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1. Introduction

Synthetic Aperture Radar (SAR) polarimetry is an active and fruitful field of research in Earth
observation. Polarimetry provides sensitivity to the soil moisture, as well as to the structural and
geometric properties of the targets under observation, allowing a more accurate identification and
classification than with non-polarimetric data. Moreover, the increasing number of spaceborne SAR
systems equipped with polarimetric capabilities, as well as future planned missions, enables the
advance in this research field at all levels, from theory and physical modeling to final applications.

2. Polarimetric SAR: Techniques and Applications

This special issue was introduced to collect the latest research on relevant aspects of SAR
polarimetry, to present state-of-the-art developments, and to show the current and futures challenges
of SAR polarimetry with the availability of new sources of data. Therefore, this special issue also places
an emphasis on studies for the exploitation of data provided by the new polarimetric spaceborne
SAR sensors, which include additional frequency bands, interferometric capabilities, enlarged spatial
coverage, high spatial resolution, and/or shorter revisit times. There were 17 papers submitted to
this special issue, and nine papers were accepted (i.e., 50% acceptance rate). The published papers
can be grouped into three main topics: polarimetric data classification, SAR polarimetry applications,
and polarimetric SAR interferometry (PolInSAR).

From all the papers accepted in this special issue, three of them focused on polarimetric SAR
data classification, covering different techniques, as well as different types of land surfaces. The first
paper, authored by X. Wang, Z. Cao, Y. Ding, and J. Feng, introduces a composite kernel method,
based on a Support Vector Machine classification approach [1]. The contribution of this paper is that
data classification is based on a weighted combination of both polarimetric information and spatial
characteristics derived from the Span image. As demonstrated by the authors, the introduction of this
spatial information improves the overall classification accuracy. In the case of the Flevoland dataset,
containing urban and agricultural areas, the overall accuracy increased from 95.7%, obtained with
traditional methods, to 96.1%, whereas in the case of the San Francisco dataset, containing mainly urban
areas, the overall accuracy increased from 92.6 to 94.4%. The second paper, authored by H. Zakeri,
F. Yamazaki, and W. Liu, proposes the study of the city of Tehran, basically containing urban, bare,
and semi-arid areas. The authors aim to classify this urban environment, whose population has
increased dramatically, raising from 6 million inhabitants in 1986 to 12 million in 2011. In this case,
the authors propose a Support Vector Machine classification scheme based on the use of polarimetric
as well as texture information [2]. As in the previous paper, it is demonstrated that the use of
spatial information, together with polarimetric information, helps to increase the overall classification
accuracy. The third paper, authored by F. Gao, T. Huang, J. Wang, J. Sun, A. Hussain, and E. Yang,
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also addressed the problem of polarimetric SAR data classification considering spatial information.
In this case, the authors propose a dual branch deep convolutional neural network, in which one of the
branches considers the classification of the polarimetric information while the second considers the
use of the spatial information, also derived from a combination of the original polarimetric images [3].
In this case, the authors also demonstrated that the use of spatial information, in combination with
polarimetric information, helps to improve the overall accuracy of the classification approach. As it can
be deduced from these interesting contributions, the classification of polarimetric SAR data improves
classical classification approaches not based on polarimetric diversity. Nevertheless, the combination
of this polarimetric information, together with spatial attributes, seems to offer clear improvement in
classification accuracy, as demonstrated by all the authors.

A total of five papers were focused on the applications of SAR polarimetry; four papers were
dedicated to land and vegetation, and one was dedicated to ocean. Two papers were devoted to
studies on rice, as it is the main staple crop in the world. In the first one [4], Y. Izumi, S. Demirci,
M. Z. bin Baharuddin, T. Watanabe, and J. T. Sri Sumantyo analyzed the temporal variations of
polarimetric observables derived from full-circular and dual-circular polarimetric data acquired along
the rice cultivation cycle with a ground-based sensor, and assessed several variables with regard
to their effectiveness in phenology retrieval. O. Yuzugullu, E. Erten, and I. Hajnsek developed in a
study [5] on the estimation of biophysical variables in rice fields by employing X-band copolar data and
electromagnetic modeling of the scene. Also related to vegetation, but with a broader environmental
scope, the paper coauthored by T. Ullmann, S. N. Banks, A. Schmitt, and T. Jagdhuber [6] describes the
response of a large number of polarimetric observables, obtained at L-, C-, and X-bands in a tundra
scene located in Canada. The use of shorter wavelength imagery (X and C) was beneficial for the
characterization of wetland and tundra vegetation, while L-band data highlighted differences between
the bare ground classes better. H. Omar, M. A. Misman, and A. R. Kassim [7] addressed the estimation
of aboveground biomass in tropical forests by combining dual-pol data from two different sensors,
Sentinel-1A and ALOS PALSAR-2, at two different frequency bands. As for the ocean application of
polarimetry, Y. Zhang, Y. Li, X. S. Liang, and J. Tsou contributed in their study [8] with a comparison of
quad-, compact-, and dual-polarimetry for oil spill classification, in which a new set of input features
was proposed and tested.

Finally, one paper was published on polarimetric SAR interferometry, coauthored by D. Lin, J. Zhu,
H. Fu, Q. Xie, and B. Zhang [9], in which a truncated singular value decomposition (TSVD)-based
method is proposed for forest height inversion from single-baseline PolInSAR data. With such an
approach, the assumption of null ground-to-volume ratio in one of the observed channels, common in
most PolInSAR algorithms, is avoided.

3. Future Trends in Polarimetric SAR

Although this special issue has been closed, more advances in the processing and the exploitation
of polarimetric SAR data are expected in the near future. Its usage in conjunction with other data
sources (i.e., data fusion) and in a multi-temporal framework (i.e., time series) seems to be the
most promising scenario for most final applications. Nonetheless, basic research and theoretical
developments are still required to fully quantify the potentials of this remote sensing technology.

Acknowledgments: This issue would not be possible without the interesting contributions of many authors,
hardworking and professional reviewers, and the dedicated editorial team of Applied Sciences. Congratulations to
all authors—no matter what the final decisions of the submitted manuscripts were, the feedback, comments,
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Abstract: The composite kernel feature fusion proposed in this paper attempts to solve the problem
of classifying polarimetric synthetic aperture radar (PolSAR) images. Here, PolSAR images take
into account both polarimetric and spatial information. Various polarimetric signatures are collected
to form the polarimetric feature space, and the morphological profile (MP) is used for capturing
spatial information and constructing the spatial feature space. The main idea is that the composite
kernel method encodes diverse information within a new kernel matrix and tunes the contribution
of different types of features. A support vector machine (SVM) is used as the classifier for PolSAR
images. The proposed approach is tested on a Flevoland PolSAR data set and a San Francisco Bay
data set, which are in fine quad-pol mode. For the Flevoland PolSAR data set, the overall accuracy
and kappa coefficient of the proposed method, compared with the traditional method, increased from
95.7% to 96.1% and from 0.920 to 0.942, respectively. For the San Francisco Bay data set, the overall
accuracy and kappa coefficient of the proposed method increased from 92.6% to 94.4% and from
0.879 to 0.909, respectively. Experimental results verify the benefits of using both polarimetric and
spatial information via composite kernel feature fusion for the classification of PolSAR images.

Keywords: PolSAR; image classification; composite kernel; polarimetric features; spatial features;
feature fusion

1. Introduction

Polarimetric synthetic aperture radar (PolSAR) has become an important remote sensing tool.
Besides the advantage of operating in all times and under all weather conditions, it also provides
richer ground information than single-polarization SAR [1]. Along with the development of imaging
techniques and the enhancing availability of PolSAR data, effective PolSAR image interpretation
techniques are an urgent requirement. Land-cover classification is one of the most important tasks
of PolSAR image interpretation [2]. Up to now, different PolSAR image classification approaches
have been proposed, either based on statistical properties of PolSAR data [3,4] or based on scattering
mechanism identification [5,6].

PolSAR images not only include polarimetric information but also include spatial
information. Polarimetric or spatial information cannot describe PolSAR image comprehensively,
causing information (polarimetric or spatial) loss. Luckily, inspired by the complementarity between
spatial and spectral features producing significant improvements in optical image classification [7],
in this paper, the main characteristic of the proposed approach is that it takes advantage of both
polarimetric and spatial information for classification.

In order to utilize comprehensive polarimetric information, various polarimetric signatures
obtained by target decomposition (TD) methods and algebra operations (AO) can be combined

Appl. Sci. 2017, 7, 612 4 www.mdpi.com/journal/applsci
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together to form a high-dimensional feature space [8–10]. Moreover, so as to take advantage of
spatial information, different strategies can be considered, such as using the Markov random field
(MRF) model [11,12], classifying with over-segmentation patches [13,14], and exploiting features that
contain spatial information [15–17]. Concerning the last strategy, which will be adopted in this paper,
one recently emerged method is based on morphological filters [18].

The main problem here is how to make comprehensive use of the two types of features. In this
paper, this problem is solved based on the theory of feature fusion via composite kernels [19].
Compared with the traditional feature fusion method using vector stacking [20], composite kernels can
tune the contribution of two types of features, exploiting inner properties more sufficiently, regardless
of the weight between different features, leading the fusion more naturally.

Our experiments are conducted with real PolSAR data sets: a Flevoland data set and a
San Francisco Bay data set. In order to assess the classification performance of the proposed
method, user accuracy, overall accuracy, and kappa coefficient are determined. Experimental results
demonstrate that the proposed approach can more efficiently exploit both the polarimetric and the
spatial information contained in PolSAR images compared with the traditional method of feature
fusion. Classification performance is thus improved.

The reminder of the paper is structured as follows. Section 2 introduces the related work of the
entire classification, which is made up of three main components: polarimetric features, spatial features,
and stacked feature fusion. Section 3 presents a novel feature fusion for the classification of PolSAR
images based on composite kernels. In Section 4, the two experiments and data sets are described,
and the results and discussion are presented. Finally, Section 5 concludes and discusses potential
future studies.

2. Related Work

In this section, polarimetric and spatial feature sets are introduced, and the scheme of the
construction of those two spaces is given. Then, the traditional method for fusing different feature
is described.

2.1. Polarimetric and Spatial Features of PolSAR Image

For PolSAR images, there are several representations of the collected data [2]. For original
single-look complex (SLC) PolSAR images, at each pixel, the data is stored in the scattering matrix
S = [Shh, Shv; Svh, Svv]. According to the reciprocity theorem, we have Shv = Svh. Therefore, we can

transform the scattering matrix into a vector form kL = [Shh
√

2Shv Svv]
T

using linear basis, where T
denotes transpose of a vector. For both training data and test data, the covariance matrix can be
further derived as C =

〈
kLkH

L
〉
, where 〈·〉 denotes the operation of multi-looking, kH

L denotes
conjugate transpose of kL. Similarly, another vector form of the SLC PolSAR data can be obtained
as kP = [Shh + Svv Svv − Shh 2Shv]

T/
√

2 by using the Pauli basis, and the multi-looking coherency
matrix can be derived as T =

〈
kpkH

p

〉
[2].

In the proposed approach, two feature spaces are constructed in parallel to account for different
information contained in the PolSAR images, as shown in Figure 1. For one thing, the polarimetric
features describe the pixel-wise scattering mechanisms that are related to the dielectric properties
of ground material. For another, the spatial features describe the relationship between neighboring
pixels that are related to the ground object structures. Therefore, those two sets of features contain
complementary information.
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Figure 1. The scheme for polarimetric and spatial feature space construction in polarimetric synthetic
aperture radar (PolSAR) images. The polarimetric features are concerned with the ground scattering
property at a single pixel, while the spatial features are concerned with the relationship between
neighboring pixels by using structural elements with different shapes and sizes.

2.1.1. Polarimetric Features

The polarimetric feature vector is constructed by collecting various polarimetric signatures
obtained by polarimetric algebra operations (PAO) and polarimetric target decomposition (PTD)
methods. Here, PAO refers to operations that compute polarimetric signatures with simple
mathematical transforms such as summation, difference, and ratio. The derived polarimetric signatures
include backscattering intensities, intensity ratios, phase differences, etc. [21]. PTD refers to methods
that compute polarimetric signatures with the tool of matrix decompositions [6]. In past decades,
many PTD methods have been proposed. According to the data form they deal with, PTD methods can
be generally divided into two classes: coherent target decomposition (CTD) methods and incoherent
target decomposition (ICTD) methods [1]. While CTD methods deal with the scattering matrix S,
ICTD methods deal with the covariance matrix C or the coherency matrix T. CTD methods include Pauli
decomposition [6] and Krogager decomposition [22]. Typical ICTD methods include Cloude–Pottier
decomposition [23], Yamaguchi decomposition [24], and Freeman–Durden decomposition [25].
Scattering mechanisms related to the dielectric properties of ground material. Different scattering
mechanisms were interpreted by the value of parameters in each PTD method. Different PTD methods
try to interpret the PolSAR data from different perspectives. Nevertheless, there is no single PTD
method that outperforms the others in all cases when used for applications such as classification.
To utilize comprehensive polarimetric information for classification, it is advisable to construct a
high-dimensional feature vector by collecting various polarimetric signatures. With proper advanced
machine learning methods, the discriminative information contained in the high-dimensional feature
vectors can be exploited. In this paper, the employed polarimetric signatures are summarized in
Table 1. The selection of those polarimetric signatures is based on a survey of several works that make
use of multiple polarimetric signatures [8–10] and the literature of [1,2]. Note that we only consider
polarimetric signatures extracted from the covariance/coherency matrix because, for multi-looking
PolSAR data, the scattering matrix S may not be available.
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Table 1. Summarization of polarimetric signatures considered in this paper.

Polarimetric Signatures Expression

Amplitude of upper triangle matrix elements of C
∣∣∣cij

∣∣∣, 1 ≤ i ≤ 3, i ≤ j ≤ 3

Amplitude of upper triangle matrix elements of T
∣∣∣tij

∣∣∣, 1 ≤ i ≤ 3, i ≤ j ≤ 3

Ratio between HV and HH backscattering coefficient
〈
ShvS∗

hv
〉
/
〈
ShhS∗

hh
〉

Ratio between VV and HH backscattering coefficient 〈SvvS∗
vv〉/

〈
ShhS∗

hh
〉

Ratio between HV and VV backscattering coefficient
〈
ShvS∗

hv
〉
/〈SvvS∗

vv〉
Depolarization ratio

〈
ShvS∗

hv
〉
/
(〈

ShhS∗
hh
〉
+ 〈SvvS∗

vv〉
)

Phase difference HH-VV arg(〈ShhS∗
vv〉)

Entropy, alpha angle, anisotropy and eigenvalues in
Cloude Decomposition

H, α, A
λ1, λ2, λ3

nine parameters of the Huynen Decomposition A0, B0 + B, B0 − B,
C, D, E, F, G, H

Power of surface, double-bounce, volume and helix scatter components
in Yamaguchi Decomposition Ps, Pd, Pv, Ph

Coefficient for the volume, double bounce and surface components in
Van Zyl Decomposition fv, fd, fs

2.1.2. Spatial Features

The spatial information in the PolSAR image is captured by using the morphological
transformation-based methods, which have been proved to be powerful tool for analyzing remote
sensing images [26,27]. Recently, morphological profiles (MPs) has attracted the attention of researchers
in image processing due to its excellent ability to describe spatial information. However, little attention
has been paid to the use of MPs.

To construct the spatial feature space FS, a morphological profile (MP) is built for a remote sensing
image by using a combination of several morphological operations and a set of structural elements
(SEs). Some commonly used morphological operations include erosion, dilation, opening, closing,
opening by reconstruction, and closing by reconstruction. Erosion can remove burrs and bumps in
images. Dilation can enlarge profiles, filling holes whose size is lower than SEs. The process of opening
entails erosion first and dilation second. Closing, on the contrary, entails dilation first and erosion
second. Opening and closing can both smoothen an image. Detailed information about morphological
operations can be seen in [28]. A summary of morphological operations considered in this paper can
be seen in Table 2. Moreover, SEs can have different shapes and sizes, and these different structures
present can be captured in images. By combining different morphological operations and SEs in the
process of the input image, different structures are emphasized in the resulting images. Since structures
essentially reflect the spatial relationship between pixels, spatial information is captured in this process.

To build the MP for a PolSAR image, we apply morphological transformations to the SPAN image,
which is obtained by [2]

SPAN = |shh|2 + 2|shv|2+|svv|2 (1)

If only multi-looking PolSAR data is available, we generate the base image by computing
the trace of the coherence matrix T or covariance matrix C, which is 〈|shh|〉2 + 2〈|shv|〉2 + 〈|svv|〉2.
The SPAN image is the non-coherent superposition of three polarimetric channel images and can be
considered as the total backscattering power. Compared to each single-channel image, the speckle
noise in the SPAN image is effectively reduced, which helps to make the actual structure of ground
objects more clear. Therefore, the SPAN image is more suitable to be taken as the base image to
build MP than single-channel images. There is another reason that we do not apply morphological
transformations to each channel image. It is shown that, for a multi-channel image, applying
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morphological transformations to a signal channel image separately may cause loss or corruption of
information [29]. Therefore, we use the SPAN image to build the MP for PolSAR image classification.

Table 2. Summarization of morphological operations.

Morphological Operations Expression

Erosion ε(I, b)(s, t) = min{I(s + x, t + y)− b(x, y)|(s + x, t + y) ∈ DI ; (x, y) ∈ Db}
Dilation δ(I, b)(s, t) = min{I(s − x, t − y) + b(x, y)|(s − x, t − y) ∈ DI ; (x, y) ∈ Db}
Opening γbero ,bdil

(I) = δbdil

(
εbero (I)

)
Closing δbero ,bdil

(I) = εbdil

(
δbero (I)

)
Opening by reconstruction γrec

bdil ,bc(I) = γbc,J(I), J = εbero (I)
Closing by reconstruction φrec

bdil ,bc(I) = φbc,g(I), g = δbdil
(I)

ε and δ represent erosion and dilation operation, respectively. bdil and bero represent SE of dilation and erosion.
I represent the SPAN image.

2.2. Stacked Feature Fusion

In this section, the polarimetric and spatial features are used for making feature fusion based
on the traditional method for classification of PolSAR images. Figure 2 shows the processing flow of
PolSAR image classification with a feature fusion scheme.

Figure 2. Polarimetric-spatial classification of PolSAR images by feature fusion.

In PolSAR image classification, the most commonly adopted approach is to exploit the polarimetric
information. However, performance can be improved by concerning both polarimetric and spatial
information in the classifier. Now, the problem is how to combine the features to decide the class that
a pixel belongs to. Traditionally, the method is based on a “stacked” approach, in which feature the
vector is built from the concatenation of polarimetric and spatial features [20,30].

Denote FP and FS as the polarimetric and spatial feature space, respectively. At a pixel Xi,
we have two feature vectors Xi

P ∈ FP and Xi
S ∈ FS. Two feature vectors XP and XS are concatenated

to form a new single vector,
XC = [XP, XS]. (2)

XC is used for the following SVM-based classification. The advantage of vector stacking based
approach is simple to be implemented for different feature vectors. The “stacked” method needs
only to concatenate to form a new vector. Unfortunately, from Equation (2), XC does not include an
explicit cross relation between XP and XS. Therefore, the vector stacking method may lead to a bad
performance because the weight and relationship between different features are not considered in
this method. When a vector stacking scheme is used, the two feature vectors should be carefully
normalized so that their contribution is not affected by the difference in scale.

3. Composite Kernels for SVM

In this section, composite kernel feature fusion is proposed to combine different features for
PolSAR image classification. SVM and kernels are also briefly described.
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3.1. SVM and Kernel

Based on the theory of structural risk minimization [31], a support vector machine (SVM)
attempts to find a hyper-plane that separates two classes while maximizing the margin between
two classes. Nowadays, SVM has become one of the most popular tools for solving pattern recognition
problems [32–34]. In remote sensing, SVM is of particular interest to researchers due to its ability to
deal with high-dimensional features with a relatively small number of training samples and to handle
nonlinear separable issues by using kernel tricks [35,36].

Given a training feature set T = {(X1, l1), . . . , (XN , lN)}, where Xi is the i-th feature sample and
li is the corresponding label (for two class cases we have li ∈ {−1, 1}), the SVM finds the decision
function by solving the following optimization problem:

max
α

{
N
∑

i=1
αi − 1

2

N
∑

i=1

N
∑

j=1
αiαjli lj

〈
Xi, Xj

〉}

s.t. 0 ≤ αi ≤ C and
N
∑

i=1
αi ll = 0

(3)

where α = [α1, α2, · · · , αN ] is the vector of Lagrange coefficients, C is a constant used for penalize
training errors.

Input Space F (often linear inseparability) can be mapped into high dimensional Hilbert space H,
i.e., let Φ(Xi) replaces Xi, and Φ(Xi) ∈ H. It is assumed that Xi are more likely to be linear separable
in Hilbert space H. Then, define a kernel function K(Xi, Xj) =

〈
Φ(Xi), Φ(Xj)

〉
. In this way, a linear

hyper-plane can be found in high-dimensional Hilbert space. The optimization problem becomes

max
α

{
N
∑

i=1
αi − 1

2

N
∑

i=1

N
∑

j=1
αiαjli lj κ

〈
Xi, Xj

〉}

s.t. 0 ≤ αi ≤ C and
N
∑

i=1
αi ll = 0

(4)

where κ is a kernel function. The dual formulation of the SVM problem in Equation (4) is convex,
which facilitates the solving process.

To predict the label for a new feature sample X, the score function of the SVM is computed with
the optimal Lagrange coefficients α∗ obtained by solving Equation (5):

φ(X) =
N

∑
i=1

α∗i liκ(Xi, X) + b (5)

where b is the bias of the decision function. For a two-class problem, the label of the test feature
sample X is given by l(X) = sgn(φ(X)). The two-class SVM can be extended to deal with multiclass
classification problems by using a one-versus-one rule or a one-versus-all rule. It is also possible to
compute probabilistic outputs from the classification scores for SVM. In this paper, the method of SVM
is implemented by using the library LIBSVM [37]. The parameters of SVM are set by a cross-validation
step [29].

3.2. Composite Kernels

Composite kernels we considered are based on the concept of composite kernels [19]. In SVM,
the information contained in the features is encoded within the kernel matrix, whose elements are the
value of the kernel function between feature vector pairs.

Some popular kernels are as follows:

• Linear kernel: κ
(
Xi, Xj

)
=

〈
Xi, Xj

〉
.

• Polynomial kernel: κ
(
Xi, Xj

)
=

(〈
Xi, Xj

〉
+ 1

)d, d ∈+.

9
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• Radial basis function: κ
(
Xi, Xj

)
= exp

(
−‖Xi − Xj‖2/2σ2

)
, σ ∈ R+

The parameter of a kernel can be set by a cross-validation step [35].
In mathematics, a real-valued function κ(x, y) is said to fulfill Mercer’s condition if all square

integrate functions g(x) have �
g(x)κ(x, y)g(y)dxdy ≥ 0. (6)

Based on the Hilbert–Schmidt theory, κ(x, y) can be a form of dot production if it fulfills Mercer’s
condition. The linear kernel, polynomial kernel and radial basis function fulfill Mercer’s condition [38].

Some properties of Mercer’s kernels are as follows:
Let κ1 and κ2 are two Mercer’s kernels, and η > 0. Thus,

κ
(
Xi, Xj

)
= κ1

(
Xi, Xj

)
+ κ2

(
Xi, Xj

)
κ
(
Xi, Xj

)
= ηκ1

(
Xi, Xj

) (7)

are valid Mercer’s kernels.
Therefore, it is possible to encode the information contained in polarimetric and spatial features

into two kernel matrixes if we use Mercer’s kernel. [39].
A composite kernel called weighted summation kernel that balances the polarimetric and spatial

weight can be created as follows:

κ(Xi, Xj) = ηκP(Xi
P, Xj

P) + (1 − η)κS(Xi
S, Xj

S) (8)

where Xi, Xj are two pixels, κP is the kernel function for polarimetric features, κS is the kernel function
for spatial features, and η ∈ [0, 1] is tuned in the training process and constitutes a tradeoff between
the polarimetric and spatial information to classify a given pixel. The composite kernel allows us to
extract some information from the best tuned η parameter [30].

Based on practical situation, we can set value of the parameter flexibly. In addition, the composite
kernel method can make fusion more naturally and effectively, regardless of the weight between
different features, bringing better performance.

Once all kernel functions are evaluated and combined, the obtained kernel matrix is fed into a
standard SVM for PolSAR image classification.

4. Experiment

To demonstrate the superiority of the composite kernel method, in this section, the composite
kernel method is compared to the polarimetric feature method (only considering polarimetric features),
the morphological profile method (only considering spatial feature), and the vector stacking method.
Firstly, we give the information of the used PolSAR data set. Then, we present the experimental
setting. Finally, for each PolSAR image, four approaches are applied and evaluated both qualitatively
and quantitatively.

4.1. Data Description

The test cases are two PolSAR data sets that were collected by the RadarSat-2 system over the
area of Flevoland in Netherlands and the AIRSAR system over the area of San Francisco Bay.

4.1.1. Flevoland Data Set

The first data set is comprised of a C-band RadarSat-2 PolSAR image collected in the fine
quad-pol mode. To facilitate visual interpretation and evaluation, a nine-look multi-looking processing
was performed before used for classification. A subset with a size of 700 × 780 pixels was used in
our experiment. Figure 3a is a color image obtained by Pauli decomposition, and Figure 3b is the
corresponding reference map. A total of four classes are identified: building area, woodland, farmland,
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and water area. Note that the reference map is not exhaustive, and pixels that are not assigned to any
class are shown in gray. To use the data set for performance evaluation, labeled pixels are randomly
split into two sets that are used as the training set and the testing set. To ensure the stability and
reliability of the performance evaluation results while keeping the computational burden within a
controllable range, 1% of the labeled pixels are selected as training samples and the rest of the labeled
pixels are taken as testing samples. Detailed information about the training and testing set is listed in
Table 3.

(a) (b)

Figure 3. Flevoland data set collected by RadarSat-2. (a) RGB image obtained by Pauli decomposition.
(b) Reference map. A total of four classes are identified. Color-coded class label: red—building area,
green—woodland, orange—farmland, and blue—water.

Table 3. Number of samples of the Flevoland data set used for quantitative evaluation.

Class Building Woodland Farmland Water

Number of Samples in the Reference Map 71,331 85,539 184,920 59,504
Number of Training Samples 713 855 1849 595
Number of Testing Samples 70,618 84,684 183,071 58,909

4.1.2. San Francisco Bay Data Set

The second data set regarding San Francisco Bay is comprised of NASA/JPL AIRSAR L-band
PolSAR data. The size of the image is 900 × 1024. In Figure 4a, the color image obtained with Pauli
decomposition is shown. This image is manually labeled with three classes: city, vegetation, and water.
The obtained reference map is shown in Figure 4b, in which different colors stands for different land
cover types. Similar to the Flevoland data set, we randomly split pixels into the training set and the
testing set. Detailed information about the training and testing set is listed in Table 4.

 
(a) (b)

Figure 4. San Francisco Bay data set collected by AIRSAR system. (a) RGB image obtained by Pauli
decomposition. (b) Reference map. A total of three classes are identified. Color-coded class label:
yellow—city area, blue—water, and green—vegetation.
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Table 4. Number of samples of the San Francisco Bay data set used for quantitative evaluation.

Class City Area Water Vegetation

Number of Samples in the Reference Map 391,407 315,320 135,508
Number of Training Samples 3914 3153 1355
Number of Testing Samples 387,439 312,167 134,153

4.2. General Setting

The polarimetric features considered in this paper are summarized in Table 1. For morphological
feature extraction, opening, closing, opening by reconstruction, and closing by reconstruction are
considered and are summarized in Table 2. For each of those filters, an SE whose dimensions unit
increased from 5 to 19 with a step of 2 pixels is used. In the classification stage, the involved parameters
are parameters in the SVM, and the weight parameter η that can tune the contribution of two kernels.
And the kernel we used is Radial basis function (RBF) which fulfills Mercer’s condition.

In the training process, the overall accuracy curve in Figure 5a reaches the top when η = 0.6. So,
we may conclude that set η = 0.6 in Flevoland data set can make the best performance. Similarly,
in Figure 5b, setting η = 0.6 in San Francisco Bay data set had best outcome. Therefore, we set η = 0.6
in the experiment for the Flevoland and San Francisco Bay data sets.

(a) (b)

Figure 5. Accuracy versus weight η for Flevoland data set (a) and San Francisco Bay data set (b).

4.3. Results

4.3.1. Flevoland Data Set

As expected, we can see Figure 6a that, regarding polarimetric features alone, the building area
and woodland area in black ellipses show large variation, i.e., pixels of the same land cover type may
have very different scattering mechanisms, while pixels of different land cover types may have very
similar scattering mechanisms. Moreover, in Figure 6b, morphological features alone may also lead
to incorrect classification results, e.g., those two farmland areas in white ellipses that are classified
as woodland area. Further, feature fusion via vector stacking also has some flaws; e.g., in Figure 6c,
the farmland in yellow ellipses shows obvious variation. However, when combining those two features
via composite kernels, the performance of the PolSAR image improves; e.g., in Figure 6d, in black
ellipses, building and woodland can be clearly classified, in white ellipses, farmland can be classified,
and in yellow ellipses, farmland can also be classified—much better than the vector stacking method.
And Figure 6e is the reference map of Flevoland Data Set.
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(a) (b)

  
(c) (d)

(e)

 Building  Woodland  Farmland  Water 

Figure 6. Classification maps of Flevoland data with different methods. (a) Only polarimetric features.
(b) Only morphological features. (c) Feature fusion via vector stacking. (d) Feature fusion via composite
kernels. (e) Reference map.

From Table 5, we can see that using polarimetric features alone lead to low accuracy, especially in
building areas and woodland areas. Morphological features account for the spatial structural
information, which helps to produce more accurate classification results. However, this approach has
a slightly low accuracy in farmland area because this approach only considers spatial information.
The overall accuracy is distinctly boosted when fusing the two types of information together. The kappa
coefficient also notably increases to 0.94. Admittedly, the overall accuracy of vector stacking is similar
to that of the composite kernel approach, but it is worth noting that, when the vector stacking method
is used, different features should be normalized before stacking. Further, the vector stacking approach
does not take the inter-relation of different features into consideration.

Table 5. Classification accuracy measures on the Flevoland data set. The best performance in each
column is shown in bold.

Method Building (%) Woodland (%) Farmland (%) Water (%) Overall Accuracy (%) Kappa Coefficient

Only POL 78.8 80.1 92.8 93.4 87.7 0.842
Only MP 94.6 92.7 92.3 98.9 93.8 0.909

Vector Stacking 95.2 93.7 96.2 97.4 95.7 0.920
Composite Kernel 95.6 94.3 96.2 98.8 96.1 0.942

Kappa Coefficient measures the percentage of data values in the main diagonal of the table and then adjusts these
values for the amount of agreement that could be expected due to chance alone [40].
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4.3.2. San Francisco Bay Data Set

Like the Flevoland data set, firstly, as shown in Figure 7a, the city and water area in red ellipses
show large variation. Secondly, in Figure 7b, though morphological features alone show a smoother
map, they may also lead to an incorrect classification map, e.g., the two vegetation areas in white
ellipses that are classified as water areas. Moreover, feature fusion via vector stacking also has
some flaws; e.g., in the upper right (luminous yellow ellipses) of Figure 7c, there are areas and
variations that are obviously incorrectly classified. However, when combining those two features via
composite kernels, the performance of the PolSAR image improves, and the map of the composite
kernel method (in Figure 7d) is smoother and has more correctly classified areas than those of other
methods. And Figure 7e is the reference map of San Francisco Bay Data Set.

From Table 6, the overall accuracy of the four methods (only POL, only MP, vector stacking,
and composite kernels) is 86.9%, 89.6%, 92.6, and 94.4%, respectively. Compared with the other three
methods, the overall accuracy of the new method we proposed is increased by 7%, 4.8%, and 1.8%.
The kappa coefficient also exhibits marked growth.

 
(a) (b)

 
(c) (d)

(e)
 City Area  Water  Vegetation 

Figure 7. Classification maps of the San Francisco Bay data set with different methods. (a) Only
polarimetric features. (b) Only morphological features. (c) Feature fusion via vector stacking.
(d) Feature fusion via composite kernels. (e) Reference map.
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Table 6. Classification accuracy measures on San Francisco Bay data set. The best performances in each
column are shown in bold.

Method City Area (%) Water (%) Vegetation (%) Overall Accuracy (%) Kappa Coefficient

Only POL 92.2 98.5 44.7 86.9 0.783
Only MP 95.1 95.2 60.7 89.6 0.830

Vector Stacking 96.0 98.5 68.5 92.6 0.879
Composite Kernel 96.0 99.7 78.8 94.4 0.909

Our results confirm the validation of the composite kernel method. The performance of
classification can be boosted when we fuse two types of information. The composite kernel method
can tune the contribution of different content, yielding better accuracy than the “stacked” method.
However, we have not considered other possible kernel distances. The classification performance may
be improved if we take other kernels into account.

5. Conclusions and Future Work

In this paper, a feature fusion approach that exploits both polarimetric and spatial information
of PolSAR images is proposed. The polarimetric information is captured by collecting polarimetric
signatures. The spatial information is captured by using the morphological transformation. Inspired by
the complementarity between spatial and spectral features producing significant improvements
in optical image classification, performance can be improved by fusing polarimetric and spatial
information in the classifier. Traditionally, the method is based on a “stacked” approach, in which
feature vectors are built from the concatenation of polarimetric and spatial features. In this paper,
we propose a new method called the “composite kernel” method, which tunes the contribution of
different type of features. Compared with one signal feature classification and traditional feature fusion
classification via vector stacking, the composite kernel method possesses several excellent properties,
making fusion more effective and leading to better performance. The proposed approach has been
tested on the Flevoland data set and the San Francisco Bay data set. The obtained results confirm the
benefit of combing different types of information via composite kernels for PolSAR image classification.

In the future, we will continue studying PolSAR image classification with polarimetric and spatial
features. Other possible kernel distances could be investigated via, for example, the spectral angle
mapper. More advanced feature combination methods that solve the problems of feature extraction
and combination simultaneously could also be researched. One such framework is multiple kernel
learning, which could be utilized as a platform for developing effective classification approaches.
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Abstract: Land cover classification of built-up and bare land areas in arid or semi-arid regions from
multi-spectral optical images is not simple, due to the similarity of the spectral characteristics of the
ground and building materials. However, synthetic aperture radar (SAR) images could overcome
this issue because of the backscattering dependency on the material and the geometry of different
surface objects. Therefore, in this paper, dual-polarized data from ALOS-2 PALSAR-2 (HH, HV)
and Sentinel-1 C-SAR (VV, VH) were used to classify the land cover of Tehran city, Iran, which has
grown rapidly in recent years. In addition, texture analysis was adopted to improve the land cover
classification accuracy. In total, eight texture measures were calculated from SAR data. Then, principal
component analysis was applied, and the first three components were selected for combination with
the backscattering polarized images. Additionally, two supervised classification algorithms, support
vector machine and maximum likelihood, were used to detect bare land, vegetation, and three
different built-up classes. The results indicate that land cover classification obtained from backscatter
values has better performance than that obtained from optical images. Furthermore, the layer stacking
of texture features and backscatter values significantly increases the overall accuracy.

Keywords: land cover; supervised classification; texture measures; synthetic aperture radar (SAR)
imagery; support vector machine; maximum likelihood; Tehran

1. Introduction

Land cover monitoring of urban areas provides vital information in several fields, such as
environmental science, seismic risk assessment, urban management, and regional planning.
For instance, in sustainable development, urban growth assessment plays an essential role in
maintaining the balance between the city and the hinterland. Urban expansion results in the change
of urban land cover and the expansion of a city’s border, which is necessary for accommodating a
growing population and providing them with public city services [1]. Furthermore, it is important
to continuously update land cover maps at macro- and micro-scales, which helps governments to be
prepared for emergency monitoring of cities, especially after natural hazards [2–11].

Remote sensing technologies are fundamental tools used to obtain information from the ground
surface to determine land cover classification. Thus, satellite imagery can be used to analyze urban
growth and land cover changes [12]. Moreover, urban residential areas with different properties and
densities can be identified [13,14]. One of the most advanced technologies is synthetic aperture radar
(SAR) sensors, which have several advantages over optical sensors that are used to capture land
surface imagery. SAR sensors can extract object characteristics from backscattering echo, independent
of weather conditions and time [15–17]. Currently, this technology, with dual- or full-polarization
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(HH, HV, VV and VH), is used widely to monitor urban areas and map land cover since different
polarizations have different sensitivities and scattering coefficients for the same target [3,18–21].

Furthermore, texture features represent a significant source of information regarding the spatial
relation of pixel values. Thus, different features, such as built-up urban areas, soil, rock, and vegetation,
can be more accurately characterized. Many texture measures have been developed and properly used
in satellite image analyses. Thus, it is generally accepted that the use of textural images improves
the accuracy of land cover classification [22–25]. Previous research on texture feature extraction
showed that the gray-level co-occurrence matrix (GLCM) is one of the most trustworthy methods for
classification [26,27].

Tehran, the capital city of Iran, has been undergoing rapid changes in land cover and land use,
similar to many other metropolitan areas in developing countries. The population of Tehran increased
from 6,758,845 in 1996 to 12,183,391 in 2011 [28], almost doubling in only 15 years. For that reason,
Tehran is considered as one of the fastest growing cities in the world. Therefore, urban area monitoring
of Tehran seems necessary. However, because of the similarity of spectral signatures between soil and
roof materials in the built-up areas of Tehran, the accuracy of land cover classification using optical
images is expected to be not so high. On the other hand, a SAR image analysis using backscattering
intensity data has the potential to accurately classify urban areas.

In this study, the capabilities of SAR images to recognize built-up areas from bare land in Tehran
city, Iran, are evaluated. For this purpose, ALOS-2 PALSAR-2 (HH, HV) and Sentinel-1 C-SAR (VV, VH)
are used for land cover classification. Texture measures are applied to the backscatter values of the
L- and C-bands of the mentioned satellite. Then, supervised land cover classification of Tehran is
carried out using the backscattering intensity and texture measures selected by a principal components
analysis. This study attempts to examine the performance of SAR intensity data for land cover
classification in arid and semi-arid regions.

2. Study Area and Dataset

2.1. Study Area

The study area is located in Tehran, the capital city of Iran, which is a part of the Tehran
metropolitan area located at longitude 51◦25′17.44” E and latitude 35◦41′39.80” N, as shown in
Figure 1. Tehran is situated in north-central Iran at the foot of the Alborz Mountains, and places on the
sloping ground from the mountains in the north and flat areas near the Great Salt Desert in the south.
As shown in Table 1, the population of the city slightly increased from 6,058,207 in 1986 to 6,758,845 in
1996, but it rose significantly to 12,183,391 by 2011. Therefore, the city needed more facilities for the
residents. Due to this matter, several land covers and land uses emerged or changed into different
ones. The area used for assessing the accuracy of the classification results is in the northwest of Tehran,
in District 22, located at longitude 51◦5′10”–51◦20′40” and latitude 35◦32′16”–35◦57′19”. It is the
district with the greatest development because urban growth in the western regions of the city is
necessary to accommodate the population of downtown areas. Tehran is divided into 22 districts, and
each district is sponsored by its specific municipality. Moreover, the residential density in this region
includes low (100 buildings per hectare), medium (135 buildings per hectare), and high (200 buildings
per hectare) densities [28–30]. Considering the variety of built-up areas, densities, vegetation, and bare
land in this region it was chosen for accuracy assessment. Besides, there are few green areas in Tehran
city, in which one of the largest one is located in this region.
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Figure 1. Location of Tehran and coverage of the satellite images used in this study, including Sentinel-1
(blue frame) acquired on 26 October 2015, ALOS-2 (red frame) acquired on 14 October 2015 and
Landsat 8 (green frame) acquired on 7 May 2015.

Table 1. The change of population in Tehran [28].

Year 1986 1991 1996 2006 2011

Population 6,058,207 6,497,238 6,758,845 7,711,230 12,183,391

2.2. Dataset

The data used in this research were acquired by the Landsat 8, ALOS-2 and Sentinel-1 satellites,
which are operated by the National Aeronautics and Space Administration (NASA), the Japan
Aerospace Exploration Agency (JAXA) and the European Space Agency (ESA), respectively (Figure 1).
Landsat 8 was launched on 11 February 2013 with an Operational Land Imager (OLI) sensor
and a Thermal Infrared Sensor (TIRS). The Landsat 8 image was acquired on 7 May 2015 and
includes a panchromatic band with 15-m resolution and 11 multi-spectral bands with 30-m resolution.
ALOS-2 was launched on 24 May 2014 with an enhanced L-band SAR sensor, PALSAR-2. Its center
frequency is 1.27 GHz/23.60 cm in Strip Map mode (SM). Sentinel-1 was launched on 3 April 2014
with the C-SAR sensor in the C-band with a center frequency of 5.40 GHz/5.55 cm in Interferometric
Wide Swath mode (IW). Both SAR images covering Tehran were acquired in the ascending path in
the right-look direction and by dual-polarization. The ALOS-2 image acquired on 14 October 2015
has HH and HV polarizations, with an incident angle of 40.56◦ at the center of the image and a
spatial resolution of 6.2 m. The Sentinel-1 image captured on 26 October 2015 has VV and VH
polarizations with an incident angle of 34.02◦ at the center of the image and a spatial resolution of
13.9 m. Moreover, the ground swath widths of ALOS-2 and Sentinel-1 are approximately 50–70 km
and 250 km, respectively. Both SAR images cover the entire study area in one scene.

2.3. Pre-Processing

The SAR images were provided as single-look complex (SLC) data with processing levels of
1.1 for ALOS-2 and 1.0 for Sentinel-1. Both images were represented by the complex I and Q channels
to preserve the amplitude and phase information [31,32]. The Sentinel free open source toolboxes
were employed for pre-processing. The images were projected on the WGS84 reference ellipsoid.
The radiometric calibration of each intensity image was carried out to obtain the backscattering
coefficient (sigma-naught, σ0) in the ground range with the decibel (dB) unit, represented by the
following equation:

σ0 = 10.0 log10

(
ks·|DN|2

)
+ 10.0 log10(sin θloc) (1)
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where DN is the digital number of backscattering intensity, ks is the calibration factor, and θloc is the
local incidence angle.

After this conversion, different processes were applied to the SAR data. To represent the images
as geometrically similar to the real world as possible, geometric terrain correction was applied on
the ALOS-2 data using the range Doppler orthorectification method. The Shuttle Radar Topography
Mission (SRTM) data were introduced as 3 arc second (approximately 90-m resolution) digital elevation
model (DEM). Then, the images were resampled using bilinear interpolation after the terrain correction.
As the last step, an adaptive Lee filter with a window size of 3 × 3 [33] was applied to the original
polarized SAR images from ALOS-2 to reduce the speckle noise.

Since the IW mode images of Sentinel-1 include three sub-swaths, the Terrain Observation with
Progressive Scan SAR (TOPSAR) deburst technique was used to produce a homogenous image
for each polarization. Then, the orbit state vectors of Sentinel, precise to the third polynomial
degree, were applied to provide accurate information on satellite position and data velocity.
Afterwards, the same geometric terrain correction and speckle filtering methods applied to the ALOS-2
images were used. During geometric correction, the pixel size of the Sentinel-1 data was changed to
the same pixel size as for the ALOS-2 polarized images (6.25 m). Finally, the two SAR images were
registered with the nearest neighbor resampling type and bilinear interpolation method, where the
ALOS-2 image was selected as the master.

Additionally, radiometric calibration was applied to the optical image to convert the DN value
to the Top of Atmosphere (TOA) reflectance. The image was projected onto the WGS84 reference
ellipsoid. Then, the 15-m multi-spectral image was obtained using the pan-sharpening process.

3. Methodology

The overall framework is shown in Figure 2. The methodology consists of 5 steps: pre-processing,
texture analysis, principal component analysis (PCA), supervised classification, and accuracy
assessment. The two sets of polarized SAR images, ALOS-2 and Sentinel-1, were applied in this
framework, and their results were evaluated by comparison to truth data. Due to the lack of the real
ground truth data in the study area, the Landsat 8 optical image was considered as a base map for
preparing the truth data. The truth data contains the polygons of different land covers. All processes in
this section were done using Environment for Visualizing Images (ENVI) 5.3.1 software (Exelis Visual
Information, Boulder, CO, USA).

Figure 2. Flowchart of land cover classification using the multi-spectral optical image and two synthetic
aperture radar (SAR) datasets. GLCM: gray-level co-occurrence matrix; SVM: support vector machine;
ML: Maximum Likelihood; PCT: principal components of the textures.
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3.1. Spatial Texture Analysis

After performing the pre-processing steps, texture measures were applied to each backscattering
element (HH, HV, VV and VH). Previous research has shown that texture measures provide vital
information from radar imagery [20,34]. Among several statistical texture methods previously
proposed, the gray-level co-occurrence matrix (GLCM) is one of the most powerful for land cover
monitoring; thus, the GLCM is used in this study. Texture measures represent the spatial distribution
of the gray-level value and its frequency relative to another one for a specific displacement at (x, y)
and orientation (0◦, 45◦, 90◦ and 135◦). From a sub-image of a given window size, I(x, y), the GLCM
is a matrix P with size Ng × Ng (Ng: the number of gray-levels) whose P(i, j) element (1 ≤ i ≤ Ng;
1 ≤ j ≤ Ng) contains the number of times a point with gray-level gi occurs in a set of positions relative
(based on the displacement and the angle mentioned before) to another point with gray-level gi [22].
The texture measures are calculated from the matrix P as follows:

Angular Second Moment (ASM) = ∑
i

∑
j
{P(i, j)}2 (2)

Contrast =

Ng−1

∑
n=0

n2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ng

∑
i=1

Ng

∑
j=1

|i−j|=n

P(i, j)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3)

Correlation =

∑
i

∑
j
(ij)P(i, j)− μx − μy

σxσy
(4)

Homogeneity = ∑
i

∑
j

1

1 + (i − j)2 P(i, j) (5)

Variance = ∑
i

∑
j
(i − μ)2P(i, j) (6)

Mean =
2Ng

∑
i=2

iPx+y(i) (7)

Entropy = −∑
i

P log(P(i, j)) (8)

Dissimilarity =
Ng−1

∑
i,j=0

Pi,j(− ln Pi,j) (9)

where p(i, j) is the (i, j)-th entry in a normalized gray-tone spatial dependence matrix P(i, j)/R; R is

the total sum of P; px(i) =
Ng
∑

j=1
P(i, j) is the i-th entry in the marginal probability matrix obtained by

summing the rows of p(i, j); and μx, μy, σx and σy are the means and standard deviations of px and py.
In this study, eight textural features at angle 0◦ and distance 1, different window sizes ranging from

3 × 3 to 21 × 21 and a quantization level of 64 were used to evaluate its performance for classification.

3.2. Principal Component Analysis

A set of eight texture features were calculated for each scattering element, and a total of 32 texture
measures were obtained from the ALOS-2 and Sentinel-1 images. Performing land cover classification
from these high dimensional datasets could be inefficient and time consuming. Thus, to reduce the
dimensionality, the principal component analysis (PCA) was performed independently on each set
of eight texture features. Since PCA computes the correlation between input bands and sorts them
based on the amount of data variance [35], the first components contain the greatest variance of the
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input variables [36]. In this research, three of the first components were selected, which contained
almost 99 percent of the variation of the input elements and were used for the next stage. The reason
on behalf the use of the first three principal components is explained further in Section 4.2. Therefore,
two sets of SAR data were used for the supervised classification: (1) the backscatter values of the
dual-polarization data, which contains two layers of HH + HV and VV + VH for the ALOS-2 and
Sentinel-1; and (2) the layer stacking of the backscatter values and the first three principal components
of the texture measures (PCT). The second dataset includes eight layers (HH, HV, PCTHH

1,2,3, PCTHV
1,2,3)

for ALOS-2 and eight layers (VV, VH, PCTVV
1,2,3, PCTVH

1,2,3) for Sentinel-1.

3.3. Supervised Classification

Supervised classification is a training based methodology that classifies similar image pixel values
into training samples for a determined number of classes. Thus, training samples must be selected
based on a homogenous group of image pixels to provide the best separability. Therefore, monitoring
the study area and assessing the different land covers is necessary before selecting the training samples.
Additionally, applying the appropriate algorithm to identify the homogeneity of the training data to
group the pixel values of a dataset is important. Accordingly, the training data selection process and
the two different supervised classification algorithms used will be explained further in this section.

After the inspection of district 22 in Tehran, five land cover classes were defined: bare land,
vegetation, built-up 1, built-up 2, and built-up 3. The three different residential types are shown in
Figure 3. Built-up 1 is composed of dense residential areas with mostly two-story old buildings and
narrow streets and roads. The buildings are approximately 8 × 13 m in size. Built-up 2 is composed of
medium density residential areas, including parallel blocks of buildings. The buildings are mostly
12 × 18 m in size. These buildings consist of approximately 4–6 floors. Built-up 3 includes individual
building with 4–15 floors. Built-up 3 has wider streets than the other areas and plenty of vegetation
surrounding the buildings. The buildings are mostly two different shapes, square with a size of
25 × 25 m or rectangular with a size of approximately 25 × 44 m. For each of these five land cover
classes, three training samples were selected. The training samples mainly consist of square shapes of
200 m in length, which are located in different parts of Tehran, as shown in Figure 4.

The classification process was performed using two algorithms: support vector machine (SVM)
and maximum likelihood (ML). Both algorithms are derived from statistical theories. These two
methods are commonly used in land cover classification studies [37–41]; therefore, we intend to
evaluate their performance for SAR data imagery. Supervised classifiers were applied to three sets
of data: (1) Landsat 8 multi-spectral image; (2) Backscatter values of dual-polarization ALOS-2 and
Sentinel-1 data; and (3) the layer stacking of backscatter values and the first three PCTs from ALOS-2
and Sentinel-1 data.

Figure 3. Three different residential types (a–c) extracted from Google Earth images of Tehran city.
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Figure 4. The three training samples selected for each land cover class from the Landsat 8 image used
for supervised classification. The black frame shows the area used for assessing the accuracy.

The maximum likelihood method works based on the assumption that each class is normally
distributed. Thus, for each pixel, the probability that it belongs to a specific class is calculated.
Then, the pixel is assigned to the class that yields the highest probability as follows [36,42]:

gi(x) = 1np(ωi)− 1/21n
∣∣∣∑i

∣∣∣− 1/2(x − mi)
T∑−1

i (x − mi) (10)

where i is the number of classes, x represents the n-dimensional data (where n is the number of bands),
p(ωi) denotes the probability that class ωi occurs in the image and is assumed to be the same for all
classes, |Σi| is the determinate of the covariance matrix of the data in class ωi, Σi

−1 is its inverse
matrix, and mi represents the mean vector.

Support vector machine is a trusted algorithm often used in remote sensing [43,44]. This algorithm
was developed by Vanpik [45], and its use has increased for land cover classification in recent years.
The SVM separates the pixels of an image using optimal hyperplanes that maximize the margin
between the classes [46]. The data points closest to a hyperplane are called support vectors. A nonlinear
classification can be performed using kernel functions to the support vectors. In this study, the pairwise
strategy is used for multi-class classification. We selected the radial basis function, which is a common
kernel type one for the classification and is expressed as follows:

K
(

xi, xj
)
= exp

(
−g‖xi − xj‖2

)
, g > 0 (11)

where xi and xj represent the training data and class labels, and g is the gamma term in the kernel
function [47–49]. Radial basis functions with gamma value of 1.12 and 1.14 were used for SAR and
optical image, respectively. The gamma value was calculated by inversing of the number of bands in
the input image.

Moreover, the memory usage and the speed of training were not considered for either supervised
algorithms in this study because the scope of this research is to evaluate the improvement of the
accuracy after introducing the texture feature.
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3.4. Accuracy Assessment

The accuracy of the results from the ML and SVM methods was measured by calculating a
confusion matrix. The confusion matrix compares the classified land cover with truth data and is a
standard method used to evaluate the accuracy of classification in remote sensing [50]. The overall
accuracy, producer and user accuracies, and kappa coefficient are calculated from this matrix.

In this research, the confusion matrix was prepared using truth data over the five land cover
classes. Based on the comparison of the confusion matrix of the classification results, we evaluated the
effect of the supervised classification algorithms and texture measures.

4. Results and Discussion

This study aims to classify the land covers in Tehran city with high accuracy using appropriate
datasets and methodologies. A multi-spectral Landsat 8 image and SAR data (ALOS-2 and Sentinel-1)
were used to evaluate the performance of the supervised classification algorithms, maximum likelihood
and support vector machine. The comparison and evaluation of the results from the optical and SAR
sensors are presented in the following.

4.1. Multi-Spectral Optical Image

Regarding the aim of this study, we begin by observing the performance of the multi-spectral
optical image. First, the spectral signatures of the different land cover samples from the Landsat 8
image (Figure 4) for the built-up 1, built-up 2, built-up 3, bare land, and vegetation classes are shown
in Figure 5. The spectral reflectance characteristics of bare lands and built-up features are remarkably
similar, while the vegetation signature shows a different pattern. The geography of the study area
makes it difficult to differentiate the urban area from the mountainous and desert areas that surround
Tehran. ML and SVM classifications were applied to the Landsat 8 image using a total of fifteen training
samples from five different land cover types. The results are shown in Figure 6. The ML classification
result (Figure 6a) indicates that almost all bare land and mountain areas around Tehran were selected
as built-up area (built-up 1). Additionally, the SVM result (Figure 6b) shows that some bare land areas
in the southeast and west of Tehran were classified incorrectly as built-up areas (built-up 1 and 2).

Figure 5. Spectral signatures of the five land covers obtained from the Landsat 8 image.
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Figure 6. The ML (a) and SVM (b) classification results of Landsat 8 image, where the black frame
shows the location of the validation area.

To validate the classification result, we prepared the confusion matrix using the truth data.
Figure 7a represents a closer look of the validation area, which is shown by a black frame in
Figures 4 and 6b as well. Table 2 illustrates the confusion matrix results from Landsat 8 using SVM
and ML classification. The SVM classification gave an overall accuracy and kappa coefficient of 41.1%
and 0.26, respectively, while ML gave the values of 35.3% and 0.22. Moreover, the producer and user
accuracy are shown in table below. The producer accuracy represents the correctly classified pixels out
of the truth pixels of related land cover classes. The user accuracy, illustrates the correctly classified
pixels out of the total classified pixels. The SVM algorithm provided higher accuracy than ML. A closer
look at the SVM result is shown in Figure 7b. It is observed that some classes were incorrectly classified,
such as built-up 2, which was mostly classified as built-up 1. Therefore, the Landsat 8 image does not
seem appropriate for classifying the land cover of the study area, Tehran city.

Figure 7. Validation area containing the truth data for the five classes (a); and the result of the SVM
classification from Landsat 8 image (b).
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Table 2. Confusion matrix for ML and SVM classification using the Landsat 8 image.

Land Cover Class Bare Land Vegetation Built-up 1 Built-up 2 Built-up 3 Overall Accuracy (%) Kappa Coefficient

ML
Producer Accuracy (%) 30.7 58.7 31.5 35.0 33.0 35.3 0.22

User Accuracy (%) 91.2 81.4 4.0 47.8 22.0

SVM
Producer Accuracy (%) 42.4 63.8 31.2 39.8 27.2 41.1 0.26

User Accuracy (%) 86.4 76.4 5.1 39.3 25.5

4.2. SAR Data

Considering the limitation of the Landsat 8 image in land cover classification and detection of
various built-up classes and bare land in the study area, ALOS-2 and Sentinel-1 images with the
capability of obtaining ground surface information based on the backscatter coefficient were selected
to overcome this issue. Figure 8 represents the color composites of the dual-polarization intensity
images from the ALOS-2 and Sentinel-1 data. The cyan and red colors indicate different orientation
and geometrical positions of the residential areas in Tehran.

Figure 8. Color composite of dual-polarization images from the ALOS-2 image (a) and the Sentinel-1
image (b), the yellow frame shows the location of region chosen for evaluating the components of
principal component analysis (PCA) and the location of validation area.

To increase the accuracy in the supervised classification from SAR data, texture analysis (GLCM)
was applied to the dual-polarization images. Figure 9 depicts the texture features obtained from
ALOS-2 HH polarization. Texture analysis was applied to each backscatter value of HH, HV, VV,
and VH. Thus, for each polarized image, eight texture measures were obtained: mean, contrast, ASM,
correlation, homogeneity, variance, entropy, and dissimilarity. Then, the PCA was applied to reduce
the number of textures measured.
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Figure 9. Eight texture features (a–h) obtained from the ALOS-2 HH polarization with a window size
of 13 × 13, angle of 0◦, and displacement of 1 pixel.

In order to select the appropriate number of principal components for texture measures (PCT)
to perform the classification, we examined the region shown as a yellow frame in Figure 8 using the
HH and HV polarizations of ALOS-2. The SVM classification was carried out for two datasets. In the
first dataset, the two backscatter values (HH and HV) and all their PCTs (18 layers in total) were
used. In the second dataset, the two backscatter values and their first three PCTs (eight layers in total)
were used. In both datasets the PCT was calculated from texture features obtained using a window
size of 13 × 13. The first three components contain almost 99 percent of the variation of the input
elements. Table 3 shows the overall accuracy and the kappa coefficient obtained from the classification
of the two datasets. A comparison shows a difference of only 1.26% for the overall accuracy and a
difference of 0.02 for the kappa coefficient. Although the dataset with all the PCTs gained higher
accuracy, the required time was significantly larger than that of the second dataset. Therefore, in this
study, only the first three principal components were used.

Table 3. Overall accuracy and kappa coefficient calculated from the SVM classification using the first
three PCTs and all PCTs.

Datasets Overall Accuracy (%) Kappa Coefficient

Backscatter + three PCTs (%) 61.79 0.50
Backscatter + all PCTs (%) 63.05 0.52

Figure 10 illustrates the first three PCTs of the HH polarization. The classifications using ML
and SVM were performed using the same fifteen training samples shown in Figure 4. As mentioned
before, the performance of both ML and SVM are compared to the truth data to observe which method
produces the highest accuracy.
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Figure 10. The first three principal components (a–c) prepared from the eight texture features of the
ALOS-2 HH polarization.

The window size is an important parameter for the texture measures. In this study, window sizes
ranging from 3 × 3 to 21 × 21 were all evaluated to estimate the most suitable window size. Figure 11
shows the kappa coefficients for the classification using only the backscatter values of ALOS-2 (HH, HV)
and Sentinel-1 (VV, VH), and those by the layer stacking of the backscatter values and their PCTs
results for different window sizes. The numbers of pixels in each land cover class in the truth data
are not equal, thus the kappa coefficient is plotted in Figure 11. The solid lines represent the results
from SVM classification and the dashed lines those from ML classification, both for ALOS-2 and
Sentinel-1. The graph shows an increase of the kappa coefficient by introducing the texture measures
for the classification. The performance of SVM is better than that of ML classification. For the ALOS-2
satellite, the difference between the both methods increases significantly when the texture window size
increases. The highest kappa coefficient was observed in the classification for ALOS-2 with window
size 13 by SVM as shown by green arrow in the graph. The highest kappa coefficient of Sentinel-1
classification results was obtained from SVM in window size 11 × 11. Moreover, ALOS-2 provided
better performance than Sentinel-1.

Figure 11. Kappa coefficient calculated from SVM and ML classification methods using only the
backscatter of ALOS-2 and Sentinel-1 and those by the layer stacking of the backscatter values and their
PCTs for window sizes ranging from 3 × 3 to 21 × 21. Green arrows show the highest Kappa coefficient.

Figure 12 illustrates the SVM classification of Tehran using the layer stacking of backscatter values
and their PCTs for the both ALOS-2 and Sentinel-1 satellites. The PCT was calculated using a window
sizes of 13 × 13 and 11 × 11 for the ALOS-2 and Sentinel-1, respectively.
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Figure 12. SVM classification results of backscatter values and their PCTs from the ALOS-2 image using
a window size of 13 × 13 (a) and the Sentinel-1 image using a window size of 11 × 11 (b). The black
frame represents the location of Figure 13.

Herein, further evaluation is performed only for the datasets that produced the highest kappa
coefficient. Thus, for the sake of brevity, the classification result from the ALOS-2 backscatter
values and their first three PCTs using a window size of 13 × 13 is referred as ALOS-2-PCT.
Similarly, the classification result from the Sentinel-1 backscatter values and their first three PCTs using
a window size of 11 × 11 is referred as Sentinel-1-PCT. Tables 4–6 illustrate the confusion matrix for
the Landsat-8 image, ALOS-2 (backscatter values only), and ALOS-2-PCT, respectively. Tables 7 and 8
represent the confusion matrix for the Sentinel-1, and the Sentinel-1 PCT, respectively. The tables
show a remarkable improvement in both overall accuracy and kappa coefficient for the datasets that
include texture measures over the datasets of only backscattering values and Landsat 8. The Landsat
8 produced an overall accuracy and kappa coefficient of 41.1% and 0.25, respectively. Tables 5 and 6
depict that the overall accuracy and kappa coefficient of the ALOS-2-PCT is greater than the ALOS-2.
The overall accuracy increased from 53.0% to 69.7% and the kappa coefficient from 0.38 to 0.58 when
the texture measures of window size 13 × 13 were included. Moreover, the Sentinel-1 PCT shows
higher overall accuracy and kappa coefficient than the Sentinel-1. Tables 7 and 8 show an increase from
45.7% to 54.2% for the overall accuracy and an increment from 0.29 to 0.41 for the kappa coefficient
when the textures of window size 11 × 11 were included.

The confusion matrix includes the producer and user accuracies as well. The diagonal elements in
these tables depict the correctly classified pixels in each land cover class. The comparison shows that
the highest producer accuracy was obtained when the texture features were included (Tables 6 and 8).
It can be observed from Tables 4 and 5 that, although the producer accuracy increased for the bare
land, built-up 1 and built-up 2 classes when the SAR backscatter values in classification is used instead
of the Landsat 8, the producer accuracy decreased for the built-up 3 and vegetation classes from 27.1%
and 63.8% to 15.6% and 59.6%. However, when texture features are included, an improvement is
observed for all the land cover classes. Thus, in our study area, classification of land cover using SAR
backscatter and texture feature is superior in terms of accuracy than classification from the Landsat 8
and SAR backscatter only. Furthermore, the user accuracy increased in all classes except vegetation
for the ALOS-2-PCT. In case of the Sentinel-1, the user accuracy for the dataset including the texture
measures improved in all the classes comparing with the dataset of backscattering values only and
there was no improvement for the bare land and vegetation comparing with the Landsat 8 dataset.
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Table 4. Confusion matrix for SVM classification using the Landsat 8 image.

Land Cover Classes of Truth Data
User Accuracy (%)

Land Cover
Classification
from Satellite

Bare land Built-up 1 Built-up 2 Built-up 3 Vegetation Total

Bare land 15,044 159 728 1094 380 17,405 86.43
Built-up 1 6057 1130 9677 4807 367 22,038 5.13
Built-up 2 7598 952 8335 3866 473 21,224 39.27
Built-up 3 5556 1184 2132 3771 2148 14,791 25.50
Vegetation 1221 199 68 347 5943 7778 76.41

Total 35,476 3624 20,940 13,885 9311 83,236
Producer Accuracy (%) 42.41 31.18 39.80 27.16 63.83 41.12

Kappa Coefficient 0.2594

Table 5. Confusion matrix for SVM classification using the ALOS-2 (backscattering values only).

Land Cover Classes of Truth Data
User Accuracy (%)

Land Cover
Classification
from Satellite

Bare land Built-up 1 Built-up 2 Built-up 3 Vegetation Total

Bare land 105,005 239 8719 6705 3098 123,766 84.84
Built-up 1 3804 10,126 10,754 12,052 5648 42,384 23.89
Built-up 2 7603 1707 65,115 11,215 2772 88,412 73.65
Built-up 3 20,145 730 11,703 10,046 6604 49,228 20.41
Vegetation 40,800 4290 9026 24,242 26,833 105,191 25.51

Total 177,357 17,092 105,317 64,260 44,955 408,981

Producer Accuracy (%) 59.21 59.24 61.83 15.63 59.69 53.08

Kappa Coefficient 0.3840

Table 6. Confusion matrix for SVM classification using the ALOS-2-PCT.

Land Cover Classes of Truth Data
User Accuracy (%)

Land Cover
Classification
from Satellite

Bare land Built-up 1 Built-up 2 Built-up 3 Vegetation Total

Bare land 133,759 419 5886 10,340 3993 154,397 86.63
Built-up 1 409 11,285 11,886 4093 631 29,304 38.51
Built-up 2 1805 319 66,121 4656 570 73,471 90.00
Built-up 3 26,246 3265 20,458 42,277 7996 100,242 42.17
Vegetation 14,138 1804 966 2894 31,765 51,567 61.60

Total 177,357 17,092 105,317 64,260 44,955 408,981

Producer Accuracy (%) 75.42 66.03 62.78 65.79 70.66 69.73

Kappa Coefficient 0.5881

Table 7. Confusion matrix for SVM classification using the Sentinel-1 (backscattering values only).

Land Cover Classes of Truth Data
User Accuracy (%)

Land Cover
Classification
from Satellite

Bare land Built-up 1 Built-up 2 Built-up 3 Vegetation Total

Bare land 88,767 735 11,727 11,954 7738 120,921 73.41
Built-up 1 7713 8518 13,895 14,617 4472 49,215 17.31
Built-up 2 12,426 3142 62,049 13,321 2900 93,838 66.12
Built-up 3 1954 1155 915 2120 1910 8054 26.32
Vegetation 68,137 4235 18,317 25,604 29,546 145,839 20.26

Total 178,997 17,785 106,903 67,616 46,566 417,867

Producer Accuracy (%) 49.59 47.89 58.04 3.14 63.45 45.70

Kappa Coefficient 0.2963

Table 8. Confusion matrix for SVM classification using the Sentinel-1-PCT.

Land Cover Classes of Truth Data
User Accuracy (%)

Land Cover
Classification
from Satellite

Bare land Built-up 1 Built-up 2 Built-up 3 Vegetation Total

Bare land 85,695 97 5082 4392 4101 99,367 86.24
Built-up 1 2250 11,060 14,621 11,330 1130 40,391 27.38
Built-up 2 3772 431 61,405 6131 194 71,933 85.36
Built-up 3 61,738 4387 23,477 38,180 10,779 138,561 27.55
Vegetation 25,542 1810 2318 7583 30,362 67,615 44.90

Total 178,997 17,785 106,903 67,616 46,566 417,867

Producer Accuracy (%) 47.88 62.19 57.44 56.47 65.20 54.25

Kappa Coefficient 0.4122

Figure 13 shows a closer look of SVM classification for the ALOS-2, Sentinel-1, ALOS-2-PCT,
and Sentinel-1-PCT. The location of the area is shown in Figure 12. The improvement in the accuracy
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mentioned before can be appreciated visually in this figure. The most remarkable observation is
that when using texture measures of the SAR data for classification, the producer accuracy improved
significantly, therefore, the amount of noise and misclassified pixels for all classes decreased and the
classes become more uniform comparing to that using only SAR backscatter values or optical data.

Figure 13. A close-up of the SVM classification results from the ALOS-2 (a); Sentinel-1 (b); ALOS-2 PCT
(c); and Sentinel-1 PCT (d).

5. Conclusions

In this study, the GLCM texture measures were applied to improve the supervised classification of
SAR intensity images for urban areas. For this purpose, Tehran was selected as the study area because
of its rapid expansion, which has resulted in land cover changes and the appearance of new urban
regions. Due to the similarity of the spectral signatures of soil and roof material in built-up regions,
classification from multi-spectral optical images seems very difficult. Alternatively, SAR images may
be a better option because the backscattering depends on the geometrical features of the objects
within the recorded area. Dual-polarized data from L-band ALOS-2 (HH, HV) and C-band Sentinel-1
(VV, VH) were employed. In addition, the texture properties were calculated by applying a gray-level
co-occurrence matrix (GLCM). Thus, eight texture features were obtained for each intensity element.
Furthermore, a principal component analysis was applied to each set of texture measures, and the
first three components were selected based on the greatest covariance. Then, maximum likelihood
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and support vector machine algorithms were used for the three datasets: optical images and the SAR
intensity data without and with texture measures. The results of the supervised classification were
compared with the truth data obtained by visual inspection of the Landsat 8 image.

The supervised classification results with texture measures were found to be superior to the results
without texture in two main aspects: the highest accuracy and least noise. The support vector machine
for both the optical and SAR sensors produced a higher accuracy than the maximum likelihood.
Moreover, the classification of ALOS-2 with the SVM methodology using a window size of 13 × 13
obtained the highest overall accuracy. Besides, Sentinel-1 gained the best accuracy in window size
11 × 11 with SVM classification. Although the intermediate window sizes of 13 × 13 and 11 × 11
worked well in this study area, the best window size could change based on the different study areas
and truth data using for assessing the accuracy.
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Abstract: The deep convolution neural network (CNN), which has prominent advantages in feature
learning, can learn and extract features from data automatically. Existing polarimetric synthetic
aperture radar (PolSAR) image classification methods based on the CNN only consider the
polarization information of the image, instead of incorporating the image’s spatial information.
In this paper, a novel method based on a dual-branch deep convolution neural network (Dual-CNN)
is proposed to realize the classification of PolSAR images. The proposed method is built on two
deep CNNs: one is used to extract the polarization features from the 6-channel real matrix (6Ch)
which is derived from the complex coherency matrix. The other is utilized to extract the spatial
features of a Pauli RGB (Red Green Blue) image. These extracted features are first combined into
a fully connected layer sharing the polarization and spatial property. Then, the Softmax classifier
is employed to classify these features. The experiments are conducted on the Airborne Synthetic
Aperture Radar (AIRSAR) data of Flevoland and the results show that the classification accuracy
on 14 types of land cover is up to 98.56%. Such results are promising in comparison with other
state-of-the-art methods.

Keywords: polarimetric SAR images; deep convolution neural network; dual-branch convolution
neural network; land cover classification

1. Introduction

Polarimetric synthetic aperture radar (PolSAR) is a kind of high resolution imaging system,
which can work under all weather, day-and-night conditions. The PolSAR data can be used to
describe the scattering mechanism of the earth surface and provide rich information for terrain surface
classification with the complex coherency matrix [1], scattering matrix [2], etc. With the development of
the PolSAR system, PolSAR data such as Advanced Synthetic Aperture Radar (ASAR)/Environmental
Satellite (ENVI-SAT), Phased Array L-band Synthetic Aperture Radar (PALSAR)/Advanced Land
Observing Satellite (ALOS) and Radar Satllite-2 are becoming more and more available, thus PolSAR
image classification has become an important research topic [3].

It is a challenge to automatically extract and select features in PolSAR image classification.
Traditional methods generally extract features manually per the scattering characteristics of
the terrain surface. The features include radiation information [4], polarization information [5],
sub-aperture decomposition [6], decomposition information [7], etc. A single feature or combined
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features are then fed into an appropriate classifier for classification. Using features individually cannot
achieve satisfactory performance. Even if these features are combined then, the classification accuracy
will not be improved due to subjectiveness. In addition, the features that can be combined are limited,
and the computational complexity will grow with the increase of the amount of combined features.
Therefore, traditional methods cannot make full use of the rich features of the PolSAR data to improve
the classification accuracy.

In recent years, the theory of deep learning has set off a wave in the field of pattern recognition.
In 2006, Hinton et al. proposed an unsupervised greedy method based on Deep Belief Network (DBN),
which trains layer by layer, solving the vanishing gradient problem caused by deep training [8]. In 2011,
Wong et al. proposed the regularized deep Fisher mapping (RDFM) method per Fisher criterion to
enhance the feature separability by using the neural network algorithm, which can eliminate the
overfitting problem [9]. Then, many scholars put forward a variety of deep learning models based on
different application backgrounds, such as Deep Restricted Boltzmann (DRB) [10], Stacked Denoising
Autoencoders (SDA) [11], and the Deep Convolutional Neural Network (CNN) [12]. As a pillar of
deep learning, the CNN is one of the best models for solving the “perception” issues. For example,
the AlexNet model won first prize in the ImageNet ILSVRC image classification contest in 2012,
which has caused widespread concern in related fields [13]. To solve the problem of inefficient
utilization of features in PolSAR image processing, some scholars introduce the deep learning
framework to extract features of PolSAR images. Wang et al. converted the PolSAR image into the
scattering matrix, and then established multichannels for the CNN model [14]. Afterwards, the features
were extracted automatically and the images were classified by wide training. Experimental results
showed that the PolSAR image classification algorithm based on the CNN is higher than that of the
traditional algorithms using the same dataset. Zhou et al. converted the complex matrix of the PolSAR
image into a real matrix of six channels to suit the input of the neural network, and designed two,
cascaded, fully connected networks to map the features to a certain classifier [15]. This algorithm
further improves the accuracy of PolSAR image classification.

Although the deep learning framework provides an idea to solve the problem of low utilization
of rich features in PolSAR image classification, it still faces the following problems. First, SAR image
is a special kind of microwave image and the regions with the same gray level do not necessarily
have similar optical properties. Therefore, the existing methods for optical images based on the deep
learning framework may not be suitable for PolSAR image processing. Second, the existing PolSAR
image classification methods based on deep learning only consider the polarization features of the
image, while ignoring the spatial features.

To solve the above problems, this paper proposes a dual-branch deep convolution neural network
(Dual-CNN) method for PolSAR image classification. The proposed method is composed of two CNNs:
one is used to extract the polarization features of the real matrix of the six channels (6Ch-CNN) and
the other is used to extract the spatial features of the Pauli RGB image (PauliRGB-CNN). These two
kinds of features are fed into a fully connected layer to achieve mutual harmony, and then the Softmax
classifier is followed immediately to complete the classification work.

The remainder of this paper is structured as follows. Basics of the CNN are introduced in Section 2.
In Section 3, we present the architecture of the proposed method. Experiment results and discussions
are given in Section 4. In Section 5, the conclusion is made.

2. Basics of the CNN

A typical CNN is composed of an input layer, convolution layer, pooling layer and output layer.
The input layer receives the pixels from the image. The convolution layer utilizes the convolution
kernel to extract image features. The pooling layer is followed by the convolution layer, aiming at
reducing the pixels to be processed and formulating the abstract features. The output layer maps the
extracted features into classification vectors corresponding to the feature categories. The training of
the CNN has two processes: the Forward Propagation and the Backward Propagation.
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2.1. The Forward Propagation

The Forward Propagation (FP) is a mapping process where the output of the previous layer is
taken as the input of the current layer. To avoid the defects of the linear model, neurons of each layer
should be added with a nonlinear activation function in the mapping process. Since the first layer
only receives pixel values, there are no activation functions. From the second layer to the last layer,
nonlinear activation functions are employed. Thus, the output of each layer can be expressed as:

zl = Wl ∗ xl−1 + bl

al = σ(zl)

}
(1)

where l represents the lth layer, and ∗ means convolution operation. Wl , bl , and zl are the weights
matrix (for the convolution layer, it is the convolution kernel), the bias matrix and weighted input
of the lth layer respectively. σ is the nonlinear activation function. If l = 2, then x2−1 = x1 is the
image matrix whose elements are pixel values. If l > 2, then xl−1 is the feature maps matrix al−1,
which is extracted from the (l − 1)th layer i.e., xl−1 = al−1 = σ(zl−1). Suppose L is the output layer,
aL represents the final output vector.

2.2. The Backward Propagation

The Backward Propagation (BP) algorithm is a supervised learning method. It first selects a cost
function based on the output and the targeted values, then calculates the error vectors, and lastly
applies the Gradient Descent (GD) to update Wl and bl parameters. Specifically:

1. Selection of cost function. The quadratic function is the common cost function. However, it would
be time-consuming if the neurons make an obvious mistake during the training process.
Alternatively, we take Cross-Entropy (EL

0 ) as the cost function which is determined by Equation (2):

EL
0 = − 1

n

n

∑
i=1

N

∑
k=1

[
tL
k lnaL

k + (1 − tL
k )ln(1 − aL

k )
]

(2)

where n is the total number of training sets, and N is the number of neurons in the output Layer
corresponding to the N classes. tL

k is the targeted value corresponding to the kth neuron of the
output layer, and aL

k is the actual output value of the kth neuron of the output layer.
2. Calculation of error vectors. The error vector of the output layer L is defined by

δL =
∂EL

0
∂zL

(3)

where the symbolic ∂(·) represents the partial derivative operation. Back-propagate the error
vector δL. For each l = {L − 1, L − 2, ..., 2}, δl can be computed by the Chain Rule as:

δl = Wl+1δl+1 ◦ σ′(zl) (4)

where the symbolic ◦ is the Hadamard product (or Schur product) which denotes the element-wise
product of the two vectors.

3. Updates of weights and the bias matrix. The gradients of Wl and bl are denoted as ∂EL
0

∂Wl and ∂EL
0

∂bl

respectively. The partial derivative of EL
0 to Wl and bl can be calculated with Equations (1) and (3):

∂EL
0

∂Wl =
∂EL

0
∂al ◦ ∂al

∂Wl = δl ◦ xl−1

∂EL
0

∂bl =
∂EL

0
∂al ◦ ∂al

∂bl = δl

⎫⎪⎪⎬
⎪⎪⎭ (5)
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The change values of Wl and bl : ΔWl and Δbl , can be calculated respectively by

ΔWl = −η
∂EL

0
∂Wl

Δbl = −η
∂EL

0
∂bl

⎫⎪⎪⎬
⎪⎪⎭ (6)

where η represents the learning rate.

2.3. Feature Extraction

In the training process, the CNN is used to extract the features from the data based on the
convolution operation. The convolution operation includes a convolution layer followed immediately
by a pooling layer. The feature extraction process is shown in Figure 1. From bottom to top, a represents
the input data, b represents the feature data which is obtained by the convolution operation and the
ReLu (Rectified Linear Units) activation function, and c represents the feature data which is obtained
after the pooling process. Red and green patches represent different salient features, blue patches
represent the label of the data(or interesting target), the purple patch in a represents the convolution
kernel, and the purple patch in b represents the feature which is obtained from the purple patch in
a by the convolution operation and the ReLu activation function. More specifically, the CNN works
as follows.

Figure 1. The processing of feature extraction in deep convolution neural network (CNN).

First, the salient features of a are preserved, and then passed to a ReLu function for post processing.
Second, the non-salient features of a are filtered out by ReLu via setting the minus in the feature map
to 0. The derived features are b. Finally, more abstract features c of the input data will be obtained
based on the pooling layer. If features c are not abstract enough, a second convolution operation
is needed. The process is repeated until the most representative features are obtained. This results
in deepening the layers of the CNN. In the whole process, the data-label of a may be filtered out,
but its main neighborhood features can be preserved for judging a-label. In addition, it is worth
noting that there is no clear conclusion how many layers of convolution operations are appropriate.
Thus, the visual convolution operation is needed.
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3. The Proposed Method

The proposed method consists of two frameworks: PolSAR data pre-processing and Dual-CNN
model design. As shown in Figure 2, the Dual-CNN includes the 6Ch-CNN and PauliRGB-CNN.
The polarization features and the spatial features are generated from the pre-processed data by the
6Ch-CNN and PauliRGB-CNN; then, these features are combined by a fully connected layer. In this
paper, the above combined features are named as P-S features. Finally, the P-S features are classified by
the Softmax classifiers.

Figure 2. The main procedures of the polarimetric synthetic aperture radar (PolSAR) images
classification based on the dual-branch deep convolution neural network (Dual-CNN) model.

3.1. PolSAR Data Pre-Processing

Since the obtained PolSAR data contain the complex coherent matrix, they cannot be directly
fed into the Dual-CNN model and a pre-processing is required. The pre-processing of the PolSAR
data contains three steps: creating a 6Ch to allow the input and representation of polarimetric data;
generating a Pauli RGB image to obtain the spatial feature; patching the images with fixed size to
adapt to the CNN.

3.1.1. Creating 6Ch to Represent the Polarimetric Data

Under the multi-look and reciprocity assumption, the single station PolSAR can be represented
by the 3 × 3 complex coherent matrix T which is symmetrical. To adapt the input format of the
convolution neural network, it is necessary to convert the data into a real matrix. We create a 6Ch to
represent the polarimetric data, and each channel is obtained by Equation (7):

A =10ln(SPAN)

B =T22/SPAN

C =T33/SPAN

D =|T12|/
√

T11T22

E =|T13|/
√

T11T33

F =|T23|/
√

T11T33

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7)

where T11, T22, T33 represent the diagonal elements of the matrix T and they are real numbers
while T12, T13, T23 represent complex elements. A is the total scattering power in decibels,
here SPAN = T11 + T22 + T33 ; B and C are normalized power of T22 and T33; D, E and F are the
relative correlation coefficients. Except A, the remaining five parameters are normalized to [0, 1].
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Thus, the PolSAR data are converted into a 6Ch to form a 6 × m × n dataset, where 6 represents the
total number of the channels, i.e., A, B, C, D, E and F; m and n represent the number of rows and
columns in a single channel, respectively.

3.1.2. Generating Pauli RGB Image to Obtain the Spatial Feature

The Pauli decomposition of the scattering matrix S is often employed to represent all the
polarimetric information in a single PolSAR image, and its form is:

S =

[
SHH SHV
SVH SVV

]
= aSa + bSb + cSc + dSd (8)

where Sa, Sb, Sc and Sd constitute a set of orthogonal Pauli bases, and a, b, c and d are coefficients. Sa is
the odd scattering mechanism, representing the terrain scattering body; Sb is the dihedral scattering
mechanism rotating 0◦ around the axis, and its echo polarization and incident polarization are on the
mirror symmetry; Sc is the dihedral scattering mechanism rotating 45◦ around the axis, and its echo
polarization and incident polarization are orthogonal; Sd is the antisymmetric component. Since the
corresponding scattering mechanism does not exist in the nature, the weighted coefficient d is 0
generally. After the Pauli decomposition, the Pauli RGB image is synthetized by a pseudo-color process
using the energy corresponding to a, b and c, as is described in Equation (9):

|a|2 → Blue, |b|2 → Red, |c|2 → Green (9)

The synthesised Pauli RGB image contains rich contour, texture, and color features, which is
in greet agreement with those of real ground scenes. This enables recognition by the naked eye.
In addition, the Pauli RGB image can reduce the interference of other data on the feature extraction,
improving algorithm robustness. Furthermore, the CNN is good at dealing with color images, so the
Pauli RGB image is suitable. For these reasons, many classification algorithms use the Pauli RGB image
as their input [16,17], and so does our method.

3.1.3. Patching the Images with Fixed Size

It is required that the CNN processes the data with a fixed size. However, different targets usually
have different sizes, so it is difficult to use a generalized size for all target slices. Thus, some researchers
propose to process the patches via stretching or filling the bounding of the image with 0 pixels.
Although these methods can solve this problem to a certain extent, they will bring some unexpected
errors. For example, if the boundary of small objects is filled with 0, the detection accuracy of the targets
in complex environments will be limited, which thereby influences its feature learning. The details of
our patching method are as follows.

First, based on the sliding window with a fixed size, we traverse the entire dataset to obtain a set
of fixed size slices for each channel of the 6Ch and Pauli RGB image, which is shown in Figure 3.

By this way, the maximum number of slices for each channel can be obtained by:

n = (w − s + i)(h − s + i)/i2 (10)

where w and h are the width and height of each channel data respectively, s is the size of the sliding
window, and i is the span while sliding. It should be noted that s and i are relevant to the size of the
target. If the target is small (e.g., several pixels), then i is minor and s should be carefully selected.
The selection of both parameters will be detailed in the experiment section.

Second, we assign a label for each slice. Specifically, each pixel in ground-truth is assigned a label
per the category it belongs to, and then we choose the location of the center pixel of the slice as the
index to search the category label in the ground-truth. The selected label is finally assigned for the slice.
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Figure 3. The generation of the fixed-size slices based on the center pixel.

In this manner, all samples are obtained with labels attached, and we can ensure that the CNN
can process the small target in the complex environment.

Using a sliding window can get enough training sets, but the samples will be more or less repeated.
Therefore, before feeding the data into the CNN, we need to reduce the data redundancy by principle
component analysis (PCA).

3.2. Feature Extraction and Classification Based on the Dual-CNN Model

The Dual-CNN model consists of two CNNs, i.e., the 6Ch-CNN and PauliRGB-CNN.
The 6Ch-CNN contains two convolution layers (Conv61, Conv62), two pooling layers, and two
fully connected layers (FC6_200, FC6_84). It is used to acquire the polarization data feature.
The PauliRGB-CNN also includes two convolution layers (Conv31, Conv32), two pooling layers
and two fully connected layers (FC3_200, FC3_84), and it is applied to obtain the spatial features.
More specifically, as shown in Figure 2, “Conv61, 500@3×3” represents the first 6-channel convolution
layer depending upon the 3×3 convolution kernel and generates 500 feature maps. “FC6_200”
represents the 6-channel fully connected layer consisting of 200 neurons. Notice that the ReLu is
used as the activation function for all the hidden layers and the 2×2 max-pooling is used for the
pooling layers. PauliRGB-CNN is constructed as done in the 6Ch-CNN.

In the training process, the FP and BP are two vital procedures for updating the network.
By training the network, the 6Ch-CNN can obtain the features with the property of polarization,
while PauliRGB-CNN obtains the features which contain spatial characteristics. Then, the Softmax
function is employed to implement the classification.

3.2.1. The Forward Propagation of the Dual-CNN Model

In the 6Ch-CNN, the input polarization data are a 6Ch whose size is fixed. The polarization
feature F1(pn) can be obtained by Equation (1) and pooling. For the PauliRGB-CNN, the spatial feature
F2(sn) can be obtained in the same manner, and the input Pauli RGB image is a fixed size slice with
three channels. Next, two kinds of data are input into the 6Ch-CNN and PauliRGB-CNN separately to
obtain the respective features. Then, the obtained two kinds of features are fed into a fully connected
layer to combine with each other, and the P-S features F(n) can be represented as:

F(n) = ∂[W1 ∗ (F1(pn)� F2(sn)) + b1] (11)
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where W1 and b1 represent the weights and bias matrix in the last fully connected layer, and the joint
operator � stacking the former and the latter items to be input of the last fully connected layer. At last,
F(n) is put into the Softmax to produce a probability vector for each class:

P(n) =
1

∑N
k=1 eWk F(n)+bk

⎡
⎢⎢⎢⎢⎢⎣

eW1F(n)+b1

eW2F(n)+b2

...

eWN F(n)+bN

⎤
⎥⎥⎥⎥⎥⎦ (12)

where N is the total number of the classes. P(n)
max is the max probability in the N-dimensional vector

P(n), and it is recognized as the predicted result.

3.2.2. The Backward Propagation of the Dual-CNN Model

The cost function is established using the ground-truth after obtaining the output category through
the FP. In our method, the Cross Entropy is selected as the cost function. In addition, the weights and
bias can be obtained on the given training set according to Equations (2)–(4), and (6) by the BP process.

In order to improve the performance of BP, the Adam optimization algorithm is used in the
process of batching gradient descent. The weights in each layer are initialized by a group of values
which are subject to the Gaussian random distribution in a certain interval given in Equation (13):

[
−4

√
6

fin + fout
, 4

√
6

fin + fout

]
(13)

where fin and fout are the numbers of the input and the output feature maps at each layer respectively.

4. Experiment

To verify the performance of the proposed Dual-CNN model, we conduct an experiment on the
Flevoland full PolSAR data. The experiment contains the following three aspects:

1. Comparing our method with the single-branch network, i.e., the 6Ch-CNN and PauliRGB-CNN model.
2. Comparing our method with some classical algorithms and some recently proposed classification

algorithms with the same dataset.
3. Discussing how the size of the slices influences the performance of our method, and then

conducting research on the visual representation of the features.

4.1. Flevoland Data

Flevoland full PolSAR data are farmland images at L wave band and were acquired by the
AIRSAR Aircraft platform in 16 August 1989. It contains HH, HV, VH and VV (H and V represent
horizontal polarization and vertical polarization respectively) channels of polarimetric information.
Each channel has 750 × 1024 pixels. The resolution of the image is 6.6 m in the range direction and
12.1 m in the azimuth direction. Since the complex coherent matrix T can describe the scattering
mechanism, we transform the 4-channel original data to T. According to Section 3.1, we convert the T
in the 6Ch and 4-channel original data to the Pauli RGB image. Figure 4a depicts a Pauli RGB image
which includes crops, lake and lands, etc. In this experiment, we first choose 14 types of land cover
classes to complete the classification. Then we use the ArcGIS to obtain the ground-truth image of
Flevoland according to the Pauli RGB image and google earth. The ground-truth image of Flevoland is
shown in Figure 4b.
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Figure 4. (a) Pauli RGB image of Flevoland PolSAR data; (b) Ground-truth image of Flevoland.

When we obtain the 6Ch and Pauli RGB image, we can acquire slices as illustrated in Section 3.1.3.
In Equation (10), we set s to 15 and i to 5. Then, we obtain (750 − 15 + 5)× (1024 − 15 + 5)/52 slices
with the size of 15 × 15. Due to the fact that the images are converted into the 6Ch and 3-channel Pauli
RGB image, the numbers of the slices of two branches are 6 × (750 − 15 + 5)× (1024 − 15 + 5)/52 and
3× (750− 15+ 5)× (1024− 15+ 5)/52 respectively. Subsequently, we label the slices per ground-truth.
Finally, we divide the slices into two parts, one is the training set and the other is the testing set.
Usually, we chose 75% slices as the training set and the remaining slices as the testing set. It is worth
noting that the slices in the same location of the 6Ch and Pauli RGB image should be assigned to an
individual part. Table 1 shows the terrain training set and the testing set in the 6Ch and Pauli RGB
image; it only includes 14 types of land cover on the ground-truth image.

Table 1. The detailed information of the training set and testing set on 14 types of land cover classes on
Flevoland PolSAR data.

Label Type Color
Train Test

6Ch PauliRGB 6Ch PauliRGB

1 Stembeans 5082 5082 1693 1693
2 Beets 6039 6039 2012 2012
3 Barley 5106 5106 1701 1701
4 Peas 5530 5530 1843 1843
5 Potatoes 9180 9180 3060 3060
6 Wheat2 7343 7343 2447 2447
7 Forest 10,093 10,093 3364 3364
8 Bare soil 3299 3299 4099 4099
9 Wheat3 12,663 12,663 4221 4221

10 Lucerne 6872 6872 2290 2290
11 Grasses 4200 4200 1399 1399
12 Water 14,739 14,739 4913 4913
13 Wheat 12,361 12,361 4120 4120
14 Rapeseed 9013 9013 2838 2838

Total – – 111,520 111,520 37,000 37,000

4.2. Comparing with One-CNN

To verify the effectiveness of the Dual-CNN model, we compare the proposed method with the
6Ch-CNN and PauliRGB-CNN. We apply a Softmax classifier after their own respective last layers.
In this way, we can train and test the networks with the same parameters.

The training process of our method is performed iteratively 100 times on NVIDIA’s GeForce GTX 1070
with 8GB of GPU memory, and 1000 training samples are used in every epoch. Figures 5a, 6a and 7a show
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the loss curve of the 6Ch-CNN, PauliRGB-CNN and Dual-CNN, where the horizontal axis represents
the number of epochs and the vertical axis denotes the loss value. Figures 5b, 6b and 7b show the
accuracy curve of the 6Ch-CNN, PauliRGB-CNN and Dual-CNN, where the horizontal axis represents
the number of epochs and the vertical axis denotes the classification accuracy. In addition, the blue
line depicts the training curve and the green line indicates the testing curve.

Figure 5. (a) Loss curve of the 6Ch-CNN; (b) accuracy curve of the 6Ch-CNN.

Figure 6. (a) Loss curve of the PauliRGB-CNN; (b) accuracy curve of the PauliRGB-CNN.

Figure 7. (a) Loss curve of the Dual-CNN; (b) accuracy curve of the Dual-CNN.
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As shown in Figure 5, the loss curve of the 6Ch-CNN is not very stable, and its accuracy curve
has a large fluctuation as shown in Figure 5b. It is due to the fact that the 6Ch-CNN cannot obtain
the general features of the same class in complicated polarimetric data. Moreover, compared with the
6Ch-CNN, although the loss curve and accuracy curve are stable in PauliRGB-CNN, the 3-channel
data of the Pauli RGB image are scarce. This fact causes the accuracy rate of the PauliRGB-CNN to be
below 95%.

However, in Figure 7b, it can be found that the training accuracy of the Dual-CNN reaches
100%. The testing accuracy is becoming coincident, keeping at 98%. The training loss and the testing
loss are stable except for the 45th, 70th and 75th epoch. It proves that the polarimetric features and
spatial features are well combined. In Figure 7a, the loss value of the Dual-CNN model decreases,
beginning with a minor value 2.25, in which case the training accuracy is 50%, cutting down the training
time and the number of epochs. That proved the validity of Equation (13). We draw the conclusion in
terms of the accuracy that although there are some anomalies in the training set, the Dual-CNN model
is not impacted.

To clarify the result, we list the accuracy rate of the three different methods in Table 2. For the
classification of 14 types of land cover classes, the lowest accuracy rate of the Dual-CNN model is
still above 95%. Especially, the accuracies of Wheat2 (Label: 6) and Bare soil (Label: 8) reach 100%.
However, the average accuracies of the 6Ch-CNN and PauliRGB-CNN are 5.71% and 4.45% lower
than the Dual-CNN model.

Table 2. The detailed classification accuracy of the Dual-CNN, 6Ch-CNN, and PauliRGB-CNN on
Flevoland PolSAR data.

Label Dual-CNN (%) 6Ch-CNN (%) PauliRGB-CNN (%)

1 97.77 96.04 95.64
2 98.21 90.85 90.70
3 97.88 93.94 94.17
4 96.72 91.91 93.67
5 95.96 88.56 92.57
6 100 95.05 94.26
7 99.94 97.08 95.97
8 100 95.54 93.45
9 95.95 87.84 90.48

10 99.51 92.70 94.07
11 98.85 95.40 95.42
12 99.92 91.34 96.74
13 99.85 93.20 93.48
14 99.39 90.45 95.53

overall 98.56 92.85 94.01

For the convenience of comparison, the classified results are labelled using the same color as the
ground-truth. The results of the ground-truth, Dual-CNN, 6Ch-CNN and PauliRGB-CNN are shown
in Figure 8a–d, respectively.

Analyzing Figure 8c,d, we find that the 6Ch-CNN and PauliRGB-CNN have obvious faults.
The 6Ch-CNN tends to have more scatter errors while PauliRGB-CNN tends to have block errors.
However, the Dual-CNN only has a few scatter errors and almost no block errors, which is better than
the single branch way. It also demonstrates that the combination of the 6Ch-CNN and PauliRGB-CNN
with a fully connected layer is effective for classification.
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Figure 8. (a–d) represent the classification results of the ground-truth, Dual-CNN, 6Ch-CNN,
and PauliRGB-CNN, respectively.

4.3. Comparing with Other Methods

In this section, we compare our method with some classical algorithms and some newly
published methods on the same dataset. The classical algorithms include Maximum Likelihood
[18], Support Vector Machine (SVM) [19], and Minimum Distance [20], which are all performed on the
ENVI remote sensing image processing platform [21,22]. Lee et al. [23], Zhou et al. [15] and Wang et al.
[24] are newly published methods; the method of Lee et al. is an unsupervised algorithm, and those of
Zhou et al. and Wang et al. are supervised algorithms.

Table 3 shows the results of the classification. We performed our experiment on both 11 and
14 types of land cover classes. For classical algorithms, SVM has the highest accuracy, but it is still
lower than our method. For these newly published methods, supervised algorithms are better than
unsupervised ones; the method of Zhou et al. is better than others’ supervised algorithms for 11 classes
because of using the CNN. However, our method is still the best. In addition, we find that the accuracy
decreases when the number of classes increases.

Table 3. Comparison of results with other methods.

Types Names Number of Classes Accuracy (%)

Classical
Maximum Likelihood 14 64.26

SVM 14 71.29
Minimum Distance 14 54.66

Newly Published
Lee et al. [23] 11 81.63

Zhou et al. [15] 11 93.38
Wang et al. [24] 11 93.24

Proposed Dual-CNN 14 98.56
11 98.93

4.4. Different Fixed Size Slices and Visualization of Feature Maps

4.4.1. The Effect of Slicing Size on Classification Accuracy

The category of the center pixel in the slice served as the label. In order to evaluate how the
slice size influences the performance of the algorithm, we performed the experiment with slices
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of 11 × 11, 15 × 15 and 19 × 19, which are subject to the span equalling to 5. The results of the
classification are shown in Figures 9 and 10.

Figure 9. The classification accuracy of the Dual-CNN with the slices of different sizes.

Figure 10. (a,c) represent the classification results of the Dual-CNN with slices of 11 × 11 and 19 × 19
respectively; (b,d) display the false results in (a,c).

As shown in Figure 9, the experiment which uses the slices of 11 × 11 and 19 × 19 has lower
classification accuracy than that of using slices of 15 × 15. Therefore, the slices of 15 × 15 are
appropriate for Flevoland full PolSAR data. As is shown in Figure 10a, for the slices of 11 × 11,
the Dual-CNN does not perform well for large area targets such as wheat (Wheat: brown; Wheat3:
purple); and as is shown in Figure 10b, for the slices of 19 × 19, the Dual-CNN does not perform
well for small area targets such as stem bean, peas and so on. However, for the slices of 15 × 15,
as shown in Figure 8b, the Dual-CNN conducted on large or small area targets such as wheat or stem
beans and peas is better than that of the other two methods. The slice size affects the Dual-CNN
classification accuracy.

If the size of the slice is too small, then the Dual-CNN learns inadequate feature information.
Slices of large area targets, such as the wheat category, will contain the reduplicated information.
Therefore, the features of large area targets learned by the Dual-CNN are not only small in number but
also single, which leads to the low classification accuracy. As the size of slices is enlarged, the learning
ability of the feature enhances, and the classification accuracy is improved. However, if the size of
slices is too large, it will contain the extra features of other objects, which would cause the features of
the small area targets to be submerged by other surrounding features. Thus, the Dual-CNN can extract
many useless features of small area targets, and the accuracy of classification will decrease.
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4.4.2. The Visualization of Feature Maps

To better represent the Dual-CNN model, the 6Ch-CNN and the PauliRGB-CNN are visualized in
this paper. As is shown in Figure 11, the visualization processes of two branches are located at the
convolution layer and max-pooling layer. The visualization contents include input data visualization,
feature extraction visualization, and convolution kernel visualization.

Figure 11. The location of the visualization process.

For input data visualization, two Lucerne slices of 15 × 15, which come from the 6Ch and
Pauli RGB image in the same location, are selected as the samples to show the visualization process.
Two slices are named as the 6Ch-input and PauliRGB-input respectively. Figures 12–14 represent
the visualization process of the 6Ch-CNN, and Figures 15–17 depict the visualization process of the
PauliRGB-CNN. Figures 12 and 15 show the visualized images of 6Ch-input and PauliRGB-input;
where Figures 12a and 15a denote the mixed visualized images of the 6Ch-input and PaulRGB-input
respectively, Figures 12b and 15b denote their unfolded visualized images in an individual channel.
Since the data information of the 6Ch-input and PauliRGB-input are significantly different, it is difficult
to infer whether they represent the same object from the visualized images. As shown in Figure 12,
both the mixed and unfolded visualized images have scatter pixels for the 6Ch-input. This reflects
the various scattering phenomena of the polarized waves. In Figure 15, for the PauliRGB-input,
some contours can be observed from the mixed and unfolded visualized images. This indicates
the spatial characteristics of the terrain surface. These are the most salient features that the CNN
requires, which is beneficial for enhancing the classification accuracy. After this visualization process,
the 6Ch-input and the PauliRGB-input are put into the trained Dual-CNN model.

(a) (b)

Figure 12. (a) Mixed visualized image of the 6Ch-input; (b) Unfolded visualized images of the 6Ch-input.
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As shown in Figure 1, the feature extraction process is performed with three operations,
i.e., convoluting, ReLu processing, and pooling processing. Figure 13 depicts the visualized image of
the 6Ch-input during extracting features where Figure 13a–c denote the visualization of the convolution
operation, ReLu operation and max-pooling operation of the first round of feature extraction; and
Figure 13d–f represent the visualization of the second round of feature extraction. As is shown
in Figure 13a, the 15 × 15 6Ch-input serves as the input of the 6Ch-CNN. Then, these data are
processed by the 3 × 3 convolution kernel in the first layer and are converted into a 14 × 14 feature
map as the output. Figure 13 shows the derived 12 visualized images. Compared with Figure 12b,
the salient polarization features are preserved since 0 elements (light orange) in the 6Ch-con1 are
increased. Figure 13b illustrates the feature map of the 6Ch-con1-reLu1 after ReLu operation; thus,
most of the data are set to 0 (blue). By the max-pooling operation, the visualized feature map of
6Ch-con1-reLu1-maxpooling1 after the first round of feature extraction can be obtained, as shown
in Figure 13c. Although the polarization features are salient, there exists a lot of redundancy, so a
second round of feature extraction is recommended. The processes are shown in Figure 13d–f. Figure
13f shows the final visualized feature map, where the red squares and the orange squares are the basic
features of the input slices.

The visualized feature maps of the convolution kernels in the two rounds of feature extraction are
shown in Figure 14a,b. From the colorful block in Figure 14, it can be found that the elements of each
convolution kernel are not all zero, which indicates that the Dual-CNN has been well trained and the
obtained features are obvious.

Figures 16 and 17 show the visualization of feature extraction and convolution kernels for the
PauliRGB-input. It illustrates that the PauliRGB-input requires a second round of feature extraction to
extract more abstract spatial features as done in the 6Ch-input.

(a) (b)

(c) (d)

(e) (f)

Figure 13. Visualized feature maps of the 6Ch-input. (a,c,e) denote the visualized feature maps of
the convolution operation, ReLu operation and max-pooling operation in the first round of feature
extraction; and (b,d,f) denote the visualization of the second round of feature extraction.
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(a) (b)

Figure 14. Visualization of the convolution kernel of the 6Ch-CNN: (a) visualization of the convolution
kernel in the first round of feature extraction; and (b) visualization of the convolution kernel in the
second round of feature extraction.

(a) (b)

Figure 15. (a) Mixed visualized image of the PauliRGB-input; (b) Unfolded visualized images of the
PauliRGB-input.

(a) (b)

(c) (d)

(e) (f)

Figure 16. Visualized feature maps of the PauliRGB-input. (a,c,e) denote the visualized feature maps
of the convolution operation, ReLu operation and max-pooling operation in the first round of feature
extraction; (b,d,f) denote the visualization in the second round of feature extraction.
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(a) (b)

Figure 17. Visualization of the convolution kernel of the PauliRGB-CNN: (a) visualization of the
convolution kernel in the first round of feature extraction; and (b) visualization of the convolution
kernel in the second round of feature extraction.

Note that the features extracted by the 6Ch-CNN and PauliRGB-CNN have polarimetric and
spatial characteristics. Visualization can help to check whether the Dual-CNN model is well trained
and to illustrate how to extract the P-S features.

5. Conclusions

By exploring the unique characteristics of the PolSAR data, we have presented a new method that
achieves excellent accuracy in PolSAR classification. The main contributions of this work lie in the
following three aspects. First, we proposed a method of pre-processing the PolSAR data to facilitate
subsequent work. Second, a novel CNN framework which consists of two CNNs was presented to
extract and fuse the polarization feature and spatial feature of the pre-processed data. Last but not
least, visualization of the CNN was applied to help us tune the parameters of the model. We carried
out the experiments on 14 types of land cover classes, and the results show that our model is superior
to the classical classification methods such as SVM, and Maximum Likelihood. Compared with a single
CNN, our method still has higher accuracy due to its P-S features.
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Abstract: Circularly polarized synthetic aperture radar (CP-SAR) is known to be insensitive to
polarization mismatch losses caused by the Faraday rotation effect and antenna misalignment.
Additionally, the dual-circular polarimetric (DCP) mode has proven to have more polarimetric
information than that of the corresponding mode of linear polarization, i.e., the dual-linear
polarimetric (DLP) mode. Owing to these benefits, this paper investigates the feasibility of CP-SAR
for rice monitoring. A ground-based CP-radar system was exploited, and C-band anechoic chamber
data of a self-cultivated Japanese rice paddy were acquired from germination to ripening stages.
Temporal variations of polarimetric observables derived from full-circular polarimetric (FCP) and
DCP as well as synthetically generated DLP data are analyzed and assessed with regard to their
effectiveness in phenology retrieval. Among different observations, the H/ᾱ plane and triangle plots
obtained by three scattering components (surface, double-bounce, and volume scattering) for both
the FCP and DCP modes are confirmed to have reasonable capability in discriminating the relevant
intervals of rice growth.

Keywords: radar polarimetry; synthetic aperture radar (SAR); dual circular polarimetry (DCP);
compact polarimetry; rice phenology

1. Introduction

Conventional polarimetric synthetic aperture radar (SAR) that adopts linearly polarized (LP)
antennas on the transmitter and receiver, aptly named as LP-SAR, has already proven its powerful
classification ability. Besides, an important performance consideration involves the technical trade-off
between the full-linear polarimetric (FLP) and dual-linear polarimetric (DLP) modes. The FLP
mode provides complete polarimetric information which enhances the target parameter retrieval
and polarimetric discrimination. However, inherent limitations such as reduction of swath width,
an increase of system complexity, data rate, and power consumption will be compromised.
DLP systems, on the other hand, overcome these limiting factors but they do not afford complete
information regarding the full polarization state of the targets. For example, it results in a less
accurate alpha angle parameter [1,2] and does not give the possibility to perform three-component
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(surface, double-bounce, and volume scattering) decomposition. In recent years, to circumvent these
drawbacks, the idea to use circular polarization or tilted linear polarization in transmission has
emerged, so-called compact polarimetric SAR [3–5]. Three modes have been discussed, i.e., the π/4
mode [4], the dual-circular polarimetric (DCP) mode [5], and the circular transmit while linear receive
(CTLR) mode [3]. These different polarimetric SAR modes are categorized as shown in Figure 1.

More recently, a SAR campaign that utilizes circular polarization in both transmission and
reception has been proposed (end-to-end circular polarization) and studied for spaceborne and airborne
missions [6]. Although this unique circularly polarized SAR (CP-SAR) system requires almost ideal
CP-antennas (i.e., 0 dB of the axial ratio (AR)), which may often be difficult to satisfy, recent advances
in antenna technologies can acceptably fulfill this requirement (e.g., AR of 1.1 dB is achieved for
RISAT-1) [7]. It is also worth noting that the following advantages of CP-SAR usually outweigh this
difficulty in antenna requirement. Circular polarization is already known to be less affected by the
Faraday rotation which is a significant problem, especially for lower frequency bands (i.e., L and
P) [8]. To be specific, the Faraday rotation effect in the ionosphere does not alter the transmitted
polarization which is not the case in linear polarization [9]. Less effect of the interference between
direct and reflected signals due to multipath propagation is also expected [6]. In addition, being one
of the compact polarimetric modes, the DCP mode of CP-SAR yields more abundant polarimetric
information than those of the DLP mode. Furthermore, Guo et al. and Zhang et al. highlighted that
the DCP mode is the most suitable configuration among compact polarimetric modes to apply the
entoropy-alpha (H/ᾱ) decomposition when this decomposition is performed on a 2 × 2 coherency
matrix [10,11]. Despite its usefulness, however, CP-SAR has not been practically exploited in Earth
observation, and many studies on compact polarimetry reconstruct the compact data by converting
from LP-SAR data (i.e., simulated circular polarization data).

Among polarimetric SAR practices, rice monitoring has been one of the important applications
since rice is a staple food for almost half the world’s population. A less-explored topic in this field is
the rice phenology retrieval from the time-series SAR data. This information is of great importance in
planning of cultivation practices, yielding estimation and water management. Various analyses of rice
monitoring from polarimetric SAR data have been addressed for this purpose [12–16]. Although the
classical LP-SAR is the most commonly utilized tool for this task, current studies have been focusing
on the compact SAR modes because of their advantages mentioned above [12,14].

Figure 1. Categorization of various polarimetric synthetic aperture radar (SAR) modes.
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Due to the growing interest in the use of circular polarization, we investigate, in this paper,
the feasibility of the FCP and DCP modes of CP-SAR and its performance on rice phenology
monitoring. For this purpose, a ground-based CP-radar system was adopted, and the time-series
C-band backscattering data of a Japanese rice paddy (Oryza sativa L.) were analyzed. The rice samples
were repeatedly observed within an anechoic chamber from germination to ripening stages. To analyze
the radar backscatter as a function of growth stages, different polarimetric signatures and target
decomposition techniques are exploited for both FCP and DCP data. In addition, H/ᾱ decomposition
for the DLP mode is also examined for comparison purposes.

The paper is organized as follows: the polarimetric decomposition and analysis methodologies for
the FCP, DCP, and DLP modes are demonstrated in the next section. Section 3 provides an explanation
of the employed ground-based CP-radar system and its polarimetric calibration, the phenological
description of the measured rice samples, and the methodology used in data analysis. The experimental
results and discussion are given in Section 4. The last section concludes the paper.

2. Methodology

Since compact polarimetric SAR systems have been gaining increasing attention, the aim of this
study is to assess the performance of the DCP mode by comparing its information content with that
of the FCP mode in the case of rice backscattering. For this task, it is required to derive and evaluate
the compact versions of eigenvalue/eigenvector-based and model-based target decompositions.
The relevant scattering decomposition methods for both the FCP and DCP modes are discussed
in the following. The DLP version of eigenvalue/eigenvector-based decomposition is also explained
to compare the CP-SAR performance with LP-SAR.

2.1. Target Decomposition for FCP Data

Among a substantial number of incoherent decomposition techniques, we chose Cloude–Pottier
eigenvector-based H/ᾱ decomposition (hereafter referred to as H/ᾱ decomposition) [17] and
four-component model-based decomposition for the FCP mode [18,19]. Applying the H/ᾱ decomposition,
the polarimetric entropy H and alpha angle α can be deduced, where H represents scattering
randomness, and the α is associated to the corresponding scattering mechanism represented by
each eigenvector [17]. The four-component decomposition technique yields four elementary scattering
mechanisms, i.e., surface, double-bounce (or dihedral), volume (or multiple), and helix scattering.
This methodology was first proposed by Yamaguchi et al. [18], and we adopt herein the improved
four-component decomposition proposed by Singh et al. [19] which fully accounts for coherency
matrix coefficients.

To apply the aforementioned decomposition theories to FCP data, linear to circular polarization
basis transformation is used to obtain first the three-dimensional (3D) Pauli scattering vector in circular
basis, given as:

kp =
1√
2

⎡
⎢⎣ −j2SLR

(SLL − SRR)

−j (SLL − SRR)

⎤
⎥⎦ , (1)

where Sxy are the elements of the scattering matrix with x and y denoting the received and transmitted
waves respectively, and subscripts L and R represent left-handed circular polarization (LHCP) and
right-handed circular polarization (RHCP) respectively. The averaged coherency matrix can then be
obtained via the Pauli scattering vector in (1) as:

〈[TFCP]〉 =
〈

kp · k†
p

〉
, (2)

where the superscript † indicates conjugate transpose, and <·> indicates the ensemble averaging
operation. This tailored coherency matrix for circular polarization basis makes it possible to adopt
decomposition techniques in a similar fashion to linear polarization basis. Under ideal conditions
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where there are no adverse effects, the information content of FCP and FLP data are identical because
each can be transformed to the other via the unitary matrix.

2.2. Target Decomposition for DCP Data

Recently, several target decomposition theories for compact polarimetric SAR data have also been
proposed. There are three main groups, which differ in the type of the symmetry assumptions that they
made about the observed media and/or the matrix used in decomposition: decomposition deduced
by the Stokes vector [20]; 2 × 2 coherency matrix [10]; and 3 × 3 pseudo-coherency matrix [21]. Here,
we note that the decomposition deduced from the 3 × 3 pseudo matrix was not adopted in this study
since the assumed relationship between the correlation coefficient and cross-polarization ratio would
not always be valid [21]. Thus, we employed two decomposition approaches, one based on the Stokes
vector and the other on the 2 × 2 coherency matrix, which carry identical information [20]. The H/ᾱ

decomposition and the three-component decomposition are explained below.

2.2.1. H/ᾱ Decomposition

We use the unexpanded 2 × 2 coherency matrix to implement H/ᾱ decomposition. With this
approach, two eigenvectors corresponding to the first and second dominant eigenvalues can be
extracted. The two-dimensional (2D) Pauli vector for circular polarization and the LHCP transmit case
is expressed as [10]:

kDCP =

[
SLL
SRL

]
. (3)

The coherency matrix is obtained via the Pauli vector in (3) as:

〈[TDCP]〉 =
〈
kDCP · k†

DCP

〉
= [ u1 u2 ]

[
λ1 0
0 λ2

]
[ u1 u2 ]†.

(4)

Here, λi are the eigenvalues and ui are the orthogonal eigenvectors of the unitary matrix

ui = ejφi [ cos αiejδi sin αi ]T, (5)

where superscript T denotes the transpose operation. The H and mean α (α) are then given by:

H =
2

∑
i=1

Pi(−log2Pi), (6)

α =
2

∑
i=1

Piαi, (7)

where scattering probabilities are:

Pi =
λi

λ1 + λ2
(i = 1, 2). (8)

The ᾱ values for the surface, dipole, and double-bounce scattering mechanisms can be calculated
from (4), (5), and (7). The corresponding values are shown below together with the FCP values
for comparison.

surface (DCP) : 90◦, dipole (DCP) : 45◦, double (DCP) : 0◦,

surface (FCP) : 0◦, dipole (FCP) : 45◦, double (FCP) : 90◦.

57



Appl. Sci. 2017, 7, 368

α values of the DCP mode are shown to have symmetric values to those of the FCP mode about
the α = 45◦. Therefore, DCP α values are obtained as α’ = 90◦ − α for comparison with the FCP mode
in the results section.

The obtained pairs of H and ᾱ values are then plotted on the H/ᾱ 2D plane with some boundaries
to clarify the scattering mechanism and feasible region [17]. We perform the analysis on the H/ᾱ

plane for displaying the polarimetric signatures of each rice growth stage. Besides, the FCP and DCP
modes have different H/ᾱ plane plots because the boundaries of each zone differs [11]. Here, our main
purpose is to compare the performances of the two modes, thus, we display the H/ᾱ plane with
α’ = 90◦ − α condition for the DCP case. Figure 2 shows the H/ᾱ planes with different boundaries for
each case.

Figure 2. The H/ᾱ plane. (a) FCP and FLP; (b) DCP.

2.2.2. Three-Component Decomposition

Cloude et al. proposed compact three-component decomposition theory using the Stokes vector
by considering the relation between the Stokes vector and the 3 × 3 coherency matrix [20]. This method
extracts three components; namely, surface, double-bounce, and volume scattering power as a function
of dominant α and degree of polarization (DoP) which represents the polarized wave ratio of the total
receiving power (similar value with entropy).

The Stokes vector for the DCP mode is defined as (LHCP transmit case):

g =

⎡
⎢⎢⎢⎣

〈g0〉
〈g1〉
〈g2〉
〈g3〉

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

〈
|SRL|2 + |SLL|2

〉
−2Im 〈SRLS∗

LL〉
2Re 〈SRLS∗

LL〉〈
|SRL|2 − |SLL|2

〉

⎤
⎥⎥⎥⎥⎦ . (9)

Three components—the surface (Ps), double-bounce (Pd), and volume (Pv) scattering power—are
obtained as: ⎡

⎢⎣ Pd
Pv

Ps

⎤
⎥⎦ =

⎡
⎢⎣

1
2 g0m(1 − cos 2αs)

g0(1 − m)
1
2 g0m(1 + cos 2αs)

⎤
⎥⎦ . (10)
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where m and αs represent the DoP and dominant α respectively, defined as:

m =
1
g0

√√√√ 3

∑
i=1

g2
i , (11)

αs =
1
2

tan−1

⎛
⎝

√
g2

1 + g2
2

±g3

⎞
⎠ (+ : LHCP transmit − : RHCP transmit). (12)

As αs indicates the dominant α, the same α provided by full polarimetric (FP) data can be
recovered only when there is a dominant eigenvector in the coherency matrix of FP and a reflection
symmetric medium.

2.3. Target Decomposition for DLP Data (H/ᾱ Decomposition)

The DLP contains HH/VH or VV/HV scattering matrix coefficients and also yields a 2 × 2
coherency matrix—similar to DCP. Consequently, the H/ᾱ decomposition approach can be directly
performed on this coherency matrix [1,22]. Note that, in this study, we use the synthetically generated
DLP data obtained by unitary transformation from circular to linear basis:

[
SHH SHV
SVH SVV

]
= 2

[
1 j
j 1

]−1 [
SLL SLR
SRL SRR

] [
1 j
j 1

]−1

. (13)

The coherency matrix is then expressed by the outer product of the Pauli vector in the same
manner as given in (4) (H transmit):

kDLP =

[
SHH
SVH

]
, (14)

〈[CDCP]〉 =
〈
kDLP · k†

DLP

〉
= [U2]

[
λ1 0
0 λ2

]
[U2]†,

(15)

where [U2] is

[U2] =

[
cos α − sin αe−iδ

sin αeiδ cos α

]
. (16)

To compute H for the DLP mode, the same equation of the DCP mode given in (6) is used.
Calculation of ᾱ, however, requires a different process, given as:

α = P1α + P2

(π

2
− α

)
, (17)

where Pi are calculated in the same manner as (8). Note that the boundary curves of the H/ᾱ plane for
the DLP mode are the same as the DCP curves (see Figure 2b).

3. Experimental Scheme

3.1. System Description

Circular polarization can be achieved by setting a 90◦ phase difference between H and V
polarizations [23]. To introduce this concept, we employed diagonal dual LP-horn antennas with
a phase shifter for transmitting and receiving the CP-signal. The vector network analyzer and rotational
positioner controlled by the positioner controller were utilized to construct the whole CP-radar system.
The experimental geometry illustrated in Figure 3 was adopted, and the rice measurements were
conducted within an anechoic chamber to achieve a fully controlled environment. The incidence angle
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was set to 70◦, and the operational frequency was adjusted to 4.5–7.5 GHz (bandwidth is 3 GHz) in
C-band. An angular span of 0◦ to 359◦ was used to investigate the rice backscattering from all azimuth
angles. Therefore, quasi-monostatic antennas always face the target direction.

Before starting experiments, the measurement of the AR parameter of the antennas was needed in
order to check the deviation from circular polarization. Theoretically, 0 dB of AR shows ideal circular
polarization whereas an infinite value corresponds to ideal linear polarization [23]. An AR value of
less than 3 dB is generally considered as an acceptable value for most applications [24], and we follow
this definition in this paper. The AR of our CP-antennas was measured inside the anechoic chamber
and was found to be under 2.5 dB over the entire operational frequency bandwidth which means that
our antennas achieve good circular polarization purity within the investigated bandwidth.

Figure 3. Experimental geometry inside an anechoic chamber.

3.2. Polarimetric Calibration of CP-SAR System

The scattering matrix of all multi-polarimetric radar systems is easily contaminated by
system-introduced distortions such as polarimetric channel imbalances, crosstalk, antenna gain,
and impurity of polarization. This contamination inevitably degrades the polarimetric decomposition
results, and thus polarimetric calibration should be performed in all cases. Here, we introduce the FLP
calibration method proposed by Wiesbeck et al. [25] as a suitable and an effective way for calibrating
the ground-based LP-radar systems. To apply this method to CP-radar, an error model in circular
polarization basis is constructed [26]:

[
Sm

LL Sm
LR

Sm
RL Sm

RR

]
=

[
RLL RLR
RRL RRR

] [
Sc

LL Sc
LR

Sc
RL Sc

RR

] [
TLL TLR
TRL TRR

]
+

[
ILL ILR
IRL IRR

]
. (18)

The model includes receive [R] and transmit [T] distortion matrices; an isolation distortion matrix
[I]; and correct [Sc] and measured [Sm] scattering matrices. With using three types of canonical
reflectors, namely, circular plate, dihedral, and 45◦ inclined dihedral, the error coefficients in distortion
matrices [R] and [T] can be estimated, as explained in detail in our previous study [26]. Empty room
calibration is also needed within the steps to extract the isolation distortion matrix [I], which can be
performed easily by measuring a target free scene.
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3.3. Phenology Description of Cultivated Rice

Figure 4 shows the photographs and the layout of the rice target used in our experimental
validation. A total of eight rice samples were uniformly planted in a rectangular box of dimensions
0.4 × 0.25 × 0.2 m (width × depth × height). The box was made of polystyrene foam for reduction
of unwanted echoes and filled with 0.115 m depth of soil and 0.125 m depth of water, as shown in
Figure 4b. Thus, the soil was flooded to realize the actual rice field condition. This condition was kept
constant throughout the observation period from June to September to collect data that is sensitive
only to the rice growth. The non-rice condition was also observed for investigation of the germination
stage, where the only flooded soil exists inside the box.

Figure 4. Photographs and layout of the rice used in experimental validation. (a) Photographs taken
on each measurement date within the observation period from 7 June 2016 until 14 September 2016;
(b) Layout of the eight rice samples uniformly planted within a container box with 0.115 m depth of
soil and 0.125 m depth of water.

To describe the different rice phenological stages, we adopted Biologische Bundesanstalt,
Bundessortenamt und CHemische Industrie (BBCH) decimal scale [27]. BBCH scale provides the
description of actual characteristics of an individual plant such as development rate of leaf, tiller,
and panicle [13]. Therefore, utilization of this scale is useful to express rice phenology but not for
detail morphological expression. BBCH values for all observed rice conditions are given in Table 1
together with day-of-year (DoY) and mean height as a morphological value. Moreover, based on given
BBCH codes, five principal stages were designated, namely, Germination (stage 1), Tillering (stage 2),
Stem elongation (stage 3), Booting (stage 4), and Ripening (stage 5) stages, where we referred to [27].
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Table 1. BBCH code and phenology stage of each observed data set.

Date DoY (Day of Year) Mean Height (cm) BBCH Code Phenological Stage

Soil and water NA NA 0 1: Germination
7 June 2016 159 19 21-29 2: Tillering
22 June 2016 174 27 21-29 2: Tillering
6 July 2016 188 34 30-39 3: Stem elongation
21 July 2016 203 42 30-39 3: Stem elongation

3 August 2016 216 49 41-49 4: Booting
22 August 2016 235 52 83-85 5: Ripening
30 August 2016 243 52 87-89 5: Ripening

14 September 2016 258 45 93 5: Ripening

Our rice plants were discovered to have an increasing number of tillers until stage 2.
Finally, an average of 17 tillers in each stock was observed by 6 July. The increase in the number
of tillers was stopped at the end of stage 2 and samples began to initiate panicles inside the stem
during stage 3. Just before heading at stage 4, panicles went up and started to come out of the stems.
Finally, we found head emergence on 6 August for this type of rice sample.

3.4. Methodology of Data Analysis

As explained in Section 3.1, we adopted a 2D inverse SAR (ISAR) data collection geometry with
a fixed incidence angle. Thus, the frequency domain backscatter data of rice samples were acquired for
the complete azimuth angles from 0◦ to 359◦. Figure 5 shows the reconstructed images of one sample
of data observed on 30 August 2016, for LL, RL, and RR polarizations. A spherical back-projection
algorithm is used to process this wide-angle data [28]. From the reflectivity images in Figure 5, it can
be clarified that all rice stocks are clearly identified for each polarization thanks to the high-resolution
capability of our system. In practical rice monitoring applications, however, the resulted SAR images
cannot usually maintain such a high-resolution feature, and a single resolution cell consists of the
superposition of different scattering contributions from a few rice plants. Thus, for our situation,
all eight rice plants should be confined inside a single resolution cell for a reasonable analysis of rice
scattering mechanisms, as Sagues et al. mentioned [29]. For this reason, our analyses are not performed
on image data but the scatterometric data obtained by ensemble averaging of the frequency domain
data along with all the azimuth angles (0–359◦) and frequencies (4.5–7.5 GHz). As a result, the whole
scattering behavior is combined into a single coherency matrix as also adopted in [29–31], and the
decomposition theories explained in Section 2 are applied to this matrix.

Figure 5. Reconstructed circularly polarized SAR (CP-SAR) images for the rice observed on
30 August 2016. The images are normalized to the maximum value of three images. (a) LL polarization;
(b) RL polarization; (c) RR polarization.
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4. Rice Monitoring Results and Discussion

In the following subsection, the backscattering coefficients and the polarimetric decomposition
results deduced by the averaged single coherency matrix will be presented for the extraction of physical
scattering mechanisms of rice growth.

4.1. Backscattering Coefficient

Three scattering matrix data; SLL, SRL, and SRR were collected by assuming SLR = SRL since the
reciprocity theorem almost holds true for our quasi-monostatic setup. Figure 6 shows the intensity of
backscattering coefficients (LL, RL, and RR) as a function of DoY. The backscattering coefficients are
normalized to a maximum value of the whole observation period. From Figure 6, we can see that the
backscattering coefficients for all three polarizations increase as rice plants grow until DoY 235 because
these are related to the leaf area index, rice freshness, and rice height [32], where our rice plants stop to
increase those heights from DoY 235, shown in Table 1. Before rice emergence from the soil (non-rice
observation), the backscattering intensity exhibits very low values as a result of the specular reflection
from the flooded ground.

The sense of CP-waves is reversed when they are reflected from flat surfaces and smoothly curved
spherical reflectors. Therefore, cross- and co-polarization indicate odd- and even-bounce scattering
mechanisms respectively. Based on this fact, it is seen from Figure 6 that the surface (cross-polarization)
scattering produces relatively higher intensities than the double-bounce (co-polarization) scattering
until the end of stage 3 and the opposite is true for later stages. Nevertheless, the maximum difference
between polarimetric channels is around 2 dB which is not so significant.

Figure 6. Backscattering coefficients of LL, RL, and RR polarization.

4.2. H/ᾱ Decomposition

The entropy and ᾱ values for the FCP, DCP, and DLP modes are plotted in Figure 7. Note that the
ᾱ for the DCP mode was treated with the condition ᾱ’ = 90◦ − ᾱ for comparison purposes as discussed
in Section 2.2.1.

The entropy values shown in Figure 7a exhibit relatively lower values at stage 1, because of the
non-planted soil condition which produces highly deterministic scattering. Right after vegetation
starts to grow, other scattering mechanisms such as double-bounce and volume scattering make
entropy higher. Except for stage 1, entropy values fluctuate within the ranges 0.95–1 for FCP, 0.8–0.9
for DCP, and 0.4–0.6 for the DLP mode. It can also be noted that the entropy values for FCP and DCP
represent a similar progressive trend and around 0.12 discrepancy between them. On the other hand,
entropy for DLP ranges between 0.4 and 0.6 which is comparably lower than those of FCP and DCP.
Furthermore, an abrupt decrease at DoY 203 is also observed in the DLP mode, which is not the case in
the FCP and DCP modes.

The ᾱ characteristic is shown in Figure 7b. FCP and DCP patterns are approximately identical
except for non-rice and DoY 159 observations which differ by about ∼5◦. Despite this, each pattern
shows an increasing trend, indicating a progression from surface scattering to dipole-like scattering.
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On the contrary, ᾱ of DLP reveals a notably different result. Stage 1 measured a high ᾱ of ∼78◦, which is
regarded as multiple scattering. The value then stabilizes to around ∼75◦ on average.

Figure 7. H/ᾱ decomposition results of the FCP, DCP, and DLP modes. (a) Entropy; (b) Mean alpha.

To gain a deeper understanding of the scattering mechanisms contained in FCP and
DCP data, the independent components of the H/ᾱ decomposition are investigated separately.
Firstly, the appearance probabilities Pi for each scattering type defined by the associated eigenvector
are calculated (see (6) and (8) for the DCP case) to interpret the entropy plots in Figure 7a. Note that the
decomposition of FCP and DCP data produces three and two eigenvectors/probabilities, respectively.
Also, the probability values are constrained by the expressions, P1 + P2 + P3 = 1 and P1 ≥ P2 ≥ P3 for
FCP, and similarly for DCP. The variation of these probabilities as a function of DoY are displayed
in Figure 8. The probability P1 for DCP data shows a similar trend to that of FCP over the whole
observation period but experiences slightly higher value (∼10%) for stages 3 and 4. From Figure 8a,
an almost constant and relatively large P3 (recessive scattering) (∼10%) is observed for FCP data.
This is the case when more than three scattering mechanism components contribute to the receiving
signals. Usually, complex targets such as forested areas give rise to this type of multi-scattering. If the
third eigenvalue corresponding to P3 strongly affects the receiving signal, the difference between the
entropy values between FCP and DCP becomes higher because entropy is formulated by summation
of each independent scattering contribution which corresponds to scattering probability. As Cloude
et al. pointed out in [20], compact mode systems typically produce higher entropy compared to the
FP system.

Figure 8. Scattering probabilities for the FCP and DCP modes. (a) FCP mode; (b) DCP mode.

Secondly, ᾱ results given in Figure 7b are investigated in terms of their components. For each
eigenvector ui, the corresponding αi is extracted by using αi = arccos(|u1i|) where |u1i| is the absolute
value of the first element of the eigenvector. From the results given in Figure 9, we notice that α1 and
α2 for DCP indicate different trends and values from FCP values. It is observed that α1 for FCP is close
to 45◦ at stage 4 and fluctuates within the range of 40–65◦ at stage 5, whereas α1 for DCP is close to 45◦

at stage 3 and fluctuates within the range of 60–85◦ at stages 4 and 5. Thus, these results confirm the
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necessity of statistical interpretation in terms of ᾱ values and/or H/ᾱ space for the discrimination of
physical scattering mechanisms.

Figure 9. Alpha angle corresponding to each eigenvector. (a) FCP mode; (b) DCP mode.

Figure 10 displays the H/ᾱ 2D plane plots obtained from the entropy and ᾱ values for FCP
(Figure 10a), DCP (Figure 10b), and DLP (Figure 10c) measurements. In the FCP mode, the distributions
mainly lie in zones 6, 5, and 4, indicating a vegetation-type scattering event. Roughly, four different
clusters can be identified: germination stage, tillering stage, stem elongation stage, and booting plus
ripening stage, and thus the booting and ripening stages cannot be separated effectively from FCP
data. The results for the DCP mode in Figure 10b also reveal a broadened H/ᾱ pattern, but the two
observations (DoY 159 and 174) in the tillering stage are moved away from each other more than the
FCP case. Visually, the DCP mode affords better separation between booting and ripening stages
compared to the FCP mode, but this cannot be regarded as better capability because the DCP mode
has less information content than the FCP mode. Although the H/ᾱ plane plots for the FCP and DCP
modes exhibit some different features, each mode yields satisfactory discrimination of the phenological
intervals. In contrast, the H/ᾱ plane plots for the DLP mode cannot achieve adequate discrimination
capability for our rice targets, since almost all intervals are not resolved successfully, as seen from
Figure 10c.
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Figure 10. The H/ᾱ 2D plane. (a) FCP mode; (b) DCP mode; (c) DLP mode.

It is also worth noting that entropy and ᾱ values for crop backscattering usually increase with
increasing incidence angle. For lower incidence angles, surface reflection from soil is dominant
whereas, for high incidence angles (e.g., greater than 20◦), backscattering from vegetation stems and
leaves make dipole-like scattering dominant, as demonstrated in [30]. Therefore, because of our high
incidence angle (70◦) feature, relatively higher H and ᾱ values from our experiment than the usual
spaceborne SAR incidence angle (common operational mode: <70◦) can be expected.

4.3. Four- and Three-Component Decomposition

The four- and three-component decomposition results for the FCP and DCP modes are shown
in Figure 11 respectively, where Ps, Pd, Pv, and Pc show surface, double-bounce, volume, and helix
scattering respectively. The results are normalized to the maximum value of both modes. In Figure 11a,
the double-bounce and surface scattering contributions of four-component decomposition demonstrate
a similar evolutionary trend as the backscattering coefficients of co- and cross-polarization in Figure 6.
This similarity proves that co- and cross-polarization indicate even and odd bounce scattering
mechanisms respectively, as mentioned in Section 4.1. Figure 11a also reveals a stronger volume
scattering component than other scattering mechanisms at stages 4 and 5 as well as its evolutionary
trend during rice growth. Relatively low helix scattering is also shown, as expected, from vegetation.
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Figure 11. Four-/three-component decomposition results. (a) Four-component decomposition results
for the FCP mode; (b) Three-component decomposition results for the DCP mode.

When we compare the results of both modes, we see that both volume scattering components
result in a similar evolutionary trend and value. In contrast, the surface and double-bounce scattering
of the DCP mode show lower power than the FCP mode. This error might be attributed to dominant α

values because surface and double-bounce scattering are a function of dominant α values, shown in
(12). Since we found the dominant α difference between the FCP and DCP modes in Figure 9, this error
obviously affects the power level.

To investigate the relative contribution of the scattering component, we present the rate of each
scattering mechanism on a triangle plot, which is a similar analysis to [33], shown in Figure 12a,b
for the FCP and DCP modes respectively. Note that we exclude the helix scattering contribution
from the FCP mode for comparison between both modes. Figure 12a shows similar results to H/ᾱ

display, where the triangle plot for the FCP mode loosely falls into four groups: germination, tillering,
stem elongation, and a mix of booting and ripening stages. Therefore, booting and ripening stages still
cannot be clearly separated. Moreover, we notice that double-bounce scattering gradually increases
as rice grows (from 7% to 36%), while vice versa, the surface scattering decreases in the FCP mode.
This situation can also be seen in the DCP mode, where double-bounce scattering increases from 7.8%
to 20%, as depicted in Figure 12b. However, as indicated above, the DCP mode shows a relatively
stronger volume scattering component (lower surface and double-bounce scattering contribution) in
Figure 12b. Therefore, three-component decomposition for the compact mode should be improved to
better approximate the FP mode results.
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Figure 12. Relative contribution of surface, double-bounce, and volume scattering components on the
triangle plot. (a) FCP mode; (b) DCP mode.

5. Conclusions

This work investigated the FCP and DCP modes of CP-SAR (end-to-end circular polarization
system) through rice growth monitoring. For this purpose, self-cultivated rice plants from germination
to ripening stages were analyzed by means of frequency domain data measurement using a
ground-based CP-radar system. We applied the H/ᾱ and four-/three-component polarimetric
decomposition techniques to measurement data.

The results for the two types of polarimetric decomposition can be summarized as:

• The H/ᾱ 2D plane showed a satisfactory clear pattern of each stage of rice growth and yielded
rough discriminating capability. However, booting and ripening stages could not be separated.

• The DCP mode exhibited better classification capability than DLP mode on the H/ᾱ 2D plane.
• The four-/three-component decomposition results demonstrated a similar trend of surface and

double-bounce scattering as backscattering coefficients of cross- and co-polarization respectively.
• The triangle plot of relative scattering components contribution showed adequate classification

capability, similar to the H/ᾱ plane.

The comparison results between FCP and DCP modes can be stated as:

• Entropy showed a difference of ∼0.12 between each other, but overall evolution exhibited
similarity. ᾱ values almost coincided with each other except for non-rice and DoY 159 observations,
but dominant and second dominant α resulted in differences.

• The volume scattering component yielded a very similar trend and value. Surface and
double-bounce scattering presented different power to each other.

Overall, results for both the FCP and DCP modes of CP-SAR demonstrated adequate rice
phenology classification capability. Differences in some polarimetric decomposition parameters
between the FCP and DCP modes were noted. Moreover, the DCP mode yielded similar performance
to the FCP mode about the H/ᾱ decomposition and volume scattering, and better classification
performance of rice phenology compared to the DLP mode.

This work showed the first results of the ground-based CP radar system for long-term
rice observation. We anticipate that this study will contribute to the future development and
implementation of CP-SAR systems for space-borne and airborne missions, to be used for precise
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and efficient monitoring of vegetation and ground surface by combining the advantages of circular
polarization and the compact mode.

Acknowledgments: This work was supported in part by the European Space Agency Earth Observation
Category 1 under Grant 6613, by the 4th Japan Aerospace Exploration Agency (JAXA) ALOS Research
Announcement under Grant 1024, by the 6th JAXA ALOS Research Announcement under Grant 3170, by the
Japanese Government National Budget (Special Budget for Project) FY 2015 under Grant 2101, Taiwan National
Space Organization under Grant NSPO-S-105096; Indonesian Bhimasena, and by the Chiba University Strategic
Priority Research Promotion Program FY 2016.

Author Contributions: Yuta Izumi led this work. He proposed the idea, processed data, compiled results and
wrote this manuscript. Sevket Demirci and Josaphat Tetuko Sri Sumantyo supervised with some fruitful ideas to
make this work meaningful. Mohd Zafri bin Baharuddin and Tomoro Watanabe arranged the SAR-system and
experiment together with Yuta Izumi.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Dhar, A.T.; Gray, B.D.; Menges, C.C. Comparison of dual and full polarimetric entropy/alpha decompositions
with TerraSAR-X, suitability for use in classification. In Proceedings of the Geoscience and Remote Sensing
Symposium (IGARSS), Vancouver, BC, Canada, 24–29 July 2011; pp. 456–458.

2. Sugimoto, M.; Ouchi, K.; Nakamura, Y. On the similarity between dual-and quad-eigenvalue analysis in
SAR polarimetry. Remote Sens. Lett. 2013, 4, 956–964.

3. Raney, R.K. Hybrid-polarity SAR architecture. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3397–3404.
4. Souyris, J.C.; Imbo, P.; Fjortoft, R.; Mingot, S.; Lee, J.S. Compact polarimetry based on symmetry properties

of geophysical media: The π/4 mode. IEEE Trans. Geosci. Remote Sens. 2005, 43, 634–646.
5. Stacy, N.; Preiss, M. Compact polarimetric analysis of X-band SAR data. In Proceedings of the European

Conference on Synthetic Aperture Radar (EUSAR), Dresden, Germany, 16–18 May 2006.
6. Tetuko, S.S.J.; Koo, V.C.; Lim, T.S.; Kawai, T.; Ebinuma, T.; Izumi, Y.; Baharuddin, M.Z.; Gao, S.; Ito, K.

Development of circularly polarized synthetic aperture radar on-board UAV JX-1. Int. J. Remote Sens. 2017,
38, 1–12.

7. Rao, Y. S.; Meadows, P.; Kumar, V. Evaluation of RISAT-1 compact polarization data for calibration.
In Proceedings of the Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016;
pp. 3250–3253.

8. Freeman, A. Calibration of linearly polarized polarimetric SAR data subject to Faraday rotation. IEEE Trans.
Geosci. Remote Sens. 2004, 42, 1617–1624.

9. Souyris, J.C.; Stacy, N.; Ainsworth, T.; Lee, J.S.; Dubois-Fernandez, P. SAR compact polarimetry (CP) for
earth observation and planetology: Concept and challenges. In Proceedings of the PolInSAR, Frascati, Italy,
22–26 January 2007.

10. Guo, R.; Liu, Y.B.; Wu, Y.H.; Zhang, S.X.; Xing, M.D.; He, W. Applying H–α decomposition to compact
polarimetric SAR. IET Radar Sonar Navig. 2012, 6, 61–70.

11. Zhang, H.; Xie, L.; Wang, C.; Wu, F.; Zhang, B. Investigation of the Capability of H–α Decomposition of
Compact Polarimetric SAR. IEEE Geosci. Remote Sens. Lett. 2014, 11, 868–872.

12. Lopez-Sanchez, J.M.; Vicente-Guijalba, F.; Ballester-Berman, J.D.; Cloude, S.R. Polarimetric response of rice
fields at C-band: Analysis and phenology retrieval. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2977–2993.

13. Lopez-Sanchez, J.M.; Cloude, S.R.; Ballester-Berman, J.D. Rice phenology monitoring by means of SAR
polarimetry at X-band. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2695–2709.

14. Yang, Z.; Li, K.; Liu, L.; Shao, Y.; Brisco, B.; Li, W. Rice growth monitoring using simulated compact
polarimetric C band SAR. Radio Sci. 2014, 49, 1300–1315.

15. Hayashi, N.; Sato, M. Measurement and analysis of paddy field by polarimetric GB-SAR. In Proceedings
of the Geoscience and Remote Sensing Symposium (IGARSS), Cape Town, South Africa, 12–17 July 2009;
pp. IV358–IV361.

16. Li, K.; Brisco, B.; Yun, S.; Touzi, R. Polarimetric decomposition with RADARSAT-2 for rice mapping and
monitoring. Can. J. Remote Sens. 2012, 38, 169–179.

17. Cloude, S.R.; Pottier, E. An entropy based classification scheme for land applications of polarimetric SAR.
IEEE Trans. Geosci. Remote Sens. 1997, 35, 68–78.

69



Appl. Sci. 2017, 7, 368

18. Yamaguchi, Y.; Moriyama, T.; Ishido, M.; Yamada, H. Four-component scattering model for polarimetric
SAR image decomposition. IEEE Trans. Geos. Remote Sens. 2005, 43, 1699–1706.

19. Singh, G.; Yamaguchi, Y.; Park, S.E. General four-component scattering power decomposition with unitary
transformation of coherency matrix. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3014–3022.

20. Cloude, S.R.; Goodenough, D.G.; Chen, H. Compact decomposition theory. IEEE Geosci. Remote Sens. Lett.
2012, 9, 28–32.

21. Nord, M.E.; Ainsworth, T.L.; Lee, J.S.; Stacy, N.J. Comparison of compact polarimetric synthetic aperture
radar modes. IEEE Trans. Geosci. Remote Sens. 2009, 47, 174–188.

22. Cloude, S. The dual polarization entropy/alpha decomposition: A PALSAR case study. In Proceedings of
the PolInSAR, Frascati, Italy, 22–26 January 2007.

23. Stutzman, W.L. Polarization in Electromagnetic Systems; Artech House: Boston, MA, USA; London, UK, 1993.
24. Gao, S.; Luo, Q.; Zhu, F. Circularly Polarized Antennas; Wiley: Hoboken, NJ, USA, 2013.
25. Wiesbeck, W.; Kahny, D. Single reference, three target calibration and error correction for monostatic,

polarimetric free space measurements. Proc. IEEE 1991, 79, 1551–1558.
26. Izumi, Y.; Demirci, S.; Baharuddin, M.Z.; Waqar, M.M.; Sumantyo, J.T.S. The development and

comparison of two polarimetric calibration techniques for ground-based circularly polarized radar system.
Prog. Electromagn. Res. B 2017, 73, 79–93.

27. Lancashire, P.D.; Bleiholder, H.; Boom, T.V.D.; Langeluddeke, P.; Stauss, R.; Weber, E.; Witzenberger, A.
A uniform decimal code for growth stages of crops and weeds. Ann. Appl. Biol. 1991, 119, 561–601.

28. Demirci, S.; Yigit, E.; Ozdemir, C. Wide-field circular SAR imaging: An empirical assessment of layover
effects. Microw. Opt. Technol. Lett. 2015, 57, 489–497.

29. Sagues, L.; Lopez-Sanchez, J.M.; Fortuny, J.; Fabregas, X.; Broquetas, A.; Sieber, A.J. Indoor experiments on
polarimetric SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 671–684.

30. Lopez-Sanchez, J.M.; Fortuny-Guasch, J.; Cloude, S.R.; Sieber, A.J. Indoor polarimetric radar measurements
on vegetation samples at L, S, C and X band. J. Electromagn. Waves Appl. 2000, 14, 205–231.

31. Zhou, Z.S.; Cloude, S. Structural parameter estimation of australian flora with a ground-based polarimetric
radar interferometer. In Proceedings of the Geoscience and Remote Sensing Symposium (IGARSS),
Denver, CO, USA, 31 July–4 August 2006; pp. 71–74.

32. Inoue, Y.; Sakaiya, E.; Wang, C. Capability of C-band backscattering coefficients from high-resolution satellite
SAR sensors to assess biophysical variables in paddy rice. Remote Sens. Environ. 2014, 140, 257–266.

33. Yonezawa, C.; Negishi, M.; Azuma, K.; Watanabe, M.; Ishitsuka, N.; Ogawa, S.; Saito, G. Growth monitoring
and classification of rice fields using multitemporal RADARSAT-2 full-polarimetric data. Int. J. Remote Sens.
2012, 33, 5696–5711.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

70



applied  
sciences

Article

A Multi-Year Study on Rice Morphological
Parameter Estimation with X-Band Polsar Data

Onur Yuzugullu 1,*, Esra Erten 2 and Irena Hajnsek 1,3

1 Institute of Environmental Engineering ETH Zurich, 8093 Zurich, Switzerland; irena.hajnsek@dlr.de
2 Faculty of Civil Engineering, Istanbul Technical University, 34469 Istanbul, Turkey; eerten@itu.edu.tr
3 Microwaves and Radar Institute, German Aerospace Center (DLR), 82234 Oberpfaffenhofen, Germany
* Correspondence: onuryuzugullu@live.com

Academic Editors: Carlos López-Martínez and Juan Manuel Lopez-Sanchez
Received: 29 March 2017; Accepted: 8 June 2017; Published: 9 June 2017

Abstract: Rice fields have been monitored with spaceborne Synthetic Aperture Radar (SAR) systems
for decades. SAR is an essential source of data and allows for the estimation of plant properties
such as canopy height, leaf area index, phenological phase, and yield. However, the information
on detailed plant morphology in meter-scale resolution is necessary for the development of better
management practices. This letter presents the results of the procedure that estimates the stalk height,
leaf length and leaf width of rice fields from a copolar X-band TerraSAR-X time series data based
on a priori phenological phase. The methodology includes a computationally efficient stochastic
inversion algorithm of a metamodel that mimics a radiative transfer theory-driven electromagnetic
scattering (EM) model. The EM model and its metamodel are employed to simulate the backscattering
intensities from flooded rice fields based on their simplified physical structures. The results of the
inversion procedure are found to be accurate for cultivation seasons from 2013 to 2015 with root
mean square errors less than 13.5 cm for stalk height, 7 cm for leaf length, and 4 mm for leaf width
parameters. The results of this research provided new perspectives on the use of EM models and
computationally efficient metamodels for agriculture management practices.

Keywords: polarimetry; SAR; precision agriculture; rice monitoring; stochastic optimization;
metamodels; radiative transfer models; electromagnetic scattering models

1. Introduction

Rice is the main source of food and income for several highly populated countries. The increasing
population and limited arable lands bring out the need for higher yields that depends on the
development of better management practices. The traditional method monitoring by visual inspection
is not possible for kilometer-square areas. For such large scales, remote sensing based methods are good
alternatives. Among different data sources, information provided by Synthetic Aperture Radar (SAR)
is advantageous with its sensitivity to geometric and dielectric properties of the objects and its
availability in all light and weather conditions. Therefore, SAR is a valuable tool for monitoring the
rice fields [1].

Understanding the phenological evolution of rice fields is important to develop effective
management strategies. In the literature, several SAR data based algorithms have been developed
to investigate the phenological evolution of rice fields including their canopy height, growth stage,
leaf area index and yields. In SAR based rice monitoring, one way of monitoring the phenological
cycle is the use of different SAR data analysis techniques including temporal trend analysis [2,3],
interferometric analysis [4,5] and polarimetric interferometry analysis [6,7]. The other approach
employs EM models to simulate the polarimetric parameters from plant properties [5,8,9].
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This letter presents the inversion results of the metamodel-driven EM model for the estimations
of stalk height, leaf length, and leaf width parameters from copolar X-band TerraSAR-X time series
data, by following the methodology given in Figure 1, detailed and presented in [10] for a single year
and growth stage parameter, specifically BBCH. Unlike [10], this study focuses on the feasibility of
the proposed approach for morphology parameter estimation under different conditions. The chosen
EM model [11] uses the biophysical properties of rice plants to simulate the backscattering intensities
(σ̄o) with Monte-Carlo simulations. The computation costs related to the multi-dimensional algorithm
and the Monte-Carlo simulations were reduced by introducing metamodels, which mimics the EM
model after trained for once. The stability of the inversion was tested over a dataset of three different
cultivation periods (2013–2015), which includes data from rice fields under different agricultural and
environmental conditions.

Figure 1. Block-diagram of the proposed stochastic inversion of metamodel-driven electromagnetic
scattering (EM) model.

This paper has four sections. It starts with the proposed methodology in Section 2 by providing
the EM model, its metamodel, and the inversion procedure. Sections 3 and 4 present the SAR and
ground data followed by the inversion analysis results. The overall summary is provided in Section 5.

2. Methodology

2.1. Theoretical EM Model and Its Metamodel

In this study, the EM model [11],M(ξ), is employed to simulate the backscattering intensities, σ̄o,
from a set of rice plant morphology parameters, ξ, through Monte Carlo simulations for varying scatterer
locations. The ξ set includes stalk dimensions (height and diameter), leaf dimensions (length and width),
panicle dimensions (length and width), and their structural densities. The simulations are done for a unit
area A, having randomly placed non-overlapping cylindrical stalks with a specific height and diameter.
Each stalk is modeled to have elliptical leaves with a fixed length and width. In this study, we assumed
flooded ground and plant components with fixed complex dielectric constants for the complete growth
cycle by relying on the sensitivity analysis of the EM model [12]. TheM(ξ), given in (1), provides the
relation between an incident Ēi and a scattered wave Ēs through the coherent sum of four different
scattering mechanisms (Sn), as shown in Figure 2.

σ̄o
qq =M(ξ) = 4πr2

A

⟨∣Es
q∣2⟩
∣Ei

q∣2 = ⟨
�����������
eikr

r
⎛
⎝

4∑
n=1

Sn
⎞
⎠
�����������
2

⟩ (1)

Figure 2. The four different scattering mechanisms considered within the EM model [11].
S1: Direct scattering from the scatterers, S2: Scattering from the canopy followed by reflection from the
ground, S3: Reflection from the ground followed by scattering from the canopy, S4: Reflection from the
ground followed by scattering from the canopy and followed by reflection from the ground.
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In the EM model given in (1), q and p subscripts correspond to transmitted and received
horizontal (H) and vertical (V) linear polarization channels. The parameters k and r represent the
free-space wavenumber and the distance between the sensor and the target, respectively. The σ̄0

qq for
the different polarimetric channels, qq, are approximated from the ratio between Es

q and Ei
q.

TheM(ξ) has high computation cost due to its multi-dimensional algorithm and Monte Carlo
simulations. The computation costs of the algorithm were reduced using sparse Polynomial Chaos
Expansion (PCE) metamodels. The PCE metamodels are spectral variance decompositions of the
original model with low training cost and wide coverage in the parameter domain [13]. For the chosen
M(ξ), its PCE metamodel, PCEEM(ξ), is developed from the (2), given below.

M(ξ) ≅ PCEEM(ξ) = ∞∑
j=0

ajΨj(ξ) ≅ N∑
j=0

ajΨj(ξ). (2)

In (2), aj ∈ R is a set of scalar coefficients and the Ψj(ξ) ∈ R form a polynomial orthonormal
basis [14]. For practical reasons and to avoid over fitting conditions, the metamodels were limited
to N (=20) expansions. In this study, the PCEEM metamodel, Y(ξ), was implemented the UQLab
toolbox [15] with Legendre polynomial family with the uniform [−1,+1] input distributions. Details of
the metamodel implementation for the EM model can be found in [10].

2.2. Probabilistic Particle Swarm Optimization

The inversions of multi-dimensional EM models are ill-posed problems with the higher
number of unknowns compared to the number of equations. For such problems, optimization
algorithms are used to reach the optimum solution in the parameter space using different constraints.
However, the optimization of multi-dimensional EM model inversions may result in multiple optimum
solutions since different inputs can lead to similar outputs. The presence of multiple optimum solutions
prevents the use of deterministic optimization algorithms that focus on a single solution. For the
existence of multiple solutions, stochastic optimization algorithms can be considered as an alternative.
In stochastic optimization, the procedure is initiated several times to obtain all local solutions in a given
parameter space based on the defined set of rules.

In this study, the Particle Swarm Optimization (PSO) algorithm [16] is utilized, which is based
on updating the position of the particles, i.e., possible solutions, until they converge to an optimum
solution within a parameter space. In each iteration, the locations of the particles are updated according
to the position of the particle with the best position. The iterations continue until the particles converge
to a solution that agrees with the defined constraints. For the estimation of rice morphology parameters
from copolar X-band SAR backscattering intensities, the PCEEM metamodel is inverted with the
stochastic PSO algorithm.

The fitness function for the PSO is given in (3) for HH and VV polarimetric channels and
an arbitrary ith iteration. The fitness function is defined to minimize the difference between measured
σo

HH,VV and estimated σ̄o
HH,VV values. The consistency of the solutions for different polarimetric

channels is provided by considering the same input vector for both HH and VV polarimetric channels.

minCi = (σ0
HH − σ̄0

HHi
)2 + (σ0

VV − σ̄0
VVi
)2 i = 1 ... K (3)

Optimization problems need constraints to simplify the problem by reducing the dimensional
complexity. In PCEEM metamodel inversion, three plant morphology dependent constraints were
established that are based on the natural limitations excerpted from the available rice morphology data.

Positivity constraint ensures positive and real morphological estimations for all iterations.
Min-Max constraint limits the morphological estimations based on the phenological phase

boundaries. Phenological phases are defined by the International Rice Research Institute (IRRI) [17].
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The scale divides the growth cycle to five major phases. Figure 3 presents the boundaries obtained
from ground data, for the chosen morphological parameters.

Natural limitations provide non-linear relationships among rice morphology parameters during
their development. These relations eliminates the solutions which might be impossible for a healthy
plant, such as a 10-cm-tall stalk having two 50-cm-length leaves. This condition restricts the parameter
space with a convex hull. Convex hull defines non-linear boundaries in a parameter space according
to the experimental ground measurements that involve the agronomically possible solutions.

Figure 3. Temporal variations of the rice crop biophysical collected between 2013–2015 from the
regularly conducted ground campaigns in Ipsala (Turkey). Due to technical limitations, stalk diameter
data was not measured in 2015. The measurements are grouped according to the IRRI growth
phases as a Box-and-Whisker plot. Box presents the information for the quartiles while the
whiskers present minimum and maximum values for IRRI growth stages IRRI-1 [Early vegetative],
IRRI-2 [Late vegetative], IRRI-3 [Early reproductive], IRRI-4 [Late reproductive], IRRI-5 [Maturative].

The stochastic PSO optimization provides distributions for each morphology parameter. For the
accuracy analysis, the mean value of the resulting stochastic distributions is assigned as the estimated
dimensions of the rice morphological parameters. For a single stochastic PSO optimization, a total
number of 200 iterations was found to be sufficient for the optimization convergence which changes
less than 0.1% regarding the mean of the estimated values.

3. Datasets

3.1. The Ipsala Test Site and Ground Data

The selected test area, Ipsala, is located in the North-West part of Turkey with its center at
37°7′53′′ N and 6°19′32′′ N coordinates. Ipsala is one of the biggest rice cultivation sites in Turkey
with approximate acreage of 190 square kilometers. Based on the knowledge gathered from the Trakya
Agriculture Research Institute (TARI), rice cultivation is done in the area by local farmers between
May and September.

As shown in Figure 4, field campaigns were conducted ±5 days of SAR acquisitions to have
representative rice morphology parameters. In each year, the test fields were selected by the expertise
of the TARI researchers. To monitor the evolution of the morphology parameters, at each field following
parameters were measured: above water stalk height, stalk diameter, leaf length, leaf width, the number
of plants per m2, the number of tillers per plant, and the number of leaves per tiller. In Figure 3 the
evolution of some morphology parameters is depicted for each IRRI phase using a box-whisker plot.
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For each parameter, a quasi-linear increase is observed until IRRI-3. From IRRI-3 on, a decrease is
noticed in the stalk diameter due to reduced water content.

3.2. SAR Data

During the study, the Ipsala test site is monitored with the data acquired from the TerraSAR-X
satellite with an average incidence angle of 31°. The TerraSAR-X satellite has the central frequency of
9.65 GHz and temporal resolution of 11 days. The acquisition dates are given in Figure 4. The data
were delivered in single look complex format and were spatially and temporally co-registered by
bilinear interpolation.

Figure 4. The ground and Synthetic Aperture Radar (SAR) data collection dates for the cultivation
period between 2013 and 2015. On the right side, the VV channel PolSAR intensity image is
also provided from the 30 June 2013. In the image, rice fields can be detected with their higher
backscattering intensities.

4. Results and Discussion

In this section, we present the stochastic inversion results of the same PCEEM metamodel for the
estimation of stalk height, leaf length and leaf width parameters from X-band co-polar SAR data on
a dataset spanned over three cultivation periods. For the analysis, the noise in the TerraSAR-X data
was reduced using 13 × 13 boxcar smoothing windows, resulting in 33 m × 25 m spatial resolution.
The estimation accuracies of the chosen parameters are evaluated based on their correlation against
the ground measured values. The results are reported with their coefficient of determination (R2) and
the root-mean-square error (RMSE) values.

Table 1 provides the input parameters for the PCEEM metamodel evolutions that were assumed
constant. The details of the EM model, its metamodel, their simulation accuracies and growth phase
based global sensitivity analysis results of the PCEEM metamodel are provided in [12].

Table 1. Input parameters that are assumed constant during the EM model and PCEEM

metamodel simulations.

Parameter Value

Central frequency 9.65 GHz
Dielectric constant (εs,l) 25 + 8 j
Dielectric constant (εg) 70 + 20 j
Average incidence angle (θ) 31°
Distance to target 514 km
Illuminated area x-size 2.58 m
Illuminated area y-size 1.79 m
Number of MC iterations 200
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The chosen EM model and the proposed stochastic inversion approach consider the simplified
plant morphology. As observed in Figure 3, the evolution of chosen morphological parameters are
related to each other. In the proposed method these morphology based relations provide the base
of the optimization constraints. As the stochastic inversion algorithm provides multi-dimensional
parameter distributions, the mean values of the estimations are used for the calculation of R2 and
RMSE values.

The stochastic inversion results for stalk height, leaf length, and leaf width parameters are presented
in Figure 5 and Table 2. The R2 and RMSE were calculated against the estimated biophysical parameters
are given for the cultivation periods from 2013 to 2015. The accuracy analyses were conducted using
a total number of 93 different σo values (32 from 2013, 25 from 2014, and 36 from 2015) measured from
different fields having different morphologies, agricultural practices and environmental conditions.

Figure 5. The measured values of stalk height, leaf length and leaf width parameters versus their
estimations given in a correlation scatter plot for years 2013 to 2015 with a reference line. Symbols are
colored with respect to the year: 2013 (◆), 2014 (◆) and 2015 (◆).

The global sensitivity analysis of the PCEEM metamodel was previously discussed in [12].
The analysis results emphasize the importance of stalk height, leaf length and structural density
parameters (number of plant components in a unit area) throughout the growth cycle. The following
deductions can be made from the stochastic inversion results.

Table 2. Accuracy analysis of the stochastic inversion of PCEEM metamodel given with the calculated
R2 and root-mean-square error (RMSE) values for the years 2013, 2014, 2015 and the complete dataset.

Stalk Height Leaf Length Leaf Width

R2 RMSE R2 RMSE R2 RMSE

2013 0.921 0.108 0.804 0.069 0.646 0.003
2014 0.891 0.092 0.831 0.048 0.628 0.002
2015 0.868 0.135 0.776 0.055 0.613 0.003

Complete 0.894 0.116 0.848 0.057 0.717 0.003

Stalk Height estimations had the highest accuracy (R2 ≥ 0.86) considering the entire dataset of
three cultivation periods. As presented in Figure 5, the stalk height estimation results are slightly
over-estimated for rice canopies shorter than 0.6 m and under-estimated for the taller canopies.
The performance of the algorithm for the 2015 dataset was calculated to be lower compared to the other
years with an RMSE value of 13.5 cm. This situation can be related to the variance of the σo values
and the PCEEM metamodel simulations for the corresponding morphology parameter ranges in the
parameter space. On the other hand, the estimation bias between the measured and estimated values
shows an increasing spread with increasing stalk height. The variation in the bias can be interpreted
by the presence of plants with varying physical structures and similar backscattering behaviors at
later phases of the growth cycle. The RMSE values were calculated to be less than 13.5 cm, which are
acceptable for the stalk height estimations calculated from copolar SAR data.
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Leaf Length estimation accuracy is calculated to be lower than the stalk height estimation
accuracy for the dataset of three cultivation periods. As shown in Figure 5, the leaf lengths are
mainly over-estimated when they are shorter than 50 cm and under-estimated when they become
longer. The stochastic inversion results of the PCEEM metamodel shows highly accurate results
(R2 ≥ 0.78 and RMSE ≤ 7 cm) for the evaluations from the complete dataset. From three different years,
the lowest accuracy was obtained from the data acquired during 2015, as it was observed for the stalk
height. Regarding the estimation bias, it is noted that the errors tend to increase with increasing leaf
length. Similar to the interpretation provided for stalk height estimations, the increasing error with
increasing leaf length can be explained by the presence of higher variance in the parameter space at
later growth phases.

Leaf Width is morphologically related to the leaf length due to natural growth limitations.
The accuracy analysis on leaf width estimations presented acceptable values with R2 values higher
than 0.61 and RMSE values lower than 3 mm. Similar to stalk height and leaf length parameters,
the lowest accuracy was again obtained from the copolar SAR measurements of 2015. The estimation
bias of the analysis is observed to vary between ±5 mm for the complete growth cycles of three years.

The stochastic inversion of the PCEEM metamodel provided successful estimations for stalk height
and leaf length parameters for the cultivation periods of three years. However, from the chosen rice
morphology parameters, leaf width estimations had lower accuracies with higher relative RMSE values.
This situation is supported by the global sensitivity analysis results, which states the importance of
stalk height and leaf length parameters on the PCEEM metamodel simulations, while mentions the
lower effect of the leaf width [12].

The accuracy analysis exhibited in this study combines 93 different rice plant morphology
and SAR measurements collected from the cultivation periods of 2013 to 2015. Concerning the
presence of various environmental factors and agricultural practices, the results are considered to be
representative for the wet-cultivated and broadcast seeded rice fields that are located in Ipsala (Turkey).
Therefore, the results are encouraging for the development of new management practices, which can
use the estimated morphology parameters to interpret the yield and the detailed growth stage.

5. Overview and Summary

In this research, a stochastic inversion method has been presented to invert a multi-dimensional
PCEEM metamodel, trained from an EM model [11]. Apart from the previous studies that focuses on
the estimation of the stalk height, this study extends the estimations to the stalk height, leaf length and
leaf width parameters of rice plants by considering the natural growth limitations. This study was
conducted over three cultivation cycles for validation purposes.

We have tested the proposed inversion algorithm on a three-year cultivation period of ground,
and copolar high spatial resolution and high frequency SAR datasets. The data were acquired by
TerraSAR-X over broadcast seeded and flooded rice fields. For method validation we trained the
PCEEM metamodel by employing the EM model [11], ground measurements and field average SAR
backscattering intensities.

As a result, we obtained significant correlations between the estimated and measured values of
stalk height, leaf length and leaf width parameters using the proposed PCEEM metamodel inversion
scheme. From the analysis, we calculated RMSE values less than 13.5 cm for stalk height, 6.9 cm for leaf
length and 34 mm for leaf width parameters. The results pointed out that the use of spaceborne X-band
PolSAR data is powerful for the development of new agriculture monitoring practices. We should
mention that the overall performance of the proposed approach mainly relies on the accuracy of the
EM model and the PCEEM metamodel, which shows the importance of EM model selection.

The presented algorithm has presented several advantages such as coupling the agronomical
growth rules with the EM models for efficiency, inversion with stochastic optimization to handle
environmental variability and most importantly being computationally efficient with the use
of metamodels that are trained for once. In the presented study, the requirement of a priori
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knowledge of the growth phase and plant morphology information can be seen as a disadvantage.
However, considering the importance of rice as the main source or food and income for several highly
populated countries, related information can be found in the crop databases. Besides, the literature
currently covers several different methodologies to determine the growth phase of rice plants [3,18,19].

In the future, our studies are going forward to improve the approach by substituting the a priori
growth phase information with canopy height estimations that can be directly calculated from
Pol-InSAR data. In addition, it is planned to extend the applicability of the inversion procedure
to monitor other major crops.
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Abstract: In this study, polarimetric Synthetic Aperture Radar (PolSAR) data at X-, C- and L-Bands,
acquired by the satellites: TerraSAR-X (2011), Radarsat-2 (2011), ALOS (2010) and ALOS-2 (2016),
were used to characterize the tundra land cover of a test site located close to the town of Tuktoyaktuk,
NWT, Canada. Using available in situ ground data collected in 2010 and 2012, we investigate
PolSAR scattering characteristics of common tundra land cover classes at X-, C- and L-Bands.
Several decomposition features of quad-, co-, and cross-polarized data were compared, the correlation
between them was investigated, and the class separability offered by their different feature spaces
was analyzed. Certain PolSAR features at each wavelength were sensitive to the land cover and
exhibited distinct scattering characteristics. Use of shorter wavelength imagery (X and C) was
beneficial for the characterization of wetland and tundra vegetation, while L-Band data highlighted
differences of the bare ground classes better. The Kennaugh Matrix decomposition applied in this
study provided a unified framework to store, process, and analyze all data consistently, and the
matrix offered a favorable feature space for class separation. Of all elements of the quad-polarized
Kennaugh Matrix, the intensity based elements K0, K1, K2, K3 and K4 were found to be most valuable
for class discrimination. These elements contributed to better class separation as indicated by an
increase of the separability metrics squared Jefferys Matusita Distance and Transformed Divergence.
The increase in separability was up to 57% for Radarsat-2 and up to 18% for ALOS-2 data.

Keywords: PolSAR; dual polarimetry; quad polarimetry; decomposition; TerraSAR-X; Radarsat-2;
ALOS; ALOS-2; tundra; arctic

1. Introduction

Polarimetric Synthetic Aperture Radar (PolSAR) data from an increasing number of different
satellite systems has become available—or will become available in the near future—for up-to-date
Earth observation and environmental monitoring. Microwave data, e.g., acquired by Sentinel-1,
ALOS-2, or in the future, by the RADARSAT Constellation Mission, are capable of delivering remote
sensing data at high spatial (<10 m) and temporal resolutions (<10 days); independent of weather and
illumination conditions. Therefore they are well suited for characterizing and monitoring the dynamic
nature of the land surface, especially in vast and remote regions like the Arctic. In light of the challenges
associated with a changing climate and environment, such investigations are crucial for assessing and
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comprehending temporal and spatial changes. Several studies have therefore investigated the use of
SAR, PolSAR, and SAR interferometry (InSAR) for characterizing Arctic land surfaces, particularly that
of tundra environments.

Table 1 provides an overview of select studies that involved the use of active microwave imaging
of Arctic tundra environments. As can be observed, shortwave C- and X-Band data were frequently
used for the characterization of land cover and shoreline types, and most studies incorporated
analysis of polarimetric information to relate observed values with certain types or states of the
land surface [1–16]. C-Band and L-Band data stacks have been used primarily to determine surface
movements in permafrost regions using interferometry [17–21]. This is likely driven by the opening
of the ALOS archive and the capacity of the L-Band microwaves to penetrate the relatively small
tundra vegetation, typically resulting in higher interferometric coherence, and leading to a more
reliable estimate of surface movements. The seasonal thawing and freezing of the active layer is also a
promising area for InSAR applications, and estimation of the active layer thickness/variations across
the entirety of the Arctic is of particular importance considering recent warming trends [22–24].

Table 1. Select studies that employed Synthetic Aperture Radar (SAR), polarimetric SAR (PolSAR)
and InSAR (SAR interferometry) data and methods for the characterization of tundra (permafrost)
landscapes and their dynamics; ERS: European Remote Sensing Satellite; R-1: Radarsat-1; TSX:
TerraSAR-X; R-2: Radarsat-2; ALOS: Advanced Land Observing Satellite.

Study Area Sensor Task and Method Year and Reference

Alaska, USA ERS Bathymetric mapping of shallow water
via time series Analysis 1996 & 2000 [1,2]

Mackenzie Delta
Region, Canada ERS Delineation of delta ecozones via InSAR—Coherence 2001 [3]

Nova Scotia, Canada R-1 Mapping of geomorphological units
in the intertidal zone via unsupervised classification 2001 [4]

Quebec, Canada TSX Monitoring of permafrost dynamics via InSAR 2011 [5]

Herschel Island,
Canada

TSX
R-2

ALOS
Monitoring of surface movements via InSAR 2009 & 2011 [16,17]

Mackenzie Delta
Region, Canada R-2 Classification of tundra land cover

and shoreline types via PolSAR 2011 & 2014 [6,7]

Lena Delta, Russia TSX
R-2

Characterization of melt onset and
geomorphological units via PolSAR 2012 [8]

Alaska, USA TSX Characterization of post-drainage succession
via time series analysis and PolSAR 2012 [9]

Sodankylä, Finland R-2 Identification of soil freezing and thawing states 2014 [10]
Richards Island,

Canada
TSX
R-2 Classification of tundra land cover via PolSAR 2014 [11]

Baffin Island, Canada R-2 Monitoring of surface movements via InSAR 2014 [18]
Northern Canada R-2 Modeling of phytomass via PolSAR 2014 [12]

Dease Strait, Nunavut,
Canada R-2 Classification of shoreline types via PolSAR 2015 [13]

Barrow, Alaska ALOS Active-layer thickness estimation via InSAR 2015 [19]
Mackenzie Delta
Region, Canada

TSX
R-2 Characterization of tundra land cover via PolSAR 2016 [14]

Northern Alaska, USA ALOS Active-layer change and
subsidence monitoring via InSAR 2016 [20]

Northern
Qinghai-Tibetan

Plateau
ALOS Active-layer change via InSAR 2017 [21]

Yamal Peninsula,
Russia TSX Active-layer thickness estimation

via backscatter intensity 2017 [15]

Most of the studies identified in Table 1, employed data of a single sensor and only few involved
multi-frequency SAR/PolSAR/InSAR information, e.g., dealing with some combination of X-, C-
or L-Band data [8,11,14,17]. Among the selected studies, the quad-polarization mode of Radarsat-2
was most frequently employed, followed by the dual HH/HV-polarization mode of ALOS and
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TerraSAR-X, and the dual HH/VV-polarization mode of TerraSAR-X. For these different datasets,
several polarimetric decomposition approaches were applied, including: the Eigen-decomposition
(with the features Entropy, Anisotropy and Alpha Scattering Angle) [25,26], the Yamaguchi
Decomposition [27], the Freeman-Durden Decomposition [28], and the Touzi Decomposition [29].
Two decomposition models for HH/VV-polarized data were further proposed by [30] and recently
by [14].

In light of this previous research, and our preliminary investigations [6,7,11,13,14], we analyze
X-, C- and L-Band PolSAR data in order to characterize scattering properties of select tundra land
cover classes for a test site in the Arctic. In addition, this study incorporates quad-polarized data
of ALOS-2, a novel compilation of in situ data for the test site, and a complete utilization of the
Kennaugh Matrix approach, recently presented by [31]. The Kennaugh Matrix approach offers a unified
framework for processing polarimetric information of different polarization modes (quad-, dual- and
compact-polarized data). It can be used to represent targets both incoherently and coherently, and can be
converted into all of the well-established decomposition models, for all wavelengths [25]. Information
on the Kennaugh Matrix framework is provided in the subsequent Section 2.2.2 Polarimetric SAR Data
and Decompositions of this manuscript and in Appendix A.

The objectives of this research are therefore: First, process and analyze decomposition features of
quad- and dual-polarized data of different sensors at three different frequencies. Second, investigate the
backscattering of generalized tundra land cover classes for quad- and dual-polarized data of X-, C- and
L-Band data. Third, investigate the correlation among PolSAR features of quad- and dual-polarized
decomposition techniques. Fourth, benchmark and rank all PolSAR (decomposition) features in
terms of class separability, and identify feature spaces and parameters that are most meaningful for
characterizing the tundra land cover.

This manuscript is structured as follows: The subsequent section provides details on the materials
and methods, as well as information on the location and environment of the test site selected for this
research. Further, this section describes and lists the available land cover reference information, and
the PolSAR data, including: quad- and dual-polarized data of Radarsat-2 (R-2), TerraSAR-X (TSX),
ALOS and ALOS-2. Subsequently, the data processing and all polarimetric decompositions applied
to the data are described, as well as separability measures/metrics used to analyse them, including:
Transformed Divergence and Jefferys Matusita Distance.

The third section presents the results of the correlation analyses of C-Band R-2 and L-Band
ALOS-2 data. Backscatter characteristics and select decomposition features of the land cover classes
are presented and analysed via box- and scatterplots for X-, C- and L-Band data. Afterward, the results
of the separability analysis and the feature selection are presented. Section four discusses the main
findings, while section five provides a summary of the study; major conclusions are drawn and an
outlook on future work is given.

2. Materials and Methods

2.1. Test Site Description

The study area is located at the northern extent of the mainland of the Northwest Territories,
Canada (see Figure 1a). The region is part of the Canadian Arctic and lies entirely north of the
tree-line along the coastal tundra plains of the Southern Arctic Ecozone [32]. The climate here is
characterized cold winters, followed by short and cool summers. The mean annual air temperature at
the climate station Tuktoyaktuk is −1 ◦C (1971–2000), and the mean air temperature between October
and April is below −10 ◦C. The average precipitation is about 150 mm [33]. The ground surface
is characterized by the presence of continuous permafrost and its thickness is estimated to be up
to 600 m [34]. Therefore, the soils of the Tuktoyaktuk Peninsula are Cryosols, with an active layer
thickness of several centimeters to decimeters. The soils developed on glacial deposits of Pleistocene
to Holocene age [32], and current morphodynamics are dominated by periglacial processes. The land

82



Appl. Sci. 2017, 7, 595

surface is therefore characterized by low-lying and flat coastal plains, rolling hills, thermokarst lakes
and pingos, and extensive networks of high- and low-centered ice wedges [33]. The ground surface is
also characterized by tundra vegetation, with upland tundra usually composed of short herbaceous
vegetation and shrubs (dwarf shrubs up to tall shrubs). The wetland vegetation (grasses, sedges or
rushes) is frequently at or near water bodies, e.g., at drained lakes, or in the flat and low-lying intertidal
zone. Depending on the coastal currents, the beach zone is characterized by fine sandy material,
mixed sediments dominated by gravel, pebble or cobble and driftwood accumulations [33].

Figure 1. Location of the test site: Tuktoyaktuk (Northwest Territories, Canada) and RGB composites
of remote sensing imagery: (a) elevation and slope of intermediate TanDEM-X DEM, coverage of
TerraSAR-X, Radasat-2, ALOS and ALOS-2 imagery, locations of in situ field work in 2010 and 2012,
locations of land cover reference samples derived from high resolution ortho-photos, extent indicator
of the subsequent sub-figures (red rectangle); (b) RGB false-color composite of sigma nought HV
intensities [dB] of X-Band (TerraSAR-X, 2011), C-Band (Radarsat-2, 2011) and L-Band (ALOS, 2010);
(c) RGB false-color composite of Kennaugh Matrix Elements K2, K1 and K3 of quad-polarized
Radarsat-2 data (see Section 2.2.2 Polarimetric SAR Data and Decompositions for more details on the
Kennaugh Matrix Elements); (d) Landsat TM (2011) true-color composite of red, green and blue surface
reflectance. RGB channels are stretched linearly between 1 and 99% of the data range.
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2.2. Database

2.2.1. Land Cover Reference

In situ data on the land cover of the test site was acquired during two ground truth campaigns
in the summer months of 2010 and 2012. The field work was organized and conducted by Carleton
University, (Ottawa, ON, Canada), the NWRC (National Wildlife Research Centre, Ottawa, ON,
Canada), and the University of Wuerzburg (Institute of Geography and Geology, Wuerzburg, Germany).
Combining the land cover information of our preliminary studies [6,7,11,14], the land cover reference
was merged to a common database showing the eight land cover classes listed and described in Table 2.
During the field campaigns information on the land cover of representative homogenous locations
was recorded, categorized and mapped. The in situ classification of the land cover was completed by
field experts, and within the frameworks of [35,36]. As specified in Table 2 the cut off criteria for the
separation of Shrub (ST) and Herb Dominated Tundra (HT) was the presence of dwarf shrubs with a
height greater or less than 0.25 m. The separation between Sand (BS) and Mixed Sediment (BM) was
based on the presence of pebble, which had to cover >50% of the surface; the bare ground samples
were considered homogeneous if 10% or less were “other” materials or vegetation. Locations were
classified as Driftwood Accumulation (BW) if more than 80% of the ground were cover by driftwood.
Wetland Vegetation Communities (WT) were dominated by grasses, sedges or rushes and frequently
occurred inland at creeks and drained lakes. The locations classified as Inundated Low Lying Tundra
(WI) exhibited tundra vegetation communities at or near a water body and were most prominent in
the low-lying coastal supratidal north of the town of Tuktoyaktuk.

Table 2. Land cover classes considered in the analysis; description, class abbreviations (Abbr.), and class
color coding. Bare Ground samples were considered homogeneous if 10% or less were “other” materials
or vegetation. The letters “W”, “B”, “T” of the class abbreviations refer to Wetland, Bare Ground,
and Tundra land cover classes.

Land Cover Class Name Description Abbr. Class Color

Tundra
Vegetation

“T”

Herb
Dominated Tundra

upland tundra composed of
short herbaceous vegetation

and low shrubs (<25 cm)
HT

Shrub
Dominated Tundra

upland tundra dominated by
tall shrubs (>25 cm) ST

Bare Ground
“B”

Sand sediment dominated by sand
(0.0625–2.0 mm) BS

Mixed
Sediment

mixed sandy sediment
dominated by gravel, pebble
or cobble (2.0–256.0 mm) and

without woody debris

BM

Driftwood
Accumulation

accumulations of driftwood
(>80%) BW

Wetland
“W”

Wetland
wetland vegetation

communities dominated by
grasses, sedges or rushes

WT

Inundated
Low Lying Tundra

vegetated tundra at or
near a water body WI

Water Permanent
Water Bodies

ocean, inland lakes,
river channels and ponds OL

Further, Figure 2 provides example photographs of select land cover classes. In total, information
from more than fifty ground truth sites were available. Additionally, the number of samples was
increased using high resolution airborne imagery with less than one meter spatial resolution provided
by [34]. The generation of the land cover reference database was completed and locations of
homogenous land cover were digitized using the airborne imagery. The reference information was
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then available in polygon format. Afterward, random sampling was applied, in order to generate
200 samples for each of the land cover classes listed in Table 2. Note that each individual point was
selected to represent homogenous information for a certain land cover class (i.e., areas of mixed land
covers were avoided). Figure 1a shows the locations of some sites visited and indicates the centers of
the manually digitized polygons that exhibited homogeneous land coverage in the airborne imagery.

 

Figure 2. Example in situ imagery of select land cover classes of interest: (a) sand (BS); (b) mixed
sediment (BM); (c) driftwood accumulation (BW); (d) herb dominated tundra (HT); (e) shrub dominated
tundra (ST) and (f) wetland (WT). Photos were taken in 2012 on the Tuktoyaktuk Peninsula by
Tobias Ullmann.

Additionally, a second set of 50,000 land samples was randomly generated, representing
approximately 10% of all land pixels inside the common coverage of TSX, ALOS, ALOS-2 and R-2.
This second set was generated independent of the land cover and was used to estimate the correlations
among the PolSAR features. It is assumed that this sample represents the natural distribution of the
relevant land cover classes.

2.2.2. Polarimetric SAR Data and Decompositions

PolSAR data from R-2, TSX, ALOS and ALOS-2 were available for the test site. Table 3a lists the
main acquisition parameters and shows that all data was acquired in the summer months, during the
growing season of the tundra vegetation. Note that the ALOS-2 data was acquired at a steep incidence
angle (28◦) in 2016, while the data of the other sensors were acquired with incidence angles between 34◦

and 40◦ in 2010/2011; along with the in situ reference data. Changes of the land cover were considered
to be of less relevance for the analysis, considering the recent studies on the decadal changes in
composition of the tundra vegetation here [37,38] the spatial resolution of the data, and the rather
broadly defined classes. Figure 1b shows a false-color composite of the HV intensities of TerraSAR-X
(TSX), R-2 and ALOS.
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The following processing steps were applied to the PolSAR data: First, synthetic dual-polarized
data (HH/VV, VV/VH and HH/HV) were generated from the R-2 and the ALOS-2 quad-polarized
data. These synthetic dual-polarized datasets were thus not affected by temporal variations and
showed identical speckle characteristics (compared to the quad-polarized data from which the subsets
were taken), as such, this allowed for direct comparison of class separability as a function of polarization
diversity, as opposed to differences in moisture, and plant phenology. Second, the Sinclair scattering
matrices of all dual- and quad-polarized data of all wavelengths were converted to the corresponding
Kennaugh Matrices [31]. Third, the data were multi-looked (minimum of four looks) in order to
generate pixels with square ground range resolution. Forth, a simple boxcar filter with a window
size of 3 × 3 pixels was applied. Fifth, the data were terrain corrected and geocoded using the
Range-Doppler Approach [39]. All data were transformed to UTM WGS1984 Zone 8 coordinate system
with 12 m spatial resolution using the TanDEM-X intermediate digital elevation model (DEM) and
the projected local incidence angle derived from this DEM [40]. The data were processed as sigma
nought intensities.

All of the preceding steps were completed in SNAP 5.0 (Sentinel Application Platform) released by the
European Space Agency (ESA), Paris, France. The terrain corrected Kennaugh Matrices were then used
to generate the polarimetric channels, the Yamaguchi Decomposition [27], the Eigen-decomposition
with the features Entropy/Alpha/Anisotropy, the Two Component Ground-Volume Decomposition
of [30] and the Two Component Surface-Diherdal Decomposition of [14] using IDL 8.5 and ENVI 5.3.
All intensity features were scaled to decibels [dB]. The above mentioned decompositions are explained
in more detail in the subsequent paragraphs.

Kennaugh Matrix—For quad-polarized data the Kennaugh Matrix (Mueller Matrix, respectively [41])
describes the relation between the radiated and received wave as a symmetric 4 × 4 matrix using ten
real elements (K0–K9). It is the linear transformation of the four-dimensional Stokes vector ([42] p. 43 ff.
and p. 83 ff.) in the backscatter-alignment coordinate system. Unlike the Covariance or the Coherency
Matrix, the Kennaugh Matrix can describe both coherent and incoherent targets [42,43]. The elements
K0, K1 and K2 are intensity-based elements, while K3 and K4 are based on the cross-polarized
intensity and the co-polarized phase information. The elements K5, K6, K7, K8 and K9 are phase-only
elements that tend to provide unique information from natural targets. All elements of the full
Kennaugh Matrix can be grouped as follows [31]: First, the total intensity (K0); second, the absorption
elements that describe the loss of polarization during the scattering process (K1, K2, K3); third,
diattenuation elements that describe the change of the relation between two amplitude values during
reflection (K4, K5, K6); fourth, retardance elements that describe the phase delay during scattering
in a particular direction (K7, K8, K9). The definition of the Kennaugh Matrix and its elements for
quad-polarized (A1), HH/VV-polarized (A2) and HH/HV- or VV/VH-polarized data (A3) are shown
in Appendix A in accordance to [31]. The Kennaugh Matrix elements are linear combinations of
the Coherency Matrix and combinations of K0, K1, K2 and K3 describe the diagonal elements of the
Coherency Matrix (T11, T22, T33), while combinations of K4, K5, K6, K7, K8 and K9 describe off-diagonal
elements of the Coherency Matrix (T12, T13, T21, T23, T31, T32) [42]. The conversions of the Kennaugh
Matrix to 3 × 3 Coherency Matrix (T) of quad-polarized (A4) and 2 × 2 T of HH/VV-polarized data
(A5) are shown in Appendix A in accordance to [31]. To generate all Kennaugh matrix elements
requires quadrature polarized data, thus only a portion of can be generated using dual polarized
data. For HH/VV-polarized data the Kennaugh Matrix consists of the elements K0, K3, K4 and K7.
For HH/HV- and VV/VH-polarized data the Kennaugh Matrix consists of the elements K0, K1, K5
and K6 [31]. Figure 1c shows as a false-color composite of the Kennaugh Matrix elements K1, K2
and K3, which were processed using the quad-polarized R-2 data. For the purpose of comparison
Figure 1d shows a Landsat TM true-color RGB composite acquired in summer 2011, concurrent with
the R-2 imagery.

Eigen-decomposition—The Eigen-decomposition approach is a frequently used to process PolSAR
data [25,26]. It decomposes the incoherent signal (usually stored in the Covariance or Coherency
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Matrix) using eigenvalues (λ) and eigenvectors (ux) ((1) and (2)). In the formula H denotes the
conjugate transpose. Note that the eigenvalues of the Covariance or Coherency Matrix are the same,
while the eigenvectors differ. For dual-polarized data two eigenvalues and eigenvectors are obtained
(1); while for quad-polarized data three eigenvalues and eigenvectors are obtained (2) when reciprocity
is anticipated due to a monostatic acquisition geometry. Consequently, identical scattering from HV
and VH is assumed.

U = λ1u1uH
1 + λ2u2uH

2 (1)

U = λ1u1uH
1 + λ2u2uH

2 + λ3u3uH
3 (2)

Entropy/Alpha/Anisotropy—The Eigen-decomposition was used to process additional features
that describe scattering processes [25,26,42,43]. The polarimetric Entropy and Alpha Scattering angle
describes the scattering properties of incoherent (natural) scatterers. Entropy (3) and (4) can be
understood as the degree of randomness of the scattered signal and is described by the logarithmic
sum of the pseudo probabilities p of the eigenvalues, and ranges from zero to one. The polarimetric
Alpha scattering angle is calculated as the sum of the inverse cosine of the absolute value of the
first eigenvector element and is weighted by the pseudo probabilities p (5). Cloude and Pottier also
showed a third feature for quad-polarized data that is calculated via the ratio between the normalized
difference of the second and third eigenvalue: the Anisotropy (6), which indicates the relevance of
secondary scattering processes. Anisotropy, understood in the quad-polarimetric sense, is unavailable
for dual-polarized data. In the formulas n is equal to two for dual-polarized data and three for
quad-polarized data. Note that Entropies of the Covariance or Coherency Matrix are the same, but the
Alpha scattering angles are different due to the differences between the Eigenvectors.

pi =
λi

∑n
k=1 λk

(3)

H = −
n

∑
i=1

pi logn(pi) (4)

α =
n

∑
i=1

pi cos−1(|u1i|) (5)

A =
λ2 − λ3

λ2 + λ3
(6)

Model-Based Decompositions—Besides the Kennaugh Matrix elements, the polarimetric
intensities and the Eigen-decomposition features, three Model-based decompositions were applied
to the data which apply simplified, pre-defined scattering models. For the quad-polarized data of
R-2 and ALOS-2, the Three Component Yamaguchi Decomposition [27] was applied. This approach
decomposes the total backscattered energy PTotal into the intensities of surface scattering (Psurface),
double bounce scattering (Pdouble bounce) and volume scattering (Pvolume) (7). This frequently used
approach is suitable for comprehending and characterizing predominant scattering processes in nature.

PTotal = Psurface + Pdouble bounce + Pvolume (7)

As shown by [14] the approach of Yamaguchi can be adopted for HH/VV-polarized data,
by decomposing the total backscattered energy PTotal into the intensities of surface scattering (Psurface)
and double bounce scattering (Pdouble bounce) (8). The correlation between the corresponding features
of this decomposition and the Yamaguchi Decomposition are then a function of the presence and
power of volume scattering processes [14]. Specifically, features are more highly correlated if volume
scattering is negligible.

PTotal = Psurface + Pdouble bounce (8)

For HH/VV-polarized data the approach of [30] can be applied as an alternative dual-polarimetric
decomposition technique. The approach involves a synthetized HV channel and the polarimetric H
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(see the preceding paragraph) (see also [44]). This technique decomposes the total backscattered energy
PTotal into contributions from scattering from ground (Pground) and from vegetation (Pvolume) (9).

PTotal = Pvolume + Pground (9)

The two component decompositions of [14,30] were applied to the X-Band HH/VV data of TSX,
to the synthetic HH/VV data of R-2 and ALOS-2. Table 3c lists all the polarimetric data that were
used in this study, and provides abbreviations that are used hereafter to refer to each decomposition
element. The descriptions of Figures 3 and 4 list all features that were processed for a certain type of
polarized data, e.g., for HH/HV or HH/VV data.
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Figure 3. Correlation-Matrix of quad- and dual-polarimetric C-Band Radarsat-2 features showing the
squared Linear Pearson Correlation Coefficient (R2) ranging from 0.0 (no correlation) to 1.0 (full linear
correlation, determination respectively). R2 was estimated using 50,000 randomly distributed samples
on land (roughly 10% of all land pixels). Note that dual-polarimetric data of Radarsat-2 were derived
as polarimetric subsets and thus are not affected by temporal variations. Feature abbreviations are
as follows (see Table 2): ENT (Entropy), ALPT (polarimetric Alpha scattering angle of Coherency
Matrix), ALPC (polarimetric Alpha scattering angle of Covariance Matrix), HH/VV/VH (PolSAR
Channels), DBL3 (double bounce of the Yamaguchi et al. Decomposition [27]), VOL3 (volume
scattering of the Yamaguchi et al. Decomposition), ODD3 (surface scattering of the Yamaguchi et al.
Decomposition), K0–K9 (elements of the Kennaugh Matrix [31]), VOL2 (volume scattering of [30]),
GRD2 (ground scattering of [30]), DBL2 (double bounce of the [14]), ODD2 (surface scattering of
the [14]).
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Figure 4. Correlation-Matrix of quad- and dual-polarimetric L-Band ALOS-2 features showing the
squared Linear Pearson Correlation Coefficient (R2) ranging from 0.0 (no correlation) to 1.0 (full linear
correlation, determination respectively). R2 was estimated using 50,000 randomly distributed samples
on land (roughly 10% of all land pixels). Note that dual-polarimetric data of ALOS-2 were derived
as polarimetric subsets and thus are not affected by temporal variations. Feature abbreviations are
as follows (see Table 2): ENT (Entropy), ALPT (polarimetric Alpha scattering angle of Coherency
Matrix), ALPC (polarimetric Alpha scattering angle of Covariance Matrix), HH/VV/VH (PolSAR
Channels), DBL3 (double bounce of the Yamaguchi et al. Decomposition [27]), VOL3 (volume
scattering of the Yamaguchi et al. Decomposition), ODD3 (surface scattering of the Yamaguchi et al.
Decomposition), K0–K9 (elements of the Kennaugh Matrix [31]), VOL2 (volume scattering of [30]),
GRD2 (ground scattering of [30]), DBL2 (double bounce of [14]), ODD2 (surface scattering of [14]).

2.3. Correlation, Class Separability, and Feature Selection

The correlations between the above listed decomposition features were examined using the
dB-scaled sigma nought intensity values of the calibrated data, where applicable. Correlations were
estimated using a random sample of 50,000 points over land (see Section 2.2.1. Land Cover Reference);
thus values and analyses were completed independent of the land cover classes of interest. The squared
linear Pearson Correlation Coefficient (R2) was used in all cases. The coefficient R2 is defined as the
squared ratio between the covariance (Cov) of two variables (i;j) and the product of the individual
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standard deviations (σiσj) (10). R2 is frequently used to quantify the degree of determination between
two variables, though still can be interpreted as a coefficient that quantifies the correlation. R2 ranges
from zero to one; a value of one (zero) indicates perfect (no) linear correlation and a maximum
(minimum) determination, 100% (0%) of the explained variance, respectively [45].

R2 =

(
Cov(i, j)

σiσj

)2

(10)

All PolSAR data were then used in separability analyses to quantify the ability of the polarimetric
information to discriminate the land cover classes considered in this research. The Transformed
Divergence (TD) (11) [45,46], Bhattacharyya Distance (BD) (12) [47], and Jefferys Matusita Distance (JD)
(13) [45,46] were processed for each PolSAR feature space and each wavelength for all land cover
classes [47]. The features are processed for two classes c and d by assessing the classes’ mean vectors
M (14) and the classes’ covariance matrix V (15) for a given set of features (as a minimum, two features
are required). In the formula tr denotes the trace of a matrix, formula det denotes the determinant of
a matrix, T refers to the matrix/vector transpose, and Cov denotes the covariance. The separability
features TD and JD have been shown to act as meaningful predictors for classification potential, thus a
high separability indicates greater potential for class discrimination [48,49].
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The metrics TD and JD can further be used for feature selection in order to identify those that are
most meaningful for class separation among a given set of features. This can be achieved by calculating
the increase in separability (SI) (16): displayed as the amount of separability (SP) that is gained
when a feature of interest (x), e.g., K0, is added to an existing feature space (K). The average increase
in separability can be processed by averaging the SI values of each possible feature combination,
e.g., the increase in separability when K0 is added to {K1, K2} or {K1, K3} or . . . , {K1, K2, K3} or
{K1, K2, K4} or . . . , {K1, K2, K3, K4} or {K1, K2, K3, K5} or . . . , and so on.

SIX = SP{x∪K} − SP{K} (16)

The separability metrics were employed to demonstrate the differences between the PolSAR
features, to gauge their use in classification, and to determine which land cover classes can be separated
with the PolSAR features. All of the investigated separability distances require normally distributed
data, or at least symmetrically distributed data. Such symmetric distribution properties can be assumed
for most of the investigated features.
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3. Results

3.1. Corrleation

Correlations among the decomposition features of dual- and quad-polarized data were
investigated prior to the assessment of the backscatter characteristics of the land cover classes and
the separability of classes. The squared Pearson Correlation Coefficient (R2) was derived using the
50,000 randomly distributed samples on land, and which represented 10% of all land pixels inside the
common coverage of the TSX, ALOS, ALOS-2 and R-2 imagery. Results were drawn as correlation
matrices for the features of C-Band data of R-2 in Figure 3, for features of L-Band data of ALOS-2
in Figure 4.

For C-Band data (Figure 3), it was observed that Kennaugh Matrix elements K4, K5, K6, K7,
K8 and K9 of the quad-polarized data showed the lowest correlations among all other investigated
decomposition features. An explanation for this is that the Kennaugh elements usually are uncorrelated,
and that the elements K5 to K8 are phase-based elements, which are more or less stochastically
fluctuating over natural targets [31]. The R2 values were less than 0.4 with the exception of K4 and
K7. These features were highly correlated with K4 and K7 of HH/VV-polarized data (R2 values of
about 0.9). This high degree of correlation is because K4 holds the relation of HH to VV, which is
not kept in other decompositions, and the same applies for K7. As well, the correlations between
K5 and K5 of HH/HV and VV/VH were moderately high (R2 values of about 0.6). Similarly, the R2

values of K8 and K6 of HH/HV and VV/VH were around 0.5. The reason for these observations are
most likely the similar polarimetric behavior (diagonal diattenuation [31]) only with different input
channels (HH/HV and VV/VH, respectively).

The same observations were made for the L-Band data of ALOS-2 (Figure 4); however, correlations
between the Kennaugh Matrix elements K4, K5, K6, K7, K8 and K9 of quad-, HH/VV-, HH/HV- and
VV/VH-polarized data were generally higher. For example, correlation between K7 of quad-polarized
Kennaugh Matrix and K3 of HH/VV-polarized Kennaugh Matrix showed R2 values of about 0.5.
Among the Kennaugh Matrix elements K0, K1, K2 and K3 of quad-, HH/VV-, HH/HV- and
VV/VH-polarized data, the following distinct linear correlations were observed: K0 of quad- and
HH/VV-polarized Kennaugh Matrix showed R2 values greater than 0.9 in the C- and L-Band; K3 of
quad- and HH/VV-polarized Kennaugh Matrix showed R2 values greater than 0.8 in the C- and
L-Band; K0 of quad-, HH/HV- and VV/VH-polarized Kennaugh Matrix showed R2 values greater
than 0.8 in the C- and L-Band. Again the correlations between the Kennaugh Matrix elements of quad-,
HH/VV-, HH/HV- and VV/VH-polarized data were generally higher in the L- than in the C-Band.
Thus, most likely the L-Band data is more “stable” in a polarimetric sense due to a longer wavelength.
Further, the high correlation of K0 of quad- and HH/VV-polarized Kennaugh Matrix is present since
HH and VV record the vast majority of backscatter, while the HV contribution is negligible.

Among the model-based (power) decomposition features of quad- and HH/VV-polarized data,
good correspondence between the DBL3 and DBL2 (R2 values of about 0.8), the ODD3 and ODD2
(R2 values of about 0.7), the VOL3 and VOL2 (R2 values of about 0.7 (L-Band) and 0.4 (C-Band)) and
the ODD3 and GRD2 (R2 values of about 0.8 (L-Band) and 0.6 (C-Band)) was observed for both C- and
L-Band data. The R2 values between any of the model-based (power) decomposition features and
any other polarimetric feature were lower than these observations, with the exception of VOL3 and
HV showing R2 values of about 0.95 (C- and L-Band). The reason for this observation can be seen
in the low proportion of volume scattering for the tundra environment, making the influence of the
cross-polarization component negligible, and decomposition features of quad- and HH/VV-polarized
data highly correlated.

With respect to the Eigen-decomposition features, ENT and polarimetric Alpha scattering angles
(ALPT/ALPC) were highly correlated between the ENT and the ALPT of HH/VV-polarized data,
and this was true for both C- and L-Band (R2 values of about 0.7). Additionally, ENT and ALPT
were highly correlated with each other, with R2 values of about 0.7–0.8 (quad- and HH/VV-polarized
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data) and ENT and ALPC were moderately correlated with R2 values of about 0.4–0.5 (HH/HV- and
VV/VH-polarized data).

This is most likely because most reflection is recorded in HH and VV intensities, making their
contributions higher than the intensities of HV or VH. This leads to a high correlation between the
HH/VV- and quad-polarized decomposition features.

In summary, this assessment indicated that Kennaugh Matrix elements K0, K1, K3, K4 and K7
of quad- and HH/VV-polarized data of C- and L-Band were highly correlated and thus can be used
interchangeably in some cases, e.g., for image classification. The Kennaugh Matrix elements K5 and
K6 of quad- and cross-polarized data showed lower correlation coefficient values. The correlation was
generally higher in the L-band, compared to the C-Band, which is likely a result of less interaction
between the incident wave and the vegetation body of the long L-Band microwaves; less volume
scattering occurs.

3.2. Backscatter Characterisics

Figure 5 provides boxplots—showing the minimum, lower quartile (25%), median (50%), upper
quartile (75%), maximum—of the land cover classes (see Table 2) for select polarimetric features of
X-Band (TSX), C-Band (R-2) and L-Band (ALOS and ALOS-2). Figure 5a–i display the backscatter
characteristics of the land cover classes concerning the HH, HV and VV sigma nought intensities in
decibels (dB). Figure 5j–o shows the information of the model-based (power) decomposition features
of the Yamaguchi Decomposition of C-Band (R-2) and L-Band (ALOS-2) as DBLB3, VOL3 and ODD3;
in dB. Figure 5p–x shows the boxplots of the land cover classes for the Kennaugh Matrix elements
K0, K3 and K4 of HH/VV-polarized X-Band (TSX), quad-polarized C-Band (R-2) and quad-polarized
L-Band (ALOS-2) data in dB.

The class OL showed a unique range of intensity values in the K0 and VV of X- and C- Band,
the VOL3 and ODD3 of C-Band, and the K4 and HV of X-, C- and L-Band data. The scattering
differences between water and land were clearly pronounced, as water was generally characterized by a
low intensity value. This is because water surface was relatively calm, thus it was not observed as rough;
the shallow angle incidence angles of the X- and C-Band data, and the longer wavelength of the L-Band.
If the water surface were to become rough due to higher wind speeds, higher intensity values of K0
would be observed, thus complicating the separation of the classes. In such cases it is assumed that K3
and K4 will still be suitable to separate land from water, since both are indicators for double bounce
scattering, typically minimal for water. Further, BS and BM showed increased HH, VV, HV, DBL3 and
ODD3 scattering at C- and L-Band compared to other classes. The range of values observed for the BW
class was more unique for L-Band features, than X- and C-Band features. The most distinct values were
for L-Band VOL3; as the BW’s median value exceeded +5 dB, compared to the median value of all other
land cover classes. Scattering from BW at L-Band is therefore characterized by high intensity values for
HH, VOL3 and ODD3, with medians of about −10 dB and −7 dB; whereas at C-Band the scattering from
BW is characterized by high HH and ODD3 intensities. The median intensity of BW is comparably low
in X-Band HH and differences of BW’s statistics to BS and HT are less pronounced. Thus, independent
of wavelength and decomposition technique, the data were sensitive to scattering differences between
land and water (OL), and between sandy bare ground (BS) and mixed non-vegetated sediment (BM).
BM had higher backscatter than BS, which can be attributed to the higher surface roughness of BM (grain
sizes of 2.0 mm–256.0 mm) compared to BS (grain sizes of 0.0625 mm–2.0 mm), which leads to higher
backscatter intensities.The difference between HT and ST scattering is characterized by increased HV,
VOL3, and K0 intensities at X- and C-Band; however, there is substantial overlap in their distributions
and the differences between median values were small; ranging from +2 dB (X-Band HV) to +3 dB
(C-Band VOL3) between HT and ST. The largest differences in HT and ST statistics were nevertheless
found for VOL3 of the C-Band data, but the data ranges of HT and ST (lower quantile to upper quantile)
also overlap the ranges of BM, BW, WI and WT. Therefore, the X- and C-Band showed higher volume
scattering intensities from shrub dominated tundra (ST) compared to herb dominated tundra (HT). This
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is likely due to a higher proportion of volume scattering in the shrub plants, which is caused by the
relatively short wavelength. Contrarily, the L-Band HV and volume scattering intensities (VOL3) were
not sensitive to this difference.

 

Figure 5. Boxplots (minimum, lower quartile (25%), median (50%), upper quartile (75%), maximum)
of (a–i) the polarimetric channels (HH/HV/VV) of TSX, R-2, ALOS and ALOS-2; (j–o) Yamaguchi
Decomposition features (DBL3/VOL3/ODD3) of R-2 and ALOS-2; (p–x) Kennaugh Matrix elements
(K0/K3/K4) of TSX, R-2 and ALOS-2 for the land cover classes OL (Permanent Water Bodies),
BS (Sand), BM (Mixed Sediment), BW (Driftwood Accumulation), HT (Herb Dominated Tundra),
ST (Shrub Dominated Tundra), WI (Inundated Low Lying Tundra) and WT (Wetland) (see Table 2).
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The L-Band HV channel and the volume scattering intensity of the Yamaguchi decomposition
showed the same median values and comparable data ranges (lower to upper quantile) for these two
land cover classes. At L-Band, the difference between HT and ST was better expressed via the VV
channel, and the surface scattering intensity of the Yamaguchi decomposition via lower intensities of
the ST compared to HT. This indicates an absence of volume scattering processes and a full penetration
of the vegetation by the L-Band microwaves. Assuming that this observation is not caused by temporal
variations present in the ALOS-2 data—which were acquired in 2016, while C-, X-Band and the
land cover reference data were acquired in 2010/2011, the signal can be interpreted to represent
backscattering mostly from the ground, as it is assumed that major changes in land cover type present
have not occurred in this time.

The differences between the land cover classes WI and WT were characterized by increased DBL3,
K0, HH and VV scattering in X- and C-Band and by K3 in X-, C- and L-Band. The statistics of WT
showed a clear separation from the other land cover classes in the DBL3 and K3 of C-Band and the HH
and K3 of X-Band. The difference between the WT’s median value and the median value of any other
land cover class exceeded +5 dB in the X-Band HH and C-Band DBL3. The differences between wetland
(WT) and inundated low-lying tundra (WI) was observed as higher HH and VV intensities—and the
Kennaugh Matrix element K4 accordingly—in X- and C-Band and the double bounce intensity of the
Yamaguchi decomposition. Further, both classes were characterized by comparably low values of the
Kennaugh Matrix element K3, which points to distinct double bounce scattering, since �

(
SHHS∗

VV
)

is a known discriminator for this type of scattering (compare [27,31]). In contrast, both classes
showed low intensities in the HH, VV and double bounce of the Yamaguchi decomposition at L-Band.
Accordingly, K3 and K4 were less distinct and no double bounce scattering was present, when using the
L-Band, which again is most likely due to the relatively short statured vegetation, the high penetration
depth, and the absence of interactions between incident microwaves and the water surface and
vegetation canopy.

In addition to the boxplots, Figure 6 shows scatterplots of the Kennaugh Matrix elements K0,
K3 and K4 of X-, C- and L-Band data in order to investigate the scattering characteristics of the land
cover classes in a multivariate feature space. Figure 6a–i shows the position of the land cover reference
in the K0/K3 (left column), K0/K4 (center column) and K3/K4 (right column) feature spaces of X-Band
(a–c), C-Band (d–f) and L-Band (g–i). These results show that the feature space K0/K3 of X-and C-Band
facilitates the differentiation of the classes: OL, BS and WT; however, the position of values for BM,
HT, ST and WI were indiscriminant from others. The feature space K0/K4 (Figure 6b,e,h) shows
increased distance between samples of HT/ST and WI—especially at X-Band; however, a substantial
degree of overlap between the samples of BM and BW, and the samples of HT, ST and WI was present.
K0 provided the best separation between land cover classes at X-Band, C-Band, and L-Band. This is
unsurprising since K0 of X- and C-Band showed a high positive linear correlation (R2 of 0.8) (Figure 6j).
The combination of short- and longwave SAR facilitated the separation of the WI, BM and BW samples,
and the features of X-/C- and L-Band showed no linear correlation (R2 less than 0.1) (Figure 6k,l).
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Figure 6. Scatterplots of the land cover classes OL (Permanent Water Bodies), BS
(Sand), BM (Mixed Sediment), BW (Driftwood Accumulation), HT (Herb Dominated Tundra),
ST (Shrub Dominated Tundra), WI (Inundated Low Lying Tundra) and WT (Wetland) (see Table 2)
for: (a–c) Kennaugh elements K0/K3/K4 of HHVV-polarized X-Band (TSX); (d–f) Kennaugh elements
K0/K3/K4 of quad-polarized C-Band (R-2); (g–i) Kennaugh elements K0/K3/K4 of quad-polarized
L-Band (ALOS-2); (j–l) Kennaugh element K0 of TSX, R-2 and ALOS-2. In the figure title the
Root-Means-Square-Error (RMSE) and the squared Linear Pearson Correlation Coefficient (R2)
are drawn.

In summary, the X-, C- and L-Band data exhibit distinct scattering characteristics for the different
land cover classes. All PolSAR data were sensitive to the OL, BS and BM coverage; additionally, L-Band
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data were most sensitive to the BW. The X- and C-Band features were suited to pronounce differences
in WI and WT, and HT and ST coverage via the features HV, VOL3, DBL3, K0 and K3.

3.3. Class Separability and Feature Selection

Multivariate assessment was completed for all feature spaces of the decomposition elements
of dual- and quad-polarized X-, C- and L-Band datasets. The separabilities between classes (for the
feature spaces of interest) were quantified for all possible combinations of variables (41) using the
Transformed Divergence (TD) (Table 4) and the squared Jefferys Matusita Distance (JD) (Table 5).
The feature spaces were ranked in descending order based on the average separability (AV) by the
feature space of interest. For the purpose of comparison the tables also list separabilities achieved with
the multispectral Landsat TM data using the six spectral bands (thermal information was excluded).

Results showed that the quad-polarized Kennaugh Matrices of ALOS-2 and R-2 offered the best
separation of all land cover classes, followed by the HH/VV-polarized Kennaugh Matrices of ALOS-2,
R-2 and TSX. The separability distances TD and JD further indicated that AV of ALOS-2 was comparable
to the AV offered by multispectral data. As well, among the different PolSAR decompositions, the use
of all Kennaugh Matrix elements was more beneficial for class separation than using the features of the
model-based (power) Decompositions, Eigen-decompositions, or the intensities of the polarimetric
channels. For C- and L-Band it was further observed that TD and JD of the Kennaugh Matrix decreased
from quad-, to HH/VV-, to VV/VH- to HH/HV-polarized data.

For X-Band it was observed that TD and JD of the Kennaugh Matrix decreased from HH/VV- to
HH/HV-polarized data. The separability of the Eigen-decomposition features ENT, ALPT or ALPC
and ANI was low, and these feature spaces, as indicated by JD, offered the lowest separability between
classes among all investigated feature spaces; independent of the wavelength (X-, C- or L-Band).
With HH/VV-polarized data, the high correlation of Entropy and the Alpha scattering angles was
observed by others [50], though. Another reason for this might be the lack of diversity of scattering
processes in this rather “bare” landscape, thus the Entropy/Alpha feature space remains “unfilled” to a
certain degree. Specifically, the tundra landscape examined in this research, offers a minor depolarizing,
and low entropy environment.

The separability distance JD further outlined that the average class separability decreased from
ENT/ALPT/ANI (quad) to ENT/ALPT (HH/VV) to ENT/ALPC (VV/VH) to ENT/ALPC (HH/HV).
This might simply be a function of intensity, which decreased from quad to HH/VV to VV/VH to
HH/HV, since with lower intensities there is also lower information content. Among the land cover
classes the classes OL, BS, BW and WT were shown to be the land cover classes with the highest average
separability, thus the PolSAR data were especially suited to characterize these classes. The lowest
average separability was observed for the land cover classes BM and WI, while separability of HT and
ST was moderately high.

Table 6 draws the average increase of the separability features TD and JD for the ten elements of
the quad-polarized Kennaugh Matrices (K0–K9) of C-Band (left column) and L-Band (right column)
data. This assessment indicates that the average increase in separability when a feature of interest
(K0–K9) is added to an existing feature space. This metric was used to identify the most important
elements of the Kennaugh Matrix for class separation. For both C- and L-Band it was observed
that K0, K1, K2, K3 and K4 were more important for class separation than K5, K6, K7, K8 and K9.
An explanation for this observation is that K0, K1 and K2 are intensity-based elements and are thus
value are generally stable. K3 and K4 also use the cross-polarized intensity and the co-polarized
phase, and are therefore relatively stable as well. Contrarily, K5, K6, K7, K8 and K9 are phase-based
elements and therefore generally unstable in natural environments. With respect to the Coherency
Matrix, K0 to K4 explain the diagonal elements which can be associated with dominant scattering
processes, including: surface, double bounce and volume scattering. Hence (K5–K9, representing the
off-diagonal elements of the Coherency Matrix, have minor relevance for the class separability.
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Table 4. Average class separability measured as Transformed Divergence (TD) for classes OL
(Permanent Water Bodies), BS (Sand), BM (Mixed Sediment), BW (Driftwood Accumulation),
HT (Herb Dominated Tundra), ST (Shrub Dominated Tundra), WI (Inundated Low Lying Tundra) and
WT (Wetland) (see Table 2). TD is ranging from 0 to 2000; higher values indicate better class separation.
The feature spaces are ranked in descending order of the average separability (AV). The black bars are
scaled linearly between the minimum and maximum of AV. The colors from red to yellow to green
correspond to the 10%, 50% and 90% quantiles of the AV.

# SENSOR POL. FEATURES OL BS BM BW HT ST WI WT AV
1 ALOS-2 quad K-Matrix 2000 1990 1963 1999 1999 2000 1973 2000 1991
2 Landsat TM n/a (Band 1-5 & 7) 2000 1925 1925 2000 1993 1921 1926 2000 1961
3 ALOS-2 HHVV K-Matrix 2000 1763 1593 1952 1930 1868 1849 1881 1854
4 R-2 quad K-Matrix 2000 1993 1640 1908 1680 1731 1782 1999 1842
5 ALOS-2 quad HH/HV/VV 2000 1550 1439 1929 1796 1766 1817 1636 1742
6 ALOS HHHV K-Matrix 2000 1681 1516 1914 1645 1717 1652 1740 1733
7 ALOS-2 VVVH K-Matrix 2000 1521 1394 1961 1743 1621 1736 1661 1705
8 TSX HHVV K-Matrix 1998 1934 1447 1574 1464 1605 1620 1966 1701
9 ALOS-2 quad DBL3/VOL3/ODD3 1999 1433 1353 1938 1787 1685 1696 1558 1681
10 ALOS-2 HHHV K-Matrix 2000 1381 1334 1951 1838 1675 1514 1556 1656
11 ALOS-2 VVVH VV/VH 1999 1384 1265 1929 1680 1582 1657 1520 1627
12 R-2 HHVV K-Matrix 1998 1805 1282 1671 1306 1395 1442 1982 1610
13 TSX HHHV K-Matrix 2000 1677 1320 1566 1488 1554 1311 1891 1601
14 ALOS-2 HHHV HH/HV 1995 1318 1211 1898 1727 1628 1538 1428 1593
15 R-2 quad DBL3/VOL3/ODD3 1992 1875 1206 1529 1320 1633 1288 1893 1592
16 ALOS-2 HHVV DBL2/ODD2 1997 1315 1177 1871 1745 1580 1465 1486 1579
17 ALOS-2 HHVV VOL2/GRD2 1995 1292 1188 1829 1770 1615 1433 1491 1577
18 ALOS HHHV HH/HV 2000 1464 1249 1848 1410 1609 1349 1605 1567
19 TSX HHVV HH/VV 1995 1883 1302 1289 1340 1530 1340 1848 1566
20 TSX HHHV HH/HV 1998 1657 1268 1401 1418 1485 1261 1844 1542
21 ALOS-2 HHVV HH/VV 2000 1401 1073 1562 1469 1462 1582 1476 1503
22 R-2 quad HH/HV/VV 1996 1865 1134 1459 1317 1464 1219 1561 1502
23 R-2 HHHV K-Matrix 1997 1849 1057 1362 1240 1429 1062 1560 1445
24 TSX HHVV DBL2/ODD2 1995 1834 1046 1151 1187 1327 1030 1747 1415
25 R-2 HHVV DBL2/ODD2 1991 1755 984 1332 1136 1139 1031 1742 1389
26 TSX HHHV ENT/ALPC 1980 1344 1164 1218 1422 1308 1279 1390 1388
27 R-2 HHHV HH/HV 1994 1844 970 1322 1221 1378 969 1334 1379
28 TSX HHVV VOL2/GRD2 1990 1811 1009 1009 1082 1235 983 1899 1377
29 ALOS-2 quad ENT/ALPT/ANI 2000 1097 1001 1541 1339 1486 1245 1306 1377
30 R-2 VVVH K-Matrix 1990 1790 930 1060 1083 1327 1115 1535 1354
31 R-2 VVVH VV/VH 1985 1803 882 1077 1100 1321 1076 1377 1328
32 R-2 HHVV HH/VV 1989 1672 970 1230 1087 1143 1051 1439 1322
33 R-2 HHVV VOL2/GRD2 1988 1729 909 1148 1075 1023 948 1573 1299
34 ALOS-2 HHVV ENT/ALPT 2000 997 862 1426 1255 1281 1036 1264 1265
35 ALOS-2 VVVH ENT/ALPC 2000 923 841 1763 868 979 1312 1152 1230
36 R-2 quad ENT/ALPT/ANI 1436 959 896 1110 1043 1241 1119 1924 1216
37 R-2 HHVV ENT/ALPT 1433 794 800 852 810 1009 1060 1911 1084
38 TSX HHVV ENT/ALPT 1016 764 738 1234 807 830 1385 1788 1070
39 ALOS HHHV ENT/ALPC 1445 1016 722 1123 877 840 875 1546 1056
40 ALOS-2 HHHV ENT/ALPC 1580 814 599 1232 920 751 716 1019 954
41 R-2 VVVH ENT/ALPC 1291 721 567 681 915 1131 849 914 883
42 R-2 HHHV ENT/ALPC 571 593 489 1058 838 1133 493 1092 784
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Table 5. Average class separability measured as squared Jefferys Matusita Distance (JD) for classes
OL (Permanent Water Bodies), BS (Sand), BM (Mixed Sediment), BW (Driftwood Accumulation),
HT (Herb Dominated Tundra), ST (Shrub Dominated Tundra), WI (Inundated Low Lying Tundra) and
WT (Wetland) (see Table 2). JD is ranging from 0 to 2; higher values indicate better class separation.
The feature spaces are ranked in descending order of the average separability (AV). The black bars are
scaled linearly between the minimum and maximum of AV. The colors from red to yellow to green
correspond to the 10%, 50% and 90% quantiles of the AV.

# SENSOR POL. FEATURES OL BS BM BW HT ST WI WT AV
1 ALOS-2 quad K-Matrix 2.00 1.96 1.90 1.98 1.98 1.98 1.95 2.00 1.97
2 Landsat TM n/a (Band 1-5 & 7) 2.00 1.91 1.84 2.00 1.94 1.83 1.83 2.00 1.92
3 R-2 quad K-Matrix 2.00 1.97 1.57 1.86 1.61 1.67 1.69 1.99 1.80
4 ALOS-2 HHVV K-Matrix 1.99 1.51 1.31 1.82 1.69 1.60 1.64 1.64 1.65
5 TSX HHVV K-Matrix 1.97 1.86 1.33 1.51 1.39 1.52 1.46 1.87 1.61
6 ALOS HHHV K-Matrix 1.90 1.32 1.31 1.82 1.43 1.50 1.40 1.60 1.53
7 R-2 HHVV K-Matrix 1.97 1.68 1.22 1.58 1.24 1.32 1.31 1.95 1.53
8 ALOS-2 quad HH/HV/VV 1.99 1.33 1.13 1.80 1.44 1.45 1.66 1.43 1.53
9 TSX HHVV HH/VV 1.96 1.79 1.20 1.25 1.26 1.45 1.20 1.76 1.48
10 ALOS-2 quad DBL3/VOL3/ODD3 1.95 1.21 1.06 1.81 1.40 1.42 1.54 1.38 1.47
11 ALOS-2 VVVH K-Matrix 1.92 1.23 1.08 1.82 1.40 1.34 1.43 1.44 1.46
12 TSX HHHV K-Matrix 1.96 1.55 1.07 1.39 1.27 1.41 1.16 1.80 1.45
13 R-2 quad DBL3/VOL3/ODD3 1.94 1.68 1.09 1.44 1.16 1.45 1.17 1.67 1.45
14 ALOS-2 HHHV K-Matrix 1.89 1.17 1.06 1.84 1.49 1.37 1.29 1.40 1.44
15 R-2 quad HH/HV/VV 1.97 1.70 1.07 1.35 1.20 1.37 1.15 1.49 1.41
16 TSX HHHV HH/HV 1.95 1.52 1.00 1.29 1.23 1.38 1.13 1.76 1.41
17 ALOS HHHV HH/HV 1.85 1.14 1.08 1.73 1.23 1.40 1.18 1.48 1.39
18 ALOS-2 VVVH VV/VH 1.96 1.10 0.96 1.75 1.27 1.28 1.47 1.29 1.39
19 R-2 HHHV K-Matrix 1.97 1.65 0.99 1.30 1.15 1.33 0.98 1.46 1.35
20 ALOS-2 HHVV DBL2/ODD2 1.93 1.05 0.92 1.69 1.29 1.25 1.23 1.29 1.33
21 R-2 HHVV DBL2/ODD2 1.93 1.59 0.96 1.28 1.09 1.07 0.99 1.71 1.33
22 TSX HHVV DBL2/ODD2 1.94 1.74 0.93 1.12 1.12 1.21 0.88 1.63 1.32
23 ALOS-2 HHHV HH/HV 1.86 1.05 0.89 1.76 1.30 1.26 1.28 1.17 1.32
24 ALOS-2 HHVV VOL2/GRD2 1.87 1.02 0.89 1.67 1.31 1.25 1.16 1.23 1.30
25 R-2 HHHV HH/HV 1.96 1.64 0.91 1.21 1.11 1.28 0.91 1.27 1.29
26 TSX HHVV VOL2/GRD2 1.93 1.71 0.88 0.95 1.03 1.13 0.84 1.75 1.28
27 R-2 HHVV HH/VV 1.96 1.56 0.94 1.20 1.05 1.07 1.03 1.39 1.28
28 ALOS-2 HHVV HH/VV 1.96 1.09 0.87 1.32 1.15 1.17 1.40 1.17 1.27
29 R-2 VVVH K-Matrix 1.91 1.56 0.88 1.01 1.02 1.25 1.04 1.44 1.26
30 ALOS-2 quad ENT/ALPT/ANI 2.00 0.93 0.89 1.40 1.20 1.29 1.13 1.16 1.25
31 R-2 VVVH VV/VH 1.90 1.54 0.84 1.00 1.01 1.26 1.01 1.32 1.23
32 R-2 HHVV VOL2/GRD2 1.93 1.57 0.86 1.09 1.02 0.96 0.88 1.48 1.22
33 ALOS-2 HHVV ENT/ALPT 1.99 0.83 0.77 1.27 1.10 1.09 0.95 1.14 1.14
34 TSX HHHV ENT/ALPC 1.85 0.94 0.83 0.95 1.02 0.96 0.94 1.16 1.08
35 ALOS-2 VVVH ENT/ALPC 1.92 0.76 0.73 1.47 0.76 0.86 1.14 0.99 1.08
36 R-2 quad ENT/ALPT/ANI 1.33 0.84 0.79 0.95 0.89 1.04 0.93 1.81 1.07
37 R-2 HHVV ENT/ALPT 1.36 0.73 0.73 0.77 0.74 0.88 0.88 1.80 0.99
38 TSX HHVV ENT/ALPT 0.83 0.60 0.63 1.02 0.61 0.62 0.84 1.57 0.84
39 ALOS HHHV ENT/ALPC 0.89 0.65 0.51 0.81 0.66 0.58 0.65 1.07 0.73
40 ALOS-2 HHHV ENT/ALPC 1.14 0.57 0.46 0.98 0.64 0.55 0.52 0.81 0.71
41 R-2 VVVH ENT/ALPC 1.05 0.48 0.45 0.51 0.73 0.89 0.69 0.75 0.69
42 R-2 HHHV ENT/ALPC 0.47 0.47 0.41 0.86 0.66 0.92 0.41 0.91 0.64

For C-Band it was further observed that K0 and K1 offered the highest increase for the separation
of ST, while for L-Band K1 and K3 were more important for the separation of this land cover class.
At C-Band, the information of K2 and K3 was beneficial for the separation of BW, WI and WT. The land
cover class HT was best characterized by the elements K0 and K2 at C-Band and K0, K1 and K3
at L-Band. This means that K0 (total backscattered intensity), K1 (absorption element showing the
difference between co- and cross-polarized intensities), K2 and K3 (absorption elements that describe
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the loss of polarization during the scattering process) and K4 (diattenuation element showing the
difference between HH and VV intensities) are good descriptors for the examined tundra land cover
classes. The elements K7, K8 and K9 (descriptors of the phase delay during the scattering in a certain
direction) play a minor role in the separation of classes, as phase delays happen during volume
propagation. Since tundra vegetation has a relatively short stature (height), phase delays due to
volume propagation are less likely.

Table 6. Average increase of the separability features: (a–b) Transformed Divergence (TD) and (c–d)
squared Jefferys Matusita Distance (JD) for Kennaugh-Matrix elements K0-K9 of quad-polarimetric
C-Band Radarsat-2 (left column) and L-Band ALOS-2 (right column) data and for classes OL
(Permanent Water Bodies), BS (Sand), BM (Mixed Sediment), BW (Driftwood Accumulation),
HT (Herb Dominated Tundra), ST (Shrub Dominated Tundra), WI (Inundated Low Lying Tundra) and
WT (Wetland) (see Table 2). The features are ranked in descending order of the average increase in
separability (AV). The last column displays the AV in percent (%) The colors from red to yellow to
green correspond to the 10%, 50% and 90% quantiles of the AV data range. The metric displays the
average increase in separability when a feature of interest (K0–K9) is added to an existing feature space
(see Section 2.3 Correlation, Class Separability and Feature Selection).

C-Band Radarsat-2   L-Band ALOS-2   
(a) Transformed Divergence (TD)  (b) Transformed Divergence (TD)  

  OL BS BM BW HT ST WI WT AV % OL BS BM BW HT ST WI WT  AV %
K0 100 193 150 183 226 168 186 82  161 49.8 K0 30 115 172 65 109 91 92 56  91 10.2
K2 99 129 137 143 182 129 224 163  151 48.8 K1 32 84 177 84 86 115 99 43  90 10.1
K3 90 107 133 170 111 128 152 123  127 39.2 K3 34 86 162 83 89 100 103 43  87 9.9
K1 100 207 101 90 117 173 162 37  123 35.6 K2 28 74 143 68 83 86 78 34  74 8.4
K4 97 92 63 116 61 73 118 19  80 28.2 K4 36 47 103 35 42 84 145 30  65 7.7
K9 2 10 63 92 34 37 45 23  38 5.0 K7 23 74 97 23 83 53 76 53  60 6.8
K7 1 14 29 32 30 22 45 94  33 4.9 K9 14 86 65 36 25 27 24 38  40 4.0
K5 5 11 52 49 29 22 37 36  30 4.8 K6 13 34 41 9 29 24 21 30  25 2.7
K8 6 12 19 49 32 23 21 36  25 4.4 K5 16 21 34 21 18 23 24 13  21 2.2
K6 2 7 16 46 27 13 14 11  17 2.3 K8 10 22 38 10 11 15 18 32  20 2.0

(c) Jefferys Matusita Distance (JD) (d) Jefferys Matusita Distance (JD)  
  OL BS BM BW HT ST WI WT AV % OL BS BM BW HT ST WI WT  AV %

K0 0.11 0.29 0.15 0.19 0.22 0.18 0.19 0.11  0.18 57.2 K3 0.09 0.16 0.24 0.14 0.16 0.16 0.20 0.13  0.16 18.3
K2 0.10 0.19 0.13 0.13 0.16 0.13 0.20 0.21  0.16 51.9 K0 0.07 0.18 0.24 0.09 0.20 0.15 0.17 0.14  0.16 17.6
K3 0.09 0.15 0.13 0.16 0.11 0.14 0.15 0.15  0.14 45.0 K1 0.09 0.15 0.24 0.12 0.17 0.16 0.17 0.12  0.15 17.0
K1 0.11 0.25 0.10 0.09 0.11 0.19 0.14 0.04  0.13 39.8 K2 0.06 0.13 0.22 0.10 0.15 0.14 0.15 0.10  0.13 14.8
K4 0.10 0.09 0.06 0.10 0.06 0.07 0.10 0.02  0.07 30.4 K4 0.14 0.09 0.13 0.04 0.08 0.11 0.21 0.07  0.11 14.2
K7 0.00 0.03 0.03 0.03 0.03 0.02 0.04 0.12  0.04 6.7 K7 0.05 0.11 0.12 0.04 0.14 0.11 0.14 0.13  0.11 13.0
K9 0.00 0.02 0.05 0.08 0.03 0.03 0.04 0.02  0.03 5.7 K9 0.03 0.10 0.07 0.04 0.04 0.04 0.03 0.08  0.06 6.2
K5 0.00 0.02 0.05 0.05 0.03 0.02 0.04 0.03  0.03 5.0 K6 0.03 0.07 0.06 0.02 0.06 0.05 0.04 0.08  0.05 5.3
K8 0.00 0.02 0.02 0.05 0.03 0.02 0.03 0.03  0.03 4.9 K8 0.02 0.04 0.05 0.02 0.03 0.03 0.03 0.09  0.04 4.3
K6 0.00 0.01 0.02 0.05 0.03 0.01 0.02 0.01  0.02 2.7 K5 0.03 0.04 0.05 0.04 0.04 0.04 0.03 0.03  0.04 4.0

In summary, the class separability assessment indicated that the use of the full Kennaugh-Matrix
is more beneficial than use of the model-based (power) Decompositions, Eigen-decompositions, or the
intensities of the polarimetric channels. L-Band, followed by C-Band and X-Band showed the best
separation concerning the different wavelengths. Using the PolSAR feature spaces was most beneficial
for the separation of the land cover classes OL, BS, BW and WT.

4. Discussion

Correlation analyses of the PolSAR features indicated that the quad-polarized Kennaugh
Matrix elements K0, K1, K3, K4 and K7 were highly correlated with corresponding elements of
the dual-polarized Kennaugh Matrices. As the dual-polarized Kennaugh matrix is a submatrix of
the full-polarized Kennaugh Matrix generated out of these elements, the elements are therefore
interchangeable and the dual-polarized data provide a substitute of the full quad-polarized data, at least
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for the tundra land cover investigated in this research. Contrary to this, the quad-polarized Kennaugh
Matrix elements K5 and K6 were less correlated to the corresponding elements of the cross-polarized
Kennaugh Matrix. Nevertheless, there are still benefits associated with the Kennaugh Matrix, since
all kinds of PolSAR data can be stored, processed and analyzed in the same manner. It also provides
a unified framework without any loss of information, and the capacity to interpret decomposed
elements in a coherent and incoherent way since any other incoherent or coherent scattering matrix
can be derived if necessary [31,42]. The Stokes coordinate system used for the definition of the
Kennaugh Matrix seems to offer an appropriate approach to characterize the environment investigated
in this research.

For the examined tundra land cover of the Tuktoyaktuk Peninsula, it was further shown that
the elements of the Two Component Decompositions of [14] and [30] were highly correlated with the
corresponding elements of the Yamaguchi Decomposition and—with lower significance—volume
scattering, and HV intensity, respectively. Thus, the HH/VV-polarized data provide crucial information
for describing the land covers considered in this research. As pointed out by [14], the correspondence of
these quad- and HH/VV-polarized decomposition features is a function of the presence and influence
of volume scattering processes, relative to contributions from the ground. Thus, due to the relatively
short stature (height) of tundra vegetation, the observed correlations were high due to a lack of a
significant volume scattering component. Further, the correlations between the features were generally
higher at L-Band, compared to features at C-Band. This can be attributed to the longer wavelength
of the ALOS and ALOS-2 sensors, and the absence/weakness of random scattering processes as the
penetration depth is higher and volume scattering is less likely (thus the volume component is small
relative to surface scattering).

The backscatter characteristics of the tundra land cover classes were examined via box- and
scatterplots of the individual PolSAR features. It was shown that X-, C- and L-Band data exhibit
distinct scattering characteristics for the different land cover classes. Results indicate that the L-Band
data were more sensitive to the bare ground classes; thus, it is better suited to investigate and monitor
ground properties, e.g., soil moisture, or the surface heave and subsidence (via InSAR) caused by
the freezing and thawing of the active layer (compare [17,20,21]); especially in sites dominated by
shrubs. In contrast, use of short wavelengths (X- and C-Band) is beneficial for characterizing tundra
and wetland vegetation. This observation is in accordance with other studies [9,12,15].

It is worth noting the clear distinction of the land cover class: driftwood accumulation (BW)
in the L-Band data. The coverage of BW is characterized by non-vegetated, dead woody debris,
and frequently such accumulations exhibit a very high surface roughness, since dead wood and
stems pile up more than a meter high (compare Figure 2c). Even though this should be a clearly
visible target, and distinct feature in the PolSAR data, the position of BW is less clear in the feature
spaces of X- and C-Band compared to the position of BW in the L-Band feature space. For BW the
highest HH and HV intensity values (derived from ALOS in 2010) were found among all land cover
classes. As well, the scattering from this type of coverage was characterized by high volume scattering
and double bounce intensities of the Yamaguchi decomposition (derived from ALOS-2 in 2016) at
L-Band. The dielectric and geometric properties of the driftwood accumulations facilitate high intensity
scattering at L-Band, thus this type of coverage is a “rough” target at L-band but not in C- and X-Band
(i.e., because the logs are much larger than incident C- and X-Band microwaves).

Even though the L-Band data showed limited value for characterizing the land cover classes HT,
ST and WT using a single feature, the ALOS-2 quad-polarized and HH/VV-polarized data offered
the feature space with the highest class separability; as indicated by the Transformed Divergence
(TD) and squared Jefferys Matusita Distance (JD). However, since the ALOS-2 data were acquired at
a steeper incidence angle and with a delay of six years, a true comparability of these results cannot
be guaranteed. These results are therefore surprising, since one would assume a change of the land
cover over time and an increasing dissimilarity between the reference and the PolSAR measurement
with increasing temporal difference. Still, the ALOS HH/HV-polarized data acquired in 2010 showed
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a fairly good separability (Rank 17 in JD, Rank 18 in TD), and the data were observed to be more
valuable for class separation than the C-Band (Rank 23 in JD, Rank 26 in TD), or X-Band (Rank 20 in
TD, Rank 16 in JD) HH/HV-polarized data.

All separability features indicated that the Kennaugh Matrix was the most favorable feature
space among all examined decompositions, which is in accordance with the expectation that full
PolSAR information is better suited for class separability than is available via Entropy/Alpha, or the
Two/Three Component Decomposition models, for instance. Among the Model-based Decompositions,
the Yamaguchi Decomposition of quad-polarized data exceeded the separability offered by the
Two Component Decomposition models. Thus, cross-polarized information is important for class
discrimination, even though volume scattering processes play a minor role for the tundra environment
investigated. Thus, perhaps differences in roughness/geometry play a more important role.

5. Conclusions

Results from this analysis indicate that the quad-polarized Kennaugh Matrix elements K0, K1,
K3, K4 and K7 were highly correlated with corresponding elements of the dual-polarized Kennaugh
Matrices; therefore, to a certain extent, dual-polarized data provide a useful substitute for the full
quad-polarized data. The Kennaugh Matrix offers a unified framework to store, process and analyze
PolSAR data in the same manner, and the Kennaugh elements offer comparable information from dual-
or quad-polarized data. Thus, there is nearly no difference between the two acquisitions modes when
using Kennaugh elements.

Among the investigated Model-based Decompositions and the Eigen-decompositions the features
of the Two Component Decompositions models of [14] (based on HH/VV dual-polarized data)
were highly correlated with the corresponding elements of the Yamaguchi Decomposition (based on
quad-polarized data). Independent of the wavelength and polarization mode, the Eigen-decomposition
features Entropy and the Alpha scattering angles were highly correlated and of less value for class
separation. Therefore, this approach does not seem suitable for this low depolarizing as well as low
entropy environment.

The X-, C- and L-Band data exhibit distinct scattering characteristics for the different land cover
classes. The PolSAR data of all wavelengths are sensitive to the land cover classes: open water (OL),
sand (BS) and mixed sediment (BM); L-Band data were most sensitive to the BW; X- and C-Band
features were most sensitive to the inundated low-lying tundra (WI) and wetland WT, and herb
dominated tundra (HT) and shrub dominated tundra (ST). The use of shorter wavelengths (X- and
C-Band) is beneficial for characterizing wetland vegetation. The L-Band data exhibited the differences
of the bare ground classes BS, BM and BW best. Thus, in accordance to previous studies L-Band data
are favorable for InSAR applications in this region, due to the observed distinct surface scattering
and the low volume scattering contribution. In contrast, C- and X-Band data are favorable for the
characterization of the tundra land cover due to the observed sensitivity of the cross- and co-polarized
information to tundra vegetation.

Nevertheless, the assessment of the class separability pointed out that PolSAR data of any
wavelength—also of L-Band—were valuable for class separation and PolSAR information is beneficial
for class discrimination. The results showed that quad-polarized data of ALOS-2 and R-2 offered the
best separation of the land cover classes, followed by the HH/VV-, HH/HV- or VV/VH-polarized
data of ALOS-2, R-2 and TSX. Further, full PolSAR information is better suited for class separation than
less diverse polarimetric feature spaces, like all dual-polarimetric measurements (HH/VV, HH/HV
or VV/VH). The Kennaugh Matrices offered the highest class separability among the investigated
decompositions, and among the ten elements of the quad-polarized C- and L-Band Kennaugh Matrix
the elements K0, K1, K2, K3 and K4 were found to be most valuable for class discrimination. This also
indicates that the phase-relation between HH and VV (K3, K4) provides crucial information for
separating the investigated tundra land cover classes, since it contains the distinction of surface
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from diplane scattering. Further, the intensity-based information of the elements K0, K1 and K2,
which explain the diagonal elements of the Coherency Matrix, are favorable for class discrimination.

In light of the results presented in this manuscript, future work should focus on investigating
the combined use of short- and long-wave PolSAR data, e.g., of C-/X-Band and L-Band. It is
anticipated that such multi-frequency data will provide complementary information useful for accurate
classification and the description of land surface parameters, as well as biophysical parameters of the
tundra vegetation. In this context, the combination of PolSAR information via a multi-sensor approach
seems very promising, since it will combine dielectric, and geometrical properties of the targets.

An interesting future question will be to also address the use of hybrid-polarimetric/
compact-polarimetric data that can be synthetically generated from quad-polarimetric data, also using
the Kennaugh Matrix approach [31]. The question will be how such data perform compared to quad-,
or dual-polarized data.

As well, the potential for land cover classification should be addressed, e.g., via the Random-Forest
approach that was shown to provide an interesting classification framework also for PolSAR
data [16,51]. In this context, upcoming studies should further acknowledge if the Random-Forest
approach is appropriate and essential for a successful PolSAR classification.

The inclusion of Sentinel-1 C-Band PolSAR data is another option, as the Interferometric
Wide-Swath mode provides large spatial coverage at high spatial resolutions, and the planned
continuity of the Sentinel SAR systems will offer the capacity to support long term monitoring
and consistent remote observations of Arctic land covers. However, as shown in this study the VV/VH
polarization mode, employed by Sentinel-1 over most parts of the Canadian Arctic, seems less suited
for characterizing of the tundra land cover classes; thus the use of a multi-frequency or multi-sensor
approach is advisable.

In summary, the SAR data of all wavelengths—also of the L-Band—were shown to provide
important information about the tundra environment and utilization of such remotely sensed
information is strongly recommended. PolSAR data provide unique information on dielectric,
and geometrical properties that can help to increase the information space. Whenever possible dual-
or quad-polarized data should be used, as polarimetry was shown to be of high value and importance.
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Appendix A

Definition of the Kennaugh Matrix and its elements for quad-polarized (A1), HH/VV-polarized
(A2) and HH/HV- or VV/VH-polarized data (A3) is reported in the following and based on [31].
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SXX and SYY refer to the complex signals of the co-polarized channels. SXY refers to the complex signal
of a cross-polarized channel.

Kquad =

⎡
⎢⎢⎢⎣

K0
K4

K4
K1

K5 K6
K9 K8

K5
K6

K9
K8

K2 K7
K7 K3

⎤
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(
|SXX|2 + 2|SXY|2 + |SYY|2

)
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(A3)

Conversion of Kennaugh Matrix to 3 × 3 Coherency Matrix (T) of quad-polarized (A4) and 2 × 2
T of HH/VV-polarized data (A5) is defined according to [31,42] as:

Tquad =

⎡
⎢⎣ T11 T12 T13

T21 T22 T23

T31 T22 T33

⎤
⎥⎦ =

=

⎡
⎢⎣ 0.5(K0 + K1 + K2 − K3) K4 − iK7 K5 + iK8

K4 + iK7 0.5(K0 + K1 − K2 + K3) K9 + iK6
K5 − iK8 K9 − iK6 0.5(K0 − K1 + K2 + K3)

⎤
⎥⎦ =

(A4)

THH/VV =

[
T11 T12

T21 T22

]
=

[
K0 − K3 K4 − iK7
K4 + iK7 K0 + K3

]
(A5)
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Abstract: Space borne synthetic aperture radar (SAR) data have become one of the primary sources for
aboveground biomass (AGB) estimation of forests. However, studies have indicated that limitations
occur when a single sensor system is employed, especially in tropical forests. Hence, there is potential
for improving estimates if two or more different sensor systems are used. Studies on integrating
multiple sensor systems for estimation of AGB over Malaysia’s tropical forests are scarce. This study
investigated the use of PALSAR-2 L-band and Sentinel-1A C-band SAR polarizations to estimates
the AGB over 5.25 million ha of the lowland, hill, and upper hill forests in Peninsular Malaysia.
Polarized images, i.e., HH–HV from PALSAR-2 and VV–VH from Sentinel-1A have been utilized to
produce several variables for predictions of the AGB. Simple linear and multiple linear regression
analysis was performed to identify the best predictor. The study concluded that although limitations
exist in the estimates, the combination of all polarizations from both PALSAR-2 and Sentiel-1A SAR
data able to increase the accuracy and reduced the root means square error (RMSE) up to 14 Mg ha−1

compared to the estimation resulted from single polarization. A spatially distributed map of AGB
reported the total AGB within the study area was about 1.82 trillion Mg of the year 2016.

Keywords: aboveground biomass; tropical forest; microwave sensor system

1. Introduction

Aboveground biomass (AGB) includes all vegetation above the ground (i.e., stems, branches,
bark, seeds, flowers, and foliage of live plants) and approximately 50% of its composition is carbon [1].
AGB usually measures in metric tons of dry matter per hectare (e.g., t ha−1 or Mg ha−1) or in metric
tons of carbon per hectare (e.g., t C ha−1 or Mg C ha−1). The United Nations Framework Convention
on Climate Change (UNFCCC) identified it as an Essential Climate Variable (ECV). Therefore, accurate
information on biomass stock in world forests is necessary to reduce uncertainties and to fill the
knowledge gaps of the climate system [2]. Further strong impetus to improve methods for measuring
global biomass comes from the reduction of emissions due to deforestation and forest degradation
(REDD) mechanism, which was introduced in the UNFCCC Committee of the Parties (COP-13) Bali
Action Plan. REDD which is now popular with REDD+ (with additional elements of carbon stock
enhancement and biodiversity conservation) is dedicated to the developing countries around the
world including Malaysia. Its implementation relies fundamentally on systems to assess available
carbon stock and monitor changes due to loss of biomass from deforestation and forest degradation [3],
which are amalgamated in a system called monitoring, reporting, and verification (MRV).

Remote sensing has been recognized as one of the primary spatial inputs for this process [4–6].
Satellite remote sensing technologies are currently widely tested and suggested as a tool in REDD+
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MRV. Along with scientific programs and field tests, there is also a debate as to the overall feasibility
and cost–benefit ratio of remote sensing approaches, depending on the wide range of ecosystem and
land use conditions as well as the range of approaches to carbon credit accounting [7].

In many parts of the world, especially in tropical region, the frequent cloud conditions often
restrain the acquisition of high-quality remotely sensed data by optical sensors. The acquisition
of cloud-free, wall-to-wall optical satellite images in tropical countries is almost impossible [8].
Thus, SAR data become the only feasible way of acquiring remotely sensed data within a given
timeframe because the SAR systems are independent of cloud coverage, weather, and light conditions.
Due to this unique feature compared with optical sensor data, the SAR data have been used extensively
in many fields, including forest-cover identification and mapping, discrimination of forest from other
land covers, and forest biomass estimation.

Previous studies demonstrated that the L-band polarimetry backscatter tends to saturate at certain
levels of biomass, and hence limits the accuracy of estimates [9–11]. However, the saturation level
varies with the type and structure of the forest. It was demonstrated that the sensitivity of SAR
polarimetry is depending on the structure, density, and tree elements (i.e., trunk/stem, branches,
and leaves) of the forests [12]. Other than these issues, several other inter-related issues can affect the
biomass estimations using remotely sensed data. These issues can be generalized into three major
groups, which are (i) the natural conditions of the forest, (ii) the forest management system being
practiced, and (iii) the technical issues related to the remote sensing system being used [13].

Short wavelength SAR sensors on board several satellites such as the Earth Resources Satellite
(ERS-1), Radarsat, and Environmental Satellite (Envisat) have been used to quantify forest biomass.
A number of studies have been conducted in relatively homogeneous or young forests, but the signal
tends to saturate at low biomass (100–200 Mg ha−1) [14–16]. However, L-band SAR has shown better
potential in retrieving the biomass of forests, including those in the tropics [17–21]. Recently, there has
been rising interest in integrating data from several SAR sensors and SAR with optical sensors to
improve the accuracy of biomass estimates [22,23].

In Malaysia, there are limited studies on the applications of SAR for estimating biomass. Out of
many studies conducted worldwide, very few have been done in Malaysia [11,24,25]. This indicates
that the potential, limitations, and advances of L-band SAR in estimating tropical forest in Malaysia
are not extensively explored. Methods of applying this SAR system are also scarcely exploited.
Therefore, the objective of this study is to explore the synergy of SAR sensors, i.e., PALSAR-2 L-band
and Sentinel-1A C-band for estimation of AGB in inland dry dipterocarp forest in Peninsular Malaysia.
This study highlights and discusses advantages and limitations of this technique.

2. Materials and Methods

2.1. The Study Area

The study area comprised lowland, hill, and upper hill dipterocarp forests, which are categorized
based on land altitude, i.e., <300, 300–750, and 750–1200 m, respectively. These forests are major,
occupying about 5,257,395 ha or about 89% out of the total forested land (i.e., about 5.9 million ha) in
Peninsular Malaysia. These forests occur within the entire Peninsular Malaysia, which has an extent
between 1–7◦ latitude and 99–105◦ longitude. These forests embrace all the well-drained primary forests
of the plains, undulating land, and foothills and hill terrain up to about 750 m altitude. Trees from the
family of Dipterocarpaceae are dominant species, which make the forests major timber production
areas in Peninsular Malaysia. Almost the entire area (i.e., 4.9 million ha) is categorized as Reserve
Forest which is meant for production and protection. About 1.98 million ha have been allocated for
protection forests in the form of national parks, wildlife sanctuaries, and nature reserves [26]. The most
common tree species found in this forest come from the genera such as Shorea, Hopea, Dipterocarpus,
Dryobalanops, Neobalacarpus, Anisoptera, and Vatica. The remaining forested land is comprised of
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peat swamp, mangrove, and montane forests. Figure 1 shows the distribution of major forest types in
Peninsular Malaysia.

Figure 1. Forest types in Peninsular Malaysia.

2.2. Satellite Datasets

2.2.1. Satellite Images Acquisition

The satellite datasets that have been used in this study came from two satellites, which are;
(i) Advanced Land Observing Satellite 2 (ALOS-2) that carries Phased Array type L-band Synthetic
Aperture Radar-2 (PALSAR-2) on-board and (ii) Sentinel-1A that carries C-band imaging SAR sensor.
Table 1 summarizes the properties of the data and Figure 2 shows both datasets that have been
processed and used in this study.

ALOS-2 is the successor of the ALOS, but the structure of the new satellite is quite different from its
predecessor. ALOS was launched in January 2006 and brought the Phased Array type L-band Synthetic
Aperture Radar (PALSAR) on-board. After five years of observations, it stopped transmitting in April
2011. ALOS-2 was then launched on 24 May 2014, which carried the PALSAR-2 sensor. PALSAR-2
is currently operating and producing L-band SAR data, that has similar (with some advancements)
characteristics with PALSAR. The data were acquired from Earth Observation Research Center (EORC)
under Japan Aerospace Exploration Agency (JAXA). The data was acquired under the Kyoto and
Carbon (K&C) Initiave, a research agreement between Forest Research Institute Malaysia (FRIM) and
JAXA, whereby FRIM has special permission to access the PALSAR-2 product at all imaging modes
and resolutions. JAXA also provides free access of PALSAR-2 mosaic product at 25-meter resolution
for public which is available at http://www.eorc.jaxa.jp/ALOS/en/PALSAR_fnf/data/index.htm.
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The SENTINEL-1 mission is the European Radar Observatory for the Copernicus joint initiative
of the European Commission (EC) and the European Space Agency (ESA). The SENTINEL-1 was
launched on 3 April 2014 and its mission operating in four exclusive imaging modes with different
resolution (down to 5 m) and coverage (up to 400 km). It provides dual polarization capability, very
short revisit times, and rapid product delivery. The Sentine-1A data was acquired in Level-1 Ground
Range Detected (GRD) format so that radar cross-section of both distributed and point targets can be
easily derived from the data. The data is available at https://scihub.copernicus.eu/dhus/#/home
and free to download.

Another satellite data that was used in this study was the digital elevation model acquired from
the Shuttle Radar Topography Mission (SRTM). This data was used to classify the forest into specified
elevation categories, according to the type of forests. It was also used for radiometric terrain correction
on both PALSAR-2 and Sentinel-1A images. These data are available at the US Geological Survey's
EROS Data Center for download at http://srtm.usgs.gov/index.html.

Table 1. Summary of satellite images used in this study.

Sensor Wavelength Date of Acquisition Mode/Polarization No. of Scene
Ground Resolution

(m)
Incidence Angle (◦)

PALSAR-2 C-band
(5.405 GHz)

Between March and
June 2016

Fine Beam Dual
(FBD)/HH, HV 52 6 29.1–46.0

Sentinel-1A L-band
(1.270 GHz) November 2016

Interferometric
Wide swath (IW)

VV, VH
8 9 37

Figure 2. Mosaics of (a) PALSAR-2 and (b) Sentinel-1A over Peninsular Malaysia, displayed HV and
VH polarizations, respectively.

2.2.2. Satellite Image Pre-Processing

PALSAR-2 images that were used in this study came in Level-1.5 product, which means the range
and multilook azimuth compressed data is represented by amplitude data. The range coordinates
were also converted from slant range to ground range, and map projection was performed.

Level-1 GRD consist of Sentinel-1A products consist of focused SAR data that has been
detected, multi-looked and projected to ground range using an Earth ellipsoid model such as WGS84.
The ellipsoid projection of the GRD products is corrected using the terrain height specified in the
product general annotation. The terrain height used varies in azimuth but is constant in range.
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Ground range coordinates are the slant range coordinates projected onto the ellipsoid of the
Earth. Pixel values represent detected magnitude. Phase information is lost. The resulting product
has approximately square resolution pixels and square pixel spacing with reduced speckle at a cost of
reduced geometric resolution. In addition, the GRD products have thermal noise removed to improve
the quality of the detected image.

Other than these processes, they are two important pre-processing stages, namely, speckle
suppression and radiometric terrain correction. Spatial domain Lee Sigma filter with a kernel size
of 7 × 7 pixels was used to remove speckle effect on the images. Digital Elevation Model (DEM)
acquired from SRTM was used to minimize terrain shadowing effect on the images. The presence
of this effect on SAR imagery was because the signal strengths were dependent on two variables,
which were incidence angle and surface roughness or topography of terrain. If slope is facing the SAR
transmitter, the signal will become stronger than the other side of the slope. Semi-empirical method
was used for radiometric terrain correction [27] and the processes were performed in ENVI/IDL
(Harris Corporation, Melbourne, Australia) following the same approach as found in Canty et al. [28].
This process was necessary to normalize both sides of the slopes and it minimized errors towards the
end of AGB prediction.

2.2.3. Satellite Image Calibration

The objective of SAR calibration is to provide imagery in which the pixel values can be directly
related to the radar backscatter of the scene. The PALSAR-2 image that was used in this study was built
on a 16-bit data type and all pixels have digital numbers (DN) ranging from 0 to 65,535. These DNs
however do not represent the radar signal of features or objects on the ground. Therefore, the DNs
have to be converted to backscatter (i.e., the returned radar signals) known as Normalized Radar Cross
Section (NRCS) and represented as σ0 in decibels (dB). The equation that was used for the calculation
of NRCS for PALSAR are slightly different from other sensors in that the usual sine term has already
been included in the DN values. Thus, for the products stored at Level 1.5 and above, the equation
for NRSC of any of the polarization component can be obtained by the following formula with single
calibration factor (CF), which can be expressed as follows [29].

σ0
dB = 10· log10

(
DN2

)
− 83 (1)

The Sentinel-1A product uses radiometric calibration look-up table (LUT) to do the calibration.
This was performed on Sentinel Application Platform (SNAP) tool, a software that was designed
specifically for Sentinel-1 products processing and it available for free at http://step.esa.int/main/
download/. The essential conversion of amplitude to DN and from DN to sigma nought were
done automatically on SNAP and once the sigma nought values was obtained, the computation of
backscatter (σ0

dB) can be performed as

σ0
dB = 10·log10σ0 (2)

2.3. Forest-Non-Forest Classification

Forest-non-forest (FNF) classification was performed on PALSAR-2 polarizations images to
delineate the forests from other land cover. This process is critical to define the boundary of forests
and to ensure that the estimated AGB did not include other types of vegetation. The reason was that
the forests are often confused with rubber, teak, and other timber tree plantations, which are common
in Peninsular Malaysia and they appear almost identical on both HH and HV polarizations. Instead
of using only the original backscatter HH and HV polarizations, an attempt has been also made to
derive other image variables derived from PALSAR HH and HV images. Image variables, namely (i)
simple band ratio (HH/HV), (HV/HH), (ii) average (HH + HV/2), and (iii) square root of products
(
√

(HH × HV)) were produced.
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The incorporation of texture measure also can improve classification of spatially distributed pixels
on an image. Gray-level co-occurrence matrix (GLCM) uses a gray-tone spatial dependence matrix to
calculate texture values. This is a matrix of relative frequencies with which pixel values occur in two
neighboring processing windows separated by a specified distance and direction. For this purpose,
texture has been defined as repeating pattern of local variations in image intensity which is too fine to
be distinguished as separate class at the observed resolution. Thus, a connected set of pixels satisfying
given gray-level properties which occur repeatedly in an image region constitute a textured region.
A mean-type GLCM was applied to the original HH and HV polarizations to produce textured images
with clearer definitions of the objects on the images [30].

These inputs were used for the FNF classification and the Maximum Likelihood Classifier
algorithms with nearest neighbor technique was applied. The forests were then further classified into
several forest types by using the DEM from SRTM.

2.4. Forest Survey Data

The sampling design in this study modified from the standard operating procedure (SOP) that
was developed by Winrock International [31], which follows the Intergovernmental Panel on Climate
Change (IPCC) standards [1]. A cluster comprises of four plots and the design is shown in Figure 3.
The plot was designed in circular with smaller nests inside. The biggest nest measures 20 m in radius,
followed by the smaller nests, measuring 12 and 4 m. The sizes of trees were measured according
to the nest sizes, which is summarized in Table 2. Depending on the nest size, it indicates that not
all stands were measured in a single plot. In additional to these nests, there is another small nest
measuring 2 m in radius, which is used to count saplings (i.e., trees measuring <10 cm in diameter at
breast height (dbh) and >1.3 m in height). Clustering of plots at each sampling unit was recommended
for natural forest areas and areas that have been selectively logged. The sampling system was designed
in such a way to make the data collection process easier and faster, but reliable and representative for a
particular forest stratum.

Figure 3. Layout of the sampling plot and sampling design of a cluster of sample.

A forest ecosystem normally has five terrestrial carbon pools, which are; (i) aboveground
living biomass, (ii) belowground living biomass, (iii) deadwood, (iv) non-tree vegetation and
litters, and (v) soil. However, one of the most significant carbon pools is aboveground biomass
as it the easiest and the most practical pool to assess, while being representative to an ecosystem.
Aboveground biomass comprises all the living components of a tree, including stems, branches, and
leaves. Allometric functions are the best way that AGB can be estimated. In this study, a published
allometric function for dry inland forest in Asia region was used to estimate the AGB of living trees [32].

AGB = [exp(−1.803 − 0.976E + 0.976ln(ρ) + 2.673ln(D) − 0.0299[ln(D)]2] (3)
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AGB denotes aboveground biomass (kg/tree), E represents bioclimatic variable, ρ is wood specific
gravity/wood density, and D is dbh.

Table 2. Summary of living trees measurement in a plot.

Nest Radius (m) Size Diameter at Breast Height, dbh (cm)

2 Sapling <5 cm (dbh) & >1.3 m (height)
4 Small 10.0–19.9

12 Medium 20.0–39.9
20 Large ≥40.0

A total number of 332 plots have been surveyed between years 2014 and 2016 and were used as
sample plots information for this study. The forest survey was conducted in a number of field trips
that cover mainly the central parts of Peninsular Malaysia. The States include Terengganu, Pahang,
Johor, Negeri Sembilan, Selangor, Perak, Kelantan, and Perlis in the north. In each plot, every tree
which meets the dbh size in the nest radius was inventoried. Species of every stand being inventoried
was also recorded. Position (coordinate) of each plot was recorded at the center by using hand-held
Global Positioning System (GPS) (Trimble Inc., Sunnyvale, CA, USA). The locations of all plots were
post-processed by using base position data from the Department of Survey and Mapping Malaysia to
ensure the accuracy of the position acquired. Locations of the sample plots are shown in Figure 4 and
a summary of the sample plots is given in Table 3.

Figure 4. Distribution of ground sample plots within the study area.
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Table 3. Summary of distribution of sample plots within the study area.

State
No. of Plot

Total
Lowland Hill Upper Hill

Perlis 8 2 0 10
Terengganu 48 18 4 70

Pahang 46 18 8 72
Johor 6 0 0 6

Negeri Sembilan 40 14 0 54
Selangor 42 18 8 68

Perak 20 8 4 32
Kelantan 12 8 - 20

Total 222 86 24 332

2.5. Correlation Analysis

The backscatter values from both PALSAR-2 and Sentinel-1A were extracted from the images,
which represented HH, HV, VV, and VH polarizations. The AGB at the sample plots on the ground was
then correlated with the corresponding backscatter of these polarizations by using linear regression
method. Instead of using the single polarization as a variable, several other variables have been
derived by manipulating these single polarizations. This manipulation was performed to produce
variety of image variables and that to examine the roles of polarization in estimating AGB. Table 4 lists
the variables that have been derived from the individual PALSAR-2 and Sentinel-1A and combination
of polarizations from both sensors. These variables act as predictors to the AGB at the sample plots.

Table 4. Variables that were derived from PALSAR-2 and Sentinel-1A.

Variable PALSAR-2 Sentinel-1A

Single polarization HH VV
HV VH

Polarization multiplicative HH × HV VV×VH

Simple polarization ratio HH − HV VV − VH
HV − HH VH − VV

Polarization averaging (HH + HV)/2 (VV + VH)/2

Square root of multiplicative (HH × HV)1/2 (VV × VH)1/2

Combination of polarizations

HH − VV
HV − VH

(HH + HV)/(VV + VH)
(VV − VH)/(VH − HV)

(HH + HV + VV + VH)/4
(HH × HV)/(VV × VH)

(HH × HV × VV × VH)1/4

All polarizations are in sigma nought (σ0, dB).

Simple linear regression method was used to investigate the relationship between the AGB and
the image variables. Multiple linear regressions were also applied to the variables to observe whether
the combination of polarizations from both PALSAR-2 and Sentinel-1A able to improve strength
of the correlations. Manipulation of polarization of individual PALSAR-2 and Sentinel-1A as well
as combination of both sensors were tested and multiple variable equations have been produced.
The relationship between backscatter and AGB is represented in a common linear function as y = ax + b,
x and y denote image variables and AGB, respectively and a and b are the equation coefficients.
The strength of the relationship was measured by the derived coefficient of correlation (R2). The greater
R2 indicates a stronger relationship between two variables; the value R2 of 0 means no correlation
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and 1 is a perfect correlation. In this case, the prediction equation with the highest R2 was selected to
estimate AGB within the entire study area.

Studies [9,11,33] have demonstrated that PALSAR polarization data actually has a logarithmic
relationship with AGB. Therefore, instead of employing linear regression only, the study also attempted
to correlate the AGB with the polarizations in a non-linear form. However, this method was applied
only on the individual polarizations, i.e., HH, HV, VV, and VH. Similar to simple linear regression, the
estimation models used AGB as independent variable to observe the sensitivity of the backscatter to
the AGB. The relationship between backscatter and AGB is commonly represented in exponential an
function as y = a × e(xb), where x and y denote image variables and AGB, respectively and a and b are
the equation coefficients.

2.6. Validation Approach

The study used K-fold cross validation method to evaluate the performance of the best prediction
model derived from PALSAR-2, Sentinel-1A, and combination of both data. This method provided
better indication on the prediction performance than the common residual method. Residual method
does not provide an indication as to how well the model makes new predictions over new sample data,
but this method does. In this study, 10-fold cross validation method [34] was used where all sample
plots data were randomly grouped into 10 groups. One group was used as a testing set while the other
nine groups were used in developing the model. The root mean square error (RMSE) was calculated
using the testing set. This process was iterated 10 times where each group was used as a testing set
once. Then, the average of all RMSEs was calculated to get the overall RMSE of that model.

3. Results and Discussion

3.1. Satellite Datasets

The images that were used for analysis have been calibrated, geometrically and radiometrically
corrected, and topographically normalized. Examples of the images that went through all the
pre-processing are depicted in Figure 5. The topographic normalization outcome is also shown
in Figure 6. The study found that these processes are necessary and must be done on any SAR images
before further analyses are carried out.

Figure 5. Corrected images for all polarizations of (a) PALSAR-2 HV; (b) PALSAR-2 HH; (c) Sentinel-1A
VH; and (d) Sentinel-1A VV, displayed in backscatter values.

117



Appl. Sci. 2017, 7, 675

Figure 6. Topographic effect on SAR images (a), which has been normalized (b).

3.2. Forest-Non-Forest Classification

The classification that was carried out over the HH and HV polarizations and all the manipulations
found that PALSAR-2 images have different capability in defining forests. The study demonstrated
that the most effective polarization for FNF classification was the HV. However, the HH polarization
was found effective on delineating plantation areas, such as rubber and teak, because the orientation of
the plantations is systematic and homogenous, which can be interpreted well by the HH polarization.
The classification was made based on the major forest types found in Peninsular Malaysia and
the results are summarized in Table 5. However, this study concentrated only in lowland, hill,
and upper hill dipterocarp forests. The breakdowns of these forest types are summarized in Table 6.
The classification results were compared with the land use map for the year 2014 that was produced
by the Department Agriculture Peninsular Malaysia and the classification accuracy was attained at
91.3% with a kappa coefficient of 0.88. The remaining 8.7% belonged to errors due to misclassification
of secondary forest and rubber plantation as defined on the land use map. The results were reliable
because the classification interested only in distinguishing forests from other land covers.

Table 5. Extents of forests in Peninsular Malaysia.

Forest Type Extent (ha)

Inland 5,525,034
Peat swamp 264,578
Mangrove 106,198

Total 5,895,810

Table 6. Forest types within the study area.

Forest Type
Lowland

Dipterocarp
Hill

Dipterocarp
Upper Hill

Dipterocarp
Total (ha)

Extents (ha) 2,704,816 2,004,991 547,588 5,257,395
Percentage (%) 51.5 38.1 10.4 100

3.3. Forest Survey Results

Aboveground biomass within all the 332 sample plots have been estimated at plot level. In general,
the average AGB was 399.42 Mg ha−1 within the range between 35.57 and 615.50 Mg ha−1 and the
standard deviation of 127.82 Mg ha−1. AGB of small trees (dbh 10–19.9 cm) contributes only about
15% of the total AGB. However, trees under this category were plenty in terms of number. Figure 7
shows the relationship between the number of trees and AGB in a hectare of the forest. The AGB is
actually stored in the huge trees measuring dbh from 40 cm and above. Although the number of huge
trees is low, the amount of AGB within these trees is large.
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Figure 7. Relationship between tree size, number of trees, and AGB in a hectare of dipterocarp forest.

3.4. Correlation Analysis

Backscatter values from all polarizations have been extracted at all sample plots and the
distribution is depicted in Figure 8. The boxplot indicates that PALSAR-2 basically had stronger
backscatter over the sample plots at both polarizations as compared to Sentinel-1A polarizations.
Higher variation of PALSAR-2 HV polarization indicates the capability in discriminating AGB level.
On the other hand, for Sentinel-1 data, VV polarization is more sensitive to the forest as compared to
VH. These backscatter values were used in the correlation analysis.

Figure 8. Backscatter values from all polarizations at sample plots of PALSAR-2 (HH and HV) and
Sentinel-1 (VV and VH).

3.4.1. Simple Linear Regression

The results indicated that all variables showed weak linear relationships with AGB even though
the correlations were significant at 95% confidence level. Table 7 summarized the correlation strength
of all variables derived from the polarizations of PALSAR-2 and Sentinel-1A. The corresponding
scatter plots listed in the table are shown in Figure 9. The results proved that the manipulation of
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polarizations from a single sensor slightly improve the correlation strength. Further improvement was
attained when the polarizations are combined together, from one either single sensor or integration of
both sensors.

Table 7. Summary of the AGB prediction equations produced from simple linear regression.

Sensor Variable Scatter Plot Prediction Equation R2

PALSAR-2

HH a 28.59HH + 641.68 0.119
HV b 47.21HV + 978.87 0.276

HH × HV c −1.98(HH × HV) + 608.64 0.223
HH − HV d −6.5969(HH − HV) + 369.08 0.005
HV − HH e 6.5969(HV − HH) + 369.08 0.005

(HH + HV)/2 f 43.49((HH + HV)/2) + 850.56 0.219
(HH × HV)1/2 g −40.72((HH × HV)1/2) + 813.88 0.201

Sentinel-1A

VV h 15.56VV + 527.84 0.091
VH i 8.48VH + 518.33 0.023

VV × VH j −0.69(VV × VH) + 482.13 0.090
VV − VH k 13.78(VV − VH) + 319.88 0.041
VH − VV l −13.328(VH − VV) + 321.76 0.038

(VV + VH)/2 m 14.13((VV + VH)/2) + 556.84 0.062
(VV × VH)1/2 n −14.46((VV × VH)1/2) + 553.95 0.073

Combination

HH − VV o −4.11(HH − VV) + 398.50 0.004
HV − VH p 6.48(HV − VH) + 388.08 0.015

(HH + HV)/(VV + VH) q −31.53((HH + HV)/(VV + VH)) + 429.95 0.0001
(VV − VH)/(VH − HV) r −590.85((VV − VH)/(VH − HV)) + 269.13 0.099

(HH + HV + VV + VH)/4 s 36.98((HH + HV + VV + VH)/4) + 797.17 0.176
(HH × HV)/(VV × VH) t −0.91((HH × HV)/(VV × VH)) + 400.39 0.003

(HH × HV × VV × VH)1/4 u −35.30((HH × HV × VV × VH)1/4) + 764.90 0.177

All polarizations are in sigma nought (σ0, dB). All correlations are significant at p < 0.05.

3.4.2. Multiple Linear Regression

Synergy of the prediction has been obtained when the variables were integrated into an empirical
prediction equation derived from multiple line regression. This method was applied to the single
PALSAR-2, Sentinel-1A polarization, and also to the variables from the combination of both PALSAR-2
and Sentinel-1A. The best three models have been produced as summarized in Table 8. Evidently the
combination of PALSAR-2 L-band and Sentinel-1A able to strengthen the relationship between AGB
and the polarization, thus improving the accuracy of estimates. Both datasets have complemented to
each other that eliminated the effects of backscattering diffusion.

Table 8. The best correlations derived from multiple regression from a single sensor and combination
of sensors.

Sensor Prediction Equation R2

PALSAR-2 146.90HH + 169.78HV − 7.03(HH × HV) + 416.96(HH × HV)1/2 + 227.07 0.342

Sentinel-1A −17.040VH − 2.344(VV × VH) + 24.327(HH × HV)1/2 + 181.918 0.138

Combination −10.877VH − 13.292(HH × HV)1/2 + 139.702HH + 162.287HV − 6.526(HH
× HV) + 394.502(HH × HV)1/2 + 238.524

0.356

All polarizations are in sigma nought (σ0, dB). All correlations are significant at p < 0.05.

120



Appl. Sci. 2017, 7, 675

Figure 9. Scatter plots of simple linear correlations between AGB (y-axis) and image variables (x-axis).

3.4.3. Non-Linear Regression

Referring to the correlations listed in Table 9 and depicted in Figure 10, the backscatter of
PALSAR-2 HV polarization gave better R2 as compared to the HV as well as Sentinel-1A VV and VH.
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The HV backscatter ranged from −1 to −20 dB and the saturation point concentrated −12 dB. Rapid
increment occurred, especially at lower biomass level (i.e., up to 200 Mg ha−1), and then decreased
towards higher AGB. The trend line became almost constant when the AGB exceeded 200 Mg ha−1.
It was obvious that the estimation uncertainties are larger at AGB > 200 Mg ha−1. The results were
even worse for HH polarization.

Table 9. Summary of non-linear correlation between AGB and individual polarization.

Sensor Polarization Prediction Equation R2

PALSAR-2
HH y = 1043 × e0.1215x 0.2058
HV y = 3114.2 × e0.173x 0.3502

Sentinel-1A
VV y = 644.1 × e0.0664x 0.1596
VH y = 718.72 × e0.0469x 0.0749

All correlations are significant at p < 0.05.

Figure 10. Scatter plots of non-linear correlations between AGB and single polarization of (a) PALSAR-2
HH; (b) PALSAR-2 HV; (c) Sentinel-1A VV; and (d) Sentinel-1A VH.

It has been reported that, at a given polarization and incidence angle, the saturated backscatter
value for forest was within a small range of backscatter [11]. The dynamic range is determined
primarily by the backscatter at low levels of AGB. It increases with decreasing frequency and it is
higher at HV compared to HH polarization. Similarly, Sentiel-1A polarizations saturated quickly at
AGB lower than 100 Mg ha−1. The Sentinel-1A VV and VH backscatter ranged from −18 to −3 dB and
−24 to −8 saturated at −8 dB and −14 dB, respectively. This was because the C-band wavelength is
shorter than the L-band, and thus not very sensitive to the AGB at high level. Figure 11 illustrates how
L- and C-bands interact with the forest canopy structure that influence the strength of the backscatter
at high biomass forest.
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Figure 11. Common interaction of SAR L- and C-bands with the forest structure.

The accuracy was also mostly influenced by the tree density, soil surface roughness, soil moisture,
tree sizes, and the layering effects of the SAR itself [35]. An experiment has found that the
backscattering intensity interacted only with trees of dbh larger than 15 cm. These stands are actually
dominating the higher canopies, which gave the best response to backscatter in HV polarization of
L-band [13]. Other factors—such as orientation of the forest, polarimetry, incidence angle, and crown
structure—also play important role in the estimated biomass [36,37].

3.4.4. The Combination Effects

Referring to Figures 8 and 11, the responses of PALSAR L-band and Sentinel-1A C-band towards
AGB are different in terms of strength and variation. L-band observations penetrate more into the
forest canopy and between branches and spaces, compared to the C-band, which only interacts with
top canopy layers before it is scattered back or extinct. In tropical forests, volume and volume-surface
scattering dominated the HH in while volumetric scattering due to dense vegetation cover dominated
the HV by [38]. It is also likely that forest has a higher amount of canopy variability influencing
scattering due to significant surface roughness as observed by the cross-pol (HV) term. Since structure
influences the cross-pol term, forest areas that undergo selective harvesting are theoretically observable
by PALSAR-2 HV, but not by Sentinel-1A, unless there is excessive timber extraction from the forest.
SAR sensors can receive a relatively higher amount of surface scattering in low-density forest rather
than a majority of scattering from trunks and trees or branches and crowns. Therefore, stand density,
basal area, and AGB influence these relationships; although variability remains low regardless of
height of the stands.

Since most of the sample plots were located in dense and mature forest (of AGB ≥ 200 Mg ha−1),
the variation of backscatter from both PALSAR-2 and Sentinel-1A polarizations are within the
saturation threshold. Except for a number of sample plots that were located inside the secondary
and logged forests, which contained relatively lower AGB than that inside the dense forest.
Consequently, these factors have influenced the scatterplots in the correlations. The presence of
C-band in the combination has complement the L-band at lower part of AGB (<200 Mg ha−1) forest
thus produce a better prediction overall. Taking the best linear correlations from PALSAR-2 HV
and Sentinel-1A VV, with R2 0.276 and 0.091 respectively, the R2 increased to 0.356 when combined.
This has increased the explained variance by about an average of 17.25%. Although a single PALSAR-2
HV polarization from the non-linear correlation can predict the AGB with an R2 of 0.3502, the multiple
linear correlations remain stronger even with an increase of explained variance by about 0.58%.
In addition, the combination of L-band polarizations, as well as L- and C-band fusion has proven to be
successful, thus confirming the hypothesis of the study.

3.5. Estimated AGB and Mapping

The study demonstrated that the combination of polarizations from PALSAR-2 L-band and
Sentinel-1A C-band provided advantages for AGB estimation in dipterocarp forest with relatively
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high AGB. The equation that was derived from the multi linear regression resulted from the best
combination of PALSAR-2 and Sentinel-1A polarization, which gives the highest correlation value of
0.356, was used to estimate the AGB within the entire study area. The equation is expressed as

AGB (Mg ha−1) = −10.877VH − 13.292(HH × HV)1/2 + 139.702HH +
162.287HV − 6.526(HH × HV) + 394.502(HH × HV)1/2 + 238.524

(4)

By using this equation, AGB within the entire study area has been retrieved and mapped.
Figure 12 shows the spatial distribution of AGB in the study area. From the map, the total AGB
in about 5.25 million ha of the study area was estimated at 1,821,214,202 Mg over the year 2016.
Figure 13 summarizes the distribution of AGB in the study area, represented by histogram of frequency
of pixel occurrences. The distribution was found to be normal throughout the entire study area.
Further classification was made to the AGB distribution, reported in intervals as shown in Figure 14.
More than half of the study area comprised AGB within the range of 300–400 Mg ha−1. The highest
AGB was concentrated mainly in the northern part of Pahang and southern part of Kelantan, where the
largest National Park in Peninsular Malaysia is located. High density of AGB occurred also in the
northern part of Perak where Royal Belum State Park is located. These forests are virgin and have
existed for millions years and are still intact now. Variations are found scattered in other areas where
there was a mix between natural virgin and logged over forests. Low density of AGB appeared near
the edges of forest areas, which mostly interacted with other land use activities nearby.

Figure 12. Spatially distributed map of AGB within the study area.
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Figure 13. Distribution of AGB within the study area.

Figure 14. Overall breakdowns of AGB density in the study area.

3.6. Validation of the Estimates

Overall, the RMSE, resulted from 10-fold cross validation method, for the best model for
PALSAR-2, Sentinel-1A, and combination of PALSAR-2 and Sentinel-1A are 99.10 Mg ha−1,
111.18 Mg ha−1, and 98.41 Mg ha−1, respectively. The best prediction model, which was produced
from the combination of polarization from both PALSAR-2 and Sentinel-1A, gave the lowest error.
However, the variation of RMSE between them was considered small, which means that even if the
prediction were carried out from a single PALSAR-2 or Sentinel-1A, the error will be almost at the
same level. Figure 15 shows the relationship between the reference AGB calculated from ground data
and predicted AGB estimated using Equation (4). The error was observed to occur at around 400 Mg
ha−1 and the distribution shows that the prediction model slightly overestimated the AGB within the
study area.
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Figure 15. Relationship between predicted and reference AGB.

4. Conclusions

The study has successfully quantified the AGB over the lowland, hill, and upper hill dipterocarp
forests in Peninsular Malaysia. The total AGB was estimated at about 1.82 trillion Mg over the year
2016. The extent of forested area—i.e., 5,895,810 ha—was also identified from the L-band PALSAR-2
data. The study confirmed that the synergetic of PALSAR-2 and Sentinel-1A produced better estimates
than the single sensor. Although there were limitations found, the study provided an alternative for
AGB retrieval that can be utilized in a practical manner to assist in the management and protection of
forested areas. The study, to some extent, can also provide a significance contribution towards the MRV
in the REDD+ implementation. One of greatest advantages of using the PALSAR-2 and Sentinel-1A
data is the free access policy to the datasets. Free-cloud cover and rapid acquisition made them more
valuable, especially for this kind of study in Malaysia.
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Abstract: In this paper, we present a comparison between several algorithms for oil spill classifications
using fully and compact polarimetric SAR images. Oil spill is considered as one of the most significant
sources of marine pollution. As a major difficulty of SAR-based oil spill detection algorithms
is the classification between mineral and biogenic oil, we focus on quantitatively analyzing and
comparing fully and compact polarimetric satellite synthetic aperture radar (SAR) modes to detect
hydrocarbon slicks over the sea surface, discriminating them from weak-damping surfactants,
such as biogenic slicks. The experiment was conducted on quad-pol SAR data acquired during
the Norwegian oil-on-water experiment in 2011. A universal procedure was used to extract the
features from quad-, dual- and compact polarimetric SAR modes to rank different polarimetric
SAR modes and common supervised classifiers. Among all the dual- and compact polarimetric
SAR modes, the π/2 mode has the best performance. The best supervised classifiers vary and
depended on whether sufficient polarimetric information can be obtained in each polarimetric mode.
We also analyzed the influence of the number of polarimetric parameters considered as inputs for
the supervised classifiers, onto the detection/discrimination performance. We discovered that a
feature set with four features is sufficient for most polarimetric feature-based oil spill classifications.
Moreover, dimension reduction algorithms, including principle component analysis (PCA) and the
local linear embedding (LLE) algorithm, were employed to learn low dimensional and distinctive
information from quad-polarimetric SAR features. The performance of the new feature sets has
comparable performance in oil spill classification.

Keywords: oil spill; SAR data; compact polarimetric mode; image classification; feature selection

1. Introduction

Oil spill is one of the most significant sources of marine pollution. In recent years, a series of
accidents continually took place and threatened the marine environment. In April 2010, during the
Deepwater Horizon (DWH) accident, approximately 780,000 m3 of oil, methane or other fluids were
released into the Gulf of Mexico. In 2011, approximately 700 barrels of crude oil were leaked into
the Bohai Sea, and about 2500 barrels of mineral oil-based mud became deposited on the seabed.
In December 2013, during an accident caused by a broken oil pipe, crude oil leaked into the coastal area
of Qingdao, Shandong province, and covered approximately 1000 m2 of the sea surface. In addition,
a large proportion of oil spills are caused every year by deliberate discharges from tankers or cargos,
for the reason that there are still vessels that secretly clean their tanks or engine before entering the
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harbor. These accidents and illegal acts cause damage to the coastal ecosystem, emphasizing the
importance of detecting oil spills in their early stages.

Although remote sensing with optical sensors can be used in oil spill detection, they are
unavoidably restricted by weather and light conditions. Therefore, satellite synthetic aperture radar
(SAR) data from ERS-1/2 (European Remote Sensing Satellites), ENVISAT (Environmental Satellite),
ALOS (Advanced Land Observing Satellite), RADARSAT-1/2 and TerraSAR-X have been widely
used to detect and monitor oil spills [1–8] due to the large spatial coverage, all-weather conditions
and imaging capability during day-night times [9]. In addition, airborne SAR sensors, such as
Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) developed by JPL at L-band and
E-SAR (developed by DLR), have proven their potential for scientific research on ocean or land [10,11].

In SAR images, the detection of oil slick on the sea surface relies on the detection/quantification of
its attenuation of Bragg scattering on the sea surface. When Bragg scattering happens, the signals from
different sea surface facets interfere with each other. Moreover, according to the composite sea surface
model, the roughness of the sea surface can be seen as small-scale capillary waves (contributing to
Bragg scattering) superimposed on large-scale gravity waves. An illustration of this model can be seen
in Figure 1. The sea surface of the oil-covered region appears smoother than its surrounding area. This
is because the Bragg scattering of these areas is suppressed by the presence of hydrocarbons. However,
the main backscatter from the sea surface is contributed by Bragg scattering. As a result, in SAR images
the oil slick-covered area can usually be detected as a very dark (low backscattered) area.

Figure 1. Demonstration of radar scattering from the sea surface.

In SAR images, the backscattered signal from oil spill is very similar to that from other ocean
phenomena called “look-alikes” [1]. In recent years it has been demonstrated by theoretical and
experimental studies the benefit of the polarimetric SAR paradigm, which explore the polarimetric
SAR measurements and a proper electromagnetic modelling to distinguish light-damping surfactants
from heavy-damping ones. This can be exploited as one case to sort out most of the look-alikes that
are typical, such as biogenic films (slicks that are produced by marine organisms, such as fishes, algae,
etc.), which normally cause very little harm to the marine environment [12,13].

The feasibility of polarimetric SAR-based oil spill classifications relies on the fact that the
polarimetric mechanisms for oil-free and oil-covered sea surface are largely different [14]. Before the
availability of polarimetric observations, hydrocarbons and biogenic slicks were difficult to distinguish
because they damped the short gravity-capillary waves with almost the same strength [15].
However, based on different polarimetric scattering behaviors, hydrocarbons and biogenic slicks
can now be better distinguished: for oil-covered areas, Bragg scattering is largely suppressed, and high
polarimetric entropy can be documented. In the case of a biogenic slick, Bragg scattering is still
dominant, but with a lower intensity. Thus, similar polarimetric behaviors as those of oil-free areas
should be expected in the presence of biogenic films [3].
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Despite being helpful to oil spill classifications, fully (or quad-) polarimetric SAR is facing the
challenges of its system complexity and reduced swath width caused by the doubled pulse repetition
frequency (PRF). To overcome this problem, dual polarimetric SAR systems, which transmit a single
polarization signal, are often considered [16]. However, traditional dual polarimetric SAR systems
transmitting only horizontal or vertical polarized signals have a limitation when acquiring the complete
polarimetric behavior of selected targets.

Compared with conventional dual-polarimetric SAR modes, compact polarimetric (CP) SAR
systems have higher sensitivity to the polarimetric behavior of some ground targets. Similarly, in
CP SAR modes, the radar transmits only a linear combination of horizontal and vertical (π/4) or
circularly (π/2, also called CTLR) polarized signals and linearly receives both horizontal and vertical
polarizations. As a result, compact polarimetric SAR modes can be considered as special kinds of
dual polarimetric SAR modes, and vice versa. Based on a general formalism of dual and compact
polarimetric SAR data, a unified framework was proposed to analyze different CP SAR modes and its
feature products [17].

Since the 2000s, CP SAR has become a new research trend [16,18,19]. In the years following
the development of this technique, most studies focused on the applications of land monitoring,
e.g., biomass and soil moisture estimation [20]. Recently, it began to be considered in maritime
surveillance applications [21–23].

In data received via CP SAR modes, Stokes parameters and covariance matrices can be calculated
from the measurement vector of SAR data, and further polarimetric analysis can be employed [24].
Some important polarimetric parameters, such as the degree of polarization (DoP), relative phase,
entropy, anisotropy and α, can also be derived [22,25,26]. It is noted that the processing method and
definitions of some parameters for CP SAR data, in the process of calibration, decomposition and
classification, can be different.

Some previous studies explored the possibility of taking advantage of dual- and compact
polarimetric SAR data to classify oil spills and biogenic slicks [27–29]. However, there are seldom
quantitative comparisons of different polarimetric SAR modes, and their performance for actual
oil spill classification applications. One important benefit of Pol-SAR paradigm is its robustness,
i.e., it successfully works with airborne and spaceborne SARs and for different frequencies. Due to the
fine classification capability of polarimetric features, polarimetric SAR-based methods may work on
a wider range of sea status (surface wind and currents). However, because of the complexity of sea
surface polarimetric scattering mechanisms, it is unrealistic to consider using any single characteristic to
distinguish a variety of kinds of oil spills under different conditions. As a result, a synthetic and proper
use of the polarimetric characteristics is the key to the accurate detection and successful interpretation
of oil slicks. Moreover, the optimum compact polarimetric SAR mode varies with the different
scattering behavior of the targets and also depends on specific classification tasks. Hence, in this
study, we compare the oil spill detection using quad-, dual- and compact polarimetric features using
supervised oil spill classifications. The study mainly concentrated on: (a) investigating the feature
selection from quad- and compact polarimetric SAR data; (b) testing the performance of these features
using several supervised classification algorithms, and (c) comparing SAR data from these modes to
achieve marine oil spill classifications.

2. Methods

2.1. Quad-Polarimetric SAR Mode

For quad-pol SAR data, the 2 × 2 scattering matrix is measured on the traditional linearly
horizontal and vertical bases, which can be described by [30]:

S =

(
SHH SHV
SVH SVV

)
(1)
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where the subscript H and V describes the transmitted and received polarization, respectively, with H
denoting horizontal and V denoting vertical directions. For the monostatic case, the reciprocity always
holds, which means that the two cross-polarized terms are identical, i.e., SHV = SVH.

The covariance matrix can be derived by:

C =

⎛
⎜⎜⎜⎝

〈
S2

HH
〉 〈√

2SHHS∗
HV

〉 〈
SHHS∗

VV
〉〈√

2SHVS∗
HH

〉 〈
2S2

HV
〉 〈√

2SHVS∗
VV

〉
〈SVVS∗

HH〉
〈√

2SVVS∗
HV

〉 〈
S2

VV
〉

⎞
⎟⎟⎟⎠ (2)

where * is the symbol of conjugate and “< >” stands for multilook by using an averaging window
(5 × 5 in this study). This 5 × 5 averaging window is important to obtain the statistical property of the
compound target’s polarization status and reduce the effect of speckle noise.

2.2. Feature Extraction from Quad-Polarimetric SAR Data

2.2.1. Single Polarimetric Intensity

The intensity of co-polarized channel is largely used in single polarimetric SAR-based oil spill
detection algorithms. In this study, S2

VV is considered as one of the features for its higher SNRs
compared to S2

HH on the sea surface. The hydrocarbons on the sea surface damp the short gravity and
capillary waves of the sea surface, and hence, they are usually observed as very low backscatter areas.
However, very similar dark areas can also be observed from SAR images when other kinds of oil are
present, such as biogenic slicks.

2.2.2. H/α Decomposition Parameters

In 1997, Cloude and Pottier proposed a polarimetric information extraction method based on the
decomposition of the 3 × 3 coherency matrix (3) of the target [31]:

T = U3

⎡
⎢⎣ λ1

λ2

λ3

⎤
⎥⎦UH

3 (3)

where H stands for transpose conjugate, and U3 can be parameterized by Equation (4):

U3 =

⎡
⎢⎣ cos(α1)ejφ1 cos(α2)ejφ2 cos(α3)ejφ3

cos(α1) cos(β1)ejδ1 sin(α2) cos(β2)ejδ2 sin(α3) cos(β3)ejδ3

sin(α1) sin(β1)ejγ1 sin(α2) sin(β2)ejγ2 sin(α3) cos(β3)ejγ3

⎤
⎥⎦ (4)

The three eigenvalues of the coherency matrix T are real numbers, arranged as λ1 > λ2 > λ3,
U3 is the unitary matrix, whose column vectors

→
u 1,

→
u 2 and

→
u 3 are the eigenvectors of T:

T =
3

∑
i−1

λ1
→
u 1 ·

→
u

H
1 + λ2

→
u 2 ·

→
u

H
2 + λ3

→
u 3 ·

→
u

H
3 (5)

The probability of three eigenvectors can be calculated by:

Pi =
λi

3
∑

j=1
λj

(6)
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The polarimetric entropy, which describes the randomness of the scattering mechanisms, can be
defined as:

H = −
3

∑
i=1

Pi log3(Pi) (7)

The mean scattering angle α is defined by:

α = P1α1 + P2α2 + P3α3 (8)

The entropy H is a measure of the randomness of the scatter mechanism. It is base-invariant and
closely related to eigenvalue λ, which represents different components of the total scatter power. For a
clean sea surface, Bragg scattering dominates, so H is close to 0. In contrast, for oil slick-covered areas,
the scattering mechanism becomes more complex; stronger random scattering results in higher entropy
values. Moreover, for biogenic slicks, although the scattering power is lower, the main scattering
mechanism is still Bragg, resulting in lower entropy compared to oil-covered areas. This way, H can be
used to distinguish oil slicks and weak damping look-alikes.

Usually jointly used with H, the mean scattering angle α reflects the main scattering mechanism of
the observed target. On slick-free sea surfaces, α is expected to be less than 45◦ as the Bragg scattering is
dominant. In slick-covered regions, larger α can be measured, as a more complex scattering mechanism
is present.

2.2.3. Degree of Polarization

Degree of polarization (DoP) is considered to be a very important parameter characterizing
partially polarized EM waves. It can be derived from the Stokes vectors of any coherent radar modes,
e.g., dual-pol, hybrid/compact and, of course, fully polarimetric SAR modes [32]:

P =

√
g2

i1 + g2
i2 + g2

i3

g2
i0

=

(
1 − 4

|Γi|
(trΓi)

2

) 1
2

(9)

where gi is Stokes vectors that can be used to describe both complete and partially polarized wave,
and i stands for different polarization of transmission.

g =

⎡
⎢⎢⎢⎣

g0

g1

g2

g3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

〈
|Ev|2 + |Eh|2

〉
〈
|Ev|2 − |Eh|2

〉
2Re〈EhE∗

v〉
2Im〈EhE∗

v〉

⎤
⎥⎥⎥⎥⎦ (10)

where Ev and Eh is vertically and horizontally received backscatter, respectively, and < > also stands
for multilook by using an averaging window.

DoP measures to what extent the scattered wave is deterministic and can be described by a
polarimetric ellipse with fixed parameters. On the Poincare sphere, it represents the distance between
the last three components normalized Stokes vectors and the origin [32]. It is 1 for complete polarized
waves and 0 for fully unpolarized waves. For clean sea surfaces and weak-damping areas, the scattering
mechanism can be described by the Bragg scattering; as a result, the DoP is large. For hydrocarbon
slicks, random scattering mechanisms are dominating, and much lower DoP are observed.

2.2.4. Ellipticity χ

Ellipticity χ describes the polarization status of the scattered EM wave. From the Stokes vector,
it can be calculated by:

sin(2χ) = − s3

ms0
(11)
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where m stands for the degree of polarization of the received EM wave.
The parameter χ can be employed as an indicator of the scattering mechanism. For slick-free sea

surfaces where Bragg scattering is dominant, the sign of χ is negative. For oil-covered sea surfaces,
as a more random scattering mechanism is present, χ will be larger and can become positive [28]. This
feature makes χ a logical binary descriptor of slick-free vs. oil-covered areas.

2.2.5. Pedestal Height

Normalized radar cross-section (NRCS) σ0 measures how detectable an object is per unit area on
the ground. In the co-polarized signature of the scene, the σ0 is a function of both the tilting angle Φ

and the ellipticity χ of the polarization ellipse. The pedestal height (PH) is defined as the lowest value
of all the σ0, plotted in the co-polarized signature. The PH describes the unpolarized energy of the
total scattering power and behaves as a pedestal on which the co-polarized signature is set [14,33].
The normalized pedestal height (NPH) can be approximately calculated as the minimum eigenvalue
divided by the maximum one:

NPH =
min(λ1, λ2, λ3)

max(λ1, λ2, λ3)
(12)

For clean sea surfaces, the scattering mechanism is pure Bragg, so an NPH value close to 0 is
expected. For an oil-covered area, however, much higher NPH can be expected due to the non-Bragg
scattering that reflects a more diverted scattering mechanism.

2.2.6. Co-Polarized Phase Difference

The co-polarized phase difference (CPD) is defined as the phase difference between the HH and
VV channels [3]:

ϕc = ϕHH − ϕVV (13)

From multilook SAR data, it can be also derived as:

ϕc = arg(〈SHHS∗
VV〉) (14)

where arg(*) stands for phase calculation.
The standard deviation of CPD has been proposed as a very efficient parameter indicating sea

surface scattering mechanisms [3]. It can be estimated from ϕc using a sliding window. On slick-free
sea surfaces, the HH-VV correlation is high, and a narrow CPD distribution is expected. This resulting
CPD will have a small standard deviation, similarly for weak-damping surfactant-covered areas. In oil
slicks where the Bragg scattering is weakened and other scattering mechanisms increase, the HH-VV
correlation largely decrease. As a result, the CPD pdf becomes broader, and its standard deviation
largely increases.

2.2.7. Conformity Coefficient

The conformity coefficient μ was firstly used in compact polarimetric SAR applications for soil
moisture estimations (Freeman et al., 2008). In a fully polarimetric scheme, it can be approximated
as [6]:

μ ∼= 2(Re(SHHS∗
VV)− |SHV |2)

|SHH |2 + 2|SHV |2 + |SVV |2
(15)

The conformity coefficient μ evaluates whether surface scattering is the dominant among all
the scattering mechanisms. For a slick-free sea surface, Bragg scattering results in a very small
cross-pol power and high HH-VV correlations and Re(SHHS∗

VV) > |SHV |2; hence, μ is positive.
However, for hydrocarbon-covered areas, as non-Bragg scattering exists, HH-VV correlation is lower,
and cross-pol component largely increases, which is very likely to have Re(SHHS∗

VV) < |SHV |2;
hence, μ is negative. For weak-damping cases, such as biogenic slicks, since Bragg scattering is
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still dominant, Re(SHHS∗
VV) > |SHV |2 is still valid and results in positive μ. Under this rationale,

conformity coefficients can be used to effectively distinguish hydrocarbon slicks from biogenic slicks.

2.2.8. Correlation and Coherence Coefficients

The correlation and coherence coefficients that are derived from the coherence matrix are also
used for oil slick discrimination [34].

ρHH/VV =

∣∣∣∣∣
〈
SHHS∗

VV
〉〈

S2
HH
〉〈

S2
VV
〉
∣∣∣∣∣ (16)

Coh =
|〈T12〉|√
〈T11〉〈T22〉

(17)

where Tij are elements of the coherence matrix T.
These two parameters both lie between 0 and 1. For a slick-free area, where Bragg scattering is

dominant, HH and VV channels are highly correlatable, so they are expected to be very close to 1.
For an oil-covered sea surface, a much lower HH/VV correlation is expected, so both the correlation
and coherence coefficients are much lower.

The polarimetric SAR features above and their relative behaviors in the presence of different
ocean surface targets are summarized in Table 1.

Table 1. Behaviors of main polarimetric SAR features on different types of surfaces. DoP, degree of
polarization; CPD, co-polarized phase difference.

Pol-SAR Features Clean Sea Surface
Mineral Oil

(Strong Damping)
Biogenic Slicks

(Weak Damping)

Entropy (H) Lower High Low
Alpha (α) Lower High Low

DoP High Low High
Ellipticity Negative Positive Negative

Pedestal Height (PH) Lower High Low
Std. CPD Lower High Low

Conformity Coefficient Positive Negative Positive
Correlation Coefficient Higher Low High
Coherence Coefficient Higher Low High

S2
VV High Low Low

Note: “lower” and “higher” means that the property of the feature on a certain type of surface is close to the other
surface that has the property of “low” or “high”, but slightly lower or higher. “Std. CPD” stands for the standard
deviation of CPD.

2.3. Dual- and Compact Polarimetric SAR Modes

Compact polarimetric SAR modes were proposed to solve the contradiction between polarimetric
observation capabilities and the swath width, system complexity, power budget and data rate of the
radar system. Actually, the idea of transmitting one polarized signal and coherently recording the
backscattered signal in H and V polarimetric channels was considered by U.S. scientists as far back as
1960. In the 2000s, this operation mode was reconsidered by Souyris et al. [16] and was given the new
name of “compact polarimetric” to differentiate from “fully polarimetric” or “quad-polarimetric”.

Dual polarimetric (DP) SAR systems transmit a horizontal (H) or a vertical (V) linearly-polarized
signal and coherently record both horizontal and vertical polarized backscattered signals. They can
be treated as a special kind of compact polarimetric SAR mode. In real applications, usually HH/HV
or HV/VV dual polarization modes are used, for the reason that in these modes, only the H or V
polarized signal is transmitted. However, on the sea surface, the backscatter of the cross-polarized
channel (HV) is usually much lower than the co-polarized channels [34], sometimes close to the noise
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floor of the radar instruments. As a result, HH/HV dual polarimetric modes have limited performance
on oil spill classification applications. Although there is no HH-VV dual polarimetric SAR operating,
except a special experimental imaging mode of TerraSAR-X, this mode is considered for comparative
analysis in this paper.

The 2D measurements vector
→
K of HH/VV dual-polarized, π/2 and π/4 compact polarimetric

SAR modes are provided in Equations (18)–(20), respectively:

→
K HHVV =

(
SHH
SVV

)
(18)

→
K pi/2 =

1√
2

(
SHH − jSHV
SHV − jSVV

)
(19)

→
K pi/4 =

1√
2

(
SHH + SHV
SHV + SVV

)
(20)

Table 2 lists several main polarimetric SAR modes, which can be differentiated by their different
transmission and receiving polarimetric combinations.

The covariance matrix can also be used to reflect the second order statistics of the dual and
compact polarimetric SAR data, which can be derived from their scattering matrix by:

CCP = 2
〈→

KCP
→
K
∗
CP

〉
(21)

where
→
KCP stands for measurements vector

→
K of different dual- and compact polarimetric SAR modes.

Table 2. Different polarimetric SAR modes.

Transmit
Receive

H V H and V (Incoherently) H and V (Coherently) R and L (Coherently)

H Single Single Alternating Dual Pol —
V Single Single Alternating Dual Pol —

H and V — — Alternating — —
45◦ — — — π/4 Compact
R/L — — — π/2 Compact (Hybrid) Dual-circular (DCP)

Note: Blank means that at the present stage, there is not an operational SAR system with such a transmit/receive
combination. R and L stand for right and left circular polarization, respectively.

2.4. Universal Feature Extraction from Dual- and Compact Polarimetric SAR Data

In order to explore polarimetric information, the following methods can be used to universally
extract features from the measurements vectors of dual- and compact polarimetric SAR data.
The features extracted from dual- and compact polarimetric modes shares similar characteristics
as those derived from fully polarimetric mode, in the presence of a clean sea surface, hydrocarbons
and biogenic films. Of course, some differences can also be observed between them for the reason that
they carry different parts of the information of quad-pol SAR data. In the following part of this paper,
they are compared and analyzed.

2.4.1. Elements in Measurement Vector
→
K

The elements of the measurement vector
→
K of dual and compact polarimetric SAR modes can be

derived from Equations (18)–(20):
→
K =

(
EH EV

)T
(22)
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where T stands for the transpose.
Since for the sea surface, usually S2

HV is much smaller compared with the backscatter of
co-polarized channels, E2

V represents close physical meaning to S2
VV . It is selected as one of the

features in classification experiments based on compact polarimetric SAR modes.

2.4.2. H/α Decomposition Parameters

Polarimetric entropy of CP SAR data can be directly calculated from the eigenvalues of the
covariance matrix CCP:

H =
2

∑
i=1

−Pi log2 Pi (23)

Pi =
λi

∑
j

λi
(24)

Additionally, λi (i = 1, 2) is the eigenvalue of coherency matrix CCP. Entropy that is derived directly
from CP SAR data has similar performance as that derived from quad-pol SAR data, in describing the
complexity of the physical scattering mechanisms of targets.

Then, the mean scattering angle in CP SAR modes can be approximated by:

α = P1α1 + P2α2 (25)

where αi can be derived from the eigenvector of the covariance of CP SAR data, similarly as in
Section 2.2.

2.4.3. Degree of Polarization and Ellipticity

The degree of polarization and ellipticity can be similarly calculated from the Stokes vector of CP
SAR mode, as introduced in Section 2.2.

2.4.4. Pedestal Height

Similarly, as in Section 2.2.5, pedestal height can be estimated from the eigenvalues of the
covariance matrix of compact polarimetric SAR data by:

NPH =
min(λ1, λ2)

max(λ1, λ2)
(26)

2.4.5. Co-Polarized Phase Difference

CPD can be proximately estimated from covariance matrix of CP SAR data by:

ϕc(CP) = arg{−iEHE∗
V} (27)

Then, its standard deviation within a certain spatial window can be computed. In this paper,
a window of 5 × 5 is applied.

2.4.6. Conformity Coefficient

Only for π/2 mode, the conformity coefficient is expressed as [6]:

Con f ∼=
2Im(

〈
EHE∗

V
〉
)〈

EHE∗
H
〉
+
〈

EV E∗
V
〉 (28)
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2.4.7. Correlation Coefficient and Coherence Coefficient

Following the same rationale as in Section 2.2.8, the correlation coefficient in CP SAR mode can
be defined as [6]:

Corr =
Re
{
−i
〈

EHE∗
V
〉}

√〈
|EH |2

〉〈
|EV |2

〉 (29)

Additionally, for CP SAR modes, the coherency coefficient can be derived by:

Coh =
|D12|√
D11D22

(30)

where the coherency matrix D for dual- and compact polarimetric SAR modes can be defined as:

D =

(
〈EH + iEV〉2 〈EH + iEV〉〈EH − iEV〉∗

〈EH + iEV〉∗〈EH − iEV〉 〈EH − iEV〉2

)
(31)

2.5. Supervised Classifications

Supervised classifications can take advantage of training data samples to set up the decision rule
for classification, which has the best capability of fitting training datasets, as well as predicting the
class of testing data samples. In this paper, three largely used supervised classifiers are considered.

2.5.1. Support Vector Machine (SVM)

SVM is based on structural risk minimization, the basic idea of which is to map multi-dimensional
feature into a higher dimensional space and use a hyperplane to separate them linearly with the
maximum margin between different classes [35]. SVM has superb performance in dealing with
classification problems with a small number of training datasets. It firstly maps training vectors xi into
a higher dimensional space by using kernel function Φ and, hence, finds a linear separating hyperplane
with the maximal margin in this higher dimensional space. In this paper, the radial basis function is
adopted as the kernel function.

2.5.2. Artificial Neural Network (ANN)

ANN was designed based on the nervous systems of animals [36]. It can be used to estimate
the complicated unknown functions based on a large number of inputs. ANNs are often used for
supervised classification for their adaptive nature. They can often obtain good performance when
the training samples are sufficient. In this paper, the feed-forward neural network (FFNN) with
three layers is considered. In the FFNN, each neuron (or call “unit”) contains a transfer function.
The neuron of the hidden and output units performs the nonlinear sigmoid function, while the input
units have an identity transfer function. Then, layers are connected to each other by a system of weights,
which multiplicatively scale the values traversing the links. The weights and bias of these links in the
network is firstly randomly initiated and then fine-tuned through the backpropagation process.

2.5.3. Maximum Likelihood Classification (ML)

ML is a kind of classical classifier that is widely used in a variety of remote sensing applications.
Based on training data, the maximum likelihood method selects the set of values of the model
parameters that maximizes the likelihood function [37].

2.6. Features Selection Scheme

In a classification scheme, continuously adding features generates the well-known pattern
recognition problem known as the “curse of dimensionality”, which means that the classification
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performance will not always improve with the increase of added features, especially when the number
of training data samples is limited. Sometimes, “bad” features may even largely lower the classification
accuracy. Moreover, the increase of the number of features makes the classification algorithms time
consuming. In this paper, a forward feature selection scheme is considered, to choose the optimum
feature sets for each classifier: starting from the best 2 features, the classification chooses to add the
feature that provides the largest improvement on classification accuracy at each time. Then, in the
comprehensive analysis, feature sets that achieved the best classification performance are employed.

2.7. Classification Accuracy Evaluation

In this study, overall accuracy (OA) and kappa coefficients (Kappa) are employed to quantitatively
evaluate the classification accuracy. They can be derived from the confusion matrix of the testing
data samples, where the rows represent the classified results and columns represent the referenced
data. In the confusion matrix, the last row is the sum of all previous rows, and the last column is
the sum of all previous columns. The OA is calculated by summing the number of pixels classified
correctly divided by the total number of pixels, and the kappa coefficient measures the accuracy of the
classification in another way; the definitions of both of them are shown below:

OA =

n−1
∑

i=1
Xii

Xnn
(32)

Kappa =

Xnn
n−1
∑

i=1
Xii −

n−1
∑

i=1
(XinXni)

X2
nn −

n−1
∑

i=1
(XinXni)

(33)

where X =
{

xij
}

n×n (i, j = 1, 2, 3, . . . , n) is the confusion matrix and Xin stands for the number of
samples that belongs to the i-th class and classified as n-th class.

2.8. Dimension Reduction

Various features can be extracted from polarimetric SAR data. However, inevitably, they are
correlated and suffer from noise. In this study, three typical algorithms, principle component analysis
(PCA), local linear embedding (LLE) and ISOMAP, were comparatively employed to reduce the
dimension of polarimetric SAR features.

PCA reduces the number of features by replacing them with their linear combination. These new
features are derived by the idea of maximizing their variance and making them uncorrelated. It comes
from the theory of linear algebra; PCA has been abundantly used in many applications and has become
a very popular method for its highly efficient, non-parametric characteristic.

LLE is an unsupervised learning algorithm that computes low-dimensional, neighborhood-
preserving embeddings of high-dimensional inputs. It maps its inputs into a single global coordinate
system of lower dimensionality, and its optimizations do not involve local minima. LLE is capable of
learning the global structure of nonlinear manifolds based on the exploration of the local symmetries
of linear reconstructions [38].

ISOMAP takes advantage of local metric information by measuring geodesic distances and
learning the underlying global geometry of a dataset. Developed from multidimensional scaling
(MDS), it is capable of discovering the nonlinear degrees of freedom that underlie complex natural
observations, such as human handwriting or images of a face under different viewing conditions [39].

3. Results

In this study, features extracted from RADARSAT-2 quad-pol SAR data were analyzed.
The pseudo RGB image of the Radarsat-2 data on the Pauli basis are provided in Figure 2. It was
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acquired during the 2011 Norwegian oil-on-water experiment, in which three verified slicks were
present; from left to right, they were: biogenic film, emulsions and mineral oil [34]. The biogenic
film was simulated by Radiagreen ebo plant oil. Emulsions were made of Oseberg blend crude
oil mixed with 5% IFO380 (Intermediate Fuel Oil), released 5 h before the radar acquisition.
Additionally, the Balder crude oil was released 9 h before the radar acquisition [34].

In this study, the effect of feature numbers on the final classification result is analyzed, by
considering three major supervised classifiers, namely, SVM, ANN and ML. Based on the quad-pol SAR
data, dual-pol and compact polarimetric SAR data were also simulated, then features were extracted
based on uniform feature extraction algorithms. Before the process of supervised classification, all of
the features were normalized to the range of 0–1. Finally, the performance of features extracted from
different polarimetric SAR modes in oil spill classification are compared and analyzed.

Figure 2. Pauli RGB image of RADARSAT-2 data.

In the supervised classification experiment, 5393 and 5467 pixels of mineral oil covered and
non-covered (including clean sea surface and biogenic films) training samples were picked within
the study area respectively. Then, 5550 and 5535 testing samples of these two types are picked as the
ground truth. The training and testing samples do not include each other. Both the training and testing
sample include comparable numbers of pixels that are visually identified (based on ground truth) as
clean sea surface, mineral oil and biogenic films (weak-damping surfactants).

3.1. Oil Spill Classification Based on Fully Polarimetric SAR Features

In the classification based on quad-pol SAR data, feature numbers from 2–10 are considered.
The polarimetric features derived from quad-pol SAR data considered in the study are listed in Table 3.
All of the features considered in this experiment are provided in Figure 3. In the display, all of the
features are normalized to [0, 1]. In Figure 4, the tendency of overall accuracy achieved by three
classifiers is plotted. The best classification result was achieved when considering eight features for
SVM, nine features for ANN and four features for MLC. Generally, SVM achieved the best classification
performance, followed by ANN. This result proved the superb capability of SVM in dealing with a
large number of features. It can be observed that in all of the classifications, after the best four features
have been introduced, the classification results began to fluctuate and did not change very much.
These four features are: pedestal height, correlation coefficient, standard deviation of CPD and alpha
angle. The eight features used for SVM classification are: S2

VV , pedestal height, entropy, DoPHHVV,
correlation coefficient, coherency coefficient, standard deviation of CPD and alpha angle. The nine
features used for ANN are all of the features except ellipticity. As introduced in the previous session,
all of these features have strong physical meaning, which enables them to largely contribute to the
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classification between mineral oil and clean sea surface/biogenic film. They are also not likely affected
by the noise floor.

Table 3. Features that derived from quad-polarimetric SAR data.

Number Feature

1 S2
VV

2 Pedestal Height
3 Entropy
4 DoPHHVV
5 Correlation Coefficient
6 Conformity Coefficient
7 Coherency Coefficient
8 Ellipticity χ
9 CPD Standard Deviation

10 Alpha Angle

Note: Features 4 and 8 were extracted from the Stokes vector considering the HH and VV channels.

Figure 3. Cont.
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Figure 3. Quad-pol features extracted from the RASARSAT-2 data.

Figure 4. Classification accuracy achieved by three classifiers with the number of features changing
from 2–10.

The best classification result was achieved by SVM with eight quad-polarimetric SAR features.
This is shown in Figure 5a. Figure 5b,c demonstrates the classification results obtained by ML and ANN,
respectively, where the red color indicates mineral oil and green indicates non-oil area. The confusion
matrix of the best classification results achieved by these three classifiers is listed in Tables 4–6. From the
detailed analysis on the confusion matrix of these classification results, it can be observed that the
major reason that SVM is superior to the other two classifiers is that it successfully controlled the
commission error of non-oil area, namely the error caused by wrongly classified clean sea surface and
biogenic slicks.

Figure 5. Classification results based on quad-pol SAR features using different classifiers. (a) SVM;
(b) ML; (c) ANN.
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Table 4. Confusion matrix achieved by SVM based on 8 fully polarimetric features.

Class
Ground Truth (Pixels)

Oil Sea Total

Oil 5429 178 5607
Sea 121 5357 5478

Total 5550 5535 11,085

Overall accuracy = 97.3027% (10,786/11,085), kappa coefficient = 0.9461.

Table 5. Confusion matrix achieved by ML based on 4 fully polarimetric features.

Class
Ground Truth (Pixels)

Oil Sea Total

Oil 5411 256 5667
Sea 139 5279 5418

Total 5550 5535 11,085

Overall accuracy = 96.4366% (10,690/11,085), kappa coefficient = 0.9287.

Table 6. Confusion matrix achieved by ANN based on 9 fully polarimetric features.

Class
Ground Truth (Pixels)

Oil Sea Total

Oil 5427 232 5659
Sea 123 5303 5426

Total 5550 5535 11,085

Overall accuracy = 96.7975% (10,730/11,085), kappa coefficient = 0.9359.

3.2. Oil Spill Classification Based on Different Polarimetric SAR Modes

In this part, as listed in Table 7, dual- and compact polarimetric SAR features are extracted
from simulated SAR datasets (the conformity coefficient is only available in π/2 mode). The overall
classification accuracy of three classifiers based on the features extracted from different polarimetric
SAR modes is compared in Figure 6.

Table 7. Uniform dual and compact polarimetric features considered in the study.

Number Feature *

1 E2
V

2 Pedestal Height (CP)
3 Entropy (CP)
4 DoP (CP)
5 Correlation Coefficient (CP)
6 Alpha Angle (CP)
7 Coherency Coefficient (CP)
8 Ellipticity χ (CP)
9 CPD Standard Deviation (CP)

10 Conformity Coefficient (π/2)

* Features 1–9 are extracted from dual and compact polarimetric SAR data following the methods introduced
in Section 2.4, while Feature 10 is only available for π/2 mode. “CP” stands for features derived from compact
polarimetric SAR data in order to distinguish them from those calculated from quad-pol SAR data.
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Figure 6. Classification accuracy of different polarimetric SAR modes achieved by SVM, ANN and ML.

Quad-pol (QP) feature-based classification has the highest OA, followed by π/2 compact
polarimetric SAR mode and HH/VV dual-polarized (DP) mode. π/4 mode-based classification has the
lowest performance. In QP and π/2 modes, SVM achieved the best performance, while for HH/VV
DP and π/4 modes, better performance was achieved by ML. Furthermore in dual- and compact
polarimetric SAR modes, ML outperformed ANN; this may be explained by the fact that ANN has
a higher requirement to the separability of the dataset and is more vulnerable to the loss or mixture
of crucial information of the dataset. The confusion matrices of the classification results achieved by
SVM based on features extracted from different polarimetric SAR modes are listed in Tables 8–10, with
the feature number that achieved the best classification performance, and the classification results are
demonstrated in Figure 7a–c.

Similar supervised classification experiments were also conducted based on single polarimetric
feature S2

VV only. A much lower overall accuracy (61.7772%) and kappa coefficient (0.2348) were
obtained. Figure 7d shows the classification result, from which it could be observed that most
parts of the biogenic slick were misclassified to mineral oil. The confusion matrix (Table 11) further
supported this observation. This result manifested the limitation of single polarimetric SAR mode in
distinguishing mineral oil and biogenic films.

Table 8. Confusion matrix achieved by SVM based on 9 dual-polarized (DP) mode features.

Class
Ground Truth (Pixels)

Oil Sea Total

Oil 5357 445 5802
Sea 193 5090 5283

Total 5550 5535 11,085

Overall accuracy = 94.2445% (10,447/11,085), kappa coefficient = 0.8849.

Table 9. Confusion matrix achieved by SVM based on 10π/2 mode features.

Class
Ground Truth (Pixels)

Oil Sea Total

Oil 5378 363 5741
Sea 172 5172 5344

Total 5550 5535 11,085

Overall accuracy = 95.1737% (10,550/11,085), kappa coefficient = 0.9035.
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Table 10. Confusion matrix achieved by SVM based on 9π/4 mode features.

Class
Ground Truth (Pixels)

Oil Sea Total

Oil 5316 595 5911
Sea 234 4940 5174

Total 5550 5535 11,085

Overall accuracy = 92.5214% (10,256/11,085), kappa coefficient = 0.8504.

Figure 7. Classification result using SVM based on the features of: (a) DP mode; (b) π/4 mode; (c) π/2
mode; (d) S2

VV .

Table 11. Confusion matrix achieved by SVM based on S2
VV .

Class
Ground Truth (Pixels)

Oil Sea Total

Oil 5438 4125 9563
Sea 112 1410 1522

Total 5550 5535 11,085

Overall accuracy = 61.7772% (6848/11,085), kappa coefficient = 0.2348.

3.3. Oil Spill Classification Based on Dimension Reduction of Features

Based on the new feature sets, classification was conducted by using SVM. The classification
results obtained by employing the three feature dimension reduction methods are shown in Figure 8.
Tables 12–14 demonstrate the performance of classification. The feature set derived from LLE achieved
the highest overall accuracy of 92.1696%. The feature set derived from PCA obtained an OA of
91.1322%, with the lowest false alarm rate. The feature set derived from ISOMAP had an OA of
90.8705%, which is the lowest among these three algorithms. Generally, feature reduction algorithms
have acceptable performance in keeping the key information for distinguishing mineral oil and biogenic
films. However, in this experiment, the performance achieved by dimension reduced feature sets is
constantly lower than the original feature sets, which may be related to the issue of sample selection.
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Figure 8. Classification results using SVM based on feature dimension reduction methods.

Table 12. Confusion matrix achieved by SVM based on four features derived from PCA on quad-pol
SAR features.

Class
Ground Truth (Pixels)

Oil Sea Total

Oil 4649 82 4731
Sea 901 5453 6354

Total 5550 5535 11,085

Overall accuracy = 91.1322% (10,102/11,085), kappa coefficient = 0.8227.

Table 13. Confusion matrix achieved by SVM based on four features derived from local linear
embedding (LLE) on quad-pol SAR features.

Class
Ground Truth (Pixels)

Oil Sea Total

Oil 4879 197 5076
Sea 671 5338 6009

Total 5550 5535 11,085

Overall accuracy = 92.1696% (10,217/11,085), kappa coefficient = 0.8434.

Table 14. Confusion matrix achieved by SVM based on four features derived from ISOMAP on
quad-pol SAR features.

Class
Ground Truth (Pixels)

Oil Sea Total

Oil 4809 271 5080
Sea 741 5264 6005

Total 5550 5535 11,085

Overall accuracy = 90.8705% (10,073/11,085), kappa coefficient = 0.8174.

4. Discussion

With the help of polarimetric information, oil slicks and their biogenic films can be well separated.
Experiments proved that the classification performance does not always increase with introducing
more features; it fluctuates or decreases after the sufficient features are considered. This effect can be
attributed to correlated and contradicting information carried in these features. In the demonstrated
case, a set of four key features is sufficient, and the classification performance does not increase much
when introducing more features. This phenomenon shows that most polarimetric information can be
provided by several powerful and complementary features. As a result, in real applications, only a few
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representative features need to be extracted to save computing time and avoid the problem of “curse
of dimensionality”.

In this study, we present a comparative study on features extracted from different polarimetric
SAR modes to provide valuable information for oil spill classification. It was proven that quad-pol
features have the highest overall accuracy, while π/2 compact polarimetric SAR modes had the
best performance among all compact and dual-polarimetric SAR modes, followed by HH/VV
dual-polarimetric SAR modes. The lowest performance was achieved by π/4 mode. In π/2 mode,
the circularly-polarized signal is transmitted, which has been proven to be more suitable for a series
of marine remote sensing applications [6,23], since it is very sensitive to the change of scattering
mechanisms on the sea surface. HH-VV phase correlation is very helpful for distinguishing marine
oil spill and biogenic oil slicks [3], and thus, HH/VV dual-polarization mode achieved relatively
good performance.

In fully and π/2 compact polarimetric modes when the separability of the features is high,
SVM achieved the highest performance in comparison with other supervised classifiers. The advantage
of SVM is its good capability of handling the problem of the “curse of dimensionality”. It has better
performance in dealing with data of a high dimensional feature space in supervised classification
applications, such as this illustrated case. For quad-pol feature-based classification, ANN performed
slightly better than ML, and for other modes, ML performed better than ANN. A possible explanation
is that ANN is very sensitive to the quality of features and has the trend of over-training when dealing
with features with disturbance. Therefore, in compact and dual-polarimetric SAR modes, ML performs
better than ANN, although the latter one is more sophisticated in its architecture.

This study shows that polarimetric SAR can distinguish mineral oil from biogenic slicks.
An important result is that the identification of different oils (bunker oil, crude oil, petrochemical films)
is very important for clean-up operations. Different oils have different physical/chemical properties,
e.g., viscosity, density, evaporation rate, etc., and theoretically, a difference in these properties can be
observed in polarimetric SAR images. However, currently, there is not enough valid data to support
this latter postulate. This analysis can be made in the future.

It is important to analyze the behavior of weathering oil in polarimetric SAR images.
Particularly, evaporation, emulsification and sinking are important related slick detections by SAR.
Studies [40,41] indicate that the percentages of oil trapped, evaporated and at the surface vary with the
type of oil spilt and with the location in which spills are firstly generated. In essence, the movement
of oil, its original type/density and the time that leads to its emulsification/evaporation/sinking are
variable in different oil spills. It is also considered crucial to understand the effects of emulsification and
ocean-driven slick movement in the size(s) and distribution of oil slicks at the surface for environmental
protection [42]. Hence, more detailed experiments should be made to quantitatively analyze the degree
of degradation of an oil spill based on polarimetric SAR.

5. Conclusions

The Norwegian oil-on-water experiment in 2011 provided polarimetric SAR acquisition with
verified oil spill and biogenic slicks on one scene of Radarsat-2 data. More quad-pol SAR data samples
are being further collected to derive more detailed and convincing results in the near future studies.

The key findings of this comparative study can be summarized as follows:

• Polarimetric SAR features can be input into supervised algorithms to achieve reliable oil spill
classification. For this dataset, a feature set with four features is sufficient for most polarimetric
features based oil spill classifications. They are: pedestal height, correlation coefficient, standard
deviation of CPD and alpha angle.

• Among all of the compact polarimetric SAR modes, π/2 mode has the best performance among
all of the dual- and compact polarimetric SAR modes, for its sensitivity to different scattering
mechanisms caused by mineral oil and biogenic look-alikes.
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• Among all of the supervised classifiers, SVM outperforms other classifiers when sufficient
polarimetric information can be obtained, such as quad-pol mode. ML performs better than
other supervised classifiers when only incomplete polarimetric information is available, such as
traditional dual-pol and π/4 mode.

The reasons for the unreliable results in feature reduction experiments may be attributed
to insufficient data sampling when computing feature maps. The understanding of oil in the
characteristics of polarimetric SAR imagery is key to optimize the processing procedures of automatic
oil spill detection and classification algorithms.

In the near future, there will be more compact polarimetric SAR data available for marine
surveillance applications. The polarimetric observation capabilities of these sensors will largely
improve the efficiency and reliability of oil spill detection and any future classifications applications
based on SAR data.
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Abstract: The random volume over ground (RVoG) model associates vegetation vertical structure
parameters with multiple complex interferometric coherence observables. In this paper, on the basis
of the RVoG model, a truncated singular value decomposition (TSVD)-based method is proposed
for forest height inversion from single-baseline polarimetric interferometric synthetic aperture
radar (PolInSAR) data. In addition, in order to improve the applicability of TSVD for this issue,
a new truncation method is proposed for TSVD. Differing from the traditional three-stage method,
the TSVD-based inversion method estimates the pure volume coherence directly from the complex
interferometric coherence, and estimates the forest height from the estimated pure volume coherence
with a least-squares method. As a result, the TSVD-based method can adjust the contributions of the
polarizations in the estimation of the model parameters and avoid the null ground-to-volume ratio
assumption. The simulated experiments undertaken in this study confirmed that the TSVD-based
method performs better than the three-stage method in forest height inversion. The TSVD-based
method was also applied to E-SAR P-band data acquired over the Krycklan Catchment, Sweden,
which is covered with mixed pine forest. The results showed that the TSVD-based method improves
the root-mean-square error by 48.6% when compared to the three-stage method, which further
validates the performance of the TSVD-based method.

Keywords: polarimetric interferometric synthetic aperture radar (PolInSAR); vegetation height;
truncated singular value decomposition (TSVD); least squares

1. Introduction

It is well known that vegetation height plays an important role in quantifying the terrestrial carbon
cycle [1,2]. Moreover, vegetation height is an essential factor for the estimation of the biomass stored in
vegetation [3,4]. Therefore, accurately extracting vegetation height at a large scale is an important task.
Given the fact that polarimetric interferometric synthetic aperture radar (PolInSAR) can separate the
scattering power of a single resolution cell into the contributions of surface, double-bounce, and volume
scattering, it can be considered to be a viable remote sensing technique for estimating vegetation height
in large-scale areas [4–9].

PolInSAR can be used to extract vegetation height through its sensitivity to the vegetation vertical
structure [10–14]. The complex interferometric coherence of the observed PolInSAR data has been
related to the vertical distribution of the vegetation scattering [10–12]. In a number of PolInSAR
campaigns, the random volume over ground (RVoG) model [6,10] has been used to extract vegetation
height from the complex interferometric coherence [15–17]. The RVoG model is a physical PolInSAR
model that integrates the complex coherence and the biophysical parameters. Based on the RVoG
model, Papathanassiou [6] proposed six-dimensional nonlinear optimization method, which has been
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successfully evaluated with different types of PolInSAR data [6,15,16]. However, for this method,
the accuracy of the solution is greatly dependent on the selected initial value, and a poor choice of
initial value can result in unstable parameter estimation. Furthermore, the iterative procedure used in
this method consumes too much time and is unsuitable for the inversion of large-scale areas. To cope
with this problem, Cloude [18] separated the six-dimensional nonlinear parameter optimization
process into three stages. This solution is known as the “three-stage method”, and has been widely
used in vegetation height extraction for its simple, universal, and time-saving properties [15,19].
However, the three-stage method assumes that there is at least one polarization channel without
a ground scattering contribution (the null ground-to-volume ratio (GVR) assumption), and thus it
is difficult to determine the polarization because the volume and ground scattering contributions
are always mixed in all of the polarization channels due to the diverse penetration depths [20].
As a result, the pure volume coherence estimated by the three-stage method is often inaccurate.
Furthermore, with the three-stage method, it is not possible to adjust the contributions of the
interferometric coherence observations in the estimation of the RVoG model parameters.

The aim of this work is to address the limitations described above and extract accurate vegetation
heights from single-baseline PolInSAR data. Based on the RVoG model, linear observation equations
are first developed from the complex interferometric coherence observations by Taylor expansion,
in order to combine all the available interferometric coherence observations. Next, since the coefficient
matrix derived from the linear equations is ill-conditioned, in order to overcome this ill-posed problem,
the proposed truncated singular value decomposition (TSVD)-based method is used to estimate the
pure volume coherence. Furthermore, due to the fact that the ordinary truncation method for TSVD
is not suitable for this issue, a more adaptive truncation method is proposed so as to improve the
accuracy of the estimated pure volume coherence. Finally, the forest height is extracted from the
estimated pure volume coherence by the use of a least-squares method.

This paper is structured as follows. The principle of the RVoG model is introduced and discussed
in Section 2. Section 3 presents the TSVD-based method for the estimation of vegetation height from
complex interferometric coherence observations. The validation of the experiments are presented in
Section 4. The discussions are presented in Section 5. Finally, the conclusions are drawn in Section 6.

2. RVoG Model

The RVoG model is a physical model that associates vegetation vertical structure parameters
with multiple complex interferometric coherence observables [10]. It is a basic and popular model
for describing vegetation scenarios. The model depicts the vegetation layer as a volume with
randomly oriented particles over an impenetrable ground surface. Without considering the temporal
decorrelation, the complex interferometric coherence γ(ω) is expressed as [6]:

γ(ω) = eiϕ0
γv + μ(ω)

1 + μ(ω),
(1)

where ω is the unitary polarization vector that defines the choice of scattering mechanism, ϕ0 denotes
the ground surface phase, μ(ω) represents the ground-to-volume ratio (GVR) accounting for the
polarization diversity, which varies with ω, and γv denotes the pure volume coherence, which is linked
to the vegetation height and is expressed as [6]:

γv =
2σ

(
e(2σhv/ cos θ+ikzhv) − 1

)
(2σ + ikz cos θ)(e(2σhv/ cos θ) − 1),

(2)

where σ denotes the mean extinction coefficient, hv denotes the vegetation height, θ is the
incidence angle, and kz is the vertical wave number, which depends on the imaging geometry and
wavelength [21]. kz is given as:
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kz =
4πΔθ

λ sin θ,
(3)

where λ denotes the wavelength, and Δθ represents the incidence angle difference between the master
and slave images.

According to Equation (1), the theoretical loci of the complex coherence sets of different
polarizations follow a straight line in the complex plane, as shown in Figure 1 [18]. The figure also
depicts the determination of the ground surface phase, which is applied in the three-stage method.
However, the complex coherence observations no longer follows a common straight line in practice,
due to the coherence fluctuations caused by all the possible decorrelations. In order to reconstruct
the straight line accurately from noisy coherence sets, a line-fit approach based on least squares is
proposed by the use of the following regression model [10,18]:

Im(γ(ω)) = cRe(γ(ω)) + d, (4)

where Re() and Im() denote the real and imaginary operations, respectively, c is the slope of the
coherence line, and d is the intersection point to the imaginary axis. Once more than two complex
coherence observations are provided, the coherence line can be determined by the line-fit approach.
The ground phase ϕ0 can then be identified by the two intersections (ϕ1 and ϕ2) of the coherence line
and the unit circle [18]. However, the least-squares criterion may be unstable if the ellipticity of the
coherence sets is high or if the complex coherence observations are too discrete, due to the noise of
the polarizations.

Figure 1. Geometrical interpretation of the coherence loci.

In addition, the three-stage method assumes that there is a polarization channel without ground
scattering contribution, i.e., μ(ω) = 0, and then uses this assumption to further estimate the pure
volume coherence. However, the volume and ground scattering contributions are always mixed in
the polarization channels due to the diverse penetration depths. Therefore, it is difficult to find a
polarization that can fit this hypothesis. As a result, when relying on this assumption, the estimated
pure volume coherence will bias the extracted forest height.

As shown in Equation (1), γ(ω) is polarization-dependent. The complex coherence observations of
the different scattering mechanisms can be obtained by the use of different unitary polarization vectors
ω. In other words, if the number of polarization vectors is m, then m equations like Equation (1) can be
established. By using the least-squares criterion, the unknown parameters in γ(ω) can be estimated
when the number of parameters is less than that of the equations. Therefore, the least-squares method
is a viable way to estimate vegetation height from complex coherence observations. The least-squares
method directly estimates the RVoG model parameters from the complex coherence observations
without any assumptions, and it is able to adjust the contributions of the coherence observations in the
estimation of the model parameters.
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3. The TSVD-Based Method for the Estimation of Vegetation Height From Complex
Interferometric Coherence Observations

In this section, a novel approach is introduced for the estimation of vegetation height from
single-baseline PolInSAR data, on the basis of the least-squares criterion and the TSVD-based method.

3.1. Estimation of Pure Volume Coherence from the Complex Interferometric Coherence Observations

From Equations (1) and (2), it can be seen that γ(ω) and γv are complex numbers.
Therefore, the equations can be separated into two parts: a real part and an imaginary part. In order to
simplify the nonlinear equations, we parameterize the pure volume coherence by γv = a + bi, and then
the complex interferometric coherence can be given by:

γ(ω) = eiϕ0
a + bi + μ(ω)

1 + μ(ω)
, (5)

and the observational function for the least-squares criterion can be formulated as:

γ
(
ωj

)
= f

(
ϕ0, a, b, μ

(
ωj

))
j = 1, 2, . . . , m, (6)

where ωj is the j-th unitary polarization vector, f is the RVoG model function, as described in
Equation (5), μ

(
ωj

)
is the j-th GVR associated with vector ωj, and m represents the number of

polarization projection vectors. It is clear that there are four unknown model parameters in each
function, and m + 3 unknown parameters in m functions.

To estimate the unknown model parameters, least-squares estimation is adopted to adjust the
contributions of the complex coherence observations and suppress noise [20,22,23]. The corresponding
least-squares criterion can be formulated as:

m

∑
j=1

|γ̂
(
ωj

)
− γ

(
ωj

)∣∣2 = min, (7)

where ∑ represents the summation operation, |·| represents the modulus operation, and γ̂
(
ωj

)
is the

estimation of γ
(
ωj

)
. Since the complex coherence can be separated into a real part and an imaginary

part, Equation (7) can be equally converted to:

m

∑
j=1

(∣∣Re
(
γ̂
(
ωj

))
− Re

(
γ
(
ωj

))∣∣2 + ∣∣Im(
γ̂
(
ωj

))
− Im

(
γ
(
ωj

))∣∣2) = min. (8)

In this way, the residual functions for the least-squares criterion are formulated as:

{
Vj

Re = Re
(
γ̂
(
ωj

))
− Re

(
γ
(
ωj

))
,

Vj
Im = Im

(
γ̂
(
ωj

))
− Im

(
γ
(
ωj

))
,

(9)

where Vj
Re denotes the residual of the real part corresponding to the j-th unitary polarization vector,

and Vj
Im denotes the residual of the imaginary part. From Equation (9), it can be seen that, if the number

of polarization projection vectors is m, then 2m residual equations can be established. The number of
unknown parameters is m + 3. Therefore, the unknowns can be estimated by least-squares estimation
when the number of polarization projection vectors is more than three.

From Equation (5), it can be seen that the complex coherence function is highly nonlinear,
which greatly affects the efficacy of the least-squares estimation. In view of this, a linearized strategy
based on a Taylor series is adopted to convert the nonlinear function into a linear function [23]. In this
case, the residual functions for the least-squares criterion can be rewritten as:
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⎧⎪⎨
⎪⎩

Vj
Re =

∂Re(γ(ωj))
∂ϕ0

dϕ0 +
∂Re(γ(ωj))

∂a da +
∂Re(γ(ωj))

∂b db +
∂Re(γ(ωj))

∂μ(ωj)
dμ

(
ωj

)
− l j

Re

Vj
Im =

∂Im(γ(ωj))
∂ϕ0

dϕ0 +
∂Im(γ(ωj))

∂a da +
∂Im(γ(ωj))

∂b db +
∂Im(γ(ωj))

∂μ(ωj)
dμ

(
ωj

)
− l j

Im

(10)

where ∂ represents the partial derivative operation, dϕ0, da, db, and dμ
(
ωj

)
denote the corrections of

the approximations of the unknown parameters, and l j
Re and l j

Im are the real and imaginary differences
between the observed complex coherence and the predicted initial value. The vector V denotes the
residuals, X denotes the unknown corrections, A denotes the coefficient matrix, and L denotes the real
and imaginary differences. The residual functions for the least-squares criterion can then be expressed
as [23,24]:

V = AX − L. (11)

The unitary polarization vector can be constructed by linear-basis polarization,
Pauli-basis polarization, magnitude diversity optimization polarization [6], and phase diversity
polarization [25]. Therefore, more than three polarization projection vectors can be obtained for the
estimation of the unknown parameters. Using the least-squares criterion, an estimate of the unknown
corrections can be given by:

X̂ =
(

ATA
)−1

ATL, (12)

where X̂ denotes the estimation of the unknown corrections. The estimation of the model parameters
can then be obtained by combining the approximations and the corrections. However, during the
computation, we find that matrix A is seriously ill-conditioned. It is well known that an ill-posed
problem is a great hindrance to obtaining accurate parameter estimation from observation equations.
For an ill-posed equation, a small amount of noise in the observations can often bring large uncertainties
to the estimation. The detrimental effect of the ill-posed problem is reflected in the large variance of
the least-squares estimations. The variance-covariance matrix of the least-squares estimations can be
given by [23]:

CovX̂ = σ2
0

(
AT A)

−1
, (13)

where CovX̂ represents the variance-covariance matrix of the estimations, and the diagonal elements
of the matrix are the variances of the estimations, σ2

0 denotes the unit weight variance. We perform
singular value decomposition (SVD) on matrix A [24]:

A = USGT, (14)

ST =

⎡
⎢⎣

λ1 0 0 0 · · · 0

0
. . . 0 0 · · · 0

0 0 λn 0 · · · 0

⎤
⎥⎦, (15)

where U is a 2m × 2m orthogonal matrix of the left singular vectors, G is an n × n orthogonal matrix of
the right singular vectors, and n denotes the number of unknowns, which is equivalent to m + 3, S is
the matrix of singular values, and λ are non-negative real numbers that are conventionally listed in
decreasing order, i.e., λ1 > λ2 > · · · > λn. Using the trace operation, the sum of the variances of the
estimations can be given by:

VarsX̂ = Trace(CovX̂) = σ2
0

(
n

∑
i=1

1
λ2

i

)
, (16)

where VarsX̂ represents the sum of the variances of the estimations, and Trace denotes the trace
operation. If the equation is ill-posed, the singular values gradually decrease to zero, and λ1 is much
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larger than λn (λn is close to zero). Equation (16) shows that small singular values greatly magnify the
estimation variances. Thus, the least-squares estimation becomes highly unreliable and is unable to
obtain accurate estimations of the parameters.

In order to overcome the ill-posedness of the problem, truncated singular value decomposition
(TSVD) [26–28] is adopted. TSVD truncates the small singular values that greatly enlarge the variances
to improve the least-squares estimation. Using the TSVD-based method, the estimation of the unknown
parameters is given by:

X̂t = GST
t UTL, (17)

ST
t =

[
S−1

P 0
0 ST = 0

· · · 0
· · · 0

]
, (18)

where X̂t denotes the improved estimation by TSVD, St denotes the inverse singular value matrix which
truncates the small singular values, SP is the singular value matrix which represents the preserved
large singular values, and ST is a zero matrix that represents the truncated small singular values. We
can then obtain the variance of the TSVD estimations as follows:

VarsX̂t
= Trace

(
GST

t UTσ2
0 UStGT

)
= σ2

0

(
k

∑
i=1

1
λ2

i

)
, (19)

where VarsX̂t
represents the variance of the TSVD estimations. k denotes the number of preserved

large singular values. Equation (19) shows that TSVD greatly reduces the variance of the least-squares
estimations through truncating the small singular values. However, it is well known that TSVD results
in a biased estimation. Truncating the small singular values not only reduces the variance but also
introduces bias into the estimation. TSVD improves the estimation by reducing the mean-square error
(MSE) of the least-squares estimation. The MSE is expressed as [26]:

MseX̂t
= VarsX̂t

+ BiasT
X̂t

BiasX̂t
, (20)

where MseX̂t
represents the MSE of the TSVD estimation, and BiasX̂t

represents the bias introduced by
TSVD. The sum of squares of BiasX̂t

is given by:

BiasT
X̂t

BiasX̂t
=

n

∑
i=k+1

XTGiGT
i X, (21)

where X represents the true values of the unknown parameters, and Gi denotes the i-th right singular
vector that corresponds to the i-th singular value. Equation (21) shows that the bias is introduced by
truncating the small singular values. The more singular values that are truncated, the more bias is
introduced. Considering Equation (20), it is clear that TSVD reduces the MSE by truncating the small
singular values. However, the reduction of the MSE relies on the reduced variance being more than the
introduced bias. Therefore, the truncation parameter k which determines the preserved large singular
values and truncated small singular values is a key factor for TSVD to reduce the MSE.

The method that is commonly used for the determination of the truncation parameter is related
to the condition number, i.e., λ1/λi, as defined in Equation (15). If the condition number is larger
than the given upper limit, the singular value λi should be truncated [28–30]. However, large-scale
PolInSAR data usually consist of millions of pixels, and the singular values in ill-conditioned matrices
of pixels are different from each other. Therefore, it is difficult to determine a reasonable upper
limit for the condition number. In order to determine a reasonable truncation parameter for this
issue, we need to develop a new approach. From Equations (19) and (21), it can be seen that if
singular value λi is truncated, the reduced variances are σ2

0 /λ2
i and the introduced bias is XTGiGT

i X.
Therefore, if σ2

0 /λ2
i > XTGiGT

i X, the singular value should be truncated, and if σ2
0 /λ2

i < XTGiGT
i X,

the singular value should be preserved. In order to determine the small singular values, the values of

156



Appl. Sci. 2017, 7, 435

σ2
0 /λ2

i and XTGiGT
i X need to be calculated accurately. From the least-squares estimation, the estimation

of is given by [23]:

σ̂2
0 =

VTV
2m − n

=

(
UUTL − L

)T(UUTL − L
)

2m − n
, (22)

where U denotes the 2m × n dimensional left singular vectors, σ̂2
0 is the estimation of σ2

0 [23,26], and n
is the number of unknowns. It is clear that the small singular values have no adverse effect on the
estimation of σ2

0 . Therefore, σ2
0 /λ2

i can be calculated by the least-squares solution if 2m > n [23,26]. In this
paper, 10 polarizations are selected for the estimation of the pure volume coherence. Therefore, σ2

0 can
be estimated.

Using the SVD matrices of A, the estimation of GT
i X by least squares can be expressed as:

GT
i X̂ = λ−1

i UT
i L. (23)

It can be seen from Equation (23) that the singular values greatly affect the estimation of GT
i X.

Small singular values seriously enlarge the value of GT
i X̂, whereas large singular values do not.

The variance of the estimation of GT
i X can be given by:

Varg = λ−1
i UT

i σ2
0 Uiλ

−1
i = σ2

0 λ−2
i , (24)

where Varg represents the variance of estimation GT
i X̂. The equation shows that the variance of GT

i X̂ is
negatively correlated with the singular value. Therefore, the variance of GT

i X̂ which corresponds to a
large singular value is small. Furthermore, the estimation of GT

i X is reliable due to the small variance.
However, the estimation of GT

i X, which corresponds to a small singular value, is unreliable due to the
large variance.

Generally, if the standard deviation of GT
i X̂ is less than 3σ̂0, the estimation is considered to be

reliable. Therefore, the reliable estimations with a standard deviation of less than 3σ̂0 can be given
by J =

[
X̂TG1GT

1 X̂, X̂TG2GT
2 X̂, · · · , X̂TGjGT

j X̂
]
. Since the values of the reduced variances σ̂2

0 /λ2
i

change as σ̂2
0 /λ2

1 < σ̂2
0 /λ2

2 < · · · < σ̂2
0 /λ2

n, if σ̂2
0 /λ2

i is bigger than 90% of the values of J, it can be
considered that σ2

0 /λ2
i > XTGiGT

i X, and singular value λi needs to be truncated. The other small
singular values λr that are smaller than λi can also be denoted as σ2

0 /λ2
r > XTGrGT

r X and need to be
truncated. The small singular values which should be truncated in the TSVD-based method are thus
determined. The ill-posed problem can be well solved by TSVD with the proposed truncation method.
Finally, the pure volume coherence can be estimated by the proposed TSVD-based method.

3.2. Extraction of Vegetation Height from the Pure Volume Coherence

Since the pure volume coherence is parameterized by γv = a + bi, the pure volume coherence is
estimated as γ̂v = â + b̂i by the proposed TSVD-based method. Using the estimated parameters â and
b̂, the pure volume coherence which links to the vegetation height can be expressed as:

â + b̂i =
2σ

(
e(2σhv/ cos θ+ikzhv) − 1

)
(2σ + ikz cos θ)

(
e(2σhv/ cos θ) − 1

) . (25)

The equation can then be separated into a real part and an imaginary part:

{
â = Re(γv),
b̂ = Im(γv).

(26)

From Equation (25), it can be seen that θ and kz are the known parameters, and the unknown
parameters are σ and hv. Therefore, σ and hv can be estimated by the least-squares estimation from
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Equation (26). The Taylor series is used to convert the nonlinear function into a linear function.
The residual functions for the least-squares criterion can then be expressed as [23]:

{
Vp

Re = ∂Re(γv)
∂σ dσ + ∂Re(γv)

∂hv
dhv − lp

Re,

Vp
Im = ∂Im(γv)

∂σ dσ + ∂Im(γv)
∂hv

dhv − lp
Im,

(27)

where Vp
Re denotes the residual of the real part, and Vp

Im denotes the residual of the imaginary part,
dσ and dhv denote the corrections of the approximations of the unknown parameters, and lp

Re and lp
Im

are the real and imaginary differences between the estimated pure volume coherence and the predicted
initial value. Using the vector Vp to denote the residuals, Xp denotes the unknown corrections,
Ap denotes the coefficient matrix, and Lp denotes the real and imaginary differences. The residual
functions for the least-squares criterion can then be expressed as [23,24,29]:

Vp = ApXp − Lp. (28)

Since the number of residual equations is the same as that of the unknowns, the least-squares
criterion can be used to estimate the unknowns. The estimation is given by:

X̂p =
(

AT
pAp

)−1
AT

pLp, (29)

where X̂p denotes the estimation of the unknowns. The vegetation height can then be obtained from
the estimation of dhv and the initial value of hv by:

ĥv = hv0 + dhv, (30)

where ĥv denotes the estimated vegetation height, and hv0 denotes the initial value of hv.

3.3. The Determination of Initial Values of Model Parameters

From Equations (10) and (27), it can be seen that the proposed method is plagued by the
initial value. If the initial value cannot be well determined, it is difficult to get reliable estimation.
The classical six-dimensional nonlinear optimization method [6] is also confronted by this problem
since it is difficult to obtain the priori information of the forest parameters (forest height and extinction).
However, it is easy to obtain reliable initial values of the ground phase, the pure volume coherence and
the ground-to-volume ratio according to the RVoG assumption and its linear geometrical expression in
the complex plane [10]. Based on this, Equation (10) is used to estimate the pure volume coherence,
which is important to invert the forest parameters. Compared to the six-dimensional nonlinear
optimization method, this method can avoid significant biases caused by the unreliable initial values
of forest parameters. Moreover, in comparison to the three-stage method, the proposed method can
provide more accurate pure volume coherence because it is free from the assumption that there is
one polarization whose ground-to-volume power ratio should be less than −10 dB [10], which cannot
be fulfilled for the low-frequency PolInSAR data or for the sparse forest [31]. In addition, only one
polarimetric observation is used to calculate the pure volume coherence in the three-stage method.
However, multi-polarization observations are used to estimate the pure volume coherence under the
TSVD based least-squares estimation framework, which enhances the method's ability to alleviate the
effect of observational errors in the estimations. As a result, the obtained pure volume coherence can
support more accurate forest parameter estimation.

Then, with the estimated pure volume coherence, Equation (27) is used to estimate forest height.
The initial values for the forest height and the mean extinction coefficient are determined by the
three-stage method. Although the three-stage method cannot give satisfactory results, especially for
the low-frequency PolInSAR data or for sparse forest, these estimated results can be regarded as the
initial values for Equation (27). The least-squares method estimates the corrections of initial values from
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the reliable pure volume coherence to improve the accuracy of the estimated unknown parameters.
The final experiment has shown that with the accurate pure volume coherence and reasonable initial
values, the proposed method can attain good forest height results.

4. Examples

4.1. Simulated Experiments

In order to evaluate the performance of the proposed TSVD-based inversion method for the
estimation of vegetation height from single-baseline PolInSAR data, we simulated single-baseline
PolInSAR data through the PolSARpro tool released by European Space Agency (ESA), Rome, Italy,
using the following forest scenario, as shown in Table 1: simulated broad-leaved forest with an
average height of 18 m; and ground phase of 0 degrees, corresponding to a ground elevation of
0 m. The complex interferometric coherence of the linear-basis polarizations (transmitted polarization
and received polarization are horizontal polarizations, HH, transmitted polarization and received
polarization are vertical polarizations, VV) and the Pauli-basis polarization (transmitted polarization is
horizontal polarization and received polarization is vertical polarization, HV) could then be obtained.
The simulated forest area and the Pauli RGB composite image are shown in Figure 2.

Table 1. Parameters of the simulated scenario.

Platform Height
(m)

Center Frequency
(Hz)

Incidence Angle
(D)

Vertical Baseline
(m)

Horizontal
Baseline (m)

Vertical Wave
Number

Ground Phase
(D)

Forest Height
(m)

3000 1.3 G 45 1 10 0.1154 0 18

Figure 2. (a) simulated forest area; (b) Pauli RGB composite image.

Furthermore, using Pauli-basis polarization, magnitude diversity optimization polarization [6],
and phase diversity polarization [25], the complex interferometric coherence observations of HH+VV,
HH-VV, opt1, opt2, opt3, phase diversity (PD)-high, and phase diversity (PD)-low could be obtained.
Therefore, 20 residual equations could be established from the above 10 complex interferometric
coherence observations based on Equation (10) with 13 unknown parameters. The unknown parameters
were then estimated by the TSVD-based method. From the estimated parameters and the pure volume
coherence model which links to the forest height, the forest height could be extracted by Equation (29).
The extraction results are shown in Figure 3b. For comparison, the extraction results of the three-stage
method are shown in Figure 3a.

From Figure 3, it can be seen that the TSVD-based method performs much better than the
three-stage method in forest height inversion in this test. Clearly, from Figure 3a, the three-stage
method fails to invert the forest heights of the rectangular areas of the figure, but the TSVD-based
method effectively improves the inversion of the rectangular areas, as can be seen in Figure 3b.
The mean values of the extracted forest heights by the three-stage method and the TSVD-based method
are 13.383 m and 15.4440 m. This demonstrates that the forest height estimated by TSVD is more
accurate than that estimated by the three-stage method. For a further comparison, 16 forest stands
were selected from the simulated forest area, and the root-mean-square error (RMSE) of each stand
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was adopted to compare the performance of the two methods. The RMSEs of each stand are shown in
Figure 4.
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Figure 3. (a) forest height inversion result of the three-stage method; and (b) forest height inversion
result of the truncated singular value decomposition (TSVD)-based inversion method.
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Figure 4. Root-mean-square errors (RMSEs) of each forest stand.

For the 16 forest stands, the RMSE of the TSVD-based method is consistently less than that of the
three-stage method. This indicates that the inverted forest height obtained by TSVD is closer to the
true height than the height obtained by the three-stage method. This further validates the performance
of the TSVD-based method.

4.2. Validation with E-SAR P-Band Data

4.2.1. Study Area and Data Sets

The proposed TSVD-based method was also applied to E-SAR P-band PolInSAR data, which were
collected under the framework of the BioSAR 2008 campaign by the German Aerospace Center, Munich,
Germany. The test site is a forest area within the Krycklan River catchment in Northern Sweden, and is
mainly covered by mixed boreal forest with heights ranging from 0 to 35 m. The topography elevation
is between 150 to 380 m above mean sea level (AMSL). The baseline PolInSAR data were acquired in
the repeat-pass configuration. Moreover, as part of the BioSAR2008 campaign, a light detection and
ranging (LiDAR) measurement was also obtained by the Swedish Defense Research Agency (FOI).
The derived forest height is regarded as the reference in the following analysis.

In this experiment, the forest heights were extracted from single-baseline data. The temporal and
spatial baselines were 70 min and 32 m, respectively. The vertical wavenumber ranged from 0.051 to
0.181.The Pauli-basis RGB composite intensity image for the test site is shown in Figure 5.
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Figure 5. Test site Pauli-basis RGB composite intensity image.

4.2.2. Forest Height Inversion

Following the steps of the TSVD-based inversion method, the complex interferometric coherence
observations of HH, VV, HV, HH+VV, HH-VV, opt1, opt2, opt3, PDhigh, and PDlow were used to
establish the residual equations. The pure volume coherence was then estimated by the TSVD-based
method from the residual equations and, finally, the forest heights were extracted from the pure volume
coherence model using the estimated model parameters. The extracted forest heights are shown in
Figure 6b. As in the simulated experiments, the three-stage method was also used to extract the forest
heights, and the inversion results are shown in Figure 6a. Figure 6c shows the LiDAR forest heights
used as a reference.
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Figure 6. (a) inversion results of the three-stage method; (b) inversion results of the TSVD-based
method; (c) forest heights derived by light detection and ranging (LiDAR).

It can be seen from Figure 6 that the inversion results of the three-stage method and the
TSVD-based method follow a similar spatial trend, but significant differences are also apparent.
Compared to the LiDAR results, the inverted forest heights obtained by TSVD are clearly more
accurate than those of the three-stage method. In order to analyze the differences, 272 forest stands
characterized by nearly uniform tree heights were selected from the LiDAR results. We took the
estimated forest height average for every stand and computed the difference between that and the
LiDAR forest height. The RMSE and correlation coefficient (R2) were calculated to validate the
performance. The validated stand-level plots are displayed in Figure 7.

The validated plots of the three-stage method and the TSVD-based method are characterized by
R2 values of 0.2166 and 0.5824, respectively. This indicates that the forest heights inverted by TSVD
are closer to the LiDAR forest heights. The RMSEs of the three-stage method and TSVD are 6.6351
and 3.4096, respectively. Clearly, the inversion accuracy of TSVD is higher than that of the three-stage
method, showing an improvement of 48.6%. Therefore, it is possible to state that the TSVD-based
method can improve the inversion of the forest height in this test site.
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Figure 7. (a) forest heights estimated by the three-stage method; (b) forest heights estimated by the
TSVD-based method.

5. Discussion

5.1. The Extracted Ground Surface Phases by the Three-Stage Method and TSVD

From Equation (10), it can be seen that the ground surface phase can also be estimated by the
TSVD-based method. Since the ground surface phase plays an important part in the estimation of the
underlying topography [30,32,33], the extracted ground surface phases obtained by the three-stage
method and TSVD are shown in Figure 8a,b, respectively.
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Figure 8. (a) ground surface phase estimated by the three-stage method; (b) ground surface phase
estimated by TSVD; (c) the difference between the ground surface phases obtained by the three-stage
method and TSVD.

It is difficult to see any difference between Figure 8a,b. This indicates that the three-stage method
and TSVD perform similarly in extracting the ground surface phase. For a more in-depth analysis,
the ground surface phase obtained by TSVD subtracted from that obtained by the three-stage method
is shown in Figure 8c. It can be seen that most of the values in Figure 8c are close to zero. This further
validates that TSVD is unable to improve the accuracy of the estimation of the ground surface phase
and the underlying digital elevation model (DEM) [30].

The line-fit approach is used in the three-stage method to determine the ground surface phase.
In order to reconstruct the straight line accurately from noisy coherence sets, 10 polarizations are used
by least-squares based line-fit approach. Similarly, the same 10 polarizations are used in TSVD for the
estimation of model parameters. Therefore, the observations used by line-fit approach and TSVD have
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the same noise and information, and the basic criterion in the line-fit approach and TSVD both are
least-squares. This is a possible reason for this result.

5.2. Effects on Estimation of Phase Height

As mentioned in Section 3, the TSVD-based method first estimates the pure volume coherence
from the complex interferometric coherence and then extracts the forest height. The phase height,
which is very important for the inversion of forest height [34,35], was also computed from the estimated
pure volume coherence and compared with the result of the three-stage method. The phase heights
calculated from the estimated pure volume coherence obtained by the three-stage method and TSVD
are shown in Figure 9a,b.
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Figure 9. (a) the phase heights extracted from the pure volume coherence obtained by the three-stage
method; (b) the phase heights extracted from the pure volume coherence obtained by TSVD; (c) the
differences between the phase heights obtained by the three-stage method and TSVD.

From Figure 9a,b, it can be seen that the estimated phase heights in Figure 9a are higher than
those in Figure 9b. We subtracted the phase heights in Figure 9b from those in Figure 9a and display
the results in Figure 9c. Clearly, most of the values in Figure 9c are positive numbers. This indicates
that the phase height extracted by TSVD is a better fit for the theoretical phase height of the pure
volume coherence than the phase height extracted by the three-stage method. For a further comparison,
we computed the average phase height of each forest stand and show the results in Figure 10.
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Figure 10. The estimated phase heights for each forest stand.

Figure 10 clearly indicates that the phase heights estimated by the TSVD-based method
are consistently higher than those estimated by the three-stage method in each forest stand.
Therefore, the forest heights inverted by TSVD are more accurate than those inverted by the three-stage
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method in the forest stands. To confirm this conclusion, we also used the least-squares method
to extract the forest heights from the pure volume coherence estimated by the three-stage method,
as mentioned in Section 3.2. The results are shown in Figure 11.
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Figure 11. Forest heights extracted by the least-squares method from the pure volume coherence
estimated by the three-stage method.

Comparing Figures 11 and 5b, which displays the inversion results of TSVD, clearly, the forest
heights in Figure 5b are closer to the LiDAR forest heights than those in Figure 11. Therefore, we can
conclude that the TSVD-based method has the capacity to improve the estimation of the pure
volume coherence. Based on the improved pure volume coherence, the forest height can be extracted
more accurately.

5.3. Limitations of the TSVD-Based Method

Two problems are worth discussing. Firstly, TSVD plays an important role in the proposed
solution. Since the ordinary truncation method is not suitable for this issue, a more adaptive truncation
method is proposed in this paper. From Equation (23), it can be seen that sufficient polarizations
are needed to estimate σ2

0 , i.e., 2m > n [23,26]. In this paper, 10 polarizations are selected for the
forest height inversion. Therefore, 2m − n = 7 confirms the accuracy of the estimation of σ2

0 [23].
Secondly, due to the scattering mechanism, the inverted forest heights always follow a spatial trend,
which can be seen in the results of both the three-stage method and TSVD. As a consequence, it
is apparent that the far-range areas result in the overestimation of the forest height in Figure 6a,b,
and especially in Figure 6b.

6. Conclusions

A TSVD-based method has been proposed in this paper for forest height inversion from
single-baseline PolInSAR data. Differing from the traditional three-stage method, the new method
estimates the pure volume coherence intuitively from the complex interferometric coherence, and has
the capacity to adjust the contributions of the polarizations in the estimation of the model parameters.
The TSVD-based method was first applied in forest height inversion from simulated PolInSAR data
generated in PolSARpro. The results demonstrated that the TSVD-based method significantly improves
the inversion results when compared to the three-stage method. This was also confirmed with airborne
E-SAR P-band data obtained over a mixed boreal forest. The inverted forest heights obtained by TSVD
showed an improvement in RMSE of 48.6% when compared to the results of the three-stage method.
The phase heights of the estimated pure volume coherence were also well improved when compared
to the results of the three-stage method.
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