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Symmetry is a fundamental concept in science and has played a significant role since
the early days of quantum physics. In physics, symmetry characterises the invariance
of a system under certain transformations, being either discrete like mirror symmetry or
continuous like rotational symmetry. In mathematics, symmetries are described by group
theoretic means.

Symmetry methods are still powerful tools in contemporary problems of quantum
mechanics and statistical physics and go beyond the classical Lie groups and algebras.
Examples are the so-called supersymmetric quantum mechanics and the PT–invariance
of non-Hermitian Hamiltonians, but also include duality concepts, besides others. This
Special Issue presents recent contributions to such new fundamental symmetry concepts.

The work by Znojil [1] investigates non-Hermitian PT-symmetric extensions of Bose–
Hubbard-like models. Particular focus is made on perturbations near so-called exceptional
points, that is, points within the real spectrum of non-Hermitian Hamiltonians exhibiting
degeneracy, and its stability under perturbations.

This special issue also contributes several new results on various topics related to
supersymmetric quantum mechanics (SUSY QM). The work by Quesne [2] increases the
number of exactly solvable quantum models by extending the shape-invariance concept
of SUSY QM to deformed SUSY QM models. Gadella et al. [3] present a thorough and
complete study of the various supersymmetric partners of the one-dimensional infinite
square-well model, with particular focus on self-adjoint extensions. The contributions
by the editor discuss the SUSY QM structure of relativistic Hamiltonians. In [4], generic
relativistic Hamiltonians for an arbitrary spin are considered, and a SUSY QM structure
is obtained under certain conditions. In a second contribution [5], the Klein–Gordon
oscillator is discussed explicitly, and SUSY is utilised to find a closed form expression for
the eigenvalues and eigenfunction, as well as for the corresponding Green’s function.

The contributions by Inomata et al. [6] and Zhao et al. [7] reconsider joint transfor-
mations of space and time, mapping different physical systems onto each other. In [6],
the well-known Newton–Hooke duality and its generalization to arbitrary power-law
potentials is reviewed. Here, duality is viewed as a symmetry concept. The contribution [7]
reconsiders space–time transformations, mapping a quadradic system onto that of a free
particle. The close relation of this transformation with the time-dependent Bargmann-
conformal transformation is established and illustrated.

Finally, the contribution by Schulman [8] takes a fresh look into the spreading of wave
packets. Whereas wave packets spreading in a Gaussian-like manner may be localized due
to scattering, it is argued that this localization may not happen for wave packets spreading
faster than in a Gaussian manner.
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Abstract: In an overall framework of quantum mechanics of unitary systems a rather sophisticated
new version of perturbation theory is developed and described. The motivation of such an extension
of the list of the currently available perturbation-approximation recipes was four-fold: (1) its need
results from the quick growth of interest in quantum systems exhibiting parity-time symmetry
(PT -symmetry) and its generalizations; (2) in the context of physics, the necessity of a thorough
update of perturbation theory became clear immediately after the identification of a class of quantum
phase transitions with the non-Hermitian spectral degeneracies at the Kato’s exceptional points (EP);
(3) in the dedicated literature, the EPs are only being studied in the special scenarios characterized by
the spectral geometric multiplicity L equal to one; (4) apparently, one of the decisive reasons may be
seen in the complicated nature of mathematics behind the L ≥ 2 constructions. In our present paper
we show how to overcome the latter, purely technical obstacle. The temporarily forgotten class of the
L > 1 models is shown accessible to a feasible perturbation-approximation analysis. In particular,
an emergence of a counterintuitive connection between the value of L, the structure of the matrix
elements of perturbations, and the possible loss of the stability and unitarity of the processes of the
unfolding of the singularities is given a detailed explanation.

Keywords: non-Hermitian quantum dynamics; unitary vicinity of exceptional points; degenerate
perturbation theory; Hilbert-space geometry near EPs

1. Introduction

The Bender’s and Boettcher’s [1] idea of replacement of Hermiticity H = H† by parity-time
symmetry (PT -symmetry) HPT = PT H of a Hamiltonian responsible for unitary evolution opened,
after an appropriate mathematical completion [2–5] of the theory, a way towards the building
of quantum models exhibiting non-Hermitian degeneracies [6] alias exceptional points (EPs, [7]).
For a fairly realistic illustrative example of possible applications opening multiple new horizons in
phenomenology we could recall, e.g., the well-known phenomenon of Bose–Einstein condensation
is a schematic simplification described by the non-Hermitian but PT -symmetric three-parametric
Hamiltonian

H(GGKN)(γ, v, c) = −iγ
(

a†
1a1 − a†

2a2

)
+ v

(
a†

1a2 + a†
2a1

)
+

c
2

(
a†

1a1 − a†
2a2

)2
. (1)

This Hamiltonian represents an interesting analytic-continuation modification of the conventional
Hermitian Bose–Hubbard Hamiltonian [8–10]. In this form the model was recently paid detailed
attention in Ref. [11]. A consequent application of multiple, often fairly sophisticated forms of
perturbation theory has been shown there to lead to surprising results. In particular, the behavior of
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the bound and resonant states of the system was found to lead to the new and unexpected phenomena
in the dynamical regime characterized by the small coupling constant c. The authors of Ref. [11]
emphasized that new physics may be expected to emerge precisely in the vicinity of the EP-related
dynamical singularities.

These phenomena (simulating not necessarily just the Bose–Einstein condensation of course) were
analyzed, in [11], using several ad hoc, not entirely standard perturbation techniques. The role of an
unperturbed Hamiltonian H0 was assigned, typically, to the extreme EP limits of H. Unfortunately,
only too often the perturbed energies appeared to be complex as a consequence. In other words, the
systems exhibiting PT -symmetry seemed to favor the spontaneous breakdown of this symmetry
near EPs.

In the light of similar results one immediately must ask the question whether such a
“wild behavior” of the EP-related quantum systems is generic. Indeed, an affirmative answer is
often encountered in the studies by mathematicians (see, e.g., [12]). A hidden reason is that they
usually tacitly keep in mind just the “effective theory” and/or the so-called “open quantum system”
dynamical scenario [13].

In the more restrictive context of the unitary quantum mechanics the situation is different: the
“wild behavior” of systems is usually not generic there (cf. also the recent explanatory commentary on
the sources of possible misunderstandings in [14]). Several non-numerical illustrative models may be
found in [15] where typically, the PT -symmetric Bose–Hubbard model of Equation (1) (which behaves
as unstable near its EP singularities [11])) has been replaced by its “softly perturbed” alternative in
which in an arbitrarily small vicinity of its EP singularity, the system remains stable and unitary under
admissible perturbations.

The physics of stability covered by paper [15] can be perceived as one of the main sources of
inspiration of our present study. We intend to replace here the very specific model of Equation (1)
(in which the geometric multiplicity L of all of its EP-related degeneracies was always equal to one) by
a broader class of quantum systems. In a way motivated by the idea of a highly desirable extension
of the currently available menu of the tractable and eligible dynamical scenarios beyond their L = 1
subclass, we will turn attention here to the EP-related degeneracies of the larger, nontrivial geometric
multiplicities L ≥ 2. We will reveal that such a study opens new horizons not only in phenomenology
(where the influence of perturbations becomes strongly dependent on the detailed structure of the
non-Hermitian degeneracy) but also in mathematics (where a rich menu of physical consequences will
be shown reflected by an unexpected adaptability of the geometry of the Hilbert space to the detailed
structure of the perturbation).

The presentation of our results will be organized as follows. First, in Section 2 we will recall a
typical quantum system (viz., a version of the non-Hermitian Bose–Hubbard multi-bosonic model)
in which the EP degeneracies play a decisive phenomenological role. We will explain that although
the model itself only exhibits the maximal-order L = 1 EP degeneracies, such an option represents,
from the purely formal point of view, just one of the eligible dynamical scenarios. In Appendix A
a full classification of the EPs is presented therefore, showing, i.a., that the number of the “anomalous”
EPs of our present interest with L ≥ 2 exhibits an almost exponential growth at the larger matrix
dimension N.

The goals of our considerations are subsequently explained in section 3. For the sake of brevity,
we just pick up the first nontrivial case with L = 2, and we emphasize that even in such a case the
basic features of an appropriate adaptation of perturbation theory may be explained, exhibiting also,
not quite expectedly, a survival of the fairly user-friendly mathematical structure.

In order to make our message self-contained, the known form of the EP-related perturbation
formalism restricted to L = 1 is reviewed in Appendix B. On this background, in a way based on a not
too dissimilar constructive strategy, our present main L ≥ 2 results are then presented and described
in Section 4. We emphasize there the existence of the phenomenological as well as mathematical
subtleties of the large-L models. We show that in our generalized, degenerate-perturbation-theory
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formalism a key role is played by an interplay between its formal mathematical background (viz, the
non-Hermiticity of the Hamiltonians) and its phenomenological aspects (typically, the knowledge of L
must be complemented by an explicit knowledge of the partitioning of Schrödinger equation).

In Section 5, all these aspects of the L > 1 perturbation theory are summarized and illustrated
by a detailed description of the characteristic, not always expected features of the leading-order
approximations. Several related applicability aspects of our present degenerate-perturbation-theory
formalism are finally discussed in Section 6 and in two Appendices. We point out there that some of
the features of the L > 1 theory (e.g., a qualitative, fairly counterintuitive clarification of the concept
of the smallness of perturbations) may be treated as not too different from their L = 1 predecessors.
At the same time, a wealth of new formal challenges is emphasized to emerge, in particular, in the
analyses of the role of perturbations in the specific quantum systems which are required unitary.

2. Exceptional Points

2.1. Bose–Hubbard Model and Exceptional Points of Geometric Multiplicity One, L = 1

Illustrative PT -symmetric Bose–Hubbard Hamiltonian operator (1) commutes with the
number operator

N̂ = a†
1a1 + a†

2a2 . (2)

This means that the number of bosons N is conserved so that after its choice the Hamiltonian
may be represented by a finite-dimensional non-Hermitian K by K matrix H(GGKN)(K, γ, v, c) with
K = N + 1 (see its explicit construction in [11]). Once we fix the units (such that v = 1) and once we
set c = 0 (preserving, for the sake of simplicity, just the first two components of the Hamiltonian),
the resulting one-parametric family of Hamiltonian matrices H(GGKN)(K, γ) can be assigned the
closed-form energy spectra

E(GGKN)
n (K, γ) = (1− γ2)1/2 (1− K + 2n) , n = 0, 1, . . . , K− 1 . (3)

These energies remain real and non-degenerate (i.e., observable) if and only if γ2 < 1.
In loc. cit. it has also been proved that the two interval-boundary values of γ = ±1 are, in the

terminology of the Kato’s mathematical monograph [7], exceptional points (EPs, γ
(EP)
+ = 1 and γ

(EP)
− =

−1). More precisely, one should speak about the very special EPs of maximal order (i.e., of order
K, abbreviated as EPK). The latter observation may be given a more general, model-independent
linear-algebraic background via relation

H(K)(γ(EPK)) Q(EPK) = Q(EPK) J(K)(η) (4)

where
η = lim

γ→γ(EPK)
En(K, γ) , n = 0, 1, . . . , K− 1 (5)

is the limiting degenerate energy. Relation (4) contains the so-called transition matrix Q(EPK) and the
non-diagonal, EPK-related canonical-representation Jordan-block matrix

J(K) (η) =




η 1 0 . . . 0

0 η 1
. . .

...

0 0 η
. . . 0

...
. . . . . . . . . 1

0 . . . 0 0 η




. (6)

5
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As a certain limiting analogue of the conventional set of eigenvectors the transition matrix is
obtainable via the solution of the EPK-related analogue (4) of conventional Schrödinger equation.
For our illustrative example H(GGKN)(K, γ), in particular, all of the K- and γ(EPK)-dependent explicit,
closed forms of solutions Q(EPK) remain non-numerical and may be found constructed in dedicated
paper [15].

2.2. Generic Non-Hermitian Degeneracies with Geometric Multiplicities Larger than One, L > 1

In the common model-building scenarios the γ-dependence of Hamiltonians H(K)(γ) is analytic.
Under this assumption the exceptional points of maximal order as discussed in preceding subsection
represent just one of several possible realizations of a non-Hermitian degeneracy (NHD) with its
characteristic EP-related confluence of eigenvalues (5). Besides the maximal, EPK-related complete
confluence of eigenvectors as described in preceding subsection we may encounter, in general, multiple
other, incomplete confluences of eigenvectors

lim
γ→γ(NHD)

|ψmk[j](γ)〉 = |χj〉 , k[j] = 1, 2, . . . , Mj , Mj ≥ 2 , j = 1, 2, . . . , L . (7)

Here we have M1 + M2 + . . . + ML = K where L is called the geometric multiplicity of the EP
degeneracy [7] (see also Appendix A for more details).

Every EP instant γ(NHD) may be characterized not only by the overall Hilbert-space dimension K
and by the number L ≥ 1 of linearly independent η-related states |χj〉 of Equation (7) but also by a
suitably ordered L-plet of the related subspace dimensions Mj. Thus, in the present L ≥ 2 extension
of preceding subsection the fully non-diagonal Jordan block of Equation (6) must be replaced by the
more general block-diagonal canonical representation of the Hamiltonian,

J (K)(η) =




J(M1) (η) 0 . . . 0

0 J(M2) (η)
. . .

...
...

. . . . . . 0
0 . . . 0 J(ML) (η)




=
L⊕

j=1

J(Mj)(η) . (8)

In parallel, EPK relation (4) must be replaced by its generalization

H(K)(γ(NHD)) Q(NHD) = Q(NHD) J (K)(η) . (9)

Naturally, the direct-sum structure of J (K)(η) becomes reflected by a partitioned-matrix structure
of transition matrices Q(NHD) which are, in general, not block-diagonal of course.

3. Unitary Processes of Collapse at L = 2

A priori one may expect that the existence of anisotropy of the Hilbert space as realized,
in Equation (A18) at L = 1, by an elementary rescaling B(λ) of the basis will also exist at any
larger geometric multiplicity L > 1, i.e., in the unitary quantum systems with the more complicated
structure of the NHD limiting alias quantum phase transition.

3.1. Quantum Physics behind “Degenerate Degeneracies” with L = 2

Hypothetically, the unitary evolution of any PT -symmetric quantum system moving towards a
hiddenly Hermitian EP degeneracy with geometric multiplicity two can be perceived as generated by
a suitable diagonalizable Hamiltonian H(K)(γ) with real spectrum [3]. What is only necessary is that
its (perhaps, properly renumbered) eigenvectors |Φj(γ)〉 obey the L = 2 EP-degeneracy rule

lim
γ→γ(EP)

|Φm(γ)〉 = |χa〉 , m = 0, 1, . . . , M− 1 , (10)

6
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lim
γ→γ(EP)

|ΦM+n(γ)〉 = |χb〉 , n = 0, 1, . . . , N − 1 . (11)

The two limiting eigenvectors |χa〉 and |χb〉 are, by our assumption, linearly independent so that
partitioned matrix (8), i.e., at L = 2 and η = 0, matrix

J (M
⊕

N)(0) =

[
J(M)(0) 0

0 J(N)(0)

]
(12)

will represent the canonical form of our Hamiltonian in the EP limit. The corresponding transition
matrix Q(M

⊕
N) can be then obtained by the solution of the limiting version

H(K)(γ(EP)) Q(M
⊕

N) = Q(M
⊕

N) J (M
⊕

N)(0) (13)

of the initial Schrödinger equation. A few exactly solvable samples of the latter L = 2 degeneracy
process γ→ γ(EP) can be found, e.g., in our recent paper [16].

In all the similar dynamical scenarios one can always find parallels with their simpler L = 1
predecessors. In particular, a return to the situation before the collapse as sampled, at L = 1,
by Equation (A4) below, can be also given the following analogous form

[
Q((M

⊕
N)
]−1

H(K)(γ) Q(M
⊕

N) = J(M
⊕

N)(0) + λ V(K)(γ) , γ 6= γ(EP) (14)

of a “unitarity-compatible” perturbation-theoretic reinterpretation in which the perturbation λ V(K)(γ)

is fully determined by the input matrix Hamiltonian H(K)(γ).

3.2. Unfoldings of Degeneracies under Random Perturbations at L = 2

In a close parallel to the L = 1 Schrödinger’s bound-state problem (A6) let us now start the study
of its L > 1 generalizations by considering the first nontrivial choice of degeneracy with the geometric
multiplicity L = 2. In our present notation the corresponding Schrödinger equation then reads

[
J (M

⊕
N)(0) + λ V(K)

]
|Ψ〉 = ε |Ψ〉 . (15)

Without any loss of generality, we set again η = 0. After such a choice all the eigenvalues ε = ε(λ)

will remain small, and they will vanish in the formal unperturbed-system limit λ→ 0.
In a way paralleling Equation (12), any given matrix of perturbations has to be partitioned as well,

V(K) =

[
V(M,M) V(M,N)

V(N,M) V(N,N)

]
. (16)

Since the four submatrices have dimensions indicated by the superscripts, we shall assume, at
the beginning at least, that all the individual matrix elements of the perturbation matrix V(K) remain
bounded at small λ. This means that the Hamiltonian is dominated by its unperturbed part (12) so that
also the whole perturbed L = 2 Schrödinger Equation (15) has to be partitioned. In order to simplify
the notation we shall write

|Ψ〉 =
(
|ψ(a)�
|ψ(b)�

)
, |ψ(a)� =




ψ
(a)
1

ψ
(a)
2
...

ψ
(a)
M




, |ψ(b)� =




ψ
(b)
1

ψ
(b)
2
...

ψ
(b)
N




(17)
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using the curly-ket symbols for subvectors. This will enable us to proceed in a partial parallel with the
widely studied non-degenerate-EP cases where one has L = 1 (see Refs. [17,18] or Appendix B below
for a compact review).

4. Perturbation Theory at L = 2

4.1. The Recent Change of the Unitary-Evolution Paradigm

From the historical point of view the use of EPs in physics has not been immediate. Only during
the last circa 20 years one notices a perceivable increase of the relevance of the concept in various
branches of theoretical as well as experimental physics. Various innovative EP applications emerged
ranging from the analyses of resonances in classical mechanics [19] and of the so called non-Hermitian
degeneracies in classical optics [6] up to the studies of the wealth of phenomena in quantum physics
of open quantum systems [13,20] or, finally, even of the closed, stable and unitarily evolving quantum
systems [1,2].

All these developments contributed to the motivation of our present study. For the sake of
definiteness, we restricted our attention to the framework of quantum physics, unitary or non-unitary.
In this setting the traditional role of the EPs γ(EP) has always been two-fold. First, in the context of
mathematics, the conventional analyticity assumptions about Hamiltonians

H(γ) = H(γ0) + (γ− γ0) H(1) + (γ− γ0)
2 H(2) + . . . , (18)

and the conventional power-series ansatz for energies

En(γ) = En(γ0) + (γ− γ0) E(1)
n + (γ− γ0)

2 E(2)
n + . . . (19)

(etc.) gave birth to the so-called Rayleigh–Schrödinger perturbation-expansion constructions of the
Schrödinger-equation solutions. It has been revealed that the radius of convergence R of these
perturbation-series solutions is determined by the position of the nearest EP in the complex plane of
the parameter, R = min |γ0 − γ(EP)| [7].

In the other, direct applications of EPs, the localization of singularities γ(EP) only played an
important traditional role in non-unitary, open quantum systems [13]. An explanation is easy: for any
self-adjoint Hamiltonian H(γ) characterizing a closed quantum system, the necessary reality of the
parameter (Im γ = 0) cannot be made compatible with the fact that all of the values of the eligible
(i.e., not accumulation-point) EP parameters are complex, Im γ(EP) 6= 0.

The traditional paradigm has only been changed recently, after Bender with Boettcher [1] managed
to turn attention of physicists’ community to the existence of a broad class of Hamiltonians H(γ) which
happen to be non-Hermitian but parity-time symmetric (PT -symmetric) inK. One of the characteristic
mathematical features of these Hamiltonians is that despite their non-Hermiticity, their whole spectrum
{En} may remain strictly real in a suitable real interval D of the unitarity-compatible parameters γ

(see, e.g., monograph [4] for more details).

4.2. Rearrangement of Schrödinger Equation

With the two subscripts j(a) and j(b) running, in the curly-ket subvectors in (17), from 1 to

N(a) = M and N(b) = N, respectively, we will now only partially fix the norm by setting ψ
(a)
1 = ω(a)

and ψ
(b)
1 = ω(b) or, in a self-explanatory shorthand, ψ

(a,b)
1 = ω(a,b). Next, a parallel to the L = 1

redefinition (A8) of wave functions will be found in its L = 2 extension

8



Symmetry 2020, 12, 1309

|~y(a,b)� =




y(a,b)
1

y(a,b)
2
...

y(a,b)
N(a,b)−1

y(a,b)
N(a,b)




=




ψ
(a,b)
2

ψ
(a,b)
3
...

ψ
(a,b)
N(a,b)

Ω(a,b)




(20)

where the two new, temporarily variable elements Ω(a) and Ω(b) will have to be determined later.
In terms of the four auxiliary symbols

|e(a,b)� =




1
0
...
0




, Π(a,b) =




0 0 0 . . . 0

1 0 0
. . .

...

0
. . . . . . . . . 0

...
. . . 1 0 0

0 . . . 0 1 0




(21)

of dimensions N(a) = M and N(b) = N we will further decompose

|ψ(a,b)� = |e(a,b)� ω(a,b) + Π(a,b) |~y(a,b)� .

In the next step we introduce the L = 2 analogue of the unpartitioned L = 1 vector (A7),

|r〉 =
(
|r(a)�
|r(b)�

)
, |r(a,b)� =




r(a,b)
1

r(a,b)
2
...

r(a,b)
N(a,b)




(22)

with components

r(a,b)
i = ε ω(a,b) δi,1 − λ V

(N(a,b),M)

i,1 ω(a) − λ V
(N(a,b),N)

i,1 ω(b) = r(a,b)
i (ε, ~ω) . (23)

Treating, temporarily, the two not yet specified quantities Ω(a) and Ω(b) as adjustable
matrix-regularization parameters, and replacing the L = 1 auxiliary matrix (A9) by its partitioned
L = 2 counterpart

A(ε) =
[

A(M, ε) 0
0 A(N, ε)

]

we are just left with the problem of finding a suitable L = 2 analogue of relation (A11).
A key to the resolution of the puzzle is found in Equation (21) and in its partitioned direct-sum

extension

Π(M
⊕

N) =

[
Π(a) 0

0 Π(b)

]
.

Using this symbol, we can now rewrite our homogeneous Schrödinger Equation (15) in the
inhomogeneous matrix-inversion representation

(
A−1(ε) + λ V(K) Π(M

⊕
N)
) ( |~y(a)�

|~y(b)�

)
=

(
|r(a)�
|r(b)�

)
(24)

9
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or, equivalently, (
I + λA(ε)V(K) Π(M

⊕
N)
)
|~y〉 = A (ε)|r〉 . (25)

Once we drop the redundant superscripts, and once we add the relevant parameter-dependences
in (25) we obtain relation

(I + λA(ε)V Π) |~y〉 = A(ε) |r(λ, ε, ~ω)〉 . (26)

This is our ultimate, iteration-friendly exact form of our perturbed Schrödinger equation.

4.3. Solutions

Equation (26) yields the ket-vector part of the solution in closed form,

|~y〉 = (I + λA(ε)V Π)−1 A(ε) |r(λ, ε, ~ω)〉 = |~y(solution)(λ, ε, ~ω)〉 . (27)

In the small-perturbation regime the latter formula may be given the conventional Taylor-series
form with

|~y(solution)(λ, ε, ~ω)〉 = A(ε) |r(λ, ε, ~ω)〉 − λA(ε)V ΠA(ε) |r(λ, ε, ~ω)〉+

+ λ2A(ε)V ΠA(ε)V ΠA(ε) |r(λ, ε, ~ω)〉 − . . . . (28)

Naturally, the construction is not yet finished because what is missing is the guarantee
of equivalence between the eigenvalue problem (15) and its matrix-inversion reformulation (24)
containing two redundant parameters. This is the last obstacle, easily circumvented by our setting,
in solution (28), both of the redundant upper-case constants Ω(a) = y(a)

M and Ω(b) = y(b)N equal to zero.
In the light of explicit formula (28), this requirement is equivalent to the pair of relations

y(solution)
M (λ, ε, ω(a), ω(b)) = 0 , y(solution)

M+N (λ, ε, ω(a), ω(b)) = 0 . (29)

Both left-hand-side functions of the three unknown quantities ε, ω(a) and ω(b) are available, due to
formula (28), in closed form. Although both can vary with the three independent unknowns (i.e., with
ε, ω(a) and ω(b)), one of these variables merely plays the role of an optional normalization constant
so that we may set, say, ω2

(a) + ω2
(b) = 1. Thus, the implicit version of the perturbation-expansion

construction of bound states is completed.

5. Schrödinger Equation in Leading-Order Approximation

Two coupled equations (29) determine the bound state. In the spirit of perturbation theory one
may expect that the perturbations happen to be, in some sense, small. At the same time, even the
analysis of the comparatively elementary L = 1 secular Equation (A16) determining the single free
variable (viz., the energy) led to the necessity of a strongly counterintuitive scaling (A18) reflecting,
near the extreme EP boundary of unitarity, the strong anisotropy of the geometry of the physical Hilbert
space. Naturally, at least comparable complications must be expected to be encountered during the
analysis of the more complicated set of two coupled equations (29) representing the secular equation
in its exact L = 2 version, constructed as particularly suitable for systematic approximations.

5.1. Generic Case: Perturbations without Vanishing Elements

Even the most drastic truncation of the formal power series (28) yields already a nontrivial
ket vector

|~y(solution)(λ, ε, ~ω)〉 = A(ε) |r(λ, ε, ~ω)〉 . (30)

Needless to add that what must vanish are the auxiliary variables Ω(a,b) alias two functions which
are available in closed form. Thus, we must solve the following two simplified equations

10
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N($)

∑
k=1

A($)
N($),k

(ε) r($)k (λ, ε, ω(a), ω(b)) = 0 , $ = a, b . (31)

After the insertion of the respective matrix elements A(a,b)
N(a,b),k

(ε) [cf. Equation (A9)] we obtain the

pair of relations

[
M−1

∑
m=0

εm λ V(M,M)
M−m,1

]
ω(a) +

[
M−1

∑
m=0

εm λ V(M,N)
M−m,1

]
ω(b) = εM ω(a) , (32)

[
N−1

∑
n=0

εn λ V(N,M)
N−n,1

]
ω(a) +

[
N−1

∑
n=0

εn λ V(N,N)
N−n,1

]
ω(b) = εN ω(b) . (33)

Obviously, this set can be read as a generalized eigenvalue problem which determines generalized
eigenvectors ~ω at a K-plet of eigenenergies ε which are all defined as roots of the corresponding
generalized secular determinant.

5.2. Hierarchy of Relevance and Reduced Approximations

In the generic case one must assume that the matrix elements of the perturbation do not vanish
and that λ is small, i.e., that also the eigenvalues ε remain small. This enables one to omit all the
asymptotically subdominant corrections and to consider just the linear algebraic system

[
λ V(M,M)

M,1 − εM
]

ω(a) + λ V(M,N)
M,1 ω(b) = 0 , (34)

λ V(N,M)
N,1 ω(a) +

[
λ V(N,N)

N,1 − εN
]

ω(b) = 0 . (35)

The solution of these two simplified coupled linear relations exists if and only if the determinant
of the system vanishes,

det

[
λ V(M,M)

M,1 − εM λ V(M,N)
M,1

λ V(N,M)
N,1 λ V(NN)

N,1 − εN

]
= 0 . (36)

Thus, an ordinary eigenvalue problem is encountered when M = N.

Lemma 1. In the generic equipartitioned cases with M = N ≥ 3 the spectrum ceases to be all real under
bounded perturbations. The loss of unitarity is encountered.

Proof. Both roots εN = λ x of the exactly solvable quadratic algebraic secular Equation (36) may be
guaranteed to be real in a certain domain of parameters. Still, some of the energies themselves are
necessarily complex since ε = N

√
λ x is an N-valued function with values lying on a complex circle.

In the other, non-equipartitioned dynamical scenarios with, say, M > N, the behavior of the
system in an immediate vicinity of its EP extreme is still determined by the asymptotically dominant
part of the secular equation. After an appropriate modification, the above proof still applies.

Lemma 2. In the generic case with M > N ≥ 3 we get, from the dominant part of the generalized eigenvalue
problem (36), a subset (N-plet) of asymptotically dominant eigenvalues ε = O(λ1/N) which cannot be all real.

5.3. Unitary Case: Re-Scaled Perturbations

The loss of unitarity occurring in the L = 1 models was associated with the use of the too broad a
class of norm-bounded perturbations. From our preliminary results described in preceding subsection
one can conclude that a similar loss of unitarity may be also expected to occur, in the generic case,
at L = 2. Indeed, the anisotropy of the physical Hilbert space which reflects the influence of an

11



Symmetry 2020, 12, 1309

EP-related singularity of the Hamiltonian may be expected to lead again to a selective enhancement of
the weight of certain specific matrix elements of perturbations λ V(K).

Once we recall the L = 1 scenario of Appendix B.3 we immediately imagine that the main source
of the apparent universality of the instability under norm-bounded perturbations should be sought,
paradoxically, in the routine but, in our case, entirely inadequate norm-boundedness assumption itself.
Indeed, in a way documented by Lemmas 1 and 2, the loss of the reality of spectra may directly be
attributed to the conventional and comfortable but entirely random, unfounded and formal assumption
of the uniform boundedness of the matrix elements of the perturbations.

Most easily the latter result may be illustrated using the drastically simplified version (36) of the
leading-order secular equation. Dominant role is played there by the quadruplet of matrix elements
V(P,Q)
(P,1) with superscripts P and Q equal to M or N. Once they are assumed λ-independent and

non-vanishing, the leading-order energies read ε = N
√

λ x. Thus, at any N ≥ 3 their N-plet forms an
equilateral N-angle in the complex plane of λ.

The latter observation inspires a remedy. In a way eliminating the N ≥ 3 complex-circle
obstruction one simply has to re-scale the energies as well as all the relevant matrix elements of
the perturbation. In this manner the ansatz

ε = ε(E) =
√

λ E (37)

opens the possibility of the spectrum being real. Another multiplet of postulates

V(M,M)
M−m,1 = λ(M−m)/2 W(M,M)

M−m,1 , V(M,N)
M−m,1 = λ(M−m)/2 W(M,N)

M−m,1 , m = 0, 1, . . . , M− 1 , (38)

and
V(N,M)

N−n,1 = λ(N−n)/2 W(N,M)
N−n,1 , V(N,N)

N−n,1 = λ(N−n)/2 W(N,N)
N−n,1 , n = 0, 1, . . . , N − 1 (39)

now contains a new partitioned matrix W = W(K) which is assumed uniformly bounded.

Lemma 3. There always exists a non-empty (2M + 2N)-dimensional domain D of the “physical” matrix
elements of W for which the leading-order spectrum is all real and non-degenerate, i.e., in the language of physics,
tractable as stable bound-state energies.

Proof. The main consequence of the amended, necessary-condition perturbation-smallness
requirements (38) and (39) is that in our initial, unreduced leading-order generalized eigenvalue
problem (32) + (33), all terms in the sums become of the same order of magnitude. By the scaling we
managed to eliminate the explicit presence of the measure of smallness λ. In other words the input
information about dynamics is formed now by the re-scaled perturbation matrix W which offers an
(2M + 2N)-plet of free O(1) parameters. At the same time, the spectral-definition output is given
by the M + N roots of the corresponding secular equation, i.e., by the roots of an (M + N)-th-degree
polynomial in E, with all its separate coefficients bounded and, in general, non-vanishing. Under these
conditions the assertion of the lemma is obvious.

6. Discussion

6.1. Schrödinger Picture and Quasi-Hermitian Hamiltonians

In the context of the new, Bender- and Boettcher-inspired paradigm the non-Hermiticity of
H(γ) in K may be considered compatible with unitarity whenever the spectrum itself is found real.
The explanation of the apparent paradox is easy: Under certain reasonable mathematical assumptions

12
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(cf. [21]) one can find a non-unitary invertible mapping Ω = Ω(γ) with property Ω†Ω = Θ 6= I which
makes our Hamiltonian self-adjoint,

H(γ)→ h(γ) = Ω(γ) H(γ)Ω(γ) = h†(γ) . (40)

In practice the idea enables one to avoid the use of the “conventional” Hamiltonian h(γ)

(self-adjoint, by construction, in another Hilbert space L) whenever it happens to be “prohibitively
complicated”. In the literature such a type of simplification of calculations is usually attributed
to Dyson [22]. Expectedly, the strategy (also known as preconditioning) proved efficient as a tool
of construction of bound states in nuclear physics [21]. In spite of a certain initial doubts [23,24],
the approach also proved applicable in the quantum physics of scattering [25,26].

From a more abstract theoretical point of view the reference to the “Dyson’s” isospectral
mapping (40) becomes redundant when we reclassify the space K as “unphysical”, and when we
redefine its inner product yielding another, “physical” Hilbert spaceH,

〈ψ1|ψ2〉H = 〈ψ1|Θ|ψ2〉K , |ψ1,2〉 ∈ K . (41)

A new, equivalent, “two-Hilbert-space” version of the Schrödinger picture is obtained in which
the physics described in the correct Hilbert space H is “translated” to its mathematically easier
representation in K. In this sense, the self-adjointness of hypothetical h in hypothetical L is found
equivalent to the self-adjointness of H inH, represented by the relation

H†(γ)Θ(γ) = Θ(γ) H(γ) . (42)

Dieudonné [27] and Scholtz et al [21] suggested to call relation (42) the quasi-Hermiticity of H in
K. In the context of quantum phenomenology a decisive amendment of the formalism may be seen in
the split of the description of dynamics with information carried by the two operators H(γ) and Θ(γ)

defined in K in place of one (viz., of h(γ) living in L).

6.2. Non-Hermitian Degeneracies with L > 2

After the present decisive clarification of the possibility of the replacement of the L = 1 formalism
by its L = 2 generalization, the next move to the further, L > 2 dynamical scenarios is now an almost
elementary exercise. Indeed, in Sections 3–5 it would be sufficient to move from the L = 2 partitioning
of K = N(a) + N(b) to its arbitrary L > 2 analogues (A1) and to the related partitioned vector sets
[sampled, e.g., by Equation (7)] and matrices [sampled, e.g., by Equation (8)]. The L = 2 doublets of
the eligible superscripts (a) and (b) marking the curly kets [cf. (17) or (31), etc.] may be very easily
extended to the L-plets with L > 2, etc.

Along these lines the form of our basic power-series expansion of the perturbed bound-state
kets (28) remains unchanged. The related L = 2 compatibility constraint (29) must only be replaced by
an L-plet of equations

y(solution)
N(aj)

(λ, ε, ~ω) = 0 , j = 1, 2, . . . , L (43)

where the unknown vector ~ω has L components.

6.3. The Next-to-Leading-Order Approximation

In our present paper we did not pay too much attention to the next-to-leading-order (NLO)
approximation where one would have to set

|~y(solution)(λ, ε, ~ω)〉 = A(ε) |r(λ, ε, ~ω)〉 − λA(ε)V ΠA(ε) |r(λ, ε, ~ω)〉 . (44)
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Our main reason was that such a generalization would make the associated compatibility
conditions (43) perceivably more complicated. Indeed, in contrast to the leading-order case, an almost
inessential improvement of the insight in the qualitative features of the quantum system in question
would be accompanied, in the NLO formulae, by the emergence of multiple new matrix elements
of perturbations λ V(K) including even the terms which would be quadratic functions of these
matrix elements.

This being said, it is necessary to add that even on the pragmatic and qualitative level, the omission
of the NLO corrections only seems completely harmful in the open-system setting using bounded
matrices λ V(K) where one does not insist on having the strictly real spectrum. The point is that
whenever one must guarantee the unitarity of the system, the class of the admissible perturbations must
be further restricted. In this sense, unfortunately, an analysis using NLO might prove necessary. Indeed,
the use and precision of the leading-order approximation need not be sufficiently reliable in general.
Even a quick glimpse at the underlying assumptions (38) and (39) reveals that the leading-order
approximation does not incorporate the influence of a large subset of the matrix elements of λ V(K).
At the same time, one must keep in mind that in our present approach the dimension of the matrices
K has been assumed finite. For this reason, in the case of doubts, a turn to the more universal and
brute-force numerical methods might prove to be, in practical calculations, a reasonable alternative to
the rather lengthy and complicated NLO calculations.
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University of Hradec Králové.

Acknowledgments: The author acknowledges the financial support from the Excellence project PřF UHK 2020
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Appendix A. An Exhaustive Classification of the Degeneracies of Exceptional Points

Up to an arbitrary permutation, every partitioning

K = M1 + M2 + . . . + ML (A1)

of the full matrix dimension characterizes a different system and its NHD limit. Thus, we must
postulate, say,

M1 ≥ M2 ≥ . . . ≥ ML ≥ 2

and introduce the schematic multi-indices M1 + M2 + . . . + ML in a way illustrated in Table A1.

Table A1. Eligible EP-related partitioning.

K List

2 2

3 3

4 4 2 + 2

5 5 3 + 2

6 6 4 + 2 3 + 3 2 + 2 + 2

7 7 5 + 2 4 + 3 3 + 2 + 2

8 8 6 + 2 5 + 3 4 + 4 4 + 2 + 2 3 + 3 + 2 2 + 2 + 2 + 2

9 9 7 + 2 6 + 3 5 + 4 5 + 2 + 2 4 + 3 + 2 3 + 3 + 3 3 + 2 + 2 + 2

10 10 8 + 2 7 + 3 6 + 4 6 + 2 + 2 5 + 5 5 + 3 + 2

4 + 4 + 2 4 + 3 + 3 4 + 2 + 2 + 2 3 + 3 + 2 + 2 2 + 2 + 2 + 2 + 2
... . . .

14



Symmetry 2020, 12, 1309

The Table indicates that the nontrivial L > 1 partitioning not containing trivial items Mj = 1 only
exists at K ≥ 4. The value of the count N (K) of the separate nontrivial, L ≥ 2 items is seen to exceed
one only at K = 6. Nevertheless, this count starts growing quickly at the larger Ks (see Table A2). Thus,
the current practice of studying just the EPK models with L = 1 misses in fact the huge majority of the
alternative NHD scenarios. Marginally, it is worth adding that the counts N (K) form a well-known
sequence. In the open-access on-line encyclopedia of integer sequences [28] it is assigned the code
number A083751.

Table A2. The sequence of counts N (K) with K = 2, 3, . . ..

0, 0, 1, 1, 3, 3, 6, 7, 11, 13, 20, 23, 33, 40, 54, 65, 87, 104, 136, 164,

209, 252, 319, 382, 477, 573, 707, 846, 1038, 1237, 1506, 1793, . . . .

For our present purposes, the asymptotic growth of sequence N (K) (which is slightly slower
than exponential) as well as its precise mathematical definition is less relevant. At the realistic, not too
large dimensions K, for example, we might also use some alternative definitions. One of them leads to
values N (K) equal to the first differences (diminished by one) of the special partitions (of the code
number A000041, cf. [29]), or to the first differences of the numbers of trees of diameter four (see the
integer sequence with code number A000094 in [30]). Nevertheless, irrespectively of the choice of
definition let us point out that in the NHD vicinity, the partitioning multi-indices will classify the
phenomenologically non-equivalent physical systems in general. As long as the superscripts (K) are in
fact redundant, we will omit or replace them by the more relevant information about the partitioning,
therefore. In particular, symbol

J (M1
⊕

M2
⊕

...
⊕

ML)(η) (A2)

will represent the general block-diagonal canonical representation J (K)(η) of the Hamiltonian defined
in Equation (8).

Appendix B. Perturbation Theory Near Non-Degenerate Exceptional Points

Appendix B.1. The Choice of Basis at L = 1

Relation (4) can be read as a definition of transition matrix responsible for the canonical K by K
Jordan-block representation

J(K)(η) =
[

Q(EPK)
]−1

H(γ(EPK)) Q(EPK) (A3)

of the EPK L = 1 limit of any given non-Hermitian but PT -symmetric Hamiltonian of
phenomenological relevance. From this point of view one can extend the same transformation (i.e., for
matrices with K < ∞, a mere choice of the basis in Hilbert space) to a vicinity of the EPK singularity.
This yields the Jordan block matrix plus perturbation,

[
Q(EPK)

]−1
H(K)(γ) Q(EPK) = J(K)(η) + λ V(K)(γ) . (A4)

Such a definition contains a redundant but convenient measure λ = O(γ − γ(EPK)) of the
smallness of perturbation.

Due to the conventional postulate of having a specific one-parametric family of Hamiltonians
H(K)(γ) given in advance, the introduction of the concept of perturbation in (A4) is just a formal
step. Nevertheless, the interaction term itself could be also reinterpreted as a model-independent
random perturbation which carries the input dynamical information. From such a perspective every

preselected perturbation term defines a different Hamiltonian H̃(K)) which merely coincides with
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H(K)(γ) in the NHD limit γ → γ(EP) (a few exactly solvable samples of such a truly remarkable
Hamiltonian matching may be found in [15]). This means that via relation

J(K)(η) + λ V(K) =
[

Q(EPK)
]−1

H̃(K)) Q(EPK) (A5)

[i.e., via a mere reordering of relation (A4)] we obtain a new picture of physics in which the resulting
tilded Hamiltonian with real spectrum need not be PT -symmetric at all.

Appendix B.2. The Description of the Unfolding of the Degeneracy at L = 1

A specific constructive extension of the latter observation has been presented in our recent
paper [18]. We were able there to prove that in the NHD dynamical regime, the mere boundedness
of the norm of matrix V(K) together with the smallness of parameter λ still do not guarantee the
survival of the unitarity of the system after perturbation. We showed there (cf. also [14]) that one can
guarantee the absence of a “quantum catastrophe” (i.e., of an abrupt change of some of the system’s
observable features, see [31–33]) only via a certain self-consistent revision of the criteria of smallness of
matrix V(K).

Having in mind the parameter-independence and invertibility of the transformation matrix Q(EPK)

the quantification of the influence of the perturbation is of enormous interest, among others, in the
analysis of stability of the system in question [12]. This was the reason we also addressed the L = 1
perturbative bound-state problem

[
J(K)(0) + λ V(K)

]
|Ψ〉 = ε |Ψ〉 , (A6)

with η = 0 in Ref. [17]. With the ket-vector subscripts j in |Ψj〉 running from 1 to K we fixed the norm
(by setting |Ψ1〉 = 1), and we relocated the first column of Equation (A6), viz., vector

~r =~r(λ) =




ε− λ V1,1

−λ V2,1
...

−λ VK,1




(A7)

to the right-hand side of the equation. Then we restored the comfortable square-matrix form of the
equation via its two further equivalent modifications. First we added a new, temporarily undetermined
auxiliary component ΩK to an “upgrade” of the wave function

~y =




y1

y2
...

yK−1

yK




=




|Ψ2〉
|Ψ3〉

...
|ΨK〉
ΩK




. (A8)

Subsequently, an introduction of the following auxiliary lower-triangular K by K matrix

A = A(K, ε) =




1 0 0 . . . 0

ε 1 0
. . .

...

ε2 ε
. . . . . . 0

...
. . . . . . 1 0

εK−1 . . . ε2 ε 1




(A9)
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and of its two-diagonal inverse

A−1 =




1 0 0 . . . 0

−ε 1 0
. . .

...

0 −ε
. . . . . . 0

...
. . . . . . 1 0

0 . . . 0 −ε 1




(A10)

accompanied by a parallel formal upgrade of the interaction matrix,

V(K) → Z =




V1,2 V1,3 . . . V1,K 0
V2,2 V2,3 . . . V2,K 0

. . . . . . . . .
...

...
VK,2 VK,3 . . . VK,K 0




(A11)

enabled us to rewrite our initial homogeneous Schrödinger Equation (A6), in the last step of the
construction of its solution, in an equivalent matrix-inversion form

(A−1 + λ Z)~y =~r (A12)

or, better,
(I + λ A Z)~y = A~r (A13)

accompanied by the innocent-looking but important self-consistence constraint

ΩK = 0 . (A14)

In the leading-order application of the recipe we then returned to the slightly vague assumption
of the “sufficient smallness” of the perturbation. On these grounds we recalled the formal Taylor-series
expansion of the resolvent which yielded the closed formula

~y(solution)(ε) = A~r− λ A Z A~r + λ2 A Z A Z A~r− . . . (A15)

for the modified wave function. It contained a free parameter ε which had to be fixed via the
supplementary secular Equation (A14). In the light of the Taylor-series formula (A15), such a secular
equation now acquires the K-th-vector-component form

yK
(solution)(ε) = 0 . (A16)

of an explicit transcendental equation for the energies ε.

Appendix B.3. Unitary-Evolution Process of Unfolding at L = 1

The latter constraint (A14) plays the role of an implicit definition of the spectrum. The K-plet of
roots εn = εn(λ), n = 1, 2, . . . , K represents the bound-state energies. After the truncation of the series,
just approximate solutions are being obtained. In Ref. [17], incidentally, even the leading-order roots
were found complex in general.

This observation was interpreted as indicating that in an immediate EPK vicinity the
norm-bounded perturbations λ V should still be considered, in the unitary theory, “inadmissibly
large”. The non-unitary, open-quantum system interpretation of the perturbations proved needed
forcing the system to perform, at an arbitrarily small but non-vanishing λ 6= 0, an abrupt quantum
phase transition.
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Incidentally, qualitatively the same conclusions were also obtained in the above-mentioned more
concrete study [11] of the specific Bose–Hubbard model in its EPK dynamical regime. The resolution
of an apparent universal-instability paradox was provided in our subsequent study [18] in which we
studied the underlying exact as well as approximate secular equations in more detail. Our ultimate
conclusion was that the necessary smallness condition specifying the class of the admissible, unitarity
non-violating perturbations does not involve their upper-triangular matrix part at all. In contrast, their
lower-triangular matrix part must be given the following, matrix-element-dependent form

λ V(K)
(admissible) =




λ1/2µ11 0 . . . 0 0 0

λ µ21 λ1/2µ22 . . . 0 0 0

λ3/2 µ31 λ µ32
. . .

...
... 0

λ2µ41 λ3/2 µ42
. . . . . . 0 0

...
...

. . . λ µK−1K−2 λ1/2µK−1K−1 0

λK/2µK1 λ(K−1)/2µK2 . . . λ3/2 µKK−2 λ µKK−1 λ1/2µKK




. (A17)

During the decrease of λ → 0, all the variable lower-triangle matrix-element parameters must
remain bounded, µj,k = O(1). In other words, as long as we are working in a specific, fixed
“unperturbed” basis, the matrix structure (A17) may be interpreted as manifesting a characteristic
anisotropy and the hierarchically ordered weights of influence of the separate matrix elements. Indeed,
we may re-scale

λ V(K)
(admissible) = λ1/2 B(λ)V(reduced) B−1(λ) (A18)

where B(λ) would be a diagonal matrix with elements Bjj(λ) = λj/2 and where the reduced

perturbation matrix would be bounded, V(reduced)
jk = O(1).

On this necessary-condition background valid at all dimensions K, the samples of sufficient
conditions retain a purely numerical trial-and-error character, with the small−K non-numerical
exceptions discussed, in [18], for the matrix dimensions up to K = 5.
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12. Krejčiřík, D.; Siegl, P.; Tater, M.; Viola, J. Pseudospectra in non-Hermitian quantum mechanics. J. Math. Phys.
2015, 56, 103513.

18



Symmetry 2020, 12, 1309

13. Moiseyev, N. Non-Hermitian Quantum Mechanics; CUP: Cambridge, UK, 2011.
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Abstract: We show that the method developed by Gangopadhyaya, Mallow, and their coworkers
to deal with (translational) shape invariant potentials in supersymmetric quantum mechanics and
consisting in replacing the shape invariance condition, which is a difference-differential equation,
which, by an infinite set of partial differential equations, can be generalized to deformed shape
invariant potentials in deformed supersymmetric quantum mechanics. The extended method is
illustrated by several examples, corresponding both to h̄-independent superpotentials and to a
superpotential explicitly depending on h̄.

Keywords: quantum mechanics; supersymmetry; shape invariance; curved space; position-dependent mass

PACS: 03.65.Fd; 03.65.Ge

1. Introduction

Exactly solvable (ES) Schrödinger equations (SE) allow us to understand some physical
phenomena and to test some approximation schemes. Supersymmetric quantum mechanics
(SUSYQM) [1–4] is known to be a very powerful method for generating such ES models, especially
whenever the corresponding potential is (translationally) shape invariant (SI) [5]. SUSYQM may be
considered as a modern version of the old Darboux transformation [6] and of the factorization method
used by Schrödinger [7–9] and by Infeld and Hull [10].

Some ten years ago, the list of (translational) SI potentials, whose bound-state wavefunctions
can be expressed in terms of classical orthogonal polynomials (COP) [1] has been completed (see [11]
and references quoted therein) by introducing [12–15] some rational extensions of these potentials,
connected with the novel field of exceptional orthogonal polynomials (EOP) [16]. The latter are
polynomial sets which are orthogonal and complete, but, in contrast with COP, admit a finite number
of gaps in the sequence of their degrees.

ES models for some unconventional SE are also very interesting. These unconventional
equations may be of three different kinds. They may occur whenever the standard commutation
relations are replaced by deformed ones, associated with nonzero minimal uncertainties in position
and/or momentum [17–19], as suggested by several investigations in string theory and quantum
gravity [20]. They may also appear whenever the constant mass of the conventional SE is replaced by
a position-dependent mass (PDM). The latter is an essential ingredient in the study of electronic
properties of semiconductor heterostructures [21,22], quantum wells and quantum dots [23,24],
helium clusters [25], graded crystals [26], quantum liquids [27], metal clusters [28], nuclei [29,30],
nanowire structures [31], and neutron stars [32]. A third possibility corresponds to the replacement
of the Euclidean space by a curved one. The study of the Kepler–Coulomb problem on the sphere
dates back to the work of Schrödinger [7], Infeld [33], and Stevenson [34], and was generalized to a

21



Symmetry 2020, 12, 1853

hyperbolic space by Infeld and Schild [35]. Since then, many studies have been devoted to this topic
(see [36,37]).

As shown elsewhere [38], there are some intimate connections between these three types of
unconventional SE, occurring whenever a specific relation exists between the deforming function f (x),
the PDM m(x), and the (diagonal) metric tensor g(x). Such unconventional SE may then be discussed
in the framework of deformed SUSYQM (DSUSYQM), where the standard SI condition is replaced
by a deformed one (DSI) [39,40]. On starting from the known superpotentials of SI potentials [1],
a procedure has been devised in [39] to maintain the solvability of the DSI condition, thereby resulting
in a list of deformed superpotentials and deforming functions giving rise to bound-state spectra.
In such a deformed case, physically acceptable wavefunctions have not only to be square integrable
on the defining interval of the potential, but also must ensure the Hermiticity of the Hamiltonian.
More recently [41], this list of deformed superpotentials and deforming functions has been completed
by considering the case of some rationally-extended potentials, connected with one-indexed families
of EOP.

In the case of conventional SUSYQM, Gangopadhyaya, Mallow, and their coworkers proposed
an interesting approach to SI potentials, consisting in replacing the SI condition, which is a
difference-differential equation, by an infinite set of partial differential equations. The latter is obtained
by expanding the superpotential in powers of h̄ and expressing that the coefficient of each power must
separately vanish [42]. This procedure enabled them to prove that the SI superpotentials connected
with COP are those with no explicit dependence on h̄, while the new ones related to EOP have such an
explicit dependence [43]. They also showed that the list of the former given in [1] is complete [44] and
constructed a novel example of SI superpotential with an explicit h̄-dependence [45]. Furthermore,
they encountered a pathway for going from those superpotentials of [1] corresponding to SE that
can be reduced to the confluent hypergeometric equation to those related to SE connected with the
hypergeometric equation [46].

It is the purpose of the present paper to propose an extension of the approach of Gangopadhyaya,
Mallow, and their coworkers to the case of DSI potentials in DSUSYQM, both without and with
explicit dependence of the superpotential on h̄. We plan to illustrate this method by re-examining
the known pairs of deformed superpotentials and deforming functions of [39–41] along these lines.
In the present work, we restrict ourselves to unbroken DSUSYQM and only consider the discrete part
of the spectrum.

After reviewing the general formalism of DSUSYQM and obtaining the DSI condition in Section 2,
we will show in Section 3 how to convert such a condition into a set of partial differential equations
in the case where the superpotential does not contain any dependence on h̄. The case where the
superpotential has such an explicit dependence is then treated in Section 4. Finally, Section 5 contains
the conclusion.

2. Deformed Shape Invariance in Deformed Supersymmetric Quantum Mechanics

In DSUSYQM [39–41], a general Hamiltonian H− is written in terms of linear operators

A± = A±(a) = ∓h̄
√

f (x)
d

dx

√
f (x) + W(x, a), (1)

where f (x) is some positive-definite function of x, known as the deforming function, and W(x, a) is
a real function of x and a parameter a, called the superpotential. Both f (x) and W(x, a) in general
depend on some extra parameters. The Hamiltonian H− is given by

H− = A+A− = −h̄2
√

f (x)
d

dx
f (x)

d
dx

√
f (x) + V−(x, a), (2)
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where

V−(x, a) = W2(x, a)− h̄ f (x)
dW(x, a)

dx
. (3)

It may be interpreted [38] as a Hamiltonian describing a PDM system with m(x) = 1/ f 2(x),
the ordering of the latter and the differential operator d/dx being that proposed by Mustafa
and Mazharimousavi [47], or as a Hamiltonian in a curved space with a diagonal metric tensor
g(x) = 1/ f 2(x).

The product of operators A−A+ generates the so-called partner of H−,

H+ = A−A+ = −h̄2
√

f (x)
d

dx
f (x)

d
dx

√
f (x) + V+(x, a), (4)

with

V+(x, a) = W2(x, a) + h̄ f (x)
dW(x, a)

dx
. (5)

The pair of Hamiltonians intertwine with A+ and A− as

A−H− = H+A−, A+H+ = H−A+. (6)

The Hamiltonian H− is assumed to have a ground-state wavefunction ψ
(−)
0 (x, a), such that

A−ψ
(−)
0 (x, a) = 0. (7)

From (1) and (2), the latter is therefore such that E(−)
0 = 0 and

ψ
(−)
0 (x, a) =

N(−)
0√
f (x)

exp
(
−
∫ x W(x′, a)

h̄ f (x′)
dx′
)

, (8)

where N(−)
0 is the normalization coefficient.

The intertwining relations (6) then imply the following isospectrality relationships among the
eigenvalues and eigenfunctions of the two partners,

E(−)
n+1 = E(+)

n , (9)

ψ
(+)
n (x, a) =

A−√
E(+)

n

ψ
(−)
n+1(x, a), ψ

(−)
n+1(x, a) =

A+

√
E(+)

n

ψ
(+)
n (x, a), (10)

for all n ≥ 0 such that physically acceptable wavefunctions exist. In the deformed case considered
here, this imposes that they satisfy two conditions [39]:
(i) As for conventional SE, they should be square integrable on the (finite or infinite) interval of
definition (x1, x2) of the potentials V±(x, a)—i.e.,

∫ x2

x1

dx |ψ(±)
n (x, a)|2 < ∞. (11)

(ii) They should ensure the Hermiticity of H±. This amounts to the condition

|ψ(±)
n (x, a))|2 f (x)→ 0 for x → x1 and x → x2, (12)

which implies an additional restriction whenever f (x) → ∞ for x → x1 and/or x → x2.
Equations (11) and (12) ensure the self-adjointness of H± and guarantee the relation (A±)† = A∓.
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The knowledge of the eigenvalues and eigenfunctions of H− automatically implies the same for
its partner H+ (or vice versa). However, whenever the partner potentials V− and V+ are similar in
shape and differ only in the parameters that appear in them—i.e.,

V+(x, a0) + g(a0) = V−(x, a1) + g(a1), (13)

where a1 is some function of a0 and g(a0), g(a1) do not depend on x, then the spectrum of either
Hamiltonian can be derived without reference to its partner. Here we restrict ourselves to the case
of translational (or additive) shape invariance—i.e., a1 and a0 only differ by some additive constant.
Considering then a set of parameters ai, i = 0, 1, 2, . . ., and extending condition (13) to

V+(x, ai) + g(ai) = V−(x, ai+1) + g(ai+1), i = 0, 1, 2, . . . , (14)

we get from Equations (3) and (5) the so-called DSI condition

W2(x, ai) + h̄ f (x)
dW(x, ai)

dx
+ g(ai) = W2(x, ai+1)− h̄ f (x)

dW(x, ai+1)

dx
+ g(ai+1). (15)

The eigenvalues and eigenfunctions of H− turn out to be given by

E(−)
n (a0) = g(an)− g(a0), n = 0, 1, 2, . . . , (16)

ψ
(−)
n (x, a0) ∝ A+(a0)A+(a1) . . . A+(an−1)ψ

(−)
0 (x, an), n = 0, 1, 2, . . . , (17)

with ψ
(−)
0 (x, an) as expressed in (8).

3. Deformed Shape Invariance for Superpotentials with no Explicit Dependence on h̄

As in [42–46], let us assume that the additive constant that allows us to get ai+1 from ai is just
h̄—i.e., ai+1 = ai + h̄. Note that, with respect to conventions used elsewhere where the system of units
is such that h̄ = 1, this implies some parameter re-normalization. In Appendix A, we summarize the
transformations that have to be carried out on the parameters and possibly the variable used in [39–41]
in order to arrive at the conventions employed here.

In the present section, we will also suppose that the dependence of W(x, ai) on h̄ is entirely
contained in ai, thus leaving the case of an explicit dependence of W on h̄ to Section 4.

Since Equation (15) must hold for an arbitrary value of h̄, we can expand it in powers of h̄ and
require that the coefficient of each power vanishes. It is straightforward to show that the coefficient of
h̄ leads to the condition

W
∂W
∂a
− f (x)

∂W
∂x

+
1
2

dg
da

= 0. (18)

Then, the coefficient of h̄2 yields

∂

∂a

[
W

∂W
∂a
− f (x)

∂W
∂x

+
1
2

dg
da

]
= 0, (19)

which is automatically satisfied if Equation (18) is so. Finally, the coefficient of h̄n for n ≥ 3
gives the condition

(2− n) f (x)
n!

∂nW
∂an−1∂x

= 0, n = 3, 4, . . . . (20)

This set of equations is satisfied, provided

∂3W
∂a2∂x

= 0. (21)
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We are therefore left with two independent conditions (18) and (21). This is similar to what
happens in SUSYQM [43,44], the only difference being the appearance of the deforming function f (x)
in the first equation.

Before giving the set of results, we shall discuss in detail two examples, a simple one and a more
involved one.

3.1. Example of the Pöschl-Teller Potential

Let us consider a deforming function f (x) = 1 + α sin2 x with −1 < α 6= 0 and −π
2 < x < π

2 ,
as well as a superpotential

W(x, a) = (1 + α)a tan x, −π

2
< x <

π

2
, (22)

where
a =

1
2(1 + α)

[(1 + α)h̄ + ∆], ∆ =
√
(1 + α)2h̄2 + 4A(A− h̄), A > h̄. (23)

We note that this W automatically satisfies Equation (21) and that, on inserting it in Equation (18),
we obtain

dg
da

= 2(1 + α)a, (24)

from which g(a) = (1 + α)a2, up to some additive constant.
From Equation (3), the starting potential can be written as

V−(x, a) = (1 + α)2a(a− h̄) sec2 x− (1 + α)a[(1 + α)a− h̄α]

= A(A− h̄) sec2 x−
{

A(A− h̄) +
1
2

h̄[(1 + α)h̄ + ∆]
}

, (25)

and therefore corresponds to the Pöschl–Teller (PT) potential V = A(A− h̄) sec2 x with ground-state
energy E0 = A(A− h̄) + 1

2 h̄[(1 + α)h̄ + ∆]. On the other hand, from (16), we get

E(−)
n = g(a + nh̄)− g(a) = h̄2(1 + α)n(n + 1) + h̄∆n. (26)

The results obtained here may be compared with those derived in [40] for V̄ = Ā(Ā− 1) sec2 x̄,
with bound-state energies Ēn = (E(−)

n + E0)/h̄2 = (λ̄ + n)2 − ᾱ(λ̄− n2), where λ̄ = (1 + ᾱ)a/h̄ is
changed into λ̄ + 1 + ᾱ when going to the partner.

3.2. Example of the Radial Harmonic Oscillator Potential

Let us now consider a deforming function f (x) = 1 + αx2 with α > 0 and 0 < x < ∞,
as well as a superpotential

W(x, a) = a
(
− 1

x
+ αx

)
− b

(
1
x
+ αx

)
, 0 < x < ∞, (27)

where

a =
1
2

(
l + 1 +

1
2

h̄ +
∆
2α

)
, b =

1
2

(
l + 1− 1

2
h̄− ∆

2α

)
,

∆ =

√
ω2 + h̄2α2, ω > 0, l = 0, 1, 2, . . . . (28)
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Here, when going to the partner, a is assumed to change into a + h̄, while b remains constant.
This W automatically satisfies Equation (21) again and Equation (18) leads to

dg
da

= 8αa, (29)

from which g(a) = 4αa2, up to some additive constant.
Equation (3) shows that the starting potential is given by

V−(x, a) = α2(a− b)(a− b− h̄)x2 +
(a + b)(a + b− h̄)

x2 − 2α(a2 − b2 + h̄a)

=
1
4

ω2x2 +
(l + 1)(l + 1− h̄)

x2 −
[(

l + 1 +
h̄
2

)
∆ + h̄α

(
2l + 2 +

1
2

h̄
)]

(30)

and therefore corresponds to the radial harmonic oscillator (RHO) potential V = 1
4 ω2x2 + (l+1)(l+1−h̄)

x2

with ground-state energy E0 =
(

l + 1 + h̄
2

)
∆ + h̄α

(
2l + 2 + 1

2 h̄
)

. Furthermore, Equation (16) leads to

E(−)
n = g(a + nh̄)− g(a) = 4h̄αn

[(
n +

1
2

)
h̄ + l + 1

]
+ 2h̄n∆. (31)

These results are comparable with those obtained in [40] for V̄ = 1
4 ω̄2 x̄2 + l̄(l̄ + 1)/x̄2 with

bound-state energies Ēn = E(−)
n + E0 = 2λ̄µ̄− ᾱλ̄ + µ̄− 4(ᾱλ̄− µ̄)n + 4ᾱn2, where λ̄ = −(a + b)/h̄

and µ̄ = (a− b)h̄α are changed into λ̄− 1 and µ̄ + ᾱ when going to the partner, respectively.

3.3. Lists of Results

On proceeding, as in Sections 3.1 and 3.2, we analyzed the other sets of potentials and deforming
functions considered in [39–41]. They include the Scarf I (S), radial Coulomb (C), Morse (M), Eckart (E),
Rosen-Morse I (RM), shifted harmonic oscillator (SHO), deformed radial harmonic oscillator (DRHO),
and deformed radial Coulomb (DC) potentials. The list of them is given in Table 1 in the notations
used in this paper. In all the cases, except for the PT and DC potentials, the deformed superpotential is
written in terms of two combinations of parameters, the first one a being changed into a + h̄ and the
second one b remaining constant when going to the partner. The corresponding results are listed in
Table 2. In all cases, it turns out that Equation (21) is automatically satisfied, while Equation (18) leads
to the expressions of g(a) listed in Table 3, together with the resulting energies E(−)

n .

Table 1. Potentials and deforming functions.

Name V f

PT A(A− h̄) sec2 x 1 + α sin2 x

−π
2 < x < π

2 , A > h̄ −1 < α 6= 0

RHO 1
4 ω2x2 + (l+1)(l+1−h̄)

x2 1 + αx2

0 < x < +∞ α > 0

S [A(A− h̄) + B2] sec2 x− B(2A− h̄) sec x tan x 1 + α sin x

−π
2 < x < π

2 , A− h̄ > B > 0 0 < |α| < 1

C − e2

x + (l+1)(l+1−h̄)
x2 1 + αx

0 < x < +∞ α > 0

M B2e−2x − B(2A + h̄)e−x 1 + αe−x

−∞ < x < +∞, A, B > 0 α > 0
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Table 1. Cont.

Name V f

E A(A− h̄) csch2 x− 2B coth x 1 + αe−x sinh x

0 < x < +∞, A ≥ 3
2 h̄, B > A2 −2 < α 6= 0

RM A(A− h̄) csc2 x + 2B cot x 1 + sin x(α cos x + β sin x)

0 < x < π, A ≥ 3
2 h̄ |α|

2 <
√

1 + β, β > −1

SHO 1
4 ω2

(
x− 2d

ω

)2
1 + αx2 + 2βx

−∞ < x < +∞ α > β2 ≥ 0

DRHO ω(ω+2h̄λ)x2

4(1+λx2)
+ (l+1)(l+1−h̄)

x2

√
1 + λx2

0 < x < +∞ if λ > 0

0 < x < 1/
√
|λ| if λ < 0

DC − e2

x

√
1 + λx2 + (l+1)(l+1−h̄)

x2

√
1 + λx2

0 < x < +∞ if λ > 0

0 < x < 1/
√
|λ| if λ < 0

Table 2. Superpotentials and combinations of parameters.

Name W Parameters

PT (1 + α)a tan x a = 1
2(1+α)

[(1 + α)h̄ + ∆]

∆ =
√
(1 + α)2h̄2 + 4A(A− h̄)

RHO a
(
− 1

x + αx
)
− b

(
1
x + αx

)
a = 1

2

(
l + 1 + 1

2 h̄ + ∆
2α

)

b = 1
2

(
l + 1− 1

2 h̄− ∆
2α

)

∆ =
√

ω2 + h̄2α2

S a(tan x + α sec x) a = 1
2

(
h̄ + α−1

2α ∆+ + α+1
2α ∆−

)

+b(tan x− α sec x) b = 1
4α [(α + 1)∆+ + (α− 1)∆−]

∆± =
√

1
4 h̄2(1∓ α)2 + (A± B)(A± B− h̄)

C − a+b
x + 2b

a+b − α
2 (a + b) a = − 1

4{e2 + (l + 1)[α(l + 1− h̄)− 4]}
b = 1

4 [e
2 + α(l + 1)(l + 1− h̄)]

M −α(a + b)e−x − 1
2 (a + b) a = − 1

4h̄α{B2 + α[B(2A + h̄)− 2h̄2]− 2h̄∆}
+ 2h̄b

α(a+b) b = B
4h̄α [B + α(2A + h̄)]

∆ =
√

4B2 + h̄2α2

E −(a + b) coth x + 2h̄b
a+b a = 1

2h̄ [−B + 2h̄A− α
2 A(A− h̄)]

− α
2 (a + b) b = 1

2h̄ [B + α
2 A(A− h̄)]

RM −(a + b) cot x + 2h̄b
a+b a = 1

2h̄ [B + 2h̄A− α
2 A(A− h̄)]

− α
2 (a + b) b = 1

2h̄ [−B + α
2 A(A− h̄)]
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Table 2. Cont.

Name W Parameters

SHO (a + b)(αx + β) a = h̄
2

(
−h̄ β

4α ω2 + 1 + ∆
h̄α − d

2 h̄ω
)

− 2b
h̄2α(a+b) b = 1

2 h̄2ω
(

β
4α ω + d

2

)

∆ =
√

ω2 + h̄2α2

DRHO a
(
− 1

x f − λx
f

)
a = 1

2
(
l + 1− ω

2λ

)

+b
(
− 1

x f + λx
f

)
b = 1

2
(
l + 1 + ω

2λ

)

DC − a
x f + e2

2a a = l + 1

Table 3. Functions g(a) and bound-state energies.

Name g E(−)
n

PT (1 + α)a2 h̄2(1 + α)n(n + 1) + h̄∆n

RHO 4αa2 4h̄αn
[(

n + 1
2

)
h̄ + l + 1

]
+ 2h̄n∆

S (1− α2)a2 h̄2(1− α2)n(n + 1) + h̄ [(1 + α)∆+ + (1− α)∆−] n

+2(1 + α2)ab

C − 4b2

(a+b)2 h̄n(h̄n + 2l + 2)[e2 − h̄α(l + 1)(n + 1)]

− α2

4 a(a + 2b) ×[e2 + α(l + 1)(h̄n + 2l + 2− h̄)]

×[4(l + 1)2(l + 1 + nh̄)2]−1

M − 4h̄2b2

α2(a+b)2 h̄n[∆ + h̄α(n + 1)][2B(2A + h̄)− h̄(∆ + αh̄)(n + 1)]

− 1
4 a(a + 2b) ×[4B2 + 2αB(2A + h̄) + h̄α(∆ + h̄α)(n + 1)]

×(∆ + h̄α)−2[∆ + (2n + 1)h̄α]−2

E − 4h̄2b2

(a+b)2 h̄n(2A + nh̄)[4A2(A + nh̄)2]−1

− 1
4 (α + 2)2a(a + 2b) ×{2B + 2A(A + nh̄) + αA[2A + (n− 1)h̄]}

×[2B− 2A(A + nh̄)− h̄αA(n + 1)]

RM − 4h̄2b2

(a+b)2 h̄n(2A + nh̄)[4A2(A + nh̄)2]−1

− 1
4 (α

2 − 4β− 4)a(a + 2b) ×{4A2(A + nh̄)2 + 4B2 − 4αBA(A− h̄)

−h̄α2 A2[2A− h̄ + n(2A + nh̄)]− 4βA2(A + nh̄)2}

SHO − 4b2

h̄4α2(a+b)2 4n[∆ + (n + 1)h̄α]

+(α− β2)a(a + 2b) ×{(∆ + h̄α)[∆ + h̄α(2n + 1)]}−2

×{h̄3α(α− β2)(n + 1)[2h̄2α2(n + 1) + ω2(n + 2)]

+dω2(β + h̄αd) + 1
4 h̄ω4

+h̄2∆(α− β2)(n + 1)[2h̄2α2(n + 1) + ω2]}
DRHO −4λa2 2nh̄ω− 4h̄λn(l + 1 + h̄n)

DC −λa2 − e4

4a2 nh̄(2l + 2 + nh̄)

×
(
−λ + e4

4(l+1)2(l+1+nh̄)2

)
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4. Deformed Shape Invariance for Superpotentials with an Explicit Dependence on h̄

Let us next consider the case where the superpotential contains an explicit dependence on h̄.
It may then be expanded in powers of h̄ as

W(x, a, h̄) =
∞

∑
n=0

h̄nWn(x, a). (32)

On inserting this expression in the DSI condition (15) and proceeding as in conventional
SUSYQM [43,44], we arrive at the set of relations

n

∑
k=0

WkWn−k + f
∂Wn−1

∂x
−

n

∑
s=0

s

∑
k=0

1
(n− s)!

∂n−s

∂an−s WkWs−k

+ f
n

∑
k=1

1
(k− 1)!

∂k

∂ak−1∂x
Wn−k −

1
n!

dng
dan = 0, n = 1, 2, . . . . (33)

The latter can be rewritten as

2 f
∂W0

∂x
− ∂

∂a
(W2

0 + g) = 0, (34)

f
∂W1

∂x
− ∂

∂a
(W0W1) = 0, (35)

2 f
∂Wn−1

∂x
−

n−1

∑
s=1

s

∑
k=0

1
(n− s)!

∂n−s

∂an−s WkWs−k +
n− 2

n!
f

∂nW0

∂an−1∂x

+ f
n−1

∑
k=2

1
(k− 1)!

∂k

∂ak−1∂x
Wn−k = 0, n = 3, 4, . . . . (36)

In [41], two sets of rational extensions of the DRHO potential with λ < 0 considered in Section 3,
referred to as type I and type II extensions, were constructed in terms of some Jacobi polynomials of
degree m. The potentials belonging to these two sets were shown to be derived from superpotentials
satisfying the DSI condition. The simplest potentials, corresponding to m = 1, turn out to be identical
and given by (after changing the parameters and the variable, as explained in Appendix A)

V =
ω(ω− 2h̄|λ|)x2

4(1− |λ|x2)
+

(l + 1)(l + 1− h̄)
x2 + 4h̄2

(
ω + 2|λ|(l + 1− h̄)

[ω− 2|λ|(l + 1)]x2 + 2l + 2− h̄

− 2(2l + 2− h̄)(ω− h̄|λ|)
{[ω− 2|λ|(l + 1)]x2 + 2l + 2− h̄}2

)
, (37)

with a corresponding superpotential

W =
ωx

2
√

1− |λ|x2
− l + 1

x

√
1− |λ|x2 + 2h̄[ω− 2(l + 1)|λ|]x

√
1− |λ|x2

×
(

1
[ω− 2(l + 1)|λ|]x2 + 2l + 2− h̄

− 1
[ω− 2(l + 1)|λ|]x2 + 2l + 2 + h̄

)
. (38)

Let us show that such a superpotential can be derived by the present method.
For such a purpose, we plan to prove that for

f =
√

1− |λ|x2, a =
1
2

(
l + 1 +

ω

2|λ|

)
, b =

1
2

(
l + 1− ω

2|λ|

)
, (39)
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the functions

W0(x, a) = − a + b
x

f +
(a− b)|λ|x

f
, (40)

W2ν+1(x, a) = 0, ν = 0, 1, 2, . . . , (41)

W2ν(x, a) = − f
16b|λ|x

(4b f 2 + 2a− 2b)2ν
, ν = 1, 2, . . . , (42)

provide a solution of the set of Equations (34)–(36). Note that, as in Section 3, the combinations of
parameters a and b become a + h̄ and b for the partner, respectively.

Let us start with Equation (34). From (40), we get

∂W0

∂x
=

a + b
x2 f +

(a + b)|λ|
f

+
(a− b)|λ|

f 3 , (43)

∂W0

∂a
= − 1

x
f +
|λ|x

f
, (44)

from which we obtain dg
da = 8a|λ| and g = 4a2|λ| up to some additive constant. Hence, from

Equation (16),

E(−)
n = 4h̄|λ|n(nh̄ + 2a) = 4h̄|λ|n

(
nh̄ + l + 1 +

ω

2|λ|

)
, (45)

in agreement with the result obtained in [41].
Equation (35) is automatically satisfied since W1 = 0.
Considering next Equation (36), we note that

∂nW0

∂an−1∂x
= 0, n = 3, 4, . . . , (46)

and that
s

∑
k=0

WkWs−k = 0 for odd s. (47)

For even s, on the other hand, we easily get

s

∑
k=0

WkWs−k = Fs, (48)

with Fs defined by

Fs =
32b|λ|

(4b f 2 + 2a− 2b)s {−4b(s− 2) f 4 + [2a + 4b(s− 2)] f 2 − a + b}. (49)

From this result, it is straightforward to prove that

∂n−s

∂an−s

s

∑
k=0

WkWs−k = (−2)n−s (n− 2)!
(s− 2)!

Fn for even s. (50)

Equations (47) and (50) then lead to

n−1

∑
s=1

s

∑
k=0

1
(n− s)!

∂n−s

∂an−s WkWs−k = Fn ×
{

1
2 (3

n−2 − 1) for even n,

− 1
2 (3

n−2 + 1) for odd n.
. (51)
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Furthermore, we obtain

2 f
∂Wn−1

∂x
=

{
0 for even n,

−2Fn for odd n,
. (52)

as well as

f
n−1

∑
k=2

1
(k− 1)!

∂k

∂ak−1∂x
Wn−k = Fn ×

{
1
2 (3

n−2 − 1) for even n,

− 1
2 (3

n−2 − 3) for odd n.
. (53)

On inserting Equations (46), (51), (52), and (53) in Equation (36), it is clear that the latter is satisfied,
which completes the proof that Equations (40)–(42) provide a solution of Equations (34)–(36).

It now only remains to use Equations (40) and (42) in

W(x, a, h̄) =
∞

∑
ν=0

h̄2νW2ν(x, a) (54)

to obtain

W(x, a, h̄) =
(a− b)|λ|x

f
− a + b

x
f − 8h̄b|λ|x f

(
1

4b f 2 + 2a− 2b− h̄

− 1
4b f 2 + 2a− 2b + h̄

)
, (55)

which, after introducing the definitions of f , a, and b, given in (39), reduces to the expression (38)—i.e.,
the extended superpotential found in [41].

5. Conclusions

In this paper, we have shown that the approach of Gangopadhyaya, Mallow, and their coworkers
of SI potentials in conventional SUSYQM can be extended to DSI ones in DSUSYQM and we have
illustrated our results by considering several examples taken from [39–41]. These include both
conventional potentials, for which the corresponding superpotential has no explicit dependence on h̄,
and a rationally-extended one, for which there is such a dependence. In all cases, it turns out that the
parameter a, which is changed into a + h̄ when going to the partner potential, is a combination of the
potential and deforming function parameters.

An interesting open question for future investigation would be the possibility of generalizing the
method to rationally-extended potentials exhibiting an “enlarged” shape invariance, for which the
partner is obtained by translating some potential parameter as well as the degree m of the polynomial
arising in the denominator. Such potentials are indeed known both in conventional SUSYQM [48–51]
and in DSUSYQM [41].
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Appendix A. Going from Previously Used Conventions to the Present Ones

In this appendix, we summarize the changes that have to be carried out to go from the conventions
used in [39–41] to those of the present paper. The quantities employed in the former papers are
distinguished by a bar from those used here. It is worth noting too that in [39–41], the potentials
used have a nonvanishing ground-state energy and must therefore be compared with V = V− + E0,
where E0 is the shift to adjust the ground-state energy of H− to a zero value. As a consequence,
E(−)

n = En − E0 corresponds to Ēn − Ē0.
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Pöschl-Teller potential

V̄ = Ā(Ā− 1) sec2 x, f̄ (x̄) = 1 + ᾱ sin2 x̄,

Ā =
A
h̄

, ᾱ = α, x̄ = x,

V = A(A− h̄) sec2 x = h̄2V̄, f (x) = 1 + α sin2 x = f̄ (x̄),

W = h̄W̄, En = h̄2Ēn.

(A1)

Radial Harmonic Oscillator potential

V̄ =
1
4

ω̄2 x̄2 +
l̄(l̄ + 1)

x̄2 , f̄ (x̄) = 1 + ᾱx̄2,

ω̄ = h̄ω, l̄ =
l + 1

h̄
− 1, ᾱ = h̄2α, x̄ =

x
h̄

,

V =
1
4

ω2x2 +
(l + 1)(l + 1− h̄)

x2 = V̄, f (x) = 1 + αx2 = f̄ (x̄),

W = W̄, En = Ēn.

(A2)

Scarf I potential

V̄ = [Ā(Ā− 1)] + B̄2] sec2 x̄− B̄(2Ā− 1) sec x̄ tan x̄, f̄ (x̄) = 1 + ᾱ sin x̄,

Ā =
A
h̄

, B̄ =
B
h̄

, ᾱ = α, x̄ = x,

V = [A(A− h̄) + B2] sec2 x− B(2A− h̄) sec x tan x = h̄2V̄,

f (x) = 1 + α sin x = f̄ (x̄), W = h̄W̄, En = h̄2Ēn.

(A3)

Coulomb potential

V̄ = −2Z̄
x̄

+
l̄(l̄ + 1)

x̄2 , f̄ (x̄) = 1 + ᾱx̄,

Z̄ =
e2

2h̄
, l̄ =

l + 1
h̄
− 1, ᾱ = h̄α, x̄ =

x
h̄

,

V = − e2

x
+

(l + 1)(l + 1− h̄)
x2 = V̄, f (x) = 1 + αx = f̄ (x̄),

W = W̄, En = Ēn.

(A4)

Morse potential

V̄ = B̄2e−2x̄ − B̄(2Ā + 1)e−x̄, f̄ (x̄) = 1 + ᾱe−x̄,

Ā =
A
h̄

, B̄ =
B
h̄

, ᾱ = α, x̄ = x,

V = B2e−2x − B(2A + h̄)e−x = h̄2V̄, f (x) = 1 + αe−x = f̄ (x̄),

W = h̄W̄, En = h̄2Ēn.

(A5)

Eckart potential

V̄ = Ā(Ā− 1) csch2 x̄− 2B̄ coth x̄, f̄ (x̄) = 1 + ᾱe−x̄ sinh x̄,

Ā =
A
h̄

, B̄ =
B
h̄2 , ᾱ = α, x̄ = x,

V = A(A− h̄) csch2 x− 2B coth x = h̄2V̄, f (x) = 1 + αe−x sinh x = f̄ (x̄),

W = h̄W̄, En = h̄2Ēn.

(A6)
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Rosen-Morse I potential

V̄ = Ā(Ā− 1) csc2 x̄ + 2B̄ cot x̄, f̄ (x̄) = 1 + sin x̄(ᾱ cos x̄ + β̄ sin x̄),

Ā =
A
h̄

, B̄ =
B
h̄2 , ᾱ = α, β̄ = β, x̄ = x,

V = A(A− h̄) csc2 x + 2B cot x = h̄2V̄, f (x) = 1 + sin x(α cos x + β sin x) = f̄ (x̄),

W = h̄W̄, En = h̄2Ēn.

(A7)

Shifted Harmonic Oscillator potential

V̄ =
1
4

ω̄2
(

x̄− 2d̄
ω̄

)2

, f̄ (x̄) = 1 + ᾱx̄2 + 2β̄x̄,

ω̄ = h̄ω, d̄ = d, ᾱ = h̄2α, β̄ = h̄β, x̄ =
x
h̄

,

V =
1
4

ω2
(

x− 2d
ω

)2
= V̄, f (x) = 1 + αx2 + 2βx = f̄ (x̄),

W = W̄, En = Ēn.

(A8)

Deformed Radial Harmonic Oscillator potential

V̄ =
ω̄(ω̄ + 2λ̄)x̄2

4(1 + λ̄x̄2)
+

l̄(l̄ + 1)
x̄2 , f̄ (x̄) =

√
1 + λ̄x̄2,

ω̄ = h̄ω, l̄ =
l + 1

h̄
− 1, λ̄ = h̄2λ, x̄ =

x
h̄

,

V =
ω(ω + 2h̄λ)x2

4(1 + λx2)
+

(l + 1)(l + 1− h̄)
x2 = V̄, f (x) =

√
1 + λx2 = f̄ (x̄),

W = W̄, En = Ēn.

(A9)

Deformed Coulomb potential

V̄ = − Q̄
x̄

√
1 + λ̄x̄2 +

l̄(l̄ + 1)
x̄2 , f̄ (x̄) =

√
1 + λ̄x̄2,

Q̄ =
e2

h̄
, l̄ =

l + 1
h̄
− 1, λ̄ = h̄2λ, x̄ =

x
h̄

,

V = − e2

x

√
1 + λx2 +

(l + 1)(l + 1− h̄)
x2 = V̄, f (x) =

√
1 + λx2 = f̄ (x̄),

W = W̄, En = Ēn.

(A10)
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Abstract: We find supersymmetric partners of a family of self-adjoint operators which are self-adjoint
extensions of the differential operator −d2/dx2 on L2[−a, a], a > 0, that is, the one dimensional
infinite square well. First of all, we classify these self-adjoint extensions in terms of several choices of
the parameters determining each of the extensions. There are essentially two big groups of extensions.
In one, the ground state has strictly positive energy. On the other, either the ground state has zero
or negative energy. In the present paper, we show that each of the extensions belonging to the first
group (energy of ground state strictly positive) has an infinite sequence of supersymmetric partners,
such that the `-th order partner differs in one energy level from both the (`− 1)-th and the (`+ 1)-th
order partners. In general, the eigenvalues for each of the self-adjoint extensions of −d2/dx2 come
from a transcendental equation and are all infinite. For the case under our study, we determine the
eigenvalues, which are also infinite, all the extensions have a purely discrete spectrum, and their
respective eigenfunctions for all of its `-th supersymmetric partners of each extension.

Keywords: supersymmetric quantum mechanics; self-adjoint extensions; infinite square well; contact
potentials

1. Introduction

The study of one dimensional models in quantum mechanics is useful in order to gain
a better understanding of the properties of quantum systems. In particular, the construc-
tion of supersymmetric (SUSY) partners of given potentials allow for an analysis of one
dimensional Hamiltonians that often keep similarities with the original ones. Many studies
have been done in this field and a brief account of references [1–14] only covers a small
part of all previous work.

In the present paper, we intend to investigate the properties of the SUSY partners
of the self-adjoint determinations of the operator −d2/dx2 on L2[−a, a], a > 0 and finite,
with appropriate boundary conditions at the points −a and a. Note that this problem
is closely related to the problem of the definition of the “free” Hamiltonian on the one
dimensional infinite square well potential.

From our point of view, SUSY quantum mechanics is a method that pursues the iden-
tification of the class of Hamiltonians for which their spectral problem can be algebraically
solved. Traditionally, people have investigated SUSY partners of well studied exactly solv-
able Hamiltonians that give rise to other Hamiltonians for which the spectrum coincides
with the spectrum of the original Hamiltonian except for one eigenvalue. In addition,
there are several examples in which one original Hamiltonian produces an infinite chain of
Hamiltonians, the first element of the chain being its SUSY partner and each of the others
is a partner of the previous and the next one. Here, we explore the possibility of obtaining
the whole chain of partners corresponding to self-adjoint extensions of a symmetric one
dimensional Hamiltonian with equal deficiency indices. Since in our case, the variety of
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self-adjoint extensions is quite wide, depending on four real parameters, we have expected
to find interesting new results in the field as it happened to be.

The analysis of these self-adjoint extension has been done in [15]. The task of com-
puting the SUSY partners of all the self-adjoint determinations (also called extensions) of
−d2/dx2 on L2[−a, a], their spectra and their wave functions is not trivial, although can be
carried out systematically.

Although the idea of self-adjoint extensions of symmetric (or Hermitian) operators
on (infinite dimensional) Hilbert spaces is not yet very popular among physicists, it is,
however, possible to find recent papers on the topic [16–24]. Standard quantum mechanics
textbooks refer to the one dimensional infinite square well potential or the harmonic
oscillator as if they were described by a unique self-adjoint Hamiltonian, which produces a
neatly calculable spectrum. The mathematical reality is much more complex and may give
many more possibilities for the study of quantum mechanics systems. Let us briefly address
to this problem, for which a more thorough presentation can be found in mathematical
textbooks [25] as well as papers addressed to the Physics community [15].

Concerning terminology, an operator, A, on a infinitely dimensional separable Hilbert
space (the Hilbert space must be infinite dimensional, since otherwise all operators are
continuous and defined on the whole space. In such a case, this argumentation does not
make sense. A separable Hilbert space is one with a countable orthonormal basis, which is
always the case in ordinary quantum mechanics)H is symmetric, or equivalently Hermitian
if for any pair of vectors ϕ, ψ ∈ D(A), where D(A) is the domain of A, which must be
densely defined, one has that 〈Aϕ|ψ〉 = 〈ϕ|Aψ〉, where 〈−|−〉 denotes the scalar product
on H. This means that the adjoint, A†, of A extends A, A ≺ A† (i.e., D(A) ⊂ D(A†)
and Aψ = A†ψ, for all ψ ∈ D(A)). The deficiency indices are n± := dim Ran(A† ± iI),
where Ran(B) is the range (image space) of the operator B and I is the identity operator.
A symmetric (or Hermitian) operator has self-adjoint determinations (or extensions) if
and only if n+ = n− [25]. If n+ = n− = 0, this extension is unique. On the other hand,
if n+ = n− 6= 0, the number of extensions is infinite and, in the case of Hilbert spaces of
functions, they usually can be determined by some matching or boundary conditions that
the functions in the domain of the extensions should fulfill at some points [15,25–27].

Self-adjoint determinations of the operator −d2/dx2 defined on functions support-
ing whatever interval, K, in the real line R are used to define the so call contact poten-
tials [26,28–31]. These are perturbations of the “free operator” H0 = −d2/dx2, which
are supported on a single point x0 ∈ K. Typical examples of contact potentials are the
Dirac delta δ(x− x0) or its derivative δ′(x− x0), which define Hamiltonians of the type
H0 + δ(x− x0) or H0 + δ′(x− x0) as well defined self-adjoint operators on the Hilbert space
L2(K) [27]. These types of perturbations may serve as a good and tractable approximation
for a very localized spatial perturbation and are defined via matching conditions that
must satisfy the functions on the domain of the operator at x0. Concerning the operator
−d2/dx2 on L2[−a, a], some relations have been found among the boundary conditions
at the borders −a and a and matching conditions defining a δ or δ′ perturbation at the
origin [32,33].

A comment is of relevance here. Let us consider the subspace, D0, of all twice differ-
entiable square integrable functions, ϕ(x), in the interval [−a, a], with second derivative in
L2[−a, a], verifying the boundary conditions ϕ(−a) = ϕ(a) = ϕ′(−a) = ϕ′(a) = 0, and a
differential operator of the form

D = − d2

dx2 + p1(x)
d

dx
+ p2(x), (1)

where p1(x) and p2(x) are continuous real functions (with p1(x) differentiable) on [−a, a].
Then D is Hermitian on D0 with deficiency indices (2, 2). It has been proven in [34]
(vol. 2, p. 90) that all self-adjoint extensions of D have a purely discrete spectrum. This is
precisely the case of all the self-adjoint determinations of −d2/dx2 under our study [15].
These self-adjoint extensions are characterized by a set of four real parameters, so that one
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particular choice of these parameters gives a unique self-adjoint determination of −d2/dx2

on L2[−a, a] and vice-versa. Although this is much less known, a similar situation emerges
in the study of the one dimensional harmonic oscillator [35].

The present article intends in the first place, to complete as far as possible, the classifi-
cation of the self-adjoint extensions of −d2/dx2 on L2[−a, a] given by [15]. Once this task
has been done, we intend to obtain the whole chain of SUSY partners of each of the self-
adjoint extensions using standard methods already developed in the theory [1]. This kind
of supersymmetry intends to construct a series of potentials (in our case one-dimensional),
with an energy spectrum closely related and that can be obtained from the spectrum of
the original potential. Thus, being given one of our original self-adjoint extensions and
being known the solution of the spectral problem, we should be able to obtain an infinite
sequence of Hamiltonians such that their spectra coincides with the spectra of the previous
one except for one eigenvalue, and hence from the original one except for a finite number
of energy levels. We must add that all self-adjoint extensions of −d2/dx2 on L2[−a, a] have
a purely discreet spectrum with an infinite number of energy levels.

The ground state for each of these extensions either has a strictly positive, zero or
negative energy. Obviously, in the latter case, this fact comes from extensions which are not
definitely positive. This is somehow paradoxical, due to the form of the original operator,
which is −d2/dx2. This paradox is solved in [15]. For those extensions with a ground state
with strictly positive energy, we have constructed the whole sequence of its SUSY partners
and have given the eigenvalues and eigenfunctions for these partners. As mentioned
earlier, the set of eigenvalues for each partner comes from the set of eigenvalues of the
extension from which we construct the sequence of partners.

The general formalism can also be applied to obtain a sequence of Hamiltonians when
the ground state of the original self-adjoint extension of −d2/dx2 on L2[−a, a] has zero
or negative energy. In this case, partner Hamiltonians may be very different from the
original one in the sense that they may have a finite number of eigenvalues or simply no
eigenvalues. This is due to the presence of nodes in the wave function of the ground state.
Nevertheless, these partners may be obtained and classified, although this discussion is
left for a future publication.

This paper is organized as follows—in Section 2 we reformulate the classification given
by [15] of the self-adjoint extensions of−d2/dx2 on L2[−a, a]. In Section 3, we classify these
extensions in terms of some other sets of parameters, not considered in [15]. In Section 4,
we construct the first SUSY partners for those extensions with positive ground level energy
and give the precise form of its eigenfunctions. In Section 5, we give the complete sequence
of SUSY partners for each of these extensions. We close this article with a Conclusions
Section and an Appendix in which we show what the correct form for the wave functions
for the energy levels should be.

2. Self-Adjoint Extensions: Determination of Their Eigenvalues

Let us go back to the differential operator H0 := −d2/dx2 defined on L2[−a, a], a > 0
and with domain D0 as above, just before (1). On D0, H0 is symmetric (Hermitian) with
deficiency indices (2, 2) [15]. According to the von-Neumann theorem [25], H0 admits an
infinite number of self-adjoint extensions labeled by four real parameters.

The adjoint operator H†
0 acts as −d2/dx2 on the functions of its domain (see [36,37]

for a definition of the domain of the adjoint of a given densely defined operator and its
properties). If φ is a function of such domain, we get integrating by parts:

〈
− d2

dx2 φ, φ

〉
= B(φ, φ) +

〈
φ,− d2

dx2 φ

〉
, (2)

where 〈−,−〉 denotes the scalar product on L2[−a, a] and

B(φ, φ) = φ′(a)φ∗(a)− φ(a)φ′∗(a)− φ′(−a)φ∗(−a) + φ(−a)φ′∗(−a), (3)
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the prime being the derivative with respect to the variable x and the asterisk meaning
complex conjugate. The self-adjoint extensions of H0 are equal to −d2/dx2 as an operator
acting on the subdomains of the domain of H†

0 of functions with B(φ, φ) = 0. This happens
if and only if there exists a 2 × 2 unitary matrix U such that (see [15] and references
quoted therein):




2aφ′(−a)− iφ(−a)

2aφ′(a) + iφ(a)


 = U




2aφ′(−a) + iφ(−a)

2aφ′(a)− iφ(a)


. (4)

The set of self-adjoint extensions of H0 is in one to one correspondence with the
set of 2× 2 unitary operators U. Thus, each of these extensions will be labeled by its
corresponding operator as Hα. Since there is a set of four real independent parameters
that characterize the set of operators U, then, the set of self-adjoint extensions of Hα is
also characterized by the same parameters [15]. Each of the operators U has the following
form [15]:

U = eiψ




m0 − im3 −m2 − im1

m2 − im1 m0 + im3


 . (5)

Here, ψ and mi, i = 0, 1, 2, 3 are real parameters so that ψ ∈ [0, π] and m2
0 + m2

1 + m2
2 +

m2
3 = 1, which means that only four parameters are independent [15]. The latter relation

is a consequence of unitarity: the modulus of the determinant of U must be a number of
modulus one.

There are some of these extensions with a clear physical interest, which does not mean
that the others are irrelevant from the physics point of view. In [15], the authors distinguish
three categories of extensions:

(i) Those which preserve time reversal;
(ii) Those which preserve parity;
(iii) Those preserving positivity.

Apart from these three categories, there are some other extensions. The reason why the
authors of [15] single out those extensions that preserve positivity is due to the existence of
extensions with negative energies. In fact, as proven in [34] (Theorem 16, vol 2, page 44), Hα

may have one (which may be doubly degenerate) or two (with no degeneration) negative
energy states. All other extensions have non-negative eigenvalues and are called positivity
preserving. Only three of these positivity preserving extensions with special simplicity are
discussed in [15]. We want to determine the energy levels in this situation.

In order to obtain the energy levels for a specific self-adjoint extension, Hα, of
H0 = −d2/dx2 on L2[−a, a], we have to solve the Schrödinger equation and impose on
its solutions the boundary conditions that characterize the extension. These boundary
conditions are given by the (4) and (6). However as stated in [15], the determination of
which operators U satisfy the positivity condition as stated before involves tedious con-
siderations. To circumvent this difficulty, let us consider the general solution of the time
independent Scrödinger equation−d2φ(x)/dx2 = Eφ(x), with E = s2/(2a)2 ≥ 0, where 2a
is the infinite square well width (Although the energy is given, in our notation, by h̄2E/2m,
we are calling “energy” the quantity represented by E.). This general solution is

φ(x) = A cos
( sx

2a

)
+ B sin

( sx
2a

)
. (6)

Here, A and B have to be fixed with two conditions: (i) φ(x) should be normalized
in L2[−a, a] and (ii) φ(x) should fulfill the boundary conditions (4) and (5) so that E ≥ 0.
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Let us use (6) in relation (4) giving the general matching conditions, so as to obtain the
following homogeneous linear system:

(
L(s)−UM(s)

)(A
B

)
= N (s)

(
A
B

)
= 0 , (7)

where

L(s) =
(

s sin s
2 − i cos s

2 s cos s
2 + i sin s

2

−s sin s
2 + i cos s

2 s cos s
2 + i sin s

2

)
, M(s) =

(
s sin s

2 + i cos s
2 s cos s

2 − i sin s
2

−s sin( s
2 − i cos s

2 s cos s
2 i sin s

2

)
. (8)

The eigenvalues λ±(s) of the matrix N (s) are given by

λ±(s) =
Tr(N (s))

2
±
√(

Tr(N (s))
2

)2

− det(N (s)). (9)

The trace and the determinant of N (s) can be easily calculated and are, respectively:

Tr(N (s)) = e−
1
2 i(s−2ψ)

(
−m3(s + 1) + im2eis(s− 1)

)
, (10)

and
det(N (s)) = −4ieiψ

[
(m0 + cos ψ) sin s + 2s(m1 − cos s sin ψ)− s2(m0 − cos ψ) sin s

]
. (11)

To begin with, let us remark that in order to have non-trivial solutions of (7) we
must have

det(N (s)) = 0. (12)

Then, the set of eigenvalues of N (s) is given by Tr(N (s)) and 0, as may be immedi-
ately seen from (9). The condition (12) gives a relation between the values of the energy,
determined by the real parameter s, since E = s2/(2a)2, and the parameters ψ, m0 and m1,
as in (5). In consequence, the energy levels depend on the values of these three parameters
only. From (11) and (12) , we obtain the following two transcendental equations (one with
plus sign and the other with minus sign):

s sin s =
m1 − cos s sin ψ

m0 − cos ψ
±
√(

m1 − cos s sin ψ

m0 − cos ψ

)2
+

m0 + cos ψ

m0 − cos ψ
sin2 s . (13)

This form of the transcendental equations is quite interesting, since it will serve as
an efficient estimation of the energy levels when these values cannot be exactly calcu-
lated. Otherwise, they permit to obtain exact solutions whenever they exists. Let us now
summarize three of the results provided by [15], which we will need later on:

• The eigenvector (A, B) of N (s) with 0 eigenvalue is given by

A =
[
i + eiψ(im0 + m1 − im2 + m3)

]
sin

s
2
+ s
[
1 + eiψ(m0 + im1 + m2 + im3)

]
cos

s
2

, (14)

B = s
[
−1 + eiψ(m0 + im1 + m2 − im3)

]
sin

s
2
+
[
i + eiψ(im0 −m1 + im2 + m3)

]
cos

s
2

. (15)

These expressions generalize similar ones published in citation [14] of our Refer-
ence [15]. We see that the eigenvector depends on all the parameters (m0, m1, m2, m3, ψ).

• The extensions preserving time reversal invariance, are given by

m2 = 0 . (16)

• The parity preserving extensions of H0 are those for which the eigenfunctions φ(x) ver-
ify :

|φ(x)|2 = |φ(−x)|2 =⇒ |φ(a)|2 = |φ(−a)|2 . (17)

41



Symmetry 2021, 13, 350

Parity Preserving Extensions of H0

We are interested now in getting more information on the parity preserving extensions
of H0. Then, if we use (6) in (17) we obtain that Re(A B∗) sin s = 0. Hence, either

sin s = 0 or Re(A B∗) = 0. (18)

Compare to Equation (68) in citation [14] of our Reference [15]. Taking into account
the values of (A, B) given in (14) and (15) and also the fact that det(N (s)) = 0, the second
equation of (18) implies that either m3 = 0 or

(m3 + sin ψ) sin s + 2s(m2 + cos s cos ψ) + s2(sin ψ−m3) sin s = 0. (19)

Solving this equation as if it were a quadratic equation on s gives a pair of transcendental
equations which closely resemble Equation (13). Thus, the complete set of solutions of
(18) are

m3 = 0 , (20a)

sin s = 0 , (20b)

s sin s =
m2 + cos s cos ψ

m3 − sin ψ
±
√(

m2 + cos s cos ψ

m3 − sin ψ

)2
+

m3 + sin ψ

m3 − sin ψ
sin2 s . (20c)

Hence, when the parity is preserved, Equation (13) holds. This happens for three
different situations given by Equations (20a)–(20c). These formulas, plus (13), which
derives from such a general principle as det(N (s)) = 0, should give the energy levels for
the infinite square well with parity preserving self-adjoint extensions, Hα, of H0.

Equation (20a) does not provide any extra information, (13) being the only relation
which gives information on the energy spectrum. This parity preserving condition m3 = 0
has been already used in [15], although in this paper relations (20b) and (20c) are not men-
tioned.

Equation (20b) obviously gives an energy spectrum of the parity preserving extensions
that coincides to the spectrum given by texts in Quantum Mechanics for the extension
with domain given by functions with φ(−a) = φ(a) = 0. Henceforth, we shall call this
extension the textbook extension.

Finally, (20c) gives the energy levels for other parity preserving extensions in terms of
the three parameters (ψ, m2, m3).

In consequence, we have eight different situations for those extension having a non-
negative spectrum, including those with time reversal and parity invariance, as shown in
Table 1. In the next section we will analyze some of these situations.

Table 1. List of how to obtain the possible spectra as a function of the conserved properties.

Generic Spectrum: (13)

Time reversal invariance: (13) and (16), or m2 = 0

Parity preserving:

(13) and (20a)
m2 = 0

m2 6= 0

(13) and (20b)
m2 = 0

m2 6= 0

(13) and (20c)
m2 = 0

m2 6= 0
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3. Spectrum of the Free Particle on a Finite Interval

One of the goals of our study is to solve the eigenvalue problem for all the self-adjoint
extensions, Hα, of the operator H0 = −d2/dx2 on L2[−a, a], which from the point of view
of the physicist is the infinite square well with width 2a. As we have already seen, there
are only a few of these extensions for which we may obtain an exact solution, including
the textbook extension. For most of these extensions the energy levels are solutions of a
transcendental equation and, therefore, no explicit solutions of the eigenvalue problem for
these extensions can be given.

3.1. The Angular Representation of the Self-Adjoint Extensions of H0

Due to the relation between the parameters mi, given by

m2
0 + m2

1 + m2
2 + m2

3 = 1, (21)

a new parametric representation of the self-adjoint extensions, Hα, of H0 = −d2/dx2 on
L2[−a, a] in terms of angular variables only is possible. Apart from the variable ψ, which is
already angular, so that we keep it untouched, we have three other angular variables, θi,
i = 0, 1, 2, defined by means of the following relations:

m0 = cos θ1 cos θ0, m1 = cos θ1 sin θ0, m2 = sin θ1 cos θ2, m3 = sin θ1 sin θ2. (22)

Taking into account that Equation (13) gives the values of s, and hence the energy
levels, in terms of the triplet of parameters (ψ, m0, m1), then, according to (22), s will depend
on the angular variables (ψ, θ0, θ1) only. In general, we cannot solve (13) to find s(ψ, θ0, θ1)
explicitly. Since (13) depends on four parameters (s, ψ, θ0, θ1), we cannot represent this
equation in general but, as in Figure 1, we can plot the square root of the energy (essentially
s) for given values of θ1 and sin θ0 as a function of ψ.

0 π
0

π

2 π

ψ

s

sin(θ0)

-1.0

-0.5

0

0.5

1.0

0 π
0

π

2 π

ψ

s

Figure 1. Two plots of the implicit Equation (13) with the parametrization (22) allow us to see the variation of the parameter
s (remember that E = s2/(2a)2) as a function of ψ and sin θ0: on the left for θ1 = π/4, on the right for θ1 = 4π/3.

The general case can neither be explicitly solved nor represented graphically. Yet,
there are two other situations sharing this negative characteristics. One is m2 = 0 (time
invariance only) and m3 = 0 (parity conservation only). All other cases either can be
explicitly or graphically solved or both.

3.2. Some Simple Cases

In the sequel we are going to deal with the cases of Table 1 that can be treated in some
way, either graphically or analytically.
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3.2.1. Parity and Time Reversal Invariance: m2 = m3 = 0

For m2 = m3 = 0, we have in (21) that m2
0 + m2

1 = 1, that is, we can take θ1 = 0 in (22)
and therefore m0 = cos θ0 and m1 = sin θ0. Then, let us go back to (10), so as to see that
Tr(N (s)) = 0. Since one of the eigenvalues ofN (s) must be zero, the fact that Tr(N (s)) = 0
makes the second eigenvalue also equal to zero. Thus, the matrix N (s) admits a Jordan de-
composition in terms of an upper triangular matrix. Now, the transcendental Equation (13)
becomes much simpler, still depending on the sign, ±, of the square root. Note that this
sign is positive if s ∈ {(0, π), (2π, 3π)..} and negative if s ∈ {(π, 2π), (3π, 4π), ..}. In these
two situations, the spectral equation, the vector (A, B) and the eigenfunctions have the
following explicit forms:





Positive square root





Spectrum equation: s tan
( s

2
)
= − cot

(
ψ+θ0

2

)

Eigenvector: (A, B) = (1, 0)
Eigenfunction: φ(x) = cos

( s0x
2a
)

Negative square root





Spectrum equation: s cot
( s

2
)
= cot

(
ψ−θ0

2

)

Eigenvector: (A, B) = (0, 1)
Eigenfunction: φ(x) = sin

( s0x
2a
)
.

(23)

In the above expressions for the spectral equations, we may write ψ−θ0
2 = ϕ1 and ψ+θ0

2 = ϕ2,
where ϕi, i = 1, 2 are two independent angles. Both spectral equations are represented
in Figure 2. The combination of both solutions tend to the textbook solution in the limit
ϕ1,2 → 0 for both angles. The ground state for the textbook solution comes from the lowest
state for the even parity preserving extensions. It is remarkable that if ϕ1 ≥ arctan(1/2) :=
γ, then the ground state no longer comes from the even but from the odd parity preserving
extensions, as can be clearly seen in Figure 2.

0 γ π
2

0

π

2 π

3 π

4 π

5 π

φ1,2

s s cot s2   cot(φ1)

s tan s2   -cot(φ2)

Figure 2. Energy levels (E = s2/(2a)2) for odd parity (blue) and even parity (yellow) solution for
m2 = m3 = 0, coming from (23).

3.2.2. Parity Preserving Extensions Fulfilling sin s = 0

In this situation, Equation (20b) implies that s = nπ with n = 0,±1,±2, . . . , so that
E = (n2π2)/(2a)2, n = 1, 2, . . . . The energy levels of all these extensions are the same as
in the textbook’s extension. No negative energy states may exist. In order to obtain the
corresponding eigenfunctions, which may be different from those obtained for the textbook
case, we parametrize these extensions using angular variables. However, we are now using
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a different angle parameterization from (22). Indeed, taking into account (13), we will find
it very useful to use this one:

m0 = cos ψ cos β0, m1 = (−1)n sin ψ, (24)

m2 = cos ψ sin β0 cos β1, m3 = cos ψ sin β0 sin β1, (25)

where the exponent n appearing in the expression for m1 is the same number that labels s.
The eigenfunctions must obey the Schrödinger equation, so that they should be of

the form (6). The coefficients A and B depend on the energy levels and, therefore, should
be functions of s. In the simple case in which s be a even or odd multiple of 2π, these
coefficients can be obtained from the following relations, using (14) and (15) and the
new parameterization:




s = 2qπ :

{
A(s) = 2πq

(
1 + eiβ1 sin β0 − cos β0

)
,

B(s) = i
(
1 + e−iβ1 sin β0 + cos β0

)
,

q = 1, 2, . . .

s = (2q + 1)π :

{
A(s) = i

(
1− eiβ1 sin β0 + cos β0

)
,

B(s) = π(2q + 1)
(
−1 + e−iβ1 sin β0 + cos β0

)
,

q = 0, 1, . . .

(26)

The eigenfunctions depend on the angles (ψ, β0, β1) only. These angles are those
defined in (24) and (25); note the difference with the angles defined in (22). If we take the
limits β0 → 0 and β1 → 0, we recover the eigenfunctions for the textbook extension.

3.2.3. Parity and Time Reversal Invariance Extensions Fulfilling (20c)

We have seen that (13) has a general validity, which is independent of the particular
situation under study. On the other hand, (20c) is valid for extensions that preserve parity
invariance. Note that the left hand side in both equations is the same: s sin(s). This suggests
that the identity between both right hand sides would help to solve the spectral equation
in this case. This identity gives:

m1 − cos s sin ψ

m0 − cos ψ
±
√(

m1 − cos s sin ψ

m0 − cos ψ

)2
+

m0 + cos ψ

m0 − cos ψ
sin2 s

=
m2 + cos s cos ψ

m3 − sin ψ
±
√(

m2 + cos s cos ψ

m3 − sin ψ

)2
+

m3 + sin ψ

m3 − sin ψ
sin2 s , (27)

which may be written in polynomial form as cos4 s+ P1 cos3 s+ P2 cos2 s+ P3 cos s+ P4 = 0,
where the functions Pi depend on the parameters (m0, m1, m2, m3, ψ). We do not write the
precise form of this polynomial relation in here, since it is extremely long and it does not
show interesting features. Nevertheless, it is important to note that this is a fourth order
polynomial on the variable cos s with coefficients depending on the parameters. Two of
these solutions of (27) are

cos s = ±1 . (28)

These solutions may be written as sin s = 0, which coincide with (20b), so that no new
solutions for the spectral problem arise from (28). The other two solutions are quadratic as
function of the parameters and are rather huge and intractable. To simplify this problem as
much as possible, let us define a third and last angle re-parameterization of the mi:

m0 = sin ω1 cos ω2 , m1 = cos ω1 sin ω0 , m2 = cos ω1 cos ω0 , m3 = sin ω1 sin ω2 . (29)

This parameterization is quite similar to (22), where we have interchanged the expres-
sions for m0 and m2. In terms of the new angular variables, an expression for the energy
levels as functions of s is given by

45



Symmetry 2021, 13, 350

cos s = − cos ω1 cos(ω0 + ω2) cos(ω2 − ψ) (30)

− sec ω1

[
sin(ω0 + ω2) sin(ω2 − ψ)± i

√
sin4 ω1 cos2(ω0 + ω2) sin2(ω2 − ψ)

]
.

As we want s to be real (in order to have positive eigenvalues of the energy), the imag-
inary term in (30) must vanish. Note that all factors under the square root are positive, so
that the eigenvalues of the energy can be found, with all those in Equation (30) for each of
the factors under the square root vanishing. There are three possibilities, which yield the
following equations:

sin ω1 = 0 =⇒ cos s = ± cos(ω0 + ψ) =⇒ s = nπ ± (ω0 + ψ) , (31a)

cos(ω0 + ω2) = 0 =⇒ cos s = ± sec ω1 sin(ω2 − ψ) , (31b)

sin(ω2 − ψ) = 0 =⇒ cos s = ± cos ω1 cos(ω0 + ψ) . (31c)

Equations (31a) and (31c), give rise to an equally spaced spectrum on the variable s (not
for the energy), for which s = nπ + f (ω0, ω1, ψ), n = 0, 1, 2, . . . . In any case, the minimal
energy level is given by f (ω0, ω1, ψ). The determination of this minimal energy is not a
trivial matter for (31c), since its solution s = arccos(cos(ω1) cos(ω0 + ψ)) is given by a
multi-valued function.

Equation (31b) is even more problematic, as its right hand side may be bigger than
one in modulus. One may think that this formula provides the negative energy values for
| cos s| > 1. However, we have to keep in mind that there are only possible two negative
energy levels, if any, or if there is only one, this could be either single or doubly-degenerate,
so that (31b) may not give solutions to the energy spectrum and should be discarded,
in principle.

3.3. About the Negative and Zero Energies

Up to now, we have not been interested in zero and negative values of the energy.
Observe that the transcendental equation (13), which gives the energy levels, is valid for
those extensions, Hα, having positive energies only. These energy levels are, in all positive
energy cases, infinite.

If we wanted to analyze those Hamiltonians Hα with negative energy levels, we
need to perform the replacement s → −ir in the wave function (6) as well as in (13).
The latter appears in terms of hyperbolic functions and may have one or two solutions
with zero or negative energies. If there were just one negative energy level, this is doubly
degenerate [34].

When the ground state shows a negative energy, its wave function is similar to (6),
where the trigonometric functions have been replaced by hyperbolic functions. In this
case, the ground state wave functions may have zeros (nodes) on the interval [−a, a]. Here,
the general formalism says that the procedure to obtain the SUSY partners is not valid [1].
Nevertheless, this formalism gives a procedure and this procedure may still be applied in
this case. The result is clear—instead of obtaining a new potential with a countable infinite
number of equally spaced values of the square root of the eigenvalues of the Hamiltonian
(s), we obtain new Hamiltonians with either a finite number of eigenvalues or a continuous
spectrum only. In the first case, these energy eigenvalues come from a transcendental
equation. In the second case, partner potentials are often singular, showing an infinite
divergence. We shall discuss this situation in detail in a forthcoming publication. A similar
situation emerges when the ground state has zero energy.

From now on, we will concentrate in obtaining the SUSY partners of the self-adjoint
extensions that we have analyzed up to now.
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4. Supersymmetric Partners for the Simplest Extensions

In this section we shall consider the first and second order supersymmetry transfor-
mation applied to some of the self-adjoint extensions Hα so far considered in here.

4.1. First Order SUSY Partners

The technique to obtain the SUSY partner corresponding to a given self-adjoint opera-
tor with discrete spectrum has been discussed in [1]. To begin with, let us fix some notation
and call Hα to the self-adjoint extension characterized by the values α := (m0, m1, m2, m3, ψ)
of the parameters.

Then, let us follow the procedure of [1] to obtain the SUSY partners of Hα. First of
all, we need to determine the ground state φ

(0)
α (x) of Hα. This ground state has energy

E(0)
α = (s(0)α /(2a))2, which may be in principle either positive or negative. In the present

paper, we shall deal with those extensions having the ground level with positive energy
and, for all energy levels, s(n)α , n = 0, 1, 2, . . . , we have s(n)α = (n + 1) s(0)α .

In general, there are two supersymmetric partners of the self-adjoint extension Hα,
which are Hamiltonians of the form −d2/dx2 + V(j)

α , where V(j)
α , j = 1, 2, are a pair of new

potentials which is called partner potentials. In order to obtain each of the V(j)
α , pick the

ground state φ
(0)
α (x) of Hα. The explicit form of this ground state is, after (6),

φ
(0)
α (x) = A(s0) cos

( s0

2a
x
)
+ B(s0) sin

( s0

2a
x
)

, (32)

where we have used the simplified notation s0 := s(0)α , which we shall henceforth keep
for simplicity unless otherwise stated. Since (32) must be in the domain of Hα, the co-
efficients A(s0) and B(s0) must satisfy the boundary conditions defining this domain.
Although these coefficients depend on the energy ground state s0, we shall also omit this
dependence, unless necessary. Then, we construct the partner potentials V(j)

α , j = 1, 2 using
an intermediate function called the super-potential, Wα(x), which is defined as

Wα(x) := −∂xφ
(0)
α (x)

φ
(0)
α (x)

, (33)

where ∂x means derivative with respect to x.
Now, we construct the partner potentials V(j)

α , j = 1, 2, as [1]

V(1)
α (x) = W2

α (x)−W ′α(x) = −
( s0

2a

)2
, (34)

V(2)
α (x) = W2

α (x) + W ′α(x) =
( s0

2a

)2

1 + 2

(
A sin

( s0
2a x
)
− B cos

( s0
2a x
)

A cos
( s0

2a x
)
+ B sin

( s0
2a x
)
)2

 . (35)

According to (34), it comes that V(1)
α (x) is constant and equal, in modulus, to the

original system lowest energy level. We see that this solution is trivial, as only shifts the
energy levels. If we represent as φ(1)(x) and E(1)

n the wave function of the ground state and
the n-th energy level in this situation, we have that

φ(1)(x) ≡ φ(0)(x) , E(1)
n =

( s0

2a

)2
(n2 − 1) ≡ E(0)

n − E(0)
n=1 , (36)

and n = 1, 2, . . . is arbitrary. In the sequel, we omit the subindex α for simplicity in the
notation, unless otherwise stated for necessity.

The Schrödinger equation coming from the second potential in (35) is
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− d2

dx2 φ(2)(x) +
( s0

2a

)2

1 + 2

(
A sin

( s0
2a x
)
− B cos

( s0
2a x
)

A cos
( s0

2a x
)
+ B sin

( s0
2a x
)
)2

φ(2)(x) = E(1)

n φ(2)(x) , (37)

where the meaning of φ(2)(x) is obvious. Next, let us define a new variable z as

s0

2a
z = iW(x) =

is0

2a
A sin

( s0
2a x
)
− B cos

( s0
2a x
)

A cos
( s0

2a x
)
+ B sin

( s0
2a x
) . (38)

Under this change of variables, the Schrödinger Equation (37) takes the form:

(1− z2) ∂2
zφ(2)(z)− 2z ∂zφ(2)(z) +

(
`(`+ 1)− n2

1− z2

)
φ(2)(z) = 0 , with ` = 1, (39)

where ∂z represents the derivation with respect to z. This is a particular case of associated
Legendre equation when ` = 1, and their solutions are well known. One of them is given
by the associated Legendre functions of second kind:

Qn
` (z) := (−1)n (1− z2)n/2 dn

dzn Q`(z) , (40)

where Q`(z) are the Legendre functions of the second kind [38]. These solutions for (39)
provide the solutions for (37):

φ
(2)
n (x) = Qn

1

(
i
A sin

( s0
2a x
)
− B cos

( s0
2a x
)

A cos
( s0

2a x
)
+ B sin

( s0
2a x
)
)

, (41)

where, of course, we have taken the value ` = 1.
In addition, there is another set of solutions given by the first kind associated Legendre

functions Pn
1 (z). These functions have not been considered as solutions to our problem,

since they show singularities within the open interval (−a, a) and are not square integrable,
as shown in Appendix A. In Figure 3, we represent some of the wave equations just obtained
in (41) for the lowest energy levels. Let us consider now the second partner Hamiltonian,
H(2)

α := Hα + V(2)
α , or H(2) in brief. The solution Q1

1(z) shows a logarithmic singularity
at each of its extremes and, therefore, it is not square integrable. Nevertheless, for n ≥ 2,
these solutions are square integrable, as is proved in the Appendix A.

- s0
2 a

s0
2 a

n  2

n  3

n  4

n  5

n  6

- s0
2 a

s0
2 a

Figure 3. First order supersymmetric (SUSY) states φ
(2)
n (x) from (41) when the ground state of the original system is either

purely even, that is B = 0 (plot on the left), or purely odd, that is A = 0 (plot on the right). Note that the quantum number n
of the Legendre function in (41) is the number of the nodes of the function.

4.2. Second Order SUSY Partners

Once we have obtained the first order SUSY partners for the self-adjoint extensions
Hα with ground state of positive energy, let us inspect how we may obtain an infinite chain
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of higher order partners for Hα. In the all above discussed cases, the bound state has wave
function given by Q2

1(z) (which is obviously not the same for all cases, since the definition

of z changes). Then, we obtain the super-potential W(2)(x) by replacing φ
(0)
n=1(x) by Q2

1(z)
(and then write z in terms of x) in (33). This procedure gives rise to two second order
potential partner candidates, which are:

V(2,1)(x) = W2
(2)(x)−W ′(2)(x) =

( s0

2a

)2

1 + 2

(
A sin

( s0
2a x
)
− B cos

( s0
2a x
)

A cos
( s0

2a x
)
+ B sin

( s0
2a x
)
)2

− 3

( s0

2a

)2
, (42)

V(2,2)(x) = W2
(2)(x) + W ′(2)(x) =

( s0

2a

)2

1 + 3

(
A sin

( s0
2a x
)
− B cos

( s0
2a x
)

A cos
( s0

2a x
)
+ B sin

( s0
2a x
)
)2

 . (43)

Although the notation used in (42) and (43) should be clear, we need a generalization
of it, as we are going to consider further order partners next. Thus, we shall use V(i,j)(x)
and W(i)(x), where the index i gives the order of the partner, which in the above case is
i = 2. This index may take all possible values i = 1, 2, 3, . . . The index j always takes
two possible values, j = 1, 2. From this point of view, V(i)

α (x) in (34) could be written as
V(1,i)(x). Analogously, we may use for the i-th partner Hamiltonian the notation H(i,j).
To simplify the notation, we have always omitted the subindex α, which labels the precise
self-adjoint extension we are considering.

Observe that according to (34) and (42), V(2,1)(x) = V(1,2)(x)− 3(s0/(2a))2 = V(2)
α −

3(s0/(2a))2, so that H(2,1) and H(1,2) have the same eigenvalues shifted by 3(s0/(2a))2.
Thus, we ignore (42) and solely consider (43). For (43), we may do a similar analysis than in
the previous case, that is, first order SUSY partner, so that the bound state wave functions
are given by

φ
(2,2)
n (x) = Qn

2

(
i
A sin

( s0
2a x
)
− B cos

( s0
2a x
)

A cos
( s0

2a x
)
+ B sin

( s0
2a x
)
)

. (44)

In this second order SUSY, both functions Q1
2(z) and Q2

2(z) have logarithmic singulari-
ties at the points x = ±a, so that they are not square integrable on [−a, a] and, consequently,
should be discarded as proper eigenfunctions of H(2,2). Thus, the ground state for H(2,2)

has a wave function given by Q3
2(z). This is a general behaviour that could be checked at

each step going from a SUSY partner to the next one, as is shown in Figure 4.

Figure 4. Different energy levels of first and second supersymmetry Hamiltonians.

5. Supersymmetric Self-Adjoint Extensions of the Infinite Well at `-Order

Let us begin this Section with a summary of the notation employed so far and its mean-
ing:
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



Hα Original Hamiltonian, which is a self-adjoint extension of H0 = −d2/dx2.

φ
(0)
n Wave function of Hα associated to the n−level.

E(0)
n Energy spectrum of Hα.

φ
(i,1)
n Wave function of first SUSY partner at i order associated to the n− level.

φ
(i,2)
n Wave function of second SUSY partner at i order associated to the n− level.

W(i) Super potential at i order, calculated from the second partner wave function.

of previous SUSY order, that is, φ
(i−1,2)
i .

V(i,1), V(i,2) Partner potentials of i−order SUSY constructed from W(i).
A(i), (A(i))† Annihilation/Creation operator of SUSY at i−order.

Creation (A(i))† and annihilation A(i) operators will be defined later.
So far, we have obtained potentials and wave functions for the first and second SUSY

partners for self-adjoint extensions of H0 = −d2/dx2 with ground level of positive energy.
With the help of the induction method, we may find potentials as well as wave functions
and energy levels for arbitrary order ` SUSY partners for the same class of self-adjoint
extensions. We have seen already that from the SUSY partners V(i,1), V(i,2), only the last
one is really interesting and we will focus on it in the sequel.

In order to apply the inductive method, let us assume that the ground state for the
`-th SUSY partner, H(`,2), of Hα is given by

φ
(`,2)
`+1 (x) = Q`+1

`

(
i
A sin

( s0
2a x
)
− B cos

( s0
2a x
)

A cos
( s0

2a x
)
+ B sin

( s0
2a x
)
)

, (45)

as in the previous cases (41) and (44). Then, the super-potential takes the following form:

W(`+1) = −
∂2

xφ(`,2)(x)
φ(`,2)(x)

=
s0(`+ 1)

2a

(
A sin

( s0
2a x
)
− B cos

( s0
2a x
)

A cos
( s0

2a x
)
+ B sin

( s0
2a x
)
)

= −i
s0(`+ 1)

2a
z , (46)

where ∂2
x denotes the second derivative with respect to the variable x. Once we have the

super potential, we readily obtain the partner potentials at `+ 1 order, which are

V(`+1,1)(x) = (W(`+1))
2 − ∂xW(`+1) =

s2
0(`+ 1)
(2a)2


−1 + `

(
A sin

( s0
2a x
)
− B cos

( s0
2a x
)

A cos
( s0

2a x
)
+ B sin

( s0
2a x
)
)2

 , (47)

V(`+1,2)(x) = (W(`+1))
2 + ∂xW(`+1) =

s2
0(`+ 1)
(2a)2


1 + (`+ 2)

(
A sin

( s0
2a x
)
− B cos

( s0
2a x
)

A cos
( s0

2a x
)
+ B sin

( s0
2a x
)
)2

 . (48)

Note that although the label α is not written explicitly on the above equations and
many others, potentials and wave functions must depend on α. This dependence is hidden
in s0, where we have not made it explicitly for simplicity in the notation.

The Schrödinger equation for the first (`+ 1)-th order partner potential, V(`+1,1), is

− ∂2
xφ(`+1,1)(x) + V(`+1,1)(x)φ(`+1,1)(x) = E(`+1)φ(`+1,1)(x) . (49)

If we change it to the z variable, (49) takes the form:

(1− z2)2∂2
zφ(`+1,1)(z)− 2z(1− z2)∂zφ(`+1,1)(z)− (`+ 1)(1 + `z2)φ(`+1,1)(x) =

(
2a
s0

)2
E(`+1)φ(`+1,1)(x) . (50)

Equation (50) is a new Legendre-type equation for which solutions are known. The re-
spective eigenfunctions and eigenvalues are
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φ
(`+1,1)
n (x) = Qn

`

(
i
A sin

( s0
2a x
)
− B cos

( s0
2a x
)

A cos
( s0

2a x
)
+ B sin

( s0
2a x
)
)

, E(`+1)
n =

( s0

2a

)2(
n2 − (`+ 1)2

)
. (51)

Observe that the first partner wave functions of order `+ 1 are the same as the second
partner wave functions of order `, that is, φ

(`+1,1)
n (x) ≡ φ

(`,2)
n (x). The Schrödinger equation

with potential V(`+1,2)(x) is

− ∂2
xφ(`+1,2)(x) + V(`+1,2)(x)φ(`+1,2)(x) = E(`+1)

n φ(`+1,2)(x) , (52)

which in terms of the z variable becomes:

(1− z2)2∂2
zφ(`+1,2)(z)− 2z(1− z2)∂zφ(`+1,2)(z) + (`+ 1)(1− (`+ 2)z2)φ(`+1,2)(x) =

(
2a
s0

)2
E(`+1)

n φ(`+1,2)(x) . (53)

Equation (53) is again of Legendre type and its solutions in terms of eigenfunctions
have the form:

φ
(`+1,2)
n (x) = Qn

`+1

(
i
A sin

( s0
2a x
)
− B cos

( s0
2a x
)

A cos
( s0

2a x
)
+ B sin

( s0
2a x
)
)

. (54)

The energy spectrum is given by

E(`+1)
n =

( s0

2a

)2
(n2 − (`+ 1)2). (55)

Finally, one defines the annihilation, A(`+1), and creation, (A(`+1))† operators, which
transform the eigenvectors of H(`+1,1) into the eigenvectors of H(`+1,2) and reciprocally,
respectively, as:

A(`+1) = ∂x + W(`+1)(x) =
is0

2a
(1− z2)∂z − i(`+ 1)

s0

2a
z , (56)

(A(`+1))† = −∂x + W(`+1)(x) = − is0

2a
(1− z2)∂z − i(`+ 1)

s0

2a
z . (57)

These creation and annihilation operators have been already constructed for the
general formalism of SUSY potential partners in [1].

The relation between the Hamiltonian partners H(`,1) and H(`,2) for ` arbitrary are
shown in Figure 5. For ` = 0, there is a unique Hamiltonian, which is Hα. Now, the creation
and annihilation operators in the z variable give the recurrence identities for the associated
Legendre functions.

Figure 5. Energy scheme of different SUSY transformations up to order `.

6. Conclusions and Outlook

We have discussed the results of [15] for the self-adjoint extensions of the differential
operator H0 = −d2/dx2 and gone beyond these results in the sense of addressing some
cases not treated in [15]. Also, we have proposed a more detailed classification of the
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spectrum of these extensions in terms of the parameters that characterize each one of these
extensions. We have seen that it is possible to classify these extensions in terms of other sets
of variables with the sense of angles, which permits us to go beyond [15]. These self-adjoint
extensions may have at most two negative eigenvalues, a ground state of zero energy and
ground states with strictly positive energy.

In addition, in this paper, we have obtained analytically the form of the SUSY partners
for the self-adjoint extensions of H0 (that we denote as Hα, where α includes the four real
parameters that gives each of these extensions) with a ground state with positive energy.
We have obtained all Hamiltonian partners of each of the Hα with positive spectrum
to all orders, their energy levels and their eigenfunctions. At each step, we find two
distinct Hamiltonian partners of `-th order. Creation and annihilation operators related the
eigenfunctions for these two partners were also evaluated.

Although we have obtained the eigenfunctions for the whole sequence of SUSY
partners of each of the Hα, these eigenfunctions depend explicitly on the square root of the
ground state energy of Hα, which in most cases can be obtained by solving a transcendental
equation. However, this transcendental equation looks rather intractable in a few cases.
This situation poses some difficulties in obtaining the eigenvalues for some of the Hα,
although the explicit form of their eigenfunctions and of the eigenfunctions of their SUSY
partners can always be given, as functions of the square root of the ground state energy
of Hα.

We have not obtained the SUSY partners for those extensions, Hα, with a ground state
with zero or negative energy. Here, we may also obtain a sequence of SUSY partners form
each of the Hα in this class. Unlike the partners for extensions Hα with ground states with
strictly positive energies, these partners may have a finite number of eigenvalues or even
none, and the potential partners may show singularities. A classification of the partners for
these exceptional extensions is left for a forthcoming paper.
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Appendix A

In this Appendix, we justify the correct choice of the wave functions for the bound
states of the supersymmetric partners of each of the extensions Hα with strictly positive
ground state energy. In Appendix A.1, we derive a general solution for these wave functions
as a linear combination of the associated Legendre functions Pn

` and Qn
` with argument

− tan((s0x)/(2a)). In Appendix A.2, we show that the component with Pn
` should be

discarded, since it does not meet the requirement of square integrability. On the other hand,
the component with Qn

` should give the wave function as is square integrable, as proven in
Appendix A.3.

Appendix A.1

Comments in these Appendices are valid for those self-adjoint extensions Hα with
ground states with positive energy. For each of these extensions, the ground state energy is
E(0)

0 = (s0/(2a))2, where s0 depends on the chosen self-adjoint extensions and, therefore,
on the values of the parameters. As we have seen, in terms of the auxiliary variable s,
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the spectrum is equally spaced in this case, so that all other energy values are E(0)
m =

(s0/(2a))2m2. For the ground state, the wave function is

φ
(0)
m=1(x) = A cos

( s0

2a
x
)
+ B sin

( s0

2a
x
)

. (A1)

The coefficients A and B, as complex numbers, should have the same phase in order to
have a real partner potential. To see it, let us write A = Ceiϕ1 and B = Deiϕ2 , with C := |A|
and D := |B|. Then, (A1) is

φ
(0)
m=1(x) = Ceiϕ1 cos

( s0

2a
x
)
+ Deiϕ2 sin

( s0

2a
x
)

. (A2)

Using Definitions (42) and (43) for the potential partners of `-th order, we have for the
first `-th partner:

V(`+1,1) =
s2

0(`+ 1)
(2a)2


−1 + `

(
Ceiϕ1 sin

( s0
2a x
)
− Deiϕ2 cos

( s0
2a x
)

Ceiϕ1 cos
( s0

2a x
)
+ Deiϕ2 sin

( s0
2a x
)
)2

 , (A3)

for which the imaginary part is given by

Im
(

V(`+1,1)
)

= Im


 s2

0(`+ 1)
(2a)2


−1 + `

(
A sin

( s0
2a x
)
− B cos

( s0
2a x
)

A cos
( s0

2a x
)
+ B sin

( s0
2a x
)
)2





=
CD`(`+ 1)s2

0

(
(C− D)(C + D) sin

( s0 x
a

)
− 2CD cos(ϕ1 − ϕ2) cos

( s0 x
a

))

a2
(
2CD cos(ϕ1 − ϕ2) sin

( s0 x
a

)
+ (C− D)(C + D) cos

( s0 x
a

)
+ C2 + D2

)2 sin(ϕ1 − ϕ2) , (A4)

so that potential (A3) is real if sin(ϕ1− ϕ2) = 0, or equivalently, if ϕ1 = nπ + ϕ2. Thus, if A
and B have the same phase as complex numbers, we have guaranteed that the potential
partner V(`+1,1) is real. The same is valid for V(`+1,2). Thus, (A2) becomes:

φ
(0)
m=1(x) = Ceiϕ cos

( s0

2a
x
)
+ Deiϕ sin

( s0

2a
x
)

. (A5)

This ground state is not yet normalized. Its normalization gives
∫ a

−a
dx φ

(0)
m=1(x)

(
φ
(0)
m=1(x)

)∗
= 1 =⇒ C2 + D2 = 1 =⇒ C = cos δ, D = sin δ . (A6)

Finally, the ground state wave function has the form:

φ
(0)
m=1(x) = eiϕ cos

( s0

2a
x + δ

)
. (A7)

Let us recall that our goal is to show that the solution of the Schrödinger equation
with component Qn

` is square integrable and the solution with Pn
` is not. To begin with, let

us define a new independent variable using the shift x = y− 2aδ/s0. The ground state has
now the form,

φ
(0)
m=1 = eiϕ cos

( s0

2a
y
)

. (A8)

With this notation, the wave function of the second partner of `-th order is

φ
(`,2)
m = C1Pn

`

(
−i tan

( s0y
2a

))
+ C2Qn

`

(
−i tan

( s0y
2a

))
. (A9)

Next, we shall analyze the square integrability of each of the components in (A9).
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Appendix A.2. Trigonometric Expansion of Pn
`

(
−i tan

( s0y
2a
))

Let us use the change of variable z = −i tan
( s0y

2a
)

and consider the hypergeometric
form of the associated Legendre functions with argument z [38]:

Pn
` (z) =

1
`!

(
−1

2

)`(1 + z
1− z

)n/2
(1− z)`

Γ(2`+ 1) 2F1

(
−`, n− `;−2`;− 2

z−1

)

Γ(`− n + 1)

=
1
`!

(
−1

2

)`(1 + z
1− z

)n/2
(1− z)`

`

∑
j=0

(
(2`− j)!(−`)j

)

j!Γ(−j + `− n + 1)

(
2

1− z

)j

=

(
− 1

2

)`
Γ(2`+ 1)

`!Γ(`− n + 1)
e−

is0(n−`)
2a y

cos`
( s0y

2a
)

`

∑
j=0

(−1)jΓ(`+ 1)(2`− j)!
j!Γ(−j + `+ 1)Γ(−j + `− n + 1)

(
2e−

is0
2a y cos

( s0y
2a

))j

=
`

∑
j=0

(−1)j+`2j−`Γ(`+ 1)(2`− j)!
j!`!Γ(−j + `+ 1)Γ(−j + `− n + 1)

e−
is0y(j−`+n)

2a cosj−`
( s0y

2a

)
. (A10)

Due to the presence of negative powers of the cosine in (A10), the resulting wave
function is not square integrable and, therefore, not acceptable as a wave function of a
bound state.

Appendix A.3. Trigonometric Expansion of Qn
` (−i tan

( s0y
2a
)
)

Similarly, we can express Qn
` (z) in terms of a hypergeometric function [38] as:

Qn
` (z) =

1√
π

2−`−1(−1)`+n+1(z− 1)−`−1Γ
(
−`− 1

2

)(
z + 1
z− 1

)n/2
(`+ n)! 2F1

(
`+ 1, `+ n + 1; 2(`+ 1);− 2

z− 1

)
.

Then, let us perform again the change of variables given by z = −i tan
( s0y

2a
)
, so as

to obtain:

Qn
`

(
−i tan

( s0y
2a

))
=

1√
π

2−`−1(−1)nΓ
(
−`− 1

2

)
Γ(`+ n + 1)e−i s0

2a y(`+n+1) cos`+1
( s0y

2a

)

× 2F1

(
`+ 1, `+ n + 1; 2(`+ 1); 2e−i s0y

2a cos
( s0y

2a

))
.

If again, we perform a series expansion around z = 0 we obtain the following power
series in terms of positive powers of cosines:

Qn
`

(
−i tan

( s0y
2a

))
=

1
2
(−1)−`+n+1e−i s0

2a nyΓ(n− `)Γ(`+ n + 1)
n

∑
j=`+1

(−1)jΓ(j) 2jeij s0
2a y

Γ(j− `)Γ(j + `+ 1)Γ(−j + n + 1)
cosj

( s0

2a
y
)

.

This solution is acceptable as is square integrable.
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Abstract: Hamiltonians describing the relativistic quantum dynamics of a particle with an arbitrary
but fixed spin are shown to exhibit a supersymmetric structure when the even and odd elements
of the Hamiltonian commute. Here, the supercharges transform between energy eigenstates of
positive and negative energy. For such supersymmetric Hamiltonians, an exact Foldy–Wouthuysen
transformation exists which brings it into a block-diagonal form separating the positive and negative
energy subspaces. The relativistic dynamics of a charged particle in a magnetic field are considered
for the case of a scalar (spin-zero) boson obeying the Klein–Gordon equation, a Dirac (spin one-half)
fermion and a vector (spin-one) boson characterised by the Proca equation. In the latter case,
supersymmetry implies for the Landé g-factor g = 2.

Keywords: relativistic wave equation; Klein–Gordon equation; Dirac equation; Proca equation;
supersymmetry

1. Introduction

Soon after the formulation of non-relativistic quantum mechanics by Heisenberg, Born, Jordan and
Schrödinger in 1925 and 1926, Klein [1] and Gordon [2] made first attempts to develop a relativistic
quantum wave formalism. This Klein–Gordon equation is known to have certain deficits for its
quantum mechanical interpretation but nowadays is well accepted as being the correct quantum
wave formalism for spin-zero particles. To overcome the problems of the Klein–Gordon equation,
Dirac in 1928 [3,4] made an ansatz for a wave equation being linear in the time derivative and thus
found his famous equation describing the relativistic quantum dynamics of spin one-half fermions.
The relativistic spin-one equation, also known as Proca equation, has been developed by Proca [5] in
1936. In the same year Dirac [6] and later Fierz and Pauli [7,8] investigated relativistic wave equations
for arbitrary spin. See also the later work by Bhabha [9]. A group theoretical discussion of such wave
equations was then given by Bargmann and Wigner in 1948 [10].

In their fundamental work in 1950, Foldy and Wouthuysen [11] constructed a unitary
transformation which separates the positive and negative energy states; that is, the Dirac Hamiltonian
became block-diagonal. This work has triggered the study of the Hamiltonian form for the other
wave equations. For example, Foldy [12] investigated the Klein–Gordon equation and Feshbach
and Villars [13] made a unified approach to a Hamiltonian form of the Klein–Gordon and Dirac
equation. The Hamiltonian form for the Proca equation has been studied by various authors
including Duffin [14], Kemmer [15], Yukawa, Sakata and Taketani [16,17], Corben and Schwinger
[18], as well as by Schrödinger [19]. The problem of restoring a block-diagonal Hamiltonian via a
so-called exact Foldy–Wouthuysen (FW) transformation for a particle with an arbitrary spin is still
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attracting many researchers. See, for example, the recent work by Silenko [20] and Simulik [21] and
the references therein.

The aim of the present work was to investigate another aspect of such relativistic Hamiltonians
related to an underlying supersymmetric structure. Here, it shall be emphasised that this kind of
supersymmetry is not related to the supersymmetry (SUSY) known from quantum field theory where
the supercharges transform a bosonic state into a fermionic state and vice versa. Here, SUSY is
to be understood in the context of supersymmetric quantum mechanics, where the supercharges
transform between states of positive and negative Witten parity. Despite the fact that supersymmetric
quantum mechanics was originally introduced by Nicolai [22] as the (0+ 1)-dimensional limit of SUSY
quantum field theories, it is rather independent of the latter. Supersymmetric quantum mechanics
became rather popular with the model introduced by Witten [23], being in essence a one-dimensional
non-relativistic quantum system, which still finds many application in various areas of physics [24,25].
The first extension of supersymmetric quantum mechanics to the relativistic Dirac Hamiltonian is
due to Jackiw [26] and Ui [27] and has found many applications, for example, in the analysis of the
electronic properties of topological superconductors and graphene [28].

The main purpose of the present work was to show that such supersymmetric structure may
also be established for other relativistic systems going beyond that of the Dirac Hamiltonians. That is,
we will show under the requirement that the odd and even part of a relativistic Hamiltonian commute
with each other it is possible to establish a SUSY structure similar to what is know in the Dirac case.
To the best of our knowledge, such an extension for the Klein–Gordon case was only briefly discussed
by Thaller in Section 5.5.3 of his book [29] and more explicit by Znojil [30]. Here, we will present a
general approach of supersymmetric quantum mechanics for relativistic Hamiltonians for arbitrary
but fixed spin. The explicit discussion will be limited to the scalar or spin-zero case, the Dirac case
for spin- 1

2 and the vector boson case, i.e., spin-one. In all three cases we consider the well-known
problem of a charged particle in the presence of a magnetic field but now from the point of view of
supersymmetric quantum mechanics. It turns out that all three models, in essence, are closely related
to their non-relativistic counterparts in essentially the same way. In addition, SUSY requires for vector
bosons a Landé g-factor g = 2.

The paper is organised as follows. In the next section, the basic structure of relativistic
Hamiltonians for an arbitrary spin are recalled. In Section 3, we then show that whenever the
odd part commutes with the even part of such a Hamiltonian it is possible to construct an N = 2 SUSY
structure very similar to what is known for supersymmetric Dirac Hamiltonians [29,31]. It is also
recalled that there exists an exact FW transformation bringing the Hamiltonian into a block-diagonal
form. In Section 4, we explicitly discuss the cases of a charged spin-zero, spin one-half and spin-one
particle in an external magnetic field. In all three cases, which cover all the currently known charged
elementary particles, we find that the eigenvalue problem of the relativistic Hamiltonian can indeed be
reduced to that of a non-relativistic one. Section 5 discusses the resolvent of supersymmetric relativistic
Hamiltonians and again shows that for the three cases under consideration the Green’s function,
in essence, may be reduced to that of the associated non-relativistic Hamiltonian. Finally, in Section 6,
we present a short conclusion and an outlook for possible further investigations and in the Appendix A
we collect some useful relations for the spin s = 1 case which are not that commonly known.

2. Relativistic Hamiltonians for Arbitrary Spin

In the Hamiltonian form of relativistic quantum mechanics, one puts the wave equation into a
Schrödinger-like form

ih̄∂tΨ = HΨ . (1)

The Hamiltonian in the above equation in general is of the form

H = βm + E +O , (2)
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where β2 = 1 acts as a grading operator and m standard for the particle’s mass. In addition to the mass
term βm, the operator E represents the remaining even part of the Hamiltonian; that is, it commutes
with the grading operator, [β, E ] = 0. The operator O denotes the odd part of H and obeys the
anticommutation relation {β,O} = 0. For a particle with spin s, s = 0, 1

2 , 1, 3
2 , . . ., the Hilbert spaceH

on which H acts is given by
H = L2(R3)⊗C2(2s+1) , (3)

that is, the wave function Ψ in (1) is a spinor with 2(2s + 1) components [20]. Let us note that we can
decompose the Hilbert space H into a direct sum of the two eigenspaces of the grading operator β

with eigenvalue +1 and −1, respectively,

H = H+ ⊕H− , H± := L2(R3)⊗C2s+1 . (4)

Obviously, H± are simultaneously the subspaces where eigenvalues of H are positive and
negative, respectively.

For simplicity, let us put the relativistic Hamiltonian (2) into the form

H = βM+O , (5)

where we have absorbed the mass m in the even mass operator M := m + βE with [β,M] = 0.
Let us note here that above Hamiltonian is self-adjoint, i.e., H = H†, only for the case of fermions
where s = 1

2 , 3
2 , . . . is a half-odd integer. For bosons, where s takes integer values, the Hamiltonian is

pseudo-hermitian, that is, H = βH†β.
Choosing a representation where β takes the diagonal form

β =

(
1 0
0 −1

)
, (6)

where in the above the 1 denotes a (2s + 1)-dimensional unit matrix. The even and odd operators
obeying [β,M] = 0 and {β,O} = 0 are necessarily of the form

M =

(
M+ 0

0 M−

)
, O =

(
0 A

(−1)2s+1 A† 0

)
, (7)

where M± : H± 7→ H± with M†
± = M± is an operator mapping positive and negative energy states

into positive and negative energy states, respectively. Whereas A : H− 7→ H+ maps a negative energy
state into a positive energy state and A† : H+ 7→ H− vice versa. With the above representation,
the general relativistic spin-s Hamiltonian then takes the form

H =

(
M+ A

(−1)2s+1 A† −M−

)
. (8)

In the following section, we will show that under the assumption that the even and odd parts of
the Hamiltonian (8) commute, i.e., [M,O] = 0, it is possible to establish an N = 2 supersymmetric
structure being well-studied in supersymmetric quantum mechanics. This condition, which we will
call the SUSY condition, also allows for an exact Foldy–Wouthuysen transformation.

3. Supersymmetric Relativistic Hamiltonians for Arbitrary Spin

As stipulated above, let us assume that the even mass operator M and the odd operator O
commute. This SUSY condition implies that

M+A = AM− , A† M+ = M−A† . (9)
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As a consequence of this, the squared Hamiltonian (8) becomes block diagonal

H2 =

(
M2

+ + (−1)2s+1 AA† 0
0 M2

− + (−1)2s+1 A† A

)
. (10)

Inspired by the construction of a SUSY structure for supersymmetric Dirac Hamiltonians [31],
let us introduce the following SUSY Hamiltonian

HSUSY :=
(−1)2s+1

2mc2 (H2 −M2) =
1

2mc2

(
AA† 0

0 A† A

)
≥ 0 (11)

and the complex supercharges

Q :=
1√

2mc2

(
0 A
0 0

)
, Q† =

1√
2mc2

(
0 0

A† 0

)
. (12)

Here, m > 0 is an arbitrary mass-like parameter, representing, for example, the mass of the
relativistic particle in (2). It is obvious that these operators generate a transformation between positive
and negative energy states. A straightforward calculation shows that these operators together with the
Witten parity operator W := β form an N = 2 SUSY system; that is,

HSUSY = {Q, Q†} , {Q, W} = 0 , Q2 = 0 = (Q†)2 , [W, HSUSY] = 0 , W2 = 1 . (13)

Let us note thatM under condition (9) commutes with all operators of above algebra and thus
constitutes a centre of the SUSY algebra (13). Hence, a relativistic arbitrary-spin Hamiltonian (8)
obeying the SUSY condition (9) may be called a supersymmetric relativistic arbitrary-spin Hamiltonian.

Let us also note that for a supersymmetric relativistic arbitrary-spin Hamiltonian, there exists an
exact Foldy–Wouthuysen transformation U which brings (8) into the block-diagonal form [20]

HFW := UHU† = β
√

H2

=



√

M2
+ + (−1)2s+12mc2H+ 0

0 −
√

M2
− + (−1)2s+12mc2H−


 ,

(14)

where the partner Hamiltonians H± are defined by

H+ :=
1

2mc2 AA† , H− :=
1

2mc2 A† A . (15)

In fact, it is known that under condition [M,O] = 0, the exact Foldy–Wouthuysen transformation
is explicitly given by [20,32]

U :=
|H|+ βH√

2H2 + 2M|H|
=

1 + β sgn H√
2 + {sgn H, β}

, sgn H :=
H√
H2

. (16)

As a side remark, let us mention that the four projections operators

P± := 1
2 [1±W] , Λ± := 1

2 [1± sgn H] , (17)

projecting onto the subspaces of positive/negative Witten parity and positive/negative eigenvalues
of H, respectively, are related to each other via the same unitary transformation as H and HFW

P± = UΛ±U† . (18)
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That is, the positive and negative energy eigenspaces are transformed via U into spaces of positive
and negative Witten parity. In fact, one may verify that U may be represented in terms of these
projection operators as follows

U =
P+Λ+ + P−Λ−√

(P+Λ+ + P−Λ−)(Λ+P+ + Λ−P−)
. (19)

The non-negative partner Hamiltonians H± ≥ 0 are essential isospectral which means that their
strictly positive eigenvalues are identical. The corresponding eigenstates are related to each other via a
SUSY transformation. To be more explicit, let us assume these are given by

H±φ±ε = εφ±ε , φ±ε ∈ H± , ε > 0 , (20)

then the SUSY transformation reads [31]

φ+
ε =

1√
2mc2ε

Aφ−ε , φ−ε =
1√

2mc2ε
A†φ+

ε . (21)

Note that the energy eigenvalue ε may be degenerate and above relations are valid for each
of these energy eigenstates. We omit an additional index in φ±ε enumerating such a degeneracy.
In addition, both partner Hamiltonians H± may have a non-trivial kernel; that is, there may exist one
or several eigenstates with

H±φ±0 = 0 . (22)

In this case, SUSY is said to be unbroken [31]. For these ground states, again we omit the index
for a possible degeneracy. There exists no SUSY transformation relating φ+

0 and φ−0 . The breaking of
SUSY can be studied via the so-called Witten index ∆ [33], which in the current context is identical to
the Fredholm index of A, if it is a Fredholm operator, that is,

∆ ≡ ind A := dim ker A− dim ker A† = dim ker H− − dim ker H+ . (23)

Obviously a non-vanishing Witten index indicates that SUSY is unbroken. In connection with [29]

dim ker (Q + Q†) = dim ker A + dim ker A† = dim ker H− + dim ker H+ (24)

the kernels of H±; that is, the number of zero-energy states of H± are known. In general, however, the
operator A is not Fredholm and hence some regularized indices are studied [29,31].

Due to the SUSY condition (9), the mass operators commute with the associated partner
Hamiltonians, [M±, H±] = 0, and therefore have an identical set of eigenstates. Let us denote
the corresponding eigenvalues of M± by m±c2; that is,

M±φ±ε = m±c2φ±ε , ε ≥ 0 , (25)

then obviously the eigenvalues and eigenstates of (14),

HFWψ±ε = E±ψ±ε , (26)

are given by

E± = ±
√

m2
±c4 + (−1)2s+12mc2ε , ψ+

ε =

(
φ+

ε

0

)
, ψ−ε =

(
0

φ−ε

)
. (27)

Here, let us note that the mass eigenvalues may depend on the energy eigenvalues, m± = m±(ε).
Using the relation (9) in combination with the SUSY relation (21) and the above eigenvalue
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Equation (25), one may verify that m+(ε) = m−(ε) for all ε > 0. In essence, this means that the
spectrum of a supersymmetric relativistic Hamiltonian is symmetric about zero with a possible
exception at ±m±(0)c2; that is, if ε = 0, which may only occur in the case of unbroken SUSY.

The eigenstates of the original Hamiltonian (8) are then easily found via the unitary transformation
Ψ±ε = U†ψ±ε having the same eigenvalues E± given above. Hence, the eigenvalue problem of
a supersymmetric relativistic spin-s Hamiltonian can be reduced to the simultaneous eigenvalue
problems for M± and H± onH±.

It will turn out in the examples to be discussed below that the partner Hamiltonians H± and the
mass operators M± are in essence represented by a non-relativistic Schrödinger-like Hamiltonian HNR

and/or some constant operator. To be more precise, we will show for all three cases—s = 0, 1
2 and

1—discussed below that the FW-transformed relativistic Hamiltonian takes the form

HFW = βmc2

√
1 +

2HNR

mc2 (28)

with HNR representing the associate non-relativistic Hamiltonian as

lim
c→∞

(
P±HFWP± ∓mc2

)
= ± lim

c→∞

(
mc2

√
1 + 2HNR/mc2 −mc2

)
= ±HNR . (29)

4. Examples

In the following subsections we will consider a relativistic charged particle with charge e and
mass m in an external magnetic field ~B := ~∇× ~A characterised by a vector potential ~A. The symbol ~π
stands for the kinetic momentum; that is, ~π := ~p− e~A/c, where c denotes the speed of light. We will
consider the case of a scalar particle with spin s = 0, a Dirac particle with s = 1

2 and a vector boson
having spin s = 1.

4.1. The Klein–Gordon Hamiltonian with Magnetic Field

The Schrödinger form of the Klein–Gordon equation as been considered by Feshbach and Villars
in [13] where they have shown that the Klein–Gordon equation for a charged particle in a magnetic
field can be put into the Schrödinger form (1) where the pseudo-Hermitian Hamiltonian is given by

H =


 mc2 + ~π2

2m
~π2

2m

− ~π2

2m −mc2 − ~π2

2m


 , H = L2(R3)⊗C2 . (30)

Comparing this with the general form (8), we may identify the operators M± and A as follows:

M± =
1

2m
~π2 + mc2 , A =

1
2m

~π2 . (31)

Obviously, these operators are identical up to an additional constant M± = A + mc2 and
hence the condition (9); that is, [M±, A] = 0 is trivially fulfilled. In other words, the Klein–Gordon
Hamiltonian (30) for a charged scalar particle in the presence of an arbitrary magnetic field represents
a supersymmetric relativistic spin-zero Hamiltonian. Let us note that the two operators (31) in
essence are given by the Landau Hamiltonian HL := (~p− e~A/c)2/2m = ~π2/2m of a non-relativistic
spinless charged particle of mass m in a magnetic field; that is, M± = HL + mc2 and A = HL.
As a consequence, the eigenvalue problem for (30) is reduced to that of HL. The FW transformed
Hamiltonian explicitly reads

HFW =



√
(HL + mc2)2 − H2

L 0

0 −
√
(HL + mc2)2 − H2

L


 = βmc2

√
1 +

2HL

mc2 . (32)
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Let us denote the eigenvalues of HL by ε, then the eigenvalues of M± and H± = H2
L/2mc2 read

m±c2 = mc2 + ε , ε =
ε2

2mc2 (33)

and via relation (27) we find the eigenvalues of the Klein–Gordon Hamilonian

E± = ±
√

m2
±c4 − 2mc2ε = ±

√
(mc2 + ε)2 − ε2 = ±mc2

√
1 +

2ε

mc2 , (34)

which is a result expected from relation (32). For a non-vanishing constant magnetic field, say in the
z-direction ~B = B~ez with B 6= 0, the eigenvalues of HL are the well-known Landau levels [34,35]

ε = h̄ωc

(
n +

1
2

)
+

h̄2k2
z

2m
, n ∈ N0 , kz ∈ R , ωc :=

|eB|
mc

. (35)

As ε ≥ h̄ωc/2 > 0 so is ε > 0 and hence dim ker H− = dim ker H− = 0. In other words, the
Witten index (23) vanishes and SUSY is broken for the Klein–Gordon Hamiltonian in a constant
magnetic field.

4.2. The Dirac Hamiltonian with Magnetic Field

The Dirac equation representing the relativistic dynamics of spin- 1
2 fermions has intensively been

studied since its introduction. See, for example, the excellent book by Thaller [29]. For a charged
particle in an arbitrary external magnetic field, the Dirac Hamiltonian reads

H =

(
mc2 c~σ · ~π

c~σ · ~π −mc2

)
, (36)

where ~σ = (σ1, σ2, σ3)
T stands for a three-dimensional vector who’s components are given by the

Pauli matrices acting on C2, thus representing the spin- 1
2 degree of freedom. Comparing this with

the general form (8), we may identify the operators M± = mc2 and A = cσ · ~π = A† and note that
condition (9) is trivially fulfilled. Hence, the Dirac Hamiltonian (36) is indeed supersymmetric and its
FW transformed form is known [32] to be expressible in terms of the non-relativistic Pauli Hamiltonian
for a spin- 1

2 particle with Landé g-factor g = 2.

HP :=
1

2m
(~σ · ~π)2 =

1
2m

(~p− e~A/c)2 − eh̄
mc

~B ·~σ . (37)

Obviously, the partner Hamiltonians can be identified with the Pauli Hamiltonian
H± = A2/2mc2 = HP and we find for the FW transformed Dirac Hamiltonian

HFW =



√

m2c4 + 2mc2Hp 0

0 −
√

m2c4 + 2mc2Hp


 = βmc2

√
1 +

2HP

mc2 . (38)

As shown by Aharonov and Casher [36], for a magnetic field having only a z-component,
~B = B(x, y)~ez, the ground-state energy of HP is zero and the Witten index (23) in essence is given
by the flux F =

∫
R2 dxdyB(x, y) measured in units of the magnetic flux quantum Φ0 := 2πh̄c/|e|.

Hence, SUSY is unbroken in this case. For details, see for example [31], where it is shown that the Pauli
Hamiltonian for this magnetic field provides an additional SUSY structure within both subspacesH±.

Finally, for an electron (e < 0) in a constant magnetic field, the eigenvalues of HP are well-known

ε = h̄ωc

(
n +

1
2
+ sz

)
+

h̄2k2
z

2m
, n ∈ N0 , kz ∈ R , sz ∈ {− 1

2 , 1
2} , (39)
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and the eigenvalues for (36) determined via (27) are the relativistic Landau levels first obtained by
Rabi in 1928 [37]

E± = ±
√

m2c2 + h̄2c2k2
z + 2mc2h̄ωc(n + 1/2 + sz) . (40)

The degeneracy for each set of quantum numbers (n, sz, kz) is given by the largest integer which
is strictly less than |F|/Φ0 and is only finite in case the magnetic field has a compact support.

4.3. The Spin-1 Hamiltonian with Magnetic Field

Initiated by Proca’s work [5], several authors have studied relativistic spin-one wave equations.
Let us mention here the work by Duffin [14], by Kemmer [15] and by Yukawa, Sakata and
Taketani [16,17]. An early study of the eigenvalue problem is due to Corben and Schwinger [18].
A relativistic Hamiltonian was studied, for example, by Young and Bludman [38], by Krase et al. [39]
and by Tsai and coworkers [40,41]. The later work by Daicic and Frankel [42] presents an alternative
solution to eigenvalue problem of the spin-one Hamiltonian in an external magnetic field. A recent
treatment via FW transformation can be found in ref. [43].

The Hamiltonian of a charged spin-one particle with a priori arbitrary g-factor is given by, see for
example [38,42,43],

H =


 mc2 + ~π2

2m −
geh̄
2mc (

~S · ~B) ~π2

2m − 1
m (~S · ~π)2 + (g−2)eh̄

2mc (~S · ~B)

− ~π2

2m + 1
m (~S · ~π)2 − (g−2)eh̄

2mc (~S · ~B) −mc2 − ~π2

2m + geh̄
2mc (

~S · ~B)


 , (41)

where ~S = (S1, S2, S3)
T is a vector who’s components are 3× 3 matrices acting on C3 and obeying the

SO(3) algebra [Si, Sj] = iεijkSk representing the spin-one-degree of freedom of the particle. Again, we
may identify the operators

M± := mc2 +
~π2

2m
− geh̄

2mc
(~S · ~B) , A :=

~π2

2m
− 1

m
(~S · ~π)2 +

(g− 2)eh̄
2mc

(~S · ~B) = A† . (42)

From now on, let us assume that the magnetic field ~B is constant, i.e., ~A = 1
2
~B×~r. Under this

condition, one may verify that

[M±, A] = (g− 2)
eh̄

2m2c

[
(~S · ~B), (~S · ~π)2

]
. (43)

Hence, the SUSY condition (9) is fulfilled if and only if g = 2. In other words, the relativistic
spin-one Hamiltonian (41) is a supersymmetric Hamiltonian if the gyromagnetic factor is given
by g = 2. For a detailed discussion, we refer to the recent paper [44]. Here, we remark that the
“Vector Boson” Hamiltonian

HV :=
~π2

2m
− eh̄

mc
(~S · ~B) (44)

represents the non-relativistic Hamiltonian of a charged spin-one particle in a magnetic field with
gyromagnetic factor g = 2. Note that (44) is related to the quantity α introduced by Weaver [45] by
HV = α

2m . That this is indeed the non-relativistic version of (41) was already mentioned in ref. [39].
With this we have M± = HV + mc2 and with relation (3.18) and (3.19) from ref. [42], see also the
Appendix A, a straightforward calculation shows that A2 = H2

V. That is, the partner Hamiltonians
read H± = H2

V/2mc2 and the transformed FW Hamiltonian takes the form

HFW =



√
(HV + mc2)2 − H2

V 0

0 −
√
(HV + mc2)2 − H2

V


 = βmc2

√
1 +

2HV

mc2 (45)
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The eigenvalues of (44) are given by (we assume e < 0)

ε = h̄ωc

(
n +

1
2
+ sz

)
+

h̄2k2
z

2m
, n ∈ N0 , kz ∈ R , sz ∈ {−1, 0, 1} . (46)

Hence, the spectrum of the partner Hamiltonians H± is given by ε = ε2/2mc2 and SUSY is
unbroken as ε = 0 for n = 0, sz = −1 and kz = ±1/λL with λL :=

√
h̄/mωc =

√
h̄c/|eB| being the

Lamor length [42]. That is, SUSY is unbroken for a spin-1 particle in a homogeneous magnetic
field but the Witten index remains zero as H+ = H− and therefore dim ker H+ = dim ker H−.
The corresponding eigenvalues of (41) are given by

E± = ±
√

m2c2 + h̄2c2k2
z + 2mc2h̄ωc(n + 1/2 + sz) , (47)

which is identical in form to the Dirac case (40) but sz now taking the integer values as given in (46).
In fact, for kz = 0, n = 0 and sz = −1, the above eigenvalues would become complex if |B| > m2c3/|e|h̄.
Such large magnetic fields would imply λL < λC := h̄/mc;that is, the Lamor wavelength being smaller
than the Compton wavelength of the vector boson. Note that confining a quantum particle to a region
of the order of its Compton wavelength ∆x ∼ λC implies by the uncertainty relation a momentum
fluctuation ∆p ∼ mc and thus a single particle description is no longer appropriate. In other words for
such large magnetic fields a description via quantum field theory must be applied.

5. The Resolvent of Supersymmetric Relativistic Arbitrary-Spin Hamiltonians

In this section, we want to study the resolvent or Green’s function of supersymmetric relativistic
arbitrary-spin Hamiltonians defined as

G(z) :=
1

H − z
, z ∈ C\spec H . (48)

For this, is it convenient to first look at the iterated resolvent which is given by

g(ζ) :=
1

H2 − ζ
, ζ ∈ C\spec H2 (49)

and is related with (48) via the obvious relation

G(z) = (H + z) g(z2) . (50)

H2 is block-diagonal and so is g; hence, it can be put into the form

g(ζ) :=

(
g+(ζ) 0

0 g−(ζ)

)
with g±(ζ) :=

1
M2
± + (−1)2s+12mc2H± − ζ

. (51)

As a result, the resolvent (48) can be expressed in terms of (51) as follows:

G(z) =

(
(z + M+)g+(z2) Ag−(z2)

(−1)2s+1 A†g+(z2) (z−M−)g−(z2)

)
. (52)

In the following subsections, we will explicitly consider the three cases discussed in the previous
section. It will turn out that for these three cases, the diagonal elements g± of the iterated Green’s
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function can be expressed in terms of the Green’s function of the corresponding non-relativistic
Hamiltonian HNR; that is,

g±(ζ) =
1

2mc2 GNR

(
ζ

2mc2 − mc2

2

)
, GNR(ξ) :=

1
HNR − ξ

, ξ ∈ C\spec HNR. (53)

Note that the relation ξ = z2/2mc2 − mc2/2, which can be put into the form
z = ±mc2

√
1 + 2ξ/mc2, in essence reflects the relation (28).

5.1. The Resolvent of the Klein–Gordon Hamiltonian with Magnetic Field

Following the discussion of the first example of Section 4, we may express all relevant operators
in terms of the Landau Hamiltonian HL = ~π2/2m. Explicitly, we have

M± = HL + mc2 , H± = H2
L/2mc2 , A = HL† , (54)

which results in the iterated resolvents

g±(ζ) :=
1

(HL + mc2)2 − H2
L − ζ

=
1

2mc2 GL

(
ζ

2mc2 − mc2

2

)
, (55)

where GL stands for the Green function of the Landau Hamiltonian in terms of which the Klein–Gordon
Hamiltonian reads

H =

(
mc2 + HL HL

−HL −mc2 − HL

)
. (56)

The Green’s function then reads in terms of the Landau Hamiltonian

G(z) =
1

2mc2

(
z + mc2 + HL HL

−HL z−mc2 − HL

)
GL

(
z2

2mc2 − mc2

2

)
. (57)

5.2. The Resolvent of the Dirac Particle in a Magnetic Field

As in the above discussion, let us first recall the observations made in Section 4.2; that is,

M± = mc2 , H± = A2/2mc2 = HP , A = c~σ · ~π , (58)

which provide us with the components of the iterated kernel

g±(ζ) :=
1

2mc2HP + m2c4 − ζ
=

1
2mc2 GP

(
ζ

2mc2 − mc2

2

)
, (59)

where GP(ε) := (HP − ε)−1 is the resolvent of the non-relativistic Pauli Hamiltonian. In terms of this
Pauli Green’s function and the spin projection operator A, the Dirac Green’s function can be put into
the form

G(z) =
1

2mc2

(
z + mc2 A

A z−mc2

)
GP

(
z2

2mc2 − mc2

2

)
. (60)

Some explicit examples have been worked out in ref. [32].

5.3. The Resolvent of a Vector Boson in a Magnetic Field

From Section 4.3, let us recall the relevant operators as follows:

M± = HV + mc2 , H± = H2
V/2mc2 , A =

~π2

2m
− 1

m
(~S · ~π)2 , (61)

66



Symmetry 2020, 12, 1590

where the vector Hamilton HV is given in Equation (44). Recalling that A2 = H2
V, we find for the

iterated Green’s functions

g±(ζ) :=
1

(HV + mc2)2 − H2
V − ζ

=
1

2mc2 GV

(
ζ

2mc2 − mc2

2

)
(62)

with GV(ε) := (HV − ε)−1. The relativistic spin-one Hamiltonian explicitly reads

H =

(
mc2 + HV A
−A −mc2 − HV

)
(63)

and leads us to the Green’s function

G(z) =
1

2mc2

(
z + mc2 + HV A

−A z−mc2 − HV

)
GV

(
z2

2mc2 − mc2

2

)
. (64)

6. Summary and Outlook

In this work we have considered relativistic one-particle Hamiltonians for an arbitrary but fixed
spin s and have shown that under the condition, that its even part commutes with its odd part, a SUSY
structure can be established. Here, the SUSY transformations map states of negative energy to those of
positive energy and vice versa. This is different to the usual SUSY concepts in quantum field theory
where those charges transform bosonic into fermionic states and vice versa. As examples, we have
chosen the physically most relevant cases of a massive charged particle in a magnetic field for the cases
of a scalar particle (s = 0), a Dirac fermion (s = 1/2) and a vector boson (s = 1). In the case of a constant
magnetic field, SUSY is broken for s = 0 but remains unbroken for s = 1/2 and s = 1. The Witten index
is only non-zero in the Dirac case but vanishes for the bosonic cases discussed. However, all three
cases have resulted in the notable observation (28) that the FW-transformed Hamiltonian HFW is
entirely expressible in terms of a corresponding non-relativistic Hamiltonian HNR. As H2

FW = H2,
the relativistic energy–momentum relation can be put into the form

H2 = m2c4 + 2mc2HNR , (65)

which allows us to relate HNR with the SUSY Hamiltonian (11).
There naturally arises the desire to also study the higher-spin cases s ≥ 3/2. The corresponding

free-particle Hamiltonians have been constructed, for example, by Guertin [46] in a unified
way. However, as Guertin mentions, only for the cases discussed here, i.e., s = 0, 1/2 and 1,
the corresponding Hamiltonians are local operators.

Another route for further investigation would be to consider more exotic magnetic fields.
For example, choosing an imaginary vector potential such that the kinetic momentum takes the
form ~π = ~p + imω~r in essence leads for s = 1/2 to the so-called Dirac oscillator, which is know to
exhibit such a SUSY structure [32]. To the best of our knowledge, the corresponding Klein–Gordon
and vector boson oscillators have not yet been studied in the context of SUSY. Similarly, following
the discussion of ref. [32] on the Dirac case, one may extend these discussion on a path-integral
representation of the iterated Green’s functions to the bosonic cases s = 0 and s = 1.
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Appendix A. Some Useful Relations for the Spin-One Case

In this Appendix A we present a few relations which provide some additional steps used in
Section 4.3. For an arbitrary magnetic field let us recall that the components of the kinetic momentum
given by πj = pj − (e/c)Aj obey the commutation relation

[πk, πl ] = (ih̄e/c) εklmBm (A1)

where we use Einstein’s summation convention for repeated indices. From this relation one may derive
the commutator [πk,~S · ~π] = (ih̄e/c) εklmSl Bm which in turn leads us to

[
~π2,~S · ~π

]
= (eh̄/c)[~S · ~B,~S · ~π] + (eh̄/c)SkSl (πl Bk − Blπk) . (A2)

For an arbitrary magnetic field the components of the kinetic momentum do not commute with
the components of the magnetic field. However, if we now assume that the magnetic field is constant
one may commute in the last term these components. That is, under the assumption that ~B = const.
we arrive at [

~π2,~S · ~π
]
= (2eh̄/c)[~S · ~B,~S · ~π] , (A3)

which in turn results in [
~π2, (~S · ~π)2

]
=

2eh̄
c

[
(~S · ~B), (~S · ~π)2

]
. (A4)

Note that relation (A3) was already given in Equation (3.17) of ref. [42]. With the help of (A4) it is
easy to calculate the commutator

[M±, A] = (g− 2)
eh̄

2m2c

[
(~S · ~B), (~S · ~π)2

]
+ (2g− 2)

eh̄
2m2c

[
~π2, (~S · ~B)

]
. (A5)

Noting that we have derived this under the assumption of a constant magnetic field the
last commutator in above expression vanishes and hence we arrive at Equation (43). Note that
[Sk, Sl ] = iεklmSm and therefore the first term on the right-hand-side above even for a constant magnetic
field only vanishes when g = 2.

With the assumption that the magnetic field is constant and utilising below properties of the
spin-one matrices

SiSjSk + SkSjSi = δijSk + δjkSi , εijkSiSjBk = i~S · ~B (A6)

one may verify the relations (see Equations (3.18) and (3.19) in ref. [42])

(~S · ~π)4 =
(
~π2 − 2eh̄

c (~S · ~B)
)
(~S · ~π)2 + eh̄

c (
~B · ~π)(~S · ~π) ,

{
(~S · ~B), (~S · ~π)2

}
=
(
~π2 − eh̄

c (
~S · ~B)

)
(~S · ~B) + (~B · ~π)(~S · ~π) .

(A7)

Noting that for g = 2 we have

HV :=
~π2

2m
− eh̄

mc
(~S · ~B) , A =

~π2

2m
− 1

m
(~S · ~π)2 (A8)

and with above relations (A7) immediately follows that A2 = H2
V as claimed in the main text. Finally, let

us mention the explicit form of the energy eigenfunctions can also be found in ref. [42].
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Abstract: The three-dimensional Klein–Gordon oscillator exhibits an algebraic structure known
from supersymmetric quantum mechanics. The supersymmetry is unbroken with a vanishing Witten
index, and it is utilized to derive the spectral properties of the Klein–Gordon oscillator, which is
closely related to that of the nonrelativistic harmonic oscillator in three dimensions. Supersymmetry
also enables us to derive a closed-form expression for the energy-dependent Green’s function.

Keywords: Klein–Gordon oscillator; supersymmetric quantum mechanics; Green’s function

1. Introduction

Starting with Galileo’s pendulum experiment [1] in 1602, and with Hook’s law of
elasticity [2] from 1678, harmonic oscillators played significant roles in classical physics.
More importantly, the harmonic oscillator was the first system to which early quantum
theory was successfully applied by Planck [3] in 1900 when developing his law of black
body radiation. Nowadays, the harmonic oscillator is a standard part of any introduc-
tory text book on nonrelativistic quantum mechanics. In relativistic quantum mechanics,
the harmonic oscillator was initially studied within Dirac’s theory of electrons in the
1960s [4–6], but attracted considerable attention only with the seminal work by Moshinsky
and Szczepaniak [7] (see also Quesne and Moshinsky [8]). Inspired by this so-called Dirac
oscillator, the Klein–Gordon oscillator (KGO) was studied by various authors [9–11].

The KGO Hamiltonian characterises a relativistic spin-zero particle with mass m
minimally coupled to a complex linear vector potential. Since its introduction, the KGO
has attracted much interest. The spectral properties of the one-dimensional system were
discussed, for example, in [12,13]. For a treatment in noncommutative space, see [14,15];
for recent results in a nontrivial topology, see [16–19] and the references therein.

Since 1990, the Dirac oscillator has been known to exhibit a supersymmetric (SUSY)
structure that, in turn, allows for explicit solutions [20–23]. More recently, SUSY also
enabled us to formulate Feynman’s path integral approach for Dirac systems [24]. SUSY in
the current context is not based on the original idea, which transforms between states with
different internal spin-degree of freedom, but refers to what is commonly known nowadays
as supersymmetric quantum mechanics; see, for example, [25] and the references therein.

The purpose of the present work is twofold. First, we show that the Klein–Gordon
oscillator possesses a hidden SUSY in the aforementioned sense. Second, we derive an
explicit expression for the Green function of the KGO. In doing so, we closely follow the
generic approach for SUSY in relativistic Hamiltonians with fixed but arbitrary spin [26].

In the next section, we set up the stage with a brief discussion on the KGO Hamiltonian
in three space dimensions and show that this Hamiltonian exhibits a SUSY structure by
mapping it onto a quantum mechanical SUSY system. This is then utilized to derive explicit
results of the system. In Section 3, we derive the eigenvalues and associated eigenstates. In
Section 4, we derive the corresponding Green’s function in a closed form. Lastly, Section 5
closes with a summary and some comments.
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2. Supersymmetry

The Hamiltonian form of the Klein–Gordon equation with arbitrary vector potential
was originally introduced by Feshbach and Villars [27], from which the KGO Hamiltonian
may be constructed via minimal coupling ~p → ~π := ~p − imω~r, where m > 0 stands
for the mass of the spinless Klein–Gordon particle, and ω > 0 is a coupling constant to
be identified with the harmonic oscillator frequency. This minimal coupling might be
interpreted as a complex-valued vector potential of form ~A(~r) := i(mcω/q)~r, with q being
the particle charge, and c the speed of light. However, such a vector potential is not linked
to any kind of gauge invariance, as ~A(~r) = i(mcω/2q)~∇r2 cannot be gauged away by a
pure phase factor in the wave function due to the presence of the imaginary unit.

First explicit expressions of the KGO Hamiltonian were presented by Debergh et al. [9]
for an isotropic system. The KGO Hamiltonian for a more general anisotropic oscillator
system is due to Bruce and Minning [10]. For the sake of simplicity, we consider the
isotropic system characterised by Hamiltonian

H :=
~π† · ~π

2m
⊗ (τ3 + iτ2) + mc2 ⊗ τ3 (1)

acting on Hilbert space L2(R3)⊗C2. In the above, τis stand for Pauli matrices

τ1 :=
(

0 1
1 0

)
, iτ2 :=

(
0 1
−1 0

)
, τ3 :=

(
1 0
0 −1

)
. (2)

These Pauli matrices do not represent a spin degree of freedom. The 2-spinors
on which the above Hamiltonian acts are those originally introduced by Feshbach and
Villars [27].

The KGO Hamiltonian (1) is pseudo-Hermitian [28,29], that is, H† = τ3H τ3, and
reads in an explicit 2× 2 matrix notation

H =

(
M A
−A −M

)
, (3)

where we set M := HNR + mc2 and A := HNR, both in essence being represented by the
nonrelativistic harmonic oscillator Hamiltonian in three dimensions

HNR :=
~π† · ~π

2m
=

1
2m

~p 2 +
m
2

ω2~r 2 − 3
2

h̄ω . (4)

Here and in the following, we use calligraphic symbols for operators acting on the full
Hilbert space L2(R3)⊗C2, and operators represented in italics act on subspace L2(R3).

Obviously, diagonal and off-diagonal elements in (3) commute, i.e., [M, A] = 0.
Hence, following the general approach of [26], an N = 2 SUSY structure can be established
as follows.

HSUSY :=
1

2mc2

(
M2 −H2

)
=

1
2mc2 H2

NR ⊗ 1 ,

Q :=
1√

2mc2

(
0 A
0 0

)
, W :=

(
1 0
0 −1

)
≡ τ3 ,

(5)

where we setM := M⊗ 1. The above SUSY operators obey SUSY algebra

HSUSY = {Q,Q†} , Q2 = 0 = Q†2 ,

[W ,HSUSY] = 0 , {Q,W} = 0 = {Q†,W} .
(6)

In the current context, the third Pauli matrix plays the role of the Witten party operator
W . Therefore, the upper and lower components of a general 2-spinor belong to the
subspace with positive and negative Witten parity, respectively. We further remark that
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dim kerQ = dim kerQ† = dim ker HNR = 1. That is, SUSY is unbroken, as HSUSY has
zero-energy eigenstates [25], but Witten index ∆ still vanishes as

∆ := indQ = dim kerQ− dim kerQ† = 0 . (7)

To the best of our knowledge, this is the first quantum mechanical system with an
unbroken N = 2 SUSY but vanishing Witten index, implying that the spectrum of H is
fully symmetric with respect to the origin, as we see in the following section.

3. Spectral Properties

As was recently shown [26], SUSY in a relativistic Hamiltonian implies the existence of
a Foldy–Wouthuysen transformation, which brings that Hamiltonian into a block-diagonal
form. In the case of the KGO, this transformation operator U , which is a pseudounitary
operator in the sense that U−1 = τ3 U †τ3, reads

U :=
|H|+ τ3H√

2(H2 +M|H|)
(8)

leading to block-diagonal Foldy–Wouthuysen Hamiltonian

HFW := U HU−1 = HFW ⊗ τ3 , HFW :=
√

2mc2HNR + m2c4 . (9)

To be more explicit, let us define tanh Θ := A/M = HNR/(HNR + mc2), which then
allows for us to write transformation (8) in matrix form [9]

U =

(
cosh Θ

2 sinh Θ
2

sinh Θ
2 cosh Θ

2

)
=

1√
2




√
M

HFW
+ 1

√
M

HFW
− 1

√
M

HFW
− 1

√
M

HFW
+ 1


 . (10)

The above expressions are functions of operators of which all may be expressed in
terms of HNR. Hence, using the spectral theorem, these are well-defined. In fact, with
the spectral properties of the nonrelativistic harmonic-oscillator Hamiltonian (4), one
can directly obtain those of (1). Let ψn`µ denote the well-known eigenfunctions of HNR
corresponding to eigenvalue εn`; then, we have

HNR ψn`µ = εn` ψn`µ , εn` = h̄ω(2n + `) , n, ` ∈ N0 ,

ψn`µ(~r) =
(mω

h̄

)`/2+3/4
√

2 n!
Γ(n + `+ 3/2)

r` e−mωr2/h̄ L`+1/2
n

(mω

h̄
r2
)

Y`µ(~e) ,

µ ∈ {−`,−`+ 1, . . . , `− 1, `} , r := |~r| , ~e :=~r/r ,

(11)

where L`+1/2
n and Y`µ denote the associated Laguerre polynomials and spherical harmonics,

respectively. See, for example, ref. [30]. The eigenvalues and eigenfunctions of (1) are
explicitly given by

HΨ±n`µ = E±n`Ψ
±
n`µ , E±n` = ±mc2

√
1 +

2εn`
mc2 ,

Ψ+
n`µ(~r) = ψn`µ(~r)

(
cosh ϑn`

2

− sinh ϑn`
2

)
, Ψ−n`µ(~r) = ψn`µ(~r)

(
− sinh ϑn`

2

cosh ϑn`
2

)
,

(12)

where tanh ϑn` := εn`/(εn` + mc2). These states form an orthonormal basis in L2(R2)⊗C2

with respect to the scalar product [27].

〈Ψ1|Ψ2〉 :=
∫

R3
d3~r Ψ1(~r) τ3 Ψ2(~r) , (13)
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where the overbar stands for the transposed and complex conjugated 2-spinor. That is,

〈Ψ±n`µ|Ψ±n′`′µ′〉 = ±δnn′δ``′δµµ′ , 〈Ψ±n`µ|Ψ∓n′`′µ′〉 = 0 . (14)

Obviously, the scalar product (13), which was already introduced by Feshbach and
Villars [27], is not positive definite and might raise some questions on its probabilistic
interpretation. However, Mostafazadeh’s theory of pseudo-Hermitian operators provides
a solution for this obstacle. The Klein–Gordon case was explicitly discussed in [28,29].

The SUSY ground states associated with nonrelativistic eigenvalue ε00 = 0 are given by

Ψ+
000(~r) =

(mω

h̄π

)3/4
e−mωr2/h̄

(
1
0

)
, Ψ−000(~r) =

(mω

h̄π

)3/4
e−mωr2/h̄

(
0
1

)
(15)

with corresponding eigenvalues E±00 = ±mc2. The Foldy–Wouthuysen Hamiltonian (9) can
be written as

HFW = mc2

√
1 +

2HNR

mc2 ⊗ τ3 , (16)

a form already observed for other relativistic Hamiltonians exhibiting a SUSY [26].

4. Green’s Function

The SUSY established for the KGO in the previous section also allows for us to study
Green’s function associated with the KGO Hamiltonian (1). Following the general approach
of [26], Green’s function, defined by

G(z) :=
1
H− z

, z ∈ C\specH , (17)

can be expressed in terms of iterated Green’s function GI, that is,

G(z) = (H+ z)GI(z2) , GI(z2) :=
1

H2 − z2 . (18)

Noting that H2 = 2mc2(HNR + mc2/2) ⊗ 1, the iterated Green’s function can be
written in terms of nonrelativistic Green’s function GNR(ε) := (HNR− ε)−1 associated with
HNR, as follows.

GI(z2) =
1

2mc2 GNR(ε)⊗ 1 , ε :=
z2

2mc2 −
mc2

2
= 2mc2

(( z
2mc2

)2
− 1

4

)
. (19)

Inserting this into above relation (18) results in

G(z) = 1
2mc2

(
(HNR + mc2 + z) GNR(ε) HNR GNR(ε)

−HNR GNR(ε) −(HNR + mc2 − z) GNR(ε)

)
. (20)

Using defining relation HNR GNR(ε) = ε GNR(ε) with the second relation in (19) leads
us to closed-form expression

G(z) = GNR(ε)




(
1
2 + z

2mc2

)(
1
2 + z

2mc2

) (
1
2 + z

2mc2

)(
z

2mc2 − 1
2

)

(
1
2 + z

2mc2

)(
1
2 − z

2mc2

) (
1
2 − z

2mc2

)(
z

2mc2 − 1
2

)


 , (21)

with ε as defined in (19). The reader is invited to verify that HG(z) = z G(z). With
definition tanh ϑ := ε/(ε + mc2), the above result may be placed into form

G(z) = GNR(ε)

cosh ϑ
2 − sinh ϑ

2

(
cosh2 ϑ

2 cosh ϑ
2 sinh ϑ

2

− cosh ϑ
2 sinh ϑ

2 − sinh2 ϑ
2

)
. (22)
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The coordinate representation of GNR(~r,~r ′, ε) := 〈~r|GNR(ε)|~r ′〉 has been known for
long (see, for example [31]) and explicitly reads

GNR(~r,~r ′, ε) =
1

rr′
∞

∑
`=0

G`(r, r′, ε)
`

∑
µ=−`

Y∗`µ(~e
′)Y`µ(~e) ,

G`(r, r′, ε) = −
Γ
(
`
2 − ε

2h̄ω

)

√
rr′ h̄ω

Wλ,ν

(
r2
>mω/h̄

)
Mλ,ν

(
r2
<mω/h̄

)
,

(23)

where Wλ,ν and Mλ,ν denote Whittaker’s functions, and we set λ := ε
2h̄ω + 3

4 , ν := `
2 + 1

4 ,
r> := max{r, r′} and r> := min{r, r′}.

5. Summary and Outlook

In this work, we showed that the KGO exhibits a SUSY structure, closely following
the general approach of [26]. The SUSY of the KGO was found to be unbroken but with a
vanishing Witten index. Despite eigenvalues in (12) having been known for a long time
(see, for example, [9,10]), the associated eigenstates in (12) have, to our knowledge, never
been presented. In [10] only the eigenstates ofHFW were given. In addition, SUSY enabled
us to calculate the KGO Green function in a closed form.

Obviously, the current discussion for an isotropic oscillator may be extended to that
for the anisotropic oscillator following Bruce and Manning [10]. Here, in essence, one
needs to reduce the problem to three one-dimensional harmonic oscillators. An explicit
expression for Green’s function may also be obtained, as the one-dimensional harmonic
oscillator Green’s function is also known in closed form. See, for example, Glasser and
Nieto [32], and the discussion of the associated Dirac problem [33]. One may also pursue
the path integral approach for the KGO along the lines of the corresponding approach
for the Dirac oscillator [24]. Another route for further investigation would be to look at
generalised nonharmonic oscillators characterized by a potential function Ua(r) := λara

using minimal substitution ~π := ~p− i(~∇Ua)(r). Such power-law potentials obey duality
symmetry in classical and nonrelativistic quantum mechanics (see recent work [34] and
references therein). In particular, a harmonic potential where a = 2, which corresponds to
the discussed KGO case, is dual to the Kepler potential where a = −1.

Another extension is to apply the current SUSY construction to the relativistic S = 1
oscillator. However, as was argued by Debergh et al. [9], the diagonal and off-diagonal
matrix elements of the associated Hamiltonian no longer commute. Hence, it may not be
possible to establish a SUSY structure.
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Abstract: The Newton–Hooke duality and its generalization to arbitrary power laws in classical,
semiclassical and quantum mechanics are discussed. We pursue a view that the power-law duality is
a symmetry of the action under a set of duality operations. The power dual symmetry is defined by
invariance and reciprocity of the action in the form of Hamilton’s characteristic function. We find
that the power-law duality is basically a classical notion and breaks down at the level of angular
quantization. We propose an ad hoc procedure to preserve the dual symmetry in quantum mechanics.
The energy-coupling exchange maps required as part of the duality operations that take one system to
another lead to an energy formula that relates the new energy to the old energy. The transformation
property of the Green function satisfying the radial Schrödinger equation yields a formula that relates
the new Green function to the old one. The energy spectrum of the linear motion in a fractional
power potential is semiclassically evaluated. We find a way to show the Coulomb–Hooke duality in
the supersymmetric semiclassical action. We also study the confinement potential problem with the
help of the dual structure of a two-term power potential.

Keywords: power-law duality; classical and quantum mechanics; semiclassical quantization; super-
symmetric quantum mechanics; quark confinement

1. Introduction

In recent years, numerous exoplanets have been discovered. One of the best Doppler
spectrographs to discover low-mass exoplanets using the radial velocity method are HARPS
(High Accuracy Radial Velocity Planet Searcher) installed on ESO’s 3.6 m telescope at La
Silla and ESPRESSO (Echelle Spectrograph for Rocky Exoplanet- and Stable Spectroscopic
Observations) installed on ESO’s VLT at Paranal Observatory in Chile. See, e.g., [1,2].
NASA’s Kepler space telescope has discovered more than half of the currently known
exoplanets using the so-called transit method. See, e.g., [3,4]. For some theoretical work
on planetary systems see, e.g., [5]. In exoplanetary research it is a generally accepted
view that Newton’s law of gravitation holds in extrasolar systems [6]. Orbit mechanics of
exoplanets, as is the case of solar planets and satellites, is classical mechanics of the Kepler
problem under small perturbations. The common procedure for the study of perturbations
to the Kepler motion is the so-called regularization, introduced by Levi–Civita (1906) for
the planar motion [7,8] and generalized by Kustaanheimo and Stiefel (1965) to the spatial
motion [9]. The regularization in celestial mechanics is a transformation of the singular
equation of motion for the Kepler problem to the non-singular equation of motion for
the harmonic oscillator problem with or without perturbations. It identifies the Kepler
motion with the harmonic oscillation, assuring the dual relation between Newton’s law
and Hooke’s law (here, following the tradition, we mean by Newton’s law the inverse-
square force law of gravitation and by Hooke’s law the linear force law for the harmonic
oscillation. Although Hooke found the inverse square force law for gravitation prior
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to Newton, he was short of skills in proving that the orbit of a planet is an ellipse in
accordance with Kepler’s first law, while Newton was able not only to confirm that the
inverse square force law yields an elliptic orbit but also to show conversely that the
inverse square force law follows Kepler’s first law. History gave Newton the full credit
of the inverse square force law for gravitation. For a detailed account, see, e.g., Arnold’s
book [10]). The Newton–Hooke duality has been discussed by many authors from various
aspects [11,12]. The basic elements of regularization are: (i) a transformation of space
variables, (ii) interpretation of the conserved energy as the coupling constant, and (iii) a
transformation of time parameter. The choice of space variables and time parameter is by
no means unique. The transformation of space variables has been represented in terms of
parabolic coordinates [7,8], complex numbers [13,14], spinors [9], quaternions [6,15,16], etc.
The time transformation used by Sundman [13,17] and by Bohlin [14] (for Bohlin’s theorem
see also reference [10]) is essentially based on Newton’s finding [18] that the areal speed
dA/dt is constant for any central force motion. It takes the form ds = Crdt where s is a
fictitious time related to the eccentric anomaly. To improve numerical integrations for the
orbital motion, a family of time transformations ds = Cηrηdt, called generalized Sundman
transformations, has also been discussed [19], in which s corresponds to the mean anomaly
if η = 0, the eccentric anomaly if η = 1, the true anomaly if η = 2, and intermediate
anomalies [20] for other values of η. Even more generalizing, a transformation of the form
ds = Q(r)dt has been introduced in the context of regularization [21].

As has been pointed out in the literature [10,18,22–24], the dual relation between the
Kepler problem and the harmonic oscillator was already known in the time of Newton
and Hooke. What Newton posed in their Principia was more general. According to Chan-
drasekhar’s reading [18] out of the propositions and corollaries (particularly Proposition
VII, Corollary III) in the Principia, Newton established the duality between the centripetal
forces of the form, rα and rβ, for the pairs (α, β) = (1,−2), (−1,−1) and (−5,−5). Revisit-
ing the question on the duality between a pair of arbitrary power forces, Kasner [25] and
independently Arnol’d [10] obtained the condition, (α + 3)(β + 3) = 4, for a dual pair.
There are a number of articles on the duality of arbitrary power force laws [26,27]. Now
on, for the sake of brevity, we shall refer to the duality of general power force laws as the
power duality. The power duality includes the Newton–Hooke duality as a special case.

The quantum mechanical counterpart of the Kepler problem is the hydrogen atom
problem. In 1926, Schrödinger [28,29] solved their equation for the hydrogen atom and
successively for the harmonic oscillator. Although it must have been known that both
radial equations for the hydrogen atom and for the harmonic oscillation are reducible to
confluent hypergeometric equations [30], there was probably no particular urge to relate the
Coulomb problem to the Hooke problem, before the interest in the accidental degeneracies
arose [31–33]. Fock [31,32] pointed out that for the bound states the hydrogen atom has
a hidden symmetry SO(4) and an appropriate representation of the group can account
for the degeneracy. In connection with Fock’s work, Jauch and Hill [34] showed that the
2− D harmonic oscillator has an algebraic structure of su(2) which is doubly-isomorphic
to the so(3) algebra possessed by the 2− D hydrogen atom. The transformation of the
radial equation from the hydrogen atom to that of the harmonic oscillator or vice verse
was studied by Schrödinger [35] and others, see Johnson’s article [36] and references
therein. The same problem in arbitrary dimensions has also been discussed from the
supersymmetric interest [37]. In the post-Kustaanheimo–Stiefel (KS) era, the relation
between the three dimensional Coulomb problem and the four dimensional harmonic
oscillator was also investigated by implementing the KS transformation or its variations
in the Schrödinger equation. See ref. [38] and references therein. The duality of radial
equations with multi-terms of power potentials was studied in connection with the quark
confinement [36,39,40].

The time transformation of the form ds = Cηrηdt used in classical mechanics is in
principle integrable only along a classical trajectory. In other words, the fictitious time s is
globally meaningful only when the form of r(t) as a function of t is known. In quantum
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mechanics, such a transformation is no longer applicable due to the lack of classical paths.
Hence it is futile to use any kind of time transformation formally to the time-dependent
Schrödinger equation. The Schrödinger equation subject to the duality transformation
is a time-independent radial equation possessing a fixed energy and a fixed angular
momentum. The classical time transformation is replaced in quantum mechanics by a
renormalization of the time-independent state function [41]. In summary, the duality
transformation applicable to the Schrödinger equation consists of (i) a change of radial
variable, (ii) an exchange of energy and coupling constant, and (iii) a transformation of
state function. Having said so, when it comes to Feynman’s path integral approach, we
should recognize that the classical procedure of regularization prevails.

Feynman’s path integral is based on the c-number Lagrangian and, as Feynman as-
serted [42], the path of a quantum particle for a short time dt can be regarded as a classical
path. Therefore, the local time transformation associated with the duality transformation
in classical mechanics can be revived in path integration. In fact, the Newton–Hooke dual-
ity plays an important role in path integration. Feynman’s path integral in the standard
form [42,43] provides a way to evaluate the transition probability from a point to another in
space (the propagator or the Feynman kernel). The path integral in the original formulation
gives exact solutions only for quadratic systems including the harmonic oscillator, but fails
in solving the hydrogen atom problem. However, use of the KS transformation enables to
convert the path integral for the hydrogen atom problem to that of the harmonic oscillator if
the action of Feynman’s path integral is slightly modified with a fixed energy term. In 1979,
Duru and Kleinert [44], formally applying the KS transformation to the Hamiltonian path
integral, succeeded to obtain the energy-dependent Green function for the hydrogen atom
in the momentum representation. Again, with the help of the KS transformation, Ho and
Inomata (1982) [45] carried out detailed calculations of Feynman’s path integral with a mod-
ified action to derive the energy Green function in the coordinate representation. In 1984,
on the basis of the polar coordinate formulation of path integral (1969) [46], without using
the KS variables, the radial path integral for the hydrogen atom was transformed to that
for the radial harmonic oscillator by Inomata for three dimensions [47] and by Steiner for
arbitrary dimensions [48,49]. Since then a large number of examples have been solved by
path integration [50,51]. Applications of the Newton–Hooke duality in path integration
include those to the Coulomb problem on uniformly curved spaces [52,53], Kaluza–Klein
monopole [54], and many others [51]. The idea of classical regularization also helped to
open a way to look at the path integral from group theory and harmonic analysis [50,55,56].
The only work that discusses a confinement potential in the context of path integrals is
Steiner’s [57].

As has been briefly reviewed above, the Newton–Hooke duality and its generalizations
have been extensively and exhaustively explored. In the present paper we pursue the
dual relation (power-duality) between two systems with arbitrary power-law potentials
from the symmetry point of view. While most of the previous works deal with equations
of motion, we focus our attention on the symmetry of action integrals under a set of
duality operations. Our duality discussion covers the classical, semiclassical and quantum-
mechanical cases. In Section 2, we define the dual symmetry by invariance and reciprocity
of the classical action in the form of Hamilton’s characteristic function and specify a set of
duality operations. Then we survey comprehensively the properties of the power-duality.
The energy-coupling exchange relations contained as a part of the duality operations lead
to various energy formulas. In Section 3, we bring the power-duality defined for the
classical action to the semiclassical action for quantum mechanical systems. We argue that
the power-duality is basically a classical notion and breaks down at the level of angular
quantization. To preserve the basic idea of the dual symmetry in quantum mechanics, we
propose as an ad hoc procedure to treat angular momentum L as a continuous parameter
and to quantize it only after the transformation is completed. A linear motion in a fractional
power-law potential is solved as an example to find the energy spectrum by extended use of
the classical energy formulas. We also discussed the dual symmetry of the supersymmetric

79



Symmetry 2021, 13, 409

(SUSY) semiclassical action. Although we are unable to verify general power duality,
we find a way to show the Coulomb–Hooke symmetry in the SUSY semiclassical action.
Section 4 analyzes the dual symmetry in quantum mechanics on the basis of an action
having wave functions as variables. The energy formulas, eigenfunctions and Green
functions for dual systems are discussed in detail, including the Coulomb–Hooke problem.
We also explore a quark confinement problem as an application of multi-power potentials,
showing that the zero-energy bound state in the confinement potential is in the power-dual
relation with a radial harmonic oscillator. Section 5 gives a summary of the present paper
and an outlook for the future work. Appendix A presents the Newton–Hooke–Morse
triality that relates the Newton–Hooke duality to the Morse oscillator.

2. Power-Law Duality as a Symmetry

Duality is an interesting and important notion in mathematics and physics, but it
has many faces [58]. In physics it may mean equivalence, complementarity, conjugation,
correspondence, reciprocity, symmetry and so on. Newton’s law and Hooke’s law may be
said dual to each other in the sense that a given orbit of one system can be mapped into an
orbit of the other (one-to-one correspondence), whereas they may be a dual pair because
the equation of motion of one system can be transformed into the equation of motion for
the other (equivalence).

In this section, we pursue a view that the power duality is a symmetry of the classical
action in the form of Hamiltonian’s characteristic function, and discuss the power duality
in classical, semiclassical and quantum mechanical cases.

2.1. Stipulations

Let us begin by proposing an operational definition of the power duality. We consider
two distinct systems, A and B. System A (or A in short), characterized by an index or a
set of indices a, consists of a power potential Va(r) ∼ ra and a particle of mass ma moving
in the potential with fixed angular momentum La and energy Ea. Similarly, system B (B
in short), characterized by an index or a set of indices b, consists of a power potential
Vb(r) ∼ rb and a particle of mass mb moving in the potential with fixed angular momentum
Lb and energy Eb.

If there is a set of invertible transformations ∆(B, A) that takes A to B, then we say that
A and B are equivalent. Naturally, the inverse of ∆(B, A) denoted by ∆(A, B) = ∆−1(B, A)
takes B to A.

Let X(a, b) and X(b, a) = X−1(a, b) be symbols for replacing the indices b by a and
a by b, respectively. If B becomes A under X(a, b) and A becomes B under X(b, a), then
we say that A and B are reciprocal to each other with respect to ∆(B, A). If A and B are
equivalent and reciprocal, we say they are dual to each other. Since each of the two systems
has a power potential, we regard the duality so stipulated as the power duality.

The successive applications of ∆(A, B) and X(a, b) transform A to B and change B
back to A. Consequently the combined actions leave A unchanged. In this sense we can
view that the set of operations, {∆(A, B), X(a, b)}, or its inverse, {∆(B, A), X(b, a)}, is a
symmetry operation for the power duality.

If a quantity Qa belonging to system A transforms to Qb while ∆(B, A) takes system A
to system B, then we write Qb = ∆(B, A)Qa. If Qb can be converted to Qa by X(a, b), then
we write Qa = X(a, b)Qb and say that Qa is form-invariant under ∆(B, A). If Qa = Qb,
then Qa is an invariant under ∆(B, A). If every Qa belonging to system A is an invariant
under ∆(B, A), then ∆(B, A) is an identity operation.

2.2. Duality in the Classical Action

The power duality in classical mechanics may be most easily demonstrated by consid-
ering the action integral of the form of Hamilton’s characteristic function, W(E) = S(t)+Et,
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where S is the Hamilton’s principal function and E is the energy of the system in question.
The action is usually given by Hamilton’s principal function,

S(τ) =
∫ τ

dtL =
∫ τ

dt
[m

2
~̇r 2 −V(~r)

]
(1)

which leads to the Euler–Lagrange equations via Hamilton’s variational principle. If the
system is spherically symmetric, that is, if the potential V(~r) is independent of angular
variables, then the action remains invariant under rotations. If the system is conservative,
that is, if the Lagrangian is not an explicit function of time, then the action is invariant
under time translations. In general, if the action is invariant under a transformation, then
the transformation is often called a symmetry transformation.

For a conserved system, we can choose as the action Hamilton’s characteristic function,

W(E) =
∫ τ

dt {L+ E} = S(τ) + Eτ , E = −∂S(τ)
∂τ

. (2)

Insofar as the system is conservative, both the principal action S(τ) and the character-
istic action W(E) yield the same equations of motion. For the radial motion of a particle of
mass m with a chosen value of energy E and a chosen value of angular momentum L in a
spherically symmetric potential V(r), the radial action has the form,

W(r,t)(E) =
∫

It
dt

{
m
2

(
dr
dt

)2
− L2

2mr2 −V(r) + E

}
, (3)

where It = τ(E) 3 t is the range of t. We let a system with a specific potential Va be system
A and append the subscript a to every parameter involved. In a similar manner, we let a
system with Vb be system B whose parameters are all marked with a subscript b. For system
A with a radial potential Va(r), we rewrite the action (3) in the form,

W(r,t)(Ea) =
∫

Iϕ

dϕ

(
dt
dϕ

){
ma

2

(
dt
dϕ

)−2( dr
dϕ

)2
− L2

a
2mar2 −Ua(r)

}
, (4)

with
Ua(r) = Va(r)− Ea, (5)

where ϕ is some fiducial time and Iϕ 3 ϕ is the range of integration.
In (4), as is often seen in the literature [36,40,41], we change the radial variable from r

to ρ by a bijective differentiable map,

R f : r = f (ρ) ⇔ ρ = f−1(r), (6)

where f is a positive differentiable function of ρ, 0 < r < ∞ and 0 < ρ < ∞. With this
change of variable we associate a change of time derivative from (dt/dϕ) to (ds/dϕ) by a
bijective differentiable map,

Tg : (dt/dϕ) = g(ρ)(ds/dϕ) ⇔ (ds/dϕ) =
(dt/dϕ)

g( f−1(r))
. (7)

In the above, we assume that both r and ρ are of the same dimension and that s has
the dimension of time as t does. As a result of operations R f and Tg on the action (4),
we obtain

W(r,t)(Ea) =
∫

Iϕ

dϕ

(
ds
dϕ

){
ma

2
f ′2

g

(
ds
dϕ

)−2( dρ

dϕ

)2
− gL2

a
2ma f 2 − gUa( f (ρ))

}
, (8)
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whose implication is obscure till the transformation functions f and g are appropri-
ately specified.

Suppose there is a set of operations ∆, including R f and Tg as a subset, that can
convert W(r,t)(Ea) of (8) to the form,

W(ρ,s)(Eb) =
∫

Iϕ

dϕ

(
ds
dϕ

){
mb
2

(
ds
dϕ

)−2( dρ

dϕ

)2
− L2

b
2mbρ2 −Ub(ρ)

}
, (9)

with
Ub = Vb(ρ)− Eb, (10)

where Vb(ρ) is a real function of ρ, and Eb is a constant having the dimension of energy.
Then we identify the new action (9) with the action of system B representing a particle
of mass mb which moves in a potential Vb(ρ) with fixed values of angular momentum
Lb and energy Eb. If Wξa(Ea) = X(a, b)Wξb(Eb) where ξa = (r, t) and ξb = (ρ, s), then
Wξa(Ea) is form-invariant under ∆. Since W(ρ,s)(Ea) is physically identical with W(r,t)(Ea),
if W(ρ,s)(Ea) = X(a, b)W(ρ,s)(Eb), then we say that system A represented by W(r,t)(Ea) is
dual to system B represented by W(ρ,s)(Eb) with respect to ∆.

2.3. Duality Transformations

In an effort to find such a set of operations ∆, we wish, as the first step, to determine
the transformation functions f (ρ) of (6) and g(ρ) of (7) by demanding that the set of space
and time transformations {R f ,Tg} preserves the form-invariance of each term of the action.
In other words, we determine f (ρ) and g(ρ) so as to retain (i) form-invariance of the kinetic
term, (ii) form-invariance of the angular momentum term and (iii) form-invariance of the
shifted potential term.

In the action W(r,t)(Ea) of (8), the functions f (ρ) and g(ρ) are arbitrary and indepen-
dent of each other. To meet the condition (i), it is necessary that g = µ f ′2 where µ is a
positive constant. Then the kinetic term expressed in terms of the new variable can be
interpreted as the kinetic energy of a particle with mass

M : mb = ma/µ. (11)

In order for the angular momentum term to keep its inverse square form as required
by (ii), the transformation functions are to be chosen as

f (ρ) = Cηρη , g(ρ) = µC2
ηη2ρ2η−2, (12)

where η is a non-zero real constant and Cη is an η dependent positive constant which
has the dimension of r1−η as r and ρ have been assumed to possess the same dimension.
With (12), the angular momentum term of (8) takes the form, L2

b/(2mbρ2), when the mass
changes by M of (11), and the angular momentum La transforms to

L : Lb = ηLa. (13)

To date, the forms of f (ρ) and g(ρ) in (12) have been determined by the asserted
conditions (i) and (ii), even before the potential is specified. This means that (iii) is a
condition to select a potential V(r) pertinent to the given form of g(ρ). More explicitly,
(iii) demands that gUa(r) must be of the form,

gUa = Vb(ρ)− Eb, (14)

where Vb(ρ) is such that Va(ρ) = X(a, b)Vb(ρ). Therefore, the space-time transformation
{R f ,Tg} subject to the form-invariance conditions (i)–(iii) is only applicable to a system
with a limited class of potentials.
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The simplest potential that belongs to this class is the single-term power potential
Va(r) = λara where λa ∈ R and a ∈ R. The corresponding shifted potential is given by

Ua(r) = λara − Ea (15)

which transforms with (12) into

gUa(r) = µλaCa+2
η η2ρaη+2η−2 − µC2

ηη2ρ2η−2Ea. (16)

Under the condition (iii) the expected form of the shifted potential is

Ub(ρ) = gUa(r) = λbρb − Eb, (17)

where λb ∈ R and b ∈ R. Comparison of (16) and (17) gives us only two possible
combinations for the new exponents and the new coupling and energy,

b = aη + 2η − 2 and 2η − 2 = 0, (18)

λb = µCa+2
η η2λa and Eb = µC2

ηη2Ea (19)

and

b = 2η − 2 and a η + 2η − 2 = 0, (a 6= −2), (20)

λb = −µC2
ηη2ρ2η−2Ea and Eb = −µCa+2

η η2λa , (21)

Note that a = −2 is included in the first combination but excluded from the sec-
ond combination.

In the following, we shall examine the two possible combinations in more detail by
expressing the admissible transformations in terms of the exponents,

η1 = 1, ηa = 2/(a + 2) (a 6= 0,−2), (22)

and separating the set of ηa into two as

η+ = {ηa|a > −2}, η− = {ηa|a < −2}. (23)

Chandrasekhar in their book [18] represents a pair of dual forces by (a− 1, b− 1).
In a way analogous to their notation, we also use the notation (a, b) via η for a pair of the
exponents of power potentials when system A and system B are related by a transformation
with η. We shall put the subscript F to differentiate the pairs of dual forces from those of
dual potentials as (a− 1, b− 1)F = (a, b) whenever needed. Caution must be exercised
in interpreting (0, 0) which may mean limε→0(±ε,±ε), limε→0(±ε,∓ε) and purely (0, 0)
(see the comments in below Subsections). We shall refer to the sets of pairs (a, b) related
to the first combination (18)–(19) and the second combination (20)–(21) as Class I and
Class II, respectively.

2.3.1. Class I

Class I is the supplementary set of self-dual pairs. Equation (18) of the first combina-
tion implies

C1 : η1 = 1, a = b ∈ R, (24)

which is denoted by (a, a) via η1. In this case, (12) yields f (ρ) = C1ρ and g(ρ) = µC2
1

where C1 and µ are arbitrary dimensionless constants. With these transformation functions,
(6) and (7) lead to a set of space and time transformations whose scale factors depend on
neither space nor time,

R1 : r = C1ρ, (25)
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and
T1 : (dt/dϕ) = µC2

1(ds/dϕ). (26)

Associated with the space and time transformations (25) and (26) are the scale changes
in coupling and energy, as shown by (19),

E1 : λa → λb = (µCa+2
1 )λa, Ea → Eb = (µC2

1)Ea. (27)

According to (11), the mass also changes its scale,

M1 : mb = ma/µ. (28)

From (13) and (24) follows the scale-invariant angular momentum (we use the sub-
script 0 for trivial transformations representing an identity),

L0 : Lb = La. (29)

In this manner we obtain a set of operations ∆1 = {C1,R1,T1,E1,M1,L0} that leaves
form-invariant the action for the power potential system. System B reached from system A
by ∆1 can go back to system A by X(a, b). Hence, system A is dual to system B. Notice,
however, that ∆1 leads to a self-dual pair (a, a) via η1 for any given a ∈ R. In particular,
(0, 0) = limε→0(±ε,∓ε).

Remark 1. Class I consists of self-dual pairs (a, a) via η1 for all a ∈ R. All pairs in this class
are supplemental in the sense that they are not traditionally counted as dual pairs. Since ∆1 is a
qualified set of operations for preserving the form-invariance of the action, we include self-dual pairs
of Class I in order to extend slightly the scope of the duality discussion.

Remark 2. The space transformation R1 of (25) is a simple scaling of the radial variable as C1 > 0.
The scaling is valid for any chosen positive value of C1. Hence it can be reduced, as desired, to the
identity transformation r = ρ by letting C1 = 1. Those dual pairs linked by scaling may be regarded
as trivial.

Remark 3. The scale transformation with C1 > 0 induces the time scaling T1 whereas the time has
its own scaling behavior. The change in time (26) integrates to t = C1µs + ν where ν is a constant
of integration. The resulting time equation may be understood as consisting of a time translation
t = t′ + ν, a scale change due to the space scaling t′ = C1s′, and an intrinsic time scaling s′ = µs.
The time translation, under which the energy has been counted as conserved, is implicit in T1.
The scale factor µ of time scaling, independent of space scaling, can take any positive value. If C1 = 1
and µ = 1, then T1 becomes the identity transformation of time, (dt/dϕ) = (ds/dϕ).

Remark 4. The scale change in mass mb = µma is only caused by the intrinsic time scaling t = µs.
If µ = 1, then the mass of the system is conserved. Conversely, if ma = mb is preferred, the time
scaling with µ = 1 must be chosen. The time scaling in classical mechanics has no particular
significance. In fact, it adds nothing significant to the duality study. Therefore, in addition to
the form-invariant requirements (i)–(iii), we demand (iv) the mass invariance ma = mb = m by
choosing µ = 1. In this setting the time scaling occurs only in association with the space-scaling.
In accordance with the condition (iv), we shall deal with systems of an invariant mass m for the rest
of the present paper.

Remark 5. If C1 = 1 and µ = 1, then operations, E1, M1, and L0, become identities of respective
quantities. Thus, ∆1 for C1 = 1 and µ = 1 is the set of identity operations, which we denote ∆0.
The set of operations ∆1 for C1 > 0 is trivial in the sense that it is reducible to the set of identity
operations ∆0.

84



Symmetry 2021, 13, 409

Remark 6. If Class I is based only on the scale transformation, it may not be worth pursuing.
As will be discussed in the proceeding sections, there are some examples that do not belong to the
list of traditional dual pairs (Class II). In an effort to accommodate those exceptional pairs within
the present scheme for the duality discussion, we look into the details hidden behind the space
identity transformation r = ρ. The radial variable as a solution of the orbit equations, such as
the Binet equation, depends on an angular variable and is characterized by a coupling parameter.
In application to orbits, the identity transformation r = ρ means r(θ; λa) = ρ(θ̃; λb), which occurs
when θ → θ̃. The angular transformation θ̃ = θ + θ0 where −2π < θ0 < 2π causes a rotation
of a given orbit ρ(θ̃; λb) = r(θ; λa) = r(θ̃ − θ0; λa) about the center of force by θ0. For instance,
the cardioid orbit r = r0 cos2(θ/2) in a potential with power a = −3 maps into ρ = r0 sin2(θ̃/2)
by a rotation θ̃ = θ + π. This example belongs to the self-dual pair (−3,−3) via η = 1. In this
regard, we argue that the identity transformation includes rotations about the center of forces.
Of course, the rotation with θ0 = 0 is the bona fide identity transformation.

Remark 7. Suppose two circular orbits pass through the center of attraction. It is known that the
attraction is an inverse fifth-power force. If the radii of the two circles are the same, then the inverse
fifth-power force is self-dual under a rotation. If the radii of the two circles are different, the two
orbiting objects must possess different masses. A map between two circles with different radius,
passing through the center of the same attraction, is precluded from possible links for the self-dual
pair (−4,−4) by the mass invariance requirement (iv).

Remark 8. If C1 < 0 in (25), either r or ρ must be negative contrary to our initial assumption.
However, when we consider the mapping of orbits, as we do in Remark 6, we recognize that there
is a situation where the angular change θ → θ̃ induces ρ(θ̃; λb) = −r(θ; λa) = r(θ;−λa).
For instance, consider an orbit given by a conic section r = p/(1 + e cos θ) where p > 0 and
−1/e < cos θ ≤ 1. If e > 1, then it is possible to find θ̃ such that −1 ≤ cos θ̃ < −1/e
by θ → θ̃. Consequently the image of the given orbit is ρ(θ̃; p) = r(θ̃; p) = −r(θ; p) < 0.
Certainly the result is unacceptable. The latus rectum p is inversely proportional to λa. Hence in
association with the sign change in coupling λa → λb = −λa, we are able to obtain a passable
orbit ρ(θ̃,−p) = r(θ̃;−p) = −r(θ;−p) > 0. The orbit mapping of this type cannot be achieved
by a rotation. To include the situation like this in the space transformation, we formally introduce
the inversion,

Ri : r → −ρ, (30)

and treat it as if the case of C1 = −1. Then we interpret the negative sign of the radial variable as a
result of a certain change in the angular variable θ involved in the orbital equation by associating it
with a sign change in coupling so that both r and ρ remain positive. If µ = 1, the inversion causes
no change in time, mass, energy, and angular momentum, but entails, as is apparent from (27),
a change in coupling,

λa → λb = (−1)aλa. (31)

The inversion set ∆1 with C1 = −1 and µ = 1, denoted by ∆i, is partially qualified as a
duality transformation. The reason why ∆i is ”partially” qualified is that it is admissible only when
a is an integer. Notice that (−1)a appearing in (31) is a complex number unless a is an integer.
As λa and λb are both assumed to be real numbers, a must be integral. Having said so, in the
context of the inversion, we need a further restriction on a. The sign change in coupling is induced
by the inversion only when a is an odd number. Since ∆i is not generally reducible to the identity
set ∆0, it is non-trivial.

2.3.2. Class II

Class II is the set of proper (traditional) dual pairs. Equation (20) of the second
combination can be expressed as

C2 : η = 2/(a + 2) with b = −2a/(a + 2) , (a 6= −2). (32)
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which implies that a pair (a, b) = (a,−2a/(a + 2)) is linked by ηa when a 6= −2. The above
operation C2 may as well be given by

C′2 : η = (b + 2)/2 with a = −2b/(b + 2) , (b 6= −2), (33)

which means a pair (a, b) = (−2b/(b + 2), b) linked via η = (b + 2)/2. Another expression
for C2 is

C′′2 : η = (b + 2)/2, with (a + 2)(b + 2) = 4 , (a 6= −2, b 6= −2), (34)

which is a version of what Needham [22,23] calls the Kasner–Arnol’d theorem for dual
forces. If a 6= 0 and b 6= 0,

η = 2/(a + 2) = (b + 2)/2 = −b/a , (a 6= −2, b 6= −2), (35)

from which follows that to every (a, b) via ηa there corresponds (b, a) via η−1
a if a 6= 0,−2.

If |a| � 1, then b ≈ −a and (a, b) ≈ (a,−a). Hence (0, 0) = lima→0(a,−a) via η+, which
overlaps with (0, 0) = lima→0(a, a) of Class I in the limit but differs in approach. In the
above ηa stand for η with a fixed a.

In this case, the transformation functions of (12) can be written as f (ρ) = Caρηa and
g(ρ) = µC2

a η2
a ρ2ηa−2 where Ca = Cηa . Here we choose µ = 1 by the reason stated in

Remark 4. The change of radial variable (6) and the change of time derivative (7) become,
respectively,

Ra : r = Caρηa , (36)

and
Ta : (dt/dϕ) = C2

a η2
a ρ2ηa−2(ds/dϕ). (37)

Equation (21) of the second combination, associated with {Ra,Ta}, yields the coupling-
energy exchange operation,

Ea : λb = −C2
a η2

a Ea , Eb = −Ca+2
a η2

a λa , (a ≷ −2). (38)

The time scaling has been chosen so as to preserve the mass invariance (11),

M0 : mb = ma = m, (39)

and the scale change in the angular momentum follows from (13) with ηa,

La : Lb = ηaLa. (40)

Now we see that each of the sets ∆a = {Ca,Ra,Ta,Ea,M0,La} preserves the form-
invariance of the action (4) with a power potential. The form-invariance warrants that
X(a, b)∆a = ∆b. Hence system B is dual to system A with respect to ∆a. Let ∆± = {∆a; a ≷
−2}. The set ∆+ links a > −2 and b > −2 of (a, b), whereas ∆− relates a < −2 to b < −2.
No ∆a links a ≷ −2 to b ≶ −2. Hence there is no pair (a, b) consisting of a ≷ −2 and
b ≶ −2.

Remark 9. Class II consists of proper dual pairs (a, b) linked by ∆±, which have been widely
discussed in the literature [10,18,22–24,36,40]. Here a and b are distinct except for two self-dual
pairs, (0, 0) via η+ and (−4,−4) via η−.

Remark 10. Note that the time transformation (37) is not integrable unless the time-dependence of
the space variable (i.e., the related orbit) is specified.

Remark 11. The scale factor C1 appeared in Case I was dimensionless. A space transformation
of (12) for a given value of ηa contains a constant Cηa which has a dimension of ra/(a+2). Let
Cηa = Cada where Ca and da are a dimensionless magnitude and the dimensional unit of Cηa ,
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respectively. Use of an appropriate scale transformation which is admissible as seen in Case I enables
Ca to reduce to unity. More over, the dimensional unit may be suppressed to da = 1. Therefore,
if desirable, the space transformation (36) may simply be written as r = ρηa without altering
physical contents.

Remark 12. Let (a, b) be a dual pair satisfying the relation (a + 2)(b + 2) = 4. Then the left
element (a, ) of (a, a) maps via (a, b) into (b, ), and the right element ( , a) into ( , b). Hence the
self-dual pair (a, a) can be taken by (a, b) to the self-dual pair (b, b). Schematically,

(a, a)
(a,b)−→ (b, a)

(a,b)−→ (b, b).

We call ((a, a), (b, b)) a grand dual pair.

2.4. Graphic Presentation of Dual Pairs

A dual pair (a, b) is presented as a point in a two-dimensional a− b plane as shown in
Figure 1. All self-dual pairs (a, a) of Class I are on a dashed straight line a = b denoted by
η1. Every dual pair (a, b) of Class II is shown as a point on two branches η± of a hyperbola
described by the equation (a + 2)(b + 2) = 4 of (34). The graph for Class II is similar to the
one given by Arnol’d for dual forces [10].
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Figure 1. The solid line shows the allowed combinations of dual pairs (a, b) of power laws.
The dashed line indicates the symmetry axis (a, b) ↔ (b, a). The bullets show the only dual pairs
where both a and b are integers representing the Newton–Hook duality. The square represents the
duality pair discussed in Section 4.4.

Among the dual pairs of Class I, there are pairs (a, a) linked by scale transformations
(inclusive of rotations), which cover all real a, and those (a, a) related by the inversion,
which are defined only when a is an odd number. In this regard, every pair (a, a), occupying
a single point on η1, plays multiple roles. While the pairs linked by scale transformations
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admissible for all real values of a form a continuous line η1 indicated by a dashed line, those
pairs linked by the inversion appear as discrete points on η1 and are indicated by circles.

The hyperbola representing all pairs of Class II has its center at (−2,−2), transverse
axis along b = a, and asymptotes on the lines a = −2 and b = −2. The bullets indicate all
pairs (a, b) via η± with integral a’s; namely, (−1, 2) via η = 2, (0, 0) via η = 1, (−3,−6) via
η = −2, and (−4,−4) via η = −1. There are no integer pairs other than those listed above
in Class II. The square represents the dual pair (−1/2, 2/3) to be discussed in Section III
D. On the branch of η+, a dual pair (a, b) via η+ and its inverse pair (b, a) via η−1

+ are
symmetrically located about the transverse axis η1. Since both (a, b) and (b, a) signify that
system A and system B are dual to each other, the curves η± have redundancy in describing
the A− B duality. An example is the Newton–Hooke duality for which two equivalent
pairs (−1, 2) via η = 2 and (2,−1) via η = 1/2 appear in symmetrical positions on η+.

We notice that there are two special points on the graph. They are the intersections
of η1 and η±; namely, (0, 0) with η = 1, and (−4,−4) with η = ±1. The former is an
overlapping point of η1 and η+ where η = 1. The latter is like an overhead crossing of η1
and η− where the pair belonging to η1 is linked by a transformation with η = 1 while the
one belonging to η− is linked with η = −1.

In approaching the crossing of η1 and η+, the pair (0, 0) at η1 = 1 has a limiting behav-
ior as (0, 0) = limε→0(±ε,±ε), while (0, 0) at η+ = 1 behaves like (0, 0) = limε→0(±ε,∓ε)
via η = 1. As has been mentioned earlier, (a, b) = (a− 1, b− 1)F. However, the counterpart
of (0, 0) is not exactly equal to (−1,−1)F. The potential corresponding to the inverse force
F ∼ 1/r is V ∼ ln r. Thus, it is more appropriate to put symbolically (−1,−1)F = (ln, ln).
Yet, (0, 0) 6= (ln, ln). Consider Va(r) = λarε. For ε small, Va(r) ≈ λa(1 + ε ln r), which
gives rise to the force F ≈ κ/r where κ = λaε. As long as κ can be treated as finite,
(ε,−ε) ≈ (−1,−1)F. Chandrasekhar [18] excluded (−1,−1)F from the list of dual pairs on
physical grounds. We exclude (ln, ln) because the logarithmic potential, being not a power
potential, lies outside our interest.

By analyzing Corollaries and Propositions in the Principia, Chandrasekhar [18]
pointed out that Newton had found not only the Newton–Hooke dual pair but also the
self-dual pairs (2, 2), (−1,−1) and (−4,−4). He also mentioned that (−3,−6) was not in-
cluded in the Prinpicia. For a integral, there are only two grand dual pairs ((−1,−1), (2, 2))
and ((−3,−3), (−6,−6)). In Figure 1, (2, 2) and (−1,−1) are marked with triangles on η1,
while (−3,−3) and (−6,−6) are marked with diamonds on η1.

2.5. Classical Orbits

Here we discuss the orbital behaviors for the dual pairs in relation with energy
and coupling.

First, we consider self-dual pairs (a, a) of Class I. If an effective shifted potential is
defined by Ue f f (r) = U(r) + L2/(2mr2), the space transformation r = C1ρ induces

Ue f f
a (r) = λara +

L2
a

2mr2 − Ea, ⇒ Ue f f
b (ρ) = Ca+2

1 λaρa +
L2

a
2mρ2 − C2

1 Ea, (41)

resulting in self-dual pairs (a, a) for any real a. The space transformation includes scale
transformations r = C1ρ with C1 > 0, identity transformation r = ρ (inclusive of rotations),
and inversion formally defined by r = −ρ.

Statement 1. System A and system B linked by a scale transformation are physically identical but
described in different scale. Typically an orbit of system A maps to an orbit of system B similar in
shape but different in scale.

Statement 2. In the limit C1 → 1, the two orbits become congruent (identical) to each other. Any
self-dual pair (a, a) due to a scale transformation is reducible to a trivial pair (a, a) linked by the
identity transformation. However, in dealing with the orbital behaviors, we have to look into the
angular dependence of radial variables by allowing the identity transformation r = ρ to contain
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r(θ) = ρ(θ̃) = r(θ̃ − θ0) with θ → θ̃ = θ + θ0, which represents a rotation of a given orbit about
the center of force by θ0.

The inversion r → −ρ entails λb = (−1)aλa, as is apparent from (41). If a is an
even number, the sign change in coupling does not occur. Hence the inversion for even
a cannot properly be defined and must be precluded. Only when a is odd, the inversion
is meaningful. However, we have to notice that orbits in a potential with a > 0 are all
bounded if λa > 0 and all unbounded if λa < 0. Under the inversion, the sign of λa
changes, so that a bound orbit with Ea > 0 is supposed to go to an unbounded orbit with
Eb = Ea > 0. It is uncertain whether there are such examples to which the inversion works.

Statement 3. If a is a negative odd number, under the inversion, an orbit in an attractive (repulsive)
potential maps to an orbit in a repulsive (attractive) potential, keeping the energy unchanged.

In the Principia, Newton proved that if an orbit passing through the center of attraction
is a circle then the force is inversely proportional to the fifth-power of the distance from
the center (Corollary I to Proposition VII). From Corollary I of Proposition VII and other
corollaries in the Principia Chandrasekhar [18] shows in essence that if an object moves
on a circular orbit under centripetal attraction emanating from two different points on
the circumference of the circle then the forces from the two points exerted on the orbiting
object are of the same inverse fifth-power law. Then he suggests, in this account, that
the inverse fifth power law of attraction is self-dual for motion in a circle. In contrast
to Chandrasekhar’s view on the self-dual pair (−4,−4), we maintain that (−4,−4) can
be understood as a member of Class I and Class II. The circular orbit in an attractive
potential Va(r) = λar−4, which occurs when Ea = 0, can be described by the equation
r = 2Ra cos θ where Ra =

√
−λam/(2L2

a) is the radius of the circle and −π/2 < θ < π/2
is the range of θ. The scale transformation r = C1ρ with C1 > 0 converts the orbit equation
into ρ = 2Rb cos θ where Rb = Ra/C1. Apparently it is consistent with the requirements
Lb = La and λb = C−2

1 λa of (41). Thus, the radius of the circle is rescaled while the
center of force is fixed at the origin and the range of θ is unaltered. The inverse fifth-
power law of attraction may be viewed as self-dual under a scale change for motion in
a circle. If the identity map r = ρ may include a rotation r(θ) → ρ(θ̃) = r(θ̃ − θ0), then
ρ(θ̃) = 2R cos(θ̃ − θ0) with the angular range −π/2 + θ0 < θ̃ < π/2 + θ0. In particular,
if θ0 = π, then ρ(θ̃) = −2R cos(θ̃) with π/2 < θ̃ < 3π/2. The circular orbit maps into
itself, though rotated about the center of force. In this sense, the inverse fifth-power law
of attraction is self-dual under a rotation for motion in a circle. In much the same way,
the inverse fifth-power force, whether attractive or repulsive, may be considered as self-
dual under a scale change and a rotation for motion in any other orbits. Hence the self-dual
pair (−4,−4) linked by the scale transformation (including rotations) is a member of Class
I. The same self-dual pair (−4,−4) has another feature as a member of Class II which will
be discussed in Remark 13.

Secondly, we consider dual pairs (a, b) of Class II.
All dual pairs (a, b) of Class II are subject to the proper dual transformation ∆I I .

The members a and b of each pair obey the Kasner–Arnol’d formula (a + 2)(b + 2) = 4,
and are related via η = 2/(a + 2) (or η = −b/a if a 6= 0). These dual pairs belong to branch
η+ if a > −2, and branch η− if a < −2.

Now the space and time transformations r = Caρ2/(a+2) and
(dt/dϕ) = C2

ηη2ρ−2a/(a+2)(ds/dϕ) induce the energy-coupling exchange,

λb = −C2
ηη2Ea , Eb = −Ca+2

η η2λa, (42)

where Cη > 0 and a 6= −2. Hence the effective shifted potential transforms as

Ue f f
a (r) = λara +

L2
a

2mr2 − Ea, ⇒ Ue f f
b (ρ) = −C2

±η2
±Eaρb +

η2
±L2

a
2mρ2 + Ca+2

± η2
±λa (43)
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where a 6= −2 and b = −2a/(a + 2).
The two equations in (42) are not simply to exchange the roles of energy and coupling.

They also provide a useful relation between Ea and Eb. In general Ea depends on λa. So we
let Ea = Ea(λa), and invert it as λa = E−1

a (−λb/η2C2
η) with the help of the first equation

of (42). Substitution of this into the second equation of (42) yields

Eb = −η2Ca+2
η E−1

a

(
− λb

η2C2
η

)
. (44)

which shows that Eb depends on Ea through the coupling λa.

Statement 4. For a dual pair (a, b) of Class II, if the coupling dependence of Ea is explicitly known,
then Eb can be determined by (44), and vice versa.

From (42) there follow four possible mapping patters,

(0) (Ea = 0, λa R 0) =⇒ (Eb Q 0, λb = 0)

(1) (Ea > 0, λa < 0) =⇒ (Eb > 0, λb < 0)

(2) (Ea < 0, λa < 0) =⇒ (Eb > 0, λb > 0)

(3) (Ea > 0, λa > 0) =⇒ (Eb < 0, λb < 0)

(4) (Ea < 0, λa > 0) =⇒ (Eb < 0, λb > 0)

In the above, pattern (0) implies that any zero energy orbit of system A goes to a
rectilinear orbit of system B with no potential. Patterns (1)–(4) imply that any positive
energy orbit of system A, regardless of the sign of λa, maps to an orbit of system B with a
coupling λb < 0, and any negative energy orbit of system A, independent of λa, maps to
an orbit of system B with a coupling λb > 0.

The dual pairs (a, b) of Class II can be grouped into those on η+ and those on η−.
Furthermore, the pairs of the first group can be divided into two parts for η+ > 1 and
0 < η+ < 1. If we let η>

+ denote the part for η+ > 1, then η>
+ = {−b/a| − 2 < a < 0, b > 0}.

Similarly, let η<
+ denote the part for 0 < η+ < 1. Then η<

+ = {−b/a| a > 0,−2 < b <
0} = {−a/b| − 2 < a < 0, b > 0}. Thus, η<

+ = [η>
+ ]
−1. It is sufficient to consider

the set η>
+ . The same can be said for the second group on η−. We take up only the set

η>
− = {−b/a| − 4 < a < −2, b < −4}.

For the case of η>
+ , λa > 0 (< 0) implies a repulsion (attraction), while λb > 0 (< 0)

means an attraction (repulsion). There are no negative energy orbits in a repulsive potential
with λa > 0 and in an attractive potential with λb > 0. For η>

− , both λa > 0 and λb > 0
are repulsive, and both λa < 0 and λb < 0 are attractive. In any repulsive potential with
λa > 0 or λb > 0, no negative energy orbits are present. Pattern (4) is not physically
meaningful. Taking these features of potentials into account, we can restate the implication
of the relations in (42) as follows.

Statement 5. Under the proper duality transformation ∆I I , if −2 < a < 0 (i.e., b > 0), then any
positive energy orbit in the potential of system A, whether attractive or repulsive, maps to an orbit
in a repulsive potential of system B, and any negative energy (bound) orbit maps to a positive energy
(bound) orbit in an attractive potential. If a > 0 (i.e., −2 < b < 0), then the above situations are
reversed. If −4 < a < −2 (i.e., b < −4), then any positive orbit in an attractive potential maps
to a positive orbit under attraction, any negative bound orbit in an attractive potential maps to a
positive orbit under repulsion, and any positive orbit under repulsion maps to a negative bound
orbit in an attractive potential. Even for the case where a < −4 (i.e., −4 < b < −2), the mapping
patterns are the same as those for −4 < a < −2. In all cases, zero energy orbits map to force-free
rectilinear orbits.

This is a modified version of Needham’s statement made in supplementing the Kasner–
Arnol’d theorem [22,23].
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Remark 13. The pair (−4,−4) has another feature as a point on η−, that is, as a member of
Class II. From (42), it is obvious that λb = 0 for the circular zero energy orbit. Hence the duality
transformation ∆I I maps the orbit into a force-free rectilinear orbit. According to Statement 5, any
positive energy orbit must map to an orbit in an attractive potential, and any negative energy orbit
maps to an orbit in a repulsive potential. Therefore, the self-dual pair (−4,−4) Newton established
is not a member of Class II. It must be (−4,−4) on η1, belonging to Class I.

In what follows, we make remarks on the Newton–Hooke pairs and related self-
dual pairs.

Remark 14. Statement 5 applies to the pair (−1, 2). The mapping patterns (0)–(3) works in going
from the Newton system with a = −1 to the Hooke system with b = 2. Namely, (0) the zero energy
orbit of the attractive Newton system maps to a rectilinear orbit; (1) a positive unbound orbit of the
attractive Newton system maps to a positive unbound orbit of the repulsive Hooke system; (2) a
negative energy bound orbit of the attractive Newton system maps to a positive energy bound orbit
of the attractive Hooke system; and (3) a positive unbound orbit of the repulsive Newton system
maps to a negative unbound orbit of the repulsive Hooke system. Since there are no negative orbits
for the repulsive Newton system and the attractive Hooke system, pattern (4) is irrelevant.

Remark 15. In view of the orbit structure, we study in more detail the mapping process from the
Newton system to the Hooke system. As is well-known, for the motion in the inverse-square force,
the orbit equation in polar coordinates has the form,

r =
p

1 + e cos θ
, (45)

where p is the semi-latus rectum, e the eccentricity. The orbit is of conic sections and the origin of the
coordinates is at the focus closest to the pericenter of the orbit. The angle θ is between the position of
the orbiting object and the direction to the pericenter located at r = rmin and θ = 0. The semi-latus
rectum, the semi-major axis, and the eccentricity of the orbit are determined by p = −L2

a/(mλa),
ā = −λa/(m|Ea|), and e =

√
1 + (2L2

aEa/mλ2
a), , respectively. If the inverse square force is

attractive, i.e., if λa < 0, then ā > 0, p > 0, and 1 > cos θ > −1/e. If repulsive, i.e., if λa > 0,
then ā < 0, p < 0 and −1 < cos θ < −1/e.

(i) For the bound motion, Ea < 0, e < 1 and p = ā(1− e2) > 0. The Equation (45) describes
an elliptic orbit with semi-major axis ā and eccentricity e. Apparently, rmin = ā(1− e). For the
duality mapping, a more suited choice is the orbit equation expressed in terms of the eccentric
anomaly ψ,

r = ā(1− e cos ψ), (46)

which may be put in the form,

r = ā
{
(1 + e) cos2(ψ/2) + (1− e) sin2(ψ/2)

}
. (47)

Here ψ is related to the polar angle θ by tan(θ/2) = [(1 + e)/(1 − e)]1/2 tan(ψ/2). Since
r = C2ρ2, use of (47) leads to

ρ =
[
α2 cos2(ψ/2) + β2 sin2(ψ/2)

]1/2
, (48)

where
α =

√
ā(1 + e)/C2 , β =

√
ā(1− e)/C2 . (49)

Let ρ =
√

u2 + v2 in cartesian coordinates, and let

u = α cos(ψ/2), v = β sin(ψ/2). (50)
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Then it is clear that the trajectory drawn by ρ is given as an ellipse,

u2

α2 +
v2

β2 = 1, (51)

with semi-major axis α and semi-minor axis β, centered at the origin of the u− v plane. It is obvious
that ρmin =

√
ā(1− e)/C2 is the semi-minor axis of the ellipse on the u− v plane. The above

calculation shows that the elliptic Kepler orbit with semi-major axis ā and eccentricity e maps to an
ellipse with semi-major axis α =

√
ā(1 + e)/C2 and eccentricity ε =

√
2e/(1 + e) . The semi-

major and semi-minor axes of the resultant ellipse depend on the scaling factor C2. With different
values of C2, a Kepler ellipse of eccentricity e is mapped to ellipses of different sizes having a common
eccentricity ε. In general, the resultant ellipse having eccentricity ε is not similar to the Kepler
orbit with eccentricity e. If e = 0, then ε = 0. Namely, a circular orbit of radius ā under an
inverse-square force maps to a circle with radius α =

√
ā/C2 . With a particular scale C2 = 1/

√
ā,

the mapped circle is congruent to the original orbit. In the limit e→ 1, the Kepler orbit becomes a
parabola with Ea = 0, which maps to a force-free rectilinear orbit described by (u, v) = (ρ, 0).

(ii) If Ea > 0, then e > 1 and ā > 0 for λa < 0. The semi-latus rectum in (45) must be
modified as p = ā(e2 − 1) > 0. Again cos θ < −1/e. The orbit is a branch of a hyperbola with
semi-major axis ā and eccentricity e. The center of attraction is at the interior focus of the branch,
so that rmin = ā(e− 1). In much the same fashion that the eccentric anomaly is used in (46), we
introduce a parameter ψ related to the angle θ by tan(θ/2) = [(e + 1)/(e− 1)]1/2 tanh(ψ/2).
Here cosh ψ > 1/e. Now the orbit equation in parametric representation is

r = ā(e cosh ψ− 1), (52)

which may further be written as

r = ā
{
(e− 1) cosh2(ψ/2) + (e + 1) sinh2(ψ/2)

}
, (53)

whose minimum occurs when ψ = 0. Correspondingly, ρ =
√

r/C2 is expressed as

ρ =
[
α2 cosh2(ψ/2) + β2 sinh2(ψ/2)

]1/2
, (54)

where
α =

√
ā(e− 1)/C2 , β =

√
ā(e + 1)/C2 . (55)

Hence ρmin =
√

ā(e− 1)/C2 . Letting

u = α cosh(ψ/2), v = β sinh(ψ/2), (56)

we obtain ρ =
√

u2 + v2 and the equation for a hyperbola having two branches,

u2

α2 −
v2

β2 = 1, (57)

which has the semi-major axis α =
√

ā(e− 1)/C2 and the eccentricity ε =
√

2e/(e− 1) . Thus,
the positive energy orbit in the attractive inverse potential, given by a branch of the hyperbola, maps
to a positive energy orbit given by either branch of a hyperbola whose center coincides with the
center of the repulsive Hooke force.

(iii) For a repulsive potential with λa > 0 such as the repulsive Coulomb potential, the orbit
Equation (45) describing a hyperbola holds true insofar as Ea > 0, i.e., e > 1. Since p =
−L2

a/(mλa) < 0 for λa > 0, the semi-lotus rectum must be replaced by p̃ = −p. At the same
time, the angular variable has to be changed from θ to θ̃ where cos θ < −1/e and cos θ̃ > −1/e.
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The conversion of the hyperbolic Equation (45) for the attractive potential to the hyperbolic equation
for the repulsive potential,

r̃ =
p̃

1 + e cos θ̃
, (58)

is indeed the inversion process mentioned in Remark 8. Since (45) and (58) have the same form,
we can follow the procedure given in (ii) to show that under r̃ =

√
ρ/C2 the positive energy orbit

in the repulsive inverse potential, given by a branch of the hyperbola, maps to a negative energy
orbit given by either branch of a hyperbola whose center coincides with the center of the repulsive
Hooke force.

Remark 16. In connection with Remark 14, we look at the self-dual pairs (−1,−1) and (2, 2)
which do not belong to Class II. Apparently the two pairs are closely related to each other via the
Newton–Hooke pair (−1, 2), so as to form a grand dual pair ((−1,−1), (2, 2)). As they are both
on η1, each of them is self-dual under scale changes and rotations. In addition, (−1,−1) is self-dual
under the inversion. From (iii) of Remark 15, it is clear that due to the inversion the orbit equation
takes the form (45). There the angular range for θ̃ is θe < θ̃ < 2π − θe where θe = cos−1(−1/e).
Hence the resultant orbit has the center of orbit at the exterior focus. This means that a hyperbolic
orbit in attraction with the center of force at the interior focus maps to the conjugate hyperbola in
repulsion with the center of force at the exterior focus. In contrast, any rotation maps a hyperbolic
orbit under attraction (repulsion) into a hyperbolic orbit under attraction (repulsion). In summary,
the inversion maps a hyperbolic orbit under attraction into a hyperbolic orbit under repulsion,
whereas any rotation takes a hyperbolic orbit under attraction (repulsion) to a hyperbolic orbit
under attraction (repulsion). According to Chandrasekhar’s book [18], what Newton established
for (−1,−1) and (2, 2) are that the attractive inverse square force law is dual to the repulsive
inverse square force law, and that the repulsive linear force law is dual to itself. Thus, we are led to a
view that Newton’s (−1,−1) is due to the inversion and their (2, 2) is due to a rotation. Finally
we wish to point out that by the mapping patterns (1) and (3) of (−1, 2) a hyperbolic orbit of the
attractive Newton system, whether attractive or repulsive, maps to a hyperbolic orbit of the repulsive
Hooke system. In other words, the pair of forces (attraction, repulsion) for (−1,−1) goes to the
pair of force (repulsion, repulsion) for (2, 2) with the help of (−1, 2). This is compatible with the
assertion that Newton’s two self-dual pairs form the grand dual pair ((−1,−1), (2, 2)) via (−1, 2).

2.6. Classical Energy Formulas

We have used the energy-coupling exchange relations,

E : Eb = −η2Ca+2λa, λb = −η2C2Ea, (59)

as essential parts of the power-duality operations. They demand primarily that the roles
of energy and coupling be exchanged. Using these relations, we can also derive energy
formulas which enable us to determine the energy value of one system from that of the
other when two systems are power-dual to each other.

In general Ea depends on λa, La and possibly other parameters. So let the energy
function be Ea = E(λa, La, wa) where wa represents those additional parameters. Then we
pull λa out from the inside of E as

λa = E−1(Ea, La, wa). (60)

Now we insert this coupling parameter λa into the first equation of (59). Substitut-
ing the second relation Ea = −λb/(η2C2) and the angular momentum transformation
La = Lb/η to the right-hand side of (60), we can convert the first relation of (59) into an
energy formula,

Eb(λb, Lb, wb) = −η2Ca+2E−1(−λb/(η2C2), Lb/η, wa(wb)). (61)
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Thus, if Ea is known, then Eb can be determined without solving the equations of
motion for system B. By making an appropriate choice of C, the value of λb may be
specified by the second relation of (59).

Alternatively, let us combine the two relations in (59) by eliminating the constant C to
get another energy formula,

Eb = −η2λa

(
− λb

η2Ea

)1/η

. (62)

This formula can be rearranged to the symmetric form,

[
4(a + 2)−2|λa|−2/(a+2)|Ea|

]a
=
[
4(b + 2)−2|λb|−2/(b+2)|Eb|

]b
. (63)

Note that the signs of the energies and coupling constants are related via (59). See also
the four patterns discussed in Statement 4 above.

When the parameters w contained in Ea are invariant, that is, wa = wb, under the
duality operations, the last equation suggests that there is some positive function F (L, w),
independent of λa and λb, such that

|Ea(λa, La, w)| = (a + 2)2

4
|λa|2/(a+2)

{
F
(√

2/(a + 2) La, w
)}1/a

, (64)

|Eb(λb, Lb, w)| = (b + 2)2

4
|λb|2/(b+2)

{
F
(√

2/(b + 2) Lb, w
)}1/b

, (65)

where L =
√
(a + 2)/2 La =

√
(b + 2)/2 Lb. If such a function is specified for Ea by (64),

then Eb can be determined by (65) with the sign to be obtained via (59). Notice that (65) is
useful as an energy formula to find Eb only when Ea has the form of (64).

Remark 17. As an example, let us consider the Newton–Hooke dual pair for which (a, b) =
(−1, 2), η = −b/a = 2 and r = Cρ2. Let system A be consisting of a particle of mass m
moving around a large point mass M � m under the influence of the gravitational force with
λa = −GmM < 0. Let system B be an isotropic harmonic oscillator with λb = 1

2 mω2 > 0. Then,
as the exchange relations of (59) demand, Ea < 0 and Eb > 0. Hence the orbits of the two systems
are bounded. This means that the Newton–Hooke duality occurs only when both systems are in
bound states.

Suppose the total energy of the particle is given in the form,

Ea =
L2

a

2mr2
min

+
λa

rmin
= E(λa, La, rmin), (66)

where rmin is the minimum value of the radial variable r and λa = −GmM. Then we obtain
the inverse function,

λa = E−1
(
−λb/4C2, La, rmin

)
= − L2

a
2mrmin

− λbrmin
4C2 . (67)

With this result, the Formula (60) immediately leads to the energy of the Hooke system
in the form,

Eb =
L2

b
2mρ2

min
+ λbρ2

min (68)

where Lb = 2La and ρmin =
√

rmin/C . Although λb may be interpreted as Hooke’s constant,
its detailed form 1

2 mω2 cannot be determined by the energy formula. Noticing that Ea is a
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constant, we let κ =
√−2mEa. If we choose C = mω/(2κ), then we have λb = 1

2 mω2 from
the second relation of (59). With the same choice of C, we have mωρ2

min = 2κrmin.
Suppose the energy of system A is alternatively given in the form,

Ea = −
2π2mλ2

a
(J + 2πLa)2 , (69)

where J is the radial action variable, J =
∮

dr pr, or more explicitly,

J = 2
∫ rmax

rmin

dr

√
2m
(

E− λa

r
− L2

2mr2

)
, (70)

which is a constant of motion. Let Ea of (69) be put into the form given via (64) then we
may identify

F
(√

2/(a + 2) La, J
)
=
[

J/(2π) + (
√

2(La)/
√

2
]2

/(2m). (71)

From this follows
{
F
(√

2/(b + 2) Lb, J
)}1/2

= [J/(2π) + (Lb)/2]/
√

2m (72)

Since the first relation of (59) indicates that Eb > 0 for λa < 0, the relation (65) together
with λb = 1

2 mω2 results in
Eb = (ω/2π)(2J + 2πLb), (73)

which is an energy expression of the Hooke system obtainable from the Hamilton-
Jacobi equation.

2.7. Generalization to Multi-Term Power Laws

In the following, on a parallel with Johnson’s treatment [36], we examine how the
duality can be realized with a sum of power potentials (i.e., a multi-term potential) in the
present framework.

Let the potential Va be a sum of N distinct power potentials as

Va(r) =
N

∑
i=1

λai r
ai , ai > −2 , (ai 6= aj for i 6= j) (74)

where λai is the coupling constant of the i-th sub-potential in Va. Then R and T take the
shifted potential in (16) to

gUa(r) =
N

∑
i=1

λai C
ai+2η2ρ2η−2+aiη − C2η2ρ2η−2Ea. (75)

Let us pick one of the terms in the sum in (75), say, the i = k term, and make its
exponent zero by letting

η = ηk =
2

ak + 2
, ak > −2 , (76)

where η is k-dependent. If the exponent of the i = k′ term, instead of the k 6= k′ term, is
made vanishing, then η is to be given in terms of ak′ where ak′ 6= ak. Since k = 1, 2, . . . , N,
there are N possible choices of η. Thus, it is appropriate to write η in (76) with the subscript
k as ηk. Apparently, ηk is a possible one of {η1, η2, . . . , ηN}. Let the operations R and T for
η = ηk be denoted by Rk and Tk, respectively.
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For the remaining potential terms (i 6= k) and the energy term in (75), we rename the
exponents of ρ as

bk = −
2ak

ak + 2
, bi =

2(ai − ak)

ak + 2
, i 6= k , (77)

which can easily be inverted to express ak and ai in terms of bk and bi in the same form.
These relations are equivalent to the conditions on the exponents,

Ck : (ak + 2)(bk + 2) = 4, (ai − ak)(bi − bk) = aibi. (78)

From (77) there also follows bi > −2 for all i if ai > −2 for all i. The first relation
of (78) leads to alternative but equivalent expressions of η in (76),

ηk = −
bk
ak

=
bk + 2

2
=

2
ak + 2

. (79)

To Rk and Tk, we have to add two more operations,

Lk : Lbk
= ηkLak , (80)

and

Wk : λbk
= −C2η2

k Ea, Ebk
= −η2

k Cak+2λak , and λbi
= η2

k Cai+2λai , i 6= k. (81)

Then, we express the shifted potential of (75) in the new notation as

gUa(r) = Vbk
(ρ)− Ebk

= Ubk
(ρ) (82)

where

Vbk
(ρ) =

N

∑
i=1

λbi
ρbi . (83)

The set of operations ∆k = {Rk,Tk,Ck,Lk,Wk} transforms the radial action of the A
system into

Wρ(Ebk
) =

∫

Iϕ

dϕ (ds/dϕ)

{
m
2
(ds/dϕ)−2

(
dρ

dϕ

)2
−

L2
bk

2mρ2 −Ubk
(ρ)

}
. (84)

Thus, we find the duality between the A-system and Bk-system with respect to ∆k.
Again, this duality is only one of the N dualities; there are N pairs of dual systems, (ak, bk)
for k = 1, 2, ..., N.

3. Power-Duality in the Semiclassical Action

The power-duality argument made for the classical action in Section 2 can easily
be carried over to the semiclassical action. In semiclassical theory the power-duality is a
relationship between two quantum systems which are not mutually interacting. In studying
such a relationship, there are two distinct approaches; one is to pay attention to a reciprocal
relation between two systems, and the other to pursue a deeper connection between the
quantum states of two systems (see Remark 18). Our power-duality argument is of the
former approach, taking reciprocity as a heuristic guiding. Special care will have to be
exercised though, when dealing with the quantum structure of each system.
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3.1. Symmetry of the Semiclassical Action

The action in semiclassical theory is of the form, W =
∫

dq p, which is Hamilton’s
characteristic function and essentially the same as that in (2). The semiclassical action for
the radial motion reads

W =
∫

dr
√

2m
(

E−V(r)− h̄2L2/(2mr2)
)

. (85)

Here the classical angular momentum L is replaced by h̄L. Customarily the semiclassi-
cal angular momentum (divided by h̄) of (85) is given by the Langer-modified form,

L = `+ (D− 2)/2, ` = 0, 1, 2, ... (86)

if it is defined in D dimensions. Let us write the semiclassical action for system A as

Wa =
∫

dr
√
−2m

[
h̄2L2

a/(2mr2) + Ua(r)
]

(87)

where Ua(r) = Va(r)− Ea. After the change of variable r = f (ρ), the action (87) of system
A becomes

Wa =
∫

dρ

√
−2m

[
h̄2L2

ag/(2m f 2) + gUa( f )
]

, (88)

where f ′ = dr/dρ and g = f ′2. The following substitutions

R : f (ρ) = Cρη , (89)

L : La = Lb/η, (90)

gUa = Ub, (91)

lead the action (88) to

Wb =
∫

dρ

√
−2m

[
h̄2L2

b/(2mρ2) + Ub(ρ)
]
, (92)

which is taken as the action for system B. Here we have assumed ma = mb = m (i.e., µ = 1).
We shall also assume that two mutually power-dual systems are by definition in the same
dimensions (i.e., Da = Db = D).

Only when the potential of system A is a power potential, Ub(ρ) in (92) can be brought
to the form Vb(ρ) − Eb. The change of variable R : r = Cρη with the choice C2 : η =
2/(a + 2) gives g(ρ) = η2C2ρ−aη . Hence, for Va( f ) = λaCaρaη , we have g(ρ)Va( f ) =
η2Ca+2λa and gEa = η2C2Eaρb where b = −aη = −2a/(a + 2). After performing the
energy-coupling exchange,

E : λa = −Eb/(η2Ca+2), Ea = −λb/(η2C2), (93)

we obtain
g(λara − Ea) = λbρb − Eb. (94)

In effect, under the operation of g, the following transformations have taken place,

gVa(r)→ −Eb, gEa → −Vb(ρ), (95)

where Va = λara and Vb(ρ) = λbρb.
In this manner, transforming the action Wa of (87) to Wb of (92) by the duality opera-

tions, we have Wa = Wb, that is,
∫

dr
√

2m(Ea − λara)− h̄2L2
a/r2 =

∫
dρ
√

2m(Eb − λbρb)− h̄2L2
b/ρ2 . (96)
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It is also apparent that Wa = X(a, b)Wb with ξa = r and ξb = ρ. Thus, we see that the
semiclassical action (85) is form-invariant under the set of duality operations, {R,L,C,E}.

Although we have presented in the above the power-duality features of the semi-
classical action similar to those in the classical case, we have not taken account of the
possibility that the angular momentum L is a discretely quantized entity given in terms of
the angular quantum number ` = 0, 1, 2, ... by (86). It is natural to expect that the operation
L : Lb = ηLa of (90) implies the equality,

`b + (Db − 2)/2 = η`a + η(Da − 2)/2. (97)

In addition, if we demand that `a = 0 corresponds to `b = 0, then (97) can be separated
into two equalities,

`b = η`a, Db = η(Da − 2) + 2. (98)

Either (97) or (98) suggests that the allowed values of `b differs from those of `a
unless η = 1. This means that the condition ` = 0, 1, 2, ... in (86) cannot be imposed on
system A and system B at the same time. Although the transformations in (97) and (98)
are invertible, they cannot preserve the Langer-form (86) of the angular momentum in the
two systems. In other words, they are not reciprocal relations between the two systems.
Insofar as operation L implies the equalities (97), the semiclassical action with the Langer
modification is not form-invariant under the set of operations {R,L,C,E}. Then, we may
have to draw a conclusion that the power-duality valid in the classical action breaks down
in the semiclassical action due to the quantized angular momentum term.

In the above we have observed that the power-duality is incompatible with the angular
quantization. By the same token, the energy-coupling relations of E in (93) may have to be
examined. In the semiclassical action, the energy E and the coupling λ may be treated as
parameters. However, the implication of the exchange relations in (93) becomes ambiguous
after quantization. It is not clear whether Ea in (93) is one of the energy eigenvalues of
system A or it represents the energy spectrum of the system. As an aid of clarification, we
study one of the energy formulas resulting from combining the two relations in (93),

Eb = −η2λa

(
− λb

η2Ea

)1/η

, (99)

which has been given in Section 2 as a classical energy formula. To see if it will work
in quantum mechanics, let us employ, e.g., the Coulomb–Hooke duality, the quantum
counterpart of the Newton–Hooke duality, and test (99). We assume that Ea and Eb in
(99) represent the spectra of system A and system B, respectively. According to (99),
the energy spectrum Eb of the hydrogen atom with the Coulomb coupling λb = −e2 is
expected to follow from the spectrum Ea of the three-dimensional isotropic harmonic
oscillator with frequency ω =

√
2λa/m. For this pair of systems, (a, b) = (2,−1) and

η = −b/a = 1/2. Given Ea(nr, `a) = h̄ω(2nr + `a + 3/2) with nr = 0, 1, 2, ... and `a =
0, 1, 2, ..., the Formula (99) immediately yields Eb = −(me4/2h̄2)(nr + `a/2+ 3/4)−2. Here
n = nr + `a/2 + 3/4 = 3/4, 5/4, 7/4, .... The result is not the energy spectrum of the
hydrogen atom that is commonly known. Evidently, a naive application of the energy
Formula (99) fails at the level of angular quantum numbers. By contrast, if we consider the
states of a four-dimensional oscillator which possess `a = 0, 2, 4, ..., then n = nr + `b + 1 =
1, 2, 3, ... via `b = `a/2, which matches the principal quantum number of the hydrogen
atom. In other words, the energy Formula (99) suggests that the spectrum of the hydrogen
atom can be composed of “half the states” of the four dimensional isotropic harmonic
oscillator (to be more precise, the set {`a = 0, 2, 4, ..., Da = 4} for the oscillator and the set
{`b = 0, 1, 2, ..., Db = 3} for the H-atom are in one-to-one correspondence). The relation
between the oscillator in four dimensions and the hydrogen atom in three dimensions
is not reciprocal in (99). The alternative scheme is not the Coulomb–Hooke duality that
we pursue (see Remark 18). The Coulomb–Hooke duality in quantum mechanics will be
discussed again in Section 4.3.
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In an effort to make the power duality meaningful in semiclassical theory, we shall
take a view that the power duality is basically a classical notion. Accordingly, for the duality
discussions, all physical objects such as L, E and λ, should be treated as classical entities,
i.e., continuous parameters. Then we consider quantization as a process separate from the
duality operations. The duality is a classical feature of the relation between two systems,
whereas quantization is associated with the micro-structures of each system. None of dual-
ity operations can dictate how the quantum structure of each system should be. The equality
of (93) which is compatible with reciprocity must not imply the non-reciprocal equality
of (97). It is necessary to dissociate duality operations from quantization. Technically,
we deal only with those continuous parameters for the duality discussions, and replace
them as a post duality-argument activity by appropriately quantized counterparts when
needed for characterizing each quantum system. From this view, the power duality of the
semiclassical action has already been established at the equality (96) with follow-up substi-
tutions La = `a + (D− 2)/2, (`a = 0, 1, 2, ..) and Lb = `b + (D− 2)/2, (`b = 0, 1, 2, ...). It
is helpful to introduce the dot-equality .

= to signify the equality amended by substitutions
of quantized entities. The power-duality of the semiclassical action in the amended version
may be exhibited by

∫
dr
√

2m(Ea − λara)− h̄2(`a + (D− 2)/2)2/r2

.
=
∫

dρ

√
2m(Eb − λbρb)− h̄2(`b + (D− 2)/2)2/ρ2 . (100)

3.2. The Semiclassical Energy Formulas

In the preceding section, we have adopted the Coulomb–Hooke duality to test (99),
and failed. However, it should be recognized that if the energy spectrum of the three
dimensional radial oscillator is given in the form Ea(nr, La) = h̄ω(2nr + La + 1) without
requiring La = `a + 1/2, then the energy formula (99) together with La = 2Lb yields
Eb(nr, Lb) = −(me4/2h̄2)(nr + Lb + 1/2)−2 which reduces to the desired Coulomb spec-
trum Eb(ν, Lb) = −(me4/2h̄2)(nr + `b + 1)−2 after ad hoc substitution of Lb = `b + 1/2
with `b ∈ N0. So long as L, E and λ are treated as continuous parameters, the energy for-
mula (99) derived from the exchange relations (93) should work for semiclassical systems
provided that those parameters are eventually replaced by their quantum counterparts.

In semiclassical theory, the bound state energy Ea of system A can be evaluated by
carrying out the integration on the left-hand side of (96) between two turning points.
Namely, we calculate for Ea the integral

Ja = 2
∫ r′′

r′
dr
√

2m(Ea − λara)− h̄2L2
a/r2 , (101)

where r′ and r′′ are the turning points of the orbit where the integrand vanishes. The quan-
tity Ja is indeed an action variable defined for a periodic motion by

∮
dq p. It is a constant

depending on Ea, λa, and La. By letting it be a constant Na multiplied by 2πh̄,

Ja(Ea, λa, La) = 2πh̄Na, (102)

and solving (102) for Ea, we obtain the classical bound state energy as a function of
parameters λa, La and Na,

Ea = Ea(λa, La, Na). (103)

Once the classical energy Ea of system A is given in terms of λa, La and Na, when
system A and system B are power-dual to each other, we can determine the energy Eb
of system B, with the help of the operations L and E, as a function of λb, Lb and Nb.
Since Wa = Wb as shown in (96), it is obvious that Na = Nb. As the former equality is a
consequence of the duality operations, so is the latter equality. Hence the equality Na = Nb
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is a consequence but not a part of duality operations. So, we let N = Na = Nb. With the
energy function (103), the semiclassical energy formula stemming from (99) is

Eb(λb, Lb, N) = −η2λa

(
− λb

η2Ea(λa, Lb/η, N)

)1/η

, (104)

which can be rearranged as the classical case in the following form

|Ea(λa, La, N)| = 1
4
(a + 2)2|λa|2/(a+2)

{
F
(√

2/(a + 2) La, N
)}1/a

(105)

|Eb(λb, Lb, N)| = 1
4
(b + 2)2|λb|2/(b+2)

{
F
(√

2/(b + 2) Lb, N
)}1/b

(106)

where F (L, N) is a function common to both systems. The signs for both energy relations
are determined as in the classical case via the signs of the coupling constants, i.e., sgn Ea =
−sgn λb and sgn Eb = −sgn λa.

Alternatively, expressing an explicit form of the energy function (103) by E(λa, La, N) as

Ea = E(λa, La, Na), (107)

and inverting (107) to take λa out, we have

λa = E−1(Ea, La, N). (108)

Then we use the angular momentum transformation L of (90) and the energy-coupling
exchange relations E of (93) to write down the bound state energy formula for Eb as

Eb(λb, Lb, N) = −η2Ca+2E−1(−λb/(η2C2), Lb/η, N), (109)

which is essentially the same as the energy formula (104).
To convert the classical energy Ea in (103) to a quantum spectrum, we replace the

parameters La and N by their corresponding quantized entities. The angular momentum is
quantized in the Langer form La

.
= `a + (D− 2)/2. The Wentzel–Kramers–Brillouin (WKB)

quantization formula for the radial motion,

∮
dr pr = 2πh̄

(
nr +

1
2

)
, nr = 0, 1, 2, ... (110)

asserts that
N .

= nr + 1/2 , nr = 0, 1, 2, ... (111)

Substitution of the Langer-modified angular momentum (86) and the WKB quantiza-
tion (111) in the classical energy function of (103) yields the energy spectrum,

Ea(nr, `a)
.
= Ea(λa, `a − 1 + D/2, nr + 1/2), (112)

where nr = 0, 1, 2, ... and `a = 0, 1, 2, ... Similarly, after substitution of the Langer form (86)
to Lb and the WKB quantization (111) to N, the semiclassical energy formula (109) leads to
the energy spectrum of system B,

Eb(nr, `a)
.
= −η2Ca+2E−1

(
−λb/(η2C2), (`b − 1 + D/2)/η, nr + 1/2

)
(113)

where nr = 0, 1, 2, . . . and `b = 0, 1, 2, . . ..
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3.3. A System with a Non-Integer Power Potential and Zero-Angular Momentum

As a simple but non-trivial example, we study a non-integer power potential system
with L2 = 0 (see Remark 22). Let system A be the case. Bound states of system A occur
only when (i) λa < 0, a < 0 with Ea < 0 or (ii) λa > 0, a > 0 with Ea > 0. The integral (101)
with La = 0, denoted Ja(Ea, λa, 0), is reducible to a beta function under either condition (i)
or (ii). Suppose system A be under condition (i). Then it goes to a beta function as

Ja(Ea, λa, 0) = M(Ea, λa)
∫ 1

0
dz z−

a+2
2a −1(1− z)

3
2−1 = M(Ea, λa)B

(
− a + 2

2a
,

3
2

)
(114)

where we have let z = (Ea/λa)r−a and M(Ea, λa) =
√
−2mλa/a2(Ea/λa)(a+2)/2a. As

in (102), we express the right-hand side of (114) by the parameter N as

M(Ea, λa)B
(
− a + 2

2a
,

3
2

)
= 2πh̄N, (115)

which we solve for Ea to find the energy function Ea = E(λa, 0, N),

Ea = −(−λa)
2

a+2

(√
2m

h̄|a|π B
(
− a + 2

2a
,

3
2

))− 2a
a+2

N
2a

a+2 . (116)

Now the WKB condition (111) yields the energy spectrum of system A,

Ea(n)
.
= −(−λa)

2
a+2

(√
2m

h̄|a|π B
(
− a + 2

2a
,

3
2

))− 2a
a+2(

n +
1
2

) 2a
a+2

, (117)

where n = 0, 1, 2, . . .. The bound state energy spectrum of system B can be independently
calculated in a similar fashion, and the WKB quantization (111), separately applied to
system B, will lead to a spectrum similar to but different from the spectrum of system A
in (117). Insofar as system B is power-dual to system A, the bound state energy spectrum of
system B can be obtained via the formula (113). Inverting the λa dependent function (116),
we obtain

λa = E−1(Ea, 0, N) = −(−Ea)
(a+2)/2

(√
2m

h̄|a|π B
(
− a + 2

2a
,

3
2

))a

N−a. (118)

Utilizing this inverted function and the WKB condition (111) in the energy Formula (113),
we arrive at the energy spectrum of system B,

Eb(n)
.
= λ

2
b+2
b

(√
2m

h̄|b|π B
(

1
b

,
3
2

))− 2b
b+2(

n +
1
2

) 2b
b+2

, n = 0, 1, 2, ... (119)

which is independent of the arbitrary constant C appearing in (109). In the above, we have
also changed a to b by using the relations, a = −2b/(b + 2) and ηa = −b. Apparently,
the spectrum (119) is very similar in form with the spectrum of system A in (109) but is not
identical. The relations (93) suggest that Eb > 0 for λa < 0 and λb > 0 for Ea < 0. Hence
system B has bound states with Eb > 0 only when b > 0. This means that system B is under
condition (ii) and that the energy spectrum (119) is for the case where λb > 0, b > 0 with
Eb > 0. In particular, if Va(r) = λa/

√
r with λa < 0, the spectrum resulting from (117) is

Ea=−1/2(n)
.
=

λa

2

(
−mλa

h̄2

)1/3(
n +

1
2

)−2/3
, n = 0, 1, 2, . . . . (120)
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For the dual partner potential Vb(ρ) = λbρ2/3 with λb > 0, the spectrum follows from
(119) as

Eb=2/3(n)
.
= 2λb

(
8h̄2

9mλb

)1/4(
n +

1
2

)1/2
, n = 0, 1, 2, . . . . (121)

3.4. Duality in SUSY Semiclassical Formulas

Let us begin this section with a brief comment on the semiclassical quantization
in supersymmetric quantum mechanics (SUSYQM). In SUSYQM, there are semiclassical
quantization formulas similar to WKB’s. A unified form of them for a radial motion is

∫ r′′

r′
dr
√

2m(E−Φ2(r)) = πh̄
(

ν +
1
2
+

∆
2

)
, ν = 0, 1, 2, . . . , (122)

defined for the partner Hamiltonians H±. In (122), E is the eigenvalue of H±, and Φ(r) is
the superpotential which is a solution of the Riccati equation in the form

Φ2(r)± h̄√
2m

dΦ(r)
dr

−V(r)− h̄2(L2 − 1
4 )

2mr2 = 0 (123)

where V(r) is a potential function, r′ and r′′ denote the turning points defined by Φ2(r′) =
E = Φ2(r′) with r′ ≤ r′′, and L = `+ (D− 2)/2 with ` = 0, 1, 2, . . .. There, ∆ is the Witten
index whose values are ∆ = ±1 for good SUSY and ∆ = 0 for broken SUSY (SUSY stands for
supersymmetry. If H± are the partner Hamiltonians, then spec(H−) \ {0} = spec(H+) for
good SUSY, and spec(H−) = spec(H+) for broken SUSY). The quantization condition for
good SUSY was found by Comtet, Bandrauk, and Campell [59]. The broken SUSY case and
the general formulation of the form (123) were derived by Eckhardt [60] and independently
by Inomata and Junker [61]. It is known that both the Comtet–Bandrauk–Campbell (CBC)
formula for good SUSY and the Eckhardt–Inomata–Junker (EIJ) condition for broken
SUSY yield the exact energy spectra for many shape-invariant potentials. For detail, see
reference [62].

Now we wish to study the power-duality in SUSY semiclassical action on the left-hand
side of (122) only for the H− case. Let us write the action of system A as

Wa =
∫ r′′

r′
dr
√

2m(Ea −Φ2
a(r)), (124)

where Ea is the eigenvalue of H−. Suppose the superpotential in (124) has the form,

Φa(r) = ε
√

λara/2 − h̄√
2m

µa

r
, (125)

where ε = ±1 and a in the shoulder of r is an arbitrary real number. The potential term
appearing in the SUSY semiclassical action (124) is the squared-superpotential rather than
the usual potential V(r). For the superpotential (125), it is

Φ2
a(r) = λara + λa′ r

a′ +
h̄2µ2

a
2mr2 , (126)

where
a′ = (a− 2)/2, λa′ = −εh̄µa

√
2λa/m. (127)

Then we have

Φ2
a(r)−

h̄√
2m

dΦa(r)
dr

= λara +

(
1 +

a
4µa

)
λa′ r

a′ +
h̄2µa(µa − 1)

2mr2 . (128)
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Evidently, Φa(r) of (125) satisfies the Riccati Equation (123) with a two-term
power potential,

Va(r) = λara + (1 + a/(4µa))λa′r
a′ , (129)

provided that
a′ = (a− 2)/2, µa = La + 1/2. (130)

In (129), a is arbitrary but a′ is dependent on a as given by the first condition of (127).
If both a and a′ are assumed to be independent and arbitrary, the superpotential of the
form (125) cannot be a solution of the Riccati equation. The quantity on the left-hand side
of (128) is a SUSY effective potential, denoted by V(−)

a (r), that belongs to the Hamiltonian
H−. It is related to Va(r) of (129) by

V(−)
a (r) = Φ2

a(r)−
h̄√
2m

dΦa(r)
dr

= Va(r) +
h̄2(L2 − 1

4 )

2mr2 . (131)

The superpotential (125) works for the radial oscillator and the hydrogen atom in a
unified manner as it contains the two as special cases:

(1) Radial harmonic oscillator with a = 2, a′ = 0, λa = 1
2 mω2, λa′ = −h̄ωµa,

µa = La +
1
2 , ε = 1 :

Φa(r) =

√
m
2

ωr− h̄√
2m

µa

r
, (132)

V(−)
a (r) =

1
2

ω2r2 +
h̄2µa(µa − 1)

2mr2 − h̄ω(µa + 1/2), (133)

Ea −Φ2
a = (Ea + h̄ωµa)−

1
2

mω2r2 − h̄2µ2
a

2mr2 . (134)

The CBC quantization of (122) with ∆ = −1 yields

Ea = 2h̄ων, ν ∈ N0, (135)

which corresponds to the energy spectrum in quantum mechanics,

EQM
a (ν, `) = Ea + h̄ωµa = h̄ω(2ν + `+ D/2− 1/2), (136)

if µa = La + 1/2 = `+ D/2− 1/2 with ` ∈ N0.

(2) Hydrogen atom with a = 0, a′ = −1, ε = 1, λa = me4/(2h̄2µ2
a), λa′ = −e2,

µa = La +
1
2 :

Φa(r) =

√
2m

2h̄µa
e2 − h̄√

2m
µa

r
, (137)

V(−)
a (r) = − e2

r
+

h̄2µa(µa − 1)
2mr2 +

me4

2h̄2µ2
a

, (138)

Ea −Φ2
a =

(
Ea −

me4

2h̄2µ2
a

)
+

e2

r
− h̄2µ2

a
2mr2 . (139)

The CBC result is

Ea = EQM
a (ν, `) + me4/(2h̄2µ2

a) = −
me4

2h̄2(ν + `+ D/2− 1/2)2
+

me4

2h̄2(`+ D/2− 1/2)2
, (140)

where ν, ` ∈ N0.
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Next we change the radial variable r by

R : r = f (ρ) = Cρη , ⇔ ρ = f−1(r) = C−1/ηr1/η . (141)

and let the system described by the new variable be system B. Upon application of (141),
the action Wa of (124) transforms to

Wb =
∫ ρ′′

ρ′
dρ
√

2m f ′2(Ea −Φ2
a), (142)

where f ′ = d f (ρ)/dρ and

Ea −Φ2
a = Ea − λara − λa′ r

a′ − h̄2µ2
a

2mr2 , a′ = (a− 2)/2 . (143)

Since f ′2 = η2C2 η2η−2,

f ′2(Ea −Φ2
a) = η2C2Eaρ2η−2 − η2C2+aλaρaη+2η−2 − η2C2+a′λa′ρ

a′η+2η−2 − h̄2η2µ2
a

2mρ2 . (144)

If there is such a parameter η that f ′2(Ea −Φ2
a) takes the form,

Eb −Φ2
b = Eb − λbρb − λb′ρ

b′ − h̄2µ2
b

2mρ2 , (145)

with
b′ = (b− 2)/2, (146)

then the action is form-invariant under (141) and reciprocal, that is, Wa = Wb and Wa =
X̂(a, b)Wb. In the X̂(a, b)-operation, we have temporarily let r = ξa and ρ = ξb. We have
also assumed that X̂(a, b) takes b′ = (b − 2)/2 to a′ = (a − 2)/2. Furthermore, (145)
together with (146) implies that the new superpotential Φb(ρ) has the same form as that of
Φa(r) in (125), namely,

Φb(r) = ε
√

λbrb/2 − h̄√
2m

µb
r

. (147)

If this were the case, we could establish the general power-duality of the action (124)
with the superpotential (125). Unfortunately there is no way to transform system A with
an arbitrary power a to system B satisfying the conditions (145) and (146). Therefore,
with the superpotential (125), we are unable to demonstrate in a general term the power-
dual symmetry in SUSY semiclassical quantization. To our knowledge, no qualified
superpotential supporting the general power-duality in SUSY semiclassical action has ever
been reported.

Although we have to give up pursuing the general power-duality, we may find
cases where duality occurs within the present scheme. For a dual symmetry, the form-
invariance of the superpotential Φ(r) is not an essential requirement, but it is necessary that
f ′2(Ea −Φ2

a(r)) is reducible to the form Eb −Φ2
b under the transformation r = f (ρ) = Cρη .

There are two options for η to reduce the left-hand side of (144) to the form of (145) under
different conditions than (146). Namely,

(i) η = 2/(a + 2) = 1/(a′ + 2), a, a′ 6= −2,

(ii) η = 2/(a′ + 2) = 4/(a + 2), a, a′ 6= −2.

Let D̂(b, a) be such an operator that D̂(b, a)Wa = Wb under the change of variable (141).
Since (141) with option (i) or (ii) is invertible, the operator has an inverse. Hence Wa =
D̂−1(b, a)Wb in addition to Wa = Wb. Although the strict reciprocity is broken, we can talk
about the power-dual symmetry in this relaxed sense.
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Option (i): Transformation r = Cρ2/(a+2) in (141) brings

Eb −Φ2
b = Eb − λbρb − λb′ρ

−1 − h̄2µ2
b

2mρ2 . (148)

which contains a Coulomb-like potential in addition to a power potential for any value of a
other than a = −2 (a′ = −2). Option (i) must be associated with the substitutions,

Eb = −η2C2+aλa, λb = −η2C2Ea, λb′ = η2C2+a′λa′ , µb = ηµa, (149)

and
η =

2
a + 2

=
1

a′ + 2
, b = − 2a

a + 2
, b′ = −1. (150)

The second relation in (149) may be used to determine the constant C of the
transformation (141).

Option (ii): Transformation r = Cρ2/(a′+2) yields

Eb −Φ2
b = Eb − λbρ2 − λb′ρ

b′ − h̄2µ2
b

2mρ2 , (151)

where a Hooke potential appears in addition to a power potential for any a 6= −2. Option (ii)
comes with

Eb = −η2C2+a′λa′ , λb′ = −η2C2Ea, λb = η2C2+aλa, µb = ηµa, (152)

and

η =
2

a′ + 2
=

4
a + 2

, b = 2, b′ = − 2a′

a′ + 2
= −2(a− 2)

a + 2
. (153)

Again, the second relation of (152) is able to fix the constant C.

Example 1. The Coulomb–Hooke duality:
Option (i) is appropriate for the Hooke to Coulomb transition with a = 2, a′ = 0, b = −1 and
b′ = −1. By r = Cρ1/2,

Ea −Φ2
a = (Ea + h̄ωµa)−

1
2

mω2r2 − h̄2µ2
a

2mr2 . (154)

transforms to

Eb −Φ2
b =

(
Eb −

me4

2h̄2µ2
b

)
+

e2

ρ
− h̄2µ2

b
2mρ2 , (155)

where

Eb −
me4

2h̄2µ2
b

= −1
8

mω2C4, C2 =
4e2

Ea + h̄ωµa
, µb =

1
2

µa. (156)

Combining the first and the second relation of (156) gives

Eb = − 2me4

h̄2(Ea/h̄ω + µa)2
+

me4

2h̄2µ2
b

. (157)

which can be converted to the QM spectrum for the hydrogen atom

EQM
b (ν, `) = Eb −

me4

2h̄2µ2
b

= − me4

2h̄2(ν + `+ D/2− 1/2)2
, (158)

by substitution of Ea = 2h̄ων and µa = 2µb = 2(`+ D/2− 1/2).
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Option (ii) is for the Coulomb to Hooke transition with a = 0, a′ = −1, b = 2 and b′ = 2.
By ρ = C−1r2, the Equation (155) for the hydrogen atom transforms back to the Equation (154) for
the radial oscillator. The constant C−1 appearing in the variable transformation is the inverse of C
obtainable from the second relation of (156). Obviously, for the Coulomb–Hooke pair, option (ii)
is the inverse of option (i). This confirms that the Coulomb–Hooke dual symmetry is valid in the
SUSY semiclassical action.

Example 2. A confinement problem:
Option (i) and option (ii) may be used to study a confinement potential for which the superpo-

tential (125) is of the form,

Φa(r) = ε
√

λar1/2 − h̄√
2m

µa

r
, (ε = 1, λa > 0). (159)

Correspondingly, we have

Ea −Φ2
a(r) = Ea − λar + εh̄µa

√
2λa

m
r−1/2 − h̄2µ2

a
2mr2 . (160)

Option (i) with a = 1 (a′ = −1/2) gives η = 2/3. By r = Cρ2/3, (159) transforms to

Eb −Φ2
b(ρ) = Eb − λbρ−2/3 − λb′ρ

−1 − h̄2µ2
b

2mr2 , (161)

where

Eb = −4
9

C3λa, λb = −4
9

C2Ea, λb′ = −ε
4
9

h̄µbC3/2

√
2λa

m
, µb =

2
3

µa. (162)

The result (161) is not particularly interesting because it is not integrable. However, it is
interesting that the limit λb → 0 implies Ea → 0. Hence the states in the vicinity of the zero-energy
state of system A may be approximated by a set of states of the hydrogen atom.

Option (ii) with a′ = −1/2 implies η = 4/3. The transformation r = Cρ4/3 reduces
Ea −Φ2

a(r) of (160) to the form,

Eb −Φ2
b = Eb − λbρ2/3 − λb′ρ

2 − µ2
b h̄2

2mρ2 , (163)

where

Eb = ε
16
9

h̄µaC3/2

√
2λa

m
, λb = −16

9
C2Ea, λb′ =

16
9

C3λa, µb =
4
3

µa. (164)

In the limit λb → 0, system B becomes a radial harmonic oscillator with the coupling constant,
λb′ > 0. Thus, the states of system A in the vicinity of Ea = 0 may be approximated by those of
such a radial harmonic oscillator. The confinement problem will be revisited in Section 2.4.

Remark 18. The duality relation between system A and system B is reciprocal in the sense that the
two systems are bijectively mapped to each other. Hence, if system A is dual to system B then system
B is dual to system A. For instance, the Newton–Hooke duality in classical mechanics is reciprocal.
The Newton–Hooke duality is the Hooke–Newton duality. The map from the Newton system to the
Hooke system is bijective. By contrast, it has been known [63–65] that all the states of the hydrogen
atom in three dimensions correspond to half the states of the isotopic harmonic oscillator in four
dimensions. The map from the three dimensional Coulomb system (of `cou = 1, 2, 3, . . .) to the
four dimensional oscillator (of `osc = 2, 4, 6, ...) is injective. Hence all the states of the oscillator
as a Hooke system (with `osc = 0, 1, 2, ...) cannot be mapped back to the Coulomb system (with
`cou = 0, 1, 2, ...). The relation between the Coulomb system and the Hooke system at the level of
the quantum structures is not reciprocal [64,66].
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Remark 19. The Langer replacement,
√
`(`+ D− 2)→ `+ (D− 2)/2, is an ad hoc procedure

introduced so as to be consistent with the quantum mechanical results [67]. In the literature [36],
it has been suggested to regard the angular momentum L appearing in the Schrödinger equa-
tion as a continuous parameter since an arbitrary inverse square potential can be added to make
the quantized angular momentum continuous. This reasoning, however, would make Langer’s
replacement nonsensical.

Remark 20. Recall that η = −b/a for a dual pair (a, b) and that `b = η`a and Db − 2 =
η(Da − 2). Although η can be any positive real number, in the following, we list a few examples of
relevant numbers and relations for integral values of η:

η (a, b) `a = 0, 1, 2, ... `b = 0, 1, 2, ... Da = 2, 3, ...
ine2 (−1, 2) `b = 0, 2, 4, ... `a = 0, 1/2, 1, ... Db = 2Da − 2

3 (−4/3, 4) `b = 0, 3, 6, ... `a = 0, 1/3, 2/3, ... Db = 3Da − 4
4 (−3/2, 6) `b = 0, 4, 8, ... `a = 0, 1/4, 1/2, ... Db = 4Da − 6

For example, from the line of η = 2, we see that the states of the Coulomb system in Da = 3
correspond to half the states of the Hooke system in Db = 4. System A and system B cannot be
reciprocal as long as the equality `b = η`a is assumed.

Remark 21. The time transformation T has no role to play because the semiclassical action does
not explicitly depend on time as a solution of the stationary Hamilton–Jacobi equation.

Remark 22. The condition L2 = 0 assumed for the example in (117), if the Langer replacement (86)
is employed, implies ` = 0, which occurs only in two dimensions.

Remark 23. The spectrum (120) for a = −1/2 is similar to the approximate result obtained from
an exact solution of Schrödinger’s equation in one dimension [68].

Remark 24. The action on either side of (96) is not always integrable in closed form. Suppose
the power a of the potential Va be a non-zero integer. Then there are a few integrable examples.
If a = 2,−1 or −2 then the action of system A is reducible to an elementary function, and if
a = 6, 4, 1,−3,−4 or −6 then it can be expressed in terms of an elliptic function. Therefore,
(2,−1), (−3,−6), (−4,−4), (1,−2/3), (4,−1/3) and (6,−3/2) are integrable dual pairs
(a, b) when a is an integer other than 0 and −2 though b is not necessarily an integer. To a = −2,
there corresponds the self-dual pair (−2,−2) with η = 1.

4. Power-Duality in Quantum Mechanics

The main object to be studied for the power-duality in quantum mechanics is the
energy eigenequation of the form Ĥ|ψ〉 = E|ψ〉 where Ĥ is the Hamiltonian operator for
a system in a power-law potential. Since one of the key operations in the power-duality
transformation is the change of variable r = Cρη , we have to deal with the eigenequation in
the radial coordinate representation, that is, the radial Schrödinger equation. In the context
of the duality argument, the radial Schrödinger equation with power-law potentials have
been exhaustively explored in the literature [36,39,40]. There is little room available to add
something new. The aim of this section is, however, to present from the symmetry point of
view the power-duality of the radial Schrödinger equation in parallel to the classical and
semiclassical approaches. The power-duality in the path integral formulation of quantum
mechanics is important but is not included in the present paper.
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4.1. The Action for the Radial Schrödinger Equation

The stationary Schrödinger equation for a D dimensional system in a central-force
potential V(r) can be separated in polar coordinates into a radial equation and an angular
part. The radial Schrödinger equation has the form,

{
− h̄2

2m

(
d2

dr2 +
D− 1

r
d
dr

)
+

h̄2`(`+ D− 2)
2mr2 + V(r)− E

}
R`(r) = 0. (165)

In the above equation, the angular contribution appears in the third term, which stems
from L̂2Ym

` (r/r) = `(`+ D− 2)Ym
` (r/r) where L̂ is the angular momentum operator and

Ym
` (r/r) is the hyperspherical harmonics. Substituting R`(r) = r(1−D)/2ψ`(r) reduces it to

a simplified differential equation on the positive half-line,
{
− h̄2

2m
d2

dr2 +
h̄2(L2 − 1/4)

2mr2 + V(r)− E

}
ψ`(r) = 0, (166)

where
L = `+ (D− 2)/2, ` = 0, 1, 2, .... (167)

For the sake of simplicity, we shall call Equation (166) the radial equation and ψ`(r)
the wave function. The angular quantity L in (167) is precisely the same as Langer’s
choice (86) in the semiclassical action (see Remark 25). Under operation L : La = Lb/η,
the same problem that we have encountered in the semiclassical case should recur with the
equality (167). Therefore, again, we adopt the view that the power-duality is basically a
classical notion and follow the steps taken previously to circumvent the problem. Namely,
for the duality argument, we treat L and E in (166) as continuous parameters. Only after
the duality is established, we replace the parameters by their quantized counterparts. We
consider that operation L applies only to the angular parameter and that La = Lb/η does
not imply `a + D/2− 1 = (`b + D/2− 1)/η. The last equality breaks the reciprocity that
`a ∈ N0 and `b ∈ N0. The relation (167) holds true for each quantum system as an internal
structure being independent of duality operations.

Suppose that system A has a two-term power potential Va(r) = λara + λa′ra′ where
a 6= a′. Defining the modified potential,

Ua(r) = λara + λa′r
a′ − Ea, (168)

we write the radial Equation (166) as
{

d2

dr2 −
L2

a − 1/4
r2 − 2m

h̄2 Ua(r)

}
ψa(r) = 0. (169)

Since we ignore the relation (167) for a while, we have dropped the subscript ` of the
state function ψa(r). The radial Equation (169) for system A is derivable from the following
action integral,

Wa =
∫

σa
drLa

(
dψ∗a (r)

dr , dψa(r)
dr ; ψ∗a (r), ψa(r)

)
, (170)

having a fixed range σa 3 r and the Lagrangian of the form,

La =
dψ∗a (r)

dr
dψa(r)

dr
+

(
L2

a − 1/4
r2 +

2m
h̄2 Ua(r)

)
ψ∗a (r)ψa(r)

−1
2

d
dr

(
ψ∗a (r)

dψa(r)
dr

+ ψa(r)
dψ∗a (r)

dr

)
, (171)

where ψ∗a (r) is the complex conjugate of ψa(r). Here we assume that the wave function
ψa(r) and its derivative are finite over the integration range σa. The last term of (171)
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is completely integrable, so that it contributes to the action as an unimportant additive
constant. Use of the equality,

dψ∗a (r)
dr

dψa(r)
dr

= −ψ∗a (r)
d2ψa(r)

dr2 +
d
dr

(
ψ∗a (r)

dψa(r)
dr

)
, (172)

enables us to put the Lagrangian (171) into an alternative form,

L′a = −ψ∗a (r)

{
d2ψa(r)

dr2 −
(

L2
a − 1/4

r2 +
2m
h̄2 Ua(r)

)
ψa(r)

}

+
1
2

d
dr

(
ψ∗a (r)

dψa(r)
dr

− ψa(r)
dψ∗a (r)

dr

)
. (173)

The Euler–Lagrange equation, resulted from δW/δψ∗a = 0,

d
dr





∂La

∂
(

dψ∗a
dr

)



−

∂La

∂ψ∗a
= 0, (174)

readily yields, with either of La or L′a, the radial Equation (169). Since La is symmetric with
respect to ψ(r) and ψ∗(r), the complex conjugate of (169) can be derived from it. However,
L′a is inappropriate for deriving the radial equation for ψ∗a (r). For now we put L′a aside
even though there is no need for complex conjugation of the radial equation. For studying
the power-duality in quantum mechanics, we focus our attention on the action Wa of (170)
with the Lagrangian (171) rather than the radial Equation (169).

The symmetry operations that we consider for the power-duality in quantum mechan-
ics are as follows

R : r = f (ρ) = Cρη (C > 0), (175)

L : Lb = ηLa, (176)

E : Eb = −η2Ca+2λa, λb = −η2C2Ea, (177)

C : η = 2/(a + 2) = (b + 2)/2, (a 6= −2, b 6= −2), (178)

B : λb′ = λa′(2/(a + 2))2Ca′+2, b′ = 2(a′ − a)/(a + 2), (179)

F : ψa(r) = h(ρ)ψb(ρ). (180)

In (180), h(ρ) is a continuous positive real function of ρ.
As dr goes to dρ, the integration range of (170) changes from σa 3 r to σb 3 ρ.

Under (175) and (180), the first term of the Lagrangian (171) transforms as

dψ∗a (r)
dr

dψa(r)
dr

=
h2

f ′2

{
dψ∗b (ρ)

dρ

dψb(ρ)

dρ
−
[

d
dρ

(
h′

h

)
−
(

h′

h

)2
]

ψ∗b ψb

}
+

h2

f ′2
d

dρ

(
h′

h
ψ∗b ψb

)
. (181)

By choice, we let h2(ρ) = f ′(ρ). Then the second term on the right-hand side of (181)
reduces to the Schwarz derivative

S [ f ] =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

(182)

divided by 2 f ′. The third term of (181) can be decomposed to two terms by using
the relation,

d
dr

(ψ∗a (r)ψa(r)) =
h2

f ′
d

dρ
(ψ∗b (ρ)ψb(ρ)) +

2hh′

f ′
ψ∗b ψb. (183)

Therefore,
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dψ∗a (r)
dr

dψa(r)
dr

− 1
2

d
dr

[
d
dr

(ψ∗a (r)ψa(r))
]
=

1
f ′

{
dψ∗b (ρ)

dρ

dψb(ρ)

dρ
− 1

2
S [ f ]ψ∗b ψb

}
− 1

2 f ′
d

dρ

[
d

dρ
(ψ∗b (ρ)ψb(ρ))

]
. (184)

The angular term of the Lagrangian (171) transforms as

L2
a − 1/4

r2 ψ∗a (r)ψa(r) =
1
f ′

g(L2
a − 1/4)

f 2 ψ∗b (ρ)ψb(ρ) (185)

where g denotes f ′2 as in the classical and semiclassical cases. The energy-potential term
of (171) changes as

2m
h̄2 Ua(r)ψ∗a (r)ψa(r) =

2m
h̄2 gUa( f (ρ))ψ∗b (ρ)ψb(ρ). (186)

Moreover, we let f (ρ) = Cρη as defined by (175). Then S [ f ] = −(η2 − 1)/2, g =
C2η2ρ2η−2 and g/ f 2 = C2η2ρ2. Hence, we have

g(L2
a − 1/4)/ f 2 − (1/2)S [ f ] = (η2L2

a − 1/4)/ρ2, (187)

which results in (L2
b − 1/4)/ρ2 under L : Lb = ηLa. Changing the variable by (175) and

making the energy-coupling exchange by (177) result in

g(ρ)Ua(Cρη) = −Ebρaη+2η−2 + Ca′+2λb′ρ
a′η+2η−2 + λbρ2η−2, (188)

which is written as
Ub(ρ) = λbρb + λb′ρ

b′ − Eb (189)

with the help of (178) and (179). Namely, Ua(r) goes to Ub(ρ) by Ub(ρ) = g(ρ)Ua(r).
Consequently, we obtain Wa = Wb or, emphasizing the parameter dependence of the
Lagrangian, ∫

σa
drLa(λa, La, Ua) =

∫

σb

dρLb(λb, Lb, Ub), (190)

where

Lb =
dψ∗b (ρ)

dρ

dψb(ρ)

dρ
+

(
L2

b − 1/4
ρ2 +

2m
h̄2 Ub(ρ)

)
ψ∗b (ρ)ψb(ρ)−

1
2

d
dρ

(
ψ∗b (ρ)

dψb(ρ)

dρ
+ ψb(ρ)

dψ∗b (ρ)
dρ

)
. (191)

The last term of (191) is completely integrable and contributes to Wb as an unimportant
constant. We identify Lb of (191) with the Lagrangian of system B, use of which leads to
the radial equation for system B,

{
d2

dρ2 −
L2

b − 1/4
ρ2 − 2m

h̄2 Ub(ρ)

}
ψb(ρ) = 0. (192)

Apparently the form of the Lagrangian is preserved under the set of power-duality
operations, {R,L,C,E,B,F}. Furthermore, with the Lagrangians La of (171) and Lb
of (191), the equality (190) implies that the action W of (170) is invariant under the same set
of operations. By (190) the complex conjugate of the radial Schrödinger Equation (166) is as
well assured to be form-invariant.

To complete the procedure, as we have done for the semiclassical case, we must
replace in an ad hoc manner each of the angular momentum parameters by the quantized
form `+ (D− 2)/2 with ` = 0, 1, 2, . . .. Using the dot-equality introduced in Section 3.1,
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we write the form-invariance of the action amended by the angular quantization with
`a, `b ∈ N0,

∫

σa
drLa(λa, `a + (D− 2)/2, Ua)

.
=
∫

σb

dρLb(λb, `b + (D− 2)/2, Ub), (193)

which warrants that the radial Schrödinger Equation (166) with the angular quantization
(167) is form-invariant under the set of duality operations, {R,L,C,E,B,F}. In this mod-
ified sense we claim that two quantum systems with Va(r) = λara + λa′ra′ and with
Vb(ρ) = λbρb + λb′ρ

b′ are in power-duality provided that (a + 2)(b + 2) = 4.

4.2. Energy Formulas, Wave Functions and Green Functions

In arriving at the invariance relation (190), we have seen the equality drLa = dρLb
under the duality operations. The relation (190) is valid with the alternative Lagrangian L′
of (173), suggesting drL′a = dρL′b. The last equality in turn leads to

{
d2

dr2 −
L2

a − 1/4
r2 − 2m

h̄2 Ua(r)

}
ψa(r) =

1
h3

{
d2

dρ2 −
L2

b − 1/4
ρ2 − 2m

h̄2 Ub(ρ)

}
1
h

ψa( f (ρ)) (194)

where f ′ = h2 = Cηρη−1. Let Ha(r) be the Hamiltonian for system A in the r-representation,
that is,

Ha(r) = −
h̄2

2m
d2

dr2 +
h̄2(L2

a − 1/4)
2mr2 + λara + λa′r

a′ . (195)

Similarly, we define Hb(ρ) for system B. By using the exchange symbol X(b, a), we
have Hb(ξb)− Eb = X(b, a){Ha(ξa)− Ea}where ξa = r and ξb = ρ. Then the equality (194)
may be put into the form,

{Ha(r)− Ea}ψa(r) =
1
h3 {Hb(ρ)− Eb}ψb(ρ), (196)

when ψa(r) = h(ρ)ψb(ρ) with r = f (ρ) and f ′ = h2. Evidently, the radial Equation (169),
expressed as {Ha(r)− Ea}ψa(r) = 0, implies {Hb(ρ)− Eb}ψb(ρ) = 0.

4.2.1. Energy Formulas

To find the energy spectrum of system A, we usually solve the radial Equation
of (169) by specifying boundary conditions on ψa(r). Suppose we found a solution ψa(r; ν)
compatible with the given boundary conditions when the energy parameter took a spe-
cific value Ea(ν) characterized by a real number ν. This solution may be seen as an
eigenfunction satisfying

Ha(r)ψa(r; ν) = Ea(ν)ψa(r; ν). (197)

Since operation F demands ψa(r; ν) = ψa( f (ρ); ν) = h(ρ)ψb(ρ; ν), the Equation (197)
should imply via the equality (196)

Hb(ρ)ψb(ρ; ν)〉 = Eb(ν)ψb(ρ; ν). (198)

This shows that the number ν is a dual invariant being common to Ea(ν) and Eb(ν). As
has been repeatedly mentioned earlier, the duality operations cannot interfere the internal
structure of each quantum system. In general, there are a number of solutions for the given
boundary conditions. Thus, ν may be representing a set of numbers. Then we understand
that the value of ν is preserved by F. For a while, however, we treat ν as another parameter
and express the energy Ea as a function of λa, La and ν,

Ea = Ea(λa, La, ν). (199)

This corresponds to the energy function Ea(λa, La, N) in the semiclassical case. We
convert this energy function to the energy spectrum of system A by replacing the param-
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eters La and ν to their quantum counterparts. If we restrict our interest to bound state
solutions, the parameter ν is to be replaced by a set of discrete numbers ν = 0, 1, 2, . . ..
Furthermore, putting the angular parameter La into the Langer form (167), we obtain the
discrete energy spectrum of system A,

Ea(`a, ν) = Ea(λa, `a + D/2− 1, ν), (200)

where `a ∈ N0 and ν ∈ N0.
Since the energy functions Ea(λa, La, ν) and Eb(λb, Lb, ν) are related by the classical

energy formulas, (60) and (64)–(65), the corresponding energy spectra Ea(`a, ν) and Eb(`b, ν)
can be related by the same formulas provided the angular parameter and the quantum
parameter are properly expressed in terms of quantum numbers. Knowing the energy
spectrum of the form Ea(`a, ν) = E(λa, La, ν) for system A, we can determine the energy
spectrum Eb of system B by

Eb(`b, ν) = −η2Ca+2E−1(−λb/(η2C2), Lb/η, ν), (201)

where Lb = `b + D/2− 1 with `b ∈ N0. For the bound state spectrum, ν = 0, 1, 2, . . ..
If the energy spectrum of system A is given in the form

Ea(`a, ν) = ±1
4
(a + 2)2|λa|2/(a+2)

[
F
(√

2/(a + 2) (`a + D/2− 1), ν
)]1/a

(202)

then the energy spectrum of system B is given by

Eb(`b, ν) = ±1
4
(b + 2)2|λb|2/(b+2)

[
F
(√

2/(b + 2) (`b + D/2− 1), ν
)]1/b

. (203)

These relations are the same as the semiclassical relations (104 and (105) where the
signs are determined by the signs of the coupling constants, sgn Ea = −sgn λb and sgn Eb =
−sgn λa.

4.2.2. Wave Functions

The wave function transforms as ψa(r; La, ν) = h(ρ)ψb(ρ; Lb, ν). Therefore, if an
eigenfunction of system A is given, then the corresponding eigenfunction of system B can
be determined by

ψb(ρ; Lb, ν) =
1

h(ρ)
ψa(Cρη ; Lb/η, ν), (204)

where Lb = `b + D/2 − 1 with `b ∈ N0. Both ψa(r) and ψb(ρ) as eigenfunctions are
supposed to be square-integrable, and each of them must be normalizable to unity. How-
ever, even if ψa(r) is normalized to unity, it is unlikely that ψb(ρ) constructed by (204) is
normalized to unity. This is because

∫ ∞

0
dr |ψa(r)|2 =

∫ ∞

0
dρ g(ρ) |ψb(ρ)|2 = 1 (205)

where g(ρ) = [ f ′(ρ)]2 = [h(ρ)]4 = C2η2ρ2(η−1). In this regard, if system A and system B
are power-dual to each other, the formula (204) determines ψb(ρ) of system B out of ψa(r)
of system A except for the normalization.

4.2.3. Green Functions

The Green function G(r, r′; z) = 〈r|Ĝ(z)|r′〉 is the r-representation of the resolvent
Ĝ(z) = (z− Ĥ)−1 where z ∈ C\spec Ĥ and Ĥ is the Hamiltonian operator of the system
in question. Let E(ν) and |ψ(ν)〉 be the eigenvalue of Ĥ and the corresponding eigenstate,
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respectively, so that Ĥ|ψ(ν)〉 = E(ν)|ψ(ν)〉. For simplicity, we consider the case where
ν ∈ N0. Assume the eigenstates are orthonormalized and form a complete set, that is,

〈ψ(ν)|ψ(ν′)〉 = δν,ν′ , ∑
ν∈N0

|ψ(ν)〉〈ψ(ν)| = 1. (206)

From the completeness condition in (206), it is obvious that

Ĝ(z) = ∑
ν∈N0

|ψ(ν)〉〈ψ(ν)|
z− E(ν)

. (207)

Hence, the Green function can be written as

G(r, r′; z) = ∑
ν∈N0

ψ∗(r′; ν)ψ(r; ν)

z− E(ν)
. (208)

Use of Cauchy’s integral formula leads us to the expression,

ψ∗(r, ν)ψ(r′; ν) =
1

2πi

∮

Cν

dz G(r, r′; z), (209)

where the closed contour Cν counterclockwise encloses only the simple pole z = E(ν) for a
fixed value of ν. Note that we will deal only with radial, hence one-dimensional, problems
where no degeneracies can occur. Multiplying both sides of (209) by two factors v(r) and
v(r′) yields

ψ̃∗(r, ν)ψ̃(r′; ν) =
1

2πi

∮

Cν

dz G̃(r, r′; z), (210)

where ψ̃(r; ν) = v(r)ψ(r; ν) and G̃(r, r′; z) = v(r)v(r′)G(r, r′; z).
For instance, the Green function G(r, r′; E) for the radial Schrödinger Equation (165) is

related to the Green function G(r, r′; E) for the simplified radial Equation (166) by

G(r, r′; E) = (r r′)(1−D)/2G(r, r′; E) (211)

as the wave functions of (165) and (166) are connected by R`(r) = r(1−D)/2ψ`(r).
Suppose the Green functions of system A and system B are given, respectively, by

ψ∗a (r; ν)ψa(r′; ν) =
1

2πi

∮

Cν

dz Ga(r, r′; z), (212)

and
ψ∗b (ρ; ν)ψb(ρ

′; ν) =
1

2πi

∮

Cν

dz Gb(ρ, ρ′; z). (213)

By comparing these two expressions, we see that if ψa(r; ν) = h(ρ)ψb(ρ; ν) then

Ga(r, r′; Ea(ν)) = h(ρ)h(ρ′)Gb(ρ, ρ′; Eb(ν)). (214)

The above result is obtained without considering the detail of the Hamiltonian. In the
following, an alternative account is provided for deriving the same result by using the
Hamiltonian explicitly. Let Ĥa be the Hamiltonian operator of system A such that 〈r|Ĥa −
Ea|r′〉 = (Ha(r)− Ea)〈r|r′〉. Then it is obvious that

{Ha(r)− Ea}Ga(r, r′; Ea) = −δ(r− r′). (215)

According to (194), Equation (215) implies

{Hb(ρ)− Eb}
1
h

Ga( f (ρ), f (ρ′); Ea) = −h3(ρ)δ( f (ρ)− f (ρ′)). (216)
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From the relations,
∫

dr |r〉〈r| =
∫

dρ f ′(ρ)| f (ρ)〉〈 f (ρ′)| =
∫

dρ |ρ〉〈ρ′| = 1, (217)

there follows |ρ〉 = h(ρ)| f (ρ)〉. Hence we have, 〈ρ|ρ′〉 = h(ρ)h(ρ′)〈 f (ρ)| f (ρ′)〉, that is,
δ(r− r′) = δ( f (ρ)− f (ρ′)) = [h(ρ)h(ρ′)]−1δ(ρ− ρ′). Thus, we arrive at the radial equation
satisfied by the Green function of system B,

{Hb(ρ)− Eb}Gb(ρ, ρ′; Eb) = −δ(ρ− ρ′), (218)

if the Green function transforms as

Ga(r, r0; Ea, La) = h(ρ)h(ρ′)Gb(ρ, ρ′; Eb, Lb). (219)

Substitution of La = `a + D/2− 1 with `a ∈ N0 and Lb = `b + D/2− 1 with `b ∈ N0
into (219) results in

Ga(r, r′; Ea, `a + D/2− 1) .
= h(ρ)h(ρ0)Gb(ρ, ρ′; Eb, `b + D/2− 1), (220)

which is not an equality as `a ∈ N0 and `b ∈ N0 are assumed. Insofar as system B is
power-dual to system A, the Green function of system B can be expressed in terms of the
Green function of system A as

Gb(ρ, ρ′; Eb, `b + D/2− 1, λb, λb′) = [( f ′(ρ) f ′(ρ′)]−1/2Ga
(

f (ρ), f (ρ′); Ea, (`b + D/2− 1)/η, λa, λa′
)

(221)

where f (ρ) = Cρη and the parameters Ea, λa and λa′ are given via the relations (177) and
(179) in terms of Eb, λb and λb′ . This relation is an equality even though (220) is a dot
equality. An expression similar to but slightly different from (221) has been obtained by
Johnson [36] in much the same way.

4.3. The Coulomb–Hooke Dual Pair

Again, we take up the Coulomb–Hooke dual pair to test the transformation properties
shown in Section 3.1. Let system A be the hydrogen atom with λa = −e2 < 0 and system
B a radial oscillator with λb = 1

2 mω2 > 0. So (a, b) = (−1, 2) and η = −b/a = 2. Both
systems are assumed to be in D dimensional space. The Coulomb system has the scattering
states (Ea > 0) as well as the bound states (Ea < 0). However, the exchange relations (177)
prohibits the process (Ea > 0, λa < 0)⇒ (Eb > 0, λb > 0). The Coulomb–Hooke duality
occurs only when the Coulomb system is in bound states.

The energy relations: Suppose we know that the energy spectrum of system A has
the form,

Ea(λa, La, ν) = − me4

2h̄2(ν + La + 1/2)2
, (222)

where λa = −e2, ν ∈ N0 and La = `b + D/2− 1 with `a ∈ N0. Then the formula (202)
leads to

F
(√

2La, ν
)
=

h̄2

2m

[
ν + (

√
2La)/

√
2 + 1/2

]2
. (223)

Careful use of this result in the formula (203) enables us to determine the energy
spectrum of system B. Namely,

Eb(λb, Lb, ν) = 4
√

λb

√
h̄2

2m

[
ν + (Lb/

√
2)/
√

2 + 1/2
]1/2

. (224)
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Substituting λb = mω2/2 and Lb = `b + D/2− 1 in (224), we reach the standard
expression for the energy spectrum of the isotropic harmonic oscillator in D-dimensional
space,

Eb(`b, ν) = h̄ω(2ν + `b + D/2) (`b, ν ∈ N0). (225)

Wave functions: The radial Equation (166) for the Coulomb potential V(r) = −e2/r
can easily be converted to the Whittaker Equation [69]

{
d2

dx2 −
L2 − 1/4

x2 +
k
x
− 1

4

}
w(x) = 0, (226)

where L = `+ D/2− 1 (` ∈ N0). In the conversion, we have let x = 2κr, k = me2/(h̄2κ) =
ka, h̄κ =

√
−2mE, L = La and w(x) = ψa(x/(2κ)). This set of replacements is indeed a

duality map for the self-dual pair (a, a) = (−1,−1). The Whittaker functions, Mk,L(x) and
Wk,L(x), are two linearly independent solutions of the Whittaker Equation (226). For |x|
small, Mk,L(x) ∼ xL+ 1/2 and Wk,L(x) ∼ − Γ(2L)

Γ(L−k+1/2) x−L+ 1/2. If −π/2 < arg x < 3π/2
and |x| is large, then

Mk,L(x) ∼ Γ(2L + 1)

{
eiπ(L−k+ 1

2 )e−x/2xk

Γ(L + k + 1
2 )

+
ex/2x−k

Γ(L− k + 1
2 )

}
, (227)

and, if x /∈ R− and |x| is large,

Wk,L(x) ∼ e−x/2xk[1 + O(x−1)]. (228)

The first solution Mk,L(x) vanishes at x = 0 as L > −1/2 but diverges as |x| → ∞
unless k− L− 1

2 ∈ N0, whereas the second solution Wk,L(x) diverges at x = 0 but converges
to zero as |x| → ∞.

The solution for the Coulomb problem is given in terms of the Whittaker function,

ψa(r; La, ν) = Na(La) Mν+La+
1
2 , La

(2κr), (229)

where ka is replaced by ν + La + 1/2. For the bound state solution which vanishes at
infinity, we have to let ν = 0, 1, 2, . . .. In this case, ka = ν + La + 1/2 implies the discrete
spectrum Ea(λa, La, ν) in (222).

Since the Whittaker function Mk,µ(z) is related to the Laguerre function L2µ
ν (z) as

Mµ+ν+ 1
2 , µ(z) =

Γ(2µ + 1)Γ(ν + 1)
Γ(2µ + ν + 1)

e−z/2zµ+ 1
2 L2µ

ν (z), (230)

the eigenfunction may also be expressed in terms of the Laguerre function as

ψa(r; La, ν) = Na(La)
Γ(2La + 1)Γ(ν + 1)

Γ(ν + 2La + 1)
e−κr(2κr)La+

1
2 L2La

ν (2κr), (231)

which is normalized to unity with

Na(La) =
h̄κ/
√

me2

Γ(2La + 1)

√
Γ(ν + 2La + 1)

Γ(ν + 1)
. (232)

The radial equation for the Hooke system with Vb(ρ) =
1
2 mω2ρ2, too, can be reduced

to the Whittaker equation by letting

y = (mω/h̄)ρ2, L = Lb/2, k = Eb/(2h̄ω) = kb, w(y) = y1/4ψb(y), (233)
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which form a duality map for (b, c) = (2,−1). Here Lb = `b + D/2− 1 with `b ∈ N0. The
bound state solution for the radial oscillator is given by

ψb(ρ; Lb, ν) = Nb(Lb)
1√
ρ

Mν+ 1
2 Lb+

1
2 , 1

2 Lb

(mω

h̄
ρ2
)

. (234)

The choice kb = (2ν + Lb + 1)/2 with ν ∈ N0 makes the solution (234) the eigen-
function belonging to the energy Eb(ν, `b) in (224). In terms of the Laguerre function,
it reads

ψb(ρ; Lb, ν) = Nb(Lb)
Γ(Lb + 1)Γ(ν + 1)

Γ(ν + Lb + 1)
e−(mω/2h̄)ρ2

(mω

h̄
ρ2
)(Lb+

1
2 )/2

LLb
ν

(mω

h̄
ρ2
)

, (235)

which is normalized to unity with

Nb(Lb) =
(4mω/h̄)1/4

Γ(Lb + 1)

√
Γ(ν + Lb + 1)

Γ(ν + 1)
. (236)

The process of going from (229) to (234) is rather straightforward. First we notice
that η = −b/a = 2 for the Coulomb–Hooke pair (a, b) = (−1, 2). Then we use the
relation λb = −η2C2Ea, λb = mω2/2 and h̄κ =

√−2mEa to get C = mω/(2h̄κ). Hence
operation R : r = Cρη with η = 2 yields 2κr = (mω/h̄)ρ2. In addition, we apply
L : La = Lb/2. Consequently, we have the right hand side of (204) for a = −1, η = 2 and
h(ρ) =

√
mω/(h̄κ)ρ1/2 in the form,

√
h̄κ/mω

1√
ρ

ψa((mω/2h̄κ)ρ2; Lb/2, ν) = Ñb(Lb)
1√
ρ

Mν+ 1
2 Lb+

1
2 , 1

2 Lb

(mω

h̄
ρ2
)

, (237)

which coincides with the eigenfunction for the radial oscillator in (234) except for the
normalization factor. In (237),

Ñb(Lb) =
√

h̄κ/mωNa(Lb/2), (238)

which differs from Nb(Lb) of (236) due to the difference of factors,√
h̄2κ3/(me2)(mω/h̄)−1/2 6=

√
2(mω/h̄)1/4. The wave function of the radial oscillator can

be determined by the radial wave function of the hydrogen atom except for its normalization.
The Green functions: The Green function of interest, Ga(r, r′; E, L), obeys the radial

equation,
{

d2

dr2 −
L2 − 1/4

r2 − 2m
h̄2 V(r) +

2m
h̄2 E

}
Ga(r, r′; E, L) = −2m

h̄2 δ(r− r′), (239)

where Va(r) = λara + λa′ra′ . The boundary conditions we impose on it are

lim
r→0

G(r, r′; E, L) = 0 and lim
r→∞

G(r, r′; E, L) < ∞. (240)

Let ψ(1)(r) and ψ(2)(r) be two independent solutions of the radial Equation (166). Let
us assume that ψ(1)(r) remains finite as r → ∞ while the second solution obeys ψ(2)(0) = 0.
With these solutions, following the standard procedure [70], we can construct the Green
function G(r, r′; E, L) as

G(r, r′; E, L) =
2m

h̄2W [ψ(1), ψ(2)]

{
ψ(1)(r)ψ(2)(r′), r > r′

ψ(1)(r′)ψ(2)(r), r′ > r
(241)

whereW [·, ·] signifies the Wronskian.
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For the Coulomb problem with Va(r) = −e2r−1, we let ψ(1)(r) = Wka , La(2κr) and
ψ(2)(r) = Mka , La(2κr). Then we calculate the Wronskian to get

(2κ)−1W [Wk,L(2κr), Mk,L(2κr)] =W [Wk,L(x), Mk,L(x)] = − Γ(2L + 1)
Γ(L− k + 1

2 )
, (242)

where we have use the property,

W [Wk,L(x), Mk,L(x)] = (dy/dx)W [Wk,L(y), Mk,L(y)]. (243)

Substituting this result in the formula (241), we obtain the radial Green function for
the Coulomb problem,

Ga(r, r′; Ea, La) = −
m

h̄2κ

Γ(La − ka +
1
2 )

Γ(2La + 1)
Wka , La(2κr>) Mka , La(2κr<), (244)

where r> = max{r, r′} and r< = min{r, r′}. We have also set κ =
√−2mEa h̄ and ka =

me2/(h̄
√−2mEa), both of which are in general complex numbers. The resultant Green

function is a double-valued function of Ea. It contains the contribution from the continuous
states (corresponding to the branch-cut along the positive real line on Ea) as well as
the bound states (corresponding to the poles on the negative real axis). The poles of
G(r, r′; La, Ea) on the Ea-plane occur when La − ka +

1
2 = −ν with ν ∈ N0, yielding the

discrete energy spectrum (222).
Similarly, for the radial oscillator with Vb(ρ) = (m/2)ω2ρ2, we let

ψ(1)(ρ) = Wkb ,Lb
((mω/h̄)ρ2) and ψ(2)(ρ) = Mkb ,Lb

((mω/h̄)ρ2). Use of the property,

W [χ(y)Wk,L(y), χ(y)Mk,L(y)] = [χ(y)]2W [Wk,L(y), Mk,L(y)], (245)

for a differentiable function χ(y), together with (243) and (242), enables us to evaluate the
Wronskian and to get to the Green function for the radial oscillator,

Gb(ρ, ρ′; Lb, Eb) = −
1

h̄ω
√

ρρ′
Γ( 1

2 Lb − kb +
1
2 )

Γ(Lb + 1)
Wkb , 1

2 Lb

(mω

h̄
ρ2
>

)
Mkb , 1

2 Lb

(mω

h̄
ρ2
<

)
, (246)

where kb = Eb/(2h̄ω). Since G(ρ, ρ′; lb, Eb) is not a multi-valued function of Eb, it has no
branch point on the Eb-plane and contains no contribution corresponding to a continuous
spectrum, but has poles at kb = ν + 1

2 Lb +
1
2 with ν ∈ N0 yielding the discrete energy

spectrum (225).
Finally, we compare the Green function for the bound state of the Coulomb problem

(244) and the Green function for the radial oscillator (246). The Gamma functions and
the Whittaker functions in (244) are brought to those in (246) by transformations r = Cρ2

with C = mω/(2h̄κ), La = Lb/η with η = 2, and ka = kb. Although the first two
transformations are two of the dual operations, the last one must be verified. Since
ka = me2/(h̄2κ) = −mλa/(h̄2κ) and λa = −Eb/(4C), it immediately follows that ka =
Eb/(2h̄ω) = kb provided C = mω/(2h̄κ). For the bound state problem, ka = ν+ La +

1
2 and

kb = ν + 1
2 Lb +

1
2 . Hence, it is apparent that ka = kb when La = Lb/2. The extra function

in (219) is now given by h(ρ)h(ρ′) =
√

mω/(h̄κ)
√

ρρ′. Hence the prefactor m/(h̄2κ)
in (244) divided by the extra function gives rise to the prefactor (h̄ω

√
ρρ′)−1 in (246).

In this fashion, Ga(r, r′; La, Ea) of (244) is completely transformed into Gb(ρ, ρ′; Lb, Eb) by
the duality procedures with C = (mω/2h̄κ). By letting Lb = `b + D/2− 1 with `b ∈ N0,
we can see that the formula (221) works well for the Coulomb–Hooke pair.

117



Symmetry 2021, 13, 409

4.4. A Confinement Potential as a Multi-Term Power-Law Example

One of the motivations that urged the study of power-law potentials was the quark-
antiquark confinement problem. See, for instance, references [36,39,40]. Here we examine
a two-term power potential as a model of the confinement potential.

Let system A consist of a particle of mass m confined in a two-term power potential,

Va(r) = λara + λa′r
a′ , (247)

where λa 6= 0, λa′ 6= 0, a 6= a′, a 6= 0, and a′ 6= 0. Let system B be power-dual to system
A and quantum-mechanically solvable. Then we expect that some quantum-mechanical
information can be obtained concerning the confined system A by analyzing the properties
of system B. As we have seen earlier, when system A and system B are dual to each other,
the shifted potential of system A,

Ua(r) = λara + λa′r
a′ − Ea, (248)

transforms to that of system B,

Ub(ρ) = λbρb + λb′ρ
b′ − Eb, (249)

by
Ub(ρ) = g(ρ)Ua( f (ρ)). (250)

Here r = f (ρ) = Cρη , g(ρ) = C2η2ρ2η−2, η = 2/(a + 2) = −b/a, and

b′ = 2(a′ − a)/(a + 2) λb′ = λa′η
2Ca′+2. (251)

Note also that the exchange relations,

Eb = −η2Ca+2λa, λb = −η2C2Ea, (252)

play an essential role in verifying the equality (250).
First, we wish to tailor the potential of system A to be a confinement potential. To this

end, we set the following conditions.
(i) System B behaves as a radial harmonic oscillator (λb = 0, λb′ > 0, b′ = 2)
(ii) System A has a bound state with Ea = 0 and its potential is asymptotically linearly-

increasing (λa′ > 0, a′ = 1).
Since we are unable to solve analytically the Schrödinger equation for system B

with (249) in general, we consider the limiting case for which λb → 0, that is, we employ
for the potential of system B

Ub(ρ) = lim
λb→0

Ub(ρ) = λb′ρ
b′ − Eb. (253)

According to the second relation of (252), the limit λb → 0 implies Ea → 0. Hence we
study only the zero-energy state of system A by assuming that it exists and is characterized
by an integral number ν0. We denote the zero-energy by Ea(ν0). There are only a few
exactly soluble nontrivial examples with Ub of (253). Our choice is the one for the radial
harmonic oscillator with b′ = 2 and λb′ > 0,

Ub(ρ) = λb′ρ
2 − Eb (λb′ > 0). (254)

Namely, we consider that system B behaves as the radial harmonic oscillator with
frequency Ω =

√
2λb′/m and angular momentum Lb. Since b′ = 2 implies 2(a′ − a)/(a +

2) = 2 as obvious from (251), the corresponding potential of system A is

Va(r) = λar(a′−2)/2 + λa′r
a′ . (255)
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Next we assume that a possible confinement potential behaves asymptotically as a
linearly increasing function. Thus, letting a′ = 1 and λa′ > 0 in (255), we have

Va(r) = λar−1/2 + λa′r, (λa < 0, λa′ > 0). (256)

If λa > 0, then Va(r) > 0 for all r, and the assumed zero-energy state cannot exist. For
λa < 0, the effective potential of system A,

Ve f f
a (r) =

(L2
a − 1

4 )h̄
2

2mr2 − |λa|r−1/2 + |λa′ |r, (257)

can accommodate the zero-energy state provided that λa and λa′ are so selected that
Ve f f

a (r1) < 0 where r1 is a positive root of dVe f f
a (r)/dr = 0. Here La = Lb/η and

La = `a + D/2− 1 with `a ∈ N0. In this manner, we are able to obtain the confinement
potential (256) which is asymptotically linearly increasing and may accommodate at least
the assumed zero-energy state. Figure 2 shows the effective potential (257) of system A for
`a = 1, D = 3, λa′ = 1 and ν0 = 0, 1, 2, 3, 4 in units 2m = h̄ = 1.

2 4 6 8 10
r

-15
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0
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Figure 2. The effective potential (257) related to the eigenfunctions (266) for ν0 = 0, 1, 2, 3, 4 from top
to bottom. The parameters and units are set to `a = λa′ = 1, D = 3 and 2m = h̄ = 1, respectivly.

Since a′ = 1, we have a = (a′ − 2)/2 = −1/2, η = 2/(a + 2) = 4/3 and b = −aη =
2/3. The last information concerning b is unimportant insofar as λb → 0 is assumed.
The second relation of (251) demands that

C = (9λb′/16λa′)
1/3. (258)

Therefore, the first relation of (252) yields

Eb = −4
3

λa

√
λb′

λa′
. (259)

On the other hand, since system B behaves as a radial harmonic oscillator with
frequency Ω =

√
2λb′/m and angular momentum Lb, its energy spectrum is given by

Eb(ν0, `b) = h̄Ω (2ν0 + Lb + 1), (260)

where ν = ν0 is fixed by Ea(ν0) and Lb = `b + D/2− 1 with `b ∈ N0. Letting Lb = (4/3)La
in (260) and interpreting that Eb of (259) represents an allowed value in the spectrum (260),
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we observe that the coupling constant λa may take one of the values specified by the set of
(ν0, `a) via

λa = −
3
4

√
2λa′ h̄

2

m
(2ν0 + (4/3)La + 1), (261)

where La = `a + D/2− 1 with `a ∈ N0.
The energy eigenfunction of the radial oscillator has been given in (234). Replacing

(mω/h̄) in the previous result by β = mΩ/h̄ =
√

2mλb′ /h̄, we write down the eigenfunc-
tion of the present oscillator as

φb(ρ; Lb, ν0) = Nb(Lb, ν0, β)
(

βρ2
)−1/4

Mν0+
1
2 Lb+

1
2 , 1

2 Lb

(
βρ2
)

, (262)

which is normalized to unity with

Nb(Lb, ν0, β) =
(4β)1/4

Γ(Lb + 1)

√
Γ(ν0 + Lb + 1)

Γ(ν0 + 1)
. (263)

Moreover, utilizing the eigenfunction just obtained, we construct the eigenfunction for
the zero-energy state in the confinement potential (256) by following the simple prescription
φa(r) = h(ρ)φb(ρ). For the pair (a, b) = (−1/2, 2/3), the two variables r and ρ are related
by r = Cρ4/3 with C given in (258). Since ρ2 = C−3/2r3/2 and C−3/2 = (4/3)

√
λa′/λb′ ,

we let

α =
4
3

β

√
λa′

λb′
=

4
3

√
2mλa′

h̄
, β =

√
2mλb′

h̄
, (264)

and
βρ2 = αr3/2. (265)

Multiplying φb(ρ) of (262) by h(ρ) =
√

dr/dρ =
√

4C/3ρ1/6, and substituting (264)
and Lb = (4/3)La into φb(ρ), we arrive at the eigenfunction for the zero-energy state of
system A,

φa(ρ; La, ν0) = Na(La, ν0, α)
(

αr3/2
)−1/6

Mν0+
2
3 La+

1
2 , 2

3 La

(
αr3/2

)
, (266)

where La = `a + D/2− 1 with `a ∈ N0. Here the factor Na(La, ν0, α) that normalizes
φa(ρ) to unity cannot be determined by Nb((4/3)La, ν0, (3/4)α

√
λb′/λa′). Corresponding

to the value of λa specified in (261) by the set (ν0, `a), the eigenfunction φa(ρ; `a, ν0) is
characterized by the same set (ν0, `a) of numbers.

The Green function of system A obeys the inhomogeneous radial equation,
{

d2

dr2 −
L2

a − 1/4
r2 − 2me2

h̄2

(
λar−1/2 + λa′r

)
+

2me2

h̄2 Ea

}
Ga(r, r′; Ea, La) = −

2m
h̄2 δ(r− r′). (267)

Since the Green function for the radial oscillator has been given in (246), we can write
down the Green function Gb(ρ, ρ′; Eb(ν0)) of system B with λb = 0 as

Gb(ρ, ρ′; Eb, Lb) = −
m

h̄2β

1√
ρρ′

Γ( 1
2 Lb − kb +

1
2 )

Γ(Lb + 1)
Wkb , 1

2 Lb
(βρ2

>
) Mkb , 1

2 Lb
(βρ2

<
), (268)

where kb = Eb/(2h̄Ω). The pole of Gb(ρ, ρ′; Eb) that corresponds to Eb(ν0) occurs when
kb(Lb, ν0) = ν0 +

1
2 Lb +

1
2 where ν0 is a non-negative integer.

The Green function Ga(r, r′; Ea, La) of system A at Ea = 0 can be found by substituting
(265) together with

h(ρ) =
√

4/3C3/8r1/8,
1
2

Lb =
2
3

La,
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into h(ρ)h(ρ′)Gb(ρ, ρ′; Eb, Lb). Namely,

Ga(r, r′; Ea = 0, La) =
4
3

C3/4(rr′)1/8 Gb

(
(r/C)3/4, (r′/C)3/4; Eb =

16
9
|λa|,

4
3

La

)
, (269)

where C has been given in (258). Explicitly, we have

Ga(r, r′; Ea, La) = −
4m

3h̄2α
(rr′)−1/4 Γ( 2

3 La − ka +
1
2 )

Γ( 4
3 La + 1)

Wka , 2
3 La

(αr3/2
>

) Mka , 3
2 La

(αr3/2
<

). (270)

where α and β have been given by (264). The pole corresponding to Ea(ν0) = 0 occurs
when ka = ν0 + (2/3)La + 1/2 and La = `a + D/2− 1. We have to remember that the
Green function (269) is meaningful only in the vicinity of Ea = 0.

Remark 25. The angular momentum L in (167) is identical in form to that used in the semiclassical
case (86). However, no Langer-like ad hoc treatment has been made in the Schrödinger equation.
The angular contribution `(`+ D− 2) and an additional contribution (D− 1)(D− 3)/4 from the
kinetic term due to the transformation of base function, R`(r) to ψ`(r), make up the term L2 − 1/4
in the effective centrifugal potential term of (169).

Remark 26. The time transformation T needed in classical mechanics takes no part in the power
duality of the stationary Schrödinger equation. Instead, the change of the base function plays an es-
sential role. While T assumes dt = g(ρ)ds, the state function changes as ψa(r) = [g(ρ)]1/4ψb(ρ).
The possible connection between the time transformation and the change of state function has been
discussed in the context of path integration for the Green function in [41]. So long as the stationary
Schrödinger equation is concerned, there is no clue to draw any causal relation between T and F.
However, one might expect that T would play a role in the time-dependent Schödinger equation.
If the energy-coupling exchange operation E of (93) is formally modified as

E′ : gVa(r)→ −ih̄
∂

∂s̄
, gih̄

∂

∂t̄
→ −Vb(ρ), (271)

then the time-dependent radial Schrödinger equation,
[
− h̄2

2m
d2

dr2 +
h̄2(L2

a − 1/4)
2mr2 + Va(r)

]
ψa(r) = ih̄

∂ψa(r)
∂t̄

, (272)

transforms into
[
− h̄2

2m
d2

dρ2 +
h̄2(L2

b − 1/4)
2mρ2 + Vb(ρ)

]
ψb(ρ) = ih̄

∂ψb(ρ)

∂s̄
, (273)

under the set of {R,L,E′,F}. It is important that t̄ and s̄ are not necessarily connected by T; they
are basically independent time-like parameters. In conclusion, the time transformation T has no role
in the time-dependent Schrödinger equation.

Remark 27. More on time transformations. Since we are dealing with the action integral (170)
rather than the Schrödinger equation, it is easy to observe that the time transformation T in the
classical action in Section 2 is closely related to the transformation F of wave functions in the
quantum action (170). Recall that T : (dt/dϕ) = g(ρ)(ds/dϕ) where g = f ′2 with f = Cρη ,
and that

dt Ua = ds gUa = ds Ub. (274)

From (171) and (190), we have

dr Uaψ∗a ψa = dρ f ′h2Uaψ∗b ψb = dρ Ubψ∗b ψb, (275)
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where g = f ′h2 = f ′2. Comparing (274) and (275), we see that dt = gds in classical mechanics
corresponds to dr ψ∗a ψa = g dρ ψ∗b ψb in quantum mechanics. In other words, dr ψ∗a ψa has the same
transformation behavior that dt does. In this respect, we may say that the role of T in classical
mechanics is replaced by F in quantum mechanics.

5. Summary and Outlook

In the present paper we have revisited the Newton–Hooke power-law duality and its
generalizations from the symmetry point of view.

(1) We have stipulated the power-dual symmetry in classical mechanics by form-
invariance and reciprocity of the classical action in the form of Hamilton’s characteristic
function, and clarified the roles of duality operations {C,R,T,E,L}. The exchange oper-
ation E has a double role; it may decide the constant C appearing in the transformation
r = Cρη , while it leads to an energy formula that relates the new energy to the old energy.

(2) We have shown that the semiclassical action is symmetric under the set of duality
operations {C,R,E,L}without T insofar as angular momentum L is treated as a continuous
parameter, and observed that the power-duality is essentially a classical notion and breaks
down at the level of angular quantization. To preserve the basic spirit of power-duality
in the semiclassical action, we have proposed an ad hoc procedure in which angular
momentum transforms as Lb = ηLa, as the classical case, rather than `b = η`a; after that
each of L is quantized as L = `+ D/2− 1 with ` ∈ N0. As an example, we have solved by
the WKB formula a simple problem for a linear motion in a fractional power potential.

(3) We have failed to verify the dual symmetry of the supersymmetric (SUSY) semi-
classical action for an arbitrary power potential, but have succeeded to reveal the Coulomb–
Hooke duality in the SUSY action.

(4) To study the power-dual symmetry in quantum mechanics, we have chosen the
action in which the variables are the wave function ψ(r) and its complex conjugate ψ∗(r)
and from which the radial Schrödinger equation can be derived. The potential appearing in
the action is a two-term power potential. We have shown that the action is symmetric under
the set of operations {C,R,E,L} plus the transformation of wave function F provided that
angular momentum L is a continuous parameter. Again the ad hoc procedure introduced
for the semiclassical case must be used in quantum mechanics. Associated with F is the
transformation of Green functions from which we have derived a formula that relates the
new Green function and the old one. We have studied the Coulomb–Hooke duality to
verify the energy formula and the formula for the Green functions. We also discussed a
confinement potential and the Coulomb–Hooke–Morse triality.

There are more topics that we considered important but left out for the future work.
They include the power-dual symmetry in the path integral formulation of quantum
mechanics, the Coulomb–Hooke duality in Dirac’s equation, and the confinement problem
in Witten’s framework of supersymetric quantum mechanics. Feynman’s path integral is
defined for the propagator (or the transition probability) with the classical action in the
form of Hamilton’s principal function, whereas the path integral pertinent to the duality
discussion is based on the classical action in the form of Hamilton’s characteristic function.
Since the power-dual symmetry of the characteristic action has been shown, it seems
obvious that the path integral remains form-invariant under the duality operations, but the
verification of it is tedious. As is well-known, Dirac’s equation is exactly solvable for the
hydrogen atom. There are also solutions of Dirac’s equation for the harmonic oscillator.
However, the Coulomb–Hooke duality of Dirac’s equation has never been established.
The situation is similar to Witten’s model of SUSYQM. Using the same superpotential as
that used for the semiclassical case in Section 4, we may be able to show the Coulomb–
Hooke symmetry and handle the confinement problem in Witten’s framework.
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Appendix A. The Coulomb–Hooke–Morse Triality

In this Appendix A, we wish to present the Coulomb–Hooke–Morse triality that
relates the Morse oscillator to the Coulomb–Hooke duality. Specifically, letting system
A be the hydrogen atom (for the Coulomb system), system B be the radial harmonic
oscillator (for the Hooke system) and system C be the Morse oscillator, we deal with
their triangular relation. The Morse oscillator is a system obeying the one-dimensional
Schrödinger Equation [71],

− h̄2

2m
d2ψc(ξ)

d2ξ
+ (Vc(ξ)− Ec)ψc(ξ) = 0, ξ ∈ R, (A1)

where
Vc(ξ) = D1 e−2αξ − 2D2 e−αξ , α, D1, D2 > 0, (A2)

which is the Morse potential in a slightly modified form. The potential (A2), being not a
power-law potential, is beyond the scope of the main text. It is yet interesting to observe
how the Morse oscillator is related to the Coulomb–Hooke duality. It is straightforward,
if one follows the general transformation procedure [41] for the Schrödinger equation,
to transform (A1) directly to the Schrödinger equation for each of the hydrogen atom and
the radial harmonic oscillation. Here, to focus our attention on their trial nature, we place
the Whittaker function at the center of the triangular relation. In fact, the Schrödinger
Equation (A1) is easily transformed to the Whittaker Equation (226) under the substitutions

x = γ e−αξ , γ =

√
8mD1

h̄α
(A3)

Lc =

√−2mEc

h̄α
, kc =

√
2mD2

2

h̄2α2D1
, (A4)

w(x) = x1/2ψc(ξ). (A5)

Hence the bound state solution of (A1) can be expressed in terms of the Whittaker
function as

ψc(ξ) = Nc eαξ/2Mkc ,Lc

(
γ e−αξ

)
, (A6)

subject to the condition

kc = ν + Lc +
1
2

, ν ∈ N0. (A7)

The last condition yields the energy spectrum,

Ec = −
h̄2α2

2m

{√
2mD2

2

h̄2α2D1
−
(

ν +
1
2

)}2

, ν = 0, 1, 2, . . . <

√
2mD2

2

h̄2α2D1
− 1

2
. (A8)

The Morse oscillator solution ψc(ξ) in (A6) may be compared with the Coulomb
bound state solution ψa(r) and the Hooke oscillator solution ψb(ρ) given, respectively, by

ψa(r) = Na Mka ,La(2κr), (A9)

with
ka = ν + La +

1
2

ν ∈ N0, (A10)

and
ψb(ρ) = Nb

(mω

h̄
ρ2
)−1/4

Mkb , 1
2 Lb

(mω

h̄
ρ2
)

, (A11)
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with
kb = ν +

1
2

Lb +
1
2

ν ∈ N0. (A12)

The bound state conditions (A10) and (A12) lead to the energy spectrum of the
Coulomb system (A) and that of the Hooke system (B), respectively, when

ka = me2/(h̄2κ) , h̄κ =
√
−2mEa , La = `+ 1/2 , ` ∈ N0 , (A13)

kb = Eb/(h̄ω) , Lb = `+ 1/2 , ` ∈ N0 . (A14)

The triality relations are schematically shown below,

Morse Morse
CA ↙ ↖ BC AC ↗ ↘ CB

Coulomb −→ Hooke Coulomb ←− Hooke
AB BA

and the dual transformations AC, CB and BA are given by

AC : 2κr = γe−αξ , ka = kc, La = Lc, ψa(r) = e−αξ/2ψc(ξ)
CB : γe−αξ = (mω/h̄)ρ2, kc = kb, Lc = (1/2)Lb, e−αξ/2ψc(ξ) = ρ−1/2ψb(ρ)
BA : (mω/h̄)ρ2 = 2κr, kb = ka, (1/2)Lb = La, ρ−1/2ψb(ρ) = ψa(r)

which are all invertible. Although none of the energy formulas discussed earlier for the
power-duality works when the Morse (non-power-law) potential is involved, transforming
one of the bound state conditions to another suffices as each condition generates an energy
spectrum. Let χ(ks, ηsLs) represent the condition ks − ηsLs − 1

2 = ν where s = a, b, c,
and ηa = ηc = 1 and ηb = 1/2. The map χ(ks, ηsLs) ⇒ χ(ks′ , ηs′Ls′) induces Es ⇒ Es′ .

χ(kc, Lc) Ec
CA ↙ ↖ BC ⇒ CA ↙ ↖ BC

χ(ka, La) −→ χ(kb, 1
2 Lb) Ea −→ Eb

AB AB

Finally, it must be mentioned that this triangular relation has been discussed in the
context of so-called shape invariant potentials in supersymmetric quantum mechanics [72].
It may also be worth pointing out that the three systems share the SU(1, 1) dynamical
group [50,56].
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Abstract: The method proposed by Inomata and his collaborators allows us to transform a damped
Caldirola–Kanai oscillator with a time-dependent frequency to one with a constant frequency and no
friction by redefining the time variable, obtained by solving an Ermakov–Milne–Pinney equation.
Their mapping “Eisenhart–Duval” lifts as a conformal transformation between two appropriate
Bargmann spaces. The quantum propagator is calculated also by bringing the quadratic system to
free form by another time-dependent Bargmann-conformal transformation, which generalizes the
one introduced before by Niederer and is related to the mapping proposed by Arnold. Our approach
allows us to extend the Maslov phase correction to an arbitrary time-dependent frequency. The
method is illustrated by the Mathieu profile.

Keywords: quantum mechanics; semiclassical theories and applications; classical general relativity

PACS: 03.65.-w quantum mechanics; 03.65.Sq semiclassical theories and applications; 04.20.-q classi-
cal general relativity

1. Introduction

A nonrelativistic quantum particle with unit mass in d + 1 spacetime dimensions with
coordinates x, t is given by the natural Lagrangian L = 1

2 ẋ2 −V(x, t). The wave function is
expressed in terms of the propagator,

ψ(x′′, t′′) =
∫

K(x′′, t′′|x′, t′)ψ(x′, t′)dx′ (1)

which, following Feynman’s intuitive proposal [1], is obtained as,

K(x′′, t′′|x′, t′) =
∫

exp
[ i

h̄
A(γ)

]
D© , (2)

where the (symbolic) integration is over all paths γ(t) =
(
x(t), t

)
that link the spacetime

point (x′, t′) to (x′′, t′′) and where:

A(γ) =
∫ t′′

t′
L
(
γ(t), γ̇(t), t

)
dt (3)

is the classical action calculated along γ(t) [1–3].
The rigorous definition and calculation of (2) are beyond our scope here. However,

the semiclassical approximation leads to the van Vleck–Pauli formula [2–5],

K(x′′, t′′|x′, t′) =
[

i
2πh̄

∂2Ā
∂x′∂x′′

]1/2

exp
[

i
h̄
Ā(x′′, t′′|x′, t′)

]
, (4)
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where Ā(x′′, t′′|x′, t′) =
∫ t′′

t′
L(γ̄(t), ˙̄γ(t), t)dt is the classical action calculated along the

(supposedly unique (This condition is satisfied away from caustics [2,3,6]. Moreover, (5)
and (8) are valid only for 0 < T′′ − T′ and for 0 < t′′ − t′ < π, respectively, as discussed
in Section 4.)) classical path γ̄(τ) from (x′, t′) and (x′′, t′′). This expression involves data
of the classical motion only. We note here also the van Vleck determinant ∂2Ā

∂x′∂x′′ in the
prefactor [4,5].

Equation (4) is exact for a quadratic-in-the-position potentials in 1 + 1 dimension
V(x, t) = 1

2 ω2(t) x2 that we consider henceforth.
For ω ≡ 0, i.e., for a free nonrelativistic particle of unit mass in 1 + 1 dimensions with

coordinates X and T, the result is [1–3],

K f ree(X′′, T′′|X′, T′) =
[

1
2πih̄(T′′ − T′)

]1/2
exp

{
i
h̄
(X′′ − X′)2

2(T′′ − T′)

}
. (5)

A harmonic oscillator with dissipation is in turn described by the Caldirola–Kanai
(CK) Lagrangian and the equation of motion, respectively [7,8]. For constant damping and
a harmonic frequency, we have,

LCK =
1
2

eλ0t
((dx

dt
)2 −ω2

0x2
)

, (6)

d2x
dt2 + λ0

dx
dt

+ ω2
0 x = 0 (7)

with λ0 = const. > 0 and ω0 = const.. A lengthy calculation then yields the exact
propagator [2,3,9–11]:

KCK(x′′, t′′|x′, t′) =

[
Ω0 e

λ0
2 (t′′+t′)

2πih̄ sin
[
Ω0(t′′ − t′)

]
] 1

2

× (8)

exp

{
iΩ0

2h̄ sin
[
Ω0(t′′ − t′)

]
[
(x′′2eλ0t′′ + x′2eλ0t′ ) cos

[
Ω0(t′′ − t′)

]
− 2x′′x′eλ0

t′′+t′
2

]}
,

Ω2
0 = ω2

0 − 1
4 λ2

0 , (9)

where an irrelevant phase factor was dropped.
Inomata and his collaborators [12–15] generalized (9) to a time-dependent frequency

by redefining time, t→ τ, which allowed them to transform the time-dependent problem
to one with a constant frequency (see Section 2). Then, they followed by what they called a
“time-dependent conformal transformation ” (x, t)→ (X, T) such that:

x = f (T) X(T) exp
[

1
2 λ0T

]
, t = g(T) , where f 2(T) =

dg
dT

, (10)

which allowed them to derive the propagator from the free expression (5). When spelled out,
(10) boils down to a generalized version, (22), of the correspondence found by Niederer [16].

It is legitimate to wonder: in what sense are these transformations “conformal” ? In
Section 3, we explain that, in fact, both mappings can be interpreted in the Eisenhart–
Duval (E-D) framework as conformal transformations between two appropriate Bargmann
spaces [17–21]. Moreover, the change of variables x, t → X, T is a special case of the one
put forward by Arnold [22,23] and is shown to be convenient to study time-dependent sys-
tems explicitly.

A bonus is the extension to the arbitrary time-dependent frequency ω(t) of the
Maslov phase correction [2,4–6,19,24–28] even when no explicit solutions are available (see
Section 4).
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In Section 5.2, we illustrate our theory by the time-dependent Mathieu profile ω2(t) =
a− 2q cos 2t , a, b const., the direct analytic treatment of which is complicated.

2. The Junker–Inomata Derivation of the Propagator

Starting with a general quadratic Lagrangian in 1 + 1 spacetime dimensions with
coordinates x̃ and t, Junker and Inomata derived the equation of motion [12]:

¨̃x + λ̇(t) ˙̃x + ω2(t)x̃ = F(t) , (11)

which describes a nonrelativistic particle of unit mass with dissipation λ(t). The driving
force F(t) can be eliminated by subtracting a particular solution h(t) of (11), x(t) = x̃(t)−
h(t), in terms of which (11) becomes homogeneous,

ẍ + λ̇(t)ẋ + ω2(t)x = 0 . (12)

This equation can be obtained from the time-dependent generalization of (6),

LCK =
1
2

eλ(t)[ẋ2 −ω2(t)x2] . (13)

The friction can be eliminated by setting x(t) = y(t) e−λ(t)/2, which yields a harmonic
oscillator with no friction, but with a shifted frequency [29–31],

ÿ + Ω2(t)y = 0 where Ω2(t) = ω2(t)− λ̇2(t)
4
− λ̈(t)

2
. (14)

For λ(t) = λ0t and ω = ω0 = const., for example, we obtain the usual harmonic
oscillator with a constant shifted frequency, Ω2 = ω2

0 − λ2
0/4 = const.

The frequency is in general time-dependent, though Ω = Ω(t); therefore, (14) is a
Sturm–Liouville equation that can be solved analytically only in exceptional cases.

Junker and Inomata [12] followed another, more subtle path. Equation (12) is a linear
equation with time-dependent coefficients, the solution of which can be searched for within
the ansatz (A similar transcription was used also by Rezende [28].):

x(t) = ρ(t)
(

Aeiω̄τ(t) + Be−iω̄τ(t)
)

, (15)

where A, B, and ω̄ are constants and ρ(t) and τ(t) functions to be found. Inserting (15) into
(12), putting the coefficients of the exponentials to zero, separating the real and imaginary
parts, and absorbing a new integration constant into A, B provide us with the coupled
system for ρ(t) and τ(t),

ρ̈ + λ̇ρ̇ + (ω2(t)− ω̄2τ̇2)ρ = 0, (16)

τ̇(t) ρ2(t) eλ(t) = 1 . (17)

Manifestly, τ̇ > 0. Inserting τ̇ into (16) then yields the Ermakov–Milne–Pinney (EMP)
equation [32–34] with time-dependent coefficients,

ρ̈ + λ̇ρ̇ + ω2(t)ρ =
e−2λ(t)ω̄2

ρ3 . (18)

We note for later use that eliminating ρ would yield instead:

ω̄2 =
1
τ̇2

(
ω2(t)− 1

2

...
τ

τ̇
+

3
4

(
τ̈

τ̇

)2
− λ̈

2
− λ̇2

4

)
. (19)
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Conversely, the constancy of the r.h.s. here can be verified using Equation (17).
Equivalently, starting with the Junker–Inomata condition (10),

ω2(t) =
f̈
f
− 2

ḟ 2

f 2 +
λ̇2

4
+

λ̈

2
. (20)

To sum up, the strategy to follow is [12,35,36]:

1. to solve first the EMP Equation (18) for ρ;
2. to integrate (17),

τ(t) =
∫ t e−λ(u)

ρ2(u)
du . (21)

Then, the trajectory is given by (15).
Junker and Inomata showed, moreover, that substituting into (13) the new coordinates:

T =
tan [ω̄ τ(t)]

ω̄
, X = x e

λ(t)
2 τ̇(t)

1
2 sec [ω̄ τ(t)], (22)

allows us to present the Caldirola–Kanai action as (Surface terms do not change the classical
equations of motion and multiply the propagator by an unobservable phase factor, and are
therefore dropped.),

ACK =
∫ t′′

t′
LCKdt =

∫ T′′

T′

1
2
(dX

dT
)2dT , (23)

where we recognize the action of a free particle of unit mass. One checks also directly that
X, T satisfy the free equation, as they should. The conditions (10) are readily verified.

The coordinates X and T describe a free particle; therefore, the propagator is (5) (as
anticipated by our notation). The clue of Junker and Inomata [12] is that, conversely,
trading X and T in (5) for x and t allows deriving the propagator for the CK oscillator (see
also [11], Section 5.1) (The extension of (24) from 0 < ω̄(τ′′ − τ′) < π to all t [2,3,6,11] is
discussed in Section 4.),

Kosc(x′′, t′′|x′, t′) =


 ω̄e

λ′′+λ′
2 (τ̇′′τ̇′)

1
2

2πih̄ sin[ω̄(τ′′ − τ′)]




1
2

× (24)

exp
{

iω̄
2h̄ sin[ω̄(τ′′ − τ′)]

[
(x′′2eλ′′ τ̇′′ + x′2eλ′ τ̇′) cos[ω̄(τ′′ − τ′)]− 2x′′x′e

λ′′+λ′
2 (τ̇′′τ̇′)

1
2

]}
,

where we used the shorthands λ′′ = λ(t′′), τ′′ = τ(t′′), etc.
This remarkable formula says that in terms of “redefined time”, τ, the problem is

essentially one with a constant frequency. Equation (24) is still implicit, though, as it
requires solving first the coupled system (17), which we can do only in particular cases.

• When λ(t) = λ0t where λ0 = const. ≥ 0, Equation (12) describes a time-dependent
oscillator with constant friction,

ẍ + λ0 ẋ + ω2(t)x = 0. (25)

Then, setting R(t) = ρ(t) eλ0t/2, Equation (17) provide us with the EMP equation for
R, cf. (18),

R̈ + Ω2(t)R− ω̄2

R3 = 0, where Ω2(t) = ω2(t)− λ2
0

4
; (26)

• If, in addition, the frequency is constant ω(t) = ω0 = const., then Equation (26) is
solved algebraically by:

ω̄2 = ω2
0 − λ2

0/4, R = 1 ⇒ ρ(t) = e−λ0t/2, τ(t) = t. (27)
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Thus, x(t) is a linear combination of e−
1
2 λ0t sin ω̄t and e−

1
2 λ0t cos ω̄t. The spacetime co-

ordinate transformation of (x, t)→ (X, T) in (22) simplifies to the friction-generalized
form of that of Niederer [16],

T =
tan(ω̄t)

ω̄
, X = x exp

(
1
2

λ0t
)

sec(ω̄t), (28)

for which the general expression (24) reduces to (9) when λ0 = 0;
• When the oscillator is turned off, ω0 = 0, but λ0 > 0, we have motion in a dissipative

medium. The coordinate transformation propagator (22) and (24) become:

X =
2x

1 + exp(−λ0t)
, T =

2
λ0

1− exp(−λ0t)
1 + exp(−λ0t)

(29)

and:

Kdiss(x′′, t′′|x′, t′) =

[
λ0

2πih̄[exp(−λ0t′)− exp(−λ0t′′)]

] 1
2

× exp
{

iλ0

2h̄
(x′′ − x′)2

exp(−λ0t′)− exp(−λ0t′′)

}
,

(30)

respectively. A driving force F0 (e.g., terrestrial gravitation) could be added and then
removed by x → x + (F0/λ0)t.

Further examples can be found in [13–15]. An explicitly time-dependent example is
presented in Section 5.2.

3. The Eisenhart–Duval Lift

Further insight can be gained by “Eisenhart–Duval (E-D) lifting” the system to one
higher dimension to what is called a “Bargmann space” [17–21]. The latter is a d + 1 + 1-
dimensional manifold endowed with a Lorentz metric, the general form of which is:

gµνdxµdxν = gij(x, t)dxidxj + 2dtds− 2V(x, t)dt2 , (31)

which carries a covariantly constant null Killing vector ∂s. Then:

Theorem 1 ([18,20]). Factoring out the foliation generated by ∂s yields a nonrelativistic spacetime
in d + 1 dimensions. Moreover, the null geodesics of the Bargmann metric gµν project to ordi-
nary spacetime, consistent with Newton’s equations. Conversely, if (γ(t), t) is a solution of the
nonrelativistic equations of motion, then its null lifts to Bargmann space are:

(
γ(t), t, s(t)

)
, s(t) = s0 −A(γ) = s0 −

∫ t
L(γ(r), r)dr (32)

where s0 is an arbitrary initial value.

Let us consider, for example, a particle of unit mass with the Lagrangian of:

L =
1

2α(t)
gij(xk)ẋi ẋj − β(t)V(xi, t), (33)

where gij(xk)dxidxj is a positive metric on a curved configuration space Q with local
coordinates xi, i = 1, . . . , d. The coefficients α(t) and β(t) may depend on time t, and
V(xi, t) is some (possibly time-dependent) scalar potential. The associated equations of
motion are:

d2xi

dt2 + Γi
jk

dxj

dt
dxk

dt
− α̇

α

dxi

dt
= −αβgij∂jV , (34)
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where the Γi
jk are the Christoffel symbols of the metric gij. For d = 1, gij = δij and

V = 1
2 ω2(t)x2 for α = β = 1, resp. for α = β−1 = e−λ(t), we obtain a (possible time-

dependent) 1d oscillator without, resp. with, friction, Equation (7) [7–9,29–31].
Equation (34) can also be obtained by projecting a null-geodesic of d+ 1+ 1-dimensional

Bargmann spacetime with coordinates (xµ) = (xi, t, s), whose metric is:

gµνdxµdxν =
1
α

gijdxidxj + 2dtds− 2βVdt2. (35)

For α = β−1 = e−λ(t), we recover (12).
Choosing λ(t) = ln m(t) would describe motion with a time-dependent mass m(t).

The friction can be removed by the conformal rescaling x → y =
√

m x, and the null
geodesics of the rescaled metric describe, consistent with (14), an oscillator with no friction,
but with a time-dependent frequency, Ω2 = ω2 − m̈

2m +
( ṁ

2m )2 [37].
The friction term −(α̇/α)ẋi in (34) can be removed also by introducing a new time

parameter t̃, defined by dt̃ = α dt [21]. For λ(t) = λ0t, for example, putting t̃ = −e−λ0t/λ0
eliminates the friction, but it does this at the price of obtaining a manifestly time-dependent
frequency [38,39]:

d2x
dt̃2 + Ω̃2(t̃)x = 0 , Ω̃2(t̃) =

ω2

t̃2λ2
0

. (36)

3.1. The Junker–Inomata Ansatz as a Conformal Transformation

The approach outlined in Section 2 admits a Bargmannian interpretation. For simplic-
ity, we only consider the frictionless case λ = 0.

Theorem 2. The Junker–Inomata method of converting the time-dependent system into one with a
constant frequency by switching from “real” to “fake time”,

t→ τ(t), ξ = τ̇ x (37)

induces a conformal transformation between the Bargmann metrics:
dx2 + 2dtds−ω2(t)x2dt2 frequency ω2(t) (38a)

dξ2 + 2dτdσ− ω̄2ξ2dτ2 , frequency ω̄ = const. (38b)

dξ2 + 2dτdσ− ω̄2ξ2dτ2 = τ̇(t)
(

dx2 + 2dtds−ω2(t)x2dt2
)

. (39)

Proof. Putting µ = ln τ̇ allows us to present the constant-frequency ω̄ (19) as:

ω̄2 = τ̇−2(ω2(t)− 1
2 µ̈ + 1

4 µ̇2). (40)

Then, with the notation
◦
ξ= dξ/dτ, we find,

◦
ξ

2
= τ̇−1

[
ẋ2 +

1
4

µ̇2x2 − 1
2

µ̈x2 +
d
dt

(
1
2

µ̇x2
)]

.

Let us now recall that the null lift to the Bargmann space of a spacetime curve is
obtained by subtracting the classical action as the vertical coordinate,

dσ = −L(ξ,
◦
ξ, τ)dτ = −1

2
( ◦

ξ
2 − ω̄2ξ2)dτ . (41)

Setting here ξ = xτ̇1/2 and dropping surface terms yield, using the same procedure
for the time-dependent-frequency case,

dσ = ds = −1
2
(
ẋ2 −ω2(t)x2)dt (42)
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up to surface terms. Then, inserting all our formulae into (38a) and (38b) yields (39), as stated.
In Junker–Inomata language (10), f (t) = τ̇1/2 sec(ω̄τ), g(t) = (ω̄)−1 tan(ω̄τ).

Our investigation has so far concerned classical aspects. Now, we consider what
happens quantum mechanically. Restricting our attention at d = 1 space dimensions as
before (In d > 2, conformal invariance requires adding a scalar curvature term to the
Laplacian.), we posit that the E-D lift ψ̃ of a wave function ψ is equivariant,

ψ̃(x, t, s) = e
i
h̄ sψ(x, t) ⇒ ∂sψ̃ =

i
h̄

ψ̃ . (43)

Then, the massless Klein–Gordon equation for ψ̃ associated with the 1 + 1 + 1 = 3 d
Barmann metric implies the Schrödinger equation in 1+1 d,

∆g ψ̃ = 0 ⇒ i∂tψ =
[
− h̄2

2
∆x + V(x, t)

]
ψ (44)

where ∆g is the Laplace–Beltrami operator associated with the metric. In d = 1, it is of
course ∆x = ∂2

x.
A conformal diffeomorphism (X, T, S)→ f̃ (X, T, S) = (x, t, s) with conformal factor

σ2
f , f̃ ∗gµν = σ2

f gµν, projects to a spacetime transformation (X, T)→ f (X, T) = (x, t). It is
implemented on a wave function lifted to the Bargmann space as:

ψ̃(x, t, s) = σ−1/2
f ψ̃(X, T, S) (45)

In Sections 4.2, these formulae are applied to the Niederer map (73).

3.2. The Arnold Map

The general damped harmonic oscillator with time-dependent driving force F(t) in
1 + 1 dimensions, (11),

ẍ + λ̇ẋ + ω2(t)x = F(t) , (46)

can be solved by an Arnold transformation [22,23], which “straightens the trajectories” [21,29–31,40].
To this end, one introduces new coordinates,

T =
u1

u2
, X =

x− up

u2
, (47)

where u1 and u2 are solutions of the associated homogeneous Equation (46) with F ≡ 0
and up is a particular solution of the full Equation (46). It is worth noting that (47) allows
checking, independently, the Junker–Inomata criterion in (10). The initial conditions are
chosen as,

u1(t0) = u̇2(t0) = 0, u̇1(t0) = u2(t0) = 1, up(t0) = u̇p(t0) = 0. (48)

Then, in the new coordinates, the motion becomes free [22,23],

X(T) = aT + b , a, b = const. (49)

Equation (46) can be obtained by projecting a null geodesic of the Bargmann metric:

gµνdxµdxν = eλ(t)dx2 + 2dtds− 2eλ(t)
(

1
2

ω(t)2x2 − F(t)x
)

dt2 . (50)

Completing (47) by:

S = s + eλu−1
2

(
1
2

u̇2x2 + u̇px
)
+ g(t) where ġ =

1
2

eλ
(

u̇2
p −ω2u2

p + 2Fup

)
(51)
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lifts the Arnold map to Bargmann spaces, (x, t, s) → (X, T, S) (In the Junker–Inomata
setting (10), f = u2e−λ/2 and g(t) = u1/u2.),

gµνdxµdxν = eλ(t)u2
2(t)

(
dX2 + 2dTdS

)
. (52)

The oscillator metric (50) is thus carried conformally to the free one, generalizing
earlier results [18,19,41]. For the damped harmonic oscillator with λ(t) = λ0t and F(t) ≡ 0,
up ≡ 0 is a particular solution. When ω = ω0 = const., for example,

u1 = e−λ0t/2 sin Ω0t
Ω0

, u2 = e−λ0t/2( cos Ω0t +
λ0

2Ω0
sin Ω0t

)
, Ω2

0 = ω2
0 − λ2

0/4 (53)

are two independent solutions of the homogeneous equation with initial conditions (48)
and provide us with:

T =
sin Ω0t

Ω0(cos Ω0t + λ0
2Ω0

sin Ω0t)
, (54)

X =
eλ0t/2 x

cos Ω0t + λ0
2Ω0

sin Ω0t
, (55)

S = s− 1
2 eλ0tx2 (ω2

0
Ω0

) sin Ω0t

cos Ω0t + λ0
2Ω0

sin Ω0t
. (56)

In the undamped case, λ0 = 0; thus, Ω0 = ω0, and (56) reduces to that of Niederer [16]
lifted to the Bargmann space [19,20],

T =
tan ω0t

ω0
, X =

x
cos ω0t

, S = s− 1
2 x2ω0 tan ω0t. (57)

The Junker–Inomata construction in Section 2 can be viewed as a particular case of
the Arnold transformation. We chose up ≡ 0 and the two independent solutions:

u1 = e−λ/2 τ̇−1/2 sin ω̄τ

ω̄
, u2 = e−λ/2 τ̇−1/2 cos ω̄τ . (58)

The initial conditions (48) at t0 = 0 imply τ(0) = ρ̇(0) = 0, ρ(0) = τ̇(0) = 1. Then,
spelling out (51),

S = s− 1
2

eλ

(
ω̄τ̇ tan ω̄τ +

1
2

λ̇ +
1
2

τ̈

τ̇

)
x2 (59)

completes the lift of (22) to Bargmann spaces. In conclusion, the one-dimensional damped
harmonic oscillator is described by the conformally flat Bargmann metric,

gµνdxµdxν =
cos2 ω̄τ

τ̇

(
dX2 + 2dTdS

)
. (60)

The metric (60) is manifestly conformally flat; therefore, its geodesics are those of the
free metric, X(T) = aT + b. Then, using (47) with (58) yields:

x(t) = e−λ(t)/2 τ̇−1/2(t)
(

a
sin[ω̄τ(t)]

ω̄
+ b cos[ω̄τ(t)]

)
. (61)

The bracketed quantity here describes a constant-frequency oscillator with “time” τ(t).
The original position, x, obtains a time-dependent “conformal” scale factor.
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4. The Maslov Correction

As mentioned before, the semiclassical formula (9) is correct only in the first oscillator
half-period, 0 < t′′ − t′ < π/Ω0. Its extension for all t involves the Maslov correction. In the
constant-frequency case with no friction, for example, assuming that Ω0(t′′ − t′′)/π is not
an integer, we have [2,3,6],

Kext(x′′, t′′|x′, t′) =

[
Ω0

2πh̄
∣∣ sin Ω0(t′′ − t′)

∣∣

] 1
2

× e−i π
4 (1+2`) (62)

exp
{

iΩ0

2h̄ sin Ω0(t′′ − t′)

[
(x′′2 + x′2) cos Ω0(t′′ − t′)− 2x′′x′

]}
,

where the integer:

` = Ent
[Ω0(t′′ − t′)

π

]
(63)

is called the Maslov index (Ent[x] is the integer part of x.). ` counts the completed half-periods
and is related also to the Morse index, which counts the negative modes of ∂2A/∂x′∂x′′ [4,5].

Now, we generalize (62) to the time-dependent frequency:

Theorem 3. In terms of ω̄ and τ introduced in Section 2,

• Outside caustics, i.e., for ω̄(τ′′ − τ′) 6= π`, the propagator for the harmonic oscillator with
the time-dependent frequency and friction is:

Kext(x′′, t′′|x′, t′) =


 ω̄e

λ′′+λ′
2 (τ̇′′τ̇′)

1
2

2πh̄| sin ω̄(τ′′ − τ′)|




1/2

exp
{
− iπ

2

(
1
2
+ Ent

[ ω̄(τ′′ − τ′)
π

])}
(64)

× exp
{

iω̄
2h̄ sin ω̄(τ′′ − τ′)

[(x′′2eλ′′ τ̇′′ + x′2eλ′ τ̇′) cos[ω̄(τ′′ − τ′)]− 2x′′x′e
λ′′+λ′

2 (τ̇′′τ̇′)
1
2 ]

}
;

• At caustics, i.e., for:
ω̄(τ′′ − τ′) = π `, ` = 0,±1, . . . (65)

we have instead [3,6],

Kext
(

x′′, x′, |τ′′ − τ′ =
π

ω̄
`
)
=
[
e

λ′′+λ′
2 (τ̇′′τ̇′)

1
2
]1/2 (66)

× exp
(
− iπ`

2

)
δ
(

x′ exp(λ′/2)τ̇′1/2 − (−1)kx′′ exp(λ′′/2)τ̇′′1/2
)

.

Proof. In terms of the redefined coordinates:

τ = τ(t) and ξ = x exp
[

λ(t)
2

]
τ̇1/2(t), (67)

cf. (37), and using the notation
◦
{ · }= d/dτ, the time-dependent oscillator Equation (12) is

taken into:

◦◦
ξ + ω̄2ξ = 0 , where ω̄2 =

1
τ̇2

(
ω2(t)− 1

2

...
τ

τ̇
+

3
4

(
τ̈

τ̇

)2
− λ̈

2
− λ̇2

4

)
. (68)

Thus, the problem is reduced to one with a time-independent frequency, ω̄ in (19) (We
record for the sake of later investigations that (turning off λ) (68) can be presented as:

ω2(t)− τ̇2 ω̄2 = 1
2 S(τ) (69)
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where S(τ) =
...
τ
τ̇ − 3

2
(

τ̈
τ̇

)2 is the Schwarzian derivative of τ [42]).

Let us now recall Formula (19) of Junker and Inomata in [12], which tells us how
propagators behave under the coordinate transformation (ξ, τ)←→ (x, t):

K2(x′′, t′′|x′, t′) =
[(

∂ξ ′

∂x′

)(
∂ξ ′′

∂x′′

)] 1
2

K1(ξ
′′, τ′′|ξ ′, τ′) . (70)

Here, K2 = Kext is the propagator of an oscillator with a time-dependent frequency
and friction, ω(t) and λ(t), respectively—the one we are trying to find. K1 is in turn the
Maslov-extended propagator of an oscillator with no friction and a constant frequency,
as in (62). Then, the propagator for the harmonic oscillator with a time-dependent frequency and
friction, Equation (64), is obtained using (67).

Notice that (64) is regular at the points rk ∈ Jk where sin = ±1. However, at caustics,
τ′′ − τ′ = (π/ω̄)`, Kext diverges, and we have instead (66).

Henceforth, we limit our investigations to λ = 0.

4.1. Properties of the Niederer Map

More insight is gained from the perspective of the generalized Niederer map (22).
We first study their properties in some detail. For simplicity, we chose, in the rest of this
section, x′ = t′ = 0 and x′′ ≡ x and t′′ ≡ t.

We start with the observation that the Niederer map (22) becomes singular where the
cosine vanishes, i.e., where:

cos[ω̄τ(rk)] = 0, i.e. τ(rk) = (k + 1
2 )

π

ω̄
, k = 0 ,±1, . . . (71)

rk < rk+1 because τ(t) is an increasing function by (21). Moreover, each interval:

Ik =
[
rk, rk+1

]
, k = 0,±1, . . . (72)

is mapped by (22) onto the full range −∞ < T < ∞. Therefore, the inverse mapping is
multivalued, labeled by integers k,

Nk : T → t =
arctank ω̄T

ω̄
, X → x =

X√
1 + ω̄2T2

, (73)

where arctank( · ) = arctan0( · ) + kπ with arctan0( · ) the principal determination, i.e., in
(−π/2, π/2).

Then, limt→rk− tan t = ∞ and limt→rk+ tan t = −∞ imply that:

lim
T→∞

Nk(T) = rk+1 = lim
T→−∞

Nk+1(T) . (74)

Therefore, the intervals Ik and Ik+1 are joined at rk+1, and the Ik form a partition of the
time axis,

{
−∞ < t < ∞

}
= ∪k Ik .

Returning to (64) (which is (62) with Ω0 ⇒ ω̄, t⇒ τ), we then observe that, whereas
the propagator is regular at rk, it diverges at caustics,

sin[ω̄τ(t`)] = 0 i.e., τ(t`) =
π

ω̄
`, ` = 0, ±1, . . . , (75)

cf. (65). Thus, t` ≤ t`+1, and:

Nk(−∞) = rk, Nk(T = 0) = tk+1, Nk(+∞) = rk+1 . (76)

Thus, Nk maps the full T-line into Ik with tk an internal point. Conversely, rk is an internal
point of Jk. The intervals J` =

[
t`, t`+1

]
cover again the time axis, ∪` J` =

{
−∞ < t < ∞

}
.
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By (61) the classical trajectories are regular at t = rk. Moreover, for arbitrary initial
velocities, √

τ̇(t`+1) x(t`+1) = −
√

τ̇(t`) x(t`) (77)

implying that after a half-period ω̄τ → ω̄τ + π, all classical motions are focused at the
same point. The two entangled sets of intervals are shown in Figure 1.

Figure 1. The generalized Niederer map (22) maps each interval Ik = (rk, rk+1) onto the entire real
line−∞ < T < ∞. Its inverse mapping is therefore multivalued, labeled by an integer k. The classical
motions and the propagator are both regular at the separation points rk. All classical trajectories are
focused at the caustic points t`, where the propagator diverges.

The Niederer map (57) “E-D lifts” to the Bargmann space.

Theorem 4. The E-D lift of the inverse of the Niederer map (57), which we shall denote by
Ñk : (X, T, S)→ (x, t, s) (t ∈ Ik), is:

t =
arctank ω̄T

ω̄
, x =

X√
1 + ω̄2T2

, s = S +
X2

2
ω̄2T

1 + ω̄2T2 . (78)

Proof. These formulae follow at once by inverting (57), at once with the cast ω0 ⇒ ω̄, t⇒
τ. Alternatively, it could also be proven as for Theorem 2.

For each integer k (78) maps the real line −∞ < T < ∞ into the “open strip” [19][
rk, rk+1

]
×R2 ≡ Ik ×R2 with rk defined in (71). Their union covers the entire Bargmann

manifold of the oscillator.

Now, we pull back the free dynamics by the multivalued inverse (78). We put ω̄ = 1
for simplicity. The free motion with initial condition X(0) = 0,

X(T) = aT, S(T) = S0 −
a2

2
T , (79)

E-D lifts by (78) to:

x(t) = a sin t s(t) = S0 −
a2

4
sin 2t , (80)

consistent with s(t) = s0 − Āosc, as can be checked directly. Note that the s coordinate
oscillates with a doubled frequency.

• At t = rk = ( 1
2 + k)π (where the Niederer maps are joined), we have limt→rk x(t) =

(−1)k+1a , limt→rk s(t) = S0. Thus, the pull backs of the Bargmann lifts of free motions
are glued to smooth curves;

• Similarly, at t caustics t = t` = π`, we infer from (80) that for all initial velocities
a and for all ` limt→t` x(t) = 0, limt→t` s(t) = S0 . Thus, the lifts are again smooth
at t`, and after each half-period, all motions are focused above the initial position
(x(0) = 0, s(0) = S0).

137



Symmetry 2021, 13, 1866

4.2. The Propagator by the Niederer Map

Now, we turn to quantum dynamics. Our starting point is the free propagator (5),
which (as mentioned before) is valid only for 0 < T′′ − T′. Its extension to all T involves
the sign of (T′′ − T′) [19].

Let us explain this subtle point in some detail. First of all, we notice that the usual
expression (5) involves a square root, which is double-valued, obliging us to choose one
of its branches. Which one we choose is irrelevant: it is a mere gauge choice. However,
once we do choose one, we must stick to our choice. Take, for example, the one for which√
−i = e−iπ/4, then the prefactor in (5) is:

[
1

2πih̄(T′′ − T′)

]1/2
= e−iπ/4

[
1

2πh̄
∣∣T′′ − T′

∣∣

]1/2

.

Let us now consider what happens when T′′ − T′ changes sign. Then, the prefactor
becomes multiplied by

√
−1 so it becomes, for the same choice of the square root,

eiπ/2 e−iπ/4

[
1

2πh̄
∣∣T′′ − T′

∣∣

]1/2

= e+iπ/4

[
1

2πh̄
∣∣T′′ − T′

∣∣

]1/2

. (81)

In conclusion, the formula valid for all T is,

K f ree(X′′, T′′|X′, T′) = e−i π
4 sign(T′′−T′)

[
1

2πh̄|T′′ − T′|

]1/2
exp

{
i
h̄
Ā f ree

}
, (82)

where:

Ā f ree =
(X′′ − X′)2

2(T′′ − T′)
(83)

is the free action calculated along the classical trajectory. Let us underline that (82) already
involves a “Maslov jump” e−iπ/2 , which, for a free particle, happens at T = 0. For
T′′ − T′ = 0, we have K f ree = δ(X′′ − X′).

Accordingly, the wave function Ψ ≡ Ψ f ree of a free particle is, by (1),

Ψ
(
X′′, T′′

)
= e−i π

4sign(T′′−T′)
[

1
2πh̄|T′′ − T′|

]1/2∫

R
exp

{
i
h̄
Ā f ree

}
Ψ
(
X′, T′

)
dX′ . (84)

Now, we pull back the free dynamics using the multivalued inverse Niederer map.
It is sufficient to consider the constant-frequency case ω̄ = const. and to denote time by
t. Let t belong to the range of Nk in (73), t ∈ Ik = [rk, rk+1] = Nk

(
{−∞ < T < ∞}

)
. Then,

applying the general formulae in Section 3.1 yields [19],

ψ̃(x′′, t′′, s′′) = cos−1/2[ω̄(t′′ − t′)]Ψ̃(X′′, T′′, S′′) = e−
iπ
4 sign

(
tan ω̄(t′′−t′′ )

ω̄

)
×

cos−1/2[ω̄(t′′ − t′)] exp
(

i
h̄ s′′
)

exp
(
− i

h̄ (
1
2 ω̄x′′2 tan[ω̄(t′′ − t′′)]

)

√
|ω̄|

2πh̄| tan[ω̄(t′′ − t′)]|
∫

R
exp





i
h̄

ω̄| x′′
cos[ω̄(t′′−t′)] − x′|2

2 tan[ω̄(t′′ − t′)]



ψ(x′, t′)dx′ .

However, the second exponential in the middle line combines with the integrand in
the braces in the last line to yield the action calculated along the classical oscillator trajectory,

Āosc =
ω̄

2 sin ω̄(t′′ − t′)
(
(x′′2 + x′2) cos ω̄(t′′ − t′)− 2x′′x′

)
. (85)

138



Symmetry 2021, 13, 1866

Thus, using the equivariance, we end up with,

ψosc
(
x′′, t′′

)
= cos−1/2[ω̄(t′′ − t′)] exp

[
− iπ

4
sign

(
tan[ω̄(t′′ − t′)]

ω̄

)]
× (86)

√
|ω̄|

2πh̄|tan[ω̄(t′′ − t′)]|
∫

R
exp

{
i
h̄
Āosc

}
ψosc

(
x′, t′

)
dx .

Now, we recover the Maslov jump, which comes from the first line here. For simplicity,
we consider again t′ = 0, x′ = 0 and denote t′′ = t, x′′ = x.

Firstly, we observe that the conformal factor cos ω̄t has a constant sign in the domain
Ik and changes sign at the end points. In fact,

cos ω̄t = (−1)k+1| cos ω̄t| ⇒ cos−1/2(ω̄t) = e−i π
2 (k+1)| cos ω̄t|−1/2. (87)

The cosine enters into the van Vleck factor, while the phase combines with
exp

[
− iπ

4 sign( tan ω̄t
ω̄ )

]
. Recall now that tk+1 = Nk

(
T = 0

)
divides Ik into two pieces,

Ik = [rk, tk+1] ∪ [tk+1, rk+1], cf. Figure 1. However, tk+1 is precisely where the tangent
changes sign: this term contributes to the phase in [rk, tk+1] −π/4 and +π/4 in [tk+1, rk+1].
Combining the two shifts, we end up with the phase:

−π
4
(
1 + 2`

)
for rk < t < tk+1

−π
4
(
1 + 2(`+ 1)

)
for tk+1 < t < rk+1

where ` = Ent
[

ω̄τ

π

]
= k + 1 (88)

which is the Maslov jump at t`.
Intuitively, the multivalued Nk “exports” to the oscillator at t`+1 the phase jump of

the free propagator at T = 0. Crossing from J` to J`+1 shifts the index ` by one.

5. Probability Density and Phase of the Propagator: A Pictorial View
5.1. For a Constant Frequency

We assume first that the frequency is constant. We split the propagator K(x, t) ≡
K(x, t|0, 0) in (62) as,

K(x, t) = |K(x, t)| P(t), P(t) = ei(phase). (89)

The probability density,

|K(x, t)|2 =
Ω0

2πh̄
∣∣ sin Ω0t

∣∣ (90)

viewed as a surface above the x− t plane, diverges at t = t` = π`, ` = 0,±1, . . . .
Representing the phase of the propagator would require four dimensions, though. How-

ever, recall that that the dominant contribution to the path integral should come from where
the phase is stationary [1], i.e., from the neighborhood of classical paths x̄(t), distinguished
by the vanishing of the first variation, δAx̄ = 0. Therefore, we shall study the evolution of
the phase along classical paths x̄(t) for which (61) yields, for h̄ = ω̄ = 1 and a ∈ R, b = 0,

x̄a(t) = a sin t and Pa(t) = exp
{
− iπ

4
[
1− a2

π
sin 2t

]
− iπ

2
`

}
, (91)

as depicted in Figure 2.
An intuitive understanding comes by noting that when t 6= π` = t`, then different

initial velocities a yield classical paths x̄a(t) with different end points, and thus contribute
to different propagators. However, approaching from the left `-times a half period, t →

139



Symmetry 2021, 13, 1866

(π `)− , all classical paths become focused at the same end point (x = 0 for our choice) and
for all a,

Pa(t→ π`−) = e−i π
4 (1+2`) ≡ P` . (92)

which is precisely the Maslov phase. Thus, all classical paths contribute equally, by P`, and to
the same propagator. Comparing with the right-limit,

Pa(t→ π`+) = e−i π
4 (1+2(`+1) = P`+1 = e−

iπ
2 P`. (93)

the Maslov jump is recovered. Choosing instead y 6= 0, there will be no classical path from
(0, 0) to (y, π`), and thus no contribution to the path integral.

Figure 2. The phase factor P(t) of the propagator in (89) lies on the unit circle of the complex plane
plotted vertically along a classical path γ̄(t). The orientation is positive if it is clockwise when
seen from t = +∞. In the time interval J` labeled by the Maslov index ` = Ent[t/π], the factor
P(t) precesses around P` = exp[−i π

4 (1 + 2`)] with double frequency w.r.t. the classical path, γ̄(t).
Arriving at a caustic, the phase jumps by (−π/2) (red becoming purple) and then continues until
the next caustic when it jumps again (and becomes magenta), and so on.

To conclude this section, we just mention with that the extended Feynman method [6]
with the cast ω̄ = constant frequency and τ = “fake time” would lead also to (64) and
(66) with the integer ` counting the number of negative eigenvalues (Morse index) of the
Hessian [2,4,5,24].

5.2. A Time-Dependent Example: The Mathieu Equation

The combined Junker–Inomata–Arnold method allows us to go beyond the constant-
frequency case, as illustrated here for no friction or driving force, λ = F ≡ 0, but with
explicitly time-dependent frequency. For Ω2(t) = a− 2q cos 2t, for example, (14) becomes
the Mathieu equation,

ẍ + (a− 2q cos 2t)x = 0 . (94)

This equation can be solved either analytically using Mathieu functions [43], or numerically,
providing us for a = 2 and q = 1 (for which odd Mathieu functions are real) with the
dotted curve (in red), shown in Figure 3.

Alternatively, we can use the Junker–Inomata–Arnold transformation (47) [22,23,40].
We first achieve ω̄ = 1 by a redefinition, τ → τ′ = ω̄τ. Inserting Ansatz (15) into (94)
yields the pair of coupled Equations (16) and (17). We chose up = 0 and two independent
solutions u1(t) and u2(t), (58), with initial conditions (48) with t0 = 0, i.e., τ(0) = ρ̇(0) =
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0, ρ(0) = τ̇(0) = 1 , which fix the integration constant, C = ρ2(0)τ̇(0) = 1. Then, consistent
with the general theory outlined above, the Arnold map (47) lifted to the Bargmann space
becomes (22), completed with (59) with λ = 0.

Figure 3. The analytic solution of the Mathieu equation with a = 2, q = 1 for x(t) (dotted in red) lies
on the black curve obtained by (15) from combining the numerically obtained ρ(t) (in green) and
τ(t) (in blue), which are solutions of the pair (18)–(21). The black curve is also obtained by pulling
back the free solution (49) by the inverse Niederer map (73).

Equation (17) is solved by following the strategy outlined in Section 2. Carrying out
those steps numerically provides us with Figure 3.

From the general formula (24), we deduce, for our choice x′′ = x, t′′ = t, x′ = t′ = 0,
that the probability density (The wave function is multiplied by the square root of the
conformal factor, cf. (39).).

|K(x, t)|2 =

√
τ̇

2πh̄| sin τ(t)| , (95)

happens, not depending on the position, and can therefore be plotted as in Figure 4.
The propagator K and hence the probability density (95) diverge at t`, which are

roughly t1 ≈ 1.92, t2 ≈ 4.80, t3 ≈ 7.83 . The classical motions are regular at the caustics,
x̄(t`) ∝ ρ(t`) ≈ 0; see Section 4. The domains Ik = [rk−1, rk] of the inverse Niederer map
are shown in Figure 4. Approximately, r1 ≈ 1.52, r2 ≈ 4.49, r3 ≈ 6.75, r4 ≈ 8.44 . The
evolution of the phase factor along the classical path is depicted in Figure 5.
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Figure 4. The probability density |K(x, t)|2 (95) does not depend on x and is regular in each interval
J` between the adjacent points t` (75), where it diverges. The rk that determines the domains Ik of the
generalized Niederer map (22) lies between the t` and conversely.

Figure 5. For 0 < t < t1, the Mathieu phase factor P(t) plotted along a classical path γ̄(t) = (x̄(t), t)
precesses around e−iπ/4. Arriving at the caustic point τ(t1) = π, its phase jumps by (−π/2), then
oscillates around e−3iπ/4 until τ(t2) = 2π, then jumps again, and so on.
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6. Conclusions

The Junker–Inomata–Arnold approach yields (in principle) the exact propagator
for any quadratic system by switching from a time-dependent to a constant frequency and
redefined time,

ω(t) → ω̄ = const. and t → “fake time” τ . (96)

The propagator (64)–(66) is then derived from the result known for the constant
frequency. A straightforward consequence is the Maslov jump for arbitrary time-dependent
frequency ω(t): everything depends only on the product ω̄ τ.

By switching from t to τ, the Sturm–Liouville-type difficulty is not eliminated, but only
transferred to that of finding τ = τ(t) following the procedure outlined in Section 2. We
have to first solve EMP Equation (18) for ρ(t) (which is nonlinear and has time-dependent
coefficients) and then integrate ρ−2; see (21). Although this is as difficult to solve as solving
the Sturm–Liouville equation, it provides us with theoretical insights.

When no analytic solution is available, we can resort to numerical calculations.
The Junker–Inomata approach of Section 2 is interpreted as a Bargmann-conformal

transformation between time-dependent and constant frequency metrics; see Equation (39).
Alternatively, the damped oscillator can be converted to a free system by the general-

ized Niederer map (22), whose Eisenhart–Duval lift (47)–(51) carries the conformally flat
oscillator metric (60) to the flat Minkowski space.

Two sets of points play a distinguished role in our investigations: the rk in (71) and
the t` in (75). The rk divides the time axis into domains Ik of the (generalized) Niederer
map (22). Both classical motions and quantum propagators are regular at rk, where these
intervals are joined. The t` are in turn the caustic points where all classical trajectories are
focused, and the quantum propagator becomes singular.

While the “Maslov phase jump” at caustics is well established when the frequency
is constant, ω = ω0 = const., its extension to the time-dependent case ω = ω(t) is
more subtle. In fact, the proofs we are aware of [25–28] use sophisticated mathematics,
or a lengthy direct calculation of the propagator [44]. A bonus from the Junker–Inomata
transcription (10) we followed here is to provide us with a straightforward extension valid
to an arbitrary ω(t). Caustics arise when (65) holds, and then, the phase jump is given
by (88).

The subtle point mentioned above comes from the standard (but somewhat sloppy)
expression (5), which requires choosing a branch of the double-valued square root function.
Once this is done, the sign change of T′′ − T′ induces a phase jump π/2. Our “innocent-
looking” factor is in fact the Maslov jump for a free particle at T = 0 (obscured when
one considers the propagator for T > 0 only). Moreover, it then becomes the key tool for
the oscillator: intuitively, the multivalued inverse Niederer map repeats, again and again,
the same jump. The details are discussed in Section 4.

The transformation (10) is related to the nonrelativistic “Schrödinger” conformal symme-
tries of a free nonrelativistic particle [45–47], later extended to the oscillator [16] and an
inverse-square potential [48]. These results can in fact be derived using a time-dependent
conformal transformation of the type (10) [19,42].

The above results are readily generalized to higher dimensions. For example, the os-
cillator frequency can be time-dependent, uniform electric and magnetic fields, and a
curl-free “Aharonov–Bohm” potential (a vortex line [49]) can also be added [41]. Further
generalization involves a Dirac monopole [50].

Alternative ways to relate free and harmonically trapped motions are studied,
e.g., in [51–54]. Motions with the Mathieu profile were considered also in [55].
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Abstract: Under pure quantum evolution, for a wave packet that diffuses (like a Gaussian), scattering
can cause localization. Other forms of the wave function, spreading more rapidly than a Gaussian,
are unlikely to localize.

Keywords: spreading wave function; scattering; Localization

What is the size and shape of a wave packet? I am talking about a wave packet of
a particle (atom or molecule) in a gas. Is it a plane wave that fills the container? Or is it
a microscopic (perhaps ≤ 100 nm) object? I am not talking about a situation where there
is a potential holding the particle in some region, like a hydrogen atom. The only things
around are other particles, the same or different. (Please see Appendix A). Strangely, this
subject has not attracted a lot of attention.

Our conclusion considers a number of possibilities. Should the eventual wave func-
tions be Gaussian or Gaussian-like (to be later defined) then, yes, there is localization. If
not, probably no. However, we give an argument that the wave function most likely does
become Gaussian. (Generally speaking, people use Gaussians in descriptions, but this is
not always warranted.)

This paper has three parts: arguments for a Gaussian, localization in that case and
the case(s) that it is not a Gaussian. We emphasize that the first part (eventually) treats
non-Gaussians that become Gaussian after a number of collisions.

Arguments for a Gaussian. The wave function for a Gaussian would be

ψ(r) =
1

(πσ2)3/4 exp
(
− (r− r0)

2

2σ2 +
i
h̄

p0(r + r0)

)
. (1)

In one dimension, a Gaussian in momentum space is

φ(p) =
(

σ2

πh̄2

)1/4

exp
(
−σ2(p− p0)

2

2h̄2 − i
h̄

px0

)
. (2)

(The following paragraph is the treatment in [1]; for more details, see that reference.) We
suppose there is a particle of a different mass and that they scatter. The conservation laws
(once they are far enough apart that they do not interact) are

Pfinal = Pinitial and pfinal = −pinitial , (3)

where P and p are collective coordinates: P = p1 + p2 and p = (m2 p1 − m1 p2)/M. In
these relations, pj and mj (j = 1, 2) are the momenta and masses of each of the particles,
1
µ = 1

m1
+ 1

m2
and M = m1 +m2. Furthermore, we let µi =

mi
M (i = 1, 2). It turns out that, for

calculation of the spread, all that matters is the real part of the (2× negative) exponent. This
changes from

[
σ2

1 p2
1 + σ2

2 p2
2
]
=
[
σ2

1 (µ1P + p) + σ2
2 (µ2P− p)

]
, following Equation (3), to

Q(p1, p2) ≡ p2
1[σ

2
1 (µ1 − µ2)

2 + 4µ2
2σ2

2 ] + p2
2[σ

2
2 (µ2 − µ1)

2 + 4µ2
1σ2

1 ]

+4(µ1 − µ2)p1 p2(µ1σ2
1 − µ2σ2

2 ) , (4)
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As shown in [1], provided µ1 and µ2 are significantly different from one another, within a
few scattering events the “cross” term in p1 p2 vanishes. This means that the wave functions
have ratio of spread such that mσ2 is constant and there is no cross term—nothing to
decohere (and the von Neumann entropy is maximum). In three dimensions the same
thing happens, but is more difficult to show [2–4]. That, however, is not our main point.

What happens in one dimension if the initial functions are not a Gaussian? We suppose
the wave function has the form exp(−∑∞

2 anxn). This form can fit various other functional
forms, e.g., 1/(1 + x2)2 to within 0.06 using 4 coefficients (i.e., elements of the set {an}).
(Please see Appendix B) . Following the earlier method (based on Equation (3)), we find
that 4th order terms obey

a(1)
′

4 = a(1)4 (µ1 − µ2)
4 + a(2)4 24µ4

2

a(2)
′

4 = a(2)4 (µ1 − µ2)
4 + a(1)4 24µ4

1 , (5)

with a(j)
4 (j = 1, 2) the coefficients of x4 for the respective wave functions. In general, if the

deviation from a Gaussian begins with a term p2n
k there is a matrix that takes one from the

values of the coefficients multiplying these terms from before scattering to after scattering.
That matrix is 


(µ1 − µ2)

2n (2µ2)
2n

(2µ1)
2n (µ1 − µ2)

2n


 . (6)

The eigenvalues of this matrix are (for all n > 1) below 1 for m1 6= m2 and mj 6= 0 (j = 1, 2).
What happens if there is no other-mass particle? I do not know. I would not have

thought it should make a difference, but I do not have a proof. In practice, there is almost
always some impurity, but it may scatter rarely.

Thus, there is an indication that in one dimension the wave function approaches a
Gaussian. In higher dimension—in particular 3—I do not have definitive results. It is still
true [1] that for Gaussians the spread approaches a maximum of von Neumann entropy
and (if there are two types of particles, #1 and #2 then) m1σ2

1 = m2σ2
2 .

For three dimensions, there are many ways that nth power terms can occur; for #1
one can have anything of the form p1

n1
x p1

n2
y p1

n3
z with n1 + n2 + n3 = n, and similarly for

#2, leading to (n + 2)(n + 1) coefficients for the two of them. (Please see Appendix C).
Moreover, as discussed in [1], the post-scattering values of p1 and p2 involve a rotation,
R ∈ SO(3), not just a flip. Thus, p′1 = (µ1 I + µ2R)p1 + µ1(I − R)p2 (and 1↔ 2 for p′2).

I have examined cubic and quartic components of the logarithm of the wave function.
All the indicated operations have been carried out, the cross terms involving momenta
of #1 and of #2 have been dropped, and a rather complex recursion for the plethora of
coefficients evaluated numerically. Sample results are shown in Figures 1 and 2. The “time”
represents the number of scattering events, and the ordinate is the sum total of the absolute
values of all cubic or quartic coefficients. Remarkably, they all tend to zero.

Evaluations beyond quartic represent a further problem in symbolic manipulation,
but based on the higher-power evidence of one dimension together with the cubic and
quartic evidence in three dimensions, it is reasonable to make the claim that all higher
power coefficients tend to zero under decoherence.

Is this a proof that eventually everything decoheres to a Gaussian? Absolutely not,
but it is an indication.

Localization with Gaussian-like behavior. Scattering can localize. This may be surprising,
since some may hold that a wave function can only spread. It turns out (as shown in [2])
that scattering can act like a measurement, that scattering alone can localize. Here we
extend that result.

I do not deal with the effects of temperature (cf. [5]), nor with off-diagonal elements
of the density matrix [6,7]. I am concerned with pure quantum behavior. Nor do the
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conclusions depend on interpretation, i.e., they are independent of whether one subscribes
to the Copenhagen interpretation (in its many variants), Many Worlds, or some other theory.

Figure 1. Reduction of non-Gaussian terms with unequal mass scattering in three dimensions.Because
that the problem has an intrinsic nonlinearity, the initial coefficients were varied. Usually they were
taken as random between 0 and 1, but on some occasions they were taken to be 20 times that. In all
cases there was convergence to zero. The programs to establish this were combinations of symbolic
manipulation and numerical evaluation.

Figure 2. As in Figure 1, except that this looks at quartic terms. As in the other example, all terms
shrink to zero.

I will briefly review the results of [2] and then turn to the extension. (There is a slight
change in notation: instead of σ2, we use 2∆2 for convenience in matching results.) The
principal consequence of [2] is that, assuming the wave function is a Gaussian, particles do
not spread indefinitely. The proof in [2] is a self-consistency argument. We assume two
normalized Gaussians in 3 dimensions of the form

ψ(r1, r2, 0) =
1

(2π∆2)3/2 exp
(
− (r1 + r0)

2

4∆2 +
i
h̄

p1(r1 + r0)−
(r2 − r0)

2

4∆2 +
i
h̄

p2(r2 − r0)

)
. (7)
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with parameters r0, p1, p2 and ∆. We assume p1 ≈ −p2, so that at time m|r/p1| they
scatter. Assuming no interaction, at time t this becomes

ψ(r1, r2, t) =

(
∆4 + ( h̄t

2m )2

2π∆2

)−3/2

exp


− (r1 + r0 − p1t

m )2

4
(

∆2 + i h̄t
2m

) +
i
h̄

p1(r1 + r0)−
i
h̄

p2
1t

2m




× exp


− (r2 − r0 − p2t

m )2

4
(

∆2 + i h̄t
2m

) +
i
h̄

p2(r2 − r0)−
i
h̄

p2
2t

2m


 . (8)

using center of mass coordinates, the exponent is

− (R + Pt
2m )2

2
(

∆2 + i h̄t
2m

) −
(r + 2r0 +

pt
m/2 )

2

2
(

4∆2 + i h̄t
m/2

) − i
h̄
(RP + (r− 2r0)p)− i

h̄

(
P2

4m
+

p2

m

)
t , (9)

where R = 1
2 (r1 + r2), r = r1 − r2, and correspondingly for P and p. Now set t ≈ m|r/p1|

(or just afterward). They scatter, but nothing happens to P. In the center of mass, we use
the Born approximation. Up to normalization, the new wave function is δt i

h̄ V(r)Ψ(R, r, t),
where we also assumed the interaction was brief, taking place during a short time δt. With
a further condition that V(r) = V0 exp

(
− r2

4a2

)
, for convenience in integrating, we obtain

|Ψ|2 = exp


− r2

2a2 −
(R + Pt

2m )2
∣∣∣∆2 + i h̄t

2m

∣∣∣
−

(r + 2r0 +
pt

m/2 )
2

∣∣∣4∆2 + i h̄t
m/2

∣∣∣


 . (10)

(Normalization cancels and can be ignored.) Using this wave function, one can calculate
the spread in r (∆r), in R (∆R) and from them ∆r1 and ∆r2. The latter quantities are then
set equal to the original ∆r1 and ∆r2 (both equal to ∆). Using as the time between collisions
scattering length

velocity (and mass values) we find that indeed the original ∆ can be set equal to

the final values of spread. To make equations simpler, we define

θ ≡ h̄t
m

=
h̄`
mv

, (11)

where ` is the scattering length and v a typical velocity. For any given gas, the range of θ
is fixed.

The essential steps in the foregoing derivation are the estimation of ∆r, R and ∆R. It
is these that can be generalized.

The first step is to formalize V. Instead of an exponential of range a, we take a potential
that is cut off at distance a. This restricts the location of r to be within a distance a of R. In
other words, ∆r ≤ √r · r = 3a2. This is an additional assumption and may require a larger
“a” than was previously posited.

The expectation of R is simply 〈R〉 = Pt
2m , since it is unaffected by the interac-

tion/scattering.
The spread in R is another matter and is the principal source of uncertainty in our

calculation. For a Gaussian-like initial wave function, we can give estimates. From our
previous work [1], we have

〈(∆R)2〉 = 〈R2〉 − 〈R〉2 = 3
4∆4 + θ2

8∆2 . (12)

Now we would like to weaken the assumptions. It turns out that the most important
property (for our purposes) of the Gaussian is its diffusive behavior. This assumption
about the spread in the center of mass coordinate is weakened in a specific way: in place of
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the 8 that appears in the denominator, we allow smaller values, γ. (In this sense, the wave
function is Gaussian-like.) Specifically, 4 < γ ≤ 8 and

〈(∆R)2〉 = 3
4∆4 + θ2

γ∆2 . (13)

We now use 〈∆r2
1〉 = 〈∆r2

2〉 = 〈∆R2〉+ 1
4 〈∆r2〉 to arrive at the denominators for the new

wave functions of r1 and r2:

〈(∆rnew)
2〉 = 〈(∆rk)

2〉 = 3a2 + 3
4∆4 + θ2

γ∆2 , k = 1.2 . (14)

Setting the old ∆ equal to the new one, we arrive at a self-consistency criterion for the spread

3∆2 = 3a2 + 3
4∆4 + θ2

γ∆2 . (15)

This is a quadratic equation whose solution is

∆2 =
a2γ

4(γ− 4)
±
√

θ2

γ− 4
+

(
a2γ

4(γ− 4)

)2

. (16)

Taking ` = 70 nm, v = 500 m/s, a = 1 nm and m = 29 gm/6× 1023 ≈ 5× 10−23 gm and
γ = 4.1 gives a value of 4.5 nm, much less than the mean free path. (Please see Appendix D).
These are typical parameters for the air and the wave function is localized. Note though
that (for air) there is overlap: (number density)1/3 ≈ (0.025× 10−27)1/3 ≈ 3 Å. Therefore,
although the wave functions occupy common volumes, they mostly do not interact.

Not a Gaussian. The essential feature of non-Gaussian wave functions is that the spread
in R grows. I have not examined the “boundary,” that is, the form of, or parameters in, wave
functions that eventually become Gaussian and those that do not. I will though examine
various wave functions that are non-Gaussian. Consider, for example, an exponential

ψ(r, 0) =
λ3

8π
exp(−λr) . (17)

We assume that both scattering particles have this form, with the same value of λ. The
spread in the relative coordinate ∆r is still bounded by a (or 3a) but the center of mass
coordinate grows. The spread for each, before collision, is 1/λ. The center of mass
coordinate for equal mass particles is R = (r1 + r2)/2, so that the spread for of the center
of mass coordinate is also 1/λ. As a result, the center of mass can also be taken of the
form Equation (17). Now apply the free propagator numerically and fit the result to an
exponential. Except for particular values of λ the value of the spread has increased. This
means there can be no self-consistent solution (as there was for a Gaussian).

The same happens for the wave function taken as a power.

Conclusions. The point of this is not that no wave function spreads. Rather, it places
bounds on spreading for certain wave functions and makes it plausible that scattering is
sometimes like a measurement, pinning a particle to a small, localized region.
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Appendix A

In particular, we do not deal with chains of oscillators or single oscillators, which ac-
cording to [8,9] (and other literature) become, by decoherence, coherent states, i.e., Gaussian.

Appendix B

The function 1/(1 + x2)2 is not symmetric about x = 0; hence, it requires odd terms
in the expansion exp(−∑∞

2 anxn). This is accomplished with coefficients a3 and a5 that
are 10−8 or less. The fourth order term is about 1/100 of the quadratic term (which is
about 1.46).

Appendix C

This is the number of possibilities for both particles and is calculated by imagining
the interval [0, n] as having partitions at 2 (integer) locations (and multiplying by 2). Just to
be clear, the 3-dimensional tendency to have a Gaussian wave function is new material.

Appendix D

The minus sign in Equation (16) is spurious and gives an imaginary value for
√

∆2.
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