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Genome technologies have revolutionized biomedicine, but the complexity of biologi-
cal systems cannot be explained by genomics alone. Advances in sequencing and mass
spectrometry technologies coupled with methodological and computational innovations
are essential in driving multidimensional omics applications.

This Special Issue covers the latest methods and novel findings from integrative
analysis of multiple omics datasets to address diverse questions in biology and pathology.

The scene is set with a review article by Lancaster et al. [1], which introduces six
players (genome, epigenome, transcriptome, metagenome, proteome and metabolome) that
use two different technologies (sequencing and mass spectrometry). After characterizing
individual omics data and analytical approaches, considerations for multi-omic study
design and data integration methods are discussed.

The contributed research papers span a broad range of studies from clinical cohorts
and mouse models to cell-based investigations, thus illustrating the diverse applications of
multi-omics.

Two papers applied multi-omics to investigate physiological interventions.
Odenkirk et al. [2] compared the blood lipidome and metabolome in two cohorts

of patients undergoing exercise and planned myocardial infarction, respectively, to gain
insight on the metabolic pathways underlying the disease and its prevention.

Molendijk et al. [3] applied lipidomic and metagenomic profiling in a dietary model
of gastro-esophageal reflux disease and associated esophageal pathology in mice, revealing
increased microbiome diversity and a lipidomics signature associated with esophageal
inflammation and metaplasia.

Five papers applied multi-omics to diverse cell models, with a study by Niederstaetter
et al. [4] highlighting the variability and influence of fetal calf serum (used in culture
media)-contained eicosanoids on cellular function, evaluated via proteomics and lipidomics.
Neuditschko et al. [5] investigated endometrial pain mechanisms by applying proteomics,
metabolomics and eicosanoid profiling to cells derived from endometriotic lesions.

Gillen et al. [6] applied metabolic measurements with secretome profiling to assess the
impact of endotoxin (LPS) on macrophages, while Novikova et al. [7] combined transcrip-
tome and proteomic profiling to investigate granulocyte differentiation and discovered
HIC1, CEBPB, LYN and PARP1 as potential therapeutic targets in acute myeloid leukemia.

Finally, the paper by Kim et al. [8] illustrates the standardized application of combining
drug affinity responsive target stability (DARTS) and mass spectrometry imaging (MSI) to
facilitate target protein identification for other existing natural therapeutic compounds.

To wrap up this Special Issue, the comprehensive review article by Howard and
Cristea [9] highlights the role of integrative multi-omics in deciphering system-level mech-
anisms of DNA sensing during viral infections. Following viral infection, protein–protein
interactome and protein post-translational modifications drive the remodeling of the cellu-
lar transcriptome, proteome and secretome; hence, multi-omic investigations should also
include interactome and modification analyses such as phosphoproteome.

Biomolecules 2021, 11, 1527. https://doi.org/10.3390/biom11101527 https://www.mdpi.com/journal/biomolecules
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In conclusion, multi-omic investigation has become a central technique for deciphering
complex biological systems. Continued innovations in technologies, methodologies and
applications will enable and support further expansion and integration of multi-omics in
future biomedical research.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: The number of researchers using multi-omics is growing. Though still expensive, every
year it is cheaper to perform multi-omic studies, often exponentially so. In addition to its increasing
accessibility, multi-omics reveals a view of systems biology to an unprecedented depth. Thus,
multi-omics can be used to answer a broad range of biological questions in finer resolution than
previous methods. We used six omic measurements—four nucleic acid (i.e., genomic, epigenomic,
transcriptomics, and metagenomic) and two mass spectrometry (proteomics and metabolomics)
based—to highlight an analysis workflow on this type of data, which is often vast. This workflow is
not exhaustive of all the omic measurements or analysis methods, but it will provide an experienced or
even a novice multi-omic researcher with the tools necessary to analyze their data. This review begins
with analyzing a single ome and study design, and then synthesizes best practices in data integration
techniques that include machine learning. Furthermore, we delineate methods to validate findings
from multi-omic integration. Ultimately, multi-omic integration offers a window into the complexity
of molecular interactions and a comprehensive view of systems biology.

Keywords: multi-omics; multi-omics analysis; study design; bioinformatics; machine learning;
analysis flow

1. Introduction

Omics measurements are unbiased samples of molecules from a biological specimen. The genome
was the first ome studied [1,2], and subsequent omes followed, building off DNA sequencing
technology. Transcriptomics sequences the RNA content in cells, and metagenomics sequences
all the genetic material from a group of organisms, usually microbial populations. Chromatin
accessibility measurements select for sections of DNA to sequence that are differentially bound by
chromatin—believed to affect transcription.

Omic measurements are not limited to nucleic acid sequencing. The most common omics
methods orthologous to nucleotide sequencing involve mass spectrometry (MS). These include
proteomics, metabolomics, and lipidomics, which are all vitally important and account for innumerable
actionable discoveries. There are many other omic measurements, which all work together to improve
understanding of systems biology.

Understanding each of these omes is vitally important and integrating them provides a more
comprehensive picture of biology. For example, to understand the biochemical effects of changes
in transcription, one must understand the metabolome and proteome as well. However, with
the different natures of omic measurements, and the fact that they are best modeled by different
statistical distributions, integrating this vast information in these distinct biological layers is challenging
to non-experts. Using these omic measurements as examples, we will highlight potential integration
methods that will reveal trends in multi-omics data.

Biomolecules 2020, 10, 1606; doi:10.3390/biom10121606 www.mdpi.com/journal/biomolecules3
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2. Analysis of Single Omics Prior to Integration

Each of these omic methods is analyzed differently, with similar analyses shared between
the more similar methods. One cannot discuss multi-omic integration without first having a shared
understanding of how to analyze the individual omic measurements.

2.1. Genome Analysis

The genome is the core ome, and it codes for the basic information that inevitably is pushed into
the other omes. For example, the transcriptome is aligned with the genome. This task is complicated
because of the numerous mRNA isoforms, and the non-normal distribution of reads, which can be
modeled using a negative binomial distribution [3]. After alignment and normalization, the read depth
is used as a measurement of expression, reviewed below. Similarly, in the metagenome data, reads are
aligned with the set of known microbiome data and read depth is assumed to be an abundance of each
microorganism [4]. Chromatin accessibility measurements, such as the assay for transposase-accessible
chromatin using sequencing (ATACseq), follow a similar principle. In this case read depth is a measure
for how open the chromatin is.

Most genomes are sequenced on an Illumina platform, generating short reads. First, the quality
of these reads must be determined, which informs one how well the sequencing was performed.
Generally speaking a PHRED score of 30 is used as a threshold for keeping a read, although it may be
altered depending on the needs of a study [5]. These scores are saved in FASTQ files as one of the four
rows for each read, and they may be pulled out using several different programs. Another main
sequencing type, long read sequencing, usually allows for the retrieval of much longer (>10,000 bp)
sequencing reads (e.g., PacBio) and may be used to better capture repetitive regions or insertions or
deletions, but it is often more expensive per base.

The reads that pass quality controls must be aligned with a known genome. For organisms
without assembled reference genomes, which are increasingly rare, such reads must first be assembled
into a genome with large contiguous chunks of DNA, or contigs (reviewed in [6]). Alignment tools such
as BWA and Bowtie allow alignment of reads with a given number of mismatches, because no genome
will be identical to the reference genome [7,8]. These alignments generate a sequence alignment
map (SAM) file and their more compressed binary format BAM file [9]. From these files, variants
between the sequenced genome and referenced genome can be determined using Samtools or other
software and saved as a variance call format (VCF) file [10]. These may be DNA insertions, deletions,
or nucleotide variations. From these files, biologically relevant genetic differences, for example, those
that affect protein translations, may be determined. In some cases, single nucleotide polymophisms
(SNPs) can be associated with known phenotypes or may even be proved causative for a disease.

2.2. Epigenomic Analysis

Epigenomic analysis aims to understand the functional context of the genome. For example,
an animal has multiple organs with the same genome, but the genes expressed vary between organs
depending on the tissue’s epigenetic state. The genome is contained within a larger chromatin context
that regulates which genes have access to transcriptional machinery and which are insulated from
active machinery.

Various technologies have been developed to profile the epigenetic landscape, and particularly in
the last decade, next-generation technologies have been applied to comprehensively map the epigenetic
patterns in mammalian species [11,12]. One of the newest technologies in epigenetic analysis is assay
transposase-accessible chromatin sequencing (ATAC-seq) [13]. The benefits of the ATAC-seq are
(1) it provides direct evidence of genomic positions of nucleosome-depleted chromatin, which are
permissible to transcriptional machinery binding, and (2) the assay only requires 10,000–50,000 cells as
input, so it is particularly useful for animal tissue and limited specimens [14].
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Similarly to whole-genome sequencing, ATAC-seq data are generated on the Illumina platform,
giving high resolution information of open chromatin regions throughout the entire genome.
After alignment with the same genome aligners, such as Bowtie, a critical step is filtering out
low-quality and insignificant reads. This especially entails removing the high fraction of mitochondrial
reads, which because of their high degree of accessibility are preferentially ligated with sequencing
adapters. The sequencing reads are then analyzed for their pile-ups in peaks. The general purpose of
peak calling is to find regions (on the order of hundreds of base pairs) that have significantly more
reads piled up compared to the background reads across the genome [15]. ATAC-seq peaks represent
the functional output of the data, and peaks are used in several types of analyses [16]. One very
interesting analysis is transcription factor footprinting, which predicts which transcription factors are
actively bound to chromatin and where the transcription factors activate transcription, giving insights
into the regulatory pathways that affect gene expression [15].

2.3. Transcriptome Analysis

Transcriptomic data are generated in a similar way to genome sequencing libraries, except
cDNA from reverse transcription is sequenced rather than genomic DNA. Aligning these reads to
a transcriptome is a more complicated problem than aligning to a genome because of RNA variants,
splicing, and otherwise uneven transcription of the genome. Transcriptome alignment tools require
aligners such as Bowtie or BWA but require different information to annotate the transcription of
the genome. The most commonly used program for transcriptome analysis is Spliced Transcripts
Alignment to a Reference (STAR) [17]. This program is what is used by The Encyclopedia of DNA
Elements (ENCODE), so should be used if someone wants to directly compare their results to most
other experiments [18]. A newer program that is even faster than STAR is Kallisto, which is beneficial
because it reduces computational expenses for very large experiments [19]. Salmon is another reputable
transcriptomic software as well, among others [20]. Any of these different software algorithms will
produce useful results for your experiment that may be later used for multi-omic integration.

Once this software has been run, several metrics will be generated for every transcript in each
sample, including transcripts per million (TPM) and reads per kilobase of transcript, per million
mapped reads (RPKM). To begin your analysis, several steps need to be taken. One analysis program
in particular is used because of its end-to-end capabilities: the R package DESeq [3]. Similar packages
include edgeR and limma [21,22]. The normalized reads can then be used for downstream analyses
listed below. To perform custom analyses, the data should be read into a data matrix, which is helped by
a program such as the R program tximport [23]. In this way TPM or RPKM can be pulled out for every
sample. These should then be corrected for batch effects, for which RNAseq is particularly sensitive.
The program sva::COMBAT() from R is excellently suited for batch correction [24]. Once corrected,
the data are ready for downstream data analysis as illustrated below.

The first step in differential analysis workflow is data normalization, in order to guarantee
the accurate comparisons of gene expression between and/or within samples. Proper normalization is
essential not only for differential analysis, but also for exploratory analysis and visualization of data.
The main factors that we often need to consider during count normalization are sequencing depth,
gene length, and RNA composition. There are several common normalization methods to account for
the “unwanted” variates, including counts per million (CPM), TPM, reads/fragments per kilobase of
exon per million reads/fragments mapped (RPKM/FPKM), and DESeq2′s median of ratio trimmed
mean of M values (TMM) [3,25].

CPM, TPM, and RPKM/FPKM are the traditional normalization methods for sequencing data, but
they are not suitable for differential analysis due to the fact that they only account for sequencing depth
and gene length, but not RNA composition. Accounting for RNA composition is especially crucial
for the scenario with a few highly differentially expressed genes between samples—big differences in
the number of genes expressed between samples, which can skew the traditional types of normalization
methods. It is highly recommended to account for RNA composition, especially for differential
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analysis [3]. Due to this, TMM normalization was developed and can be conducted in the edgeR
package [22]. DESeq2 package implements the normalization method of median of ratio [3]. The DESeq2
package implements transformations by computing a variance stabilizing transformation which is
roughly similar to log2 transformation of data, but also deals with the sample variability of low counts,
generating vst and rlog formats of data. However, both formats are designed for applications other
than differential analysis, such as sample clustering and other machine learning applications.

From these data, transcript enrichment can be performed using gene ontology (GO) or another
such categorization method. GO involves assigning one or more functions to each gene based
on its experimental function or categorization, and these categories are assigned to several genes.
Then between the cases and controls one may see whether the GO categories are significantly enriched.
DAVID bioinformatics offer a wide range of enrichment methods, including GO enrichments [26],
although there are many similar GO algorithms such as GOrilla [27]. Another powerful pathway
analysis and mechanism elucidation tool is ingenuity pathway analysis (IPA). It is an all-in-one,
Web-based software application, enabling analysis, integration, and understanding of omics data,
including gene expression, miRNA, SNP microarray, proteomics, metabolomics, etc. However,
one of its downsides is that it is only commercially available. Nguyen et al. [28] systematically
investigated and summarized the comprehensive pathway enrichment analysis tools, and concluded
that topology-based methods outperform other methods, given the fact that topology-based methods
take into account the structures of the pathways and the positions of each molecule in the biological
system map. The best topology-based approaches include SPIA (signaling pathway impact analysis)
and the ROntoTool R package.

Deeper analyses may be performed as well. For example, from peripheral blood mononuclear
cells (PBMCs) the composition of the white blood cells may be estimated from expression of marker
genes using software such as immunoStates [29], although others are effective as well [30]. These data
may complement integrative analyses, integrating enrichment software from various omes.

2.4. Metagenomic Analysis

Metagenomic analysis also is similar to other nucleic acid omes. All the genetic material from
a microbiome sample, often from stool, is sequenced. This review will discuss sequencing on an Illumina
platform; however, other sequencing platforms are appropriate as well. This is all the genetic material
from multiple organisms, hence the metagenome. These reads must be queried against a database,
similarly to the previous methods. For example, the pipeline can query the human microbiome project
database not just for different taxa, but also for biochemical pathways and even related individual
genes [31]. This is important because taxa alone do not provide all the functional biological data
about a microbial population. Such data provide a wealth of information about several levels of
the microbiome. A fast, highly sensitive, although less specific method is querying chunks of the reads,
or kmers, against a database, as used in Kraken. To aid with the problems presented by genomic
flexibility in microorganisms, a kmer approach is increasingly being utilized, which requires only
aligning part of the read, not the entire one [32].

These methods require very deep sequencing, and a more cost-effective method may be to sequence
the 16s rDNA gene from bacteria [33]. This gene acts like a molecular clock, determining which
taxa the read is from just like a clock determines time, with different parts of the gene highlighting
different granularity in the taxonomic tree [34]. This method and metagenomic methods return
count data, where read depth is used as a measurement of how abundant that particular part of
the microbiome is. Methods to determine absolute abundance, not just relative abundance, should
be used as well—for example, spiking a known amount of a microbe or DNA into the sample. Once
the count data has been determined, it may as well be batch corrected. From these data, microbes
with known importance or microbial pathways with known biological relevance to the host may be
determined using methods described below.
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2.5. Mass Spectrometry for Biomolecules

Like for the nucleic acid methods, mass spectrometry (MS)-based methods share some similarity,
but also have their unique properties. Each ome is first fractionated through liquid chromatography
(LC), the parameters of which are determined according to its own unique biochemistry properties.
In proteomics, the proteins are typically digested into shorter peptides first. After LC, proteins
are sent through data dependent MS/MS or data independent acquisition. The software for calling
peaks depends on the platform used, with the most popular being Skyline and Perseus [35,36].
Data-dependent acquisition generates more identified proteins but is less comparable between samples.
Each method requires its own data analysis software to call peaks, for example, openSWATH for
the data independent acquisition [37]. Furthermore, even with data from a single piece of software,
the library compared against is absolutely essential for data quality. For example, the TWIN library
may produce particularly good data with the openSWATH platform [38].

Metabolomics data can be generated in different platforms, such as reversed RPLC-MS
(reversed phase liquid chromatography-mass spectrometry), HILIC-MS (hydrophilic interaction
chromatography-mass spectrometry), and so on. These are then imported into Progenesis QI 2.3
software which is able to convert spectra data to data matrix for further downstream analysis. Further
data preprocessing steps include but not limited to filtering noise signals, data imputation, retention
time adjustment, and data normalization [39]. Removing batch effects is one of the most crucial tasks
in metabolomics, and various classic and advanced methods have been developed. Recently, Feihn et
al. published a random forest model-based normalization method SERRF (systematic error removal
using random forest), and the authors claimed that this method outperforms other normalization
methods, including median, PQN, linear method, and LOESS [40]. This normalization can be applied
on both untargeted metabolomic and lipidomic datasets. After data cleaning, one can use either
an in-house metabolite library or public databases (HMDB, Metlin, MassBank, NIST, etc.) for metabolite
annotation. With different available data, the annotation needs to be defined clearly with confidence
levels. Our laboratory uses a Lipidyzer, a semi-targeted lipidomics platform, to determine the lipid
absolute abundance by using lipid chemical standards [41]. The software that calls the lipid species is
LWM (Lipidomics Workflow Manager), although this area is a fertile one for growth.

From these methods, individual molecules, proteins, and lipid species may be associated with
biological questions of interest. Furthermore, in the lipidomic data classes of molecules may be enriched
from their individual species. For example, triacylglycerols as a whole, not just individual triglyceride
species, may be associated with the biological question of interest. Proteomic and metabolomic data
enrichments may be performed with DAVID or MetaboAnalyst [42]. Ingenuity pathway analysis (IPA)
from Qiagen may also be used for enrichments of the proteomic and metabolomic data, and it may also
be used to integrate the two together. The Kolmogorov–Smirnov method is an alternative approach
for pathway/chemical class enrichment analysis in the metabolomics and lipidomics field, which is
able to use ranked significance levels as input. There are many other pre-written computer programs
available, such as IPA, to analyze multi-omics data (reviewed in [43]), but we will focus on methods
for developing your own customized pipeline, rather than pre-built Web-based software.

From all these individual methods, information is gleaned about that particular omic measurement.
Furthermore, these methods all generate data structured similarly that facilitate omic integration.
They all generate a list of analytes for every sample, be it a transcriptome, microbiome, proteome,
lipidome, or metabolome. These analytes are then associated with a particular intensity (Figure 1).
There are many differences between these omic measurements, but this similarity in data structure
facilitates downstream analysis (Figure 1). There are many other omics measurements that share
similarities with those mentioned, and there are numerous databases containing already-generated
datasets, which may also be used for integrative multiomics rather than generating new data [44].
For example, http://educationknowengorg/sequenceng/, mentions 68 different next-generation sequencing
technologies, most of which are omics measurements. Nonetheless, most share similarities with those
already discussed here.
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Figure 1. The molecules profiled in multi-omics studies. We describe 6 levels of information, starting
from the bottom to the top: genome, epigenome, transcriptome, proteome, metabolome, and metagenome.
The genome, epigenome, transcriptome, and metagenome are profiled by sequencing-based technologies
such as sequencing by synthesis, depicted here, to profile a comprehensive set of nucleic acid molecules.
On the other hand, mass spectrometers generate proteome and metabolome profiles as depicted here
through measurements of biomolecules’ masses and charges. For overlapping technologies, each omic
level provides unique information and insights into cellular activity present in conditions being studied.
By leveraging the layers of information, longitudinal and cross-sectional multi-omics studies find modules
(e.g., cell signaling pathways) that are differential between healthy and disease states. These modules
represent complex system biology networks that give precise insights into the molecular dysregulation in
disease states.

3. Designing a Quality Study

The first step in understanding an analysis flow for integrative multi-omics is determined by your
study design. Cross-sectional and association studies are beneficial in their relative ease to implement,
and their ability to generate large amounts of data (Figure 2a). Typically, cross-sectional studies do not
involve a randomized intervention, precluding causal inference. They involve taking a population
split between cases and controls, and then sampling them evenly, and are excellent methods for
determining associations.

Conversely, longitudinal studies are relatively difficult to recruit large numbers of participants to
because they generate large numbers of time points and become expensive. However, the longitudinal
nature increases the statistical power of a relatively small number of participants [45] (Figure 2b).
Longitudinal studies further facilitate making causal inferences and allow for more accurate predictions.
Each study design, with its strengths and weaknesses, has a slightly different flow of analysis. Wherever
possible, the multiple omic measurements should be selected not staggered in time. For example, if
the treatment course is seven days, all the participants should be sampled on the same days during
treatment. This will greatly facilitate the analysis methods.

Some advantages of longitudinal studies include the ability to associate events chronologically with
particular interventions or exposures. They allow a study of change over time, or a delta measurement
from baseline, as discussed below, which can be more powerful than studying a single point in time

8



Biomolecules 2020, 10, 1606

for the effects of an exposure or intervention. They also allow for establishing the chronological
order of events, which is essential for establishing causation—again, something that is precluded in
cross-sectional association studies. There are relatively few negative effects other than the difficulty
of recruiting large numbers of participants, but they may also include loss of individuals over time,
confounding results [46].

Figure 2. Typical multiomic study designs. Gray dots represent samples taken. (a) A case control
observational study. A population is taken with participants that have the phenotype of interest (cases)
and those without (controls). Cases and controls are sampled in even amounts. (b) A randomized
longitudinal study where n participants are randomized into two arms of a study. In this case
an increasing treatment dose is administered, and samples are taken every week.

In each individual, there are apparent biases in the technologies and analytical methods, which
limit insights into biology. Often signals from individual omes are difficult to label as accurate or
relevant because the information does not connect to the broader context of the system. Multi-omic
integration offers an opportunity to use orthogonal methods to measure the same molecular pathways
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and processes. Such methods partially mitigate the inherent false positives and false negative
rates in the single omes, as finding the similarities and biological connections supports the truly
biologically-relevant information [47].

4. Analysis Methods for Multi-Omic Integration

4.1. Dimensionality Reduction

The first step in an omics study is to reduce the dimensionality of your data so they can be
visualized. In a metagenome, for example, there may be hundreds of microbial species. This means that
every sample is a data point with hundreds of dimensions. Dimensionality reduction techniques will
take the data and reduce them to fewer dimensions, often as few as two or three, that represent most of
the variation in the data. Then it is easier to visualize and use statistics that require fewer dimensions.

The first dimensionality reduction technique invented is principle component analysis, which
is a widely used unsupervised method. This method, though yielding valuable results, is not
the most statistically precise because it assumes normally distributed data. Anyone who works
in omics will testify that the data are never normally distributed, although transformations can
make the data approximately normal. One superior method is non-metric multidimensional scaling.
This method is iterative and nonparametric, avoiding problems with unusual distributions, and it
handles zero-truncated data well—a phenomenon in which in some samples a particular analyte
is undetectable and in others it exists at a high level. Another method, tSNE, is particularly well
designed to separate well defined groups. Besides t-SNE, UMAP (uniform manifold approximation
and projection) [48] is a newly developed dimension reduction technique for non-linear relations.
It usually implements faster than t-SNE, especially when it concerns large number of data points
or a number of embedding dimensions greater than 2 or 3. It has many applications in single-cell
sequencing data. Other methods include principal coordinate analysis and multidimensional scaling.
Every method is capable of providing useful information; however, properly selecting a method can
increase your statistical power.

The information gleaned from dimensionality reduction is similar across omic techniques. It can
discover batch effects, particularly in mass spectral data. If two batches do not overlap, then additional
correction techniques need to be applied. This method can find samples that failed, which would be
represented as outliers in the data. Once data quality has been established, these methods can find
any structure in the data that might be associated with biologically relevant variants. This is the most
basic example where a metadatum, participant ID, may be grouped together. However, there are
many more—sex, insulin resistant status, etc. In the case of the microbiome, it can also be used to
measure beta diversity, as outlying samples will have different microbial compositions than the rest of
the cohort.

4.2. Normalizing the Data

Once the structure of the data has been determined, omics measurements can be grouped
together for integration. Usually they are done so after log, log2, or other transformations to facilitate
downstream statistics [49,50]. The log transformation is normally used to make highly skewed data
approximately approach a normal distribution. This can be useful both for facilitating the data to meet
the assumption of statistic models and for making patterns in the data more interpretable. Microbiome
data are so unusually distributed, other transformations may be applied, such as arcsin. With certain
longitudinal designs they can be normalized to the baseline measurements to only measure the deltas
from the baseline, reducing the effects of inter-individual variability. This is absolutely essential in
longitudinal data to reduce the effects multiple individuals would have on biasing a sample, and is
one of several strengths of that study design.

A z-score is another normalization method that standardizes all the analytes to the same
range. This alleviates the problem of vastly different expression levels, facilitating grouping several
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different omes together for integration. For example, if one wanted to integrate the metabolome
and gut microbiome, the values for the metabolome may be in the tens of millions, while analytes in
the microbiome may be zero truncated, with most values being 0. To compare these two, particularly
visually, they must be on a similar scale. Z-scoring makes the average value for every analyte 0,
and then one standard deviation above that 1, etc.

4.3. Correlation Networks Analyses

Once these normalizations and transformations are performed, correlation metrics can inform
one about the most basic relationships between the analytes. Pearson correlation coefficients (PCC)
and spearman correlation coefficients (SCC) are the two most typical types of correlation metrics.
The PCC is a parametric metric with more accuracy, whereas the SCC is more robust if outlier samples
are present. One should target analytes of the most interest (e.g., only the significant molecules)
if possible, because with too many analytes in networks, it is difficult to capture the most useful
biological information and it is inclined to be masked by the underlying noise. Correlation networks
are much more effective when dealing with deltas in longitudinal data that reduce interindividual
variability. If more than one sample, not corrected to baseline, is from a single individual, such
an analysis will be overfit and produce false positives. Additionally, one must always correct for
multiple hypotheses during these projects to reduce false positives. In these data a Benjamini–Hochberg
correction is appropriate. One may also use a Bonferroni correction, but in some omic studies that
may overcorrect, losing true positives. Both will have their uses and may be differentially used in
longitudinal baseline normalized vs. unnormalized data. This correlation analysis can be plotted as
a network diagram, which is a fantastic visualization tool for this type of data. Though high-level
visualizations, network diagrams offer compelling, informative overviews of interactions in biological
systems [51].

When comparing interaction networks across different conditions, disease states, or interactions,
a network analysis may provide you appropriate information about how the two states differ. A network
analysis will provide one with total nodes (analytes) that are connected in the network, the total number
total edges between the networks (significant correlations), and many other important relationships,
such as the numbers of positive and negative correlations. Complementing visualizations, these
summary statistics provide an excellent overall view of the co-correlations occurring in any multi-omic
project. This type of topological analysis is not only able to provide practitioners straightforward
and clear ideas when comparing multiple networks, but also provide insights into network hubs
and centers, which may have many applications in drug target selection and identification of key
regulators. There are several packages for R—igraph, statnet, ggnetwork, ggnet, ggraph, etc.—with
highly related functionalities that perform these analyses [52,53]. R packages “igraph” and “statnet” are
able to provide quick visualizations, which are good for a quick exploration about the network structure
but are not necessarily the most efficient ways for aesthetically perfect visualization. R packages
“ggnet” and “ggnetwork” are very similar packages, and both seem to use a variant of the ggplot
syntax, meaning that they would be advantageous if you are familiar with the ggplot system.

4.4. Cross-Sectional Analyses and Testing Categorical Variables

In a cross-sectional study, when testing a single analyte between two sets of samples,
the nonparametric version of the student’s t-test, Wilcoxon rank sum test, is appropriate. A t-test
assumes a normal-like distribution and should be used with care, as omics measurements are extremely
rarely Gaussian. If confident that prior information will be obtained before the test, Bayesian
counterparts to these tests will provide more power. These are not necessary, and should only be used
by an expert. In a cross-sectional study where two categories are being tested against, one may further
use logistic regression as a means of regressing between these categories. This regression fits a curve to
binary data, generating an odds ratio and p-value.
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When analyzing across more than two categories of data, one should use the non-parametric
analysis of variance (ANOVA), Kruskal–Wallis. This method may be used to test a trend in your
data over categorical variables. When correcting for multiple variables, one may use a multivariate
ANOVA (MANOVA), but this should be used with care because ANOVAs assume a normal distribution.
To avoid these assumptions about distributions, a permutational multivariate analysis of variance
(PERMANOVA) should be used.

4.5. Testing along Continuous Variables

Another method determining trends over categorical variables is multiple linear regression.
Like ANOVA, this may be used to find trends in one or more categorical variables. However, multiple
linear regression can find trends over continuous variables as well, or any combination thereof.
Although multiple linear regression also assumes a normal distribution, it can still be a valuable tool
for detecting trends in data and is widely used by multi-omic researchers. In cases like this, where
the statistical assumptions do not perfectly match data distributions, orthologous methods should be
used for confident assessments.

Even more sophisticated than multiple linear regression is a mixed model. These can find
trends in data and can also find the variance in data for random variables. Random variables are
those that are randomly distributed in your data, say a random assignment of sex, so they are not
associated with the outcome variable. Nonetheless, these variables can add variance, making the data
noisier. Further, these mixed models can select other distributions than Gaussian, such as Poisson,
so variables that violate normality may be modeled better. Mixed models are appropriate to account
for complicated and heterogeneous datasets with confounders—gender, race, age, BMI, etc. Mixed
models are particularly well suited for tracking longitudinal data [45]. Together, these methods are
powerful for detecting trends in the data.

4.6. Clustering Algorithms

Clustering algorithms group similar samples or analytes together. Two primary clustering
algorithms are hierarchical and k-means clustering. These are “hard” clustering algorithms which
force analytes or samples into particular groups. This may be useful to determine whether samples
cluster by individual, batch, or some other biological measurement, for dimensionality reduction
techniques. They can also be used to determine outliers in the data, which may be of special interest to
the researcher.

To find trends in longitudinal data, fuzzy c-means clustering is a powerful tool. The R mfuzz
package provides tools for this analysis [54]. This is a “soft” clustering algorithm, giving analytes
a score known as membership in every cluster, rather than forcing them into a single cluster.
However, like other clustering algorithms, it still finds analytes with similar expression profiles.
Using the previously mentioned z-scores, c-means clustering finds longitudinal trends in data for
multiple omic measurements. These trends are powerful if one wants to find dose, temporal, delayed,
or other response patterns in multi-omics data [55,56].

One of the most critical and haunting issues in clustering is to determine the optimal number of
clusters. Selecting an inappropriately small number of clusters would cause the missing detection
of some meaningful molecular trends and clusters, whereas an improperly large number of clusters
may result in redundancy of cluster detection. There are several ways to assist the selection of
the optimal number of clusters. One of the classic methods is called the elbow method, which calculates
the within-cluster sum of squared error (wss). This method is widely applied; however, it gets tricky
to determine the “elbow” point. Another way to survey this issue is to calculate minimal centroid
distance, which is similar to the elbow method, aiming to find the “elbow” point to gain the minimal
centroid distance. Another more efficient method is to calculate the correlations between cluster
centroids, and decide on the optimal number of clusters once high positive correlations (e.g., 0.85)
are detected.
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Another method of clustering, supervised clustering, involves placing a priori information into
a model before using the clustering algorithm. For example, if you have cases and controls, these may
be entered into the data beforehand, or if you have longitudinal data with doses, the baseline controls
may be contrasted with the doses. Categorical variables are required for this type of clustering, but
they are an excellent method of assuring one will find analytes with similar expressions in the data [46].

4.7. Feature Selection for Covarying Analytes

A powerful tool in the arsenal of multi-omics researchers is feature selection. In some data,
the analytes strongly covary. For example, in the metagenome, if one organism increases it will
have an effect on every other organism in the system. In such circumstances it may be difficult to
know which of these analytes to prioritize putting in a model. Least absolute shrinkage and selection
operator (LASSO) and ridge regression tackle these problems. These functions will weight or eliminate
the variables with the most and least explanatory power in your model. This way, future analyses may
be performed on more manageable and more meaningful data, which may also increase statistical
power. There are numerous feature selection methods, and descriptions and comparisons of all of
them are obviously beyond the scope of our review. We mainly highlight two of them (LASSO
and ridge) because they are widely applied penalized algorithms that reduce model complexity
and prevent over-fitting which may result from simple linear regression. The main principle of these
two regularization methods is to restrict or shrink the coefficients towards zero for the non-impactful
features, in order to reach the goal of feature selection.

4.8. Machine Learning

Machine learning is an important subset of artificial intelligence, and nowadays has drawn attention
in various fields. In omics studies, machine learning is widely applied on classification and prediction
problems by using omics profiling data. Different suites of machine learning algorithms are suitable for
classification and prediction scientific problems. Classification and prediction, as two main branches of
machine learning, depend on the types of tasks or problems that are intended to be solved by machine
learning and are either categorical (classification) or continuous (prediction). There are three main
types of machine learning algorithms: unsupervised, supervised, and reinforcement learning.

Classification and regression are the two main prediction domains in the machine learning
field. Classification is the problem of predicting a discrete class output, while regression is to predict
a continuous quantity output. Due to the pronounced differences in principles for these two domains,
the modeling algorithms applied on these two problems are different. Some algorithms can be used
for both with minor modifications, e.g., decision trees and artificial neural networks, whereas some
algorithms are only suitable for either classification or regression problems—e.g., logistic regression
can only be used for classification, and linear regression is only for regression predictive modeling.
More importantly, the matrices that are used to evaluate models varies for classification, e.g., accuracy,
are usually used for assessing classification models but not regression algorithms, whereas root mean
squared error (RMSE) is only for regression predictive models but not classification models.

One of the useful supervised machine learning algorithms in multi-omics is the random forest.
A random forest is not a black box telling you which parameters are the most predictive of biology.
Conversely, neural networks and deep learning are typically not appropriate for multi-omics datasets
because of the structure of the multi-omics data, normally with more variables than sample size.
Neural networks provide more accurate predictions when there are many samples, and relatively few
measurements per sample. Multi-omic studies are typically the opposite, with relatively few samples
but many, many measurements per sample. There is nothing in principle preventing neural networks
from working on multi-omic datasets, but rather the practical considerations of how these studies
are designed. Further, neural networks and deep learning are “black boxes” where the decisions of
the algorithm are unknown to the researcher. For these reasons, random forests may provide better
predictions in multiomis data, as measured by recall, area under receiver operating receiver curve,
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and the Mathews correlation coefficient [57]. Though more sophisticated than other analysis methods,
these machine learning techniques are phenomenal for first, exploratory, unbiased passes on the data.
They will determine which features are most predictive of data outcome, and what to look for as
grounding during other analyses.

5. Conclusions

There are several limitations in multi-omic integration, including potential statistical overfitting,
varying distributions between analytes, and limitations in throughput for some techniques [43,58,59].
Nonetheless, multi-omics are a suite of tools that allow researchers to answer questions with
unparalleled depth. These measurements are not perfect in themselves, and consistency between omic
measurements will ensure the discoveries are true to the underlying biological reality. Furthermore,
there are no perfect methods for analyzing these data. A researcher should be confident in their
findings when their discovery comes up in multiple omes but also when discovered through multiple
analysis and statistical methods. What we have discussed here is not exhaustive of the excellent
analysis methods that exist, but we are confident that any researcher employing these techniques will
find the trends present in their multi-omic dataset successfully.
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Abstract: While a molecular assessment of the perturbations and injury arising from diseases is
essential in their diagnosis and treatment, understanding changes due to preventative strategies
is also imperative. Currently, complex diseases such as cardiovascular disease (CVD), the leading
cause of death worldwide, suffer from a limited understanding of how the molecular mechanisms
taking place following preventive measures (e.g., exercise) differ from changes occurring due to
the injuries caused from the disease (e.g., myocardial infarction (MI)). Therefore, this manuscript
assesses lipidomic changes before and one hour after exercise treadmill testing (ETT) and before and
one hour after a planned myocardial infarction (PMI) in two separate patient cohorts. Strikingly,
unique lipidomic perturbations were observed for these events, as could be expected from their vastly
different stresses on the body. The lipidomic results were then combined with previously published
metabolomic characterizations of the same patients. This integration provides complementary
insights into the exercise and PMI events, thereby giving a more holistic understanding of the
molecular changes associated with each.

Keywords: lipidomics; metabolomics; multi-omics; planned myocardial infarction (PMI); myocardial
infarction (MI); exercise; heart; cheminformatics

1. Introduction

For decades, physical activity and diet have been considered the primary preventative
strategies for numerous diseases, including cardiovascular disease (CVD). As the leading
cause of death worldwide, rigorous characterization of CVD and the subsequent incidences
of myocardial infarction (MI) are crucial for reducing its occurrence [1]. Despite the
prevalence of CVD and resulting MI events worldwide, the complex pathophysiology
underlying CVD origins has yet to be fully defined [2]. Even with advancements such as
diagnosis with CK-MB and cTn assays and methods for CVD prediction from traditional
risk factors alone or in tandem with molecular predictors, CVD-related events continue
to be the leading cause of death worldwide [1,3–5]. Thus, improving our understanding
of these disease mechanisms could serve to reduce the current morbidity rate of CVD by
providing more effective prevention, intervention and treatment strategies.

In CVD and other diseases, such as type 2 diabetes, osteoporosis and some forms of
cancer, there is a well-recognized, negative correlation with the intensity, duration and
continuation of exercise events [6–8]. Since exercise subjects the heart to hemodynamic
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stress and overloading of pressure and volume [8], morphological adaptation of the heart
occurs following recurrent exposure to exercise, effectively diminishing the risk of heart
disease by reducing cholesterol and suppressing hypertension and atherogenesis [9,10].
However, over-exertion of the heart muscle from exercise can result in calcification that
limits the capacity of the heart to pump blood, thereby increasing the risk of cardiovascular
events [11]. On the other hand, a sedentary lifestyle along with high blood pressure, abnor-
mal blood lipid profiles, smoking and obesity are all major risk factors for CVD, typically
triggering the development of an intermediate phenotype prior to a MI [12–14]. Therefore,
elucidating a balance between the beneficial and detrimental mechanisms of exercise is
crucial for optimizing heart performance and reducing CVD risk and mortality rates [13].

While exercise and diet can be preventative, certain people are genetically predisposed
to CVD and other heart diseases. Therefore, leveraging models of stroke and MI events
responsible for 80% of CVD end-stage phenotypes provides additional molecular informa-
tion about treatments and the induced injuries. Hypertrophic cardiomyopathy (HCM) is
the most prevalent heritable cardiac disease, estimated to be present in 1 out of every 500
individuals [15,16]. Obstructive HCM (HOCM) is a subtype mechanistically defined by the
barricaded outflow of the left ventricular heart cavity at rest (1/3 of cases) or at provocation
(1/3 of cases) [15,16]. The reduction of left ventricular outflow in HOCM cases culminates
in increased left ventricular pressure, high wall stress, impaired left ventricular filling,
myocardial ischemia and a reduced cardiac output [16,17]. Currently, aspirin, β-blockers
and pacemakers are all common remediation strategies to mitigate these symptoms [16,17].
Failure of these therapeutic approaches to alleviate left ventricular blockage, however,
requires removal of obstructing tissues through either surgical excision or alcohol septal
ablation (ASA), where an injection of alcohol triggers a planned myocardial infarction (PMI)
and reduces the left ventricle blockage caused by systolic anterior motion of the mitral
valve [16]. While both procedures have had similar patient outcomes and survival rates,
ASA treatment and the resulting PMI have proven to be a less invasive approach preferable
for surgically at-risk patients [16,17]. Evaluating the molecular changes occurring from a
PMI also grants researchers tremendous insight into the pathophysiology of spontaneous
MI events that plague one American every 40 s with a global mortality rate of CVD-related
events accounting for 31% of the deaths in 2015 [18,19].

Mass spectrometry (MS) has become a popular analytical tool to characterize molecules
changing in biological systems through omic studies. While the annotation of a singu-
lar “ome” (i.e., proteome, lipidome, metabolome) elucidates significant aspects of dis-
ease pathophysiology, comprehensively characterizing a disease through one class of
biomolecules does not provide the holistic information often needed. Thus, multi-omic
measurements, wherein multiple classes of biomolecules are analyzed and integrated,
provide a greater understanding of molecular interplay and pathophysiology [20]. For ex-
ample, since metabolites and lipids both reflect immediate changes occurring in a system,
together they allow for an investigation into early-stage perturbations [21,22]. Furthermore,
lipids have routinely been linked to exercise and MI mechanisms [2,23–25], so their combi-
nation with metabolites provides a complementary way to assess system dysregulation.
In this study, lipidomic assessments were performed on plasma taken from two cohorts;
the first cohort’s samples were taken before and one hour after exercise performed with a
specific treadmill testing procedure, and the second cohort’s samples were taken before
and one hour after a PMI. The lipidomic results were then compared to a targeted polar
metabolite study of the same patient cohorts [26,27], and together, the multi-omic compari-
son provided a more comprehensive characterization of the various biomolecule classes
altered upon different stressors of the body and heart. This comparison therefore allowed
for the exploration of molecular differences between CVD-related events and preventative
strategies within humans.
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2. Materials and Methods

2.1. Sample Extraction and Data Collection
2.1.1. Human Sample Collection and Extraction

Both an exercise and a PMI cohort were evaluated in this manuscript, and informed
consent was obtained from all human participants in the studies. In the exercise cohort,
plasma samples were collected from the periphery veins of 25 patients before and one
hour following exercise treadmill testing (ETT) [26]. In the PMI cohort, plasma samples
were also collected from the periphery veins of an additional 20 patients before and one
hour following a PMI [27]. The paired before and after sampling of the same patient for
both studies was performed to yield a high statistical power despite the limited number of
samples analyzed, since the before sample could be used as the control for each patient [28].
An overview of the patient demographics for both the ETT and PMI cohorts is given in
Figure 1 and Supplemental Table S1. Additional cohort information is also expanded upon
in the original publications [26,27]. Notably, the male demographic of the exercise cohort
was large compared to the PMI study, wherein women were in the majority [26]. Addition-
ally, in the exercise study, enrolled patients had to meet a normal exercise tolerance criteria,
which included having an estimated peak VO2 capacity over 70%, a heart response rate
exceeding 85% predicted baseline and a pre-exercise fasting period of 4 h [26]. PMI patients
were also monitored with CK-MB and troponin T assays, with peak levels observed at
standard spontaneous MI times with CK-MB at 4.5 h and troponin T at 8 h following a
PMI event [27,29]. The PMI derivation cohort were all primary HOCM cases with septal
thickness ≥16 mm; resting outflow tract gradient ≥30 mmHg; inducible outflow tract
gradient ≥50 mmHg; failed medical intervention; and appropriate coronary anatomy [27].
Targeted analysis of 210 metabolites was completed in the original publications for each
cohort with a triple quadrupole mass spectrometer (AB4000Q; Applied Biosystem/Sciex,
Farmingham, MA, USA), and detailed protocols on those methods can be found for the
ETT study in Lewis 2010 [26] and PMI study in Lewis 2008 [27].

 
Figure 1. Demographics for the PMI cohort (left) and ETT cohort (right). Continuous variables are
given as mean ± standard deviation and categorical variables are shown as percentages.

2.1.2. Lipid Extraction

For the lipidomic study, lipids were extracted in 2 mL Sorenson tubes from 25 μL
aliquots of plasma following a modified Folch protocol [30,31]. Briefly, 600 μL of a 2:1
mixture of −20 ◦C chloroform/methanol was introduced to the plasma samples which
was then vortexed for 30 s. A phase separation was induced by adding 150 μL aliquots of
HPLC grade water and then vortexed again for an additional 30 s. The samples then rested
for 5 min at room temperature prior to centrifugation at 12,000 rpm for 10 min at 4 ◦C.
Samples were then placed on ice where 350 μL aliquots of the bottom organic layer were
removed, dried in a speedvac and then re-suspended in 250 μL of 2:1 chloroform/methanol
for storage at −20 ◦C. Immediately before instrumental analysis, the total lipid extracts
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were dried down and reconstituted in 5 μL chloroform and 100 μL methanol. Pooled case
and control samples for the exercise and PMI studies were generated by combining 5 μL
aliquots of each before plasma sample separately.

2.1.3. Lipidomic Instrumental Analysis

Lipidomic instrumental analysis of the 45 before and 45 after extracted human plasma
samples was completed with an Agilent 6560 IM-QTOF MS platform (Santa Clara, CA,
USA) outfitted with the commercial gas kit (Alternate Gas Kit, Agilent, Santa Clara, CA,
USA) and a precision flow controller (640B, MKS Instruments, Andover, MA, USA). The LC–
IMS–CID–MS data were collected in both positive and negative ESI from 50–1700 m/z with
a 1 sec/spectra cycle time. Reverse phase liquid chromatography (RPLC) separation was
completed with a 10 μL sample injection onto a Waters CSH column (3.0 mm × 150 mm
× 1.7 μm particle size) on a Waters Acquity UPLC H class system (Waters Corporation,
Milford, MA, USA). Separation of lipid species was achieved with a 34-min LC gradient
(mobile phase A: acetonitrile/water (40:60) containing 10 mM ammonium acetate; mobile
phase B: acetonitrile/isopropyl alcohol (10:90) containing 10 mM ammonium acetate) at
a flow rate of 250 μL/min as described in Table 1. A 4-min column wash and 4-min
equilibration were also used as described in Table 2.

Table 1. Lipid elution gradient.

Time % MPA % MPB Flow Rate (mL/min)

0 60 40 0.25
2 50 50 0.25
3 40 60 0.25

12 30 70 0.25
15 25 75 0.25
17 22 78 0.25
19 15 85 0.25
22 8 92 0.25
25 1 99 0.25
34 1 99 0.25

Table 2. Lipid column wash.

Time % MPA % MPB Flow Rate (mL/min)

34.5 60 40 0.3
35 1 99 0.3

35.5 1 99 0.3
36 60 40 0.35
37 60 40 0.3
38 60 40 0.25

2.2. Data Processing
2.2.1. Lipid Identification

Accurate mass tag (AMT) matching within LIQUID software was used to assign all
lipid identifications [32]. The LC–IMS–CID–MS platform typically allows for the assign-
ment of head group and fatty acyl (FA) structural moieties of each uniquely identified
lipid species using the criterion of mass accuracy below 5 ppm, precursor and fragment
peak alignment across dimensions, and CCS values < 2% different from the reference
value. While head group annotation is largely unambiguous, FA assignment is more
complex due to the propensity of isomers. From the collision induced dissociation (CID)
measurements, the number of carbons and double bonds is generally achieved; however,
additional specifics, such as sn-backbone position, double bond position or double bond
orientation, are often indistinguishable in these studies [33]. Therefore, the most confident
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lipid speciation achieved through this analysis included the head group and individual
fatty acyl groups with unknown sn-positions, as denoted by “_” (i.e., PC (16:0_18:2)) [34].
For lipids where individual FA constituents could not be identified, the summed carbon
and double bond counts are noted, e.g., PC (34:2). Any features matching more than one
lipid identification are separated by a “;” to denote both as potential matches. Furthermore,
isomeric experimental observations were assigned “_A”; “_B”; etc., to denote the observed
chromatographic and/or IMS separation of these species. The peak areas of the 352 lipids
identified in the exercise study (262 from positive mode, 85 in negative mode and 5 in both
modes) and the 299 lipids identified in the PMI study (225 in positive, 72 in negative and 2
in both modes) were exported as a “.csv” format for processing and statistical assessment
regarding each before/after paired comparison (Supplemental Tables S2 and S3).

2.2.2. Data Processing and Statistics

Statistical analysis of the targeted polar metabolites was carried out as detailed pre-
viously [26,27]. Briefly, in the targeted annotation of 210 metabolites in the ETT and PMI
studies, 20 were found to be statistically significant one hour following exercise (16 up-
regulated and 4 downregulated) and 13 were statistically significant one hour following a
PMI (7 upregulated and 6 downregulated) at a Benjamini–Hochberg corrected p ≤ 0.005
cut-off. Processing and statistics of the lipidomics data also followed the same procedures,
where statistical significance was determined from log2 transformed abundances using
MetaboAnalyst (version 4.0, Edmonton, AB, CA) [35]. The ETT statistical analysis was
completed using a paired t-test, and the PMI comparisons were completed with a Wilcoxon
signed-rank paired t-test due to their unequal variance. A Benjamini–Hochberg multiple
comparison correction was also applied for both analyses with a significance cut-off of
p ≤ 0.005 to match the previously published metabolite statistics [36]. Interestingly, no
statistically significant lipids were observed one hour following ETT, whereas the PMI
study yielded 207 statistically significant lipids: 66 upregulated and 141 downregulated
(Supplemental Tables S2 and S3). Comparison of sex in the PMI cohort and ischemia in the
ETT cohort was completed to account for additional differentiation following the above
protocols for each cohort. No significant species were detected from either comparison.

2.3. Data Interpretation
2.3.1. Lipidomics Data Interpretation

Lipidomic relationships were investigated using cheminformatics to interrogate
structure-function associations across head groups and fatty acyl (FA) moieties [37–39].
Head group clustering was completed with the SCOPE toolbox [39]. Here, SMILES [40]
obtained from LipidMaps [34] for each lipid identification were clustered by structural
similarity using an ECFP_6 fingerprint [41], Tanimoto distance and complete linkage using
the fingerprint and ggtree packages in R (Version 3.6.2, Vienna, Austria) [42,43]. Lipids with
multiple LipidMaps matches were cataloged by a representative SMILES for hierarchical
clustering. To facilitate the visualization of head-group trends, pigmentation of dendro-
gram nodes was used to denote lipid classes. FA tail presence was further assessed by
selectively parsing out lipids by FA composition. For our analyses, most sn-1 and sn-2
fatty acyl positions were unknown, so all possible positions were considered to account for
potential sn-positional effects. Lipids with multiple identities were partitioned into all pos-
sible identifications to visualize each potential FA contribution to significance. Summary
statistics (adjusted p-value, log2 fold change) of lipids were subsequently overlaid with
the pheatmap package in R [42,44]. Color gradients of red (upregulated) and blue (down-
regulated) were applied to visualize significance with darker colors indicating a larger
fold change (log2FC) or smaller p-value (adjusted p-value), while grey values represented
identified but not statistically significant lipids.
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2.3.2. Multi-omics Data Interpretation

Hierarchical clustering was again utilized to assess the multi-omic association of
statistically significant metabolites and lipids. Dendrograms provided visualization of
the structurally similar and statistically significant species (BH adjusted p-value ≤ 0.005),
both individually and in tandem. Metabolite clustering was accomplished with MAACS
keys fingerprint, Tanimoto distance and complete linkage using fingerprint and ggtree
packages in R (Version 3.6.2, Vienna, Austria) from each SMILES representation [42,43].
The resulting metabolite dendrograms allowed for a summary of the significant species
following exercise and PMI events where adjusted p-values followed the same gradient
as described above. Node color in the metabolite dendrogram was used to annotate the
biological roles attributed to each metabolite. Conversely, in the multi-omics dendrogram
built using ECFP_6 fingerprint, Tanimoto distance and complete linkage, all metabolites
were grouped together in a single node color because of the relatively small number of
statistically significant metabolites relative to lipids.

3. Results

The previous targeted metabolomic study for both the ETT and PMI cohorts provided
great insight into statistically significant polar metabolites [26,27,45], but overlooked im-
portant nonpolar molecules changing due to each event. The recent annotation of lipids
in both CVD and exercise has elucidated the critical roles these molecules serve in each
event [24,46–56]. Therefore, the inclusion of lipidomic and multi-omic assessments in this
manuscript provides a more in-depth profile of ETT and PMI molecular mechanisms.

3.1. Lipid Identifications and Statistical Significance

To perform both the ETT and PMI lipidomic analyses, multi-dimensional assessments
were carried out by leveraging a LC–IMS–CID–MS instrumental platform [32,38]. The LC–
IMS–CID–MS analyses yielded a total of 352 unique lipid identifications for the ETT cohort
and 299 for the PMI cohort across the same five lipid categories: glycerolipids, sphin-
golipids, phospholipids, fatty acids and sterols [57]. The 352 ETT lipids were composed of
216 phospholipids, 88 glycerolipids, 39 sphingolipids, 5 sterols and 4 fatty acids (Figure 2a,
left); the PMI cohort had 185 phospholipids, 71 glycerolipids, 31 sphingolipids, 7 sterols
and 5 fatty acids (Figure 2a, right). The breakdown of lipid category designation into
classes showed both studies having: three phospholipids (phosphatidylinositols (PIs),
phosphatidylcholines (PCs) and phosphatidylethanolamines (PEs)), three sphingolipids
(sphingomyelins (SM), ceramides (Cer) and hexose ceramides (HexCer)), two glycerolipids
(triacylglycerolipids (TGs) and diacylglycerolipids (DGs)), one sterol (cholesteryl ester
(CE)) and one FA (carnitine) (Figure 2b). Additional diversity within the phospholipids
was observed in the FA linkages (including alkenyl ether (plasmalogen; P-) and alkyl ether
(O-)) and FA numbers (e.g., lyso and diacyl species). Only a few lipid species were specific
to each cohort including a ganglioside (GM3) belonging to the sphingolipid category in the
ETT cohort and a monoacylglycerol (MG) from the glycerolipid category observed in the
PMI cohort.
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Figure 2. Identified lipid category and class coverage. (a) Five lipid categories were observed for plasma from patients in
both the ETT (left) and PMI (right) cohorts. (b) In the class breakdown, the majority of the lipids fall within the sphingolipid,
glycerolipid and phospholipid categories.

Of the identified lipids, a drastic difference was observed in statistical significance for
the exercise and PMI cohorts. One hour after ETT, no lipids were found to be statistically
significant, even after further assessment of metadata, including gender, age and BMI.
However, we do note our statistical criteria were very stringent to compare them with
the previous metabolomics studies, so directly above our significance cutoff we observed
lipids of interest within the lyso PC, GM3, PE P-, DG and carnitine classes. Specifically,
we noted the largest fold changes for PC (20:5_0:0), carnitine (10:1) and carnitine (14:1),
which had values of −1.28, −1.29 and −1.18 FC. The lipidome changes in PMI, however,
told a completely different story. An hour after a PMI, 207 lipids (69% identified) were
statistically significant, even with the stringent criteria, with 141 downregulated and 66
upregulated (Figure 3a). To further evaluate the PMI lipids, we utilized head group and
FA composition to visualize structure–function relationships of the statistically significant
species. Head group associations of all identified lipids were clustered by their structural
similarity [34,40,42]. The resulting circular dendrogram is shown in Figure 3a with the
adjusted p-value in the inner ring and log2FC on the outer ring. The most consistent
observation relating to head groups was the upregulation of PC O-, PC P- and PE P-.
The upregulation of SM lipids, another component of lipid bilayers abundantly present in
lipid rafts and integral in cholesterol homeostasis, was also observed in the PMI study [58].
Conversely, PC lipids which have overlapping roles as charged species enriched within
the outer lipid membrane layer were downregulated following a PMI [59]. Additionally,
a general downregulation of glycerolipids was also detected following a PMI event, a
contradictory finding to the positive correlation of TGs and MI incidence [60,61] This
finding may instead reflect FAs serving as the primary energy substrates of the heart
where non-esterified FAs, products of glycerolipids degradation, are rapidly complexed
with CoA [62]. Notably, ceramides which have previously been positively correlated with
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cardiac disease risk were not observed to be statistically significant in our PMI cohort [63].
Exceptions to the head group trends, however, were noted for almost every class discussed
herein. For example, we observed split dysregulation across SMs, CEs and other classes,
illustrating effects beyond just head group influence.

Figure 3. Lipids detected and statistically significant in the PMI comparison. (a) Of the 299 uniquely identified lipids, 141
were statistically downregulated and 66 were upregulated following a PMI with a p-value cut-off of 0.005. The lipid head
group associations are visualized in a circular dendrogram with p-values (inner ring) and Log2FC (outer ring) statistics
overlaid simultaneously for each lipid identification. (b) FA lipid composition was also investigated by plotting all unique
FA components. Statistically significant lipids are shown in red and blue for up- and downregulation, and identified
lipids lacking statistical significance are shown in grey. The magnitude of variation for Log2FC and adjusted p-values are
visualized through a color gradient, with darker colors indicating a more significant p-value or larger fold change.

Discrepancies between lipid head group composition and biological dysregulation
suggest additional selectivity likely attributable to the FA components of lipid structures.
Within FAs, important differences include chain length, and double bond number, position
and orientation [64]. Previous efforts have elucidated FA chain length to directly influence
cardiac pathology, but plasma studies have been less successful in capturing this effect [24].
To explore these associations, we further interrogated FA dysregulation in the identified
lipids, as shown in Figure 3b. While the findings in these plots mainly correlated with
the head group analyses, a few FA-specific observations could be extracted. First, a
FA dependence of CE differential expression was observed—with 18 carbon-containing
CEs being downregulated and CEs with 20 and 22 carbon PUFAs being upregulated.
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Long chain polyunsaturated fatty acids (LC-PUFAs) are a class of FAs characterized as
having 18 or more carbons and at least two double bonds, often serving as precursors
to lipid mediators [65]. PUFA dysregulation was also recognized among PE, PC and
PE P- lipids; PE and PC lipids containing PUFA tails were downregulated, while the
majority of significant PE P- lipids were upregulated. In an additional assessment of the
summed FA double bond number, it was observed that while the majority of glycerolipids
were statistically downregulated, the upregulated TG species had a greater number of
unsaturation sites compared to the downregulated species. This is in agreement with
models for predicting CVD onset, which have included unsaturated TG species [4,24].
However individual FA information was not attained for the majority of the TG species
due to difficulties in assigning their MS/MS spectra.

3.2. Multi-Omics Results

To assess how polar and nonpolar molecules change in both the ETT and PMI cohorts,
the lipidomic results were integrated with the previously performed targeted analysis of
210 polar metabolites [26,27]. Results from these analyses elucidated both unique and
shared statistically significant metabolites and biological processes across both events
(Figure 4). For example, glycolysis and TCA cycle metabolites (red, pink and peach nodes)
were upregulated following ETT, a finding agreeable with the known mechanisms of burn-
ing energy through high-intensity exercise [66]. Additionally, niacinamide, a component of
NADH that is also associated with energy through its interaction with insulin, was found
to be statistically upregulated with exercise. In PMI, the dietary metabolites of PC lipids
previously shown to predict CVD risk, choline and trimethylamine N-oxide (TMAO), were
downregulated and clustered next to each other to affirm their structural relationship [18].
Amino acid dysregulation was also observed following both ETT and PMI, as alanine
was statistically significant through its upregulation immediately following exercise but
downregulation following a PMI. Both ETT and PMI also shared an upregulation of xan-
thine and hypoxanthine, metabolites involved in purine metabolism and ATP degradation,
which are notably upregulated following cellular damage. These xanthine metabolites can
also interact with xanthine oxidase to produce reactive oxygen species, a mechanism well
characterized in heart failure [67].

From our analysis comparing the lipidomic changes in ETT and PMI, we note unique
profiles where plasma metabolite signals best characterized mechanistic changes following
high-intensity exercise training. Conversely, we demonstrated an overwhelming dysreg-
ulation of lipids following a PMI in the end-stage phenotype of CVD, in addition to the
metabolomic findings that were previously published. While the metabolomic analyses
elucidated changes for both the ETT and PMI cohorts with slight overlap between each
characterization, the lipidomics results were quite different. While no statistically signifi-
cant lipids were noted in the ETT study, the sheer number of statistically significant lipid
associations in the PMI cohort (207, 69% of identified lipids) provide striking evidence for
the integral role of the lipidome immediately following a PMI event (Figure 5). The find-
ings from the ETT cohort were, however, in accordance with other exercise studies which
have observed lipidome disruption being proportional to the duration and intensity of
exercise [68]. Previous characterizations of lipid variation in exercise have centered on
the decrease in free carnitine and increase in short-chain acylcarnitine through its crucial
capability of shuttling FAs into mitochondria within muscle tissue for energy usage [25,69].
Dysregulation of carnitines has faced some disagreement in literature, likely from the lack
of correlation between muscle and plasma sampling [69]. Further, the energy sources of
exercise differ substantially as low intensity training relies on fat as a primary fuel source,
while high intensity training uses carbohydrates as an immediate energy supply [23].
From the observation of metabolite intermediates of glycolysis and the TCA cycle such
as lactate being upregulated, we feel we can confidently state that known mechanisms of
high intensity training were taking place in our cohort [26]. From the dysregulation of
energy processes in the metabolomics data and the variation in carnitine species observed
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just above the significance cutoff, it is possible that these species were in fact perturbed
in our system as has been noted by others (Supplemental Table S2) [52,69]. A variety of
factors may preclude this annotation, including age-based impairment of the acyl carnitine
pathway that diminishes FA oxidation and study-to-study variation from different exercise
training regimes [54,70]. A lack of differential expression of the lipidome following exercise
may also reflect that lipid variation is not always immediate [24]. The singular tread-
mill training event for this analysis, therefore, may be too short to assess any additional
lipidomic changes [52]. From the known pathophysiology of over-exercise triggering the
calcification of the heart muscle, the activation of lipid enzymes by Ca2+ may suggest more
drastic lipidome dysregulation would be observed with repeated exercise training [24].

Figure 4. Statistically significant metabolites in the ETT and PMI studies. A circular dendrogram is utilized to showcase the
differentially expressed metabolites in the PMI (inner ring) and ETT (outer ring) cohorts. Red and blue are used for up- and
downregulation with a color gradient visualizing the magnitude of the adjusted p-value observed. Grey metabolites were
detected but not statistically significant.
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Figure 5. The multi-omic assessment of statistically significant lipids and metabolites from a PMI
event. Adjusted p-values for each molecule are shown around the dendrogram. Red and blue are
used for up- and downregulation with a color gradient to visualize magnitude.

From our analysis of 20 patients before and after a PMI event, we observed several in-
stances of lipid dysregulation with substantial biological implications. Ether lipids (PC O-,
PC P-, PE P-) have been shown to be disproportionately abundant in brain and heart tissues
as components of the lipid bilayer with unknown biological implications [71]. While the
biological significance of ether lipids overexpressed in heart tissue is not fully understood,
the upregulation of these species in plasma following a PMI is likely indicative of tissue
degradation following ASA treatment. However, only a subset of membrane lipids were
upregulated, suggesting these lipid classes carry additional significance for ASA-induced
PMI. This finding could potentially be explained by the preferential oxidation of O- and
P- linkage sites that serve to protect the sn-2 FA group from oxidation [72]. In the heart,
dysregulation of PC lipids in tandem with increased activity of phospholipase enzymes
has been observed in CVD, where lysophospholipids contribute to atherosclerosis and
vascular damage through their role in inflammation, as was observed here in their down-
regulation [73,74]. Altogether, the obstruction of heart tissue following a PMI could serve
dual purposes, reflecting both a breakdown of ablated cellular tissue and dysregulation of
essential biological processes, such as energy production and inflammation. PUFAs with a
double bond on the third carbon (n-3) have previously been shown to serve preventative
roles in CVD through their antiatherogenic effects and may explain the dysregulation
of PUFA-containing lipids [75]. Metabolomic analysis of the PMI samples showed the
most dysregulation among amino acids, where branched amino acids are precursors for
glutamine and alanine synthesis in muscles [76]. Conversely, amino acids associated with
cardiac remodeling (proline) were downregulated [77].

3.3. Study Comparison

Combining the two complementary stories of metabolite and lipid dysregulation
before and after exercise and a PMI provides an important assessment of their biologi-
cal changes (Figures 3 and 4). This comparison is incredibly insightful for understand-
ing CVD pathophysiology, as shown by comparing our results with the general con-
sensus of molecular dysregulation from several exercise, CVD onset and MI studies
(Figure 6) [4,24,51,52,61,69,78]. Results from the CVD onset studies have illustrated upreg-
ulation of sphingolipids and carnitines, and shown downregulation of lyso PC and DGs.
CVD onset metabolomic studies have also elucidated distinct molecular changes to include
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mechanisms of oxidative stress and PC degradation products promoting atherogenesis [55].
In the comparison of exercise, CVD onset and a PMI, there is quite substantial overlap in the
perturbed processes, but the molecules being dysregulated are often unique. For example,
different energy processes were dysregulated in both exercise and PMI, as glycerolipids
were largely downregulated in PMI and TCA/glycolysis metabolites were upregulated
with exercise. Differential expression of both 1-methyl histamine and lysophospholipids
was also observed, and since both have been linked to roles in inflammation, this suggests a
possible response to ASA treatment [73,74]. Uniquely, ether lipids, which were upregulated
in PMI, are also recognized regulators of ion channels [71]. Relative to CVD onset, we
noted a number of lipid and metabolite species dysregulated in both the ETT and PMI
studies (Figure 6). For example, lysoPCs (LPC) were downregulated across PMI and are
largely corroborated by literature [4,56]. The further annotation of choline and TMAO
degradation products of PC lipids suggests an even greater significance in PC lipids for the
development of end-stage perturbations, however the direction of change between CVD
and the PMI model differed [55]. We also noted opposite trends when comparing CVD
onset results from the literature and our ETT cohort; carnitines have been reported to be
downregulated in exercise but upregulated in CVD onset, further reflecting the importance
of the shift in energy processes between PMI and exercise [69,78]. These findings are
significant for further elucidating the mechanisms of CVD, which we and others have
shown reflect drastic changes in the lipidome but are missed from polar metabolomics ex-
periments [4,48,51,53]. We would, however, like to note that the limited size of our patient
study fails to capture sex-based differentiation of CVD onset established previously [79–82].
We also note limitations in our ETT analysis from a singular bout of exercise and disparities
among patients from variables such as cardiovascular health history and ischemia that may
hinder the elucidation of exercise-based lipid dysregulation.

Figure 6. Comparison of lipidomic and metabolomic trends for exercise (left), cardiovascular disease (CVD) onset (middle)
and planned myocardial infarction (PMI) model (right). Results include a summary of observed results from this and the
referenced previous studies noted by citation number in the figure [4,24,51,52,61,69,78].
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4. Conclusions

The metabolomic and lipidomic findings observed for the exercise and PMI cohorts
showcased their unique pathophysiology. Of the statistically significant metabolites ob-
served for both events, little overlap was found, implicating unique molecular processes
for each [26,27]. Since the insights from a singular class of biomolecules are inherently
limited, we expanded the metabolomic analyses to include lipids. Novel instrumentation
platforms and cheminformatics tools were applied to provide confident lipid identifi-
cations and investigate lipid variation [38]. The lipidomic analyses illustrated how the
exercise cohort had no statistically significant lipids after treadmill testing, while 69% of
identified lipids were dysregulated one hour after a PMI. This finding was in itself very
interesting and distinguished the molecular mechanisms for the two events. As such, the
polar metabolites were more informative for the exercise study, while the lipidomic results
provided a better assessment of the PMI cohort. Specifically, one hour following a PMI,
lipid species with head groups including PC O-, PC P- and PE P- were all upregulated,
while SMs were mainly upregulated and PCs were mostly downregulated. PUFAs were
also selectively dysregulated across lipid head groups following a PMI. However, even
with the lipid structural insight achieved, discrepancies in class trends were still observed,
since LC–IMS–CID–MS analyses allow for the confident assignment of lipids, but analytical
improvements are necessary to probe the roles of double bond position and orientation
in these discrepancies. Interestingly, integrating the multi-omic exercise and PMI studies
showed perturbation of energy processes across both events. The multi-omic analyses also
corroborated findings from singular omic analyses where inflammation and atherogenic
processes are heavily implicated in PMI. Furthermore, their comparison with CVD onset
studies showed strong agreement between the lipid and metabolite dysregulation observed
in the PMI cohort, and less agreement with the ETT cohort results, as expected. Ultimately,
the integration of the lipid and metabolite data elucidated unique biological roles within
molecular classes, providing complementary profiles for how preventative strategies and
MI events greatly differ in their molecular mechanisms.
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Abstract: Esophageal adenocarcinoma (EAC) incidence has been rapidly increasing,
potentially associated with the prevalence of the risk factors gastroesophageal reflux disease
(GERD), obesity, high-fat diet (HFD), and the precursor condition Barrett’s esophagus (BE).
EAC development occurs over several years, with stepwise changes of the squamous esophageal
epithelium, through cardiac metaplasia, to BE, and then EAC. To establish the roles of GERD and HFD
in initiating BE, we developed a dietary intervention model in C57/BL6 mice using experimental HFD
and GERD (0.2% deoxycholic acid, DCA, in drinking water), and then analyzed the gastroesophageal
junction tissue lipidome and microbiome to reveal potential mechanisms. Chronic (9 months) HFD
alone induced esophageal inflammation and metaplasia, the first steps in BE/EAC pathogenesis.
While 0.2% deoxycholic acid (DCA) alone had no effect on esophageal morphology, it synergized with
HFD to increase inflammation severity and metaplasia length, potentially via increased microbiome
diversity. Furthermore, we identify a tissue lipid signature for inflammation and metaplasia, which is
characterized by elevated very-long-chain ceramides and reduced lysophospholipids. In summary,
we report a non-transgenic mouse model, and a tissue lipid signature for early BE. Validation of the
lipid signature in human patient cohorts could pave the way for specific dietary strategies to reduce
the risk of BE in high-risk individuals.

Keywords: lipid; lipidomics; cardiac metaplasia; Barrett’s esophagus; esophageal adenocarcinoma;
microbiota

1. Introduction

There are two main forms of esophageal cancer: esophageal squamous cell carcinoma and
esophageal adenocarcinoma (EAC) [1]. Over a period of three decades, the incidence of EAC has risen
sixfold, while esophageal squamous cell carcinoma has remained relatively stable [2,3]. In the United
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States, incidence of EAC was estimated to increase from 0.40 to 2.58 cases per 100,000 between 1975
and 2009 [4]. From less than 5% of all esophageal cancer cases before the mid-1970s [5], EAC now
represents almost half of all cases [2,3], making it one of the most rapidly increasing cancers in Western
populations. Despite recent advances in surveillance and treatment protocols, the prognosis for patients
with advanced EAC is poor, with a 5 year survival rate of less than 16%, and a median survival of less
than 1 year [6,7].

EAC is widely accepted to develop via a stepwise sequence, as a consequence of gastroesophageal
reflux disease (GERD). GERD leads to chronic inflammation in the esophagus and reflux esophagitis [8].
In ~10%–15% of GERD patients, the damaged squamous epithelium of the distal esophagus is replaced
by cardiac mucosa with intestinal metaplasia, a condition termed Barrett’s esophagus (BE) [9,10].
Although BE itself has limited adverse health effects, patients with BE have a 30–60-fold increased risk
of developing EAC [11], with estimated annual progression rate of ~0.1%–0.5% per year [12,13].

In addition to GERD and BE, epidemiology studies have identified male gender, tobacco smoking
and obesity as risk factors for EAC [14]. To investigate the causality and to delineate the molecular
mechanisms of GERD, surgical rodent models have been reported [15], but with high mortality rates
due to the challenging surgeries. An alternative approach using dietary intervention was reported by
Quante et al. [16], using 0.2% deoxycholic acid (DCA) in drinking water as a mimic of GERD to induce
Barrett’s-like metaplasia in interleukin 1β transgenic mice. A follow-up study showed that high-fat diet
(HFD) accelerated tumor development in the interleukin 1β transgenic mouse model [17]. While the
authors report an increased inflammatory tumor microenvironment and altered intestinal microbiome
as potential mechanisms, HFD may also promote EAC through lipid dyshomeostasis and esophageal
dysbiosis. Circumstantial evidence suggests roles for both lipids and the esophageal microbiome in
BE/EAC pathogenesis. Patients receiving cholesterol-lowering statin therapy exhibit reduced incidence
of BE [18,19] and EAC [20–23]. Alterations to the esophageal microbiome have been reported in human
esophageal tissues during BE/EAC disease progression [24,25], while gastric Helicobacter pylori infection,
or altered gastric microbiota, may influence EAC development by modulating refluxate composition
or frequency [26,27].

To evaluate the impact of obesity and/or GERD on esophageal tissue morphology, and to address
the hypotheses that the pathogenic mechanisms of HFD or GERD involve esophageal microbiome
and/or tissue lipids, we employed HFD dietary intervention and 0.2% DCA exposure in non-transgenic
mice, to mimic obesity and GERD, respectively. The mouse model mimicking early BE was adapted
from a previous report using BE transgenic mouse [16,17]. We found that a 9 month HFD increased
esophageal tissue inflammation and cardiac metaplasia. DCA in drinking water increased the severity
of HFD-induced esophageal inflammation and metaplasia segment length, potentially via increased
esophageal microbiome diversity. Tissue lipidomics analyses revealed a phospholipid and sphingolipid
signature associated with esophageal inflammation and cardia development.

2. Materials and Methods

2.1. Animal Experiments

The study was approved by The University of Queensland Animal Ethics Committee.

2.1.1. Materials

Chow diet (Irradiated Rat and Mouse Diet) and HFD (SF04-001) were obtained from Specialty
Feeds (Western Australia). Both diets were produced as cylindrical pellets with a diameter of 12 mm
and comparable fiber contents of 5.2% and 5.4% respectively. The standard chow provides 12% of
digestible energy from fat, 23% from protein and 65% from carbohydrates, and contained 0.78%
saturated fats, 2.06% monounsaturated fats and 1.88% polyunsaturated fats by weight. The HFD
provides 43% of calories from fat, 21% from protein and 36% from carbohydrates, and contained 10.03%
saturated fats, 8.24% monounsaturated fats and 5.11% polyunsaturated fats by weight. Both diets were
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wheat- and soy-based, but differed in the primary source of fat; namely, fish meal, mixed vegetable oils
and canola oil for the standard chow, or lard and soybean oil for the HFD. Deoxycholate was obtained
from Sigma (Missouri, USA).

2.1.2. Dietary Treatments

Eight-week-old male C57BL/6 mice were randomly assigned to one of four treatment groups for
9 months (n = 12).

A. ad libitum standard chow diet and drinking water
B. ad libitum standard chow diet and 0.2% deoxycholic acid (unconjugated bile acid, pH 7) in

drinking water [16]
C. ad libitum HFD and drinking water
D. ad libitum HFD and 0.2% deoxycholic acid in drinking water.

Mice were housed in groups in autoclaved standard shoe-box cages in a ventilated rack system.
Drinking water with or without deoxycholate was prepared and replaced fresh weekly. All interventions
were performed during the light period of a 12 h/12 h light/dark cycle.

2.1.3. Tissue and Serum Collection

Tissue was collected within the same 3 h window to avoid discrepancies due to circadian variations.
Blood was collected via cardiac puncture under isoflurane anesthesia followed by cervical dislocation.
Blood was centrifuged at 5000× g for 10 min at 4 ◦C, and serum removed and stored at –80 ◦C.
Distal esophagus and gastroesophageal junction tissues were collected from each mouse. The entire
gastroesophageal junction was fixed for histology, while distal esophageal tissues were cut in half
lengthwise. One half was fixed in formalin for histology, and one half snap frozen in liquid nitrogen
for 16S ribosomal DNA (rDNA) sequencing for microbiome analysis.

2.1.4. Histology

Tissues were fixed in 10% formalin for 24 h and embedded in paraffin. Embedded tissue blocks were
cut into 4 μm sections and used for hematoxylin and eosin (H&E) staining. Histological evaluation and
grading was performed by a specialist gastrointestinal pathologist (IB). For grading, inflammation was
graded on a scale of 0 to 3 (0 = nil inflammation; 1 =mild; 2 =moderate; and 3 = severe). The presence
and length of cardiac-type mucosa was recorded.

2.2. Lipidomics Experiments

2.2.1. Materials

SPLASH LipidoMix Mass Spec Standard mixture (#330707), containing deuterated lipids of
14 species at various concentrations, and the Ceramide/Sphingoid Internal Standard Mixture II
(#LM-6005), were purchased from Avanti Polar Lipids, Inc. (Alabaster, U.S.A). ESI-L low concentration
tuning mix (#G1969-85000) was purchased from Agilent Technologies (Mulgrave, VIC, Australia).

2.2.2. Lipid Extraction

All steps except for sonication and sample blowdown were performed on ice. Serum and tissue
samples were homogenized differently but lipids were extracted using the same methyl-tert-butyl
ether (MTBE)/methanol extraction method [28].

Mouse serum (30 μL) was added to 215 μL of ice-cold methanol containing 50 μg/mL butylated
hydroxytoluene (BHT). Samples were homogenized by three rounds of vortex mixing for 30 s, freezing in
liquid nitrogen for 1 min, thawing for 2 min and sonicating for 10 min at 15 ◦C, power 100% in a Grant
XUB18 bath sonicator.
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Tissue wet weight was determined using a Mettler-Toledo XS105 balance (Mettler-Toledo,
Melbourne, Australia). Biopsies were transferred to Eppendorf tubes containing 500 μL ice-cold
methanol, 50 μg/mL BHT and one steel bead and homogenized in a TissueLyzer LT (Qiagen, Melbourne,
Australia) for six minutes at 50 Hz. Homogenate was transferred to new tubes and the original tube
was washed with 400 μL methanol and transferred. Samples were dried down under nitrogen flow
and resuspended in 20 μL water and 200 μL methanol (50 μg/mL BHT). Samples were homogenized
by three rounds of vortex mixing for 30 s, freezing in liquid nitrogen for 1 min, thawing for 2 min and
sonicating for 10 min at 15 ◦C, power 100% in a Grant XUB18 bath sonicator.

SPLASH LipidoMix Mass Spec Standard (10 μL) and Cer/Sph mixture II (10 μL) internal standards
mixes from Avanti Polar Lipids were then added to each sample. After overnight incubation at −30 ◦C,
750 μL MTBE was added and each tube was vortex mixed for 10 s and shaken for 10 min on a tube
rotator (4 ◦C). MilliQ water (188 μL) was then added, and the tube was vortex mixed for 30 s to form
a biphasic separation. After centrifuging for 15 min at 15,000× g, 700 μL of the clear upper phase
containing lipids in MTBE was transferred to another tube and dried down using a gentle stream
of nitrogen. After drying down of lipids, extracts were resuspended in 50 μL methanol (containing
50 μg/mL BHT)/toluene (90%/10%, v/v). Dry weight of the remaining pellets from tissue samples was
determined in triplicate using a Mettler-Toledo XS105 balance. Dry weights were used to normalize
lipid injection volumes of tissue samples prior to mass spectrometry analysis. For serum samples
equal volumes were injected.

2.2.3. Untargeted Lipidomics

An Agilent Technologies 1290 Infinity II UHPLC system with an Agilent ZORBAX Eclipse plus C18
1.8-micron column (#959757-902) and guard column (#821725-901), coupled online to an Agilent 6550A
iFunnel QTOF mass spectrometry system, was used for untargeted lipidomics. The mass spectrometer
was tuned in the low mass range (1700 m/z), high sensitivity slicer mode and the instrument mode was
set to Extended Dynamic Range (2 GHz). The quadrupole and time-of-flight (TOF) sections of the
mass spectrometer were both tuned prior to each experiment. The quadrupole was tuned to reference
masses 118.09, 622.03 and 1221.99 in positive ionization mode. Experiments were performed if the
quadrupole component passed the check tune for each reference mass in wide, medium and narrow
modes. The TOF component was tuned using reference masses 118.09, 322.05, 622.03, 922.00, 1221.99
and 1521.97 in positive ionization mode. TOF mass calibration indicated that at around 110–120 m/z
the resolution was ~12,000–13,000 and increased to 20,000–21,000 around 600–620 m/z range. The ion
source used was Dual Agilent Jet Stream electrospray ionization, which allows for the simultaneous
introduction of sample and reference masses into the mass spectrometer. Source capillary voltages were
set to 4000 V for positive ionization mode whilst the nozzle voltage was set to 0 V, fragmentor was set
to 365 and octopoleRFPeak to 750. Nitrogen gas temperature was set to 250 ◦C at a flow of 15 L/minute
and a sheath gas temperature of 400 ◦C at a flow of 12 L/min. During the experiment reference masses
were enabled (121.05 and 922.01 Da) to enable auto-recalibration of compounds with known masses.
MS1 data was acquired between 100–1700 m/z at a scan rate of 2.5 spectra per second.

The sample dilution and injection volume used for experiments was determined by testing a
representative sample prior to analyzing the cohort. Reversed phase buffers A and B contained
25 millimolar (mM) ammonium formate and 0.1% formic acid in 60%/40% (v/v) acetonitrile/water
or 90%/10% (v/v) isopropanol/water respectively. The separation gradient was run at a flow rate of
0.5 mL/min to separate the lipids during a 16 min gradient. The method started at 15% B and increased
to 30% B at 2:00, 48% B at 2:30, 82% B at 11:00, 99% B at 11:30. The gradient was retained at 99%
B until 13:00 and retained at the starting condition of 15% B between 13:06 and 16:00. The column
compartment was maintained at 60 ◦C for the duration of the experiment.
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2.2.4. Targeted Lipidomics

Targeted lipidomics were performed on an Agilent Technologies 1290 Infinity UHPLC system with
an Agilent HILIC Plus RRHD 2.1 × 100 mm 1.8 micron column, coupled online to an Agilent 6490A
Triple Quadrupole mass spectrometer with iFunnel and Agilent Jet Stream electrospray ionization
source, operated in dynamic MRM mode. The source nitrogen gas temperature was set to 250 ◦C
at a flow rate of 15 L/min, and the sheath gas temperature set to 400 ◦C at a flow rate of 12 L/min.
The capillary voltage was set to 4000 V for positive mode and 5000 V for negative mode and the
nebulizer operated at 30 psi. Ion funnel low and high pressure in positive mode were 150 and 60, and in
negative mode 150 and 120, respectively. Check tunes were performed in wide, unit and enhanced
modes prior to each experiment to confirm the performance of the mass spectrometer. The quadrupole
was tuned to reference masses 118.09, 322.05, 622.03, 922.01 and 1221.99 in positive ionization mode,
and 112.99, 302.00, 601.98, 1033.99 and 1333.97 in negative ionization mode.

Each sample was analyzed in 3 separate dynamic MRM runs using two different HILIC buffer
systems, both using 50%/50% (v/v) acetonitrile/water as Buffer A and 95% acetonitrile/water (v/v) as
buffer B. The buffers were supplemented with 25 mM ammonium formate, pH 4.6 and 0.1% formic
acid (denoted methods F1, F2) or 10 mM ammonium acetate, pH 7.6 (denoted method A). As detailed
in Table S1, the methods had 155 (F1), 156 (F2) and 126 (A) transitions, including internal standards.
The minimum dwell times were 4.2 milliseconds (ms), 4.1 ms and 3.1 ms respectively for methods
F1, F2 and A. The method started at 0.1% A and increased to 40% A at 8:00, 90% A at 9:30 until 10:30.
The gradient decreased to 0.1% A between 10:30 and 11:30 and was retained at the starting conditions
of 0.1% A until 14:00. The column compartment was maintained at 30 ◦C for the duration of the
experiment. A pooled quality control (QC) sample was injected multiple times to condition the HPLC
column prior to analyzing samples, and also queued after every 6–7 biological samples to monitor
mass spectrometry performance for the duration of the experiment [29,30].

2.2.5. Data Treatment and Analysis

Feature integration of untargeted lipidomics data was performed using the XCMS Centwave
method and retention time alignment was performed using the Obiwarp method [31]. Features were
grouped and peak filling was performed using the fill ChromPeaks method. Finally, feature information
and abundances per samples were exported as a .csv file format. Lipid identification was performed
using MS-DIAL version 3.90 (RIKEN Center for Sustainable Resource Science, Kanagawa, Japan) and
the included FiehnRT (v47) lipid database [32]. Identifications were made based on accurate mass,
retention time and database matching, and then manually confirmed. The MS1 tolerance was set
to 0.01 Da and the tolerance for MS2 peaks was set to 0.05 Da. Database retention times were not
used for scoring in the lipid identification. An identification score cut-off of 70 was set to remove
most inaccurate identifications. The possible adduct ions were set to [M + H]+, [M + NH4]+ and
[M-H]−. Manual confirmation included the visual inspection of all database matches, assessing the dot
and reverse dot product similarity scores. Ambiguous identifications of features with multiple likely
identifications were excluded from the analysis. Lipid identifications, accurate masses and retention
times were exported from MS-DIAL and integrated into the data exported from XCMS.

Acquired targeted lipidomics data was imported into Skyline (MacCoss Lab, Department of
Genome Sciences, University of Washington) [33], peak integration was automated but manually
confirmed and corrected if required. Internal standard retention time was used to confirm correct peak
integration of lipids belonging to the same class. Peak areas were exported from Skyline for further
analysis in R (R Foundation for Statistical Computing, Vienna, Austria) [34].

The datasets were filtered to remove any lipids with a coefficient of variation greater than 20%
among the quality control samples. Missing values were imputed using the MinDet method from the
imputeLCMD R package using the default q-value of 0.01. All datasets were log2 transformed and
normalized using the probabilistic quotient normalization method as described by Dieterle et al. [35].
Lipid information such as lipid class, number of unsaturated bonds and fatty acid chain lengths
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were parsed from the original lipid names using the lipidr R package [36]. Further analyses and
visualizations, including principal component analysis (PCA) and lipid class boxplots were produced
using lipidr [36]. The enrichment of lipid classes was determined using the LSEA (lipid set enrichment
analysis method) [36]. Pearson correlation was used to determine the correlation between total lipid
fatty acid chain lengths and the development of disease conditions.

2.3. Microbiome Profiling

2.3.1. DNA Extraction

Unless otherwise stated, solvents were purchased from Sigma (Missouri, USA). Mouse tissues
were preincubated with lysis buffer (20 nanomolar (nM) Tris/HCl; 2 mM EDTA; 1% Triton X-100; pH 8;
supplemented with 20 mg/mL lysozyme) for 60 min at 37 ◦C, then with 25 μL Proteinase K (20 mg/mL;
Ambion, CA, USA) at 56 ◦C until completely lysed. DNA was extracted using the ISOLATE II Genomic
DNA Kit (Bioline, London, UK) following manufacturer’s standard protocol. The DNA samples were
eluted in two lots of 50 μL Elution Buffer G from the kit.

2.3.2. Library Preparation and Sequencing

Library preparation was performed in batch. Polymerase chain reaction (PCR) preparation was
conducted in a designated DNA template-free room. Sequencing library preparation of the samples
and control (no DNA template) was based on the 16S Metagenomic Sequencing Library Preparation
guidelines provided by Illumina. Q5 Hot Start High-Fidelity 2×Mastermix polymerase (NEB, Ipswich,
MA, USA) was used for the Amplicon PCR step. Primers used for the amplification of the V6–V8
region of the 16S ribosomal RNA gene were primers 927-Forward (AAACTYAAAKGAATTGRCGG;
universal) and 1392-Reverse (ACGGGCGGTG WGTRC; universal) with Illumina adapter sequences.
Samples were barcoded using the Illumina dual-index system (Nextera XT v2 Index Kit Set A) for
the Index PCR step. PCR products were purified using AMPure XP beads (Beckman Coulter, Brea,
CA, USA). The DNA concentration for each barcoded amplicon mixture was quantified following
manufacturer’s instructions (Quantus, Promega, Madison, WI, USA) and all samples were pooled to
provide 4 nanomol of each amplicon. The pooled libraries were sequenced using the Illumina MiSeq
platform (Illumina, San Diego, CA, USA) and the MiSeq Reagent Kit v3 (2 × 300 bp) by the Australian
Centre for Ecogenomics, located at the University of Queensland.

2.3.3. Bioinformatics and Statistical Analysis

Raw sequencing reads were processed and analyzed using Quantitative Insights Into
Microbial Ecology 2 (QIIME 2, version 2019.7) according to the developer’s recommendations [37].
Sequence quality control was carried out using the DADA2 algorithm, a QIIME 2 plugin-software to
filter low-quality sequences as well as to identify and remove chimeric sequences. Amplicon sequence
variants (ASVs) were generated from the filtered sequences and the SILVA_132 99% reference database
was used to train the feature classifiers and provide taxonomic assignment accordingly. An ASV table
was generated and normalized using total sum normalization (TSS) for all further analyses using
Calypso (version 8.84) [38].

3. Results

3.1. High-Fat Diet and Bile Acid Exposure as a Mouse Model for the Development of Esophageal Inflammation
and Cardiac Metaplasia

Chronic treatment with the unconjugated bile acid, deoxycholic acid (DCA, 0.2%), in drinking
water was previously reported to accelerate Barrett’s-like metaplasia development in an interleukin-1β
transgenic mouse model [16]. We hypothesized that obesity induced by chronic HFD will replicate
the chronic inflammation due to interleukin-1β overexpression, and leads to Barrett’s-like epithelium
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development in wild-type mice. To test this hypothesis, male C57BL/6 mice were fed with standard
chow diet or HFD with and without 0.2% DCA, for 9 months prior to sacrifice (n = 11 per group).
Chow and HFD diets had comparable fiber (5.2% vs 5.4%) and protein (23% vs 21%) content, but the
digestible energy from fat increased from 12% in chow to 43% in HFD, while carbohydrate reduced
from 65% to 36%.

Body weight was monitored weekly, and HFD +/− DCA mice had significantly higher body
weight than Chow +/− DCA (q < 0.0001), but no difference in body weight was observed between mice
+/− DCA in either diet group (Figure 1a). Interestingly, weight gain in mice in the HFD + DCA group
was delayed compared to the HFD + water group, potentially indicative of DCA-induced esophageal
damage reducing food intake and subsequent recovery (Figure 1a).

Figure 1. Chronic high-fat and/or bile acid dietary intervention in wild-type mice induces chronic
inflammation and cardiac metaplasia development at the gastroesophageal junction. C57BL/6 mice
(n = 11 per group) were given +/− high-fat diet (HFD) and +/− 0.2% deoxycholic acid (DCA) over a
9 month period, and gastroesophageal junction tissue morphology evaluated in hematoxylin & eosin
(H&E) stained sections for inflammation and epithelial changes. (a) Body weight over time for each of
the four groups. Values are mean ± SD; (b) Example esophageal epithelium morphology for normal
and cardiac metaplasia. (c) Example inflammation grading. (200×; scale bar 100 μm).

Next, we examined the impact of the dietary treatments on tissue morphology of the
gastroesophageal junction, where BE arises. H&E stained tissues were evaluated, and graded
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for inflammation severity and metaplasia length by an expert gastrointestinal pathologist in a
blinded manner. Figure 1b shows the morphology of the normal squamous epithelium of the
gastroesophageal junction, which was observed in most samples. In contrast, cardiac metaplasia with
neutral mucin-producing glands was observed immediately adjacent to the squamous epithelium,
observed in all four groups with varying frequency. Furthermore, varying grades of inflamed esophageal
tissue were observed (Figure 1c). Inflammation grade 0 lacks inflammatory cells in the lamina propria,
whereas mild inflammation with small numbers of lymphocytes and eosinophils are observed in
inflammation grade 1. Inflammation grade 2 is marked by moderate inflammation, with a prominent
infiltration of the lamina propria by lymphocytes and small numbers of eosinophils. Additionally,
lymphocytes infiltrate the squamous epithelium. In severe inflammation, grade 3, a prominent
infiltration of the lamina propria by lymphocytes, plasma cells, eosinophils and neutrophils is observed.
Neutrophils and eosinophils are present within the epithelium.

Quantitative analysis revealed a basal level of mild inflammation in ~20% of the control and
DCA treatment groups (Figure 2a). The combined HFD + DCA increased the overall incidence
of inflammation to 67%, and was the only group with a grade of severe inflammation (Figure 2a).
HFD alone slightly increased inflammation incidence to 27%, but induced a similarly high level of
metaplasia (64%–67%) as the combined HFD + DCA (Figure 2b). However, all of the instances of
metaplasia for the HFD + DCA group were long segment, while metaplasia induced by HFD alone
comprised short, medium and long segments (Table S2).

Figure 2. Synergistic action of chronic HFD and DCA promotes inflammation and cardiac metaplasia
at the gastroesophageal junction. H&E stained tissue sections graded for the degree of inflammation
(mild, moderate or severe), and the length of cardiac metaplasia (short, medium or long) were analyzed
for (a) the occurrence and degree of inflammation, and (b) length of cardiac metaplasia in the four
treatment groups. Correlation between presence of cardiac metaplasia was further compared for: (c) all
mice treated with DCA compared to water control; (d) all mice on HFD diet compared to chow diet;
and (e) any level of inflammation. The significance for plots c–e was calculated using the Fisher’s exact
test. ** p-value < 0.05.

The above results demonstrate that chronic HFD with DCA (mimicking GERD) induces the
hallmarks of early BE, namely, tissue inflammation and metaplasia. To further evaluate the correlation
between each dietary treatment, we next asked if the inflammation or metaplasia incidence correlate
with HFD or DCA treatment. When all samples from DCA treatment groups were compared against
all groups treated with water, no significant difference was detected for incidence of cardiac metaplasia
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(Figure 2c). Similarly, HFD, with or without DCA, did not significantly increase the development of
cardiac metaplasia (Figure 2d). Finally, we asked whether the incidence of inflammation and metaplasia
was correlated, and found a significant relationship, with 6% of mice without esophageal inflammation
and 54% of mice with inflammation developing cardiac metaplasia (Figure 2e). Furthermore, among the
mice that developed cardiac metaplasia, the mice with inflammation developed a longer metaplastic
tissue (Figure 2e).

3.2. Esophageal Tissue Microbiome Diversity Increases with DCA

After confirming the induction of gastroesophageal junction inflammation and cardiac metaplasia
by chronic HFD + DCA treatment, we went on to profile the esophageal microbiota of 43 samples from
the four study groups, using 16S ribosomal RNA gene sequencing. One sample gave no sequences and
was removed from subsequent analysis. In total, 21,708 high quality sequences were obtained, with an
average of 504.84 sequences per sample. From these sequences, four major phyla (Actinobacteria,
Bacteroidetes, Firmicutes, and Proteobacteria) were identified, and a total of 23 ASVs were detected at 99%
sequence identity threshold via SILVA_132 database.

We first compared microbial diversity (Shannon index) and richness between treatment groups
using rank test in Calypso. No significant differences in microbial richness was observed, but a
higher microbial diversity was observed in DCA alone, and HFD + DCA groups (Figure 3a).
To further test the relationship between DCA and microbial diversity, we then re-grouped the
data into HFD-treated and DCA-treated groups, as previously done (Figure 2). While no significant
differences in microbial diversity or richness were detected for HFD treatment (Figure 3b), a significant
increase of microbial diversity in DCA-treated groups was detected, with a similar but non-significant
increase in richness (Figure 3c).

Figure 3. Esophageal microbiome diversity is increased by HFD + DCA treatment. Shannon index
and microbial richness of esophageal microbiome data was measured using rank test for (a) each of
the four treatment groups, (b) combining HFD/Water and HFD/DCA groups into the HFD group,
and Chow/Water + Chow/DCA into the Chow group, or (c) combining Chow/DCA and HFD/DCA
groups into the DCA group, and Chow/Water + Chow/DCA into the Water group. * p-value < 0.01.
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3.3. Lipidomic Changes Associated with Dietary Interventions

In parallel to the esophageal microbiome analysis, we conducted lipidomics analyses on the
collected serum and gastroesophageal junction samples, to determine associations between the
respective lipidomes and dietary treatments (HFD or DCA), inflammation or cardiac metaplasia.
A combined approach of untargeted and targeted lipidomics was conducted, to quantitate 339 and 197
mammalian lipid species in the serum and gastroesophageal junction samples, respectively.

While we observed no separation of gastroesophageal junction lipidome as a result of dietary
treatments by PCA in the first two principal components (Figure 4b), the serum lipidome showed clear
separation and clustering according to dietary intervention groups (Figure 4a).

Differential expression analysis was conducted on the lipidomics data of both datasets. Lipid class
enrichment was conducted to determine if specific lipid classes were selectively altered. The boxplots
in Figure 4c,d summarize the log2 fold change for each lipid class for each group, for serum and
gastroesophageal junction tissue lipids, respectively. Statistically significant changes are colored in
blue. Gastroesophageal junction tissue lipid class analysis (Figure 4d) revealed overlapping impacts
of HFD and DCA treatments. All three treatment groups showed elevated lysophosphatidylcholine
(LPC), as well as decreased phosphatidylcholine (PC) and phosphatidylethanolamine (PE) (Figure 4d).
While triacylglycerol (TAG) was elevated only in group B (DCA alone), phosphatidylglycerol (PG)
was elevated in HFD-treated groups (Figure 4d). For serum lipids, both HFD-treated groups (C and
D) show similar changes, with elevated ceramide (Cer), PG and sphingomyelin (SM), and reduced
lysophosphatidylethanolamine (LPE), PE and phosphatidylinositol (PI) (Figure 4c). In contrast,
DCA treatment alone (Group B) showed a large decrease in ether-PC, with modest changes in PI and
SM (Figure 4c). Interestingly, the reduction in ether-PC was not observed in the combined HFD + DCA
treatment (Group D), suggesting HFD rather than DCA is the main driver of the serum lipidome.

3.4. Lipidomic Changes Associated with Early Tissue Pathology

Since esophageal inflammation or metaplasia occurred in ~10% to 70% of mice in each group,
we next investigated the association between serum and gastroesophageal junction tissue lipidome
with early esophageal pathology. To this end, lipid class enrichment analysis was conducted on
metaplasia vs normal samples, and inflamed vs normal samples. Apart from elevated serum
ether-PC, the serum lipidome returned minor changes of < 25% magnitude (Figure 5a). In contrast,
the tissue lipidome showed similar changes for metaplasia and inflammation, characterized by
reduced lysolipids and elevated ceramides (Figure 5b). This result revealed major differences between
the lipidome associated with dietary intervention (Figure 4) and that associated with esophageal
pathology (Figure 5). Specifically, differences were observed for ceramides and the lysolipids LPC
and LPE. Elevated tissue ceramide was associated with metaplasia and inflamed tissue, but not
with any dietary treatment, even in the HFD + DCA treatment group, where 66.7% of cases were
inflamed (Figure 5). Reductions in the lysolipids LPC and LPE were associated with metaplasia and
inflammation (Figure 5b), but elevated tissue LPC was associated with HFD and DCA treatment
(Figure 4d). These results strongly implicate roles for elevated ceramides and reduced lysolipids in
metaplasia development due to chronic inflammation.
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Figure 4. The impact of dietary interventions on tissue and serum lipidome. After 9 months high fat
diet (HFD) +/- 0.2% deoxycholate (DCA), mouse gastroesophageal junction tissue and serum samples
were subjected to lipidomics analyses. (a) Principal component analysis score plot of mean-centered
unit variance-scaled untargeted serum lipidome data (n = 38). (b) Principal component analysis score
plot of mean-centered unit variance-scaled untargeted gastroesophageal junction tissue lipidome data
(n = 29). Plot ellipses represents the 95% Hotelling’s T2 confidence intervals for the multivariate
data. (c,d) Lipid class boxplots for serum and gastroesophageal junction tissue lipids, showing the
distribution of log2 differences between the treatment group and control. Positive values represent
lipids that are more abundant in the treatment group than in the control group. Blue color indicates
significant enrichment using the fast gene set enrichment analysis (fgsea) method. Cer—Ceramide,
LPC—lysophosphatidylcholine, LPE—lysophosphatidylethanolamine, PC—phosphatidylcholine,
PE—phosphatidylethanolamine, PG—phosphatidylglycerol, PI—phosphatidylinositol, SM—
sphingomyelin, DAG—diacylglycerol, TAG—triacylglycerol.
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Figure 5. Lipid classes associated with gastroesophageal junction tissue pathology. (a,b) lipid class
boxplots for serum and tissue lipids, showing the distribution of log2 differences between the
disease condition and control. The disease conditions cardia and inflammation were visualized
after applying the removeBatchEffect function from the limma R package. Positive values
represent lipids that are more abundant in the disease condition group than in the control group.
Blue color indicates significant enrichment using the fast gene set enrichment analysis (fgsea)
method. Cer—Ceramide, LPC—lysophosphatidylcholine, LPE—lysophosphatidylethanolamine,
PC—phosphatidylcholine, PE—phosphatidylethanolamine, PG—phosphatidylglycerol,
PI—phosphatidylinositol, SM—sphingomyelin, DAG—diacylglycerol, TAG—triacylglycerol.

As differing fatty acid chain lengths on a lipid can greatly impact biological function in cancer
development [39], we next determined whether fatty acid chain lengths were associated with
inflammation or metaplasia for the Cer, LPC and LPE classes. Ceramides comprise a single fatty acid
chain with a sphingoid backbone (commonly 18:1, as illustrated in Figure 6a). Figure 6a plots the log2
fold change for different total fatty acid chain lengths of each measured ceramide species. As evident
in Figure 6a, a significant correlation was found between very long chain ceramides and the disease
conditions inflammation and metaplasia. On the other hand, specificity in fatty acid chain lengths
were not observed for LPC in either metaplasia or inflamed tissues (Figure 6b). Increased LPE chain
lengths were significantly correlated with metaplasia, but not with inflammation (Figure 6c).
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Figure 6. Association of tissue ceramide, LPC and LPE fatty acid chain lengths with gastroesophageal
junction tissue pathology. (a–c) Total chain length plots for tissue lipids, showing the alterations in log2
abundances between the disease condition and control. The x-axis labels refer to the total fatty acid chain
length of the measured lipid. The disease conditions metaplasia and inflammation were visualized
after applying the removeBatchEffect function from the limma R package. Positive values represent
lipids that are more abundant in the disease condition group than in the control group. The metrics
shown in the plots refer to the Pearson correlation coefficient (R) and p-value. The smoothed line and
95% confidence interval were drawn using geom_smooth, by fitting a linear model. The structures
above each plot represent lipid species of the Ceramide, LPC and LPE classes, where the R groups refer
to the hydrocarbon chains of varying lengths.
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4. Discussion

This is the first study to demonstrate that chronic HFD in non-transgenic mice is sufficient to induce
esophageal inflammation and cardiac metaplasia, the first steps in BE/EAC pathogenesis. While DCA
in drinking water had no effect on esophageal morphology on its own, it increased the severity of
inflammation and length of metaplasia when combined with HFD. HFD clearly induced obesity
and serum lipid derangements, but only a proportion of HFD-treated mice developed esophageal
inflammation and cardiac metaplasia. Intriguingly, the esophageal tissue lipidome showed a similar
signature for inflammation and metaplasia, which was not associated with HFD. These results suggest
that homeostatic mechanisms can buffer HFD/obesity-induced lipidome derangement to an extent,
beyond which inflammation and metaplasia ensue.

Obesity increases the risk of several cancer types, and the mechanisms of specific lipids on
carcinogenesis are beginning to be revealed [39]. In this study, we identified an esophageal tissue
lipid signature for inflammation and metaplasia, which is characterized by elevated very long chain
ceramides and reduced lysolipids, LPC and LPE. Very long chain ceramides have been reported to
increase cancer proliferation, and evade growth suppressor and apoptotic signals [39]. A link between
HFD and tissue ceramide levels was recently reported by Zalewska et al. [40] for submandibular
gland ceramide following HFD treatment in mice. The authors suggested that elevated ceramide
increased mitochondrial reactive oxygen species (ROS) production and respiratory chain, leading to
inflammation [40].

Phospholipid remodeling has recently emerged as playing an important role in disease
pathogenesis, through the characterization of the lysophosphatidylcholine acyltransferase (LPCAT)
family [41]. Lysolipids LPC and LPE contain a single fatty acyl chain, while the more abundant PC and PE
contain two fatty acyl chains. Due to the differing biophysical properties, altered lysolipid:phospholipid
ratio can lead to altered membrane curvature and fluidity, which could translate to organelle remodeling
and altered signal transduction in pathology [41].

Warnecke-Eberz et al. [42] identified the LPCAT1 gene to be elevated in late- and early-stage
esophageal adenocarcinoma tissue, compared to adjacent normal tissue. Elevated LPCAT1 could
explain the decreased LPC and increased PC that we identified for inflamed and cardia gastroesophageal
junction tissue (Figure 5). LPCAT1 enzyme and LPC are elevated in several other cancers,
including colorectal cancer [43], hepatocellular carcinoma [44], gastric cancer [45] and clear cell
renal carcinoma [46]. Interestingly, body fatness is a risk factor for all these cancers [47]. In a
recent study of western diet-associated non-alcoholic steatohepatitis, LPCAT1 and LPCAT2 are
in the top 10 liver genes/transcripts most significantly elevated in mice fed western style diets
compared to standard diets [48]. Together, these data suggest a mechanistic link between high-fat diet,
activation of LPCAT transcripts, altered LPC:PC ratio, and induction of esophageal inflammation and
metaplasia development.

As GERD is a well-established risk factor for BE, the lack of esophageal pathology from the
mice treated with DCA alone was somewhat surprising. This result may suggest that 0.2% DCA
in drinking water does not fully mimic GERD, or that GERD is less damaging to mice esophagus
compared to human. Nevertheless, as expected for the additive effect of risk factors, DCA treatment
in addition to HFD increased the severity of inflammation and length of metaplasia, compared to
HFD treatment alone. DCA treatment increased the esophageal microbiome diversity, which is
consistent with previous reports describing the effect that levels of bile acids in the gut have on the
major division/phyla level taxa of the gut microbiome [49]. These effects could potentially extend
to the esophagus, given that the composition of the esophageal microbiome depends on the oral
and gut microbiome [50]. Previous studies have reported a depletion of Gram-positive Streptococcus,
and enrichment of Gram-negative taxa, including Veillonella and Prevotella, in BE [25,51]. Interestingly,
dysplasia and esophageal adenocarcinoma were reported to have reduced esophageal microbiome
diversity [24]. Further studies will be required to establish the cause–effect relationship and mechanisms
of esophageal microbiota in BE/EAC pathogenesis.
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5. Conclusions

In conclusion, we report the results of a dietary intervention model for early BE, and a lipidomic
signature for inflamed and metaplastic esophageal tissue. In non-transgenic mice, chronic HFD was
sufficient to induce inflammation and cardiac metaplasia at the gastroesophageal junction. As a
GERD-mimic, bile acid in drinking water in addition to HFD increased the severity of inflammation
and length of metaplasia. GERD, but not HFD, increased the esophageal microbiome diversity.
The causality of microbiome in BE development remains to be established.
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Abstract: Reproducibility issues regarding in vitro cell culture experiments are related to genetic
fluctuations and batch-wise variations of biological materials such as fetal calf serum (FCS). Genome
sequencing may control the former, while the latter may remain unrecognized. Using a U937
macrophage model for cell differentiation and inflammation, we investigated whether the formation
of effector molecules was dependent on the FCS batch used for cultivation. High resolution mass
spectrometry (HRMS) was used to identify FCS constituents and to explore their effects on cultured
cells evaluating secreted cytokines, eicosanoids, and other inflammatory mediators. Remarkably, the
FCS eicosanoid composition showed more batch-dependent variations than the protein composition.
Efficient uptake of fatty acids from the medium by U937 macrophages and inflammation-induced re-
lease thereof was evidenced using C13-labelled arachidonic acid, highlighting rapid lipid metabolism.
For functional testing, FCS batch-dependent nanomolar concentration differences of two selected
eicosanoids, 5-HETE and 15-HETE, were balanced out by spiking. Culturing U937 cells at these
defined conditions indeed resulted in significant proteome alterations indicating HETE-induced
PPARγ activation, independently corroborated by HETE-induced formation of peroxisomes observed
by high-resolution microscopy. In conclusion, the present data demonstrate that FCS-contained
eicosanoids, subject to substantial batch-wise variation, may modulate cellular effector functions in
cell culture experiments.

Keywords: batch variations; eicosanoids; fetal calf serum; mass spectrometry; peroxisomes; proteomics

1. Introduction

Problems with the inter-laboratory reproducibility of results obtained with in vitro cell
culture models are increasingly being recognized [1,2]. The need to reduce the use of animal
models for research purposes relies also on the use of accurate in vitro test models [3,4].
Important decisions such as the choice of drug candidates to be evaluated in clinical studies
may be based on such experiments [5]. Thus, the identification of influencing factors
potentially modulating such in vitro data is mandatory. Biological materials and reference
materials have been recognized as the main contributors for irreproducibility, resulting
in a current focus on the investigation of genetic heterogeneity and genetic instability of
cell culture models [6,7]. Here we present Fetal Bovine Serum (FBS; also fetal calf serum,
FCS) as another relevant contributor to reproducibility issues. FCS is commonly used as
cell culture supplement sustaining the growth and duplication of mammalian cells in vitro.
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Since its introduction in the 1950s its use has been established world-wide, irrespective of
evident limitations regarding scientific as well as ethical points of view [8]. Fetal serum is
basically a by-product of meat production collected from the still beating hearts of living
fetuses. While efforts are made to reduce the use of FCS, they have shown rather limited
successes [9].

As for other supplements of natural origin, the main variability source associated
to FBS can be traced back to largely uncharacterized bioactive components. Due to low
concentrations or lack of experimental standard measurements, they may remain poorly
controlled, but may still influence the outcome of cell-based experiments. While some
effort has been spent to define the composition of FCS, the main bioactive constituents
subjected to meaningful variation are hardly known [8]. Batch-dependent variations have
been described to affect biological outcomes but such considerations remain limited to
rather specialized topics such as hormone regulation [10]. Chemically defined media
(CDM) represent a general and consequent solution for these problems, but have only been
established and available for a limited number of cell model systems [9].

The focus of the present study was to investigate whether it was possible to identify
bioactive compounds in FCS accounting for relevant batch-specific effects and correlate this
information with proven and biochemically evident readouts on cell functions. Variations
of amino acid and metabolite composition of FCS may be considered as less likely as they
should be subjected to the homoeostatic control of the organism and, further limited by
the dilution of FCS in the accurately produced cell culture media also containing these
molecules (typically 5–10% FCS is used). Thus proteins as well as eicosanoids and other
polyunsaturated fatty acids (PUFAs) are profiled as the most relevant bioactive candidate
molecules to account for inter-batch variation. Indeed, they are responsible for regulat-
ing biological processes associated with inflammation [11] and inflammation-associated
pathomechanisms [12–14]. The monocyte cell line U937, a well-established cell model
for macrophages [15–17], was chosen for these investigations. Overall, the data demon-
strated significant effects of FCS-contained eicosanoids with batch-dependent variations
on relevant cell functions, proving that bioactive lipid content in serum contributes to
reproducibility issues in cell culture experiments.

2. Results

Formation of bioactive pro-inflammatory mediators by macrophages may be influ-
enced by FCS batch effects.

In order to systematically investigate cell culture reproducibility issues resulting from
FCS batch effects, a proteome profiling experiment using a U937 macrophage differentia-
tion and activation model was performed. A single batch of U937 cells was seeded into
24 identical aliquots, forming four groups subsequently sub-cultured with four different
FCS batches (Table 1, see Materials and Methods). All cells were differentiated using
phorbol 12-myristate 13-acetate (PMA) to induce macrophage formation as verified by
FACS (fluorescence activated cell sorting) analysis (Supplementary Figure S1), while three
aliquots of each group (FCS batch) were subsequently treated with lipopolysaccharides
(LPS) to induce inflammatory stimulation, the other three per group serving as untreated
controls. The formation of inflammatory mediators was investigated by comparative se-
cretome analysis resulting in the identification of 488 proteins (Supplementary Table S3)
and 54 eicosanoids and fatty acid precursor molecules (Supplementary Table S4). Whereas
most molecules such as the chemokine CCL3 and CXCL5 showed rather little variation
between the groups, reproducibility issues of differentiated U937 macrophages were evi-
denced by FCS batch-dependent significant (FDR (false discovery rate) < 0.05) differences
in the formation of the chemokine CCL5, the cell growth regulator IGFBP2, and the cell
migration and fibrinolysis regulator SERPINE1 (PAI1) and MMP1 (Figure 1A). In line, the
amount of bioactive eicosanoids comprising the hydroxyeicosatetraenoic acids 11-, 12-, and
15-HETE, hydroxydocosahexaenoic acid 17-HDoHE, the prostaglandin PGJ2 and others
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were found to differ significantly (FDR < 0.05) depending on the FCS batch used for cell
culture (Figure 1B).

Table 1. Tested FCS batches stating Vender, Lot number, expiration date as well as letter used in
this work.

Nomenclature Vendor Lot Number Expiration Date Origin Processed

A Sigma BCBT4187 07.2021 -

B Gibco 42Q5650K 06.2020 Brazil -

C Gibco 42G8378K 11.2022 Brazil -

D Gibco 08Q8082K 02.2023 Brazil Heat inactivated

 
Figure 1. Heatmaps of selected proteins (A) and eicosanoids (B) determined in secretomes of control and LPS-treated U937
cells cultured with the indicated batch of FCS, A, B, C or D. Lines within a heatmap indicate a significant difference of the
given molecule within at least two batches. Asterisks (*) indicate that LPS-treatment induced a significant increase. Venn
diagrams of significantly up- and downregulated (C) proteins (S0 = 2, FDR = 0.01) and (D) eicosanoids comparing LPS
activation with control samples for all four FCS batches (A–D).

Inflammatory stimulation with LPS induced the secretion of a total of 67 proteins
(FDR < 0.05, Supplementary Table S3), including tumor necrosis factors TNF and TNFSF15,
chemokines such as CCL3, CXCL5, CXCL10, metalloproteinases including MMP1 and
MMP10 and other promoters and mediators of inflammation (Figure 1A and
Supplementary Table S3). Only 22 of those 67 proteins were found uniformly regulated
independent of the FCS batch (Figure 1C), whereas other bioactive molecules such as
IGFBP2 and TNFSF15 again showed FCS batch-dependent expression patterns (Figure 1C).
Similarly, LPS treatment induced the formation of lipid mediators of inflammation such
as 15-HETE, PGE2, PGJ2 and others (Figure 1B, Supplementary Table S4). The formation
of eicosanoids varied rather strongly dependent on the FCS batch used, four out of seven
LPS-induced eicosanoids showing significant batch-dependent alterations (FDR < 0.05,
Figure 1D).
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2.1. The Eicosanoid Content of FCS Varies in a Batch-Dependent Fashion

The induction of inflammatory activities of cells may be subject to modulation by a del-
icate balance of pro- and anti-inflammatory molecules. Thus we investigated whether the
above-described batch effects may be caused by differences of the protein and eicosanoid
content of the FCS batches used for the cell culture experiments. Remarkably, the protein
profile comprising 289 identified proteins (FDR < 0.01) of the four different FCS batches was
rather consistent (Figure 2A, Supplementary Table S5). Several significant abundance differ-
ences between batches were observed (Supplementary Table S5), and a principle component
analysis showed fairly good clustering of the FCS samples according to batches (Figure 2B).
The analysis of FCS eicosanoid contents revealed even stronger batch-dependent differ-
ences, comprising mainly COX and LOX-products (Figure 2C, Supplementary Table S6).
Here, an unbiased PCA clustered the FCS batches with clear distances between batch
clusters (Figure 2D), and demonstrated that batch dependent differences of eicosanoid
content exceeded the differences of protein content.

 
Figure 2. Radar plot for selected proteins (A) and fatty acids (B) identified in 4 different FCS batches without incubation
with cells (baseline levels). Principal component analysis of protein (C) and eicosanoid (D) measurements of the same
FCS batches, as indicated by different colors, demonstrates superior clustering in the case of eicosanoids. Asterisks mark
significantly regulated molecules.

2.2. Cell Culture Subjects Fatty Acids to a High Turnover

Growing cells require medium supply of fatty acids and fetal calf serum is rich in
polyunsaturated fatty acids. In order to mediate biological effects as assumed for the
FCS-contained fatty acids described above (Figure 2B), cells are supposed to take up fatty
acids from the medium. In order to estimate to what extent cultured U937 cells may be
able to take up fatty acids from the medium and release fatty acids back into the medium
upon stimulation, we investigated the intracellular to extracellular exchange dynamics
of the eicosanoid precursor molecule arachidonic acid (AA). For this purpose, cultured
U937 cells were spiked with stable isotope labelled AA at a concentration double that of
the endogenous AA (1.6 μM). Stable isotope labelled AA can be clearly distinguished from
endogenous AA by mass spectrometry. As demonstrated in Figure 3, upon differentiation
to macrophages, U937 cells apparently picked up more than 99% of the labelled and spiked
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AA within 72 h and less than 1% C13-AA remained detectable in the medium after that
period. As expected, subsequent LPS treatment triggered a significant increase of the
amount of C13-AA in the supernatant (Figure 3). This demonstrated that phospholipase
activity was capable of releasing previously incorporated AA back into the medium. When
supplementation with C13-AA was performed after PMA differentiation but before LPS
treatment, the outcome was similar. Around 95% of the available AA was incorporated, but
still a significant release of C13-AA was observed upon LPS treatment, clearly indicating a
high turnover rate of AA. Concomitant measurement of endogenous C12-AA confirmed
that AA was consumed substantially during cell culture and released back in the medium
again in a smaller proportion upon LPS treatment.

 

Figure 3. Experimental setup and results from AA spiking experiments. Medium was supplemented with 13C AA either
before differentiation (left hand side) or before LPS treatment (right hand side). AA determination of cell supernatants
by LC-MS/MS revealed AUC values as indicated. Medium levels at the beginning of cell culture are indicated by lines.
Error bars are derived from three independent experiments. Con, untreated cells; act, LPS-treated cells. Note that AA
concentration values strongly decrease upon cell cultivation but increase again upon LPS treatment.

2.3. Supplementation of 5-HETE and 15-HETE in the Nanomolar Concentration Range Induces
the Formation of Peroxisomes in U937 Macrophages

In order to demonstrate that the detected differences in eicosanoid content of FCS
could originate from the observed batch effects, we performed an additional proteome pro-
filing experiment with U937 cells at conditions only differing with regard to two selected
eicosanoids, 5-HETE and 15-HETE. To this aim, we supplemented the FCS batch found to
have the lowest levels of these two eicosanoids, here designated FCS-B (containing 5 nM
5-HETE and 12 nM 15-HETE), with the pure chemicals to levels close to those observed in
case of FCS batch A (FCS-A, containing 42 nM 5-HETE and 49 nM 15-HETE, Figure 4A).
Thus, U937 cells were grown and differentiated as before, using either FCS-A, supple-
mented FCS-A, or FCS-B, and subsequently subjected to proteome profiling of cytoplasmic
proteins (Figure 4B). Indeed, spiking in of the two HETEs was associated with distinct
proteome alterations (Figure 4B) including down-regulation of PKM and up-regulation of
PEX 16, a peroxisomal membrane biogenesis protein [18]. To independently verify with a
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complementary method that this was a relevant observation, peroxisome formation was an-
alyzed using immunofluorescence with an anti-PMP70 antibody. Nuclei and mitochondria
were additionally stained to demonstrate uniform appearance of these organelles serving
as background control. Indeed, treatment of U937 cells with increasing concentration of
HETEs induced the formation of peroxisomes in an apparently concentration dependent
manner (Figure 4C).

 
Figure 4. (A) Eicosanoid levels of 5-HETE and 15-HETE for FCS-B (before spiking), FCS-A and FCS-B after spiking with
5-HETE and 15-HETE. (B) Volcano plot for cytoplasmic proteins obtained from U937 cells after PMA differentiation when
cultured in either FCS-B or FCS-B supplemented HETEs. Bar plots exemplify the significantly regulated proteins PKM and
PEX16. (C) Immunofluorescence detection of peroxisomes (red, PMP70 antibody), mitochondria (green, TOM20 antibody)
and nuclei (blue, DAPI) shown for control and increasing concentrations of supplemented HETEs (addition of 1, 3, or
10 times of the spiked HETE mix).

3. Discussion

The present data demonstrates that variations in the eicosanoid content of FCS may
account for substantial batch effects with regard to functional readouts of a cell culture
model reporting inflammatory mediators. This finding may be of great relevance for a
large number of laboratories working with cell culture and using FCS, as FCS-contained
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eicosanoids have hardly been considered to have major implications for cell culture ex-
periments and have thus, to the best of our knowledge, not yet been subjected to rigorous
control. There are reasons, why relevant effects of eicosanoids contained in FCS were
hardly expected. First, these molecules are generally considered to be short-lived and to
act mainly in situ [19]. Second, eicosanoids were detected in FCS in the lower nanomolar
concentration range, this is much less than the concentration range applied for functional
assays in vitro, which is typically around 1 μM [20,21]. Furthermore, fatty acids including
eicosanoids contained in serum are bound to albumin and only about 0.1% is actually free
from associated molecules [22–24]. This free pool has a high turnover rate of about 2 min
accounting for the redistribution of albumin-bound fatty acids in vivo to distant organs
such as muscles or the liver.

When investigating FCS batch effects, we initially expected proteins to represent
the most plausible candidates contributing to reproducibility issues. Proteins as well as
metabolites are strictly regulated in vivo to ensure homeostasis and consequently stable
viability of the organism. While proteins may be rather stable in biological environments,
metabolites such as fatty acids are much more vulnerable to chemical reactions such as
oxidation, which may occur also during processing of FCS and are hard to control. Thus it
was somewhat unexpected to see that FCS eicosanoid profiles were stable and clustered the
FCS samples according to batches (Figure 2). This finding, supported by older and current
literature reporting remarkable biological effects of eicosanoids [25–27], motivated us to fo-
cus on this class of molecules. Functional analyses were based on spiking experiments with
the U937 cells. As a first step, the efficient and fast uptake of albumin bound arachidonic
acid (AA) was verified in the present cell model system using stable isotope labelled AA.
The subsequent release of labelled AA upon LPS stimulation of the cells strongly indicated
the previous uptake and incorporation of AA into more complex lipids, from where AA
was apparently released by the action of LPS-induced phospholipase A2 [28]. In order
to test potential biological effects of eicosanoids on U937 cells, a decision was made in
favor of commercially available eicosanoids, 5-HETE and 15-HETE, which were found
to show remarkable concentration differences among the FCS batches. Hydroxyeicosate-
traenoic acids (HETEs) are formed with AA by the action of lipoxygenases ALOX5 and
ALOX15, expressed typically by epithelial cells as well as phagocytes such as neutrophils
and macrophages [29,30]. Beside their effects on cell proliferation and differentiation, they
are known activators of PPARγ [31]. Actually, peroxisome proliferator-activated receptors
are known to induce the uptake and metabolism of fatty acids and to strongly modulate
immune functions [32]. As fatty acid metabolism takes place in peroxisomes [33], the
5-HETE/15-HETE induced up-regulation of PEX16 (Figure 4), a peroxisome biogenesis
protein indicative for peroxisome proliferation [18], indicated that this treatment caused
an increased demand for these organelles. The concomitant down-regulation of PKM
(Figure 4), a key enzyme for glycolysis [34], may suggest that HETE-treatment of U937 cells
induced a metabolic shift increasing beta oxidation and attenuating glycolysis. This inter-
pretation was independently supported by the concentration-dependent HETE-induced
formation of peroxisomes (Figure 4) observed by immunofluorescence staining using a
PMP70 antibody [35].

4. Conclusions and Outlook

The present data demonstrate that batch-dependent differences of eicosanoids con-
tained in FCS may have a profound effect on cellular functions as observed with the U937
in vitro cell culture model for differentiation and inflammatory stimulation. Eicosanoids
affect many relevant cellular events far beyond that, suggesting that they may represent
the main contributors for reproducibility issues in cell culture. The establishment of a strict
quality control regime controlling eicosanoid content in FCS may alleviate this challeng-
ing problem.
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5. Materials and Methods

5.1. Cell Culture

U937 cell line was cultured in RPMI medium (1X with L-Glutamine; Gibco, Thermo
Fischer Scientific, Vienna, Austria) supplemented with 1% Penicillin/Streptomycin (Sigma-
Aldrich, Austria) and 10% Fetal Calf Serum (FCS, Sigma-Aldrich, Vienna, Austria) in T25
polystyrene cell culture flasks for suspension cells (Sarstedt, Wiener Neudorf, Austria) at
37 ◦C and 5% CO2. Cells were counted with a MOXI Z Mini Automated Cell Counter
(ORFLO Technologies, Ketchum, ID, USA) using Moxi Z Type M Cassettes (ORFLO Tech-
nologies, Ketchum, ID, USA) and the number of seeded cells for the experiments calculated
based of these results. For all experiments the cells were used in passages 22–26.

5.2. Differentiation with Phorbol 12-Myristate 13-Acetate (PMA) and Inflammatory Activation
with Lipopolysaccharides (LPS)

All experiments were carried out in triplicates of LPS activation and control. For the
proteomics and eicosadomics measurements 2 × 106 cells were seeded in T25 polystyrene
cell culture flasks with cell growth surface for adherent cells (Sarstedt, Wiener Neudorf,
Austria) with 5 mL fully supplemented media and 100 ng/mL PMA (Phorbol 12-myristate
13-acetate ≥ 99%, Sigma-Aldrich, Vienna, Austria) to induce differentiation. After 48 h in-
cubation the medium was withdrawn and used for eicosanoid measurements. Three ml of
new fully supplemented media was added either with 1 μg/mL LPS (Lipopolysaccharides
from Escherichia coli 055:B5, γ-irradiated, BioXtra, Sigma-Aldrich, Vienna, Austria) or 1 μL
PBS per 1 mL medium as control. After 24 h activation the medium was withdrawn again
and used for eicosanoid measurements. The cells were gently washed twice with 5 mL
phosphate buffered saline (PBS) and 3 mL new medium without FCS was added and incu-
bated. After 4 h the supernatant was withdrawn and used for proteomics measurements.
The cells were used for a subcellular fractionation as described before and cytoplasm and
nuclear fraction were used for proteomics analysis [36].

5.3. Test of Different FCS Batches

Throughout the experiments different suppliers and batches of FCS were used. Addi-
tional details concerning the FCS batches are listed in Table 1. FCS batches A-C were heat
inactivated at 56 ◦C for 30 min, batch D was already bought heat inactivated. Also different
concentrations of HETEs and labelled arachidonic acid were supplemented and the respec-
tive controls treated with the same amount of LC-MS grade methanol (5 μL/3 mL medium).
The experimental workflow of PMA differentiation and LPS activation was done for every
condition similarly, only exchanging the FCS batch, supplier or eicosanoid. Additionally,
for every condition 3 aliquots (3 × 3 mL) of the fully supplemented media were used for
eicosanoid measurements to determine the default levels of eicosanoids present.

5.4. C13 Labelled Arachidonic Acid

For the investigation of the uptake and release of PUFAs an experiment was carried
out with the supplementation of 1,2,3,4,5-13C arachidonic acid (C13 AA, Cayman chem-
icals, Ann Arbor, Michigan, USA). Whenever C13 AA was added, a control experiment
was supplemented with the same concentration of unlabeled arachidonic acid. For the
first experiment the C13 AA was added at a concentration of 1.6 μM (used for all AA
supplementations) to the fully supplemented medium during the 48 h PMA differentiation
step. This concentration is around double that of the endogenous arachidonic acid, thus
the supplementation tripled the concentration of biologically active arachidonic acid. Af-
terwards, the now adherent cells were washed three times with PBS and medium without
supplemented AA was added together with or without LPS for 24 h. For the second ex-
periment the cells were differentiated with PMA in standard medium, washed three times
with PBS and medium supplemented with C13 AA was added together with and without
LPS for 24 h. The eicosanoids were collected and measured in the supplemented medium
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without incubation (t0), after 48 h PMA differentiation and after 24 h LPS activation. The
experimental setup is illustrated in Figure 3.

5.5. Proteomics of Supernatant (SN), Cytoplasm (CYT), and Nuclear Extract (NE)

For the proteomics sample preparation, the s-trap system (Protifi, Huntington, NY)
was employed following the manufacturers protocol with slight modifications. The pre-
cipitated proteins were dissolved in lysis buffer (8 M Urea, 0.05 M triethylammonium
bicarbonate (TEAB) and 5% sodium dodecyl sulfate SDS) and diluted to obtain a protein
concentration of about 1 μg/μL. Twenty μg of protein was used for each digestion. First,
the sample was reduced with 20 μL dithiothreitol DTT (Sigma-Aldrich) at a final concen-
tration of 32 mM for 10 min at 95 ◦C. Afterwards, 5 μL iodoacetamide IAA (Sigma-Aldrich)
was added to a final concentration of 54 mM and incubated for 30 min at 30 ◦C in the dark.
After adding 4.5 μL 12% ortho-phosphoric acid (Sigma-Aldrich) and 297 μl S- Trap buffer
(90% Methanol (v/v) in H2O and 0.1 M TEAB) the sample was loaded onto the S-Trap
Filter. The S-trap filters were centrifuged at 4000 xg for 1 min to pass through all the sample
and trap the proteins onto the resin and afterwards washed four times with 150 μL S-Trap
buffer. Twenty μg aliquots of Trypsin/Lys-C (MS grade; Promega Corporation, Madison,
WI, USA) were dissolved in 400 μL 50 mM TEAB and 20 μg of this solution was added
directly onto the resin of the filter (corresponding to 1 μg Trypsin/Lys-C per sample) and
incubated for 1 h at 47 ◦C. After finishing the digestion, the peptides were eluted with
40 μL of 50 mM TEAB followed by 40 μL of 0.2% formic acid (FA) in H2O and 35 μL of 50%
(v/v) acetonitrile (ACN) with 0.2% FA in H2O. The peptides were dried for about 2 h with
vacuum centrifugation and stored at −20 ◦C until LC-MS/MS measurement.

5.6. HPLC-MS/MS for Proteomics

For the HPLC-MS/MS analysis the peptides were resolved in 5 μL 30% formic acid
and diluted with 40 μL of mobile phase A (97.9% H2O, 2% acetonitrile, 0.1% formic acid).
One μL for the supernatant samples and 5 μL of cytoplasmic and nuclear samples were
injected into the Dionex UltiMate 3000 RSLCnano liquid chromatography (LC) system
coupled to the QExactive Orbitrap MS (all Thermo Fisher Scientific, Austria). Peptides
were trapped on a C18 2 cm × 100 μm precolumn and LC separation was performed on
a 50 cm × 75 μm Pepmap100 analytical column (both Thermo Fisher Scientific, Austria).
Separation was achieved applying a 43 min gradient from 7% to 40% mobile phase B (79.9%
acetonitrile, 20% H2O, 0.1% formic acid) for supernatant samples and 95 min gradients
from 8% to 40% mobile phase B for cytoplasmic and nuclear samples, both at a flow rate
of 300 nL/min, resulting in a total run time of 85 min and 135 min, respectively. Mass
spectrometric settings were the same for all fractions. The resolution on the MS1 level
was set to 70,000 (at m/z = 200) with a scan range from 400 to 1400 m/z. The top eight
abundant peptide ions were chosen for fragmentation at 30% normalized collision energy
and resulting fragments analyzed in the Orbitrap at a resolution of 17,500 (at m/z = 200).

5.7. Proteomics Data Analysis

Raw data were subjected to the freely available software MaxQuant (version 1.6.0.1) [37]
utilizing the Andromeda search engine, which returns label free quantification (LFQ) val-
ues for each identified protein as subsequently used for further data evaluation. For the
MaxQuant search, a minimum of two peptide identifications, at least one of them being a
unique peptide, was required for valid protein identification. Digestion mode was set to “Spe-
cific” choosing Trypsin/P. The peptide mass tolerance was set to 50 ppm for the first search
and to 25 ppm for the main search. The false discovery rate (FDR) was set to 0.01 both on pep-
tide and protein level. The database applied for the search was the human Uniprot database
(version 03/2018, reviewed entries only) with 20,316 protein entries. Further settings for the
search included carbamidomethylation as fixed modification and oxidation of methionine
and acetylation of the protein C terminus as variable modifications. Each peptide was al-
lowed to have a maximum of two missed cleavages and two modifications, “Match between
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runs” was enabled and the alignment window set to 10 min, with the match time window
of 1 min. Statistical evaluation was performed with Perseus software (version 1.6.0.2) [38]
using LFQ intensities of the MaxQuant result file. After filtering potential contaminants, the
LFQ values were Log(2)-transformed. Technical duplicates were averaged. Only proteins
detected in three of three biological replicates in either control and/or treatment groups
were considered for data evaluation. Permutation-based FDR was set to 0.05 for t-tests and
provided significant protein expression changes corrected for multi-parameters (S0 = 0.1).
The mass spectrometry proteomics data were deposited in the ProteomeXchange Consortium
(http://proteomecentral.proteomexchange.org) via the PRIDE partner repository [39] with
the dataset identifier PXD020617 and 10.6019/PXD020617.

5.8. Eicosanoid Sample Preparation

Cell supernatants were spiked with 5 μL of internal standards (Supplementary Table S1)
and centrifuged at 726 g for 5 min to remove cells and debris. Three ml of the supernatant
was mixed with 12 mL of ice cold ethanol and left at −20 ◦C overnight to precipitate the
contained proteins. The samples were centrifuged for 30 min with 4536 xg at 4 ◦C and the
supernatant transferred into a new 15 mL Falcon tube. Ethanol was evaporated via vacuum
centrifugation at 37 ◦C until the original sample volume was restored. Samples were loaded
on conditioned 30 mg/mL StrataX solid phase extraction (SPE) columns (Phenomenex,
Torrance, CA, USA). Columns were washed with 2 mL MS grade water and eicosanoids were
eluted with 500 μL methanol (MeOH abs.; VWR International, Vienna, Austria) containing
2% formic acid (FA; Sigma-Aldrich). MeOH was evaporated using N2 stream at room
temperature and reconstituted in 150 μL reconstitution buffer (H2O/ACN/MeOH + 0.2%
FA—65:31,5:3,5), containing a second set of internal eicosanoid standards at a concentration
of 10–100 nM (Supplementary Table S1).

5.9. UHPLC-MS/MS for Eicosanoid Measurements

Analytes were separated using a Thermo Scientific Vanquish (UHPLC) system and
a Kinetex® C18-column (2.6 μm C18 100 Å, LC Column 150 × 2.1 mm; Phenomenex®).
Applying a 20 min gradient flow method, starting at 35% B steadily increasing to 90%
B (1–10 min), going up to 99% B in 0.25 min. Flow rate was kept at 200 μL/min, 20 μL
injection volume and column oven temperature was set to 40 ◦C. Eluent A contains H2O +
0.2% FA and eluent B ACN:MeOH (90:10) + 0.2% FA.

Mass Spectrometric analysis was performed with a Q Exactive HF Quadrupole-
Orbitrap mass spectrometer (Thermo Fisher Scientific, Austria), equipped with a HESI
source for negative ionization. Mass spectra were recorded operating from 250 to 700 m/z
at a resolution of 60,000 @ 200 m/z on MS1 level. The two most abundant precursor
ions were selected for fragmentation (HCD 24 normalized collision energy), preferentially
molecules from an inclusion list which contained 32 m/z values specific for eicosanoids
(Supplementary Table S2). MS2 was operated at a resolution of 15,000 @ 200 m/z. For
negative ionization, a spray voltage of 2.2 kV and a capillary temperature of 253 ◦C were
applied, with the sheath gas set to 46 and the auxiliary gas to 10 arbitrary units.

Generated raw files were analyzed manually using Thermo Xcalibur 4.1.31.9 (Qual
browser), comparing reference spectra from the Lipid Maps depository library from July
2018 [40]. For peak integration and quantitative data analysis the software TraceFinderTM

(version 4.1-Thermo Scientific, Austria) was used. For the quantification of arachidonic
acid (Figure 3), a calibration curve was generated (Supplementary Figure S4).

5.10. Immunofluorescence

For fluorescence microscopy 8 × 104 cells in 400 μL were seeded in a μ-Slide 8 well
(Ibitreat coating, ibidi GmbH Martinsried, Germany). Differentiation of the cells was
induced with 100 ng/mL PMA for 48 h. Afterwards the cell supernatant was exchanged
with fully supplemented medium without PMA for an additional 24 h. Sample preparation
was performed as previously described with minor modifications [41]. Cells were fixed
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with pre-warmed formaldehyde (3.7%) for 15 min and permeabilized with Triton-X 100
(0.2%) for 10 min. Blocking was performed with Donkey serum (2% in PBS-A) for 1 h,
room temperature (RT). Primary antibodies were incubated 2h at RT at dilution 1:500.
After washing, specie-specific fluorescent-labelled secondary antibodies were added and
slides incubated in a dark humidified chamber for 1.5 h. For our study, Anti PMP70
Antibody (Rabbit polyclonal, PA1-650) and Anti TOM20 (F-10, Mouse Monoclonal Sc-
17764), Alexa Fluor 488 Donkey Anti Mouse (A21202_LOT2090565) and Alexa Fluor 568
Donkey Anti-Rabbit (A10042_LOT2136776) were used. The slides were washed and post-
fixed with 3.7% formaldehyde (10 min, RT); at the end of the post-fixation, 100 mM
glycine was used to mask reactive sites and slides were mounted and sealed with Roti-
Mount FluoCare (Roth, Graz, Austria) with DAPI. SIM Images were acquired with a
Confocal LSM Zeiss 710 equipped with ELYRA PS. 1 system. Structured Illumination
Microscopy (SIM) images were obtained with (Plan Apochromat 63X/1.4 oil objective)
grid 5 rotation. For the quantification of fluorescence intensities (Figure 4B), 30 optical
fields/region of interest (ROI) were quantified for every experimental condition from at
least 3 independent experiments.

5.11. Differentiation Status by Flow Cytometry

In order to confirm the differentiation status obtained via PMA treatment the cells
were tested for the differentiation marker CD11b (ITGAM) using FACS analysis. Therefore,
U937 cells were treated with 100 ng/mL PMA for 48 h using 2 × 105 cells per well in 6-well
plates. After the incubation time, the cells were washed three times with PBS and put
on ice. The differentiation status was assessed by labelling with an anti-CD11b antibody
(APC clone D12, BD Bioscience) and subsequent evaluation of the CD11b+ population.
Three biological replicates were analyzed per condition on an FACS Canto II cytometer
(BD Bioscience).

Supplementary Materials: The following are available online at https://www.mdpi.com/2218-273
X/11/1/113/s1, Figure S1: FACS analysis of PMA-treated U937 cells, Table S1: Eicosanoid Standards,
Table S2: Inclusion list of eicosanoids as used for the MS/MS analysis, Table S3: Results from
proteomic analyses of U937 cells, Table S4: Results from eicosanoid analyses of U937 cells, Table S5:
Results from proteomic analyses of FCS batches, Table S6: Results from eicosanoid analyses of
FCS batches.
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Abbreviations

AA Arachidonic acid
FCS Fetal calf serum
FFA Free fatty acids
CDM Chemically defined medium
FBS Fetal bovine serum
HETE Hydroxyeicosatetraenoic Acid
LC Liquid chromatography
LPS Lipopolysaccharides
MS Mass spectrometry
MS/MS Tandem mass spectrometry
PMA Phorbol 12-myristate 13-acetate
PUFA Polyunsaturated fatty acids
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Abstract: Endometriosis is a benign disease affecting one in ten women of reproductive age world-
wide. Although the pain level is not correlated to the extent of the disease, it is still one of the
cardinal symptoms strongly affecting the patients’ quality of life. Yet, a molecular mechanism of this
pathology, including the formation of pain, remains to be defined. Recent studies have indicated
a close interaction between newly generated nerve cells and macrophages, leading to neurogenic
inflammation in the pelvic area. In this context, the responsiveness of an endometriotic cell culture
model was characterized upon inflammatory stimulation by employing a multi-omics approach,
including proteomics, metabolomics and eicosanoid analysis. Differential proteomic profiling of the
12-Z endometriotic cell line treated with TNFα and IL1β unexpectedly showed that the inflammatory
stimulation was able to induce a protein signature associated with neuroangiogenesis, specifically in-
cluding neuropilins (NRP1/2). Untargeted metabolomic profiling in the same setup further revealed
that the endometriotic cells were capable of the autonomous production of 7,8-dihydrobiopterin
(BH2), 7,8-dihydroneopterin, normetanephrine and epinephrine. These metabolites are related to the
development of neuropathic pain and the former three were found up-regulated upon inflammatory
stimulation. Additionally, 12-Z cells were found to secrete the mono-oxygenated oxylipin 16-HETE,
a known inhibitor of neutrophil aggregation and adhesion. Thus, inflammatory stimulation of
endometriotic 12-Z cells led to specific protein and metabolite expression changes suggesting a direct
involvement of these epithelial-like cells in endometriosis pain development.

Keywords: endometriosis; inflammation; metabolomics; multi-omics; proteomics

1. Introduction

Endometriosis is a chronic inflammatory disease describing the abnormal growth
of uterine tissue outside of the uterine cavity in the pelvic area [1]. Endometriotic cells
are characterized by invasive phenotypes. They successfully attach to pelvic organs and
cause pelvic inflammation [2,3]. Studies estimate that the disease is affecting about 1 in
10 women worldwide. The clinical symptoms include dysmenorrhea, dyspareunia, chronic
pelvic pain and infertility. To date, there exists no curative treatment [1]. As one of
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the cardinal symptoms, pain strongly affects the patients’ quality of life and can only
be treated symptomatically so far. A large fraction of the published studies focused on
phenotypic investigations and the molecular mechanisms, especially those associated with
pain development, remain to be fully elucidated [4].

According to the rAFS/ASRM system, the extent of the disease does not correlate with
the pain level experienced by individual patients [5]. The severity of the pain sensation
seems to be connected to a mixture of neuropathy, neurogenic inflammation, nociception
and hyperalgesia [6]. It is known that the lesion’s surrounding nerves are infiltrated and
compressed by endometriotic cells [7]. Moreover, there is evidence that nascent nerve
cells can be attracted by the endometriotic lesion. Their inflammatory activated state may
also directly cause and transmit pain stimuli to the central nervous system [8]. Some
nerve cells may even release proinflammatory factors, which ultimately lead to neurogenic
inflammation and increased local vascular permeability, enhancing migration of ectopic
endometrial cells [9–11]. Furthermore, it is well accepted that endometriosis-associated
pain is directly linked to dorsal root ganglion neurons [12].

Immunological dysregulation seems to represent a main pathogenesis driver in en-
dometriosis [13]. Normally, cell-mediated immune responses contribute to the elimination
of immune invaders and clearance of ectopic endometrial tissue. In endometriosis, the clear-
ance of endometrial tissue in the peritoneal cavity is abolished due to an impaired immune
response at the site of implantation [14,15]. Deregulated T-cell immunity and a suppressed
activity of macrophages and NK cells were found to contribute to this process [16]. The
activation of an inflammatory response in the peritoneum of women with the disease leads
to local production of cytokines, chemokines and growth factors that enhance the growth
of the ectopic endometrial tissue by inhibiting normal apoptotic processes and promoting
local angiogenesis and neurogenesis [17]. The macrophage-nervous axis in endometriosis
is commonly accepted to be the main cause for disease-associated pain [18]. Indeed, nerve
infiltration is positively correlated with high density of tissue-resident macrophages in
the lesion [19]. Alternatively, these nerve fibres are attracted by the action of semaphorins.
As semaphorins normally regulate axon migration, axonal growth and guidance, altered
semaphorin secretion may lead to aberrant nervous innervation in endometriosis [18].
Infiltrating the endometriotic lesions, they secrete neuroangiogenic factors and create a
neovasculative environment [20]. Herein, especially VEGF secretion plays an important
role in axonal outgrowth functioning as a neurotrophic factor [21,22]. Once neuroangio-
genesis and infiltration in nerve fibres was initiated by aberrant inflammatory signaling,
the endometriotic lesion may be create its own altered microenvironment [23].

Macrophages secrete tumour necrosis factor α (TNFα) and interleukin-1β (IL1β) that
contribute to disease progression [24,25]. These inflammatory cytokines can mediate
neurogenic inflammation and secretion of further neuroangiogenic factors [26,27]. TNFα
signaling increases the transient receptor potential vanilloid 1 (TRPV1) nociception in
the dorsal root neurons which contributes to hyperalgesia and neuropathic pain sensa-
tion [28,29]. It was also found to sensitize sensory nerves to a constant induction of the
action potential via TRPV1 in patients, mainly through overexpression of voltage-gated
sodium channels [27]. TRPV1 expression is also increased in uterosacral ligaments in
endometriosis patients [30] and it has been shown that pain is often driven by dorsal
root ganglion neurons, in association with TRPV1 [12]. Neurogenesis seems to be at least
partially responsible for neuropathic pain experiences [31,32]. Therefore, the molecular
mechanisms of neurogenesis in endometriosis need to be comprehensively characterized
to contribute towards novel therapy options in endometriosis pain management.

During the last years proteomics and metabolomics analysis were applied to uncover
markers for early detection of endometriosis and to understand the molecular changes
associated with its pathophysiology [33–35]. However, the use of these omics techniques is
still sparse in endometriosis and multi-omics profiling was not yet applied, to the best of
our knowledge. Combining proteomic with metabolomic profiling is especially attractive,
since it may support a functional interpretation of the involved pathways. In addition,
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signaling lipids are key players during inflamation and act in a concerted fashion with
proteins [36,37]. Thus, we have applied an in-depth proteome, metabolome and eicosanoid
profiling of the endometriotic epithelial cell line 12-Z to investigate and characterize their
responsiveness towards inflammatory signals. The cell line was isolated from a patient
with peritoneal endometriosis and immortalized by Starzinski-Powitz [38]. 12-Z was
characterized as epithelial-like (cytokeratin-positive/E-cadherin negative) and using a
matrigel assay it was shown that the cell line was highly invasive [38]. To simulate the
inflammatory macrophage signaling, the cells were treated with the cytokines TNFα or
IL1β, which are typically upregulated in endometriotic lesions of patients [39]. We provide
proteomic and metabolic evidence that the endometriotic 12-Z cells may independently
express key mediators of neuroangiogenesis and neuropathic pain.

2. Material & Methods

2.1. Cell Culture

The 12-Z cell line was a generous gift of Dr. Anna Starzinski-Powitz (Goethe-Universität
Frankfurt) [38]. Human epithelial endometriotic cell line 12-Z was cultivated in DMEM-
F12 phenolredfree (Gibco, Thermo Fisher Scientific, Vienna, Austria) with 10% (v/v) heat
inactivated fetal calf serum (FCS, SigmaAldrich, Vienna, Austria) and 1% (v/v) penicillin
and streptomycin (Sigma-Aldrich, Vienna, Austria). Cultivation was done in humidified
incubators at 37 ◦C and 5% CO2. The 12-Z cell line was grown in T75 polystyrene cell culture
flasks with cell growth surface for adherent cells (Sarstedt, Wiener Neudorf, Austria). Cells
were sub-cultured every 3–4 days at a 1:3 ratio. Cells were cultivated until they reached
a concentration of 80% confluency. Cell counting was performed using a MOXI Z mini
automated cell counter (ORFLO Technologies, Ketchum, ID, USA) using Moxi Z Type
M cassettes (ORFLO Technologies, Ketchum, ID, USA). Cells were routinely checked for
mycoplasma contamination using MycoAlert™ mycoplasma detection kit (Szabo-Scanidc,
Vienna, Austria). Cells were seeded on a 6-well plate with cell growth surface for adherent
cells (Sarstedt, Wiener Neudorf, Austria) at a density of 300.000 cells/well in 3 mL growth
medium. Inflammatory stimulation was applied for 48 h at a concentration of 10 ng mL−1

with either TNFα or IL1β (both Sigma-Aldrich).

2.2. Proteomics

After the indicated treatment, the cells were washed twice with PBS and fraction-
ation was performed as previously described [40]. Isotonic lysis buffer (1 mL of 10mM
HEPES/NaOH, pH 7.4, 0.25 M sucrose, 10 mM NaCl, 3 mM MgCl2, 0.5% Triton × 100,
protease and phosphatase inhibitor cocktail (Sigma-Aldrich)) was added to the cells, which
were scraped using a cell scraper. Cell lysis was achieved using mechanical shear stress
employing a syringe and a needle. After centrifugation at 2270× g for 5 min supernatant
containing cytoplasmic proteins was precipitated in 4 mL of cold EtOH overnight.

Protein sample preparation: The ethanolic protein suspension was centrifuged at
4536g for 30 min (4 ◦C). The supernatant was discarded, while the protein pellet was dried
and resuspended in lysis buffer (8 M urea, 50 mM TEAB, 5% SDS). Protein concentration
was determined using the bicinchoninic acid assay. An aliquot of the samples containing
20 μg protein was digested using a modified Protifi protocol [41]. In short, the samples were
diluted to a concentration of 1 μg μL−1. The diluted sample (20 μg in 20 μL) were pipetted
into a 1.5 mL Eppendorf microcentrifuge tube and 20 μL of DTT (64 mM) was added. The
samples were heated for 10 min at 95 ◦C under constant shaking (300 rpm). The samples
were cooled to room temperature, treated with iodacetamide (5 μL of 486 mM solution,
and incubated in the dark for 30 min at 30 ◦C and 300 rpm. Afterwards, phosphoric acid
(4.5 μL of 12%) was added, resulting in 1.2% final concentration of phosphoric acid. S-Trap
buffer (297 μL, 90% MeOH (v/v), 0.1 M TEAB) was added to the solution. The sample
was loaded on the Protifi S-Trap column and washed 4 times with S-trap buffer (150 μL).
Trypsin/LysC (MS grade; Promega Corporation, Madison, WI, USA) was added in a 1:40
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ratio (0.5 μg for 20 μg protein). After digestion for 2 h at 37 ◦C peptides were eluted, dried
using a SpeedVac and stored until further analysis.

Data acquisition: Dried peptides were reconstituted in 5 μL 30% formic acid, con-
taining four synthetic peptides, for quality control [42]. The samples were further diluted
with 40 μL mobile phase A (97.9% H2O, 2% acetonitrile, 0.1% formic acid). Peptides were
analyzed with a Dionex UltiMate 3000 Nano LC system coupled to a Q Exactive Orbitrap
mass spectrometer (Thermo Fisher Scientific, Vienna, Austria) using a previously published
method [40]. In short, peptides were separated on a 50 cm × 75 μm PepMap100 analytical
column (Thermo Fisher Scientific), at a flow rate of 300 nL min−1. Gradient elution of the
peptides was achieved by increasing the mobile phase B (79.9% acetonitrile, 20% H2O, 0.1%
formic acid) from 8% to 40%, with a total chromatographic run time of 135 min including
washing and equilibration. Mass spectrometric resolution on the MS1 level was set to
70,000 (at m/z 200) with a scan range from m/z 400–1400. The 12 most abundant peptide ions
were selected for fragmentation (Top12) at 30% normalized collision energy and analyzed
in the Orbitrap at a resolution of 17,500 (at m/z 200).

Data analysis: Data was analyzedanalyzed in settings as previously described [42].
Briefly, raw data was submitted to the freely available software MaxQuant (version
1.6.6.0) [43] utilizing the Andromeda search engine. A minimum of two peptide iden-
tifications, at least one of them being a unique peptide, was required for valid protein
identification. The false discovery rate (FDR) was set to 0.01 on both peptide and protein
level. Uniprot database (Human, version 03/2018, reviewed entries only, 20,316 protein
entries) was used to generate the fasta file used for the search. For statistical data evaluation
MaxQuant companion software Perseus (version 1.6.1.0) was used. Reverse sequences and
potential contaminants as well as proteins identified only by site were removed. Label-free
quantification (LFQ) values were converted to Log2(x) and technical replicates averaged.
Proteins were filtered for valid values, keeping only proteins that were identified in at
least three measurements of one sample group. Evaluation of regulatory events between
different samples groups was achieved by two-sided t-tests using a FDR < 0.05 calculated
by permutation-based test [44,45]. Significantly regulated proteins were further analyzed
using the Cytoscape [46] plugin ClueGo [47] with default settings. Gene ontology for
Biological Processes (GOBP) was used as search space with medium network specificity.
Statistical options were set to two-sided hypergeometriy test with Bonferroni step down
p-value correction. String [48] analysis was further used to display protein network con-
nections of regulated proteins. STRING protein query of species homo sapiens was used
with a confidence (score) cut-off of 0.4 and with 0 additional interactors allowed. The
mass spectrometry proteomics data have been deposited to the ProteomeXchange Con-
sortium via the PRIDE [49] partner repository with the dataset identifier PXD022354 and
10.6019/PXD022354.

2.3. Eicosanoid Analysis

Eicosanoid sample collection and preparation: Supernatants from cell culture exper-
iments or medium (3 mL) was added to cold ethanol (12 mL, EtOH, abs. 99%, −20 ◦C;
AustroAlco) containing an internal standard mixture of 12S-HETE-d8, 15S-Hete-d8, 5-Oxo-
ETE-d7, 11.12-DiHETrE-d11, PGE-d4 and 20-HETE-d6 (each 100 nM; Cayman Europe,
Tallinn, Estonia). The samples were stored over-night at −20 ◦C. After centrifugation
(30 min, 5000 rpm, 4 ◦C), the supernatant was transferred to a new 15 mL Falcon™ tube
and EtOH was evaporated via vacuum centrifugation (37 ◦C) until the original sample
volume was accomplished. Samples were loaded on preconditioned StrataX solid phase
extraction (SPE) columns (30 mg mL−1; Phenomenex, Torrance, CA, USA) using Pasteur
pipettes. SPE columns were washed with MS grade water (3 mL) and elution of eicosanoids
was performed with ice-cold methanol (500 μL, MeOH abs.; VWR International, Vienna,
Austria) containing 2% formic acid (FA; Sigma-Aldrich). MeOH was evaporated under
a gentle stream of nitrogen at room temperature and the samples were reconstituted in
150 μL reconstitution buffer (H2O:ACN:MeOH + 0.2% FA–vol% 65:31.5:3.5), including
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a second mixture of internal standards, including 5S-HETE-d8, 14.15-DiHETrE-d11 and
8-iso-PGF2a-d4 (10–100 nM; Cayman Europe, Tallinn, Estonia). Reconstituted samples
were stored at +4 ◦C and measured subsequently via LC-MS/MS.

Data acquisition: Separation of eicosanoids was performed on a Thermo Scientific™
Vanquish™ (UHPLC) system equipped with a Kinetex® C18-column (2.6 μm C18 100 Å, LC
Column 150 × 2.1 mm; Phenomenex®). All samples were analyzed in technical duplicates.
The injection volume was 20 μL and the flow rate was kept at 200 μL min−1. The UHPLC
method included a gradient flow profile (mobile phase A: H2O + 0.2% FA, mobile phase B:
ACN:MeOH (vol% 90:10) + 0.2% FA) starting at 35% B and increasing to 90% B (1–10 min),
further increasing to 99% B within 0.5 min and held for 5 min. Afterwards solvent B was
decreased to the initial level of 35% within 0.5 min and the column was equilibrated for
4 min, resulting in a total run time of 20 min. The column oven temperature was set to
40 ◦C. The UHPLC system was coupled to a Q Exactive™ HF Quadrupole-Orbitrap™
mass spectrometer (Thermo Fisher Scientific, Austria), equipped with a HESI source
for negative ionization to perform the mass spectrometric analysis. The resolution on
the MS1 level was set to 60,000 (at m/z 200) with a scan range from m/z 250–700. The
two most abundant precursor ions were picked for fragmentation (HCD 24 normalized
collision energy), preferentially from an inclusion list containing m/z 31 values specific for
eicosanoids and their precursor molecules. Resulting fragments were analyzed on the MS2
level at a resolution of 15,000 (at m/z 200). Operating in negative ionization mode, a spray
voltage of 2.2 kV and a capillary temperature of 253 ◦C were applied. Sheath gas was set to
46 and the auxiliary gas to 10 (arbitrary units).

Data analysis: Data interpretation of raw files generated by the Q Exactive™ HF
Quadrupole-Orbitrap™ mass spectrometer was performed manually using Thermo Xcal-
ibur™ 4.1.31.9 (Qual browser). Spectra were compared with reference spectra from the
Lipid Maps depository library from July 2018 [50]. Peaks were integrated using the
TraceFinder™ software package (version 4.1—Thermo Scientific, Vienna, Austria).

2.4. Metabolomics

Metabolomic sample collection and preparation: For metabolomics analysis, cells
were seeded at 106 cells per T25 flask in complete medium (5 mL) and left to adhere
over-night. They were then treated with IL1β or TNFα for 48 h similarly to the proteomic
experiment. Thereafter, the medium was removed and centrifuged (1100 rpm, 2 min, 4 ◦C).
An aliquot (200 μL) of each medium sample was precipitated in cold MeOH (100%, 800 μL)
and stored at −80 ◦C. The methanolic solution contained dopamine-d4, melatonin-d4
(both Santa Cruz Biotechnology, Dallas, TX, USA) and N-acetyl-serotonin-d3 (Toronto
Research Chemicals BIOZOL) as internal standards at concentrations of 120 pg μL−1.
The cell samples were washed once with PBS (3 mL) and metabolites were extracted
with cold MeOH (80%, containing stds, 1 mL). The 80% methanolic solution contained
dopamine-d4, melatonin-d4 (both Santa Cruz Biotechnology, Dallas, TX, USA) and N-acetyl-
serotonin-d3 (Toronto Research Chemicals BIOZOL) as internal standards at concentrations
of 100 pg μL−1. Each flask was processed at a time and immediately snap-frozen in liquid
nitrogen. Three replicates per condition were then thawed together and the cells were
scraped, transferred into labelled Eppendorf tubes and were stored at −80 ◦C. Samples
were dried and reconstituted in 120 μL of 1% methanol and 0.2% formic acid and 1 pg μL−1

caffeine-(trimethyl-D9) (Sigma Aldrich) and transferred into HPLC vials equipped with a
200 μL V-shape glass insert (both Macherey-Nagel GmbH Co. KG) suitable for LC-MS/MS
analysis. Caffeine-(trimethyl-d9) (1 pg μL−1) was used as an additional internal standard.
Again, the experiment was carried out in biological triplicates.

Data acquisition: Samples were separated on a reversed phase Kinetex XB-C18 column
(2.6 μm, 150 × 2.1 mm, 100 Å, Phenomenex Inc., Torrance, CA, USA) using a Vanquish
UHPLC System (Thermo Fisher Scientific). Mass spectrometric analysis was performed on
a Q Exactive HF orbitrap (Thermo Fisher Scientific). Mobile phase A consisted of water
with 0.2% formic acid, mobile phase B of methanol with 0.2% formic acid and the following
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gradient program was run: 1 to 5% B in 0.5 min, 5 to 40% B from 0.5–5 min, then 40 to 90%
B from 5–8 min, followed by a wash phase at 90% B for 2.5 min and then an equilibration
phase at 1% B for 2 min, yielding a total run-time of 12.5 min. Flow rate was 0.5 mL min−1,
injection volume was 5 μL and the column temperature was set to 40 ◦C. The injection
needle was washed in between runs with 10% methanol. All samples were analyzed in
technical replicates. Samples were analyzed in positive, as well as in negative ionization
mode. Scan range was from m/z 100–1000 and resolution was set to 60,000 (at m/z 200) for
MS1 and 15,000 (at m/z 200) for MS2. The four most abundant ions of the full scan were
selected for further fragmentation in the HCD collision cell applying 30 eV normalized
collision energy. Dynamic exclusion was applied for 6 s. Instrument control was performed
using Xcalibur 4.0 Qual browser (Thermo Fisher Scientific).

Data analysis: Raw files generated by the Q Exactive HF were loaded into the Com-
pound Discoverer Software 3.1 (Thermo Fisher Scientific). Compounds were identified
in Compound Discoverer with a user workflow tree. A maximum retention time shift of
0.1 min was allowed for aligning features and using a maximal mass tolerance of 5 ppm.
Metabolites were matched against mzcloud (Copyright © 2021–2020 HighChem LLC, Slo-
vakia mzCloud is a trademark of HighChem LLC, Bratislava, Slovakia). Compounds with
a match factor ≥80 were manually checked. This was performed with Xcalibur 4.0 Qual
browser (ThermoFisher Scientific). For peak integration and calculation of peak areas, the
Tracefinder Software 4.1 (ThermoFisher Scientific) was used. The generated batch table
was exported and further processed with Microsoft Excel, GraphPad Prism (Version 6.07)
and the Perseus software (Version 1.6.12).

2.5. Cell Cycle Analysis

Flow cytometry was performed to determine the cell cycle distribution with and with-
out inflammatory stimulation. Therefore, BD Cycletest™ Plus DNA Kit (BD Biosciences,
Vienna, Austria) was used according to the manufacturer’s protocol to prepare the cells
and measured on a CytoFLEX Flow Cytometer (Beckman&Coulter, Vienna, Austria) in the
PE-channel. Statistical significance was evaluated with a bidirectional student t-test and
three biological replicates.

3. Results

Macrophages can stimulate endometriotic cells by secreting cytokines such as TNFα
and IL1β [24,25]. Here, an in-vitro model of endometriosis was investigated to evaluate
the effects of such inflammatory stimuli on endometriotic cells by means of a multi-omics
approach, including untargeted shotgun proteomics, metabolomics and eicosanoid analysis
(Figure S1). The endometriotic 12-Z cell line was treated with TNFα or IL1β at 10 ng mL−1

for 48 h (Figure 1A). Flow cytometry analysis showed a slight increase in the tetraploid
G2/M phase, as well as S-Phase and a corresponding decrease of cells in G0/G1 phase
(Figure S2).

3.1. Eicosanoid Analysis Reveals the Uptake of Eicosanoid Precursors by 12-Z Cells from the
Growth Medium

Eicosanoids from the supernatants of control and inflammatory stimulated 12-Z cells
were enriched by a solid-phase extraction protocol and subsequently analyzed by mass
spectrometry. A total of 49 eicosanoids and polyunsaturated fatty acids (PUFAs) were
detected in the supernatants. The composition of the fully supplemented medium was
additionally verified. The epithelial-like 12-Z cells efficiently depleted the growth medium
of the eicosanoid precursors arachidonic acid (AA), docosahexaenoic acid (DHA) and
eicosapentaenoic acid (EPA) irrespective of treatment condition (Figure S2). Strikingly,
EPA was not detectable after culturing the cells for 48 h. In contrast, the mono-oxygenated
hydroxyeicosatetraenoic acids 16-HETE and 18-HETE were not detected in the growth
medium, but only in the presence of the cultured cells. Inflammatory stimulation had little
impact on the differential expression of eicosanoids.
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Figure 1. (A) Schematic representation of endometriotic 12-Z cells treated with TNFα (red) or IL1β (blue). IL-12 and NF-κB
signaling was induced in both treatments while neuroangiogenesis was much more pronounced for TNFα stimulation.
(B) Venn-Diagram showing the number of significantly regulated proteins (FDR = 0.05, S0 = 0.1) for TNFα (red) and IL1β
(blue) compared to the control state. Twenty-seven protein groups were significantly regulated in both treatments. (C)
Heatmap highlighting proteins involved in NF-κB and Il-12 signaling and downstream targets. (D) Protein signature
characteristic for the phenotype of intermediate monocytes upon treatment of epithelial-like 12-Z cells with TNFα (red) and
not with IL1β (blue). Asterisks (*) show multi-parameter corrected significant regulations of protein abundance (FDR = 0.05,
S0 = 0.1) compared to untreated controls (Con).

3.2. TNFα- and IL1β-Stimulated 12-Z Cells Show Enhanced Proliferation and Activation of IL-12
and NF-κB Signaling Pathways

Proteomic profiling was performed on the cytoplasmic (soluble) fraction and resulted
in the identification of 3684 protein groups. Label-free quantification (LFQ) was used
to compare inflammatory stimulated with untreated conditions. In LFQ proteomics, the
unlabeled peptides are quantified on the MS1 level and the intensities were adjusted
to the overall intensity of all quantified peptides. Multi-parameter corrected statistical
analysis (FDR = 0.05, S0 = 0.1) revealed 437 and 35 significantly regulated proteins after
treatment with TNFα or IL1β, respectively, while 27 protein groups were regulated in
both treatments (Figure 1B). Thus, inflammatory stimulation of 12-Z cells by TNFα led
to 10-fold higher number of significantly regulated proteins compared to stimulation by
IL1β. The most prominent regulations confirmed a successful inflammatory stimulation of
the cells by upregulating IL-12 and NF-κB signaling pathways (Figure 1A). Upon TNFα
treatment the classical (NFKB1) and alternative (NFKB2, RELB) NF-κB pathways were
significantly upregulated while IL1β triggered partly the alternative pathway [51]. Both
treatments, however, significantly induced the expression of downstream IL-12 and NF-κB
targets (i.e., SOD2, SERPINB2) as exemplified in the heatmap in Figure 1C. Intermediate
monocytes are a subpopulation of monocytes characterized by antigen presentation and
transendothelial migration [52]. In contrast to classical monocytes, intermediate monocytes
feature lower CD14 levels, but increased antigen presentation (HLA), lysozyme, S100A8
and S100A10 as identified by transcriptomic profiling. We found a strikingly similar protein
signature corresponding to this intermediate monocyte state for the TNFα-treated, but not
the IL1β-treated 12-Z cells (Figure 1D).
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3.3. TNFα Induces the Expression of Proteins Involved in Neuroangiogenesis in 12-Z Cells

TNFα stimulation showed the upregulation of several proteins involved in neuroan-
giogenesis. For example, regulated protein groups revealed dorsal root ganglion morpho-
genesis, sensory neuron axon guidance, neuron projection extension/guidance, semaphorin
signaling and positive regulation of sprouting angiogenesis (Figure 2A). ClueGo analysis of
significantly regulated proteins further revealed a network corresponding to angiogenesis,
including amongst others the VEGF pathway (Figure 2B). Furthermore, the neuropilin re-
ceptors NRP1/NRP2 and RPL10 were found to be significantly upregulated [53]. STRING
network analysis revealed a strong interconnection of proteins associated with neuroan-
giogenesis, which were significantly upregulated upon treatment with TNFα, including
angiogenesis promoters ICAM1, VCAM1 [54], and ITGA5 [55] (Figure 2C). Furthermore,
downstream targets of vascular endothelial growth factor (VEGF) signaling have been
found upregulated upon stimulation with TNFα (e.g., BCRA1, ITGAV). A significant up-
regulation of proteins involved in semaphorin signaling was observed (e.g., OPTN, EPHA4,
DHRS3). While none of the described proteins were significantly upregulated by IL1β
treatment, they showed a similar trend, which highlighted the differential responses of
these endometriotic cells to distinct inflammatory stimulations.

Figure 2. (A) Gene Ontology terms for biological processes (GOBP) associated with neurogenesis. (B) ClueGo network for
angiogenesis. (C) STRING network analysis for proteins involved in neurogenesis and angiogenesis. Red indicates multi-
parameter corrected significant regulation while yellow-colored proteins show higher expression but are not significant.

3.4. Untargeted Metabolomics Reveals the Upregulation of 7,8-Dihydroneopterin,
7,8-Dihydrobiopterin (BH2) and Normetanephrine in 12-Z Cells

The signature of upregulated proteins involved in neuroangiogenesis and neuropathic
pain motivated the investigation of pain-associated signaling molecules on the level of
metabolites. For this purpose, an untargeted metabolomics assay was carried out by col-
lecting whole cell lysates and supernatants of control and inflammatory stimulated 12-Z
cells. Additionally, the fully supplemented medium was analyzed using the same method
to determine the composition of the metabolic background similarly to the eicosanoid
analysis. The experiment included a database search based on MS2 fragment spectra
which resulted in the identification of 29,607 features, from which the software annotated
633 compounds with a match factor ≥80 (Table S3). After manual review, 63 metabolites
were selected and their abundances were quantified on MS1 level as area under the curve
based on accurate masses and retention time (Table S2). Multi-parameter corrected statis-
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tical analysis (FDR = 0.05, S0 = 0.1) revealed 15 and 4 significantly regulated metabolites
for TNFα and IL1β in the whole cell lysates, respectively (Figure 3A). An analogous
analysis of the supernatants revealed 3 and 26 significantly regulated metabolites for
TNFα and IL1β treatments, respectively (Figure 3B). Strikingly, 7,8-dihydroneopterin,
7,8-dihydrobiopterin (BH2), epinephrine (identity of the molecule verified with external
standards) and normetanephrine (annotated based on MS2) were detected in endometriotic
12-Z cells (Figures 3 and 4). These metabolites were not detected in the fully supplemented
cell culture medium (Figure S3), but only in whole cell extracts and supernatants only in
the presence of the 12-Z cells (Figure 4A). The recorded fragmentation spectra matched
well the reference spectra from mzcloud database and corroborated the identification of
these molecules (Figure 4B). In fact, BH2 and normetanephrine were significantly upregu-
lated in the cellular interior during inflammatory stimulation with TNFα or IL1β, while
7,8-dihydroneopterin was upregulated upon TNFα stimulation only (Figures 3 and 4).
The induction of BH2, 7,8-dihydroneopterin and normetanephrine was more pronounced
upon activation with TNFα compared to IL1β. Interestingly, the enzymes involved in the
biosynthesis of these metabolites remained largely constant upon inflammatory stimulation
(e.g., dihydrofolate reductase DHFR or catechol O-methyltransferase COMT), with the
exception of sepiapterin reductase (SPR), which was down-regulated by TNFα treatment
(Figure 4). Epinephrine and normetanephrine were unexpectedly detected in 12-Z cells, as
they were not yet associated with these endometriotic epithelial-like cells.

Figure 3. Volcano plots comparing metabolite profiles of control experiments with TNFα and IL1β treatments in whole
cell lysates (A) and supernatants (B). X-axis displays the calculated difference of treatment-control an a log2-scale and
y-axis show the -log p-value for each molecule. Metabolites above significance curves represent multi-parameter corrected
significantly regulated metabolites (FDR = 0.05, S0 = 0.1).
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Figure 4. (A) The metabolic pathway for the synthesis of 7,8-dihydroneopterin and 7,8-dihydrobiopterin is depicted together
with the MS2 spectra of the measured metabolites compared to the reference spectrum from the mzcloud database. Intensity
values of the metabolite and protein levels (orange background) in control, as well as TNFα– and IL1β-treatment, are given
below. (B) Biosynthetic pathway of epinephrine derivatives. Normetanephrine is obtained from norepinephrine by the
catechol-O-methyl transferase (COMT). MS2 spectra of normetanephrine compared to the reference spectrum from the
mzcloud database. Intensity values of the metabolite and protein levels (orange background) in control, as well as TNFα–
and IL1β-treatment, are given below. None of the metabolites were detected in the fully supplemented medium (Figure S3).
Asterisks (*) show multi-parameter corrected significant regulations of metabolite intensities compared to untreated controls
(FDR = 0.05, S0 = 0.1). The orange shadows distinguish the abundance changes of proteins from those of the metabolites.

4. Discussion

Although endometriosis is affecting the quality of life of millions of women world-
wide, representing a clear unmet medical need, the underlying molecular mechanism of
this disease remains largely unknown. As pain sensation is among the most prevalent
symptoms, investigating molecular mechanisms responsible for the development of pain
may be key to identify useful therapeutic approaches. The interplay among endometriotic
cells, macrophages and nerve cells in the ectopic lesions of endometriosis is of special
interest for the origin of pain. We performed a multi-omics analysis, including proteomics,
metabolomics and eicosanoid analysis, of the epithelial-like 12-Z endometriotic cell line
in order to characterize the responses of these cells to inflammatory stimulation and their
potential involvement in the development of pain. The 12-Z endometriotic cells were
previously characterized as a proliferating and invasive cell line [38]. We found that inflam-
matory stimulation with TNAα or IL1β did not greatly affect the cell cycle distribution
compared to untreated cells. In accordance, the eicosanoid precursors AA, DHA and EPA
were efficiently depleted from growth medium irrespective of the inflammatory stimulus
and were probably incorporated in the membranes of 12-Z cells. The mono-oxygenated
16– and 18-HETE are cytochrome P450 metabolic products of AA and were released from
12-Z cells. Importantly, 16-HETE is typically generated by exposure of resting neutrophils
to AA [56] and represents an endogenous inhibitor of neutrophil activation [57] and thus
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exhibits anti-inflammatory effects. In our setup, the extent of 16-HETE release was inde-
pendent of treatment condition.

The proteomic data suggested that the 12-Z endometriotic cells, when stimulated with
TNFα, may mimic an intermediate monocytic phenotype, which is generally characterized
by transendothelial migration [52], and is actively involved in forming and sustaining a
neuroangiogenic microenvironment characteristic for endometriotic lesions. Endometriotic
cells were previously shown to exhibit enhanced migratory properties upon exposure to
proinflammatory factors [9–11]. Moreover, dysfunction in macrophage-mediated phago-
cytosis of endometrial cells that undergo retrograde transport to the peritoneal cavity is
considered an important factor in the development of endometriosis. In fact, this mimicry
phenotype of the 12-Z cells may contribute towards the dysregulated immune clearance
observed in endometriosis [14,15]. Generally, the 12-Z cells seem more susceptible towards
stimulation by TNFα compared to IL1β. Inflammatory stimulation led to the upregulation
of proteins involved in neuronal interactions as well as dorsal root ganglion morphogenesis
and axon guidance. It is known that the pathology of endometriosis features neuronal
interactions and especially neurogenesis [22]. Furthermore, a previous study already
showed differential expression of semaphorins and neuropilin receptors correlating to
dysmenorrhea [58]. Semaphorins are a group of evolutionarily highly conserved surface or
locally secreted nerve repellent factors that can regulate axon migration, axonal growth
and guidance [59–61]. The potential role of semaphorin 3A and its receptor (NRP1) in
the regulation of aberrant sympathetic innervation in peritoneal endometriosis have been
previously described [58]. Neuropilin receptors are prominent neurogenesis promoters,
which function as axon guidance signaling receptors, as well as angiogenesis activation [31].
Our study shows that stimulation of 12-Z cells with TNFα upregulates the levels of NRP1,
NRP2, DPYSL3, OPTN, EPHA4 and DHRS3 proteins suggesting an active involvement of
endometriotic epithelial cells in semaphorin signaling. Normally, the process of nervous
generation is a conserved feature present during embryonic development [62]. Although
proteins like RPL10 and NRP1/2 are mostly associated with embryonic developmental
signaling, they have been found significantly overexpressed upon TNFα stimulation in
12-Z in this study and suggest an unrecognized functional plasticity of these cells, which
may contribute towards an increased understanding of this pathology.

We further combined the proteome profiling with untargeted metabolomic analysis,
investigating whether metabolites of 12-Z cells may be able to contribute to neuronal inter-
action and signaling. Especially, the capability of the production of 7,8-dihydrobiopterin
(BH2), 7,8-dihydroneopterin, epinephrine and normetanephrine by endometriotic epithelial
cells was striking. The differential expression of these metabolites was not correlated with
the corresponding enzymes in their biosynthetic pathways (Figure 4). 7,8-Dihydroneopterin
is an accepted metabolic inflammation marker normally generated by macrophages and
has been related to impaired phagocytosis in endometriosis patients [14,63]. Epinephrine is
a neurotransmitter secreted by the adrenal medulla. It is required for the vagus-mediated
modulation of the nociceptive threshold and acts as inflammatory mediator induced in
hyperalgesia [64]. Norepinephrine, the epinephrine precursor, from sympathetic nerve
fibers is known to bind the oestradiol ß2 receptor on macrophages, leading to activation of
PKA signaling and thus stimulating TNFα mediated inflammation [27]. Norepinephrine is
generally involved in inflammation as well as endometriosis pathology [18,65]. This mech-
anism was previously described as an interaction between nerve cells and macrophages.
The deregulation of epinephrine and semaphoring/NRP1 signaling pathways in the nerve
cells of endometriosis lesion has been shown to support macrophage polarization [66–68].
Our data, however, suggest that epithelial endometriotic cells might themselves be capable
of producing these metabolites, subsequently leading to enhanced TNFα secretion by
polarized macrophages.

The present model proposes not only a potential influence of endometriosis-associated
epithelial cells on macrophages but on nerve cells as well. The significant upregula-
tion of neurogenesis-related proteins demonstrated that the 12-Z cells may be capable of
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independently modulating neuronal mechanisms. Here again, norepinephrine and its
metabolites might play an important role in the activation of pain [69]. It has been shown
that epinephrine activates unmyelinated afferents in lesioned nerves [70]. Since endometri-
otic lesions contain large amounts of unmyelinated nerve fibres [71], there might be a
connection between epinephrine secretion and the induction of pain sensation. The detec-
tion of epinephrine and normetanephrine in cell lysates and supernatants of IL1β-activated
endometriotic cells is unprecedented, since this metabolite is normally produced by adrenal
glands. Thus, TNFα and IL1β activation might be important to perpetuate the disease by
affecting proteome, metabolome and eicosanoid levels differentially. Finally, the conversion
of tetrahydrobiopterin (BH4) into BH2 is involved in the biosynthesis of norepinephrine
as the initial hydroxylation step from tyrosine [72]. BH4 application in vivo has been
shown to cause heat hypersensitivity and increased pain sensation through TRPV1 [73].
TRPV1 receptor is overexpressed in ectopic endometriosis implants, as well as in dorsal
root ganglia of rats with endometriosis [12,74].

5. Conclusions

In summary, the data presented in this work highlights the proteomic, metabolomic
and eicosanoid alterations upon inflammatory stimulation of the endometriotic epithelial-
like cell line 12-Z. Besides the expected activation of inflammatory signaling cascades
upon cytokine stimulation, these cells displayed an unexpected protein signature related
to neuroangiogenesis which clearly underlined their capability to support neurogenesis in
the lesion. Putative novel mediators in endometriosis pathology and pain development
were discovered on the protein, metabolite and eicosanoid levels. This study indicates that
12-Z endometriotic cells may mimic an intermediate monocytic phenotype and actively
participate in the crosstalk of the macrophage-nervous network within the lesion on the
protein and metabolite levels. Thus, inflammatory stimulation of endometriotic cells by
TNFα and IL1β seem to play an important role in the perpetuation of the characteristic
inflammatory phenotype. They further seem to create factors enhancing the pain sensation
through neurogenic inflammation. The actual interaction of endometriotic cells with
macrophages and nerve cells requires further investigation but the presented data provided
experimental evidence that they might be capable of hijacking immune cell functions in
order to support the development and growth of an endometriotic lesion outside the
uterine cavity.
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Abstract: Inflammatory response plays an essential role in the resolution of infections. However,
inflammation can be detrimental to an organism and cause irreparable damage. For example, during
sepsis, a cytokine storm can lead to multiple organ failures and often results in death. One of the
strongest triggers of the inflammatory response is bacterial lipopolysaccharides (LPS), acting mostly
through Toll-like receptor 4 (TLR4). Paradoxically, while exposure to LPS triggers a robust inflam-
matory response, repeated or prolonged exposure to LPS can induce a state of endotoxin tolerance,
a phenomenon where macrophages and monocytes do not respond to new endotoxin challenges,
and it is often associated with secondary infections and negative outcomes. The cellular mecha-
nisms regulating this phenomenon remain elusive. We used metabolic measurements to confirm
differences in the cellular metabolism of naïve macrophages and that of macrophages responding to
LPS stimulation or those in the LPS-tolerant state. In parallel, we performed an unbiased secretome
survey using quantitative mass spectrometry during the induction of LPS tolerance, creating the first
comprehensive secretome profile of endotoxin-tolerant cells. The secretome changes confirmed that
LPS-tolerant macrophages have significantly decreased cellular metabolism and that the proteins se-
creted by LPS-tolerant macrophages have a strong association with cell survival, protein metabolism,
and the metabolism of reactive oxygen species.

Keywords: host-pathogen interactions; proteomics; secretome; macrophages

1. Introduction

Macrophages and monocytes are innate immune cells playing an important role in
orchestrating the initial response to bacterial infection and tissue damage [1]. During Toll-
like receptor (TLR) stimulation, macrophages are activated and produce pro-inflammatory
cytokines and chemokines to recruit other cells to the site of infection [1,2]. In sepsis,
lipopolysaccharides (LPS), an outer membrane component of Gram-negative bacteria, are
considered to be a major activator of macrophages, triggering an inflammatory response [3].
However, in response to a second or prolonged LPS stimulation, macrophages are initially
activated but produce lower amounts of pro-inflammatory cytokines. This phenomenon is
called “LPS tolerance” or “endotoxin tolerance” and has been known since the 1940s [4–6].
While the lower cytokine production during LPS tolerance prevents a severe “cytokine
storm” response and lethal effects in the host, decreased cytokine levels might not be
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sufficient to maintain an effective defense against pathogens. Indeed, LPS tolerance has
been reported to be associated with the immune suppression stage known as immune
exhaustion [6]. A concept of innate immunity bearing a memory of past insults termed
“trained immunity” encompasses endotoxin tolerance, and its exploration may result in
discoveries of new immunotherapies [7].

The mechanisms inhibiting the LPS response and moving cells into a tolerant state
have still not been completely elucidated [8]. Findings from several groups emphasize
the roles in this process of epigenetic reprogramming [4], microRNA [9,10], alteration of
gene expression patterns [11], sometimes by specific transcription factors such as hypoxia-
inducible factor 1-alpha (HIF-1α) [12], non-coding RNAs [13], and energy depletion [14].
The metabolic changes in LPS-challenged macrophages after treatment with LPS have
been indicated by several recent studies, with varying experimental designs focusing on
a specific protein [15], pathway [16], or general phenotype [17]. Regulation of cellular
signaling leads to changes in multiple secreted proteins that are responsible for the immune
response during TLR stimulation (e.g., interleukin (IL)-6 and tumor necrosis factor (TNF)-
α). These proteins act as autocrine, paracrine, or chemoattracting signaling molecules for
communication with other immune cells [18]. We have recently demonstrated the role of
secreted lipocalin 2 (Lcn2) in the reduction in macrophage cytokine release in LPS-tolerant
cells [15], but a comprehensive secretome analysis of LPS tolerance has not been previously
reported. Investigating the secretome during tolerance induction could provide directions
for explaining the phenomenon of immune tolerance and exhaustion.

In this study, we used metabolic measurements to confirm differences in the cellular
metabolism of naïve macrophages and that of either macrophages responding to LPS stim-
ulation or macrophages in the LPS-tolerant state. Next, we used mass spectrometry-based
proteomics to thoroughly investigate, for the first time, the changes in the extracellular pro-
teome (secretome) following the induction of LPS tolerance. Furthermore, we investigated
the secretome profile during the induction of LPS tolerance to identify possible regulators
of cellular metabolism and the production of proteins. In our analysis, we confirmed that
LPS-tolerant macrophages have significantly decreased cellular metabolism and that the
proteins secreted by LPS-tolerant macrophages have a strong association with cell survival,
protein metabolism, and reactive oxygen species metabolism.

2. Materials and Methods

2.1. Cell Culture and Reagents

RAW 264.7 mouse macrophage cells were cultured in Dulbecco’s Modified Eagle’s
Medium (DMEM) supplemented with 10% fetal bovine serum(FBS), 1 × glutamine, and
20 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer, referred to
as complete DMEM (cDMEM). For stable isotope labeling by amino acids in cell culture
(SILAC), the cells were cultured in DMEM for SILAC purchased from Thermo Fisher
Scientific (Waltham, MA, USA), supplemented with 10% FBS, 1 × glutamine, 20 mM
HEPES buffer, and isotopically labeled lysine and arginine purchased from Cambridge
Isotope Laboratories, Inc. (Tewksbury, MA, USA). The cells were cultured in the labeled
media for five passages prior to analysis to allow for > 95% incorporation of the labeled
amino acids. Lipopolysaccharide (LPS) from Salmonella minnesota R595 was purchased
from Enzo Life Sciences, Inc. (Farmingdale, NY, USA).

2.2. Quantification of Secreted Cytokines

Secreted TNF-α, IL-6, and IL-10 were quantified with ELISA kits (Thermo-Scientific,
Rockford, IL, USA) following the manufacturer’s protocols.

2.3. Extracellular Flux Analysis

The energy metabolism profiles of macrophages can be used to estimate glycolysis and
mitochondrial oxidative phosphorylation on the basis of the extracellular acidification rate
(ECAR) and the oxygen consumption rate (OCR), which were measured using Seahorse
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XF Analyzers (Agilent, Santa Clara, CA, USA). RAW 264.7 cells in different experimental
groups, namely untreated (NT/NT or Con), LPS-responsive (NT/LPS or LR), and LPS-
tolerant (LPS/LPS or LT), were dispersed into monolayers for measurement. A RAW
mitochondrial stress test and a glucose stress test were performed at 37 ◦C using the
Seahorse XFe96 bioanalyzer (Agilent, Santa Clara, CA, USA). RAW 264.7 cells in various
treatment groups were collected and washed in 1× PBS. Cells seeded at 4 × 105 cells
per well of the Seahorse analysis plates were centrifuged at 400 rpm with acceleration
and deceleration set to 1 for 5 min to achieve an even monolayer of cells for accurate
measurement. OCR and ECAR for the mitochondrial stress test were measured in xeno-free
(XF) media (containing 25 mM glucose, 2 mM L-glutamine, and 1 mM sodium pyruvate)
under basal conditions and in response to 2 μM oligomycin, 1.5 μM fluoro-carbonyl cyanide
phenylhydrazone (FCCP), and 0.5 μM rotenone and antimycin A (Sigma-Aldrich, St. Louis,
MO, USA). For the glucose stress test, the cells were cultured in XF media (containing 2 mM
L-glutamine), and the ECAR readout was obtained at basal conditions and in response to
10 mM glucose, 1 μM oligomycin, and 10 mM 2-deoxy-glucose (2-DG).

2.4. Collection of Secreted Proteins

For the secretome analysis by quantitative liquid chromatography–tandem mass
spectrometry (LC-MS/MS), we used the method we established earlier [19]. Briefly, prior
to stimulation, 1 × 106 RAW 264.7 cells were seeded in a well of a 12-well plate and
grown at 37 ◦C for 24 h. To decrease the amount of non-specific protein in the media prior
to stimulation, the cDMEM was removed from the cell culture wells and replaced with
cDMEM lacking FBS. We extensively evaluated cell death in this method and found it to be
negligible [19]. To test the effect of multiple stimulations of the innate immune system, the
RAW 264.7 cells were treated in one of three ways. The first group contained control cells
that received no LPS (NT/NT or Con) and were grown in cDMEM labeled with Arg0 and
Lys0. The second group received a single stimulation with 100 ng/mL LPS 6 h prior to the
collection of the media (NT/LPS or LR) and were grown in cDMEM labeled with Arg+6

and Lys+4. The third group received two stimulations with 100 ng/mL LPS separated by
24 h, with the second stimulation being 6 h prior to the sample collection (LPS/LPS or
LT), and were grown in cDMEM labeled with Arg+10 and Lys+8. After the stimulations,
the media were collected and equal parts of the three groups (v/v, as in [19–21]) were
combined into a single 1.5-mL tube. Any cellular debris or detached cells were separated
from the media by filtration using a 0.22-μm polysaccharide filter, and then, the medium
was centrifuged at 400× g for 5 min. Finally, the supernatant was transferred to a 1.5-mL
tube and the proteins were concentrated in a vacuum centrifuge (SpeedVac, Thermo Fisher
Scientific, Waltham, MA) to dryness. Overall, this method was repeated twice with two
biological replicates each time to produce four biological replicates.

2.5. In-Gel Digestion of Secreted Proteins

The dried proteins were resuspended in 2 × NuPAGE loading buffer, and then, the
proteins were denatured by boiling for 10 min. The proteins were separated using a 10%
Bis-Tris NuPAGE gel (Invitrogen, 8 × 8 cm) with 3-(N-morpholino)propanesulfonic acid
(MOPS) buffer and run with 200 V for 40 min to ensure that there were no significant
visual differences in the band patterns between samples. The gel was fixed using 47.5%
methanol and 5% glacial acetic acid for 30 min at room temperature and then washed
three times with ddH2O. The fixed proteins were stained with PageBlue protein staining
solution (Thermo Fisher Scientific, Waltham, MA, USA) for 1 h at room temperature and
then destained with ddH2O overnight at 4 ◦C. Following destaining, the lanes were cut
from the gel using razor blades, sectioned into five equal units to avoid processing excess
gel in one sample, and cubed into approximately 1-mm3 pieces. The gel pieces from each
section were collected into 1.5-mL microcentrifuge tubes and then processed according to a
previously published protocol [22].
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In brief, 500 μL of acetonitrile (ACN) was added to the gel pieces and the tubes were
incubated at room temperature for 10 min before a brief centrifugation and removal of the
supernatant. Next, 50 μL of 10 mM dithriothreitol (DTT, Sigma-Aldrich, St. Louis, MO,
USA) in 100 mM ammonium bicarbonate (ABC) was added to the gel pieces and the tubes
were incubated at 56 ◦C for 30 min followed by a second incubation with ACN. Next,
50 μL of 55 mM 2-chloroacetamide (CA, Sigma-Aldrich, St. Louis, MO, USA) in 100 mM
of ABC was added to the gel pieces and the tubes were incubated at room temperature in
the dark for 20 min followed by a third incubation with ACN. Then, 100 μL of 50% ACN,
50 mM ABC was added to the gel pieces and the tubes were incubated at room temperature
with occasional vortexing, followed by a fourth incubation with ACN. The gel pieces were
saturated with 13 ng/μL sequence-grade modified trypsin (Promega; Madison, WI, USA)
in 10 mM ABC, 10% ACN and the tubes were incubated at 37 ◦C overnight. To extract the
peptides, 100 μL of a 1%:25% mix of formic acid:acetonitrile was added to the gel pieces and
the tubes were incubated for 15 min in a 37 ◦C shaker. The tubes were centrifuged briefly
and the supernatant was collected in 1.5-mL tubes. At this point, the peptides from the gel
sections were recombined to make one sample per lane and the peptides were concentrated
in a vacuum centrifuge (SpeedVac, Thermo Fisher Scientific, Waltham, MA, USA). Lastly,
the samples were mixed with formic acid and ACN to generate peptide samples with a
final concentration of 0.1% formic acid, 2% ACN.

2.6. Mass Spectrometry

The Thermo Orbitrap Q-Exactive HF (Thermo Fisher Scientific, Bremen, Germany)
and the Thermo UltiMate 3000 systems (Thermo Fisher Scientific, Bremen, Germany) were
used for LC-MS/MS experiments. Peptides were trapped on an Acclaim C18 PepMap 100
trap column (5 μm, 100 Å, 300 μm i.d. × 5 mm, Thermo Fisher Scientific, Pittsburgh, PA,
USA) and separated on a PepMap RSLC C18 column (2 μm, 100 Å, 75 μm i.d. × 50 cm,
Thermo Fisher Scientific, Pittsburgh, PA, USA) at 40 ◦C. Peptides were eluted with a linear
gradient of 2.5% to 5% mobile phase B (0.1% formic acid in ACN) for 15 min and then 5%
to 35% mobile phase B over 90 min. Gradient changes were followed at 105 min to 35%
mobile phase B and then increased to 99% mobile phase B at 110 min. The gradient was
changed back to 2.5% mobile phase B at 125 min to equilibrate for 20 minutes prior to the
next injection. Eluted peptides were ionized in positive ion polarity at a 2.3-kV spraying
voltage. MS1 full scans were recorded in the range of m/z 400 to 1600 with a resolution
of 60,000 at 200 m/z using the Orbitrap mass analyzer. Automatic gain control was set at
1 × 106 with 40 ms of maximum injection time. The top 20 data-dependent acquisition
mode was used to maximize the number of MS2 spectra from each cycle. Higher-energy
collision-induced dissociation (HCD) was used to fragment selected precursor ions with
a normalized collision energy of 27%. Each biological replicate was analyzed twice to
create two technical replicates. The mass spectrometry-based proteomics data have been
deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the
dataset identifier PXD021925 [23].

2.7. Analysis of MS Results

The RAW MS files were processed with MaxQuant software (version 1.6.5.0, Max
Planck Institute, Munich, Germany) [24] and searched with the Andromeda search en-
gine [25] against a mouse UniProt FASTA database (download date: 26.03.2019, 22,325
entries) supplemented with common contaminants and reverse sequences of all entries [26].
The Andromeda search engine parameters were: type = three labels—light (Arg0, Lys0),
medium—(Arg6, Lys4), and heavy—(Arg10, Lys8); fixed modification = carbamidomethy-
lation of cysteine; variable modifications = oxidation of methionine, acetylation of lysine,
and acetylation of protein N-terminus; minimum peptide length = 7; and max missed
cleavages = 2. The false-discovery rate was set to 0.01 at the peptide spectrum matches
(PSM), peptide, and protein levels.
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The protein group abundance data were filtered to remove possible protein contami-
nants. In addition, at least 2 identified peptides were required for each protein (if only one
peptide was identified, at least 12 valid abundance values were required). This resulted
in an estimated protein group false discovery rate of 1.54%. If a SILAC triplet contained
one or two missing values, they were imputed by randomly generating a value between
10% and 100% of the minimum protein intensity value (equally distributed; separately
for each LC-MS dataset). The abundance ratios were log2-transformed, and mean val-
ues were calculated across the technical replicates. InfernoRDN software v1.1.7626.35996
(https://omics.pnl.gov/software/infernordn) [27] was used to perform t-tests and to
calculate post-hoc q-values.

3. Results

3.1. LPS-Tolerant Macrophages Decrease Cellular Respiration

LPS tolerance is the decreased response of immune cells following secondary or
prolonged stimulation with LPS. This process is typified by the decreased secretion of
cytokines (Figure 1A–C), but the causes of tolerance and the processes that maintain it
are not completely elucidated. This decreased response, although useful as a mechanism
preventing a lethal outcome, can have tragic consequences for patients as the decreased
secretion of cytokines might often lead to an increase in secondary infections. To examine
the causes and regulation of LPS tolerance in macrophages, we used purified LPS to
stimulate RAW 264.7 cells as an in vitro model, a methodology successfully used previously
for secretome analysis with conclusions on changes in innate immune pathways and
cellular metabolism by us [19] and others (for example, [21,28]). We found that while a
single LPS stimulation enhanced cytokine release (LPS-Responding (LR)), two sequential
LPS stimulations over a 24-h period induced decreased cytokine levels following a 6-h
incubation (LPS-Tolerant (LT)) (Figure 1A–C). These results established the conditions
required to induce LPS tolerance in RAW cells.

While the decrease in secretion could be due to many factors such as a lack of available
amino acids to build proteins, inhibition of vesicle transport, or increased turnover of
specific mRNAs, we hypothesized that LPS-tolerant cells would display changes in their
metabolic functions. The glycolytic and mitochondrial functions of control (Con or NT),
LR, and LT cells were determined by measuring the ECAR and OCR using the Seahorse XF
Extracellular Flux Analyzer. Both functions were impaired in LT cells compared to Con or
LR cells (Figure 2A–E). Hence, the lower macrophage cytokine production in LPS-tolerant
cells compared with control cells might be associated with the low cell energy.

3.2. Variations in LPS Treatment Lead to Variations in the Secretome

To examine the conditions that contributed to the decreased respiration of LT cells,
we analyzed the media collected from cells in each condition. By using SILAC metabolic
labeling to mark each of the conditions prior to mass spectrometric analysis, as we have
done in an earlier analysis of the TLR ligand-induced secretomes [19], we could simulta-
neously process and quantify the relative amounts of the proteins secreted by the cells in
each condition (Figure 3A). We have reliably identified and quantified 1189 proteins across
all conditions. Using a t-test to compare the intensities of the protein signals identified in
the LR or LT samples to the Con samples, we found that several proteins had a two-fold
or higher change in relative quantity and a significant change (p-value ≤ 0.05) versus the
control (Figure 3B,C). In total, we found 56 and 107 proteins with significantly different
levels in LR and LT cellular media, respectively.
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Figure 1. Induction of lipopolysaccharide (LPS) tolerance inhibits cytokine production by RAW
264.7 cells. Inflammatory cytokines in the supernatants (A–C) (n = 4/time point) of macrophages
treated either once (LPS-Responding (LR)) or twice with LPS stimulation (LPS-Tolerant (LT)) and
untreated control samples (Con), measured using ELISA kits, show significantly inhibited secretion
of tumor necrosis factor (TNF)-α (A), interleukin (IL)-6 (B), and IL-10 (C) from LT cells compared to
LR cells. *, p-value < 0.05 vs. LR; #, p-value < 0.001 vs. Con; φ, p-value < 0.05 vs. Con.
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Figure 2. LPS-tolerant RAW 264.7 cells have significantly decreased cellular metabolism compared to LPS-responding and
unstimulated cells. The general pattern of the estimation of glycolysis and mitochondrial functions through extracellular
acidification rate (ECAR) and oxygen consumption rate (OCR), respectively (A,C); the pattern of macrophages treated with
LPS either once (LPS-Responding (LR, red)) or twice (LPS-Tolerant (LT, green)) and untreated control samples (Con, blue)
(B,D) (combination from triplicate experiments for B,D), and the energy map calculated using the Seahorse XF Extracellular
Flux Assay (E). * = p-value < 0.001.
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Figure 3. LPS-Responding and LPS-Tolerant RAW 264.7 cells secrete a wide variety of proteins. Schematic of the timing for
LPS treatments of RAW 264.7 cells to induce the LPS response (LR) or LPS tolerance (LT) (A). MS analysis of the secretome
of RAW 264.7 (B). Plot of t-test results comparing individual protein intensities calculated by MaxQuant (version 1.6.5.0) in
LPS-Responding (LR) (C) or LPS-Tolerant (LT) (D) versus untreated control samples (NT/NT). Protein intensities of eight
replicates were averaged and missing values for intrasample results were replaced with a random value between 1/2× and
2× the average of the 10 lowest values. The dotted lines indicate significance (p-value < 0.05) and the dashed lines indicate
a onefold difference from the control.

We found that most proteins were found in both treatment groups but had different
levels and directions of change compared to the control in both LR and LT conditions. To
identify which changes in protein levels were specific to either LR or LT conditions, we
plotted the p-values versus the control of each protein in the LR and LT datasets (Figure 4A).
This plot identified four clear groups, identified as A through D. Group A proteins had
a significant difference (p-value ≤ 0.05) in LR samples and included 33 proteins. Group
B had a significant difference (p-value ≤ 0.05) in LT samples and included 84 proteins.
Group C had a significant difference (p-value ≤ 0.05) in samples treated with either LR or
LT samples and included 23 proteins. Group D had no significant difference following LPS
treatment and included 608 proteins (Figure 4A).
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Figure 4. LPS-Tolerant and LPS-Responding RAW 264.7 cells have distinct secretomes. Plotting of p-values of LR vs. Con
against p-values of LT vs. Con confirms that only 19.3% of proteins have significantly modified secretion in both conditions
(A). Of the proteins with significantly modified secretion in only LR cells, over half of the proteins have increased secretion
(B). Of the proteins with significantly modified secretion in only LT cells, over half of the proteins have increased secretion
(C). A comparison of the enrichment of proteins secreted by the LR and LT cells with significantly modified secretion shows
that the majority of these proteins were significantly decreased following treatment (D).

In addition to the significant difference from the control, the individual protein results
could be further sorted by whether the intensity increased or decreased in comparison to
the control (Figure 4B,C; Supplementary Table S1). The proteins that presented increased
intensity following LPS treatments were termed subgroup one, while those with decreased
intensity were termed subgroup two. Of the group A proteins, 18 were significantly in-
creased (group “LPS-Responding Up” (LRU)) and 15 were significantly decreased (group
“LPS-Responding Down” (LRD)). Group B proteins, while more numerous than those in
group A, still had a bias towards increasing intensities, with 54 proteins from the group
“LPS-Tolerant UP” (LTU) against 30 proteins from the group “LPS-Tolerant Down” (LTD).
Lastly, for group C, significance following LPS treatment could lead to three possible
outcomes: increased in both conditions (one protein), decreased in both conditions (18 pro-
teins), or a discordant result with increased in one condition but decreased in the other
condition (four proteins).

Amongst the proteins in the LRU group were several cytokines and chemokines
(Supplementary Table S1), including C-C motif chemokine 4 (Ccl4), tumor necrosis factor
(TNF), C-X-C motif chemokine 10 (Cxcl10), C-C motif chemokine 2 (Ccl2), and leukemia
inhibitory factor (LIF), which all showed significant (p-value < 0.05) or highly significant
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(p-value < 0.001) increases in their average intensity when compared to either the Con or
the LT treatment group (Figure 4B, Supplementary Table S1). These data provide a perfect
quality control for our dataset because these cytokines and chemokines are essential for the
inflammatory response and are expected to be elevated in response to LPS.

The group LRD included three proteins (Beta-glucuronidase (Gusb), beta-hexosaminidase,
subunit alpha (Hexb), and alpha-N-acetylglucosaminidase (Naglu)) that localize to the
phagolysosome and are associated with the metabolism of carbohydrates [29]. These pro-
teins, along with vinculin (Vin), Dipeptidyl peptidase 2 (Dpp7), and malate dehydrogenase
mitochondrial (Mdh2), displayed between a 1.25- and 5.75-fold significant decrease in
intensity with t-test p-values ranging from 0.007 to 0.0484 following the LPS treatment
(Supplementary Table S1).

In contrast to the LR groups, the LT groups both contained many proteins typically
found in the cytoplasm or other regions of the cell in addition to some secreted proteins
(Supplementary Table S1). LTU proteins included 54 proteins with increases ranging from
48- to 2.78-fold versus the control sample and included osteopontin (Spp1), neutrophil
gelatinase-associated lipocalin (Lcn2), sequestosome-1 (Sqstm1), and TAR DNA-binding
protein 43 (Tarbp) (Figure 4C). The t-test p-values of each protein versus the control ranged
from 0.0491 to 0.0001 (Supplementary Table S1). In contrast to the LTU proteins, nearly
half (7/19) of the LTD proteins were associated with extracellular space. The 30 proteins
from the LTD group showed between a 22- and 1.6-fold significant (p-values between
0.04 and 0.00001) decrease in overall intensity versus the control cells and included the
urokinase-type plasminogen activator (Plau), sodium/potassium-transporting ATPase
subunit gamma (Fxyd2), lysozyme C-2 (Lyz2), and cystatin-C (Cst3) (Supplementary
Table S1).

The last and smallest group of proteins that showed significant differences versus the
control depending on the treatment with LPS were group C proteins (LPS-Dependent (LD)).
The inclusion of the second treatment group leads to three possible results: both increase
(LDU), both decrease (LDD), or one increases and one decreases (mixed) (LDM). In our
analysis, we found only one LDU protein, plasminogen activator inhibitor 1 (Serpine1),
and four LDM proteins, Talin-1 (Tln), MARCKS-related protein (Marcksl1), cytosolic non-
specific dipeptidase (Cndp2), and eukaryotic initiation factor 4A-I (Eif4a1), with increases
in at least one treatment group by 29- to 1.6-fold versus the control set (Supplementary
Table S1). The last group of 18 proteins identified in our analysis were the proteins with
significant decreases in intensity (between 2000- and 1.5-fold) versus the control in both
treatment conditions (group LDD), such as gelsolin (Gsn), low-density lipoprotein receptor-
related protein 1 (Lrp1), macrophage colony-stimulating factor 1 receptor (Csf1r), and
fibronectin (Fn1) (Supplementary Table S1).

3.3. Pathway Analysis of Critical Groups

Because either increasing or decreasing secretion of a signaling protein could have
profound effects on the condition of cells, we analyzed all proteins with significant changes
using the Ingenuity Pathway Analysis (IPA) software suite (Qiagen) (Figure 5). This analysis
allowed us to identify several patterns, including pathways or functions enriched in either
both or only one dataset.

The canonical process associated with LPS treatment is the inflammatory response.
While both LR and LT groups had highly significant effect changes in the inflammatory
response (both p-values < 0.01), the LR group showed a strong increase (z-score of 1.908)
and the LT group had a smaller increase (z-score of 0.204) (visualized in Figure 6A, Supple-
mentary Table S2). When we focus on the myeloid cell responses, the differences in the LR
and LT groups become even more striking. While the “Immune Response of Myeloid Cells”
is significantly affected in either condition (p-values of <0.001), the LR condition had an
increased response (z-score 1.134) but the LT condition had a decreased response (z-score
−0.348) (visualized in Figure 6B, Supplementary Table S2). By examining a heatmap of the
proteins measured from each condition, it was found that while the LR group had several
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signaling molecules, including CXCL3, CXCL10, and TNF, the LT group had decreased
recovery of these signaling molecules along with decreased secretion (compared to the un-
treated control) of the urokinase-type plasminogen activator (PLAU) (Figure 6B), a secreted
enzyme that activates plasmin, a protein that is critical for the complement system [30].
These results confirm that either type of LPS treatment induces the inflammatory response,
but the response after sequential LPS treatment is significantly reduced.

 

Figure 5. LPS-Responding RAW 264.7 cells have secretomes strongly associated with the immune
response in contrast to LPS-Tolerant RAW 264.7 cells. Comparison of the Ingenuity Pathway Analysis
of the proteins with significantly changed secretion in either LR or LT cells shows that while LR
cells secreted proteins that strongly relate to the immune response and chemotaxis, LT cells secreted
proteins that strongly relate to metabolism and cellular survival. Prepared using the Ingenuity
Pathway Analysis program suite from QIAGEN (Germantown, MD, USA).
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Figure 6. LPS-Responding RAW 264.7 cells’ secretomes include cytokines and signaling proteins
strongly related to the inflammatory response and cell motility, while LPS-Tolerant RAW 264.7 cells’
secretomes include proteins strongly related to cell survival. Fold changes of the proteins associated
by Ingenuity Pathway Analysis to Inflammatory Response (A); Immune Response of Myeloid Cells
(B); Cell Movement by Macrophages (C); Cell Death of Immune Cells (D); Clearance of Cells (E), and
Respiratory Burst of Myeloid Cells (F). Prepared using the Ingenuity Pathway Analysis program
suite from QIAGEN (Germantown, MD, USA).

Another biological function associated with all three sets and with the LPS response
was cellular motility. Due to the variety of cells and mechanisms of movement, most
analysis platforms include both general terms and specific pathways. In the LR group,
“Cell Movement of Macrophages” was significantly increased (p-value < 0.001, z-score
2.829), and while the LT group had a highly significant increase (p-value < 0.001), the overall
degree of migration was lower (z-score −0.290). In our comparison, both datasets were
associated with migration and contained at least five significantly elevated or decreased
proteins (Figure 6C). This suggests that both treatments lead to cellular migration, but the
overall effect was much higher in the LPS-responsive group.

While the processes of inflammation and movement are critical for the immune re-
sponse, cell survival has been the hypothetical goal of LPS tolerance. In support of this hy-
pothesis, our results found significant inhibition of ”Cell Death of Immune Cells” in the LT
group (p-value < 0.01, z-score −0.254) (Supplementary Table S2). In contrast, the LR group
had a highly significant increase in the “Cell Death of Immune Cells” (p-value < 0.001,
z-score 0.565) (Supplementary Table S2). The difference in the recovery of cell-survival-
associated proteins from the LT and LR groups suggests a connection between cell survival
and LPS tolerance (Figure 6D).
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3.4. Relationship between Repeated LPS Stimulation and Cellular Exhaustion

We have hypothesized that cellular exhaustion is related to suppression of the LPS re-
sponse in sequential LPS treatments. Two pathways that relate to exhaustion are metabolism
and the production of reactive oxygen species. By filtering the IPA comparative analysis
results only for processes related to metabolism or reactive oxygen species, we found
distinct differences between the LR and LT groups (Figure 7). Overall, the LT group has a
wide variety of affected processes, with both increased and decreased rates predicted.

 

Figure 7. LPS-Tolerant RAW 264.7 cell secretomes include proteins related to initiation of protein
metabolism. Comparison of the Ingenuity Pathway Analysis of proteins with significantly changed
secretion in either LR or LT cells shows that while LR cells secreted proteins strongly relate to
carbohydrate metabolism, LT cells secreted proteins that strongly relate to protein and reactive
oxygen species metabolism. Prepared using the Ingenuity Pathway Analysis program suite from
QIAGEN (Germantown, MD, USA).

Metabolism can be further defined by the class of molecule targeted, such as protein,
lipid, or carbohydrate. The two classes that exhibited the clearest differences between the
LR and LT groups were the processes related to carbohydrate and protein metabolism. In
carbohydrate metabolism, the overall effect is that the LPS response induced increased
carbohydrate metabolism, including the binding, accumulation, and metabolism of polysac-
charides (Figure 8B). In contrast to the carbohydrate results, an examination of the processes
related to protein metabolism showed increased association between the LT group and
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protein metabolism. Overall, protein metabolism appears to lean towards the accumulation
of new proteins, with the increased z-score of overall protein metabolism and protein
synthesis coinciding with decreases in protein catabolism and proteolysis (Figure 8C). The
last aspect of metabolism with distinct differences between the LR and LT groups is the
pathways related to reactive oxygen species. Overall, the LT group results were linked to
lower metabolism and synthesis of ROS compared to the LR group (Figure 8D, Supplemen-
tary Table S2). These results confirm the modifications in the cellular environment that
occur during both the LPS response and LPS tolerance.

Based on the strong association of metabolism and reactive oxygen species with the
previously shown effects of LPS tolerance on cellular respiration, we concluded that the
induction and maintenance of LPS tolerance is dependent on the rates of cellular respiration,
and further studies of the modifiers of cellular respiration and metabolic rates could lead
to greater understanding of the regulation of LPS tolerance.

 
Figure 8. LPS-Tolerant RAW 264.7 cell secretomes include proteins related to global changes in
cellular metabolism. z-scores of the metabolic pathway results generated by Ingenuity Pathway
Analysis show abnormal metabolism and Respiratory Burst of Myeloid Cells in LR cells (A), increased
carbohydrate metabolism by LR cells (B), increased protein metabolism along with decreased protein
translation by LT cells (C), and increased maintenance of reactive oxygen species by both cells (D).

96



Biomolecules 2021, 11, 164

4. Discussion

LPS tolerance is a cellular condition defined by a lack of a typical immune response to
LPS stimulation, originally characterized by decreased levels of secreted cytokines such as
TNF-α, IL-6, and IL-10 (Figure 1). We have shown that LPS-tolerant RAW 264.7 cells secrete
a wide variety of proteins, including several not typically found in the secretome, defined as
proteins released from the cells as described by Koppenol-Raab et al. [19] (Figures 3 and 4).
Similarly, while LPS-responding cells have basal metabolic rates the same as or above
unstimulated control cells, LPS-tolerant cells show a significant decrease in their glycolytic
and aerobic respirations (Figure 2).

4.1. Most Evident Protein Level Changes in the Secretome

Using MS analysis combined with SILAC labeling to allow for direct comparisons
of the Con (NT), LR, and LT secretomes, we identified global changes in the secretome
following the induction of either the LPS response or LPS tolerance (Figure 3). It is important
to note that the experimental setup with serum-free media necessary to facilitate mass
spectrometry-based proteomics may affect the cell response. We have established that
the cells respond to TLR ligands for up to 24 h, with the secretion patterns of known
inflammatory cytokines being the same as the cells in the complete media [19], but there is
a probability that some elements of the response to the second LPS stimulation, although
many controls are as predicted for the LPS-tolerant state, may be changed by this variable.
A comparison of the LR and LT secretomes further confirmed the vast differences in the
quantity and types of secreted proteins that had significantly enhanced secretion (Figure 4).
Using pathway analysis of the secreted proteins, we found that the LR cell secretome is
highly associated with the innate immune response (Figures 5 and 6). In contrast, the LT
cell secretome is highly associated with cell survival and modulation of cellular metabolism
(Figures 5–7). These modulations focus on many aspects of both protein metabolism and
reactive oxygen species metabolism (Figure 8).

4.2. Potential Protein Regulators of LPS Tolerance

The clear differences between LR and LT cells raise the question of which signaling
molecules induce and maintain LPS tolerance following multiple stimulations with LPS.
Possible inducers or regulators of LPS tolerance could be secreted proteins (previously
shown by either the protein itself, a closely related protein, or a homolog), specifically
enriched in the LPS-tolerant cells, that have been previously linked to two or three of the
critical functions we identified above (cell survival, protein metabolism, and maintenance
of ROS). An examination of the LT group proteins identified several proteins that fulfill
many of these requirements (Table 1). Three proteins that were linked to all three of the
critical functions were superoxide dismutase 2 (SOD2, just below the statistical significance
threshold but important to mention), sequestosome 1 (SQSTM1), and osteopontin 1 (SPP1).
In addition, three secreted proteins were specifically enriched and involved in cell survival
along with redox. The last group of seven proteins have been shown to be secreted, were
specifically enriched, and were involved in cell survival along with protein metabolism.

One protein with a direct association with the metabolism of protein and reactive
oxygen species is mitochondrial superoxide dismutase (SOD2), whose deficiency has been
linked to inflammatory disorders [31]. SOD2 has been shown to be increased in the pro-
cess of the macrophage protection from reactive oxygen species-induced cell death [32].
Interestingly, its upregulation was described together with the downregulation of PARP1,
an enzyme adding ADP-ribose to many proteins, a modification which we have recently
shown to be regulated by LPS in macrophages [33]. Since we have found many proteins
involved in the inhibition of apoptosis and necrosis in LPS-tolerant cells, there may be
crucial mechanisms affected by proteins within this group that can be targeted for toler-
ance induction.
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Table 1. Potential regulators of LPS tolerance. Proteins with enhanced secretion by LPS-Tolerant RAW 264.7 cells vs. control
and LPS-Responding cells that have associations with cell survival along with associations with either protein metabolism,
reactive oxygen species metabolism, or both. “Secreted” results include “Yes” for proteins shown previously to be secreted
in mice, “Yes (related)” for proteins shown previously to be secreted in humans, or “Yes (exosome)” for proteins shown
previously to be secreted in exosomes in humans.

Uniprot Protein Name Entrez Gene Name LT Enrichment/
LR Enrichment

Secreted Cell Survival
Protein

Metabolism Redox

P09671 SOD2 superoxide
dismutase 2 3.7913 Yes (exosome) Yes Yes Yes

Q64337 SQSTM1 sequestosome 1 4.6730 Yes (exosome) Yes Yes Yes

P10923 SPP1 secreted
phosphoprotein 1 2.3679 Yes Yes Yes Yes

Q62351 TFRC transferrin receptor 4.7225 Yes Yes No Yes

P60710 ACTB actin beta 3.6136 Yes (related) Yes No Yes

P99029 PRDX5 peroxiredoxin 5 5.3956 Yes (related) Yes No Yes

Q3TCH7 CUL4A cullin 4A 1.9345 Yes (exosome) Yes Yes No

Q9CXW4 RPL11 ribosomal protein L7 1.1280 Yes (exosome) Yes Yes No

P46471 PSMC2 proteasome 26S
subunit, ATPase 2 1.6182 Yes (related) Yes Yes No

P11438 LAMP1 lysosomal associated
membrane protein 1 2.8676 Yes (exosome) Yes Yes No

P22777 SERPINE1 serpin family E
member 1 2.2662 Yes Yes Yes No

P25085 IL1RN interleukin 1 receptor
antagonist 1.0980 Yes Yes Yes No

P41245 MMP9 matrix
metallopeptidase 9 3.7096 Yes Yes Yes No

The second secreted protein that affects all three processes is sequestosome 1 (SQSTM1,
or p62), a receptor for selective autophagy that is responsible for sequestering cytoplasmic
components into an autophagosome [34] and which, by its role in regulation of autophagy,
affects macrophage survival. Because of these roles in autophagy, its upregulation following
LPS tolerance would be another indication of the switch to survival mode. Additionally,
SQSTSM1/p62 has been proposed to act as an inflammatory signaling platform after
activation by transforming growth factor beta-activated kinase 1 (TAK1) (one of the kinases
essential in TLR4 signaling [35]), effectively disabling it as an autophagy receptor and
inhibiting its own degradation [36].

The final secreted protein that affects all three processes is osteopontin 1 (SPP1), a
secreted bone matrix glycoprotein protein that is essential for bone homeostasis and control
of cell migration [37,38]. SPP1 has also been shown to be expressed by macrophages
during tissue repair after myocardial infarction [39], indicating its function in the tissue
homeostasis function of macrophages as opposed to the inflammatory function. The
secreted proteins may also provide an autocrine signal to balance cytokine production, a
main feature of LPS tolerance. For example, in LT, the IL-1 receptor antagonist (Table 1)
might directly decrease cytokine production [40], while Lipocalin-2 counteracts LT through
the induction of cytokine production [15]. Hence, the understanding of these proteins and
complex feedback loops is fundamental to control LPS signaling and macrophage function.

The specificity of the secreted proteins associated with LPS tolerance does raise the
question of the role of the regulation of protein signaling in leading to stimulation type-
specific protein secretion in the initiation and maintenance of LPS tolerance. The role
of post-translational modifications, especially phosphorylation, was pointed out as a
regulatory mechanism in LPS tolerance nearly thirty years ago [41] and linked to crosstalk
with other signaling pathways, for example, Fc gamma receptors (FcGRs) [42]. On the other
hand, pathways intuitively associated with the regulation of the immune response may
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not be required for the induction of endotoxin tolerance, as shown for type 1 interferon
signaling [43]. In addition to TLR4 signaling, NLRP3 inflammasome has been shown to
play an important role in the response to LPS and has recently been shown to be regulated
by specific lipid mediators [44]. These results may open another avenue for exploration
of the mechanisms of LPS tolerance and for explanation of changes in the secretome.
Cellular metabolism has recently emerged as a regulator of macrophage phenotype in
general [45]. Unbiased secreted protein profiling and system-level characterization of
changes in innate immune signaling and cellular metabolism, pointing to regulation at the
post-transcriptional level, emphasize the importance of global studies that reach beyond
gene expression analysis. Our study reveals the value of proteomics approaches that can
explain rapid functional changes necessary for effective immune function.

In the clinic, macrophage LPS tolerance could be either beneficial or harmful to the host,
depending on other factors. While well-controlled LPS tolerance reduces overwhelming
cytokine production (cytokine storm) and attenuates sepsis severity [46], unhinged LPS
tolerance immune exhaustion might be harmful [47]. Novel ways to inhibit cytokine
secretion and controlled induction of LPS tolerance should therefore be considered as a
future treatment of septic shock.

Supplementary Materials: The following are available online at https://www.mdpi.com/2218-273
X/11/2/164/s1, Supplementary Table S1. Sheet 1: All of the proteins identified in all the analyses
(protein identifiers: Column C). Sheet 2: Protein result filtering to identify proteins with two or more
peptides and 12 or more valid values. Sheets 3–5: Imputation of missing values and conversion of
data into Log2 Fold changes in protein intensity recorded. Sheet 6: Summary of protein quantification
and p-values for all the proteins quantified. Supplementary Table S2. All of the biological processes
and cellular functions examined in the LPS-Responding and LPS-Tolerant cells, with p-values and
significance marked with asterisks (increasing significance is indicated with more asterisks).
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Abstract: Induced granulocytic differentiation of human leukemic cells under all-trans-retinoid
acid (ATRA) treatment underlies differentiation therapy of acute myeloid leukemia. Knowing the
regulation of this process it is possible to identify potential targets for antileukemic drugs and develop
novel approaches to differentiation therapy. In this study, we have performed transcriptomic and
proteomic profiling to reveal up- and down-regulated transcripts and proteins during time-course
experiments. Using data on differentially expressed transcripts and proteins we have applied upstream
regulator search and obtained transcriptome- and proteome-based regulatory networks of induced
granulocytic differentiation that cover both up-regulated (HIC1, NFKBIA, and CASP9) and down-
regulated (PARP1, VDR, and RXRA) elements. To verify the designed network we measured HIC1 and
PARP1 protein abundance during granulocytic differentiation by selected reaction monitoring (SRM)
using stable isotopically labeled peptide standards. We also revealed that transcription factor CEBPB
and LYN kinase were involved in differentiation onset, and evaluated their protein levels by SRM
technique. Obtained results indicate that the omics data reflect involvement of the DNA repair system
and the MAPK kinase cascade as well as show the balance between the processes of the cell survival
and apoptosis in a p53-independent manner. The differentially expressed transcripts and proteins,
predicted transcriptional factors, and key molecules such as HIC1, CEBPB, LYN, and PARP1 may be
considered as potential targets for differentiation therapy of acute myeloid leukemia.

Keywords: acute myeloid leukemia; HL-60 cell line; ATRA; induced differentiation; transcriptome;
proteome; transcription factors; key molecules; regulatory pathway modelling; SRM

1. Introduction

Cell differentiation is a fundamental process of the development, growth, reproduction
of multicellular organisms. Regulation of cell differentiation has been for decades and
remains an important task for investigation due to its importance in cancer and many other
diseases therapy. Leukemic cells that are induced to differentiate under all-trans-retinoid
acid (ATRA) treatment make a convenient model for studying of cell maturation in vitro.

Normally, ATRA in physiological dosage binds and activates a heterodimer recep-
tor RAR/RXR followed by release of histone deacetylases (HDACs) and transcription
co-repressors (N-CoR or SMRT), and by recruitment of transcription co-activators (NcoA-
1/SRC-1, CBP/p300, p/CIP, and ACTR) [1]. In turn, retinoic acid response element (RARE)
containing genes, which are repressed by nonactive RAR/RXR, trigger the further cascade
of molecular events leading to myeloid precursor’s maturation into functional granulocytes.
Various mutations impair granulocytic differentiation resulting in highly heterogeneous
acute myeloid leukemia (AML), which could be cured by high dosage of ATRA. In the case
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of AML subtype M3 (French–American–British (FAB) classification), a.k.a acute promyelo-
cytic leukemia (APL), deleterious mutation, namely balanced chromosomal translocation
between chromosomes 15 and 17 t (15;17) (q24; q21), affects retinoic acid (RA) receptor gene
RARα resulting in formation of dominant negative fusion protein PLM-RARA [2]. The NB4
cell line that harbors such a hallmark mutation, is used as a model to study of the APL cell
biology [3]. In APL cells the transcription of RA-responsive genes is blocked due to the
increased avidity of PLM-RARA/RXR for co-repressor molecules [4]. The treatment with
high dosage of ATRA induces dissociation of co-repressors from PML-RARA and triggers
fusion protein degradation via the ubiquitin-proteasome or autophagy pathway [5,6]. The
ATRA-based regimens that are used as a first-line treatment of APL patients, induce com-
plete remission rates of 90% [7]. Nevertheless, other types of AML are not that successfully
treatable with the 5-years survival rates only about 40–45% [8]. Meanwhile, antileukemic
effect of ATRA was also observed in AML (non-APL) cell models, including HL-60, THP-1,
MOLM-14, HF-6, and U937 cell lines [9].

The HL-60 promyelocytic leukemia cell line is classified as AML with maturation, also
referred to as AML subtype M2 by FAB classification [10]. These cells were isolated in 1977
from a patient with acute myeloid leukemia. Later it was found that, these promyelocytic
cells could be induced to differentiate into granulocytes in vitro by ATRA [11]. The HL60
cell genome contains normal RARα gene, an amplified c-myc proto-oncogene and deficient
of p53 gene [12,13]. Notably, deletion in the p53 gene occurs at a frequency of up to 10% in de
novo AML (non-APL) cases and associated with exceedingly adverse prognosis regardless
of the type of mutation (missense, nonsense, small insertions, and deletions, etc.) [8]. Being
ATRA-responsive, the HL60 cell line has been used for decades as a convenient model
object for cell differentiation [11,14].

Omics technologies represent powerful tools for a full-scale analysis of gene and
protein expression that allow for gaining important molecular information about differ-
entiation process, and acquiring the complete picture of the cell maturation. Thus, using
HL-60 (AML) and NB4 (APL) cell lines as model systems, the complexity of differen-
tiation processes and the diversity of pathways involved in induced differentiation at
transcriptome [15–17] and proteome [18,19] levels have been demonstrated.

Despite the fact that proteomics and transcriptomics alone represent the powerful
techniques for investigation of ATRA-induced differentiation, the systems approach is
appealing to the elucidation of molecular mechanisms. In this respect, the systems study
was performed on the NB4 promyelocytic cell line under ATRA treatment (alone or in
combination with arsenic trioxide (ATO)) in a time-course manner. By applying microarray
technology and 2D-gel electrophoresis followed by MALDI-TOF-TOF analysis, transcrip-
tion factors (TFs) and co-factors responsible for global changes in transcriptional regulation
and involved in stimulation of the IFN-pathway, cell cycle arrest, and activation of signal
transduction have been unmasked [3].

However, even simultaneous analysis of proteome and transcriptome differences ob-
served in the experiment is not always sufficient to unravel regulatory mechanisms. The up-
or down-regulation of protein and transcript levels under ATRA treatment is often caused
by previous regulatory events. Predicting transcription factors, responsible for altered gene
expression, and revealing, in turn, their putative regulators, a hierarchical model of induced
differentiation could be built. Therefore, a bioinformatics search for upstream regulators,
including transcription factors [20], is an appropriate tool for proteome and transcriptome
data interpretation. Identification and analysis of TFs and regulatory pathways responsible
for altered gene or protein expression that result in the cell differentiation may contribute
to identification of the mechanism(s) underlying this complex process.

2. Materials and Methods

2.1. Experimental Design

The time-course studying of induced granulocytic differentiation allows obtainment
of the most accurate data on molecular perturbations under ATRA treatment. Previously,
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several schedules of HL-60 cell harvesting after ATRA treatment have been applied in the
time-course experiments [3,21]. To perform transcriptomic and proteomic profiling, we
selected 24 and 96 h time points, when the molecular perturbations are prominent. To
reveal the molecular onset of cell maturation at transcriptome and proteome levels, we
also added the 3 h time point. For proteomic experiment we also studied the time point
48 h of treatment; during this period HL-60 cells underwent two division cycles. In our
preliminary mass-spectrometry experiments we did not observe any significant changes
in the ATRA-induced cell proteome within the first 2 h (compared to 0 h) after ATRA
induction or at 72 h (compared to 96 h) after treatment (data not shown).

For proteome analysis, we performed the ATRA-induced differentiation experiments
in three independent biological replicates. HL-60 cells were harvested at 0, 3, 24, 48, and
96 h after ATRA treatment (overall 15 samples). For the transcriptome analysis, HL-60 cells
were subjected to ATRA treatment in three biological replicates and were harvested at 0, 3,
24, and 96 h (overall 12 samples).

For the proteome analysis, the LC-MS/MS experiments were carried out in five
technical replicates per time point, and the whole-genome transcriptome analysis was
performed in three technical replicates per time point.

Cells harvested before ATRA treatment (time point 0 h) served as controls for both
transcriptomic and proteomic profiling. The study workflow is shown in Figure 1.

 

Figure 1. The study workflow. We applied a multi-disciplinary platform to study ATRA-induced granulocytic differentiation
in a time-course manner using HL-60 cell line as a model. We combined LC-MS/MS analysis (0, 3, 24, 48, and 96 h after
ATRA treatment, three bio repeats), whole-genome transcriptome analysis (0, 3, 24, and 96 h after ATRA treatment, three
bio repeats), and bioinformatic search for transcription factor binding sites (TFBS) and for the key regulatory molecules.
To verify the predicted regulatory networks the abundance of proteins HIC1, CEBPB, LYN, and PARP1, belonging to the
designed model regulatory networks or involving in differentiation onset, were measured in time-course manner by selected
reaction monitoring (SRM) using synthetic isotopically-labeled peptides as standard.
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2.2. HL60 Cells Cultures

The HL-60 human promyelocytic leukemia cells (obtained from the cell culture bank
Institute of Biomedical Chemistry (IBMC), Moscow, Russia) were grown in RPMI-1640
medium supplemented with 10% fetal bovine serum, 100 U/mL penicillin, 100 U/mL
streptomycin and 2 mM L-glutamine (all Gibco™, Paisley, UK) in a CO2 incubator under
standard conditions (37 ◦C, 5% CO2, 80% humidity). ATRA (Sigma-Aldrich, St. Louis, MO,
USA) was dissolved in ethanol as a stock solution at 1 mM. HL-60 cells were treated with
ATRA as described in [3] and control HL-60 cells were treated with an equal volume of the
solvent (ethanol).

Cell differentiation was evaluated by the CD11b and CD38 expression measured by
flow cytometry. At the selected time points, the cells were harvested, washed twice with
PBS, transferred to 1.5-mL Eppendorf tubes, and pelleted by centrifugation at 3000× g
for 15 min using an Eppendorf 5424R centrifuge (Eppendorf, Hamburg, Germany). After
removing the supernatants, the cell pellets were frozen in liquid nitrogen and stored until
transcriptomic and proteomic analysis.

2.3. Transcriptome Analysis

Total RNA was isolated from the cells using RNeasy Mini Kit (Qiagen, Hilden, Ger-
many) at each time point studied. The quality of the extracted RNA was controlled using a
Bioanalyzer 2100, RNA 6000 Nano LabChips, and the 2100 Expert standard software (all
Agilent Technologies, Santa Clara, CA, USA). Approximately 0.5 μg of each RNA sample
was used for cDNA preparation in the reaction of the reverse transcription performed
using a Low RNA Input Linear Amp Kit (Agilent Technologies, Santa Clara, CA, USA)
according to standard protocol. The cRNA samples for all time points were labeled with
Cy5-CTP (Perkin Elmer, Waltham, MA, USA) and with Cy3-CTP (Perkin Elmer, Waltham,
MA, USA) for the control sample (the time point 0 h). The cRNA fragmentations and
hybridizations were performed using a standard protocol with an in situ Hybridization Kit
Plus (Agilent Technologies, Santa Clara, CA, USA). Data acquisition was carried out using
a DNA Microarray Scanner G2505C (Agilent Technologies, Santa Clara, CA, USA). The
primary transcriptome data were processed using the Feature Extraction software (version
10.1.3.1; Agilent Technologies, Santa Clara, CA, USA).

Statistical data analysis by ANOVA with the p-value cut-off set at 0.05 was performed
using the GeneSpring GX12.5 software (Agilent Technologies, Santa Clara, CA, USA). Thus,
we prepared the lists of genes that showed more than two-fold expression difference at
least at one time point studied.

2.4. Preparation of HL60 Cells Lysates and In-Solution Digestion with Trypsin

The cell samples were lysed using ice-cold buffer (150 μL) containing 3% sodium
deoxycholate, 2.5 mM EDTA, 75 mM Tris-HCl (all Sigma-Aldrich, St. Louis, MO, USA),
pH 8.5 and protease inhibitors cOmplete™ (Roche, Basel, Switzerland) with subsequent
ultrasonication using the Bandelin Sonopuls probe (“BANDELIN electronic GmbH &
Co. KG”, Berlin, Germany). The cell lysates were centrifuged for 15 min at 5000× g
using Eppendorf 5424R centrifuge. The supernatants were collected, and the pellets were
dissolved in 100 μL of lysis buffer, and then subjected to the second round of protein
solubilization as described above. The sample protein concentration was measured using
a Pierce™ BCA Protein Assay Kit (Pierce, Rockford, IL, USA). Protein digestion was
performed according to the protocol described in detail by Zgoda et al. [22]. Briefly, the
protein sample (about 100 μg) was transferred into a clean tube and denaturation solution
(5 M urea, 1% sodium deoxycholate, in a 50 mM triethylammonium bicarbonate buffer
(TEAB) containing 20mM dithiothreitol (DTT) (all Sigma-Aldrich, St. Louis, MO, USA)
20 mM DTT) in volume of 20 μL was added to make the final concentration of total protein
close to 5 mg/mL. Then the samples were heated for 60 min at 42 ◦C and, after cooling
at room temperature, 25 μL of 15 mM 2-iodoacetamide in 50 mM TEAB was added. The
alkylation reaction continued for 30 min at room temperature and the sample was then
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diluted up to 120 μL by 50 mM TEAB to decrease the final concentration of denaturation
buffer compounds and dilute the final protein concentration close to 0.5 mg/mL. Trypsin
(1 μg) was added to samples and incubated overnight at 37 ◦C. The hydrolysis was stopped
by adding formic acid (to a final concentration of 5%). Samples were centrifuged for 10 min
at 10 ◦C at 12,000× g to sediment deoxycholic acid. The supernatant was transferred
into a clean tube. In the obtained supernatants, the total peptide concentration was
determined by the colorimetric method using a Pierce™ Quantitative Colorimetric Peptide
Assay kit (Thermo Scientific, Waltham, MA, USA) in accordance with the manufacturer’s
recommendations. The peptides were dried and dissolved in 0.1% formic acid to a final
concentration of 1 μg/μL.

2.5. Shotgun Mass Spectrometry

The peptide samples obtained were analyzed using the Agilent HPLC system 1100
Series (Agilent Technologies, Santa Clara, CA, USA) connected to a hybrid linear ion trap
LTQ Orbitrap Velos, equipped with a nanoelectrospray ion source (Thermo Scientific,
Waltham, MA, USA). Peptide separations were carried out on a RP-HPLC Zorbax 300SB-
C18 column (C18 3.5 μm, 75 μm inner diameter and 150 mm length, Agilent Technologies,
Santa Clara, CA, USA) using a linear gradient from 95% solvent A (water, 0.1% formic acid)
and 5% solvent B (water, 0.1% formic acid, and 80% acetonitrile) to 60% solvent B over
85 min at a flow rate of 0.3 μL/min.

Mass spectra were acquired in the positive ion mode using Orbitrap analyzer with a
resolution of 30,000 (m/z = 400) for MS and 7500 (m/z = 400) for MS/MS scans. The AGC
target was set at 2 × 105 and 1 × 105 with maximum ion injection time 50 ms and 100 ms
for MS and MS/MS, respectively. Survey MS scan was followed by MS/MS spectra for
five the most abundant precursors. The higher energy collisional dissociation (HCD) was
used, and normalized collision energy was set to 35 eV. Signal threshold was set to 5000 for
an isolation window of 2 m/z. The precursors fragmented were dynamically excluded from
targeting with repeat count 1, repeat duration 10 s, and exclusion duration 60 s. Singly
charged ions and those with not defined charge state were excluded from triggering the
MS/MS scans.

2.6. Data Analysis

The mass spectrometry data were analyzed using SPIRE pipeline [23]. The raw mass
spectrometry data were converted to the mzXML format with the RawToMzXML convertor
and uploaded into the SPIRE server. The experimental data were assigned to five time
points (0, 3, 24, 48, and 96 h); each point included three biological- with five technical
replicates. The data obtained were searched by the in-built «Composite» search engine
within SPIRE pipeline using the following parameters: enzyme specificity was set to
trypsin, two missed cleavages were allowed. Carbamidomethylation of cysteines was set
as fixed modification and methionine oxidation was set as variable modification for the
peptide search. The mass tolerance for precursor ions was 10 ppm; the mass tolerance for
fragment ions was 20 ppm. Human FASTA file (September 2015) was used as a protein
sequence database. The spectra identified with 90% probability were assigned to peptides.
The local false discovery rate for protein identification was set bellow 0.01 (locFDR < 0.01).
locFDR was calculated in SPIRE utilizing randomized or decoy database searches [23].

Label-free quantitation was performed with the use of the SPIRE software by default
settings. Expression ratios and p-values were calculated based on an over-dispersed Poisson
model using an empirical Bayes correction [23]. The proteins with the expression fold
change > 1.5, p-value < 0.05 and CV between biological repeats < 30%, were considered
as differentially expressed. The imputation of missing data has not been applied to mass-
spectrometric results.

The volcano plot was obtained using VolcaNoseR web app [24].
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2.7. Functional Classification of Differentially Expressed Genes and Proteins

Functional analysis of differentially expressed genes/proteins was carried out us-
ing the «Functional classification» option of the geneXplain platform (http://platform.
genexplain.com) with GO and PROTEOME Databases (BIOBASE) implemented as a mod-
ule of the GeneXplain platform.

For the functional analysis of gene groups exhibiting altered expression at the selected
time points of cell differentiation, the cut-off value for the probability of random gene
allocation of a gene to a particular group (Adjusted p-value) was set at 5 × 10−4. Only
statistically significant classification of genes according to the GO categories, describing
various biological processes in cells, was taken into consideration for the functional analysis.

The STRING database v.11.0 was used to retrieve the protein–protein interactions
(PPIs) from the lists of DEGs of MCD group at 3, 24, and 96 h. A high confidence (0.9) score
was applied. The active interaction sources were experiments and curated databases. The
built-in functional enrichment analysis results according to the molecular function (GO),
and KEGG pathways were used for visualization.

2.8. Search for Transcription Factors, Putatively Regulating Gene and Protein Expression during
ATRA-Induced Differentiation of HL-60 Cells

The search for over-represented transcription factor binding sites (TFBS) was per-
formed using geneXplain platform 2.0 software packages (http://platform.genexplain.com)
and TRANSFAC® database [25]. The differentially expressed genes/proteins at different
time points were considered as the test sets (Yes-sets). The gene/protein that did not show
any expression changes after ATRA treatment were used as a background set (No-sets).
The profile used for analysis contains a collection of vertebrate non-redundant transcription
factor matrices. The promoter window was selected from −1000 to +100 from the transcrip-
tion start site, and only the best-supported promoters of the genes analyzed were used.
The cut-off values with a threshold of p-value < 0.005 were selected to obtain high-scoring
binding sites. The matrices with high over-representation of site frequency in the promot-
ers under study versus the background promoters (ratio > 1.4) were selected for further
analysis. These matrices were converted to the set of the transcription factors (TFs), which
can be responsible for expression changes in the group of genes/proteins under study.

2.9. Generation of Regulatory Networks

The identification of potential master regulators in the signal transduction network
was performed using the «Regulator search» module of the geneXplain platform 2.0
software (http://platform.genexplain.com). The signal transduction network was provided
by the manually curated database, TRANSPATH®. The algorithm starts from a set of TFs
and performs a graph-topological search in the signal transduction network upstream of
transcription factors to identify the “key nodes” that can play a crucial role in intracellular
signaling from various receptors to the set of TFs identified. These key nodes may be
considered as master regulators of the process studied. The following setting parameters
were used: TRANSPATH® database, maximal search radius R = 10, Score cutoff = 0.2,
FDR cutoff = 0.05 and Z-score cutoff = 1.0. Besides FDR, for each possible additional
regulator the Score, Z-score and Ranks sum values were calculated. For the proteomic data
analysis, the “Context genes” option was used for the search of key regulators. In this case,
passing through the common network nodes, the nodes presented at the transcriptome
data were preferentially selected. Among the overall list of regulators generated after the
search, the statistically significant results were selected using the Ranks sum parameter.
Thus, it was possible to find the molecules characterized by equally good “Score” and
“Z-score” parameters. The “Score” parameter reflects how well a key molecule is associated
with the other molecules in the database and how many molecules of the input TFs are
present in the network for a given key molecule. The “Z-score” reflects how the proposed
molecule corresponds to the input TFs set. The ranks sum is a combination of Score and
Z-score. In other words, these “trivial” expected results attract interest as the well-known
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“nodes” in the network (Score) and more specific key molecules for the input sample,
which are less likely to be detected as an important regulator in the case of the other TF
sets used simultaneously.

2.10. Selected Reaction Monitoring (SRM)

The standard peptides for HIC1 (LEEAAPPSDPFR), CEBPB (VLELTAENER) LYN
(TQPVPESQLLPGQR), and PARP1 (TLGDFAAEYAK) were obtained using the solid-phase
peptide synthesis on the Overture™ Robotic Peptide Library Synthesizer (Protein Tech-
nologies, Manchester, UK) or Hamilton Microlab STAR devices according to the pub-
lished method [26]. The isotopically labeled lysine (13C6,15N2), arginine (13C6,15N4) or
serine (13C3,15N1) leucine (13C6,15N1) were used for isotopically labeled peptide synthe-
sis instead of the unlabeled lysine (TLGDFAAEYAK), arginine (VLELTAENER), leucine
(TQPVPESQLLPGQR), or serine (LEEAAPPSDPFR), respectively. Concentrations of the
synthesized peptides were measured by the method of amino acids analysis with fluores-
cent signal detection of amino acids derived after acidic hydrolysis of peptides as described
in [27].

SRM experiments were performed in three biological replicates with five time points
each (0, 3 h, 24 h, 48 h, and 96 h) and in five technical replicates for each time point
studied. The digested samples were spiked with isotopically labeled peptide to the final
concentration 50 fmol/μg of total protein. Peptide samples (2 μg) were separated on a
RP-C18 column, (Zorbax 300SB-C18, 3.5 m, 150 mm × 0.075 mm, Agilent Technologies,
Santa Clara, CA, USA) using the nanoflow UPLC DionexUltiMate 3000 RSLC nano System
Series (Thermo Scientific, Waltham, MA, USA). Peptide separation was achieved using a
linear gradient from 95% solvent A (0.1% formic acid) and 5% solvent B (80% acetonitrile,
0.1% formic acid) to 60% solvent A and 40% solvent B over 25 min at a flow rate of
0.4 μL/min. SRM analysis was performed on the QqQ TSQ Vantage (Thermo Scientific,
Waltham, MA, USA) with capillary voltage set at 2100 V, isolation window was set to
0.7 Da. SRM transition details for all peptides are shown in Table S8. The results were
processed using Skyline software v4.1.0 (MacCoss Lab Software, Seattle, WA, USA). The
coefficient of variation (CV) of transition intensity did not exceed 25%, 12%, 12%, and 6%
between technical replicates for LEEAAPPSDPFR, VLELTAENER TQPVPESQLLPGQR,
and TLGDFAAEYAK, respectively.

3. Results

3.1. Transcriptome Analysis and Functional Annotation of Differentially Expressed Genes during
ATRA-Induced Differentiation of HL-60 Cells

To validate HL-60 cell differentiation into neutrophils, expression of surface markers
CD11b and CD38 was assessed by flow cytofluorometry at 96 h after ATRA treatment prior
transcriptome/proteome analysis (Figure S1). Although measurement of CD11b is the most
convenient way to evaluate granulocyte differentiation, to obtain more accurate data we
have used additional marker CD38 that promotes induced myeloid maturation [28]. The
mean fluorescence from HL-60 cells at 96 h after ATRA-treatment increased approximately
15-fold (CD38-from 171 to 2929; CD11b-from 112 to 1726) compared to untreated control.
This indicates that the granulocyte differentiation of the HL60 cell line was successful.

To obtain the transcriptomic data, HL-60 cells were harvested at 3 h, 24 h, and 96 h
after ATRA treatment followed by mRNA microarray profiling. A total of 14,543 gene
expressions were detected at all the time points studied. Among them 159, 231, and 1449
genes with fold-change (FC) ≥2 were determined as differentially expressed genes (DEGs)
at 3 h, 24 h, and 96 h after ATRA treatment, respectively (Supplemental Table S1).

Further, we focused on the bioinformatics reconstruction of putative regulatory path-
ways for DEGs that were involved in cell differentiation according to highly validated data.
We annotated the altered expression genes by the Gene Ontology (GO) database category
related to the biological processes (Figure 2).
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Figure 2. The functional GO analysis of differentially expressed genes (DEGs) of HL-60 cells at 3 h, 24 h, and 96 h after
ATRA treatment. The number of DEGs (Log2 transformed) and p-value (-Log10 transformed) are provided on the x-axis.
The groups from the category of “Biological process” are on the y-axis. The threshold adjusted p-value < 10−4. The group of
“myeloid cell differentiation” (MCD, GO: 0030099) is marked by red color.

Figure 2 shows the DEGs at all time points were enriched by molecules, which were
assigned to the group of “myeloid cell differentiation” (MCD, GO: 0030099). The MCD
group was revealed at 3 h after ATRA treatment with 22 DEGs, and then was expanded up
to 24 and 81 DEGs at 24 h, and 96 h, respectively.
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The results of the interaction analysis by STRING (Figure S2) show that the DEGs
of MCD group were enriched in their interaction with the highest confidence (0.9). The
KEGG database annotation revealed mapping of the DEGs of MCD group into “Chemokine
signaling pathway” at 3 h and 24 h, and into “NOD-like receptor signaling pathway” at
96 h.

While the data for 3 h and 24 h suggest the cytokine signaling as one of the mecha-
nisms of the ATRA-induced granulocytic differentiation, the results for 96 h indicate the
manifestation of functions of already mature neutrophils. These observations emphasize
that the bioinformatics mapping of molecules with altered expression on known signaling
pathways is insufficient for a complete understanding of the regulatory events.

Moreover, the earliest time point (3 h after ATRA treatment) provides transcriptomic
data on the granulocytic differentiation onset. The DEGs of the MCD group at 3 h included
ASB2, BCL2A1, CCL2, CCL3L1, CCL4, CCR5, CD300A, CD38, CEBPB, FGR, HES1, HNR-
PLL, IL8, LRG1, LYN, RELB, TNFAIP2, BCL11A, NR2F2, PTGER2, RGS18, and SERPINB2.
Among them CEBPB, CCR5, CCL4, FGR, CXCL8 (IL8), and LYN form a putative functional
complex according to the STRING interaction analysis (Figure S2a). These data are of great
importance for deciphering the very first molecular events of ATRA-induced granulocytic
differentiation. Further, the dynamics of transcription factor CEBPB and LYN kinase was
assessed by targeted mass-spectrometry approach (selected reaction monitoring (SRM)) at
protein level.

The MCD group genes have been used for following upstream regulators search. The
lists of the MCD group genes are presented in Supplemental Table S2.

3.2. Proteomic Analysis and Functional Annotation of Differentially Expressed Proteins during
ATRA-Induced Differentiation of HL-60 Cells

Proteome dynamics is associated with cell phenotype development and its continuous
observation can contribute to understanding of the cell maturation process. Previously, for
systems analysis of induced granulocyte differentiation and apoptosis under ATRA/arsenic
trioxide treatment starting time points of 6 h at transcriptomic level and 12 h at proteomic
level were used [3]. We tried to unveil the molecular onset of differentiation. In our
preliminary experiments we did not observed any significant changes in the ATRA induced
cell proteome within the first 2 h after ATRA induction (data not shown). We performed
proteomic profiling of HL-60 cells at 0, 3 h, 24 h, 48 h, and 96 h after ATRA-treatment.

Using “Composite” search engine in the SPIRE software, we identified 1436, 1470,
1379, 1253, and 1210 proteins with (locFDR) < 0.01 at the 0, 3 h, 24 h, 48 h, and 96 h time
points, respectively (Supplemental Tables S3 and S4). Mass-spectrometric data are available
via the ProteomeXchange with identifier PXD006768. Based on label free quantitative
analysis, 122, 169, 199, and 275 proteins were revealed as differentially expressed proteins
(DEPs) (FC ≥ 1.5, p-value < 0.05, CV < 30%) at 3, 24, 48, and 96 h after ATRA treatment
comparing to control (0 h), respectively. Data on label free quantitative analysis and relative
expression are presented in Supplemental Table S5. The heatmap of protein expression is
presented in Figure S3. The DEPs are listed in Table S5.

The functional analysis of DEPs was performed in the same way as for the DEGs. The
results are shown in Figure 3.

Figure 3a shows that the DEPs are enriched with the proteins involved in programmed
cell death and its regulation at 3 h and 96 h after ATRA treatment. The five most up-
regulated DEPs involved in programmed cell death at 3 h after ATRA-treatment comprise
proteasome subunit beta type-2 (PSMB2, P49721), apoptosis-inducing factor 1 (AIFM1,
O95831), alpha-actinin-1 (ACTN1, P12814), RNA-binding protein 25 (RBM25, P49756),
and apoptosis inhibitor 5 (API5, Q9BZZ5). The top five down-regulated DEPs included
26S proteasome regulatory subunit 8 (PSMC5, P62195), alpha-actinin-2 (ACTN2, P35609),
14-3-3 protein eta (YWHAH, Q04917), CD44 antigen (CD44, P16070), and protein S100-A9
(S100A9, P06702).
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Figure 3. (a) The functional GO analysis of differentially expressed proteins (DEPs) of HL-60 cells at 3 h, 24 h, 48 h, and 96 h
after ATRA treatment. The number of DEPs (Log2 transformed) and p-value (-Log10 transformed) are provided on the
x-axis. The groups from the category of “Biological process” are on the y-axis. The threshold adjusted p-value < 10−4. The
groups containing proteins regulating cell death and apoptosis are marked by red. The volcano plots show the differences
in proteins abundance at 3 h (b) and 96 (c) after ATRA treatment; significantly up- and down-regulated proteins are shown
as red and blue dots, respectively; names are shown for five most up- and down-regulated proteins that were annotated by
GO belonging to groups “programmed cell death” and/or “regulation of cell death”.

The five most up-regulated proteins at 96 h after ATRA-treatment included 26S protea-
some non-ATPase regulatory subunit (PSMD1, Q99460), proteasome subunit beta type-2
(PSMB2, P49721), glucose-6-phosphate 1-dehydrogenase (G6PD, P11413), thioredoxin re-
ductase 1 (TXNRD1, Q16881), and Na(+)/H(+) exchange regulatory cofactor NHE-RF1
(SLC9A3R1, O14745). Although these DEPs are assigned to the groups regulating cell
death, they affect cell fate indirectly through metabolic effects. The 5 most down-regulated
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DEPs included DNA-dependent protein kinase catalytic subunit (PRKDC, P78527), Bcl-2-
associated transcription factor 1 (BCLAF1, Q9NYF8), DnaJ homolog sub-family A member
1 (DNAJA1, P31689), proteasome activator complex subunit 3 (PSME3, P61289), and serpin
B10 (SERPINB10, P48595).

The STRING interaction analysis (Figure S4) revealed that the DEPs of group “pro-
grammed cell death” and/or “regulation of cell death” were enriched in their interaction
with the highest confidence (0.9) at 3 h and 96 h after ATRA-treatment. Moreover, these
proteins were mapped to the “Proteasome” pathway (KEGG database annotation) with
high confidence.

3.3. The Workflow of Transcriptome- and Proteome-Based Regulatory Networks Design

The lists of DEGs and DEPs given in Supplemental Tables S2 and S5 have been used
as the test sets (Yes-sets). The control sets were formed from the transcripts and proteins
with unaltered expression as described in “Materials and Methods”. We performed the
two-step bioinformatic analysis including:

1. Identification of TFs that can regulate the DEGs (MCD group) and DEPs at different
time points after ATRA treatment using TRANSFAC@ database followed by matching
putative TFs with the list of all transcripts identified (Supplemental Table S1) to cut-off
the molecules that are not expressed in HL-60 cells at the mRNA level;

2. The upstream prediction of key molecules that regulate the TFs determined at the
previous step using TRANSFAC@ database followed by visualization of the predicted
interaction as a model regulatory networks.

To verify the molecules that are actually expressed in HL-60 cells, we matched the
list of all identified and differentially expressed genes (Supplemental Table S1) and/or
proteins (Supplemental Table S5) with the elements of model regulatory networks.

3.3.1. The Transcriptome-Based Modeling Pathway

To find TFs responsible for regulation of gene expression we performed a search
for the DEGs (MCD group) transcription factors binding sites (TFBS) at each time point
studied (see results in Supplemental Table S6). TFs of DEGs determined at the 3/24 h and
24/96 h time were the same in general. So, in the case of time points 3, 24, and 96 h, we
have combined all putative TFs in one set in order to perform key regulator search. The
upstream analysis of the combined set of TFs, which are involved in regulation of MCD
group genes at the 3 h, 24 h, and 96 h, revealed the top five key molecules with the lowest
“Rank sum” value. The results are summarized in Table 1.

Table 1. Putative key molecules responsible for regulation of the DEGs related to the myeloid cell
differentiation (MCD group) at 3, 24 and 96 h after ATRA treatment.

Time
Point.

Key Molecule
Name

Reached
from TF Set 1

Reachable
Total 2 Score 3 FDR 4 Z-Score 5 Ranks

Sum 6

3-24-96
h (MCD)

AhR 22 12488 0.34 0.011 2.31 5
arnt 21 8990 0.34 0.026 2.1 6
Nrf2 15 9200 0.24 0.033 2.61 6

(CKII-α)2:(CKII-β)2 22 10803 0.28 0.025 2.45 8
NF-kappaB1 21 10897 0.29 0.024 2.05 11

1 “Reached from TF set”—the number of the TFs from the input set (Supplemental Table S6) that is reached from
the respective key molecule; 2 “Reachable total”—the total number of molecules that can be reached from the
key molecule, independent of the input set; 3 “Score”—the value reflecting how well the respective key molecule
is connected with other molecules in the database, and how many molecules from the input set are present
in the network triggered by this key molecule, the higher value—the better suitability (threshold value > 0.2);
4 FDR—false discovery rate (from 1000 random input sets); 5 “Z-score”—the value that reflects how specific
each key molecule is for the input list, the higher value—the better suitability (threshold value > 1); 6 “Rank
sum”—composite value that reflects the impact of Score and Z-score simultaneously, the lower value—the
better suitability.

Further, to select the key molecules for visualization, we checked either its expressions
were altered at ATRA-induced granulocytic differentiation (of primary importance), and
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compared FDR statistics. None of the key molecules from Table 1 were significantly
changed at the transcript or protein levels. At the same time, AhR and NF-kappaB1 were
the most reliable based on FDR value. Moreover, AhR and NF-kappaB1 mutually regulate
each other according TRANSFAC@ database. The regulatory network triggered by AhR
and NF-kappaB1 is shown in Figure 4.

 

Figure 4. The transcriptome-based model network of regulation of MCD group DEGs during ATRA-induced HL-60 cells
differentiation (the time points 3 h, 24 h, and 96 h). Legend: master regulatory molecules are represented by pink ellipses;
connecting molecules considered by the graph-analyzing algorithm to find the path from the TF input list to the master
molecule are represented by green ellipses; the molecules from the TF input list are represented by lilac ellipses. The
colored bars around molecules show changes in the expression level. Transcript expressions are shown in blue (decreased
expression) or pink (increased expression) color arrays, color intensity correlates with fold-change (FC), bars are colored if
FC ≥ 2. From left to right each bar represent experimental time point (the time points at 3 h, 24 h, and 96 h and additional
time points at 0.5 h and 1 h). Protein expression is shown in yellow (decreased expression) and green (increased expression)
color array, color intensity correlates with fold-change (FC) of relative protein expression, bar is colored if FC ≥ 1.5, from
left to right each bar represent experimental time point (3 h, 24 h, 48 h, and 96 h).

According to the scheme, the key molecule AhR, apparently, causes down-regulation
of proto-oncogene WT1, nuclear receptor RXRα, and transcription factor E12 (TCF3) and
up-regulation of PKC zeta. AhR affects GSK3beta that regulates another key molecule,
NF-kappaB1. On the other hand, NF-kappaB1 affects SIRT1 deacetylase, which inhibits the
transcriptional activity of RelA/p65. NF-kappaB1 also influences GSK3beta kinase, thus
performing the feedback and cross-regulation from two key molecules.
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The model network also shows, that the NF-kappaB1/SIRT1 tandem down-regulates
PARP1 (2-fold mRNA decrease at 96 h), DNA-PKcs (3-fold mRNA decrease at 96 h), and
VDR (5-fold mRNA decrease at 96 h). VDR gene have been also indirectly controlled (via
CSBP1) by AhR. Furthermore, NF-kappaB1/SIRT1 up-regulates TFs c-Krox, SREBP-1a,
NF-AT2A-beta, and HIC1 mRNA expression. Both NF-kappaB1 and AhR trigger the
up-regulation of caspase 9. These results indicate the synergistic effect of key molecules.
Notably, transcriptome-based MCD-regulating scheme included various protein kinases
(ERK, JNKalpha1, MKK4, GSK3beta, CSBP1 (MK14), AKT1, JNK3alpha1, Raf-1, PDK1,
MKK5, and PKCzeta). This observation suggests the significant role of MAPK pathway in
the regulation of DEGs of MCD group.

3.3.2. The Proteome-Based Modeling Pathway

In the case of proteome data analysis, we have combined TFs which may regulate the
expression of genes encoding DEPs (Supplementary Materials, Table S7). The results of the
key regulator molecules search for DEPs are presented in Table 2. The Top-5 key molecules
with the lowest “Rank sum” value are shown.

Table 2. Putative key molecules that regulate DEPs at 3, 24, 48, and 96 h during ATRA-induced
differentiation of HL-60 cells.

Time Point
Key Molecule

Name
Reached

from TF Set 1
Reachable

Total 2 Score 3 FDR 4 Z-Score 5 Ranks
Sum 6

Combined
3-24-48-96 h

YY1 22 32835 0.650 0.013 2.779 59
plk1{p} 22 32762 0.640 0.002 2.803 63
PARP1 22 32360 0.607 0.006 2.950 63

faim 22 32361 0.607 0.006 2.950 64
MKK6 22 33716 0.721 0.004 2.325 88

NR1B1 (RARA) 22 30223 0.505 0.018 3.007 204
1 “Reached from TF set”—the number of the TFs from the input set (Supplemental Table S7) that is reached from
the respective key molecule; 2 “Reachable total”—the total number of molecules that can be reached from the
key molecule, independent of the input set; 3 “Score”—the value reflecting how well the respective key molecule
is connected with other molecules in the database, and how many molecules from the input set are present
in the network triggered by this key molecule, the higher value—the better suitability (threshold value > 0.2);
4 FDR—false discovery rate (from 1000 random input sets); 5 “Z-score”—the value that reflects how specific
each key molecule is for the input list, the higher value—the better suitability (threshold value > 1); 6 “Rank
sum”—composite value that reflects the impact of Score and Z-score simultaneously, the lower value—the
better suitability.

Further, to select the key molecule for visualization, we checked either its expression
was altered during ATRA-induced granulocytic differentiation (of primary importance),
and compared their FDR statistics. According to our transcriptomic data, we observed
a 2-fold decrease of the PARP1 levels at 96 h. At the same time, PARP1 was identified
in a shotgun mass spectrometry experiment. Furthermore, this molecule represents an
intermediate node in the SIRT1-mediated signal transduction in the transcriptome-based
network triggered by NF-kappaB1 and AhR (see Figure 4). In addition to the five most
statistically significant molecular regulators, Table 2 also includes a retinoic acid receptor
NR1B1 (RARα) as the key molecule. Although the Rank sum has not included RARα in
the top five molecules, it has sufficient Score, Z-Score, and FDR values. Moreover, RARα
is the well-known target of retinoic acid, inducing the differentiation of HL-60 cells [29].
The proteome-based scheme of TF regulation based on the selected key molecules, PARP1
and RARα, is shown in Figure 5. This modeling pathway could demonstrate molecular
synergy of PARP1 and RARα.

Figure 5 demonstrates that in addition to the TFs with altered expression described
previously (VDR, RXRα, and HIC1) the unique TFs were predicted using the proteomic
data, including IRF7 and AML3 (RUNX2) (2.6-fold mRNA increased at 96 h), and GATA2
(mRNA reduced by 3.6- and 6.5-fold at 24 h and 96 h, respectively).
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Figure 5. Proteome-based model network of regulation of ATRA-induced HL-60 cell line differentiation (time points 3 h,
24 h, 48 h, and 96 h). Legend: master regulatory molecules are represented by pink ellipses; connecting molecules considered
by the graph-analyzing algorithm to find the path from the TF input list to the master molecule are represented by green
ellipses; the molecules from the TF input list are represented by lilac ellipses. The colored bars around molecules show
changes in the expression. Transcript expression is shown in blue (decreased expression) and pink (increased expression)
color array, color intensity correlates with fold-change (FC) of relative mRNA expression, bar is colored if FC ≥ 2, from left
to right each bar represent experimental time point (the time points at 3 h, 24 h, and 96 h and additional time points at 0.5 h
and 1 h). Protein expression is shown in yellow (decreased expression) and green (increased expression) color array, color
intensity correlates with fold-change (FC) of relative protein expression, bar is colored if FC ≥ 1.5, from left to right each bar
represent experimental time point (3 h, 24 h, 48 h, and 96 h).

According to Figure 5, DNA-PKcs also affects IkappaB-alpha (NFKBIA): its expression
is 3.2- and 2.9-fold increased at the transcriptome level at the time point 3 h.

Notably, the key molecule RARα (NR1B1 on the scheme) regulates PARP1 through
CBP acetylase. In turn, the PARP1-triggered network regulates RARα through the DNK-
PKcs/AKT1/CASP9/CASP3/SRF/JNK1α1/pCAF loop. In the case of RAR-dependent
transcription, it has been found that PARP1 functions as a co-regulator, which is required
to switch the mediator complex in the active state and start the transcription [30].

The same pathway branch (PARP1/DNA-PKcs/VDR) and some TFs (HIC1 and RXRα)
belong to both transcriptome and proteome-based model regulatory networks that suggests
the importance of these molecules and actual involvement of the pathways in the regulation
of ATRA-induced differentiation of HL-60 cells.

3.4. Verification of Protein Levels of HIC1, PARP1, CEBPB, and LYN During ATRA-Induced
Differentiation by SRM Analysis

To reveal molecules of the transcriptome- and proteome-based pathways, which are
actually expressed in HL-60 cells, we have matched the list of all identified and differentially
expressed genes (Supplemental Table S1) and proteins (Supplemental Table S5) with
molecules in the model regulatory networks. Differentially expressed genes belonging to
the transcriptome- and proteome-based modeling networks are shown in Figure 6.
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Figure 6. Components of transcriptome- and proteome-based model networks with altered mRNA expression under ATRA
treatment. Transcription factors, TFs (predicted by TRANSFAC@ database), intermediate and key molecules (predicted by
TRANSPATH@ database) with fold change ≥ 2 (p-value ≤ 0.05) at 3, 24, and 96 h is presented.

Figure 6 shows that 15 molecules, including one key molecule, five intermediate
molecules, and nine transcription factors (TFs) of the transcriptome- and proteome-based
model networks were characterized by the altered mRNA expression level. Transcriptional
repressor HIC1 was strongly up-regulated at all time points studied suggesting its regula-
tory value. It is noteworthy that CASP9 and NFKBIA were up-regulated at 3 h after ATRA
treatment. Transcription factors VDR and RXRA, which are intimately related to induced
differentiation, were down-regulated (as well as key molecule PARP1).

Among predicted regulatory molecules we selected transcription factor HIC1 and key
molecule PARP1 for measuring abundance in HL-60 cells at different time points by SRM.
Next, we have compared transcriptomic and proteomic profiles during ATRA-induced
differentiation. We also evaluated levels of transcription factor CEBPB and LYN kinase
with altered expression at the earliest time point (3 h) by SRM. Results are shown in
Figures 7 and 8.

Figure 7a,d demonstrate the trace of SRM transitions for native (above) and SIS stan-
dard (below) peptides LEEAAPPSDPFR of HIC1 protein, and TLGDFAAEYAK of PARP1
protein, respectively. The Figure 7b,c show transcriptomic and proteomic profiles of HIC1
expression. Transcription repressor HIC1 was up-regulated at 3 h and its mRNA abundance
gradually increased almost 9 times to 96 h. HIC1 protein has not been identified in shotgun
mass-spectrometry experiment. Using SRM technique with stable isotope labeled peptide
standard (LEEAAPPSDPFR) the HIC1 abundance was detected at 24 h, 48 h, and 96 h.
At these time-points its concentration was 0.63 ± 0.21 fmol/μg, 0.85 ± 0.14 fmol/μg, and
1.2 ± 0.15 fmol/μg of total protein, respectively. The HIC1 protein level was increased
approximately 2-fold (FC = 1.9, p-value ≤ 0.05) from 24 h to 96 h after ATRA treatment.
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Figure 7. HIC1 and PARP1 expressions at ATRA-induced granulocytic differentiation. (a) Trace of SRM transitions for native
and stable isotope labeled peptide standard LEEAAPPSDPFR of HIC1. (b) Profile of transcript expression HIC1 during HL60
differentiation (fold change ≥ 2, p-value ≤ 0.05 at 3 h, 24 h, and 96 h). (c) Protein expression level of HIC1 obtained by SRM
(three biological replicates) at 3 h, 24 h, 48 h, 96 h. (d) Trace of SRM transitions for native and standard isotopically-labeled
peptide TLGDFAAEYAK of PARP1. (e) Profile of transcript expression PARP1 during HL60 differentiation (fold change ≥ 2,
p-value ≤ 0.05 at 96 h). (f) Protein expression level of PARP1 obtained by SRM (three biological replicates) at 3 h, 24 h, 48 h,
96 h.
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Figure 8. CEBPB and LYN expression during ATRA-induced granulocytic differentiation. (a) Trace of SRM transitions for
native and stable isotope labeled peptide standard VLELTAENER of CEBPB. (b) Profile of CEBPB transcript expression
during HL60 differentiation (fold change ≥ 2, p-value ≤ 0.05 at 3 h, 24 h, and 96 h) (c) Protein expression level of
CEBPB obtained by SRM (three biological replicates) at 3 h, 24 h, 48 h, 96 h. (d) Trace of SRM transitions for native and
standard isotopically-labeled peptide TQPVPESQLLPGQR of LYN. (e) Profile of transcript expression LYN during HL60
differentiation (fold change ≥ 2, p-value ≤ 0.05 at 3 h and 96 h). (f) Protein expression level of LYN obtained by SRM (three
biological replicates) at 3 h, 24 h, 48 h, 96 h.
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The Figure 7e,f show transcriptomic and proteomic profiles of PARP1 expression.
PARP1 was selected as a key molecule for the proteome-based model network. At the
transcriptome level we revealed a 2-fold decrease in PARP1 mRNA expression at 96 h.
The SRM measurements for the TLGDFAAEYAK peptide of PARP1 were 13.28 ± 2.98,
10.83 ± 3.46 fmol/μg, 9.57 ± 2.88 fmol/μg, 8.28 ± 0.35 fmol/μg, and 8.77 ± 0.54 fmol/μg
of total protein at 0, 3 h, 24 h, 48 h, and 96 h after ATRA-treatment, respectively. The PARP1
protein level was 1.5-fold (p-value ≤ 0.05) down-regulated by 96 h after ATRA treatment.

Figure 8a,d demonstrate the trace of SRM transitions for native (above) and SIS
standard (below) peptides VLELTAENER of CEBPB protein, and TQPVPESQLLPGQR of
LYN protein, respectively.

Figure 8b demonstrates that CEBPB was up-regulated starting from 3 h (FC = 3.6,
p-value ≤ 0.05) up to 96 h (FC = 5.95, p-value ≤ 0.05) at transcriptome level. Using
SRM, we measured CEBPB in amount of 1.2 ± 0.12 fmol/μg, 1.36 ± 0.31 fmol/μg,
1.98 ± 0.59 fmol/μg, 1.78 ± 0.28 fmol/μg, and 2.17 ± 0.21 fmol/μg at 0, 3 h, 24 h, 48 h,
and 96 h after ATRA-treatment, respectively (Figure 8c).

Figure 8e,f show transcriptomic and proteomic profiles of expression of LYN kinase.
Transcriptomic data demonstrates significant LYN up-regulation at 3 and 96 h. The unique
peptide (TQPVPESQLLPGQR, 21-34aa), which has been used for SRM analysis, is the LYN iso-
form B-specific and is mapped to the region that distinguishes isoform A from isoform B. High-
resolution annotated MS2 spectrum of LYN isoform B-specific peptide TQPVPESQLLPGQR is
shown in Figure S5. Protein LYN expression was detected in amount of 1.12 ± 0.2 fmol/μg,
0.8 ± 0.21 fmol/μg, 1.8 ± 0.46 fmol/μg, 2.18 ± 0.6 fmol/μg, and 2.49 ± 0.23 fmol/μg of
total protein at 0, 3 h, 24 h, 48 h, and 96 h after ATRA-treatment, respectively.

We observed coordinate increase or decrease at the transcript and protein level for
HIC1, CEBPB, LYN, and PARP1; this confirms involvement of corresponding genes in
the ATRA induced HL60 differentiation. The targeted mass-spectrometric data have been
uploaded into PASSEL repository (dataset PASS01678).

4. Discussion

Omics techniques provide a massive amount of data on the molecular state of the
biological object studied. Nevertheless, in high-throughput transcriptome and proteome
profiling, we always register only certain molecular consequences of regulatory events
that occurred in the past (e.g., induction of the expression of the corresponding gene).
Especially, proteomic research of differentiation onset is complicated by the fact that
observed changes in protein levels take time. Thus, up-stream regulator search provides
bioinformatics reconstruction of the molecular events up to one or several trigger points.
Consistent with this, our whole-genome transcriptome results indicated activation of
myeloid differentiation, whereas proteomic data demonstrated the involvement of the
apoptosis pathways under ATRA treatment. However, knowing the expression differences
alone does not allow us to reveal the effector that leads a biological system towards the
particular molecular state. Applying up-stream regulator search and visualizing its result,
we provide the putative “molecular scenarios” of how a dozen regulatory molecules
decided the fate of hundreds of proteins and transcripts.

After ATRA treatment leukemic cells, of which the phenotype is generally driven by
genetic abnormalities, acquire features of mature granulocytes. As in the case of many
others malignancy, HL-60 cells harbor genetic aberrations including the most frequent mu-
tations: extensive deletion of the p53 gene, amplification of MYC oncogene, and monoallelic
deletion of granulocyte–macrophage colony stimulating factor (GM-CSF) [11,12]. Consid-
ering this, we suggest that our model regulatory networks represent a putative way to
overcome the effect of these mutations.

Proto-oncogene MYC plays a crucial role in the regulation of cell proliferation, differ-
entiation, and apoptosis [31,32]. From 16- to 32-fold MYC gene amplification in the HL-60
genome has been reported [33]. Although the decreased expression of MYC is not sufficient
for triggering differentiation of HL-60 cells, it is accompanied by the inhibition of cell
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growth [34]. In our study, we observed a 7-fold decrease of MYC mRNA expression during
granulocytic differentiation. Notably, TF MAX that binds MYC protein for activation of
target genes [35] is the part of our proteome-based model network. Thus, the modeling
scheme presented in Figure 4 could represent a way to overcome the deleterious effect of
MYC gene amplification.

Normally, the p53 gene is a crucial component of the molecular response to different
kinds of cell stress including DNA damage. Namely, p53 is involved in mismatch repair,
DNA double-strand break repair, and nucleotide excision repair that could accompany
uncontrolled proliferation [36]. Poly(ADP-ribose) polymerase 1 (PARP1), the key molecule
of the proteome-based model network, has intricate interplay with p53 in regulation
of cell death and survival. PARP1 affects p53 transcriptional activity, and promotes its
oncosupressive function [37]. In turn, the p53 expression level is prominently increased
after DNA damage in PARP1-defiecint cells that leads to apoptosis [38]. Moreover, in the
case of the multidrug-resistant leukemia cell line HL-60[R] the PARP1 mRNA expression
level was up-regulated [39]. At the same time, a branch of components PARP1/DNA-
PKcs/VDR, which is presented both the in transcriptome- and proteome-based model
pathways (Figures 4 and 5), regulates DNA repair [40,41]. Thus, the proteome-based model
network could represent a molecular bypass to overcome consequences of p53 deletion.
It may be assumed that inhibition of PARP1 in p53-deficient HL-60 cells could have the
similar antiproliferative effect as on BRCA1-deficient cancer cells of solid tumors [42]. This
assumption is in agreement with the fact that primary blasts from patients with acute
myeloid leukemia are sensitive to PARP-inhibitor Olaparib [43].

In our study SRM measurements show a trend of the diminution of PARP1 protein
abundance, while the mRNA level was significantly down-regulated, 2-fold, to 96 h after
ATRA-treatment. Considering the moderate modulation of abundance it is conceivable
that PARP1 is regulated by post-translation modification. Figures 4 and 5 demonstrate
that PARP1 could be acetylated by CREB-binding protein (CBP) or deacetylate by SIRT1.
Both PARP1 and SIRT1 compete for the common NAD+ substrate and modulate each
other’s activity by mutual modification [44]. PARP1 inhibition by SIRT1 could contribute
to the increase in the DNA damage level and cell death in the absence of p53 expression.
SIRT1 stimulation by pharmacological agents could promote PARP1 inhibition. On other
hand, SIRT1 can activate apoptosis by direct deacetylation of the RelA-p65 subunit that
inhibits the transcription of NF-kappaB and increases cell sensitivity to TNF-alpha-induced
apoptosis [40]. TNF-alpha is known to cause p53-independent apoptosis, which promotes
the monocytic differentiation of HL-60 cells [45].

At the same time, we observed prominent up-regulation of transcriptional repressor
HIC1 that suppresses SIRT1 gene expression. SIRT1 deacetylates and inactivates both
p53 and PARP1; HIC1 affects cell cycle, apoptosis, and DNA repair. According to our
transcriptome-based model network (Figure 4), HIC1 was triggered by NF-kappaB via
SIRT1 and p300. In Figure 5, a proteome-based model network represents HIC1 regulated
by cascade triggered by PARP1 through DNA-PKs, AKT, and p300. This suggests a feedback
loop involved in maintaining moderate inhibition of SIRT1 via HIC1 that sustains PARP1
activity, resulting in delayed apoptosis and allowing cells to differentiate into neutrophils.
Apparently, accumulation of critical amount of HIC1 causes SIRT1 suppression, and further
PARP1 down-regulation occurs due to apoptosis-driven cleavage. It seems that the cell
machinery involved in the response to the DNA damage plays a key role in induced
granulocytic differentiation, and its component could be sensitive to target treatment.

The transcriptome analysis provides biological data on ATRA-induced granulocytic
differentiation at the whole genome-scale. However, not all transcripts detected could
be traced at the protein level. In turn, despite the proteomic data being limited by the
sensitivity of mass-spectrometry, the protein expression underlies the cell phenotype
manifestation. As expected, different inputs to up-stream regulator search resulted in
different key molecules in transcriptome- and proteome-based modeling pathways. Still,
the schemas show common predicted transcription factors (SRF, ARNT, RXRA, VDR, and

121



Biomolecules 2021, 11, 907

HIC1), intermediate molecules (Caspase9, histone acetyltransferase p300, protein kinases
ERK1, Raf-1, AKT1, CSBP1 (MK14), JNKaplha1, and AKT), and even whole branches
of molecular events (axis PARP1-DNA-PKcs-VDR). The gene transcription and protein
synthesis are separated in time, and the above observations suggest different key regulation,
but we also observe the general molecular consequences, such as the involvement of the
DNA repair system and the MAPK kinase cascade.

Interesting but conflicting results were obtained for LYN kinase. The previous studied
demonstrated that constitutively activated LYN was involved in AML pathogenesis and
treatment of cells by LYN siRNA resulted in the antiproliferative effect [46,47]. In our study
we observed LYN up-regulation at mRNA level under ATRA treatment. SRM technique
allows to distinguish different isoforms of the same protein. We used the isoform specific
peptide standard to detect LYN isoform B and found it to be up-regulated at the proteome
level. Previously it was reported that phosphorylation activity of Lyn isoform B was lower
than that of Lyn isoform A [48]. Moreover, the ratio of Lyn isoform A and Lyn isoform B
splice forms may represent a biomarker of neoplasm aggressiveness as was shown in the
case of breast cancer [49].

Absolute quantification by SRM with SIS peptides demonstrates the almost equimo-
lar abundance of TF CEBPB and Src kinase LYN. Considering their possible interaction
(STRING analysis of DEGs, Figure S2), absolute abundances of CEBPB and LYN suggest
protein stoichiometry in the putative complex involved in the earliest step of ATRA-induced
granulocytic differentiation.

The myeloid-associated TFs (RARa, RXR, VDR, CEBPB, and GATA2) of model schemes
confirm the biological relevance of bioinformatics modeling. Notably, a transcriptome-
based MCD-regulating scheme included various protein kinases (ERK, JNKalpha1, MKK4,
GSK3beta, CSBP1 (MK14), AKT1, JNK3alpha1, Raf-1, PDK1, MKK5, and PKCzeta), that is
in accordance with MAPK-based mechanisms for ATRA-induced granulocytic differen-
tiation [14]. Moreover, the current inter-platform study shows the involvement of such
less associated with AML TFs as NF-ATs, SMAD3, WT1, and c-Krox, as well as ubiquitous
molecules (p300, P/CAF, UBC9), which are involved in posttranslational modifications
(acetylation, sumoylation, ubiqutunilation etc.). All the above observations suggest the
existence of alternative, RAR/RXR transcription-independent, induced differentiation
pathways. However, this assumption should be experimentally proven.

5. Conclusions

Applying transcriptomic, proteomic analysis, and bioinformatics prediction we have
suggested a hypothesis on molecular mechanism of ATRA-induced granulocytic differenti-
ation. We aimed to trace dynamics at different molecular levels in a time-course manner.
The novelty of the approach used in our study is that molecules with altered expression
from omics experiments have not been just mapped to known signaling pathways. Instead,
an upstream regulator search aimed to obtain the hierarchical model of ATRA-induced
granulocytic differentiation that reconstructs the molecular events affecting differentially
expressed mRNA and proteins. Only the TFBS in the promotor region of genes with
altered expression and highly validated data on protein–protein interaction were taken into
account in upstream regulator search. The resulting modeling schemas are visualizations
of the most probable variant of a biological signal transmission, which leads to a change in
the expression levels of transcripts and proteins, observed experimentally. The validation
of bioinformatics prediction by functional molecular research is an important item, and a
subject of our further work. The TF HIC1 and the key molecule PARP1 are contemplated
as the most promising targets for validation of the modeling pathways.

The approach combining transcriptomic, proteomic analysis, and computational anal-
ysis described here is applicable to various cells models including primary blast cells from
patients under different treatment regimens. Thus this platform could be useful for the
goals of precision medicine such as monitoring response to treatment especially in case of
drug resistance. Our results suggest that the multi-disciplinary platform combining tran-
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scriptomics, proteomics, and bioinformatics is a promising approach to reveal regulatory
molecules that are hardly detected by convenient omics methods or laborious to derive
from convoluted proteomic or transcriptomic data.
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Abstract: Although natural products are an important source of drugs and drug leads, identification
and validation of their target proteins have proven difficult. Here, we report the development of
a systematic strategy for target identification and validation employing drug affinity responsive
target stability (DARTS) and mass spectrometry imaging (MSI) without modifying or labeling natural
compounds. Through a validation step using curcumin, which targets aminopeptidase N (APN),
we successfully standardized the systematic strategy. Using label-free voacangine, an antiangiogenic
alkaloid molecule as the model natural compound, DARTS analysis revealed vascular endothelial
growth factor receptor 2 (VEGFR2) as a target protein. Voacangine inhibits VEGFR2 kinase activity
and its downstream signaling by binding to the kinase domain of VEGFR2, as was revealed by
docking simulation. Through cell culture assays, voacangine was found to inhibit the growth of
glioblastoma cells expressing high levels of VEGFR2. Specific localization of voacangine to tumor
compartments in a glioblastoma xenograft mouse was revealed by MSI analysis. The overlap of
histological images with the MSI signals for voacangine was intense in the tumor regions and showed
colocalization of voacangine and VEGFR2 in the tumor tissues by immunofluorescence analysis
of VEGFR2. The strategy employing DARTS and MSI to identify and validate the targets of a
natural compound as demonstrated for voacangine in this study is expected to streamline the general
approach of drug discovery and validation using other biomolecules including natural products.

Keywords: target identification; target validation; label-free method for drugs; anti-angiogenesis;
mechanism of action; receptor tyrosine kinases; curcumin; natural products
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1. Introduction

Identifying the protein targets of therapeutic natural products and deciphering the specific
mechanisms of action at the molecular level are crucial steps in the development of natural products
as drugs to treat human diseases [1,2]. Without the validation of targets and the cellular actions of
natural products, these compounds may cause unexpected events, including adverse and toxic effects
in patients. Thus, methods for the identification of protein targets and the understanding of molecular
mechanisms of action of these natural products are pivotal for treating human diseases.

Given the importance and necessity of deciphering these parameters, there have been several
technological attempts to successfully identify the protein targets for natural products [3,4].
Widely-applied approaches include affinity-based matrices that label or tag small molecules, such as
affinity pull-downs and phage display methods [5–7]. Nevertheless, these methods have limitations,
such as changes in structural properties may occur upon labeling with chemical probes, or upon
tagging functional groups for immobilization; biological activities of natural products may change
as a result of the alterations in the chemical structure; these processes incur a high cost, and are
time and labor-consuming; and difficulty in modifying small molecules due to availability of only
virtual three-dimensional structures [8,9]. To overcome these limitations, new strategies have been
suggested for target identification and validation using label-free methods [6] with natural products.
Specifically, the targets are validated by utilizing changes in thermodynamic properties and structural
stability when a natural product directly interacts with a cognate protein target [5,10]. These methods
apply thermal [11], proteolytic [12,13] or oxidative stress [14] to analyze changes in the structural
stability of protein targets. One of these methods using proteolytic stress for target validation is the
DARTS method. DARTS is based on the principle of increased stability of a protein target upon
interaction with a natural product, which makes the complex less susceptible to proteolytic effects.
The conformational changes induced upon the interaction between the natural product and the target
protein thermodynamically stabilize the protein structure [12,13]. Moreover, through unbiased DARTS
approaches in combination with mass spectrometry (MS) analysis, quantitative MS based-proteomics
is utilized to identify multiple target proteins in drug-treated versus control samples [15].

Although these label-free methods have several advantages that overcome many of the difficulties
associated with labeling methods, researchers are yet to identify and validate directly in vivo interactions
between natural products and their target proteins at the tissue or cellular level. Recently, matrix-assisted
laser desorption ionization-mass spectrometry imaging (MALDI-MSI) has emerged as a new technology
to analyze the distribution of a natural product in tissues by directly measuring the molecular mass
of said molecule from the tissue sections. MALDI-MSI has also been adapted to investigate the
interactions between natural products and protein targets ex vivo. MALDI-MSI is an analytical mass
spectrometry technology that identifies ion peaks from a natural product at 25–100μm resolution [16,17].
This platform can be utilized to either detect all ion masses within a tissue microenvironment or to
perform selected-ion monitoring (SIM) of a single, specific ion mass. Furthermore, with the automated
computational procedures [18,19], the data generated by MALDI-MSI can exhibit the spatial localization
of all the detected natural products as a single integrated image. Accordingly, MALDI-MSI is a powerful
tool for validating the interactions between a natural product and its protein targets ex vivo without
any labeling probes or chemical immobilization [20,21]. With respect to absorption, distribution,
metabolism, and excretion (ADME), MALDI-MSI could prove to be an effective approach to provide
valuable information about the in vivo effects of label-free compounds in patients [22,23].

Accordingly, for overcoming the conventional limitations of target identification and analyzing the
localization of interaction between natural products and target proteins at the tissue level, we combined the
aforementioned methods into a systematic procedure and applied the same for target validation. To validate
DARTS-MSI as a successful systematic strategy for target identification of natural products, we applied the
same for a target-validated compound, curcumin, as a positive control natural compound. In the previous
studies, curcumin was shown to directly and irreversibly bind to aminopeptidase N (APN), which plays a
key role in tumor angiogenesis and proliferation, inhibiting its activity and hence angiogenesis [24].
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According to a previous report, we identified a small natural molecule with antiangiogenic
activity [25]. This molecule is called voacangine and is extracted from Voacanga africana,
Trachelospermum jasminoides, or Tabernaemontana catharinensis. Preliminary experiments suggested
that voacangine potentially inhibits angiogenesis. This effect was observed in tube formation assays
in endothelial cells (ECs) and vascularization of the chick chorioallantoic membrane. Additionally,
we also reported that voacangine significantly inhibited VEGF-induced chemoinvasion activity on
HUVECs in a dose-dependent manner. However, its mechanistic pathways and molecular targets are
still uncovered and not fully understood. Therefore, we focused on the investigation for the mode
of action in voacangine as the model natural compound by applying the aforementioned systematic
approach and various molecular experiments.

In the current study, we investigated the mode of action of voacangine via label-free DARTS
and successfully identified VEGFR2 as a target protein responsible for the observed antiangiogenic
properties of voacangine in ECs. The direct interaction between voacangine and VEGFR2 was validated
in vivo in animal models and also by analyzing the localization of voacangine by MSI in xenograft tumor
tissue sections. In addition, sunitinib, a marketed drug inhibiting tyrosine kinases by targeting not only
VEGFR2 but also other RTKs (EGFR, PDGFR, and FGFR), was selected as a reference compound for
comparing the potency on angiogenesis and tumor suppression with voacangine [26–29]. The strategy
of employing DARTS and MSI to identify and validate the downstream targets of a natural compound
as demonstrated for voacangine in this study can streamline the general process of drug discovery and
validation of protein targets for other biomolecules including natural products.

2. Materials and Methods

2.1. Materials and General Methods

Curcumin (purity, ≥98%) was obtained from Sigma-Aldrich (St Louis, MO, USA). Voacangine
(12-methoxyibogamine-18-carboxylic acid methylester) (purity, ≥98%) was purchased from THC Pharm
(Frankfurt, Germany) [25], and the stock solution made in 100% dimethyl sulfoxide (DMSO) was stored at
−20 ◦C, and diluted with the culture medium before the in vitro experiments. The working solution was
freshly prepared in basal medium and the control group was treated with the same volume of DMSO
as a vehicle control. Sunitinib (purity, ≥98%) was obtained from Sigma-Aldrich. Endothelial growth
medium-2 (EGM-2) was purchased from Lonza (Walkersville, MD, USA). Dulbecco”=s Modified Eagle
Medium (DMEM), Roswell Park Memorial Institute (RPMI) 1640, and fetal bovine serum (FBS) were
purchased from Invitrogen (Grand Island, NY, USA). Vascular endothelial growth factor (VEGF), Tumor
Necrosis Factor-α (TNF-α), epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and
platelet-derived growth factor-BB (PDGF-BB) were purchased from KOMA biotech (Seoul, Korea). The
Transwell chamber system for chemoinvasion assay and Matrigel (growth factors reduced) were obtained
from Corning Costar (Corning, NY, USA) and BD Biosciences (Bedford, MA, USA), respectively. Pronase
and protease inhibitor cocktail tablets were obtained from Roche (Mannheim, Germany). Phosphatase
inhibitor solution, Triton X-100, and dithiothreitol (DTT) were purchased from Sigma-Aldrich. Sodium
chloride (NaCl), Tris, and glycine were obtained from Samchun Chemical Co., Ltd. (Seoul, Korea).
Trifluoroacetic acid (TFA), high-performance liquid chromatography (HPLC)-grade methanol (≥99.8%)
and the matrix compound, α-cyano-4-hydroxycinnamic acid (CHCA) were purchased from Sigma-Aldrich,
and liquid chromatography–mass spectrometry (LC–MS) hypergrade acetonitrile (ACN) was obtained
from Merck (Darmstadt, Germany). Primary antibodies of phospho-VEGFR2, VEGFR2, fibroblast
growth factor receptor 1 (FGFR1), platelet-derived growth factor receptor α (PDGFRα), platelet-derived
growth factor receptor β (PDGFR β), phospho- extracellular signal-regulated protein kinases 1 and 2
(ERK1/2), ERK1/2, phospho-protein kinase B (Akt), Akt, APN, and β-actin were purchased from Cell
Signaling Technology (Beverly, MA, USA). Anti-β-III-tubulin was purchased from Millipore (Temecula,
CA, USA). Anti-epidermal growth factor receptor 1 (EGFR1) and anti-voltage-dependent anion-selective
channel 1 (VDAC1) were purchased from Abcam (Cambridge, UK). Anti-fibroblast growth factor
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receptor 5 (FGFR5) was purchased from Thermo Fischer Scientific (Waltham, MA, USA). Anti-cluster
of differentiation 31 (CD31) was purchased from Novus (Littleton, CO, USA). Secondary antibodies of
anti-rabbit immunoglobulin G (IgG) and anti-mouse IgG were purchased from Cell Signaling Technology.
U87 glioblastoma cells (U87MG), human umbilical vein endothelial cells (HUVECs), and human hepatoma
cell (HepG2) were purchased from Korea Cell Line Bank, Seoul, Korea.

2.2. In Vivo Mouse Tumor Xenograft Assays

Mice were housed in the pathogen-free facility of the Laboratory Animal Research Center in
Yonsei University, Seoul, Korea. The mice were handled following the Institutional Animal Care and
Use Committee (IACUC) (permission number: IACUC-A-201407-254-01, IACUC-A-201503-213-01,
IACUC-A-201602-149-02, and IACUC-201603-422-01) and International Guidelines for the Ethical Use of
Animals. U87MG cells (5× 106 cells) suspended in 200μL phosphate-buffered saline (PBS)/Matrigel (1:1)
were subcutaneously implanted into the dorsal flank of athymic nude mice (4-week-old female BALB/c
nude mice, Orient Bio, Seoul, Korea). Once the tumors became palpable (50–100 mm3, ~2 weeks), mice
were randomly selected and separated into four groups (6 mice per group), and intraperitoneally treated
with vehicle, curcumin (60 mg/kg), and voacangine (10 mg/kg) daily. Sunitinib was administered orally
(40 mg/kg) daily. Vehicle and drug solutions were prepared in saline:ethanol:Tween-80 (97.8:2:0.2).
Tween-80 was used to enhance drug solubility. Tumor volume and mouse body weight were measured
daily using the following formula: π/6 × length ×width × height. Four hours after the last treatment
(on day 12), mice were sacrificed, and tissue samples (tumors, livers, and kidneys) were obtained.
The tissues were surgically removed and slowly frozen by placing tumors for 2 min on a plastic boat
floating in a bath of isopentane that was supercooled with dry ice (−70 ◦C) [30]. All animal study
protocols were performed following the Guidelines for Animal Experiments and were approved by
the Department of Institutional Animal Care and Use Committee, Yonsei University, Seoul, Korea.

2.3. Growth Factor-Induced Chemoinvasion Assays

To determine the invasiveness of HUVECs in vitro, a Transwell chamber system with polycarbonate
filter inserts containing 8.0 μm pores was used. The lower side of the filter was coated with 10 μL of
gelatin (Sigma-Aldrich) (1 mg/mL), and the upper side was coated with 10 μL of Matrigel (growth
factors reduced, 3 mg/mL in high-grade pure water). Voacangine was added to the lower chambers
in the presence of the growth factors (VEGF, TNF-α, bFGF, PDGF-BB, and EGF, 30 ng/mL each), and
HUVECs (FBS starvation for 17 h, 6 × 105 cells/well) were placed in the upper chambers. The chambers
were incubated at 37 ◦C for 16 h. The invasiveness of cells fixed with 70% methanol and stained with
hematoxylin and eosin (H&E) was measured by counting the total number of cells on the lower side of
the filter, using an Olympus IX70 microscope at 100× g magnification.

2.4. Drug Affinity Responsive Target Stability (DARTS) Assay

DARTS assay was performed as previously described [13,15]. Briefly, HUVECs were lysed using
0.5% Triton X-100 lysis buffer (50 mM Tris-HCl pH 7.5, 200 mM NaCl, 0.5% Triton X-100, 10% glycerin,
1 mM DTT) containing protease and phosphatase inhibitors. The supernatant from the cell lysates
containing 2–3 mg/mL total protein was incubated with voacangine at the indicated concentrations at
room temperature (RT) for 1 h, followed by proteolysis with pronase (1 μg/mL per sample) for 2, 5, and
10 min at RT. For curcumin treatment, the supernatant from the membrane fraction of HepG2 cell lysates
containing 1.5 mg/mL total protein was incubated with curcumin at the indicated concentrations at RT
for 3 h, followed by proteolysis with 10 μg/mL pronase per sample for 2, 5, and 10 min at RT. The final
concentration of DMSO was 1% in all samples. To quench proteolysis, 6× sodium dodecyl sulfate (SDS)
sample loading buffer (1 M Tris-hydrochloric acid (HCl) pH 6.8, SDS 10%, glycerol 60%, bromophenol
blue 0.012%, and 0.6 M DTT) was added to each sample in a 1:3 ratio, thoroughly mixed, and boiled at
100 ◦C for 5 min. Samples were analyzed by immunoblotting with primary antibodies (APN, VDAC1,
β-actin, VEGFR2, FGFR1, PDGFRα, and PDGFRβ) according to the manufacturer’s instructions.
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2.5. In Silico Docking Simulation

All molecular docking analyses were performed with Discovery Studio 2016 software adopting
the CHARMM (Chemistry at Harvard Macromolecular Mechanics) force field. The crystal structure of
human VEGFR2 (Protein Data Bank code, 4AGD) was obtained from the Research Collaboratory for
Structural Bioinformatics (RCSB) protein data bank. The protein structures of VEGFR2 were optimized
by the Powell algorithm to minimized energy. To dock the ligands, the Ligandfit docking method was
used. The parameters of Ligandfit were validated using the ligand from the VEGFR2 crystal structure.
Voacangine was docked to the binding site of the protein and 10 poses were generated. The most
predictive binding mode were determined based on various scoring functions (Ligscore1_Dreiding,
Ligscore2_Dreiding, PLP1, PLP2, PMF, and DOCK_SCORE), and the binding energies were determined
by calculating the binding energy of the most predictive binding mode.

2.6. Immunoblotting Analysis

Cell lysates were separated by 10% SDS–polyacrylamide gel electrophoresis (PAGE), and
the proteins were transferred to polyvinylidene difluoride (PVDF) membranes using standard
electroblotting procedures. Blots were blocked and immunolabeled overnight at 4 ◦C with primary
antibodies. For immunoblotting of tumor samples, sections (10 μm thickness) from tumor tissues were
collected and lysed in radioimmunoprecipitation assay (RIPA) buffer. Lysates from tumor samples were
separated by 10% SDS-PAGE, and the proteins were transferred on PVDF membranes using standard
electroblotting procedures. Blots were blocked and immunolabeled overnight at 4 ◦C with primary
antibodies (phospho VEGFR2, VEGFR2 [31,32], phospho ERK, ERK, phospho Akt, Akt, and β3-tubulin)
according to manufacturer’s instructions. Then membranes were washed with TBST (Tris-buffered
saline with 0.05% Tween-20,) 3 times for 10 min each, and the secondary antibody was added and
incubated for 1 h at RT. Immunolabeling was detected using an enhanced chemiluminescence (ECL)
kit according to the manufacturer’s instructions.

2.7. Cell Growth Condition and Cell Proliferation Assays

Cell lines were grown according to the recommendations and protocols of the supplier. All cells
were maintained at 37 ◦C in a humidified 5% CO2 incubator. All cells were seeded in 96-well plates at a
density of 2000 cells/well. Voacangine was added to the cells to determine their effect on cell proliferation.
Cells were grown for 72 h and growth was analyzed using the 3-(4,5-dimehylthiazol-2-yl)-2,5-diphenyl
tetrazolium bromide (MTT) colorimetric assay.

2.8. Quantification of Microvessel Density

To measure the expression levels of the vascular marker CD31 in tumor sections, frozen sections
were incubated with a primary anti-CD31 antibody. Frozen xenograft tumor sections (10 μm thickness)
were incubated in primary antibody in 1% bovine serum albumin (BSA) overnight blocking buffer. After
rinsing the primary antibody, the tumors were labeled with anti-rabbit Alexa-594 labeled secondary
antibody (Invitrogen, 1:1000) for 1 h at RT and then counterstained with 4′,6-Diamidino-2-phenylindole
(DAPI). Microvessel density was measured by counting the number of positive structures in three
random fields. The images were obtained using a confocal laser scanning microscope LSM 700 (Carl
Zeiss, Jena, Germany) from the whole tumor tissue at 400× g magnification.

2.9. Compound Detection and Analysis of Drug Distribution Using MSI

A MALDI LTQ Orbitrap XL mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA)
was utilized for compound characterization, drug detection, and tissue imaging. For the matrix,
7.5 mg/mL α-CHCA was dissolved in 50% ACN and 50% Milli-Q water (high-grade pure water)
containing 0.2% TFA.
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For tissue drug imaging, the freshly frozen tissues were cut into 10 μm sections using a cryotome
(Thermo Fisher Scientific, Waltham, MA, USA) and placed on glass microscope slides (Superfrost ultra
plus). After drying the tissue for 1 h at RT, 0.5 mL of the matrix solution was deposited stepwise onto
the tissue by an airbrush. To control spraying conditions, the position of the airbrush was constantly
maintained. Mass spectra were obtained using the Orbitrap mass analyzer (Thermo Fisher Scientific,
Waltham, MA, USA) at 60,000 resolution (at m/z 400). Tissue sections were sampled in the 150−800 Da
mass range in positive-ion mode with a 50 μm raster size. The nitrogen laser was operated at 10.0 μJ
with activated automatic gain control. For MS/MS, the curcumin peak observed at m/z 369.14, and
voacangine peak observed at m/z 369.21 were isolated with a 1.0 Da window, and fragmented at 40%
normalized collision energy with a 30 ms activation time, 0.250 activation Q and the fragment ions were
scanned at a normal scan rate in the linear ion-trap analyzer. The minimum signal required for MS/MS
spectra generation was 500 counts. Spectra were analyzed with Xcalibur v 2.1.0. software. Visualization
of the compound and fragment ions was performed with ImageQuest software (Version 1.0.1., Thermo
Fisher Scientific, Waltham, MA, USA).

2.10. Quantitation of the Precursor Compound

For tissue quantitation, calibration curves of the drug and compounds were established in control
tissue sections of the mice. Voacangine was diluted in 50% ACN containing 0.2% TFA. For each
concentration, aliquots of 0.5 μL were applied to the tissue surface within the concentration range of 10
nM–1 mM. Spraying and detection conditions were identical to those used for the tissue sample analysis.
The calibration curve was then used to estimate the tissue drug concentrations in in vivo-treated
tumor sections.

2.11. Histochemical Analysis of Protein Target in Tissues and Compound Colocalization

To compare the immunofluorescence staining of the target protein and voacangine localization
in tissues, frozen sections were sequentially cut from each tumor. Voacangine distribution was
determined in the sections using MALDI-MSI and H&E staining. Sequential sections were labeled with
anti-APN (1:100), anti-EGFR1 (1:50), anti-FGFR1 (1:50), anti-FGFR5 (1:50), and anti-VEGFR2 (1:50) [31].
The primary antibody incubation was followed by incubation with a fluorescent-tagged secondary
antibody of anti-rabbit Alexa-488 (Invitrogen, 1:500). Nuclei were stained with DAPI (Invitrogen). The
images were obtained using a confocal laser scanning microscope (LSM 700, Carl Zeiss) at a 200× g and
400× g magnification by title scanning the whole tumor tissue. Overlapping regions in the tumor tissue
between compounds (curcumin and voacangine)-MSI and immunofluorescence staining of receptor
tyrosine kinases (RTKs) were quantitated by Image J, Adobe Photoshop, and Qupath software [33]
(0.2.0-m1) by counting the pixels of each merged region at identical image sizes.

2.12. Statistical Analysis

All data fitting and statistical analysis in different experimental groups are expressed as the mean
± standard deviation (S.D.) using GraphPad Prism and Microsoft Excel. The data shown in the study
were obtained from at least three independent experiments. Statistical analyses were performed using
an unpaired, two-tailed Student’s t-test. P-values less than 0.05 were considered statistically significant
(* indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001).

3. Results and Discussions

3.1. Validation of the Systematic Combination of DARTS and MSI for Natural Product-Target
Protein Interaction

Firstly, we performed a DARTS assay to validate the interaction between curcumin and APN
(Figure 1a). The stability of APN significantly decreased after 2 min of treatment with pronase, but APN
pretreated with curcumin before pronase treatment retained its stability. Secondly, we identified
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curcumin by mass spectra using MALDI-MS and MS/MS for the detection of curcumin at the tissue
level (Figure S1a,b). Based on results obtained from mass spectra, quantitation of curcumin in tissue
sections was conducted using MALDI-MSI. The precursor ion (curcumin, m/z 369.14) and fragment ions
1, 2, and 3 (m/z 176.08, m/z 245.08, and m/z 285.17, respectively) in the curcumin-treated tumor tissue
sections were readily detected using MALDI-MSI (Figure 1b). In contrast, the precursor ion signals
and fragment ions were not detected in control tissues (vehicle solution-treated tumors) (Figure S1c).
Additionally, the intensity of curcumin was weaker in the liver and kidney tissue sections than in the
tumor tissues of treated animals (Figure S1d). A merged image visualizing the transparent MSI signal
of curcumin and the immunofluorescence image of APN was obtained (Figure 1c, red color). Notably,
the highest concentrations of curcumin were observed in the tumor regions that expressed the highest
concentrations of APN (yellow color in the high APN image). Through the quantitation of the merged
pixel count, we observed that curcumin MSI showed high colocalization (72.65%) in the regions with
the highest APN expression (Table 1).

Figure 1. Validation of a systematic combination of drug affinity responsive target stability and mass
spectrometry imaging (DARTS-MSI) for curcumin-aminopeptidase N (APN) interaction. (a) Analysis
of direct binding of curcumin with APN in human umbilical vein endothelial cells (HUVECs) using the
DARTS assay and immunoblotting. HUVEC lysates were incubated with curcumin and digested with
pronase (0.1 μg/mL) at each incubation time. All images are the representative of three independent
experiments. Each value represents the mean ± S.D. from three independent experiments. * p < 0.05
versus control. Cur: curcumin-treated, APN: aminopeptidase N. Pro -:Pronase non-treated; Pro
+:Pronase treated; -:Non-treated (b) MALDI-MSI images of curcumin (precursor ion, fragment ion
1, fragment ion 2, and fragment ion 3) on curcumin-treated tumor tissue. The results shown are
representative of three independent experiments. Scale bar, 1 mm. (c) Comparison of curcumin MSI
(precursor ion) and immunofluorescence staining of the target protein, APN, in curcumin-treated tumor
tissue. The transparent MSI image of curcumin is overlaid on the immunofluorescence staining image
for APN and is visualized in the merged region (red). Scale bar, 1 mm.
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Table 1. Comparison with the highest concentration of curcumin and the highest APN expressed
regions in the tumor regions. Each value represents the mean from three independent experiments.

Quantitation Pixels Merged Regions/Cur-MSI (%)

MALDI-MSI (curcumin) 44,408 100
Merged regions (high curcumin and high APN) 32,264 72.65

3.2. Identification of VEGFR2 as a Potent Target for Voacangine

As the first step to determine the molecular mechanisms underlying the antiangiogenic effect and
the signaling pathways involved in the process, the effect of voacangine on growth factor-induced
chemoinvasion of ECs was investigated. HUVECs were treated with 10 and 20 μM voacangine in
the presence of growth factors such as VEGF, TNF-α, bFGF, PDGF-BB, and EGF, and voacangine
exhibited specific and potent suppression of VEGF-induced EC chemoinvasion (Figure 2a). In addition,
a human phospho RTKs assay was also performed to further validate the inhibitory effect of voacangine
on VEGF-mediated signaling activity (Figure 2b and Figure S2). The effect of voacangine on the
phosphorylation of various RTKs was investigated in the HUVEC lysates.

Figure 2. Voacangine specifically inhibited vascular endothelial growth factor (VEGF)-induced
angiogenesis. (a) Effect of voacangine on chemoinvasion induced by various growth factors (VEGF,
TNF-α, bFGF, PDGF-BB, and EGF). *** p < 0.001, ** p < 0.01 versus control of representative growth
factors. -: Non-treated (b) Quantitation of the results from human p-RTKs array assay in HUVECs. The
images are the representative of three independent experiments. Each value represents the mean ± S.D.
from three independent experiments. *** p < 0.001, * p < 0.05 versus control. NT: non-treated control,
Voa: voacangine-treated.
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3.3. Validation of In Vitro Direct Interaction between Voacangine and VEGFR2 by DARTS

Next, DARTS was performed to explore whether voacangine directly binds to VEGFR2. As shown
in Figure 3a, the stability of VEGFR2 significantly decreased after a 2 min pronase digestion. In contrast,
VEGFR2 pretreated with voacangine before pronase treatment retained stability even after 5 and
10 min.

Figure 3. Voacangine specifically and directly binds to vascular endothelial growth factor receptor 2
(VEGFR2) (a) DARTS results from direct binding of voacangine to various receptor tyrosine kinases
(RTKs) in HUVECs. HUVEC lysates were incubated with voacangine and digested with pronase
(1 μg/mL) at each incubation time. Each value represents the mean ± S.D. from three independent
experiments. ** p < 0.01 versus control, * p < 0.05 versus control. NT: non-treated control, Voa:
voacangine-treated, Pro -:Pronase non-treated; Pro +:Pronase treated; -:Non-treated (b) In silico
docking analysis using a 2D-diagram for validating the interaction between voacangine and VEGFR2
(juxtamembrane and kinase domains, RCSB Protein Data Bank number: 4AGD). Left panel, green
(voacangine) is superimposed with VEGFR2 (grey). Right panel, binding motifs are illustrated with
various interactions of voacangine with the ATP-binding pocket of VEGFR2. (c) Effect of voacangine
on VEGF-induced VEGFR2 signaling. Protein levels were determined by immunoblotting using
specific antibodies. The results shown are representative of three independent experiments. Voa:
voacangine-treated; Sun: sunitinib-treated.

To evaluate the binding of voacangine with VEGFR2, a docking model of human VEGFR2 based
on its crystal structure (juxtamembrane and kinase domains, PDB number: 4AGD) was examined.
In the virtual docking model of VEGFR2, two oxygen atoms of voacangine were found to reside in
the hydrophobic pocket of VEGFR2 and form hydrogen bonds with Asn 923 and Cys 919, resulting
in a high affinity and direct interaction with VEGFR2. The indole moiety of core directly interacted
with the active residues in the VEGFR2 kinase domain (Leu 840, Val 848, Ala 866, and Leu 1035) via
hydrophobic interactions (Pi-Alkyl interaction). The in-silico docking data suggested that voacangine
directly interacts with VEGFR2 (Figure 3b).

In pathological states, such as cancer development and tumor progression and other conditions
exhibiting abnormal angiogenic phenotypes, growth factors such as VEGF are secreted from preexisting
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blood vessels to promote excessive cell growth. The secretion of VEGF by tumor cells ultimately
leads to a remarkable promotion of angiogenesis [34,35]. Furthermore, VEGF-induced VEGFR2
signaling activates ERK and Akt by downstream phosphorylation of VEGFR2 kinase(s) and promotes
angiogenesis by regulating the expression of the target gene, VEGF [36,37]. Accordingly, the effect
of voacangine on VEGF-induced VEGFR2 activation and subsequent downstream signaling were
investigated in HUVECs. Treatment with voacangine and sunitinib significantly suppressed the
VEGF-induced phosphorylation of VEGFR2 and the downstream activation of ERK and Akt in a
dose-dependent manner (Figure 3c).

3.4. Voacangine Inhibits Xenograft Tumor Growth and Angiogenesis In Vivo

Validation of voacangine as a new VEGFR2-targeting antiangiogenic and antitumor compound
was achieved by investigating its effect on tumor growth in the U87MG cell glioblastoma xenograft
mouse model. U87MG glioblastoma cells form aggressive angiogenic solid tumors that exhibit high
levels of VEGF and VEGFR2 [38]. As a reference, data were compared with those for sunitinib (SU11248,
Sutent), a known VEGFR2-targeting anticancer drug. Both voacangine and sunitinib significantly
inhibited tumor growth (Figure 4a) in 6 to 12 days without causing overt toxicity, as no significant
weight loss was observed in the mice (Figure S4). As shown in Figure 4b, the expression levels of
the blood vessel marker, CD31, were significantly lower in tumor-bearing mice treated with either
voacangine (47.3%) or sunitinib (50%) than that of control.

Figure 4. Voacangine inhibits xenograft tumor growth and angiogenesis in vivo. (a) Representative
images of U87MG tumor xenograft on 12 days. Athymic nude mice bearing glioblastoma tumors
consisting of U87MG glioblastoma cells were treated with vehicle, voacangine (10 mg/kg, intraperitoneal
treatment), or sunitinib (40 mg/kg, oral treatment). *** p < 0.001 versus vehicle treatment. (b) Effect of
voacangine or sunitinib treatment on the expression levels of the vascular marker, CD31 in tumor tissues.
All images shown are representative of three independent experiments. White arrows indicate CD31
expression. Original magnification of fluorescence images for CD31 staining: 400× g. Scale bar, 50 μm.
Microvessel density was measured by counting the number of CD31-positive structures in three random
fields. Each value represents the mean ± S.D. from three independent experiments. *** p < 0.001 versus
vehicle treatment. Veh, vehicle-treated; Voa, voacangine-treated; Sun, sunitinib-treated.

High-resolution histological inspection revealed a cellular presentation within these tumors
that showed a high degree of heterogeneity in cell size and shape. The sunitinib dosage (40 mg/kg,
oral treatment) administered in these studies was selected from the dosage administered in the previous
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mice experiments [29,39,40]. Voacangine at a dosage of 10 mg/kg was administered at 48-h intervals
for 14 days in the disease mouse model. A similar tendency of stabilized tumor growth was observed
in mice treated with both, voacangine and sunitinib, with a fast growth onset that began on day 5,
and then considerably expanded by day 8. These xenograft studies were performed with 6 animals per
group, which showed a high degree of tumor growth consistency.

Next, the identification of voacangine in vivo by MSI was conducted. The precursor ion
(voacangine, m/z 369.2162) (Figure S5a) fragment ions 1 and 2 (m/z 309.17 and m/z 337.17, respectively)
(Figure S5b) in voacangine-treated tumor tissue sections were readily-detected using MALDI-MSI
(Figure 5a). In contrast, the precursor compound signal and fragment ions for voacangine were not
detected in the vehicle solution-treated tumor tissues (Figure S7). Additionally, in the liver and kidney
tissue sections of treated animals, the voacangine signal was detected with weaker intensity than that
in the tumor tissue (Figure 5b).

Figure 5. Identification of voacangine in tissue sections using mass spectrometry imaging (MSI).
(a) MALDI-MSI signal for voacangine (precursor ion, fragment ion 1, and fragment ion 2) from
voacangine-treated tumor tissue. The results shown are representative of three independent experiments.
Scale bar, 1 mm. (b) Comparison of voacangine MSI (the precursor ion) between other voacangine-treated
tumors and organ tissues (kidney and liver).

3.5. Validation of Target Interaction by Colocalization of Voacangine with VEGFR2 and Other RTKs

As shown in Figure S8, each tumor-bearing mouse showed high VEGFR2 expression, indicating
that the tumor-bearing tissues also expressed high levels of VEGFR2 which were significantly reduced
by voacangine treatment. From these observations, an overlay image was visualized with a transparent
MSI signal of voacangine and the immunofluorescence image of VEGFR2 in a merged region (Figure 6a,
red color). Next, immunofluorescence was performed to analyze the interaction between voacangine
and various other RTKs (EGFR1, FGFR1, FGFR5, and VEGFR2) in voacangine-treated tumor tissues
(Figure 6b) by quantifying the pixel counts from the merged regions (Table 2). The overlaid transparent
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MSI image was quantitated with the immunofluorescence images of various RTKs. The merged regions
are highlighted in red.

Figure 6. Validation of target interaction by colocalization of voacangine with VEGFR2 and other RTKs.
(a) Comparison of voacangine MSI (precursor ion) and immunofluorescence staining of the target
candidate, VEGFR2, in voacangine-treated tumor tissue. The overlaid image with transparent MSI
signal on the immunofluorescence staining image for VEGFR2 is visualized in the merged region (red).
Scale bar, 1 mm. (b) Comparisons and quantitation of merged regions for voacangine distribution and
RTK receptors (EGFR1, FGFR1, FGFR5, and VEGFR2) in tumor tissues. Regions of expression for each
RTK are indicated with white dashed lines on the immunofluorescence images. The merged regions
are visualized in red. The results shown are representative of three independent experiments. Each
value represents the mean ± S.D. from three independent experiments. Scale bar, 1 mm.

Table 2. Comparison with other RTKs in voacangine-treated tissues. Each value represents the mean
from three independent experiments. IF: immunofluorescence-stained regions. Voa, voacangine.

Quantitation Pixels IF/Voa-MSI (%)

MALDI-MSI
(voacangine) 71,406 100

Merged
regions

(red)

EGFR1 15,572 21
FGFR1 16,745 23
FGFR5 8616 12

VEGFR2 50,039 70

3.6. Discussions

Natural products have been widely used as pharmacological or nutraceutical agents for effectively
treating various human diseases due to their significant biological activities with diverse chemical
structures. Given the advantages of natural products, there have been many obstacles to address the
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exact mode of action and in vivo effects on possible target proteins. Most often these problems arise
due to difficulties in chemical modification of these natural products and alteration in the chemical
and biological properties during these processes.

In this study, we attempted to overcome these hurdles by developing a new systematic procedure
to identify targets of label-free natural products in vitro and in vivo with DARTS and MALDI-MSI,
respectively. In Figure 1 and Table 1, curcumin pretreatment significantly protected APN digestion
from pronase even at 10 min (p = 0.0185); but the digestion of other proteins, VDAC1 and β-actin
remained unaffected, suggesting that curcumin specifically binds to APN, as reported by the earlier
studies [24]. Further, these results strongly suggested that there is a stronger curcumin-binding and
localization in the tumor tissue with elevated levels of APN expression. From these observations with
curcumin, we suggest that the combination of DARTS and MALDI-MSI could be used as a systematic
procedure for validation of in vivo target interaction with label-free natural products.

After validating the interaction of curcumin with APN as a proof of concept case, we utilized
this approach for voacangine, a natural antiangiogenic compound, without any known targets. As
shown in Figure 2a, HUVECs were treated with 10 and 20 μM voacangine in the presence of growth
factors such as VEGF, TNF-α, bFGF, PDGF-BB, and EGF, and voacangine exhibited specific and potent
suppression of VEGF-induced EC chemoinvasion. These results demonstrated that voacangine did
not show inhibitory activity against the other growth factors but specifically inhibit VEGF-mediated
signaling. In VEGF-induced conditions, voacangine specifically suppressed the phosphorylation of
VEGFR2. This was further validated by the p-RTK array assay, wherein the phosphorylation profiles
of various RTKs were analyzed. Furthermore, from the 12 RTKs activated by serum out of the 45 RTKs,
voacangine specifically inhibited the VEGF-induced phosphorylation of VEGFR2 (Figure 2b, Figure
S2). Accordingly, the following experiments on the activity of voacangine focused on VEGFR2.

Using DARTS technology, VEGFR2 was identified as a cellular target protein of voacangine.
Notably, pretreatment with voacangine resulted in limited VEGFR2 digestion upon pronase treatment;
however, the digestion of other RTKs, FGFR1, PDGFRα, and PDGFRβ remained unaffected, suggesting
that voacangine specifically binds to VEGFR2, but not other RTKs (Figure 3a). The in vitro inhibitory
activity of voacangine significantly inhibited the phosphorylation of VEGFR2 and downstream
signaling proteins, such as ERK and Akt, in HUVECs (Figure 3c). These results demonstrated
that the antiangiogenic mechanisms of voacangine action affect the VEGFR2 mediated signaling
pathway. These also have been well-known that VEGF-mediated signaling plays a key role in
tumor angiogenesis [34,35,41], and secreted VEGF binds to VEGFR2 that is expressed on the vascular
endothelium. Subsequently, an angiogenic response is evoked that leads to the activation of VEGFR2
signaling [41]. VEGF-stimulated VEGFR2 induces the phosphorylation of downstream signaling
kinases, including ERK and Akt which promote migration, proliferation, invasion, adhesion, and tube
formation in ECs [36,37]. Therefore, targeting VEGFR2 is considered a promising strategy and an
important therapeutic approach for treating diseases associated with angiogenesis, such as cancer [42].

Further evidence revealed that the effects of voacangine significantly correlated with the levels of
VEGFR2 expression in different cell lines. The expression of VEGFR2 in HUVEC, U87MG, and Panc-1
cells was higher than that in the remaining cell lines (Figure S3a). As shown in Figure S3b, voacangine
significantly inhibited cell proliferation in HUVEC, U87MG, and Panc-1 cells (Table S1). From the
examination of the effects of voacangine on several cell lines with different VEGFR2 expression levels
demonstrated that voacangine exerted its biological effects by specifically inhibiting proliferation in
cells with high levels of VEGFR2 expression. Further, these results suggested that voacangine could be
used as a specific inhibitor targeting VEGFR2-overexpressing cells (Figure S3).

In the U87MG xenograft tumor mouse model, where VEGFR2 is highly expressed, voacangine
significantly suppressed tumor growth and microvessel density in vivo without significant toxicity
(Figure S4). The outcome of voacangine treatment suggested that it reduced the tumor growth
to a basal level (as determined in the control groups), similar to treatment with sunitinib, which
returned the tumors to baseline levels during the 14 days (Figure 4). Notably, this observation
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suggests that voacangine may cause dual inhibition of tumor angiogenesis and tumor growth, thus
resulting in a potent antitumor activity. These results also demonstrated that voacangine might be a
promising candidate for effective treatment of aggressive glioblastomas which are resistant to various
chemotherapies [43]. Additionally, these data are in accord with the effects of the known VEGFR
inhibitor, sunitinib. Based on these results, voacangine inhibited angiogenesis and tumor proliferation
in vivo by directly targeting VEGFR2-overexpressing cancer cells, similar to sunitinib.

To further validate VEGFR2 as the target receptor of voacangine, the interaction was analyzed
in vivo. We established a novel systematic combination to compare the localization of small molecules
and their protein targets using MALDI-MSI and immunofluorescent staining. From the MALDI-MS
analyses, voacangine was identified at m/z 369.21, as well as its two major fragment ions were
identified (Figure S5). On the surface of the tissue sections, a single droplet of voacangine could be
detected by MALDI-MSI (Figure S6). The concentration of the voacangine and the precursor ion
signal intensity linearly correlated from 0.01–100 μM. Voacangine precursor ions and its fragment
ions were detected and colocalized with the tumor tissue from voacangine-treated mice. Furthermore,
voacangine precursor ions and its fragment ions were not detected in control tissues, confirming that
voacangine and the fragment ions observed by MALDI-MSI did not originate from the matrix or tissue.
A comparative analysis of MALDI-MSI of voacangine ions and immunofluorescence images of other
RTKs (EGFR1, FGFR1, FGFR5, PDGFRα, and PDGFβ), revealed that the highest concentrations of
voacangine were observed in the tumor regions that expressed the highest concentrations of VEGFR2.
This suggested a stronger voacangine-binding and localization in tumor tissues with elevated VEGFR2
expression (Figure 6).

In a previous study, high concentrations of sunitinib colocalized with high expression levels of
VEGFR2 [31]. Akin to the marketed drug sunitinib, these results demonstrated that voacangine directly
interacts with VEGFR2 and therefore, can potentially be considered as a promising natural compound for
suppressing angiogenesis and tumor growth by targeting VEGFR2. Among VEGFR2-targeting drugs,
sunitinib is the most widely used drug for treating cancer patients [26]. Sunitinib is a multi-targeting
drug and a receptor tyrosine kinase inhibitor that inhibits signaling via key angiogenic receptors,
including VEGFRs, PDGFRs, and FGFRs [27]. In this study, the newly identified antiangiogenic small
molecule, voacangine, was shown to interact specifically with VEGFR2. Voacangine treatment resulted
in a decrease in VEGFR2 kinase activity in vitro (Figure 2b and Figure S2) and reduced its expression
levels in vivo (Figure S8).

Recently, many reports have demonstrated that sunitinib directly targets VEGFR2 to inhibit
cancer progression in patients [44,45]. It is specifically administered as a first-line treatment to
patients with advanced renal cell carcinoma (RCC) and imatinib-resistant gastrointestinal stromal
tumors [46,47]. Despite the significant benefits of sunitinib treatment related to progression-free
survival and disease stabilization in patients, almost all patients acquire resistance to sunitinib and
relapse [48,49]. Approximately, 70% of patients show an initial response, while the remaining 30%
show primary (intrinsic) resistance. Furthermore, 70% of patients acquired extrinsic resistance within
6–15 months. To treat patients with sunitinib resistance, the development of new VEGFR2 inhibitors
with distinct structures and pharmacological activities is imperative for improved cancer therapy.
As a possible drug candidate targeting VEGFR2 kinase, voacangine significantly inhibited in vitro and
in vivo angiogenesis by directly and specifically interacting with VEGFR2. Hence, further development
of voacangine as a new scaffold compound targeting the VEGFR2 kinase could provide a new option
to treat cancer patients with resistance to sunitinib. Additionally, identifying and developing drug
replacements from natural products such as voacangine will potentially reduce unpredicted and
adverse side effects, and provide a promising strategy to improve the efficiency of small molecules in
preclinical and clinical stages.
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4. Conclusions

Here, we demonstrate an effective and novel systematic combination method, consisting of
a label-free method for target identification of natural products and their in vivo validation with
information on “on-target” effects and bioimaging data consisting of molecular interactions in tissue
samples (Figure 7). This combinatorial technique is effective not only for voacangine but could also be
effectively used for many tricky natural products and could boost target identification and hence, drug
development. This study provides a new systematic approach to overcome many of the problems
associated with currently available methods used for in vitro and in vivo target identification and
validation. Our study represents a new means to identify and validate protein targets of natural
compounds as “cold compounds” and eases the exploration of the mode of action of these natural
products in vitro and in vivo without any chemical modifications. These results also provide new
insights into the evaluation of drug actions in tissues and the colocalization of drugs and their respective
targets in vivo.

Figure 7. Summary of the study. The systematic approach using the combination of DARTS-MSI for
in vitro and in vivo target identification and validation of natural products.
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Abstract: Nuclear DNA sensors are critical components of the mammalian innate immune system,
recognizing the presence of pathogens and initiating immune signaling. These proteins act in the nuclei
of infected cells by binding to foreign DNA, such as the viral genomes of nuclear-replicating DNA
viruses herpes simplex virus type 1 (HSV-1) and human cytomegalovirus (HCMV). Upon binding
to pathogenic DNA, the nuclear DNA sensors were shown to initiate antiviral cytokines, as well
as to suppress viral gene expression. These host defense responses involve complex signaling
processes that, through protein–protein interactions (PPIs) and post-translational modifications
(PTMs), drive extensive remodeling of the cellular transcriptome, proteome, and secretome to
generate an antiviral environment. As such, a holistic understanding of these changes is required to
understand the mechanisms through which nuclear DNA sensors act. The advent of omics techniques
has revolutionized the speed and scale at which biological research is conducted and has been used
to make great strides in uncovering the molecular underpinnings of DNA sensing. Here, we review
the contribution of proteomics approaches to characterizing nuclear DNA sensors via the discovery
of functional PPIs and PTMs, as well as proteome and secretome changes that define a host antiviral
environment. We also highlight the value of and future need for integrative multiomic efforts to gain
a systems-level understanding of DNA sensors and their influence on epigenetic and transcriptomic
alterations during infection.

Keywords: DNA sensing; IFI16; cGAS; innate immunity; protein interactions; virus–host interactions;
post-translational modifications; mass spectrometry; proteomics; transcriptomics

1. Introduction

Eukaryotic cells are relentlessly assailed by a myriad of pathogens, thereby needing to constantly
evolve and expand their mechanisms for pathogen detection and host defense. During infection,
pathogens bring foreign sugars, lipids, proteins, and nucleic acids into host cells. These foreign
molecules can act as pathogen-associated molecular patterns (PAMPs), and the ability of the cell to
detect them is critical for the initiation of host defense mechanisms and the inhibition of virus production
and spread. Thus, cells utilize specialized proteins known as pattern-recognition receptors (PRRs)
to detect PAMPs [1]. A common PAMP detected by host cells is the pathogenic double-stranded DNA
(dsDNA) from bacteria, DNA viruses, and some RNA viruses (i.e., retroviruses) [2]. PRRs for dsDNA,
known as DNA sensors, bind to the pathogenic DNA and initiate defense programs that include innate
immune signaling, inflammatory responses, and apoptosis. It was long believed that DNA sensors
can only function outside of the nucleus, in order to avoid recognition of self-DNA and spurious
activation of immune responses. However, the majority of the known human dsDNA viruses replicate
within the nucleus, thereby depositing their viral genomes in the nuclei of infected cells. Examples
of nuclear-replicating DNA viruses are herpesviruses, such as herpes simplex virus type 1 (HSV-1),
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human cytomegalovirus (HCMV), and Kaposi’s sarcoma-associated herpesvirus (KSHV). Herpesviruses
are ancient viruses that arose hundreds of millions of years ago, having ample time to co-diverge
with their hosts [3–5]. The co-evolution and co-adaptation of viruses with hosts are evidenced by
the diversification of PRRs and their ligand-recognition abilities [6]. Indeed, research during the
past decade has demonstrated the existence of PRRs that function in nuclear sensing of pathogenic
DNA [7,8].

To date, four proteins have been shown to have the ability to perform nuclear DNA
sensing—in chronological order of discovery of nuclear function: interferon-inducible protein
16 (IFI16 [9–11]), interferon-inducible protein X (IFIX [12]), cyclic GMP-AMP synthase (cGAS [13–16]),
and heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2B1 [17]). The structures of these four
proteins and their currently understood mechanisms for induction of antiviral responses are illustrated
in Figure 1. Each nuclear DNA sensor was shown to help to induce ifnβ expression, which in turn
activates numerous critical antiviral signaling pathways in adjacent cells that aim to slow the spread
of infection. Ifnβ expression is thought to rely primarily on a signaling axis involving the endoplasmic
reticulum membrane protein stimulator of interferon genes (STING), although STING-independent
signaling has also been proposed [18]. Activation of STING leads to the phosphorylation of TANK
binding kinase 1 (TBK1), which in turn phosphorylates the interferon regulatory factor 3 (IRF3).
IRF3 then dimerizes, shuttles into the nucleus, and binds to the interferon-stimulated response element
upstream of ifnβ to transcriptionally activate the expression of antiviral cytokines [19–22].

IFI16 was discovered as a sensor ten years ago [9], becoming the first known nuclear DNA sensor.
Both IFI16 and IFIX belong to the PYHIN family of proteins [12]. These DNA sensors consist of
an N-terminal pyrin domain (PYD) [23] and either one (IFIX) or two (IFI16) C-terminal HIN-200
domains [24,25] (Figure 1A). The HIN-200 domains facilitate sequence-independent binding of the
sensor to the viral DNA [25], while the PYD mediates homotypic oligomerization [26,27]. IFI16 was
shown to bind incoming viral dsDNA at the nuclear periphery, immediately following the docking
of the virus capsid at the nuclear pore, and the PYD was found to be necessary for the IFI16
recruitment to the nuclear periphery [15]. The IFI16 oligomerization upon binding to viral DNA and
recruitment of other host factors is thought to build an antiviral scaffold capable of both activating
immune signaling [9,10,26,28,29] and suppressing viral transcription [29–32] (Figure 1B). A subset
of IFI16 was shown to be able to shuttle between the nucleus and the cytoplasm to function in
DNA sensing in a localization-dependent manner [9,10]. However, during the early stages of
infection with nuclear-replicating viruses, IFI16 does not appear to move to the cytoplasm, remaining
predominantly nuclear. Thus, a still unanswered question is how IFI16 communicates with STING or
whether a STING-independent mechanism also contributes to ifnβ induction.

IFIX was also shown to bind dsDNA in a sequence-independent manner and to help induce
antiviral cytokine expression upon herpesvirus infection [12]. Furthermore, similar to IFI16, this PYHIN
protein displayed pronounced ability to undergo nuclear oligomerization via its PYD [26] and was
shown to also function in suppressing viral gene expression [33]. However, very few studies have
so far focused on IFIX during infection, and the mechanisms involved in IFIX-mediated antiviral
responses remain poorly understood.

The mechanism by which cytoplasmic cGAS induces STING activation is well defined. cGAS
contains an NTase core domain (Figure 1A) that catalyzes the formation of 2′3′-cyclic GMP-AMP
(cGAMP) (Figure 1B). After binding to dsDNA, cGAS dimerizes and initiates cGAMP production.
This small molecule then binds to STING, causing a conformational change and dimerization that leads
to TBK1 phosphorylation. The additional presence of cGAS in the nucleus has been initially the subject
of debate, although it was shown to form a functional nuclear interaction with IFI16 [14]. However,
in recent years, it has become accepted that cGAS indeed has nuclear localization in different cell types,
and studies have characterized mechanisms that prevent its autoreactivity [34] or that underlie its
nuclear function in inhibiting DNA damage repair [16,35].
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Finally, the most recently discovered nuclear DNA sensor, the heterogeneous nuclear
ribonucleoproteins A2/B1 (hnRNPA2B1), has classically been understood to play a role in transporting
mRNA into the cytoplasm [36,37]. In 2019, it was found that, during HSV-1 infection, hnRNPA2B1 both
facilitates the export of IFI16, cGAS, and STING mRNA molecules to the cytoplasm and binds viral
DNA within the nucleus, shuttles to the cytoplasm, and activates STING–TBK1–IRF3 signaling [17].
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Figure 1. Nuclear DNA sensors bind to viral DNA and activate antiviral cytokine signaling. (A) Domain
maps for each nuclear DNA sensor. IFI16 and IFIX belong to the PYHIN family of proteins and each
contain an N-terminal pyrin domain that mediates protein interactions and one or two HIN-200 domains
that bind dsDNA in a sequence-independent manner. cGAS consists of overlapping Ntase core (cGAMP
production) and Mab21 (DNA binding) domains. hnRNPA2B1 possesses two RNA recognition motifs,
the first of which has been proposed to also contain the DNA binding site. Each protein contains a
nuclear localization signal (red bars). (B) Model for the intrinsic and innate immune activity of IFI16,
IFIX, cGAS, and hnRNPA2B1. During infection, IFI16 and IFIX bind viral DNA entering the nucleus
through a nuclear pore complex. After binding to viral DNA via their HIN domains (blue), these
proteins each form homo-oligomers mediated by the PYD in order to build antiviral signaling scaffolds
necessary for the repression of viral transcription and induction of IFNß. cGAS was shown to stabilize
nuclear IFI16 levels during HSV-1 infection to promote immune signaling. In the cytoplasm, cGAS
binds to foreign DNA and produces cGAMP, which in turn activates the STING–TBK1–IRF3 signaling
axis to induce IFNß. hnRNPA2B1 binds viral DNA and is then demethylated by JMJD6. This is required
for hnRNPA2B1 dimerization and subsequent translocation into the cytosol, where it activates the
STING–TBK1–IRF3 axis. In each case, IFNß protein is secreted from the cell in order to communicate
with and initiate antiviral programs in neighboring cells.
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The importance of these nuclear DNA sensors is highlighted by the various strategies acquired
by viruses during their co-evolution with their hosts and adaptation to human cells to inhibit these
DNA sensors and their antiviral functions. For example, HSV-1 promotes the degradation of IFI16 by
targeting this pyrin domain. Several studies have showed this degradation to be primarily driven by
the viral E3 ubiquitin ligase, ICP0 [12,15,28], while other studies suggested the contribution of other
factors [38]. IFIX was also found to be degraded during HSV-1 infection, and this, yet to be discovered,
inhibitory mechanism was shown not to be dependent on the ICP0 E3 ubiquitin ligase activity [33].
HSV-1 further utilizes the tegument protein pUL37 to suppress the cGAS-mediated catalysis of cGAMP
through deamidation of a single arginine residue in the cGAS activation loop [39]. HCMV also acquired
a mechanism to inhibit the function of nuclear sensors by preventing PYD oligomerization of IFI16
and IFIX [26]. This virus immune evasion strategy uses the major tegument protein of HCMV, pUL83,
to clamp the PYD, block oligomerization, and inhibit subsequent immune signaling [26].

The mechanisms described above paint a picture of intricate signaling pathways that underlie the
cellular intrinsic and innate immune systems that nuclear DNA sensors feed into and the opposing
virus immune evasion strategies. On the host defense side, pathogenic DNA is bound by nuclear
DNA sensors which then fulfill two roles: (1) activate immune programming and (2) suppress viral
gene expression. These processes rely on interactions between biomolecules, are regulated by these
interactions and post-translational modifications (PTMs) and affect the expression of hundreds of
cellular and viral transcripts and proteins. Therefore, understanding nuclear DNA sensing requires a
holistic approach in which all these factors are considered.

Knowledge of DNA sensor mechanisms is also relevant for understanding human diseases and
the development of therapies. Dysregulation of DNA sensors contributes to several autoimmune
disorders. For example, patients with systemic lupus erythematosus, Sjögren Syndrome, and systemic
sclerosis exhibit significantly elevated levels of anti-IFI16 antibodies [40–42], which can result from
aberrant overexpression and mislocalization of IFI16 [43]. Further, autoreactivity of cGAS contributes
to Aicardi–Goutières syndrome (AGS) [44,45], and small molecule inhibition of cGAS activity alleviates
constitutive interferon expression in an AGS mouse model [46]. Therefore understanding mechanisms
regulating DNA sensors can provide important insights into driving factors of autoimmune disorders.
Targeting DNA sensors or their activated pathways is also relevant in the development of both antiviral
treatments and vaccines. For example, the STING–TBK1–IFNα/β signaling axis mediates the adjuvant
effects required for successful immunogenicity with plasmid DNA vaccines [21,47]. Thus, we must
consider how DNA sensors upstream of interferon induction react during the administration of DNA
vaccines. So far, only the cytosolic PYHIN protein absent in melanoma 2 (AIM2), which directs the
maturation of proinflammatory cytokines IL-18 and IL-1β, has been demonstrated to act as a sensor
for DNA vaccines [48]. Interestingly, immune responses elicited by DNA vaccines in vivo seem to be
cGAS- and IRF3-independent [49]. Further investigations can help elucidate the relative contributions
of these DNA sensors to aiding immune memory upon DNA vaccine administration.

Omic methods have significantly contributed to the emergence of the research field of nuclear
DNA sensing, helping to build the current level of understanding of the underlying molecular
mechanisms. Mass spectrometry (MS)-based proteomic approaches have allowed the discovery of
functional regulatory hubs for nuclear DNA sensors, including protein interactions and PTMs, as well
as the monitoring of DNA sensor activation (e.g., cGAMP production). Whole-cell proteome analyses
and secretome investigations have informed of global cellular changes that take place during the
host activation of immune signaling cascades. Transcriptome studies have started to uncover the
contribution of some of these DNA sensors to repression of viral gene expression. Here, we review
findings stemming from the application of proteomics and other omic methods to characterizing
the function and regulation of nuclear DNA sensors and explore the future promise of multiomic
approaches in understanding human immune responses to nuclear-replicating viral pathogens.
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2. DNA Sensor Identification and Characterization through the Lens of Proteomics

The use of proteomics directly led to the discovery of all known nuclear DNA sensors. As research
into DNA sensing has intensified over the past decade, proteomics studies have been crucial for
examining the functions and regulations of nuclear DNA sensors (Figure 2). These investigations have
focused on proteome changes, protein–protein interactions (PPIs), and PTMs connected to nuclear
DNA sensors in order to uncover the mechanisms of DNA sensing in response to viral infections.
Here, we discuss the main MS-based approaches used for discovering DNA sensor interactions and
PTMs that contribute to either promoting or inhibiting their host defense functions during viral
infections (Table 1).
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2.1. DNA Sensor Molecular Interactions Drive Host Antiviral and Virus Immune Evasion Mechanisms

Affinity purification-mass spectrometry (AP-MS) has been the cornerstone of identifying and
quantifying protein–protein and protein-nucleic acid interactions [58]. In this approach, either a protein
of interest or DNA is isolated and the accompanying interacting proteins are analyzed using mass
spectrometry. Immunoaffinity purification (IP) is carried out by using an antibody conjugated to
a resin, such as magnetic beads, which can be easily separated from the cell lysate and captured via
centrifugation or application of a magnet (reviewed in [59]). The antibodies used can be raised against
the endogenous protein of interest. However, as the efficiency and specificity of the isolation relies on
the quality of the available antibody, antibodies against tags such as FLAG, HA, and GFP are often
used to facilitate protein isolation [60]. DNA can be purified from cells through similar methods,
usually using biotinylated DNA and streptavidin-coupled beads to isolate DNA–protein complexes [9].
Following complex isolation, the identities and abundances of the accompanying proteins are then
characterized using MS.

It has long been understood that viral DNA activates innate immune responses, including ifn-β
expression [61], but the identities of the DNA sensors and subsequent signaling pathways remained
undetermined. AP-MS approaches have been at the core of discovering the identities of DNA sensors.
IFI16 was recognized as a DNA sensor in 2010, when Unterholzner et al. performed AP-MS after
transfecting THP-1 cells with a biotinylated 70 base-pair vaccinia virus DNA fragment (VACV 70mer) [9].
It is of note that IFI16 is expressed and localized to both the nucleus and cytoplasm in macrophages such
as the macrophage-like differentiated THP-1 cells. Further studies demonstrated that IFI16 has DNA
sensor activity in the nucleus after different types of infections with nuclear-replication DNA viruses,
including HSV-1 [9,10,28], KSHV [11], and HCMV [30], as well as after retrovirus infection, recognizing
DNA intermediates of human immunodeficiency virus 1 (HIV-1) [6,62]. The interaction between IFI16
and HSV-1 DNA was also demonstrated in an elegant study that utilized 5-ethynyl-2′deoxycytidine
(EdC) labeling of viral genomes coupled with AP-MS to investigate temporal viral genome-protein
interactions. Here, IFI16 was found to associate with the viral genome by 2 h post-infection [63].
Recently, IFI16 was identified in an AP-MS study isolating the RNA genome of Chikungunya virus [64].
This is an unexpected finding as IFI16 has no known RNA sensing capability, but it implicates IFI16 in
immune sensing pathways beyond dsDNA virus infection.

AP-MS was also integral in the discovery of the most recently identified nuclear DNA sensor,
hnRNPA2B1, which was shown to function during HSV-1 infection [17]. In this study, HSV-1 genome
biotinylation and AP-MS was integrated with a characterization of the nuclear and cytoplasmic
proteomes following cellular fractionation. This allowed the authors to identify hnRNPA2B1 as a
protein that both binds to viral DNA and shuttles to the nucleus to activate STING–TBK1–IRF3 signaling.

As nuclear DNA sensors do not directly stimulate interferon expression, interaction with other
cellular proteins is crucial for initiating immune signaling pathways. Furthermore, the importance of
PPIs in the regulation of immunity is highlighted by the virus–host protein interactions through which
viruses inhibit DNA sensors. Thus, IP-MS studies that define the interactomes of DNA sensors have
led to a better understanding of both their action and regulation.

The first interactome study of IFI16 during HSV-1 infection used AP-MS to characterize interactions
with both endogenous and tagged IFI16 [50]. This study revealed IFI16 interactions with many cellular
transcription and chromatin regulators, such as the upstream binding transcription factor (UBTF)
and ND10 body components, as well as with the nuclear architecture proteins SUN1 and SUN2.
Several viral proteins were also found to associate with IFI16 [50], including the E3 ubiquitin ligase
ICP0 that was previously implicated in targeting IFI16 for degradation (Figure 3) [28]. Both UBTF
and ND10 bodies (also known as PML nuclear bodies) were shown to function in host defense by
repressing HSV-1 transcription [65,66], and ND10 bodies were also found to be targeted for degradation
by ICP0 [67].
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Figure 3. Protein–protein interactions contribute to the activation or inhibition of DNA sensor.
Over the course of viral infection and immune signaling, DNA sensors interact with other cellular and
viral proteins. Several of these cellular proteins are important for the function of the DNA sensors for
both suppressing virus replication by repressing viral transcription and inducing antiviral cytokines.
Protein interactions are also used to regulate DNA sensor function. Viruses have evolved distinct
mechanisms to facilitate immune evasion and cells must also possess mechanisms to prevent excessive
immune signaling. Although localized to both the nucleus and cytoplasm, protein interactions with
cGAS are best characterized in the cytoplasm. Nuclear proteins are shown here as rectangles and
cytoplasmic interactions as hexagons.

To further clarify how these interactions are facilitated and regulated during HSV-1 infection,
the domain-specific interactomes of IFI16 were investigated by performing separate IP-MS experiments
for the PYD and HIN domains [15]. This study revealed that the PYD interacts with members of
ND10 bodies, cGAS, and the RNA polymerase II-associated factor 1 (PAF1). More recently, IP-MS with
oligomerization-deficient IFI16 mutants demonstrated that IFI16 oligomerization is needed for the
formation of these interactions with PAF1 and other members of the PAF1 complex during HSV-1
infection [29]. Additional experiments uncovered an antiviral role for PAF1, showing its ability to
repress virus gene transcription.

Similar IP-MS interactome studies of PYHIN proteins related to IFI16 led to the discovery
and characterization of IFIX as an antiviral nuclear DNA sensor [12]. At the time, very little was
known about the cellular role of IFIX, but through IP-MS it was found to interact with many of
the same proteins as IFI16, including ND10 body components and other chromatin remodeling and
immune signaling proteins. These interactions, in conjunction with its structural similarities to IFI16,
suggested that IFIX may also have antiviral properties and function in DNA sensing. Follow-up
experiments demonstrated that IFIX binds viral DNA, suppresses HSV-1 replication, and induces
interferon expression [12]. Probing the IFIX interactome even further during HSV-1 infection revealed
associations with several components of the five friends of methylated chromatin target of Prmt1
(5FMC) complex [33], which functions in epigenetic regulation [68] and was later found to also interact
specifically with oligomerized IFI16 [29].

Several important discoveries of cGAS function have been made using AP-MS, and we must also
emphasize that the discovery of cGAS as a DNA sensor was initially enabled by the MS characterization
of the cellular proteome. Stimulation of STING by cGAMP was discovered in 2013 [69], but the
source of the cyclic GMP-AMP synthase activity remained unclear. Thus, cGAS was identified by
integrating shotgun proteomics and cellular fractionation in order to pinpoint the protein whose
expression pattern matched that of cGAS activity [13]. Since then, targeted IP-MS studies focused
on specific interactions of interest uncovered cGAS associations with several cellular proteins that
support immune function, including TRIM56 [70], PARP1 [16], and IFI16 [14], among many others
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(Figure 3). The interaction between cGAS and IFI16 is particularly interesting because it touches on the
question of redundancy for these proteins in the nuclear DNA sensing pathway. It was determined that,
during HSV-1 infection, nuclear cGAS interacts with IFI16 for the purpose of stabilizing IFI16 in order
to promote immune signaling [14,71]. The knowledge of cGAS interactions was later expanded with
an IP-MS study of its interactome, which was further integrated with quantitative profiling of cellular
proteome alterations during HSV-1 infection [51]. This interactome revealed the cGAS interaction with
the RNA sensor OASL, which was demonstrated to repress cGAS activity as a host negative feedback
loop for regulating cytokine induction [51].

Currently, the only study to have utilized AP-MS to study hnRNPA2B1 in the context of DNA
sensing is the one in which it was discovered [17]. As indicated above, here, biotinylated HSV-1 genomes
were isolated early during infection and the interacting proteins were identified via MS. These data were
then cross-referenced with shotgun MS of nuclear/cytoplasmic fractionated cells in order to identify
proteins that undergo nucleocytoplasmic translocation during infection. This approach enabled the
authors to identify proteins that both bind viral DNA and shuttle to the cytoplasm, potentially for the
purpose of activating STING–TBK1–IRF3. IP-MS was then utilized to gain a mechanistic understanding
of interferon induction by hnRNPA2B1, showing that it does indeed interact with STING and TBK1
following HSV-1 infection.

The discovery of interactions with nuclear DNA sensors has also led to the characterization of
mechanisms by which viruses evade cellular innate immunity. For example, recognizing the ability of
the HCMV tegument protein pUL83 to inhibit the nuclear oligomerization of the pyrin domains of
IFI16 and IFIX (Figure 3) derived from the identification of their interactions from an IP-MS study [26].
In agreement with its reported ability to target IFI16 for degradation during HSV-1 infection [28],
the ICP0 interaction with IFI16 was demonstrated by IP-MS [50]. IP studies followed by targeted
assays were valuable for identifying other mechanisms of virus immune evasion, such as the inhibition
of cGAMP production by the KSHV virion protein ORF52 [72] and the HSV-1 tegument protein pUL37
(detailed in the PTM section below) [39] (Figure 3).

2.2. Post-Translational Modifications for Finely Tuning DNA Sensor Function

Beyond interactions with other biomolecules, the ability of DNA sensors to detect and respond
to pathogenic invasion is closely tied to their regulation by PTMs. Changes to protein structure
via phosphorylation, acetylation, ubiquitination, and SUMOylation, among others, enable the rapid
regulation of protein function, and the addition or removal of PTMs is a tightly regulated cellular
process in response to stress. MS has been well-established as the main method for accurate and
unbiased detection of site-specific PTMs in different cellular contexts and has also contributed to the
discovery of a multitude of DNA sensor PTMs (Table 2).

Broadly speaking, PTMs are inherent to the ability of a cell to induce immune signaling cascades
in response to pathogen infection. The necessity of PTMs for immune signaling is exemplified
by the activation of IFNβ expression that hinges upon phosphorylation of both TBK1 and IRF3 in
STING-dependent signaling [1]. Further, PTMs of DNA sensors have been shown to directly contribute
to immune activation. The hnRNPA2B1 interactome also revealed an interaction with the nuclear
protein JMJD6, which facilitates demethylation of hnRNPA2B1 at Arg226. This alteration in hnRNPA2B1
structure is necessary for its dimerization, nucleocytoplasmic translocation, and subsequent interferon
induction [17]. Thus, the necessity of Arg226 demethylation for hnRNPA2B1 DNA sensing highlights
the importance of protein modification in this immune response.
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The initial discovery of IFI16 as a viral DNA sensor pointed to its ability to recognize
pathogenic DNA in the cytoplasm, and further characterization of this sensor also solidified its
nuclear DNA sensing function. However, the mechanisms regulating IFI16 subcellular localization
remained unknown. Furthermore, its relative nuclear or cytoplasmic distribution was shown to be cell
type dependent, with its localization being predominantly nuclear in lymphoid, epithelial, endothelial,
and fibroblast cells, tissues that tend to be among the first infected by an invading virus. In 2012,
our group reported that IFI16 contains a bipartite nuclear localization signal (NLS) and, using MS,
identified several acetylation sites within the NLS [10]. IFI16 mutation experiments indicated that
NLS acetylation at Lys99 and Lys128 inhibits nuclear import and abrogates IFI16 DNA sensing during
HSV-1 infection. This discovery was critical for supporting that IFI16 predominantly senses viral
DNA within the nucleus during herpesvirus infection. A number of studies have since demonstrated
that IFI16 is regulated by different types of PTMs during viral infections, which additionally include
phosphorylation and SUMOylation (Table 2) [10,73–76]. PTM-driven mechanisms also underly the
ability of the cell to activate DNA sensors by modifying viral immune evasion proteins, thereby
crippling their functions. For example, eight phosphorylation sites were discovered on the HCMV
tegument protein pUL83 and mutational analyses demonstrated that its binding to the IFI16 PYD can
be compromised by Ser364 phosphorylation within the pUL83 pyrin association domain [26].

PTMs of cGAS during DNA sensing have also started to be recognized for their importance
in cGAS regulation and function, and MS-based PTM analysis has been crucial for identifying key
regulatory hubs. For example, Zhang et al. found that the HSV-1 tegument protein pUL37 antagonizes
cGAS during infection [39]. This protein is a known deamidase that acts on the dsRNA sensing
protein RIG-I [87] to prevent immune signaling during HSV-1 infection; thus, the authors proposed a
similar deamidation event would prevent cGAS signaling. Using tandem MS, they discovered several
deamidation sites within the Mab21 enzyme domain and further identified that deamidation of Asn210
indeed impairs the ability of cGAS to produce cGAMP upon binding to dsDNA [39].

Several other important cGAS PTMs have been identified in recent years that function to either
suppress or activate cGAS activity during DNA sensing. These PTMs include phosphorylation,
glutamylation, ubiquitination, and SUMOylation (Table 2). An IP-MS study of cGAS followed
by mutational analysis of the identified modified sites led to the finding that the kinase Akt
phosphorylates cGAS Ser305, suppressing cGAMP production and interferon expression [78].
Additionally, glutamylation of cGAS at two distinct sites have been shown to impede cGAS activity [77].
After identifying that the cytosolic carboxypeptidases 5 and 6 (CCP5 and CCP6) contribute to activation
of IRF3 during infection with DNA viruses HSV-1 and VACV, Xia et al. used MS to identify cGAS as a
substrate of these protein. As CCP5 and CCP6 reverse glutamylation, this then led to the discovery
that cGAS activity is suppressed through Glu302 monoglutamylation by tubulin tyrosine ligase-like
protein 4 (TTLL4), which prevents cGAMP production, and through Glu272 polyglutamylation by
TTLL6, which weakens the cGAS DNA binding ability [77]. More recently, MS analyses led to the
discovery that cGAS is also acetylated at several lysine residues, with acetylation at Lys384, Lys394,
and Lys414 suppressing cGAS-mediated cGAMP production [52] and apoptosis [53], and Lys198
acetylation promoting cGAS-induced antiviral cytokine expression [53]. Targeted MS/MS quantification
of site-specific acetylation during infection demonstrated that the level of Lys198 acetylation decreased
during HSV-1 and HCMV infections [53], pointing to the possible presence of a viral immune evasion
strategy targeting this residue to control host immune response.

Targeted studies that do not utilize MS have also identified important cGAS PTMs (Table 2).
Mutational analysis of cGAS revealed that phosphorylation at Tyr215 inhibits cGAS nuclear translocation
upon DNA damage, and a tyrosine kinase knockdown screen showed that B-lymphoid tyrosine kinase
controls phosphorylation at this residue [16]. As another example, SUMOylation of murine cGAS by
TRIM38 enhanced cGAS DNA sensing by preventing polyubiquitination and subsequent degradation
of cGAS [79]. Further investigations of the aforementioned interaction between cGAS and TRIM56
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revealed that TRIM56 acts to monoubiquitinate cGAS in order to promote its dimerization and facilitate
cytosolic DNA sensing [70].

3. Defining the Cellular Landscape Representative of Immune Activation

In addition to providing specific information regarding the regulation of nuclear DNA sensors,
omic studies have also informed of the global alterations occurring in host cells during
immune activation. Infections with DNA viruses result in major changes in mRNA expression,
protein abundances, interaction networks and PTMs, cellular metabolism, and secretion.
During infection, the virus seeks to inhibit host defenses, co-opt cellular machinery, and rewire
the cellular metabolome to facilitate production of progeny virions. Meanwhile, the host attempts to
reduce energy expenditure while producing and secreting antiviral cytokines that will slow the spread
of infection. Transcriptome, proteome, metabolome, and secretome studies have been critical for
gaining an understanding of these broad cellular alterations occurring during the progression of virus
infections. Temporal transcriptomic and proteomic investigations have been carried out to determine
whether a regulation occurs through changes at the transcript or protein level during infection and to
correlate expression trends with phenotypes.

Given that viruses appropriate the host cell transcription machinery and RNA processing, a range
of transcriptome studies have been performed to monitor temporal cellular and viral transcript levels
during different types of infections. For example, DNA microarrays have been used extensively to
study the effect infection on transcription by HSV-1 [88,89], HCMV [56,90–93], KSHV [94,95], and the
porcine alphaherpesvirus pseudorabies virus [96,97], among others. Similar to proteomic technologies,
improvements in sequencing methods have greatly impacted our understanding of host cell response to
viral infection. The emergence of RNA sequencing (RNA-seq) as an unbiased method that is both more
sensitive and precise than microarrays [98] has benefitted the fields of virology and immunology by
more broadly capturing the cellular and viral transcriptional landscape during infection, including the
expression of interferon-stimulated genes (ISGs). This technique was used to demonstrate that HSV-1
infection of skin fibroblasts led to the upregulation of 596 genes, downregulation of only 61 genes,
and 1032 alternative splicing events [99]. RNA-seq analysis of HCMV infection in human fibroblasts
showed that genes involved in the epithelial-to-mesenchymal transition (EMT) are downregulated,
while genes that support mesenchymal-to-epithelial transition (MET) are induced, suggesting HCMV
prefers an epithelial cellular state for replication [100]. Furthermore, RNA-seq has recently been
used to explore transcriptomic differences between endemic Kaposi’s sarcoma (EnKS) and epidemic
Kaposi’s sarcoma (EpKS), which results from KSHV and HIV-1 co-infection in sub-Saharan Africa [101].
This study found that a subset of genes involved in tumorigenesis and immune responses displayed
increased dysregulation in EnKS lesions, but the overall gene expression profiles between EnKS and
EpKS correlated strongly.

Investigation of cellular transcriptomes through RNA-seq have also revealed important aspects of
nuclear DNA sensor regulation outside of the context of virus infection. To provide a few examples,
expression of IFI16, among several other innate immunity proteins, was upregulated in macrophages
infected with the bacterium Campylobacter concisus [102]; tumor-bearing mice with deletion of the
IFI16 homolog p204, when compared to WT mice, lacked the ability to induce the upregulation of
382 genes, indicating the extensive involvement of IFI16 in antitumor immunity [57]; and RNA-seq
studies of an alcohol-related liver disease model in mice revealed that liver damage from excessive
alcohol consumption is mediated by cGAS activation of the STING–TBK1–IRF3 pathway [103].

Similar to transcriptome studies, whole-cell proteome investigations with mass spectrometry have
led to a wealth of information about both viral and cellular protein abundances during virus infection,
uncovering changes linked to innate immune responses and virus immune evasion strategies. Given the
finely tuned temporal regulation of virus replication steps, assessments of the cellular proteomes have
been carried out at multiple time points as the infection progresses, as reported for infection with
HSV-1 [51,104], HCMV [105,106], and KSHV [107,108]. In conjunction with temporal studies, infection
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with virus strains that lack the ability to inhibit DNA sensors offered a view of proteome changes
during an active host immune response. For example, the d106 HSV-1 strain contains mutations
in four of five immediate-early proteins (ICP4, ICP22, ICP27, and ICP47) but expresses functional
ICP0 [109]. Infection with this virus results in increased induction of cytokines and apoptosis when
compared to infection with WT HSV-1 [50,110]. By comparing temporal proteome changes during
WT and d106 HSV-1 infections, we discovered the upregulation of several proteins involved in innate
immunity and apoptosis, and integration with cGAS IP-MS led to the discovery of OASL-mediated
cGAS inhibition [51]. Additional MS studies have been carried out to characterize proteome changes
during HSV-1 infection in a range of cell types and to compare alterations induced by different virus
strains [51,54,104,111–121]. Spatial proteomics [122] has further provided the ability to characterize
changes in proteome organization during infection [123], as well as discover viral proteins that localize
to distinct organelles to regulate their functions, as shown for HCMV infection [124]. Recent years
have also seen the increased integration of proteome studies with global PTM studies, where the
infection-induced host phosphorylation, acetylation, SUMOylation, ubiquitination landscapes, to name
just a few, have been started to be characterized [125–128]. Knowledge of global PTM changes
have furthered the understanding of signaling cascades during infection and have helped to identify
regulatory hubs at the interface between host defense and virus production. Another proteomic
perspective of regulatory hubs is provided by the identification of functional protein complexes that
are activated or inhibited during an infection process. The use of thermal co-aggregation profiling MS
was recently demonstrated to offer a global view of temporal assembly and disassembly of host–host,
host–viral, and viral–viral protein interaction events during HCMV infection, including the regulation
of complexes involved in host immunity [106]. Altogether, these MS-based proteomic investigations of
whole-cell and subcellular proteomes, interactomes, and PTMs provide rich information regarding host
cell changes in response to viral infections. The integration of these different datasets promises to reveal
a systems-view of the host environment during infection, which can aid in the formulation of specific
biological hypotheses, the identification of changes linked to viral pathologies, and the discovery
of therapeutic targets. Therefore, efforts have been and continue to be placed in the development
of computational platforms that facilitate data integration in a user-friendly manner [129–135].
One platform specifically applied to studying viral infections is the Interaction Visualization in Space
and Time Analysis (Inter-ViSTA), a web-accessible platform that enables integration of interactome,
proteome, and functional traits to build animated temporal interaction networks [136]. For example,
this analysis platform readily illustrated dynamic localization-dependent interactions of the HCMV
protein pUL37 that function to either inhibit immune responses early in infection or promote peroxisome
metabolic functions that benefit virus assembly late in infection.

Metabolome profiling brings another powerful omic tool to understanding the biology of virus
infection and host defense mechanisms. Replication and assembly of virions is an energy-intensive
process that requires the virus to trigger the cellular machinery to increase protein and lipid production
for building progeny virions, as shown for numerous viruses [137]. Great effort has been put into
understanding the mechanisms underlying metabolic reprogramming during a number of viral
infections, including with HCMV and HSV-1 [55,138]. Integrating MS-based metabolomics with
molecular virology techniques has proved valuable towards this goal; for example, a recent study of
HCMV infection found that the viral protein pUL37 is critical for remodeling cellular metabolism by
increasing production of very-long-chain fatty acids [139]. Given that pUL37 is an important immune
evasion protein, such as by inhibiting cGAS function [39], it is likely that pUL37 bridges proviral
metabolism with innate immune regulation during HCMV infection. Future studies geared towards
elucidating the relationships between these fundamental infection processes promise to reveal key
players in virus replication and spread.

Finally, the secretion of proteins into the extracellular space is crucial for communication with
adjacent cells and is the foundation of innate immunity. Interferons secreted by infected cells
bind to receptors on neighboring cells to induce immunomodulatory and antiproliferative effects,
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a phenomenon that has been known for several decades [140]. Upon binding to the interferon
receptor and activating the JAK–STAT signaling pathway, dozens of transcripts are upregulated,
including additional cytokines [141], altogether leading to inflammatory response and impacting
disease pathology. Therefore, examining the secretome of infected cells is a necessary component for
understanding these complex intercellular communications [142]. MS-based studies have leveraged
proteomics and lipidomics methods to define the composition of secreted biomolecular complexes
during infection, including extracellular vesicles known as exosomes [143]. For example, quantitative
proteomic analysis of exosomes from HSV-1-infected macrophages demonstrated that specific subsets
of cytokines, inflammatory proteins, and transcription factors are secreted rapidly upon infection,
thus priming immune response in neighboring cells [144]. Virus-driven secretomes can also impact
cellular and tissue physiology, as demonstrated by two recent studies that examined how molecules
secreted by herpesvirus infected cells determine local immune and growth responses in neutrophils [145]
and cortical brain cells [54], respectively.

4. The Missing Link: Genomics for Understanding the Viral DNA–DNA Sensor Interface

AP-MS isolations of viral DNA during infection have been fundamental for the discovery of
nuclear DNA sensors. However, the regulation and complete outcome of the interactions between DNA
sensors and viral DNA remain to be fully characterized. In this section, we discuss the conundrum
of how DNA sensors bind to pathogenic DNA in a sequence-independent manner, while also being
shown to specifically function in repression of viral gene expression.

Though nuclear DNA sensors avoid autoreactivity with host DNA, they do not appear to recognize
any specific virus nucleotide sequence motifs or DNA modifications. In fact, for a protein to be classified
as a DNA sensor, one requirement is that it should bind to DNA in a sequence-independent manner,
thereby having the capacity to recognize multiple DNA pathogens. For example, for the HIN-200
domains of IFI16 and IFIX, their sequence-independent binding to dsDNA is accomplished via
weak electrostatic interactions between positively charged amino acids and the negatively charged
DNA phosphate backbone [25,146,147]. It was also demonstrated that IFI16 preferentially binds to
specific DNA forms, namely cruciform structures, superhelical, and quadruplex DNA, which could
maximize contact between the phosphate backbone and the basic amino acids in the HIN-200
oligonucleotide/oligosaccharide binding folds [148,149]. However, there remains no evidence of
DNA sequence preference, and it is hypothesized that the activation of immune responses by IFI16
relies on cooperative assembly of IFI16 oligomers, which is limited on host DNA by tight chromatin
packing [29,150]. Examinations of crystal structures of cGAS with a dsDNA ligand have similarly
shown that the cGAS Mab21 domain binds to the phosphate backbone of B-form DNA without any
sequence specificity [151–154]. In contrast with IFI16, it is proposed that cGAS-mediated autoreactivity
is inhibited by tight tethering of cGAS to host chromatin through a salt-resistant interaction that is
independent of the domains required for cGAS activation [34,35].

Such in vitro experiments indicate that DNA binding is sequence independent, but the propensity
of DNA sensors to interact with transcriptional regulatory proteins that are sequence specific
(e.g., the HSV-1 transcriptional activator ICP4 [155]) could induce preferential accumulation at certain
DNA loci. Furthermore, given that IFI16 and IFIX have also been shown to function in host antiviral
response by repressing virus transcription [29–33], how does DNA sensor binding affect the chromatin
structure at specific binding sites? Are other protein–DNA interactions increased or decreased at
these loci, and how does this affect viral transcription and replication?

After entering the nucleus, herpesvirus genomes are subjected to chromatinization by host cell
histones [156], and it has been demonstrated that IFI16 promotes the addition of the repressive
heterochromatin mark H3K9me3 on viral DNA [31,32,157]. Thus far, these studies investigating where
IFI16 and H3K9me3 interact with viral genomes have been conducted using chromatin immunoaffinity
purification (ChIP) coupled with PCR or RT-qPCR [31,32,157]. Herpesviruses have large genomes
(e.g., HSV-1 is ~152 kilobase pairs and contains ~80 genes), yet this approach is limited by only
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examining protein–DNA interactions at a few viral genes. Higher throughput techniques can help to
more broadly represent interactions between viral DNA and DNA sensors and the subsequent effects
on the viral genome chromatin landscape.

To assess where DNA sensors bind to the viral genome, ChIP sequencing (ChIP-seq) is an
appropriate technique that has previously been used to study how the HSV-1 genome interacts with
ICP4 [155], RNA polymerase II [158], and the transcription factor CCCTC-binding factor (CTCF) [159].
Applying this technique with nuclear DNA sensors would help determine whether DNA sensing
is fully a sequence-independent process or whether additional factors within the cell can also cause
accumulation of the DNA sensor at specific DNA loci.

Histone PTMs such as H3K9me3 are often used as proxies for determining whether a DNA locus
resides in a euchromatin or heterochromatin region of DNA [160]. To investigate how DNA sensors
affect the chromatinization of viral genomes, knockout studies can be followed by H3, H3K4me3,
and H3K9me3 ChIP-seq. However, these modifications only act as a proxy for the chromatin structure
and are not a direct readout of chromatin structure. Additionally, the cost of such experiments must
also be considered, as the requirement for multiple conditions per sample considerably increases the
amount of sequencing required. Measuring chromatin accessibility is often a better way to examine
chromatin structure and can be probed through techniques such as MNase-seq [161], DNase-seq [162],
FAIRE-seq [163], and ATAC-seq [164]. Furthermore, integration of protein–DNA interaction mapping
data with chromatin accessibility data following DNA sensor knockout can help to identify how
DNA sensor binding both globally and locally affects viral DNA structure. Thus, high-throughput
sequencing techniques that explore epigenomic changes will be pivotal to continuing to expand our
understanding of nuclear DNA sensor mechanisms.

5. Concluding Remarks

The development of omics techniques has helped to greatly expedite biological research. The topic
discussed in this paper, the elegantly complex process of nuclear DNA sensing during virus infection
has benefited immensely from the ability to examine the identities and PTM states of all proteins
within the host cell. The general idea behind DNA sensors is rather simple: bind pathogenic DNA and
initiate antiviral signaling pathways. However, the mechanisms by which the nuclear DNA sensors
IFI16, IFIX, cGAS, and hnRNPA2B1 activate large-scale transcriptome, proteome, and secretome
changes rely on the precise coordination of a multitude protein interactions and PTMs. Here, we have
discussed how omics techniques, particularly those implementing mass spectrometry, have led to
the discovery and characterization of these nuclear DNA sensors. The future expansion of these
investigations to integrative multiomics studies that include epigenomic assays promise to substantially
contribute to a more in-depth understanding of the intricacies of DNA sensing, its dysregulation,
and connected pathologies.
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