50 ohm L1 560 nH
C1 47 pF L2 1 μH
C2 220 μF

2.2. Predicting Performance Results

Changes in the performance of the amplifier only and the amplifier with BWE can
be expected and compared based on pole calculations. Therefore, the equivalent circuit
models of the LDMOSFET in the amplifier and the MOSFET in the BWE were simplified
to calculate the poles. First, the input impedance (ZIN,basic) of the amplifier (Figure 5) was
calculated as follows:

ZIN,basic = XCG2
∣∣∣∣(XLG2 + RG1) + XCG1 + XLG1, (3)

where XCG1 and XCG2 are the impedances of the capacitors, and XLG1 is the impedance of
the inductor (see Figure 5). When the VDC is applied to M1, the VPP of the input signal is
blocked at D1 because the DC level is increased by VB1, as shown in Figure 4. In addition,
the gate of M1 is short-circuited due to the applied VDC. The on-state resistance RD and
internal capacitances CGD, CGS, and CD exist. When M1 in the BWE circuit operates, it is
expressed as an equivalent circuit for the AC analysis. Here, ZBWE indicates the impedance
of the equivalent circuit when the circuit operates and is expressed as follows:

ZBWE = RD
∣∣∣∣XCD

∣∣∣∣(XL1
∣∣∣∣XCGD + XCGS

)
+ R2

∣∣∣∣XC1. (4)
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Figure 5. Equivalent circuit model when BWE circuit is operated.

The input impedance in the BWE circuit was operated with parallel circuits, as shown
in Figure 5.

ZIN, BWE = ZBWE||ZBWE||ZIN,basic. (5)

Figure 6 shows the equivalent circuit model of the amplifier [17]. Assuming that the
bias voltage VB of the amplifier only, and the amplifier with BWE are assumed to be the
same, the internal capacitances CL,GD, CL,GS, CL,DS, and gmVgs are the same.

Figure 6. Equivalent circuit model of the amplifier.

As a result, the input and output poles and the transfer function can be predicted.
The input pole of the amplifier only and the amplifier with the BWE circuit are given by
Equation (6).

ωIN,basic =
1

ZIN,basic[CL,GS + (1 + gmRD)CGD]
(6)

ωIN,BWE =
1

ZIN,BWE[CL,GS + (1 + gmRD)CGD]
(7)
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The output impedances of the amplifier only and the amplifier with the BWE circuit are
assumed to be the same. The currents flowing from drain to source in the main transistor
are the same if the same bias voltage is applied to both the amplifier and amplifier +
BWE; the internal capacitance (Ciss, Coss, and Crss) is also the same. Thus, the internal
capacitances (CL,GD, CL,GS, CL,DS, and gmVgs) are supposed to be the same. Therefore, the
output impedances of the amplifier and amplifier + BWE are the same as ZOUT. Irrelevant
to a transducer, the output signal does not change. Consequently, the output poles in the
transfer functions of the amplifier only and the amplifier with the BWE circuit are expressed
in Equations (8)–(10).

ωOUT =
1

ZOUT

[
CDS +

(
1 − A−1

v

)
CGD

] ∼= 1
ZOUT(CDS + CGD)

(8)

VOUT
VIN

(s), basic =
−gmZOUT(

1 + s
ωIN,basic

)(
1 + s

ωOUT

) (9)

VOUT
VIN

(s), BWE =
−gmZOUT(

1 + s
ωIN, BWE

)(
1 + s

ωOUT

) (10)

Equation (11) shows that ZIN,BWE has a relatively lower impedance than ZIN,basic
because ZBWE is connected in parallel to ZIN,basic. Looking at Equations (6) and (7), the input
pole has an inversely proportional relationship with the input impedance. Furthermore,
from Equations (9) and (10), the transfer function has a proportional relationship with
the input pole. As a result, the pole and transfer functions due to the different input
impedances can be predicted as follows:

ZIN,basic > ZIN,BWE (11)

ωIN,basic < ωIN,BWE (12)

VOUT
VIN

(s), basic <
VOUT
VIN

(s), BWE. (13)

However, the predicted results should be operated in an ideal environment. The
actual results are extremely different from the predicted results because the high-voltage
amplifier operations are not accurately predictable due to several high-voltage environment
variables such as parasitic impedances, high-voltage valuable variances, and unpredictable
equivalent inductance models [39,40].

Figure 7 shows the predicted graph based on Equations (11)–(13). By adding a BWE
circuit to the existing amplifier, the magnitude and input pole in the transfer function
increase. In Figure 7, the entire line goes up, and the input pole moves to the right. As
a result, we assume that the line decreases by 20, 40, and 20 dB/dec, respectively, in the
interval between the input pole, the output pole, and the zero point. Comparing the two
cases, the transfer function is expected to increase. As the pole location shifts, we can
expect to achieve a wider bandwidth.
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Figure 7. The predicted transfer function graph of the amplifier only and the amplifier with BWE.

2.3. Experimental Measurement Process

Figure 8 shows a block diagram showing the performance measurement of the am-
plifier only and the amplifier with BWE circuits. A function generator, DC power supply,
attenuator, and oscilloscope were used to measure the performance of the designed circuits.
A BWE circuit was installed between the function generator and amplifier. The BWE circuit
operates when DC power is supplied by the power supply. The amplified signal can
cause damage to the oscilloscope from a high voltage of 5 VP-P or greater. Therefore, the
output signals were attenuated by a 40 dB attenuator, and the performances were measured
using an oscilloscope [41–43]. To measure the performance of the amplifiers, the frequency
and input signal amplitudes were adjusted using a function generator. In addition, the
voltage gain was obtained from the measured output signals. As a result, the outputs of the
amplifier and BWE circuit-equipped amplifier were measured and compared. The voltage
gain is a performance indicator for measuring the performance of an amplifier, and its high
output helps to provide a clear ultrasound image [44–46]. In addition, the bandwidth of
the gain over frequency of the amplifier only and the amplifier equipped with the BWE
circuit can be compared. The output signal is an important performance indicator of an
ultrasonic transmitter because it shows the sensitivity of the system.

Figure 9a shows the measurement procedures used to obtain the echo signal of the
transducer with the designed amplifier with and without a BWE circuit. Various instru-
ments have been used to measure the echo signal to determine its compatibility with ultra-
sonic transducer probes [47]. The amplified signal was passed through the expander [48,49].
The signal was transmitted through the transducer probe and reflected by the quartz to be
received [50–52]. The expander was used to remove the noise and reduce the ringdown
signal from amplified signals [53–55]. Since the received signal has an extremely low am-
plitude, it is amplified by an approximately 32 dB gain pre-amplifier and then displayed on
the oscilloscope. During this process, because quartz reflects more than 99% of the signal,
the data of the echo signal can be measured to estimate the amplifier performance [56,57].
The amplified signal, called a discharged signal, is required to vibrate the piezoelectric
element of the transducer probe; however, it is not necessary to measure the echo signal,
and the oscilloscope can be damaged with a voltage of higher than 5 VP-P, and thus, it is
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minimized using a limiter [58–60]. Figure 9a,b shows the tested equipment components
used in Figure 9a.

 

Figure 8. Block diagram showing the measured amplifier performances.

 
(a) 

 

 
(b) (c) 

  
 

(d) (e) 

Figure 9. (a) Block diagram showing the measurement procedure of the echo signals using designed circuits and transducer
probe, (b) function generator, (c) DC power supply, (d) pre-amplifier, and (e) oscilloscope.

In Figure 10, the transducer probe was used to measure the echo signal to estimate
the amplifier equipped with and without the BWE circuit. The amplifier performance was
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measured by adjusting the input signal frequency according to the resonance frequency of
each transducer [61–63]. All input parameters are the same when the amplifier is equipped
with and without the BWE circuit. The measured performances are the amplitudes and
pulse widths of the echo signals, −6 dB bandwidths, and harmonic components using a
fast Fourier transform (FFT). The harmonic distortion characteristics were estimated using
the total harmonic distortion (THD) equation [64–66]:

THD =

√
2ndharmonic2 + 3rdharmonic2

f undamental signal
(14)

THD (dB) = 20 log THD, (15)

where the second and third harmonics are the amplitudes of the second and third harmonic
distortion components, and the fundamental signal is the amplitude of the fundamental
signal at the desired operating frequency.

 

Figure 10. Transducer probes with each different frequency band used to measure the echo signals.

The higher the amplitude of the echo signal is, the higher the sensitivity of the trans-
ducer probe [47,67]. The narrower pulse width of the echo signal can result in a higher axial
resolution of the transducer probe. The lateral resolution is related to the bandwidth [68].
The wider the bandwidth at the −6 dB point, the lower the Q factor, and thus, more
image data can be realized [69]. However, the harmonic component generated unwanted
image data [70,71]. Thus, these data need to be minimized. In this study, the measured
performance factors were compared according to each transducer at different frequencies,
as shown below. Therefore, the amplitudes, pulse widths, bandwidths, and THD were mea-
sured and compared by applying different transducer probes according to the frequency of
each input signal with an amplifier equipped with and without the BWE circuit.

3. Results

Figure 11a,b shows the manufactured single-ended power amplifier and BWE circuits,
respectively. The main transistor (LDMOSFET) with a heatsink was used to release heat
more effectively [72–74]. The output port in Figure 11b is connected to the input port, as
shown in Figure 11a.
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(a) 

 
(b) 

Figure 11. Manufactured (a) amplifier and (b) BWE circuits.

3.1. Performance Comparison and Analysis of the Amplifier Only and Amplifier + BWE Circuit

Figure 12a,b shows the POUT and gain variances as the input signal increases. The
black line shows the performance of the power amplifier. The red, blue, and khaki lines
show the performance of the amplifier with the BWE circuit using 0V, 1V, and 3V DC,
respectively. In the case of amp + BWE (0 V) and amp + BWE (1 V), the active device of
the BWE (see M1 in Figure 4) is not in operation, and thus, they have almost the same
performance. Therefore, the red line is almost identical to the blue line. In Figure 12a,b, the
performance of the power amplifier has a higher POUT and gain than the amplifier with a
BWE (3 V) of between −10 dBm and 10 dBm.
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(a) (b) 

 

(c) (d) 

Figure 12. (a) Pout vs. PIN, (b) gain vs. PIN, (c) Pout vs. frequency, and (d) gain vs. frequency of the performance
measurement results of the amplifier only and the amplifier with the addition of the BWE circuit.

Figure 12c,d shows the POUT and gain according to frequency variations at an input
power of −6.5. In Figure 12c,d, the performances of the amplifier at 5–16 MHz have a
higher POUT and gain than the power amplifier with BWE (3 V). The performance of the
power amplifier with a BWE (3 V) has a higher POUT and gain of 17–35 MHz, compared to
the power amplifier only. The POUT of the power amplifier with BWE (3V) outperformed
that of the power amplifier after 16.132 MHz. In addition, the −3 dB POUT bandwidth
of the power amplifier only and the power amplifier with BWE (3 V) were 51.5% and
81.5%, respectively. The −3 dB gain bandwidth of the power amplifier only and the power
amplifier with BWE (3 V) are 84.1% and 141%, respectively. By incorporating the BWE
circuit into the power amplifier, the POUT decreases to 0.8 dBm, and the gain decreases
by 0.8 dB when the PIN is −10 dBm. Theoretically, the magnitude of the transfer function
increases with the addition of the BWE circuit to the power amplifier. Although the POUT
and gain should be increased together, in practice, the final output signal can be slightly
reduced because of the power loss of the passive components in the BWE circuit. However,
in the graphs of the POUT and gain versus frequency, the POUT bandwidth increases by
approximately 30%, and the gain bandwidth increases by approximately 56.9%. In this
paper, the BWE circuit is used to widen the bandwidth by lowering the input impedance
of the power amplifier. However, it does not decrease input impedance linearly at all
frequencies. As shown in the experimental results, the bandwidth at the high-frequency
range is wider than that of the low-frequency range because the BWE circuit has more
impedance reduction at high frequency (See Figure 12c,d)

Figure 13 is the graph of the power added efficiency (PAE) of the amp and the amp +
BWE (3 V) at 15 MHz. The PAE indicates how much DC power was used to amplify the
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input signal [15,75]. In Figure 13, the PAE versus PIN of the amp (44.8%) is higher than
the amp + BWE (3 V) (41.2%) when 10 dBm input power is applied. This is because the
additional DC power is used for the designed BWE, and the amp has a higher POUT versus
the PIN than the amp + BWE (3 V). As a result, the PAEs of the amp and the amp + BWE
(3V) do not show a big difference between them.

Figure 13. Power added efficiency (PAE) vs. PIN measured results of the amplifier only and the
amplifier with the addition of the BWE circuit.

3.2. Echo Signal Performance Comparison and Analysis

Figure 14 shows measured echo signal performances when using 10, 15, 20, and
25 MHz ultrasound transducers. When the ultrasound transducers with the same frequency
were used, the distance to the target was exactly the same. The input signal was measured
using a four-cycle burst wave with a suitable resonant frequency for the transducer probes.
The measurement environment of each frequency is the same except for the presence of
BWE with different DC voltages. As shown in Figure 14, the red, blue, and khaki lines
show the performance of the power amplifier only and the power amplifier with BWE
circuit using 0 V, 1 V, and 3V DC, respectively. In the case of the amplifier + BWE (0 V) and
amplifier + BWE (1 V), the MOSFET (referring to M1 in Figure 4), which is the active device
of the BWE circuit, is not operated and thus shows almost the same performances.

Figure 14a,b shows the measured results of the pulse widths and amplitudes over
the time scale. Figure 14a shows the pulse width according to the frequency. The experi-
mental results showed no significant difference in any of the measured frequency bands.
Experimentally, the BWE circuit does not have a significant influence on the pulse width
of the echo signals. Figure 14b shows the measured echo amplitudes of the peak-to-peak
voltage according to the frequency using a 32 dB preamplifier. As shown in the graph, the
amplitude of amp + BWE (3 V) was higher than that of the amp after 15 MHz. At 25 MHz,
there is a difference of approximately 2.4 dBm. Since the echo signal has an extremely low
amplitude, a 2.4 dBm increment in the amplitude is an attractive result.

Figure 14c,d shows the calculated FFT data used to measure the harmonics and −6 dB
bandwidths of the measured echo signals. Figure 14c shows the THD (%) according to the
frequency. At 20 MHz, the THD of the amp was calculated as 7.15%, which is less than
that of the amp + BWE (3 V). However, at 25 MHz, the THD of the amp was calculated as
15.63%, and that of the amp + BWE (3 V) was calculated as 5.74%. Figure 14d shows the
echo bandwidth according to the frequency. By adding a BWE (3 V) circuit to the power
amplifier, the −6 dB bandwidth of the echo signal was increased by 0.7%, 8.1%, 6.0%, and
9.8% at 10, 15, 20, and 25 MHz, respectively. The bandwidth of the echo signal is actually
related to the axial resolution of the ultrasound image, and thus, a wider bandwidth can
possibly improve the axial resolution [11]. By adding a BWE circuit to the power amplifier,
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the bandwidth of the echo signal is increased, which can help improve the quality of the
echo signals.

 

(a) (b) 

 

(c) (d) 

Figure 14. (a) Pulse width vs. frequency, (b) amplitude vs. frequency, (c) total harmonic distortion (THD) vs. frequency, and
(d) bandwidth vs. frequency of the measured echo signal data using 10, 15, 20, and 25 MHz ultrasonic probes.

Both low and high-frequency transducers can be utilized by using the proposed BWE
circuit with the amplifier. There are some ultrasound applications that utilize dual-band
transducer applications [76]. For these applications, the signals of low- and high-frequency
ranges from dual-band therapeutic/imaging transducer applications need to be obtained.
From the paper, the ultrasound transducers enable therapeutic and imaging modes if
needed. A treatment application requires to use many cycle sinusoidal waveforms [77].
The harmonic components generated when amplifying the input signal can affect the signal
quality of the echo signals [78]. For low-frequency therapeutic applications, the harmonic
components can distort the signal and attenuate the depth of penetration [79]. Therefore,
the amplifiers used for therapeutic applications are preferred to have a narrow bandwidth
in order to minimize harmonic components. For high-frequency imaging applications, the
wider bandwidth, the higher axial resolution can be achieved [80]. Therefore, an amplifier
with wide bandwidth is preferred. Hence, our proposed scheme could be useful for such
dual-band transducer applications.

4. Conclusions

The transducers used in ultrasound systems have their own different frequency bands,
depending on the particular purpose and testing area. Therefore, it is necessary to use an
electrical circuit with a wide bandwidth such that the output signal of the transmitter can
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cover various ultrasound transducers. One way of expanding the bandwidth is impedance
matching. Impedance matching is required to maximize the amplitudes or bandwidths
of the output signals to the transducer. However, an impedance-matching job that can
cover such wide transducers is extremely difficult because the impedance is different for
each transducer. Although impedance matching is not taken into account in this document,
it is clear that impedance matching can be used if we know the impedance values of the
predetermined transducer. However, this method used to increase the bandwidth could
possibly lower the output amplitude at the center frequency. In addition, the feedback loop
circuit methodology can increase the bandwidth by reducing the output amplitude of the
power amplifier. Therefore, we propose a switching mode transmit circuit that can widen
the bandwidth and minimize the output amplitude as needed. The designed BWE circuit
changes the performance of the power amplifier because the bandwidth in the transfer
function is widened by moving the input pole of the power amplifier.

To verify our proposed concept and verify the performance results, we tested a
power amplifier equipped with a BWE circuit under the same conditions. Comparing the
performances of the manufactured amplifier only and the amplifier with the BWE circuit,
the POUT and gain values of the amplifier with the BWE circuit were decreased slightly to
0.8 dBm and 0.8 dB; however, the POUT bandwidth increased by approximately 30%, and
the gain bandwidth increased by approximately 56.9% at −6.5 dBm of input power. In
addition, the echo bandwidths were expanded by 0.7%, 8.1%, 6.0%, and 9.8% at frequencies
of 10, 15, 20, and 25 MHz, respectively.

In practice, the measured experimental data may be different from the theoretical
data because there are various side effects caused by signal distortions of different fre-
quency characteristics and parasitic components of the elements. From the experimental
results, none of the measured performances were enhanced when adding a functional
BWE circuit. Although the bandwidth is wider, there is a slight compromise, such as a
decline in output power or an increase in THD (%). However, the manufactured BWE
circuit improves the bandwidth and minimizes the amplitude of the power amplifier to
support higher operating transducer probes, thus possibly helping improve the ultrasound
system resolution.
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Abstract: High-frequency ultrasound (HFUS) imaging has emerged as an essential tool for pre-clinical
studies and clinical applications such as ophthalmic and dermatologic imaging. HFUS imaging
systems based on array transducers capable of dynamic receive focusing have considerably improved
the image quality in terms of spatial resolution and signal-to-noise ratio (SNR) compared to those by
the single-element transducer-based one. However, the array system still suffers from low spatial
resolution and SNR in out-of-focus regions, resulting in a blurred image and a limited penetration
depth. In this paper, we present synthetic aperture imaging with a virtual source (SA-VS) for an
ophthalmic application using a high-frequency convex array transducer. The performances of the
SA-VS were evaluated with phantom and ex vivo experiments in comparison with the conventional
dynamic receive focusing method. Pre-beamformed radio-frequency (RF) data from phantoms and
excised bovine eye were acquired using a custom-built 64-channel imaging system. In the phantom
experiments, the SA-VS method showed improved lateral resolution (>10%) and sidelobe level
(>4.4 dB) compared to those by the conventional method. The SNR was also improved, resulting
in an increased penetration depth: 16 mm and 23 mm for the conventional and SA-VS methods,
respectively. Ex vivo images with the SA-VS showed improved image quality at the entire depth and
visualized structures that were obscured by noise in conventional imaging.

Keywords: high-frequency ultrasound; ophthalmic imaging; synthetic aperture; convex array transducer

1. Introduction

High-frequency ultrasound (HFUS) imaging (>15 MHz) has evolved rapidly over the
last decade and opened up new applications such as ophthalmic, dermatologic, intravas-
cular, small animal, and molecular imaging [1–7]. It can provide sub-millimeter spatial
resolution determined by f#·λ (where f# is defined as a ratio of a focal distance to a length
of the aperture used for transmission/reception, and λ is the wavelength) at the expense
of a shallow penetration depth. Most custom-built or commercialized HFUS imaging
systems have employed mechanically scanning single-element transducers to form an
image [8–10]. While these single-element imaging systems have offered exciting potential
for many applications, they suffered from low spatial resolution and signal-to-noise ratio
(SNR) in the out-of-focus regions, thus deteriorating the image quality [11]. In addition,
mechanical scanning limits the frame rate.

The adoption of array transducers in HFUS imaging has allowed for improving
the spatial resolution and SNR [9,12,13]. The array transducer-based systems capable
of dynamic receive focusing use electronic scanning to form an image; thus it provides
a higher frame rate and image quality than those by the mechanical scanning systems.
Although it can enhance the overall image quality of HFUS, two-way focusing is only
achieved at the vicinity of the transmit focal depth. To mitigate this, multi-zone transmit
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focusing, where transmit focusing is conducted at two or more depths for each scanline at
the expense of frame rate (reduced by a factor of the number of transmitting foci), has been
used [14]. In addition to the problem of one-way dynamic focusing, the HFUS imaging
still suffers from low SNR due to diffraction and frequency-dependent attenuation that
linearly increases with frequency [15]. Coded excitation can be a solution for improving the
SNR [16,17]. However, the spatial resolution is still limited by the diffraction of the wave.

A viable solution to obtain a high spatial resolution, SNR, and frame rate is to em-
ploy synthetic aperture (SA) imaging techniques that are based on the superposition
of unfocused transmit wave fields. Several different SA methods have been proposed
and have shown their ability to enhance image quality at the expense of computational
cost [18–21]. Among them, multi-element SA with a virtual source (SA-VS) that can achieve
high SNR with full two-way dynamic focusing would be the most prominent method [20].
Clinical evaluations of the SA-VS on cancer diagnosis over conventional imaging were
performed [22,23]. It was demonstrated that the improved image quality could be obtained
using the SA-VS method and was perceived by radiologists. Recently, efficient architectures
for SA-VS imaging have been proposed and implemented in prototype systems [21,24].
In addition, recent advances in graphic processor unit (GPU) computing in medical ultra-
sound imaging may facilitate more rapid commercialization of SA techniques [25,26].

The purpose of this study was to evaluate the feasibility of the SA-VS for ophthalmic
imaging using a high-frequency convex array transducer by demonstrating its effectiveness
in enhancing image quality compared to the conventional one-way dynamic focusing.
Note that the high-frequency convex array transducer is the only transducer, and this is
the first time we applied synthetic aperture imaging using this transducer for ophthalmic
imaging. The main advantage of a convex array is that it can image the whole posterior
segment at once. The performances of SA-VS were evaluated through phantoms and ex
vivo experiments. Pre-beamformed radio-frequency data were acquired by using a custom-
built research system. In the phantom experiments, spatial resolution and SNR were
quantitatively assessed and compared with the conventional dynamic receive focusing
method. In addition, an excised bovine eye was scanned, and the SA-VS image showed
improved image quality.

2. Methods

2.1. Principle of Synthetic Aperture Imaging with a Virtual Source

Figure 1 shows the principle of synthesizing transmit fields in SA-VS imaging, which
is capable of achieving two-way dynamic focusing at all imaging depths. A detailed
description of SA-VS can be founded in [20]. Here, we briefly introduce the SA-VS. The
SA-VS uses the same transmission (focused transmit) and reception procedures as in the
conventional B-mode imaging. Thus, the frame rate of SA-VS is identical to that of the
conventional method. In the SA-VS imaging method, a virtual source is regarded to be
located at a transmit focal point where spherical waves assume to propagate from it. As
can be seen, two transmit fields from different sub-apertures pass an imaging point, (x, z).
Thus, the transmit focusing delay, τtx, for an imaging point can be obtained by computing
the arrival time of wavefront, given by

τtx(x, z) =
ztx ±

√(
x f − x

)2
+
(

z f − z
)2

c
, (1)

where ztx is the transmit focal depth,
(

x f , z f

)
is the Cartesian coordinates of the transmit

focal point, and c is the propagating speed of sound in soft tissue. The positive and negative
signs in (1) are, respectively, applied in the areas after and before the transmit focal point.
The receive focusing delay of nth element, (xn, zn), for the imaging point is identical to that
in the conventional dynamic focusing method, which is computed by
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τn,RX(x, z) =

√
(x − xn)

2 + (z − zn)
2

c
. (2)

Based on these delays, the beamforming of the SA-VS can be achieved by

A(x, z) =
M

∑
m=−M

N−1

∑
n=0

an·rm,n(t − (τTX(x, z) + τn,RX(x, z))), (3)

where an is the apodization function, rm,n(t) is the radio-frequency (RF) data received
by the nth element for the mth scanline, 2M + 1 is the number of sub-apertures used in
synthesizing, and N is the number of channels at each sub-aperture.

As can be seen in Figure 1, the number of scanlines that can be used for synthesizing
varies according to the imaging depth. At the transmit focal depth, there is no scanline
that can be synthesized. However, the number of scanlines incorporated in the transmit
field synthesis increases as the imaging point moves away from the transmit focal depth,
resulting in an increment of signal strength after synthesis. Thus, it requires a compen-
sation method in the SA-VS method to obtain uniform brightness similar to those in the
conventional method. For this, the beamformed RF signal in the SA-VS is divided by

√
Ms

where Ms is the number of scanlines actually used for synthesis at a certain depth. This
can be done by incorporating the values, 1/

√
Ms, in the apodization function in (3).

xn zn

xf zf

x z

Figure 1. Principle of the transmit field synthesis in the synthetic aperture with a virtual source
(SA-VS) imaging which represents the same sequences of transmit/receive as in the conventional
imaging method.

2.2. Experimental Setup and Evaluation Metrics

To evaluate the performances, pre-beamformed RF data from phantoms and ex vivo
bovine eye were acquired using a 64-channel research imaging system developed in our
laboratory [13]. The system is composed of 256-channel of analog front-end pulser/receiver,
64-channel of time-gain compensation (TGC), and an analog-to-digital converter (ADC)
with 12-bit resolution. A custom-built 20 MHz high-frequency transducer made with 1–3
composites was used in the experiments [27]. The array consists of 192 elements with an
element pitch of 111 μm, and a −6 dB fractional bandwidth was 64%. The pre-beamformed
RF data sampled at 100 MHz were stored in field-programmable gate arrays (FPGAs) that
are embedded in the system and transferred to a PC. Off-line processing using MATLAB
(MathWorks Inc., Natick, MA, USA) was carried out. The lateral resolutions were measured
with 20 μm tungsten wire targets located at each depth. An agar phantom was made to
estimate the SNR of both imaging methods, i.e., conventional and SA-VS. For ex vivo
experiments, an excised bovine eye was purchased from Sierra Medical Inc. (Whittier, CA,
USA). The eye was immersed in deionized water and fixed on a custom-made holder while
scanning. In both beamformations (conventional and SA-VS), the optimal sound speed
was estimated to minimize the effect from phase aberration artifacts, which is a first-order
solution for phase aberration correction [28].
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For quantitative comparison, −6 dB lateral resolutions were measured from the con-
ventional and SA-VS images. In addition, the SNR as a function of depth was calculated by

SNR(z) = 10log10
(

Pecho(z)
Pnoise(z)

)
, (4)

where Pecho and Pnoise are the mean power of echo and noise signals along with the imaging
depth (z), respectively. The mean power at each depth was computed by summing the
envelope signal laterally at the speckle region. The system noise was measured by acquiring
pre-beamformed RF data without transmission. The acquired noise signal was processed in
the same manner for each method, i.e., conventional and SA-VS methods. Based on the SNR,
the penetration depths defined as the depth where SNR falls below 0 dB were estimated.

3. Results and Discussion

Figure 2 shows B-mode images of wire targets generated by the conventional and
SA-VS methods, respectively. Two images were acquired for the conventional imaging
with different transmit focal depths, 10 (Tx10) and 25 mm (Tx25), which are shown in
Figure 2a,b, respectively. In the SA-VS imaging, the transmit focal depth was 10 mm to
maximize the number of synthesizable sub-aperture at far depth. Note that the number of
sub-aperture for synthetic aperture varies with different focal depth (see Figure 1). Since the
main imaging target of the high-frequency convex array transducer is the posterior segment
of the eye, the transmit focal depth of 10 mm was chosen. The maximum number of sub-
aperture used in synthesis, in (3), was calculated based on the configuration of transducer
(i.e., curvature and element pitch) and the transmit focal depth and was found to be 33.
The optimal sound speed was estimated to be 1500 m/s, which was closed to the sound
speed in water at room temperature [29]. All images were logarithmically compressed
with a dynamic range of 40 dB. As shown in Figure 2, improved lateral resolution in the
SA-VS image can be readily recognized under visual assessment.

Figure 2. B-mode images of wire targets located at each depth obtained by the conventional method
with transmitting focal depths of 10 mm (Tx 10), 25 mm (Tx 25), and the SA-VS method, respectively.
The number of sub-aperture used in synthesis in the SA-VS was 33.

For quantitative comparison, the lateral beam profiles at depths of 4, 14, 18, and 24
mm were measured and plotted in Figure 3. As can be seen, the SA-VS method produced
not only improved lateral resolutions but also decreased sidelobe levels compared to those
from the conventional one-way dynamic focusing methods. At the depth of 24 mm, similar
beam profiles were obtained from the SA-VS and the conventional method with the focal
depth of 25 mm. The −6 dB lateral resolutions and first sidelobe levels are summarized
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in Table 1. As listed in Table 1, the −6 dB lateral resolutions and the sidelobe levels in the
SA-VS method were improved at all imaging depths. The lateral resolutions were improved
by more than 10% (maximally 65%) except at the depth of 24 mm where similar beam
profiles were produced between the conventional (Tx25) and SA-VS methods. Considerable
reductions in the sidelobe level were obtained by the SA-VS method; minimal and maximal
enhancements were, respectively, 4.4 and 15.6 dB.

(a) (b)

(c) (d)

Figure 3. Lateral beam profiles from each method at depths of (a) 5 mm, (b) 14 mm, (c) 18 mm, and (d) 24 mm, respectively.

Table 1. The −6 dB lateral resolutions and first sidelobe levels for conventional Tx10, Tx25, and
SA-VS.

−6 dB Lateral Resolution (μm)/First Sidelobe Level (dB)

5 mm 14 mm 18 mm 24 mm

Conventional Tx10 24.0/−16.4 32.2/−23.7 71/−22.5 119.3/−19.6
Conventional Tx25 29.6/−11.4 51.3/−20.0 72.6/−12 106.0/−24.6

SA-VS 10.2/−27.0 26.9/−28.1 64.3/−26.2 105.5/−24.6

B-mode images of a custom-made agar phantom are shown in Figure 4. In conven-
tional imaging, the transmit focal depths were 10 (Tx10) and 25 mm (Tx25), respectively.
For the SA-VS imaging, a transmit focal depth was 10 mm, and the number of sub-aperture
for synthesis was 33. As shown in Figure 4, the SA-VS produced speckle patterns with
uniform brightness. The penetration depth was also increased in the SA-VS. The measured
SNR curves for each method as a function of depth are shown in Figure 5. The mean power
at each depth was computed from 20 scanlines at the center. Consistent with the visual
assessment, the SA-VS method improved the SNR for the entire imaging depth compared
to other methods. In the conventional method with the transmit focusing at 10 mm, the
maximum SNR was achieved around 10 mm, and the SNR sharply decreased after the focal
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depth due to diffraction and attenuation. Due to the high attenuation, the SNR curve with
the conventional method (Tx25) could not produce a peak at 25 mm. From the curves, the
penetration depths were determined to be 16 and 23 mm for the conventional and SA-VS
methods, respectively.

Figure 4. B-mode images of agar phantom obtained by the conventional method with transmit focal
depths of 10 mm and 25 mm and the SA-VS method, respectively. The number of sub-aperture used
in synthesis in the SA-VS was 33.

Figure 5. Measured SNRs for each method as a function of depth.

Figure 6 shows B-mode images of the bovine eye with the conventional and SA-VS
methods. The image was acquired by avoiding the lens exhibiting high attenuation and
propagation sound speed [30]. In this experiment, the optimal sound speed was estimated to
be 1520 m/s and was well agreed with the previously reported value (i.e., 1513 m/s in the
vitreous body) [30]. The transmit focal depth was 35 mm in the conventional method while
it was 10 mm for the SA-VS method. The number of sub-aperture used in synthesis was 33.
The images were rendered without any further processing such as filtering and post-image
processing. Consistent with the results of phantom experiments, as shown in Figure 6, the
SA-VS produced improved image quality compared to that by the conventional method.
In the conventional method, the image was considerably blurred, especially in the anterior
segment. On the other hand, the anterior and posterior segments were clearly visualized
due to the enhancement of resolution. In addition, increased SNR in the SA-VS imaging
allowed for visualizing structures that were ambiguous by noise in the conventional
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imaging; scattering from the vitreous body is clearly visualized proximal to the retina in
the SA-VS imaging.

(a)

(b)

Figure 6. B-mode images of an excised bovine eye by (a) the conventional and (b) SA-VS methods.
In the conventional method, a transmit focal depth was 35 mm while it was 10 mm for the SA-VS
method. The number of sub-aperture used in synthesis in the SA-VS was 33.

In ophthalmic imaging, detailed information such as vitreous detachment, hemor-
rhage, and intraocular foreign body is important to diagnose and manage ocular emer-
gencies, which can be achieved by increasing the center frequency of ultrasound imaging.
Although the vitreous body is a gel-like substance and is known as acoustically trans-
parent, ultrasound imaging with higher frequency (>20 MHz) still suffers from a high
attenuation [31]. The method presented in the paper could resolve these problems (lower
resolution at out-of-focus regions and SNR) and would be useful to diagnose and manage
ocular emergencies.

Tissue motion and phase aberration are primary factors that limit the effectiveness of
SA imaging [32]. Phase aberration correction based on correlation measurements would
be the best solution. However, it requires a significant amount in computing correlation,
which would be difficult to implement in real time. As a remedy, a method of estimating an
optimal sound speed that can reduce the phase aberration artifacts has been proposed [28],
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which was used in the paper. Although it can partially resolve the problem, a previous
study showed its potential in improving image quality in clinical practices [22]. Moreover,
the effect of phase aberration in the ophthalmic SA imaging would be insignificant since
the most of eye consists of a vitreous body that is a homogeneous medium.

4. Conclusions

Ultrasound imaging with the SA-VS was illustrated and showed its potential for
ophthalmic imaging. The performances of the SA-VS method were evaluated through
phantom and ex vivo experiments. The experimental results demonstrated that the SA-VS
method can improve both lateral resolution and SNR. It was demonstrated that SA-VS
imaging has the potential to deliver more additional significant information with diagnostic
analytics compared to the conventional imaging method. Recent advances in electronics
such as high-performance FPGA or GPU would support its high computational load and
accelerate the commercialization of the SA-VS method. Further clinical evaluations of
the SA-VS imaging need to be followed under various disease conditions to become an
essential imaging tool for ophthalmic imaging.
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Abstract: The adoption of multiscale approaches by the biomechanical community has caused a major
improvement in quality in the mechanical characterization of soft tissues. The recent developments in
elastography techniques are enabling in vivo and non-invasive quantification of tissues’ mechanical
properties. Elastic changes in a tissue are associated with a broad spectrum of pathologies, which
stems from the tissue microstructure, histology and biochemistry. This knowledge is combined with
research evidence to provide a powerful diagnostic range of highly prevalent pathologies, from birth
and labor disorders (prematurity, induction failures, etc.), to solid tumors (e.g., prostate, cervix,
breast, melanoma) and liver fibrosis, just to name a few. This review aims to elucidate the potential
of viscous and nonlinear elastic parameters as conceivable diagnostic mechanical biomarkers.
First, by providing an insight into the classic role of soft tissue microstructure in linear elasticity;
secondly, by understanding how viscosity and nonlinearity could enhance the current diagnosis
in elastography; and finally, by compounding preliminary investigations of those elastography
parameters within different technologies. In conclusion, evidence of the diagnostic capability of
elastic parameters beyond linear stiffness is gaining momentum as a result of the technological
and imaging developments in the field of biomechanics.

Keywords: elastography; soft tissue; nonlinearity; viscoelasticity

1. Introduction

Elastography is a medical imaging modality intended to map the elastic properties of soft tissues
for diagnostic purposes that has recently been undergoing heavy development. It combines an
imaging principle, that is, either ultrasonic or magnetic resonance imaging (MRI), with algorithms to
reconstruct the stiffness maps from the raw shear wave propagation data [1–4]. The references are more
detailed on ultrasound elastography, given the variety of techniques and the author’s background,
but the conclusions are fully applicable to magnetic resonance elastography (MRE). It follows that
only dynamic or shear wave methods will be reviewed since strain elastography merely delivers
relative deformability as the stress is unknown. However, in static ultrasonic methods, this current
dependency of the stiffness on the probe pressure can become an opportunity instead of a drawback,
since that dependency is caused by elastic nonlinearity, which is only quantifiable by dynamic
techniques at this time. Further, the emerging field of elastography of viscous elastic parameters
is finally gaining prominence. Therefore, beyond the current standard of elasticity maps, measuring
the nonlinearity and viscosity might yield a more precise, pressure and operator-independent
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interpretation of the results, since for nonlinearity models, the dependence of the tangent stiffness
modulus with deformation is correlated with operator-applied probe pressure, hence, decoupling
operator dependency at the time a new biomarker is added. This proposed mechanical biomarkers,
whose rationale is found in the tissue microstructure, and preliminary evidence, suggest a convincing
diagnostic potential.

The purpose of this present work is not to address ultrasound elastography techniques in detail;
there are several published works that deal with their differences and cut-off values, and the different
systems available in the clinical market [2,5–8]. Instead, this article reviews the projected capabilities
of viscous and nonlinear elastography parameters as clinical biomarkers from three perspectives:
(1) the linear mechanics of soft tissue, focusing on the microstructure of the stroma, and therein
mainly the fiber network organization; (2) how viscous and non-linear parameters are expected to
be able to refine the diagnoses provided by classical elastography modalities; and (3) a spectrum
of pathologies for which viscous and nonlinear elasticity quantification, conceived as mechanical
biomarkers, has current or potential applications.

2. Mechanics of Soft Tissue

2.1. Soft Tissue Microstructure

The application of imaging techniques based on the propagation of shear acoustic waves aims to
become a benchmark in terms of medical diagnosis. Pathologies such as tumors and fibrosis involve
changes in consistency, since the structural properties of these anomalies imply a stiffer area that reflects
histological differences in the microstructure of the tissue [9]. For current technologies to be effective
and reliable, a sufficiently broad range of variation in the mechanical properties of the tissue must
occur. This response can be addressed at the biological microscale, where the most relevant information
can be gathered [10–12]. At this scale, there are two fundamental components, the extracellular matrix
(ECM) and active cells, with fibroblasts and smooth muscle cells being the most prominent of this
second group. The integrity of the tissue is ensured by the ECM, with a composition that provides
support for the structural functionality through the formation of a fibrous scaffold. The components are
organized hierarchically down to the macromolecular level, according to the morphology and function
of the tissue they form. The primary constituent of the ECM is a crosslinked network of collagen
and elastin, which is embedded within a gelatinous matrix of proteoglycans (PGs). This matrix is
responsible for resisting and transmitting mechanical loads and regulating the hydrostatic pressure
and fluid flow [13]. For illustrative purposes, the reader is referred to Figure 1, where the remodeling
process of cervical ECM during pregnancy is graphically described.

All the elements that compose the ECM have a load-bearing role in the mechanical response,
emphasizing the importance of the content and distribution of collagen fibers in the shear modulus
of the tissue. During the synthesis of collagen there is a process of hydroxylation that determines
the crosslink formation, setting the adhesion of the new fibrils [14,15]. This is a critical step in
the development of pathologies related to collagen [16], such as fibrosis-associated pathologies,
as shown on foreskin cell cultures [17]. When several fibrils are adhered, they increase the crosslink
density, creating a stiffer fiber, 1–20 μm in diameter [18], and completing the fibrillogenesis
process [19–23]. Apart from the diameter, the morphology of the collagen is defined by the interfibrillar
space and the crimping. The origin of this wavy structure comes from the subfibril formation,
very sensitive to different homeostasis levels affected by biochemical factors. It can resist very
low compressions due to this crimping, which in turn is responsible for the existence of internal
shear [24,25]. The collagenous matrix varies greatly depending on the organ and its state. For instance,
breast tissue has a collagen content of 5–10% [26,27], similarly to the liver [28,29]. The collagen content
is higher in the cervix and prostate tissues: around 60% for the cervix [30–32], and similar content for
the prostate can be inferred from qualitative analysis [33].
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a) b)

Figure 1. Histological illustration of the ECM remodeling as an example of cervical tissue during
pregnancy. (a) The structure of the constituents in non-pregnant women. (b) The morphological
evolution near the end of pregnancy. Quantitatively, there are increases in active cell and water
contents, and crimping; and the diameter of collagen fibers increases, while PGs show a cyclic behavior.
The legend at the bottom describes the symbol for each constituent; PGs: proteoglycans.

Elastin fibers are randomly distributed in the ECM, loosely interconnecting collagen fibers [34].
During their formation elastin fibers are prestressed, and once they are assembled they discharge stress,
stretching and curling the attached collagen fibers [35,36]. They are used as a support in the mechanical
response of collagen, operating as springs that recoil the structure to its initial state, allowing it to
withstand repeated load cycles without reaching a plastic state [37]. They have a linear response up to
100% strain, with an average stiffness of 0.4 MPa depending on the tissue (two orders of magnitude
lower than collagen) [38,39].

The gelatinous matrix is a ground material composed of water, proteins and PGs. PGs fill
the spaces between the fibers in a perpendicular scattered network, conferring a supportive bending
stiffness to collagen. At the same time, they contribute to resisting compression forces along with
the interstitial fluid, balancing the fiber network [40]. PGs are composed of a core protein that covalently
bonds with glycosaminoglycans (GAGs), thereby becoming a scaffold for the loose proteins of the ECM.
Some of them can interlace their core with collagen, affecting the fibrillogenesis [41] and providing
lateral stability [42,43]. GAGs are polysaccharide macromolecules with high electrical charges; among
them, there is a particular GAG called hyaluronic acid, which is able to imbibe the surrounding
elements. This is a hydrophilic process that attracts water, generating osmotic pressure, turning these
components into a dampener against compression [44].

2.2. Linear Elasticity

The heterogeneous combination of the ECM components exhibits directional anisotropy, which is
mainly attributed to variations in the morphology of the crosslinked fiber network [45]. Consequently,
the stress at a point does not depend only on the gradient of deformation but also on the orientation,
connection and distribution of its components. At the same time, the fiber network displays a nonlinear
stress–strain relationship due to complex interactions that vary from point to point. The action of
collagen and elastin can be lumped together, showing a stress–strain behavior divided into three
regions (see Figure 2) [46]: (i) In the absence of load, collagen fibers are in their natural state of
formation, wavy and loose. Due to its symmetrical organization, its behavior is frequently modeled
as approximately isotropic. For strains lower than 2%, collagen offers little resistance, originated by
fiber bending; thus, it is considered that elastin absorbs most of the energy, acting as a spring. This is
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the area with normal physiological activities called the toe region, showing nonlinear effects [47].
(ii) The progressive increase in deformation will disrupt the fibers that begin to line up in the direction
of the load increasing the stiffness; this in turn, means that crosslinks are stressed and interfibrillar
sliding is induced; the stress–strain relationship is approximately linear. (iii) At around 30% strain,
depending on the tissue, crimping disappears and the fibers are arranged in parallel; the tissue reaches
its highest stiffness [48–50]. Beyond these values, crosslinks and fibers begin to break, leaving severe
damage to the tissue.

Figure 2. Stress–strain curve in soft tissues. The relationship is divided into three regions;
namely, the toe, the nearly linear, and the failure regions: in the first, elastin fibers absorb most
of the deformation and collagen forms a loose network that offers little resistance—primarily nonlinear
behavior; in the second, collagen fibers line up and start to work under severe stress (nearly linear);
and in the final region, the maximum capacity is reached. Color codes for the fibers are green for
collagen and black for elastin.

Current imaging technologies are gaining prominence because they are based on the propagation
of shear waves, which is directly proportional to the shear modulus, a very sensitive parameter to
the microstructure of the material being examined [51]. Whether through biochemical modulations
or the presence of a disease, the integrity of the tissue changes, which might be quantifiable with
enough contrast for a clinical diagnosis; for that purpose a range of scores has been proposed [8].
However, it is difficult to maintain a standard, as the review article of Sigrist et al. notes [2],
because the characterization of the shear modulus in the same tissue is variable. The variability
in the commercial equipment methodologies and the existence of mechanisms of contrast make
achieving standardization unfeasible. Another factor comes from the physical nature of shear waves;
the displacement generated is characterized by being usually oriented perpendicularly to their
propagation. However, the waves do not propagate with the fibrous matrix direction necessarily.
This is dependent on the interaction of the wavelength relative to the interrogated fibrous matrix;
therefore, its inherent anisotropy defines the examined direction. The dependence on tissue anisotropy,
albeit interesting, is outside the scope of this work; for further information the reader is referred to [45].
Additionally, when the viscoelastic nature of tissues is considered, their mechanical response is time
and frequency-dependent. Finally, the microscopic dimensions of the ECM components concerning
the exciter wavelength must be taken into account. The key is to find a trade-off in the excitation
frequency between a small enough wavelength that is able to interrogate internal components of
the target tissue and a distance to the source of excitation that reduces wave attenuation [52–54].

The next step is to introduce the mathematical basis for soft tissue biomechanics, in this case,
from the perspective of the continuum making two simplifications. The first is incompressibility,
which stems from the high water content that does not allow the tissue to alter its volume under
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deformation; thus, the Poisson’s ratio is considered close to 0.5. The second simplification is isotropy,
since the anisotropy of the tissue increases the difficulty of formulating robust constitutive relationships.
In most soft tissues, these simplifications have enabled researchers to work with more manageable
problems, enabling progress in the understanding of the mechanics of soft tissues.

The total stress (σij) and strain (εij) can be deconstructed into two linear parts that naturally
decompose the basic constituents of soft tissue [55,56]. On one hand, the volumetric, spherical or
hydrostatic part is associated with the ground substance, mainly fluid, which provides no significant
stiffness against shear deformations but is highly incompressible. On the other hand, shear stiffness is
provided by the stroma, which governs the deviatoric components, the fiber and protein structure of
the ECM.

σij = −pδij + τij p = −1/3σkk (1)

εij = −vδij + dij v = −1/3εkk (2)

where δij is the delta of Kronecker, p is the hydrostatic pressure, v is the volumetric strain, τij is
the deviatoric stress tensor and dij is the deviatoric strain tensor. The previous relations can be
combined to derive a constitutive relation, which is linear at first approximation and is similarly
divided into volumetric and deviatoric components.

σij = λδijεkk + 2μεij (3)

where λ and μ are known as the Lamé constants, which characterize the elastic behavior of the material
and must be obtained experimentally. The constant λ has no direct physical meaning; nevertheless,
it is often associated with the bulk modulus K = λ + 2/3μ, which describes the response in volume
change under volumetric pressure. Since the compressibility of soft tissues tends toward that of
water, which is orders of magnitudes higher than shear stiffness provided by the stroma, a good
approximation is K ≈ λ. As for the constant μ, it is usually called shear modulus and represents
the resistance to shear deformation and can be written in terms of elasticity modulus and Poisson’s
ratio μ = E/(2(1 + ν)) [57]. The volumetric and deviatoric decomposition naturally splits the former
linear constitutive relationship into

p = 3Kv τij = 2μdij (4)

Nevertheless, these parameters and assumptions do not provide a full representation of
the behavior of soft tissues; they are limited to low levels of strain, such as image-guided interventions.
New methodologies to interrogate other mechanical properties, such as shear viscosity and shear
nonlinearity, are now appearing. The viscoelasticity of soft tissues implies the search for high order
models that characterize the dispersion associated with shear wave propagation. As input, some
studies have used the shear wave group velocity, which approximates as a series of derivative
orders [58,59]. Likewise, taking advantage of the acoustoelasticity phenomenon, wherein the shear
wave velocity is altered when a stress is applied due to wave propagation, new parameters become
measurable [60–62]. For the specific case of nonlinear values, several theoretical methodologies
have been proposed, and some experimental results have been obtained through acoustoelasticity,
high amplitude shear wave propagation and nonlinear shear wave interaction [63]. The extracted
information refers to the structure and functionality of the tissue, allowing one to identify conditions
that elasticity alone is not able to capture so that the diagnosis is refined.

2.3. Viscoelasticity

From the mechanical viewpoint, two phenomena contribute to the time-dependent or rheological
behavior of soft tissues: viscoelasticity and poroelasticity [64]. Although both viscosity and porosity
contribute additively to the same phase lag between stress and strain dynamics, they are commonly
quantified as an unique value called viscosity within the elastography community. However,
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viscoelasticity and poroelasticity stem from fundamentally different origins and are only separable
playing with space and time scales. In other words, at large-size scales, tissues are viscoelastic in
the short-time period and poroelastic in the long-time period, whereas the small-size scales, tissues are
poroelastic in the short-time period and viscoelastic in the long-time period [65], which is clinically
intractable given the limited region and frequency ranges. For this reason, it might be appropriate to
rename viscoelastic elastography to rheological or dynamic elastography.

Soft tissues are generally assumed to be decomposed into their porous solid phases and their fluid
phases [66]. The high fluid content in tissues is combined with the poroelastic structure of the ECM
to allow motion between components under load, creating a time delay in the strain and triggering
the viscoelastic response [67]. This biphasic nature implies a phase lag between the stress and strain
associated with a relaxation time, or in the case of oscillatory mechanical tests, a phase angle. Then it
would be advisable to start considering time-dependent effects, since the strain response to load
and unload conditions is a function of time, often called the velocity of deformation. During the loading
cycle there is dissipation of energy, reflecting the existence of hysteretic effects. At the same time,
the strain evolution is slowed to allow the viscous flow to settle. Thus, the duration and rate of loading
define the dynamics of the tissue strain. Without this characteristic, the stress during physiological
activities would be harmful to the active structure [68].

One of the key features of viscoelastic tissues comes from the physics of wave propagation, where
the dispersion is defined as a compound expression of the poroelastic and microstructural media
governed by the complex fibrous multiscale microstructure of the stroma [69–72]. It is also known that
the amplitude and intensity of waves decays proportionally to the distance traveled. Additionally,
in a highly viscous environment, where the microvasculature and hemodynamics play an important
role, it is observed that wave phase velocity changes with frequency, and wave amplitude is affected
by geometric factors, such as boundary conditions and the sizes of scattering particles, similar or
smaller than the wavelength [73]. Another important point is that the frequency-dependent behavior
complicates the comparison of different technologies, since each author chooses a suitable range [6].
Neglecting the viscous part introduces bias for the estimation of elasticity, since the effect of wave
dispersion is ignored.

The possibility of explaining these mechanical parameters by the internal structure and function of
the tissue seems to be the key to improving the specificity of a pathology diagnosis. Collagen by itself
exhibits viscoelastic behavior, attributed to fiber and fibril sliding and the crosslinking density; however,
due to its short time of relaxation, it seems that the global response is dominated by non-collagenous
components [74]. Elastin has been found to contribute to stress relaxation, since when it was removed
in arteries, the relaxation time dropped significantly [75]. Nonetheless, PGs are considered to be
the main viscous constituents, via embedding the collagen fibers and creating a lubricating effect.
Their hydrophilia generates hydrostatic pressure, which, coupled with HA [76] and its large molecular
size, entails water attraction, filling the porous matrix [77]. The roles of PGs and HA have been
reviewed in tumor biology [78] and in inflammatory processes [79]. They are capable of acting as
signaling pathways, interacting with diverse receptors, which affect the ultrastructure of the ECM that
is transformed during inflammatory and neoplastic diseases [80]. In the case of pregnancy, as the time
of delivery approaches, an inflammatory process is triggered, during which the proportion of PGs to
collagen increases; therefore, higher viscosity is expected [81–83]. As for fibrosis disorders, there is an
increased deposition of ECM constituents, especially collagen, accompanied by PGs and HA that help
in cell signaling and proliferation [84]. A better understanding of these proteins and their relationship
with viscosity might allow for the development of concrete diagnostic and therapeutic strategies.

Similarly, higher smooth muscle cell (SMC) tone in the carotid wall has been linked to higher
viscosity [85]. For its part, it has been seen that there is an increase in SMC in the internal walls
of the cervix as delivery approaches, and at the time of induction it became the most sensitive
part [86]. In the liver, the development of fibrosis has been accompanied by an increase of
SMC actin [87]. Investigations about the arterial viscoelasticity linked it to wall pressure [88].
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From the perspective of tumors, there are changes at the cellular level which promote different reactions
of the stroma. In breasts, the viscosity of lesions has been studied in order to discriminate the nature of
the masses [89–92]. Higher viscosity was registered compared to healthy tissue and different ranges
allowed researchers to distinguish between benign and malignant lesions.

Thus far, most studies have ignored this behavior, relying only on approaches based on linear
elasticity simplifications. Although this has enabled progress to be made in quantitative imaging
techniques, diagnoses sometimes fail because they do not deal with all the information. [93]. To reduce
false-negative and false-positive results and to better understand pathological changes in soft tissues,
extended dynamic mechanical parameters such as viscosity need to be investigated [94] and eventually
be used as new diagnostic biomarkers. Ex vivo studies evidence the predictive relationship between
viscosity and pathology; for instance, the marked Ex vivo neuronal demyelination with development
of apparent vacuoles associated with a loss of interneuronal connections and thus with a reduction of
matrix dimensionality, causing an observed alteration of viscosity [72,95–97]. The collected data from
either traditional testing methods (creep and relaxation tests) or state-of-the-art imaging combined with
the current computational power are allowing for the retrieval of viscous parameters from empirical or
computational models. Table 1 presents a preview of the experimental evidence from which viscosity
parameters have been estimated with different methods, along with applications to soft tissues whose
results are described later in the manuscript.

Table 1. Qualitative overview of the work done on the description of the viscoelastic nature of
selected soft tissues. The techniques that have achieved remarkable results are: shear wave dispersion
ultrasound vibrometry (SDUV), dynamic mechanical analysis (DMA), magnetic resonance elastography
(MRE), shear wave elastography (SWE) and torsional wave elastography (TWE). KVFD: Kelvin–Voigt
fractional derivate; KV: Kelvin–Voigt.

Technique Soft Tissue Study Objective Method Reference

SDUV Liver in vivo porcine Regular characterization
Dispersion curve
Voigt model Chen et al. [98]

Liver in vivo Regular characterization
Dispersion curve
Voigt model Chen et al. [99]

Liver in vitro rat Fibrosis staging Dispersion curve
Voigt model Lin et al. [100]

Prostate in vitro Regular characterization
Dispersion curve
Voigt model Mitri et al. [101]

Breast in vivo Malignant vs. Benign vs. Healthy state Dispersion curve
Voigt model Kumar et al. [89]

DMA Prostate in vitro Healthy vs. Cancerous state Dispersion curve
KVFD model Zhang et al. [102]

MRE Breast in vivo Malignant vs. Benign vs. Healthy state Phase offset
imaging reconstruction Sinkus et al. [103]

Breast in vivo Malignant vs. Benign vs. Healthy state Transversely isotropic
model Sinkus et al. [104]

Liver in vivo Transplant rejection
Attenuation Measuring Ultrasound
Shearwave Elastography (AMUSE) Nenadic et al. [105]

Liver in vivo Regular characterization
Dispersion curve
Zener model Klatt et al. [106]

Liver in vivo Fibrosis staging
Dispersion curve
Zener model Asbach et al. [107]

Prostate in vivo Prostate cancer vs. Benign prostatitis
Phase offset
imaging reconstruction Li et al. [108]

SWE Liver in vivo Fibrosis
Shear Wave
Dispersion Slope Sugimoto et al. [109]

Liver in vivo Healthy vs. Fibrosis staging Shear Wave
Spectroscopy Deffieux et al. [110]

TWE Cervix Ex vivo Regular characterization Dispersion curve
KV and KVFD model Callejas et al. [111]

It is important to note that if tissues are precompressed when they are examined, the estimation
of parameters will be biased, as the time-dependency of the response is relevant. Changes over
time due to mechanical stimulation are attributed to rapid alterations in cellular activity, mainly
the synthesis and modification of components of the ECM (collagen and proteinases) [112]. To avoid
this situation, preconditioning protocols should be proposed whenever the specimen studied allows
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it, so that a stabilization in the response is achieved [113]. With the aim of capturing this material
behavior, the most popular approach considers soft tissues as uniphase solids and their response
to external loads or deformation is represented as a lumped relationship. This method uses linear
viscoelastic models that generally include a solid-related characteristic (e.g., spring) and a viscous
fluid element (e.g., dashpot). To name a few, Maxwell, Kelvin–Voigt (KV) and Zener viscoelastic
models provide information on how the different scales are linked to each other [98,111]. However,
in order to fit a model when the soft tissue shows several characteristic times, generalized linear
viscoelastic models are used, such as generalized Maxwell or KV models [114,115]. When large strains
are expected, these linear models are not suitable; thus, the proposed Fung’s quasilinear viscoelastic
model is frequently adopted [116].

One of the models in the literature most used to fit the parameters is the KV model, due to its
simplicity [117]. Other models have been explored, such as Maxwell; fractional derivative versions of
the above; and combined models, such as the springpot model [118]. The KV formulation in terms of
the stress tensor (Equation (1)), assuming constitutive and viscous linearity have been derived with
the aim of simplifying equations [119]. Following the references found in the literature [120–122],

p = 3Kv + 3ηvv̇

τij = 2μdij + 2ηḋij

(5)

where K is the compressional modulus; η and ηv are the shear and volumetric viscosities, respectively;
and v̇ and ḋij are the derivate of the volumetric and deviatoric strains, respectively.

Assuming incompressibility, only deviatoric components (τij, p = ν = 0) are considered.
According to the schematic representation of the KV model, the total stress is the sum of the elastic
and viscous terms,

σij = τij = 2μdij + 2ηḋij = 2μεij + 2ηε̇ij (6)

Following the same steps as in the Kelvin–Voigt model, the implementation of the Maxwell
model stems from the strain tensor of Equation (2). For the same reasons stated for the KV case
(dij, p = ν = 0), exclusively deviatoric components are considered. Only elastic and viscous
components of the deviatoric term of the strain tensor are adopted,

dij = τij/2μ, ḋij = τij/2η (7)

The constitutive equation for this model is obtained by adding the elastic and viscous terms by,

ḋij = τ̇ij/2μ + τij/2η (8)

All this evidence suggests that the viscous phase may become a biomarker for the characterization
of microstructural changes [123–127]. Table 2 shows some indications of the current status of this
parameter in terms of limitations and characteristics that have been specified for some ultrasound
elastography methods. Phase-sensitive imaging techniques might become a monitoring tool for early
diagnose, able to keep track of quick dynamic changes in the tissue, before significant or unclear
changes in elasticity and also reducing the number of unnecessary biopsies [1,128].
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Table 2. Comparison of the current methods that have been able to successfully estimate viscosity
parameters using ultrasound elastography.

Method Advantages Disadvantages

Shear wave speed dispersion
curve: estimation of vicosity
parameters by fitting a
rheological model

Most relevant and extended
technique
Considerable amount of previous
work for different types of organs to
compare with
Depends on shear wave methods:
noninvasive both internally
and externally in contact with
the soft tissue

No consensus on the most
appropriate rheological model for
soft tissue characterization
Studies report values of viscosity
for a specific rheological model
(not comparable)

Shear Wave Dispersion Imaging Dispersion slope value: physical
quantity not based on a rheological
model (model-free)

Integrated into commercial
ultrasound systems not accessible
for researchers (black box
software)

Shear Wave Spectroscopy: new
signal processing of the SSI data
(Supersonic Shear Imaging)

Frequency-dependent measurement
of the shear wave speed,
quantitative and noninvasive

Limits its use to scans via SSI

2.4. Nonlinearity

One of the main hypotheses about the pathology-mediated origin of nonlinearity changes
is based on the nonlinear character of the strain response. The organization of collagen fibers
and elastin, as well as their amounts, combined with the synthesis and degradation processes that are
experienced due to growth and remodeling enhance the nonlinear behavior [129,130]. Additionally,
the stress–strain behavior of the stroma is nonlinear between tension and compression, with a stiffer
response and reduced extensibility in tension, and a more compliant response in compression [131,132].

Several experimental studies, including the recent study of Aristizabal et al. [94], estimated
the nonlinear shear modulus in Ex vivo samples. Particularly, that paper was about Ex vivo kidneys
diagnosing end-stage renal disease, for which a better contrast in the diagnosis was shown. Based on
the principle of acoustoelasticity, the feasibility of obtaining nonlinear parameters through changes in
the deformation and its consequent interaction with the propagated wave is proven. The application
of a deformation and the use of radio frequency ultrasonic signals to quantify it, was the work
of Goenezen et al. [133]; they obtained spatial maps of nonlinear elastic parameters in patients
with malignant and benign tumors. Their conclusions highlight a greater magnitude in the case
of malignant tumors. In the context of preterm birth assessment, Myers et al. [131] investigated
the interaction between mechanical and chemical properties of several cervical samples from different
human hysterectomy specimens: non-pregnant patients with previous vaginal deliveries; non-pregnant
patients with no previous vaginal deliveries; and pregnant patients at the time of cesarean section.
The samples were tested under confined compression, unconfined compression and tension. Results
indicated that the cervical stroma has a nonlinear behavior that could be explained with an accurate
multi-scale model.

The significant hyperelasticity that soft tissues exhibit can manifest itself as quantifiable shear
wave harmonic generation (via ultrasonic shear elastography); the stored strain energy is variable
with the fiber orientation. Taking this opportunity, an efficient application of nonlinear or hyperelastic
constitutive equations for either finite element analysis or experimental analysis requires the derivation
of a strain energy function to consider an adequate stress–strain relationship. A diversity of approaches
to nonlinear mechanics have been developed since Landau and Murnaghan [134,135], which are
particularly well-suited for nonlinear wave modeling; then came the recent proposals lead by Ogden,
Mooney-Rivlin, Yeoh and Fung [136,137] which cover adjustment theories based on modeling of
physiological mechanics [138].
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These behaviors can be modeled from the perspective of the continuum, making the assumption
of Landau third and fourth-order elastic constants (TOEC and FOEC),

Sij = λδijεkk + 2μεij +Aε2
ij + 2Bεijεkk + C(εkk)

2 + h.o.t. (9)

limited to the third order, where A,B and C are the TOEC, and δij is the delta of Kronecker,
and where Sij is the second Piola–Kirchoff Stress tensor [139]. The simplification of nonlinear strain
energy function in the case of incompressible tissues, and extended to fourth order, was derived by
Hamilton [140], and it is considered as the most representative.

Sij = 2μεij +Aε2
ij + 4D(trε2

ij)εij (10)

Experimentally, nonlinear parameters can either be estimated by measuring the change
of apparent speed of shear wave propagation after a precompression [141], or by quantifying
the cumulative harmonic generation during the propagation of shear waves across nonlinear
tissue [142]. The nonlinear shear wave equation depending on TOEC and FOEC in the soft solid
isotropic state was derived by Hamilton and Zabolotskaya [140]. Then, through a strain energy function
they were able to separate the compressional and shear parts. In that approach, nonlinear propagation
depends only on three elastic constants of the first (linear), the third and the fourth-order (nonlinear).
Therefore, the generation of harmonics in soft tissue and biomaterials is likely to be studied under
this prism. However, it is also possible to describe a theoretical model of shear waves propagating
in soft biological tissue induced remotely by the nonlinear radiation force of the focused ultrasound.
The spatial and temporal profiles of the shear displacement confirm the results of the mathematical
modeling previously described. The experimental procedures based on acustoelasticity techniques are
also performed to obtain the nonlinear coefficients of the Burgers Equation by describing the behavior
of tissue [63]. For example, another experience in this line of research is the use of MRE by visualizing
the nonlinear propagation of shear waves providing valuable information about the nonlinear
mechanical behavior of the soft tissue [143]. From this procedure, it is shown that both odd and even
higher harmonics are processed, with their amplitudes depending on the actuator details, the image
geometry and the nonlinear properties of the tissue. With an adequate analysis of the displacement,
it is possible to derive the harmonics that arise from the nonlinear soft tissue response. They have been
extracted, for example, in phantoms at 600 and 750 Hz. Thus, if strain energy is modulated, it is feasible
to determine the nonlinear biomechanical properties of the tissue [51]. The second approach has
been proposed in combination with torsional wave elastography, described later [144,145] following
Landau’s theory [134] and its adaptation for quasi-incompressible media coupled with multiscale
hyperelastic models [146,147]. The formulations of the nonlinear torsional wave propagation on a
hyperelastic material should be taken into account in cylindrical coordinates characterized by strain
energy functions [148,149].

Analogously, it is also possible to accurately and quantitatively recover the local Landau
A parameter. The characterization of the shear nonlinearity of soft tissues by applying
the acoustoelasticity techniques in quasi-fluids could be correlated to the ultrasonic shear wave
speed [150]. But these theories should be tackled by more profound studies due to the dispersion
and variability of the outputs. It is also possible to deduce the nonlinear coefficients in the modified
Burgers model using the numerical simulation from the quadratic wave equation rewritten in its
nondimensional form [63]. It has been introduced to calculate nonlinear parameters of hydrogels
and in Ex vivo porcine kidneys [94], but the cubic orders are valid under a relation that should be
verified in some cases depending on acoustic nonlinearity [140].

In summary, since shear waves are believed to be far more sensitive to tissue classification than
standard compressional waves, but they are complicated to quantify, some experimental observations
may tangentially suggest that nonlinear mechanical properties may be a key signature withh which to
quantify and classify soft tissue behavior [151–156]. The advantages and disadvantages of the current
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scene of nonlinearity in biomechanics are summarized in the Table 3. Therefore, the focus on developing
nonlinear models in the clinical field will provide a better understanding of soft tissue biomechanics
alongside new diagnostic biomarkers. Techniques such as shear wave elastography and torsional
waves are postulated to be crucial tools, sensitive to the measurements of these nonlinear parameters,
provided a consistent and efficient complete formulation is established.

Table 3. Summary of the current state of implementation of nonlinearity in the quantification of soft
tissue mechanical properties.

Advantages Disadvantages

New set of parameters to interpret biological
and physiological disorders

Several proposed models to be chosen depending on
the problem, pathology or tissue considered

Characterization of tissue microscale in terms
of harmonics

Inhomogeneus measurements due to the nature of
propagation in the tissue

Open questions that add a new branch in biomedical
engineering

Mathematically intractable in exact terms

3. Clinical Applications

Since the 80s, elastography has gradually become a widely applied medical imaging
technique [157]. The different techniques of elastography are based on the assumption that soft tissues
are deformed more than rigid tissues, and that these differences can be quantified [158]. However,
this conventional perspective is undergoing a change of scenery; recently, emphasis has been placed
on the complex structures that soft tissues exhibit, deeming not only elastic but strongly nonlinear
hyperelastic, viscoelastic and poroelastic behavior important. Linear elastic models have been used
extensively to characterize soft tissues by the biomechanics community, though it is known that this
simplification in the characterization provides incomplete information in their results. Additional
biomarkers, such as viscosity and nonlinearity, are herein proposed as hypotheses to enable new
diagnostic standards in a broad spectrum of pathologies. In the following subsections, because of
the prevalence of the diseases from which they suffer, the focus is on prostate, breast, liver and labor
disorders, not to mention that the conclusions could be extended to solid tumors, atherosclerosis
and osteoarticular syndromes, to name a few.

3.1. Prostate

Prostate cancer is the second most common cancer in men worldwide (almost 1.3 million
diagnoses) and the fifth leading cause of cancer death among men (350,000 deaths worldwide) [159].
Furthermore, the increase in longevity and awareness of the disease is leading to more men
requesting screening, which in turn will dramatically increase the number of patients diagnosed [160].
Barr et al. [161] provided an extensive study of guidelines and recommendations on the clinical use of
ultrasound elastography on the prostate.

Ex vivo and in vivo results have demonstrated that acoustic radiation force impulse (ARFI) can
be applied to visualize internal structures and to detect suspicious lesions in the prostate [162,163].
Among all the elastography techniques for prostate cancer detection that provide quantitative elasticity
results at present, transrectal SWE (TR-SWE) by Aixplorer® (SuperSonic Imagine, Aix-en-Provence,
France) is the most prolific in terms of the number of publications. Recent in vivo studies on prostate
cancer diagnosis using TR-SWE presented auspicious results [151,164]. However, TR-SWE has some
drawbacks [165]: the pressure artifacts induced by the transducer, as the end-fire design of the probe
requires bending to image mid prostate and apex; the slow frame rate, i.e., one image per second;
the limited size of the ROI, since only half of the prostate is covered; the delay in stabilizing the signals
at each acquisition plane; and the signal attenuation in large prostates was making the evaluation of
the anterior transitional zone of said prostates difficult or impossible [166]. Most of the quantitative
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elastography results of tissue elasticity of the prostate have been achieved by using TR-SWE in different
states of in vivo prostatic tissue [151,166–170]. The frequency range is expected to be between 50
and 450 Hz according to other TR-SWE publications [171]. By analyzing these results, differentiation
between benign and malignant tissue in terms of stiffness is not a trivial matter, since ranges of
values overlap. In order to discriminate in vivo malignant tissues from benign tissues using TR-SWE,
Correas et al. [164] and Barr et al. [151] proposed Young’s modulus thresholds of 35 and 37 kPa
respectively. According to their conclusions, these thresholds provided additional criteria for prostate
cancer detection and biopsy guidance and enabled a substantial reduction in the number of biopsies.

The application of point shear wave elastography (pSWE) allowed Zhai et al. [172] to reconstruct
the shear modulus values from excised human prostates with different pathologies. The limitation of
the work was the low spatial resolution, which may cause variations in the reconstructed shear
modulus. Another in vivo study by Zheng et al. stated that pSWE could effectively measure
the stiffness of prostate nodular lesions between prostate cancer and benign prostatic hyperplasia [173].
Even so, the authors specified that the limited detected depth and the fixed box dimensions of the target
region of interest (ROI) could hamper the broader application of pSWE technology.

As for the viscoelastic characterization of human prostatic tissue, few studies based on ultrasound
elastography have addressed the issue. Shear wave dispersion ultrasound vibrometry (SDUV), one
of the few techniques that has been used in the prostate, consists of monitoring the propagation
of the shear wave by a separate ultrasound detector and reconstruction of the wave speed from
two different phases [98] (refer to Figure 3 for an illustrative example of the principle). The in vitro
study of Mitri et al. [101] used a KV model aimed at the characterization of the mechanical shear
parameter for frequencies between 50 and 400 kHz. They obtained shear elastic modulus values of
1.31–12.81 kPa and viscosity values between 1.10 and 6.82 Pa.s. These data proved the viscoelastic
nature of the properties of prostatic tissue.

1 2 

Prostate  r  Push beam 

Detection 
beams 

Shear wave 

1 2

 

Figure 3. Illustration of shearwave dispersion ultrasound vibrometry (SDUV) principle. A harmonic
shear wave is produced by a push beam; the propagation is monitored by separated detection beams
at two positions. The shear wave speed is reconstructed from its phase φ1, φ2, separated a distance Δr.

Two other studies used a Kelvin–Voigt fractional derivative (KVFD) constitutive law, a more
generalized case of the KV model, for measuring the variation of the complex Young’s modulus E∗

between normal and cancerous prostatic tissue [102,174]. In the first in vitro study, Zhang et al. [102]
extracted the complex Young’s modulus by fitting data from a dynamic mechanical analysis (DMA)
test to a KVFD model. In Table 4 the viscosity parameter and the order of the fractional derivative
associated with the KVFD Young’s modulus is presented. In the second Ex vivo study, Hoyt et al. [174],
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made a comparative study between crawling wave spectroscopy and the same DMA test used in
the first study for two samples of human excised prostate. Results showed relative similarities between
techniques with errors below 12%. In any case, the sample sizes were too small to be statistically
significant in both studies.

Table 4. Viscosity parameters derived from different methods, including a Kelvin–Voigt fractional
derivative (KVFD) fitting using dynamic mechanical analysis (DMA), KV fitting on shear wave
dispersion ultrasonic vibrometry (SDUV) and magnetic resonance elastography (MRE) results of
prostatic tissue. Values are reported as means and standard deviations.

Tissue State
Viscosity
Parameter (Pa.s)

Fractional Derivate
Order

Method Reference

Healthy 3.61 ± 1.25 0.215 ± 0.042 DMA Zhang et al. [102]
Cancerous 8.65 ± 3.40 0.225 ± 0.03

Healthy 1.10–6.82 (range) - SDUV Mitri et al. [101]

Benign prostatitis 2.13 ± 0.21 - MRE Li et al. [108]
Cancerous 6.56 ± 0.99 -

In the field of MRE some studies have addressed the generation of shear waves using transurethral
devices. Chopra et al. [175] designed a transurethral actuator to produce shear waves in the prostate
with adequate propagation at a reasonable frequency. A canine experiment demonstrated the feasibility
of transurethral MRE in vivo. Shear waves have a penetration depth of 3–5 cm, as opposed to 15 cm
for an external driver, allowing high spatial resolution. An alternative to the invasive transurethral
driver was subsequently proposed by Arani et al. [176]. The driver was tested in prostate-mimicking
gelatin phantoms to explore the imaging parameters of transurethral MRE and to determine whether
they encompass the requirements for prostate cancer localization. A more recent study carried out
by Reiter et al. [177] investigated the limitations present in MRI, such as interobserver variability
and low specificity. For this purpose, fourteen fresh prostate specimens from men were examined.
A piezoelectric actuator induced radially converging shear waves in the sample. The results of
the work suggested that prostate MRE has the potential to improve the diagnostic performance of
multiparametric MRI. An in vivo study carried out by Li et al. [108] showed that MRE could be used to
distinguish between prostate cancer and benign prostatic disease in terms of shear viscosity. The study
included 18 patients (eight with prostate cancer, 10 with prostatitis). The mean shear viscosity was
significantly higher in prostate cancer (6.56 ± 0.99 Pa.s) than in benign prostatitis (2.13 ± 0.21 Pa.s).

Further experimental characterization studies of prostatic tissue are required to accurately model
the real viscoelastic behavior of the prostatic tissue in all its conditions. As far as we know, no clinical
studies taking into account the effect of the nonlinearity of prostate tissues have been reported.

3.2. Breast

The International Agency for Research on Cancer concluded in 2018 [159] that breast cancer
is the most commonly diagnosed (over 2 million cases) and leading cause of cancer death (over
600,000 cases worldwide) among females. In the last few decades, several studies have compared
the efficacy of the diagnosis of mammary elastography versus conventional ultrasound in the evaluation
of different breast lesions. Ultrasound evaluation is established through the BIRADS classification [178],
while the elastographic assessment is based on building a pattern between stress and size
relationships [179,180]. Despite these efforts, it remains a significant healthcare problem, and what is
more, countries in transition are experiencing a rise in their rates [181].

The representative clinical cases whose applications are relevant to include are benign lesions,
malignant lesions and lymphatic and metastatic lesions [182]. The anatomy of the breast has allowed
several elastography-based studies to be performed for the characterization and detection of masses.
An extensive work of the World Federation of Ultrasound in Medicine and Biology (WFUMB) dealing
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with the guidelines and recommendations for clinical use of ultrasound elastography on the breast
could be consulted for further information about elastography systems and their cut off values [183].
However, no clear consensus has been reached as to what measure of the shear modulus should be used
and what ROI is the most appropriate for the estimation of elasticity. What is clear is that malignant
lesions show a larger shear modulus than benign [92,184–190]. Still, several forms of misdiagnosis have
been considered. The size of the lesion combined with a high density of the tissue could complicate
the detection [191]. If benign and malignant lesions overlap, the power of the elasticity estimation
is reduced [171,192]. Another issue comes from the effect of calcification: the surrounding zones are
hardened, making the elasticity estimation higher. If the ROI selected matches this area, a misdiagnosis
may be expected [193].

In contrast, viscosity is emerging as a better indicator, especially for tumor differentiation [194].
The first studies in using this parameter for in vivo diagnosis were attempted by Qiu et al. [195].
They compared the retardation times of benign and malignant lesions. The time for the benign state was
clearly larger than the malignant. This was justified because malignant tumors increase their collagen
and crosslinking densities, while there is a reduction of proteoglycans that declines the lubricating
effect. Benign lesions are dominated by the fluid viscous phase of the tissue, hypothesized in part to
be the lubricated motion of collagen. Those results are opposed to the studies on the quantification of
the shear viscosity summarized in Table 5. Sinkus et al. performed two in vivo studies using MRE [103]
and transversely isotropic models [104]. The idea behind the use of models with transverse waves
is to remove the contribution of compressional spurious waves in order to reconstruct viscoelastic
parameters. The SDUV technique has also been used in combination with viscoelastic models [89]
(refer to Figure 4 for the reconstruction process). Another recent study on in vivo tissue applied
the data from the creep test to a first order KV model fit, where the retardation time allowed them
to distinguish between benign, malignant and healthy tissue [196]. These techniques are not feasible
to compare, since, as previously stated, soft tissues are frequency-dependent and each author uses a
different range of frequencies. The common finding that emerged was that shear viscosity was higher
in all malignant states, and despite the great dispersion showed, these masses were heterogeneous in
terms of their viscosity values. Additionally, the studies inferred that the maximum values were well
correlated with malignant diagnosis in MR mammographies, encouraging further exploration.

Table 5. Viscosity parameters are calculated for the malignant, benign and healthy states in the breast
tissue. The methods applied were magnetic resonance elastography (MRE), transverse acoustic
waves and shear wave dispersion ultrasound vibromerty (SDUV). Values are reported as means
and standard deviations.

Tissue State
Viscosity Parameter
(Pa.s)

Method Reference

Malignant 2.40 ± 1.70 MRE Sinkus et al. [103]
Benign 2.10 ± 1.40
Healthy 0.55 ± 0.12

Malignant 3.00 ± 0.80 Transverse Acoustic
Waves

Sinkus et al. [104]

Benign 2.40 ± 1.90
Healthy 0.70 ± 0.55

Malignant 8.22 ± 3.36 SDUV + Kelvin-Voigt Kumar et al. [89]
Benign 2.83 ± 1.47
Healthy 1.41 ± 0.67
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Figure 4. An illustrative process for the estimation of the viscosity parameter of a malignant mass.
(a,b) Maps of particle velocity; (c) a k-space map displaying the phase velocity with the energy of
each frequency; (d) the final result as a dispersion curve, based on the phase velocity, which is fitted
using a Voigt model for estimation of viscoelastic parameters. Source: PLoS ONE, modified from 2018
Kumar et al. [89].

Bernal et al. [141] focused on the detection of early breast cancer in vivo by nonlinear quantification.
In their study they implemented a technique that combines shear wave elastography with a prestress
that modifies the shear wave speed due to the Landau-type elastic nonlinearity, to measure
the nonlinear shear modulus. The mean values of the nonlinear parameter A were −95 kPa for
healthy tissue, −619 kPa for benign lesions, and −806 kPa for malignant lesions, a considerable
variability that show signs of its utility.

These techniques suggest a promising scenario, but the recent expansion of elastography among
all device designers and manufacturers has led to a dizzying increase in the number of tests whose
results call for consistency improvements [197]. Despite this, it has been exhibited that both linear
and nonlinear elastography, possibly together, promise better sensitivity and specificity with which to
characterize benign and malignant mammary lesions [198].

3.3. Liver

Over two million people are estimated to die every year due to chronic liver diseases: one million
due to complications of cirrhosis and the rest due to viral hepatitis and hepatocellular carcinoma [199].
These diseases remain a burdening health problem [200] that demands better mechanisms for
prevention, correct detection and treatment [201]. Different organizations have published a quite
number of reviews of utlrasound elastography and clinical guidelines, and they can be consulted to
deepen knowledge in the technical and clinical domains [2,8,202–206].
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There are several tests available in the clinical protocols to assess the extent of fibrosis and cirrhosis.
The most common is a percutaneous liver biopsy, a procedure performed without hospital admission
that consists of introducing a biopsy needle through the ribs to the liver [207]. Although it is a
standardized method to determine the state of the liver, its limitations stem from being an invasive
method, which can cause minor or severe complications [208]. Additionally, the liver is a large organ
and the biopsy represents only 1 of 50,000 of its total volume, whereby it can provide false negatives
or misinterpretations of the real state of the disease [209,210]. The METAVIR scale and the Scheuer
classification [211] divides fibrosis into five stages. Stage 0: there is no fibrosis. Stage 1: mild fibrosis.
Stage 2: fibrosis extends to areas near the portal vein. Stage 3: fibrosis extends out from the areas of
the portal vein. In this stage, many bridges of fibrosis connect the portal vein with the central areas
of the liver. Stage 4: fibrosis has evolved to cirrhosis, which is an advanced pathological stage with
distortion of the hepatic vasculature and architecture [212].

The most important advance for fibrosis staging has been obtained with the appearance of
transient elastography (TE) using Fibroscan® (Echosens, Paris, France), which has pioneered efforts
since its first commercialization in 2003. Fibroscan® generates images corresponding to the propagated
elastic wave associated with values of hepatic rigidity measured in kilopascals (kPa). In vivo results of
Ziol et al. [213] and Castera et al. [214] indicate that TE allows differentiating significant states of fibrosis.
Chon et al. in [215] confirmed in a meta-analysis that TE is more accurate for detecting F4 fibrosis
than mild fibrosis. Similar results were obtained by Afdhal et al. [216]. Transient elastography has
been shown to be effective in diagnosing cirrhosis (stage F4 fibrosis) and generally in distinguishing
significant fibrosis (≥F2) from non-significant fibrosis (F0 and F1). Cassinoto et al. [217] made a
comparison study between TE and 2D-SWE and pSWE using biopsy as a gold standard. Results
demonstrate that shear wave elastography (SWE) is more accurate in the diagnosis of severe fibrosis
than TE. Similar results can be found in [218–220]. However, the distinction between individual
fibrosis stages is still not well validated. These studies did not change the frequency of vibration,
thereby disregarding the viscoelastic properties of the liver, and this presumably could lead to errors
in the early detection of liver fibrosis because the elasticity can be kept within normal values in those
stages [110,220].

The highly viscoelastic structure of the liver suggests a strong diagnostic potential of viscosity,
since shear wave velocity is frequency-dependent; this means that it is possible to in vivo quantify
the tissue viscosity from the dispersion curves [99,122,221–223]. The elasticity of the liver depends
mainly upon the fibrosis stage, but additionally on factors such as edema, inflammation, extrahepatic
cholestasis and congestion [224]. For these cases of hepatic diseases, having an additional biomarker
to quantify the stage of the disease may yield a significant advantage. Viscosity also plays a vital role
in cases where the contrast of the elastography is not good enough [128].

In terms of attenuation of shear waves, viscosity has been used to propose a technique to separate
transplanted livers with severe rejection from livers with no rejection by Nenadic et al. [105]. The study
computed the attenuation of shear wave elastography (AMUSE), which allows the characterization of
viscoelastic parameters without using rheological models. Shear wave velocity and attenuation of 15
transplanted livers in patients with severe rejection were measured; the results were correlated with
biopsy findings, confirming a high ratio of concordance.

SSI was also used to staging liver fibrosis, with several studies reporting that shear wave imaging
was more accurate than TE [225,226], but again, SWE can not reliably differentiate between mild
stages of fibrosis. The importance of this potential biomarker has led to supersonic shear imaging
(SSI) to recently release AIXPLORER MACH30® (SuperSonic Imagine, Aix-en-Provence, France) with
new liver tools as the viscosity imaging feature. Figure 5 shows and imaging of a healthy liver with
real-time viscosity values.
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Figure 5. Measuring real-time viscosity of a volunteer patient using supersonic imagine (SSI)
AIXPLORER MACH30®. The image on the left shows a healthy patient, while the right subfigure clearly
distinguishes differences in the viscosity of a cirrhotic liver. Courtesy of Pr V.Vilgrain—Hopital Beaujon.

Conversely, several authors obtained results that have shown that viscosity does not notably
improve liver fibrosis staging [99,110]. The works of Chen et al. [98] and Lin et al. [100] used
SDUV, reporting values of 1.96 ± 0.34 Pa·s for the in vivo healthy porcine liver and 1.07 ± 0.12 (F0),
1.22 ± 0.25 (F1), 1.61 ± 0.17 (F2), 1.64 ± 0.11 (F3) and 1.61 ± 0.21 Pa·s for the in vivo fibrotic rat
liver, respectively. But the common understanding is that viscosity in the human liver increases with
higher fibrosis stages, as summarized in Table 6. Likewise, a recent study of Sugimoto et al. [109]
has tried to overcome the limitations of the former studies by enrolling subjects with a single etiology,
and using the dispersion slope value instead of a simple Voigt model since there is no consensus
in the clinical/elastography community with the most appropriate rheological model for soft tissue
characterization. They put the focus of dispersion slope measurements on the lack of practical guidance.
Furthermore, the work has confirmed that shear wave speed (SWS) is superior to shear wave dispersion
slope in delimiting the degree of fibrosis. On the other hand, they found that the dispersion slope is
superior to SWS in the prognostics of the degree of necroinflammation.

Table 6. Human liver range of viscoelastic biomarkers for healthy state and different grades of fibrosis.
Results were obtained using magnetic resonance elastography (MRE) and shear wave pectroscopy (SW
spectroscopy). Values are reported as means and standard deviations.

Tissue State
Viscosity Parameter
(Pa.s)

Method Reference

Healthy 6.7 ± 1.3 MRE + Zener model Klatt et al. [106]
Healthy 7.3 ± 2.3 MRE + Zener model Asbach et al. [107]
Healthy 2.0 ± 0.8 (F0) SW spectroscopy Deffieux et al. [110]

2.3 ± 0.7 (F1)

Fibrosis 2.6 ± 0.5 (F2) SW spectroscopy Deffieux et al [110]
2.7 ± 1.9 (F3)
3.7 ± 2.5 (F4)

Fibrosis 14.4 ± 6.6 (F3–4) MRE + Zener model Asbach et al. [107]

Moreover, it has been found that shear wave dispersion is strongly correlated with the degree
of steatosis in non-alcoholic fatty liver (NAFLD). In the most severe cases NAFLD could progress to
cirrhosis, requiring liver transplant [227]. Preliminary Ex vivo and in vivo studies in mouse, porcine,
duck and goose livers manifest that viscosity may become a key biomarker in distinguishing fatty
liver [128].

Recent publications have highlighted the interest MRE causes as a method for detection
and staging of liver fibrosis. Sherman et al. [228] examined performance characteristics of the enhanced
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liver fibrosis (ELF) index compared to MRE. The conclusions stated that the ELF index was a highly
sensitive and specific marker of cirrhosis when compared with MRE. A posterior study evaluated
the relationship between an increase in liver stiffness on MRE and fibrosis progression in nonalcoholic
fatty liver disease (NAFLD) [229]. The prospective cohort study included 102 patients who underwent
contemporaneous MRE and liver biopsy. The study concluded that a 15% increase in liver stiffness on
MRE may be associated with histological fibrosis progression. Although high mortality is associated
with significant hepatic fibrosis, data on the estimated prevalence of liver fibrosis in the general
population is scarce. Kang et al. [230] carried out a study with 2170 participants. The prevalence values
of significant and advanced liver fibrosis were 5.1% and 1.3% in the overall health-clinic cohort.

Viscosity imaging seems to be an essential non-invasive biomarker, providing additional
information to diffuse liver pathology. Even so, it is believed that suboptimal shear wave signal
quality measured in vivo could be one of the causes of worse performance of viscosity over elasticity.
The precise quantification of the viscosity is a challenging inquiry; besides, the selected viscoelastic
model determines the accuracy of the results. Exploring the nonlinear parameters to evaluate the degree
of fibrosis has not yet been achieved at any level.

3.4. Labor Disorders

The World Health Organization (WHO) estimated in 2017 that approximately 15 million babies
would be born preterm (<37 weeks of gestation); this is a rate above 1 in 10 newborns [86]. The problem
of cervical insufficiency is intimately related to the mechanical properties of the cervix, and hence
any approach must involve means to quantify the biomechanical state of the cervix. The mechanical
parameters are sensitive to the collagen remodeling that progresses throughout cervical ripening,
and which ultimately controls the cervix’s mechanical ability to dilate [231].

Cervical tissue elasticity has been studied extensively. The first investigations were carried out by
using static elastography (SE) [232]. However, researchers have claimed since then that we should not
depend on SE to capture the changes that the cervical tissue undergoes during gestation because it
highly depends on the pressure applied by the operator. Standardization of the measurement method
is a call in many in vivo studies [233,234]. Molina et al. [235] came up with the idea of restricting
the induced probe displacement. Controlling the pressure was an objective of Hernandez et al. [236],
using a reference elastomer material [237]. Thus far it seems that there is no way to bypass the limitation
of strain elastography [234,238,239].

Research moved towards looking for solutions, adopting the dynamic technique named shear
wave elasticity imaging (SWEI) [51,240]. It has been widely used for the assessment of cervical
changes [4,241–245]. Carlson et al. [4] measured SWS in human Ex vivo samples. Results showed
that SWS was able to distinguish between ripened and unripened cervical tissue. Feltovich et al. [233]
proposed the elasticity as an interesting biomarker for physicians, since the elastic modulus varies more
than 80 kPa while SWS varies from approximately 1.2 to 5.5 m/s over the cervix. Carlson et al. [246]
found in a longitudinal study that stiffness decreased over the course of pregnancy, and the same
group explored the feasibility of SWS in capture the cervical softness in pre and post ripening in
women experiencing induction for labor [241]. Peralta et al. [247] used the commercial SSI to quantify
the cervical stiffness at four ROIs, which evidenced that microstructural changes generate a measurable
shear stiffness reduction that gradually undergoes throughout gestation. This remodeling has been
further investigated in the regions of the external os that have been proven to be softer than the internal
os [235,248]. If pregnant women score small strain values at the internal os, it is unusual to experience
spontaneous preterm birth [248]. SWS was found to decrease versus gestational age at the internal
os [243]. Related results were obtained by Muller [242] in pregnant women compared to a control
group. SWS before and after prostaglandin application were measured prior to term induction of labor
in 20 women. Significant results were obtained (2.53 ± 0.75 m/s before and 1.54 ± 0.31 m/s 4 h after
prostaglandin application) [241]. Authors also compared SWS between pregnant women in the first
trimester and the third one; results of 4.42 ± 0.32 m/s and 2.13 ± 0.66 m/s were reported respectively.
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Although the SWEI technique has been effective in the cervical tissue description, it presents
some limitations: first, shear waves are highly attenuated due to the microstructural complexity of
the cervix, and secondly, the complexity of producing adequate shear waves in its boundaries. The use
of torsional waves (shear elastic waves that propagate radially and in-depth in a curved geometry
to sense soft tissue architecture) has been demonstrated to enable a new class of characterization to
quantify the mechanical functionality of any soft tissue [249–252].

Given these limitations, Melchor et al. [253] and Callejas et al. [111] introduced a novel technique,
torsional wave elastography (TWE). The method is based on the transmission of shear waves by a
rotational electromechanical actuator and received by a sensing ring. One of the advantages of this
technique when compared with SWEI, is that it is highly adequate for cylindrical, small organs, such
as the uterine cervix, since TWE generates low energy that does not generate rebounds as SWEI.
Torsional wave elastography was used to quantify the stiffness of cervix in pregnant women in vivo
by Masso et al. [254]. Preliminary results reveal that TWE could become an advantageous technique
capable of quantifying the decrease of cervical stiffness during gestation.

Up to this point, the studies presented earlier have ignored the viscosity and nonlinearity of
the uterine cervical tissue. Substantial hydration changes and inflammatory processes are well known
to occur during maturation, as is collagen decrimping, which suggests that viscous and nonlinear
parameters may be of significant importance. TWE explored viscosity in Ex vivo cervix tissue—results
are shown in Table 7 and Figure 6 [111]—and nonlinear parameters by the harmonic generation of
torsional shear waves [145].

Figure 6. Fitting of the most popular rheological models to the experimental results obtained
by rheometry (the lowest frequencies) and TWE (the highest frequencies) in the cervix Ex vivo.
The Kelvin–Voigt (KV), Kelvin–Voigt fractional derivative (KVFD) and Zener models are successfully
adjusted while the Maxwell model is not able to represent the full frequency range satisfactorily. Source:
Sensors, reproduced from 2017 Callejas et al. [111].
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Table 7. Viscoelastic parameters of Ex vivo cervical tissue using data from rheometry (R), torsional
wave elastography (TWE) and a combination of both techniques (R + TWE) for Kelvin–Voigt
(KV) and Kelvin–Voigt fractional derivative (KVFD) models. Values are reported as means
and standard deviations.

Models Rheometry (R) TWE R + TWE

Elasticity μ (kPa)

KV 1.79 ± 0.08 2.43 ± 0.26 1.92 ± 0.15
KVFD 0.92 ± 0.15 2.06 ± 0.11 2.01 ± 0.24

Viscosity η (Pa.s)

KV 6.34 ± 0.95 4.59 ± 0.29 4.5 ± 0.25
KVFD 23 ± 9.84 4.23 ± 0.22 4.64 ± 0.09

Fractional Derivative Power α

KVFD 0.25 ± 0.15 0.97 ± 0.02 0.98 ± 0.01

McFarlin et al. [255] suggested that cervical ultrasonic attenuation, which is theoretically linked
to compressional viscosity (independent from shear viscosity), could identify women at risk of
spontaneous preterm birth (SPTB). It seemed that low attenuation may be an additional biomarker
with which to identify SPTB. SWEI was conducted in vivo on the pregnant cervix of Rhesus macaque,
divided into two groups; ripened and unripened specimens [81]. Authors found dispersion (the slope
of dispersion curve of SWS versus frequency) in both groups (median 5.5 m/s/kHz, interquartile
range: 1.5–12.0 m/s/kHz). Peralta et al. [71] proposed Maxwell’s model as the best model to use
in preliminary estimations of cervical viscoelastic properties. Myers et al. [256] suggested that since
the cervical tissue is mechanically anisotropic, the uniaxial response of Ex vivo human cervix samples
would depend on the load direction.

Jiang et al. [257] employed 3D multifrequency MRE to the uterus and analyzed the viscoelasticity
of the uterine tissue in healthy volunteers. They observed that the uterine corpus has higher
elasticity, but similar viscosity compared with the cervix, in terms of complex shear modulus (uterine
corpus = 2.58 ± 0.52 kPa vs. cervix = 2.00 ± 0.34 kPa). They concluded that the proposed technique
shows sensitivity to structural and functional changes of the endometrium and myometrium during
the menstrual cycle. Shi et al. [258] measured the compressive viscoelastic mechanical properties of
Ex vivo human cervical tissue using indentation and an inverse finite element analysis, to conclude
that the human cervix is nonlinear and the area of the internal os is stiffer than the external os.

No human in vivo measurements of cervical viscosity changes during gestation have yet been
reported in the literature, and no measurements of nonlinear biomarkers have been published as far as
we know.

4. Discussion

In perspective, the purpose of this review was to present ground and clinical evidence that
goes a step beyond linear elasticity. Abnormalities in the viscosity and nonlinearity of soft tissues
are intimately linked to a broad range of pathologies, including labor disorders, solid tumors,
atherosclerosis, liver fibrosis and osteoarticular syndromes, just to name but a few. This suggests
that it is crucial to rethink where we are in terms of soft tissue mechanics and how pathologies affect
them, opening a timely opportunity of moving forward defining new mechanical biomarkers, enabling
earlier, more specific and precise diagnostic and therapeutic decision making.

On the one hand, viscoelasticity, or more generally, tissue rheology or dynamic dispersion, is
recognized from the physics of wave propagation as a compound expression of the rheological,
poroelastic and microstructural scattering phenomena governed by the complex fibrous multiscale
microstructure of the stroma, which mainly stems from the interaction of collagen and elastin with
the viscous proteoglycans, which undergo characteristic changes during pathologies.
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On the other hand, the significant hyperelasticity that soft tissues exhibit can manifest
itself as quantifiable shear wave harmonic generation, and one of the main hypotheses about
the pathology-mediated origin of nonlinearity changes is based on the crimping and crosslinking
of tissue fibers. In the same manner that shear waves have recently been believed far more
sensitive to tissue classification than standard compressional waves but are troublesome to quantify;
some experimental observations may tangentially suggest nonlinear mechanical properties may be a
key signature with which to quantify and classify and diagnose a range of soft tissue pathologies.

Only scarce clinical elastography measurements of viscous or nonlinear parameters have
been reported for diagnostic purposes, despite the promising perspectives that both unveil from
the underlying rationale and from Ex vivo or animal testings. For instance, within the field of labor
disorders, despite the decrimping of fibers along gestation as well as the inflammatory process,
it is suggested to be a strong diagnostic potential of those biomarkers. Nonetheless, no attempts to
measure viscoelastic and nonlinear parameters using elastography as biomarkers have been reported
in the literature, which opens a promising research field. Similarly, Ex vivo measurements together
with non-elastographic data evidence strong correlations between viscosity and pathology in the liver
and prostate, supporting promising clinical potential and opening future research prospects. Within
the field of breast cancer, only one attempt using shear wave elastography for nonlinear measurements
in vivo has been reported to date, combining elastography with a prestress that modifies the shear
wave speed due to the Landau-type elastic nonlinearity, though it exhibited limited repeatability. Still,
MRE delivers more extensive results with a clearly discriminant potential. Despite these preliminary
experiences, linear and nonlinear elastography, possibly together, promise an improved sensitivity
and specificity to characterize benign and malignant mammary lesions.

Regarding the limitations of these recent methodologies, it is difficult to describe them objectively,
since it is not possible to compare studies and draw conclusions. Viscosity measurement with ultrasonic
techniques is currently less extended than by MR techniques, but this shortcoming is only attributable
to the immaturity of the ultrasonic technique; thus, barriers to its future potential are foreseen.
The two origins of dispersion: viscosity and poroelasticity will probably remain indistinguishable
in vivo, since their separation would require measurements at timescales too far away. Hence,
a single biomarker will probably describe both. Evidence towards the potential of elastic nonlinearity
biomarkers has been provided, whilst the technology is still too immature to state any potential
limitations towards nonlinearity quantification.

The key open research questions involve a detailed formulation for the nonlinear and viscous
components of the microstructure as the ideal procedure to understand the changes and functions
in tissues that exhibit these behaviors. However, the diverse interactions between fluid components
and fibers do not allow the validation of complete models, where the stored energy is considered
individually for each component, ignoring physiological processes of mixed nature that should not
be underestimated. In the specific case of viscosity, the industry has already taken its firsts steps to
address it at the clinical level, and the challenge now is that commercial elastography techniques
must converge on a common framework for the estimation of viscosity and accurate differentiation
of disease states, not only regarding whether there is a pathological condition, but whether it is of
malignant or benign nature. In particular, ways to enhance the dispersion biomarker applicability,
by widening the interrogation frequency range, promise to enable not only storage and loss moduli,
but also poroelastic and a range of viscoelastic models simultaneously. This would yield more
profound understanding of tissue rheological ultrastructure and histology parameters, eventually
allowing prediction of how disease processes change mechanical properties. As regards nonlinearity,
it is a yet pending biomarker, an emerging concept where the still-modest clinical experiences such as
breast cancer A parameter promise strong diagnostic potential once the technical issues are solved.
Nonlinearity is, to our knowledge, still not available on commercial systems.

In conclusion, several front lines have been exposed, yet many other questions call for a response.
How do soft tissue properties change in the case of anisotropy tissues? How about on a cellular
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scale in the presence of tumors? How will the ultrasound elastography industry develop techniques
considering these biomarkers to adapt them to a real application? Quantitative answers to these
questions would definitely improve many clinical protocols.
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MRI Magnetic Resonance Imaging
ECM Extracellular Matrix
PGs Proteoglycans
GAGs Glycosaminoglycans
SMC Smooth Muscle Cell
KV Kelvin–Voigt
TOEC Third-Order Elastic Constant
FOEC Fourth-Order Elastic Constant
ARFI Acoustic Radiation Force Impulse
pSWE Point Shear Wave Elastography
TR-SWE Transrectal Shear Wave Elastography
ROI Region Of Interest
SDUV Shear Wave Dispersion Ultrasound Vibrometry
KVFD Kelvin-Voigt Fractional Derivative
DMA Dynamic Mechanical Analysis
MRE Magnetic Resonance Elastography
ELF Enhanced Liver Fibrosis
WFUMB World Federation of Ultrasound in Medicine and Biology
TE Transient Elastography
SWE Shear Wave Elastography
NAFLD Non-alcoholic Fatty Liver Disease
SSI Supersonic Shear Imaging
WHO World Health Organization
SE Static Elastography
SWEI Shear Wave Elasticity Imaging
SWS Shear Wave Speed
TWE Torsional Wave Elastography
SPTB Sponteneous Preterm Birth
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Abstract: An around view monitoring (AVM) system acquires the front, rear, left, and right-side
information of a vehicle using four cameras and transforms the four images into one image coordinate
system to monitor around the vehicle with one image. Conventional AVM calibration utilizes the
maximum likelihood estimation (MLE) to determine the parameters that can transform the captured
four images into one AVM image. The MLE requires reference data of the image coordinate system
and the world coordinate system to estimate these parameters. In conventional AVM calibration,
many aligned calibration boards are placed around the vehicle and are measured to extract the
reference sample data. However, accurately placing and measuring the calibration boards around a
vehicle is an exhaustive procedure. To remediate this problem, we propose a novel AVM calibration
method that requires only four randomly placed calibration boards by estimating the location of each
calibration board. First, we define the AVM errors and determine the parameters that minimize the
error in estimating the location. We then evaluate the accuracy of the proposed method through
experiments using a real-sized vehicle and an electric vehicle for children to show that the proposed
method can generate an AVM image similar to the conventional AVM calibration method regardless
of a vehicle’s size.

Keywords: around view monitoring system; automatic camera calibration; vision-based advanced
driver assistance systems

1. Introduction

Around view monitoring (AVM) systems eliminate blind spots around the vehicle to
prevent car accidents [1]. Because AVM systems create images that show the surrounding
view of the vehicle, various vision-based advanced driver assistance systems (ADAS)
utilize these AVM-produced images. For example, the parking space detection system
detects the parking lines in the AVM images to determine the parking space area [2–4], the
automated driving system detects the road lanes in the AVM images to track the position of
the vehicle [5], and the downward view generation operation transforms an AVM image to
generate a downward view image [6]. Therefore, these systems all require well-calibrated
AVM images.

The AVM system transforms four captured images to generate an AVM image, as
shown in Figure 1. In AVM calibration, image transformation parameters that are required
to generate the AVM images are estimated. These parameters describe the geometrical
relationship between the captured image coordinate system and the world coordinate
system. In conventional AVM calibration, the maximum likelihood estimation (MLE) is
used to estimate this relationship.

The MLE assumes that the location of the calibration board on the surface of the road
represents the world coordinate system. Figure 1c shows the reconstructed world coordi-
nate system using the calibration board location. The MLE computes the Euclidean distance,
which is the re-projection error between the calibration boards in the reconstructed world
coordinate system and the calibration boards in the captured image coordinate system,
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and minimizes this error to determine the image transformation parameters. Therefore,
accurately measuring the calibration board location is a significant and operative procedure
of conventional AVM calibration methods to generate well-calibrated AVM images.

 
Figure 1. The procedure for conventional around view monitoring (AVM) calibration.

Conventional AVM calibration requires the alignment of the calibration boards for
measurements, as shown in Figure 1a. Because calibration boards are spread over a
large area, accurately measuring calibration boards is an exhaustive procedure. Vehicle
manufacturers use AVM calibration facilities to measure the calibration board locations
accurately, as shown in Figure 2 [7]. Various AVM calibration studies are also based
on well-aligned calibration boards [8–19]. The details of these studies are provided in
Section 2.1.

 

Figure 2. The AVM calibration facility.
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Some researchers have utilized alternative devices to facilitate camera calibration [20–23].
They used odometry or an inertial measurement unit. However, adjacent images utilizing
these approach methods cannot be aligned because these methods focus on the calibration
of only one camera.

Other approaches detect road lanes or the host vehicle instead of utilizing addi-
tional devices [24–28]. These approaches also focus on the calibration of only one camera.
Choi et al. [29] calibrated four AVM cameras to align adjacent images using detected road
lanes. These calibration methods must repeat the road lane detection process until the
integrity of the detected lanes is verified. The methods we have surveyed indicate that
camera calibration without the use of calibration boards can face various challenges.

Lee et al. [30] calibrated AVM cameras using only two circle-shaped calibration boards.
This method takes multiple photos while the vehicle passes between the two calibration
boards to achieve the effect of having more calibration boards placed. However, driving
perfectly straight ahead is as exhausting as accurately measuring the calibration board
locations. Furthermore, only one calibration board per image with the smallest mean
square error is selected from among the multiple images taken while driving. Therefore,
this approach is not suitable for the MLE because only one calibration board is used to
represent the world coordinate system.

We propose an MLE-based AVM calibration method that uses minimal calibration
boards, as shown in Figure 3. This method estimates the location of the four calibration
boards instead of measuring them. To this end, we divide the AVM image into two areas,
as shown in Figure 4. The first area is the overlapping region of interest (ROI) where the
fields of view of adjacent cameras overlap. The other area is the nonoverlapping ROI.

 
Figure 3. The procedure for the proposed AVM calibration.
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Figure 4. The proposed AVM calibration environment. The region of interest (ROI) of the AVM
image (purple rectangle) can be divided into the overlapping ROI (red area) and the nonoverlapping
ROI (green area).

At least one calibration board must be placed in each overlapping ROI. If we place
additional calibration boards in the nonoverlapping ROI, the accuracy of the MLE will
increase. However, the human eye can hardly distinguish between the AVM image results
with and without calibration boards placed in the nonoverlapping ROI because the nonover-
lapping ROI errors are distributed equally for each pixel and are, therefore, not significant.
In contrast, the human eye can easily recognize the overlapping ROI errors because the
overlapping ROI is where adjacent images are stitched. Therefore, it is possible to generate
an AVM image even if the calibration boards are placed only in the overlapping ROI.

We define two errors to calibrate the AVM cameras using square-shaped calibration
boards: a square-shaped error (SSE) and an alignment error (AME). An SSE indicates
the difference between the square shape and the quadrilateral shape. A square-shaped
calibration board can become a quadrilateral-shaped calibration board in the captured
images based on the camera orientation. Therefore, we can estimate the camera orientation
by minimizing the SSE. An AME indicates the Euclidean distance between the same
calibration boards in the adjacent images. By minimizing the AME, we can estimate the
camera position and align the adjacent images. Therefore, we use the sum of the two errors
as the loss function of the proposed method.

The proposed AVM calibration offers the following various advantages:

• A measuring procedure is not required.
• Only four calibration boards are used to minimize the placing procedure.
• The proposed method can still generate an AVM image similar to that generated by

the conventional method.
• In a small repair shop, the four calibration boards need to be in place only when AVM

calibration is being done.

2. Related Works

Camera calibration has been extensively researched in a wide range of fields. There-
fore, this literature review focuses on two types of AVM calibration-related studies: AVM
calibration and vehicle-mounted camera calibration. AVM calibration methods consider
the geometric relationship of adjacent AVM cameras. Vehicle-mounted camera calibration
methods cannot estimate the adjacent AVM camera relationships, but they can estimate
the orientation and position of a mono camera so that these methods can be utilized for
AVM calibration.
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2.1. AVM Calibration

Most of the AVM calibration methods we surveyed use well-aligned calibration boards.
Chang et al. [8] proposed a method to determine accurate vertexes of calibration boards
when the edges of the calibration boards were blurred and jagged. Zhao et al. [9] reduced
the brightness difference among fisheye images and achieved a smooth transition around
stitching seam. Two methods [8,9] utilized direct linear transform (DLT) to estimate the
image transformation matrix required to generate an AVM image and focused on increasing
the accuracy of the AVM calibration.

Gao et al. [10] projected a 2D AVM image generated by the DLT on a 3D ship model.
The 3D AVM image helps drivers to be aware of the driving environment and eliminates
visual blind spots. Yang et al. [11] proposed a flexible central-around coordinate mapping
(CACM) model for vehicle surround view synthesis. The CACM model calculates the
geometric relationship between the world coordinate system and the virtual AVM camera
coordinate system. These studies focused on mapping models for AVM systems.

Jeon et al. [12] and Lo [13] focused on improving the performance of the embedded
system. They also generated an AVM image using the DLT and upload a lookup table
including image transformation parameters for generating an AVM image.

No matter how well-aligned calibration boards are used, errors will occur if the
coordinates of the calibration boards are not accurately detected in an image. Some
researchers proposed a method that can determine the coordinates of calibration boards
in an image more accurately. Kim [14] patented a technology for a robot that revises the
coordinates of calibration boards in an image. Pyo et al. [15] drew straight lines between
calibration boards and detected the vanishing points using the drawn lines. The detected
vanishing points help calibration board detection accurately detect the coordinates of
calibration boards.

Natroshvili et al. [16] utilized MLE to estimate the orientation and location of cameras.
The DLT-based method can only estimate a homography matrix used to transform an image,
but the MLE-based method can estimate parameters indicating the orientation and location
of cameras. When an AVM image requires revision, adjusting the orientation and location
parameters is more intuitive and convenient than adjusting the homography matrix.

Zeng et al. [17] patented an AVM calibration method that paints calibration boards on
all grounds, including under the vehicle, to determine the vehicle coordinates accurately.
Since the calibration boards under the vehicle are obscured by the vehicle, the coordinates
of the vehicle can be estimated.

Ko et al. [18] and Li [19] used a hyperbolic reflector and a spherical image sensor
instead of a fisheye lens, respectively. The hyperbolic reflector is a mirror that increases the
field of view of a camera by more than 180 degrees. The spherical image sensor can see all
360-degree surroundings by combining two cameras having a field of view of 180 degrees
or more.

2.2. Vehicle-Mounted Camera Calibration

Camera calibration methods for vehicle-mounted cameras focus on estimating the
orientation and location of the camera. The estimated parameters can be used to inverse
perspective mapping (IPM). IPM is a method that transforms a captured image into a
top view image that removes perspective distortion using the orientation and location of
the camera.

Some researchers used additional devices instead of calibration boards. Wang et al. [20]
proposed a camera-encoder fusion system to estimate extrinsic parameters. The extracted
and tracked natural features provide the Euclidean distance information of the image
coordinate system, and the encoder measures the camera travel distance. This method
estimates the extrinsic parameters by comparing the Euclidean distance of the natural
features with the camera travel distance. Schneider et al. [21] and Chien et al. [22] also
measured the camera travel distance using odometry and visual-odometry, respectively.
Li et al. [23] used an inertial measurement unit to measure the orientation of the camera.
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Other researchers detected road lanes instead of using additional devices or calibration
boards. Xu et al. [24] and Prakash et al. [25] detected road lanes and used them for
estimating the orientation and location of the front camera. The estimated parameters are
used for IPM. A top view image generated by IPM provides the distance between obstacles
and the host vehicle. Wang et al. [26] and de Paula et al. [27] also detected road lanes
to estimate the orientation and location of a front camera. They estimated the distance
between obstacles and the host vehicle without IPM.

Lee et al. [28] proposed a camera calibration method detecting the host vehicle instead
of detecting the road lanes. More specifically, this method detects the host vehicle surface to
avoid the problems of utilizing detected road lanes, but it can only estimate the orientation
of the camera.

3. AVM Calibration Using Four Randomly Placed Calibration Boards

The proposed method can generate an AVM image without the location information
of the calibration boards. To this end, we estimate the calibration board locations by
minimizing the AVM error, which consists of the SSE and AME. In the following sections,
we first describe the difference between conventional AVM calibration and the proposed
AVM calibration and then define the SSE, AME, and AVM error used to generate an
AVM image.

3.1. Conventional AVM Calibration

The MLE-based conventional AVM calibration estimates the geometrical relationship
between the calibration board locations in the world coordinate system and the image
coordinate system. Because lens distortion parameters do not change even if the camera
orientation and location are changed, we assume that the source images of the AVM
calibration are lens distortion-corrected images. The relationship between the world
coordinate system and the source image coordinate system can be expressed as follows:

~
us = Ks[Rs|Ts]

~
uw (1)

where
~
us is the homogeneous source image coordinate system,

~
uw is the homogeneous

world coordinate system, Rs is the rotation matrix describing the camera orientation, Ts
is the translation matrix describing the camera location, and Ks is the intrinsic matrix
describing the optical properties of the camera.

Ks =

[
fsI2×2 ps
02×1 1

]
(2)

where fs is the focal length, I2×2 is a 2 × 2 identity matrix, and ps is a 2D principal point.
We assume that a virtual AVM camera is over the vehicle and looks at the vehicle vertically
downward to generate an AVM image, as shown in Figure 5.

 

Figure 5. Visualization of the orientation and location of the virtual AVM camera.
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The relationship between the world coordinate system and the AVM image coordinate
system can be expressed in the same way as in Equation (1).

~
uv = Kv[Rv|Tv]

~
uw (3)

where
~
uv is the homogeneous coordinate system of the virtual AVM image, Rv is the

rotation matrix describing the virtual AVM camera orientation, Tv is the translation matrix
describing the virtual AVM camera location, and Kv is the intrinsic matrix describing
the optical properties of the virtual AVM camera. From Equations (1) and (3), we can
express the relationship between the source image coordinate system and the AVM image
coordinate system as

~
uv = (Kv[Rv|Tv])(Ks[Rs|Ts])

−1 ~
us = HAVM

~
us (4)

where HAVM is a 3 × 3 homography matrix describing the relationship between the source
image coordinate system and the AVM image coordinate system. The matrix Kv[Rv|Tv]
consists of known parameters because the properties of the virtual AVM camera are
determined by the drivers or manufacturers, as shown in Figure 6. Furthermore, be-
cause the camera optical properties do not change even if the camera orientation and
location are changed, we can assume that the intrinsic matrix Ks is known. Therefore,
conventional AVM calibration focuses only on estimating the extrinsic matrix [Rs|Ts] to
compute HAVM. To estimate the extrinsic matrix [Rs|Ts], conventional AVM calibration
defines a re-projection error erp and determines the extrinsic matrix that minimizes the
re-projection error.

erp = ‖−uv − HAVM
−
us‖ (5)

[
−
Rs|

−
Ts] = argmin

[Rs|Ts]

(
erp
)

(6)

where erp is the re-projection error,
−
uv represents the measured calibration board coordi-

nates for the virtual AVM image coordinate system,
−
us represents the measured calibration

board coordinates for the source image coordinate system, and [
−
Rs|

−
Ts] is the estimated ex-

trinsic matrix. Equation (5) is the loss function of the conventional AVM calibration method.
Because the calibration board locations are not measured, the measured calibration board
coordinates representing the virtual AVM image coordinate system,

−
uv, in Equation (5) is

unknown. Therefore, we estimate the calibration board coordinates in the virtual AVM
image,

−
uv, to generate an AVM image.

 
Figure 6. Reconstructed AVM images according to the properties of the virtual AVM camera.
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3.2. Calibration Board Detection

Calibration board detection occurs in the preprocessing phase of the proposed method.
We detect the calibration boards in the source images and utilize them to compute the SSE
and AME. Because one calibration board is placed in each overlapping ROI, two calibration
boards are photographed in one source image (one source image has two overlapping
ROIs). The photographed square-shaped calibration boards become quadrilateral shapes
in the source images due to camera tilting. Therefore, we detect two quadrilateral shapes
in the source images using simple and commonly used image processing techniques, as
shown in Figure 7.

 
Figure 7. The procedure for calibration board detection.

We utilize the adaptive thresholding image binarization method to binarize the source
images [31]. This method computes the local threshold values instead of the global thresh-
old value to accurately binarize an image. The morphological transformation can remove
noise [32], and the labeling algorithm assigns the pixels to the same group if the values
between the neighboring pixels are identical [33]. Next, we detect the edge points of the
labeled object and fit the edge points to four straight lines using K-mean clustering [34].

If the labeled object is a quadrilateral, the fitted four straight lines indicate four sides of
the quadrilateral. To find the two calibration boards among the labeled objects, we compute
the quadrilateral error. The quadrilateral error is the sum of the Euclidean distance between
the edge points and the fitted four straight lines. If the labeled object is a quadrilateral, the
quadrilateral error is close to zero. Because there are two calibration boards in one source
image, we divide the source image into left and right areas and select the labeled object
with the least quadrilateral error in each area as the calibration board.

3.3. Square-Shaped Error

We can estimate the geometrical relationship between the quadrilateral shape and the
square shape because a square-shaped calibration board has a quadrilateral shape in the
source image. The square-shaped calibration board can be transformed into a parallelogram
shape by an affine transformation matrix, and the parallelogram shape can be transformed
into a quadrilateral shape by a perspective transformation matrix.

~
uparall = HA

~
usquare =

⎡
⎣ a11 a12 0

0 1 0
0 0 1

⎤
⎦~

usquare

~
uquad = HPHA

~
usquare = HP

~
uparall =

⎡
⎣ 1 0 0

0 1 0
p31 p32 1

⎤
⎦~

uparall

(7)
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where
~
uparall represents the homogeneous coordinates of the parallelogram-shaped cali-

bration board,
~
usquare represents the homogeneous coordinates of the square-shaped cali-

bration board,
~
uquad represents the homogeneous coordinates of the quadrilateral-shaped

calibration board, HP is a perspective transformation matrix, and HA is an affine trans-
formation matrix. The parameter a11 of the affine transformation matrix HA transforms
a square into a rectangle, the parameter a12 transforms a rectangle into a parallelogram,
the parameter p31 of the perspective transformation matrix HP transforms a square into
a trapezoid with a parallel pair of opposite sidelines in the horizontal direction, and the
parameter p32 of the perspective transformation matrix HP transforms a square into a trape-
zoid with a parallel pair of opposite sidelines in the vertical direction. We can transform
the quadrilateral-shaped calibration boards into square-shaped calibration boards with the
perspective and affine matrices:

~
usquare = (HPHA)

−1 ~
uquad (8)

To estimate the matrix (HPHA)
−1 in Equation (8), we define a SSE to indicate the

difference between the coordinates
~
uquad and

~
usquare using the characteristics of a square

shape. The characteristics of a square is that the four angles and the intersection angle
of two diagonals are 90 degrees, the length of the four sidelines are equal, and the two
diagonals are

√
2 times longer than the sidelines. We define two types of errors based on

these characteristics: angle-based SSE (ASSE) and length-based SSE (LSSE). The reason for
classifying the SSE into two types is to simultaneously minimize the SSE and AME, details
of which are described in Section 3.5.

3.3.1. Angle-Based SSE

An angle-based SSE (ASSE) refers to the difference between an internal angle of a

square and the corresponding quadrilateral angle. Let a line vector
−
l quad,i represent an i-th

sideline of a detected quadrilateral-shaped calibration board. By the matrix (HPHA)
−1 in

Equation (8), the detected quadrilateral-shaped calibration board can be transformed into a

square-shaped calibration board
−
l square,i = (HPHA)

−1−l quad,i. The included angle of the
square-shaped calibration board can be determined by the dot product of i-th and the j-th

line vectors where
−
l square,i =

[
l1,i l2,i l3,i

]T.

φ = cos−1

⎛
⎜⎜⎝ l1,i l1,j + l2,i l2,j√(

l1,i

)2
+
(

l2,i

)2·
√(

l1,j

)2
+
(

l2,j

)2

⎞
⎟⎟⎠ (9)

Therefore, we can define the ASSE as follows:

eASSE =
∣∣∣π

2
− φ

∣∣∣ (10)

Equation (10) can be simplified by the cosine function as:

eASSE =
∣∣cos

(
π
2
)− cos(φ)

∣∣ = |− cos(φ)|
=

l1,i l1,j+l2,i l2,j√
(l1,i)

2
+(l2,i)

2·
√
(l1,j)

2
+(l2,j)

2
(11)

where 0 ≤ φ ≤ π. We then determine the parameters that minimize the ASSE and the
calibration boards in the source image can be transformed into square shapes:

(−
HP,

−
HA

)
= argmin

HP,HA

(
2

∑
n=1

5

∑
k=1

eASSE(n, k)

)
(12)
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where eASSE(n, k) is the ASSE of the k-th angle of the n-th calibration board,
−
HP is the

estimated perspective transformation matrix, and
−
HA is the estimated affine transformation

matrix. There are two calibration boards in the source image and five intersection points in
the square (four vertices and one center of the square); thus, n is from 1 to 2 and k is from 1
to 5, respectively.

3.3.2. Length-Based SSE

A length-based SSE (LSSE) refers to the sideline length difference between the quadri-

lateral and square shapes. Let homogeneous coordinates
−
vquad,i represent the i-th vertex

of a detected quadrilateral-shaped calibration board, then the transformed homogeneous

coordinates by the matrix variable is
−
vsquare,i = (HPHA)

−1−vquad,i =
[

v1,i v2,i 1
]T. We

can calculate the length of one side using the transformed coordinates
−
vsquare,i as:

mi =
√(

v1,i − v1,j
)2

+
(
v2,i − v2,j

)2 (13)

where mi is the length of the i-th side of the transformed calibration board. The LSSE can
be defined as Equation (14), where the length of one side of the calibration board is m:

eLSSE =
4

∑
i=1

|m − mi|+
2

∑
j=1

∣∣∣√2m − dj

∣∣∣ (14)

where dj is the length of the j-th diagonal of the transformed calibration board. We then
find the parameters that minimize the LSSE, and the calibration boards in the source image
can be transformed into square shapes with:

(−
HP,

−
HA

)
= argmin

HP,HA

(
2

∑
n=1

eLSSE(n)

)
(15)

where eLSSE(n) is the ASSE of the n-th calibration board,
−
HP is the estimated perspective

transformation matrix, and
−
HA is the estimated affine transformation matrix.

3.4. Alignment Error

An alignment error (AME) is defined as the Euclidean distance between the same
square-shaped calibration boards in adjacent images. Because the quadrilateral-shaped
calibration board can be transformed into square-shaped calibration boards by minimizing
the SSE, we focus only on estimating the similarity transformation matrix HS consisting of
a scale parameter s, an image rotation parameter θ, and image translation parameters tx
and ty to align the square-shaped calibration boards in adjacent images.

HS =

⎡
⎣− s · cos(θ) s · sin(θ) tx

s · sin(θ) s · cos(θ) ty
0 0 1

⎤
⎦ (16)

Square-shaped calibration boards of a front image and a left image can be aligned
using Equation (17).

Hfront
S

~
v

front
square = Hleft

S
~
v

left
square (17)
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where Hfront
S is the similarity transformation matrix of a front image, and

~
v

front
square represents

the homogeneous coordinates of the vertex of the square-shaped calibration board of the
front image. Therefore, we can define the AME as follows:

eAME = ‖Hfront
S

−
v

front
square − Hleft

S
−
v

left
square‖+ Hleft

S
−
v

left
square − Hrear

S
−
v

rear
square‖

+‖Hrear
S

−
v

rear
square − H

right
S

−
v

right
square‖+ ‖H

right
S

−
v

right
square − Hfront

S
−
v

front
square‖

(18)

where
−
vsquare represents the homogeneous coordinates of the vertex of the transformed

calibration boards by the perspective and affine transformation matrices. We can estimate
the similarity transformation matrix by minimizing the AME.(

−
H

front

S ,
−
H

left

S ,
−
H

rear

S ,
−
H

right

S

)
= argmin

Hfront
S

Hleft
S

Hrear
S

H
right
S

(eAME) (19)

where
−
HS is the estimated similarity transformation matrix.

3.5. AVM Error

We can estimate the image transformation parameters for generating the AVM image
by minimizing the AVM error, which consists of an SSE and AME. Because there are two
types of SSEs, the ASSE and LSSE, the AVM error can be expressed as a combination of the
two types: the ASSE–AME and the LSSE–AME.

The problem with the ASSE–AME combination is that the units of the two measure-
ments are not consistent. The ASSE is in radians whereas the AME is in pixels. In contrast,
the units for the LSSE and AME are both in pixels. Therefore, we focus on using the
LSSE–AME combination. However, the LSSE–AME combination is not without limitations.
The LSSE–AME combination suffers from the local minimum problem because the range of
the parameters searched by the MLE changes according to the size of the calibration board.

To solve this problem, we find the appropriate initial parameters by minimizing the
ASSE. To minimize the ASSE, we utilize the Levenberg–Marquardt algorithm, which is
most widely used to solve the maximum likelihood problems of camera calibration. The

estimated matrices
−
HP and

−
HA, by minimizing the ASSE, are used as initial values to

minimize the LSSE–AME combination, as shown in Figure 8. Since the matrices
−
HP and

−
HA are already optimized, the local minimum problem caused by the size of the calibration
board can be solved. The LSSE–AME combination is also minimized by utilizing the
Levenberg–Marquardt algorithm.

Figure 8. The procedure for the AVM error minimization, where eAVM = eLSSE + eAME.
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4. Experiments

We performed several experiments to evaluate the proposed method. We used Kodak’s
PIXPRO SP360 cameras with a 235◦ field of view and a 2880 px× 2880 px resolution [35].
The cameras were installed on a Hyundai SONATA vehicle, as shown in Figure 9 [36]. The
installation heights of the front, rear, left, and right cameras are approximately 57, 84, 92,
and 92 cm, respectively. Each camera is tilted approximately 30◦. The overall length of
the vehicle is 480 cm, the overall width is 183 cm, and the overall height is 147.5 cm. The
dimensions of the calibration boards are 50 cm× 50 cm and we set the calibration board
dimensions in the AVM image to 100 px× 100 px.

    
(a) Front camera (b) Rear camera (c) Left camera (d) Right camera 

Figure 9. Four installed cameras for the field experiments.

The size of the calibration board must be experimentally determined based on the
size of the vehicle and the field of view of the cameras. More specifically, the calibration
board size must increase with the increase in the size of the vehicle or the range of the
camera field of view. However, the larger the calibration boards, the more inefficient it is
to carry and place them. When we used calibration boards with dimensions smaller than
50 cm× 50 cm, sometimes the calibration board detection algorithm failed. When we used
calibration boards with dimensions larger than 100 cm× 100 cm, it was difficult to place the
calibration boards in the overlapping ROI. Therefore, for the purpose of our experiment,
we set the dimensions of the calibration board as 50 cm× 50 cm.

4.1. Performance Evaluation Using a Real-Sized Vehicle

We placed four calibration boards around the vehicle to evaluate the performance of
the proposed method, as shown in Figure 10. Because the camera manufacturer provides
the lens distortion parameters and intrinsic parameters, we can easily correct the lens
distortion, as shown in Figure 11. In the lens distortion-corrected images, the shape
of the calibration boards is quadrilateral. The calibration board detection detects two
quadrilaterals per image, as shown in Figure 11c. The proposed method transforms the
source images such that the detected quadrilateral calibration boards become squares.
Figure 12 shows the generated AVM image using the proposed method. We can observe
that all the calibration boards are similar to squares and the adjacent images are well aligned.
Furthermore, even though there are no calibration boards in the nonoverlapping ROI, the
source image in the nonoverlapping ROI can also be transformed into a well-calibrated
AVM image.

 

Figure 10. The experimental environment with four randomly placed calibration boards.
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(a) Captured images 

 
(b) Lens distortion corrected images 

 
(c) Detected calibration boards 

Figure 11. Example images for the performance evaluation of the proposed method.

Table 1 shows the estimated image transformation parameters corresponding to the
AVM image in Figure 12a. Because the parameters a11, a12, p31, and p32 are normalized,
the affine and perspective distortion-corrected images are scaled and rotated, as shown
in Figure 13. For example, the front image in Figure 13a is rotated 0.2524π clockwise and
the average of the side lengths is 1.9278 px when the affine and perspective distortions are
corrected. Therefore, the product of s and γ is close to 100 px and the sum of θ and φ of the
front, left, rear, and right images are close to 0π, −0.5π, −π, and −1.5π, respectively, as
shown in Table 2.

Table 1. Estimated image transformation parameters.

Parameters Front Left Rear Right

s 51.8717 3.5862 8.7625 37.9317
θ (rad) −0.2611π 0.0857π −0.3056 −0.8748
tx (px) −7428.2071 2825.3564 −3613.53 −7673.6563
ty (px) −7496.9527 −2347.6187 −2979.6379 10,336.4311

a11 0.0843 0.5115 0.2502 0.1971
a12 −0.1002 −0.0410 0.0879 −0.1692
p31 −0.0009 −0.0007 −0.0003 −0.001
p32 0.0044 −0.0012 −0.0019 −0.0034

81



Sensors 2021, 21, 2265

  
(a) Generated AVM image (b) Estimated calibration boards 

Figure 12. The results of the proposed method.

  
(a) Front image 

where ߶ = ߛ and ߨ0.2524 =  ݔ 1.9278
(b) Rear image 

where ߶ = ߛ and ߨ0.6956− =  ݔ 11.4110

  
(c) Left image 

where ߶ = ߛ and ߨ0.6251− =  ݔ 27.8365
(d) Right image 

where ߶ = ߛ and ߨ0.5785− =  ݔ 2.6364

Figure 13. Affine and perspective corrected images, where φ is the rotation angle and γ is the scale
value by the normalized parameters.
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Table 2. The relationship between the normalized coefficients and estimated parameters.

Parameters Front Left Rear Right

s 51.8717 3.5862 8.7625 37.9317
γ (px) 1.9278 27.8365 11.4110 2.6364

s × γ (px) 99.9983 99.8273 99.9889 100.0031
θ (rad) −0.2611π 0.0857π −0.3056π −0.8748π
φ (rad) 0.2524π −0.6251π −0.6956π −0.5785π

θ + φ (rad) −0.0087π −0.5394π −1.0012π −1.4533π

For quantitative evaluation, we calculated the AVM errors, as shown in Table 3.
Because there are two boards in one image, the LSSE per calibration board is approximately
17.6571/2 = 8.8285 px. The LSSE is the sum of the errors of the four sides and two diagonal
lines; thus, the error for each sideline is approximately 8.8285/6 ≈ 1.4714 px. That is,
the length of one side of the calibration board is approximately 100 ± 1.4714 px in the
generated AVM image. The AME indicates the offset of the adjacent images when two
images are stitched. Because one calibration board has four vertexes, the offset of the
calibration board is approximately 10.1691/4 ≈ 2.5423 px. These values are significantly
small enough to be difficult for the human eye to recognize.

Table 3. AVM errors of the proposed method.

Calibration Board eAVM eLSSE eAME

front-left 25.1992 16.3466 8.8526
left-rear 37.231 25.1189 12.1121

rear-right 24.2864 14.6869 9.5994
right-front 24.5884 14.4762 10.1122

average 27.8262 17.6571 10.1691

4.2. Performance Evaluation Using an Electric Vehicle for Children

The orientation and location of the camera can change depending on the type and
size of a vehicle. Because the proposed method should be able to generate an AVM
image regardless of vehicle type, we experimented using an electric vehicle for children
to verify this aspect, as shown in Figure 14. The installation height of each camera is
approximately 40 cm and each camera is tilted approximately 30◦. The overall length of the
miniature vehicle is 126 cm, the overall width is 73 cm, and the overall height is 64.5 cm.
The dimensions of calibration boards are 20 cm× 20 cm and we set the calibration board
dimensions in the AVM image to 100 px× 100 px.

Figure 14. The experimental environment using an electric vehicle for children.
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Figure 15 shows a generated AVM image using the proposed method for an electric
vehicle for children. We can observe that the proposed method can generate a well-
calibrated AVM image even though the size of the vehicle is small.

 

Figure 15. The results of the proposed method using an electric vehicle for children.

Table 4 shows the calculated AVM errors corresponding to the AVM image in Figure 15.
The error for each sideline is approximately 39.5697/12 ≈ 3.2974 px and the offset of the
calibration board is approximately 6.6367/4 ≈ 1.6591 px. These resulting values are similar
to those of the experimental environment using a real-sized vehicle because the calibration
board dimensions in the AVM image are the same in both experiments. From the results of
the experiments using real-sized and miniature vehicles, it can be verified that the proposed
method can generate an AVM image regardless of the size of the vehicles.

Table 4. AVM errors of the proposed method using an electric vehicle for children.

Calibration Board eAVM eLSSE eAME

front-left 37.9732 31.5650 6.4082
left-rear 16.0779 8.3447 7.7332

rear-right 34.7484 25.7785 8.9699
right-front 96.0263 92.5907 3.4357

average 46.2065 39.5697 6.6367

4.3. Comparison Experiments with the Conventional Method

The proposed method can generate an AVM image using only four randomly placed
calibration boards. In contrast, the conventional methods require calibration boards with
known locations. Therefore, to compare the proposed method with the conventional
method, we aligned and measured the calibration board locations, as shown in Figure 16,
and provided the measured data as input to the conventional method.

Figure 17 shows the AVM images generated by the proposed method and the conven-
tional method. We can observe that the results of the two methods are very similar, even
though we did not input information regarding calibration board location to the proposed
method. To compare the two methods in more detail, we calculated the root mean square
error (RMSE), optical flow, and AVM errors for the two AVM images. The RMSE can be
expressed as follows:

eRMSE =

√√√√ 1
mn

m−1

∑
i=0

n−1

∑
j=0

[
Ic(i, j)− Ip(i, j)

]2 (20)
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where Ic(i, j) is the grayscale value of the AVM image from the conventional method at the
(i, j) point, Ip is the grayscale value of the AVM image from the proposed method, m is the
width of the AVM images, and n is the height of the AVM images. The calculated RMSE of
the two AVM images in Figure 17a,b is 0.0457 when the range of the grayscale is 0–1.

   
(a) Experimental environment (b) Location of calibration boards 

Figure 16. Aligned calibration boards in the conventional method.

   
(a) With the proposed method (b) With the conventional method (c) Difference of images between the two results 

Figure 17. Experimental results of the proposed method and the conventional method. The magenta and green regions
show where the grayscale intensities differ.

Since the RMSE can depend on the content of the source images, we additionally
compute optical flow to measure the displacement. We utilize a method of Farneback [37]
to compute optical flow. Figure 18 shows the optical flow between the AVM images of
the proposed method and the conventional method. The average of the optical flow is
7.1239 px where the resolution of the AVM image is 1170 px× 1000 px. The RMSE value
and the average of the optical flow indicate that the two AVM images are very similar.
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Figure 18. The optical flow between the AVM images of the proposed method and the conventional
method, where the blue arrows indicate magnitudes and orientations of the optical flow.

Table 5 shows the AVM errors of the proposed method and the conventional method.
We can observe that the results of the proposed method are analogous to those of the
conventional method. The AVM error in the conventional method is caused by the mea-
surement data error and the calibration board detection error. The AVM error in the
proposed method is caused only by the calibration board detection error, not the measure-
ment data error. Therefore, the AVM error in the conventional method is bound to be larger
than that of the proposed method.

Table 5. AVM errors in the proposed method and the conventional method.

Calibration Board
eAVM eLSSE eAME

Proposed Conventional Proposed Conventional Proposed Conventional

front-left 20.3643 44.3193 16.5563 26.0181 3.8080 18.3012
left-rear 24.4981 62.4852 20.4678 40.2469 4.0303 22.2383

rear-right 41.5034 57.8872 27.8327 36.4387 13.6708 21.4485
right-front 67.4672 64.4724 64.0037 46.3019 3.4635 18.1706

average 38.4583 57.291 32.2151 37.2514 6.2431 20.0396

If we used the AVM calibration facility, the measurement data error would be very
small, so the AVM error of the conventional method would have been less or similar to
those of the proposed method. However, since we experimented in the same environment
without the calibration facility, the AVM error of the conventional method is larger than
the proposed method.

These evaluations along with the comparison experiments verify that the proposed
method is able to generate an AVM image similar to that of the conventional method
without requiring the calibration board location.

5. Conclusions

We propose an AVM calibration method using four randomly placed calibration
boards and define a novel loss function to utilize the MLE for AVM calibration without the
need for information regarding the calibration board locations. The proposed method offers
more advantages than the conventional method. The most important advantage is that
the proposed method does not require the procedure of measuring the calibration board
locations. With this advantage, we can save time and costs that would otherwise be spent
on accurately measuring the calibration board locations over a large area. Additionally, as
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the size of the vehicle increases, the time and cost in using the conventional method also
increase, but this is not the case when using the proposed method.

The second advantage of the proposed method is the ability to use the MLE. The most
recent AVM calibration method using only two circle-shaped calibration boards cannot
utilize the MLE because the MLE requires multiple calibration boards. In contrast, the
AVM errors of the proposed method are evenly distributed in all images because we are
able to utilize the MLE. The human eye cannot detect the evenly distributed errors.

Flexibility regarding the vehicle size and board size is the third advantage offered by
the proposed method. We verify through various experiments that the proposed method
can generate AVM images for both real-sized vehicles with large-sized calibration boards
and electric vehicles for children with small-sized calibration boards.

Lastly, it is simpler to calibrate AVM systems in the proposed method because there is
no need for expert handling facilities for AVM calibration. These advantages were verified
through experiments with the vehicle in a parking lot. Based on these advantages, we
expect that AVM calibration will be possible in a small repair shop or even in parking lots,
resolving the inconvenience of having to visit a large repair shop with AVM facilities for
AVM calibration.
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Abstract: Brain tumor classification plays an important role in clinical diagnosis and effective
treatment. In this work, we propose a method for brain tumor classification using an ensemble of
deep features and machine learning classifiers. In our proposed framework, we adopt the concept
of transfer learning and uses several pre-trained deep convolutional neural networks to extract
deep features from brain magnetic resonance (MR) images. The extracted deep features are then
evaluated by several machine learning classifiers. The top three deep features which perform well on
several machine learning classifiers are selected and concatenated as an ensemble of deep features
which is then fed into several machine learning classifiers to predict the final output. To evaluate
the different kinds of pre-trained models as a deep feature extractor, machine learning classifiers,
and the effectiveness of an ensemble of deep feature for brain tumor classification, we use three
different brain magnetic resonance imaging (MRI) datasets that are openly accessible from the web.
Experimental results demonstrate that an ensemble of deep features can help improving performance
significantly, and in most cases, support vector machine (SVM) with radial basis function (RBF)
kernel outperforms other machine learning classifiers, especially for large datasets.

Keywords: deep learning; ensemble learning; brain tumor classification; machine learning; trans-
fer learning

1. Introduction

In the human body, the brain is an enormous and complex organ that controls the
whole nervous system, and it contains around 100-billion nerve cells [1]. This essential
organ is originated in the center of the nervous system. Therefore, any kind of abnormality
that exists in the brain may put human health in danger. Among such abnormalities, brain
tumors are the most severe ones. Brain tumors are uncontrolled and unnatural growth
of cells in the brain that can be classified into two groups such as primary tumors and
secondary tumors. The primary tumors present in the brain tissue, while the secondary
tumors expand from other parts of the human body to the brain tissue through the blood-
stream [2]. Among the primary tumors, glioma and meningioma are two lethal types of
brain tumors, and they may lead a patient to death if not diagnosed at an early stage [3]. In
fact, the most common brain tumor in humans is glioma [4].

According to the World Health Organization (WHO), brain tumors can be clas-
sified into four grades [1]. The grade 1 and grade 2 tumors describe lower-level tu-
mors (e.g., meningioma), while grade 3 and grade 4 tumors consist of more severe ones
(e.g., glioma). In clinical practice, the incidence rates of meningioma, pituitary, and glioma
tumors are approximately 15%, 15%, and 45%, respectively.
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There are different ways to treat brain tumors depends on the tumor location, size,
and type. Presently, the most common treatment for brain tumors is surgery as it has
no side effects on the brain [5]. Different types of medical imaging technologies such as
computed tomography (CT), positron emission tomography (PET), and magnetic resonance
imaging (MRI) are available that are used to observe the internal parts of the human body
conditions. Among all these imaging modalities, MRI is considered most preferable as it is
the only non-invasive and non-ionizing modality that offers valuable information in 2D
and 3D formats about brain tumor type, size, shape, and position [6]. However, manually
reviewing these images is time-consuming, hectic, and even prone to error due to the influx
of patients [7]. To address this problem, the development of an automatic computer-aided
diagnosis (CAD) system is required to alleviate the workload of the classification and
diagnosis of brain MRI and act as a tool for helping radiologists and doctors.

Several efforts have been made to develop a highly accurate and robust solution for
the automatic classification of brain tumors. However, due to high inter and intra shape,
texture, and contrast variations, it remains a challenging problem. The traditional machine
learning (ML) techniques rely on handcrafted features, which restrains the robustness of the
solution. Whereas the deep learning-based techniques automatically extract meaningful
features which offer significantly better performance. However, deep learning-based
techniques require a large amount of annotated data for training, and acquiring such
data is a challenging task. To overcome these issues, in this study, we proposed a hybrid
solution that exploits (1) various pre-trained deep convolutional neural networks (CNNs)
as feature extractors to extract powerful and discriminative deep features from brain
magnetic resonance (MR) images, and (2) various ML classifiers to identify the normal and
abnormal brain MR images. Also, to investigate the benefits of combining features from
different pre-trained CNN models, we designed the novel feature ensemble method for
the MRI-based brain tumor classification task. We proposed the novel feature evaluation
and selection mechanism where the deep features from 13 different pre-trained CNNs
are evaluated using 9 different ML classifiers and selected based on our proposed feature
selection criteria. In our proposed framework, we concatenated the selected top three deep
features from three different CNNs to form a synthetic feature. The concatenation process
integrates the information from different CNNs to create a more discriminative feature
representation than using the feature extracted from a single CNN model since different
CNN architectures can capture diverse information in brain MR images. An ensemble of
deep features is then fed into several ML classifiers to predict the final output, whereas
most of the previous works have employed traditional feature extraction techniques [8]. In
our experiment, we provided an extensive evaluation using 13 different pre-trained deep
convolutional neural networks and 9 different ML classifiers on three different datasets:
(1) BT-small-2c, the small dataset with 2 classes (normal/tumor), (2) BT-large-2c, the large
dataset with 2 classes (normal/tumor), and (3) the large dataset with 4 classes (normal,
glioma tumor, meningioma tumor, and pituitary tumor) for brain tumor classification. Our
experiment results demonstrate that the ensemble of deep features can help improving
performance significantly. In summary, our contributions are listed as follows:

• We designed and implemented a fully automatic hybrid scheme for brain tumor classi-
fication, which uses both (1) the pre-trained CNN models to extract the deep features
from brain MR images and (2) ML classifiers to classify brain tumor type effectively.

• We proposed a novel method which consists of three steps: (1) extract deep features
using pre-trained CNN models for meaningful information extraction and better
generalization, (2) select the top three performing features using fined-tuned several
ML models for our task, and (2) combine them to build the ensemble model to achieve
state-of-the-art performance for brain tumor classification in brain MR images.

• We conducted extensive experiments on 13 different pre-trained CNN models and
9 different ML classifiers to compare the effectiveness of each pre-trained CNN model
and each ML classifier on three different brain MRI datasets: (1) BT-small-2c, the
small dataset with 2 classes (normal/tumor), (2) BT-large-2c, the large dataset with
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2 classes (normal/tumor), and (3) the large dataset with 4 classes (normal, glioma
tumor, meningioma tumor, and pituitary tumor) for brain tumor classification.

The layout of this study is organized as follows: The related work is given in Section 2.
The proposed method is presented in Section 3. The experimental settings and results are
shown in Section 4. The conclusion section is described in Section 5.

2. Related Work

Numerous techniques have been proposed for automatic brain MRI classification
based on traditional ML and deep learning methods as shown in Table 1.

The traditional ML methods are comprised of several steps: pre-processing, feature ex-
traction, feature reduction, and classification. In traditional ML methods, feature extraction
is a core step as the classification accuracy relies on extracted features. There are two main
types of feature extraction. The first type of feature extraction is low-level (global) features,
for instance, texture features and intensity, first-order statistics (e.g., mean, standard devia-
tion, and skewness), and second-order statistics such as gray-level co-occurrence matrix
(GLCM), wavelet transform (WT), Gabor feature, and shape. For instance, Selvaraj et al. [9]
employed first-order and second-order statistics using least square support vector machine
(SVM) and develop a binary classifier to classify the normal and abnormal brain MR im-
ages. John et al. [10] used GLCM and discrete wavelet transformation-based methods
for tumor identification and classification. The low-level features represent the image
efficiently; however, the low-level features and their representation capacity are limited
since most brain tumors have similar appearances such as texture, boundary, shape, and
size. Ullah et al. [8] extracted the approximation and detail coefficient of level-3 decompo-
sition using DWT, reduced the coefficient by employing color moments (CM), and finally
employed a feed-forward artificial neural network to identify the normal and abnormal
brain MR images.

The second type of feature extraction is the high-level (local) features, such as fisher
vector (FV), scale-invariant feature transformation (SIFT), and bag-of-words (BoW). Differ-
ent researchers have employed BoW for medical image retrieval and classification. Such
as the classification of breast tissue density in mammograms [11], X-ray images retrieval
and classification on pathology and organ levels [12], and content-based retrieval of brain
tumor [13]. Cheng et al. [14] employed FV to retrieve the brain tumor. The statistical fea-
tures extracted from SIFT, FV, and BoW are high-level features formulated on a local scale
that does not consider spatial information. Hence, it is noticeable that in the traditional ML
method, there are two main problems in the feature extraction stage. First, it only focuses
on either high-level or low-level features. Second, the traditional ML method depends on
handcrafted features, which need strong prior information such as the location or position
of the tumor in an image, and there are high chances of human errors. Therefore, it is
essential to develop a method to combine both high-level and low-level features without
using handcrafted features.

Most of the existing works in medical MR imaging refers to automatic segmentation of
tumor region. Recently, Numerous researchers have proposed different techniques to detect
and segment the tumor region in MR images [15–17]. Once the tumor in MRI is segmented,
these tumors need to be classified into different grades. In previous research studies, binary
classifiers have been employed to identify the benign and malignant classes [8,18,19]. For
instance, Ullah et al. [8] proposed a hybrid scheme for the classification of brain MR images
into normal and abnormal using histogram equalization, Discrete wavelet transform, and
feed-forward artificial neural network, respectively. Kharrat et al. [18] categorize the brain
tumor into normal and abnormal using a genetic algorithm and support vector machine.
Besides, Papageorgiou et al. [19] categorized the high-grade and low-grade gliomas based
on fuzzy cognitive maps and attained 93.22% and 90.26% accuracy for high-grade and
low-grade brain tumors, respectively.
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Table 1. Work Related to Brain Tumor Classification.

Author Type of Solution
Classification
Method

Objective Dataset
Feature Extraction
Method

Accuracy

Rajan and Sundar,
2019

Classical Machine
Learning-based

Solutions

Support vector
machine (SVM)

Tumor detection
and segmentation

41 magnetic
resonance (MR)
images

Adaptive
Gray-Level
Co-Occurrence
Matrix (AGLCM)

98%

Kharrat et al., 2010

Hybrid
method-Genetic
algorithm with
SVM

Classification of
brain tumor into
normal, malignant,
and benign tumor

83 MR images Wavelet-based
features 98.14%

Shree and Kumar,
2018

Probabilistic neural
network (PNN)

Classification of
brain MRI into
normal and
abnormal

650 MR images
Gray level
co-occurrence
matrix

95%

Arunachalam and
Royappan, 2017

Feed-forward back
propagation neural
network

Classification of
brain MRI into
normal and
abnormal

230 MR images
Gabor, GLCM, and
discrete wavelet
transform (DWT)

99.8%

Ullah et al., 2020 Feed-forward
neural network

Classification of
brain MRI
intonormal and
abnormal

71 MR images DWT 95.8%

B. Ural, 2018 PNN Brain tumor
detection 25 MR images k-mean with fuzzy

c-mean (KMFCM) 90%

Preethi and
Ashwarya, 2019

Deep neural
network (DNN)

Classification of
tumor and
non-tumor image

20 MR images GLCM + Wavelet
GLCM 99.3%

Francisco et al., 2021

Advanced Deep
Learning-based

Solutions

Multi-pathway
convolutional
neural network
(CNN)

Brain tumor
classification 3064 MR images CNN 97.3%

Deepak and Ameer,
2019

Deep transfer
learning

Classification of
glioma,
meningioma, and
pituitary tumors

3064 MR images GoogleNet 98%

Ahmet and
Mohammad, 2020 CNN models

Brain tumor
detection and
classification

253 MR images CNN 97.2%

Das et al., 2019 CNN Brain tumor
classification 3064 MR images CNN 94.39%

Saed et al., 2017 CNN

Classification of
brain MRI into
normal and
abnormal

587 MR images CNN 91.16%

Saxena et al., 2019 CNN networks with
transfer learning

Binary classification
of brain tumor into
normal and
abnormal

253 MR images CNN 95%

Paul et al., 2017 Fully connected and
CNN

Brain tumor
classification 3064 MR images CNN 91.43%

Hemanth et al., 2019 CNN

MR brain image
classification into
normal and
abnormal

220 MR images CNN 94.5%

Shree and Kumar [20] divided the brain MRI into two classes: normal and abnormal.
They used GLCM for feature extraction, while a probabilistic neural network (PNN)
classifier has been employed to classify the brain MR image into normal and abnormal
and obtained 95% accuracy. Arunachalam and Savarimuthu [21] proposed a model to
categorize the normal and abnormal brain tumor in brain MR images. Their proposed
model comprised enhancement, transformation, feature extraction, and classification. First,
they have enhanced the brain MR image using shift-invariant shearlet transform (SIST).
Then, they extracted the features using Gabor, grey level co-occurrence matrix (GLCM),
and discrete wavelet transform (DWT). Finally, these extracted features were then fed into
feed-forward backpropagation neural network and obtained a high accuracy rate. Rajan
and Sundar [22] proposed a hybrid energy-efficient method for automatic tumor detection
and segmentation. Their proposed method is comprised of seven long phases and reported
98% accuracy. The main drawback of their proposed model is high computation time due
to the use of numerous techniques.

Since the last decade, deep learning methods have been widely used for brain MRI
classification [23,24]. The deep learning method does not need handcrafted (manually)
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extracted features as it embedded the feature extraction and classification stage in self-
learning. The deep learning method requires a dataset where sometimes a pre-processing
operation needs to be done, and then salient features are determined in a self-learning
manner [25]. In MR imaging classification, a key challenge is to reduce the semantic gap
between the high-level visual information perceived by the human evaluator and the low-
level visual information captured by the MR imaging machine. To reduce the semantic gap,
the convolutional neural networks (CNNs), one of the famous deep learning techniques
for image data, can be used as a feature extractor to capture the relevant features for the
classification task. Feature maps in the initial layers and higher layers of CNNs models
extract low-level features and high-level content (domain) specific features, respectively.
Feature maps in the earlier layer construct simple structural information, for instance,
shape, textures, and edges, whereas higher layers combine these low-level features to
construct (encode) efficient representation, which integrates global and local information.

Recently, different researchers have used CNNs for brain MRI classification and vali-
dated their proposed methodology on brain tumor classification datasets [26–28]. Deepak
and Ameer [29] used a pre-trained GoogLeNet to extract features from brain MR images
with deep CNN to classify three types of brain tumor and obtained 98% accuracy. Ah-
met and Muhammad [30] used different CNN models such as GoogLeNet, Inception V3,
DenseNet-201, AlexNet, and ResNet-50 to classify the brain MR images and obtained
reasonable accuracies. They modified pre-trained ResNet-50 CNN by removing its last 5
layers and added new 8 layers, and obtained 97.2% accuracy with this model, which is
the highest accuracy among all pre-trained models. Khwaldeh et al. [31] proposed a CNN
model to classify the normality and abnormality of brain MR images as well as high-grade
and low-grade glioma tumors. They have modified the AlexNet CNN model and used it
as their network architecture, and they obtained 91% accuracy. Despite the valuable works
being done in this area, developing a robust and practical method still requires more effort
to classify brain MR images. Saxena et al. [32] used Inception V3, ResNet-50, and VGG-16
models with transfer learning methods to classify brain tumor data. The ResNet-50 model
obtained the highest accuracy rate with 95%. In studies [33,34] CNN architectures have
been introduced to classify brain tumors. In these architectures, the convolution neural
network extracts the features from brain MRI using convolution and pooling operations.
The main purpose of these proposed models is to find the best deep learning model that
accurately classifies the brain MR images. Francisco et al. [35] presented a multi-pathway
CNN architecture for automatic brain tumor segmentation such as glioma, meningioma,
and pituitary tumor. They have evaluated their proposed model using a publicly available
T1-weighted contrast-enhanced MRI dataset and obtained 97.3% accuracy. However, their
training procedure is quite expensive. Raja et al., [36] proposed a hybrid deep autoencoder
(DAE) for brain tumor classification using the Bayesian fuzzy clustering (BFC) approach.
Initially, they have used a non-local mean filter to remove the noise from the image. Then
the BFC approach is employed for brain tumor segmentation. Furthermore, some robust
features were extracted using scattering transform (ST), information-theoretic measures,
and wavelet packet Tsallis entropy (WPTE). Eventually, a hybrid scheme of DAE is em-
ployed for brain tumor classification and achieved high accuracy. The main drawback of
this approach is, it requires high computation time due to the complex proposed model.

In summary, as observed from the above research studies, the acquired accuracies
using deep learning techniques for brain MRI classification are significantly high as com-
pared to traditional ML techniques. However, the deep learning models require a massive
amount of data for training in order to perform better than traditional ML techniques.

It is clearly seen from recently published studies that deep learning techniques have
become one of the mainstream of expert and intelligent systems and medical image analysis.
Furthermore, the techniques mentioned earlier have certain limitations which should be
considered while working with brain tumor classification and segmentation. The major
drawback of the previously proposed systems is that they only consider binary classifica-
tion (normal and abnormal) MR image dataset and ignore the multi-class dataset [37]. In

93



Sensors 2021, 21, 2222

the pre-screening stage of a patient, binary class classification is required for physicians and
radiologists, where the physicians take further action based on binary class classification.
Preethi and Aishwarya [38] proposed a model to classify the brain tumor based on multiple
stages. They combined the wavelet-based gray-level co-occurrence matrix and GLCM to
produce the feature matrix. The extracted features were further reduced using the opposi-
tional flower pollination algorithm (OFPA). Finally, the deep neural network is employed
to classify the MR brain image based on the selected features and obtained 92% accuracy.
Ural [39] initially enhanced the brain MRI using different image processing techniques.
Also, different segmentation process has been mixed for boosting the performance of the
solution. Further, the PNN method is employed to detect and localize the tumor area in the
brain. The computational time of their proposed method is quite low and also the acquired
accuracy rate is quite reasonable.

3. Proposed Methods

In this section, the overall architecture of our proposed method is first described. After
that, we describe the details of four key components in the following subsections.

The architecture of our proposed method for brain tumor classification is illustrated
in Figure 1. First, input MR images are pre-processed (e.g., brain cropping, resize, and
augmentation) before feeding into the model (Section 3.1). Second, the pre-processed
images are used as the input of pre-trained CNN models as feature extractors (Section 3.2).
The extracted features from pre-trained CNN models are evaluated by several ML classifiers.
(Section 3.3). The top three deep features are selected based on evaluation results from
the classifiers (Section 3.4). The top three deep features are concatenated in our ensemble
module, and the concatenated deep features are further used as an input to ML classifiers
to predict final output (Section 3.5).

Figure 1. Architecture of our proposed model using feature ensemble based on deep feature evalua-
tion and selection.

3.1. Image Pre-Processing

Almost every image in our brain MRI datasets contains undesired spaces and areas,
leading to poor classification performance. Hence, it is necessary to crop the images to
remove unwanted areas and use only useful information from the image. We use the
cropping method in [40] which uses extreme point calculation. The step to crop the MR
images using extreme point calculation is shown in Figure 2. First, we load the original MR
images for pre-processing. After that, we apply thresholding to the MR images to convert
them into binary images. Also, we perform the dilation and erosions operations to remove
the noise of images. After that, we selected the largest contour of the threshold images
and calculated the four extreme points (extreme top, extreme bottom, extreme right, and
extreme left) of the images. Lastly, we crop the image using the information of contour
and extreme points. The cropped tumor images are resized by bicubic interpolation. The
specific reason to choose the bicubic interpolation is that it can create a smoother curve
than other interpolation methods such as bilinear interpolation and is a better choice for
MR images since there is a large amount of noise along the edges.
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Figure 2. Step to crop the magnetic resonance (MR) images.

Also, we used image augmentation since the size of our MRI dataset is not very large.
Image augmentation is the technique that creates an artificial dataset by modifying the
original dataset. It is known as the process of creating multiple copies of the original image
with different scales, orientation, location, brightness, and so on. It is reported that the
classification accuracy of the model can be improved by augmenting the existing data
rather than collecting new data.

In our image augmentation step, we used 2 augmentation strategies (rotation and
horizontal flipping) to generate new training sets. The rotation operation used for data
augmentation is done by randomly rotating the input by 90 degrees zero or more times.
Also, we applied horizontal flipping to each of the rotated images.

Since the MR images in our dataset are of different width, height, and sizes, it is
recommended to resize them to equal width and height to get optimum results. In this
work, we resize the MR images to the size of either 224 × 224 (or 299 × 299) pixels since
input image dimensions of pre-trained CNN models are 224 × 224 pixels except for the
Inception V3, which requires the input images with size 299 × 299.

3.2. Deep Feature Extraction Using Pre-Trained CNN Models
3.2.1. Convolutional Neural Network

CNN is a class of deep neural networks that uses the convolutional layers for filtering
inputs for useful information. The convolutional layers of CNN apply the convolutional
filters to the input for computing the output of neurons that are connected to local regions
in the input. It helps in extracting the spatial and temporal features in an image. A weight-
sharing method is used in the convolutional layers of CNN to reduce the total number of
parameters [41,42].

CNN is generally comprised of three building blocks: (1) a convolutional layer to
learn the spatial and temporal features, (2) a subsampling (max-pooling) layer to reduce or
downsample the dimensionality of an input image, and (3) a fully connected (FC) layer
for classifying the input image into various classes. The architecture of CNN is shown
in Figure 3.

Figure 3. Architecture of Convolutional Neural Networks.

3.2.2. Transfer Learning

Generally, CNN has better performance in a larger dataset than a smaller one. Transfer
learning can be used when it is not feasible to create a large training dataset. The concept
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of transfer learning can be depicted in Figure 4, where the model pre-trained on large
benchmark datasets (e.g., ImageNet [43]) can be used as a feature extractor for the different
task with a relatively smaller dataset such as an MRI dataset. In recent years, transfer
learning technique has been successfully applied in various domains, such as medical
image classification and segmentation, and X-ray baggage security screening [44–47]. This
reduces the long training time that is normally required for training deep learning models
from scratch and also removes the requirement of having a large dataset for the training
model [48,49].

Figure 4. Concept of transfer learning.

3.2.3. Deep Feature Extraction

In this study, we use a CNN-based model as a deep learning-based feature extractor
since it can capture the important features without any human supervision. Also, we use a
transfer learning-based approach to build our feature extractor since our MRI dataset is
not very large and training and optimizing deep CNN such as DenseNet-121 from scratch
is often not feasible. Hence, we use the fixed weights of each CNN model pre-trained on a
large ImageNet dataset to extract the deep features of brain MR images.

The pre-trained CNN models used in our study are ResNet [50], DenseNet [51], VGG [52],
AlexNet [53], Inception V3 [54], ResNeXt [55], ShuffleNet V2 [56], MobileNet V2 [57], and
MnasNet [58]. The extracted deep features are then fed into the ML classifiers, including
neural networks with a FC layer as a traditional deep learning approach using CNN as shown
in Figure 3 to predict the output.

3.3. Machine Learning Classifiers for Brain Tumor Classification

The extracted deep features from pre-trained CNN models are used as an input of
several ML classifiers, including neural networks with an FC layer, Gaussian Naïve Bayes
(Gaussian NB), Adaptive Boosting (AdaBoost), K-Nearest Neighbors (k-NN), Random
forest (RF), SVM with three different kernels: linear, sigmoid, and radial basis function
(RBF), Extreme Learning Machine (ELM). We implemented these ML classifiers using the
scikit-learn ML library [59]. These ML classifiers and their hyper-parameter settings used
in our experiments for brain tumor classification are discussed in the following subsections.

3.3.1. Fully Connected Layer

In neural networks with an FC layer, which is the traditional deep learning approach,
the loss function is defined to calculate the loss, which is a prediction error of the neural
network. The loss is used to calculate the gradients to update the weights of the neural
network as a training step. In our training step of the FC classifier, we use the cross-entropy
loss function, which is the most commonly used loss function for CNN and other neural
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networks. It calculates the loss between the soft target estimated by the softmax function
and the ground-truth label to learn our model parameters as follows:

L(y, z) =
M

∑
i=0

−yilog

(
zi

∑j exp(zi)

)
(1)

where M is the total number of class, for instance, M is set to 2 when the classifier is trained
on the two MRI datasets, BT-small-2c and BT-large-2c, which contain two classes (normal
and tumor) of MR images, and M is set to 4 when the classifier is trained on the MRI dataset,
BT-large-4c, which contains four classes (normal, glioma tumor, meningioma tumor, and
pituitary tumor) of MR images (See Section 4.1 for the details of these datasets), y is a
one-hot encoded vector representing the ground-truth label of the training set as 1 and all
other elements as 0, and zi is the logit which is the output of the last layer for the i-th class
of the model.

In this work, we update the weight of the layers via Adaptive Moment Estimation
(Adam), the optimizer that calculates the adaptive learning rates of every parameter. The
learning rate is set to 0.001. We run each of the methods for 100 epochs. We collect the
highest average accuracy for our test dataset for each run.

3.3.2. Gaussian Naïve Bayes

Naïve Bayes classifier is the ML classifier with the assumption of conditional indepen-
dence between the attributes given the class. In this work, we use Gaussian NB classifier
as one of our ML classifiers for brain tumor classification. In Gaussian NB classifier, the
conditional probability P(y|X) is calculated as a product of the individual conditional
probabilities using the naïve independence assumption as follows:

P(y|X) =
P(y)P(X|y)

P(X)
=

P(y)∏n
i=1 P(xi|y)

P(X)
(2)

where X is given data instance (extracted deep feature from brain MR image) which is
represented by its feature vector (x1, ..., xn), y is a class target (type of brain tumor) with
two classes (normal and tumor) for two MRI datasets, BT-small-2c and BT-large-2c, or four
classes (normal, glioma tumor, meningioma tumor, and pituitary tumor) for BT-large-4c
dataset. Since P(X) is constant, the given data instance can be classified as follows:

ŷ = arg max
y

P(y)
n

∏
i=1

P(xi|y) (3)

where (xi|y) is calculated assuming that the likelihood of features to be Gaussian as follows:

P(xi|y) = 1√
2πσ2

y

exp(
(xi − μy)2

2σ2
y

) (4)

where the parameters μy and σy are estimated using maximum likelihood.
In this work, the smoothing variable representing the portion of the largest variance

of all features that are added to variances for calculation stability is set to 10−9, the default
value of the scikit-learn ML library.

3.3.3. AdaBoost

AdaBoost, proposed by Freund and Schapire [60], is an ensemble learning algorithm
that combines multiple classifiers to improve performance. AdaBoost classifier builds a
well-performing strong classifier by combining multiple weak classifiers using the iterative
ensemble method. The underlying idea of Adaboost is to set the weights of classifiers and
train the data sample in each boosting iteration to accurately predict a class target (a type
of brain tumor) of a given data instance (extracted deep feature from brain MR image) with
two classes (normal and tumor) for two MRI datasets, BT-small-2c and BT-large-2c, or four
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classes (normal, glioma tumor, meningioma tumor, and pituitary tumor) for BT-large-4c
dataset. Any ML classifier that accepts the weights on the training set can be used as a
base classifier.

In this work, we adopt the decision tree classifier as our base classifier since it is a
commonly used base classifier for AdaBoost. Also, the number of the estimator is set to 150.

3.3.4. K-Nearest Neighbors

k-NN is one of the simplest classification techniques. It performs predictions directly
from the training set that is stored in the memory. For instance, to classify a new data
instance (a deep feature from brain MR image), k-NN chooses the set of k objects from
the training instances that are closest to the new data instance by calculating the distance
and assigns the label with two classes (normal or tumor) or four classes (normal, glioma,
meningioma, and pituitary tumor) and does the selection based on the majority vote of its
k neighbors to the new data instance.

Manhattan distance and Euclidean distance are the most commonly used to measure
the closeness of the new data instance with the training data instances. In this work, we
used the Euclidean distance measure for the k-NN algorithm. Euclidean distance d between
data point x and data point y are calculated as follows:

d(x, y) =
√
(∑N

i=1(xi − yi)2) (5)

The brief summary of k-NN algorithm is illustrated below:

• First select a suitable distance metric.
• Store all the training data set P in pairs in the training phase as follows:

P = (yi, ci), i = 1, ..., n (6)

where in the training dataset, yi is a training pattern, n is the amount of training
patterns and ci is its corresponding class.

• In the testing phase, compute the distances between the new features vector and the
stored (training data) features, and classify the new class example by a majority vote
of its k neighbors.

The correct classification given in the test phase is used to evaluate the accuracy of the
algorithm. If the result is not satisfactory, the k value can be adjusted until a reasonable
level of accuracy is obtained. It is noticeable here that we set the number of neighbors from
1 to 4 and selected the one with the highest accuracy.

3.3.5. Random Forest

RF, proposed by Breiman [61], is an ensemble learning algorithm that builds multiple
decision trees using the bagging method to classify new data instance (a deep feature of
brain MR image) to a class target (a type of brain tumor) with two classes (normal and
tumor) for two MRI datasets, BT-small-2c and BT-large-2c, or four classes (normal, glioma
tumor, meningioma tumor, and pituitary tumor) for BT-large-4c dataset. RF selects random
n attributes or features to find the optimal split point using the Gini index as a cost function
while creating the decision trees. This random selection of the attributes or features can
reduce the correlation among the trees and have lower ensemble error rates. The new
observation is fed into all classification trees of the RF for predicting a class target (a type
of brain tumor) of the new incoming data instance. RF counts the numbers of predictions
for each class and selects the class with the largest number of votes as the class label for the
new data instance.

In this work, the number of features to consider when looking for the best split is set
to the square root of the total number of features. Also, we set the number of trees from 1
to 150 and selected the one with the highest accuracy.

98



Sensors 2021, 21, 2222

3.3.6. Support Vector Machine

SVM, proposed by Vapnik [62], is one of the most powerful classification algorithms.
SVM uses the kernel function, K(xn, xi), to transform the original data space into an another
space with a higher dimension. The hyperplane function for separating the data can be
defined as follows:

f (xi) =
N

∑
n=1

αnynK(xn, xi) + b (7)

where xn is support vector data (deep features from brain MR image), αn is Lagrange
multiplier, and yn represent a target class of these three datasets employed in this paper,
such that the two datasets are binary (normal and abnormal) class datasets, while the third
dataset has four different classes (normal, glioma, meningioma, and pituitary tumor) with
n = 1, 2, 3, ..., N.

In this work, we used the most commonly used kernel functions at the SVM algorithm:
(1) linear kernel, (2) sigmoid kernel, and (3) RBF kernel. Table 2 shows the details of three ker-
nels. Also, SVM has two key hyper-parameters, C and Gamma. C is the hyper-parameter
for the soft margin cost function that controls the influence of each support vector. Gamma
is the hyper-parameter that decides how much curvature we want in a decision bound-
ary. We set the gamma and C values to [0.00001, 0.0001, 0.001, 0.01] and [0.1, 1, 10, 100,
1000, 10000], respectively, and selected the combination of gamma and C values with the
highest accuracy.

Table 2. Kernel types and their required parameters.

Kernel Equation Parameters

Linear K(xn, xi) = (xn, xi) -
Sigmoid K(xn, xi) = tanh(γ(xn, xi) + C) γ, C

RBF K(xn, xi) = exp(−γ‖xn − xi‖2 + C) γ, C

3.3.7. Extreme Learning Machine (ELM)

Extreme Learning Machine (ELM) is a simple learning algorithm for single-hidden layer
feed-forward neural networks (SLFNs). ELM was initially proposed by Huang et al. [63] to
overcome the limitations of traditional SLFNs learning algorithms, such as poor generalization
effectiveness, irrelevant parameter tuning, and slow learning speed. ELM has shown a con-
siderable ability for regression and classification tasks with good generalization performance.

In ELM, the output of a SLFN with Ñ hidden nodes given N distinct training samples,
can be represented as follows:

oj =
Ñ

∑
i=1

βi fi(xj) =
Ñ

∑
i=1

βi f (xj; ai, bi), j = 1, ..., N (8)

where oj is the output vector of the SLFN, which represents the probability of the input
sample xi (deep features from brain MR image) belonging to a class target (type of brain
tumor) with two classes (normal and tumor) for two MRI datasets, BT-small-2c and BT-
large-2c, or four classes (normal, glioma tumor, meningioma tumor, and pituitary tumor)
for BT-large-4c dataset, ai and bi are learning parameters generated randomly of the j-th
hidden node, respectively, βi is the link connecting the j-th hidden node and the output
nodes, and f (xj; ai, bi) is the activation function of ELM.

The ELM learning algorithm can be explained in 3 steps. First, the parameters (weights
and biases) of all neurons are randomly initialized. Second, the hidden layer output matrix
of the neural network H is calculated. Third, the output weight, β is calculated as follows:

β = H′T (9)
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where H′ is the Moore-Penrose generalized inverse of matrix H (the hidden layer output
matrix), which can be obtained by minimum-norm least-squares solution, and T is the
target matrix corresponding to H.

In this work, the number of the hidden layer is set to [5000, 6000, 7000, 8000, 9000,
10,000], and select the one with the highest accuracy.

3.3.8. Discussion

Several efforts have been made to develop a highly accurate and robust solution
for MRI-based brain tumor classification using various ML classifiers: neural network
classifier [8,21,64], Naïve Bayes classifier [65], AdaBoost classifier [66], k-NN classifier [64],
RF classifier [64,67], SVM classifier [18,22], and ELM classifier [68]. However, there have
been no studies done on evaluating the effectiveness of ML classifiers for the MRI-based
brain tumor classification task. Hence, in our study, we use 9 well-known different ML
classifiers to examine which ML classifier performs well for the MRI-based brain tumor
classification task.

Since the performance of ML classifiers are highly dependent on input feature map,
designing a method to produce a discriminative and informative feature from brain MR
images plays a key role to successfully build the model for MRI-based brain tumor classifi-
cation. In recent years, several studies proposed deep-learning-based feature extraction
methods for MRI-based brain tumor classification using pre-trained deep CNN models:
ResNet-50 [69,70], ResNet-101 [71], DenseNet-121 [70,72], VGG-16 [69,70], VGG-19 [70,73],
AlexNet [74], Inception V1 (GoogLeNet) [29], Inception V3 [69,75], and MobileNet V2 [76].
However, no study has been carried out to evaluate the effectiveness of several pre-trained
deep CNN models as a feature extractor for MRI-based brain tumor classification task.
Hence, we use 13 different pre-trained deep CNN models to examine which pre-trained
CNN models are useful as a feature extractor for MRI-based brain tumor classification task.

3.4. Deep Feature Evaluation and Selection

We evaluate each deep feature extracted from 13 different pre-trained CNNs using 9
different ML classifiers (FC, Gaussian NB, AdaBoost, k-NN, RF, SVM-linear, SVM-sigmoid,
SVM-RBF, and ELM) described in Section 3.3 and choose the top three deep features based
on the average accuracy of 9 different ML classifiers for each of our 3 different MRI datasets.
In case the accuracy of two or more deep features is the same, we choose the one with
the lowest standard deviation. Also, if there are more than 2 deep features extracted from
two homogeneous pre-trained models (e.g., DenseNet-121 and DenseNet-169) among the
top three features, we exclude the one with lower accuracy and choose the next best deep
feature. The reason for doing this is that the deep features extracted from two homogeneous
models share similar feature spaces. Hence, the ensemble of these features has redundant
feature space and a lack of diversity. The top three deep features are fed into our ensemble
module described in the following sub-section.

3.5. Ensemble of Deep Features

Ensemble learning aims at improving the performance and prevents the risk of using
a single feature extracted from one model with a poor performance by combining multiple
features from several different models into one predictive feature. Ensemble learning can
be divided into feature ensemble and classifier ensemble depending on integration level.
Feature ensemble involves integrating feature sets that are further fed to the classifier for
final output, while classifier ensemble involves integrating output sets from classifiers
where voting methods determine the final output. Since the feature set contains richer
information about the MR images than the output set of each classifier, integration at this
level is expected to provide better classification results. Hence, in this work, we use feature
ensemble as our ensemble learning.

In our ensemble module, we concatenate the top three deep features from three
different pre-trained CNNs as one sequence. For instance, in Figure 1, the top three
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deep features are DenseNet-169, Inception V3, and ResNeXt-50, and these features are
concatenated into one sequence as our feature-level ensemble step. The concatenated deep
feature is further fed to ML classifiers for predicting the final output. Also, we concatenate
all the possible combinations of two features from the top three features, which is further
fed to ML classifiers to compare with the model using the ensemble of the top three features
in our experiments.

4. Experiments and Results

4.1. Dataset

We perform a set of experiments on three different brain MRI datasets which are
publicly available for the tasks of brain tumor classification. The first dataset of brain MR
images was downloaded from the Kaggle website [77], and for our simplicity, we named
this dataset BT-small-2c. The BT-small-2c dataset comprises 253 images, out of which
155 images contain tumors while the remaining 98 images are without tumors. The second
dataset was also downloaded from the Kaggle website, namely Brain Tumor Detection
2020 [78], and we call it BT-large-2c. This database comprises 3000 images, out of which
1500 images contain tumors while the remaining 1500 images are without tumors. The
third dataset consists of 3064 T1-weighted images containing three different types of brain
tumors such as gliomas, meningiomas, and pituitary tumors. The dataset was acquired
from the Kaggle website [37], and we named this dataset as BT-large-4c. The BT-small-2c
and BT-large-2c datasets contain brain MR images with two classes (normal and tumor).
The BT-large-4c dataset contains brain MR images with four classes (normal, glioma tumor,
meningioma tumor, and pituitary tumor). Each dataset is subdivided into a training set
(80% of the total dataset) and a test set (20% of the total dataset). Table 3 shows details of
the dataset used in our experiments. The examples of brain MR images in BT-small-2c,
BT-large-2c, and BT-large-4c datasets are shown in Figure 5.

Figure 5. The examples of brain MR images in BT-small-2c, BT-large-2c, and BT-large-4c datasets.
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Table 3. Details of the dataset.

Types Number of Class Training Set Test Set

BT-small-2c 2 202 51
BT-large-2c 2 2400 600
BT-large-4c 4 2611 653

4.2. Experimental Setting

In our experiment, we use 13 different pre-trained deep convolutional neural networks
as a feature extractor: ResNet-50, ResNet-101, DenseNet-121, DenseNet-169, VGG-16, VGG-
19, AlexNet, Inception V3, ResNext-50, ResNext-101, ShuffleNet, MobileNet, MnasNet. We
freeze the weight of bottleneck layers of deep CNN models pre-trained on the ImageNet [79]
dataset. Also, we use 9 different ML classifiers: FC layer, Gaussian NB, AdaBoost, k-NN,
RF, SVM with three different kernels (linear, sigmoid, and RBF), ELM. Before the training
step, we pre-processed the input images as described in Section 3.1. Also, we converted
the images to the size 224 × 224 (or 299 × 299) pixels as the pre-trained networks used in
our experiments require the input images with size 224 × 224 except for the Inception V3,
which requires the input images with size 299 × 299. All experiments were performed on a
PC with an NVIDIA GeForce GTX 1070 Ti GPU.

4.3. Results

The empirical results were obtained for three different datasets (BT-small-2c, BT-large-
2c, and BT-large-4c) for the tasks of the brain tumor classification. The first experiment is
designed to compare the several different pre-trained CNN networks with several different
ML classifiers. The second experiment is designed to show the effectiveness of the ensemble
of top 2 or 3 deep features selected by the results from the first experiment with several
different ML classifiers. The results of the first experiments on BT-small-2c, BT-large-2c, and
BT-large-4c datasets are shown in Tables 4–6, respectively. As shown in Table 4, DenseNet-
169 feature, Inception V3 feature, and ResNeXt-50 feature are selected as the top three deep
features on BT-small-2c dataset. As shown in Table 5, DenseNet-121 feature, ResNeXt-101
feature, and MnasNet feature are selected as the top three deep features on BT-small-4c
dataset. Also in Table 6, DenseNet-169 feature, ShuffleNet V2 feature, and MnasNet feature
are selected as the top three deep features on BT-large-4c dataset.

Table 4. Accuracies of pre-trained CNN models with ML classifiers on BT-small-2c dataset (� : top-3 features based on
average accuracy).

Deep Feature from the
Pre-Trained CNN Model

ML Classifier—Accuracy

FC Gaussian NB AdaBoost k-NN RF
SVM
(Linear)

SVM
(Sigmoid)

SVM
(RBF)

ELM Average

ResNet-50 feature 0.9216 0.8431 0.8431 0.8627 0.8824 0.8235 0.8824 0.9020 0.9020 0.8736
ResNet-101 feature 0.9216 0.8824 0.8431 0.8235 0.9020 0.8235 0.8824 0.9020 0.8824 0.8736

DenseNet-121 feature 0.9216 0.7647 0.8235 0.9216 0.8824 0.8431 0.8824 0.8627 0.9020 0.8671
DenseNet-169 feature � 0.9608 0.8039 0.8627 0.9020 0.9412 0.9608 0.9608 0.9804 0.9412 0.9237

VGG-16 feature 0.8431 0.7451 0.7451 0.7059 0.8431 0.8627 0.8627 0.8039 0.8039 0.8017
VGG-19 feature 0.8235 0.6863 0.7843 0.6863 0.8235 0.8235 0.8235 0.8235 0.9020 0.7974
AlexNet feature 0.9216 0.7255 0.8431 0.7843 0.9020 0.8235 0.8627 0.9020 0.9020 0.8519

Inception V3 feature � 0.9216 0.8824 0.9020 0.8235 0.9412 0.9020 0.9020 0.9020 0.9020 0.8976
ResNeXt-50 feature � 0.9412 0.9020 0.9020 0.9020 0.9216 0.9216 0.9216 0.9216 0.9216 0.9172
ResNeXt-101 feature 0.9216 0.8039 0.8235 0.8235 0.9020 0.8627 0.9020 0.9216 0.9216 0.8758

ShuffleNet V2 feature 0.8431 0.7647 0.9216 0.8627 0.9020 0.9412 0.9412 0.9412 0.9412 0.8954
MobileNet V2 feature 0.8824 0.8431 0.7843 0.8431 0.8824 0.8627 0.8824 0.8824 0.8627 0.8584

MnasNet feature 0.9216 0.7843 0.8235 0.8235 0.9216 0.8431 0.8627 0.8627 0.9020 0.8606

Average 0.9035 0.8024 0.8386 0.8281 0.8959 0.8688 0.8899 0.8929 0.8989

The bold text represents the highest average accuracy of all ML classifier or all deep features.
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Also, the results of the second experiments on BT-small-2c, BT-large-2c, and BT-large-
4c datasets are shown in Tables 7–9, respectively. Also, the computational complexity of
ensemble models is compared based on the inference time on a test set of the BT-large-4c
dataset as shown in Table 10. From these results, five observations were made.

Table 5. Accuracies of pre-trained CNN models with ML classifiers on BT-large-2c dataset (� : top-3 features based on
average accuracy).

Deep Feature from the
Pre-Trained CNN Model

ML Classifier—Accuracy

FC Gaussian NB AdaBoost k-NN RF
SVM
(Linear)

SVM
(Sigmoid)

SVM
(RBF)

ELM Average

ResNet-50 feature 0.9767 0.8117 0.9600 0.9767 0.9400 0.9750 0.9750 0.9817 0.9667 0.9515
ResNet-101 feature 0.9767 0.8250 0.9433 0.9733 0.9567 0.9750 0.9733 0.9800 0.9717 0.9528

DenseNet-121 feature � 0.9750 0.8383 0.9600 0.9817 0.9683 0.9683 0.9683 0.9833 0.9817 0.9583
DenseNet-169 feature 0.9750 0.8400 0.9650 0.9783 0.9633 0.9667 0.9650 0.9800 0.9800 0.9570

VGG-16 feature 0.9550 0.7383 0.8833 0.9617 0.9283 0.9517 0.9500 0.9650 0.9550 0.9209
VGG-19 feature 0.9550 0.7067 0.8850 0.9600 0.9300 0.9550 0.9550 0.9633 0.9450 0.9172
AlexNet feature 0.9633 0.7067 0.9200 0.9550 0.9500 0.9400 0.9500 0.9750 0.9633 0.9248

Inception V3 feature 0.9817 0.8317 0.9567 0.9800 0.9567 0.9750 0.9733 0.9883 0.9800 0.9581
ResNeXt-50 feature 0.9717 0.8600 0.9550 0.9817 0.9550 0.9700 0.9683 0.9833 0.9750 0.9578

ResNeXt-101 feature � 0.9783 0.8583 0.9633 0.9833 0.9617 0.9717 0.9717 0.9817 0.9817 0.9613
ShuffleNet V2 feature 0.9433 0.8533 0.9533 0.9700 0.9517 0.9617 0.9617 0.9783 0.9700 0.9493
MobileNet V2 feature 0.9667 0.8400 0.9367 0.9700 0.9450 0.9617 0.9617 0.9783 0.9633 0.9470

MnasNet feature � 0.9817 0.8550 0.9467 0.9750 0.9567 0.9700 0.9733 0.9817 0.9833 0.9581

Average 0.9692 0.8127 0.9406 0.9728 0.9510 0.9647 0.9651 0.9785 0.9705

The bold text represents the highest average accuracy of all ML classifier or all deep features.

Table 6. Accuracies of pre-trained CNN models with ML classifiers on BT-large-4c dataset (� : top-3 features based on
average accuracy).

Deep Feature from the
Pre-Trained CNN Model

ML Classifier—Accuracy

FC Gaussian NB AdaBoost k-NN RF
SVM
(Linear)

SVM
(Sigmoid)

SVM
(RBF)

ELM Average

ResNet-50 feature 0.8760 0.6937 0.6570 0.8576 0.8530 0.8744 0.8760 0.8989 0.8591 0.8273
ResNet-101 feature 0.8867 0.7228 0.6799 0.8438 0.8499 0.8897 0.8897 0.9081 0.8683 0.8377

DenseNet-121 feature 0.8913 0.7106 0.7198 0.8943 0.8744 0.8698 0.8729 0.9158 0.8760 0.8472
DenseNet-169 feature � 0.8959 0.7228 0.7335 0.8821 0.8652 0.8652 0.8729 0.9204 0.8806 0.8487

VGG-16 feature 0.8760 0.6677 0.7106 0.8331 0.8300 0.8606 0.8606 0.8744 0.8423 0.8173
VGG-19 feature 0.8683 0.5942 0.6309 0.8346 0.8377 0.8606 0.8606 0.8790 0.8453 0.8013
AlexNet feature 0.8637 0.6340 0.6554 0.8714 0.8453 0.8652 0.8683 0.9066 0.8361 0.8162

Inception V3 feature 0.8652 0.6708 0.6830 0.8300 0.8132 0.8591 0.8591 0.8867 0.8438 0.8123
ResNeXt-50 feature 0.8744 0.7152 0.6891 0.8775 0.8346 0.8560 0.8576 0.8959 0.8560 0.8285

ResNeXt-101 feature 0.8851 0.6692 0.7198 0.8714 0.8346 0.8744 0.8744 0.8989 0.8744 0.8336
ShuffleNet V2 feature � 0.8637 0.7152 0.7381 0.8637 0.8576 0.8989 0.8989 0.9112 0.8606 0.8453
MobileNet V2 feature 0.8928 0.6983 0.7136 0.8897 0.8423 0.8851 0.8851 0.9158 0.8729 0.8440

MnasNet feature � 0.8851 0.6922 0.7458 0.8928 0.8515 0.8959 0.8959 0.9127 0.8775 0.8499

Average 0.8788 0.6851 0.6982 0.8648 0.8453 0.8735 0.8748 0.9019 0.8610

The bold text represents the highest average accuracy of all ML classifier or all deep features.

– Observation 1. SVM with RBF kernel outperforms other ML classifiers on two large
datasets (BT-large-2c and BT-large-4c).

– Analysis. Tables 5 and 6 show that the SVM with RBF kernel outperforms other ML
classifiers on two large datasets (BT-large-2c and BT-large-4c). This is because SVM
with RBF kernel can find a more effective and complex set of decision boundaries than
other ML classifiers. However, as you can see in Table 4, SVM with RBF kernel does
not outperform other ML classifiers on the small dataset. This is because SVM tends
to underperform when the number of features for each data point is larger than the
number of training data samples.

– Observation 2. Gaussian NB performs worst among other ML classifiers on three datasets.
– Analysis. Tables 4–6 show that Gaussian NB performs worst among other ML clas-

sifiers on three datasets. This is because Gaussian NB assumes the features are
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independent. However, it is almost impossible that the extracted features from the
pre-trained models are completely independent.

– Observation 3. The deep feature from DenseNet architectures performs well than the
deep features from other pre-trained CNN networks, while the deep features from
VGG perform worse than the deep features from other pre-trained CNN networks on
three different datasets.

– Analysis. Tables 4–6 show that the deep feature from DenseNet architectures performs
well than the deep features from other pre-trained CNN networks on three different
datasets. This is because the features extracted from DenseNet have all complexity
levels. Hence, it tends to give more smooth decision boundaries, which can predict
well when training data is insufficient. On the other hand, the deep feature from
VGG performs worse than the deep features from other pre-trained CNN networks
on three different datasets. This is because VGG is a more basic architecture that uses
no residual blocks than other pre-trained CNN networks.

– Observation 4. Using the ensemble of deep features from two or three pre-trained CNN
models is effective for all ML classifiers on a large dataset. However, the ensemble of
deep features is effective for only ML classifiers on a small dataset.

– Analysis. Tables 8 and 9 show that the model with the ensemble of deep features
from two or three pre-trained CNN models achieves higher accuracy than the model
with a deep feature from an individual pre-trained CNN model. This is because the
ensemble model takes advantages of well-performing top-2 or 3 deep features by
concatenating them, and also the concatenation of these deep features has a set of
features that are capable of representing the data present in the images in a different
way which benefits to improve the performance of ML classifiers. However, Table 7
shows that the ensemble of deep features is effective for only a few ML classifiers on a
small dataset. This is because the number of the training sample is not enough in the
small dataset to learn the complex set of the ensemble of deep features.

– Observation 5. k-NN classifier takes the longest time for inference on a test set while
FC, Gaussian NB, and RF take a shorter inference time.

– Analysis. Table 10 shows that the k-NN classifier takes the longest time for inference
on a test set among other ML classifiers while FC, Gaussian NB, and RF classifiers
take a very short time for inference on a test set. This is because the k-NN classifier
has to look at all the data points to make a single prediction, whereas other ML
classifiers are not dependent on the number of training data points on the predict
phase. On the other hand, the Gaussian NB classifier uses the Bayes equation to
compute the posterior probabilities for inference. This involves trivial arithmetic
operations such as multiplication and addition. Also, normalization is done by simple
division operations. In the fully connected layer (FC), the entire matrix calculation
for inference can be done by fast GPU. RF classifier leverages the power of multiple
decision trees, which are simple and fast for making decisions. Therefore, these
three classifiers achieved significantly less computation time for inference than other
ML classifiers.
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Table 7. Accuracies of ensemble of pre-trained CNN models with ML classifiers on BT-small-2c dataset.

Deep Feature from the Pre-Trained CNN Model

ML Classifier—Accuracy

FC Gaussian NB AdaBoost k-NN RF
SVM

(Linear)
SVM

(Sigmoid)
SVM
(RBF)

ELM

DenseNet-169 feature 0.9608 0.8039 0.8627 0.9020 0.9412 0.9608 0.9608 0.9804 0.9412
Inception V3 feature 0.9216 0.8824 0.9020 0.8235 0.9412 0.9020 0.9020 0.9020 0.9020

ResNeXt-50 0.9412 0.9020 0.9020 0.9020 0.9216 0.9216 0.9216 0.9216 0.9216

(DenseNet-169 + Inception V3) feature 0.9412 0.8627 0.9020 0.8824 0.9020 0.9412 0.9412 0.9608 0.9412
(DenseNet-169 + ResNeXt-50) feature 0.9412 0.9020 0.9216 0.8627 0.9216 0.9216 0.9412 0.9412 0.9412
(Inception V3 + ResNeXt-50) feature 0.9412 0.9020 0.8824 0.9412 0.9412 0.9216 0.9412 0.9412 0.9412

(DenseNet-169 + Inception V3 + ResNeXt-50) feature 0.9412 0.9020 0.9216 0.9020 0.9216 0.9020 0.9412 0.9412 0.9216

The bold text represents the highest accuracy for each ML classifier.

Table 8. Accuracies of ensemble of pre-trained CNN models with ML classifiers on BT-large-2c dataset.

Deep Feature from the Pre-Trained CNN Model

ML Classifier—Accuracy

FC Gaussian NB AdaBoost k-NN RF
SVM

(Linear)
SVM

(Sigmoid)
SVM
(RBF)

ELM

DenseNet-121 feature 0.9750 0.8383 0.9600 0.9817 0.9683 0.9683 0.9683 0.9833 0.9817
ResNeXt-101 feature 0.9783 0.8583 0.9633 0.9833 0.9617 0.9717 0.9717 0.9817 0.9817

MnasNet feature 0.9817 0.8550 0.9467 0.9750 0.9567 0.9700 0.9733 0.9817 0.9833

(DenseNet-121 + ResNeXt-101) feature 0.9800 0.8733 0.9700 0.9817 0.9667 0.9783 0.9783 0.9833 0.9850
(DenseNet-121 + MnasNet) feature 0.9817 0.8767 0.9633 0.9850 0.9683 0.9700 0.9717 0.9783 0.9767
(ResNeXt-101 + MnasNet) feature 0.9883 0.8700 0.9633 0.9850 0.9667 0.9850 0.9850 0.9850 0.9850

(DenseNet-121 + ResNeXt-101 + MnasNet) feature 0.9883 0.8800 0.9750 0.9817 0.9717 0.9783 0.9800 0.9850 0.9867

The bold text represents the highest accuracy for each ML classifier.

Table 9. Accuracies of ensemble of pre-trained CNN models with ML classifiers on BT-large-4c dataset.

Deep Feature from the Pre-Trained CNN Model

ML Classifier—Accuracy

FC Gaussian NB AdaBoost k-NN RF
SVM

(Linear)
SVM

(Sigmoid)
SVM
(RBF)

ELM

DenseNet-169 feature 0.8959 0.7228 0.7335 0.8821 0.8652 0.8652 0.8729 0.9204 0.8806
Shufflenet feature 0.8637 0.7152 0.7381 0.8637 0.8576 0.8989 0.8989 0.9112 0.8606
MnasNet feature 0.8851 0.6922 0.7458 0.8928 0.8515 0.8959 0.8959 0.9127 0.8775

(DenseNet-169 + Shufflenet) feature 0.8959 0.7504 0.7427 0.8821 0.8668 0.8668 0.8714 0.9204 0.8744
(DenseNet-169 + MnasNet) feature 0.9142 0.7259 0.7274 0.9096 0.8668 0.9020 0.9096 0.9372 0.8790

(Shufflenet + MnasNet) feature 0.8913 0.7305 0.7397 0.8943 0.8790 0.8974 0.8974 0.9127 0.8637

(DenseNet-169 + Shufflenet + MnasNet) feature 0.9158 0.7397 0.7534 0.9096 0.8760 0.9020 0.9096 0.9372 0.8851

The bold text represents the highest accuracy for each ML classifier.

Table 10. Computational complexity of ensemble of pre-trained CNN models with ML classifiers on BT-large-4c dataset.

Deep Feature from the Pre-Trained CNN Model

ML Classifier—Accuracy

FC Gaussian NB AdaBoost k-NN RF
SVM

(Linear)
SVM

(Sigmoid)
SVM
(RBF)

ELM

(DenseNet-169 + Shufflenet) feature 0.0222 0.0214 0.2709 5.0436 0.0148 1.7390 1.9813 2.2653 0.1831
(DenseNet-169 + MnasNet) feature 0.0225 0.0232 0.3070 5.5191 0.0187 1.9650 2.1004 2.5780 0.2184

(Shufflenet + MnasNet) feature 0.0224 0.0186 0.2403 4.3021 0.0170 1.4580 1.4725 2.2544 0.1784

(DenseNet-169 + Shufflenet + MnasNet) feature 0.0229 0.0312 0.4133 7.4238 0.0247 2.6586 2.8507 3.4730 0.2772

5. Conclusions

In summary, we presented a brain tumor classification method using the ensemble of
deep features from pre-trained deep convolutional neural networks with ML classifiers. In
our proposed framework, we use several pre-trained deep convolutional neural networks
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to extract deep features from brain MR images. The extracted deep features are then
evaluated by several ML classifiers. The top three deep features which perform well on
several ML classifiers are selected and concatenated as an ensemble of deep feature which
is then fed into several ML classifiers to predict the final output. In our experiment, we
provided an extensive evaluation using 13 different pre-trained deep convolutional neural
networks and nine different ML classifiers on three different datasets (BT-small-2c, BT-
large-2c, and BT-large-4c) for brain tumor classification. Our experiment results indicate
that from our architecture, (1) DenseNet-169 deep feature alone is a good choice in case the
size of the MRI dataset is very small and the number of classes is 2 (normal, tumor), (2) the
ensemble of DenseNet-169, Inception V3, and ResNeXt-50 deep features is a good choice in
case the size of MRI dataset is large and the number of classes is 2 (normal, tumor) and
(3) the ensemble of DenseNet-169, ShuffleNet V2, and MnasNet deep features is a good
choice in case the size of MRI dataset is large and there are four classes (normal, glioma
tumor, meningioma tumor, and pituitary tumor). Also, in most cases, SVM with RBF kernel
outperforms other ML classifiers for the MRI-based brain tumor classification task. In
summary, our proposed novel feature ensemble method helps to overcome the limitations
of a single CNN model and produces superior and robust performance, especially for
large datasets. These results indicated that our proposed method using an ensemble of
deep features and ML classifiers is suitable for the classification of brain tumors. Although
the performance of our proposed method is promising, further research needs to be done
to reduce the size of the model to deploy on a real-time medical diagnosis system using
knowledge distillation approaches.
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Abstract: In this study, two-photon laser scanning microscopy (TPLSM) based on the internet of
things (IoT) is proposed as a remote research equipment sharing system, which enables the remote
sharing economy. IoT modules, where data are transmitted to and received from the remote users in
the web service via IoT, instead of a data acquisition (DAQ) system embedded in the conventional
TPLSM, are installed in the IoT-based TPLSM (IoT-TPLSM). The performance for each IoT module is
evaluated independently, and it is confirmed that it works well even in a personal computer-free
environment. In addition, a message queuing telemetry transport (MQTT) protocol is applied to the
DAQ interface in the web service, and a graphic user interface for enabling the remote users to operate
IoT-TPLSM remotely is also designed and implemented. For the image acquisition demonstration, the
stained cellular images and the autofluorescent tissue images are obtained in IoT-TPLSM. Lastly, it is
confirmed that the comparable performance is provided with the conventional TPLSM by evaluating
the imaging conditions and qualities of the three-dimensional image stacks processed in IoT-TPLSM.

Keywords: IoT; remote control; remote operation; remote sharing economy; research equipment
sharing; two-photon laser scanning microscopy; MQTT

1. Introduction

With the advent of the Fourth Industrial Revolution (4IR) worldwide, the integration of
diverse networks between industries has formed a hyper-connected society. All industries
converge with each other and develop together, as described in “Industry 4.0” [1,2]. For
example, in manufacturing, a smart factory where a series of processes is linked to each
other, unlike conventional automation only applied to an individual unit process, is aimed
to optimize the operation by upgrading the production process and ensuring flexibility [3].
Accordingly, the national policies on the 4IR are presented, and its utilization methods
in various fields are actively discussed. One of the representative 4IR applications is the
sharing economy or the on-demand economy that connects social demand and supply, such
as car-sharing or home-sharing. It has spread out through a digital platform to establish a
new economic structure and maximize resource usage [4].

The concept of a sharing economy can be applied to research equipment, which is es-
sential to do research but too expensive to own. Before the sharing economy arose, several
trial systems to share research equipment had been developed. At the government level,
a system for joint use of equipment, such as “e-Tube” or “ZEUS”, has been established
in South Korea to utilize national research facilities and idle equipment [5]. Similarly,
the UK operates an equipment sharing policy called “Equipment.data”, which promotes
sharing of equipment between universities [6,7]. Both systems provide the database for
basic information, current status, and services on the list of sharable equipment, but the
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user should ask the usage schedule to the equipment operator individually and visit
onsite with a sample to use it [8]. At the company level, a German company provides
an inventory software solution that tracks samples, specimens, consumables, and chem-
icals in the laboratory [9]. It was only for management purposes used to schedule the
equipment or check its condition, and it is impossible to check the equipment conditions
from outside since users must be in the same network to share content. At the university
level, research equipment sharing services have been initiated in the Netherlands and the
United States [10,11] but are operated closed, according to each university’s internal policy.
Eventually, users should be onsite with a sample since these systems or services are mostly
limited to provide information for sharable equipment only. In the joint equipment support
facilities, users can utilize equipment, but they have the hassle of visiting the facility in
person to utilize the equipment. Moreover, the use of equipment not provided by these
facilities must be additionally approved for both the visit and the use by individually
contacting the institution that owns it. One possible suggestion to resolve these problems
is to send a sample to be processed or measured to the facility or the institution. However,
the equipment operators have specialized knowledge for the equipment itself but are not
familiar with users’ samples, resulting in compelling equipment users to still visit the
facility or the institution with samples.

Currently, the concept of a remote sharing economy is proposed, which is similar to
remote surgery. The only difference is that users located at a distance share equipment
during the teleoperation, whereas surgeons operate on a patient located at a distance during
the remote surgery. The user sends a sample to the institution that owns the necessary
equipment, and the institution operator loads the sample into the equipment according
to schedule. Then, the remote user can obtain the results by operating the equipment as
desired. Equipment sharing based on remote operation gives several advantages over the
conventional one. First, all the users can use sharable equipment provided by the facilities
and the institutions worldwide once the sample is delivered and ready to use. Second, they
do not have extra travel to conduct the experiment, resulting in saving time. Third, there
are not any security issues from access by outsiders when they visit facilities or institutions.

There have been several studies on remote equipment operation over the Internet [12,13].
These studies used their equipment-specific protocols to operate equipment remotely and
have a limitation to expand to other equipment. Recently, the Internet of Things (IoT) [14],
one of the representative 4IR technologies, has been introduced and is extensively used for
exchanging data between devices, mostly by monitoring signals from various sensors [15–17];
it also has been employed in controlling systems [18]. Nevertheless, IoT-based remote
operation has not been applied to share equipment up to now, and demand on standard
protocol still exists for sharing pieces of equipment.

In this paper, an IoT-based remote operation system for sharing equipment is pro-
posed. As a piece of sharable equipment, two-photon laser scanning microscopy (TPLSM)
is selected, which have IoT capability via a message queuing telemetry transport (MQTT),
the standard protocol for IoT messaging between the equipment and its users. It is de-
signed and built for a computer-independent system by combining independent IoT-based
modules for the actuators and sensors. A web service for IoT-based TPLSM (IoT-TPLSM)
is also implemented to manage and operate it remotely, including a database and MQTT
broker. Its performance was evaluated from the image quality, and its potential for sharing
equipment via standard protocols was confirmed by remotely acquiring 3D images for
biological samples. The proposed remote sharing system gives remote users a high degree
of freedom of operation in a stable network via IoT, providing a realistic solution for the
sharing of equipment.

2. Materials and Methods

2.1. Hardware Design

The overall hardware configuration for IoT-TPLSM, a 3D fluorescence microscope
with IoT capability, is shown in Figure 1. A customized TPLSM consists of four major
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components, which are the variable laser attenuator, galvanometer, Z positioner, and
photon detector: the variable laser attenuator adjusts the laser power manually. The
galvanometer and z positioner move the focal spot laterally and axially, respectively.
Photon detector identifies optical pulse. Its users operate the TPLSM with their personal
computer (PC) with the data acquisition (DAQ) system embedded in the PC and obtained
3D image stacks in the graphic user interface (GUI) implemented on the PC. On the other
hand, IoT-TPLSM functions with microcontroller unit (MCU) development boards (WeMos
D1 mini pro, WeMos Electronics) for WiFi MCU (ESP8266, Espressif, Shanghai, China) in a
PC-free environment, instead of a DAQ system and GUI of a PC; that is, the existing DAQ
system is replaced with these MCUs, and a GUI is substituted with web services via IoT.
These MCUs are combined with an analog-to-digital converter (ADC), a digital-to-analog
converter (DAC), or a counter (CNTR) circuit, as shown in Figures A1 and A2. These
IoT-based modules include a laser power controller, a 3D scanner, and a photon counter, as
explained in Figure 1a.

Figure 1. (a) Hardware configuration of the Internet of Things two-photon laser scanning microscopy (IoT-TPLSM).
(b) Photograph of the customized modules. HWP: half-wave plate; RM: rotary motor; W: optical window; PD: photodiode;
TIA: trans-impedance amplifier; GV: galvanometer mirror; L: optical lens; DM: dichroic mirror; PZ: piezo stage; OBJ:
objective lens; PMT: photomultiplier tube; DISCR: discriminator; CNTR: pulse counter; MCU: microcontroller unit.

2.1.1. Laser Power Controller Module

A tunable Ti:Sapphire femtosecond pulsed laser (Chameleon Vision II, Coherent, Santa
Clara, CA, USA) was used as the light source for TPLSM. It has a repetition rate of 80 MHz,
and its average optical power was up to about 3.0 W at a wavelength of 800 nm without
a power attenuator. Since photodamage may occur when excessive light is irradiated on
the sample [19], a laser optical attenuator should be additionally required to adjust the
proper light intensity on the sample. The customized variable laser attenuator unit was
designed based on the light polarization. The laser output was horizontally polarized,
and a half-wave plate (10RP02-46, Newport, Irvine, CA, USA) was manually rotated to
change the light polarization direction, resulting in controlling the light intensity through a
polarizer (GL10-B, Thorlabs, Newton, NJ, USA).
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The laser power controller module was designed to regulate laser power automatically
to the reference input power value given via IoT in a variable laser attenuator unit. It
measured a certain percentage (about 0.19% at a wavelength of 800 nm) of the light reflected
by a laser window (WG11010-B, Thorlabs) at a Si-photodiode (FDS10X10, Thorlabs) and
actuated a rotary motor (T-RSW60C, Zaber Technologies, Vancouver, BC, Canada) where a
half-wave plate was mounted. A closed-loop controller for laser power was implemented
with MCU. The customized trans-impedance amplifier (TIA) circuit in photoconductive
mode converted the photocurrent ID into the output voltage VTIA according to Equation (1):

VTIA = VCC ·
(

R3

R2 + R3

)
− RF · ID (1)

where VTIA is a measured voltage indicating the light intensity, VCC is a supply voltage of a
circuit, ID is a photocurrent generated by the photodiode, and R is resistance at each point
in Figure A1a. The resistance values were selected so that the output voltage represented
the light intensity used in the TPLSM. The voltage VTIA converted from the light intensity
was transferred to the MCU through a 16-bit ADC (ADS1115, Texas Instruments), as seen
in Figure A1b. The feedback loop in the laser power controller module was constructed so
that the MCU made the measured light intensity reach the target one given by the remote
users in the web service via IoT by controlling a rotary motor.

2.1.2. 3D Scanner Module

In the conventional TPLSM, the lateral raster scan and the axial scan are cross-repeated
to obtain a 3D volumetric image with the DAQ system in a PC. For the lateral raster scan,
the galvanometer XY mirrors (6210H, Cambridge Technology, Bedford, MA, USA) in the
laser scanner unit steer the focal spot into the lateral position. The maximum scanner
driving voltage (VScan) to cover the field of view (FOV) was determined according to
Equation (2):

VScan =

{
arctan

(
FOV
2000

· FLTube
FLObj + FLScan

)}
×
{

180◦

π
· CMirror · CObj

}
. (2)

The term enclosed in the first brace is for calculating the optical angle from an optical
lens configuration. FOV is the FOV on the image plane in μm, and FL in mm is a focal
length of the lens that corresponds to the subscript. The focal lengths of the scan lens, the
tube lens, and the objective lens (UPLFLN 40XO, Olympus Life Science, Waltham, MA,
USA) were 50 mm, 300 mm, and 5 mm, respectively. The term enclosed in the second brace
is for converting the mechanical angle in the scanning mirrors to the driving voltage. C is a
constant corresponding to the subscript, and the values for the galvanometer mirror and
the objective lens are 0.25 and 2.2287, respectively. For the axial scan, the Z positioner unit
moves with the objective lens, resulting in shifting the focal spot axially. As a Z positioner,
a piezo objective positioner (MIPOS-250, Piezosystem Jena, Jena, Germany) is driven with
a piezo controller (NV 40/1 CLE, Piezosystem Jena), and its driving voltage to the axial
position is set as shown in Equation (3):

VZ(l) = (Z0 + ΔZ · l)× CZ (3)

where VZ(l) in mV is a driving voltage of Z positioner, Z0 in μm is an initial axial position,
ΔZ in μm is an axial step size, l is a layer number to be scanned, and CZ in mV/μm is a
constant that converts the axial position value into the driving voltage. The constant is
set to 0.05, taking into account the movement of 1 μm per 50 mV. In the proposed IoT-
TPLSM, the 3D scanner module controlled both the laser scanner unit and Z positioner unit,
which consisted of an MCU and DAC instead of PC-based DAQ system. The 3D imaging
information, such as the image size in pixel numbers, the imaging area in μm, number of
axial layers, and axial step size in μm, was transmitted to the MCU from the remote users

114



Sensors 2021, 21, 1533

via IoT, and the MCU generated the waveforms of sawtooth with different periods for
three-axis scanning, based on this information. In the 3D scanner module, driving voltages
calculated from Equations (2) and (3) were converted via a 16-bit DAC (AD5764R, Analog
Devices, Wilmington, MA, USA), as seen in Figure A2a, and these were delivered to the
laser scanner and the Z positioner, respectively, to operate IoT-TPLSM remotely.

2.1.3. Photon Counter Module

In traditional TPLSM, as shown in Figure 2, the fluorescence signal emitted from the
sample is detected using a photomultiplier tube (PMT, H10682-01, Hamamatsu Photonics,
Hamamatsu, Japan). As a single photon is transformed to an electron and it is multiplied
in the PMT, a series of current pulses is generated. In the amplifier, it is converted and
amplified to a series of voltage pulses. Only pulses above the preset threshold voltage
level (VTH) are altered to digital pulses in the comparator. The intensity of the fluorescence
signal can be quantified by counting them through the DAQ system and it is stored in
PC. However, In the IoT-TPLSM, the photon counter module quantitated the number of
photons detected with a customized photon discriminator and a pulse counter (LS7366R,
LSI computer systems, Melville, NY, USA), and it was transferred to remote users via IoT
to construct 3D image stacks in the web service.

Figure 2. Configuration of the photon counter module. PMT: photomultiplier tube; AMP: amplifier;
CMP: comparator; CNTR: counter.

Besides, a single image was created based on the number of photons detected during
pixel residence time at each pixel by raster scan in the laser scanner unit, and the 3D scanner
module should be synchronized with the photon counter module to do it. Therefore, hand-
shaking was established by transmitting a 2-bit flag wired into two digital input/output
pins in each MCU.

2.2. Software Design

The software configuration for IoT-TPLSM is shown in Figure 3. It is divided into
two main parts: IoT module programming and web service programming. The MCU in
each IoT module has a serial communication program that enables data exchange between
the MCU and DAQ system and MQTT client program that enables the communication
between the IoT module and web service with MQTT protocol. A web service functions
users to send commands to the IoT actuator modules and receive data from the IoT sensor
modules via web browsers in the terminal or PC. It includes an MQTT broker, web server,
and database. The MQTT broker connects the web server and MQTT clients, the web server
operates the web pages, and the database stores the information for the web pages and the
raw data from the DAQ system.
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Figure 3. Software configuration of the IoT-TPLSM.

2.2.1. Serial Communication

In this study, an MCU was programmed in the Arduino integrated development
environment, and data were transmitted and received by the main device of each module
through serial communication. In the laser power controller module, ADC transmitted
the voltage readout for the laser power to the MCU through the inter-integrated circuit
(I2C) communication, and the MCU delivered the position command as a feedback control
signal to the rotary motor via the universal asynchronous receiver/transmitter (UART)
RS232 communication. In the 3D scanner module, position command was given to DAC
using the serial peripheral interface (SPI) communication. In the photon counter module,
the number of photons was passed to the MCU through SPI communication.

2.2.2. MQTT Broker

The MQTT back-end had a data transfer through the Mosquitto broker, specifying
the host address and the port to be accessed by the server and MCUs. Datasets were
transmitted (publish) and received (subscribe) in the JavaScript object notation (JSON)
format on separate channels (topics) for the function of each module and server. The JSON
format was used in various programming languages and platforms, and it was easy to
exchange data between different systems through parsing [20]. Table 1 shows examples of
the dataset formats used in this study.

Table 1. Examples of a message set in JSON format.

Topic {device ID}/mirror/cmd {device ID}/mirror/data

Clients
Publish client: Server

Subscribe client: Device
Publish client: Device

Subscribe client: Server

JSON format dataset {
“command”: “axialscan”,
“options”: {
“xPixel”: number,
“yPixel”: number,
“xFov”: number,
“yFov”: number,
“imagingSpeed”: number,
“ch1”: boolean,
“ch2”: boolean,
“ch3”: boolean,
“axialStepSize”: number,
“axialZero”: number,
“numOfZLayer”: number
}
}

{
“message”: “axialdata”,
“data”: {
“channel”: string,
“totalPages”: number,
“page”: number,
“xPixel”: number,
“yPixel”: number,
“line”: number,
“imagingData”: Uint16Array
}
}
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The MQTT protocol provides three levels for quality of service (QoS) to ensure com-
munication stability: from Level 0, which does not guarantee the QoS, to Level 2, which
guarantees the highest QoS [21]. However, Level 2 has a disadvantage in speed perfor-
mance since it tracks the handshaking process of the messages. In this study, QoS Level
1 was selected, and stability was guaranteed by including page and line information in
the dataset.

2.2.3. Web Service

Figure 4 shows a detailed configuration of the web service. In this study, Amazon web
service (AWS EC2, Amazon Web Services, Inc., Seattle, WA, USA) was selected as a web
service, which is operated on the Ubuntu OS. The web server performs server-side scripting
with the code written using JavaScript and was built through the Node.js-based Express
web framework. Express is extensible, so there is no unnecessary interference in writing
code and can be easily extended to third-party libraries, and an application programming
interface (API) can be created or called quickly and easily through hypertext transfer proto-
col (HTTP) utility methods and middleware. WebSocket is a hypertext markup language 5
(HTML5) protocol that forms a dynamic two-way connection channel between a user’s
browser and a server. It is possible to send a message to the server through the WebSocket
API and receive a response without a request. However, HTML5 may not be supported
by older browsers. In consideration of compatibility issues between the browsers or with
previous versions, the cross-platform WebSocket API, Socket.IO, was used to transmit data
messages from the web server. At the front-end of the web server, HTML and JavaScript
pages were constructed through the Angular framework. The Angular framework, which
is Google’s open-source JavaScript framework for single-page application (SPA) devel-
opment, has most of the functions required for front-end development of not only web
applications but also mobile environments and desktop applications.

Figure 4. Configuration of the web service.

In the back-end, a general information database was created using MongoDB, which
is a Not Only SQL (NoSQL) database. MongoDB can process most queries quickly with
its powerful indexing function, and its processing time is faster than that of MySQL in
terms of read and write [22]. Since all data is stored in JSON format, it is very easy to
use with MQTT, which transmits and receives data. In addition, The MQTT connection
was restricted by receiving user information and reservation information. This was to
implement a minimal security system at the web server level because MQTT does not have
a separate security system. Finally, result images were saved as data files and could be
viewed through the server.

3. Results

3.1. Functional Validation at the Module Level

Figure 5 shows the results of the independent online operation for each module
constituting the hardware. Here, modules were operated using the extension program
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“MQTTBox” to directly transfer the JSON-formatted datasets. The laser power controller
module was controlled through a web browser and the results were validated using a
calibrated laser power meter (PowerMax PM10, Coherent). The laser optical power in
Figure 5a was measured from 20 mW to 1200 mW in 20 mW steps. The coefficient of
determination in the linear regression, i.e., the R2, was 0.9990, showing a high correlation.
Although the measurement is performed according to Equation (1), the value is saturated
when the photocurrent exceeds a certain level. Therefore, the appropriate range should be
set by adjusting the resistance value. In this study, we focused on 3D optical microscopy
and set the range to low power to expand into biopsy or in-vivo studies. To ensure stability,
the input outside the range was processed to output the target value as the default value of
100 mW.

Figure 5. Verification graphs of (a) the laser power controller and the 3D scanner for the (b) X−axis, (c) Y−axis, and
(d) Z−axis.

Synchronized 3D scanning was performed using units of the laser scanner and the
Z positioner. It was run briefly only for functional verification of remote operation. The
FOV of 50 μm × 50 μm was set to 8 × 8 pixels, imaging speed per pixel was set to 10 μs,
and depth was set to 4 layers in 5 μm increments. The synchronized drive following
Equation (2) was confirmed as shown in Figure 5b–d.

3.2. Performance Comparison for IoT-TPLSM at the System Level
3.2.1. Web Service for IoT-TPLSM

In order to operate IoT-TPLSM remotely, the users need to access a web service
for microscopes via a web browser, and the procedure for imaging biological samples is
demonstrated as follows. The users are supposed to login first through the login and signup
page shown in Figure 6a. Then, users choose which microscope they use and reserve which
dates they will image a sample with the selected microscope on the web page that appears in
Figure 6b. On the date when the microscope is reserved, they image a sample by controlling
the microscope remotely on the page presented in Figure 6c, which provides functions such
as setting parameters, monitoring images, and saving the 3D image stack. After imaging,
all the information for the 3D image stack log is displayed, as shown in Figure 6d. The 3D
image stacks stored in the cloud service can be retrieved later. The detailed descriptions
about user interface panels for the web service are in Appendix B. Such a whole remote
imaging procedure was confirmed by acquiring the following images step-by-step.
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Figure 6. Page screenshots of the web service user interface: (a) login and sign up page; (b) equipment selection page;
(c) equipment operation page; and (d) data log page.

3.2.2. Precision Comparison with Fluorescent Microsphere Imaging

As a standard for 3D fluorescence imaging, yellow-green fluorescent microspheres
(F8836, Molecular Probes, Eugene, OR, USA) with a nominal diameter of 10 μm were
imaged to evaluate the image pixel precision. The 3D image stack was obtained up to a
depth of 100 μm with 1 μm steps by setting the laser power to 50 mW at a wavelength of
800 nm and FOV of 50 μm × 50 μm, which corresponds to 512 × 512 pixels. Some images
extracted with a 5 μm step are presented in Figure 7a–f.

Figure 7. The images for a fluorescent microsphere at different depths from the center: (a) +15 μm; (b) +10 μm; (c) +5 μm;
(d) 0 μm; (e) −5 μm; and (f) −10 μm. (scale bar: 10 μm). (g) Illustration of a 3D image of a fluorescent microsphere.
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Images extracted in the layer for the microsphere center in the axial direction are
shown in Figure 8i for quantitative comparison between images acquired online and offline.
The normalized intensity profiles along the x and y direction passing through the center of
a microsphere are plotted in Figure 8ii,iii, respectively. The microsphere’s diameter was
expressed in terms of full width at half maximum (FWHM) of the intensity profile after
applying the piecewise cubic Hermite interpolation. In the IoT-TPLSM, its diameters were
measured as 11.1861 μm and 11.5812 μm on the x and y direction, respectively. In the
conventional TPLSM as a control, they were measured as 11.4126 μm and 11.7462 μm on
the x and y direction, respectively. The error on the x-direction was 1.98%, and that on the
y direction was 1.40%, which confirmed that similar precision was maintained between the
online (IoT-TPLSM) and offline (TPLSM) imaging results.

Figure 8. Quantitative comparison of the performance of (a) online and (b) offline systems. (i) Fluorescent microsphere
images, and the corresponding diameter of the (ii) x-direction and (iii) y-direction intensity profiles (scale bar: 10 μm).

3.3. Demonstration of IoT-TPLSM
3.3.1. 3D Fluorescence Imaging at the Cellular Level

As an application of a biological sample, a 3D image stack for the stained bovine
pulmonary artery endothelial (BPAE) cells (F36924, Molecular Probes), was obtained up to
a depth of 25 μm, with 0.5 μm steps with the laser power at 100 mW at a wavelength of
800 nm and FOV of 200 μm × 200 μm, which corresponds to 512 × 512 pixels. Some images
extracted with 2 μm steps are displayed in Figure 9a–f. Although BPAE cells were stained
using three fluorescent dyes, only F-actin stained with Alexa Fluor 488 phalloidin and
nuclei stained with DAPI were clearly identified. Mitochondria stained with MitoTracker
Red CMXRos was not detected because the laser wavelength is out of range on its excitation
wavelengths. Operating the IoT-TPLSM remotely, the 3D fluorescent image at the cellular
level was obtained with high similarity to the offline system.
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Figure 9. The images for the stained bovine pulmonary artery endothelial (BPAE) cells at different depths from the center:
(a) +4 μm; (b) +2 μm; (c) 0 μm; (d) −2 μm; (e) −4 μm; and (f) −6 μm (scale bar: 10 μm). (g) Illustration of the 3D image of
BPAE cells.

3.3.2. 3D Autofluorescence Imaging at the Tissue Level

Ex-vivo human skin tissue provided from Dankook University Hospital was also
imaged as a 3D autofluorescence image stack, which is expressed in the unstained tissue.
The 3D images were acquired up to a depth of 100 μm with a 2 μm step by setting
the laser power of 100 mW at a wavelength of 800 nm and FOV of 100 μm × 100 μm
corresponds to 512 × 512 pixels. Some images extracted at different depths are represented
in Figure 10a–i. Starting from the stratum corneum without nuclei on the surface of the
skin, the keratinocyte in the epidermis, the dermal-epidermal junction, and the collagenous
fiber tissue in the dermis were definitely recognized. It was observed that the stratum
corneum without nuclei existed at 17 μm; nuclei in the epidermal cells began to appear at
22 μm. It was noticed that the keratinocyte nuclei were distributed as the granular layer at
45 μm, cell membranes were maintained at 54 μm, polygonal keratinocytes as the stratum
spinosum at 60 μm, cubic basal cells at 66 μm, and the dermal–epidermal junction where
the dermal fibrous tissue and some cells were mixed at 76 μm. It was also found that the
collagenous fiber tissue and the amorphous collagen tissue in the dermis were located at
82 μm and 96 μm, respectively. It was shown that the 3D image of the label-free ex-vivo
human skin tissue was obtained successfully by operating IoT-TPLSM remotely.
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Figure 10. The images of the human skin tissue at different depths from the surface: (a) stratum
corneum without nuclei at 17 μm, (b) epidermal cells with nuclei 17 μm, (c) granular layer at 45 μm,
(d) cell membranes at 54 μm, (e) stratum spinosum at 60 μm, (f) cubic basal cells at 66 μm, (g) dermal
fibrous tissue at 76 μm, (h) collagenous fiber tissue at 82 μm, and (i) amorphous collagen tissue at
96 μm (scale bar: 20 μm).

4. Discussion and Conclusions

In this study, an IoT-based remote control system for shared research equipment
was proposed and implemented. The offline system for equipment was expanded to
the IoT convergence platform and cloud, resulting in transforming the online system.
Moreover, a single synchronized system with independently configured MCUs and the
web service interface for a customized DAQ were completed. Using the remote full-
duplex, it was confirmed that the remote operation for various research equipment can be
additionally and alternatively utilized in diverse research fields. It is also expected that the
IoT-based research equipment sharing system allows researchers at a remote site to set up
an experiment as well as check and save the result at their own will.

By taking IoT-TPLSM as an example application, the stained cellular images and the
autofluorescent tissue images were obtained. As a result, it was confirmed that perfor-
mances for the online system, such as the image acquisition time, the image quality, and
GUI for image acquisition, were almost the same as those for the offline one. The image
distortion shown under 2% can be easily corrected with the calibration for driving voltages.
Besides, as the proposed remote sharing system used the web service and MCU, access for
the IoT module was fully granted to the remote users to operate shared equipment freely.
Simultaneously, since the shared equipment working with the MQTT protocol via IoT was
independent of the computer itself, unexpected OS problems were eliminated, and the
operating stability was more secured.
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The remote operation of research equipment was executed through a wireless network.
However, various attempts to overcome its vulnerability are needed, since wireless net-
works are relatively insecure compared to wired networks. As the MQTT protocol supports
QoS, the optimal QoS for real-time communication can be set [23]. In addition, while using
the MQTT, a standby database can be placed between the gateway and the server [24], and
the current protocol can be upgraded or attached parallel to other wireless communication
protocols to address network failures [25–27]. By applying such stabilization to the system
in this study, it is believed it would ensure the rapid and stable remote operation of shared
equipment, even using a wireless network.

The IoT-based remote sharing system is expected to provide a realistic solution for
equipment utilization and thus can be used as a basic technology in many industries. In
the manufacturing field, it can be applied to a smart factory or for hybrid manufacturing
implemented with remote robot systems [28]. In the biomedical field, the remote robot
system could enable automatic sample replacement and remote experiments in a single
queue, and the remote operation system can be extended to telemedicine with deep learning
to aid in disease diagnosis in the clinic [29–31]. The proposed remote sharing system is also
expected to serve as a window for network formation and integration between researchers
in various fields through the remote sharing of various research equipment and to open a
new chapter in research and development areas.
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Appendix A. Electronic Circuits for Modules

Figure A1. Electronic schematics for (a) the trans-impedance amplifier (TIA) circuit and (b) the analog-to-digital converter
(ADC) circuit. (c) A photograph of the combined circuit boards for the laser power controller module.
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Figure A2. Electronic schematics for (a) the digital-to-analog converter (DAC) circuit and (b) the pulse counter (CNTR)
circuit. (c) A photograph of the combined circuit boards for the 3D scanner module and the photon counter module.

Appendix B. IoT-TPLSM Web Service User Interfaces

Figure A3. The user interface of the login and sign up page: (a) login panel and (b) sign-up panel.

Figure A4. The user interface of the equipment selection page. The red box is a calendar for reservations.
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Figure A5. The user interface of the equipment operation page: (a) parameter-setting panel; (b)
operation button panel; and (c) result image panel.

Figure A6. The user interface of the data log page. The red box is a result data log panel of shared equipment.
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Abstract: Whole-directional scanning methodology is required to observe distinctive features of an
entire physical structure with a three dimensional (3D) visualization. However, the implementation
of whole-directional scanning is challenging for conventional optical coherence tomography (OCT),
which scans a limited portion of the sample by utilizing unidirectional and bidirectional scanning
methods. Therefore, in this paper an integrated quad-scanner (QS) strategy-based OCT method was
implemented to obtain the whole-directional volumetry of a sample by employing four scanning
arms installed around the sample. The simultaneous and sequential image acquisition capabilities
are the conceptual key points of the proposed QS-OCT method, and were implemented using four
precisely aligned scanning arms and applied in a complementary way according to the experimental
criteria. To assess the feasibility of obtaining whole-directional morphological structures, a roll of
Scotch tape, an ex vivo mouse heart, and kidney specimens were imaged and independently obtained
tissue images at different directions were delicately merged to compose the 3D volume data set. The
results revealed the potential merits of QS-OCT-based whole-directional imaging, which can be a
favorable inspection method for various discoveries that require the dynamic coordinates of the
whole physical structure.

Keywords: optical coherence tomography; quad-scanner scanning strategy; whole-directional scan-
ning; full-directional imaging

1. Introduction

Whole-directional (i.e., full-directional) scanning has been widely applied and utilized
for various medical imaging techniques to identify distinctive features of samples [1,2].
Magnetic resonance imaging (MRI) and computed tomography (CT) are representative
existing imaging techniques that have been actively applied for the whole-body imaging of
samples [3,4]. Moreover, positron emission tomography (PET) and PET/CT techniques
have also been demonstrated to obtain the whole-body imaging of samples [5]. These
imaging systems are widely used for the diagnosis of cancer because whole-body imaging
enables the inspection of the entire sample through a single scanning attempt. In accordance
with the development of high-resolution whole-body imaging at the human level, full-
body scanning methods have been developed to match the sample characteristics, such as
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acquiring tractography for whole mouse heart [6], brain [7], and the quantitative analysis
of embryos [8]. The aforementioned imaging modalities are suitable for full-body imaging
at the human level because of their deep penetration depth. However, these imaging
techniques are limited by their low resolution; therefore, an optical imaging modality
such as optical coherence tomography (OCT) could be a suitable solution for acquiring
high-resolution morphological images of a 3D sample at the tissue level.

OCT is a non-invasive optical imaging technique used to obtain high-resolution, cross-
sectional images of inner microstructures in materials and biological tissues [9]. OCT has
been widely applied in various fields, including medical diagnosis [10,11], dentistry [12,13],
and industrial applications [14,15]. The single-scanner-based unidirectional scanning of
conventional OCT has been applied in numerous applications [16,17]. Unidirectional
scanning OCT has been widely utilized for high-resolution imaging and has been utilized
in various system designs, such as optical Doppler tomography [18], OCT angiography [19],
and polarization-sensitive OCT [20]. However, conducting whole-directional volumetric
screening is challenging with these systems because it involves the single-side imaging of a
3D sample. Therefore, the bidirectional scanning method was implemented to compensate
for the limitation of single-side scanning methods by imaging dual sides of a sample, which
is necessary for measuring the thickness and overlapping morphological structures of thin
and high-refractive-index samples [21,22]. However, the imaging results of bidirectional
scanning are affected by the sample shape and thickness, limiting its applicability for
full-directional imaging.

To assess the full-directional morphological structure of a target sample, the rota-
tional imaging (RI) strategy was demonstrated by rotating the sample stage multiple times.
RI-OCT was initially implemented for in situ embryonic imaging to obtain structural
information from different angles [23,24]. However, the RI-OCT system has some draw-
backs, as shifting the sample direction by rotating the sample stage and adjusting the
imaging focus after every rotation requires a long image acquisition time. To reduce the
acquisition time, a parallel imaging scheme was introduced by scanning multiple locations
of a sample concurrently. Parallel images were obtained simultaneously from multiple
locations of a sample by adding optical path length delays that are longer than the light
penetration depth of tissue in a parallel channel [25]. Space-division multiplexing (SDM)
OCT is a representative parallel-imaging technique that achieves an improved imaging
speed [26]. The SDM-OCT system was demonstrated to achieve the efficient imaging of a
single-directional morphological structure using 8-beam multiplexing [27] and has been
indicated for a clinical feasibility analysis of its ophthalmic applications [25].

In this study, we demonstrated a QS methodology-based OCT imaging technique to
obtain whole-directional tomographic images of a sample without the rotation of the sample
stage. To satisfy the different imaging criteria, such as whole-directional simultaneous
imaging and unidirectional sequential imaging, we propose applying two different types
of QS-OCT concepts: simultaneous and sequential modes. In simultaneous QS-OCT, the
whole-directional imaging of a 3D sample was scanned from four different directions
concurrently using the SDM technique of parallel imaging, which enhanced the imaging
speed of the system. To verify the possibility of simultaneous QS-OCT implementation, a
rolled Scotch tape sample was imaged from the whole-direction of the sample concurrently.
In addition, sequential QS-OCT was demonstrated to obtain whole-directional volumetric
images of a 3D sample using four scanners operated in a successive order and to address
the drawbacks of the power loss of the simultaneous QS-OCT approach. To verify the
capability of the whole-directional volumetric imaging of the sequential QS-OCT system, ex
vivo mouse heart and kidney specimens were imaged and merged. Therefore, the QS-OCT
concept in simultaneous and sequential modes is a whole-directional imaging modality
that supports different imaging criteria and can obtain whole-directional morphological
images without any rotation of the sample.
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2. Materials and Methods

2.1. Optical Configuration and Duty Cycle Illustration of Simultaenous QS-OCT

The schematic of the optical configuration for simultaneous QS-OCT is shown in
Figure 1a. The system was equipped with a broadband light source (EXS210090-01, Ex-
alos, Zurich, Swiss) with a central wavelength of 840 nm, a full width at half maximum
bandwidth of 48 nm, and an average output power of 15 mW. Four one-axis galvanometer-
scanners (GVS001, Thorlabs, Newton, NJ, USA) were mounted at four sides of a sample
stage to cover the full-directional scanning of the sample. In each sample arm, a 2-inch
object lens (AC508-100-B, Thorlabs, Newton, NJ, USA) was used for large-area scanning.
Four reference arms, identically designed with a collimator (F260APC-B, Thorlabs, New-
ton, NJ, USA), lens (AC254-030-B, Thorlabs, Newton, NJ, USA), and mirror (PF10-03-P01,
Thorlabs, Newton, NJ, USA), were used for the four sample arms in this system. The power
of each interferometer was equally divided and maintained at the saturation level of the
detector. The ratio of all fiber couplers (TW850R5A2, Thorlabs, Newton, NJ, USA) utilized
in this system was 50:50. Polarization controllers (FPC023, Thorlabs, Newton, NJ, USA)
were utilized in each reference arm and sample arm to regulate the polarized state of the
transmitted light. To apply the SDM technique for obtaining whole-directional images
concurrently, the optical path length of each interferometer was accurately controlled.
Each interference signal obtained by four different interferometers was transferred to a
customized spectrometer, whose configuration was described in detail in [28]. A frame
grabber (PCIe-1433, National Instruments, Austin, TX, USA) and data acquisition board
(DAQ, PCIe-6323, National Instruments, Austin, TX, USA) were employed to precisely
control the hardware compositions. A linear motor stage (M-403, PI, Karlsruhe, Germany)
was used to move the sample stage up and down to acquire the 3D volumetric imaging of
the sample.

Figure 1. The optical configuration and duty cycle illustration of the simultaneous quad-scanner
(QS)-OCT system. (a) Simultaneous QS-OCT with space-division multiplexing for simultaneous
whole-directional imaging. (b) The duty cycles of simultaneous QS-OCT system operation. BLS,
broadband light source; C, collimator; DG, diffraction grating; FC, fiber coupler; GVS, galvanometer
scanner; L, lens; LMS, linear motor stage; LSC, line-scan camera; OL, objective lens; S, sample.

The synchronized operation of different hardware instruments (four scanners, frame
grabber, and linear motor stage) is essential to precisely obtain whole-directional mor-
phological images of a sample at the same time. Therefore, the duty cycle illustration
explains the sequence of operation, which was employed in simultaneous QS-OCT system
setups, as shown in Figure 1b. In accordance with the rising edge of the main trigger from
DAQ, four scanners and a frame grabber were synchronized concurrently for scanning
and grabbing. Although four sample arms were implemented independently, each scanner
was controlled with identical operating timing by sawtooth waves. Moreover, the frame
grabber was precisely controlled according to the grabbing timing, which was determined
by the utilized A-scan rate of the scanner. In the proposed QS-OCT (both simultaneous
and sequential), the operations of the scanners started with 20 kHz A-line rates following

131



Sensors 2021, 21, 1305

the rising edge of the main trigger signal. In addition, the frame grabber and motor stage
were started simultaneously, with intervals for grabbing and moving identically set as
50 μs to be matched with the A-scan rate. After obtaining single B-scan images, the motor
stage was moved immediately as much as the preset step size for measuring the whole
volume of the sample. The aforementioned scanning process was continued for the total
range of the sample and the whole-directional volumetric raw data were obtained using
the proposed simultaneous QS-OCT system.

2.2. Optical Configuration and Duty Cycles of Sequential QS-OCT

Figure 2a shows the schematic of the optical configuration of the sequential QS-OCT
for whole-directional volumetric imaging that resolves the power limitations of the simul-
taneous method. In the case of a simultaneous strategy, SDM was implemented for parallel
imaging to obtain whole-directional images simultaneously. Although the simultaneous
system offered a fast scanning speed, the power of the detected interference signal was
comparably low, leading to the degradation of image intensity at high frequencies (depth
direction in the imaging window), because four different scanners were each equipped with
one interferometer and the source power was divided into four interferometers. In contrast,
as a feature of the sequential QS-OCT system, each scanner was operated successively in
a systematically fixed order to improve the transferred power of each sample arm. The
optical components used in the sequential system (including source, fiber coupler, sample
arm, reference arm, and spectrometer) were the same as those used in the simultaneous
system. Unlike the simultaneous method, one common reference arm was used for four
sample arms in the sequential QS-OCT system to reduce the number of fiber couplers used
in the simultaneous QS-OCT system. A motorized linear stage, utilized in the simultaneous
method as well, was implemented for scanning the whole-directional volumetric imaging
where the switching between individual scanners was performed manually.

Figure 2. The optical configuration and duty cycle diagram of sequential quad-scanner (QS)-OCT
system. (a) Sequential QS-OCT for successive operation of each scanner. (b) The duty cycle illustration
of sequential QS-OCT system operation. BLS, broadband light source; C, collimator; DG, diffraction
grating; FC, fiber coupler; GVS, galvanometer scanner; L, lens; LMS, linear motor stage; LSC, line-scan
camera; OL, objective lens; S, sample.

Likewise, a synchronization process for operating the simultaneous system and the
hardware compositions of sequential QS-OCT method were controlled according to pre-
cisely synchronized timing, as shown in Figure 2b. The overall operating timing is identical
to that of the simultaneous method; however, the scanners operated independently ac-
cording to the switching sequence to enhance the power of the system. After acquiring a
single B-scan image, the motor stage was moved to the next point according to the timing
of a single B-scan acquisition, but the direction of movement was conversely changed
for efficient scanning (i.e., upward (#1 and #3) and downward (#2 and #4)). As a result
of whole-direction imaging by following the precisely controlled operating order, 3D
volumetric raw data were obtained and processed by customized merging software.
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2.3. The Description and the Flow Chart of the Image Processing Algorithm

To obtain a whole-directional volumetric data set, we developed a LabVIEW (National
Instruments, Austin, TX, USA) -based customized merging software and the operational
flowchart of this software (described in Figure 3). The first step of the software was
used to classify the images acquired from four different scanners using simultaneous and
sequential methods, respectively. In the case of the simultaneous method, the input image
separation process was required, since the obtained B-scan image was composed with
different signals of 4 independent scanners by employing SDM for the enhancement of
imaging speed. Separated images matched with each scanner were obtained by replacing
the value to zero, excepting the signals of each region-of-interest. In contrast, the separation
process for the input image is not required in sequential QS-OCT, which scans four different
directions successively. Four different images obtained from each direction acquired by
both simultaneous and sequential QS-OCT—as shown in Figure 3a—were transferred to
the post-processing part, including pixel rescaling, image placement, and fine merging.
Pixel rescaling, the second step of the customized algorithm, was applied for adjusting the
pixel resolution difference between the lateral (14.7 μm) and axial (4.69 μm) direction. The
difference in pixel resolution between the lateral and axial direction affected the accuracy
of the merging process, which requires a comparison of every pixel’s position. To match the
pixel resolution, linear interpolation was applied to the lateral direction according to the
ratio difference between the lateral and axial direction. Next, interpolated images, which are
shown in Figure 3b, were placed at each direction to conduct the image merging process.
Prior to the imaging of QS-OCT, a 3D-printed cylindrical sample, which had features
around the surface to indicate the overlapped position, was imaged to obtain a reference
value of image merging. Therefore, as shown in Figure 3c, interpolated images of each
scanner were placed in accordance with the pre-acquired reference value of pixel movement.
In addition, to finely merge the whole-directional images, we compared intensities and
selected higher values for the overlapped regions, based on the fact that the intensity of
OCT signal, measured at the focal point, is higher than at other positions. To compare the
quality of merged images between step 3 (image placement) and step 4 (fine merging), two
representative regions (red and yellow squares) were selected and magnified. The result of
applying the fine merging method, as shown in Figure 3d, demonstrates a distinctive outer
and inner structure and smoothly connected edge lines, proving the validity of selecting a
higher intensity for overlapped regions. By utilizing the demonstrated customized merging
software, we obtained whole-directional volumetric images of the sample shown in the
results section.

Figure 3. The description and flow chart of the image processing algorithm for obtaining the whole-
directional volumetric data of the sample. (a–d) demonstrate each step of customized algorithm for
merging cross-sectional OCT images obtained from quad-scanner methods.
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2.4. Collection of Mouse Heart and Kidney Specimens

The mouse heart and kidney specimens utilized in this study were extracted from a
6-week-old BALB/c mouse and were harvested immediately after sacrificing the mouse.
The extracted heart and kidney were preserved in 10% neutral-buffered formalin at room
temperature for five days. All the animal experimental procedures were proceeded in
conformity with a laboratory animal protocol approved by the Institutional Animal and
Human Care and Use Committee of Kyungpook National University (No. KNU-2020-0025).

3. Results

3.1. Quantitative Analysis of Performance and Alignment of Scanners

To quantitatively analyze the performance and alignment of each scanner, which
are crucial factors for obtaining whole-directional volumetric imaging, a rolled Scotch
tape sample was scanned using four scanners from four directions, the acquired cross-
sectional OCT images of which are shown in Figure 4a–d. While analyzing the scanner
performance, the power of each scanner was equally controlled to objectively compare
the image quality. All seven layers of the Scotch tape roll were distinguished in each
cross-sectional image (Figure 4a–d) that was obtained using sequential QS-OCT. Moreover,
to quantitatively assess the performance of each scanner, A-scan profiling was conducted,
as shown in Figure 4e, and was acquired from the middle position of the Scotch tape
cross-sectional images, indicated by the red dashed line in Figure 4a–d. The black, green,
blue, and red profiles in Figure 4e represent the A-scans of each scanner from #1 to #4,
respectively. The acquired A-scan result of the rolled Scotch tape revealed distinguishable
internal layers along with information about the peak intensity, with an approximately
similar peak height. According to the A-scan profiling results, the quality of each image
acquired from different directions using QS-OCT was identical and reliable for conducting
whole-directional imaging and merging to create a 3D volumetric image.

Figure 4. Quantitative performance assessment of each sample arm in quad-scanner (QS)-OCT; (a–d)
are B-scan images of a Scotch tape roll obtained by sequentially switching the scanner; (e) demon-
strates the A-scan profiling results of images (a–d) centered on the red-dashed line to quantitatively
analyze performance.

The performance difference between simultaneous and sequential QS-OCT and the
measured intensity fall-off graph are shown in Figure 5. Figure 5a,b show the cross-
sectional OCT images of rolled scotch tape which were obtained from the simultaneous and
sequential QS-OCT system, respectively. The red dotted boxes in Figure 5a,b indicate the
ROIs, from where the depth intensity profiles were measured. Figure 5c shows the depth
intensity profiles of both systems. A total of 150 A-lines were taken from the ROI, and
then these A-lines were averaged to form the depth intensity profiles of the simultaneous
and sequential QS-OCT system, where it is visualized that the depth intensity profile of
sequential QS-OCT is higher than the depth intensity profile of simultaneous QS-OCT.
Though internal layers of the Scotch tape were distinguished in both simultaneous and
sequential QS-OCT, the overall intensities of each layer were found to be higher in the
sequential method. In addition, as a case of sensitivity roll-off of the proposed system, the
backscattered intensity was measured at every 100 pixels (from 100th to 900th) using a
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mirror as a target sample. As shown in Figure 5d, 28 dB was dropped at a depth of 4.1 mm
compared to the top surface, which was caused by the characteristic of SD-OCT. Moreover,
the lateral resolution was measured as 15.6 μm utilizing a resolution target (USAF 1951,
Edmund Optics, Barrington, NJ, USA), and the axial resolution was calculated as 6.47 μm
in air.

Figure 5. The performance difference between the simultaneous and sequential quad-scanner (QS)
OCT system and the measured intensity fall-off of the proposed system. (a) is the cross-sectional OCT
image of the simultaneous QS-OCT system. (b) is the cross-sectional OCT image of the sequential QS-
OCT system. (c) is the depth intensity profiles of the simultaneous and sequential QS-OCT systems.
(d) is the measured intensity fall-off graph of the proposed system obtained every 100 pixels.

3.2. Imaging Process and Measured Data Using Simultaneous QS-OCT

To explain the functional process of simultaneous QS-OCT, cross-section and merged
OCT images are shown in Figure 6, obtained from the rolled Scotch tape sample used in
Figure 4. The cross-sectional image of the Scotch tape roll, as shown in Figure 6a, was
obtained simultaneously from whole-directions using the SDM technique with simulta-
neous QS-OCT. The Scotch tape cross-sectional images acquired from four scanners are
indicated by red arrows. Because the difference between the path length of the sample
and reference arm gradually increased towards the bottom of the imaging window, the
measured intensity reduced according to the depth direction. Figure 6b exhibits the merged
cross-sectional OCT images of the rolled Scotch tape that were shown in Figure 6a. The
cross-sectional OCT images of the rolled Scotch tape sample shown in Figure 6a,b indicate
the parallel imaging capability of simultaneous QS-OCT with the SDM imaging technique,
as well as the drawback of power loss in the depth direction of the imaging window,
leading to the degradation of image intensity. Although the intensity of the rolled Scotch
tape image decreased in the depth direction due to the imaging depth limitation of SD-OCT,
the possibility of using the proposed simultaneous QS-OCT method to concurrently obtain
whole-directional images was demonstrated and is one of the proposed proofs-of-concept
for whole-directional imaging.

Figure 6. Simultaneously obtained images of a Scotch tape roll with the space-division multiplexing
technique applied using a simultaneous quad-scanner (QS)-OCT. (a) is a representative B-scan image
of the rolled Scotch tape imaged from four different directions with simultaneous QS-OCT, (b) is a
merged image of the four QS-OCT images shown in (a).
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3.3. The Examination of Merged 3D Data of Ex Vivo Mouse Kideny and Heart Obtained
by Sequential

Sequential QS-OCT was developed to overcome the aforementioned limitation of
power loss that occurs in the simultaneous QS-OCT system. Sequential QS-OCT utilizes a
common reference arm for four different scanners to compensate for the power loss. To
verify the performance of sequential QS-OCT in assessing the whole-directional imaging
of biological samples, we obtained whole-directional morphological images of a mouse
heart and kidney as ex vivo specimens. Following the set value of the A-scan rate (20 kHz),
the volumetric imaging of each scanner consumed 36.25 s with 0.0125 μm step sizes of
motor movement. Figure 7 shows the cross-sectional OCT images and their merged enface
images of mouse heart and kidney specimens. The cross-sectional OCT images shown
in Figures 7b–e and 7g–j were obtained using four scanners through whole-directional
imaging. These four cross-sectional OCT images were merged using an image processing
algorithm, described in Figure 3, to form the enface images shown in Figure 7a,f. All the
characteristic features that are seen in the cross-sectional OCT images of the mouse heart
and kidney specimens are retained in their respective enface images.

Figure 7. Enface and cross-sectional OCT images of mouse heart and kidney specimens. (a) and (f)
are the enface images of mouse heart and kidney, respectively. (b–e), and (g–j) are the cross-sectional
OCT images of mouse heart and kidney, respectively.

Figure 8 shows the 3D volumetric and enface images of mouse heart and kidney
specimens acquired in sequential QS-OCT. Full-directional 3D rendering morphological
images of the mouse heart and kidney are shown in Figure 8a,e, respectively. Every side
of the sample was scanned vertically using a linear motor stage for volumetric imaging
(1000 × 2048 × 725 pixels). Independently obtained volumetric images from four different
sample arms were merged to obtain enface images with customized rendering software.
Figure 8b–d,f–h are the representative enface images that were obtained from three dif-
ferent layers of 3D volumetric imaging of mouse heart and kidney specimens, shown in
Figure 8a,e, respectively. The enface images shown in Figure 8b–d,f–h demonstrate the
proper merging process for obtaining whole-directional volumetric data of the sample. The
obtained 3D volumetric and enface images of the mouse heart and kidney specimens verify
the whole-directional imaging capability of QS-OCT.
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Figure 8. 3D volumetric and representative enface images of mouse heart and kidney using quad-
scanner (QS)-OCT. (a,e) are full-directional 3D rendering morphological images of a mouse heart and
kidney; (b–d) and (f–h) are the selected enface images obtained at the three different layers shown in
(a,e), respectively.

4. Discussion

In this study, the whole-directional volumetric imaging strategy for full-directional
morphological assessment of a 3D sample without additional sample rotation was suc-
cessfully demonstrated in QS-OCT, where the assessment was challenged in conventional
unidirectional and bidirectional scanning-based OCT. Conventional unidirectional scan-
ning OCT has mostly been used for acquiring single-side cross-sectional images of a
sample [16,17]. In addition, bidirectional imaging, which is based on the simultaneous
top and bottom surface scanning of the sample, is limited by the sample thickness and
outer shape [21]. In contrast, the proposed QS-OCT methods (simultaneous and sequential
modes) scan from the whole-directions of the sample, which makes dynamic assessment
possible for the entire position of the sample. Rotational imaging is a whole-directional
imaging method in which additional sample handling such as the rotation of the sample
stage and the adjustment of focus after every rotation are essential to continue the imaging
capture. In the case of QS-OCT, however, the path length of each scanner was accurately
controlled throughout the entire imaging process.

In simultaneous QS-OCT, whole-directional images were acquired simultaneously
to enhance the imaging speed by applying the SDM technique. However, the division of
source power into four reference arms and four sample arms was the major drawback of
the simultaneous QS-OCT system, leading to degradation of the image intensity at high
frequencies. Averaged irradiation power to sample of each scanner, utilizing simultaneous
and sequential method, were measured as 6.79% and 36.4% compared with the source,
which verified the significant decrement of power in simultaneous method. The drawback
of source power division into multiple reference and sample arms can be compensated
using a high-power light source. The sequential QS-OCT imaging concept has been demon-
strated to overcome the power loss caused by the simultaneous method. In sequential
QS-OCT, a common reference arm was used for the four sample arms to maintain the high
power needed to conduct whole-directional imaging. The mutual compensation charac-
teristics of simultaneous and sequential methods of the proposed QS-OCT concept can
be utilized based on application requirements for scanning speed and division of source
power. In the case of simultaneous QS-OCT, this method could be a suitable solution for
the dynamic whole-directional volumetric assessment of a sample using a fast scanning
speed. In contrast, sequential QS-OCT could be a suitable technique for obtaining the
whole-directional volumetric imaging of a sample with an enhanced image quality.
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As an aspect of SDM applied to simultaneous QS-OCT, the degradation of the image
intensity in depth direction, as shown in Figure 6, was caused by the short coherence length
of SD-OCT. In addition, the SD-OCT based quad-scanner with SDM has the restraint of
applications, which is proper to utilize for thin samples because of the limited number
of camera pixels. The limitation of a short coherence length while using SD-OCT can be
compensated by using swept-source OCT, which has a comparatively longer coherence
length to capture multiple images in the imaging depth [29]. However, the proposed simul-
taneous QS-OCT method was applied to obtain the volumetric imaging of a sample using
the SDM technique with four scanners, whereas the SDM technique was conventionally
used using a single scanner in other applications [26].

5. Conclusions

The proposed methodology of whole-directional scanning serves as a proof of concept
for the whole-directional volumetric imaging of a 3D sample using QS-OCT in simultaneous
or sequential order. Simultaneous QS-OCT was developed with the SDM technique by
mounting four precisely aligned sample arms around the sample stage to achieve whole-
directional volumetric imaging with a fast imaging speed. A sequential QS-OCT concept
has also been demonstrated to improve image quality while using fewer fiber couplers than
the simultaneous QS-OCT system by compromising the imaging speed. The performance
of the scanners was quantitatively analyzed by imaging the Scotch tape with an A-scan
profiling result. The applicability of the proposed simultaneous and sequential QS-OCT
concepts was demonstrated with merged and volumetric images of the Scotch tape roll and
biological tissues (heart and kidney of a mouse), respectively. In conclusion, the possibility
of QS-OCT-based whole-directional imaging was achieved, and the proposed methods
could be useful in various fields that require a dynamic assessment of the entire position of
a sample, such as material testing and optical inspection, to detect product defects.
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Abstract: A combined transrectal ultrasound and photoacoustic (TRUS–PA) imaging probe was de-
veloped for the clear visualization of morphological changes and microvasculature distribution in the
prostate, as this is required for accurate diagnosis and biopsy. The probe consisted of a miniaturized
128-element 7 MHz convex array transducer with 134.5◦ field-of-view (FOV), a bifurcated optical
fiber bundle, and two optical lenses. The design goal was to make the size of the TRUS–PA probe
similar to that of general TRUS probes (i.e., about 20 mm), for the convenience of the patients. New
flexible printed circuit board (FPCB), acoustic structure, and optical lens were developed to meet the
requirement of the probe size, as well as to realize a high-performance TRUS–PA probe. In visual
assessment, the PA signals obtained with the optical lens were 2.98 times higher than those without
the lens. Moreover, the in vivo experiment with the xenograft BALB/c (Albino, Immunodeficient
Inbred Strain) mouse model showed that TRUS–PA probe was able to acquire the entire PA image
of the mouse tight behind the porcine intestine about 25 mm depth. From the ex vivo and in vivo
experimental results, it can be concluded that the developed TRUS–PA probe is capable of improving
PA image quality, even though the TRUS–PA probe has a cross-section size and an FOV comparable
to those of general TRUS probes.

Keywords: transrectal probe; optical lens; ultrasound imaging; photoacoustic imaging; prostate cancer

1. Introduction

Transrectal ultrasound (TRUS) has been used for the screening and diagnosis of
prostate cancer, which is one of the most common cancers occurring in adult men [1]. For
imaging, a TRUS probe is inserted into the rectum. Therefore, it is desirable that the size of
TRUS probes should be as small as possible, to relieve of the patient’s pain during imaging.
In order to image the entire prostate, the field-of-view (FOV) of conventional TRUS probes
should be as large as possible. These two restrictions limit the spatial and contrast resolu-
tions of TRUS images, because aperture size is one factor determining the spatial resolution
and signal-to-noise ratio of ultrasound (US) images, and physical conformation for wide
FOV possibly degrades the sensitivity of US probes. For these reasons, TRUS imaging does
not provide enough resolution and sensitivity to clearly identify and locate prostate cancers
(especially early stage prostate cancers) and to accurately distinguish prostate cancers from
benign prostatic hyperplasia [2]. In addition, the accuracy of TRUS-image-guided biopsy
is only 20 to 30% [3], because optimal biopsy sites are not clearly shown on TRUS images,
thus requiring repeated biopsies at the expense of the cost of diagnosis and the risk of
complications.

Contrast-enhanced ultrasound (CEUS), in combination with TRUS imaging, has been
used successfully to improve diagnostic accuracy of prostate cancer [4–6]. Since CEUS
facilitates clear visualization of micro- and neo-vascularization, the success rate of TRUS
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image-guided biopsy is increased. This is because hyper-vascularity is typically observed in
the periphery of prostate cancer [5,7]. However, CEUS is less sensitive to small blood vessels
and slow blood flow, even if US contrast agents are used [6]. Note that it is considered that
those are the indicators associated with early stage cancers [8].

On the other hand, photoacoustic (PA) imaging is highly sensitive to blood vessels [9]
and biopsy needles [10]. Therefore, combined TRUS and PA (TRUS–PA) imaging can be
a solution to the problems of CEUS and TRUS imaging if high performance TRUS–PA
probes are available. The first feasible study was conducted to demonstrate that TRUS–PA
imaging can be used for accurate diagnosis of prostate cancer due to the clear visualization
of microvasculature distribution in the prostate [11,12]. For the pilot study, a TRUS–PA
probe with a wide FOV of 160◦ was developed; it consisted of a 128-element, 6.5 MHz
TRUS array transducer and two convex-shaped optical modules for irradiated light to cover
the wide FOV [11]. Note that no detailed technical information about the specifications of
the TRUS transducer, the design of the optical modules, the integration of the TRUS, and
optical modules could be found. As another approach, it has recently been reported that a
64-element, 5 MHz linear capacitive micromachined ultrasonic transducer (CMUT) could
be used for TRUS–PA imaging [13]. The CMUT array was a side-looking transducer with a
FOV of 40◦, and three optical fiber bundles were placed on three sides of the CMUT array,
to create dark field light illumination. However, the CMUT-based TRUS–PA probe should
be further improved, because general TRUS probes are forward-looking transducers and
have a wide FOV larger than 130◦, to ensure diagnostic efficiency. In addition, both types
of the TRUS–PA probes have a maximum cross-sectional size of 25 mm or more, and that is
larger than general TRUS probes.

Since a TRUS transducer should be integrated with an optical module for TRUS–PA
imaging of the prostate, it is challenging that the TRUS–PA probe is similar in size to general
TRUS probes but has a large FOV. In this paper, we report a recently developed TRUS–PA
probe that meets both requirements of size and FOV; the objective of the development was
that the TRUS–PA had a size and FOV similar to conventional TRUS probes, with which
high-quality PA images could be obtained. To achieve the development goal, particularly,
the optical lens was designed to have a concave–convex shape in the lateral-axial plane
for divergence and a planar–oblique shape in the elevation-axial plane for refraction. The
TRUS–PA probe developed here consisted of a miniaturized 128-element 7 MHz convex
array transducer with a FOV of 134.5◦, a bifurcated optical fiber bundle, and two optical
lenses; the maximum cross-sectional size of the TRUS–PA probe was about 20.5 mm,
which is similar to that of the commercial TRUS transducers. From ex vivo and in vivo
experiments, it was ascertained that the developed optical lens facilitates efficient delivery
of light to the imaging plane (i.e., lateral-axial plane). In this study, additionally, light
penetration through the porcine intestine was measured as a function of wavelength, to
determine an optimal wavelength for PA imaging of the prostate. This was necessary
because radiated light should penetrate the wall of the rectum, to reach the prostate, and it
is known that light absorption highly occurs in the rectal wall.

2. Transrectal Ultrasound and Photoacoustic Imaging Probe

The developed TRUS–PA probe consists of an optical module, a TRUS array transducer,
and a housing. The goal in developing the TRUS–PA probe was to make its diameter similar
to that of general TRUS probes (i.e., about 20 mm), for the convenience of the patients.
Note that the patients generally complain of great pain when a TRUS probe is inserted into
the rectum for prostate imaging; the smaller the probe size, the better. Moreover, the probe
was designed to have an imaging plane covering the prostate gland volume that typically
measures 30 mm (anteroposterior) × 30 mm (width) × 50 mm (longitudinal) [7,14]. The
goal could be achieved by developing a miniaturized convex ultrasound array and an
optical lens, as shown in Figure 1; the cross-sectional size of the front part of the developed
TRUS–PA probe was 14 mm × 15 mm. To the best of our knowledge, this size is the
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smallest of the reported TRUS–PA probes. Each component of the developed TRUS–PA is
described here.

 

Figure 1. (a) Schematic of the developed transrectal ultrasound–photoacoustic (TRUS–PA) probe
consisting of a TRUS array transducer, two optical fiber bundles, and two optical lenses. (b,c) Pho-
tographs of the developed TRUS–PA probe.

2.1. Optical Module

For high-quality PA images, light should be delivered to an imaging plane efficiently
(see Figure 2). A simple and general way is to place two optical fiber bundles on each side of
an US transducer and to tilt the fiber bundles at a certain angle, so that the beams overlap at
the desired depth in an imaging plane [15–17]. As another way, optical reflectors attached
to one side of an US transducer can be used to deliver light to the imaging plane [18,19].
However, these methods inevitably result in increasing the size of a US–PA probe, thus
being not suitable for a TRUS–PA probe. For the sake of small size, optical fiber bundles can
be simply attached parallel to each side of an US transducer. If the outlets of optical fiber
bundles have a large numerical aperture, emitted light can spread at a large angle, so that
the light can cover the region of interest (ROI) in the desired imaging plane. Although the
divergent beam may be a feasible solution for a TRUS–PA probe with small external size
and large FOV, the light fluence delivered in ROI is too small to be suitable for high-quality
PA imaging. This is because emitted light can suitably spread in the lateral-axial plane, but
much of the light cannot reach an imaging plane, due to no focusing on the elevation-axial
plane. Note that PA signal intensity is linearly proportional to light fluence. Additionally,
undesired PA signals are possibly generated from the off-axis of an imaging plane and
received by a US transducer, thus degrading PA image quality.

For large FOV and light focus on ROI, while minimizing the size of the TRUS–PA
probe, we designed an optical lens, as shown in Figure 2; the desired optical lens should
produce a divergent beam in the lateral-axial plane that is equal to the imaging plane
(Figure 2b) and a refracted beam in the elevation-axial plane (Figure 2c). To obtain the
properties, the optical lens should have a concave–convex shape in the lateral-axial plane
for divergence and a planar–oblique shape in the elevation-axial plane for refraction.
The optical lens was designed, using the ray-tracing technique [20,21], to determine key
parameters for fabrication of the lens: radius of curvature of the concave and convex
boundaries for the concave–convex lens, and inclination angle of the oblique boundary
for the planar–oblique lens. For the sake of simplifying the design, we assumed that a ray
was a collimated beam (i.e., light diffraction was not considered) and ignored the law of
reflection. Since the output aperture of the optical fiber bundle used for this study was
configured as a 13 mm × 2 mm rectangle, the width of the collimated beam was set to

143



Sensors 2021, 21, 1217

be 13 mm in the lateral-axial plane and 2 mm in the elevation-axial plane. Therefore, the
lens thickness in the elevation direction was selected to be 2 mm. Note that the custom-
made optical fiber bundle had a numerical aperture (NA) of 0.22, so that the emitted light
could be approximately considered as a collimated beam. The focal length of the lens was
determined to be 25 mm, considering the longitudinal size of the prostate. Note that most
prostate cancers occur at a depth of less than 30 mm from the rectal wall [22]. As a lens
material, we selected Epotek-301 (Epoxy Technologies, Billerica, MA, USA), because the
optical transparency of the material is 0.95 in the 382–1640 nm range [23]; its refractive
index is 1.519. The equations derived for the optical lens design based on the ray-tracing
method and numerical-simulation results can be found in Appendix A.

Figure 2. Conceptual illustration of (a) the developed TRUS–PA probe with two optical lenses placed
on each side of the ultrasound (US) array transducer and the desired optical lens with (b) a concave–
convex shape in the lateral-axial plane and (c) a planar–oblique shape in the elevation-axial plane.

As a result, the concave–convex radii were selected to be 8 and 11.5 mm (see Figure 3a).
In this case, an FOV of 105◦ in the lateral-axial plane was expected. Moreover, the incli-
nation angle of the oblique boundary for the planar–oblique lens was determined to be
80◦. With these parameters, a positive mold for the optical lens was designed by using a
3D CAD (Computer Aided Design) program and created by using a 3D printer (Form 2,
Formlabs, MA, USA), as shown in Figure 3a,b. Glass plates surrounded the positive mold,
to construct dams, and Room-Temperature-Vulcanizing (RTV) silicone rubber (RTV664,
Momentive Performance Material Inc., Waterford, NY, USA) was poured into the positive
mold and cured at room temperature, for 24 h. The negative RTV mold was prepared after
removing the positive mold (Figure 3c). Epotek-301 resin and hardener were mixed at
a ratio of 4:1, and the epoxy mixture was degassed for 10 min. The epoxy mixture was
poured into the negative RTV mold and cured at room temperature, overnight, in a dry
box. Finally, the completed optical lens was separated from the RTV mold, as shown in
Figure 3d.
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Figure 3. (a) Optical lens designed by a 3D CAD (Computer Aided Design) program; (b) positive
optical lens mold constructed by using a 3D printer; (c) negative optical lens mold constructed by
using Room-Temperature Vulcanizing (RTV), to fabricate the optical lens with the lens material,
i.e., Epotek-301; and (d) completed optical lens of which inner and outer radii were 8 and 11.5 mm,
respectively, and oblique angle was 80◦.

2.2. Transrectal Ultrasound Array

We designed and fabricated a miniaturized 7 MHz TRUS array transducer, of which the
footprint was 11.4 mm (lateral) × 5 mm (elevation): 128 elements, 30 mm elevational focal
length, and 134.5◦ FOV. Geometric focus in the elevation direction, instead of lens focus,
was employed to avoid ultrasound attenuation in an acoustic lens material. Therefore, the
array transducer had a saddle-shaped aperture (Figure 4a). The first and second acoustic
matching layers were 2–3.5 μm silver-loaded epoxy and mixture of Insulcast 502 and
Insulcure 9. The backing block was constructed by using Epotek-301. To obtain high
transmission and reception efficiency, additionally, a PZT-5H-based 1–3 piezocomposite
was designed and fabricated (Figure 4b). For a small-sized TRUS probe, FPCB (flexible
printed circuit board) should be completely bent perpendicular to the convex surface.
For this, a new structure of FPCB, with several strain relief slits between the signal trace
groups, was developed (Figure 4c). The center frequency and −6 dB fractional bandwidth
of the fabricated TRUS array were measured at 6.75 MHz and 66%, respectively. The
detailed fabrication process and imaging performance of the TRUS array developed for the
TRUS–PA probe can be found in Reference [24].

 
Figure 4. (a) Description of acoustic structure of the developed TRUS probe, (b) photograph of the finished 1–3 piezocom-
posite, and (c) photograph of the finished TRUS probe. Reprinted with modification from Reference [24].

145



Sensors 2021, 21, 1217

2.3. Housing

The TRUS–PA probe housing was designed using a 3D CAD software to integrate the
miniaturized TRUS array, optical lens, and bifurcated optical fiber bundles (Figure 5). The
cross-section size of the front part of the housing, that is inserted into the patient’s rectum for
imaging, was determined to be 14 mm × 15 mm, considering the usefulness in the diagnosis
and the alleviation of the patient’s pain during imaging (Figure 5b). The housing had two
grooves for mounting the fabricated optical lenses. Moreover, the outlets of the optical fiber
bundles were fixed on the aligners in the housing (Figure 5c). A prototype of the TRUS–PA
probe housing was constructed using the 3D printer, and the material of the housing was
biocompatible photopolymer resin. Figure 1 shows the photographs of the completed
TRUS–PA probe. The remarkable fact is that the maximum cross-sectional size of the
developed TRUS–PA probe was about 20.5 mm, which was comparable to the commercial
TRUS transducers although the probe contained both acoustic and optical modules.

Figure 5. (a) Schematic illustration of the custom-designed housing of the TRUS–PA probe: (a) side
view and (b) front view of the housing, and (c) cross-section view of the housing tip.

3. Performance Evaluation and Discussion

3.1. Light-Intensity Distribution

The performance of the developed optical lens was evaluated by measuring the light-
intensity distribution as a function of depth. A continuous wave (CW) laser system (Nova
Pro., RGB Photonics GmbH, Kelheim, Germany) was used to deliver a CW laser with a
wavelength of 520 nm to a custom-made bifurcated optical fiber bundle with an NA of
0.66 (see Figure 6). Since irradiated light is scattered in biological media, we selected the
fiber bundle with a relatively large NA; otherwise, the light hardly reached an imaging
plane without the developed optical lens when the outlets of the fiber bundle were parallel
to light propagation direction. For evaluating the performance of the optical lenses, we
placed the optical lenses as close as possible to the bundle outlets, because it was assumed
that a collimated beam entered the optical lens. Light intensity was measured after an
optical screen was placed at a desired distance from the outlets of the fiber bundle, i.e., 10
to 60 in 10 mm increments. The light-intensity distribution on the screen was detected and
recorded, using a charge-coupled device (CCD) camera (CoolSNAP MYO, Photometrics,
Tucson, AZ, USA) equipped with an optical lens (Micro-Nikkor 105 f/2.8, Inc., Rochester,
NY, USA).
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Figure 6. Illustration of the experimental setup for light-intensity distribution measurement as a function of depth. CW,
continuous wave; CCD, charge-coupled device.

As shown in Figure 7a,c, the light-intensity distribution without the optical lens was
naturally diffused, because an uncollimated beam (i.e., an NA of 0.66) was irradiated. The
diffusion in biological media may be beneficial to a small-sized TRUS–PA probe in which
optical fiber bundles are simply attached parallel to each side of an US transducer. In this
particular experiment, the light beams irradiated from two optical fiber bundle outlets were
separated from one another at depths of 10 and 20 mm, and these began to overlap after a
depth of 30 mm (see Figure 7a). Since the irradiated light beams did not overlap completely
in the imaging plane, the light intensity was weak in the imaging plane (i.e., lateral-axial
plane), and the FOV of PA images was predicted to be narrow, as shown in the top panel
of Figure 8. In this depth, additionally, the light intensity was strong in the off-axis of an
imaging plane, thus resulting in reducing spatial and contrast resolutions of PA images;
the adverse effect occurs for a similar reason that the spatial and contrast resolutions of US
images are reduced due to large slice thickness (i.e., elevation resolution) [25]. In contrast,
the light beams passing through the optical lenses overlapped from a depth of 10 mm
(Figure 7b), and the light intensity at depths of 10 and 20 mm was about 5.3 and 4.6 times
higher than that of the light delivered without the optical lens (the top panel of Figure 8).
Additionally, the light-intensity distribution was wider in the imaging plane when the
optical lens was used. This is because the lens had the ability to spread the irradiated light
in the lateral-axial plane and refract it in the elevation-axial plane. The full-width at half
maximum (FWHM) of the irradiated light through the lens was 20.2, 25.5, and 28.9 mm at
depths of 10, 20, and 30 mm, whereas that of the light without the lens was 17.4, 12.3, and
15.8 mm. The maximum intensity of the light through the lens was similar to that without
the lens at a depth of 30 mm as shown in Figure 8. After this depth, the maximum intensity
of the light through the lens decreased slightly with depth, because the focal length of
the planar–oblique lens in the elevation-axial plane was 25 mm and the light continued
to spread in the lateral-axial plane; however, the FWHM also continued to broaden, i.e.,
31.1, 32.1, and 32.5 mm at depths of 40, 50, and 60 mm, whereas the FWHM of the light
irradiated without the lens was 21.8, 25.0, and 27.8 mm at depths of 40, 50, and 60 mm (the
bottom panel of Figure 8). Note that moving averaging filtering with a length of 30 was
performed for smoothing the pixel data indicated by the black lines.
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Figure 7. Measured light-intensity distributions at depths of 10 to 60 mm in 10 mm increments: (a,c)
without the optical lenses and (b,d) with the optical lenses. The black dashed lines on each image
indicate the imaging plane that is the center position of the US array transducer.

 
Figure 8. Light-intensity profiles measured along horizontal axis (i.e., imaging depth), indicated by the black dashed lines
in Figure 7. The red and blue solid lines represent the moving averaged light intensities, without and with the optical lenses,
respectively. The black lines indicate the measurement data.

The experimental results implied that the developed optical lens was predicted to be
beneficial for PA image quality improvement and wide FOV. However, the performance
may be different in biological media in which irradiated light spreads rapidly due to optical
scattering, depending on the type of biological media [26]. In the results of Monte Carlo
simulation (see Appendix C Figure A3), it was observed that the direction of the light
scattering is dominated by the energy distribution of the initially irradiated light. Therefore,
the developed optical lens was also expected to play an important role in increasing FOV
and improving PA image quality in biological media. This was confirmed through the
following experiments conducted to evaluate imaging performance.
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3.2. Imaging Performance

The effect of the developed optical lens on FOV and PA signal intensity was ascertained
through PA imaging of tungsten wires that were placed radially; each wire with a diameter
of 100 μm was positioned at -75◦ to 75◦ at 15◦ angular intervals, and 5 to 55 mm at 10 mm
radius intervals. The wire phantom was immersed into a container filled with 3% milk
solution that served as optical scatterers. For imaging, laser pulses with a length of 7 ns
and a wavement of 720 nm were generated by a Nd:YAG laser excitation system (Surelite
III-10, Continuum Inc., Santa Clara, CA, USA), followed by an optical parametric oscillator
(Surelite OPO Plus, Continuum Inc.). The developed TRUS–PA probe was connected to
a commercial US imaging system (Vantage Research Ultrasound System, Verasonics Inc.,
Kirkland, WA, USA), to acquire PA image data. PA images were reconstructed, using an
adaptive beamforming algorithm on MATLAB (MathWorks Inc., Natick, MA, USA) [27],
and these were logarithmically compressed with a dynamic range of 35 dB. Note that a
laser induced the noise signals that appeared on the PA images (Figure 9) in the dynamic
range. The noise can be considerably reduced when electromagnetic interference shielding
methods are applied to the housing and connector of the TRUS–PA probe for the purpose
of commercialization.

Figure 9. PA images of tungsten wire targets, (a) without and (b) with the developed optical lens. The white arrows in (a)
indicate the invisible wire targets on the PA image in (a), but visible in (b). (c,d) Normalized envelope profiles of the wire
target images along (c) the axial direction at the center position in the lateral direction and (d) the lateral direction at a depth
of 28 mm.

In visual assessment, it was seen that the TRUS–PA probe with the developed opti-
cal lens provided a higher-quality PA image than without the optical lens (Figure 9a,b).
Without the developed optical lens (Figure 9a), the wires located at 38 and 48 mm barely
appeared on the image because PA signal intensity was similar to the noise. Note that the
distance between the probe and the front wires was about 5 mm. In addition, there were
some invisible wire images even at 25 mm, which were indicated by the white arrows.
When the optical lens was used, in contrast, the wire images positioned up to 35 mm were
clearly observed and some wires located at 45 mm also appeared; however, the wire images
on the edge were not visible. This is possible because the outer scanlines of both US and PA
images were generally formed by using fewer channel datasets than the middle scanlines.
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For example, only 32 channel datasets are available for the outermost scanline, whereas the
center scanline is formed by using 64 channel datasets. Based on the position of the wire
images, it was found that the FOV of the developed TRUS–PA probe was about 120◦ at a
depth of 25 mm, and it was 90◦ at 35 mm. Note that the optical lens was designed to have
an FOV of 105◦ in the lateral-axial plane and a focal length of 25 mm for the planar–oblique
lens in the elevation-axial plane. To assess the effect of the lens on PA signal intensity, the
envelope signals generated from the center wires (Figure 9c) and the wires along the arc
of the circle with a radius of 25 mm (Figure 9d) were obtained. The PA signals acquired
with the optical lens were much higher than those without the lens (i.e., 2.98 times higher
on average). From the experimental results, it could be concluded that the developed
optical lens was effective in focusing irradiated laser onto the imaging plane, even in the
scattering medium.

3.3. Combined US and PA Imaging of Targets Behind the Procine Intestine

The prostate is positioned behind the wall of the rectum. Therefore, we measured
light penetration through the porcine intestine, to predict the effect of the rectal wall on
the PA imaging of the prostate and to determine an optimal wavelength for PA imaging
of the prostate. This experiment was necessary because some researchers have reported
Monte Carlo simulation results that light intensity passing through the rectal wall is limited
for transrectal PA imaging due to the high light absorption in the rectal wall. Based on
the simulation results, they asserted that the transrectal approach for PA imaging of the
prostate might not be suitable, and it would be difficult to achieve sufficient imaging depth,
spatial resolution, and FOV for the prostate PA imaging [28,29].

For the attenuation measurement to explore the possibility of the TRUS–PA imaging
of the prostate, the Nd:YAG laser excitation system, followed by the optical parametric
oscillator, was used to generate 7 nm laser pulses, as shown in Figure 10a. The laser
energy delivered by the bifurcated optical fiber bundle was measured by using an energy
meter (MAESTRO, Gentec-EO Inc., Quebec, QC, Canada) and recorded. The laser energy
measured without the porcine intestine served as a reference at a given laser wavelength.
After placing the porcine intestine between the optical fiber bundles and the energy meter,
the laser passing through the porcine intestine was measured. The thickness of the porcine
intestine was about 3 mm, which is similar to the median human rectal wall thickness [30].
A ratio of laser energy penetration was calculated by dividing the measured laser energy by
the reference. This process was repeated by changing the wavelength from 650 to 975 nm,
at 25 nm intervals. Note that the experiments were performed four times, with different
porcine intestines. As shown in Figure 10b, the highest mean ratio of the laser energy
penetration was 26.3% at a wavelength of 780 nm, and the average of the mean ratios at all
the wavelengths was 21.9%.

The feasibility of combined US and PA imaging through the porcine intestine was
investigated. For this, five graphite rods with a diameter of 0.5 mm were embedded
diagonally in chicken breast specimens covered by the porcine intestine, as shown in
Figure 11a. For the PA imaging, a wavelength of 780 nm was selected. Despite the
presence of the porcine intestine, the graphite targets were well distinguished from the
speckle pattern in the US image of the chicken breast tissue, which were indicated by
the white arrows in Figure 11b; the PA intensity decreased 2.4 times on average when
the porcine intestine was covered, compared to that without the porcine intestine cover
(see Appendix C Figure A4). Note that the measurement of the laser penetration shown
in Figure 10 was conducted without the developed optical lens. Due to the beam focus
on the imaging plane by the optical lens, the reduction ratio in the imaging test was
smaller than the direct measurement. Unlike the previously reported simulation results,
the experimental results showed the possibility of acquiring a combined US and PA image
of the prostate through the human rectum intestine. The similar results were also obtained
in vivo, as shown in Figure 11d.
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Figure 10. (a) Illustration of the experimental setup for measuring laser penetration through the
porcine intestine and (b) ratio of laser energy penetration as a function of wavelength, which was
obtained after measuring laser energy, both with and without the porcine intestine. The circles and
the error bars indicate the mean and the variation. OPO and DAQ stand for optical parametric
oscillator and data acquisition, respectively.

Figure 11. (a) Photograph of the imaging target used for the ex vivo experiments and (b) combined US and PA image
of the five graphite rods in the chicken breast tissue covered by the porcine intestine. The US and PA images were
logarithmically compressed with a dynamic range of 55 and 25 dB, respectively. (c) Photograph of the xenograft BALB/c
(Albino, Immunodeficient Inbred Strain) mouse covered by the porcine intestine for the in vivo experiments and (d)
combined US and PA images of the tumor site on the mouse. The US and PA images were logarithmically compressed with
dynamic ranges of 45 and 25 dB, respectively.

For the in vivo experiment, the xenograft BALB/c (Albino, Immunodeficient Inbred
Strain) mouse model, in which PC-3 prostate cancer cells were implanted around the thigh,
was prepared. The animal experiment was conducted in accordance with the guidelines
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and regulations approved by the Institutional Animal Care and Use Committee of Seoul
National University Bundang Hospital, South Korea. The mouse model was fixed on the
acoustic absorber, and the porcine intestine was placed on the back of the mouse, enough
to cover the tumor, as shown in Figure 11c. The laser wavelength was set to 780 nm for
the PA imaging. Figure 11d shows the combined US and PA image of the PC-3 tumor
mouse model. The white dashed line in this image represents the tumor boundary, and
the two solid lines indicate the porcine intestine boundary. Note that suspicious tumors
appear hypoechoic in US images [31]. The PA signals were observed around and inside
the tumor, which may be evidence of the neovascularization for tumor cell growth [12,32].
Additionally, it was seen that the developed TRUS–PA probe was able to acquire the entire
PA image of the mouse thigh behind the porcine intestine (i.e., about 25 mm depth from
the porcine intestine), even though no contrast agent was used.

4. Conclusions

The primary challenge in accurate diagnosis of prostate cancer is to locate micro-
and neo-vascularization accurately, as well as to delineate the cancer boundary clearly.
Combined US and PA imaging is the most feasible way to achieve the goal because of
high-sensitivity PA imaging of blood vessels in conjunction with US anatomic imaging;
this emerging method is analogous to combined CEUS and US B-mode imaging that is less
sensitive to small blood vessels and slow blood flow even if US contrast agents are used.
Additionally, it is well-known that PA imaging is able to provide clear visualization of a
biopsy needle. As a result, the diagnosis of prostate cancer can be another candidate for
clinical application of combined US and PA imaging. This can be realized by a combined
US and PA imaging system equipped with a high-performance hybrid imaging probe.
Based on the ex vivo and in vivo experimental results, we believe that the FPCB, acoustic
structure, and optical lens developed in this study can contribute to the realization of a
high-performance TRUS–PA probe for accurate diagnosis of prostate cancer, because these
features enable the developed TRUS–PA probe to improve PA image quality, as well as to
have a cross-section size and a field of view comparable to those of general TRUS probes.
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Appendix A. Optical Lens Design

The optical lenses were designed and modeled by using the ray tracing technique [20,21].
Rays, idealized models of light, can be obtained by selecting a line that actually indicates
the direction of energy flow perpendicular to light wavefront. Rays were used to model
light propagation through optical systems, such as optical lenses. Ray tracing is achieved
by dividing a light irradiation field into discrete rays that can be used to estimate the
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path of light through an optical system. Ray tracing is described by three equations, i.e.,
refraction, reflection, and transfer equations.

Based on the ray tracing technique, a desired optical lens could be simply designed.
For the sake of simplification, we assumed that a ray was a collimated beam (i.e., light
diffraction was not considered) and ignored the law of refection. The desired optical
lens should produce a divergent beam in the lateral-axial plane (Appendix A Figure A1a)
and a refracted beam in the elevation-axial plane (Appendix A Figure A1b); the optical
lens should have a concave–convex shape in the lateral-axial plane for divergence and a
planar–oblique shape in the elevation-axial plane for refraction.

For a divergent ray in the lateral-axial plane, we considered collimated rays that pass
through a concave boundary. In this case, Snell’s law leads to the following:

sin(θ2) =
n1

n2
sin(θ1), (A1)

where θ1 and θ2 are the angles of incident and refracted rays; n1 and n2 are the refractive
indices of air and the lens material (see Figure A1c). Therefore, θ1 and θ2 can be calculated
by using the following equation:

θ1 = sin−1
(

x1

R1

)
, (A2)

θ2 = sin−1
(

n1

n2

x1

R1

)
, (A3)

where x1 is the radius of the incident beam, and R1 is the radius of curvature of the concave
boundary. The geometry yields are as follows:

φ1 = θ1 − θ2 = sin−1
(

x1

R1

)
− sin−1

(
n1

n2

x1

R1

)
(A4)

and
sin(φ2) =

x2

R2
, (A5)

where R2 is the radius of curvature of the convex boundary, and x2 is determined by
the following:

x2 = x1 + tan(φ1)[R2cos(φ2)− R1cos(θ2)], (A6)

By using Equations (A4) and (A5), at the convex boundary, θ3 can be expressed
as follows:

θ3 = φ2 − φ1 = sin−1
(

x2

R2

)
− sin−1

(
x1

R1

)
+ sin−1

(
n1

n2

x1

R1

)
, (A7)

When passing through a convex boundary, the ray also experiences Snell’s law, which
is given by the following:

sin(θ4) =
n2

n1
sin(θ3) =

n2

n1
sin
[

sin−1
(

x2

R2

)
− sin−1

(
x1

R1

)
+ sin−1

(
n1

n2

x1

R1

)]
, (A8)

Finally, the divergent angle, φ3, can be expressed as follows:

φ3 = φ2 − θ4. (A9)
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Figure A1. Conceptual illustration of the desired optical lens in (a) the lateral-axial plane and (b) elevation-axial plane. The
models for divergence and refraction in the lens are shown in (c,d), respectively.

For the transrectal ultrasound–photoacoustic (TRUS–PA) imaging, the size of incident
light (i.e., x1) is determined by the height of an optical fiber bundle. After selecting the
desired divergent angle, φ3, the design parameters R1 and R2 can be determined by using
Equations (A5), (A8), and (A9). Note that if the radius of curvature of the concave boundary,
R1, is much longer than the incident beam radius, x1, Equation (A9) can be approximately
expressed as follows:

φ3 ≈
(

1 − n2

n1

)
x2

R2
+

n2

n1

(
1 − n1

n2

)
x1

R1
, (A10)

because it is valid that sin(θ) ≈ θ if θ < 14
◦
, at which an error rate is 1%.

For converging light illumination in the elevation-axial plane, collimated rays meet
the planar boundary at which normal incidence occurs (see Appendix A Figure A1d). The
rays are only refracted at the oblique boundary. The angle of refraction is as follows:

θ2 = sin−1
(

n1

n2
sin(θ1)

)
, (A11)

where n1 and n2 are the refractive indices of air and the lens material, and θ1 can be obtained
by the following:

θ1 = 90 − ϕ1. (A12)

Note that ϕ1 is the inclination angle of the oblique boundary. Moreover, the angle of
the refracted ray to the z-axis is derived as follows:

ϕ2 = ϕ1 + θ2 − 90. (A13)

Finally, the focal length from the surface of an ultrasound transducer can be derived
as follows:

F = L +
0.5H

tan(ϕ1)
+

d + 0.5H
tan(ϕ2)

, (A14)

where L is the length of the short base of the planar–oblique lens, H is the height of the
lens, and d is the gap between the focal depth and the lens in the elevation direction. Note
that d is approximately equal to half the height of an ultrasound transducer.
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Appendix B. Numerical Simulation

The equations derived for the optical lens design cannot be expressed as a closed form.
The target parameters for the concave/convex-shaped lens are the radius curvatures (i.e., R1
and R2), whereas the parameter for the planar/oblique-shaped lens is the inclination angle
of the oblique boundary, ϕ1. When other parameters were given, the target parameters
were found by numerical simulation.

As an optical lens material, we chose Epotek-301 (Epoxy Technologies, Billerica, MA,
USA) because the optical transparency of the material is 0.99. Its refractive index (i.e., n2) is
1.519. We assumed that other media was air, of which the refractive index is 1.0003 (i.e., n1).
Since the length of the optical fiber bundle used for this study was 13 mm, the radius of the
collimated beam (i.e., x1) was set to be 6.5 mm. For efficient photoacoustic (PA) imaging of
the prostate, the field of view (FOV) in the lateral-axial plane should be as wide as possible;
our target FOV was wider than 100◦, so the desired divergent angle, φ3, in Equation (A9)
should be larger than 50◦. With the given parameters, we conducted iterative numerical
simulation to find the radius curvatures (i.e., R1 and R2) of the concave/convex-shaped
lens. Finally, we selected a R1 of 8 mm and a R2 of 11.5 mm. In this case, FOV was expected
to be 105◦ (see Appendix B Figure A2a).

Figure A2. Results of numerical simulation based on the equations derived by using the ray tracing
method: (a) concave/convex-shaped lens in the lateral-axial plane and (b) planar/oblique-shaped
lens in the elevation-axial plane. Note that the magenta lines are collimated incoming rays, and the
red lines are the refracted rays.

For the planar/oblique-shaped lens, the height of the lens (i.e., H) was set to be 2 mm,
the height of the optical fiber bundle was 2 mm, and the focal length (i.e., F) was chosen to
be 25 mm. Since the height of the TRUS transducer in the elevation direction was 5.5 mm,
the gap between the focal depth and the lens in the elevation direction (i.e., d) was set to be
2.75 mm. Moreover, the length of the short base of the planar–oblique lens L was 3.5 mm,
which was the difference between R1 and R2. From the iterative numerical simulation,
finally, the inclination angle of the oblique boundary (i.e., ϕ1) was determined to be 80◦
(see Appendix B Figure A2b).

Appendix C. Monte Carlo Simulation

The simulation was conducted by using a Monte Carlo light-scattering program
(available from the Oregeon Medical Laser Center, https://omlc.org/software (accessed
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on 10 December 2020)), to ascertain the effect of optical scattering on the performance of
the developed optical lens (see Appendix C Figure A3). The results imply that the direction
of light scattering is determined by initial optical intensity distribution. In other words, it
is not significant that the optical energy is widened by the natural diffusion, because the
amount of the optical energy or energy distribution is mainly determined by the initial
direction of irradiated light.

 

Figure A3. Results of the Monte Carlo simulation for light propagation in optical scattering media;
light is delivered (a) in parallel and (b) at an oblique angle.

 
Figure A4. (a) Photograph of the imaging target used for the ex vivo experiments and (b) lateral beam profiles of the
five graphite rods in the chicken breast tissue, without (solid line) or with (dashed line) the porcine intestine cover. (c,d)
Combined ultrasound and photoacoustic images of the image target, (c) without and (d) with the porcine intestine cover.
The US and PA images were logarithmically compressed with a dynamic range of 55 and 25 dB, respectively.
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Abstract: Carfilzomib is mainly used to treat multiple myeloma. Several side effects have been
reported in patients treated with carfilzomib, especially those associated with cardiovascular events,
such as hypertension, congestive heart failure, and coronary artery disease. However, the side
effects, especially the manifestation of cardiovascular events through capillaries, have not been fully
investigated. Here, we performed a pilot experiment to monitor peripheral vascular dynamics in a
mouse ear under the effects of carfilzomib using a quantitative photoacoustic vascular evaluation
method. Before and after injecting the carfilzomib, bortezomib, and PBS solutions, we acquired
high-resolution three-dimensional PAM data of the peripheral vasculature of the mouse ear during
each experiment for 10 h. Then, the PAM maximum amplitude projection (MAP) images and five
quantitative vascular parameters, i.e., photoacoustic (PA) signal, diameter, density, length fraction,
and fractal dimension, were estimated. Quantitative results showed that carfilzomib induces a strong
effect on the peripheral vascular system through a significant increase in all vascular parameters
up to 50%, especially during the first 30 min after injection. Meanwhile, bortezomib and PBS
do not have much impact on the peripheral vascular system. This pilot study verified PAM as a
comprehensive method to investigate peripheral vasculature, along with the effects of carfilzomib.
Therefore, we expect that PAM may be useful to predict cardiovascular events caused by carfilzomib.

Keywords: carfilzomib; peripheral vasculature; photoacoustic microscopy; quantitative analysis

1. Introduction

Carfilzomib is a second-generation proteasome inhibitor, mainly used to treat multiple
myeloma (MM) [1]. Combined with dexamethasone or lenalidomide and dexamethasone,
carfilzomib has proven to significantly improve the survival outcomes of relapsed refractory
MM patients in randomized phase 3 clinical trials [2]. Although carfilzomib is generally
well tolerated, it is associated with adverse cardiovascular events, including hypertension,
congestive heart failure, and coronary artery disease. In a small prospective study, patients
treated with carfilzomib exhibited more cardiovascular events than those treated with
bortezomib (51% vs. 17%, P = 0.002), and patients who experienced cardiovascular events
exhibited significantly inferior progression-free survival (P = 0.01) and overall survival
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(P < 0.001) [3]. While the mechanisms of cardiovascular adverse events have not been
completely elucidated, one study suggests that endothelial dysfunction in the coronary
vasculature caused by proteasome inhibition impacted the development of cardiovascular
adverse events [4]. Generally, endothelial dysfunction is not limited to coronary vasculature
and may affect peripheral vasculature, which could predict cardiovascular events [5].
Therefore, we hypothesize that proteasome inhibitors change the peripheral vasculature,
and the identification of these changes may be a useful and convenient method to predict
cardiovascular events using carfilzomib.

Various imaging modalities already contribute to the investigation and monitoring
of the peripheral vasculature and its changes. Computed tomography (CT) and magnetic
resonance imaging (MRI) can visualize the peripheral vasculature by injecting contrast
agents [6,7]. Unfortunately, these are limited due to their relatively low resolution, radiation
exposure, exogenous contrast, large system size, high post-processing time, and high cost.
Ultrasound imaging (USI), with the Doppler effect, is also utilized to obtain vasculature
information. However, Doppler USI is limited to the visualization of microvasculatures.
Recently, USI has been used to visualize the microvasculatures of a mouse brain using
microbubble-contrast agents and fast GPU processing of big data [8]. Optical imaging
techniques, such as confocal microscopy (CM), multiphoton microscopy (MPM), and optical
coherence tomography (OCT), have been utilized to visualize microvessels, based on a
focused beam with a spatial resolution less than 10 μm [9–14]. Nevertheless, due to light
scattering, CM and MPM are limited by a penetration depth in the range of hundreds of
micrometers. Furthermore, these methods require additional contrast agents. Although
OCT enables a better imaging depth (approximately 1 mm), it still requires complex signal
processing.

One of the most notable imaging methods spotlighted in recent times is photoacous-
tic microscopy (PAM). Based on the photoacoustic (PA) effect that generates ultrasonic
waves from light absorption, it inherits the hybrid imaging property of optical imaging
and USI [15–17]. Owing to less scattering of ultrasound in the tissue, PAM can achieve
a penetration depth of up to several centimeters and completely break the optical transport
mean free path (i.e., ~1 mm) of pure optical imaging techniques. Depending on the crucial
imaging setup, PAM can also provide multi-scale resolution from nano- to micro-scales
by maintaining its optical absorption contrast. These benefits overcome the limited reso-
lution of USI [18–20]. Moreover, PAM is a compact, inexpensive, non-ionized, label-free,
functional, and real-time imaging modality [21–25]. It particularly aids the visualization of
the distribution of intrinsic molecules in the body, such as hemoglobin, lipid, melanin, and
proteins [26–31].

Additionally, PAM is widely utilized to visualize vasculatures and monitor their
changes. For peripheral vascular visualization, B. Rao et al. reported an optical resolution-
PAM (OR-PAM) system to visualize mouse ear microvasculatures [32]. A dual-modality
imaging system combining PAM with USI was reported by Y. Tang [33] to achieve anatomi-
cal and functional information of a mouse’s hind paw. Moreover, aiming towards human
implementation, a PAM-based system for human peripheral arteries was developed [34].
For drug monitoring, Y. Liu et al. used the PAM system to assess norepinephrine via
cerebral vessels [35]. Additionally, R. Bi et al. investigated orthotopic glioma blood vessels
under the effect of combretastatin A4 phosphate [25]. L. Nie et al. proved PAM’s effec-
tiveness in monitoring nanocarrier-enhanced chemotherapy response in the early stage of
brain tumor treatment [36].

However, most of these peripheral vascular visualization studies are interpreted qual-
itatively. To improve the accuracy in assessing the abnormal vascular, vessel quantitative
parameters need to be extracted such as diameter, density, length fraction, and fractal
dimension. One of the most common parameters of a blood vessel, the diameter, represents
its size. A change in temperature causes a change in the vascular diameter [37]. The phases
of perfusion of NaCl are also reflected through variation in brain vessel diameter [38]. Fur-
thermore, a change in retinal vessel diameter has been shown to be a sign of stroke [39–41].
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The density and length fraction of vessels implies the value of the whole vessel area and
the total vessel length, respectively. These parameters play an important role in evaluating
blood vessel abnormalities of the retina such as hyperoxia or glaucoma [42–45]. In addition,
the vascular density was monitored for malignant and non-malignant skin [46,47]. Fractal
dimension describes how completely a vascular network fills a space [48]. On the other
hand, it indicates the vessel tortuosity and branching [49]. Hence, fractal dimension is used
to describe the complexity of biological structures, including the coronary [50], parafoveal
capillary network [51] and tumor vascular network [48]. Therefore, these parameters reveal
the characteristic features of a blood vessel, which are especially useful in monitoring
abnormalities that occur in the blood vessels.

In this study, we focus on photoacoustically monitoring the dynamics of peripheral
vasculatures in mouse ears under the effect of carfilzomib for 10 h using high-resolution
label-free OR-PAM. The same follow-up imaging process was repeated with the injection
of bortezomib and PBS. After acquiring three-dimensional OR-PAM data for all the cases,
the OR-PAM MAP images were reconstructed and analyzed. For a comprehensive assess-
ment, the peripheral vasculature’s structural morphology was also monitored, and the
quantitative vasculature evaluation process, including diameter, density, length fraction,
fractal dimension, and PA signal, was implemented.

2. Materials and Methods

2.1. Carfilzomib Solution

The proteasome inhibitors carfilzomib (Kyprolis; Onyx Pharmaceuticals, San Francisco,
CA, USA) and bortezomib (Velcade; Millennium Pharmaceuticals, Cambridge, MA, USA)
were dissolved in sterile, 0.9% (v/v) normal saline immediately before use. Carfilzomib and
bortezomib, at a dose of 10 and 0.5 mg/kg in 100 μL PBS, respectively, were administrated
to the mice by intravenous injection. The doses of carfilzomib and bortezomib were
determined based on previous studies [52]. In clinical practice, the bortezomib dose is
constant. However, the dose of carfilzomib depends on the combination of drugs or the
administration schedule. We selected a higher dose of carfilzomib in this experiment,
as cardiovascular events are associated with higher carfilzomib doses [53].

2.2. Animal Preparing

All experimental animal procedures followed laboratory animal protocols approved by
the Institutional Animal care and use committee of Chonnam National University Hwasun
Hospital (CNU IACUC-H-2018-68). Healthy six-to-eight-week-old female BALB/c (H-2d)
mice, weighing ~20 g, were purchased from Orient Bio (Iksan, Korea) and maintained under
specific pathogen-free conditions. Each mouse was anesthetized with an intraperitoneal
injection of Ketamine (80 mg/kg)/Xylazine (12 mg/kg). After removing the downy hairs
on its ear, the mouse was placed on a homemade animal holder. An isoflurane system
(Luna Vaporiser, NorVap international LTD, Barrowford, UK) for gaseous anesthetization
and a temperature maintain bed were used in long-term in vivo observation (10 h) to
maintain stable body conditions of the mouse. The energy of the illuminated laser pulse
on the mouse skin was approximately 5 mJ/cm2 below the American National Standards
Institute (ANSI) safety limit (20 mJ/cm2).

2.3. Optical-Resolution Photoacoustic Microscopy

Figure 1 describes the schematic of the OR-PAM system. Trigger signals from the
data acquisition (DAQ) board (PCIe-6321, NI instruments, Austin, TX, USA) were sent to a
diode laser (SPOT-10-200-532, Elforlight, Daventry, UK) to operate the primary laser beam
at a wavelength of 532 nm. The fired laser beam, with a duration of 6 ns, was spatially
filtered by an iris (SM1D12, Thorlabs, Newton, NJ, USA). The reshaped laser beam was
reflected between a pair of mirrors to transfer it to a collimator (F280APC-A, Thorlabs, NJ,
USA; f = 18.07 mm, NA = 0.15). After coupling into a single-mode optical fiber (P1-405BPM-
FC-1, Thorlabs, NJ, USA), the laser beam was efficiently delivered to the second collimator
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(F260APC-A, Thorlabs, NJ, USA, f = 15.01 mm, NA = 0.17). An objective lens (AC254-060-A,
Thorlabs, NJ, USA), with a focal length of 60 mm, was utilized to focus the collimated laser
beam. A high-precision zoom housing (SM1ZM, Thorlabs, NJ, USA), which could adjust
the optical focal plane, with a maximum of 4.1 mm along the z-axis, was used to mount
the objective lens. The focused beam was passed through a correction lens and made to
penetrate a hand-made beam combiner. Inside the combiner, the beam was reflected by
a layer created by a normal and an aluminum-coated prism. Before the focused beam
illuminated the sample, the focused beam was redirected by reflecting it on the mirror of
the MEMS scanner (OptichoMS-001, Opticho Inc., Ltd., Pohang, Korea) and passed through
a tank. The confocal and co-axial alignment of the incident laser beam and ultrasound
occurred between the combiner and the MEMS scanner’s mirror. The omnidirectional
photoacoustic wave was generated immediately after the illumination of the sample.
With the focused support of a concave lens located on the right side of the combiner, the PA
wave easily passed through the combiner and was detected by a high-frequency ultrasonic
transducer (V214-BC-RM, 50 MHz, Olympus, Tokyo, Japan). The signal acquisition part
aimed to improve and convert the PA waves into image information. Two RF-amplifiers
(ZX60-3018G-S+, Mini-Circuit, Brooklyn, NY, USA) were used to amplify the released
PA wave from the sample. Then, a high-speed digitizer (ATS9371, AlazarTech, Pointe-
Claire, QC, Canada) digitalized the signal to convert it into primary image information.
A linear stepper motor stage (L-509-10SD00, Physik Instrumente, Karlsruhe, Germany) on
the y-axis was associated with the MEMS scanner on the x-axis to obtain the 3D image
data. This integrated scan system was used to drive the beam to scan the object’s surface,
with a speed of 25 Hz B-scan. The data acquisition time for a mouse ear with an area
of 10 × 12 mm is 180 s. The measured lateral and axial resolutions were 12 and 45 μm,
respectively [21]. A LabVIEW program (National Instruments, Austin, TX, USA) was used
to operate the OR-PAM system. The released image information was reconstructed and
analyzed with MATLAB (R2016a, Mathworks, Natick, MA, USA).

 

Figure 1. Optical-resolution photoacoustic microscopy (OR-PAM) system to monitor the peripheral vasculature of the mouse
ear. (a) Schematic of OR-PAM, (b) Photograph of the OR-PAM probe part. I, iris; M, mirror; C, collimator; OL, objective
lens, CL, correction lens, TR, transducer; BC, beam combiner; AL, acoustic lens; UT, ultrasound transducer; AM, amplifier;
MC, motion controller; MEMS, MEMS scanner.

2.4. Quantification Evaluation Process of OR-PAM Image

Figure 2 illustrates the quantitative evaluation process of the OR-PAM images and
presents the two main steps involved: (1) image segmentation and (2) quantitative parame-
ter extraction. In the segmentation stage, the multi-scale Hessian filter, intended specifically
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for vascular objects, was used. The Hessian filter could separate the boundaries between
blood vessels and the background based on the second-order gradient of the image [54].
By utilizing multiple scales, multi-size vessels were segmented. The binary image was
obtained using the adaptive threshold method [55]. Finally, morphological operations
were used to obtain a skeleton map. A skeleton map showing only the centerline of the
object was also obtained. These two maps were used as input sources for the next step, i.e.,
extraction. The four required parameters were extracted by implementing some methods
on the binary and skeleton maps. Table 1 summarizes the formulas of the parameters.

 

Figure 2. Flow chart of the quantitative OR-PAM image evaluation process.

Table 1. The formulas of quantitative parameters.

Parameters Formula

Diameter Diameter = ∑m
i=1 ∑n

j=1 E(i,j)
S(i,j) (1)

E(i, j) : Euclidean distance transform
S(i, j): White pixel of skeleton map

Density Density =
∑m

i=1 ∑n
j=1 B(i,j)

T(i,j) (2)
B(i, j) : White pixel of the binary map

T(i, j) : Total pixels appeared on the binary map

Length fraction Length fraction =
∑m

i=1 ∑n
j=1 S(i,j)

T(i,j) (3)
S(i, j): White pixel of skeleton map
T(i, j) : Total pixels of skeleton map

Fractal dimension Fractal dimension =
log(Nr)

log( 1
r )

(4)
r : Size of the unit box
Nr : Number of boxes

PA signal PA signal = ∑m
i=1 ∑n

j=1 I(i,j)
T(i,j) (5)

I(i, j) : Intensity at point (i, j) of the MAP image
T(i, j) : Total pixels of the MAP image

The shortest distance calculated by Euclidean transform for a certain vertical section
of a vessel was assumed as the diameter of that section. The diameter of a single vessel was
measured as the average distance transform along the skeleton of that vessel. Thus, only the
vessel area will contribute to the average diameter vessel of an image. Equation (1) indicates
the average diameter vessel for an image, where the Euclidean distance transform was
implemented on the corresponding binary map. In Equations (2) and (3), the percentage
area covered by the vessel was used to define the density and length fraction parameters.
Length fraction only considers the existence of the vessel by counting the number of
white pixels on the skeleton map to figure out the ratio of white pixels and total pixels.
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Thus, dilation or constriction of the vessel does not impact length fraction. In contrast,
density was influenced by both the diameter and length fraction of the vessel. To compute
density, we counted the number of white pixels on the binary image and divided it by
the number of the total pixels of the image. The fractal dimension was calculated by
the box-counting method [56]. The binary map was divided into square boxes of the
same size, called the unit boxes. The number of unit boxes needed to cover a vessel was
counted. The logarithm of the unit box size with the corresponding number of boxes
produces a curve; the fractal dimension is determined as the absolute value of that curve
(Equation (4)). The PA signal was also monitored to comprehensively evaluate the change
in blood vessels comprehensively. PA signal describes the average incident photon energy
that was absorbed by blood vessels. For all formula, m and n are sizes of the image (MAP
image, binary map and skeleton map share same size); i and j are the calculated coordinates
of the pixel. Total pixels T(i, j) = m × n.

3. Results

3.1. In Vivo OR-PAM Observation for the Peripheral Vasculatures after Carfilzomib Solution Injection
The mouse ear’s peripheral vasculature (Figure 3k) was monitored for 10 h before

and after injecting the carfilzomib solution. Figure 3a–j shows the acquired OR-PAM MAP
images with the image color scale fixed on all images to investigate signal change moni-
toring. Figure 3a is a control image, showing that the main vasculatures and microvessels
are generally well distributed. The OR-PAM MAP image presented in Figure 3b was ob-
tained 10 min after carfilzomib solution injection. The bright color of the vessels indicates
a significant increase in the PA signal intensity in these vessels. Several bleeding spots
were formed, especially along the large blood vessels, and several new microvasculatures,
that had appeared suddenly, had formed. The effect of the carfilzomib seemed to have
peaked at 30 min, based on the image presented in Figure 3c. Although the PA signal in the
major vasculatures had only marginally changed compared to that at the previous imag-
ing timepoint, the areas where the microvasculatures were present continued to expand.
Figure 3d–j presents the OR-PAM MAP images, obtained 1, 2, 3, 4, 6, 8, and 10 h after the
injection, respectively. During this time period, the PA signal decreased gradually. Specif-
ically, at the 4 h mark, the microvessels had begun to disappear slowly and completely
disappeared at the 10 h mark. The PA signal gradually recovered to a steady state, similar
to that shown in the control image.

For more detailed analysis, we randomly monitored nine small regions representing
large vasculatures (ROI 1 and ROI 8) and microvasculatures (ROI 2, ROI 3, ROI 4, ROI
5, ROI 6, ROI 7, and ROI 9), as shown in Figures S1–S3 (Supplementary Information 1).
For the large vasculatures, ROI 8, on the margins of the mouse ear, showed the least
amount of change during the follow-up imaging. In contrast, ROI 1, which included
bleeding points, exhibited an increase in the signal approximately 30 min after the injection
and a gradual decrease thereafter. However, this increase was only approximately 50%
to 100% compared to the initial observation value. Overall, the variation in the signal
due to carfilzomib’s effect was observed in all areas of the small blood vessels. Within
the first 30 min, it was observed that the closer the ROI was to the center, the larger the
extent of changes. For example, ROI 2, ROI 7, ROI 6, and ROI 4 showed changes in the
PA signal ranging between 150% and 400%, and for the other parameters, only 50–120%
changes were present. Meanwhile, the ROIs in the far center (ROI 3 and ROI 5) exhibited
an increase in the PA signal by approximately 50–100%, and only 10–50% changes were
exhibited for the other parameters. Located at the edge of the ear, where there were very
few blood vessels, ROI 9 exhibited changes that were distinct from those of the rest of the
ROIs. However, all ROIs began to stabilize at the 4-h mark.
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Figure 3. In vivo OR-PAM MAP images of the peripheral vasculatures of a mouse ear after carfilzomib solution injection
(Movie 1). (a) OR-PAM MAP image before carfilzomib injection, (b–j) OR-PAM MAP images after carfilzomib solution
injection during 10 h of observation, (k) Photograph of the corresponding mouse ear.

3.2. In Vivo OR-PAM Observation for the Peripheral Vasculatures after Bortezomib Solution Injection

The experiment was repeated by substituting carfilzomib with bortezomib. The OR-
PAM MAP image of the control presented in Figure 4a, obtained before injecting the
bortezomib solution, clearly shows all the vasculatures not shown in Figure 4k. Unlike
carfilzomib, bortezomib did not significantly increase the vessel’s signal after the first
10 min of the injection (Figure 4b). The mouse ear was monitored for approximately
10 h with the OR-PAM MAP images. Figure 4c–j depicts the mouse ear 30 min and 1, 2,
3, 4, 6, 8, and 10 h after the bortezomib injection. The same color was observed in the
OR-PAM MAP images with the big vasculatures, indicating no increase in the PA signal.
Moreover, no bleeding area was detected, and no small vessel appeared. This indicates
that steady state was maintained for 6 h after injection. In Figures S4–S6, the MAP images
and quantification results for nine small ROIs are shown, in which ROI 1, ROI 2, ROI 3,
ROI 4, and ROI 9 indicate small vessel areas, and ROI 5, ROI 6, ROI 7, and ROI 8 describe
large vessel areas. The stability, monitored using MAP images, maintained during 6 h post-
injection, was observed at all the ROIs. Furthermore, variation in the quantitative values
of all the parameters was only approximately 20% compared to those at the control time.
Peak value at the 8 h mark was only noticeable at ROI 3, ROI 8, and ROI 9, which were
near the mouse ear’s edges. However, the increase was only approximately 50–60%,
which decreased after 10 h of monitoring.
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Figure 4. In vivo OR-PAM MAP images for the peripheral vasculatures of the mouse ear after bortezomib solution injection
(Movie 2). (a) OR-PAM MAP image before bortezomib injection, (b–j) OR-PAM MAP images after bortezomib solution
injection within 10 h, and (k) Photograph of the corresponding mouse ear.

3.3. In Vivo OR-PAM Observation for the Peripheral Vasculatures of after PBS Injection

An experiment with PBS injection is required to standardize and accurately and
objectively evaluate the effectiveness of carfilzomib and bortezomib. Figure 5 displays the
OR-PAM MAP images of the monitoring process. Figure 5a shows the condition before the
injection, Figure 5b–j shows the observations from the 10 min to the 10 h mark. Figure 5k
shows the photograph of the mouse’s ear. Under stable mouse conditions, the PBS did
not seem to affect the stability of the large blood vessels and small capillaries before and
after the injection. As depicted in Figures S7–S9, for OR-PAM MAP images and graphs
of quantification results, there is no general trend in the change in signals at all the ROIs.
The highest variations, smaller than 100%, belong to ROI 3 and ROI 5 for the length fraction
and PA signal, respectively. For the remaining ROIs, the values were always less than 50%
for all parameters.
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Figure 5. In vivo OR-PAM MAP images for the peripheral vasculatures of the mouse ear after PBS injection (Movie 3). (a)
OR-PAM MAP image before PBS, (b–j) OR-PAM MAP images after PBS solution injection within 10 h, and (k) Photograph
of the corresponding mouse ear.

3.4. Quantitative Evaluation of OR-PAM Data

A quantitative assessment is a necessary supplement, as only comparing images is
insufficient to accurately assess the effects of carfilzomib and bortezomib on the peripheral
vasculature of the mouse ear. The quantitative process presented in Section 2.4, for the
carfilzomib, bortezomib, and PBS injection cases, was applied. After obtaining five param-
eters for each case, the values of all three cases were compared for each parameter: (1) PA
signal, (2) diameter, (3) density, (4) length fraction, and (5) fractal dimension. The values
were presented as a percentage difference from the control value to unit normalize all the
parameters. Figure 6 shows the results of this process. For all parameters, the variation
in the signal, caused by carfilzomib, always gives the maximum value, 45% (PA signal
at the 10-min timepoint) or 48% (density at 3-h timepoint). Meanwhile, the values corre-
sponding to bortezomib and PBS were almost lower than 20%. The PA signal comparison
shown in Figure 6a highlights that the value corresponding to carfilzomib tends to increase
rapidly 10 min after the injection and then gradually decrease for 10 h. The mean value
with carfilzomib is found to be 18.2%, almost eight times higher than that observed with
bortezomib (2.3%) and 5.5 times higher than that observed with PBS (3.3%). This proves
that image-based judgment is plausible. The graphs comparing diameter (Figure 6b),
density (Figure 6c), length fraction (Figure 6d), and fractal dimension (Figure 6e) also show
a similar trend. With the exception of the 3-h mark and 6-h mark, the values observed in
the bortezomib case did not change significantly. In the PBS case, the values were stable
at all timepoints. Specifically, at the 30-min timepoint, the higher values observed in the
carfilzomib case compared to those of the bortezomib and PBS cases were 51.7% and 54.2%
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for the density value, 30.7% and 36.7% for the length fraction value, and 19.7% and 16.8%
for the diameter, respectively. The effect of carfilzomib is evident in Figure 6e, depicting
the fractal dimension, which is approximately 10 times higher than that observed in the
bortezomib and PBS case.

 

Figure 6. Quantitative evaluation results among carfilzomib, bortezomib, and PBS. (a) PA signal, (b) Diameter, (c) Density,
(d) Fraction length, (e) Fractal dimension.

4. Discussion

We successfully monitored the effects of carfilzomib on the peripheral vasculature
for over 10 h using a hybrid process of OR-PAM imaging and quantitative evaluation.
The results show the mouse ear’s peripheral vasculature dynamic in morphological and
quantitative evaluations. Among the morphological aspects, the vascular changes were
observed 10 min after injecting the carfilzomib solution, with the appearance of bleeding
spots along with vessels. The emergence and strong spread of microvasculatures between
10 and 30 min indicate the occurrence of the peak effect of carfilzomib during the first
30 min after the injection. It was observed that the expansion of the microvasculature
area slowly decreased, and the mouse ear vascular network recovered to the steady state
after 10 h. The quantitative evaluation was used to evaluate five blood vessel parameters,
including the PA signal, diameter, density, length fraction, and fractal dimension. A vas-
cular abnormality could be identified based on the changes in all the vessel properties,
which were closely related. The diameter and length fraction present the size and the
perfusion of the vessel, respectively. The density value, influenced by the diameter and
length fraction, gives an overview of the general situation of an area. The fractal dimension
indicates the complexity of the vascular network. Microvasculatures are typically more
complex than large vasculatures [57]. The results of this study show that the diameter,
density, length fraction, and fractal dimension follow a similar trend. These parameters
significantly increased and peaked 30 min after the injection. This seems to indicate an
increase in blood pressure resulting from the effect of carfilzomib. When the blood vessels
dilated, the perfusion increased and expanded the area of the blood vessels simultaneously.
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Additionally, an increase in the length fraction with the fractal dimension implies the
appearance of new capillaries. Beginning from the 1 h mark, values of all the parame-
ters started to decrease slightly and then maintained a stable value until the 10 h mark.
All these changes were relatively consistent with the morphological visualization captured
in the OR-PAM MAP images. Unlike other parameters, the PA signal is not a vasculature
morphological property as it is reflected by the intensity of the photons absorbed by the
blood. The value of the PA signal exhibited a significant increase in the first 10 min, after
which it rapidly decreased. At a wavelength of 532 nm, the strong light absorption of the
blood made our system highly sensitive to changes in the blood. Hence, the maximum
value change and the post-peak reduction rate of the PA signal were always the highest.

In addition to carfilzomib, we conducted the same experiment using bortezomib and
PBS. The average values calculated for all the parameters using carfilzomib were eight
times higher than those observed with bortezomib and 5.5 times higher than those with
PBS, emphasizing that carfilzomib has a stronger effect on the peripheral vasculature than
bortezomib and PBS. However, especially at the 30-min mark, the higher values in the
values observed with carfilzomib with respect to those with bortezomib and PBS were
51.7% and 54.2% for the density value, 30.7% and 36.7% for the length fraction value,
and 19.7% and 16.8% for the diameter, respectively. As mentioned in Section 2.4, the change
in density depends on the changes in diameter and length fraction. Thus, the contribution
to the density value in this experiment was mainly from the length fraction, indicating
that the length fraction changes the most under the effect of carfilzomib. It also reflects
that carfilzomib has a stronger impact on the capillaries than large blood vasculatures,
because diameter depends on large blood vessels, while length is determined by small
blood vessels.

In myeloma cells, the anti-myeloma effect induced by the proteasome inhibitor re-
sults from the accumulation of regulatory proteins within the endoplasmic reticulum,
which further induces the apoptosis cascade [58]. Likewise, proteasome inhibition in
myocardial cells leads to an abnormal accumulation of ubiquitinated proteins and can
result in cardiac damage and heart failure [59]. Additionally, endothelial dysfunction
caused by proteasome inhibition in the vasculature is associated with cardiovascular ad-
verse events, such as hypertension and myocardial ischemia. Proteasome inhibition affects
signaling in vascular smooth muscle endothelium and leads to increased vascular tone
and coronary resistance [4]. Therefore, all proteasome inhibitors can theoretically cause
cardiovascular adverse events. However, these effects are different when using bortezomib
and carfilzomib, owing to differences in their pharmacodynamics and pharmacokinetic
characteristics. The effect of carfilzomib is irreversible, and it is a more selective inhibitor
for the β5 domain, with chymotrypsin-like activity of the 20s subunit of the proteasome,
compared to bortezomib. Efentakis P et al. [60] demonstrated that bortezomib did not affect
cardiac function. However, carfilzomib caused deterioration of the left ventricular function
through increased PP2A activity and inhibition of the AMPKα pathway in the in vivo
mouse model. In clinical studies, carfilzomib cases had a higher incidence of cardiovascular
adverse events than bortezomib cases [3,61,62]. However, the effect of carfilzomib on the
peripheral vasculature has not been reported.

Despite the success in monitoring the effects of carfilzomib on the peripheral vas-
culature with OR-PAM, our approach has certain limitations. First, the limit of the low
penetration depth of its system (~1 mm) is the main hindrance to OR-PAM to become
a clinical imaging method even it has super high resolution. Hence, for human applica-
tions, a proper handheld probe and the near-infrared laser should be implemented [63–65].
Second, although it is able to detect the concentration of hemoglobin, the use of single
wavelength laser (i.e., 532 nm) is limited to provide further functional information includ-
ing oxygenated (HbO2) and deoxygenated (HbR) hemoglobin. Thus, our system cannot
directly provide the functional information of vessel such as oxygen saturation (SO2) and
cerebral metabolic rate of oxygen (CMRO2) in the peripheral vasculature. By combining
different wavelength lasers, it becomes able to offer metabolism information directly [66].
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5. Conclusions

In conclusion, we implemented PAM for the mouse ear peripheral vasculature visu-
alization within 10 h after carfilzomib, bortezomib, and PBS injection. Not only morpho-
logical, but also vascular parameters such as PA signal, diameter, density, length fraction,
and fractal dimension, were successfully evaluated. Carfilzomib induces a strong effect on
the peripheral vascular system during the first 30 min after injection, which can be which
can be qualitatively visualized by the appearance of bleeding spots and capillary in the
MAP images. Moreover, for the quantitative results, all vascular parameters significantly
increase up to 50%. In contrast, bortezomib and PBS do not have much impact on the
peripheral vascular system. As a pilot study, we monitored the effects of carfilzomib
on the peripheral vascular system with the PAM technique and its quantitative analysis.
Therefore, we expect PAM to be able to use an important tool to predict cardiovascular
events triggered by carfilzomib.
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Abstract: Muscle stiffness in the spinal region is essential for maintaining spinal function, and might
be related to multiple spinal musculoskeletal disorders. However, information on the distribution
of muscle stiffness along the spine in different postures in large subject samples has been lacking,
which merits further investigation. This study introduced a new protocol of measuring bilateral
back muscle stiffness along the thoracic and lumbar spine (at T3, T7, T11, L1 & L4 levels) with both
ultrasound shear-wave elastography (SWE) and tissue ultrasound palpation system (TUPS) in the
lying and standing postures of 64 healthy adults. Good inter-/intra-reliability existed in the SWE and
TUPS back muscle stiffness measurements (ICC ≥ 0.731, p < 0.05). Back muscle stiffness at the L4 level
was found to be the largest in the thoracic and lumbar regions (p < 0.05). The back muscle stiffness of
males was significantly larger than that of females in both lying and standing postures (p < 0.03).
SWE stiffness was found to be significantly larger in standing posture than lying among subjects
(p < 0.001). It is reliable to apply SWE and TUPS to measure back muscle stiffness. The reported data
on healthy young adults in this study may also serve as normative reference data for future studies
on patients with scoliosis, low back pain, etc.

Keywords: back muscle stiffness; spine; elasticity; shear-wave elastography (SWE); tissue ultrasound
palpation system (TUPS); reliability; Young’s modulus

1. Introduction

Multiple musculoskeletal disorders can take place in the spine of human beings, including
the spinal curvature deformity of adolescent idiopathic scoliosis [1] and chronic low back pain [2].
Both scoliosis [3,4] and low back pain [5] could lead to significant socioeconomic burdens and reduced
quality of life in patients. Previous studies have reported that the imbalance of spinal muscles existed
in scoliosis patients [6,7] and patients with low back pain [8,9].

The mechanical property of muscle stiffness is an essential factor for maintaining muscle
function. It is related to muscle performance during exercise [10] and the joint constraint [11].
Abnormally increased muscle stiffness can be found in a number of musculoskeletal disorders,
including spasticity [12], aging [13,14], spinal muscle atrophy [15], low back pain [16], adolescent
idiopathic scoliosis [17,18], reduced joint range of motion [19], and reduced lumbar flexion during
prolonged sitting [20]. Meanwhile, decreased muscle stiffness may lead to a higher risk of joint
dislocation [21] and reduced muscle power [22]. Quantifying muscle stiffness can be helpful for
understanding the mechanisms of these musculoskeletal symptoms and pathologies.
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Muscle stiffness can be quantified by tissue elasticity (E) and measured by various technologies,
including mechanical measurement, ultrasound indentation, and elastography. More recently,
the non-invasive and real-time ultrasound shear-wave elastography (SWE) has become a popular and
useful tool for assessing muscle stiffness [23,24]. For this technology, the ultrasound probe can induce
a focused acoustic force and create a shear wave within the target tissue [25,26]. By capturing the
propagation of the shear wave, the speed of the shear wave propagation (c) can be calculated, which
can then be squared and multiped by three and the muscle mass density (ρ = 1000 kg/m3) to calculate
the muscle elasticity (assumed as E = 3ρc2) [25]. With this rather new technology, a few previous
studies have managed to measure the spinal muscle stiffness using the SWE; however, most of them
were limited to the low back region, such as longissimus [27], multifidus [28], and erector spinae [28]
of healthy subjects with the sample size being less than 24 participants.

The tissue ultrasound palpation system (TUPS) is another ultrasound-based instrument that can
assess muscle stiffness. The probe of TUPS contained both force sensor and ultrasound transducer,
which can record the real-time tissue deformation with the conventional B-mode ultrasound image
to calculate Young’s modulus or elasticity and acquire the tissue thickness [29]. The TUPS has been
applied to evaluate the tissue stiffness of the foot [30] and scar thickness [31]. Two pilot studies have
also used TUPS to measure the stiffness of back muscle at L4 level in 12 healthy subjects and 12 patients
with low back pain [16], and at L1 and L4 levels in 10 patients with low back pain [29]. The latest
updated TUPS system is a handheld and wireless version, which could eliminate the afference of the
wires during measurement and make it more feasible to do the measurement in a clinical setting in the
future [29].

To date and to the best of the authors’ knowledge, none of the previous studies have used either
the SWE or the TUPS to evaluate the distribution of back muscle stiffness, along the thoracic and lumbar
spinal regions, in a large number of adults. While both SWE and TUPS have been used to evaluate
back muscle stiffness, the sample size has been very small (≤24 participants) and the evaluated region
has been limited to the lower back of the spine. The generalization of these findings has been rather
limited, and the normative data of muscle stiffness along the spine in different postures have been
lacking. While both SWE and TUPS have been used to evaluate back muscle stiffness, the comparison
of these two instruments on measuring back muscle stiffness was still scarce.

To address the above-mentioned issues, the current study aimed to (1) measure the back muscle
stiffness along the spine at the levels of T3, T7, T11, L1, and L4 with both SWE and TUPS in both
lying and standing postures in 64 healthy adults (mapping the back muscle stiffness with large sample size,
the effect of levels); (2) compare the measured results of muscle stiffness between SWE and TUPS in
terms of reliability and relationship; (3) identify the difference of distribution in muscle stiffness along the
spine between the standing and lying postures (effect of posture), and (4) determine if the gender factor
influenced the distribution of muscle stiffness along the spine in both standing and lying postures
(effect of gender). The levels of T3, T7, T11, L1, and L4 were selected to reflect the muscle stiffness along
the upper, middle, and lower thoracic and the upper and lower lumbar spinal regions [32].

2. Materials and Methods

2.1. Subjects

In total, sixty-four healthy young adults (32 males and 32 females) aged between 18 and 30 years
were recruited. Subjects were excluded if they had low back pain within the last three months before
the study; scoliosis; muscular disease of limbs or spine; and/or history of bone disease, fracture, surgery,
or malformation at the spinal region. A Registered Physiotherapist verified the inclusion and exclusion
criteria via subject interview and physical examination before the data collection.

Subjects were instructed not to have any vigorous exercise two days before the experiment, to avoid
possible muscle fatigue and altered muscle stiffness that may affect the experimental results [33].
They should also avoid muscle relaxants and alcohol before the experiment, along with some other
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drugs. During the experiment, if subjects experienced any discomfort, the experiment would be
stopped immediately with the condition been recorded. Ethical approval was granted by the authority
of the local university (HSEARS20180122004). Written informed consent was signed and obtained
from all subjects before the experiment.

2.2. Instruments for Measuring Back Muscle Stiffness

2.2.1. Wireless Hand-Held Tissue Ultrasound Palpation System (TUPS)

A newly-updated hand-held tissue ultrasound palpation system (TUPS), with a probe (7.5 MHz
128-elements ultrasound transducer with a 20 N in-series load cell) wirelessly connected to a laptop
via Wi-Fi, was used to evaluate the back muscle stiffness (referred to as “TUPS stiffness” in this
paper) and the thickness of soft tissues [29]. The probe sampled the ultrasound image and force data
simultaneously and transmitted them to a laptop in real-time [29,34–36]. The frequency of the system
was 12 Hz. For each measurement, five compression-release cycles within a duration of 10 s were
performed to collect data. The thickness of soft tissue along the spine was also measured by the
TUPS system.

2.2.2. Ultrasonic Scanner with Shear-Wave Elastography (SWE)

A commercially available multi-wave ultrasonic scanner (version 10.0; Super-Sonic Imagine,
Aix-en-Provence, France) coupled with a convex probe (SuperCurved 6-1, Super-Sonic Imagine,
Aix-en-Provence, France) in shear-wave elastography (SWE) and musculoskeletal (MSK) mode was
used to evaluate the back muscle stiffness. For each measurement, a 10-s video with approximately
10 frames of ultrasound images was recorded and exported in “MP4” format, after the color map of
stiffness was maintained as homogeneously as possible.

A developed Matlab script (Version 2016b, MathWorks, MA, USA) was used to process the
stiffness data of the exported video. Firstly, the region of interest (ROI) was selected as the largest
muscle area that avoided bone, fascia, or subcutaneous tissue. Secondly, the artifact pixel (showing no
color in the color map or saturate at 300 kPa) within the ROI was excluded for data analysis. Thirdly,
the Matlab image processing script converted each available pixel of the color map into a value of
stiffness, based on the color scale. Finally, the mean value of the stiffness from the captured 10 frames
was calculated to obtain the stiffness of each measurement (referred to as “SWE stiffness” in this paper)
for further statistical analysis.

Pilot studies were conducted to evaluate the validity of the introduced data analyzing method
with the developed Matlab image processing script. It revealed that the results generated by this Matlab
script were similar to those from the Aixplorer scanner software (Q-BoxTM) as used in [27,28,37].

2.3. Experimental Procedure

Before the measurement, the spinal processes at the T3, T7, T11, L1, and L4 levels were located by
palpation and ultrasound B-mode image and then marked with a water-insoluble eyeliner. The bilateral
muscle belly that parallels with the spinal process was located for measuring the back muscle stiffness
as suggested in [38].

During the experiment, all measurements were conducted in lying posture first, followed by the
standing posture for both the instruments of TUPS and SWE. For the lying posture, subjects were prone
with their faces in the hole of a massage bed and their upper limbs along the trunk. For the standing
posture, subjects stood in front of a supporting frame to eliminate the possible influence generated
by the compression-release of the TUPS’ probe during the measurement on posture. Subjects were
instructed not to resist the compression force generated by the TUPS voluntarily, but to reply on the
supporting frame instead (Figure 1). Subjects were instructed to breathe naturally, put their weight
equally on both feet, and maintain their heads in a neutral position during the measurement. A male
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assessor and two female assessors conducted the measurements for all male and female subjects,
respectively. Assessors would instruct the subjects to adjust posture if subjects stood asymmetrically.

Figure 1. Illustration of the assessment in standing position with a supporting frame.

2.4. Reliability Test

Since three assessors (1 male and 2 females) conducted the measurements in this study, a reliability
test was conducted to determine the reliability of the measurements prior to the start of the main
experiment. The measurement and reliability tests were conducted on fourteen male subjects. During
the test, the muscle stiffness of the left and right sides at the T7 and L1 levels were measured three
times by each assessor in the lying position.

2.5. Data and Statistical Analysis

Statistical analysis was conducted using the SPSS (Version 24, SPSS Inc, Chicago, IL, USA).
The muscle stiffness value of the left and right sides was averaged for statistical analysis. The percentage
change of muscle stiffness from lying to standing posture was also calculated. Intra-rater and inter-rater
reliability of the muscle stiffness measurements were examined with the Intraclass Correlation
Coefficient (ICC (3,1)) with a 95% confidence interval (95% CI). Three-way mixed ANOVA with
post-hoc pairwise comparison was conducted to determine the main effects of (1) posture (lying vs.
standing), (2) level (T3, T7, T11, L1 vs. L4), and (3) gender (male vs. female), as well as the interaction
effect on muscle stiffness. The Pearson correlation test was performed to examine the relationship
between the two measurement techniques of SWE and TUPS. The significance level was set at 0.05.
The effect size (ηp

2) for each parameter was also presented.

3. Results

A total of 64 subjects (32 males and 32 females, aged 23.5 ± 2.9 years, height 166.4 ± 8.5 cm,
weight 60.1 ± 10.3 kg, and BMI 21.6 ± 2.5) participated in this study. Initially, seventy-five subjects
were screened for this study. Among them, two subjects were excluded due to scoliosis, and four
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subjects were excluded due to uncomfortableness during the experiment. The data of five subjects
were discarded due to the technological issue of hard disk failure where the data cannot be retrieved.

3.1. Intra-/Inter-Rater Reliability of Measurements

Good intra-rater reliability [TUPS: ICC = 0.822 (95% CI 0.632 to 0.962) at T7, and ICC = 0.905
(95% CI 0.704 to 0.969) at L1; SWE: ICC = 0.881 (95% CI 0.631 to 0.962) at T7, and ICC = 0.879 (95% CI
0.625 to 0.961) at L1] and good inter-rater reliability [TUPS: ICC = 0.742 (95% CI 0.368 to 0.910) at T7,
and ICC = 0.836 (95% CI 0.602 to 0.943) at L1; SWE: ICC = 0.731 (95% CI 0.340 to 0.906) at T7, and ICC
= 0.781 (95% CI 0.462 to 0.924) at L1] for both measurement instruments were identified in this study
(p < 0.05). Higher intra-rater reliability of TUPS than SWE except at T7 level, and higher inter-rater
reliability of TUPS than SWE were also found.

3.2. Muscle Stiffness Measured by TUPS

The measured muscle stiffness by TUPS is summarized in Table 1 and Figure 2. Significant main
effects of gender (p < 0.001, ηp

2 = 0.292) and level (p < 0.001, ηp
2 = 0.601), and significant interaction

effect among three factors (p < 0.001, ηp
2 = 0.069) were found.

Figure 2. TUPS stiffness at different levels of two genders in lying and standing postures (n = 64).
* Significantly difference in gender; † Significant difference in posture.
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Table 1. The tissue ultrasound palpation system (TUPS) stiffness in kPa (mean ± SD) (n = 64).

Lying Standing

Level
Male

(n = 32)
Female
(n = 32)

Male
(n = 32)

Female
(n = 32)

p-Value
Partial Eta

Squared, ηp
2

T3 172.0 ± 42.8 † 166.5 ± 46.4 † 192.3 ± 55.7 *† 122.7 ± 27.8 *† Main effect:
Gender: <0.001 0.292

T7 157.8 ± 32.5 155.8 ± 45.2 † 150.8 ± 36.9 * 104.9 ± 26.7 *† Posture: 0.707 0.002
Level: <0.001 0.601

T11 153.3 ± 27.0 144.4 ± 36.1 148.3 ± 32.0 * 111.3 ± 37.6 * Interaction effect:
Gender * level:<0.001 0.111

L1 162.1 ± 29.0 † 168.3 ± 48.4 † 194.7 ± 55.7 *† 137.5 ± 36.0 *† Gender * posture: <0.001 0.481
Posture * level: <0.001 0.355

L4 205.5 ± 36.2 † 182.7 ± 45.2 † 303.3 ± 80.6 *† 180.5 ± 46.7 *† Gender * level * posture: <0.001 0.069

* Indicates significant gender difference at a certain level and posture. † Indicates significant posture difference at a
certain level for each gender.

3.2.1. Effect of Gender

The results of post-hoc comparison revealed that the TUPS stiffness was significantly larger in
male subjects than that of female subjects for all five levels (p < 0.001, ηp

2 = 0.292).

3.2.2. Effect of Level

The TUPS stiffness was found to be significantly different among the five different levels
(T3: 163.4 ± 25.8 kPa, T7: 142.5 ± 20.9 kPa, T11: 138.1 ± 18.4 kPa, L1: 165.4 ± 25.6 kPa, and L4:
217.9 ± 33 kPa), except the two pairwise comparisons of T3 vs. L1 and T7 vs. T11. More specifically,
the muscle stiffness significantly decreased from T3 to T7 level (p < 0.05), significantly increased from
T11 to L1 level (p < 0.05), and significantly increased from L1 to L4 level (p < 0.05). The muscle stiffness
at L4 was found to be significantly largest (p < 0.05); meanwhile, the muscle stiffness at T11 tended to
be the smallest, but did not reach a significant level.

3.2.3. Effect of Posture

No significant difference in TUPS stiffness between the two postures was found (lying: 163.4
± 25.8 kPa and standing: 163.4 ± 25.8 kPa, p = 0.707, ηp

2 = 0.002). Meanwhile, upon looking into
the TUPS stiffness at each level, significantly larger TUPS stiffness at T3, L1, and L4 during standing
posture than lying in male subjects existed, and a reversed trend of significantly larger TUPS stiffness
at T3, T7, T11, and L1 during lying posture than standing in female subjects existed.

As shown in Figure 3, the percentage difference of changes in TUPS stiffness was significantly
larger in male subjects than female subjects at all four levels (p≤ 0.005). More specifically, the percentage
change at the L4 level appeared to be the largest (48.5% for males and 4.9% for females), and that of T7
was found to be the smallest (−2.9% for males and −30.4% for females).

Figure 3. The percentage change of TUPS stiffness from lying to standing posture at different levels of
two genders (n = 64). * Significant differences existed in gender.
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3.3. Muscle Stiffness Measured by SWE

The measured muscle stiffness by SWE is summarized in Table 2 and Figure 4. Significant main
effects of gender (p = 0.030, ηp

2 = 0.074) and posture (p < 0.001, ηp
2 = 0.772), and significant interaction

effect only between gender and posture (gender*posture: p = 0.016, ηp
2 = 0.090) were found.

Table 2. The shear-wave elastography (SWE) stiffness in kPa (mean ± SD) (n = 64).

Lying Standing

Level
Male

(n = 32)
Female
(n = 32)

Male
(n = 32)

Female
(n = 32)

p-Value
Partial Eta

Squared, ηp
2

T3 21.8 ± 8.3 *† 17.8 ± 6.8 *† 45.5 ± 20.0 *† 33.7 ± 17.4 *† Main effect:
Gender: 0.030 0.074

T7 23.8 ± 5.3 † 23.1 ± 5.2 † 47.0 ± 16.2 *† 37.9 ± 13.6 *† Posture: <0.001 0.772
Level: 0.120 0.029

T11 22.5 ± 8.4 † 23.3 ± 7.1 † 43.7 ± 14.7 † 44.5 ± 15.1 † Interaction effect:
Gender * level: 0.080 0.033

L1 21.1 ± 6.0 † 24.3 ± 7.9 † 45.2 ± 21.6 † 38.3 ± 18.8 † Gender * posture: 0.016 0.090
Posture * level: 0.171 0.025

L4 24.1 ± 9.3 † 23.3 ± 7.5 † 42.0 ± 18.9 † 35.2 ± 13.7 † Gender * level * posture: 0.360 0.017

* Indicates a significant gender difference at certain levels and posture. † Indicates a significant posture difference at
certain levels of each gender.

Figure 4. SWE stiffness at different levels of two genders in lying and standing postures (n = 64).
* Significant differences existed in gender; † Significant differences existed in posture.
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3.3.1. Effect of Gender

The results of post-hoc comparison revealed that the SWE stiffness was also significantly larger in
male subjects than that of female subjects for all five levels (p = 0.003, ηp

2 = 0.074).

3.3.2. Effect of Posture

The SWE stiffness in lying posture was found to be significantly smaller than that of standing
posture for both genders and for all five different levels (lying: 22.5 ± 1.6 kPa, and standing:
41.3 ± 2.2 kPa, p < 0.001, ηp

2 = 0.772).
As shown in Figure 5, the percentage difference of changes in SWE stiffness fluctuated, and no

significant difference among different levels was found. While a significantly larger change in SWE
stiffness in males than females at the L1 level was found (p = 0.013), no other significant difference
between the two genders was found.

Figure 5. The percentage change of SWE stiffness from lying to standing posture at different levels of
two genders (n = 64). * Significant differences existed in gender.

3.3.3. Effect of Level

No significant difference in SWE stiffness among the five different levels was found (T3: 29.7 ±
12.5 kPa; T7: 32.9 ± 11.6 kPa; T11: 33.5 ± 12.2 kPa; L1: 32.2 ± 11.4 kPa and L4: 31.1 ± 9.0 kPa).

3.4. Change of Soft Tissue Thickness from Lying to Standing Posture

As shown in Figure 6, a significantly moderate correlation between soft tissue thickness and
posture was found at all five levels (r = 0.304, p < 0.001). Significant main effects of posture (p = 0.001),
level (p < 0.001), and gender (p < 0.001), and no significant interaction effect among these factors
were found. The soft tissue thickness was also found to be significantly larger in standing posture
than lying posture at five levels (p = 0.001). Similar to the distribution of muscle stiffness at different
levels, the soft tissue thickness was also found significantly decreased from T3 to T7 level, significantly
increased from T11 to L1 level, and significantly increased from L1 to L4 level (p < 0.001). The soft
tissue thickness at the L4 level was found to be significantly largest (p < 0.001), and the thickness at the
T7 level was found to be the smallest (p < 0.001).
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Figure 6. The soft tissue thickness at different levels in lying and standing postures among subjects
(n = 64). † Significant differences existed in posture.

3.5. Relationship between the SWE and TUPS Measurement Techniques

Table 3 summarizes the results of Pearson’s correlation coefficient (r) between the SWE and TUPS
measurement techniques in lying and standing positions. Significantly moderate correlations between
the SWE and TUPS measurement techniques were observed at T3 in the lying posture (r = −0.294,
p = 0.018), L1 in the standing posture (r = 0.390, p = 0.001), and L4 in the standing posture (r = 0.358,
p = 0.004). Low correlations between the two measurement techniques were observed at the remaining
levels and postures, but the correlations were not significant.

Table 3. Relationship between the SWE and TUPS measurement techniques (n = 64).

Pearson’s Correlation Coefficient (r)

Level Lying Standing

T3 −0.294 * 0.111
T7 0.196 0.232

T11 −0.141 0.166
L1 0.020 0.390 *
L4 −0.233 0.358 *

* Significantly correlation existed.

4. Discussions

To our knowledge, this is the very first study investigating the distribution of back muscle stiffness
along the spine, with the stiffness measurements from both the SWE and TUPS, in healthy young
adults. Several significant effects of posture, level, and gender on back muscle stiffness were identified
in this study. The relationship and reliability of the SWE and TUPS measurement techniques were also
investigated and established.

4.1. Intra-/Inter-Rater Reliability of Measurements

Good intra-rater and good inter-rater reliability for both measurement instruments of TUPS and
SWE were observed in this study. This is in accordance with previous studies on the reliability of the
TUPS [30,31,34] and SWE [39]. Additionally, the handheld and wireless setting of the TUPS also makes
it more convenient to be applied in clinical settings [29] and not be restrained by the experiment [40] in
the future.
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4.2. Effect of Level (T3, T7, T11, L1 vs. L4)

This study has uncovered that regardless of the lying or standing posture, the back muscle at the
L4 level has the largest TUPS stiffness value among the thoracic and lumbar regions that covered the
commonly affected sites of scoliosis and low back pain. This helps explain why chronic low back pain
has been commonly found in the L3-L4 region in previous studies [2,29]. The observed large stiffness
values at L4 level in healthy adults in this study might help explain the cause/development of the low
back pain pathology later on in middle-aged or older adults. It is likely that the greater muscle stiffness
at the L4 level might be one potential cause of scoliosis or low back pain, however, future studies shall
be conducted to explore and clarify this. Upon measuring the back muscle stiffness of both thoracic
and lumbar regions in large samples (n = 64), the results of this study could also act as a normative
database for future studies on scoliosis, low back pain, and other spinal musculoskeletal disorders.

The TUPS stiffness was found to decrease from T3 to T7, and then increase from T11 to L4 level.
This is in line with previous studies suggesting that the muscle stiffness at L4 was larger than L1
in patients with low back pain [29], patients undergoing spinal surgery [41], and healthy young
adults [27]. This could be explained by the curvature of the spine since the thoracic spine is in kyphosis
position, which might stretch the back muscles; and the lumbar spine is in the lordosis region, which
might compress the back muscles. Future studies, preferably using the real-time ultrasound images
with large resolutions that can observe muscle fibers, are needed to further explore and look into the
underlying mechanism of the observed different changes of back muscle stiffness at the thoracic and
lumbar regions. It is also worthwhile to investigate if the observed change in muscle stiffness is a
physiological phenomenon or the cause of pathology in future studies.

Unlike TUPS, no statistically significant difference in levels in SWE was observed in this study.
This might be explained by the different underlying mechanisms of evaluating muscle stiffness by
TUPS and SWE. While TUPS could not differentiate the multiple layers of soft tissues, SWE could
specifically locate a certain muscle area by choosing the region of interest (ROI) on an ultrasound
image. Most previous studies have compared the difference between lying and upright positions
and/or between resting and contraction conditions of a single muscle group [42,43]. Unfortunately,
few previous studies have used SWE to map the muscle stiffness along the spine, which makes it rather
difficult to compare the current findings in this study with previous studies. The lack of previous
findings might be because SWE is a rather new technology, and more studies shall be conducted in the
future to enable the synthesis of information on spinal muscle stiffness as evaluated by SWE.

4.3. Effect of Gender (Female vs. Male)

Back muscle stiffness of male subjects was found to be larger than that of female subjects in both
lying and standing postures as evaluated by TUPS and SWE. This accords with previous studies on
muscle stiffness of knee extensor in healthy young athletes [44] and knee flexors in healthy young
adults [45]. Male and female adults have different anatomical structures generally, such as the
distribution and mass of body fat and muscles at the back of the trunk [46]. This might help explain
the observed difference in back muscle stiffness between the two genders in this study. While most of
the previous studies focused on limb muscle stiffness [44,45], this study provides more information
and evidence about the effect of gender on back muscle stiffness along the thoracic and lumbar spine.

4.4. Effect of Posture (Lying vs. Standing)

SWE stiffness was found to be larger in standing posture than lying posture, while significantly
larger TUPS stiffness at T3, L1, and L4 during standing in male subjects and that at T3, T7, T11, and L1
during lying in female subjects were found. Meanwhile, significant percentage changes in muscle
stiffness from the lying to the standing posture was found for TUPS measurement, but not for the SWE
measurement in this study, even the pattern/trend of changes appeared to be the same. The finding
of significantly larger TUPS stiffness at the L4 level during standing in male subjects was in line
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with a previous study on male patients with low back pain [16]. The certain difference regarding the
effect of posture between the SWE and TUPS measurements could be due to the different measuring
mechanisms of these two instruments. The SWE assumed the muscle mass density (ρ = 1000 kg/m3) to
be a constant value when calculating the stiffness [25], and TUPS used the real-time tissue deformation
with a conventional B-mode image to calculate the stiffness [29]. The soft tissue thickness has changed
from lying to standing position, which might affect the muscle mass density and thus affect the SWE
stiffness measurement. The SWE stiffness has also been suggested to be minimally associated with
TUPS stiffness [47]. Additionally, the soft tissue thickness was found to be correlated with the different
postures of lying and standing, and the changing pattern of soft tissue thickness also appeared to be
similar to that of muscle stiffness at different levels as measured by TUPS in this study.

The different changes in TUPS stiffness from lying to standing postures between male and female
subjects might be due to the different anatomical structures between the two genders. The TUPS
used the tissue deformation during the compression-release cycles to acquire the stiffness [29]. It is
reasonable to expect that the mass of body fat and breast may affect more of the back muscle elongation
and contraction, especially in the upper trunk in female subjects than that of male subjects. Previous
studies have also reported the increased anterior-posterior shear forces in females and decreased
forces in males in response to stress [48], and the different trunk muscle geometry between the two
genders [49]. All these findings may help explain the measured different changes from lying to
standing posture between the SWE and TUPS measurements and between the two genders. Further
studies, preferably in vitro studies with better control of the experimental setting for more robust
results, are still needed to look into this issue and identify the exact cause.

4.5. Relationship between the SWE and TUPS Measurement Techniques

This study observed significantly moderate correlations between the SWE and TUPS measurement
techniques at the T3 level in the lying position, L1 level in the standing position, and L4 level in the
standing position only. This might be caused by the different underlying mechanisms to measure
muscle stiffness by the two techniques. Additionally, while TUPS could not differentiate the multiple
layers of soft tissues, SWE could specifically locate a certain muscle area by choosing the region of
interest (ROI) on an ultrasound image. The muscle contraction and the overlying tissue might influence
the SWE and TUPS stiffness measurements. The observed correlation may also contribute to the
presented results and explain the difference in muscle stiffness as measured by the two techniques at
the same location. For example, the TUPS stiffness values ranged between 104 kPa and 303 kPa, while
SWE stiffness values ranged between 17 kPa and 37 kPa. This implies that when applying these two
techniques to evaluate the muscle stiffness, the relative changes in measured values might be more
meaningful for muscle assessment than that of absolute values.

4.6. Implications and Outlook

The results of this study will not only enlarge our understanding of back-muscle stiffness, but also
provide us with insights about the possible cause and mechanism of scoliosis and low back pain.
The findings of this study inspire future efforts to investigate if the observed change in muscle stiffness
is a physiological phenomenon or the cause of pathologies of scoliosis and low back pain. The results
may also serve as normative data about back muscle stiffness in healthy young adults, which could be
useful in lots of healthcare areas in the future. Attention should be paid to the fact that the normative
values might be different for different age groups, and only healthy young people aged between
18–30 years were evaluated in this study. The obtained values on muscle stiffness could be treated as a
reference, but it might not be appropriate to directly generalize such values to patients with scoliosis
or lower back pain. This study can be the first step for further studies investigating the distribution
of back muscle stiffness along the spine in different populations, age groups, and patient groups.
As the introduced experimental protocol has been evaluated to be reliable, this study also enables
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future studies to apply similar protocols on patients with scoliosis, low back pain, and other spinal
musculoskeletal disorders.

4.7. Best Practice Recommendations for the SWE and TUPS Measurement Techniques

Good knowledge of the mechanism of the SWE and TUPS measurement techniques and careful
consideration of the available experimental/clinical settings are needed to enable the best practice
for the two techniques. It is recommended to apply the SWE to measure the muscle stiffness when
differentiating and evaluating different layers of muscles and different regions of the same muscle,
since the region of interest (ROI) of SWE can be easily customized to various shapes and sizes at
various locations during the measurement. With the advantages of being portable, with a wireless
connection, and occupying a small space, the TUPS would be more helpful to generally evaluate the
muscle stiffness at certain anatomical locations, especially for screening purposes in labs/clinics with
limited space or even in an outdoor environment [29,40]. The TUPS can be used to do the screenings
first, and when abnormal muscle stiffness is identified, the SWE can then be applied to examine the
exact cause by specifically locating various regions.

4.8. Limitations

While mapping the muscle stiffness at the thoracic and lumbar regions could already provide
plenty of information, the data on cervical and sacral regions were not involved in this study. Future
studies could consider expanding this mapping strategy to provide a more comprehensive picture
of spinal muscle stiffness. During the experiment, subjects were instructed to stand symmetrically
and put equal weight on both feet, supplemented by the observation of accessors. Future studies
could consider putting pressure sensors and/or a pressure mat under the subject’s feet to control the
symmetric weight distribution more objectively. While subjects were instructed to breathe naturally
during the experiment, it should be noted that the influence of breath dynamics on the measured
results remained unclear. Future studies are needed to understand this issue. The muscle activity was
unfortunately not measured as a covariable to explain muscle stiffness changes, which can also be
considered in future investigations.

It shall be noted that the SWE and TUPS measurements might be sensitive to other factors besides
the mechanical properties. A recent paper reported that indirect tissue stiffness measurements are often
sensitive to the mechanical properties, geometrical dimensions, and tensional state of the tissue [50].
From a mechanical perspective, tissue elasticity is defined as a ratio of strain (strain=F/A) and elongation
(dl/L), and can be measured directly using mechanical measurements. Meanwhile, ultrasound and
elastography do not measure strain and elongation directly. These indirect measurements are indirect
estimations of the stiffness. When standing, the muscles might contract and thereby influence the
stiffness measurements. For the research community, it is essential to have a standard definition
and understanding of muscle stiffness. Further studies are still needed to investigate, understand,
and clarify this issue.

5. Conclusions

This study mapped the back muscle stiffness along the thoracic and lumbar spine, with both SWE
and TUPS, in both lying and standing postures in healthy male and female adults. It identified that
both SWE and TUPS are reliable in measuring back muscle stiffness. Significant effects of level, gender,
and posture on back muscle stiffness were identified. This may provide some insights regarding the
underlying mechanism of why the common sites of low back pain take place at a certain spinal region
and facilitates future research on other spinal musculoskeletal disorders.
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Abstract: Although plane wave imaging (PWI) has been extensively employed for ultrafast ultrasound
imaging, its potential for sectorial B-mode imaging with a convex array transducer has not yet been
widely recognized. Recently, we reported an optimized PWI approach for sector scanning that exploits
the dynamic transmit focusing capability. In this paper, we first report the clinical applicability of
the optimized PWI for abdominal ultrasonography by in vivo image and video evaluations and
compare it with conventional focusing (CF) and diverging wave imaging (DWI), which is another
dynamic transmit focusing technique generally used for sectorial imaging. In vivo images and videos
of the liver, kidney, and gallbladder were obtained from 30 healthy volunteers using PWI, DWI,
and CF. Three radiologists assessed the phantom images, 156 in vivo images, and 66 in vivo videos.
PWI showed significantly enhanced (p < 0.05) spatial resolution, contrast, and noise and artifact
reduction, and a 4-fold higher acquisition rate compared to CF and provided similar performances
compared to DWI. Because the computations required for PWI are considerably lower than that for
DWI, PWI may represent a promising technique for sectorial imaging in abdominal ultrasonography
that provides better image quality and eliminates the need for focal depth adjustment.

Keywords: medical diagnostic imaging; ultrasonic imaging; abdominal ultrasound; plane wave imaging;
diverging wave imaging; synthetic focusing

1. Introduction

Abdominal ultrasound (US) requires a large field-of-view with high image quality at all depths
because abdominal organs examined by US imaging are of various sizes and located at various
depths [1]. For example, the gallbladder and common bile duct, which are located at shallow depths
(2–7 cm), need to be reconstructed with a sufficiently high spatial resolution to estimate the wall
thickness, while the liver and kidney, which are located at both shallow and deep depths (5–20 cm),
also require high spatial and contrast resolutions. When conventional focusing (CF) is used, however,
the transmit beam has a fixed focal depth, which exhibits a higher spatial resolution and contrast of
the image in the vicinity of the focal depth but lower image quality at other depths. Consequently,
when scanning the entire abdomen, clinicians must constantly adjust the focal depth up and down to
the region of interest with one hand while holding a transducer with the other hand. This constant
manual adjustment of the focus prolongs the examination time.

A simple method of enhancing the image quality over various depths is to increase the number of
transmit foci per scanline [2]. In the multifocus technique, multiple beams focused at different depths
are successively transmitted to reconstruct a single scanline of an image. Consequently, the frame rate
decreases inversely proportional to the number of foci. Although this technique is commonly used
for linear array imaging with a short depth of view (<8 cm), it is difficult to apply for abdominal US
imaging when the view depth is greater than 15 cm because of the long acquisition time. If three foci
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per scanline are used for a B-mode image with 256 scanlines and a depth of 20 cm, then the frame rate
will be lowered to 5 Hz, which is extremely slow for real-time US scanning.

Another method is synthetic transmit focusing (STF), in which multiple low-resolution images
obtained by transmitting an unfocused beam or a widely diverging beam before and after a tight focus
are compounded coherently to achieve dynamic transmit focusing at every imaging point. Synthetic
aperture (SA) imaging is the most investigated and widespread STF technique. In SA imaging, a virtual
source (VS) is usually generated in front of the array transducer, and spherical wavefronts before and
after the VSs are used for STF [3–5]. Because it was adapted for medical imaging in the 1980s–90s [3,6,7],
numerous studies have been published and verified that SA imaging provides a high-resolution image
over all depths compared to conventional focusing [8–11]. Consequently, it has been implemented as
an innovative advanced beamformer on commercial high-end US systems, such as nSIGHT by Philips
or cSound by GE [12,13]. However, this technique requires reconstruction of dozens of hundreds of
more scanlines per frame compared to the CF method, which substantially increases the computational
costs. In addition, it suffers from motion artifacts because high-quality SA imaging often requires
approximately 100 emissions due to grating lobe problems [8,14], and tissue or hand motion could
cause incoherence among the low-resolution images that are subsequently compounded and lower the
performance of dynamic transmit focusing. Moreover, motion artifacts can be more problematic in
abdominal ultrasonography due to the large field-of-view and long acquisition time, which hinders
the fast scanning and capturing of various abdominal organs.

When VSs are set behind the transducer array, diverging waves (DWs) are transmitted through
multiple elements covering a broad imaging region. In DW imaging (DWI), a small number of
DWs, usually 3–20, with different VS positions in the lateral direction are transmitted and coherently
compounded for a single frame [15–17], thus leading to fast acquisition and less motion artifact.
Using the broad coverage of DW, DWI is generally used for fast cardiac imaging with a phased
array [16,18–21]. Because DWI offers dynamic transmit focusing with a small number of emissions,
it can also be used to enhance the image quality of abdominal US, avoiding significant motion artifacts.
Consequently, a recent paper suggested the use of DW for ultrafast abdominal imaging [22].

When the VSs are placed at infinity behind the array, plane waves (PWs) are transmitted.
PW imaging (PWI) employs STF using the PWs steered at different angles [23]. It has been widely used
as a means of ultrafast imaging for shear wave elastography [24–26] and blood flow imaging [27,28] or
fast 3D scanning [29–31]. Although most PWI studies focus only on its ultrafast imaging capability,
a few studies have reported its potential for high-resolution B-mode imaging [23,26,32]. In addition,
PWI is more advantageous than DWI in terms of the spatial resolution [19,22] because PW STF can
theoretically provide a uniform beam width over all depths [26,33]. However, PWI has not been
widely used for large sectorial imaging because of the small coverage of PW compared to that of
DW, which might be one of the reasons why PWI has not been implemented for abdominal imaging.
To test the feasibility of PWI for this unexplored application, in our earlier study [34,35], we optimized
PWI for the sectorial field-of-view and conducted simulation and phantom experiments. From that
study, PWI was proven to enhance both the image quality and frame rate in convex array imaging,
which results similar to that of linear array imaging when the PW angles, transmit aperture size, and
synthesized PWs for each imaging point were properly selected.

The objective of this paper is to test the clinical applicability of the optimized PWI for abdominal
ultrasonography by evaluating its in vivo image quality and comparing its quality with that of DWI
and CF. To the best of our knowledge, this is the first in vivo study of PWI for abdominal ultrasonic
imaging. Phantom images, in vivo images, and videos of the liver, kidney, and gallbladder of 30 healthy
volunteers were obtained using PWI, DWI, and CF. First, the phantom images were used to measure
the spatial resolution and image contrast for the quantitative evaluation. Then, in vivo abdominal US
images were acquired from 30 healthy volunteers and assessed by three radiologists in terms of spatial
resolution, image contrast, noise, and artifacts. In addition, in vivo video clips were also evaluated by
radiologists to assess image quality under hand motion.
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2. Materials and Methods

2.1. Imaging Techniques

Three imaging techniques were compared: CF, DWI, and PWI. The transmit configuration of each
imaging technique is listed in Table 1. In CF imaging, traditional line-by-line scanning was performed
using a focused beam with a focal depth of 10 cm and an F-number of 5.0. The focal depth and the
F-number were optimized so that the spatial resolution was as constant with increasing depth as
possible to obtain uniform spatial resolution in the entire field-of-view for the fair comparison with
two-way dynamic focusing techniques (DWI and PWI). In addition, 128 focused beams were used for
CF, and 32 VSs and 32 PWs were employed for DWI and PWI, respectively.

Table 1. Number of transmissions (Ntx), acquisition frame rate considering the Ntx, normalized amount
of computations in the beamforming process, and Tx beam properties of conventional focusing (CF),
diverging wave imaging (DWI), and plane wave imaging (PWI).

Ntx
Acquisition Frame

Rate (fps)

Amount of
Computation
(Normalized)

Tx Beam Properties

CF 128 31.9 1 Focal depth: 10 cm, F-number: 5.0

DWI 32 127.7 29.26
VS positions: x: from −2 cm to 2 cm

with an interval of 4/31 cm, z: same as
the vertex of the convex array

PWI 32 127.7 9.94 PW angles from −30◦ to 30◦ with an
interval of 60/31◦

Figure 1 illustrates the VSs used for DWI and PWs used for PWI. The red dots in Figure 1a show
the 32 VSs, and the orange arcs represent the propagation of a DW originated from the first VS over
time. The red lines in Figure 1b show the 32 steered PWs, and the orange lines illustrate the propagating
PW. The blue arrows in Figure 1 show the directions of the DW and PW. The VS positions (Table 1)
were chosen to employ the full aperture (yellow shaded area in Figure 1a) for each DW transmission.
The outermost VS was positioned at x = ± 20 mm (Figure S1) considering the 6 dB acceptance angle of
the element of the convex array transducer used in this experiment. In PWI, the transmit aperture size
was limited, indicated by a yellow shaded area in Figure 1b, such that it did not exceed the acceptance
angle of the transducer element for the optimal PWI as proposed in our previous study [35].

In sector imaging, PW has a smaller beam propagation region (smaller coverage) compared with
DW (orange shaded areas in Figure 1) because of the limited transmit aperture and a constant direction
of propagation. Although this property of PW reduces the number of synthesized waves per imaging
pixel, it does not diverge and maintains the wave intensity throughout the propagation, leading to a
deeper penetration depth compared with that of DW. More importantly, the small propagation region
reduces the amount of computations required in beamforming. Table 1 shows the normalized amount of
computations for each imaging technique when a B-mode image with 1039 × 256 pixels was reconstructed.
This value was obtained by normalizing the number of beamforming (channel-summation) operations
required for a single compounded image using DWI or PWI by the value required for a single image
using CF. As is well known, synthetic imaging (DWI and PWI) requires much more computations than
traditional focusing (CF). Note that PWI with 32 PWs requires 2.9-times fewer computations compared
with DWI with 32 VSs as shown in Table 1.
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Figure 1. (a) Virtual sources (VSs) (red dots) and propagating DW (orange arcs) used for DWI and
(b) steered PWs (solid red lines) and propagating PW (orange lines) used for PWI. Directions of DWs
and PWs are indicated by blue arrows, and transmit apertures are marked with yellow shaded areas.
Pixels in the beam propagation region (orange shaded area) for each DW or PW transmission should be
reconstructed in the beamforming process. Difference in the size of beam propagation region between
DWI and PWI shows the difference in the amount of computations required for DWI and PWI.

Given the imaging depth d, the sound speed c, and the time margin before the next emission τ,
the acquisition rate for a single frame can be calculated by

FRmax = 1/
{
(2d/c + τ)·Ntx

}
(1)

The acquisition frame rates of CF, DWI, and PWI are 31.9 fps, 127.7 fps, and 127.7 fps, respectively,
when d = 15 cm, c = 1540 m/s, and τ = 50 μs (Table 1). However, during the in vivo data acquisition with
the US system, the display frame rates (i.e., the frame rate at which the B-mode image was updated on
the screen) were 26.6 fps, 10 fps, and 15 fps for CF, DWI, and PWI, respectively, which were lower
than the acquisition rates due to the limited number of receive channels and computing power of the
system. Although 2.9 times fewer computations were required for PWI than DWI (Table 1), the display
frame rate of PWI supported by the system was only 1.5 higher than that of DWI due to the limited
channel count of the system. The reasons for the low display frame rate will be further explained in
discussion section. Note that the display frame rate could, however, be enhanced up to the acquisition
frame rate by improving the computational algorithms in the beamforming process and upgrading the
computational resources of the US system.

For all the imaging techniques, the transmit voltage was 80 V, the receive F-number was 1.0,
and the 50% Tukey window was used for the receive apodization in the beamforming process. In DWI
and PWI, only the imaging points reached by the DW or PW were calculated as the low-resolution
image and compounded for the final image as described in [35].

2.2. System and Method for Data Acquisition

A research US system (E-cube 12R, Alpinion Medical Systems, Republic of Korea) with a convex
array transducer (SC1-6, Alpinion Medical Systems, Republic of Korea) was used for data acquisition.
The transducer has 128 elements and a center frequency of 3.6 MHz, and the system has a 128-channel
transmit board and a 64-channel receive board. For DWI and PWI, which require full-channel reception,
the same emission was repeated twice for the echo reception of the first and second sets of 64 channels.
Beamforming and image processing were conducted on a graphics processing unit (GPU) (GeForce GTX
1080, NVIDIA, CA, USA) equipped in the system by using the CUDA computing platform. Thus,
unfortunately, the acquisition frame rate of DWI and PWI in this study was twice the maximum
acquisition frame rate (127.7/2 = 63.85 fps).

A commercial phantom (Model 539, ATS laboratories Inc., Bridgeport, CA, USA) was used for
the phantom study. For the phantom images of CF, DWI, and PWI, radio-frequency (RF) data were
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acquired by fixing the transducer on the phantom. A cross-section of the phantom including point
and cyst targets was selected, and three images of the same cross-section were reconstructed using the
three imaging techniques (CF, DWI, and PWI).

In vivo abdominal ultrasonic images of the gallbladder, liver, and kidney were collected from
30 healthy male volunteers by a radiologist under institutional review board approval at Seoul Saint
Mary’s Hospital. Written informed consent was obtained from all volunteers. The radiologist obtained
abdominal ultrasonic images and videos of each volunteer using CF, DWI, and PWI, sequentially,
trying to obtain three images or videos (CF, DWI, and PWI) for the same cross-section as much as
possible. Misaligned sets were excluded, and 52 image sets (a total of 156 images) were evaluated:
14 sets for the gallbladder, 18 sets for the liver, and 20 sets for the kidney. For the video evaluation,
22 video sets (a total of 66 clips) were chosen, and each video contains the real-time image of right
hepatic lobe, gallbladder, and right kidney. Three video clips (CF, DWI, and PWI) of each set were
synchronized to show the same cross-section at the same time point as much as possible. The time
length of the synchronized videos was between 3 and 9 s.

2.3. Beamforming and Postprocessing of Image for the Evaluation

For the still images, the RF channel data were stored and beamforming and postprocessing were
conducted offline. In the beamforming process, the RF data were demodulated to the base band,
downsampled by a factor of 4, and then beamformed using the parameters shown in Section 2.1.
To flatten the uneven brightness of the image across depths within an image and across different
imaging techniques, automatic time-gain-compensation (TGC) was applied to all the images as in [8].
The imaging region was axially divided into 5 zones, and the 5 representative gain values were
determined by the reciprocal of the median brightness of each zone. TGC was applied after the spline
interpolation of the 5 gain values.

In the log compression, which highly affects the contrast of an image, the max value was
automatically chosen to be 50 dB and 40 dB above the median brightness of the entire image for the
phantom and in vivo images, respectively. The dynamic range was 80 dB and 57 dB for the phantom
and in vivo images, respectively.

The RF channel data for in vivo videos could not be stored due to the limited storage capacity.
The videos were obtained by recording displayed B-mode images on the screen. Because the automatic
TGC was not implemented on the online reconstruction software in the system and the radiologist
arbitrarily adjusted the gain during the acquisition, the brightness of the on-screen images among
DWI, PWI, and CF was quite different. Thus, the automatic TGC was applied on a log scale to the
recorded video clips. For this reason, unfortunately, the image contrast of video could not be evaluated
because the brightness of the screen-captured video was already clipped with different ranges before
the post TGC control.

2.4. Image and Video Evaluation

Three radiologists with 10 years, 8 years, and 5 years of abdominal ultrasonography experience
assessed the phantom images and the in vivo images and videos of the human abdomen.
The radiologists were asked to score each image or video on a 5-point Likert scale (1: very poor, 2: poor,
3: average, 4: good, and 5: very good) in terms of 4 evaluation items (‘spatial resolution’, ‘contrast’,
‘noise’, and ‘artifacts’). The videos were not assessed in terms of ‘contrast’ because some grayscale
values were saturated due to the unavailability of raw data as described in Section 2.3.

In the phantom study, 3 images (1 set) of a cross-section of the phantom were reconstructed using
CF, DWI, and PWI. The 3 images were randomly ordered without labels and presented to evaluators.
For the in vivo study, 156 images (52 sets) were randomly ordered and evaluated individually without
any information about the patients and imaging techniques. For the assessment of in vivo videos
(22 sets), the three synchronized videos of each set were played together side by side with random
order. The radiologist could rewind and play back the videos freely during the assessment.
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For the phantom study, the spatial resolution and contrast were also quantitatively measured.
The spatial resolution was measured by the lateral length of the –6 dB contour of a point target [35].
The contrast ratio was calculated by CR = μb − μc, where μb and μc are the mean intensities of the
background speckle and cyst regions, respectively [36].

2.5. Statistical Analysis

The Wilcoxon rank-sum test was used because it is known to be suitable for a Likert scale
evaluation [37,38]. Because the absolute Likert scale values highly depend on the person’s interpretation
of the scale, the test was applied to each evaluator’s scores. Three pairs of data (CF versus (vs.)
DWI, CF vs. PWI, and DWI vs. PWI) were tested to statistically demonstrate that PWI offers a better
image quality than does CF imaging and provides comparable performance to DWI. The mean score
difference between two among three imaging techniques were obtained. For example, the mean score
difference between PWI and DWI (P vs. D) was calculated as

dP vs. D =
1
N
∑

n sP(n) − sD(n) (2)

where sP(n) and sD(n) are scores of n-th image or video clip reconstructed by PWI and DWI, respectively.

3. Results

3.1. Phantom Study

Figure 2 shows the phantom images reconstructed by the CF, DWI, and PWI techniques. The –6 dB
spatial resolutions of the point targets in Figure 2 are presented in Figure 3a, and magnified images
of the point targets at 30, 80, and 120 mm are presented with −6 dB, −12 dB, and −20 dB contours in
Figure 3b–d. In Figure 3a, the effective focal depth of CF seems slightly closer to the transducer than
100 mm because the point targets were vertically located 2.5 mm apart from the center scanline. For all
imaging techniques, the spatial resolution deteriorates as the depth increases. Although the resolutions
of the three techniques are similar at shallow depths, PWI and DWI clearly show a better spatial
resolution than that of CF at depths ≥ 100 mm. In addition, PWI provides a slightly better resolution
than that of DWI. This result might be explained by the nondiffraction property of PWs [26,33], and the
superiority of PWI over DWI in terms of spatial resolution was also previously reported [19,22].

 
Figure 2. Phantom image set reconstructed by using (a) CF, (b) DWI, and (c) PWI. The enlarged images
of point and cyst targets are shown in Figures 3 and 4.
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Figure 3. (a) Resolution (mm) over depths measured from point targets in the phantom images of CF,
DWI, and PWI. DWI and PWI provided a better resolution at depths ≥ 100 mm. (b–d) Magnified point
target images of Figure 2 at depths of (b) 30 mm, (c) 80 mm, and (d) 120 mm. Red, blue, and purple
lines show −6 dB, −12 dB, and −20 dB contours, respectively, and the two crosses in each panel indicate
where the maximum lateral distance is measured as the resolution value.

 

 

Figure 4. (a) Contrast ratio (dB) over all depths measured from cyst targets in the phantom images
of CF, DWI, and PWI. The contrast ratio of CF is lower than those of DWI and PWI on average.
(b, c) Magnified cyst target images of Figure 2 at depths of (b) 60 mm and (c) 120 mm. The black square
and the white circle show the contrast measurement areas. The measured contrast ratio is presented
above each panel.

The measured contrast of the cyst targets in Figure 2 is presented in Figure 4a, and the magnified
cyst images are shown in Figure 4b,c. Except at a depth of 20 mm, PWI always offered a higher contrast
ratio than CF. Compared with DWI, PWI provided a lower contrast at near depths but a similar contrast
at mid and far depths. At near depths, DW had sufficient intensity before diverging further and the
number of compounded DWs is greater than the number of compounded PWs (due to the broader
coverage of a DW than a PW). This might lead to the higher contrast ratio of DWI than that of PWI at
near depths (z = 20 and 40 mm). However, DWs lose the intensity more than PWs as it propagated.
At mid and far depths (z = 60–140 mm), the contrast ratio of DWI and PWI became similar, although
the number of compounded DWs is still greater than the number of compounded PWs. Both DWI
and PWI showed the contrast degradation at near depths relative to the far depths. This might be due
to the reverberation artifacts that appear more frequently in imaging techniques using broad beams
than in conventional imaging. The mean contrast ratios of CF, DWI, and PWI were 25.15 dB, 27.27 dB,
and 26.88 dB, respectively.

Table 2 lists the scores of phantom images of one set (Figure 2) reconstructed using CF, DWI,
and PWI, and they were evaluated by three radiologists with consideration of the four items. PWI was
scored higher than CF in all cases. All radiologists gave almost the same scores to DWI and PWI.
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From this phantom study, PWI was proven to provide better image quality with a higher acquisition
rate than CF and to yield a comparable performance to DWI with much lower computational costs.

Table 2. Evaluation results of phantom images (Figure 2) reconstructed by CF, DWI, and PWI on
the Likert Scale (1–5) from three radiologists (Rad.). DWI and PWI were scored higher than CF in
most cases.

Items Spatial Resolution Contrast Noise Artifacts

Imaging CF DWI PWI CF DWI PWI CF DWI PWI CF DWI PWI

Score
Rad. 1 2 5 4 3 5 5 2 4 5 3 5 5
Rad. 2 2 5 4 3 4 4 2 4 4 3 4 4
Rad. 3 3 4 4 3 4 4 3 4 4 3 4 4

3.2. In Vivo Study

Figure 5 shows representative gallbladder, liver, and kidney images obtained using CF, DWI,
and PWI. Although slightly different cross-sections were captured across the imaging techniques,
the overall image quality, including the spatial resolution and image contrast, is better in DWI and
PWI than in CF. Figure 6 shows the clinical evaluation results of 156 in vivo images (52 sets) by the
three radiologists. A bar represents the mean of differences in scores between DWI and CF (dD vs. C),
PWI and CF (dP vs. C), and PWI and DWI (dP vs. D) obtained by (2). The p-values of the statistical test
are listed in Table 3, and the significant differences (p < 0.05) are shown in bold in Table 3 and marked
by an asterisk in Figure 6. Both DWI and PWI show higher scores than CF for all evaluation items
by all three radiologists. DWI and PWI received very similar scores. Although PWI shows slightly
better spatial resolution and DWI presents slightly higher scores for other image qualities, significant
differences are not observed.

 

Figure 5. Representative in vivo images of (a–c) gallbladder, (d–f) liver, and (g–i) kidney, which were
reconstructed by using CF (for (a, d, g)), DWI (for (b, e, h)), and PWI (for (c, f, i)). PWI showed
better image quality with a 4-fold higher acquisition frame rate than CF and provided a comparable
performance with a 2.9 times lower number of computations compared to DWI.
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Figure 6. Mean score differences of in vivo images (N = 52) between DWI and CF (dD vs. C), PWI and CF
(dP vs. C), and PWI and DWI (dP vs. D). The asterisk indicates a significant difference (p < 0.05). DWI and
PWI show higher scores than CF in all cases, with significant differences in some cases. PWI and DWI
show a similar performance with no significant differences.

Table 3. P-values of the rank-sum test between each pair of CF, DWI, and PWI in the in vivo image
evaluation (N = 52) (all P-values less than 0.05 (i.e., statistically significant differences) are shown
in bold).

Spatial Resolution Contrast Noise

D vs. C P vs. C P vs. D D vs. C P vs. C P vs. D D vs. C P vs. C P vs. D

Rad. 1 0.000 0.000 0.273 0.002 0.012 0.744 0.000 0.000 0.622
Rad. 2 0.011 0.039 0.691 0.005 0.045 0.829 0.010 0.111 0.887
Rad. 3 0.142 0.024 0.155 0.237 0.053 0.193 0.070 0.041 0.354

Artifact

D vs. C P vs. C P vs. D

Rad. 1 0.020 0.029 0.499
Rad. 2 0.027 0.396 0.954
Rad. 3 0.194 0.350 0.666

Rad. = radiologist; D = DWI; P = PWI; C = CF.

Radiologist 1 found a highly significant enhancement (p< 0.01) of the ‘spatial resolution’, ‘contrast’,
and ‘noise’ and a significant improvement (p < 0.05) in the ‘unwanted artifacts’ for the images obtained
via DWI and PWI compared with those obtained via CF. Radiologist 2 also noted a significant
enhancement (p < 0.05) of the ‘resolution’ and ‘contrast’ for DWI and PWI. Radiologist 3 indicated that
PWI provides significantly better image quality (p < 0.05) based on the ‘resolution’ and ‘noise’ than CF.
None of the radiologists found significant differences (p > 0.1) between DWI and PWI with respect to
all the evaluation items.

Figure 7 shows the clinical evaluation results of the in vivo videos by the three radiologists.
The representative video is available online as multimedia Video S1. The p-values of the rank-sum test
of scores are listed in Table 4, and the significant differences (p < 0.05) are shown in bold in Table 4 and
marked by an asterisk in Figure 7. As observed in the result of the still image assessment, PWI had
higher average scores than CF in all cases and similar scores to that of DWI in the video evaluation.
Radiologist 1 found that PWI significantly enhanced the image quality for all evaluation items (p < 0.05)
compared to CF. Because noise is relatively easier to recognize from videos than from still images,
two of the three radiologists indicated that the DWI and PWI videos showed a significant enhancement
with respect to ‘noise’ compared with the CF videos. Significant differences were not observed between
PWI and DWI.
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Figure 7. Mean of the score differences of in vivo videos (N = 22) between DWI and CF (dD vs. C),
between PWI and CF (dP vs. C), and between PWI and DWI (dP vs. D). The asterisk indicates a significant
difference (p < 0.05). DWI and PWI show higher scores on average than those of CF in all cases. PWI and
DWI (P vs. D) show similar performance with no significant differences.

Table 4. P-values of the rank-sum test between each pair of CF, DWI, and PWI in the in vivo video
evaluation (N = 22) (all P-values less than 0.05 (i.e., statistically significant differences) are shown
in bold).

Spatial Resolution Noise Artifact

D vs. C P vs. C P vs. D D vs. C P vs. C P vs. D D vs. C P vs. C P vs. D

Rad. 1 0.025 0.035 0.531 0.121 0.013 0.093 0.224 0.021 0.102
Rad. 2 0.259 0.283 0.552 0.016 0.021 0.479 0.136 0.092 0.408
Rad. 3 0.261 0.155 0.359 0.041 0.106 0.807 0.146 0.146 0.506

4. Discussion

In this paper, we demonstrated that PWI 1) provides significantly enhanced image quality with a
4-fold higher acquisition rate compared to line-by-line CF and 2) provides a comparable performance
with a 2.9 times lower number of computations compared to DWI, based on quantitative and qualitative
evaluations of phantom and in vivo images. In the phantom study, the spatial resolution at depths
≥ 100 mm was enhanced (~0.5 mm) and the contrast of cyst targets was improved (~2 dB higher
on average) when using DWI and PWI compared with CF (Figures 3 and 4, Table 2). In the in vivo
study, the radiologists assessed the still images of 52 sets and the video clips of 22 sets, including liver,
gallbladder, and kidney.

Comparing PWI and CF, in the image evaluation (Figures 5 and 6), radiologist 1 rated PWI
significantly higher than CF for all evaluation items and radiologists 2 and 3 recognized the significantly
improved image quality of PWI in terms of ‘resolution’, ‘contrast’, and ‘noise’ items (p < 0.05). In the
video evaluation (Video S1 and Figure 7), radiologist 1 found a significant enhancement in PWI in
terms of ‘resolution’, ‘contrast’, and ‘noise’, while radiologist 2 found significant enhancements in
terms of ‘noise’ compared to CF.

In addition to enhanced image quality, the fast acquisition rate is another advantage of PWI
compared to CF. As the numbers of transmissions of PWI are 4-times lower than that of CF (Table 1),
the acquisition rates under the physical speed of US in tissues are 4-fold higher than that of CF.
This advantage of using a small number of emissions reduces the likelihood of motion artifacts, such
as blurring and distortion, which are major issues in synthetic imaging.

A comparison between PWI and DWI showed that PWI had slightly better spatial resolution and
DWI had slightly better contrast and reduced noise and artifacts (Figures 6 and 7). Similar results were
reported by Tong et al. [19] and Kang et al. [22]. However, the score differences between PWI and DWI
were quite small and none were significant (p > 0.1, Tables 3 and 4). Therefore, these findings imply
that PWI is able to provide a comparable image quality to DWI in sector imaging.

More importantly, PWI required an approximately 3-times lower amount of computations (Table 1)
relative to DWI. For sector imaging, DW is usually chosen to achieve dynamic transmit focusing, which
might be related to the larger field-of-view of sector imaging compared with linear-scan imaging and
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the broader coverage region (beam propagation region in Figure 1) of DW compared with PW. In this
paper, however, we found that PWI can provide comparable image quality with a much lower amount
of computations compared to that of DWI when the PW angles and transmit aperture size are carefully
selected as in [35].

4.1. Dependence on Evaluators

From the statistical analysis of the in vivo images and videos (Tables 3 and 4), significant differences
were found most often in the assessment of radiologist 1, while the least significant differences among
the three radiologists were found for the evaluation results of radiologist 3. This outcome might be
associated with the evaluators’ clinical experience. Radiologists 1, 2, and 3 had 10 years, 8 years,
and 5 years of experience, respectively, and the most experienced radiologist gave the scores with the
largest variance (variance in the image evaluation scores was 1.16, 0.79, and 0.79 for radiologists 1, 2,
and 3, respectively). The more experienced radiologists might have assessed the images with greater
confidence, resulting in more significant differences in many items.

4.2. Real-time Realization

Similar to other STF imaging techniques, DWI and PWI require massive computations because
dozens of scanlines should be reconstructed per single transmission and reception event, while CF
requires a one- or two-scanline reconstruction per event (Table 1). Thus, this computational load makes
the real-time implementation of STF imaging challenging, although both DWI and PWI have a high
acquisition frame rate. In this case, the lower number of computations of PWI compared with DWI can
be beneficial.

Parallel processors can be successfully utilized for STF imaging to accelerate the reconstruction process
because beamforming intrinsically performs the same operation on multiple data points. Software-based
beamformers based on GPUs have been widely employed for STF imaging [13,39,40] as well as for
conventional B-mode imaging, functional imaging, or three-dimensional imaging [29,30,41,42]. We also
utilized a GPU for fast reconstruction of DWI and PWI. Although the display frame rate (real-time frame
rate) of the system used in this study fell short of the acquisition frame rate, the process could be accelerated
if the system supports a full channel reception and the online B-mode reconstruction software is further
optimized, such as by using concurrent data copy and kernel execution. Indeed, using GeForce GTX 1080,
it took 41.3 ms and 14.6 ms to compute a single synthesized (i.e., compounded) frame from channel data
for DWI with 32 VSs and PWI with 32 PWs, respectively. Considering that parallel computing and data
transfer technology is rapidly advancing, PWI with at least a 60-fps frame rate will soon be achievable.

4.3. Limitation of this Study

Despite the fast acquisition rates of PWI and DWI (Table 1), the display frame rates of PWI and DWI
were lower than that of CF (26.6 fps, 10 fps, and 15 fps for CF, DWI, and PWI, respectively) in this study
due to the lack of channel count and computing power of the system. The low display frame rates of PWI
and DWI were mainly because they (1) need the full-aperture reception (128 channels) and (2) require
10–30 times more computations (Table 1) than CF. In CF, 64 channels were sufficient to receive echoes of a
focused US beam from a straight scan line. However, DWI and PWI required a full 128-channel reception
to collect echoes of a wide US beam reflected from a broad region. Unfortunately, the system supports
only 64 reception channels and thus two times more transmit-receive sequences were performed to obtain
128-channel data with the 64-channel system. In addition, despite the use of a GPU for beamforming,
the data transfer time and image reconstruction time for PWI and DWI was longer than the US echo
acquisition time, which further decreases the display frame rates of PWI and DWI.

For the still image evaluation, the B-mode image was reconstructed offline from RF channel
data stored and thus the frame rate of image was only affected by the limited number of receive
channels. Hence, each still image of CF, PWI, and DWI was acquired at the rate of 31.9 fps, 63.85 fps,
and 63.85 fps, respectively. For the video evaluation, the screen-captured videos were used, and thus
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the frame rate of video was the same as the display frame rate (26.6 fps, 10 fps, and 15 fps for CF,
DWI, and PWI, respectively). Those limited frame rates of images and videos might have affected the
evaluation results. Note that despite this unfavorable condition (lower frame rate than possible), DWI
and PWI received better scores than CF. If the 128-channel acquisition is available, the motion artifacts
in DWI and PWI would be further reduced. In addition, if the real-time reconstruction is realized and
the reconstruction frame rate is close to the acquisition frame rate, the system noise presented in the
B-mode image would also be reduced by frame averaging because more frames could be averaged
within a fixed averaging time period the for image persistence.

Although we optimized parameters for each imaging (the focal depth and F-number of CF for a
uniform resolution over depths, the VS positions of DWI for full-aperture transmission, and the PW
angles and aperture size of PWI according to our previous study [35]), only a single set of parameters
for each imaging technique was used to evaluate the image quality in this study. More exhaustive
comparisons with changes in various parameters might be needed because the number and directions
(or angles) of synthesized waves are major determinants of image quality in PWI and DWI.

5. Conclusions

We evaluated PWI against line-by-line CF imaging and another dynamic transmit focusing
technique, DWI, through phantom and in vivo experiments. The phantom images and in vivo images
and videos of the liver, kidney, and gallbladder of 30 healthy volunteers were assessed by three
radiologists. PWI showed a significant enhancement (p < 0.05) of the spatial resolution, contrast,
and noise and artifact reduction and presented a 4-fold higher acquisition rate compared to CF. PWI
and DWI showed similar performance in in vivo images and video evaluations, although PWI showed
a slightly better spatial resolution and DWI presented a slightly higher scores for other image qualities;
however, significant differences were not found. With comparable performance to DWI, PWI can
considerably lower the number of computations (approximately by 3 times in this study), which is the
most challenging aspect for the realization of synthetic imaging. Therefore, we concluded that PWI
represents a promising tool for abdominal ultrasonography by enhancing the spatial resolution and
contrast from shallow to deep depths and realizing a higher acquisition rate.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/19/5675/s1,
Figure S1: We placed the outermost VSs ± 20 mm from the center so that the full aperture can be used for the DW
transmission within the acceptance angle of the transducer element. Video S1: Representative in vivo abdominal
US videos reconstructed by CF, DWI, and PWI (from left to right).
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Abstract: Correct guiding of the catheter is a critical issue in almost all balloon catheter applications,
including arterial stenosis expansion, coronary arterial diseases, and gastrointestinal tracking.
To achieve safe and precise guiding of the balloon catheter, a novel imaging method with
high-resolution, sufficient depth of penetration, and real-time display is required. Here, we present
a new balloon catheter guiding method using fast photoacoustic microscopy (PAM) technique for
precise balloon catheter tracking and visualization as a feasibility study. We implemented ex vivo
and in vivo experiments with three different medium conditions of balloon catheter: no air, air, and
water. Acquired cross-sectional, maximum amplitude projection (MAP), and volumetric 3D PAM
images demonstrated its capability as a new imaging guiding tool for balloon catheter tracking
and visualization.

Keywords: balloon catheter; photoacoustic imaging; image guiding

1. Introduction

A balloon catheter is commonly used for opening the narrow or blocked area in the body.
The balloon catheter technique has been mostly applied in the field of coronary artery diseases. In
stenotic coronary vessels, the contracted balloon enters the affected coronary artery. The balloon is
inflated to widen the artery, squashing plaques against the artery wall. It can improve myocardial
blood flow in a localized stenotic lesion when the deflated balloon is removed [1]. Similarly, it has
been applied to peripheral arterial disease [2], extracranial or intracranial cerebral vascular lesion [3],
stricture of the gastrointestinal tract [4], eustachian tube dysfunction [5], and ureteropelvic junction
obstruction [6]. Unlike its function as an expander of the narrowed area, the balloon catheter can also
function as a blocker at the site of ruptured or torn vessels. If a large amount of bleeding occurs from
the aorta, the inflation of resuscitative balloon catheters can lead to blocking blood leakage from the
perforated site [7]. Such the balloon catheter procedure can increase blood flow to the heart and brain,
thus preventing cardiovascular collapse [8]. Recently, given a less-invasiveness of catheterization, a
new hybrid operation which is combining open surgery and vascular intervention has been used in
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many cases such as heart disease [9], liver injury [10], subclavian artery injury [11], and lower extremity
vascular injury [12]. The hybrid operation leads to minimizing the extent, the duration, and the cost of
the traditional operation. In the hybrid operation, the balloon catheter technique still works as the
main tool for vasculature intervention.

Whether the purpose of a balloon catheter is to open a blockage or block a torn site, it is necessary
to check that the balloon catheter enters the body and that the balloon is located at the correct place
in the body. To confirm the balloon’s location, X-ray fluoroscopy with contrast dye is regarded
as a gold standard. However, X-ray fluoroscopy devices cause substantial radiation exposure to
patients and operators [13]. Furthermore, iodine-containing contrast is essential for fluoroscopy-guided
angiography. It has been shown the contrast agent has adverse clinical consequences due to its high
osmolality [14,15]. In addition, the high viscosity of the contrast agent takes more time to complete
the interventional procedure [16]. Due to its relatively poor spatial resolution, X-ray fluoroscopy is
limited to show the precise location of the catheter. To overcome these limitations of X-ray fluoroscopy,
there have been experimental studies of balloon catheters using interactive MRI [17], carbon dioxide
digital subtraction angiography (CO2-DSA), [18] or ultrasound imaging (USI) [19]. However, MRI
is not a proper solution to use in a real-surgical environment due to its huge size and limitation in
the use of metal surgical tools known to interfere with the magnetic field. In addition, it is relatively
expensive. CO2-DSA needs to use additional agents to visualize vasculatures. Although USI is a better
option to use in urgent and surgical conditions, it has difficulties showing the catheter clearly, due to
its angle-dependent artifact. Furthermore, these techniques do not have high enough resolution to
visualize images below 50 μm. This is a bottleneck of precise catheter guiding. In particular, although
many operating sites use intraoperative imaging, such as fluoroscopy for vascular intervention parts
in hybrid operation, high resolution and rapid follow-up imaging techniques are still required to track
the catheter guiding precisely.

In recent years, photoacoustic imaging (PAI) has been spotlighted as a promising bio-imaging
technology with the development of high-performance PAI laser source and rapid computing technology.
This technique is originated from the photoacoustic (PA) effect discovered by Alexander Graham Bell
in 1880. When a nano-second pulsed laser shines on the targeting sample, it undergoes absorption of
laser energy and thermal-elastic expansion. As a result of this process, broad acoustic waves appear.
These waves can be captured by common ultrasound transducers. Finally, two or three-dimensional
images can be obtained via reconstruction algorithms. Thanks to less scattering of ultrasound in
biological tissue, PAI can achieve deep tissue imaging while maintaining ultrasonic resolution [20–24].
Furthermore, depending on aiming applications, PAI can provide multiscale images from several
nanometers to several centimeters selectively by controlling systemic specifications between optical
and ultrasonic [25]. Normally, PA microscopy (PAM) can provide superior spatial resolution and
sensitivity in relatively shallowed regions with focusing illuminated laser beam or detecting ultrasonic
beam [26–29]. In contrast, PA tomography (PAT) enables to achieve deep tissue imaging with
multi-arrayed transducers and broad laser illumination without any mechanical scanning [30–32].
Additionally, based on intrinsic absorption composites in the body, PAI can be used to visualize not
only structural parameters including vasculature networks, location of melanoma, the structure of
tendons, plaques and so on, but also functional parameters including blood velocity, oxygen saturated
level, and metabolism ratios [33,34]. Using these advantages, PAI has been widely utilized to improve
basic/preclinical studies and clinical translation in various areas, such as oncology, dermatology,
ophthalmology, neurology and so on [35–37].

PAI is also utilized as a powerful tool for a wide range of image-guided applications. For minimally
invasive biopsy of sentinel lymph nodes (SLNs), a handheld array probe-based PAI system has
demonstrated its performance of visualizing the ability of needle insertion and guiding to SLNs
dyed methylene blue (MB) and indocyanine green (ICG) [38,39]. A similar clinical PAI system has
been successfully developed to detect the catheter with higher sensitivity than USI [40]. These
approaches have suppressed the drawbacks of USI guiding by clear visualization of the metal part of
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the needle and the catheter. PAI is also used to effectively delineate cancerous regions for photothermal
therapy monitoring and drug delivery [41,42]. By showing the margin of cancer, PAI can enhance the
therapeutic effect. Moreover, thanks to its real-time displaying capability, relatively deep penetration
depth, and high spatial resolution, PAI has shown the feasibility of surgical imaging-guided applications
such as a precise needle guiding to a single vessel, incision of melanoma tumor, drug injection into
tumor, spinal fusing surgery and so on [43–47].

In this study, we conceptually demonstrated the capability of PAI to track and visualize the correct
location of the balloon catheter in the blood vessel under open surgery conditions. Especially, we identify
the location of the catheter in the procedure of the endovascular intervention part constituting hybrid
operation and the location of the balloon without any contrast agents. Using the fast-MEMS based
PAM (f-MEMS-PAM) system, three-dimensional and cross-sectional PAM images were successfully
obtained in real-time. In particular, by setting up three injection medium conditions (i.e., no air, air and
water) in the balloon, the balloon catheter was selectively tracked and visualized.

2. Materials and Methods

2.1. Balloon Catheter

Figure 1a shows the balloon catheter and the inflation pump used in this study. Figure 1b shows
an enlarged balloon catheter tip. A 2.0 × 20-mm balloon dilatation catheter (Medtronic, Sprinter
Legend®) for coronary balloon angioplasty was used. The balloon catheter consists of a balloon with
an optically transparent polyether block amide and a core made by polyvinyl chloride (PVC) marked
with platinum. The balloon was inflated to a pressure of 6 atm using an inflation device.

 

Figure 1. (a) Photography of the balloon catheter and the inflation pump, (b) Enlarged photograph of
the tip of the balloon catheter, (c) Schematic of the fast-MEMS-based photoacoustic microscopy system
for tracking and visualization of the balloon catheter. M, mirror; c, collimator; OL, objective lens, CL,
correction lens, TR, transducer; BC, beam combiner; AL, acoustic lens; I, iris; MEMS, Micro Electro
Mechanical Systems.

2.2. Fast Photoacoustic Microscopic Imaging

As shown in Figure 1c, the f-MEMS-PAM system was used to visualize the balloon catheter.
In order to generate PA wave with a tiny beam size, the nano-second pulsed laser beam was emitted
from a diode laser (SPOT-10-200-532, Elforlight, Daventry, UK) with a center wavelength of 532 nm, a
pulsed width of 6 ns, and a repetition rate of 10 kHz. To achieve in vivo imaging, we used the laser
energy around 10 mJ/cm2 (Supplemental Material), which satisfied the ANSI limits (Max 20 mJ/cm2

at visible light). The laser beam was then reshaped by an iris (SM1D12, Thorlabs, Newton, NJ, USA)
which was held by a right-angle kinematic mount (KCB1E, Thorlabs, Newton, NJ, USA) that worked as
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a spatial filter. Two mirrors were inclined at a 45-degree angle of vertical and horizontal planes to adjust
the direction of the beam to the collimator (F280APC-A, Thorlabs) before inserting into a single-mode
optical fiber (P1-405BPM-FC-1, Thorlabs). The diverged beam from the optical fiber became the
collimated beam after passing through the second collimator (F260APC-A, Thorlabs). The collimated
beam was again focused by an objective lens (AC254-060-A, Thorlabs). It then penetrated through
the beam combiner and projected into the sample. The beam combiner in front of the unfocused
ultrasound transducer constituted by a normal prism and aluminum-coated prism could confocal
align the laser beam with the ultrasound focus. A plano-concave lens (NT45-010, Edmund, Tucson,
AZ, USA) as an acoustic lens was utilized to focus the acoustic beam used to support acoustic focusing
on the transducer. Volumetric scanning was conducted with a 1-axis MEMS scanner (OpitchoMS-001,
Opticho Inc., Ltd., Pohang, Korea) and a linear stepper motor stage (L-509-10SD00, PI) which achieved
25 Hz B-scan imaging controlled by a data acquisition (DAQ) board (PCIe-6321, NI instruments,
Austin, TX, USA). The PA signal went back to the beam combiner. It was immediately detected
by a high-frequency ultrasonic transducer (V214-BC-RM, 50 MHz, Olympus, Tokyo, JPN) and an
RF-amplifier (ZX60-3018G-S+, Mini-Circuit, Brooklyn, NY, USA). The high-speed digitizer (ATS9371,
AlazarTech Pointe-Claire, QC, Canada) digitalized PA signals with 12 bit and 1 GS/s sampling rates
from the transducer. The whole system was controlled by a LabView program (NI instruments,
Austin, TX, USA). Our system can achieve high-resolution imaging with 12 μm for lateral resolution
and 45 μm for axial resolution [48]. Single B-scan and volumetric 3D PAM images were acquired
at 0.25 and 12 s, respectively, which is a relatively fast imaging acquisition rate compared to other
group reports [33,47–49]. Maximum projection amplitude (MAP) and cross-sectional PAM images
were acquired and analyzed with MATLAB (R2016a, Mathworks, Natick, MA, USA). Furthermore,
volumetric 3D PAM images and movies were reconstructed and produced with Amira program (Amira
6, FEI).

2.3. Automatic Surface Removing Algorithm

Due to the strong light absorption of blood at a wavelength of 532 nm, PAI can show blood
vessel networks without any contrast agent [50]. Unfortunately, in the current systemic condition,
the catheter was fully surrounded by blood vessels. These blood vessels usually generate the biggest
signals. As a result, the MAP PAM image only shows the image of blood vessels. For delineating
the correct location of the balloon catheter in blood vessels, these unexpected PA signals from blood
vessels should be removed. Normally, the largest signals that appear on B-scan images are those for
upper walls of blood vessels and catheters, in which the signal for blood vessels is larger. When the
catheter is quite close to the walls of blood vessels, these signals will overlap. If the catheter’s signal is
too small, signals of upper and lower walls of the blood vessel are the two largest signals. Therefore,
it is critical to identify these two signals from each A-scan for removing unwanted blood vessel signals.
In order to distinguish between the upper blood vessel signal and the catheter signal, the depth of the
signal should be considered. As shown in Figure 2b, the signal of the catheter is always deeper in all
cases. Thus, in the two largest signals, the signal with a greater depth will be the catheter. In the case
of the two largest signals belonging to blood vessels, a distance threshold is needed. The threshold
should be smaller than the width of the blood vessel. If the distance between the two signals is less
than the threshold, the second signal will belong to the catheter; otherwise, it will belong to the lower
blood vessel wall. In this study, we used a threshold of 300 pixels. Random noise also should be
considered. Noise may become the largest signal and appear on the MAP image. Interfering signals
are often concentrated on the upper or lower edge of the MAP image. They can be eliminated by
removing all large signals at the top and bottom edges of the image. The algorithm is summarized
in Figure 2a. Figure 2b(i,ii) show the B-scan image and A-scan profile before applying the removing
process, respectively. The biggest signal and the second biggest signal belong to blood vessel and
catheter, respectively. The blood vessel signal is almost removed after adapting the surface removing
process, as shown in Figure 2b(iii). In Figure 2b(iv), the signal of the blood vessel area becomes the
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constant line, and the biggest signal belongs to the catheter. Even if there is another signal next to
the catheter signal, it will not affect the image reconstruction process because only the largest signal
is selected, and the MAP image will only show the signal of the catheter. In this case, the signal
from the surface and the catheter core has a sufficient distance. So, the removal process works well.
Unfortunately, as shown in Figure 2c(i,ii), some regions show that the catheter is located very close
to the surface of the blood vessel. In this case, there is trouble in removing the surface successfully.
Although we enable to extract the only core region, we should consider the loss of the PA signals from
the core as shown in Figure 2c(iii,iv).
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Figure 2. Surface removing process. (a) Flow chart showing the automatic surface removing algorithm.
(b,c) Before/after applying the surface removing process when the catheter is far from the vessel
and close to the vessel, respectively. (i,ii) Cross-sectional photoacoustic (PA) image and the selected
depth-resolved A-scan profile before adapting the surface removing process, respectively. (iii,iv)
Cross-sectional PA image and depth-resolved A-scan profile after adapting the surface removing
process, respectively.

2.4. Animal Preparing

A 12-week-old male Sprague-Dawley rat weighing 380 g (Samtako, Korea) was used after one
week of acclimation. The study protocol was approved by the Institutional Animal Ethical Committee
of Chonnam National University Hospital. A rat was anesthetized with an intraperitoneal injection
of Ketamine (80 mg/kg)/Xylazine (12 mg/kg). Skin and soft tissue incisions were made from the
xiphoid process to both the femoral region. After exposing the abdominal aorta with around 1.1 mm
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diameter and both iliac arteries, proximal ligation at the highest abdominal aorta was obtained using
a 4–0 silk suture. Distal ligations of both common iliac arteries approximately 1 cm from the iliac
bifurcation were prepared in the same manner. Arteriotomy was performed through the upper half of
the vessel circumference with surgical scissors at a location of 1–2 mm close to the distal ligation site.
After removing arterial blood using gauzes, a guidewire was inserted through the arteriotomy and
advanced to the proximal ligation site. The balloon catheter was then passed over a guidewire into
the abdominal aorta. Beginning at the distal ligation part of the common iliac artery, the balloon was
totally deflated. When the balloon was positioned at the abdominal aorta, PAM images were acquired
in three medium conditions in the balloon: no air, air and water. After sacrificing the rat with overdose
of the anesthetic mixture, we cut out of the aorta, and the inside of the aorta was washed three or
more times with normal saline to confirm that there was no blood or thrombus in the blood vessels.
After that, we conducted the same process of in vivo experiment with PAM.

3. Results

3.1. PA signal Characteristics of The Balloon Catheter

As shown in Figure 3a, PA signals of whole blood and the catheter core components, such as
PVC and platinum, were measured under the same PAM setup at 532 nm wavelength. The used
laser energy is approximately 3 mJ/cm2. Compared to whole blood and platinum, PVC exhibited
approximately 38% and 83% higher PA signals at the 532 nm wavelength. Thus, even though the use
of 532 nm wavelength laser disturbed the detection of the catheter core directly because of the high PA
signal from the blood vessel wall, we estimated that the catheter core also could be detectable due to
the relatively high absorption of PVC. Figure 3b shows the PA signal ratio of the catheter core versus
the blood vessel surface at the different distance between the catheter core and the surface of the blood
vessel. We conducted ex vivo PA signal test with the extracted blood vessel and the inserted balloon
catheter. By injecting water slowly into the balloon, we changed the distance between the catheter core
and the blood vessel surface. The used laser energy is approximately 10 mJ/cm2. As shown in Figure 3b,
the maximum visible depth is about 1110 μm with a very low signal of the catheter core. The * mark
indicates the invisible depth of the catheter core which is around 1370 μm. By increasing the distance
between the catheter core and the blood vessel surface, the PA signal ratio was decreased exponentially.

3.2. The Balloon Catheter Visualization

As shown in Figure 4, MAP, cross-sectional and volumetric 3D PAM images of the catheter were
obtained with different injection medium conditions for the balloon catheter (i.e., no air injection,
air injection and water injection). When there was no air inside, the image of the catheter core was
displayed as shown in Figure 4a(ii–iv) because of its black color. There were two locations (two junction
points between the core of the catheter and the balloon due to air remaining) without signal on the
PAM MAP, causing a loss of PA signal for the image. Air was then injected into the catheter as shown
in Figure 4b(i). In Figure 4b(ii–iv), the entire PA signal of the catheter in the air area disappeared due
to a strong loss of acoustic attenuation in air. The only non-balloon area was visualized. In Figure 4c(i),
water was pumped into the balloon while still keeping a small air bubble (AB) inside the catheter. The
core of the catheter was displayed in the water but completely lost in the air bubble area (Figure 4c(ii–iv)).
The gold area (G) in the middle of the catheter core was also visualized in Figure 4a(ii,iii), Figure 4c(ii,iii)
with relatively low PA signal level. The PA signal of the catheter core showed 231.96% higher than
that in the G region for no air injection case and 248.25% for the water injection case. All these results
were also shown in volumetric 3D images (Figure 4a(iv), Figure 4b(iv), and Figure 4b(iv)) and movies
(Movie 1, Movie 2, and Movie 3). This simple experiment was performed to pre-check the ability of
PAM to visualize the catheter at different injection medium conditions before conducting in-vivo and
ex-vivo experiments. These obtained results demonstrated the feasibility of using the PAM system to
monitor the balloon catheter with high-resolution in real-time.
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Figure 3. PA characteristics of the balloon catheter. (a) PA signals comparison among whole blood
(WB), polyvinyl chloride (PVC), and platinum (b) PA signal ratio of the catheter core versus the blood
vessel (BV) surface at the different distance between the catheter core and the BV surface. * mark
indicates the invisible catheter core.

Figure 4. Maximum amplitude projection (MAP), cross-sectional and volumetric 3-dimentional
photoacoustic microscopy (3D PAM) images of the balloon catheter with different injection conditions.
(a) No air injection condition, (b) Air injection condition, (c) Water injection condition, (i) Photographs
of the balloon catheter, (ii) Corresponding MAP PAM images, (iii) Five selected cross-sectional PAM
images, (iv) Corresponding volumetric 3D PAM images (Movie 1, Movie 2, Movie 3). AB, air bubble;
G, gold.

3.3. In Vivo Visualization of the Balloon Catheter

The catheter was inserted into the aorta of an anesthetized rat carefully. The results are shown
in Figure 5. Under no air condition (Figure 5a), the whole blood vessel area was shown in the MAP
PAM image (Figure 5a(ii)) without the surface removing process. In cross-sectional PAM images
(Figure 5a(iii)), even the wall of the blood vessel showed the highest PA signal. Because the aorta
receives blood through the small-sized microvessel network (called as vasa vasorum), the wall of
blood vessel normally generates high PA signals regardless of the internal state of the aorta. The core
of the catheter was also observed with a relatively low PA signal level. After applying the surface
removing process, the core of the catheter was observed as shown in Figure 5a(iv). These results also
were confirmed by volumetric 3D PAM images and a 3D rendering movie (Figure 5a(vi,vii), Movie
4). The signal marked with an oval white dot line (CR, contact region) was the most prominent part
because it was adjacent to the blood vessel wall. Due to the actions of arterial muscles that changed
the position of the inner catheter, this was easily identified when compared to the balloon catheter in
Figure 4a. The lower part of the catheter core far away from the blood vessel wall was significantly
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reduced in the signal which was less 57.80% than the corresponding part of the blood vessel. The G
region maintained the PA signal level because the core of the catheter was very close to the blood
surface. Under air injection condition, the MAP image and corresponding cross-sectional images are
shown in Figure 5b(ii,iii), respectively. In Figure 5b(iv), after removing the blood vessel, the signal
again appeared in the CR area and the non-balloon area. The rest covered by the air medium did
not show any signal of the catheter core. Only the background was shown. The same results also
were confirmed in 3D rendering data (Figure 5b(vi,vii), Movie 5). Figure 5b(iv,v) show the MAP
image and cross-sectional images under water injection condition, respectively. Water was the ideal
medium for acoustic signal propagation. Thus, the signal of the catheter was fully collected in the case
of water injection not only before removing the surface (Figure 5c(ii,iii)), but also after blood vessel
removing (Figure 5c(iv,v)). We also observe the same results from volumetric 3D data (Figure 5c(vi,vii),
Movie 6). The pumping of water, however, increased the distance of the scanner with the catheter.
Thus, the received signal was quite weak compared to the biggest signals of no air injection case.
The PA signal of the catheter core was less 78.66% than blood surface signals. The G region even had
a signal 71.24% (no air injection) and 33.62% (water injection) lower than the black color of the core,
although it could be easily visualized under no air condition and water injection.
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Figure 5. In vivo MAP, cross-sectional, volumetric 3D PAM images of the balloon catheter with different
injection conditions. (a) No air injection condition, (b) Air injection condition, (c) Water injection
condition, (i) Photographs of the balloon catheter, (ii) MAP PAM images without the surface removing
process, (iii) Five selected cross-sectional PAM images without the surface removing process, (iv) MAP
PAM images with the surface removing process, (v) Five selected cross-sectional PAM images with the
surface removing process, (vi,vii) Volumetric 3D PAM images before and after the surface removing
process (Movie 4, Movie 5, Movie 6). G, gold; CR, contacted region; A, aorta; LR, left renal artery;
V, vein.

3.4. Ex Vivo Visualization of the Balloon Catheter

The aorta with the inner core catheter was cleverly separated from the body of the mouse.
The position of the balloon catheter (Figure 6a(i)) was similar to that shown in Figure 4a. In Figure 6a(ii),
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the core catheter signal was outstanding compared to the remaining parts. After removing the surface,
the catheter was fully shown in Figure 6a(iv). All cross-sectional images (Figure 6a(v)) included
the signal. The PA signal level is almost maintained due to the short distance between the blood
vessel and the catheter. Volumetric 3D data also showed the same results (Figure 6a(vi,vii), Movie
7). Results under air injection conditions, including MAP, cross-sectional, and volumetric 3D images
before and after the surface removing process were shown in Figure 6b(ii–vii, Movie 8). Similar to the
in vivo case, only the nearest surface area of the catheter core indicated by the CR area was detected
regardless of medium condition. PA signal of another region was not detected. Finally, water injection
was conducted as shown in Figure 6c(i). In Figure 6c(ii), the blood vessel signal after water injection
overwhelmed the remaining signals, causing the signal of the core to be greatly reduced. However,
the whole catheter including the G area could be monitored and visualized as shown in Figure 6c(iv).
The PA signal of the catheter core was 60.64% less than blood surface signals. These results were also
observed in Figure 6c(vi,vii) and Movie 9.

Figure 6. Ex vivo MAP, cross-sectional, and volumetric 3D PAM images of the balloon catheter with
different injection conditions. (a) No air injection condition, (b) Air injection condition, (c) Water
injection condition, (i) Photographs of the balloon catheter, (ii) MAP PAM images without the surface
removing process, (iii) Five selected cross-sectional PAM images without the surface removing process,
(iv) MAP PAM images with the surface removing process, (v) Five selected cross-sectional PAM images
with the surface removing process, (vi,vii) Volumetric 3D PAM images before and after the surface
removing process (Movie 7, Movie 8, Movie 9). G, gold; CR, contacted region.

215



Sensors 2020, 20, 5585

4. Discussion

We demonstrated the feasibility of tracking and visualizing of the balloon catheter using the PAM
technique under open surgery condition. Our approach successfully provided the precise tracking
location of the catheter, as well as the inserted catheter shape in an unknown blood vessel. By providing
high-resolution of cross-sectional and MAP PAM images, we could estimate whether the catheter
was placed well in the aorta and whether the function of the balloon was working normally or not.
Furthermore, at different injecting medium conditions in the balloon, we could acquire the black colored
core of the catheter selectively without any PA contrast agent in ex/in vivo experiments. First, under no
air injection condition, PA signals and the shape of the catheter core were almost shown in PAM images.
Second, under air injection condition, all PA signals in the balloon disappeared because acoustic loss
caused high acoustic attenuation in air. Third, under water injection condition, whole PA signals were
detected again. Thus, we could successfully generate PAM images. Although direct contacted regions
between the catheter core and the blood vessel wall showed high PA signals regardless of inserted
medium conditions because of the intrinsic bending shape of the catheter, other contactless areas of the
balloon catheter successfully worked despite uncontrollable in vivo experiments.

Unfortunately, although we carried out the tracking of the balloon catheter with PAM as the proof
of concept, it still needs to improve its systemic performance for overcoming current limitations and
further clinical study. First, the only use of a 532 nm pulsed laser beam with high blood absorption
required an additional surface removing process that caused unexpected signal loss and post-processing
time. As shown in/ex vivo MAP PAM images in Figures 4 and 5, there was a lot of signal loss due to
unavoidable contracts between the catheter core and the blood vessel. Eventually, this lost information
at the front end of the catheter interfered with correct catheter guidance. To overcome this issue,
near-infrared region light (NIR, i.e., 680 nm–1800 nm) source and PA contrast agents such as MB and
ICG can be solutions [51,52]. If NIR light can be used, more light energy will reach the catheter due to
low light absorption and scattering in total hemoglobin [53,54]. NIR light provides an opportunity to
avoid high PA signals in vascular and deep PA imaging. Furthermore, the balloon catheter filled with
PA contrast agents will enhance the sensitivity of PA images. By choosing a specific wavelength laser
such as 680 nm for MB and 800 nm for ICG, we can expect selective PA imaging of the balloon catheter.

Second, the current PAM imaging setup is not proper for clinical translation. Even though PAM
provides high spatial resolution, its intrinsic imaging configuration which combination of the focused
laser and acoustic beam makes PAM weak in visualizing deep tissue imaging. As shown in Figure 3b,
in our experimental approach, we only enabled to show approximately 1 mm in a shallow depth.
Therefore, for clinical implementation in the minimally invasive surgery such as hybrid operation, the
handheld probe or laparoscopic probe should be updated [55]. To utilize PAI in the general catheter
guiding, that works in several centimeter depths, a clinically based PAI system should be applied [56].
Furthermore, combining PA contrast agents and selecting the appropriate excitation light wavelength
can be better identification of the balloon catheter in deep tissue. Additionally, the use of clinically
approved PA agents is a better option than water in patient safety during the catheter guiding.

5. Conclusions

In this study, we conducted the tracking and visualization of the balloon catheter with PAM.
Despite the limited single wavelength laser at 532 nm, we successfully demonstrated the potential of
PAI technology for tracking the balloon catheter by applying the simple surface removing process and
fast and high-resolution PAM scanning. These results were verified on in/ex vivo animal experiments.
As a next plan, we will guide the balloon catheter in medium and large animals using clinical PAI
systems, multi-wavelength lasers and PA contrast agents. We believe that the results of this study and
advanced next trials will improve the possibility of clinical translation in the near future.
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Abstract: Although transcranial photoacoustic imaging (TCPAI) has been used in small animal brain
imaging, in animals with thicker skull bones or in humans both light illumination and ultrasound
propagation paths are affected. Hence, the PA image is largely degraded and in some cases completely
distorted. This study aims to investigate and determine the maximum thickness of the skull through
which photoacoustic imaging is feasible in terms of retaining the imaging target structure without
incorporating any post processing. We identify the effect of the skull on both the illumination path and
acoustic propagation path separately and combined. In the experimental phase, the distorting effect
of ex vivo sheep skull bones with thicknesses in the range of 0.7~1.3 mm are explored. We believe
that the findings in this study facilitate the clinical translation of TCPAI.

Keywords: transcranial; skull bone; aberration; photoacoustic; distortion; brain imaging

1. Introduction

Transcranial imaging is considered as a significant milestone in the understanding of the underlying
brain functionality. Transcranial Ultrasonography (TCUS) is a clinically approved non-invasive and
rapid technique for the real-time measurement of cerebral blood flow characteristics in neonates [1–3].
TCUS is effective due to the very thin skull thickness in neonates. TCUS is the preferred modality
to image the neonatal brain due to its portability, low cost, speed, and lack of ionizing radiation [4].
TCUS operates in low frequencies (0.5–2 MHz) to have sufficient skull penetration [5]. Among the
pre-existing potential alternatives, intraoperative x-ray or CT may be used to navigate through bony
anatomy [1,6,7]. Intraoperative magnetic resonance imaging (MRI) is another costly option [7]. X-ray,
CT, and MRI all require sedation and exposure to ionizing radiation [6].

Photoacoustic imaging (PAI) has proved to be a promising tool for the diagnosis, prognosis, and
treatment monitoring of neurological disorders in small and large animals [8–14]. PAI is a non-ionizing
hybrid imaging modality based on the photoacoustic (PA) effect. PAI combines the high absorption
contrast of optical imaging with the high spatial resolution of ultrasound imaging to visualize tissue
chromophores in the optical quasi-diffusive or diffusive regime [15,16]. In PAI, the biological tissue
is illuminated with a short-pulsed laser beam, generating acoustic waves via transient thermoelastic
expansion [9,17–19]. The subsequent ultrasound waves propagating from within the tissue are then
detected by an ultrasonic transducer array located outside the tissue. The ultrasound signals are used
to form an image through a reconstruction algorithm [20]. Generated acoustic waves travel through
the skull one way, unlike pulse-echo ultrasound. As a result, the waves are less susceptible to the
attenuation that occurs when they encounter the skull–tissue interface [21,22].
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One of the obstacles for PAI in transcranial imaging is the presence of the skull bone [23,24]. Skull
bone represents a highly acoustical impedance mismatch and dispersive barrier for the propagation of
acoustic waves [25]. The skull distorts the amplitude and phase of the received acoustic waves [26].
This distortion is contributed by four different phenomena: (i) the acoustic attenuation (i.e., the decrease
in the acoustic signal amplitude) due to the absorption and scattering of the skull tissue [27–29]; (ii) the
acoustic dispersion (i.e., the dependency of the speed of sound on frequency) modifies the phase of
the acoustic wave [29]; (iii) the signal broadening, which is a frequency-dependent reduction in the
acoustic wave amplitude [30]; and (iv) the temporal shift, where the significantly higher speed of sound
in the bone (~2900 m/s [31]) as compared to the brain’s soft tissue (~1500 m/s [32]) makes the acoustic
waves travel faster through the skull and be detected earlier. The degree of attenuation, dispersion,
broadening, and temporal shift are determined by the mechanical properties of the skull (i.e., bone
type, density, porosity, and thickness), among which the tissue thickness has the most significant
effect [33–35]. In transcranial photoacoustic imaging, there are two sources of signal attenuation:
(1) acoustic, and (2) optical. Acoustic attenuation can be represented by A = A0e−αd, where A0 is the
signal amplitude before attenuation, d is the depth or thickness, and α is the attenuation coefficient.
The attenuation coefficient is a function of frequency and is defined as: α = ω2η/2cp, where ω is the
angular frequency, η is the viscosity, and cp is the phase velocity. Therefore, if the frequency or depth
or both increase, the attenuation increases. Optical attenuation is studied based on the absorbing
and scattering effects of the skull. The absorbing effect of the skull tissue can be represented by
Aabs = εlC, where ε is the molar absorptivity, l is the optical path length, and C is the concentration
of the medium. The scattering effect of the tissue is a more complex event, and is modelled using
the Extended Huygens–Fresnel (EHF) principle [36]. Studies have shown that the primary effect of
scattering is a less steep slope of light intensity decay with depth than that predicted by the so-called
single-scattering model that follows an exponential decay trend. A higher density causes increased
optical and acoustic absorption, whereas a higher porosity causes more scattering [37].

The angle between the incident acoustic wave and the skull tissue affects the PA intensity. With
increasing the incident angle, more shear waves are generated as compared to longitudinal waves,
and hence the amplitude of the PA signal drops further. Yang and Wang et al. [38], evaluated the
PA signal amplitude at two different frequencies (i.e., 1 and 2.25 MHz) as a function of the incident
angle on the monkey’s skull, and found that increasing the incident angle up to ~35◦ decreases the PA
signal, whereas beyond that angle the PA signal amplitude starts increasing again. This phenomenon is
applicable if the boundaries are part of a layered material (such as skull tissue), where the longitudinal
waves first convert into shear waves at the tissue–skull interface and later the shear waves convert
back to longitudinal waves (mode conversion) at the skull–tissue interface and vice-versa.

Due to the distorting effects of the skull, the PAI of a small animal brain (with semi optically
and acoustically transparent skull) has been conducted [39]; however, there are only a few studies to
validate the feasibility of photoacoustic technology for transcranial imaging in animals with thicker
skulls [40,41]. Several PA signal/image enhancement algorithms were developed to improve the quality
of the degraded images due to the presence of the skull [42]. Although some of the algorithms were
effective, they were computationally expensive and were not run in real-time. Therefore, determining
the maximum skull thickness that would allow the imaging target to be accurately reconstructed
without any post-processing is essential.

In order to characterize the effect of the skull on the PAI, first we describe the skull bone structure
and the corresponding physio-mechanical properties. The skull bone consists of three layers: the inner
table, the middle diploe, and the outer table (see Figure 1a). The inner and outer table are cortical bones,
whereas the middle diploe layer is the trabecular bone type [43]. The cortical and trabecular bones
are anatomically different. At birth, the bones of the cranial vault are unilaminar tables (cortical type)
and, thereafter, the intervening diploe (trabecular type) appears at about the fourth year [44]. With the
age, the trabecular layer grows at a faster rate as compared to the cortical layers (26% volume per year
turnover rate for trabecular and 3% for cortical bone) [45]. Cortical bone is a fairly solid (Figure 1b(i))
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and dense material which consists of a minerals, organic parts, and water. The mineral ingredient
is hydroxyapatite, and the organic parts are fibrous protein collagen and non-collagenous [46,47].
Trabecular bone primarily consists of lamellar, which are arranged in packets that make up an
interconnected irregular array of plates and rods called trabeculae (Figure 1b(ii)). The trabecular bone
of the central diploe is an energy absorbing lightweight meshed structure that provides cushioning,
shear strength, and separation between the cortical plates in order to increase the inertial characteristics
(bending strength) that allows the three-layered structure to endure mainly bending loads. Moreover,
such a structure that makes the trabecular bone a highly porous, heterogeneous, and anisotropic
material to absorb the external shock contains bone marrow and skull vasculatures. The density of
cortical and trabecular bones range between 1.8 and 2.2 and 0.3 and 1.3 g/cm3, respectively [48]. Since
the density of the cortical bone is higher than that of the trabecular bone, energy is mostly absorbed by
the cortical bone, whereas the porosity is higher in the trabecular bone and, therefore, scattering occurs
within the trabecular diploe layers [49,50].

 
Figure 1. Skull bone structure. (a) Structural component of human skull bone, each layer magnified in
(bi) the outer tables and (bii) diploe.

The mechanical and acoustic characteristics of the skull bone described in the literature can
be summarized as follows: the characterization of the human skull in terms of the speed of sound
and thickness were explored in several studies [25,51–54]; the longitudinal speed of sound and the
acoustical attenuation coefficient of human calvaria were studied at frequencies ranging from 0.27
to 2.526 MHz [29]; the speed of sound in cortical bone is within the range of 2880–4220 m/s [55,56];
for the trabecular bones, the speed of sound is lower (2000–3000 m/s) and the attenuation is higher
(15–30 dB/MHz/cm) as compared to those of the cortical bone [57]; in [58], the insertion loss and the
elastic constants of the skull were measured; studies have also been performed to attain the optical
properties of the skull bones [58–62]; the optical properties of human cranial bone were measured using
the integrating sphere technique in [60]; the reduced scattering coefficient of the human skull follows
μs’(λ) = 1533.02 × λ−0.65 in the wavelength range, λ = 800–1000 nm [63]; in the near infrared region
(600–900 nm), the reduced scattering and absorption coefficient of the human skull are in the range of
0.2–1.2 cm−1 and 20–25 cm−1, respectively; the predominant ultrasound attenuation mechanism in the
trabecular bone is scattering, while the absorption is considered to be a major attenuation mechanism
in the cortical bone; the cortical bones exhibit higher optical scattering and absorption as compared to
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the trabecular bones [64]; a generalized pattern of acoustic transmittance and optical intensity decay as
a function of time are shown in [64]—in this article, it is shown that due to a more prominent effect
of optical scattering, the intensity decay has a slower rate in trabecular bones compared to acoustic
transmittance. Although several studies have explored different skull properties—e.g., the geometry,
scattering coefficient, speed of sound, insertion loss, and transmission dispersion [58,65,66]—the
effect of the skull in the illumination path and the acoustic detection path, separately, has not been
investigated quantitatively in a photoacoustic transcranial imaging experiment.

In this study, we investigate the feasibility of transcranial photoacoustic imaging by studying
the effect of the skull in both the illumination path and the acoustic detection path, and determine
the maximum skull thickness through which the accurate photoacoustic imaging of the structure and
vasculature is feasible. Our investigation aims to explore and quantify the deterioration of PA images
owing to the obstacle of the skull bone in three paths: (i) light illumination, (ii) acoustic propagation,
and (iii) both light illumination and acoustic propagation.

2. Materials and Methods

2.1. PAI System

The PAI system used in this study composes of Phocus MOBILE, a 10 Hz Nd:YAG tunable laser
(OPOTEK, Carlsbad, CA, USA) in the range 690 to 900 nm, that is controlled by an internal optical
parametric oscillator (OPO). A silica fiber bundle consisting of 100 fibers with a total diameter of 1 cm
has been used for light delivery. The average output energy at the fiber end was measured as ~20 mJ
using an energy meter (QE12SP-H-MT-D0, Gentec-EO, Quebec, QC, Canada). The spot size was 8 mm
on the skull piece, and the spot size on the target could not be measured since it was embedded in the
phantom. Considering the numerical aperture of the optical fiber, the divergence of the light was ~30◦.

Since the acoustic window near the temporal or occipital region is with a diameter of ~3 cm [67],
phased array transducers are preferred. A phased array sensing surface has a smaller footprint area as
compared to linear and curvilinear arrays. Moreover, a phased array provides a wider field of view
and it has dynamic focusing capabilities, which increase the flexibility of scanning without or with a
minimal mechanical movement of the array. We used a 64-element phased array P4-2 transducer probe
(Philips Healthcare, Ville Platte, LA, USA) with a 2.5 MHz center frequency. The transducer was held
in water inside an open top box using clamps. The clamps were attached to a two-axis mechanical
stage for scanning. The probe was scanned in the y-axis to cover a distance of 2 cm with 48 total steps
and a step size of 0.4 mm. The Vantage 128 imaging platform (Verasonics Inc., Kirkland, WA, USA)
was used for the data acquisition and image processing.

2.2. Skull Tissue Preparation

There are structural differences between the sheep skull and human skull in terms of thickness,
content, and architecture. Despite the differences, the structural components (diploe, outer, and inner
table) in human and sheep skulls are similar. Here, we evaluate the effect of skull thickness on the
reconstructed PA image; therefore, maintaining the skull thickness is important. To achieve similar
thicknesses of the human skull at different ages, we have chosen the frontal skull bone of sheep head
and mechanically configured the sheep skull to be flat and representative of human skull thicknesses.
Three different skull thicknesses of 0.7, 1.0, and 1.3 mm were used. The skull samples were collected
from ex vivo sheep heads. Using a Hole Dozer general purpose circular saw (Milwaukee Electric Tool,
Brookfield, WI, USA), skull pieces with a diameter of 5 cm were cut. Later, 1.5 cm areas on the skull
pieces were thinned down to the desired thickness using a drill bit. The thickness of each skull sample
after preparation was measured using a H-2780 digital screw gauge (ULINE, Milton, ON, Canada) at 5
different points and averaged.
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2.3. Phantom Experiments

We embedded an imaging target in a brain tissue-like mimicking phantom with optical properties
similar to those of the brain tissue. To determine the light attenuating characteristics of the brain tissue,
slices of sheep brain with a thicknesses between 0.5 and 1.75 cm were prepared. The experimental
setup is shown in Figure 2. The ex vivo brain tissue was held on a metal plate with a circular hole.
An energy meter (QE8SP-B-BL-INT-D0, Gentec-EO Inc., Quebec City, QC, Canada) was coaxially
aligned to the optical fiber bundle through the hole; the surface of the sensor was protected with an
optically transparent thin film. The brain tissue-mimicking phantom was realized by mixing gelatin
(to represent the acoustic properties) and sugar-free psyllium hydrophilic mucilloid fiber (Metamucil,
P&G, Cincinnati, OH, USA) (to represent the tissue optical attenuation and echogenicity). First, 8%
gelatin was dissolved in water, followed by 4% fiber in a transparent one-side-open cubic acrylic box
(Lanscoery, Monterey Park, CA, USA) [68]. Tissue-mimicking phantoms with thicknesses of 1, 2, 3, 4,
and 5 cm were prepared.

 
Figure 2. Experimental setup of the optical transmittance characterization to find the thickness of the
tissue-mimicking phantom that is optically equivalent to brain tissue.

Next, we evaluated the effect of skull as a dispersive barrier in three paths: (i) light illumination,
(ii) acoustic propagation, and (iii) both light illumination and acoustic propagation (see Figure 3a–c).
The imaging target was a square loop of a 0.5 mm-thick copper rod covered with an insulating dark
jacket, polyactic material (see Figure 4c), and held in the tissue-mimicking phantom mixture at a
20◦ angle versus the probe viewing plane at a 1 cm distance from the surface of the phantom. We
initially tried to implement a 3D structure of blood vessels embedded within the gelatin phantom.
Since the blood vessels were positioned in a three-dimensional coordinate, we could not inject blood
evenly inside the blood vessels. This made the evaluation of the results difficult. We then used a
thin plastic tube to represent the blood vessels. In addition to the fact that these tubes had additional
absorption, the stationary blood within the tubes started forming sediment at the bottom of the tube.
Therefore, we utilized a solid imaging target instead of the actual blood vasculature. According to
the literature, the absorbance of polyactic material (with a normalized absorbance ~25% [69]) at the
imaging wavelength of 690 nm is close to the absorbance of blood (with the normalized absorbance of
~20% [70]).

The ultrasound probe was horizontally scanned across the imaging target by manually rotating
the x-axis knob of the x-y stage with a step size of 1 mm. Each 3D image was comprised of 50 2D B-scan
images, which were later compiled into a 3D volume in Slicer 4.10 [71]. In the 3D slicer, the projection
of the 3D volume was automatically adjusted to the default intensity range and, therefore, the intensity
map had to be corrected. The process of correcting the intensity projection is as follows. Initially, we
selected a B-scan frame for each configuration, where a specific portion of the square loop can be
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visualized without any post-processing; in this case, we have chosen the B-scan frames that correspond
to the light green and orange dotted region of interests (ROIs), as shown in Figure 3. We then calculated
the average intensity value of those specific frames and, later, applied them as a gain (intensity modifier)
to the corresponding 3D volumes to project the corrected intensity map.

 
Figure 3. Schematic setups for imaging the square loop phantom with the skull as a barrier in: (a) the
optical path, (b) the acoustic detection path, and (c) both the optical and acoustic detection paths.
The optimized distances are calculated in Section 3.

 
Figure 4. Experimental setup to find the optimum distance between the transducer and skull piece 2, and
between the optical fiber and skull piece 1. (a) Schematic of the experimental setup, (b) photoacoustic
(PA) image of the wire phantom in water with the optimum position of the transducer and optical fiber,
and (c) a 3D model of the square loop imaging target in gelatin. Imaging target is slanted at 20◦ from
the z axis. Scanning direction is along the x axis. Transducer lateral plane is along the y axis. s1: skull
piece 1; s2: skull piece 2; w: polyactic wire. The distance between the transducer and s2 is <1.5 cm,
the distance between the transducer and the imaging target is <3 cm, and the distance between the
optical fiber bundle and s1 is 0.5 cm.

2.4. Quantitative Evaluation Parameters

We evaluated the PA images quantitatively in terms of the average intensity attenuation (AIA),
smoothness (S), and image distortion (ID). These parameters were evaluated for the entire region on
the square loop imaging phantom. AIA is defined as the averaged intensity in the specified area; S
(can be viewed as lack of roughness) is extracted from the line profile across the specified ROI with
and without the skull PA images, and is defined as the correlation between the peak values of the
corresponding normalized line profiles. ID is defined as sum of the square of the regression (SSR) of
the rising and falling edges of the line profile in the US image. Additionally, the image distortion in the
PA images was defined as the difference between the contour profile of the PA image with and without
the presence of the skull.

The processing protocol was as follows. The imaging target orientation was such that the light
blue ROIs (indicated in both Figures 3 and 4c) were closest to the surface of the US probe (~4.5 cm) and
the dark blue ROIs were the furthest away (~6 cm). We initially extracted several line profiles within
the light green and orange ROIs (indicated in Figures 3 and 4c) and averaged them. The averaged line
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profile represents the signal intensity decay as a function of the distance between the imaging target
and the transducer probe (i.e., 4.5 to 6 cm). Next, we extracted several parallel line profiles within each
of the light and dark blue ROIs. The average and standard deviations of the extracted values 4.5, 5, 5.5,
and 6 cm were presented in tables and figures. It is of note that the transducer probe was scanned in
one direction. As a result, the light green and orange ROIs are located along the lateral plane of the
transducer surface, and hence the entire ROI can be visualized in a 2D image, whereas the light and
dark blue ROIs are seen as moving dots (due to the location of the ROIs in the cross-sectional imaging
plane). Therefore, the light green and orange ROIs are represented by large rectangular boxes, whereas
the light and dark blue ROIs are represented by small rectangular boxes.

3. Results and Discussion

Initially, to find out the optimum distance between the transducer and skull, we imaged a copper
wire coated with polyactic jacket as the imaging target (see Figure 4a). By finding the optimum
distances, any reflecting artifact overlapping with the signal coming from the imaging target were
avoided. The phantom was held inside a transparent plastic container and fixed to the optical table.
The transducer probe and skull pieces were held using optical rods and fixed to a customized x-y stage,
made in the machine shop at Wayne State University. The experiment was performed in two stages:
(1) First, the position of the sample was fixed with respect to the wire phantom and the transducer
probe (5 cm away from the phantom) was moved towards the skull piece 2, using a mechanical stage
in the y-axis with steps of 5 mm; this configuration was used to optimize the distance between the
transducer and skull piece 2. (2) Once we determined the optimum position of the transducer with
respect to skull piece 2, both the transducer and skull piece 2 were moved simultaneously from a
distance of 5 cm towards the wire phantom, while the distance between the transducer and skull piece
1 was fixed; this configuration provided information regarding the US signal behavior generated from
the phantom as a function of depth while the transducer was at a constant distance from skull piece 1.
The optimum configuration was as follows: the P4-2 probe was at least 1.5 and 3 cm away from skull
piece 2 and the imaging target, respectively; the optical fiber bundle was 0.5 cm away from skull piece
1 (see Figure 3a).

Next, using the experimental setup shown in Figure 2, we determined the thickness of the
tissue-mimicking phantom that optically models the brain tissue. In this setup, the optical fiber bundle
was placed right on top of the brain tissue or the brain-like tissue-mimicking phantom. With the
laser energy measured (at the distal end of the fiber it was 30 mJ), we were able to measure the
optical attenuation of different thicknesses of the brain tissue (i.e., Tb: 0.5 cm to 1.75 cm) and the
brain tissue-mimicking phantom (i.e., Tm: 1 cm to 5 cm) through skull samples with thicknesses of
0.7, 1.0, and 1.3 mm; any thicknesses beyond the above thicknesses entirely blocked the light and
thus were not considered in our experiments. The results shown in Figure 5 indicate that a 5 cm-thick
tissue-mimicking phantom optically resembles the ~5 mm brain tissue.

We then evaluated the ultrasound images of the square loop phantom when the transducer was
held 1.5 and 3 cm away from the skull piece and the square loop phantom, respectively; when the
optical fiber was placed 0.5 cm away from the skull piece (see Figure 3); and when the orientation of
the phantom was at an angle of 20◦ (Figure 4c) to the viewing plane of the probe. We imaged the
target in both gelatin (see Figure 6b) and gelatin with fiber mixture (see Figure 6c). The US images
without the skull clearly present the morphology of the square loop. In Figure 6d–f, a skull piece with
thicknesses of 0.7, 1.0, or 1.3 mm were used when the square loop target was in gelatin with the fiber
mixture. The ROIs on the squared loop phantom image were chosen to evaluate the effect of the skull
aberration. The attenuating and aberrating effects of the skull are shown in Figure 6g. A summary of
the quantitative evaluation is provided in Table 1.
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Figure 5. Optical energy measured with different thicknesses of (a) sheep brain tissue and (b) the
brain tissue-mimicking phantom (gelatin + fiber) with a skull bone to block the illumination path
with a thickness of (i) 0.7, (ii) 1.0, or (iii) 1.3 mm. Optical fiber bundle was placed on top of the brain
tissue or the brain-like tissue-mimicking phantom. Tb: brain tissue thickness; Tm: tissue-mimicking
phantom thickness.

Table 1. Summary of the quantitative evaluation of the US imaging through the skull in gelatin with
a fiber mixture with different thicknesses. Please see the definition of the quantitative parameters
in Section 2.4.

Skull Thickness
(mm)

Image Average Intensity
Attenuation (%)

Image Distortion
(%)

Smoothness
(%)

0.7 46.5 ± 1.30 32.5 50 ± 1.47
1.0 48.23 ± 3.74 35.6 10.7 ± 1.26
1.3 78.4 ± 4.23 56.28 1.8 ± 0.89
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Figure 6. Image intensity attenuation and distortion analysis in a transcranial ultrasound imaging
experiment. (a) Experimental setup. US image of the square imaging target (b) in gelatin and (c) in
gelatin with the fiber mixture. Ultrasound images of the square imaging target in the gelatin with the
fiber mixture through a skull piece with a thickness of (d) 0.7, (e) 1.0, and (f) 1.3 mm. (g) Average line
profiles within the ROIs indicated with (i) light green, (ii) dark blue, (iii) light blue, and (iv) orange
dotted boxes depicted in (c–f). Light green and orange ROIs are at the same depth from the transducer.
This distance increases from the light to dark blue ROIs from 4.5 to 6 cm. The transducer was at the
distance of 1.5 cm from the skull, and the skull was at the distance of 3 cm from the imaging target.
ROI: region of interest.

Next, we studied the distorting effects of the skull on the PA images when it blocked only the
acoustic detection path. The experimental setup as well as the PA images of the square loop imaging
target with different thicknesses of the skull are shown in Figure 7a,b, respectively, and a summary of
the quantitative evaluation is provided in Table 2. A bar chart to show the attenuating effect of skull as
a function of the distance between the transducer and the imaging target for different skull thicknesses
is provided in Figure 7c. Here, thicker skulls (1 and 1.3 mm skulls) impacted the PA signal intensity to
decay abruptly at higher depths and, therefore, the average intensity decays faster along the light green
and orange ROIs towards the dark blue ROIs. The contour profiles of the PA images to present the
severity of the structural deformation with different thicknesses of the skull is provided in Figure 7d.
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Figure 7. Image distortion analysis in photoacoustic imaging when the skull blocks the acoustic
detection path. (a) Experimental setup. (b) PA image of the square loop imaging target (i) without skull,
(ii) with a 0.7 mm skull, (iii) with a 1.0 mm skull, and (iv) with a 1.3 mm skull. (c) Average PA signal
intensity within the ROIs depicted in (bi–biv) as a function of the distance between the transducer
surface and the imaging target (4.5, 5, 5.5, and 6 cm). Light green and orange ROIs are at the same
depth from the transducer. This distance increases from the light to dark blue ROIs from 4.5 to 6 cm.
The transducer was at a distance of 1.5 cm from the skull, and the skull was at a distance of 3 cm
from the square target. (d) Contour map of the PA images representing the skull-induced deformation
(i) without the skull, (ii) with a 0.7 mm skull, (iii) with a 1.0 mm skull, and (iv) with a 1.3 mm skull.
The transducer was at a distance of 1.5 cm from the skull, and the skull was at a distance of 3 cm from
the square loop imaging target. St: skull thickness.

Table 2. Summary of the quantitative evaluation of PA imaging through the skull in gelatin with the
fiber mixture when the acoustic propagation path is blocked with skull pieces with different thicknesses.

Skull Thickness
(mm)

Image Average Intensity
Attenuation (%)

Image Distortion
(%)

Smoothness
(%)

0.7 88.42 ± 1.12 32.12 5.74 ± 2.71
1 92.59 ± 0.27 72.45 4.41 ± 2.05

1.3 95.17 ± 0.21 79.73 2.46 ± 1.87
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We then studied the distorting effects of the skull on the PA images when it blocked only the
light illumination path. The experimental setup as well as the PA images of the square loop imaging
target with different thicknesses of the skull are shown in Figure 8a,b, respectively, and a summary
of the quantitative evaluation is provided in Table 3. A bar chart to show the attenuating effect of
the skull as a function of the distance between the transducer and the imaging target for different
skull thicknesses is provided in Figure 8c. Unlike the effect of the skull on the acoustic path, here the
PA average intensity attenuation is higher; however, the intensity decay rate as a function of depth
is comparatively lower. The contour profiles of the PA images to present the severity of structural
deformation at different thicknesses of the skull is provided in Figure 8d.

Figure 8. Image distortion analysis in photoacoustic imaging when the skull blocks the light illumination
path. (a) Experimental setup. (b) PA image of the square loop imaging target (i) without the skull,
(ii) with a 0.7 mm skull, (iii) with a 1.0 mm skull, and (iv) with a 1.3 mm skull. (c) Bar chart of the
average PA signal intensity within the ROIs is depicted in (bi–biv) as a function of the distance between
the transducer surface and imaging target (4.5, 5, 5.5, and 6 cm). (d) Contour map of PA images
representing the skull-induced deformation (i) without the skull, (ii) with a 0.7 mm skull, (iii) with a
1.0 mm skull, and (iv) with a 1.3 mm skull. Light green and orange ROIs are at the same depth from the
transducer. This distance increases from the light to dark blue ROIs from 4.5 to 6 cm. St: skull thickness.

Finally, we studied the distorting effects of the skull on the PA images when it blocked both the
acoustic propagation and the light illumination paths. The experimental setup as well as the PA images
of the square loop imaging target with different thicknesses of the skull are shown in Figure 9a,b,
respectively, and the summary of the quantitative evaluation is provided in Table 4.
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Table 3. Summary of the quantitative evaluation of the PA imaging through the skull in gelatin with
the fiber mixture when the light illumination path is blocked with different thicknesses of skull.

Skull Thickness
(mm)

Image Average Intensity
Attenuation (%)

Image Distortion
(%)

Smoothness
(%)

0.7 91.10 ± 2.98 11.26 32.5 ± 1.56
1 95.07 ± 2.24 18.67 6.18 ± 1.06

1.3 97.03 ± 1.89 23.91 2.46 ± 0.74

 

Figure 9. Image distortion analysis in photoacoustic imaging when the skull blocks both the light
illumination and acoustic detection paths. (a) Experimental setup. (b) PA image of the square loop
imaging target (i) without the skull, (ii) with a 0.7 mm skull, (iii) with a 1.0 mm skull, and (iv) with a
1.3 mm skull. (c) Contour map of the PA images representing the skull-induced deformation (i) without
the skull, (ii) with a 0.7 mm skull, (iii) with a 1.0 mm skull, and (iv) with a 1.3 mm skull. The transducer
was at a distance of 1.5 cm from the skull and the skull was at a distance of 3 cm from the square loop
imaging target. Light green and orange ROIs are at the same depth from the transducer. This distance
increases from the light to dark blue ROIs from 4.5 to 6 cm.
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Table 4. Summary of the quantitative evaluation of the PA imaging through the skull in gelatin with the
fiber mixture when both the light illumination and acoustic propagation paths are blocked by the skull.

Skull Thickness
(mm)

Image Average Intensity
Attenuation (%)

Image Distortion
(%)

Smoothness
(%)

0.7 92.3 ± 2.83 81.6 1.76 ± 1.38

The findings of this experiment were as follows: (i) The light was completely diffused inside the
tissue-mimicking phantom after passing through the skull pieces, therefore a homogenous illumination
of the target phantom was obtained. (ii) The horizontal sides of the phantom generated a higher PA
signal amplitude compared to the vertical sides because of the transducer viewing plane. (iii) The
only skull tissue that allowed seeing the structure of the imaging target accurately was the skull piece
with a 0.7 mm thickness; with the 1.0 mm skull, the shape of the imaging target was almost visible
(Figure 9c(iii)), and with the 1.3 mm skull (Figure 9c(iv)), the structure of the square loop target in the
image was totally distorted and attenuated to such an extent that the target was not comprehensible.

The goal of this study was to evaluate the combined effect of the skull layers on the acoustic
and optical attenuation. We used the architecture of the skull and its layer information, published
in research articles, to explain the results. Furthermore, creating a ~1 cm-diameter flat cortical and
trabecular layer tissues, thinned down to a millimeter thickness, requires sophisticated machinery,
especially with the brittle nature of the skull layers, which was not available to us. A quantitative
evaluation of the percent distribution of the acoustic and optical path blocked towards the overall
evaluation parameters presented in Table 4 is shown in Figure 10. The individual contribution has
been calculated based on their respective values presented in Tables 2 and 3.

Figure 10. Percent distribution of the evaluating parameters from the acoustic and optical paths when
both paths are blocked by the skull (thickness: 0.7 mm). AIA: average intensity attenuation; ID: image
distortion; LS: lack of smoothness (1-S).

The quantitative evaluations in Figure 7, Figure 8, and Figure 10 show that blocking the acoustic
propagation affects the PA signal more significantly as compared to blocking the illumination path.
According to the literature, the optical illumination path is mainly affected by the cortical layers in
the form of optical energy attenuation due to the higher absorption, scattering, and reflection of this
layer [63,72–75], whereas the trabecular structure of diploe layer induces more acoustic scattering
and insertion loss. Moreover, among the three quantitative measures, image distortion and the
lack of smoothness are the major consequences of the diploe layer that constitutes the majority
thickness of thick bones, whereas image average intensity attenuation is the consequence of the cortical
layer [51,52,76–79]. In other words, blocking the optical path more significantly contributes to the
amplitude decay, while blocking the acoustic propagation path contributes mainly to the distortion of
the morphological map of the imaging target [29,52,80,81]. The combined significant acoustic distortion
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in the diploe layer and the optical attenuation in the cortical–diploe or cortical–tissue interfaces make
the use of photoacoustic transcranial imaging challenging in animals with thicker skulls or in humans.

4. Conclusions

While photoacoustic imaging has shown great promise in the transcranial brain imaging of small
animals, it is still underdeveloped for clinical us due to the presence of the skull. We studied the
distorting effect of the skull when it is in the optical illumination path, acoustic detection path, and both
simultaneously. We determined the maximum thickness of the skull through which PAI is feasible,
such that the structure of the imaging target with no post processing is distinguishable; this thickness
was ~0.7 mm. Utilizing sophisticated reconstruction algorithms as well as signal/image enhancement
techniques [42,82–86], imaging through thicker skull tissues will be possible. Due to the complexity of
creating flat cortical and trabecular layer tissues, we studied the combined effect of the skull layers on
the acoustic distortion and optical attenuation. We concluded that the average intensity attenuation
and distorting effect of the skull due to the blockage of the acoustic path is ~2.5% less and ~39.3%
greater than those of the illumination path, respectively. These results can help in designing a more
efficient photoacoustic imaging system suitable for transcranial brain imaging.
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Abstract: Analytical modelling is an efficient approach to estimate the directivity of a transducer
generating guided waves in the research field of ultrasonic non-destructive testing of the large and
complex structures due to its short processing time as compared to the numerical modelling and
experimental techniques. The wave patterns or the amplitude variations along the region of ultrasonic
transducer itself depend on its behavior, excitation frequency, and the type of propagating wave
mode. Depending on the wave-pattern of a propagating wave mode, the appropriate value of the
amplitude correction factor must be multiplied to the amplitudes of the excitation signal for the
accurate evaluation of directivity pattern of the ultrasonic transducers generating guided waves in
analytical modelling. The objective of this work is to analyse the wave patterns under the region of
macro-fiber composite (MFC) transducer to improve the accuracy of a previously developed analytical
model for the prediction of directivity patterns. Firstly, the amplitude correction factor based on the
wave patterns under the region of P1-type MFC (MFC-2814) transducer at two different frequencies
(80 kHz, 3 periods and 220 kHz, 3 period) glued on 2 mm Al alloy plate has been estimated analytically
in the case of an asymmetric (A0) guided Lamb wave. The validation of analytically estimated
amplitude correction factor is performed by a proposed experimental method that allows analyzing
the behaviour of MFC transducer under its region by gluing MFC on bottom surface and scanning
the receiver on the top surface of the sample. Later on, the estimated amplitude correction factor is
included in the previously developed 2D analytical model for the improvement in the directivity
patterns of the A0 mode. The modified analytical model shows a significant improvement in the
directivity pattern of the A0 wave mode in comparison to the results obtained by the previous model
without considering the proper wave patterns. The results reveal that errors between the directivity
estimated by the present modified 2D analytical model and experimental investigation are reduced
by more than 58% in comparison to the previously developed analytical model.

Keywords: wave patterns; analytical model; directivity pattern; guided wave (GW); non-destructive
testing (NDT); macro-fiber composite (MFC); transducer

1. Introduction

One of the key issues in the structural health monitoring (SHM) of various composite structures
and components is to maintain the safety, reliability, and operational performance [1–3]. For the last few
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decades, ultrasonic guided waves (GWs) have been used for this purpose to detect and locate the defects
in the structures. Among all the available non-destructive testing (NDT) techniques, ultrasonic guided
wave (GW) testing has been the most promising due to its high sensitivity to the defects and wide
coverage region [4,5]. Moreover, GW testing is fast, can cover up the defective regions to reasonable
distances, and has the ability to detect defects underground, water, or a layer of insulation [6–8].
In comparison to guided wave testing, bulk wave testing is tedious and time-consuming, requires
high-level training, uses the point-by-point scanning method, and needs a visible area and accessibility
of the defective region [9,10]. Due to the high sensitivity of GWs to the variation in modulus of elasticity
(E) of the material under testing and minimal amplitude damping of propagating wave modes, only
a few measurements are required for the inspection of large infrastructures to detect internal and
surface defects [1,10,11]. Researchers have successfully utilized GWs for inspecting defects/damages
in metallic structures [12], concrete structures [13,14], pipes [15–17], and composite structures [18–24].

The Lamb wave is a specific type of guided wave that propagates in a plate-type structures and
can be further categorized into the symmetric Lamb waves (S0, S1 . . . ) and asymmetric Lamb waves
(A0, A1 . . . ) depending on the value of frequency-thickness product (f ·t), f is the excitation frequency
of ultrasonic transducer and t is the thickness of propagating medium or structure under inspection.
In the case of lower frequencies, only two fundamental guided Lamb modes (the S0 and A0) exist.
Due to their high sensitivity in defective regions of structures, guided Lamb waves are widely used
for the inspection of different types of defects such as delaminations, cracks and impact damages,
etc. [3,25–27]. Many approaches and transducers are available for the generation of Lamb waves. Out
of those, the interdigital transducers are gaining the most recognition [28–31].

Due to its small size, light weight, flat geometry, ability to work in actuation, transmission, and
sensing mode, the macro fiber composite (MFC) transducer is one of the best interdigital transducers
for NDT and SHM of composite structures [32–35]. The MFC transducer consists of rectangular
shaped piezo ceramic rods. These rods are sandwiched between the layers of adhesive, electrodes,
and polyimide film. The electrodes attached to the film form an interdigitated pattern. The electrodes
transfer the applied electrical energy to/from the rods. In our research, MFC transducer of P1-type
(M-2814-P1) with dimensions of 28 × 14 mm is used. The general parametric characteristics of the
MFC-2814-P1 transducer are presented in Table 1 (32).

Table 1. General characteristics of MFC-P1-M2814 [32].

Features Numerical Value

Active (length ×width) 28 mm × 14 mm
Overall (length ×width) 38 mm × 20 mm

Capacitance 0.61 nF
Free strain 1550 ppm

Blocking force 195 N
Operating voltage −500 V to +1500 V

Operating bandwidth as a sensor 0 Hz to 1 MHz
Operating bandwidth as an actuator 0 Hz to 700 kHz
Maximum operational tensile strain <4500 ppm

Linear-elastic tensile strain limit 1000 ppm

Guided Lamb waves (the A0 and S0) can be effectively transmitted and received by using an MFC
transducer [34]. The S0 mode contains dominant in-plane whereas the A0 mode contains dominant
out-of-plane components of the propagating waves. The inspection using MFC transducer can be
easily combined with different contact and non-contact ultrasonic inspection methods for NDT and
SHM of composite structures [36,37]. The MFC transducers can be easily glued or embedded within
large and complex structures without damaging the surface [38]. In aerospace applications, the
embedded MFCs are frequently used for generating and harvesting ultrasonic wave energy, SHM of a
structure, and detecting defects and damages due to impact [35,39]. MFCs can control the twisting
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motion of aircraft wings as well as the airfoils’ aerodynamic shaping [40,41]. Hence, it can increase
the efficiency of an aircraft by improving its aerodynamic performance. In comparison to active
fiber composite (AFC), MFC has a high fiber volume fraction which ensures its high stiffness and
performance. Moreover, MFCs have better actuation performance compared to the most common
piezoceramic actuators [35,40,41].

Although interdigital transducers are widely used for the transmission and reception of ultrasonic
GWs, the dispersive nature and multi-modal behavior possessed by Lamb waves are the limiting
factors for their adaptation and utilization in SHM. To ensure the effective application of a transducer
for the inspection of a specific structure, the directivity of a transducer is one of the key parameters.
Knowing the transducer directivity, the following amendments/adaptations can be performed [38]:

• The position of a transducer on the structure under inspection can be determined.
• The number/configuration of transducers can be decided.
• A specific wave mode (e.g., the S0, A0 and SH0 in LF ultrasonic) and excitation frequency can be

selected for the inspection of defects.
• The best transducer for the specific application can be selected.

The analytical method is an efficient approach to calculate the directivity of transducers due to
shorter processing time in comparison to the experimental or numerical analysis. An efficient 2D
analytical model based on Huygens’s principle was developed in our previous research for directivity
estimation of the contact-type transducer at any distance and excitation frequency with known
dispersive characteristics of propagation medium and behaviour of transducer [38]. The directivity
patterns of the S0, A0, and fundamental shear-horizontal mode (SH0) for the P1-type MFC transducer
glued on Al alloy plate were successfully estimated by this model and the obtained results showed a
good compromise with the experimental results [38]. However, the correct wave patterns under the
transducer region and their effect on directivity patterns at specific frequencies were not considered in
our previous work [38]. In the previous model, the amplitude variations of the excitation signal were
considered a fixed value for the directivity estimations at different frequencies. A similar assumption
was considered by another researcher using numerical modelling [33].

The objective of this work is to analytically analyse the wave patterns under the region of an
MFC transducer glued on isotropic medium and validate by the experimental investigation, which in
turn improves the 2D analytical model for the estimation of directivity patterns. The P1-type MFC
transducer with dimensions (28 × 14 mm) was glued on a 2 mm thick Al alloy plate. The wave
patterns under the transducer region were analyzed analytically in order to improve the previously
developed analytical model [38] for the accurate analysis of the directivity patterns. We showed
that wave patterns of the excitation signal are different at different frequencies under the transducer
region. Hence, the frequency-dependent amplitude correction factor is estimated and included in the
model. We also propose a new experimental technique to validate the wave patterns and amplitude
correction factors calculated analytically. In the proposed measurement technique, MFC transducer
was glued on one side of Al plate and scanning was performed on the opposite side of the plate
under the region of MFC transducer. The experiment was performed by using the low-frequency
(LF) ultrasonic system developed by Ultrasound Institute, Kaunas University of Technology [36,38,42].
The point-type piezoceramic transducer operating in thickness mode was used in the experimental
analysis for recording the Lamb waves. The receiving transducer was more sensitive to the out-of-plane
wave components.

Hence, in this research, the improvement in the directivity of only A0 mode is discussed. The
calculated amplitude correction factor based on the wave patterns under the region of MFC transducer
was included in the analytical modeling. The analytical solution was verified by the experimental
analysis, which clearly showed a significant improvement in the directivity pattern of the A0 mode as
compared to the previously obtained results.

241



Sensors 2020, 20, 2280

Section 2 of this article illustrates the detailed description of a problem. Section 3 presents the
calculation of the modified amplitude factor based on the wave patterns along the region of MFC
transducer. The verification of the calculated amplitude factor by the experimental analysis has been
presented in Section 4. A comparison of the results obtained by an analytical model and experimental
investigation has been performed in Section 5 followed by the conclusive remarks in Section 6.

2. Description of a Problem

According to the previously developed 2D analytical model based on Huygens’s principle [38],
the P1-type MFC transducer was considered as the number of line segments with distributed point
sources along with its structure. The arbitrary points along the angles from 0◦ to 180◦ at a specified
distance were considered as receiving elements. The schematic of the model is presented in Figure 1.

 
Figure 1. 2D analytical model schematic for estimation of the directivity of P1 MFC transducer [38].

At each receiving point, the signals propagating from all point sources were calculated and
integrated in order to calculate the received signals along the angular region. The received signal
spectrum can be expressed as [38]:

UR,k( f ,θk) =
N∑

n=1

M∑

m=1

UEC( f )·HT
(

f , dk,n,m, vph
)
· 1√

dk,n,m
(1)

where k is the number of receiving element (k = 1, 2, . . . K); θk is the angle between the kth receiving
point and origin (θk = [(k−1)·dθ]; dθ is the angular separation between receiving elements); n is line
segment (n = 1, 2, . . . N); m is point source (m = 1, 2, . . . M); H (f, dk,n,m, vph) is the transfer function [H (f,
dk,n,m, vph)= exp (−α(f )·dk,n,m)·exp (−j2πf dk,n,m/vph (f, h))]; α(f ) is the frequency-dependent attenuation
coefficient; vph is phase dispersion velocity which depends on the thickness (h) of the plate and the
frequency of excitation. dk,n,m is the distance from the mth point source to the kth receiving element;
UEC(f) is FT of the input signal uEC(t); UR,k (f, θk) is the FT of the received signal and 1/

√
dk,n,m is the

diffraction factor corresponding to the distance.
The normalized amplitudes (Anpp) along the polar coordinates to plot the directivity pattern is

expressed as:

Anpp(θk) =

⎡⎢⎢⎢⎢⎢⎢⎣
max
(
FT−1

[
UR,k( f ,θk)

])
−min

(
FT−1

[
UR,k( f ,θk)

])

max
(
max
(
FT−1

[
UR,k( f ,θk)

])
−min

(
FT−1

[
UR,k( f ,θk)

]))
⎤⎥⎥⎥⎥⎥⎥⎦ (2)
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The excitation signal was multiplied by the correction factor (AF) corresponding to the particular
Lamb wave mode (the S0, A0 or SH0) for the directivity estimation [38,43]. The approximated value
of amplitude correction factor (AF) in the model was considered depending on the behaviour of the
P1-type MFC transducer for each of the wave modes. As P1 type MFC operates in elongation mode
as shown in Figure 2a, AF was considered as linearly increasing value from 0 at center up to 1(−1) at
edges for upper/lower half-sections along the length (LMFC) of MFC transducer for S0 mode (Figure 2b).
On the other hand, AF contained only two maximum labels with opposite polarities at the edges in the
case of the A0 mode as presented in Figure 2c. It should be noted that 1 or −1 are the maximum labels
and can be replaced by any numerical value.

 
(a) (b) (c) 

Figure 2. Particle displacements in P1-type MFC (28 × 14 mm) along with its length (a) and the
amplitude correction factor (AF) by previously developed model for the S0 (b) and the A0 mode (c).

Hence, the dependence of AF on the excitation frequency and operative wavelength was not
considered in the previous model. Although the directivity patterns of the A0 mode obtained by
considering AF using this approach showed significant similarity with the experimental results [38] at
80 kHz and 220 kHz excitation signals, there was still scope for improvement. The detailed specifications
about the set-up and scanning procedure to estimate the directivity patterns by experimental analysis
are described in [38].

The directivity patterns of the A0 mode calculated by a previous analytical model and the
experiment at 300 mm from the center of the transducer with 80 kHz and 220 kHz excitations are shown
in Figure 3 [38]. It can be clearly observed from Figure 3 that the number of side lobes in analytical
results is equal to the experimental results but there is a significant difference in shapes. This is due
to the fact that the signal distributions (amplitude correction factor (AF)) along the structure of the
MFC transducer were not considered correctly. The numerical model developed by Haig et al. for the
estimation of directivity patterns of MFC on steel plate also had a similar limitation with the amplitude
correction factor [33]. Therefore, this research aims to find the accurate amplitude correction factor for
the P1-type MFC transducer according to the wave patterns in its structure along the length, which in
turn could improve the analytical modelling for the prediction of directivity patterns. Only the A0
mode is considered in this work due to the very high sensitivity of receiving point-type piezoceramic
transducer for out-of-plane radiations.
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(a) (b) 

Figure 3. Directivity patterns of the A0 mode of P1-type MFC (28 × 14 mm) transducer at 300 mm
distance from the center of a transducer without considering the appropriate wave patterns at 80 kHz
(a) and 220 kHz (b).

3. Modified Amplitude Correction Factor (AF)

The amplitude correction factor is calculated by combining the information of wave patterns
of the A0 and behavioral characteristics of P1-type MFC transducer. The wave patterns or signal
distributions in the region of MFC transducer depend on the operating wavelength (λ) of the excitation
signal along its length. The wavelength (λ) can be expressed by:

λ =
vph

f
(3)

where vph is the phase velocity of propagation (Al alloy in our case of consideration) and f is the
frequency of excitation signal.

The number of wavelengths (Nλ) along the length (L) of P1-type MFC (L = 28 mm) can be
expressed by:

Nλ =
L
λ

(4)

Due to the symmetry of the P1-type MFC structure and its operation in elongation (d33) mode,
the approximated number of positive and negative peaks of the signals along the region of MFC
transducer should be 2Nλ. Therefore, rather than only two levels (Figure 2c), the profile of amplitude
correction factor (AF) for the A0 mode can be represented by Dλ discrete amplitude points in positive
and negative directions alternatively and equispaced along the length of MFC.

A number of discrete levels must be an integer number, Dλ can be expressed as:

Dλ = ceil �2Nλ� (5)

where ‘ceil’ denotes a ceiling function that maps the real number to least integer greater than or equal
to the number.

The spacing between the discrete values (Δ) of AF will be given by:

Δ =
L

Dλ − 1
(6)
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Hence, an amplitude correction factor of excitation signal in the analytical modelling can be
expressed by two different mathematical functions depending on the number of discrete levels (i.e.,
even or odd) along the length of MFC transducer. The two cases are illustrated as follows:

AF =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ(y) +

Dλ−1
2∑

p=1
[δ(y− 2pΔ) − δ(y− (2p− 1)Δ)], if Dλ is odd

(
Dλ
2 )−1∑
p=0

[δ(y− 2pΔ) − δ(y− (2p + 1)Δ)], if Dλ is even

(7)

where y is the longitudinal axis of MFC transducer; p is the discrete number depending on Dλ (p = 1, 2
. . . (Dλ−1)/2 if Dλ is odd and p = 1, 2 . . . (Dλ/2)−1 if Dλ is even); δ(y) denotes the unit impulse signal).

Two different excitation signals i.e., 80 kHz, 3-period and 220 kHz, 3-period with a Gaussian
shape as shown in Figure 4a,b were considered in the analysis. The dispersion characteristics of the A0
mode in 2 mm Al plate were estimated using the computational package “Disperse” [44]. The phase
velocity at 80 kHz and 220 kHz were observed as 1182 m/sec and 1795 m/sec, respectively, as shown in
the dispersion curve (Figure 4c).

  
(a) (b) 

 
(c) 

Figure 4. 80 kHz, 3 period (a) and 220 kHz, 3-period excitation signals (b) with Gaussian symmetry
and the phase velocity dispersion curve of the A0 wave mode in 2 mm Al alloy plate (c).

Hence, the wavelength (λ80 and λ220) and a number of wavelengths (Nλ80 and Nλ220) along the
length and under the region of MFC transducer at 80 kHz and 220 kHz frequencies can be calculated
by using Equations (3) and (4).

λ80 = 14.78 mm;λ220 = 8.16 mm; Nλ80 = 1.89; Nλ220 = 3.43 (8)
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Thus, the approximated number of discrete positive and negative amplitudes (Dλ) under the
transducer region along its length can be calculated from Equation (5) as four and seven (corresponding
to the excitation frequencies of 80 kHz and 220 kHz respectively. The schematic of modified amplitude
correction factor AF for the A0 mode is presented in Figure 5a,b in the case of 80 and 220 kHz excitation
signals respectively. The AF will have the following discrete values under the structure/region of MFC
along its length:

• In the case of 80 kHz frequency, AF will have the four discrete values (i.e., two with the same
polarity and two with opposite polarity). The spatial separation (Δ) between the discrete values
(Equation (7)) will be equal to 9.33 mm.

• Similarly, AF will contain seven discrete values (i.e., four with the same polarity and three with
opposite polarity) with the excitation frequency of 220 kHz. The spatial separation (Δ), in this
case, will be 4.67 mm.

  
(a) (b) 

Figure 5. Amplitude correction factor AF at 80 kHz (a) and 220 kHz (b) along the length of MFC
transducer for the A0 mode.

After including the modified amplitude correction factor, the directivity pattern can be estimated
by the analytical model [38].

4. Experimental Validation

The new measurement technique is proposed to experimentally analyze the behaviour of MFC
transducer and wave patterns along with its structure for the verification of the estimated value of AF
in Section 3. The experiment was performed using the LF ultrasonic system (“Ultralab”) developed by
Ultrasound Research Institute of Kaunas University of Technology. The schematic of experimental
investigation is presented in Figure 6a. The characteristics of the LF ultrasonic system are described in
Table 2.

Table 2. Parameters of LF ultrasonic system [36,42,45].

Parameters Numerical Value

No. of input channels 2
No. of bits of the analog-to-digital converter 10

Overall system gain (maximum) 113 dB
Ultrasonic system to computer interface USB V.2

Frequency range 20 kHz–2 MHz

The P1-type MFC-2814 (28 × 14 mm) transducer was glued at the centre of the Al alloy plate with
dimension (1000 × 1000 × 2 mm) on one side of a plate. The scanning with a 1 mm step was performed
on the opposite side of plate under the cross-sectional area of (50 × 50 mm) which also covered the
region of MFC transducer as described in Figure 6b. The experiment was repeated two times to record
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the data in the case of two different excitation signals, i.e., 80 kHz, 3-period and 220 kHz, 3-period with
a Gaussian shape for exciting the MFC transducer as shown in Figure 3a,b. The sampling frequency
was 100 MHz. The wideband contact-type ultrasonic transducer (maximum −6 dB bandwidth was
equal to 300 kHz) was used to record the ultrasonic signals. Glycerol was used for effective acoustic
contact between the transducer and Al alloy plate. All components including the ultrasonic system
used in the experimental investigation were developed by Ultrasound Research Institute of the Kaunas
University of Technology.

 
(a) 

 
(b) 

Figure 6. Schematic showing the experimental set-up (a) and C-scanning procedure in 50 × 50 mm
region on the top surface with MFC glued on the bottom surface of Al alloy plate (b).

The B-scan images acquired along the length of MFC at 80 kHz and 220 kHz excitation frequencies
are shown in Figure 7. It can be clearly observed from Figure 5a that approx. No. of discrete peaks
Dλ is (3.5 ≈ 4) along the length of MFC at 80 kHz frequency. On the other hand, there is approx. No.
of discrete peaks equal to 7 at 220 kHz frequency as shown in Figure 5b. Therefore, these results are
similar to those obtained analytically and hence validate the calculation of amplitude correction factor
(AF) as described in Section 3. In order to view the two possible cases of signal peaks along the length
of MFC transducer with more clear visibility, the C-scan images at 35 μs and 45 μs were acquired in
the case of 80 kHz frequency. Similarly, the C-scan images at 20 μs and 24 μs were obtained for the
excitation frequency of 220 kHz. The C-scan images are shown in Figure 8a–d. The time instants
were chosen to show the wave patterns and number of signal peaks. The C-scan images provide a
clearer visualization of the estimation of Dλ and hence, the AF in the case of 80 kHz and 220 kHz
frequency respectively.
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(a) (b) 

Figure 7. B-scan along the longitudinal axis of MFC transducer at 80 kHz (a) and at 220 kHz (b).

  
(a) (b) 

  
(c) (d) 

Figure 8. C-scan showing the wave patterns for the A0 mode: at 33 μs (a) and 40 μs (b) in the case of 80
kHz excitation; at 18.9 μs (c) and 21. 6 μs (d) in the case of 220 kHz excitation.

5. Results and Analysis

The estimation of amplitude correction factor analytically (Section 3) is validated by experimental
analysis (Section 4). After including the modified values of amplitude correction factor AF in the
analytical model, the directivity patterns of MFC transducer at 80 kHz and 220 kHz at 300 mm
distance from the center of the transducer are estimated in the case of the A0 mode. The experimental
investigation to obtain the directivity patterns were already performed in the previous research [38].
The directivity patterns obtained by the modified analytical model are presented in Figure 9 with their
corresponding experimental results.
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(a) (b) 

Figure 9. Comparison of directivity patterns of the A0 mode of P1-type MFC transducer with a modified
analytical model at 80 kHz (a) and 220 kHz (b) and experimental analysis.

In comparison to the results obtained in the previously developed model [38] as presented
in Figure 3, the directivity patterns obtained by the modified model show more similarities with
experimental results. Therefore, the inclusion of spatial distribution of the amplitudes of excitation
signal significantly improves the previously developed analytical model. This could also improve
the numerical model developed by Haig et al. by resolving a similar limitation with the amplitude
correction factor [33]. In order to quantitatively estimate the improvement in results as compared
to the previous model, the error between the normalized amplitudes along the polar coordinates of
experimental results with that obtained by previously developed model and the modified analytical
model is compared. The MFC transducer is symmetric in construction. Thus, the directivity pattern
along 0◦ to 90◦ with an angular separation of 5◦ is considered for the comparative analysis of the
previous and new modified model. The absolute value of the difference between the normalized
amplitudes of experimental results and the modelling results (amplitude error) along the polar axis (0◦
to 90◦) is presented in the case of 80 and 220 kHz frequencies. The comparative results are presented in
Figure 10a,b.

  
(a) (b) 

Figure 10. Comparison of amplitude errors in the results obtained by modified model and previously
developed model in the case of 80 kHz (a) and 220 kHz (b) (Epm -Mean error in the previous model,
Emm -Mean error in the modified model).

It is clearly observed from Figure 10a,b that the amplitude error is significantly reduced in the
modified model compared to the previously developed model. At 80 kHz frequency (Figure 10a),
the range of amplitude error was observed as (0–0.3) and (0–0.16) in the case of the previous model
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and new modified model respectively. The corresponding mean error (Epm and Emm) in this case was
estimated as 0.13 (Epm) and 0.05 (Emm), respectively. Hence, at 80 kHz frequency, the relative error in
the estimation of directivity patterns by new modified model is reduced by 61.54% as compared to
the previous model. In the case of 220 kHz frequency, the amplitude error lies in the range of (0–0.3)
for previously developed model and (0–0.13) for the modified model. The mean error (Epm and Emm)
at 220 kHz was calculated as 0.12 and 0.05 in the case of a previously developed model and newly
developed modified analytical model, respectively. The relative error at 220 kHz is reduced by 58.33%
in the modified model in comparison to the previous model.

6. Conclusions

In this work, the accuracy of the previously developed 2D analytical model to predict and estimate
the directivity pattern of the MFC transducer in the isotropic medium is increased by including
the correct wave patterns of the excitation signal under the spatial region of the transducer. The
wave patterns along the structure of MFC transducer are estimated analytically and validated by
experimental analysis for 80 kHz and 220 kHz frequencies for the A0 mode. A new measurement
technique is also proposed to analyse the spatial behaviour of the MFC transducer and wave patterns
by gluing the MFC on one side of the sample and scanning on the opposite side under its region. The
C-scan images under the MFC transducer and the B-scan images along the longitudinal axis of the
MFC transducer were obtained at different frequencies.

In this way, we showed the dependency of amplitude correction factor on excitation frequency
and included it in the present model. The P1-type MFC transducer and 2-mm thick Al alloy medium
are used for a demonstration of modelling. It should be noted that dispersive phase velocity in
the modelling is included by calculating the theoretical dispersion curves based on the thickness of
propagating medium. In comparison to the previously developed analytical model, the error between
the experimental and analytical results is reduced by 61.54% and 58.33% in the case of 80 kHz and
220 kHz, respectively. The model has significant flexibility by providing the option of selecting any
isotropic propagation medium, frequency of excitation, and spatial dimensions (length and width)
of transducer. In general, it is possible to include completely all distributions of the wave under the
transducer. However, this leads to longer simulation time. The proposed method simplifies this task
as the number of excitation points in modelling is essentially reduced compared to the case when the
total spatial distribution of excitation amplitudes is taken into account.
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Abstract: To mitigate autogenous shrinkage in cementitious materials and simultaneously preserve
the material’s mechanical performance, superabsorbent polymers and nanosilica are included in
the mixture design. The use of the specific additives influences both the hydration process and the
hardened microstructure, while autogenous healing of cracks can be stimulated. These three stages
are monitored by means of non-destructive testing, showing the sensitivity of elastic waves to the
occurring phenomena. Whereas the action of the superabsorbent polymers was evidenced by acoustic
emission, the use of ultrasound revealed the differences in the developed microstructure and the
self-healing of cracks by a comparison with more commonly performed mechanical tests. The ability
of NDT to determine these various features renders it a promising measuring method for future
characterization of innovative cementitious materials.

Keywords: acoustic emission; ultrasound; hydrogel; nanosilica

1. Introduction

Recently, there have been many developments in cementitious media, especially in the field of
admixtures aiming to enhance mechanical properties, but mostly to extend durability and in doing so,
to improve sustainability. In the process of developing innovative materials, monitoring techniques
play an important role. Specifically, elastic wave methods allow non-invasive and non-destructive
characterization of the mechanical properties (i.e., direct calculation of stiffness and correlation with the
strength) as well as the monitoring of processes like setting and hydration of concrete with admixtures
by means of active (ultrasound) or passive elastic waves (AE).

In the present paper, cementitious materials with different admixtures are tested. These admixtures
are superabsorbent polymers (SAPs), nanosilica (NS) and a combination of both. SAPs are applied
in concrete mainly to prevent shrinkage cracking by internal curing [1–5]. They function by initially
absorbing (extra) water and releasing it to the cementitious matrix at a later stage, when the evaporation
rate as well as the chemical hydration reaction reduce the amount of available water in the mixture and
increase the capillary pressure in the system. In a normal situation, when the pressure becomes too
high, air enters into the system, demonstrated by a sudden drop of capillary pressure and signifying
a high risk for shrinkage cracking [6]. This is also escorted by AE bursts recorded within the same
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time frame of the pressure drop [7]. In case SAPs are present, the absorbed water inside the SAPs
is released due to the increase of capillary pressure. This smoothens the effect of evaporation rate,
ideally avoids the drop in internal relative humidity, and allows for continued hydration, enabling the
cementitious material to resist the tensile forces leading to cracking. Practically, SAPs eliminate cracking
as was revealed from the dedicated restrained ring tests in the time frame of the study (1 month) [8].
The contribution of the SAPs in controlling the shrinkage cracking is undeniable. However, they
impose a certain reduction in mechanical properties due to the increase of the porosity. The dry SAP
grains under study are normally 100 ± 21 μm in size while after water absorption, their size can reach
up to 257 ± 55 μm, as they absorb approximately 26 times their mass in water when included in a
cementitious mix. This value was obtained by measuring the flow of fresh mortars with and without
SAPs using the flow table test [9]. The amount of additional water, necessary to obtain an identical
flow of SAP mortars compared to the reference material, determines the absorption capacity of the
SAP in the studied environment. After the water is drained back to the cementitious matrix, cracking
is avoided [10] but the microstructure is affected by the remaining cavities which are a permanent
part of the hardened microstructure. Recent results have shown a decrease of the order of 20% in
compressive strength and flexural strength for mixtures with SAPs compared to the reference mix
without SAPs [11,12]. To compensate for the reduction in strength, nanosilica (NS) particles are used
in the mixtures. NS has shown the ability to increase the strength of a cementitious material due to
its large surface area, which provides nucleation sites for the hydration of cement, early pozzolanic
reaction and filler action. Recent results show that actually NS particles help to restore the mechanical
properties in mixes with SAPs to the level of the reference material, while at the same time, the mixes
benefit by the cracking mitigation action of SAPs [8].

SAPs are not only used as an admixture to mitigate autogenous shrinkage [13], they are also
interesting materials to obtain sealing and healing characteristics [14,15]. Upon crack formation, the
SAPs absorb moisture and/or fluids and this can be provided to the cementitious matrix to stimulate
further hydration, pozzolanic activity and calcium carbonate crystallization, up to minimally 8 years
of age [16]. The further hydration is promoted by nearly 40% compared to the reference cementitious
material [17], and can even be repeated for a second healing cycle [18]. The healing characteristic is
an interesting feature and requires high amounts (1 m% of binder) of SAPs to be added, although
detrimental for the mechanical properties [19,20], which can be counteracted by the addition of NS [21].

The present paper discusses the non-destructive techniques (NDT) used to monitor the material
in three phases. First, the fresh stage is evaluated, where the material is curing with simultaneous
monitoring by AE. Secondly, ultrasound is used to check the elastic properties of the media in the
hardened stage, as the microstructure is significantly modified. Finally, the self-healing stage is
monitored, when the specimens are subjected to wet-dry curing cycles to check the potential for crack
closure and restoration of mechanical properties due to the action of SAPs that can maintain water and
lead to a second stage of hydration and promote the precipitation of CaCO3 inside the crack. For the
first time in literature, AE is shown sensitive to the activity of SAPs, allowing to monitor the whole
duration of internal curing, which so far was only possible with expensive and cumbersome neutron
tomography and nuclear magnetic resonance (NMR) testing [22]. In addition, it is the first time that
elastic wave measurements indicate the mechanical healing due to the wet-dry cyclic curing, which is
later on confirmed by mechanical reloading. In the following section, a brief introduction of elastic
wave NDT for the specific applications is provided.

2. Elastic Wave NDT in Cementitious Media

2.1. Acoustic Emission in Fresh Concrete

Acoustic emission (AE) monitoring has been applied mainly in the last two decades for monitoring
of fresh cement paste. Sources that have been targeted include grain settlement, water mobility,
hydration reaction and cracking. Some studies indicated start or peak of AE activity during the
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calorimetric temperature peak that implies relation to the hydration reaction [23–25]. However, other
studies [26,27] showed the large majority of recorded hits occurring earlier than this peak, leading to
the conclusion that significant processes (possibly of lower intensity and thus more difficult to register)
occur from as early as the mixing time, much before the chemical reaction of hydration initiates and
any heat is developed. Differences in the acquisition equipment (including sensor frequency range
and sensitivity), the coupling (with or without waveguide) and the specimen size do not allow for
robust conclusions relatively to the original sources. Recent studies showed that individual physical
mechanisms like bubble creation in the fresh cementitious matrix and aggregate impacts can be
recorded as AE events [28], while it was verified that most of the AE activity during the first 2 h after
mixing originates from cement grains settlement [7]. Due to its sensitivity down to the attoJ (10−18 J)
level, AE is influenced by the size of the grains (fly-ash suspension with mean grain size of 57 μm
induces lower frequencies and higher energies of AE than normal cement with average grain size of
12 μm) during settlement (up to 2–3 h after mixing). Furthermore, AE energy exhibits peaks close
to the moment of capillary pressure breakdown, giving a good indication when the risk of plastic
cracking increases. Therefore, the reception of high energy AE bursts during this stage indicates the
starting of the detrimental action of cracking and allows external curing treatment to mitigate it [7].
A recent review on this topic is composed by Aggelis et al. [29].

2.2. Ultrasonic Assessment of Hardened Cementitious Media

Elastic waves have been more widely used for characterization of hardened cementitious media
resulting in a vast literature on the subject. Indicatively, apart from the well-known general correlations
of pulse velocity to strength [30,31], phase velocity has shown sensitivity to frequency and mix
parameters like the water and aggregate content [32]. In addition, the amount of heterogeneity in the
form of actual or simulated damage alters the wave characteristics decreasing the wave velocity and
amplitude [33–36].

In addition, elastic waves have been used in certain cases to evaluate the repair effectiveness in
concrete materials and structures [37–39]. The wave velocity and amplitude are restored, while this
has also been applied in concrete with a self-healing vascular network, showing restoration of wave
parameters for healed cracks of width up to 500 μm [40]. In the following section, the aforementioned
elastic wave techniques are used for monitoring of all stages of the materials’ life. Focus is given on
the NDT aspect of the study, while preliminary results concerning the material properties have been
recently published [21].

From the monitoring point of view, measurements were conducted in three stages:

(1) During the hydration of mortar specimens in order to check the AE activity of the modified and
reference mixes and specifically monitor the action of SAPs for the first time in literature;

(2) elastic wave measurements on the sound material after 28 days to check the effect of the
microstructure on the elastic properties;

(3) elastic wave measurements during the healing cycles to examine in a simple way if the mechanical
properties are restored.

3. Experimental Details

3.1. Materials and Mechanical Testing

Four mortar mixtures were made: a reference mixture, a mixture holding SAPs, a mixture holding
nanosilica and finally a mixture combining both SAPs and NS. The cement used for all mixtures is a
high-strength ordinary Portland cement, CEM I 52.5 Strong (Holcim, Nivelles, Belgium). To obtain the
reference mortar mixture, cement, river sand and tap water were added in a proportion of 1:2:0.35.
To allow for an easier compaction, a superplasticizer was included at an amount of 0.4% by weight of
the binder.
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The superabsorbent polymer used in this research is a copolymer of acrylamide and sodium
acrylate, produced by bulk polymerization. The SAP presents the ideal characteristics for internal
curing purpose with a particle size equal to 100 ± 21.5 μm [4]. The swelling capacity of the SAP is equal
to 305.0 ± 3.7 g/g SAP in demineralized water and 61.0 ± 1.0 g/g SAP in cement filtrate [22], measured
following the RILEM recommendations [41]. The necessary amount of SAPs for efficient mitigation
of autogenous shrinkage can be calculated by means of Powers’ hydration model [13] to obtain the
highest possible degree of hydration. In case of the reference mixture under study, an amount of 0.24%
by mass of the binder should be added together with 26 g of water per gram of SAP, leading to an
entrained additional amount (w/c)e of 0.063. However, it was chosen to lower the amount of SAP
included to the mortar mixtures to an amount of 0.2% by mass of the binder, to partially mitigate
autogenous shrinkage and limit the reduction in mechanical properties. Compared to the reference
mixture, the amount of superplasticizer was kept constant in the SAP mixture and the workability was
the same in all mixtures (flow value of 138 ± 1 mm).

To counteract the decrease in compressive strength, caused by the formation of macropores after
water release from the SAPs, a nano-reinforcement was introduced. The nanomaterial used was a
colloidal nanosilica, containing 40% of synthetic amorphous silica in a water solution. The nanosilica
particles have a nominal diameter of approximately 12 nm and a specific surface area between 18 and
258 m2/g. Cement was in this case replaced by nanosilica in an amount of 2% by mass of cement,
so that a constant mass of binder was maintained. Also, the amount of superplasticizer added was
increased to 0.76% with respect to the total weight of the binder material to account for the decrease in
flowability of the fresh mortar caused by the nanoparticles. All mixtures showed the same workability.
Table 1 summarizes the mixture proportions of the mortar blends used throughout this study.

Table 1. Ratios of mixture components with respect to the binder content.

Cement Water Sand Superplasticizer SAP Dry NS

Reference 1 0.35 2 0.004
0.2% SAP 1 0.402 2 0.004 0.002

2% NS 0.98 0.35 2 0.076 0.02
0.2% SAP + 2% NS 0.98 0.402 2 0.076 0.002 0.02

To obtain the mechanical properties of the various mixtures, three prism specimens measuring
40 mm × 40 mm × 160 mm were cast per mixture and cured in plastic foil at 20± 1 ◦C. Their compressive
strength was measured according to ASTM C349-18 [42]. The average densities after 28 days of curing
and the compressive strengths are summarized in Table 2, along with the standard deviations. It can
be seen from the results that the addition of SAPs indeed has a strong influence on the mechanical
performance, decreasing the compressive strength, while the use of NS restores the compressive strength.

Table 2. Density (g/m3) and compressive strength (MPa) of the four mixtures under study, measured at
28 days of curing.

Density (g/cm3) Compressive Strength (MPa)

Reference 2.16 ± 0.01 77.29 ± 1.17
0.2% SAP 2.17 ± 0.05 72.36 ± 2.55

2% NS 2.20 ± 0.01 88.60 ± 1.44
0.2% SAP + 2% NS 2.16 ± 0.02 78.39 ± 2.37

3.2. Acoustic Emission Monitoring

To monitor the hydration process, a metallic mold equipped with three piezoelectric sensors was
used. The sensors were of type R15α and had an operating frequency between 50 and 400 kHz and a
resonance frequency at 150 kHz. The three sensors were placed along the sides of a prism specimen of
40 mm × 40 mm × 160 mm: two of them were oppositely attached to the longitudinal faces of the beam
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mold, while the third was placed on the bottom surface. The fresh mortar specimens were monitored
for a period of three days in sealed conditions. The set-up is shown in Figure 1.

  
(a) (b) 

Figure 1. Set-up for acoustic emission monitoring: (a) top view showing two sensors with magnetic
holders at opposite sides of the beam and (b) a side view revealing the bottom sensor.

3.3. Surface Wave Measurements

In order to conduct elastic wave measurements, two pico sensors were placed on the top of the
specimen. Pico sensors have their sensitivity peak at 450 kHz but they are broadband sensors, which
operate between 50 to 800 kHz. The two sensors were located at a distance of either 50 mm or 30 mm,
depending on the type of specimen used (plain for sound property determination and with steel rebar
for mechanical loading and reloading purposes, respectively), and the excitation took place through
a pencil lead break at a distance of approximately 1 cm from the first sensor as shown in Figure 2a.
Typical signals received by the two sensors on sound material are depicted in Figure 2b. The signal
in the 2nd sensor arrives later and is much lower compared to the 1st, due to the extra distance.
Considering the delay between the onset of the two waveforms, the longitudinal wave velocity could
be calculated. In addition, by identifying the dominant Rayleigh cycle in both waveforms, the Rayleigh
wave velocity was also calculated, as the ratio of the sensor distance over the time delay between the
characteristic points (Figure 2b). Apart from the surface measurements, ultrasonic measurements were
conducted with a commercial high-power device through the longitudinal axis as well at a resonant
frequency of 54 kHz on the specimens without rebar.

  

 

 
(a) (b) 

Figure 2. (a) Experimental set-up for surface wave measurements; (b) shows typical waveforms after
pencil lead break in front of the first sensors.
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The surface wave measurements on sound material were conducted on prism specimens of
dimensions 40 mm × 40 mm × 160 mm, six per mixture, after 28 days of curing. After measurement of
the sound material, these prisms were cracked by means of a three-point bending test. A carbon fiber
reinforced polymer (CFRP) laminate allowed the two halves of the prism specimens to be kept together
(at the position of the CFRP laminate). A metal framework was then placed around the specimen,
following the procedure described in [43]. By means of restraining with the metal framework, the
crack width opening was decreased to approximately 150 μm for all specimens. The determination of
the crack width was done by microscopic measurements, using a Leica S8 APO optical microscope
equipped with a DFC 295 camera. Along the crack mouth opening, three positions were chosen and
a micrograph was taken. In each of these pictures, five measurements of the crack opening were
conducted, leading to a total of 15 measurements per specimen.

Afterwards, wet-dry healing cycles were applied on five out of six specimens and this for all
mixtures, for a period of 28 days. These cycles consist of 1 h submersion in water at 20 ± 1 ◦C and
23 h of dry conditions at a relative humidity of 60 ± 5% and temperature of 20 ± 1 ◦C for a period of
28 days. The remaining specimen was kept in dry conditions, identical to the environmental conditions
of the dry period during the healing cycles. Measurements of the crack width were repeated in the
exact same 15 locations as described above after 3, 7, 14 and 28 days of wet-dry curing. By means of
these microscopic measurements, visual crack closure, implying possible healing of cracks, can be seen.
A side and bottom view of the specimens with metal framework can be seen in Figure 3a,b, respectively.
A more detailed explanation on the experimental testing procedure and the results can be found in [21].

  
(a) (b) 

Figure 3. Prism specimens cracked in three-point bending with metal framework for restrained crack
opening: (a) side view and (b) bottom view showing the crack in the center of the specimen.

For the further examination of healing by means of mechanical loading and reloading, although the
sensors and excitation remained the same, the specimens’ geometry was slightly modified (cross-section
of 30 mm × 30 mm, and length of 360 mm) and a thin steel rebar of 6 mm diameter and a length of
700 mm was embedded at casting [44]. Tensile loading and reloading were performed by clamping
the reinforcement bar of the test specimens into an Instron 5982 Floor Model Testing System (Instron
GmbH, Darmstadt, Germany). The capacity of the load cell is 100 kN and a uniaxial tensile load was
applied at a speed of 0.01 mm/s. In the loading stage, the tensile load-displacement response presents
initially a linear increase, characterized by the stiffness of the composite beam. When cracking occurs,
a sudden drop in the load is noticed. This occurs for every additional crack, until no new cracks were
formed and the final part of the load-displacement curve shows the capacity of the steel rebar only.
The displacement was increased further on, until a certain opening of the cracks could be maintained
after release of the applied load. The opening of the initial cracks was then also measured by means of
microscopy and this in five locations on each of the four sides of the mortar specimen, leading to a total
of 20 measurements per crack. Upon reloading of a cracked specimen, the response is identical to the
final part measured in the loading stage. However, when healing of cracks has taken place, following
the same healing procedure as described above, the load-displacement curve could show a regain in
stiffness as well as the occurrence of new cracks. Figure 4a shows typical specimens of the latter case,
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while Figure 4b shows the location of the sensors in either side of a crack after mechanical loading.
Three specimens were cast per mixture. The test was performed after 28 days of curing in plastic foil,
at a room temperature of 20 ± 1 ◦C.

(a) (b) 

Figure 4. Specimens used during wet-dry healing cycles: (a) geometry of the specimens with central
rebar and (b) positioning of the sensors around the crack opening.

During the aforementioned mechanical loading, multiple cracks initiated in the mortar matrix
and measured between 50 and 500 μm. At this moment, one or two cracks per specimen were
arbitrarily chosen to be followed up during the wet-dry healing cycles. After choosing the cracks to be
monitored, the sensors were placed around these chosen cracks, at 30 mm apart. Several surface wave
measurements, consisting of a pencil lead break test as explained in Section 3.3, were then conducted
and repeated after 3, 7, 14 and 28 days of wet-dry curing, close to the end of the dry period. After this
28-day period, mechanical reloading was performed to investigate whether a regain in mechanical
properties could be obtained.

4. Results

4.1. Acoustic Emission Monitoring During Hydration

Results of the cumulative AE activity are seen in Figure 5a, where various curves of reference
mortar and mortar with SAPs are included for a monitoring period of approximately three days.
It is obvious that the SAPs’ modified mixtures exhibit much higher activity that starts to evolve at
approximately 11 h after mixing. According to previous studies, this is practically the time when SAPs
start to release their water back to the mixture [22]. AE monitors the whole period of SAP contribution,
showing that the phenomenon comes to completion after 40 h, again in correlation with literature [22].
The AE activity may come from the water flow in the porosity of cement as well as from the detachment
of the SAPs from their cavity as they shrink. While this is still under consideration, it is the first time
that AE is used to monitor the phenomenon, which so far could be traced only by cumbersome and
expensive neutron tomography and NMR [22].

Figure 5b focuses on the first 15 h of AE, where the nearly vertical increase due to the higher
rate of SAPs activity is clearly seen. Earlier, most mixes exhibit similar AE rates from the start of the
monitoring, while at approximately 2 h the AE evolves to a lower rate. This initial period of high
activity before 2 h coincides well with the measured settlement in cement, showing once again the
sensitivity of the AE sensors to the micro-level processes [7].
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(a) (b) 

Figure 5. Cumulative hits versus time of various reference (2 replicates) and SAP-containing mortar
prisms (3 replicates) in (a) and a zoom during the first 15 h in (b).

Looking at the cumulative AE activity, a nearly constant rate is depicted for several hours during
the activation of SAPs (i.e., at least between 12 and 30 h). However, more detail is offered by AE
parameters like the amplitude and duration. In Figure 6a, it is clear that from the moment of the onset
of the phenomenon (approximately 11 h as aforementioned), a rapid increase in the amplitudes is
noted, reaching values of even 70 dB at 17–18 h. This level is maintained until approximately 26 h, also
illustrated by the moving average red line of 250 points included in the graph when a gradual decrease
starts to occur and continues until the end of monitoring at 85 h. Similar conclusions are provided in
Figure 6b, where the AE duration is depicted. There, the average line starts at approximately 17 μs at
11 h, reaches a plateau of 100 μs until 26 h of curing and then gradually decreases to the initial level
throughout the rest of the monitoring period. The results are in agreement with NMR data that show
that these specific SAPs release water from final setting, at approximately 11 h after mixing, and most
entrained water is released in between 22 h to 30 h, and then levelling down to slower pace when
studied in sealed conditions [22]. This is also an indication that despite the inherently large scatter
of AE data, quantitative information can still be drawn to accurately characterize microstructural
processes and to determine the time frame for internal curing by the SAPs.

 
(a) (b) 

Figure 6. Amplitude (a) and duration (b) of AE waveforms versus time for a typical mortar specimen
with SAPs. Each point stands for the amplitude of one AE signal and the red line stands for the moving
average of 250 points.

It is also noticed that different processes can be discriminated based on the AE characteristics.
For example, the activity received during the period dominated by settlement (roughly first two
hours), shows 50 to 400 times higher average energy (ranging between 500 and 10,000 attoJ) than the
activity during the steady state of SAPs action (at approximately 25 h, ranging between 10 and 50 attoJ).
In accordance, the typical duration of settlement AE signals (270–370 μs) is 3 to 4 times longer than SAPs
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activity signals (70–130 μs). Therefore, something that years ago seemed impossible (characterization of
sources in fresh cement) and caused a lot of confusion to researchers, now starts to become substantiated
and offers unique insights in the hidden processes within fresh cementitious media.

Selecting ‘representative’ AE waveforms is not straightforward due to the inherent experimental
scatter of the parameters. However, it is always important to have a look at the raw data on which the
analysis is based. Figure 7a,b show three AE signals from the period of intense SAP action (at 25 h),
and the settlement (first 2 h) respectively. The waveform shapes do not fundamentally differ in shape,
apart from the longer average duration of settlement signals in Figure 7b. Figure 7c,d show the
corresponding FFT of the same waveforms. The main content is in any case in the band 50 to 200 kHz,
which is expected reasonable due to the resonance of the sensors, while occasionally the magnitude of
settlement signals Figure 7d reaches higher values than of SAPs action.

  
(a) (b) 

  
(c) (d) 

Figure 7. Typical AE waveforms: (a) during SAP activity (25 h after mixing) and (b) during settlement
(<1 h after mixing). Typical FFT magnitudes are shown in (c) for SAP activity signals and in (d) for
settlement signals (several signals are translated on the vertical axis for readability).

4.2. Ultrasonic Measurements on the Hardened Material

Figure 8a,b show the longitudinal and Rayleigh wave velocities respectively as measured by the
pico sensors on the surface after pencil lead break. The results confirm the effect of the cavities created
by the SAPs as the longitudinal wave velocity drops for the specific mix by more than 10%, while
the Rayleigh wave velocity decreases by 4%. In addition, the beneficial effect of NS is also evident
since the velocity of the mix with SAPs and NS is restored to the same level as the reference mix
(above 5500 m/s). Mortar containing only NS exhibits even higher Rayleigh velocity values than the
reference mix Figure 8b), due to the reinforcement by the nanomaterial. Considering the densities of
all mixes, the Young’s moduli of the materials range between 46 GPa for SAPs mix and 55 to 57 GPa
for the other mixes. A point that should be highlighted is the larger influence on the wave velocity
when NS is added to SAP samples, compared to the addition to reference mixtures. This may be
explained by the formation of products, caused by the pozzolanic nature of the nanosilica, within the
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macropores created by the emptying of the SAPs. Further research is however necessary to substantiate
this assumption.

The influence of heterogeneity in the form of cavities is not only demonstrated by the lower
velocity values but also by the experimental scatter they exhibit. The more heterogeneous the material,
the more random it becomes, which is depicted in the coefficient of variation (COV) values, calculated
as the standard deviation over the average and shown again in Figure 8a,b. Indicatively, while the
COV for longitudinal waves of reference mortar is 5%, it increases to more than 11% for material with
SAPs. Concerning the typical measurement error and taking into account the sampling rate of 10 MHz
(time step 0.1 μs), this is calculated at an average of 0.98% for the longitudinal and at 0.56% for the
Rayleigh wave velocities.

(a) (b) 

Figure 8. Elastic wave velocity and coefficient of variation of various mixes: (a) longitudinal waves
and (b) surface or Rayleigh waves. Results of 450 kHz refer to the measurements with pico sensors
after pencil lead excitation and 54 kHz refers to the experiments conducted with the commercial high-
power ultrasonic device.

As aforementioned, apart from the surface measurements, ultrasonic tests took place through
the longitudinal axis with a frequency of 54 kHz. The results are also seen in Figure 8a. The velocity
values are lower than the higher frequency ones, something normal due to the well-known dispersion
exhibited by cementitious media [33,45]. In addition, it is seen that lower frequencies and therefore,
longer wavelengths do not help much to characterize between the various mixes in this scale, as the
results are all within a range of 80 m/s (4160 m/s to 4240 m/s), without strong characterization power
over the mixes. Indeed, 54 kHz results in wavelength λ of approximately 70–80 mm. Considering the
dimensionless parameter α = πD/λ, where D is the inclusion diameter (SAP cavities have a maximum
diameter size of 300 μm), and λ, the wavelength, it results in a value around 0.025, much lower than 1.
This clearly indicates that the phenomena fall into the “long wavelength” regime [45], where limited
interaction between the heterogeneity and the wavelength is expected. On the other hand, concerning
the surface measurements mentioned above, Figure 9 shows typical spectra after pencil lead break
excitation as received by the Pico sensors used for wave measurements on the surface. The main peaks
come at approximately 400 kHz resulting in a representative Rayleigh wavelength of 7 mm. For this
wavelength, the corresponding value of parameter α is 0.26, one order of magnitude higher than for
the 54 kHz measurements. Therefore, although still lower than 1, the surface wave measurements after
pencil lead excitation start to deviate from the long wavelength regime and the microstructure starts
influencing more critically the results through scattering. In addition, there is substantial content even
at higher frequencies up to 600 kHz, which would result in even smaller wavelengths, higher α values
and stronger interaction.
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Figure 9. Typical FFT spectra from waveforms received on the surface of mortars with SAPs.

One correlation that is also worth mentioning is the one between wave velocity and strength.
While this is well known for cementitious materials, this is the first time that it is confirmed for this
type of admixtures. Mortar with SAPs indeed exhibits simultaneously the lower strength and the
lower Rayleigh wave velocity, while mortar with NS has the highest values exhibiting 22% higher
strength and 5% higher velocity than the SAPs mixes Figure 10.

Figure 10. Correlation between average Rayleigh wave velocity and compressive strength of mortars.

The above results demonstrate clearly that NDT based on elastic waves can be used to characterize
advanced mixes as wave velocity correlates well with the expected microstructure and final mechanical
properties, extending the knowledge from conventional materials to innovative cementitious mixes.

4.3. Drying-Wetting Cycles

As aforementioned, healing cycles were conducted to check the capacity of crack closure and
possible mechanical restoration. Initially, the specimens with rebars were loaded until no new cracks
initiated. Upon reloading, the specimens were cured in wet-dry cycles, as explained in the experimental
section. At specific ages, surface wave measurements were conducted with the two sensors placed at
either side of a crack to check the effect of wet-dry curing on the signal transmission through possible
sealing or healing. Specifically, the samples were studied six times (sound and cracked condition at
0 days and later at 3, 7, 14, 28 days during wet-dry cycles). The waveforms in Figure 11a correspond
to the 2nd receiver on a reference sample. It is seen that after the crack occurrence, the waveform
(2nd from top) loses much of its amplitude compared to the “sound” one (top waveform), while the
Rayleigh cycle cannot be identified any longer. Throughout the wet-dry cycles, there seems to be an
increase of the energy of the waveform, without however, being able to clearly detect the Rayleigh cycle
similarly to before cracking. The increase can be due to the closure of the crack from late hydration
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products and calcium carbonate precipitation. This result is comparable to monitoring the healing
capability on impacted plates with and without SAPs, by means of resonance analysis using a tap
hammer [46]. Figure 11b shows a typical case for a SAP + NS specimen. The initial waveforms
show the same tendency compared to the reference specimen, since after cracking, the transmission is
seriously decreased, as seen by the reduction of amplitude. At later times however, the waveform
starts to restore its content, signifying that more energy passes through the volume of the crack, while
at 28 days, the Rayleigh peak becomes visible again, although not as clear as the one before cracking.
This restoration of wave energy was noticed in most of the SAP + NS specimens while other mixes
showed much weaker restoration. This is the first time that surface wave amplitude is used to monitor
the crack closure effect of stimulated autogenous healing while in the past, it has been used for crack
closure after epoxy repair [37].

 
(a) (b) 

Figure 11. Waveforms received at successive stages of curing for (a) reference mortar sample and (b)
SAP + NS mortar sample.

Considering all the monitored locations (four different cracks for each mix during 28 days of
wet-dry cycles), an average value for the attenuation coefficient can be calculated. It is measured by
the ratio of the maximum amplitude of the waveform of the 2nd receiver over the maximum amplitude
of the 1st “reference” receiver (close to excitation, receiving the signal before passing through the
crack), divided over the sensor to sensor distance of 30 mm and expressed in dB. The low values
below 0.4 dB/mm at 0 days, as shown in Figure 12a, correspond to the attenuation of the sound media
before cracking. Just after cracking, the attenuation strongly increased, to values around 1 dB/mm
showing the influence of the discontinuity on the wave path. As the wet-dry cycles are performed,
the attenuation of all mixes shows a decreasing trend, evident of the fact that cracks are closing due
to further hydration products that are formed between the crack sides and the deposition of calcium
carbonate. In addition to the general decreasing trend, it is obvious that the attenuation of SAP +
NS mortars exhibit much lower values than the other mixes signifying much better transmission
conditions through the volume of the crack.

Wave attenuation can be discussed in relation to the microscopy results on the same mixes that
were cracked in bending and followed the same wet-dry cycles, as explained earlier. Figure 12b shows
the average crack width for the four considered mixtures: reference, SAP, NS and SAP + NS.
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Figure 12. (a) Surface wave attenuation and (b) crack width for various mortar mixes vs. curing time
in wet-dry cycles.

The initial crack is very similar as this is imposed by the metal frame where the specimens are fit
into after the mechanical cracking, thus the value of 150 μm is the starting point to check the healing or
sealing potential of the different compositions. From the second measurement at 3 days, the average
readings of the cracks were reduced, even for the mixtures without SAPs showing a value below
120 μm and 90 μm for reference and NS samples respectively. For SAP and SAP +NS compositions,
the average crack width exhibited a much stronger reduction being close to 40 μm. Wet-dry cycle
curing until 28 days has a small additional effect especially for the SAP specimens, which exhibit
an average final crack width of 24 μm while for SAP + NS the final value was 34 μm. Therefore,
microscopy results confirm that the addition of SAPs contributes to the closure of cracks, either as
standalone admixture or in combination with NS. In general, the trend of decreasing attenuation is in
agreement with the closing trend of cracks, initially exhibiting stronger rate and later being saturated.
However, there is one point that needs to be highlighted. While SAP and SAP + NS mixes exhibit
similar crack closure at 28 days in Figure 12b the attenuation shows much lower values for SAP + NS
mixes than SAPs alone. The reason behind these differences is likely to be caused by the variation on
the initial crack widths that exists for the specimens with rebars, studied for the attenuation profile.
An average value, considering all initial crack width measurements, was equal to 89 ± 33 μm for
SAP + NS samples, 139 ± 64 μm and 139 ± 48 μm for reference and NS, respectively, while for SAP
specimens a mean crack width of 202 ± 102 μm was found. The significantly larger average crack
width in SAP samples can lead to a limited total healing, as the total amount of healing products
necessary to fully close the cracks is higher compared to the SAP + NS series. This trend, indicated by
the lower attenuation of SAP +NS, was tested by mechanical loading, where the same specimens used
for surface wave measurements were reloaded in tension after 28 days of wet-dry cycles. The average
regain in equivalent stiffness of all mixtures is shown in Figure 13. The equivalent stiffness, measured
by the slope of the load-displacement curve, during reloading is compared to the one of the loading
stage. A regain of only 10% was seen for the reference samples, while for the SAP specimens this regain
was increased up to 22%. This means that, even though the crack widths in the SAP specimens were
on average wider compared to the reference material, the healing ratio is still higher for SAP inclusion.
This is due to the promotion of further hydration by the SAPs by nearly 40%, as confirmed earlier
by NMR measurements [17] and visualized by means of X-ray tomography [47]. When comparing
the SAP and SAP +NS samples, better healing conditions are given for the latter series. This is due
to the stronger initial cementitious matrix, resulting in smaller crack widths compared to cracks in
the reference and NS specimens. The included SAPs also improved further hydration in this case.
Moreover, the addition of NS had a positive influence on the healing capacity when compared to the
reference series. In this case, the average crack openings were comparable. A possible explanation
could be the formation of other healing products, caused by the pozzolanic nature of the nanomaterial,
promoting the healing capability. The latter phenomenon would confirm the restoration of stiffness
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for SAP +NS, being much stronger than for other mixes, like the restoration of signal transmission
implied through the decrease of attenuation. This is subject for further research.

 
Figure 13. Regain in equivalent stiffness (slope of load-displacement curves) of all mixture series.

For completeness, it is mentioned that the assessment after cracking is based on the amplitude
and not on the wave velocity for two basic reasons. The first is that the wave amplitude (or inversely
attenuation) is much more sensitive to the cracks and heterogeneity in general, as well known from
the literature [33–36] and also shown in this study. In the examples of Figure 11a,b above, the peak
amplitude drops by 95% after the crack (compare “sound material” and “cracked material” waveforms).
At the same time, judging from the onset of these waveforms, the velocity drops by about 50% (from
approximately 5500 m/s to approximately 2800 m/s in both cases). Therefore, amplitude shows much
stronger sensitivity and characterization capacity for the same cracking than the velocity. Furthermore,
an important point is that after the development of the crack, the reliability of picking the onset
of the waveform is compromised due to the low amplitude of the opening cycles of the waveform.
These peaks are quite low and similar to the noise level, reducing the reliability of a specific pick for
the onset. This of course does not hold for the attenuation, which is measured by the peak amplitude
of the waveform and can be clearly depicted in all cases.

5. Conclusions

This paper studied the use of elastic wave NDT as a promising method to monitor the
various processes occurring in cementitious materials and to characterize their inner microstructure.
The mixtures under study contained different additives, being SAPs to mitigate autogenous shrinkage
and NS to counteract the reduction in strength caused by SAP inclusion. The effects of these components
on the hydration process, the final microstructure and the self-healing efficiency were measured by
wave methods and a comparison with the results of more common experimental procedures was made.

Acoustic emission monitoring of reference and SAP mortars revealed the action of the SAPs
during hydration. A steep increase in received AE hits was noticed between approximately 11 h and
40 h of curing in case of SAP samples, whereas this was not seen for the reference mortars. The increase
in hits therefore can be linked to the release of water by the SAPs as the desiccation of the mortar and
internal curing initiate. Moreover, by analysis of the received waveforms, the action of the SAPs could
be distinguished from the settlement, occurring within the first hours of curing.

Secondly, using ultrasonic measurements performed by pencil lead break tests, differences in
microstructure between the four mixtures were exposed by variations in longitudinal and surface
wave velocities measured. The creation of cavities after water release by the SAPs lowered both wave
velocities and increased the scatter on the results, while the inclusion of NS increased the wave velocity
due to the reinforcement of the matrix.
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Finally, it was seen that the addition of SAPs and NS improved the self-healing capacity of the
mortar specimens. Tensile tests were performed to obtain multiple cracking and after 28 days of healing
in wet-dry cycles, the tensile reloading showed that a partial regain in stiffness could be obtained for
the SAP + NS mixtures. During these wet-dry cycles, ultrasonic tests were conducted next to specific
crack openings to receive information on waves travelling across the crack opening. By examination of
the attenuation, decreasing over time as curing in wet-dry cycles was performed, the increased healing
capability of the SAP + NS mixtures compared to other mixtures was confirmed.

The improved healing capacity of SAP+NS mixtures, determined by means of wave measurements
and regain in mechanical stiffness and confirmed by the results of water permeability tests and visual
crack closure [21] is an interesting feature of the newly obtained cementitious material. Together with
the mitigation of autogenous shrinkage through the inclusion of SAPs, without having a negative
influence on the compressive strength, the combination of SAPs and nanosilica shows to be a promising
addition to cementitious mixtures, meeting the continuously increasing requirements regarding the
performance of construction materials.
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Abstract: In this study, a photoacoustic microscopy (PAM) system based on a multifocal point (MFP)
transducer was fabricated to produce a large depth-of-field tissue image. The customized MFP
transducer has seven focal points, distributed along with the transducer’s axis, fabricated by separate
spherically-focused surfaces. These surfaces generate distinct focal zones that are overlapped to
extend the depth-of-field. This design allows extending the focal zone of 10 mm for the 11 MHz MFP
transducer, which is a great improvement over the 0.48 mm focal zone of the 11 MHz single focal
point (SFP) transducer. The PAM image penetration depths of a chicken-hemoglobin phantom using
SFP and MFP transducers were measured as 5 mm and 8 mm, respectively. The significant increase in
the PAM image-based penetration depth of the chicken-hemoglobin phantom was a result of using
the customized MFP transducer.

Keywords: ultrasound; photoacoustic imaging; photoacoustic microscopy; biomedical imaging;
multifocal point transducer

1. Introduction

Of late, optical techniques have been used widely in biomedical imaging, which has improved the
performance of in vivo diagnosis with high optical contrast [1,2]. This approach produces strong light
scattering effects and a low spatial resolution. The optical microscopy penetration depth is limited to
approximately 1 mm. Photoacoustic (PA) imaging (PAI) is a biomedical imaging modality based on
the PA effect [3–7]. When short-pulsed laser light is directed on tissues, chromophores absorb some of
the light energy that is converted into acoustic waves due to rapid thermal expansion. Photoacoustic
microscopy (PAM) is also widely used to image tissues through optical absorption [8–13]. PAM can
image optical contrast beyond the existing depth limit for high-resolution optical imaging [14]. The
spatial resolution depends on the performance of the ultrasonic transducer. Many studies developed
photoacoustic tomography by employing a short pulse to generate ultrasound waves in biological
tissues; such techniques are used for in vivo biomedical imaging [1,15].

Ultrasonic transducers play an important role in PAI systems [1,13,16,17]. The transducer’s
parameters have a significant effect on image quality [18]. The main parameters of ultrasonic
transducers are center frequency, bandwidth, focal length, focal zone, aperture size, and lateral and
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axial resolutions. Single focal point (SFP) transducers have a limited focal zone so as to acquire a deep
image. Ultrasonic array transducers can control focal depths through dynamic focusing algorithms
to capture the target image [19–22]. However, the fabrication process of this type of transducer is
highly complicated. Multifocal point (MFP) transducers, which are developed to be used in imaging
systems, are proposed to increase the image depth in ultrasound imaging [23]. The newly designed
MFP transducers show a significant increase in focal zone compared with SFP transducers. Combined
with PA systems, the penetration depth in deep imaging can be increased.

In PAI systems, the depth of penetration depends on the frequency of the ultrasonic wave.
Higher frequencies have a small depth of penetration, whereas lower frequencies have a greater
depth of penetration. To obtain the correct depth of an image, PAM requires an appropriate high
frequency with a short wavelength and an enhanced resolution. Previous studies reported the use of
phased array transducers for the PAI systems with complex dynamic focusing algorithms to acquire
images [5,21,24–29]. Chulhong et al. [5] imaged biological tissues using a combined handheld PA
microimaging probe and a transducer array. The lymph nodes containing methylene blue at a depth of
4.5 cm in tissue were visible in the PA images. Vogt et al. [21] used four clinical ultrasound transducer
arrays in a PAI system with frequencies of 2.5, 8, 8.7, and 12.4 MHz. The largest penetration depths in
the PAI system were obtained from the transducer with the lowest frequency, i.e., 2.5 MHz. A real-time
512-channel PA system with a 5 MHz transducer array imaged mouse brain vasculature at a depth
of 4.5 mm with a lateral resolution of 200 μm [25]. However, a combination of two systems poses
complications for setup and operation.

In addition, for array ultrasound signals, the complex algorithm of the synthetic-aperture focusing
technique (SAFT) had been applied to acquire qualified final images [21,25–27,29]. This study was
conducted with the motive to design a custom-made MFP transducer with seven focal points and a
long focal zone for deeper imaging applications, which does not require the application of SAFT for
reconstruction or any post-processing to obtain the image. Because MFP transducers are designed using
a single piezoelectric element, it is easy to acquire the image using only a single-channel ultrasonic
pulser/receiver.

The contributions of this study are presented in three aspects. First, two types of focused transducer
(SFP and MFP) were designed and fabricated, both made of the same type of 28 μm polyvinylidene
fluoride (PVDF) film and producing the same center frequency. In the case of the SFP transducer, with
only one focal point, a large image depth cannot be obtained owing to the limited size of the focal zone.
The main objective of this study was to expand the MFP transducer’s focal zone, which may create
many focal points at different depths with the use of a multi-spherical pattern (MSP) model. Second,
the proposed design of the MFP transducer can be driven by a one-channel ultrasonic pulser/receiver
system because of its single element function. This enables simple operation and data processing
to acquire images without applying the complex SAFT as the transducer array system. Third, the
significant difference between the focal zone and penetration depth of images from two transducers
was distinguished in ultrasound imaging of the wire phantom, PAI of the needle, and hemoglobin
(Hb) embedded in chicken tissues.

2. Materials and Methods

2.1. Transducer Design Materials

The piezoelectric element is the most important element of an ultrasonic transducer, which
is made of piezoelectric polymers. PVDF membrane (Piezotech S.A.S, France) is the preferred
polymer and has been extensively studied for many decades in the manufacture of high-frequency
transducers [23,30–33]. PVDF is a special material used in high-purity applications, as well as in
solvents, acids, and hydrocarbon resistance. Polymerization, stretching, and polling processes for a
28 μm PVDF element can be applied for developing transducers. In this study, PVDF was selected to
fabricate SFP and MFP transducers due to its advanced properties. Table 1 details the properties of
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PVDF used in this study. Although PVDF film’s acoustic impedance (~4 MRayl) is lower than that of
piezoceramics and crystal materials, PVDF shows a good mechanical versatility, which makes it easy
to press the film into a spherical shape. The transducer developed from this PVDF has a normal broad
bandwidth. In addition, PVDF film has a small dielectric constant appropriate for electrical impedance
matching [34].

Table 1. Properties of PVDF1 material.

Property Value

Electromechanical coupling coefficient (Kt) 0.15
Relative clamped dielectric constant εS /ε 11

Mechanical quality factor (Qm) ~20
Density (kg/m3) 1780

Longitudinal wave velocity (m/s) 2110
Acoustic impedance (MRayl) 3.9

Curie temperature (◦C) 100
Melting temperature (◦C) 160~180

1 Data reported by Piezo film sensor, AMP Inc, Valley Forge, PA.

2.2. Transducer Design

SFP transducers have a functional limitation in the focal zone and penetration depth. To extend
the length of the focal zone, the multifocal point transducer was designed with a focal zone of 11 mm.
In this study, the structure of the MFP transducer was designed similarly to the design reported
in a previous study [23]. Figure 1 shows the profile and focal zones distribution of the developed
transducer. The surface of the MFP transducer was designed by connecting seven parts with same
areas in order to create the same level of intensity in their focused areas. The “Ri” is the radius of part
“i” (i = 1–7). The distance between two focal points b = Rj –Rj-1 = 1.5 mm (j = 2–7) The parameters of
the seven-focal-point transducer were designed as shown in Table 2.

Figure 1. The (a) profile and (b) distribution of the focal zones of the multifocal point (MFP) transducer.
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Table 2. Parameters of the MFP transducer.

Part Number i
(i = 1–7)

Focal Length Ri
(mm)

Aperture Diameter
Di (mm)

F-Number
(Ri/Di)

Active Area (mm2)

1 20.00 4.60 4.3 1.256
2 21.49 6.49 3.3 1.256
3 22.97 7.94 2.8 1.256
4 24.45 9.16 2.6 1.256
5 25.92 10.24 2.5 1.256
6 27.40 11.21 2.4 1.256
7 28.87 12.10 2.3 1.256

The most important feature in Table 2 shows that a longer focal length obtains a smaller F-number.
To obtain the best axial resolution, the system needs the smallest F-number for the best quality image
(Axial resolution = speed of sound x F-number/center frequency). The seventh part of the MFP
transducer has the smallest F-number of 2.3 and the longest focal length of 28.87 mm, which can obtain
better axial resolutions at deeper depths.

Figure 2 shows the comparison of the transducers’ focal zones. For the SFP transducer, the front
face was formed by a steel ball bearing of 12.7 mm in radius. The SFP transducer has only one focal
point at the focus depth of 12.7 mm and only one focal zone of 0.48 mm. The front surface’s parameter
of the MFP transducer was designed and simulated using the Matlab (version 2013a, Mathworks,
Natick, MA) software. The MFP transducer has seven focal points, which created seven focal zones.

Figure 2. The distribution of the focal points and focal zones of (a) the single focal point (SFP) and
(b) MFP transducer.

The parameters of the MFP transducer were carefully calculated to obtain tightly focused areas
from the first to the last focal zone. Table 3 shows the overlap length between the two closed focal
zones, which confirms that the focal depths are continued on the completely focused areas. Based on
the distribution of the focal zones, the MFP transducer can capture a good target image as the object is
placed in the area of the focal zone between 18.50 mm and 29.50 mm.
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Table 3. The distribution of the focal zones of the MFP transducer.

Focal Zone Range of Focus (mm) Length of Focus (mm) Overlap Length (mm)

FZ1 18.50 – 22.20 3.70 –
FZ2 20.18 – 22.80 2.61 2.02
FZ3 21.97 – 23.98 2.01 0.83
FZ4 23.59 – 25.31 1.72 0.39
FZ5 25.15 – 26.71 1.55 0.16
FZ6 26.67 – 28.19 1.45 0.04
FZ7 28.18 – 29.50 1.38 0.01

2.3. Transducer Fabrication

To acquire a large penetration depth image, a combination of the light absorption and acoustic
detector was used. Two types of ring-shaped transducer (SFP and MFP) were developed to compare the
different performances in PAM imaging. Figure 3 shows the device used for forming the multi-spherical
surfaces of the MFP transducer. The press-fit system (Figure 3a) was fabricated with five aluminum
plates and four stainless steel rods with screws. The parameters of the MSP (Figure 3b) with seven
spherically-focused surfaces were simulated using Matlab, and the original computer numerical control
(CNC) machine fabricated the transducer, as shown in Figure 3c. The components of the press-fit
system were designed using Matlab and made by using the CNC machine, as shown in Figure 3d. The
MFP transducer was designed using Solidworks, as shown in Figure 3e. Figure 3f shows a photograph
of the fabricated MFP transducer with seven focal points.

Figure 3. (a) A photograph of the press-fit structure; (b) the designed multi-spherical pattern
(MSP); (c) a photograph of the MSP; (d) the press-fit’s components: base plate/rod/screw (BP/R/S),
Teflon/PVDF/copper-clad polyimide (T/PVDF/CCP), pressure plate/screw (PP/S), spring (SP), MSP, slide
plate/rod (SP/R), sensor of force (S), top plate/screw (TP/S), and force screw (FS); (e) the profile of MFP
transducer; and (f) a photograph of the MFP transducer.
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For the MFP transducer, the fabrication process proceeded in two phases, as shown in Figure 4.
The press-fit system was used in the first phase to form a multi-spherical profile of the active membrane.
The copper-clad polyimide (CCP; Hanwha Corp., FCCL, Korea), 28 μm PVDF membrane (Piezotech
S.A.S, France), and Teflon films (4 × 4 cm) were prepared. For bonding the two films of CCP and PVDF,
the epoxy (EPO TEK 301, Epoxy Technology, Billerica, MA, USA) was applied. To avoid tearing the
films, springs were placed to minimize the vibration in the manufacturing process. The force sensor
was controlled to display the tension value of the active film surface. The top and bottom plates were
fixed using screws through rods. To ensure a uniform pressure on the surface of the MSP transducer,
the forcing screw was rotated by a hexagonal bar wrench.

Figure 4. The fabrication process of the ring-shaped MFP transducer.

The press-fit system was inverted after these films were inserted into the base plate’s center hole.
The Teflon tube was filled with the nonconductive epoxy to keep the spherical profile of the PVDF film
after curing. The fabricated system was heated at 65 ◦C for 2 hours. After disassembling the press-fit
system, the acoustic stack was taken out with an epoxy plug connected to it. The CCP and PVDF were
trimmed close to the epoxy plug. The pin of the SMA connector (Mouser Electronics, TX, USA) was
soldered to a small CCP line through an electrical wire.

In the second phase, the acoustic stack was fabricated to a transducer housing. The acoustic stack
was concentrically attached to the transducer housing. An open space was filled with a nonconductive
epoxy inside the housing to keep the transducer’s long-term electrical and mechanical stability.
Following the epoxy curing, the transducer housing was connected to the connector. A piece of silver
epoxy (H20 epoxy, Epoxy Technology, Inc., USA) was cast between a piece of PVDF and the housing
to create a ground path. A drill was used to form a hole of 1.6 mm at the center of the transducer’s
surface, and a 14G needle (Syringe needle, Anhui, China) was then inserted into the hole with a thin
layer of UV adhesive (Norland products, Inc, Cranbury, NJ, USA) to maintain the spherical form of the
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PVDF film. The laser cable was inserted inside the needle and adjusted at the transducer’s focal point
to obtain the best resolution PA image.

For the SFP transducer, a steel ball bearing (Hecto, Jiangsu, China) of 25.4 mm in diameter was
used to form a single spherical surface, producing a focal point at 12.7 mm and one focal zone of
0.48 mm. The same 28 μm PVDF film was used to fabricate an SFP transducer with an aperture
diameter of 12 mm. Figure 5 shows the transducers’ cross-sectional view and photographs of the
ring-shaped transducers.

Figure 5. (a) A cross sectional view and (b) SFP ring-shaped transducer photograph. (c) A cross
sectional view and (d) MFP ring-shaped transducer photograph.

2.4. Phantom Fabrication

2.4.1. Wire Phantom

Sixteen phantom wires (25-μm) were placed diagonally, with an equal distance of 1 mm in the
vertical axis and horizontal axis (Figure 6a). The transducer was moved along the X-axis to scan
the wires image, which placed at the transducer’s focused position in degassed water. The reflected
pulse-echo signal from the wire was used to figure the beam shape in the lateral direction. The
final image was obtained by image processing, importing data into Matlab-based (Version. 2013a,
Mathworks, Natick, MA, USA) software.
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Figure 6. (a) The structure of the wire phantom. (b) A photograph of the wire phantom.

2.4.2. Chicken-Needle Phantom

Figure 7 shows the structure (Figure 7a) and photograph of a chicken-needle (CN) phantom. The
chicken meat was placed into an acrylic mold, and 20G (syringe needle, Anhui, China) stainless steel
needles (outer diameter, 0.79 mm) were inserted at different depths of the acrylic mold (Figure 7b).
The needle phantom was composed of seven needles, which were separated by 1.5 mm in the Z-axis
and 2.5 mm in the X-axis. The top surface of the chicken meat sample was flattened in the same plane
as that of the top plane of the acrylic mold.

Figure 7. (a) The structure and (b) a photograph of the chicken-needle (CN) phantom.

2.4.3. Chicken-Hemoglobin Phantom

Figure 8 shows the structure (Figure 8a) and photograph of a chicken-hemoglobin (CHb) phantom,
in which transparent polytetrafluoroethylene (PTFE) tubes (Zeus, Orangeburg, USA) containing Hb
(Sigma-Aldrich, Merck, Seoul, South Korea) were embedded. The hemoglobin concentration of 13.6
g/dL is suitable for optical absorption coefficient of 4.0 cm−1 at 800 nm. The blood hemoglobin (Hb)
concentration test is one of the most commonly performed tests; the normal Hb level in the human
body ranges from 12 to 16 g/dL [21]. Hb is the iron-containing metalloprotein involved in the transport
of oxygen that is found in nearly all vertebrates’ red blood cells, as well as in some invertebrates’
tissue. Hb in the blood transports oxygen to the whole body from the lungs or gills. Hb samples were
injected into transparent tubes with a 1.6 mm outer diameter and 25 mm length. Hb-filled tubes were
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embedded at different depths of the chicken tissue in the acrylic mold (Figure 8b). To produce imaging
targets at different depths, the CHb phantom comprised six Hb-filled tubes, which were positioned
diagonally by 1.5 mm in the Z-axis and 2.5 mm in the X-axis.

Figure 8. (a) The structure and (b) a photograph of the chicken-hemoglobin (CHb) phantom. The
polytetrafluoroethylene (PTFE) tube with an inner diameter of 1.6 mm, wall thickness of 0.038 mm,
and transparent color.

2.5. Experimental Setup

2.5.1. Ultrasound Imaging System

Figure 9 shows a schematic diagram of the experimental process. A computer-controlled remote
(DPR 500, JSR Ultrasonics, Pittsford, NY, USA) pulser/receiver and the transducer was connected to
excite an electrical impulse at a 200 Hz repetition rate at 50 Ω damping with 3 μJ energy per pulse.
To measure the pulse-echo and frequency spectra of the transducer, a glass plate was positioned
at the focused position as a target. The reflected signal was received using a 500 MHz bandwidth
receiver with a high pass filter of 5 MHz and a low pass filter of 500 MHz. The attained raw data were
digitized at a sampling frequency of 500 megasamples/s. An 8-bit digitizer (NI PCI-5153EX, National
Instruments, Austin, TX, USA) was used to digitize echoes.

A stepper motor (UE63PP, Newport Corporation, CA, USA) was used to control the movement of
the transducer, and a universal motion controller/driver (ESP300, Newport Corporation, CA, USA) was
used to drive the motors’ motion. A LabView (LabView 2014, National Instrument, Austin, TX, USA)
program was built to control all the processes mentioned above. A computer-controlled scanning stage
was moved along the X-axis to acquire a B-scan image.

An Agilent Keysight 4396B impedance analyzer (Agilent Technologies, Santa Clara, CA, USA)
was used to measure the electrical impedance (magnitude and phase) of the fabricated SFP and
MFP transducers.
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Figure 9. A schematic of the experimental ultrasound system.

2.5.2. Photoacoustic Microscopy System

The ex vivo experiments were conducted on the tissue phantom models. Figure 10 shows a
schematic diagram of the experimental setup for the PAM system. Briefly, a tunable OPO laser (Surelite
OPO Plus, Continuum, CA, USA) pumped by an Nd:YAG laser (Surelite III, San Jose, CA, USA) was
applied as a light source with a 6 ns pulse width, 10 Hz repetition rate, and 650–1064 nm wavelength.
A multimode fiber with a diameter of 1 mm and a light divergence of 30 degrees (NA = 0.5) was used
to deliver the 800 nm pulsed laser beams with a laser energy of 0.18–1.98 mJ/pulse, which is well below
the safety limit (20 mJ/cm2) of the American National Standards Institute. An 800 nm wavelength was
employed to acquire the PA images. The input optical fiber was connected to a plano-convex (focal
length: 50 mm; Thorlabs, Newton, NJ, USA). The fiber’s output end was connected to the custom
transducers and aligned to the center of the illuminated area. To obtain the largest penetration depth
in the PAM image, the fiber’s output end was adjusted to ensure a guaranteed maximum overlap area
between the laser beam and the focal zone. The signals were then digitized and stored in coordination
with a laser system, using a data acquisition (DAQ) system to capture the PA signals. The LabView
program (Version 2012, National Instruments, Austin, TX, USA) was used to control the scanning
procedure. Finally, through Hilbert’s transformation, the detected PA signals were transformed into
PA images.

To evaluate the capability of transducers in PAM imaging, ex vivo experiments were conducted
with both SFP and MFP transducers. Two types of tissue phantom were fabricated for the scanning
system to obtain the PAM images, which demonstrated the differential penetration depths from two
types of custom transducer. A tissue phantom was positioned inside a water tank through a thin
transparent plastic membrane. An ultrasound gel was cast on the top plane of the tissue under the
plastic membrane for acoustic coupling. The transducer was immersed in a tank of water during the
experimental procedure. The B-scan mode was performed by linearly scanning the specimen along the
transverse direction, which demonstrated the in-depth structure of the target. The large focal zone of
the MFP transducer combined with the laser energy which can capture a deeper depth image with a
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high resolution. This is due to the seventh part of the MFP transducer which has the smallest F-number
and the longest focal length related to the axial resolution.

Figure 10. A schematic of the photoacoustic microscopy (PAM) experimental system. Laser OPO
wavelengths: 650–1064 nm. Multimode fiber diameter: 1 mm, NA = 0.5.

3. Performance Evaluation

3.1. Ultrasound Characterization

Figure 11 shows the measured pulse-echo response and the transducers’ frequency spectrum.
According to the ultrasound pulse-echo test, the SFP and MFP transducers had the same center
frequency of 11 MHz, and the −6 dB bandwidths of the SFP and MFP transducers were 91% and 109%.

Figure 12 shows the measured electrical impedance (magnitude and phase) of the fabricated SFP
and MFP transducers. In the SFP transducer, the electrical impedance was measured at a magnitude
of 36 Ω and a phase angle of 46◦ at 11 MHz. In the MFP transducer, the electrical impedance was
measured at a magnitude of 32 Ω and a phase angle of 15◦ at 11 MHz.

Figure 13 shows B-scan images of the wire phantom attained using the ring-shaped transducers.
The wires were positioned in the transducers’ focal zones and produced the bright points in the image;
otherwise, they appeared as blurred points in the images. In the ultrasound image of the 11 MHz SFP
transducer (Figure 13a), only a single bright point at a depth of 12.7 mm was displayed, because the
focal length of the SFP transducer was 12.7 mm. Using the seven-focal-point transducer, the ultrasound
image of the wire phantom at 11 MHz was captured, as shown in Figure 13b. We observed that the
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MFP transducer displayed eleven bright points, showing a large focal zone (10 mm) for deeper images,
which is significantly higher than the SFP transducer’s focal zone (0.48 mm).

Figure 11. The measured pulse-echo and frequency spectra of transducers after forming a hole of (a)
the single focal point transducer and (b) the seven-focal point transducer.

Figure 12. The measured electrical impedance magnitude and phase of (a) the single focal point
transducer and (b) a seven-focal-point transducer.

Figure 13. Ultrasound images of the wire phantoms obtained using (a) the SFP transducer and (b) the
MFP transducer.
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Figure 14 shows the lateral and axial resolutions of the SFP and MFP transducers. Using the wire
phantom target, the spatial resolution of transducers was determined at full width at half maximum.
At a depth of 12.7 mm, the SFP transducer had lateral and axial resolutions of 200 μm and 90 μm,
respectively. In contrast, the MFP transducer can capture wire images at depths from 17.4 mm to
27.4 mm. The measured lateral resolutions at depths from 17.4 mm to 24.4 mm had a similar value
of 360 μm. Lateral resolutions decreased linearly to 200 μm at a depth of 27.4 mm (Figure 14a). The
measured axial resolution of the MFP transducer had a similar value of 140 μm at depths from 17.4 mm
to 25.4 mm (Figure 14b).

Figure 14. Ultrasound (a) lateral and (b) axial resolution measurements versus depth in the wire
phantoms of the SFP (solid line) and MFP (dashed line) transducers. Error bars denote 95% confidence.

Although the MFP transducer has weak lateral and axial resolutions compared to SFP transducer,
the MFP transducer can maintain good image quality at different depths due to its large focal zone.
In case of the SFP transducer, the focal length and aperture diameter are 12.7 mm and 12 mm,
from which a good F-number (focal length/aperture diameter: 12.7/12 = 1.05) could be acquired.
Meanwhile, the MFP transducer has seven F-numbers from 4.4 mm to 2.3 mm, as shown in Table 2.
Axial resolution is affected by the F-number, speed of sound, and center frequency of the transducer
(Axial resolution = speed of sound x F-number/center frequency). A smaller F-number contributes to
the improvement of the axial resolution.

3.2. Penetration Depth in Photoacoustic Microscopy Images

Figure 15 shows the PAM images of the CN phantom obtained using two transducer types. The
SFP transducer’s PAM image displayed only one bright point at a depth of 6 mm (Figure 15a). In this
case, a penetration depth of 6 mm was measured from the top surface of chicken meat to the image
depth, in which the first needle was placed in the chicken tissue. The deeper needles’ images were not
displayed clearly. The MFP transducer captured the PAM image of the first four needles at depths from
6 mm to 10 mm (Figure 15b). The brightest point is the first needle’s image at a depth of 6 mm. At a
depth of 10 mm, the image of the fourth needle can be seen clearly. The image depth in chicken tissue
was measured from the chicken meat’s surface to the farthest image point (0–10 mm). Therefore, the
penetration depth of the MFP transducer in this CN phantom was measured to be 10 mm. However,
blood vessels in the chicken phantom can absorb laser energy, which generates ultrasound waves
and reflected signals to the transducer for forming images. Figure 15b shows the PAM image of the
blood vessels at the top surface of the chicken meat, at the depth of 3 mm above the first needle, and at
the right side from a depth of 0 to 13.5 mm. In this case, the penetration depth was measured to be
13.5 mm. Therefore, in this phantom, the MFP transducer’s penetration depth for the stainless steel
needles is 10 mm and the penetration depth for chicken blood vessels is 13.5 mm.
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Figure 15. PAM images of the CN phantom acquired using (a) SFP and (b) MFP transducers. The
penetration depths of the SFP and MFP transducers are 6 mm and 10 mm.

Figure 16 shows the PAM images of the CHb phantom obtained using two fabricated transducers.
The SFP transducer’s PAM image displayed only a single bright point at a depth of 5 mm (Figure 16a).
Therefore, the penetration depth of the SFP transducer in this phantom was measured to be 5 mm.
The MFP transducer’s PAM image displayed three bright points at depths from 6.5 mm to 10 mm
(Figure 16b). Therefore, the penetration depth of the MFP transducer in the CHb phantom is 8 mm,
which was measured from the chicken meat’s surface to the third image point.

Figure 16. PAM images of the CHb phantom acquired using (a) SFP and (b) MFP transducers.

Table 4 summarizes the transducers’ parameters used in imaging systems. One type of piezoelectric
material was designed for the same values of center frequency and different focal zones for two
different transducers.

Table 4. Operating parameters of ultrasonic transducers.

Parameter SFP Transducer MFP Transducer

Center frequency (MHz) 11 11
-6 dB Bandwidth (%) 91 109

SNR (dB) 38.7 34
Focal length (mm) 12.7 18.5 - 29.5

Axial resolution (μm) 90 140 - 70
Lateral resolution (μm) 200 360 - 200

Focal zone (mm) 0.48 10
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Figure 17 shows the mean intensity depth profiles for two transducers in the wire phantom,
CN phantom, and CHb phantom. For the ultrasound image of the wire phantom shown in Figure 13,
the intensity was considerably high at the focus depth of the transducers, and many more ultrasound
waves reflected to the transducers (Figure 17a). The SFP transducer has only one focal point; therefore,
the highest intensity was concentrated at a focal depth of 12.7 mm, whereas other depths had lower
intensities. In case of the MFP transducer, a seven-focal-point transducer created a larger focal zone,
which showed similar intensities at depths from 18.4 mm to 24.4 mm. For the PAM images of the CN
and CHb phantoms shown in Figures 15 and 16, the intensity decreased proportionally with depth
in Figure 17b. However, the intensities of the PAM image from the MFP transducer were generally
lower in the CHb phantom, because light absorbed by Hb is weaker than that absorbed by a needle in
a chicken tissue. Owing to light diffusion in the chicken tissue, the intensity at a depth of 10 mm in the
CHb phantom was 10 dB, whereas that in the wire phantom was 28 dB at the same depth.

Figure 17. Target intensity versus depth for log-compressed (a) ultrasound images in the wire phantom
and (b) photoacoustic images in the CN phantom and CHb phantom of the SFP (solid line) and MFP
(dashed line) transducers. Error bars denote 95% confidence.

4. Discussion

The feasibility of extending the depth-of-field in PAM imaging using a custom MFP transducer
was investigated in this study. The goal of this study was to harness the advantages of a single
piezoelectric element for designing an MFP transducer for large-depth image applications. The SFP
and MFP transducers were designed to compare the different features through their structures. The
conventionally focused transducer created only one focal point with a short focal zone. To extend
the length of the focal zone, the front face structure of the MFP transducer was designed with many
spherically-focused surfaces, which produced many focal points and different focal zones. For the
MFP transducer, the B-scan image was obtained by scanning a transducer along the X-axis over the
wire phantom-based motion control system. The ultrasound data were collected from a single-channel
ultrasonic pulser/receiver and plotted using the Matlab software without applying SAFT processing as
with multi-element systems.

For ultrasound and PA applications, a spherically focused transducer can enhance the sensitivity
to detect small defects within objects or living tissues. At the same center frequency of 11 MHz,
the MFP transducer had a focal zone of 10 mm and the SFP transducer had a focal zone of only 0.48 mm,
which was demonstrated by ultrasound images of the wire phantom.

For biomedical imaging applications, the PAM images of the CN phantoms in Figure 15 were
obtained by two types of transducers. For the SFP transducer, the measured penetration depth and
intensity were 6 mm (Figure 15a) and 43 dB (Figure 17b), respectively. Meanwhile, the measured
penetration depth of the MFP transducer’s CN phantom image was 10 mm (Figure 15b) and
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the intensities were decreased from the phantom surface to the farthest image point (46–10 dB),
as represented in Figure 17b. In the case of the Hb-filled tubes embedded in chicken tissue (Figure 16),
the penetration depths of the SFP and MFP transducers were detected at 6.5 mm and 8 mm, respectively.
The measured intensity at the focused depth of the CHb phantom image using the SFP transducer
was 43 dB (Figure 17b), whereas in the MFP transducer, it decreased from the phantom surface to
the farthest image point (35–10 dB), as represented in Figure 17b. In the same chicken tissue, needles
absorbed much more laser light than Hb; therefore, at a deeper depth (10 mm) in the chicken tissue,
the ultrasound waves still reflect to the MFP transducer to construct images. From the structure of the
MFP transducer, the focal zone length can be extended by increasing the number of focal points and
the aperture size.

Using phantoms (wire phantom, CN phantom, and CHb phantom), the performance of the MFP
transducer was demonstrated to be suitable. However, B-scan images produced by a fixed focal point
transducer can still benefit from SAFT, as the non-focal point scatterers were displayed as arcs due to
the finite width of the transducer field away from the focus. As evident from Figures 13, 15 and 16,
the developed MFP transducer is not free from this artifact. Instead of the arcs produced by the SFP
transducer in the wire phantom image (Figure 13a), the MFP transducer produced horizontal spreading
(Figure 13b), which has a much better appearance than the arcs, but is still an artifact of the same nature
as the arcs. For the B-scan images of the chicken phantoms (Figures 15 and 16), the MFP transducer
produces arcs similar to those produced by the SFP transducer. The effects of horizontal spreading in
water vs. arcs in the chicken phantoms are probably because of the difference in the sound speeds
between water and the chicken phantom. Both the arcs and the horizontal spreading can be reduced
using SAFT, which will be more difficult to implement for the MFP transducer.

Table 4 shows the measured spatial resolution of transducers. However, the axial resolution of the
MFP transducer can be improved at greater depths. This is because the axial resolution has an effect
on the transducer’s parameters such as the center frequency and F-number. The MFP transducer has
seven spherically-focused surfaces, which generate various focus depths with different F-numbers.
The bigger aperture diameter has a smaller F-number (focal length/aperture diameter). The smaller
F-number and the bigger center frequency results in a better axial resolution (Axial resolution = speed
of sound x F-number/center frequency). The seventh part of the MFP transducer has the smallest
F-number of 2.3 and the longest focal length of 28.87 mm. Therefore, the measured axial resolution of
this part was 70 μm, which was the better axial resolution at deeper depths (Figure 17b).

5. Conclusions

This study described a novel design and evaluation of an MFP transducer with a significantly
increased focal zone (10 mm) versus the SFP transducer (0.48 mm). The image of eleven phantom wires
revealed the proposed MFP transducer’s extended focal zone. Additionally, the capacity to extend
the focal zone for a larger-sized target was demonstrated, thereby enabling the imaging without the
need for depth scans or any complex SAFTs. In ex vivo imaging, the penetration depth of CN and
CHb phantoms increased to 10 mm and 8 mm, respectively. The intensity of the CN image decreased
from the phantom surface to the farthest image point (4610 dB), whereas that in the CHb decreased
from 35 to 10 dB. Specifically, the proposed seven-focal-point transducer is capable of generating seven
focal zones along the axial direction simultaneously. Therefore, for large-depth imaging applications,
MFP transducers have great potential.
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Abstract: Monitoring respiratory movements is an effective way to improve radiotherapy treatments
of thoracic and abdominal tumors, but the current approach is limited to measuring specific points in
the chest and abdomen. In this paper, a dynamic three-dimensional (3D) measurement approach of
the human chest and abdomen surface is proposed, which can infer tumor movement more accurately,
so the radiotherapy damage to the human body can be reduced. Firstly, color stripe patterns in the
RGB color model are projected, then after color correction, the collected stripe image sequences are
separated into the three RGB primary color stripe image sequences. Secondly, a fringe projection
approach is used to extract the folded phase combined 3D Fourier transform with 3D Gaussian
filtering. By the relationship between adjacent fringe images in the time sequence, Gaussian filter
parameters with individual characteristics are designed and optimized to improve the accuracy
of wrapped phase extraction. In addition, based on the difference between the fractional parts of
the folded phase error, one remainder equation can be determined, which is used for time-phase
unwrapping. The simulation model and human experiments show that the proposed approach can
obtain the 3D image sequences of the chest and abdomen surface in respiratory motion effectively
and accurately with strong anti-interference ability.

Keywords: 3D measurement; fringe projection; 3D Fourier transform; phase unwrapping;
phase measurement

1. Introduction

During radiotherapy, respiratory movements can cause tumors and normal tissues of the chest
and abdomen to move at a certain frequency and amplitude. Sometimes, respiratory movements may
affect the radiotherapy effect and even cause radiotherapy damage to the human body. In order to
solve this respiratory motion problem, now the most effective real-time tracking method is to monitor
extracorporeal respiratory movement. Based on extracorporeal respiratory movement, the respiratory
movement of the tumor can be inferred, and then, the relative position of the target area and the field
can be controlled by the radiotherapy system [1].

The fact that the respiratory movement of the tumor can be deduced from extracorporeal respiratory
movement has been proven to be effective [2]. Based on this premise, dynamic 3D measurement of the
chest and abdomen surface can be used to infer tumor movement more accurately [3].

Currently, optical measurement has become the most practical method to solve the problem
of dynamic 3D measurement of the chest and abdomen surface. The optical method contains the
following three types, point imaging, line imaging, and surface imaging, of which the surface imaging
method is the best choice for dynamic 3D measurement. One image or many images can be captured by
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the surface imaging method. Single image acquisition methods include binocular vision [4], spatially
encoded light [5], Fourier transform profile [6], etc. Multiple image acquisition methods include the
phase-shift profile [7], modulation measurement profile [8], etc. Due to the fact that the multiple
image acquisition method needs to capture many images, it has low efficiency and is not suitable
for dynamic measurements. Thus, the one image acquisition method is a good solution for dynamic
three-dimensional measurement.

Among these single image acquisition methods, the binocular vision method needs complex
stereo matching and has low accuracy [9]; and the spatially encoded light method needs to be coded
and decoded by the neighboring pixels, which makes the measurement resolution limited and may
cause measurement failure in the case of surface height jump or shade [10]. Fluoroscopic real-time
tumor tracking radiotherapy following 4D treatment planning was developed and shown to be
feasible to improve the accuracy of the radiotherapy for mobile tumors [11]. In radiation therapy,
the projection patterns need to be simple and continuous changes. Because the Fourier transform
profile method has significant advantages in noise suppression and full field measurement and the
sinusoidal fringe patterns projected by this method meet the requirements of radiotherapy, the Fourier
transform profile method is suitable for measuring the 3D motion of the thoracic and abdominal
surfaces. However, when only one stripe pattern is projected to measure the entire chest and abdomen
surface, the difference in light intensity between adjacent pixels is small due to the large measurement
range, and the anti-interference ability is low [12].

In this paper, a dynamic 3D measurement approach of the human chest and abdomen surface
during respiration is proposed, which provides a basis for inferring and tracking tumor respiration
movement during radiotherapy. This approach adopts a single color stripe pattern with three periods.
Through combining one coded pattern with the three RGB primary colors, the sinusoidal stripe pattern
with three different periods can be formed. During measurement, the projection pattern does not
change, and the deformed stripe image of the chest and abdomen surface is collected in real time.
Then, after color coupling correction and color separation, the single color deformation fringe images
with three different periods can be formed. The proposed approach can obtain three deformed fringe
images by one unchanged pattern. Taking each image sequence of single color fringe as a whole, the 3D
Fourier fringe analysis (3D-FFA) method is used to extract the folded phase. This method has higher
anti-interference ability. The three-frequency time phase unwrapping method is adopted. The absolute
phase is obtained by the folding phase of three monochromatic fringes. This method has a large
unwrapping range and strong anti-interference ability. According to the principle of triangulation,
the 3D coordinates of the chest and abdomen surface are obtained from the absolute phase [13].

Section 2 introduces the proposed 3D measurement system. Section 3 describes the folding phase
extraction method. Section 4 derives a three-frequency time phase unwrapping method. Section 5
shows and analyzes the experimental results, and the conclusions are given in Section 6.

2. 3D Measurement System Description

Figure 1 is a schematic diagram of the 3D measurement system for the human chest and abdomen
surface. The method mainly includes the following five parts.

(1) Pattern projection and image acquisition. The computer generates different periods of three RGB
primary color cosine stripe patterns, and these three parts are combined into a composite color
stripe pattern, then this pattern is projected to the chest and abdomen surface of the human.
The camera captures stripe images of the chest and abdomen surface, which change with breathing
movements at regular intervals to get a composite color stripe image sequence. The projection
pattern in the proposed approach does not change, which can reduce the time of projection
pattern conversion and setup. In addition, the measurement system only collects one composite
color stripe pattern, which can decrease the image acquisition time. All these advantages can lay
the foundation of the dynamic 3D measurement for the human chest and abdomen surface.
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(2) Image color correction and separation. For compound color stripe image sequences, color coupling
correction and color separation should be made based on the correction matrix of each pixel, and the
three RGB primary color fringe image sequences of different periods can be separated. Because the
color coupling phenomenon exists at the coincident intersection of the three color channel spectral
response curves in the 3CCD industrial camera [14], the color calibration based on hardware
equipment should be completed before the measurement. That is to say, the projector projects
four patterns of full red, full green, full blue, and full black to the chest and abdomen surface,
and the four images will be captured by the camera. Using these four images, the correction
matrix of each pixel is obtained according to the Casti illumination model [15].

Figure 1. Schematic diagram of the 3D measurement principle and system of the human chest
and abdomen surface. (1) Pattern projection and image acquisition. (2) Image color correction and
separation. (3) Folded phase extraction. (4) Folded phase unwrapping. (5) Three-dimensional image
sequence acquisition.
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(3) Folded phase extraction. For each image in the RGB stripe image sequence, three-dimensional
Fourier fringe analysis (3D-FFA) is used to extract the folding phase of each pixel and get the
folded phase map of each image, and then, RGB folding phase map sequences can be formed.
Fourier fringe analysis (FFA) is extended from one-dimensional Fourier fringe analysis (1D-FFA)
to two-dimensional Fourier fringe analysis (2D-FFA) by using the properties of 2D fringe images.
After this process, useful signals and interference can be separated better. This method becomes
an effective measurement for 3D measurement of flat surfaces [16]. In this paper, the image
sequences of the chest and abdomen surface are taken as a 3D one, which is analyzed by 3D
Fourier transformation. Useful signals and interference can be separated further by increasing
the time dimension, so as to reduce the influence of interference and improve the accuracy
of measurement.

(4) Folded phase unwrapping. According to the RGB folding phase diagram at the same time, with
the proposed method of three-frequency time phase unwrapping in this paper, the folded phase
is expanded into a continuous absolute phase, and the absolute phase diagram at that moment is
obtained; thus, an absolute phase sequence can be formed. In the phase unwrapping method
of this paper, the unwrapping operation depends on the difference of the decimal part of the
measured folded phase, which can ensure that the absolute phase error does not exceed the
folded phase error under certain conditions. In addition, we can judge whether there is any big
error based on the absolute phase value, which can eliminate or reduce the effect of large absolute
phase error by eliminating or interpolating operation. The phase unwrapping is achieved by
solving the remainder equation set in the maximum range.

(5) Three-dimensional image sequence acquisition. According to the absolute phase diagram
sequence, the 3D coordinates are calculated to form a 3D image sequence of the human chest and
abdomen surface based on the triangulation principle. The sequence expresses the 3D shape of
the human chest and abdomen surface at each sampling moment during respiratory movement.

3. Folded Phase Extraction Method

In this paper, 3D-FFA combines 3D Fourier transform with 3D Gauss filtering in the frequency
domain to achieve folded phase extraction.

3.1. Folded Phase Extraction Principle

Taking an image in the R fringe image sequence as an example, the principle of folded phase
extraction is as follows. Firstly, the intensity of fringe image sequences ir(x,y,t) at different times t can
be described as:

ir(x, y, t) = ar(x, y, t) + br(x, y, t) cos[2π( fx0x + fy0y + ft0t) + ϕr(x, y, t)] (1)

where x represents the row coordinate of stripe images, y denotes the column coordinate, ar(x, y, t) is
the background light intensity, br(x, y, t) is the modulation of fringes, fx0, fy0, and ft0 are the carrier
frequencies in the direction of x, y, and t, and ϕr(x, y, t) is the phase distribution function. Equation (1)
can be further expressed as:

ir(x, y, t) = ar(x, y, t) + dr(x, y, t) exp[ j2π( fx0x + fy0y + ft0t)]+
dr
∗(x, y, t) exp[− j2π( fx0x + fy0y + ft0t)]

(2)

where:
dr(x, y, t) =

1
2

br(x, y, t) exp[ jϕr(x, y, t)] (3)

dr
∗(x, y, t) =

1
2

br(x, y, t) exp[− jϕr(x, y, t)] (4)
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After 3D Fourier transform of Equation (2), we can obtain:

Ir( fx, fy, ft) = Ar( fx, fy, ft) + Dr( fx − fx0, fy − fy0, ft − ft0) + Dr
∗( fx + fx0, fy + fy0, ft + ft0) (5)

where fx0, fy0, and ft0 are the frequency domain variables in the direction of axes x, y, and t,
respectively, Ar

(
fx, fy, ft

)
is the background light spectrum, and Dr( fx − fx0, fy − fy0, ft − ft0) and

Dr
∗( fx + fx0, fy + fy0, ft + ft0) are the spectra of deformed fringes.

In addition, a 3D filter is used to separate the first level spectrum of Dr( fx − fx0, fy − fy0, ft − ft0)
and move it to the origin of the frequency domain. After obtaining Dr( fx, fy, ft), the 3D inverse
Fourier transform is performed, and the phase distribution function is as follows,

ϕr(x, y, t) = tan−1 Im
{
dr(x, y, t)

}

Re
{
dr(x, y, t)

} (6)

where Im
{
dr(x, y, t)

}
denotes the imaginary part of dr(x, y, t) and Re

{
dr(x, y, t)

}
is the real part. Similarly,

ϕg(x, y, t) and ϕb(x, y, t) can be obtained.

3.2. Three-Dimensional Gauss Filter

When extracting the positive first-order spectrum of fringe image sequences, the 3D filter must
also have the function of filtering interference, which is important for 3D Fourier analysis. Because of
the interference existing in the environment, the measured object and the measurement system, and
the spectrum leakage led by signal truncation, the folding phase error will happen, which will cause
3D measurement errors. Currently, 3D-FFA mainly uses two types of 3D filters [17]: one is the 3D
rectangular filter, and the other is the 3D Butterworth filter [18,19]. The former has truncation problems
and large leakage errors. For phase unwrapping, the latter has many problems such as a complex
algorithm, accumulated error, and unreliability. By comparison, the Gauss filter has the advantages of
a small ringing effect and a good effect of eliminating spectrum leakage. For the determined chest
and abdomen surface of the measured human, the center frequency and the width of filter in the
3D direction are determined by experiments, which can make it have good adaptability and filter
performance. Moreover, previous studies proved that the effect of the 2D Gauss filter is better than the
Hanning window and rectangular window [20]. In this paper, the 3D Gauss filter is used as follows,

H( fx, fy, ft) = e
−[ ( fx− f0x)

2

2σ2x
+

( fy− f0y)
2

2σ2y
+

( ft− f0t)
2

2σ2t
]

(7)

where fx0, fy0, and ft0 denote the center frequency of the direction of the x, y, and t axis, respectively,
and σx, σy, and σt represent the filter widths in the three directions, respectively. Figure 2 gives the
schematic diagram of filtering in the frequency domain with 1D-FFA, 2D-FFA, and 3D-FFA. As shown
in Figure 2, the cut-off frequency in the x-axis, y-axis, and z-axis directions are fx1 = fx0 − σx/2 and
fx2 = fx0 + σx/2, fy1 = fy0 − σy/2 and fy2 = fy0 + σy/2, and ft1 = ft0 − σt/2 and ft2 = ft0 + σt/2,
respectively. The cut-off frequency value is determined experimentally for each measured object, so
that the measured signal passes through as much as possible, and the interference signal passes as
little as possible.

In principle, 3D-FFA filters have stronger anti-interference ability than 1D-FFA and 2D-FFA. The 3D
shock interference is taken as an example to explain this theory. The spectrum amplitude of the shock
interference δ(x, y, t) obtained by 3D Fourier transform is one, and its frequency components cover
the entire 3D frequency domain. 1D-FFA can only be filtered along the fx axis in the one-dimensional
frequency domain, and its pass band is fx1 < fx < fx2. As shown in Figure 2a, it can only filter out
interference signals in the one-dimensional frequency domain. 2D-FFA filters along the fx axis and
fy axis in the 2D frequency domain, the pass bands are fx1 < fx < fx2 and fy1 < fy < fy2. As shown
in Figure 2b, it can filter out interference signals in the 2D frequency domain, which can further
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significantly weaken the interference signal. 3D-FFA filters along the fx, fy, and ft axis in the 3D
frequency domain, and the pass bands are fx1 < fx < fx2, fy1 < fy < fy2, and ft1 < ft < ft2, respectively.
As shown in Figure 2c, it can filter out interference signals in the 3D frequency domain, which can
weaken the interference signal once again.

Due to adding the relationship between adjacent fringe images in time sequence, we can get
the Gaussian filter parameters with individual characteristics by designing and optimizing the filter
parameters to reduce the ringing effect and spectrum leakage; this can improve the accuracy of wrapped
phase extraction. Moreover, 3D-FFA processes all the images at the same time, so it has high efficiency
and is suitable for dynamic measurement.

Figure 2. Schematic diagram of filtering in the frequency domain with three methods. FFA, Fourier
fringe analysis.

4. Tri-Frequency Time Phase Unwrapping Method

Firstly, positive integers Pr, Pg, and Pb (Pr < Pg < Pb) are used to represent the fringe period of the
R, G, and B stripe patterns; then rr, rg, and rb are used to denote the folding phases of the R, G, and B
stripe images, and they are the solutions of ϕr, ϕg, and ϕb, respectively in the main value intervals,
whose value range is [0, Pr], [0, Pg], and [0, Pb]. Therefore, there are the following equations.

ϕr × Pr/(2×π) = rr(modPr) (8)

ϕg × Pg/(2×π) = rg(modPg) (9)

ϕb × Pb/(2×π) = rb(modPb) (10)

In these equations, Pr, Pg, and Pb are the three modulus values, and rr, rg, and rb are the
corresponding three remainders.

In addition, N represents the distance between the measured pixel point and the phase origin,
which also denotes the absolute phase after the unwrapping processing. Let Nr = [N/Pr], Ng = [N/Pg],
Nb = [N/Pb], where [ ] represents a rounding down operation, then N can be written as follows:

N = NrPr + rr = NgPg + rg = NbPb + rb (11)

If Pr, Pg, and Pb have the greatest common divisor P, there are Ωr = Pr/P, Ωg = Pg/P, Ωb = Pb/P,
Ω = Ωr ×Ωg ×Ωb, λr = Ω/Ωr, λg = Ω/Ωg, and λb = Ω/Ωb. Assuming that Ωr, Ωg, and Ωb are
mutually prime, then λr and Ωr are relatively prime, that is the modulus inverse λr of λr exists for Ωr,
and there is λrλr ≡ 1(modΩr). For the same reason, there are λgλg ≡ 1(modΩg) and λbλb ≡ 1(modΩb).

Let:
qr = [rr/P], qg =

[
rg/P

]
, qb = [rb/P] (12)

Then, there is:
rr = qrP + rc, rg = qgP + rc, rb = qbP + rc (13)
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where N ≡ rc(modP) and N0 = [N/P], then:

λrλrqr + λgλgqg + λbλbqb = N0(modΩ) (14)

so:
N = PN0 + rc (15)

It is obvious that the folding phases of the R, G, and B fringe images, i.e., the remainders rr, rg,
and rb, can be used to unwrap the phase and obtain the absolute phase by Equations (12)–(15).

However, the above discussion does not consider the effect of the residual measurement errors.
According to Equation (14), if there are measurement errors Δrr, Δrg, and Δrb in the folding phases rr, rg,
and rb, the errors Δqr, Δqg, and Δqb belonging to qr, qg, and qb, respectively will be produced, i.e.,

∣∣∣Δqr
∣∣∣ ≥ 1,∣∣∣Δqg

∣∣∣ ≥ 1, and
∣∣∣Δqb
∣∣∣ ≥ 1. In the meantime, (λrλrqr +λgλgqg +λbλbqb)will also produce coarse errors, i.e.,∣∣∣Δqrλrλr

∣∣∣ ≥ λr ×Ωg ×Ωb,
∣∣∣Δqgλgλg

∣∣∣ ≥ λg ×Ωr ×Ωb, and
∣∣∣Δqbλbλb

∣∣∣ ≥ λb ×Ωr ×Ωg. All these can lead
the N0 and N to produce coarse errors ΔNMAX ≈ ΔN0MAX. Under the condition of λr ≥ 3, λg ≥ 3, and
λb ≥ 3, there is |ΔNMAX| ≥ 3×Ωr×Ωg. Consider that the pixel resolution of the existing device is usually
limited within Ωb ≤ 9, i.e., |ΔNMAX| ≥ Ω/3|. ΔNMAX may further cause (λrλrqr + λgλgqg + λbλbqb) to
make errors in the remainder operation with the modulo Ω = Ωr ×Ωg ×Ωb, which may result in a
larger absolute phase error. To sum up, ΔNMAX can cause a large error in the measurement or even
lead the measurement to fail. Therefore, some measures should be adopted to avoid the appearance of
ΔNMAX or reduce its influence.

To avoid the appearance of ΔNMAX, assume that the remainder measurement error satisfies
Condition A,

|Δrr/P| < 0.25,
∣∣∣Δrg/P

∣∣∣ < 0.25, |Δrb/P| < 0.25 (16)

The measured values r̂r, r̂g, and r̂b of the remainders rr, rg, and rb can be expressed as:

r̂r/P = [r̂r/P] + {r̂r/P}, r̂g/P =
[
r̂g/P

]
+
{
r̂g/P

}
, r̂b/P = [r̂b/P] + {r̂b/P} (17)

where { } is a fractional operation. Then, if the difference between the fractional part of the remainder
measurement satisfies Condition B, then:

∣∣∣Δrrg/P
∣∣∣ =
∣∣∣∣{r̂r/P} −

{
r̂g/P

}∣∣∣∣ < 0.5

|Δrrb/P| = |{r̂r/P} − {r̂b/P}| < 0.5∣∣∣Δrgb/P
∣∣∣ =
∣∣∣∣
{
r̂g/P

}
− {r̂b/P}

∣∣∣∣ < 0.5

(18)

Then, according to the following equation, qr, qg, and qb can be obtained as follows:

qr = [r̂r/P], qg =
[
r̂g/P

]
, qb = [r̂b/P] (19)

Otherwise, according to the following formula, qr, qg, and qb can be calculated:

qr = [r̂r/P + 0.5], qg =
[
r̂g/P + 0.5

]
, qb = [r̂b/P + 0.5] (20)

This ensures that Δqr = 0, Δqg = 0, Δqb = 0, then ΔN0 = 0, which can eliminate the coarse error
ΔNMAX.

According to Equation (14), N0 is obtained from qr, qg, and qb, then the absolute phase can be
obtained by the following equation:

N = PN0 +
{r̂r/P}+

{
r̂g/P

}
+ {r̂b/P}

3
P (21)
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According to the above equation, the absolute phase error ΔN =
Δrr+Δrg+Δrb

3 does not exceed the
folding phase errors Δrr, Δrg, and Δrb.

If the residual measurement error does not satisfy Condition A, ΔNMAX may occur. In order
to reduce the influence of ΔMAX, the proposed method in this paper increases the part of judging
and processing the absolute phase. After the phase unwrapping is completed, the difference ΔNk =

Nk −Nk−1 between the absolute phase measurement value Nk of each pixel k and the absolute phase
measurement value Nk−1 of its neighboring pixel is calculated. If it meets the following Condition C,

|ΔNk| < 3×Ωr ×Ωg (22)

We regarded Ni as the valid measurement value, and the absolute phase error does not exceed
the folding phase errors Δrr, Δrg, and Δrb; otherwise, |ΔNk| ≥ 3×Ωr ×Ωg|, which means the spatial
distance between adjacent pixels is no less than 1/3 of the range. This is obviously unreasonable for
a relatively flat surface such as the chest and abdomen surface of the human body. If Ni is invalid,
the pixel can be rejected as an immeasurable point.

If necessary, the interpolation method can be used to obtain the absolute phase based on the
surrounding pixels of the absolute phase. Elimination or interpolation usually has little effect on
the measurement because the sample points in the image are large and dense. Conversely, if a
larger absolute phase error cannot be identified and eliminated, it will affect the measurement result
seriously or even make the measurement result unusable. This is also a challenging problem in the 3D
measurement of Fourier fringe analysis [21]. To sum up, under Conditions of A, B, and C, Equations
(19)–(21) are combined to form our proposed 3D measurement method.

In addition, compared with the three-frequency differential method, the proposed method has a
larger unwrapping range. Let Pr = P0 −Wr, Pg = P0, Pb = P0 + Wb, where Wr and Wb are positive
integers, and the phase unwrapping range of the proposed method is PrgbO = PrPgPb. When phase
unwrapping is performed by the three-frequency differential method, the light stripes R and G are
used for phase unwrapping to form a synthetic light stripe RG with the phase unwrapping range
Prg = PrPg/(Pg −Pr); then, use the light stripes G and B for phase unwrapping to form a synthetic light
stripe GB with a phase unwrapping range Pgb = PgPb/(Pb − Pg); moreover, the phase unwrapping
is further performed by using the synthesized light stripes RG and GB. When Pgb > Prg, its phase
unwrapping range is PrgbH = PrPgPb/(2WrWb + (Wr −Wb)P0). When Wr ≥ Wb, 2WrWb + (Wr −
Wb)P0 ≥ 2, then PrgbO ≥ 2PrgbH. Only when Wr <Wb, 2WrWb + (Wr −Wb)P0 = 1, that is PrgbO = PrgbH
is possible. According to the pixel resolution of the currently available digital pattern projection device
and digital image acquisition device, the phase unwrapping range should be 300 to 10,000 pixels. Only
in these two cases, one being Pr = 9 pixel, Pg = 11 pixel, Pb = 14 pixel, PrgbH = 1386 pixels and the
other being Pr = 12 pixel, Pg = 17 pixel, Pb = 29 pixel, PrgbH = 5916 pixels, there will be PrghO = PrgbH.
Under these situations, it is difficult to achieve comprehensive optimization of the measurement range,
resolution, and anti-interference ability by flexible selection of Pr, Pg, and Pb.

5. Experimental Results and Analysis

5.1. Simulation Experiments of Folding Phase Extraction

Ethical approval to undertake this project was examined by the Human Research Ethics
Committee for Non-Clinical Faculties, School of Measurement-Control Technology and Communication
Engineering, Harbin University of Science and Technology on 1 March 2019. The title of the project is
“Projection on Patient Body Surface in Invasive Surgeries (National Natural Science Foundation of
China, 61671190)”. Informed consent form was obtained from the subject. Simulation experiments
were conducted by using a planar cosine light image sequence with a size of 768 × 768 pixels and a
period P0 of 35 pixels. To simulate human respiratory movement that approximates periodic motion,
let the measured plane do relative paralleled movement to the image plane of the camera 2mm each
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time and perform a periodic reciprocating motion with a period of 20mm, then collect the plane cosine
light images from 120 positions.

im(x, y, t) = 128 + 75× cos[2πx/P0 + 2π(t− 1)/20] m = 1, 2, 3, · · · , 120. (23)

The 3D representation of a cosine fringe image sequence with one period in the t-axis direction
is shown in Figure 3a. Extract the folding phases of the sixth frame image by 1D-FFA, 2D-FFA, and
3D-FFA, respectively. Then, these extracted folded phases are subtracted from the folded phase,
respectively. The folding phase errors of the three methods are shown respectively in Figure 3a–c.

Figure 3. Cosine light image sequence and folding image error of one image.

According to Figure 3, in the extracted folded phase by the three methods, there were errors
caused by truncation and sampling. The calculated folding phase value of measured points and their
standard values were used to calculate the RMS error, and the difference between the maximum
folding phase value and the minimum folding phase value was defined as peak-to-valley (PV) error.
As shown in Table 1, the PV and RMS of the folded phase error were approximately equal, and they
were so small that could be neglected. It can be seen that these three methods could extract the folding
phase effectively.

Table 1. Folding phase error of the stripe image (unit: rad).

Methods 1D-FFA 2D-FFA 3D-FFA

PV 0.0156 0.0156 0.0145
RMS 0.0040 0.0040 0.0044

To evaluate the anti-interference ability of 3D-FFA, the following interference signals were added
to the cosine fringe image sequence:

γ = 75× Ip × [2× rand(768, 768, 120) − 1] (24)

where rand() is a function of generating random numbers in [0, 1] and Ip is the ratio percentage of the
interference signal amplitude to the cosine modulation.

297



Sensors 2020, 20, 1091

By analyzing the fringe images collected in the experiments, the results showed that the noise
mainly consisted of salt and pepper noise and Gaussian noise, whose probability distribution curves
were superimposed and integrated to form a uniform noise probability curve. Therefore, the uniformly
distributed random noise could be used in the simulation experiment, which could fully simulate the
effect of noise and was better than the direct superposition of Gaussian noise and salt and pepper noise.

Taking Ip = 60% as an example, the folding phase error of the sixth frame image is shown in
Figure 4. It can be seen that the folding phase error extracted by 3D-FFA was obviously smaller than
that of the other two methods, which showed that the anti-interference ability of the 3D-FFA was
the strongest.

Figure 4. Folding phase error of a stripe image after adding interference.

When Ip was 1%, 2%, 3%, 5%, 10%, 20%, 40%, 60%, 80%, and 100%, respectively, the folded phase
error curves of the three methods are shown in Figure 5. As far as the RMS error and peak-valley error
of folded phase were concerned, one was that they increased with the increase of interference; the other
was that the results obtained by the 2D-FFA method were significantly lower than the 1D-FFA method;
the third was that the results obtained by 3D-FFA method were significantly lower than the 2D-FFA
method; the fourth was that the 3D-FFA method and the 2D-FFA method were almost invariant and
approximate to the interference when the interference ratio was less than 10%.

Figure 5. The folded phase error curves of the sixth frame stripe images with different interference
percentages. (a) Comparison of the root mean square of the folded phase error; (b) comparison of peak
and valley values of folded phase errors.

In order to compare the anti-interference ability of the three methods quantitatively, the ratio
of the folding phase errors of the three methods with different interference percentages is shown in
Figure 6. In Figure 6a, the red line is the RMS error ratio of 1D-FFA and 2D-FFA, which was between
four and six; the blue line is the RMS error ratio of 2D-FFA and 3D-FFA, which was between one
and two. In Figure 6b, the red line is the PV error ratio of 1D-FFA and 2D-FFA, which was between
four and eight; the blue line is the PV error ratio of 2D-FFA and 3D-FFA, which was between one
and two. Obviously, the anti-interference capability of 2D-FFA method was much better than that
of the 1D-FFA method, and the one of the 3D-FFA method was much better than that of the 2D-FFA
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method; the bigger the interference, the more obvious the superiority of the anti-interference capability.
When the interference reached 40%, the anti-interference ability of the 3D-FFA method was about twice
that of the 2D-FFA method.

Figure 6. The ratio curves between the folded phase errors of the three methods with different
interference ratios of the sixth frame. (a) RMS ratio curve of folded phase error; (b) PV ratio curve of
folded phase error.

5.2. Chest Model Measurement Experiments

Based on the proposed method in this paper, a 3D experimental apparatus was constructed for
human chest and abdomen surface measurement. The device used a projector (InFocus IN82, InFocus
Corporation, Wilsonville, OH, USA) to project a color stripe pattern with a resolution of 1024 × 768
pixels. The pattern parameter was Pr = 25 pixel, Pg = 30 pixel, Pb = 35 pixel, and the measured
surface stripe images with a resolution of 1624 × 1236 pixels were collected by using a 3CCD industrial
camera (AT-200GE, JAI Ltd., Copenhagen, Denmark).

In the measurement experiments, the chest model simulated respiratory movement and
reciprocating motion on the guide rail for 20 mm. For each mobile 2 mm, we collected an image as
shown in Figure 7. A total of 120 images was collected and sent to the computer to form a sequence of
stripe images. Intercept the stripe image sequence with the size of 768 × 768 pixels from the fringe
image sequence, and then get the 3D image sequence of the tested area by using the 3D measurement
method. Figure 8a–c shows the sixth frame of 3D images formed by taking folded phases using 1D-FFA,
2D-FFA, and 3D-FFA, respectively. All of them could reproduce the 3D surface of the measured area
correctly, which verified the 3D measurement method presented in this paper. The visual effect of the
three methods was basically the same, because the measurement errors of the three were basically the
same when the interference could be ignored in the darkroom.

Figure 7. Image of the chest model after the projected stripe pattern.
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Figure 8. Measurement results of the sixth frame stripe image of the chest model.

In order to verify and compare the anti-interference ability of the 3D measurement method in this
paper, we added the interference γ of different Ip to the stripe sequence of the chest model. Take the
sixth frame stripe image as an example, the measurement results are shown in Figure 9. When the
interference was 5%, the error of the three measurements was similar.

Beginning with Ip = 10%, the error of 1D-FFA measurement result increased rapidly, and the
errors of the other two measurements also increased. The error of measurement based on 2D-FFA was
larger than 3D-FFA in the range of 10%–80% for Ip, although it was difficult to observe visually. From
the beginning of Ip = 80%, the error of measurement based on 2D-FFA was larger than that based on
3D-FFA. It showed that the proposed method had the strongest anti-interference ability, and the greater
the interference, the more obvious the advantage.

Figure 9. Cont.
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Figure 9. Measurement results of the sixth stripe image of the chest model with different interference.

5.3. Measurement Experiments of the Human Chest and Abdomen Surface

With the proposed 3D measurement method, a 3D measurement experiment of the chest and
abdomen surface was conducted during its respiratory movement, as shown in Figure 10a, and the 3D
surface depth image sequence of the measured area is shown in Figure 10b. The sixth frame in the 3D
image sequence is shown in Figure 10c. That is to say that, the proposed method could reconstruct the
3D surface of the human chest and abdomen correctly. In Figure 10c, the enlarged part of the square
area on the left is shown on the right, which indicated that there was maximum measurement error in
the indoor light environment, which formed an undetectable blank spot.

Figure 10. Cont.
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Figure 10. Surface of the human chest and abdomen and its measurement results. (a) Measured surface
of the chest and abdomen; (b) 3D surface depth image sequence of the measured area; (c) measurement
results of the sixth stripe image and the local magnification map when ignoring the interference;
(d) measurement results of the sixth stripe image and the local magnification map after adding
30% interference.

In the measurement process, interference was added artificially. When the interference was
small, the measurement results were basically unchanged. When the interference reached 30%,
the measurement results are shown in Figure 10d, which indicated that the undetectable points
increased significantly, and the measurement results started to become significantly worse. If necessary,
the measured value of the white area could be obtained by the difference between the effective
measurement values of its peripheral adjacent points.

However, for a relatively flat surface such as the surface of the human chest and abdomen,
eliminating the isolated white spot or obtaining the blank area by the difference had little effect on
the measurement results. As shown in Figure 11, a fixed point near the diaphragm was selected, and
the height (z) of the point in the image sequence changed with time (t) to form the height (z)-time
(t) respiratory movement curve of the point. The measurement results of two typical respiratory
movement states, deep breathing and rapid breathing, are given in Figure 11a,b, respectively.

The measured results showed that the proposed method in this paper could recover the 3D shape
of the surface of the chest and abdomen at different times correctly, realize the dynamic 3D measurement
of the surface, and obtain the respiratory motion trajectory of the surface points. This method had strong
anti-interference ability and could eliminate the maximum measurement error or its influence basically.

Figure 11. The height (z)-time (t) respiratory motion curve at a point near the diaphragm. (a) Curve of
the point’s motion in deep breathing; (b) curve of the point’s motion in rapid breathing.

6. Conclusions

In this paper, a 3D dynamic surface measurement method was proposed for the human chest and
abdomen. The RGB trichromatic cosine stripe pattern was synthesized into a color stripe projection
pattern. The projection pattern was invariable, and one measurement could be realized by collecting
one stripe image. It had less pattern projection and image acquisition time, which provided the
foundation for dynamic measurement. Color correction and color separation for the color stripe
image sequence were used to form the RGB monochromatic deformation stripe image sequence with a
different period. The 3D Fourier transform and the 3D Gaussian filter were combined to carry out
3D-FFA to extract the folding phase. The interference effect could be reduced, and the measurement
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accuracy could be improved by increasing the time dimension frequency domain filter. The phase
unwrapping operation depended on the difference between the fractional parts of the folded phase
error, which could ensure that the absolute phase error did not exceed the measurement error of the
remainder. Removal or interpolation based on absolute phase measurement could eliminate or reduce
the effect of gross absolute phase error. The phase unwrapping based on the remainder equation had a
larger phase unwrapping range and preferred space.

In view of this proposed method, the theoretical analysis and experimental results showed that the
method presented in this paper could obtain the 3D image sequence of the human chest and abdomen
surface and the respiratory motion curve of the chest and abdomen surface points in the respiratory
movement effectively and accurately. It had the characteristics of strong anti-interference ability and a
wide range of development and could eliminate gross absolute phase error. It should be pointed out
that although the method in this paper achieved the analysis of five frames of 3D images per second
and respiratory motion in about four seconds, its operation time should be reduced from both the
perspective of improving the analysis effect and engineering demand. Therefore, we plan to adopt
multithread optimization measures to improve the operation speed.
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Abstract: Comprehensive and accurate vegetation monitoring is required in forestry and agricultural
applications. The optical remote sensing method could be a solution. However, the traditional
light detection and ranging (LiDAR) scans a surface to create point clouds and provide only
3D-state information. Active laser-induced fluorescence (LIF) only measures the photosynthesis and
biochemical status of vegetation and lacks information about spatial structures. In this work, we
present a new Multi-Wavelength Fluorescence LiDAR (MWFL) system. The system extended the
multi-channel fluorescence detection of LIF on the basis of the LiDAR scanning and ranging mechanism.
Based on the principle prototype of the MWFL system, we carried out vegetation-monitoring
experiments in the laboratory. The results showed that MWFL simultaneously acquires the 3D spatial
structure and physiological states for precision vegetation monitoring. Laboratory experiments on
interior scenes verified the system’s performance. Fluorescence point cloud classification results were
evaluated at four wavelengths and by comparing them with normal vectors, to assess the MWFL
system capabilities. The overall classification accuracy and Kappa coefficient increased from 70.7%
and 0.17 at the single wavelength to 88.9% and 0.75 at four wavelengths. The overall classification
accuracy and Kappa coefficient improved from 76.2% and 0.29 at the normal vectors to 92.5% and 0.84
at the normal vectors with four wavelengths. The study demonstrated that active 3D fluorescence
imaging of vegetation based on the MWFL system has a great application potential in the field of
remote sensing detection and vegetation monitoring.

Keywords: fluorescence LiDAR; laser-induced fluorescence; vegetation monitoring;
classification discrimination

1. Introduction

Plants play a considerable role in the carbon and water cycles of the global ecosystem [1,2]. A
prompt and effective monitoring of vegetation is of great significance for ecological environmental
monitoring and agricultural guidance. Researchers have regarded the optical remote sensing monitoring
method as an ideal and feasible way, owing to its several advantages, such as quickness, accuracy, and
non-destruction of plants [3]. Many optical remote sensing imaging techniques have been applied to
vegetation detection in recent decades. Passive hyperspectral reflection imaging, a commonly used
form of optical imaging, can provide abundant biochemical components of plants. However, such
a method lacks the spatial expression in 3D space and can be affected by various factors, such as
the external environment, including weather conditions, and measurement time [4,5]. The LiDAR
technology, an active detection sensor with several technical advantages, such as high temporal–spatial
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resolution and non-destruction, has received great attention from researchers [6]. Such technology has
obtained a wide range of applications on vegetation structural parameter inversion [7,8]. However, this
technology typically utilizes a single band of near-infrared laser for the detection of spatial location [9],
and it lacks spectral information associated with the materialized components. Therefore, the signal
acquisition of multi-wavelength channels can be extended on the basis of the single-wavelength LiDAR,
to expand the detection capability of vegetation biochemistry and growth state.

The fluorescence spectral properties of vegetation provide an available indicator for its detection.
Fluorescence is treated as the radiation appearance of the energy loss by the oscillating motion
of electrons during electromagnetic radiation [10]. The present research means for the vegetation
fluorescence emission include stimulation chlorophyll fluorescence by passive solar energy and active
artificial light source-laser for induction. Sun-induced fluorescence (SIF)-based vegetation remote
sensing monitoring has also achieved development in recent years. SIF can provide global-scale
chlorophyll fluorescence detection through on-board data and an indicator for studying the vegetation’s
ecological environment [11]. However, SIF only provides the fluorescence bands (685 and 740 nm)
associated with the chlorophyll in vegetation, due to the extraction method limitation [12–14]. This
passive fluorescence detection provides fluorescence spatial distribution in 2D images only and lacks
the 3D structural detection capacity of LiDAR.

Laser-induced fluorescence (LIF) is an active means of generating fluorescence by using a single
short-wavelength laser as the excitation light. Vegetation absorbs the light energy of a given wavelength,
and a part of it is dissipated by light emission at long wavelengths within a short time [15,16]. Vegetation
has typical characteristic signals and spectral shapes in the case of being produced by laser stimulation.
With the discovery and exploration of the LIF technology, monitoring vegetation by using this
mechanism has become possible. Chappelle et al. [16] used an ultraviolet (UV) laser to stimulate
fluorescence signals on leaves and proposed the utilization of fluorescence to distinguish vegetation
types. They further explored the ability of fluorescence as a probe to resolve plant species and
stress states [17]. The production of chlorophyll fluorescence peaks in vivo was also explained [18].
Researchers studied the utilization of fluorescence characteristic peaks to develop a series of correlation
studies on vegetation growth status [19], biochemical content, and environmental stress factors [20].
Fluorescence characteristics have a strong indication of leaf nitrogen content [21], water deficiency [22],
and fungal infections [23]. Spectral properties of LIF demonstrate a powerful ability to monitor the
vegetation status as the reflection [24,25]. Artificial-light-source-induced fluorescence signals have
more comprehensive spectral characteristics than SIF and are excited with only a single-wavelength
light economically. Accordingly, we supposed that the LiDAR laser source is used to simultaneously
achieve laser scanning ranging and fluorescence induction forming multi-wavelength reception for
implementing a multi-wavelength fluorescence LiDAR. The system expands the ability to monitor the
physiological states of vegetation by adding several channels for receiving fluorescence signals.

Some existing fluorescence LiDAR systems have achieved a good ability of detecting marine oil
spills [26,27] and terrestrial water bodies [28]. A number of fluorescence imaging systems had been
previously constructed to express the distribution characteristics of fluorescence signals [29,30]. These
proactive vegetation fluorescence imaging systems can monitor growth and stress status by using
the LIF technology from an imaging perspective [31]. However, these fluorescence imaging systems
express the spatial distribution of fluorescence emission signals in the form of 2D images. The imaging
spatial scale is extremely small to be directly applied to the remote sensing of vegetation.

Simultaneous monitoring of the external appearance and internal biochemical status has a
comprehensive perception for vegetation remote sensing. We stimulate the vegetation fluorescence
reception for multi-wavelength channels on the basis of the scanning ranging function of
single-wavelength LiDAR. In this way, 3D spatial structural and growth state information of vegetation
can be simultaneously acquired. However, constructing such LiDAR with a multi-wavelength reception
of fluorescence manifests several problems. First, several wavelengths need to be selected for the
fluorescence emission detection. Vegetation emits fluorescence in the form of a continuous spectrum
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through UV laser excitation. The receiving wavelength design can represent biochemical information
and reduce the hardware cost of the system. Second, the enhancement of multi-channel fluorescence
data in the background signal is also a problem, since there is a large number of non-vegetation
signals as non-interested targets in the system data. Third, the data of these multiple different system
units must be organized and visualized. The data output comes from several units of the system.
These data require an integrated expression of the 3D spatial structure and fluorescence emissions of
the vegetation.

In this study, (1) the MWFL system was proposed, created, and integrated, to perform experimental
verification in the laboratory. The system design of the four wavelengths corresponding to the
characteristics of the vegetation fluorescence, system components, and system-based data form were
introduced. (2) The system experimented fluorescence signal imaging and scanned canopy distribution
of the vegetation to verify the 3D imaging ability of the system. (3) Three-dimensional fluorescence
imaging based on spectral enhancement pretreatment was adopted and achieved a good effect on
the experimental scenes. (4) System evaluation based on point cloud classification was applied to
classify 3D fluorescence point cloud data on vegetation, to further quantitatively explain the system
advantages. The ability of the MWFL system to monitor spatial and biochemical status of vegetation
through 3D fluorescence imaging was demonstrated. The feasibility of the MWFL system and the
efficiency of 3D fluorescence imaging for vegetation detection were assessed.

2. Materials and Methods

2.1. System Description

2.1.1. Selection of Fluorescence Wavelengths

MWFL, an active remote sensing monitoring device, adds several channels to receive the vegetation
fluorescence compared with the ranging LiDAR. When excited by the short-wavelength light source,
the energy of vegetation fluorescence is emitted in a longer continuous wavelength range. The
fluorescence-receiving wavelengths of the system design must be optimally selected to represent
vegetation fluorescence characteristics and to be as few as possible, considering the system cost.

In this study, two leaves in different physiological states were picked. The continuous fluorescence
spectra of the points measured through ICCD (Intensified Charge Coupled Device) excited with a UV
laser in the laboratory were recorded. Figure 1a shows that the two leaves had different physiological
states. The upper right corner of the right leaf had turned brown. Three points, namely A, B, and C,
in the two leaves were located in the fresh green, yellow, and brown areas, respectively. The color
characterization of the exterior leaves reflected the concentration distribution of the internal pigment.
Figure 1b shows the continuous fluorescence spectral shape of points A, B, and C (wavelength range of
360–800 nm).

Vegetation has typical fluorescence spectral emission waveforms during UV laser induction and
exhibits characteristic peaks, namely F460, F525, F685, and F740. The summit of F525 is sometimes
less evident, or merely a slight rise on the fluorescence spectrum is observed [32]. The characteristic
peaks of F685 and F740 are closely related to the chlorophyll content of leaves [33]. F460 is mainly
caused by water-soluble compound NADPH, vitamin K, and beta-carotene; the prime contributor to
the characteristic peak of F525 is riboflavin [32]. The measured points of the selected leaves show
typical fluorescence spectral curves, but they differ from each other. Points A, B, and C represent the
process of leaves turning from green to yellow and are eventually withered. Figure 1b demonstrates
that the fluorescence spectrum reflects the changes in biochemical substances inside the leaves during
this process. In the green leaf, chlorophyll closely related to photosynthesis reactions actively works,
as indicated by F685 and F740 on the spectrum of point A. The spectrum of point B shows that the
intensity of F740 first decreases, and that of F685 slightly increases when the leaf turns yellow. By
contrast, F460 related to lutein and carotene can have a relatively large increase in strength. The
chlorophyll content decrease is accompanied by a decrease in the F740 intensity; an increase in F685
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may be due to the weak resorption effect [34]. As illustrated in Figure 1, the fluorescence spectrum
of point C indicates that the strength of F460 and F525 is low when the leaves are withered, given
that the corresponding biochemical substances are decreasing. Simultaneously, chlorophyll is almost
exhausted, and the corresponding strength of F685 and F740 has become low, although not obvious.
The change process of the fluorescence spectrum demonstrates that the intensity variation of the four
characteristic wavelengths, namely F460, F525, F685, and F740, can represent the degree of yellowing
in the leaves.

Figure 1. Induced continuous fluorescence spectrum of leaves in different physiological states excited
with an UV laser. (a) Two leaves of different physiological states (Scene 1), and three points, namely A,
B, and C, were located in fresh green, yellow, and brown areas, respectively; (b) continuous fluorescence
spectrum of points A, B, and C excited with a UV laser (355 nm) was detected by the wavelength of
380–800 nm.

The developed active laser fluorescence imaging system predecessor was applied to the vegetation
detection. The wavelengths of fluorescence imaging system Lichtenthaler et al. studied were blue,
green, red, and far-red, corresponding to fluorescence emission [35]. Langsdorf et al. developed
multicolor fluorescence imaging to determine whether the nitrogen-stress state of leaves is related
to these four wavelengths [29]. The range of detection bands of fluorescence imaging systems for
vegetation nutrition stress and disease diagnosis detection has been focusing on the four wavelengths,
namely F460, F525, F685, and F740 [31,36,37], in recent years, in spite of a slight offset in the wavelength
position. Considering the point measurement results of the vegetation fluorescence spectrum in the
laboratory and receiving bands of the previous fluorescence imaging system, 460, 525, 685, and 740 nm
were selected as the four receiving wavelength centers of the MWFL system.

2.1.2. System Components

The MWFL system design aims to simultaneously obtain the 3D spatial structure and four
wavelengths of the fluorescence characteristics of the vegetation target. This system can implement
two detection mechanisms, namely reflection ranging and laser-induced fluorescence. In addition to
the scanning and ranging functions of the single-wavelength LiDAR, the system also has the module
for fluorescence detection and reception. The MWFL system includes system components of laser
emission, scanning, ranging, receiving detection, and data processing. Figure 2 shows the block
diagram of the MWFL system.

308



Sensors 2020, 20, 935

Figure 2. Block diagram of the multi-wavelength fluorescence LiDAR.

In the MWFL system, the laser source uses a 355 nm UV laser as a laser-emitting unit considering
excitation efficiency. The UV laser is not only the excitation source of vegetation fluorescence, but its
reflective signal is the system’s distance-measuring source. The parameters of the laser source are set
to meet the requirements of laser pulse ranging and vegetation fluorescence induction. The L1 mirror
has high reflectivity to the UV-wavelength laser, which acts as a reflection and filter, for optimal design.
The L2 reflective mirror reflects the laser light to the center of the 2D scanning platform of a scanning
unit. The beam can be scanned in the x and y directions on vegetation canopy target as the platform
rotates. The system echo signals, including reflective UV laser and vegetation fluorescence signals,
are received through the view field of Schmidt–Cassegrain telescope. The connection between the
center of the scanning platform and the center of the L2 mirror is collinear with the central axis of the
telescope to form an optical coaxial design. Such a setup is the requirement for ranging and spectral
detection in the single point and is beneficial to improve the detection signal to noise ratio.

The receiving detection unit mainly includes objects, such as telescope, spectrometer, and
transmission fiber. The L3 mirror can reflect the UV band and transmit the long band, which can
separate the UV reflection and fluorescence signal from vegetation. The reflective signal is recorded
by an APD (Avalanche Photo Diode) of the ranging unit, which is compared with the time of the
initial pulse by means of TOF (Time of Flight), to obtain the distance value of the single point through
the pulse method. After focusing through the L4 convex lens and coupling, fluorescence signals are
transmitted through the fiber to the spectrometer. Inside the spectrometer are a four-wavelength splitter
module and corresponding photodetectors. With regard to the spectroscopic module, the continuum
signal of the vegetation fluorescence introduced into the spectrometer is separated from each other by
dichroic filters passing through narrow-band filters and into the four photomultiplier tube arrays with
single-wavelength response centers on 460, 525, 685, and 740 nm. The four-channel photoelectric signal
is converted by analog–digital transformation. The fluorescence intensity is acquired by integration
and transmitted to the data-processing unit of the system. Table 1 shows the technical parameters of
MWFL system.
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Table 1. Technical parameters of MWFL system design.

Multi-Wavelength Fluorescence LiDAR

Laser wavelength 355 nm
Repetition rate 7 kHz

Pulse width 3~5 ns
Pulse energy 18 μJ

Beam divergence <1 mrad
Telescope aperture 200 mm

Spatial resolution Distance: 10 mm
Scanning: 2 mm @20m

Compared with the existing vegetation-monitoring fluorescence LiDAR [38,39], the MWFL system
has a combination of scanning ranging and LIF to achieve 3D fluorescence imaging of vegetation
targets. This imaging method can form an integrated monitoring of the vegetation’s external growth
and internal biochemical components.

2.1.3. Data Description

The form of the MWFL system data is spatially presented in a point cloud format. Each point
has a fluorescence spectral property. The MWFL system breaks through the limitations of traditional
single-wavelength ranging LiDAR only for 3D space detection, given its fluorescence spectral features
and expanded ability to detect vegetation. The type of system data is divided into two parts: 3D point
cloud data and four-wavelength data of fluorescence signal. Figure 3 illustrates the formation process
of the MWFL system data form.

Figure 3. Data formation process of multi-wavelength fluorescence LiDAR.

Figure 3 shows that the UV laser generates the multi-wavelength fluorescence signal for a single
point via LIF, and its reflection is used for ranging. The design method for single-point measurement
was described in Section 2.1.2. The data-processing unit of the MWFL system records the distance
values at the single-point position and the fluorescence intensity values of the four channels. The
system scanning platform can be rotated in two directions, to perform 2D scanning detection on
vegetation targets. The rotary step values are simultaneously recorded. The data that are saved and
transferred to the data-processing unit consisted of three parts: the distance values of points, the
signal intensity of four channels, and the step values of the platform scanning. Among these parts,
the distances and step values between points constitute the 3D point cloud spatial distribution in the
form of spherical coordinates. These coordinates can be converted into a spatial Cartesian coordinate
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system. The vegetation fluorescence intensity in the four channels constitutes multi-wavelength
fluorescence characteristic data. The data outputted by the system include the XYZ coordinates and
the fluorescence intensity values of F460, F525, F685, and F740 of the vegetation target. The system
generates a remote-sensing data form for vegetation targets. This new form of data couples the 3D
distribution and fluorescence spectra of vegetation detection. As a result, the integrated monitoring of
spatial and physiological status of vegetation target is enabled. We hope that this new data format based
on the MWFL system can be applied to the remote-sensing monitoring of vegetation for improving the
accuracy of qualitative and quantitative detections of vegetation.

2.2. Sample Materials

Two scenes were presented as samples to demonstrate the ability of MWFL system’s 3D fluorescence
imaging in characterizing the vegetation states and the ability to couple spatial and physiological states.
The two leaves mentioned in Section 2.1.1 for wavelength selection were recommended as Scene 1 to
implement 3D fluorescence imaging on the basis of point cloud. This task was carried out to study the
spectral-imaging differences in the green, yellow, and brown areas of the leaf.

A scanning experiment of the potted vegetation was conducted, to prove the detection advantage
of the system on the 3D canopy as Scene 2 in an experimental scene (Figure 4). The leaves in this potted
vegetation were spatially distributed at different angles and positions. Moreover, the leaves represent
their different physiological states. Such a featured scene can be used as an observation sample with
spatially complex states and physiological differences. For two scenes arranged in the laboratory,
the ability of MWFL system to effectively monitor vegetation can be verified. Scene 1 expresses the
spectral detection performance of the system for fluorescence emission at the leaf level. Scene 2 shows
the fluorescence point cloud imaging capability of vegetation with 3D morphology.

Figure 4. Scene 2 for 3D point cloud imaging of the MWFL scanning experiment.

2.3. Methods

2.3.1. D Fluorescence Imaging Based on Spectral Enhancement

The spectral signal of the MWFL system comes from the photoelectric conversion of four channels.
However, the fluorescence spectral information of vegetation from the target of interest is often
insufficiently prominent, due to the ground-scene background. During the 3D imaging of vegetation
fluorescence, appropriate methods should be adopted to highlight the fluorescence characteristics of
vegetation for adapting to the perception of human eyes. The method of processing remote-sensing
hyperspectral image uses hyperspectral enhancement application and obtains exceptional analytical
results [40,41]. Histogram equalization (HE) is a commonly used image spectral enhancement method
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that redistributes the spectra intensity by histogram distribution [42]. In this work, the raw spectral
data obtained by the system were processed by the HE method. The fluorescence characteristics of the
vegetation point cloud after treatment in this way were significantly and visually enhanced. The signal
strength pseudo-color imaging of point cloud in four wavelengths can represent spatial changes in
leaves in different physiological states.

2.3.2. System Evaluation Based on Point Cloud Classification

The MWFL system expands the detection capability of the physiology and growth status through
the LIF mechanism for traditional LiDAR. The four added bands multiply the amount of information
contained in the system data compared with the single-wavelength LiDAR. The improvement of
vegetation-recognition ability via the increased four-wavelength fluorescence must be quantitatively
evaluated. In this study, the point cloud with multichannel fluorescence properties was analyzed by
classifying the different conditions of the leaves. The point cloud classification analysis included the
classification of data within four channels and the comparative classification of the spatial parameter
and four channels with that.

Support vector machine (SVM), which is a popular machine learning method, has been widely
applied for data classification and regression [43,44]. SVM has certain advantages, such as robustness
and demanding small sample size of remote sensing data for training [45]. Such a method is adaptive
for classifying the spatial and spectral feature data of the system. This method was used for point
cloud classification, to demonstrate the effectiveness of the 3D fluorescence data of the system for
vegetation detection.

The classification for system data is for Scene 2 because the data of Scene 1 are the representation of
fluorescence detection in a planar form on the MWFL system. The single-, double-, and four-wavelength
spectral data from Scene 2 were used as input eigenvalues of the model classifier for classification and
analysis. The normal vector is a commonly used parameter and is related to the spatial structure in
vegetation detection [46]. The normal vectors of the point cloud were used to indicate the recognition
ability of the single-wavelength LiDAR. The classification results of the fluorescence data of four
wavelengths with normal vectors were compared. In the training process of SVM classification, due
to the difference in the sample sizes of ground categories, the training samples were selected within
a category in turn. The classification selected 2-fold cross-validation—that is, 50% training and 50%
testing—and SVM kernel function choose the linear.

Moreover, the overall classification accuracy of the point cloud results can be affected by the
imbalance of the sample size of each category [47]. The Kappa coefficient [48] was also used as a
parameter to evaluate the overall classification in combination with the classification accuracy.

3. Results

For 3D imaging of fluorescence, the space point cloud is formed by reflective ranging of the
ultraviolet light and the rotary step values of the scanning. The point cloud data include the distance
values obtained by TOF method and the step values. In the experiments of Scene 1 and Scene 2, the
detection distance is about 3.5 m, and the point–point distance is about 3.5 mm. The space size of Scene
1 is 0.12 m × 0.22 m, and Scene 2 is 0.25 m × 0.28 m.

Figure 5 shows the 3D imaging result of the fluorescence point cloud of Scene 1. The results
of point cloud imaging showed the characterization of the vegetation’s physiological states by the
four-channel fluorescence signal, given that Scene 1 landed the leaves on the blackboard.
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Figure 5. Single-wavelength fluorescence 3D imaging based on scene 1 scanning experiment of the
MWFL system: (a) 460 nm, (b) 525 nm, (c) 685 nm, and (d) 740 nm wavelength signal intensity
pseudo-color 3D imaging. The intensity values were subjected to histogram equalization (HE)
and normalization.

The imaging results of Figure 5 demonstrate that the leaf and non-leaf backgrounds are displayed
in the form of point cloud and show significant differences. In the fresh green, yellow, and brown
areas of leaves, the four-wavelength spectral point cloud imaging presents visual features that match
themselves. However, the left and right leaves in Scene 1 exhibit significant differences in these four
characteristic wavelengths. The leaf on the left represents the green state of the vegetation. The
intensity values at 460 and 525 nm wavelengths are significantly lower than the yellow and brown-leaf
regions on the right. The brown area of the right leaf exhibits an extremely high intensity at 460 and
525 nm wavelengths due to the increased degree of the yellowing of the leaves. Fluorescence intensity
values at 685 and 740 nm are correlated in most regions of point cloud. The green area of the left leaf
and the yellow area of the right leaf are stronger than the brown area because the chlorophyll content
in the latter was exhausted. The tip portion of the upper side of the green leaf on the left has similar
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intensity values, at 685 and 740 nm, to the high intensity of the yellow region. The realistic picture of
Scene 1 shows that the green color in this area was declining. The actual colors between the two areas
are similar. The high-intensity values of most green areas might be due to the decrease of water content
or the nonlinear relationship between chlorophyll fluorescence intensity and chlorophyll content. In
the portion where the yellow and brown areas on the right side of the right leaf are bordered, that
is, the position of point B at wavelength selection in Section 2.1.1, the fluorescence intensity at 685
nm is slightly stronger than that at 740 nm. Such an outcome is consistent with the test result of the
continuous spectrum on point B. This finding indicates that a change buffer distribution of the internal
physiological state occurs between the yellow and brown areas of the leaf. The spatial distribution
change was revealed by fluorescence imaging of the MWFL system.

Experiments on the spatial distribution of Scene 2 based on MWFL system are performed
(Figure 6a). The spatial 3D geometry distribution of the potted vegetation in Figure 4 is presented
by the MWFL system. The manual labels were given as real categories of Scene 2, in preparation
for classification (Figure 6b). In comparison with Figure 4, Scene 2 was divided into four categories:
flowerpot, yellow leaves, withered leaves, and fresh green leaves (Figure 6b).

Figure 6. Scene 2 scanning experiment 3D point cloud based on MWFL system. (a) Three-dimensional
distribution of spatial point cloud; (b) The ground truth categories given for classification.

Figure 7 displays the four-wavelength 3D spectral intensity imaging results of Scene 2. Four
single-wavelength signal intensity pseudo-color 3D imaging interpretations are presented. In the point
cloud imaging of Scene 2, the imaging results of the four channels show an excellent spatial distribution
and spectral detection capability. The flowerpot exhibited low values in the four-wavelength 3D
fluorescence intensity imaging. Green leaves exhibit high intensity at 685 and 740 nm wavelengths.
Such leaves also present weak fluorescence signals at 460 and 525 nm wavelengths. Meanwhile, the
withered leaves in this scene show high intensity at 460 and 525 nm wavelengths. The signals at 685
and 740 nm wavelengths are barely high. However, the yellow leaves exhibited low intensity in four
channels. After that, we classified and analyzed the fluorescence point cloud data obtained by the
MWFL system. This step was conducted to quantitatively estimate and describe the recognition ability
of vegetation in Scene 2.

314



Sensors 2020, 20, 935

Figure 7. Single-wavelength fluorescence 3D imaging based on the Scene 2 scanning experiment of
the MWFL system: (a) 460 nm, (b) 525 nm, (c) 685 nm, and (d) 740 nm wavelength signal intensity
pseudo-color 3D imaging. The intensity values were subjected to HE and normalization.

4. Discussion

The four single-wavelength spectral signal intensity imaging on the potted vegetation of Scene 2
demonstrated the spatial and spectral combined imaging potential of the MWFL system. The spatial
variation distribution of the leaf spectrum in Scene 2 showed the continuous change of the spectrum in
space to a certain extent.

Due to the influence of the spatial-distribution conditions, the fluorescence intensity can be
affected by factors such as the distance and angle of the system observation [49]. In addition, the
laser echo has the mixtures of vegetation and background targets during the scanning experiment.
These factors all affect the expression of fluorescence in 3D point cloud. Figure 8 shows the original
signal-intensity distribution of different ground categories in Scene 2. As shown in Figure 8a, it is clear
that green leaves exhibit high chlorophyll fluorescence intensity, and flowerpots, as non-plant targets,
have almost no signal in these two wavelengths. Yellow leaves in Scene 2 have almost no chlorophyll
fluorescence, with some fluorescence emission in 460 nm wavelength. Compared with yellow leaves,
withered leaves have a significantly enhanced fluorescence emission at 460 nm. From Figure 8b, the
correlation between the intensity of two chlorophyll fluorescence bands 685 and 740 nm in Scene 2 is
high. However, the difference between these two bands can be reflected in the imaging of Scene 1. The
distribution of the intensity of the features in Scene 2 in the channel shows the separability of the data,
which means the possibility of the classification.
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Figure 8. Scatter distribution of the channels’ intensity of the ground categories in scanning experiment
of Scene 2: (a) Channels 460 nm vs. 685 nm; (b) Channels 685 nm vs. 740 nm.

The effectiveness of the data obtained by the four added channels, especially the fluorescence
data, was evaluated by point cloud classification. SVM acted as a classifier to distinguish the categories
of Scene 2. We presented the classification results of two single-wavelengths (460 and 685 nm),
double-wavelength combination (460 nm + 685 nm), and four wavelengths as input eigenvalues
(Figure 9). The classification accuracies of the four single-wavelength were basically similar. Therefore,
two of four single-wavelength were representatively displayed as minimum and maximum classification
accuracies. The results of the double-wavelength combination classification were equal; hence, only
one combination was selected. Table 2 shows the confusion matrix of Figure 9a–d.

Figure 9. Different wavelength spectral data classification result graphs based on the MWFL
system scanning in Scene 2. (a) Single-wavelength (460 nm); (b) Single-wavelength (685 nm); (c)
Double-wavelength (460 nm + 685 nm); (d) Four-wavelength intensity data for classification.
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Table 2. Confusion matrices of different wavelengths’ spectrum data classification results for Scene 2
(corresponding to Figure 9).

Ground Truth
Predicted Class

Producer
Accuracy

Flowerpot
Withered

Leaves
Yellow
Leaves

Fresh Green
Leaves

(a) 460 nm

Flowerpot 108 0 0 140 0.44
Withered leaves 16 0 0 100 0

Yellow leaves 4 0 0 129 0
Fresh green leaves 132 0 0 1147 0.90

User accuracy 0.42 0 0 0.76

Overall accuracy (%): 70.7%

Kappa coefficient: 0.17

(b) 685 nm

Flowerpot 235 0 0 13 0.95
Withered leaves 30 5 0 81 0.04

Yellow leaves 1 1 0 131 0
Fresh green leaves 159 6 0 1114 0.87

User accuracy 0.55 0.42 0 0.83

Overall accuracy (%): 76.2%

Kappa coefficient: 0.43

(c) 460 nm +
685 nm

Flowerpot 236 2 3 7 0.95
Withered leaves 51 13 6 46 0.11

Yellow leaves 5 12 18 98 0.14
Fresh green leaves 55 22 25 1177 0.92

User accuracy 0.68 0.27 0.35 0.89

Overall accuracy (%): 81.3%

Kappa coefficient: 0.56

(d) Four
wavelengths

Flowerpot 240 0 4 4 0.97
Withered leaves 7 57 19 33 0.49

Yellow leaves 0 13 69 51 0.52
Fresh green leaves 24 20 23 1212 0.95

User accuracy 0.89 0.63 0.60 0.93

Overall accuracy (%): 88.9%

Kappa coefficient: 0.75

Figure 9 and Table 2 demonstrate that the species-recognition accuracy is gradually increasing
from single to double to four wavelengths. Such accuracy was limited in the case where only
single-wavelength data were applied. The overall accuracies of the single-wavelength classifications
are 70.7% and 76.2%. Such a result is attributed to the simple category division, and the number of fresh
green leaves account for a large proportion, thereby resulting in a high classification. However,
the confusion matrices demonstrate that the single-wavelength data have almost no ability to
distinguish between yellow and withered leaves of the vegetation. The Kappa coefficients of the two
single-wavelength classifications also illustrate that. The classification to the kappa values of 0.17 and
0.43 were not ideal. If the double-wavelength data were used for classification, then the recognition
ability would be significantly improved. The classification accuracy of this case is 81.3%, and the Kappa
coefficient increased to 0.56, reflecting an improvement compared with those of single-wavelength data.
The result of the four-wavelength classification reveals that the classification accuracy reaches 88.9%,
and the Kappa coefficient increases to 0.75. Such a finding indicates that the classification results (see
Figure 9d) are consistent. The application of four-wavelength data further improves the identification
capability of vegetation physiological states. This finding illustrates the necessity for four wavelengths
to detect vegetation fluorescence. From the classification of the flowerpot, the system also has a certain
degree of detection ability for the background objects during vegetation-detection fieldwork.

The normal vector was used as the representative parameter of the spatial structural state to
be classified (Figure 10a). The normal vectors were computed by searching the neighbor points of
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the single point on the basis of the KNN algorithm and calculating the vertical pointing of the fitted
plane. The normal vectors and four-wavelength signal values were used together for classification
(Figure 10b). Table 3 shows the confusion matrix diagrams of Figure 10a,b.

Figure 10. Normal vectors and normal vectors with four-channel spectral classification results (Scene
2): (a) Normal vectors data and (b) Normal vectors with four-channel spectral data for classification.

Table 3. Confusion matrices of the normal vectors and normal vectors with four-channel spectral
classification results for Scene 2 (corresponding to Figure 10).

Ground Truth
Predicted Class

Producer
Accuracy

Flowerpot
Withered

Leaves
Yellow
Leaves

Fresh Green
Leaves

(a) Normal vectors

Flowerpot 107 0 0 141 0.43
Withered leaves 8 7 6 95 0.06

Yellow leaves 3 0 9 121 0.07
Fresh green leaves 48 0 0 1231 0.96

User accuracy 0.64 1.0 0.60 0.78

Overall accuracy (%): 76.2%

Kappa coefficient: 0.29

(b) Normal vectors
+ four

wavelengths

Flowerpot 244 0 0 4 0.98
Withered leaves 4 73 13 26 0.63

Yellow leaves 3 14 91 25 0.68
Fresh green leaves 6 14 24 1235 0.97

User accuracy 0.95 0.72 0.71 0.96

Overall accuracy (%): 92.5%

Kappa coefficient: 0.84

The results in Figure 10 and Table 3 illustrate that the spatial parameter normal vectors present
a very unsatisfactory classification outcome for the complex structure of vegetation (classification
accuracy 76.2% and Kappa coefficient 0.29). In terms of the point cloud of Scene 2, the spatial shapes
and angles of vegetation leaves vary, and certain leaves have few points. Figure 10a demonstrates
that the normal vectors can distinguish a part of the flowerpot and most fresh green leaves, which are
also related to a large number of the fresh green leaves’ points. The normal vectors for yellow and
withered leaves are completely indistinguishable. However, the ability of fluorescence to indicate the
physiological state are exerted when the normal vectors and the four-wavelength spectral data are
combined as multi-eigenvalues (Figure 9b). The classification accuracy improves to 92.5% with the
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significant enhancement of the producer, user, and overall accuracies. The kappa coefficient increases
to 0.84, which is a promotion relative to the four-wavelength classification.

From the results of classification, the detection of vegetation fluorescence was improved to a
higher level compared to the space detection capability of the single-wavelength LiDAR. Therefore, the
four-wavelength signals detected by the MWFL system can effectively improve the recognition ability
of different growth states of vegetation through the LIF mechanism. Such a mechanism effectively
works with spatial parameters, which single-wavelength LiDAR possesses. The coupled detection of
these two mechanisms has great potential for the remote-sensing field.

5. Conclusions

The proposed MWFL system expands the fluorescence characteristic generated by the LIF in four
wavelengths, on the basis of the ranging LiDAR. We believe that the four-wavelength detectors added
to the system could represent the internal components of the vegetation. The data form of the MWFL
system can be coupled with the 3D spatial structural state and the physiological state information
of vegetation monitoring through data organization. The combination of two mechanisms enhances
the ability to identify and monitor vegetation targets. The significance of 3D fluorescence imaging
of vegetation is that it not only expresses the growth status from the outer space, but also expresses
the stress status of the internal physiological status. For different types of vegetation, in addition to
the different spatial-expansion states of external growth, the internal biochemical content also varies
greatly. The ability of fluorescence features to qualitatively and quantitatively indicate vegetation has
improved the capability of LiDAR monitoring. This monitoring method is of great benefit to forestry
development and precision agriculture.

At present, the signals of the 460 and 525 nm wavelengths have a relatively high correlation.
The necessity for designing these two bands may be performed by the quantitative monitoring of the
vegetation in the future.

Our analysis reflects the effectiveness of the 3D fluorescence imaging monitoring on the basis of the
MWFL system for vegetation remote sensing. The technical upgrades and performance optimization
of the system are required if there are platform operations and large space–time scale applications. In
the MWFL system, the radiation correction of distance and angular polarization are beneficial for the
quantitative monitoring of the surface vegetation.
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Abstract: Abnormal changes of the microvasculature are reported to be key evidence of the develop-
ment of several critical diseases, including cancer, progressive kidney disease, and atherosclerotic
plaque. Super-resolution ultrasound imaging is an emerging technology that can identify the mi-
crovasculature noninvasively, with unprecedented spatial resolution beyond the acoustic diffraction
limit. Therefore, it is a promising approach for diagnosing and monitoring the development of
diseases. In this review, we introduce current super-resolution ultrasound imaging approaches
and their preclinical applications on different animals and disease models. Future directions and
challenges to overcome for clinical translations are also discussed.

Keywords: super-resolution; ultrasound imaging; deep learning; clinical applications

1. Introduction

Abnormal alterations, including the development, degeneration, and regeneration,
of the microvasculature, are reported to be associated with several critical diseases, such
as tumor development [1–3], progressive kidney disease [4–7], and the development of
atherosclerotic plaque [8–10]. Therefore, changes of microvasculature would serve as a
useful index for diagnostics and prognostics of such diseases. Several imaging modalities,
including microcomputed tomography (micro-CT) [11,12], optical coherence tomography
(OCT) [13,14], and magnetic resonance imaging (MRI) [15–19], have been employed suc-
cessfully in preclinical studies to image the changes of microvasculature inside target
organs. Although these imaging methods achieved a high spatial resolution, they have
their own their own limitations. Micro-CT is limited by hazardous radiation and contrast
agents, while OCT suffers relatively poor imaging depth. As for MRI, imaging systems are
bulky and costly, which hinder widespread or repeated applications. Ultrasound imaging
that has the advantage of safety, noninvasiveness, portability, affordability, and ease of
use, has been explored as a potential approach for imaging microvessels. Conventional
noninvasive ultrasound imaging methods for imaging vessels mainly include Doppler ul-
trasound imaging [20] and contrast-enhanced ultrasound (CEU) imaging [21–25]. However,
neither of these techniques provides sufficient spatial resolution for assessing microvessels,
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mainly due to the acoustic diffraction limit, which is half of the wavelength of the operation
ultrasound frequency. Therefore, an ultrasound imaging technique that can achieve spatial
resolution beyond the acoustic diffraction limit would be encouraging for broad use in
clinics for diseases that are associated with abnormal alterations in the microvasculature.

In 2006, optical super-resolution imaging techniques, including fluorescence photoac-
tivated localization microscopy [26], photoactivated localization microscopy (PALM) [27],
and stochastic optical reconstruction microscopy (STORM) [28], were first introduced. The
basic idea of super-resolution imaging is to localize the centroid of each randomly blinking
fluorescence source based on the system point spread function (PSF). The location infor-
mation of each blinking fluorophore was stacked up over a substantial sequential dataset
that was captured by a fast camera to form an image spatially resolved in subwavelength
resolution. By this approach, a spatial resolution down to tens of nanometers was achieved.
Inspired by optical super-resolution imaging techniques, super-resolution ultrasound (SRU)
imaging was introduced [29–33] for noninvasive imaging of microvasculature by using
ultrasound contrast agents that travel through vascular network to replace the role of
fluorophores in optical super-resolution imaging. While spatial resolution was sacrificed
compared to optical super-resolution, due to the limit of ultrasound operating frequency,
the ultrasound approach achieved a larger imaging depth. The technology components
of SRU imaging mainly consist of ultrafast, ultrasound imaging [34], a state-of-the-art
clutter filter [35] that extracts microbubble signals, and novel microbubble localization
algorithms [29–33,36,37] that pinpoint the original locations of the microbubbles. The de-
veloped SRU imaging technologies have been successfully tested in preclinical studies with
different animal and disease models, which demonstrated great potential for future clinical
applications. Some representative conventional technical approaches of SRU, and their
in vivo applications, were well described and summarized in a recent review paper [38]. In
addition to these conventional SRU approaches, a deep learning approach has recently been
adopted for SRU imaging [39–42]. In this review, we introduce the different SRU imaging
approaches, especially the deep learning approach, and summarize current preclinical
studies in different disease models that have been successfully performed. The vision for
future clinical applications, and the major challenges for SRU imaging to overcome, are
also discussed.

2. General Technical Components of Super-Resolution Ultrasound Imaging

Figure 1a illustrates the overall block diagram of SRU imaging. The blinking flu-
orescence sources in the photoactivated localization microscopy can be replaced with
microbubbles, used for the contrast agent of ultrasound in SRU imaging, as the spatial
locations of microbubbles in the bloodstream are stochastically changed. The following
localization technique is a method to find the centroid of the single microbubble signal,
localizing each point source with subwavelength precision. Throughout this process, spa-
tial resolution can be improved by up to one-tenth of the wavelength, theoretically [29].
Note that the acoustic response to the point source can be estimated to the PSF of the
imaging system. Therefore, the extraction of a single microbubble signal from the original
image data is an essential key component for implementing SRU imaging. The first trial
for decluttering is a subtraction between neighboring frames to remove the stationary
tissue component and maintain moving microbubble signals [32]. Other clutter filtering
techniques used in Doppler imaging are also studied for decluttering purpose. Researchers
show that the combination of the singular value decomposition-based adaptive clutter
filter and a large number of the spatiotemporal image sets, with the ultrafast imaging,
would outperform traditional infinite impulse response (IIR) filter-based clutter filtering
techniques [35]. This method decomposes the large-sized elongated skinny matrix into the
spatial and temporal basis vector matrixes and a diagonal eigenvalue matrix-weighting
factor. The combination of these decomposed vectors represents several components of the
images, such as stationary tissue, slow-moving tissue, fast-moving particle-microbubbles,
and randomly varied value noise. Therefore, microbubbles signals could be exclusively

324



Sensors 2021, 21, 2417

extracted from the images with an adequately selected rank of vector-matrix combinations.
The signals, other than the selected ranks, are then removed to maintain only the valid
microbubble signals.

The next core component is a method seeking the point source location. Each mi-
crobubble location can be precisely localized in subwavelength resolution by fitting with
the predetermined PSF of the imaging system [29]. This method achieves the spatial reso-
lution up to 10 microns (≈λ/10, with a custom-made 128-element linear array transducer
centered at 15 MHz), which is further beyond the acoustic diffraction limit, as shown in
Figure 1c [29]. Note that the imaging system’s PSF is assumed as the fixed two-dimensional
Gaussian function determined by the transmit wave characteristic. However, this approach
requires a huge number of the dataset, 75,000 frames (150 s), for a single super-resolved
image in this study. Long data acquisition is the main drawback for clinical applications,
except imaging the brain, which can be possibly fixed in position during the scan period
due to the motion artifact. In the following studies, therefore, several groups suggest
techniques in efforts to improve temporal resolution. These include Super-Resolution
Optical Fluctuation Imaging (SOFI)-based [43] and deconvolution-based [36] SRU imaging
technologies to broaden the clinical applications to other organs and diseases, as shown in
Figure 2 [36].

 
Figure 1. (a) An illustration of the concept of SRU imaging (reprinted with permission from Ref. [44].
Copyright 2015 Springer Nature). (b) The reconstructed super-resolved brain microvasculature
with the resolution of λ/10 [29]. (c) Interpolated profiles along the marked lines (reprinted with
permission from Ref. [29]. Copyright 2015 Springer Nature).

SOFI-based super-resolution imaging uses a relatively high concentration of microbub-
bles, while the traditional super-resolution method utilizes a diluted concentration for
better separation of microbubbles [43]. Bar-Zion et al. [43] suggest a parametric model
of the contrast-enhanced ultrasound signal of microbubbles to quantify the volume cell,
instead of counting the number of microbubbles. High order statistics calculations could
improve spatial resolution by 60% at the 4th moment, as shown in Figure 2a, using a L15-4
linear array transducer. They successfully demonstrate their super-resolution imaging
approach using a rabbit kidney tumor model with only 150 frames of data, which allows
for a 500-times faster scan time than the prior method. The SOFI-based method that uti-
lized high order statistical computations [43] achieved higher temporal resolution than
the previous ultrasound localization microscopy [29]. However, spatial resolution and
the signal-to-noise ratio were compromised because the dynamic range of image inten-
sity increased as the higher-order statistics were used. Some researchers suggest using
a nonlocal means (NLM) denoising filter on the spatiotemporal domain to remove noise
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from the background signal, while preserving the signal from flowing microbubbles [37].
It should be noted that use of the spatial domain filter to eliminate noise is, in general,
challenging, as shown in the previous study, as the amplitude of the background noise
looks very similar to signals from microbubbles. They then applied bipartite graph-based
microbubble tracking, with persistence control for enhanced microbubble signal quality
and tracking fidelity. The localized microbubbles located in each frame could be paired
with, and followed by, microbubbles at adjacent frames. When using a 128-element linear
array transducer, centered at 8 MHz, vessels as small as 57 μm at depth of 2 cm were
reconstructed. Moreover, microvessels 76 μm apart were distinguished in a rabbit kidney
in vivo.

 
Figure 2. (a) SOFI-based super-resolution ultrasound imaging—left panel shows a frame of B-mode;
right panel shows the reconstructed image. (Reprinted with permission from Ref. [43]. Copyright
2017 IEEE). (b) Deconvolution-based super-resolution ultrasound imaging—left panel shows a frame
of B-mode; right panel shows the reconstructed image. (Reprinted with permission from Ref. [45].
Copyright 2020 Elsevier).

Another trial to improve temporal resolution is the employment of deconvolution and
spatiotemporal-interframe-correlation (STIC) data acquisition techniques [36]. Regardless
of the local density of the microbubbles, the deconvolution approach can localize each
microbubble location from the clumped microbubble signal. It therefore enables the
utilization of all acquired frames. Note that clumped microbubble signals have to be
discarded in other approaches, resulting in a long scan time. Therefore, deconvolution-
based SRU imaging only uses 300 image frames to reconstruct a single super-resolved
ultrasound image while maintaining a spatial resolution of 41 μm; that is, 1/5 of the
wavelength with a 128-element linear array transducer centered at 7.7 MHz. The calculation
complexity of the deconvolution method [36] is lower than the above methods while it
utilizes the iteration procedure. However, many physiological events are still faster than
the data acquisition speed with a deconvolution of 0.6 s. Researchers implemented the
STIC data acquisition technique, that was used for the 3D fetal cardiography, to capture
rapid physiological events [46]. STIC algorithms allow for a realignment of sequentially
acquired image data based on the reference signal, such as the cardiac pulsation, to make
use of more frames that are synchronized. Figure 2b shows typical SRU images in an
in vivo acute kidney injury in a mouse model, demonstrating the clinical feasibility for
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kidney applications [37,45]. Furthermore, the implemented SRU imaging technologies
were further validated by comparison with micro-CT images in the following study [45].

One main challenge of super-resolution ultrasound imaging technology is maintaining
the spatial and temporal resolution at the same time. Ultrasound localization microscopy
achieved the spatial resolution of 1/10 of the wavelength beyond the acoustic diffrac-
tion limit. However, this method scarifies the temporal resolution, as the huge dataset,
~75,000 frames, corresponding to data acquisition time of 150 s, are required to track every
flowing individual microbubble [29]. The SOFI-based method achieved a higher temporal
resolution of ~150 frames, and a data acquisition time of 0.3 s-, with the time-dependent
statistics of the microbubbles [43]. It also increased the spatial resolution around a factor of√

2, which provides further fine spatial resolution beyond the acoustic diffraction limit. The
deconvolution-based super-resolution ultrasound imaging method offers compromised
spatial and temporal resolutions between the ultrasound localized microscopy and the
SOFI approach. The spatial resolution of 1/5 of the wavelength and the temporal resolution
of 0.6 s (~300 frames) were achieved [36]. Depending on their advantages, these methods
could be applied for different applications. The overall performances of the representative
SRU imaging technologies are compared in Table 1.

Table 1. The overall performances of the representative SRU imaging technologies. * All technologies offer spatial resolution
beyond the acoustic diffraction limit.

Localization [32] SOFI [43] Deconvolution [36]

Spatial Resolution *
High

(9~17 μm)
Low

(227.3 ± 9.0 μm)
Middle
(41 μm)

Numbers of Frames for Reconstruction 75,000 frames 150 frames 300 frames

Temporal Resolution 150 s @ 500 Hz 0.3 s @ 500 Hz 0.6 s @ 500 Hz

Microbubble Concentration
Low (Diluted,

2 × 108 MBs/mL, Bolus
Injection of 1.5 mL)

High
(1.2 × 1010 MBs/mL,

Bolus Injection of 0.5 mL)

High (1.2 × 1010 MBs/mL,
Bolus Injection of 0.2 mL)

Application Brain Kidney Atherosclerosis, Kidney

3. Deep Learning-Based Super-Resolution Ultrasound Imaging

A single super-resolved image can be only reconstructed with a sufficient number
of frames of the localized microbubbles for a sufficient signal-to-noise ratio. This large-
scale data acquisition results in a relatively long scan time, which may introduce potential
motion artifacts. The low consistency of tissue caused by motion could decrease localization
accuracy. Thus, a practical limitation of SRU imaging for clinical translation is the trade-
off between data acquisition time and localization accuracy. The deep learning-based
approach has demonstrated promising achievements, both in temporal accuracy and in
reconstruction accuracy, when using a relatively high-concentration microbubble injection.

The deep learning-based ultrasound localization microscopy (Deep-ULM) is the first
trial to let artificial intelligence separate individual microbubble signals from the dense
microbubble cloud signal [39]. An increased concentration of microbubbles would reduce
overall data acquisition time. The Deep-ULM, inspired by the deep learning network
for super-resolution stochastic optical-resolution microscopy (Deep-STORM), adopts a
network based on the fully convolutional U-net, performing the nonlinear end-to-end
mapping between low-resolution input frames to high-resolution outputs, as shown in
Figure 3 [39,47–49]. For the synthetic training dataset, randomly located microbubble
positions were generated first. The diameters of the microbubbles were also randomly
determined, making them similar to the actual microbubble signals. Then, the convolution
between the simulated microbubbles and the point spread function can work as a synthetic
low-resolution ultrasound image. Then, the simulated ultrasound images were paired
with the actual locations of the microbubbles for training through the network. The
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encoder extracted the dense and aggregated features from low-resolution images. In
the decoding layers, the features extracted in the encoding layers were upsampled and
deconvolved to align the value for high-resolution image reconstruction. After the training,
the trained mapping process reconstructs the low-resolution ultrasound B-mode image to
a high-resolution image through feature extraction and upsampling. Besides, the Deep-
ULM reduces the computational complexity with the GPU acceleration, allowing it to
resolve 1250 high-resolution patches of 128 × 128 pixels within a second. Therefore, the
model-based approach has great benefit and potential for implementing the real-time
imaging system.

 
Figure 3. Super-resolution ultrasound localization microscopy through deep learning. (a) U-net
based architecture for Deep-ULM [39], mSPCN-ULM [40], and a multiple-targets detecting net-
work [47]. (Reprinted with permission from Ref. [47]. Copyright 2018 OSA) (b) An example of
deep learning-based localization techniques—translation from the low-resolution image (top panel)
to high-resolution frames (bottom panel) by the deep learning network [40,49]. (Reprinted with
permission from Ref. [40]. Copyright 2020 IEEE).

Several modified or alternative network structures have been studied for a faster
data processing time in the following research. For example, the convolutional neural
network (CNN) was suggested for identifying individual scatters using high concentration
microbubbles [50]. This network has a similar structure to U-net and is composed of an
encoder–decoder with pooling and un-pooling, but without skip connections. Unlike the
previous deep learning-based ULM method, the ground truth data were acquired after the
radio frequency (RF) dataset was simulated. The binary confidence maps obtained through
the simulated RF dataset can generate the ground truth data. In addition, the RF signals
were not beamformed with the delay-and-sum algorithm, but delayed and sampled to
have the same number of confidence maps along the axial direction. Considering that the
training dataset is a key factor for trained network performance, it is worth more than
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passing attention to the improvement of deep learning networks based on a precisely
tailored synthetic dataset.

Recently, modified subpixel convolutional neural network (mSPCN) architecture
with residual blocks has been suggested for optimization without exhausted parameter
tuning and fast data processing speed [40–42]. The subpixel convolutional neural network
architecture in the mSPCN-ULM decodes features with a trained upscaling filter and
reduces computational complexity. Moreover, residual learning allows an increase in
the network depth without losing gradient, and improves training accuracy without a
parameter tuning process, as shown in Figure 4. The mSPCN-ULM showed increased
temporal resolution using a higher microbubble concentration compared with the above
deep learning techniques. The training process was conducted using the synthetic data
created in the same way as the previous Deep-ULM method presented. However, further
performance degradation is expected in vivo cases since the discrepancy between the
synthetic training dataset and the real in vivo data would become more extensive due to
several artifacts and nonlinear responses.

 
Figure 4. Comparison between mSPCN-ULM [40] and Deep-ULM [39]. (a) The temporal–mean
image was obtained by averaging all the US images. (b) Super-resolution images obtained by the
mSPCN-ULM. (c) Deep-ULM. (d) The magnified sections of (a–c) [40]. (Reprinted with permission
from Ref. [40]. Copyright 2020 IEEE).

Deep learning technology is also applied in another applications, such as the declut-
tering process [51]. The extraction of small microbubble signals from only a few pixels in
the image with noise is challenging. Researchers have employed a 3D convolutional neural
network (3D-CNN) to solve this problem. This network has been known as an optimal net-
work for human action recognition in airport surveillance video sequences, which is similar
to flowing microbubble detection in the B-mode image sequence (2D + 1D). The proposed
method’s performance is comparable to the use of singular value decomposition (SVD)
filtering in conventional SRU imaging sequences with a lightweight computational burden.

So far, deep learning networks trained with the noised synthetic data showed a
resolution comparable to existing SRU imaging. However, the number of in vivo studies
with deep learning are limited so far. Therefore, further investigations, especially in vivo
evaluations, of deep learning applications should follow. Below, Table 2 shows an overall
comparison of the representative deep learning-based technologies currently used in
SRU imaging.
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Table 2. An overall comparison of the representative deep learning-based technologies currently used in SRU imaging.
* Only in vivo data were used for training. The dosage of injected microbubble is 2.5 × 107 MBs in 60 μL saline.

Deep-ULM [39]
CNN Based Network
for Multiple Target

Detection [50]
mSPCN-ULM [40]

Deep 3D CNN for
Spatiotemporal

Filtering [51]

Target
Localization from the
dense microbubbles

Localization from the
dense microbubbles

Localization from the
dense microbubbles Microbubble extraction

Microbubble
Concentration of

Synthetic Data for
Training

High
(~2.6 MBs/mm2)

High
(~2.44 MBs/mm2)

Very high
(~6.4 MBs/mm2) N/A *

Network Type U-net Convolutional neural
network

Modified subpixel
convolutional neural

network

3-D convolutional
neural network

Training Dataset
Synthetic data and

unique data generated
for each iteration

10,240 synthetic data 10,000 synthetic data 9000 frames acquired
from five subjects

Spatial Resolution ~30 μm 27~46 μm 24~28 μm 25 μm

Applied Activation
Function

Leaky rectified linear
unit (ReLU) Leaky ReLU ReLU ReLU

4. Current Biomedical Applications of Super-Resolution Ultrasound Imaging

With unprecedented spatial resolution and practically reasonable temporal resolution
achieved, SRU could be a promising diagnostic tool for diseases associated with abnormal
vascular alterations. It also has the potential to be a preferred approach for monitoring
disease progression and therapeutic efficacy due to its noninvasiveness, low cost, safety,
and widespread accessibility. In this section, some representative applications of SRU
in preclinical studies on different organs and disease models, and a very limited first-in-
human use, are introduced and discussed.

4.1. Cancer

Cancer is the second leading cause of death in the world [52]. Early detection of
malignant lesions can greatly increase the chances of successful treatment [53]. One of the
early changes that can differentiate cancer from normal tissues is malignant angiogenesis,
which has been recognized as an important biomarker for cancer diagnostics [2,54]. The
features of the microvascular network associated with malignant tumors, including density,
branching, size, and inhomogeneity, have been observed to be abnormal compared to that
of healthy tissue [3,55–58]. In past decades, superharmonic contrast ultrasound imaging,
also known as acoustic angiography, has been utilized to visualizing the microvasculature
and detect the morphology abnormalities associated with tumor-induced angiogenesis
in vivo [59–64]. However, the performance of this imaging technique suffered mainly
from the limit of the spatial resolution constrained by the acoustic diffraction limit of
the operating ultrasound frequency. An SRU that can overcome this limitation has been
explored to detect microvascular changes at much higher resolution and sensitivity, both at
an early stage and during tumor progression.

For demonstrating the proof-of-concept and further improving SRU technology, an-
imal tumor models have been adopted in several in vivo studies [43,65,66]. In 2016, Lin
et al. successfully imaged the subcutaneous fibrosarcoma tumors implanted in a rat in vivo,
with a ten-fold resolution improvement compared to conventional ultrasound imaging
by using SRU. This study demonstrated the imaging capability of SRU and the potential
of characterizing a tumor-associated microvascular angiogenesis [65]. In the following
study, their group evaluated the sensitivity of SRU imaging on the same rat tumor model
using microbubbles of different sizes, and showed the sensitivity improvement by using
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larger microbubbles. For the purpose of shortening the scan time, Bar-Zion et al. proposed
an SRU imaging technique with a methodology that was used in super-resolution optical
fluctuation imaging (SOFI). This technology was tested by imaging the vasculature around
and inside the hind-limb intramuscular VX-2 tumor, and the improvement in temporal
resolution was presented [43].

After demonstrating the proof-of-concept in tumor microvasculature imaging, preclin-
ical studies have been conducted to examine the capability of SRU for tumor diagnosis.
Lin et al. performed SRU imaging in three dimensions on tumor-bearing rats implanted
with subcutaneous fibrosarcoma and compared the microvascular features with the healthy
rats [67]. An L11-5 linear probe (Verasonics Inc., Redmond, WA, USA) was mounted to a
motorized precision motion stage synchronized with the imaging system to perform the
3D scan. The reconstructed microvascular images by SRU showed a greatly improved
spatial resolution compared to the traditional acoustic angiography. As shown in Figure 5a
from the study, vessels in the tumor-bearing tissues had a higher tortuosity compared
to the control, which implied tumor-associated microvascular angiogenesis. The results
demonstrated the potential of differentiating diseased and healthy tissues by evaluating
vascular structure using SRU imaging. With the help of the fine details of the vasculature
network provided by SRU technology, the capability of SRU for discriminating different
tumor types was also shown by the study of Opacic et al. [68]. The fine vascular networks
in tumors with different vascular phenotypes were reconstructed by motion model SRU
imaging (Figure 5b). Functional parameters, including relative blood volume (rBV), blood
flow direction, blood flow velocity, distances to vessels, distances, and velocities, were able
to be derived by SRU imaging, and utilized to differentiate different tumor types with the
verification of histology successfully.

 
Figure 5. Representative SRU images of microvasculature in tumor-bearing tissues. (a) Maximum
intensity projections of 3D SRU imaging on healthy rats (upper panel), and tumor-bearing rats (lower
panel). (Reprinted with permission from Ref. [67]. Copyright 2017 Ivyspring International Publisher)
(b) SRU imaging of tumors with different vascular phenotypes. (Reprinted with permission from
Ref. [68]. Copyright 2018 Springer Nature).

SRU imaging was further evaluated on specific cancer types, which is the pathway
towards clinical translation. Breast cancer, which is the most common type of cancer in
women, with the second highest mortality rate [69], is also one focused area for the applica-
tions of SRU. Ghost et al. applied SRU imaging to longitudinally monitor changes in the
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tumor microvascular network of triple-negative breast cancer-bearing mice in response
to the treatment [70]. The vessel-to-tissue ratio of the tumor tissue was found decreased
progressively after the tumor-targeted therapeutic (Figure 6a), which was consistent with
the immunohistological findings. This study suggested the potential of in vivo SRU imag-
ing for monitoring early tumor response to drug treatment. Clinical pilot studies of SRU
imaging on patients with breast cancer was further conducted by the Schmitz group [68,71].
Motion model SRU imaging was performed on patients with breast cancer after treatment
with first, second, and third cycles of neoadjuvant chemotherapy. By SRU imaging, im-
proved spatial resolution and functional information, including flow velocities, could be
derived (Figure 6b) [71], which outperform conventional CEU imaging. The increase in
rBV of the tumor tissue and the decrease in tumor size were found after the treatment [68].
The studies could be a scheme for further extended clinical studies and to promote future
clinical applications.

 
Figure 6. Representative SRU images of microvasculature from (a) breast cancer-bearing mice in
response to the treatment (Reprinted with permission from Ref. [70]. Copyright 2017 IEEE), and
(b) the patient with triple-negative breast carcinoma. (Reprinted with permission from Ref. [71].
Copyright 2019 IEEE).

In general, as one of the key features of a tumor is a dense microvasculature network,
the tumor model would serve as a good candidate for demonstrating the imaging capability
of SRU and for validating the technical improvements with new approaches for SRU. For
the potential applications of SRU imaging on cancer, the studies mentioned above show
that, with the fine structure of the microvascular networks reconstructed by SRU, several
functional parameters can be accurately derived to help diagnose malignant tumors or
differentiate different tumor types. Several studies have been performed, specifically on
breast cancer, and reported promising results. Experiments on human subjects were also
initiated. Extended clinical studies in the near future are expected for the clinical translation
of this technology.

4.2. Kidney

Chronic kidney disease (CKD), which has a high incidence rate among adults [72,73],
is typically induced by several risk factors, including diabetes, high blood pressure, heart
disease, an episode of acute kidney injury, etc. [72,74]. One mechanism for the progression
of CKD is the degradation of the renal microvasculature and perfusion impairment [75,76].
Therefore, the detection of renal microvascular changes would be of great importance for
the early diagnosis and monitoring of CKD. However, diagnostic tools that enable nonin-
vasive diagnostics and monitoring of renal microvascular alterations during progressive
kidney disease are still lacking. Conventional ultrasound imaging techniques, including
contrast-enhanced ultrasound imaging [21,22] and Doppler ultrasound imaging [20], have
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been explored to evaluate microvascular changes during the disease’s progression. How-
ever, the spatial resolution is not ideal, mainly due to its insufficient sensitivity and the
acoustic diffraction limit [77]. The emerging SRU imaging technique would be a promising
approach to overcoming these barriers.

Several studies have already been successfully conducted on animal kidneys in vivo
to show the capability, as well as the technical improvements, of imaging the renal mi-
crovasculature by SRU [37,43,78,79]. Foiret et al. depicted the microvascular structure and
characterized the vessels with a flow rate below 2 mm/s of rat kidney, with Contrast Pulse
Sequencing (CPS) mode using a 6.9 MHz ultrasound probe (CL15-7, Phillips ATL, MA,
USA) [78]. Song et al. proposed the spatiotemporal NLM denoising method, together
with the bipartite graph microbubble pairing and tracking method, and showed improved
performance of SRU on rabbit kidney [37]. With an operating frequency of 8 MHz and
mechanical index of 0.4, a single renal microvessel as small as 57 μm was identified, and
microvessels that were 76 μm apart were clearly separated. Their group further developed
the Kalman filter-based SRU method and presented a robust measurement of the renal
microvascular flow with reduced MB events in the rabbit kidney [79]. Figure 7a,b shows
the representative SRU images of the renal vascular network in rat and rabbit kidneys from
the studies mentioned above.

 
Figure 7. Representative SRU images of microvasculature from rat kidney (Reprinted with permission
from [78], Copyright 2017 Springer Nature) (a); rabbit kidney using Kalman filter-based method
(Reprinted with permission from Ref. [79]. Copyright 2020 IEEE) (b); healthy human kidney (c);
mouse kidney in group of sham, contralateral uninjured, 21-days after ischemia–reperfusion injury,
and 42-days post injury (Reprinted with permission from Ref. [45]. Copyright 2020 Elsevier) (d).

On the way towards the clinical application of SRU imaging on kidneys, more affir-
mative data from studies on clinically relevant animal models are required. Yang et al.
performed SRU imaging on an acute ischemic–reperfused rat kidney and a normal rat
kidney to investigate the in vivo feasibility of evaluating microvascular changes during
progressive kidney disease. The results showed that the blood flow speed in the injured
rat kidney (<10 mm/s) was much lower than that in the healthy kidney (~30 mm/s) [80].
Similar results was achieved by Andersen et al., suggesting that blood flow in the renal
microvasculature was measured to be slower after ischemia and reperfusion by SRU imag-
ing [81]. Studies that demonstrated the feasibility of SRU for identifying microvascular
alterations during the disease progression, with a larger group of animals and histological
verifications, were performed by Chen et al. [45]. In the study, SRU imaging was performed
in vivo on mouse kidneys of four different groups (n = 5), including control, kidneys post
21 days of ischemia–reperfusion injury, and kidneys post 42 days of injury (Figure 7d),
followed by the histological analysis with a CD31 stain. The results showed that SRU
imaging was able to identify renal microvessels as small as 32 μm (<1/3 λ at the frequency
of 15 MHz) in vivo and allow for quantification of the changes in kidney morphology and
vasculature, including size, rBV, vessel density, and tortuosity, during the progression of
the kidney injury. Changes in renal vascular density in the corticomedullary area were
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validated by a CD31 stain, and a relatively strong correlation was found between SRU and
histological measurement. While the former two studies focused more on the change in
flow velocity, the latter only examined the features derived from structural information.
Future studies that investigate both structural and flow information on the groups of
animals in disease models is highly sought.

The next step towards the future translation of SRU imaging on kidneys would be
studies on human subjects, including healthy and CKD patients. Studies have been initiated
and some preliminary results have already been presented at conferences (Figure 7c) [82].
Motion artifact is one of the major issues to address before successful future translations of
kidney SRU imaging, since the breathing motion affects the locations of the organs in the
abdomen significantly. In the animal studies, most of the groups applied block matching al-
gorithms on the envelope of B-mode data to estimate and correct the translational breathing
motion in lateral and axial directions [37,45,79–81]. Foiret et al. utilized linear optimization
to better correct both translational and rotational motion [78]. However, out-of-plane
motion remains a problem for 2D kidney imaging by using the 1D array transducer. More-
over, breathing motion during human kidney imaging can be more critical compared to
experiments on anesthetized animals. A short scan time might offer a practical solution
so that an SRU imaging session can be completed with minimized motion artifacts while
a human subject holds their breath. In addition, further improvements that enhance MB
signals in depth, in clinical abdominal imaging conditions and extended experiments on a
larger group of human subjects, are required for future clinical translations of SRU imaging.

4.3. Other Applications

SRU was also applied to other organs or animal models, such as the brain, the femoral
artery with atherosclerotic plaque (AP), etc.

The pathological process of the small vessels in the brain has been recognized as a
contributor to cognitive impairment and dementia [83–85]. Therefore, an imaging tool that
can resolve small vessels in the brain would be beneficial for the diagnostics and therapeu-
tics of such neurological diseases. Errico et al. initiated a study of brain microvasculature
imaging using an SRU technique in 2015 (Figure 1c) [29]. Rat brain microvasculature was
imaged with a 15 MHz ultrasound probe through the thinned skull. Vessels as small as
9 μm (1/10 λ) were resolved and the in-plane blood flow profile was achieved, although
the scan time was quite long (150 s). Recently, Huang et al. proposed a method that
separates spatially overlapping MB events into subpopulations based on spatiotemporal
differences in flow dynamics, and successfully visualized chicken embryo brain vasculature
with a shortened scan time (~17s) (Figure 8a) [86]. Compared to the kidney imaging, a
relatively long scan time could be acceptable for brain imaging, for which the physiologic
motions are less pronounced if the ultrasound transducer is fixed to the head. For the future
clinical translation of SRU in brain imaging, attenuation and aberration from the skull
that significantly degrades imaging performance remains a big challenge which requires
further investigation.

Another potential application of SRU is to monitor the development of atherosclerotic
plaque (AP) and predict AP rupture by imaging vasa vasorum (VV) near major vessels. It
has been reported that abnormal proliferation of VV and the infiltration into the AP core is
key evidence of AP progression and vulnerability [10,87–89]. Due to the tiny size of VV,
it is challenging to imaging VV in vivo. In a pilot study, Yu et al. successfully identified
VV in a rabbit AP in vivo, with the spatial resolution of 45 μm, by the deconvolution-
based SRU imaging technique (Figure 8b) [36]. In the follow-up study by the group, the
abnormal proliferation of VV near the rabbit femoral artery that was identified by SRU
was further validated with subsequent histology and ex vivo microcomputed tomography
(μCT), histopathology, and morphology [90]. The experiment protocols and results would
encourage extended preclinical studies with larger group of animals and potential human
studies in the future.

334



Sensors 2021, 21, 2417

 
Figure 8. Representative SRU images of microvasculature in chicken embryo brain (Reprinted
with permission from Ref. [86]. Copyright 2020 Springer Nature) (a), and VV in uninjured (upper
panel) and injured (lower panel) rabbit femoral arteries (Reprinted with permission from Ref. [90].
Copyright 2020 IEEE) (b).

Besides the in vivo studies mentioned above, promising results of microvascular
imaging by SRU were also achieved in vivo in organs, including rabbit lymph nodes [91],
rabbit eyeballs [92], mouse liver [93], and human tibialis anterior muscles [94], which may
contribute to broader applications of SRU imaging.

5. Limitations and Future Directions

As we discussed above, SRU imaging has been continuously improved and applied
in vivo for different applications in animal models and very limited human uses. However,
there are still several major limitations that hinder the eventual clinical translations of this
novel technology.

One of the major limitations is the relatively long scan time. To reconstruct a single
SRU image, the accumulation of a large-scale microbubble backscatter of signals is required,
which results in a long acquisition time. A typical SRU algorithm that localizes the center
of the spatially isolated MBs requires a scan time of several minutes to collect the necessary
data [29]. Since SRU imaging is highly sensitive to motion artifacts, the image quality
will be notably degraded due to physiological or externally induced motion, which is
inevitable during a long scan time. Considering the freehand scan that would be practiced
in future clinical applications, the long scan time would be a big barrier. Harput et al. [94]
suggested a two-stage motion correction algorithm which calculates the combination of
affine and nonrigid image registrations through the motion estimation from the B-mode
image, and corrects the motion artifacts of CEU image. The rigid motion artifact correction
using a phase-correlation technique was also suggested to remove the blurring caused by
subwavelength motions [95]. Although motion correction can help mitigate the motion
artifacts [94,95], it still cannot perfectly solve the problem of motion in real cases, which
combines rigid motion, nonrigid motion, and out-of-plane motions. Some algorithms that
can shorten the scan time have been developed [36,86,92,96], but the spatial resolution
is more or less compromised compared to the algorithm that localizes the isolated MBs.
The large-scale data will also require a high computation cost for image reconstruction.
Utilization of a GPU for data processing could be a solution to reduce the computation
load and to possibly realize SRU image processing in real-time in the future. In some
studies of SRU imaging using a matrix array, a GPU has already been successfully applied
to significantly shorten the computation time for large-scale data set [97–99].

Another limitation is that image quality is highly dependent on MB concentration and
distribution in the blood vessels [77,100]. A low concentration in the vessels will lead to a
long scan time and low signal contrast, while a high concentration will degrade localization
accuracy and, thus, the spatial resolution of the image. Since MBs are systematically
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administrated to the blood vessels, it would be difficult to control the real MB concentration
in the target area in the clinical practice. Moreover, the dosage may need to be adjusted
for different applications in order to have appropriate MB concentration in vessels of the
target organs. Deep learning approaches would be a promising direction to overcome this
challenge while further evaluations are needed. Moreover, in order to make the technology
for broader application in clinics, with no possible safety concerns for some populations,
including pregnant women or subjects potentially allergic to microbubbles etc., it is ideal to
develop a contrast-agent-free super-resolution. However, no fully developed approaches
with ideal performance have been reported so far, except some pioneering initiative works
presented in recent conferences [101].

Currently, most in vivo clinical studies of super-resolution ultrasound imaging tech-
niques are conducted on a 2D B-scan with a 1-D array ultrasound transducer. However,
2D cross sectional imaging has limited resolution in the elevational direction, determined
by the relatively large elevational beamwidth. The 3D SRU imaging techniques using 2D
array arranged 1024 elements in 32 × 32 matrix showed a promising in vitro study result,
with the subwavelength resolution in both lateral and elevational directions [97]. The use
of a fully sampled 2D matrix array, however, is suffering from the heavy computational
complexities of handling huge volumetric data. Several approaches, including (1) an FPGA–
GPU structure-based ultrasound system [102], (2) frequency domain beamforming [103],
and (3) novel transducer configurations such as the sparse array [98] and the row-column
array [99], are suggested to overcome such limitations. An FPGA–GPU structure-based
ultrasound system could manage the huge data size because it benefits from both the FPGA,
for high-speed data transfer, and the GPU for processing [102]. Another study performs the
beamforming of 3D volumetric imaging in the frequency domain to reduce computational
complexity [103]. In addition to these approaches, the sparse array [98]-based volumetric
super-resolution ultrasound imaging technique utilizes half of the channels compared to
the fully sampled array and achieves a comparable resolution [104]. Further research on
sparse array-based super-resolution ultrasound imaging should continue to deal with the
grating lobe [99] and the fastidious optimization process [104] of the sparse array [105].
The other approach, the row–column array-based super-resolution imaging method [99],
reduces the number of connections from N2 to 2N in the N × N 2D array by utilizing two
orthogonal arrays [104]. Although the resolution of the row–column array method is com-
parable, edge artifacts caused by the long element should be suppressed with mechanical
apodization [106].

Besides, for abdominal, transcranial, and brain applications in humans, the tradeoff
between spatial resolution and penetration depth needs to be considered; the imaging
depth will be significantly larger in human subjects. It will be more challenging to detect
microbubbles in the microvessels at deep depth due to acoustic attenuation. Techniques
that can enhance the transmitted energy without destroying MBs, such as coded excita-
tion [107–110], may be one potential solution. Utilization of microbubbles with larger sizes
may also help enhance signals, as reported in the previous study [66].

6. Conclusions

In the past decade, SRU imaging technology that can achieve microvascular images
with spatial resolution beyond the acoustic diffraction limit has been developed and con-
tinuously improved. With the help of unprecedented spatial resolution and reasonable
temporal resolution, this technology could significantly enhance the diagnosis and moni-
toring of the diseases that are associated with abnormal changes of microvasculature. A
number of preclinical studies have already demonstrated the feasibility in vivo on different
models, including tumors, kidneys, brain imaging, etc. Overall, while some challenges
exist for future clinical translation, SRU imaging technology still holds a great potential for
broad clinical applications with a high impact.
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