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Matjaž Gams and Tine Kolenik
Relations between Electronics, Artificial Intelligence and Information Society through
Information Society Rules
Reprinted from: Electronics 2021, 10, 514, doi:10.3390/electronics10040514 . . . . . . . . . . . . . 7

Jaakko Tervonen, Kati Pettersson and Jani Mäntyjärvi
Ultra-Short Window Length and Feature Importance Analysis for Cognitive Load Detection
from Wearable Sensors
Reprinted from: Electronics 2021, 10, 613, doi:10.3390/electronics10050613 . . . . . . . . . . . . . 23
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Preface to ”Artificial Intelligence and Ambient
Intelligence”

This book includes a series of scientific papers published in the Special Issue on Artificial

Intelligence and Ambient Intelligence at the journal Electronics MDPI. The book starts with an opinion

paper on “Relations between Electronics, Artificial Intelligence and Information Society through

Information Society Rules”, presenting relations between information society, electronics and artificial

intelligence mainly through twenty-four IS laws. After that, the book continues with a series of

technical papers which present applications of Artificial Intelligence and Ambient Intelligence in a

variety of fields including affective computing, privacy and security in smart environments, and

robotics. More specifically, the first part presents usage of Artificial Intelligence (AI) methods

in combination with wearable devices (e.g., smartphones and wristbands) for recognizing human

psychological states (e.g., emotions and cognitive load). The second part presents usage of AI

methods in combination with laser sensors or Wi-Fi signals for improving security in smart buildings

by identifying and counting the number of visitors. The last part presents usage of AI methods in

robotics for improving robots’ ability for object gripping manipulation and perception. The language

of the book is rather technical, thus the intended audience are scientists and researchers who have at

least some basic knowledge in computer science.

Matjaz Gams, Martin Gjoreski

Editors
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1. Introduction

Artificial intelligence (AI) and its sister ambient intelligence (AmI) have in recent
years become one of the main contributors to the progress of digital society and human
civilization. For example, breakthroughs have been achieved in image processing [1–4]
natural language processing [5–7], and reinforcement learning [8,9]. All of this affects
practically every aspect of our lives, be it search engines such as Google, autonomous
vehicles, robots, or smart healthcare. The relation to electronics is particularly interesting.
While the exponential progress of electronics expressed through Moore’s Law [10] or Keck’s
Law enabled progress of information society and AI, the design of new chips already to
some extent depends on the successful application of AI methods, and will likely more so
in the future.

Several questions arise in relation to the above research and development fields. Are
there major possibilities for improvements by connecting SW, AI, and AmI methods directly
to the chips? Is it possible to integrate the flexibility of SW with the speed of electronic HW
and vastly improve the cognitive and computing powers? Will AmI benefit through this
progress, since it is intrinsically devoted to connecting devices and humans?

However, future is all but certain as the COVID-19 crisis demonstrates. It might be
that we are already facing a slow but steady decline of electronic components following
the fast exponential growth. In addition, AI is notoriously known for its wild ups and
downs similar to computer generations, where after a hype a major disappointment is
proclaimed worldwide when the human level intelligence seems to be as far as before [11].
However, like Phoenix, AI rises again and again, and unlike well-known physical hardware
limitations there is no major well-defined limitation for the AI progress. Indeed, it seems
that superintelligence and super ambient intelligence are just decades away [12]. They will
bring major technological and societal changes, hopefully for the best.

The objective of this Special Issue is to focus on the technical and overview contribution
for the AI, AmI, information society and electronics. In addition, papers deal with

• Mobile/wearable intelligence
• Robotics applied to smart tasks
• Applications of combined pervasive/ubiquitous/cognitive computing with AI
• Use of mobile, wireless, visual, and multi-modal sensor networks in intelligent systems
• Intelligent handling of privacy, security and trust

2. Artificial Intelligence and Ambient Intelligence

In the review paper “Relations between Electronics, Artificial Intelligence and Informa-
tion Society through Information Society Rules” [13], Matjaž Gams at al. present relations
between information society (IS), electronics and artificial intelligence mainly through
twenty-four IS laws. The laws constitute a novel collection, not presented in literature
before, describing major properties in the mentioned field, and the way they influence
progress. The laws mainly describe the exponential growth in a particular field such as
processing, storage or transmission capabilities with related references for further study.
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Each law bears the name of its inventor. Rules such as Moore’s Law are reasonably well
known even in general public, however, the majority of rules is not presented at university
education all over the world. There exist probably tens of similar rules, but the authors
picked the most relevant to comprehensibly present the fields. Not all rules are technical,
some present relations to production prices and human interaction while others capture
human cognitive issues. An analysis is devoted to time dependencies of the rules, and the
final part of the paper describes the progress, state-of the-art and potential further progress
of AI. AI is already occasionally exceeding human capabilities and will do so even more
in the future. In some areas where AI was presumed to be incapable of performing even
at a modest level, such as the production of art or programming software, AI is making
progress that can sometimes reflect true human skills by programs like GPT3.

The review paper is followed by seven research papers.
Jaakko Tervonen et al. [14] addressed the issue of human cognitive abilities under

pressure in the information society in “Ultra-Short Window Length and Feature Impor-
tance Analysis for Cognitive Load Detection from Wearable Sensors”. Cognitive load
detection is beneficial in several applications of human–computer interaction, for example
in autonomous driving. The paper concentrates on accurate and real-time bio signal-based
cognitive-load detection. More specifically, the paper addresses the problem of data seg-
mentation by analyzing optimal and minimal window length. A comparative analysis
is presented, in which ultra-short (30 s or less) window lengths were used for cognitive
load detection with a wrist-worn device, which provides heart rate, heart rate variability,
galvanic skin response, and skin temperature. These bio signal data are used to extract
features at six different window lengths. The extracted features are then used to train an
Extreme Gradient Boosting classifier to detect high vs. low cognitive load. The results indi-
cate that longer intervals in general achieve higher accuracy, with 25 s window performing
the best (67.6%). Lowest performance (60.0%) is obtained with 5 s window. The relation
between different bio signal features, the classification performance and the most useful
features was also investigated. The results with wearables seem as reliable as with other,
more expensive and obtrusive sensors.

The article “A One-Dimensional Non-Intrusive and Privacy-Preserving Identification
System for Households” by Tomaz Kompara et al. [15] introduces a novel indoor identifica-
tion system based on a network of laser sensors, each attached on top of the room entry.
There is a need for systems awareness of an inhabitant’s presence and identity in many
ambient-intelligence applications, including intelligent homes and cities, with two major
concerns: costs and preserving non-intrusiveness. The system should be seamless for the
user, preserving the user’s privacy as much as possible. The proposed solution is based on
a one-dimensional depth sensor, mounted on top of a doorway, facing towards the entrance
at an angle. This position allows acquiring the user’s body shape, i.e., silhouette, while
the user is crossing the doorway. The sensor data coupled with classical machine learning
methods are used for user-identification. The system is non-intrusive and preserves privacy.
This is achieved by omitting user-sensitive information such as activity, facial expression
or clothing. Additionally, the system does not use video or audio data. The system is based
on a statistical observation that a typical household is shared by only a small number of
physically quite different inhabitants. This hypothesis was tested on a nearly 4000-person,
publicly available database of anthropometric measurements. The analysis of the relation-
ships among accuracy, measured data and number of residents revealed quality accuracy
up to 10 inhabitants. In addition, the system was evaluated in a real-world scenario on 18
subjects entering a door under a variety of conditions (e.g., different objects and different
clothing). A 10-fold cross validation showed 98.4% accuracy for all subjects, and 99.1% for
groups of five subjects. These results indicate that a network of one-dimensional depth
sensors might be suitable for the identification task with purposes such as non-obtrusive
surveillance for security and ambient-intelligence comfort.

In “Device-Free Crowd Counting Using Multi-Link Wi-Fi CSI Descriptors in Doppler
Spectrum” [16], Ramon F. Brena et al., tasked themselves to successfully measure the
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quantity of people in a given space. This information is relevant in many applications,
ranging from marketing to safety. The approach is based on measuring crowd size with an
inexpensive Wi-Fi equipment, taking advantage of the fact that Wi-Fi signals get distorted
by people’s presence. Based on the previous experience and by identifying distortion Wi-Fi
patterns, the method estimates the number of people in a given space. Using machine
learning classifiers and channel state information (CSI), the method estimates the number
of people placed between a Wi-Fi transmitter and a receiver. The method achieved better
results than the compared single link or averaging approaches. The advantage comes from
taking into consideration individual channel information instead of taking the average
of the information of all channels. The experiments demonstrated improvements from
44% accuracy with one link to 99% with six links. Additionally, more details are presented
about how the addition of each of the multiple links of information influences the accuracy
of the prediction.

In “Constructing Emotional Machines: A Case of a Smartphone-Based Emotion Sys-
tem” by Hao-Chiang Koong Lin et al. [17], the emphasis is on an emotion system (emotion
machines) developed and deployed on smartphones. The objective of this study is to
explore factors that developers focus on when developing emotional machines. More
specifically, user attitudes toward emotional messages sent by machines and the effects of
emotion systems on user behavior were investigated in detail. A study was performed for
two weeks with 124 individuals using a smartphone for more than one year. The partici-
pants used the system at will and freely interacted with the system agent. The smartphones
generated 11,264 crucial notifications in total, among which 76% were viewed by the par-
ticipants and 68.1% enabled the participants to resolve unfavorable smartphone conditions
in a timely manner and allowed the system agent to provide users with positive emotional
feedback. The majority of the participants were pleased by the emotional messages, they
were taking into account the emotional messages and were convinced that the developed
system enabled their smartphone to exhibit emotions. Additionally, a study revealed that
an emotion system triggers certain patterns and behaviors in users, and the degree of
attention paid to emotional messages corresponds to the quality of the emotion system.

In “Gaining a Sense of Touch Object Stiffness Estimation Using a Soft Gripper and
Neural Networks” [18], Michal Bednarek et al. deal with soft gripping. The objective is
to manipulate an elastic, soft and unstructured object, vulnerable to deformations. To
perform such a task successfully, it is necessary to estimate the physical parameters of a
squeezed object to adjust the manipulation procedure. While humans perform the task
using a large volume of obtained knowledge starting from childhood, robots lack that
type of knowledge and must rely on other approaches. The chosen approach is based on
estimation of physical parameters using deep learning algorithms utilizing measurements
from direct interaction with objects using robotic grippers. The interaction of the gripper
with the object generates signals which are used to calculate object stiffness coefficient.
Physical experiments were executed by the Yale OpenHand soft gripper, based on readings
from inertial measurement units (IMUs) attached to the fingers of the gripper. The results
indicate that the approach can reliably estimate the parameters of the object thus enabling
smooth grasping and handling. The results enabled the creation of three datasets of IMU
readings gathered while squeezing the objects, two from the experiments in simulation
environment and one from real-life experiments. The dataset is publicly available to the
scientific community to enable further testing of new approaches in the growing field of
soft manipulation.

The paper “On Robustness of Multi-Modal Fusion—Robotics Perspective” [19] by
Michal Bednarek et al. deals with a robotic perception system that needs to successfully
integrate information from several data streams. Multi-modal fusion of heterogeneous
data streams is a crucial ability enabling noise-robustness. Related approaches often rely
on application-specific manual design of a multimodal-data fusion system to handle multi-
modal data. As the volume and dimensionality of sensory feedback increase in recent
years, it is beneficial to use other approaches. Multi-modal machine learning is one of the
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emerging fields for this task with focus mainly on vision and audio input. Robots, however,
often use haptic sensors when interacting with an environment. An example would be
gripping an object and handling it in a particular way. The experiments described in the
paper involved three tasks: (i) grasp outcome classification, (ii) texture recognition, and (iii)
multi-label classification of haptic adjectives based on haptic and visual data. Four learning-
based multi-modal fusion methods were compared on three publicly available datasets
containing haptic signals, images, and robots’ poses. The quality of each method was
analyzed, in terms of performing the task and on their robustness against data degradation.
The later issue is rarely considered in the research papers, whereas it is quite common in
real life, when a degradation of sensory feedback often occurs during robot interaction
with its environment, e.g., under various light conditions.

In “PUT-Hand—Hybrid Industrial and Biomimetic Gripper for Elastic Object Manip-
ulation” [20], Tomasz Mańkowski et al. present an approach for manipulation of elastic
objects using an anthropomorphic gripper based on off-the-shelf and 3D-printed compo-
nents. The gripper contains five elements and each of them contains three fully actuated
fingers for precise manipulation, and two tendon-driven digits for secure power grasping.
The gripper is equipped with an on-board controller circuit and firmware, enabling full
joint control and observation by resistive position and angle sensors in each joint. Addi-
tionally, the sensory system of the hand consists of tri-axial optical force sensors placed
on fully actuated fingers’ fingertips for reaction force measurement. A PC provides the
motor control using USB communication protocol providing a robot operating system in
the form of a driver. To analyze performance of the gripper, several experiments were
performed and are reported in the paper. The design files, source codes and results are
available online under CC BY-NC 4.0 and MIT licenses.

3. Conclusions

We would like to take this opportunity to thank all the authors for submitting papers
to this Special Issue. We also hope that the readers will find new and useful information
on artificial intelligence and ambient intelligence as this field continues to progress with
amazing speed.

Acknowledgments: We would like to thank all the researchers who submitted articles to this special
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and made very valuable suggestions to improve the quality of contributions. We would like to
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peer-review schedule and timely publication.
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Abstract: This paper presents relations between information society (IS), electronics and artificial
intelligence (AI) mainly through twenty-four IS laws. The laws not only make up a novel collection,
currently non-existing in the literature, but they also highlight the core boosting mechanism for the
progress of what is called the information society and AI. The laws mainly describe the exponential
growth in a particular field, be it the processing, storage or transmission capabilities of electronic
devices. Other rules describe the relations to production prices and human interaction. Overall, the
IS laws illustrate the most recent and most vibrant part of human history based on the unprecedented
growth of device capabilities spurred by human innovation and ingenuity. Although there are signs
of stalling, at the same time there are still many ways to prolong the fascinating progress of electronics
that stimulates the field of artificial intelligence. There are constant leaps in new areas, such as the
perception of real-world signals, where AI is already occasionally exceeding human capabilities
and will do so even more in the future. In some areas where AI is presumed to be incapable of
performing even at a modest level, such as the production of art or programming software, AI is
making progress that can sometimes reflect true human skills. Maybe it is time for AI to boost the
progress of electronics in return.

Keywords: information society; electronics; artificial intelligence; ambient intelligence

1. Introduction

What are the relations between information society (IS), electronics and artificial
intelligence (AI)? In this paper we first introduce description of AI and related fields, and
then proceed to the information society as the most general concept.

The term “artificial intelligence”, also called “machine intelligence” (MI), includes
hardware, software or most common combined artificial systems, i.e., machines that exhibit
some form of intelligence. For example, a mobile phone runs a game or provides a web
search using algorithms written in a programming language that is actually running on a
mobile phone or in a cloud.

“Ambient intelligence” (AmI) is AI implemented on machines in the surrounding
environment and is mostly demonstrated by the services of the human environment. AmI
is therefore even closely related to various machines, not necessarily computers, taking
care of humans thus benefiting from intelligent and cognitive functionalities.

Both AI and AmI are characterized as the study of intelligent agents [1], representing
a core building block of all AI and AmI methods. An intelligent agent is a system that
perceives its environment and takes actions. There are several levels of agents ranging from
the simplest reflective ones such as a thermostat to advanced ones that learn and follow
their goals, e.g., autonomous cars [2].

The term AI was first coined by McCarthy in 1956 at the Dartmouth conference. In
Europe, several researchers consider 1950 to be the start of AI, which was then termed
machine intelligence. The milestone was Alan Turing’s paper [3] published in 1950. Alan
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Turing is regarded by many as the founding father of computer science due to his halting
problem, the Turing test, the Turing machine and the decoding of Hitler’s Enigma machine
that helped to end the Second World War more quickly [3].

The term AmI was introduced in the late 1990s by Eli Zelkha and his team at Palo
Alto Ventures [4] and was later extended to the environment without people. A modern
definition was delivered by Juan Carlos Augusto and McCullagh [5]: “Ambient Intelligence
is a multi-disciplinary approach which aims to enhance the way environments and people
interact with each other. The ultimate goal of the area is to make the places we live and
work in more beneficial to us.” AmI is also aligned with the concept of the “disappearing
computer” [6,7]. The AmI field is very closely related to pervasive computing, ubiquitous
computing and context awareness [8–11].

AI and AmI are two of the most prosperous fields in the current area of human civi-
lization, named information society (IS). In its most general form, an “information society”
can be characterized as a society in which any kind of activity regarding information is an
integral and inseparable part. There are many activities that involve information as the pri-
mary object: use, construction, manipulation, processing, integration, recording, accessing,
storage, transfer, etc. An information society was first defined as a society in in which 30%
of its gross domestic product (GDP) relied on information, but the definition was already
met for most of the developed countries decades ago [12]. Historically, information had
been regarded as a valuable source of any kind of progress, and information became the
essential driver of an IS by being able to be dispersed and processed exponentially faster
and in larger quantities than ever before with communication technologies. The rapid,
radical and thorough change that these capabilities offered to society changed societies
from industrial to information societies. The emergence of the importance of information
has reorganized education, the economy, healthcare, warfare, governmental services and
democratic operations, industry, scientific investigation and other, lower-level aspects
of what is deemed important in a society. As a prominent example, medicine has seen
exponential progress in screening and diagnosing of a wide range of diseases, which can
mostly be attributed to AI and its use in medical imaging [13–15]. This fundamentally
changed the populace as the main participants in the change, who entered this new phase
of a civilization through accessing the Internet [16].

The Internet was therefore one of the main drivers of the steady change that followed
its adoption. Most theoreticians pinpoint the start of the IS as the 1970s, which was when
the Internet started to be used internally [17]. However, it was the early 1990s and 2000s
that brought the most changes and rapid progress through net usage and information
dissemination. More widely, information and communication technologies (ICTs) and
their usage intensified how we centre our activities in economic, social, cultural and
political areas [18]. While the start of the IS can be pinpointed as the early 1970s, the
most common recent or golden IS era due to the growth in the amount of data started
in approximately 2000 (see Figure 1). The promise of this change was reaffirmed by
an international document signed in 2005 called the Tunis Agenda for the Information
Society [19], which called for strong financing of ICTs. The reason for such a strong
systemic action by many nations was that the use of ICTs resulted in progress for social
good and in progress that benefitted the populace; therefore, is was seen as the new
foundational grounds for progressing towards a new age in which the IS would be the
standard. This progress results in the fast growth of Internet users, as presented in Figure 2.
As a consequence, employment needs are shifting and influencing human everyday life.
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In this paper, we concentrate on the IS laws related to electronics, information, IS,
AI and ambient intelligence (AmI) as a sister field of AI. Section 2 briefly describes the
related work, Sections 3 and 4 concentrate on IS laws, Section 5 continues by describing the
longevity of Moore’s law, Section 6 describes the relations to artificial intelligence [22] and
ambient intelligence [23], and Section 7 ends the paper with the conclusion and limitations
of the presented analysis.
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2. Related Work

In this section, the related work pertaining to IS laws and their connection to AI is
presented. To the best of our knowledge, the work this paper overviews has not been
presented in this way before. However, there are some overview papers that are related to
the topic at hand that should be mentioned. Some only observe the laws but do not name,
codify and define them as this paper does. Webster [18] wrote an academic book on the
theories of an information society, and it addresses some areas of the laws described in this
paper: namely, how an IS relates to democracy (in this paper, Clift’s law), how technology
propelled us from an industrial to an information society (whose process is described by
the laws in the paper), and how the abundance of information influences people (e.g.,
infobesity, Gross’ law). Boyle, in his academic book Shamans, Software & Spleens [24],
discusses the influence of an IS on economics (see Section 4.2) and liberalism (Tapscott’s law
in this paper). Connecting an information society to growth and possibilities for artificial
intelligence has also been analysed. The area that received the most attention is privacy in
the era of artificial intelligence and how easy it is to obtain personal data and to exploit
them [25,26]; furthermore, some works emphasize the growth of artificial intelligence in
IS [24,27,28].

The special issue of the Computer journal in 2013 [29] presented several basic electronic
laws analysed in this paper. While seven years old, several laws and issues presented
are still valid now. Furthermore, some issues in the Computer journal are studied to a
greater and more specific level than the condensed descriptions in this paper. However,
the special issue did not present an explicit list or electronic rules, and the number of laws
was significantly lower.

The initial work leading to this paper was first presented in 2002 in [30] and was
systematically lectured at the university level, progressing each year.

Finally, AI and AmI are analysed in [31] and resemble some relation to Section 5 in
this paper.

Table 1 summarizes the described related work and the IS topic they tackle.

Table 1. Summarized related work and their characteristics, relevant for this paper.

Related Work Relevant Characteristics

[18] IS related to democracy, Cliff’s law, Gross’ Law
[24] IS related to economics and liberalism, Tapscott’s law

[25,26] Privacy in the era of AI and its exploitation
[24,27,28] General growth of AI

[29] First presentation of a smaller number of IS laws in an
academic form (not a list or in terms of IS progress)

[30] IS technology that enables current society
[31] AI and AmI analysis

As evidenced, the related work addresses more specific areas of IS, AI and AmI,
without their firmer relation to electronics, while this paper encompasses the laws from a
specific perspective, some first presented in such a form, from many distinct areas of an IS
in a novel comprehensive list and relates the list to trends of AI, AmI, an IS and human
progress in general, analysing their impact and predicting future directions.

3. Basic Information Society Laws

The progress of an information society can be presented through several IS laws
or computing laws [29,30,32]. In this paper, however, the emphasis is on the IS laws as
descriptors of the relations to IS, AI and electronics. The laws are therefore grouped into
basic technological laws presented in this section, and software laws, socioeconomic laws,
and computer and progress laws in the next section. Several of the laws are related to AI in
this or another way:
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1. Moore’s law [33]: The growth of the capabilities of electronic devices, e.g., chips, is
exponential. As originally stated, the number of transistors in a dense integrated
circuit (IT) doubles approximately every two years. This law has been valid for over
half a century and is analysed in more detail later.

2. Joy’s law [34]: The peak computer speed doubles each year. This law was first
formulated in 1983. The formula is ComputerSpeed = 2 ** (year: 1984). The rule is
related to Moore’s law and bears the same time-resistant properties.

3. Pollack’s law [35]: Due to microarchitectural advances, microprocessor performance
increases roughly proportional to the square root of the increase in complexity,
whereas power consumption increases roughly linearly proportional to the increase
in complexity. Pollack’s law implies that microarchitectural advances improve the
performance by

√
2 ≈ 41%, thus bearing some similarity to Moore’s law and allowing

progress without exceeding the energy demands.
4. Bell’s law [36]: Roughly every decade, a new, lower priced computer class (or genera-

tion) forms based on a new programming platform, network and interface, resulting
in new usage and the establishment of a new industry. It is related to the Moore’s law,
which refers to years; however, Bell’s law refers to computer classes, i.e., generations.
It takes approximately 10 years to exploit the possibilities of a particular computer
class, and during that time a new computer class is researched and finally introduced.

5. Kryder’s law [37]: Disk capacity (more specifically, magnetic disk areal storage
density) grows exponentially, even faster than Moore’s law. However, similar to
Moore’s law but much sooner, the limit of fast growth was achieved in approximately
2019, and the magnetic disk capacity was then more or less stable [38].

6. Makimoto’s law [39]: There is a 10-year cycle between research and standardization,
meaning that we can see future commercial capabilities by examining today’s re-
search facilities. There is also Makimoto’s wave [40], which explains not only the
semiconductor waves but also the AI and machine learning (ML) waves. Indeed,
AI has progressed in waves, but not exactly in 10-year waves. Unlike Moore’s law,
Makimoto’s law describes the general property between research and the market in
electronics and is not as prone to time as some other rules.

7. Keck’s law [41]: Communication capabilities (actual traffic) grow exponentially.
Keck’s law has successfully predicted the trends for the data rates in optical fibres
for four decades. Keck’s law is another example of an exponential law predicting
incredibly fast growth that was valid for a certain time period but is currently slowing
and may be facing a plateau in the foreseeable future.

8. Gilder’s law or the law of telecoms [42]: The total telecommunications system capacity
(b/s) triples every three years, and the bandwidth grows at least three times faster
than computing power. Gilder’s law is similar to Keck’s law.

9. Koomey’s law [43]: The number of computations per joule of energy dissipated has
been doubling approximately every 1.57 years. Similar to other exponential laws,
Koomey’s law is losing its consistency. In 2000, the doubling slowed to every 2.6 years.
Koomey’s law is also related to the end of Dennard scaling in 2005, i.e., the ability to
build smaller transistors with constant power density.

10. Dennard’s law or Dennard scaling [44]: As the size of transistors decrease, their power
density stays constant. It is strongly related to one period of Moore’s law but is more
or less saturated.

11. Rock’s law or Moore’s second law [45]: The cost of a semiconductor chip fabrication
plant doubles every four years. This law is related to technological progress, although
without the past issue with time validity as Moore’s (first) law.

12. Neven’s law [46]: Quantum computers are gaining computational power at a doubly
exponential rate. Quantum supremacy was declared by Google in October 2019. In
October 2020, quantum supremacy was reclaimed by Chinese researchers [47], but
both publications raised several questions. The law claims that quantum computers
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are progressing fast, thus enabling further growth of computational computing power.
The timescale of this rule has yet to be observed for a sufficient number of years.

13. Amdahl’s law [48]: Amdahl’s law predicts the theoretical speedup limit when using
multiple processors, meaning there is always a fraction of a problem that cannot
be parallelized. It can be defined with the following formula defining speedup S
using the percentage p of the tasks that can be parallelized and the availability of
threads s that enable parallel execution: S = 1/(1 − p) + p/s). At the limit, when there
is an unlimited supply of parallel execution mechanisms, this equation turns into
1/(1 − p). Amdahl’s law is not sensitive to time-related issues.

14. Gustafson’s or Gustafson–Barsis’s law [49]: This law addresses the shortcomings of
Amdahl’s law by considering flexible tasks and is more accurate for faster devices.

15. Grosch’s or Cray’s law [50]: Computing performance or added economy corresponds
to the square root of the increase in speed; that is, to perform a calculation 10 times
as cheaply, you must perform it 100 times as fast. The law is not directly related to
advances in microelectronics and might be time-independent, but more future data
are needed to confirm it.

4. Related Information Society Laws

The IS laws presented in this section deal with relations to human activities, in particu-
lar in regards of the usage of computers, human–computer or human–human interactions.

4.1. Software Laws

1. Linus’s law [51]: Given large enough beta tester and codeveloper bases, almost every
problem will be characterized quickly and the fix will be obvious to someone. In
other words: “given enough eyeballs, all bugs are shallow”. The law contradicts fears
that software is becoming uncontrollable with the growing amount of code and is not
related to technological issues but to human ingenuity. As such, the law seems to be
quite time-independent.

2. Wirth’s, Page’s, Gates’ or May’s law [52]: Software is becoming slower more rapidly
than hardware is becoming faster. This law may not be fully confirmed in recent years
due to various tools and new techniques, and in particular the time relations in this
rule seem to be under consideration.

3. Brooks’s law: “Adding manpower to a late software project makes it later” is an
observation about software project management, but is valid in several other areas
where the process cannot be parallelized. It was coined by Fred Brooks in his 1975
book The Mythical Man-Month [53]. Somewhat ironically, an incremental person,
when added to a project, makes it take more, not less time.

4.2. Socioeconomic Laws

1. Metcalf’s law [54]: Value of a network = square(n), where n is number of nodes in the
network; the value or effect of a network is proportional to the square of the number
of nodes. It is similar to Odlyzko’s law [55]: value of a network = n × logn. This law
seems to be time-independent.

2. Tapscott’s or Negroponte’s law: The economy of an information society is a frictionless
economy, information economy, Internet economy, net economy, and new economy;
it is global, liberal, without restrictions and regulations, spurred by electronics and
information technologies and based on bits instead of atoms. Tapscott [56] introduced
e-commerce and e-business characteristics, while Negroponte [57] introduced the
e-world consisting of bits instead of atoms, transforming the economy into a new
stage. The economy in an IS is surely different compared to the period before, but
it will last only a certain period of time until another step in human civilization
occurs [58].

3. Gross’s law: The information overload law; or the infobesity, infoxication, information
anxiety and information explosion law [59]: The side effect of an IS is information
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overload. This law relates to the excessive information given to people in everyday life
and when making decisions due to ICTs generating massive amounts of information
that grow exponentially. This law seems to be increasingly more valid with the
progress of increasingly more data and information and with the lack of appropriate
mechanisms that would enable people to handle the information overload issue.

4. Gams’ law [30]: IS, the cyberworld double fortune. The fortune can be real or ficti-
tious, such as cryptocurrency. First presented in 2002, when there was not as much
cryptocurrency in the world such as Bitcoin, the observed law taught among the local
economics faculty proposes a transition at a remote island where native people trade
natural goods such as pigs and coconuts. At one point, a modern king introduces
paper money; in their fictitious currency, 1 Illa is worth 1 pig. Counting the natural
resources and the paper money, the island has twice as much wealth as before. If
neighbouring islands accept their currency, the king can print considerably more
paper money and buy a substantial amount of goods abroad. In time, the king’s
successor introduces BIlla, a Bitcoin version of their paper currency Illa. The story
repeats and the current king, or better, their business elite, can considerably increase
their worth. This example should help understand the events in the net economy:
why virtual money increases wealth, why elites become increasingly richer and why
the fictitious or “normative” standard may not directly correspond to the real status of
netizens. For example, the netizens on the fictitious island have the same amount of
pigs and coconuts at the end of the story as in the beginning, and if the elites increase
their wealth, the average islander has less than in the beginning. Note, however,
that the progress enables better production of pigs and other goods, and overall, the
middle class more or less stays at the same level while the overall wealth increases.
However, nominal wealth is significantly different than actual wealth in terms of pigs
and coconuts. As with many economic laws, this one is also not directly bound to the
technological process and therefore is not as time-dependent as, e.g., Moore’s law.

5. Clift’s law or e-democracy, digital democracy or Internet democracy progress [60]: The
web enables democratic progress. The introduction of ICTs and IS tools to political and
governance processes is thought to promote democracy since citizens are presumed to
be eligible to participate equally in information creation and sharing. In other words,
“The Internet is the most democratic and free media in the world.” The World Wide
Web supposedly offers participants “a potential voice, a platform, and access to the
means of production” [61]. However, in recent decades, the concentration of capital
has resulted in an increased concentration of media ownership by large private entities
in several American and European countries [62]. According to current polls [63], over
90% of Americans from a sample of approximately 20,000 considered the media to
have major importance for democracy; however, approximately 50% of them see the
media as biased to various degrees, impairing and endangering democratic processes.
While for decades the optimistic viewpoint prevailed in e-democracy, in recent years,
we might be witnessing a change. The future of this law seems quite unclear.

4.3. Computers and Progress Laws

When researchers from MIT tested 62 technologies [64], they found that there are two
laws that fit the data very well, Moore’s law and Wright’s law, although one is related to
computers and the other is related to flight. Consider Wright’s law:

1. Wright’s law [65]: The cost of airplanes is proportional to the inverse of the number of
planes manufactured raised to some power. The law seems to be time-independent.

This theory was proposed as a more general law that governs the costs of technological
products and is often explained on the basis that the more of a product that we make, the
better and more efficient we become at making the product. It has also been shown [66]
that costs decrease because of economies of scale.

The analysis in [64] further compared the two most consistent laws, Wright’s and
Moore’s law. It was stated that if the production of an item grows at an exponential rate,
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then Wright’s law and Moore’s law are quite similar. This is slightly hard to comprehend
since computing is often regarded as a special case (“It’s a much more general thing,” says
author Doyne Farmer, currently at the University of Oxford, United Kingdom) and that
Moore published the law from purely a technological observation based on the progress
of electronics. Indeed, the consequences of fast exponential growth such as that observed
by Moore in computing are in fact related to the technology life cycle, which describes
the commercial gain of a product through research and development expenses and the
financial return during its profitable stage [67].

The commercial effects of Moore’s law in IS products are indeed fascinating. For
example, the total production of semiconductor devices resulted in one transistor produced
per metre of our galaxy’s diameter and billions of transistors per star in our galaxy. The
calculation is as follows: according to [29], transistor production reached 2.5 × 1020, which
is 250 billion billion, in 2014 [68]. Our Milky Way galaxy has a diameter between 100,000
and 180,000 light years [69]. The galaxy is estimated to contain 100–400 billion stars and
100 billion planets [70]. In addition, there are also approximately 100 billion neurons in our
brain [71].

5. Longevity of Moore’s Law

Moore’s first original law is focused on the transistors in an IC. The law states that the
number of transistors in such a circuit doubles every two years with the circuit remaining
the same size [72]. The original Moore’s law and the consequent ones are based on
historical observations and assume that the property will last for a reasonable time period.
Although it is called a law, it is not a law in the sense of physics laws, e.g., F = m × a.
Moore’s first law was revised and applied repeatedly to different areas: microprocessors,
memory capacity, sensors and pixilation [72] The revisions of the law were proposed (i) to
encapsulate additional properties of technology, which resulted in performance changes,
manufacturing processing and costs and other general market trends; and (ii) to avoid
problems with specific saturations of technological parameters while at the same time
continuing the exponential progress of computing power.

The law proved to be very consistent in its dynamic form for a long time, enabling
reliable predictions. In semiconductor production and other listed areas where Moore’s
law was applied, the law helped guide planning, setting targets, scheduling and other
processes related to organization, research and development [72].

While there are some limitations to any process, they must be carefully evaluated.
For example, consider the share of Internet users in the population. Figure 1 shows fast
growth and that the upper limit is 100%, meaning the end of progress. However, even in
the case in which all humans use the Internet, there will be a growing number of devices
and intelligent systems using the Internet, thus increasing the absolute number of overall
users. Such misconceptions are common and demand attention when various sources
of information are encountered. Similarly, warnings of computer progress stalling were
issued years and decades ago [16]. Even the first author of the paper was warned 40 years
ago by a specialized professor in the computer science faculty that the pace is slowing,
and the warning seemed to be validated by the data and forthcoming saturation. Some of
the saturations can be observed in Figure 3 [72]. However, the figures on progress in the
55-year-long life of Moore’s law show no overall downgrade of the exponential volatile
growth. For example, microprocessor architects report that semiconductor advancement
has slowed below the pace predicted by Moore’s law since 2010. However, as of 2018,
leading semiconductor manufacturers have developed mass production processes for
IC fabrication that are claimed to keep pace with Moore’s law. Presently, there is not a
consensus among experts on exactly when Moore’s law will cease to apply.
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In reality, Moore’s law is rather stable in terms of the annual computing gain in chip
capacities of 50%, even though several partial Moore’s laws have already ended. What
happened is that one approach to increase cheap performance was followed by another,
successfully continuing the overall Moore’s law, e.g., designing larger chips with more
layers when the technology of one chip hit a wall. Currently, there are several possibilities
to continue Moore’s law for several decades, such as new technologies including quantum
computing or 3D chips and sophisticated algorithms.

One of the three most advanced chip companies, Intel, has a team of 8000 hardware
engineers and chip designers whose jobs and careers depend on chip progress. While
the end of growth was predicted decades ago, they were able to find ample technical
opportunities for advances. They estimate that there are probably more than a hundred
variables involved in keeping Moore’s law going; their director says he has been hearing
about the end of Moore’s law for his entire career. After a while, he “decided not to worry
about it” [5].

There is a limit to any progress, and the introduction of a new device or a new type of
device generally follows an S-curve (see Figure 4): after a slow start, it grows exponentially
and finally becomes saturated.
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Regardless of the future, history has demonstrated that the progress of electronics so
far is beyond saturation. Every year since 2001, the MIT Technology Review yearly has
provided the ten most important breakthrough technologies. Practically all proclaimed
technologies are possible only because of the computation advances described by Moore’s
law, and they also fuelled breakthroughs in artificial intelligence, communication and
genetic medicine by giving machine-learning techniques the ability to process massive
amounts of data to find answers [74].

In summary, what we can claim with high certainty is that information communication
technologies significantly and probably spurred human progress in the last century the
most out of all technologies [58] and that the progress will continue at a similar pace in
the decade or two to come. In addition, this progress has and will largely influence the
progress of artificial intelligence and ambient intelligence.

6. AI, AmI and Electronics

In this section, AI and its relation to IS and IS laws is presented. Understanding the
intertwined progress of AI is essential since it already influences practically every human
activity and will do so even more in near future.

The history of AI and AmI is characterized by cycles of overoptimism and overpes-
simism, often referred to as the “AI winter” [75] (Figure 5), somewhat resembling the
stalling of a particular technology enabling Moore’s law. There are a couple of differences,
however. Whereas there were papers stating that Moore’s law is coming to an end several
times before, the funding in electronics never dried out. Instead, the AI funding varied a
lot in each case when a particular AI approach such as expert systems met its limitations.
Unlike the progress of electronics where the pessimism was local and not wide spread
in public, the AI winter was generally accepted in our society as a terminal inability to
perform similar to humans. In computing, there is an old saying: “Never say never”, since
so many negative predictions failed. Therefore, the AI pessimism was ill-founded from
the start since it was only a question of time when advanced electronics would promote
AI growth. Whatever the case, the development of new chips and new AI methods soon
enabled fast and prosperous progress of information society.
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The ability of the broad AI field to solve more difficult problems in time is basically
guaranteed by the exponential growth of computing semiconductor capabilities, as defined
by IS laws. At the same time, AI progress is also characterized by methodological break-
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throughs in bursts. Currently, AI and AmI achievements attract worldwide attention in
practically all areas of academia, gaming, industry and real life.

AI and AmI have already penetrated every aspect and are already having large
impacts on our everyday lives. Smartphones, all modern cars, autonomous vehicles, the
Internet of Things (IoT), smart homes and smart cities, medicine and institutions such
as banks or markets all use artificial intelligence on a daily basis [77]. Examples include
when we use Siri, Google or Alexa to request directions to the nearest petrol station or
to order a taxi, when we make a purchase using a credit card with an AI system in the
background checking for potential fraud, when an intelligent agent in a smart home
regulates user-specific comfort, or when a smart city optimizes heterogeneous sources and
environment demands.

When fed with huge numbers of examples and with fine-tuned parameters, AI meth-
ods and, in particular, deep neural networks (DNNs) regularly beat the best human experts
in increasing numbers of artificial and real-life tasks [78], such as diagnosing tissue result-
ing from several diseases. There are other everyday tasks, e.g., the recognition of faces
from a picture, where DNNs recognize hundreds of faces in seconds, a result no human
can match. Figure 6 demonstrates the progress of DNNs in visual tasks. In approximately
2015, visual recognition using neural networks was slightly better than that of humans
in specific domains; now, neural networks have surpassed humans quite significantly in
several visual tests, for example, fast recognition of faces in foggy conditions. Research on
how human vision works using AI that can inform future advances in artificial vision has
also made strides [79]. In one of the core areas of AmI research, human-activity recognition,
the application of deep-learning algorithms also achieved human-level results in recent
years (see [10,80–82]).

Electronics 2021, 10, 514 12 of 16 
 

 

 

Figure 6. Error rates of deep neural networks (DNNs) on the ImageNet competition over time [83]. 

DNNs make it possible to solve several practical tasks in real life, such as detecting cancer 
[84–86] or Alzheimer’s disease [87–89]. Furthermore, studies applying DNNs to assess facial 
properties can reveal several diseases, sexual orientation, intelligence quotient (IQ) and polit-
ical preferences. One of the essential tasks of AmI is to detect the physical, mental, emotional 
and other states of a user [90–92]. In real life, it is important to provide users with the comfort 
required at a particular moment without demanding tedious instructions. 

When will AI systems outperform humans in nearly all properties? The phenomenon 
is termed superintelligence (SI) or sometimes superartificial intelligence (SAI), and it is 
often related to singularity theory [93]. The seminal work on superintelligence is 
Bostrom’s Superintelligence: Paths, Dangers, Strategies [94]. Another interesting, more 
technically oriented analysis is presented in the book Artificial Superintelligence: A Fu-
turistic Approach by R. V. Yampolskiy [11]. 

Similar to superintelligence, there is also superambient intelligence (SAmI). SAmI is 
more strongly related to humans and therefore possibly more likely to approach human-
related intelligence. For example, when taking care of humans and handling the environ-
ment, a user must feel as mentally and cognitively comfortable as possible; thus, AmI 
must understand human cognitive [95], emotional and physical current states and not just 
environmentally related properties such as energy consumption or safety. In addition, 
while hostile superintelligence in movies often evolves over the Web, in reality, SAmI 
would even more easily transverse in the environment of smart devices, homes and cities. 
However, there seems to be no motivation for hostility between an IS and humans as long 
as we avoid risky activities such as autonomous weapons [96]. 

Finally, now might be the time for AI to pay back the merit for fast progress; for 
decades, electronics dominated by Moore’s law stimulated fast AI progress, and now AI 
can help build better chips, computers and other electronic devices. There are several pos-
sibilities, e.g., the internal architecture of chips is rather simple and can be tuned to specific 
tasks such as vision or programming. Even programming itself can already be speeded 
by a factor of 1000 by smart transformation of a program in Python into an optimized C 
version. While it seems a distant future to code such complex tasks for current systems 
such as GPT-3 (Generative Pre-trained Transformer 3), the progress in recent years is more 
than promising [97]. 

Figure 6. Error rates of deep neural networks (DNNs) on the ImageNet competition over time [83].

DNNs make it possible to solve several practical tasks in real life, such as detecting
cancer [84–86] or Alzheimer’s disease [87–89]. Furthermore, studies applying DNNs
to assess facial properties can reveal several diseases, sexual orientation, intelligence
quotient (IQ) and political preferences. One of the essential tasks of AmI is to detect the
physical, mental, emotional and other states of a user [90–92]. In real life, it is important
to provide users with the comfort required at a particular moment without demanding
tedious instructions.
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When will AI systems outperform humans in nearly all properties? The phenomenon
is termed superintelligence (SI) or sometimes superartificial intelligence (SAI), and it is
often related to singularity theory [93]. The seminal work on superintelligence is Bostrom’s
Superintelligence: Paths, Dangers, Strategies [94]. Another interesting, more technically ori-
ented analysis is presented in the book Artificial Superintelligence: A Futuristic Approach
by R. V. Yampolskiy [11].

Similar to superintelligence, there is also superambient intelligence (SAmI). SAmI is
more strongly related to humans and therefore possibly more likely to approach human-
related intelligence. For example, when taking care of humans and handling the environ-
ment, a user must feel as mentally and cognitively comfortable as possible; thus, AmI
must understand human cognitive [95], emotional and physical current states and not
just environmentally related properties such as energy consumption or safety. In addition,
while hostile superintelligence in movies often evolves over the Web, in reality, SAmI
would even more easily transverse in the environment of smart devices, homes and cities.
However, there seems to be no motivation for hostility between an IS and humans as long
as we avoid risky activities such as autonomous weapons [96].

Finally, now might be the time for AI to pay back the merit for fast progress; for decades,
electronics dominated by Moore’s law stimulated fast AI progress, and now AI can help
build better chips, computers and other electronic devices. There are several possibilities,
e.g., the internal architecture of chips is rather simple and can be tuned to specific tasks
such as vision or programming. Even programming itself can already be speeded by a
factor of 1000 by smart transformation of a program in Python into an optimized C version.
While it seems a distant future to code such complex tasks for current systems such as
GPT-3 (Generative Pre-trained Transformer 3), the progress in recent years is more than
promising [97].

7. Conclusions

This paper introduces relations between electronics, the information society and artifi-
cial intelligence as three highly interdependent and intertwined fields. The comprehensive
list of IS laws on its own represent a novel contribution since the laws described in various
encyclopedias do not provide an overview on these fundamental relations. There are also
additional analyses of their progress and longevity. Most likely, the only well-known law
among the public is Moore’s law, but even there there are still some misinterpretations in
the general media, e.g., the overpessimistic viewpoints that claim that the law will soon
end, as was proclaimed several times before when a particular single mechanism enabling
computer capability growth reached the stage of saturation. The overoptimistic viewpoints,
on the other hand, expect unlimited growth for an indefinite time period, which seems
practically and theoretically impossible since sooner or later any progress reaches its limits,
especially exponential growth, which typically follows S-curve dynamics (see Figure 4).

Many IS laws share the fate of Moore’s law: they describe exponential growth and
will sooner or later, if they have not already, reach saturation. Regardless of the case,
exponential growth influences the growth of AI and AmI and the progress of human
civilization. The potential stalling of the progress of electronics is not good news, but
luckily there are hundreds of ways to continue the current exponential improvement of the
capabilities of electronic computing components.

The list of IS laws also shows the highly interconnected relations to AI and progress
of our civilization, which is now in the stage of information society. Among other technolo-
gies, AI and AmI are already enabling various improvements not possible without them,
including the design of new computing devices. While electronics enabled the progress of
fields such as computing or AI, the tables are turning. AI and human ingenuity combined
are now to enable future progress of electronics for at least decades to come, thus enabling
further progress of human civilization.

Our future work will try to address the limitations of this paper. Since some IS laws
are only now reaching their saturation point, further observations and analyses are needed
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to predict how they will behave in the near future, and which laws will emerge to replace
them. Such detailed analyses are out of scope for this paper, as analysing just one such
law necessitates its own paper. Due to the dynamic nature of the AI evolution, as seen
with AI winters and then sudden bursts of AI advancement, it is hard to pinpoint the
relations between the forthcoming IS laws in AI, as they do not affect each other linearly.
The future might bring us anything from faster progress to saturation or even decline in
case of catastrophic events, such as a significantly deadlier pandemic than COVID-19. This
paper should therefore serve as a cardinal starting point with a presumption that the future
will follow one of the predicted options.
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Abstract: Human cognitive capabilities are under constant pressure in the modern information
society. Cognitive load detection would be beneficial in several applications of human–computer
interaction, including attention management and user interface adaptation. However, current
research into accurate and real-time biosignal-based cognitive load detection lacks understanding of
the optimal and minimal window length in data segmentation which would allow for more timely,
continuous state detection. This study presents a comparative analysis of ultra-short (30 s or less)
window lengths in cognitive load detection with a wearable device. Heart rate, heart rate variability,
galvanic skin response, and skin temperature features are extracted at six different window lengths
and used to train an Extreme Gradient Boosting classifier to detect between cognitive load and rest.
A 25 s window showed the highest accury (67.6%), which is similar to earlier studies using the same
dataset. Overall, model accuracy tended to decrease as the window length decreased, and lowest
performance (60.0%) was observed with a 5 s window. The contribution of different physiological
features to the classification performance and the most useful features that react in short windows
are also discussed. The analysis provides a promising basis for future real-time applications with
wearable sensors.

Keywords: machine learning; affective computing; cognitive load; psychophysiology; supervised
learning

1. Introduction

In the near future, unobtrusive, reliable, and affordable wearable sensors will enable
cognitive state estimation of a person in real-time. The cognitive state, i.e., a person’s overall
capacity and readiness to meet everyday situations, is affected by various conditions such
as sleep deprivation [1,2], acute stress [3,4], and cognitive load [5] and thus cognitive state
estimation would be beneficial in many application areas, e.g., transportation, industry,
rehabilitation, and education.

In many working environments, the modern technology such as human computer
interaction (HCI) systems impose high cognitive demands for humans, thus increasing the
cognitive load of a person [6]. Real-time assessment of a person’s cognitive load could be
used to identify overload situations where the probability of error is increased. Further,
in the near future, HCI and cyber-physical systems could use the information to optimize
user interface content and interactions to match the imposing workload with the prevailing
cognitive capacity of the user. However, this would require seamless operation between the
HCI system and the users, meaning accurate and real-time (with minimal delay) assessment
of the cognitive load.

Humans respond to external stimuli by adjusting nervous system functions, which
causes physiological reactions that can be detected from different type of biosignals. The au-
tonomic nervous system (ANS) is one of the major neural pathways activated by stress [7]:
the sympathetic branch of the ANS prepares body for an emergency while the parasym-
pathetic branch facilitates recovery [8]. An increase in the heart rate (HR) reflects the
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sympathetic nervous system (SNS) activation while parameters derived from the heart rate
variability (HRV) parameters can capture variations both in the SNS and parasympathetic
nervous system (PNS) activations [9]. Galvanic skin response (GSR) reflects the activity
in the sweat glands, which are solely connected to the SNS. Therefore, the GSR is consid-
ered to be an undisturbed measure of SNS activation [8]. In addition, in acute stress the
SNS triggers peripheral vasoconstriction which reduces the flow in the blood vessels and
reduces the skin temperature (ST) [10]. However, the after a short delay the blood flow
recovers resulting in delayed skin warming [9,11,12].

The changes in the cognitive load are also reflected in various biosignals that can be
measured by using biosensors, e.g., wearable devices [13,14]. For instance, increasing task
difficulty (or cognitive load) and acute stress increases the HR and breathing rate [15],
ST [11] as well as GSR [16] and decreases the HRV [17], number of eye movements [18],
and increases the blink rate [19,20].

Real-time cognitive load estimation means processing a stream of biosignals with
minimal latency. Research on affective, or cognitive state/load, detection systems has
focused mainly on state recognition methodology and optimizing the used sensor set
(see, e.g., [21]). To achieve real-time or continuous monitoring of the cognitive state/load,
the segmentation part (i.e., selection of used window length) of the state detection pipeline
has received little attention and it requires further research.

The cognitive load is estimated from various biosignals and each of these signals has
its own characteristics. For instance, HR could be considered as a periodic signal, whereas
some other biosignals, such as eye movements and GSR reactivity, have a bursty nature
and are more linked to the stimulus or task at hand. Further, the level of some slow-acting
signals, skin temperature and the tonic component of the GSR signal, may increase or
decrease during a cognitive load (e.g., due to changes in alertness). Thus, the varying
nature of the biosignals sets limits to the window lengths: the length must be long enough
to include sufficient variation and periods for the periodic signals but short enough that
bursty events do not average out.

In recent studies the window lengths have varied (see Table 1) from 1 s to 360 s.
In most studies, the window lengths have been selected based on the physiology, task
duration, or previous studies. However, the literature on ultra-short windows (<60 s,
especially <30 s), e.g., in HR and HRV analyses is rather limited (see the review by Shaffer
and Ginsberg [22]) and therefore, there may not be theoretical limits for the physiological
features used in real-time/continuous cognitive state estimation. In addition, there are few
studies where the effect of window length to classification accuracy has been studied (see
Table 1) and even those have mainly used windows with length of 30 s or more.
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Healey et al. [28] attempted emotion detection in a field study in windows of 60 s,
180 s, and 300 s, but the best window length was not reported since each one showed poor
performance. Gjoreski et al. [24] experimented with window lengths between 30 s and 360 s
in a laboratory study of stress detection, and selected the 300 s window for a continuation
study with field data. Anusha et al. [9] found that a 30 s window performed the best
for ST, and a 60 s window for GSR in cognitive state detection; however, window length
experiments were not conducted for HRV. Marshall [23] detected the cognitive state based
on eye movements and found that a 10 s window provided highest detection accuracy.
Siirtola [32] studied stress detection in a laboratory with window lengths between 15 s
and 120 s. It was found that whereas the 120 s window performed the best, a 15 s window
performed better than a 30 s window and almost the same as a 60 s window, which shows
that window lengths shorter than 30 s have the potential to perform well despite containing
less data than longer windows.

In a related context, Kroupi et al. [34] detected odor pleasantness in 6 s windows
based on electroencephalogram and HRV measurements. Moreover, Kreibig [8] reports
on multiple studies using shorter than 30 s averaging periods for physiological responses.
However, the goal in those studies was to observe the effects emotions have on functions
of the autonomous nervous system, rather than classifying between emotional/cognitive
states based on those effects.

Thus, the existing research on cognitive state recognition has not focused on the
segmentation part of the state detection pipeline. Even when experiments with different
window lengths have been conducted, they have focused on rather long window lengths,
despite the fact that shorter window lengths have been considered in related contexts.
The novelty in this study is on performing a systematic comparison of ultra-short win-
dows (30 s or less) in terms of the classification performance for cognitive load detection.
An analysis of the contribution of different features is also presented, and the variation of
the most useful features between tasks is discussed. Further, individual differences related
to the optimal window length and feature variation between the study subjects as well as
the effect of optimizing classifier hyperparameters are studied.

2. Materials & Methods
2.1. Dataset

The CogLoad dataset from [14] was used in this study. The dataset includes 23 partici-
pants (7 females, mean age 29.5 years with a standard deviation of 10.1 years) who solved
cognitive tasks of varying difficulty. In the first part, the participants solved N-back tasks,
i.e., 2-back and 3-back tasks, with a three-minute rest after each of them, and answered
questions to determine their personality. In the second part, six elementary cognitive
tasks (ECT) each with three difficulty levels were presented: the Gestalt Completion test
(GC), the Hidden Pattern test (HP), Finding A’s test (FA), Number Comparison test (NC),
Pursuit test (PT), and Scattered X’s test (SX), with a rest period between them. After each
task, the participants were asked to fill in the NASA-TLX questionnaire to determine their
subjective cognitive load, however, those questionnaires were not utilized here. Further
details on the study protocol and tasks can be found in [14].

While doing the tasks, the participants’ physiological response was measured with
a wrist device (Microsoft Band). The measurements included the HR, R-to-R intervals
(RR), GSR, ST and 3-axis acceleration, which was not used in this study. The open-sourced
dataset contains the data re-sampled to a frequency of 1 Hz. However, the HR and RR were
derived on-device from an optical sensor and the raw measurements used to obtain those
two signals were not available. Thus, the rate at which the HR and RR were measured was
truly not constant but dynamic, and depended on when the heartbeats occurred.

Figure 1 depicts the steps taken in analyzing the dataset and evaluating the results.
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Figure 1. Pipeline followed in data processing and evaluating the results.

2.2. Data Preprocessing, Segmentation and Feature Extraction

The main focus in this study was on evaluating the classification performance of
cognitive load at different window lengths of less than 30 s in duration. Window lengths
selected were 5 s, 10 s, 15 s, 20 s, 25 s, and 30 s in duration, and a 50% window overlap was
employed to increase the amount of data.

The time taken by the participants to complete the tasks varied between 18 s and 190 s.
If a task lasted for a shorter time than window length, that single task was removed from
the experiment with the specific window length to make sure that a shorter actual task
length would not skew the results; approximately 4% of all tasks were completed in less
than 30 s. In addition, it was noted that sometimes the data had been filled by carrying the
last observation forward, i.e., a signal was constant for a period of time. As many features
could not be calculated if there was not enough variation, segments with less than 25%
unique values in the RR-, HR-, or GSR-signal were removed.

Next, features were extracted at each window length. According to [21,35], features
that are usually extracted from the signals used here contain the statistics of each signal,
heart rate variability from the RR-signal, and skin conductance response analysis for the
GSR signal.

In this study, the statistical features of the RR, HR, GSR, and ST and their first and
second derivatives were computed. The statistical features included the mean, standard
deviation, minimum, maximum, difference between minimum and maximum, lower and
upper quartile, interquartile range, and coefficient of variation.

A skin conductance response (SCR) analysis was conducted for the GSR signal to
extract additional features. Like in the original paper using the same dataset [14], the signal
was first preprocessed with a sliding mean filter, and then fast-acting (phasic) and slow-
acting (tonic) components were extracted. Normally, the SCR analysis is used especially
to extract features from the phasic component and SCR peaks [21,35]. In this analysis,
however, it often happened that a segment did not contain any SCR peaks, especially with
shorter window lengths. Therefore, the features extracted from the phasic component
included the number of SCR peaks and the statistics (mean, standard deviation, median,
lower and upper quartile, minimum and maximum) of its first and second derivative,
and the total time the first derivative of the phasic component was positive (rise-time) and
negative (descend-time). The features extracted from the tonic component included its
mean, standard deviation, minimum, maximum, ratio of maximum and minimum, and its
correlation with time.

Additionally, heart rate variability (HRV) features were extracted from the R-to-R
intervals. Following [22,36], the HRV features extracted included the mean, median,
and range of normal-to-normal intervals, standard deviation of normal-to-normal intervals
(SDNN) and successive differences, percentage and number of normal-to-normal intervals
differing by more than 20 ms and 50 ms, root mean square of successive differences
(RMSSD), ratio of SDNN and mean normal-to-normal intervals (CVNNI), ratio of RMSSD
and mean normal-to-normal intervals (CVSD), power in very low, low and high frequency
bands, total power, ratio of low and high frequency power, normalised low and high
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frequency power, triangular index, (modified) cardiac sympathetic index, cardiac vagal
index, and Poincaré plot indices SD1, SD2, and SD1/SD2.

A total of 157 features were extracted and they are listed in Table 2. Afterwards,
a sanity check was conducted for the features computed. Some features had a significant
amount of missing or infinite values, or showed little variation. Thus, features with missing
values, infinite values, or variance below 0.01 were removed for each window length.
The number of remaining features was 93 at window lengths from 20 s to 30 s, 91 at
window lengths of 10 s and 15 s, and 82 at a window length of 5 s.

Table 2. List of computed features. Abbreviations used later in text and in figures are in parenthesis.

Category Features

Statistical features for each
signal (d0) and their first (d1)
and second (d2) derivatives

mean, standard deviation (std), minimum (min), maximum (max), difference between
minimum and maximum (range), lower (lq) and upper quartile (uq), interquartile
range (iqr), and coefficient of variation (cv)

Heart rate variability (HRV) mean, median, and range of normal-to-normal intervals (mean, median, range nni),
standard deviation of normal-to-normal intervals (sdnn) and successive difference
(sdsd), root mean square of successive differences (rmssd), ratio of sdnn and mean
nni (cvnni), ratio of rmssd and mean nni (cvsd), signal power in very low (vlf), low
(lf), and high (hf) frequency bands, total power, ratio of lf and hf, normalised lf and hf
(lfnu, hfnu), triangular index, cardiac sympathetic index (csi), modified csi, cardiac
vagal index (cvi), and Poincaré plot features (SD1, SD2, ratio of SD1 and SD2)

Skin conductance response
(SCR)

phasic component: number of peaks (npeaks), time first derivative was positive
(risetime) and negative (dectime), and mean, std, median, lq, and uq of first (diff1)
and second (diff2) derivatives
tonic component (scl): mean, std, min, max, ratio of max and min (slope), and its
correlation with time (corrwithtime)

According to the criteria stated above, features that were removed most often were the
HRV parameters CVSD and CVNNI, coefficient of variation of the HR and its derivatives,
statistical features of the derivatives of the phasic component of the GSR signal, standard
deviation of the tonic component of the GSR signal, and statistical features of the derivatives
of the ST signal across the different window lengths. Additionally, several HRV parameters
were removed from the shortest window length.

The features were normalized using within-subject standardization, meaning that each
feature was transformed by subtracting its mean and dividing by its standard deviation
separately for each participant. Person-specific standardization was conducted instead of
person-independent standardization, since it has shown improved performance in earlier
work in similar contexts [14,20,37].

2.3. Model and Experimental Protocol

The classification task was formulated as binary classification between a cognitive
load and a rest class. All data segments during a cognitive task (N-back task or one of
the six ECTs) were annotated as a cognitive load, and all the rest periods were anno-
tated as rests. The segments during which the participant answered the questionnaires
were removed from the data. The number of instances in both classes at each window
length are reported in Table 3. Because the number of samples in each class is reasonably
balanced (approximately 46% rests and 54% cognitive loads for each window length),
the classification performance was assessed in terms of accuracy, the percentage of correctly
classified samples.
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Table 3. Number of instances in cognitive load and rest classes at each window length.

30 s 25 s 20 s 15 s 10 s 5 s

Cognitive load 1654 2110 2840 4055 6336 12,763
Rest 1406 1791 2407 3437 5393 10,937

Extreme Gradient Boosting [38] (XGB) was selected as the classification model for the
following reasons: the classifiers from the random forest family and the boosting method
have been shown to be strong classifiers [39], XGB has shown good performance earlier in
similar contexts [14,20] and because XGB is computationally efficient and scales to very
large datasets [38]. XGB is an ensemble of decision trees, each of which splits the data
hierarchically, aiming to contain data originating from a single class in each leaf node.
XGB uses the gradient descent algorithm to construct the trees sequentially so that each
subsequent tree attempts to fix the errors made by preceding trees.

Specifically, XGB aims to minimize the regularized objective function

L(ŷ) =
n

∑
i=1

l(ŷi, yi) +
K

∑
k=1

Ω( fk), (1)

where Ω( f ) = γT + 1
2 λ||w||2. Here, n is the number of observations, l is a differentiable

convex loss function measuring the difference between the prediction ŷi and the target yi, K
is the number of classification trees, fk are classification tree functions, Ω is a regularization
function penalizing the complexity of the model, T is the number of leaves in a tree, γ
and λ are regularization parameters and w are leaf weights. Assume that IL and IR are the
instance sets of left and right nodes after a split. Then, letting I = IL ∪ IR, the loss reduction
after the split is given by

Lsplit =
1
2

[
(∑i∈IL

gi)
2

∑i∈IL
hi + λ

+
(∑i∈IR

gi)
2

∑i∈IR
hi + λ

− (∑i∈I gi)
2

∑i∈I hi + λ

]
− γ, (2)

where gi = ∂ŷ(t−1) l(yi, ŷ(t−1)) and hi = ∂2
ŷ(t−1) l(yi, ŷ(t−1)) are the first and the second order

gradient statistics of the loss function at the t-th iteration. In practice, the formula above is
used for evaluating the split candidates, and the splits are found either with an exact or
approximate greedy algorithm that are implemented in [38]. So, at each boosting iteration
t, a classification tree ft whose splits are found using a greedy algorithm with Equation (2)
and that most improves the model according to Equation (1) is added to the model.

The performance of the XGB model depends on its hyperparameters that describe the
structure of each tree and that affect the convergence of the loss function. The hyperparam-
eters were optimized using Bayesian optimization (see Section 2.4) but an ablation study
using default hyperparameters was also conducted. The following hyperparameters were
optimized:

• max_depth: the maximum depth of each tree
• n_estimators: the number of estimators in the model
• reg_alpha: L1 regularization term
• reg_lambda: L2 regularization term
• subsample: the ratio training instances used for each boosting iteration
• learning_rate: the step size shrinkage used in each update to prevent overfitting
• gamma: the minimum loss reduction required to make a further split on a leaf node of

the tree
• colsample_bytree: the ratio of the number of features used to create each tree
• colsample_bynode: the ratio of the number of features used at each node (split)
• colsample_bylevel: the ratio of the number of features used at each tree level

29



Electronics 2021, 10, 613 8 of 19

The dataset was published with participants divided into training and testing sets,
with 18 subjects for training and 5 for testing. However, the ablation study without Bayesian
optimization showed significantly higher performance for the test subjects than the training
subjects even though the model had not seen the data of the test subjects. Therefore, test
subjects’ data appeared to be different from the data of the training subjects. So, instead of
using the fixed train-test-split the dataset came with, it was decided to use cross-validation
with both the training and testing subjects in a single pool to validate the modelling results
with Bayesian optimization. Individual differences are further elaborated in Section 3.4.

In general, leave-one-subject-out (LOSO) validation is recommended in the affective
computing domain [21], meaning that each subject is left out in turn for testing and the rest
of the data is used for training the model. Moreover, when tuning hyperparameters, an in-
ternal validation with training data is required to make sure that the best hyperparameters
are selected according to the validation performance, and not the testing performance.

Instead of LOSO validation, it was decided to use the leave-two-subjects-out (LTSO)
validation method when tuning hyperparameters because the process is computationally
intensive, especially since it had to be completed for each window size separately, and be-
cause the number of participants in the dataset was relatively large (LOSO validation
would correspond to 23-fold cross-validation). So, each hyperparameter configuration was
evaluated with data of two randomly selected subjects left out for testing, with internal
leave-two-subjects-out validation to select the hyperparameters. This had the effect of
approximately halving the computation time during the Bayesian optimization compared
to using LOSO validation. However, to comply with earlier research the final results are
also reported with LOSO validation for the best hyperparameter configuration.

2.4. Hyperparameter Optimization

Bayesian optimization is a derivative-free search strategy for the global optimization of
functions that are expensive to evaluate. The algorithm starts by setting a prior distribution
over the parameters to optimize and evaluating the function (here, a function value refers
to LTSO validation accuracy with the XGB model) a certain number of times on parameter
values sampled from the prior distribution. Then, for a set number of iterations, posterior
distributions of each parameter over the function are updated using all the available data,
the values maximizing an acquisition function over the current posteriors are sampled,
and the function is evaluated using those values. For more details on the algorithm we
refer to [40].

Table 4 lists the hyperparameters that were optimized and the priors used for each
parameter. Overall, non-informative priors were employed, and the prior distributions
were either discrete uniform distributions on a given interval and step size (parameters
max_depth and n_estimators), continuous uniform distributions on a given interval (parame-
ters reg_alpha, reg_lambda, and learning_rate), or a random choice between a constant or a
number sampled from a continuous uniform distribution on a given interval (parameters
subsample, gamma, colsample_bytree, colsample_bynode, and colsample_bylevel).

Optimization was continued for a total of 300 iterations at each window length.
The number of iterations was selected experimentally. As seen in Section 3.1, the perfor-
mance improved little after 100–150 iterations. Thus, the procedure was continued for twice
that long since it would have been unlikely that scores would improve much after that.
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Table 4. Hyperparameters optimized for the XGB model, and their prior distributions using the hyperopt syntax.

Hyperparameter Prior

max_depth hp.quniform(’max_depth-xg’, 2, 12, 1)
n_estimators hp.quniform(’n_estimators-xg’, 20, 250, 10)
reg_alpha hp.uniform(’reg_alpha-xg’, 0, 1)
reg_lambda hp.uniform(’reg_lambda-xg’, 0, 1)
subsample hp.choice(’subsample’, [1, hp.uniform(’subsample-xg’, 0.7, 1)])
learning_rate hp.uniform(’learning_rate-xg’, 0.01, 0.5)
gamma hp.choice(’gamma’, [0, hp.uniform(’gamma-xg’, 0, 0.05)])
colsample_bytree hp.choice(’colsample_bytree’, [1, hp.uniform(’colsample_bytree-xg’, 0.7, 1)])
colsample_bynode hp.choice(’colsample_bynode’, [1, hp.uniform(’colsample_bynode-xg’, 0.7, 1)])
colsample_bylevel hp.choice(’colsample_bylevel’, [1, hp.uniform(’colsample_bylevel-xg’, 0.7, 1)])

2.5. Statistical Tests

Statistical tests were conducted to determine (1) whether there was a statistically
significant difference in the classification performance between the different window
lengths, and (2) whether hyperparameter optimization provided statistically significantly
more accurate classification (effect of ablating Bayesian optimization). First, subject-by-
subject accuracy was obtained for each subject by training the model with all the other
subjects in training data. Then, paired t-tests were employed for both scenarios. Pairs
were formed from the accuracies observed for each subject at (1) two different window
lengths and (2) for optimized and default hyperparameters. A t-test was selected since
the subject-by-subject accuracies were normally distributed. In all tests, the Benjamini-
Hochberg correction was used to control the false discovery rate, with probability of type I
error set to 0.05.

2.6. Computational Tools

The analysis was completed using the Python programming language. The libraries
employed were scikit-learn (preprocessing and cross-validation implementation) [41], xg-
boost (implementation of XGB model) [38], hrv-analysis (calculating HRV features) [42], neu-
rokit2 (signal processing and SCR analysis) [43], and hyperopt (Bayesian optimization) [44].

3. Results
3.1. Parameter Optimization

Figure 2 shows the evolution of the hyperparameter optimization. It is evident from
the figure that most improvement took place within the first one hundred iterations for
each window length, with only minor improvements afterwards. Overall, 30 s and 25 s
window lengths performed similarly, and the accuracy decreased as the window length
decreased further.

Figure 3 displays the posterior distributions of the max_depth parameter which de-
scribes the depth of each tree in the XGB model. The distribution of each window length
is similar to the Gamma distribution truncated between 2 and 12 (since the prior was
truncated between 2 and 12). Most of the probability mass was located between the depths
from 2 to 6, and the best value found (black vertical lines) are located at depths 2 and 3 for
all window lengths except for 25 s, which achieved its best performance at a maximum
depth of 6.

Similar figures of posterior distributions for the rest of the hyperparameters are
available as supplementary material, together with a table of all the tested hyperparameter
configurations and their performance for each window length.
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Figure 2. Progress of the Bayesian parameter optimization, (i) test accuracy obtained at each iteration with leave-two-out
validation (top panel), and (ii) the cumulative maximum accuracy obtained by each iteration (bottom panel).

Figure 3. Posteriors of the max_depth parameter, describing the depth of each tree in the ensemble, after 300 Bayesian
optimization iterations at each window length. Vertical lines denote the best value found.

3.2. Classification Results

Table 5 presents the classification accuracies obtained for each window length with
the LTSO validation used during the Bayesian optimization, and with the LOSO validation
with optimized and default model parameters. The results for statistical tests for the
performance with default and optimized hyperparameters, and the different window
lengths, are shown in Tables 6 and 7, respectively.

There were no differences in the mean classification performance between the LTSO
and LOSO validation strategies (less than 1% difference at each window length), but LTSO
validation seemed to underestimate standard deviations compared to LOSO validation.
Since standard deviations were calculated from the overall accuracy and not the subject-
specific accuracy across the folds, the distribution was drawn towards the mean when there
were two subjects in a fold, which resulted in a lower standard deviation. LOSO validated
measures using the optimized hyperparameters yielded a statistically significantly higher
classification accuracy than with the default parameters. The difference between the default
and optimized parameters was 2–3% at higher window lengths (20–30 s) and 3–4% at lower
window lengths (5–15 s).
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Table 5. The classification accuracy (%) for each window length, with leave-two-out validation
with optimized parameters (LTSOopt), and leave-one-out validation with optimized parameters
(LOSOopt) and default model parameters (LOSOdef). Standard deviations in parenthesis.

30 s 25 s 20 s 15 s 10 s 5 s

LTSOopt 66.9 (4.9) 67.4 (4.5) 66.1 (5.2) 64.1 (4.1) 62.6 (4.3) 60.8 (3.5)
LOSOopt 67.2 (9.0) 67.6 (8.6) 65.4 (8.0) 63.6 (7.7) 62.2 (7.6) 60.0 (6.4)
LOSOdef 65.0 (7.5) 64.5 (8.3) 63.5 (6.6) 60.1 (6.6) 58.5 (6.5) 56.4 (5.7)

Table 6. Results for the Benjamini-Hochberg corrected paired t-tests between the default and optimized hyperparameters
with LOSO validation.

30 s 25 s 20 s 15 s 10 s 5 s

t p t p t p t p t p t p

−2.40 0.03 −4.13 <0.001 −2.62 0.02 −3.63 <0.001 −5.09 <0.001 −6.12 <0.001

Table 7. Results for the Benjamini-Hochberg corrected paired t-tests between accuracies for different
window lengths.

30 s 25 s 20 s 15 s 10 s

t p t p t p t p t p

25 s −0.64 0.53
20 s 1.95 0.07 2.38 0.03
15 s 3.48 0.003 3.82 0.002 3.25 0.005
10 s 4.2 0.001 4.26 0.001 4.78 <0.001 3.3 0.004
5 s 5.58 <0.001 5.69 < 0.001 7.19 <0.001 6.92 <0.001 5.84 <0.001

According to Table 7, there was no statistically significant difference whena window
length of 30 s was compared to window lengths of 25 s and 20 s, but all other tests showed
significant differences (at significance level α = 0.05). Thus, apart from the longest window
length, a shorter window always resulted in weaker classification performance.

3.3. Feature Contribution Results

The feature importance for the different window lengths was assessed as the normal-
ized total reduction of the Gini impurity brought by that feature in the optimized XGB
model. This is visualized in Figure 4. Regardless of the window length, the most important
features seem to be related to the heart rate variability and R-to-R intervals statistics, and to
the statistics of the derivatives of the GSR signal.

Partial dependence plots of a few features selected from the top-20 witha window
length of 25 s are shown in Figure 5. The figure for the 25 s window features was selected
since that option provided the highest classification performance, and the six features
included were selected from the top-20 features so that each feature category or signal
was included. Partial dependence plots display the effect that each feature has on the
classification outcome when all other variables are kept constant. The scale of each feature
is relative to each subject’s feature value, since the features were normalized person-
specifically.

For both HRV variables included, it seems that there is a sudden drop in partial
dependence when the feature value approaches zero, i.e., the subject-specific mean, which
suggests that both features were used near or at the root of the tree to split the whole of
the data in half. The higher RR (rr_d0_lq), higher ST (st_d0_uq), and lower range of the
second derivative of the GSR (gsr_d2_range) seem to be related to a higher chance of being
classified in the cognitive load class. The mean HR shows a small effect on the outcome
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overall, but it seems that a higher HR is related to a lower chance of being classified in a
cognitive load class.

Figure 4. Importance of the top-20 features for each window length.

Figure 5. Partial dependency plots of selected features for the model with 25 s window length.

3.4. Individual Differences

In an ablation study, the performance of the XGB model was inspected with default
hyperparameters without Bayesian optimization. The results for different window lengths
and individuals are shown in Figure 6, with the means and confidence intervals com-
puted across individuals in the train- and test-splits that the dataset came with. Overall,
the mean accuracy increased as the window length increased until a window length of 25 s,
and slightly decreased for the longest window length. The mean accuracy for the test-split
was systematically higher than for the training-split, but the training accuracy was still
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within the confidence interval of the testing accuracy. However, the confidence interval of
the mean test-split accuracy was obtained by bootstrapping five observations, so it is likely
to be somewhat biased.

On an individual level, the accuracy between window lengths varied, but most users’
individual accuracy (i.e., test accuracy when that individual was in the test fold during the
LOSO validation) was at its maximum with a 25 s window length.

The individual variation in feature values is shown in Figure 7, which displays the
boxplots of differences of the mean feature values between the cognitive load and resting
state observed for each individual. The features selected to display were the same features
as in Figure 5. The figure shows that usually the heart rate variability was higher (and,
consequently, the RR was lower) while resting than when in the cognitive load state, the HR
varied between individuals but was mostly higher in the resting state, the range of the
second derivative of the GSR was higher in the resting state, and the skin temperature was
lower in the resting state. In addition, the distribution of each variable contained positive
and negative values: the physiological response to a cognitive load between individuals
did not differ only in magnitude but also in the direction of the different responses.

Figure 6. Classification accuracy observed with the dataset’s default train-test split using the XGB model with default
hyperparameters (ablating Bayesian optimization). Solid lines denote mean accuracy with confidence regions obtained by
bootstrapping around them. Dashed lines depict the validation (training-split) and dotted lines the test (test-split) accuracy
of a single subject.
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Figure 7. Difference of selected mean feature values between cognitive load and rest sessions across each individual,
computed with 25 s window length. Positive values denote that the feature value was higher in cognitive load. Differences
of rr_d0_lq and hrv_pnni_20 were scaled by dividing by 100, and hr_d0_mean by dividing by 10 to show the distribution of
each feature better.

4. Discussion

The objective in this study was to compare the cognitive load detection performance
at different ultra-short window lengths. Six window lengths of less than or equal to 30 s in
duration were analyzed using a personalized approach with the XGBoost classifier and
Bayesian hyperparameter optimization.

In terms of the overall classification accuracy, shorter windows showed lower perfor-
mance and the best performance was found for windows of 25 s and 30 s with a statistically
insignificant difference between the two. However, even if the differences between other
window options were statistically significant, they were modest in absolute terms (lowest
accuracy 60% vs. highest accuracy 67.6%). There were also large individual differences
and person-specific factors which affected which samples were correctly and incorrectly
classified. The individual accuracies ranged from 51% to 80% at a 25 s window length and
the individual-specific optimal window length varied between 10 s, 20 s, 25 s, and 30 s.

Although earlier studies that have conducted experiments with different window
lengths have not tested for statistical significance and they have mainly used window
lengths above 30 s, the overall impression has been similar: longer windows tend to
provide better performance. In [32], the best performance was found with a 120 s window
and with one exception (15 vs. 30 s) the performance increased as the window length
increased. The differences between the window lengths were small in [24], but still, longer
windows performed better with nearly all of the tested classifiers.

Compared to the related work mentioned in Table 1, the classification accuracy in this
study was rather low at each window length. Still, the highest accuracy (67.6%) at 25 s was
almost the same as in the original paper [14] using the same dataset with a 30 s window
(68.2%) and higher than in [45] (63.3%) and [46] (62%) using a subset of the same dataset
and a 30 s window. The low performance is likely related to large individual differences
and the tasks used in the dataset to elicit the cognitive load, which are discussed below.

The six elementary cognitive tasks (ECT) were selected based on [47], where they iden-
tified three relevant cognitive capabilities in the ubiquitous computing domain: flexibility
of closure (HP), speed of closure (GC) and perceptual speed (FA, NC, PT, SX). However,
the ECT refers to any range of basic tasks that require only a small number of mental
processes and they have been originally designed to demonstrate individual differences
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between more than two participant groups (e.g., patients vs. healthy controls) [47]. There-
fore, the cognitive load of these six tasks may have been mild compared to the N-back,
the working memory task. Table 8 shows the task-wise accuracy for each of the tasks and
despite the fact that there were less samples from N-back tasks than the other tasks, they
were relatively well-recognized as a cognitive load.

In relation to real-life applications, however, eliciting a relatively mild cognitive load
offers a more realistic situation. In real-life, extreme reactions (deep relaxation or high
cognitive load) tend to occur rarely and reactions are milder than in laboratory protocols
designed to elicit a high cognitive load or stress. All in all, the varying task difficulty
between the seven different tasks, the three different task difficulty levels (low, moderate,
high) used in the study, as well as the individual differences in cognitive performance and
physiological reactions may have affected the varying classification results.

Table 8. The proportion of samples correctly classified as cognitive load during each cognitive task,
and the number of windows for each task at a window length of 25 s.

FA GC HP NC PT SX n2 n3

Proportion 0.723 0.469 0.845 0.750 0.638 0.747 0.839 0.730
Windows 382 207 336 388 210 245 168 174

Radüntz et al. [48] suggested that biomarkers, especially heart rate features, exhibit
themselves on different timescales in cognitively demanding tasks. They found that the
heart rate responded earlier to workload changes than frequency domain HRV parameters.
This is in line with the findings in this paper that the most important variables for detecting
a cognitive load were statistics of the RR intervals and HRV features from the time- and
non-linear domain. Frequency domain variables were among top-20 only at a window
length of 30 s, which may indicate that frequency domain measures respond slower than
HR-related features from other domains. A similar notion was given in [22], who report
that ultra-short frequency domain norms are from 20 to 180 s, and generally windows of
60 s and up to 24 h should be used.

Thus, the tasks were short enough that not all features could respond before the state
changed again, which may have affected the feature importances and the direction where
the features changed during the tasks. As evidenced in Figure 7, the direction of change
between features and individuals varied, and e.g., the HRV was lower in the resting state
than in the cognitive load state for some participants. Again, this may be a symptom of
the tasks producing a mild cognitive load, but also in the way the resting and cognitive
load states were defined. In this study, the states were defined as in the original paper,
and the resting state was a combination of all resting periods before and between the
cognitive tasks. However, the rest sessions located between the tasks are not similar to the
resting state measured as a baseline before the tasks, or at the very end of the measurement
protocol. Because people do not recover instantaneously, physiological reactions caused
by cognitive tasks are still ongoing when the rest session begins, which likely affected the
classification performance. A significantly higher classification performance was found,
e.g., in [20], where the resting condition represented a baseline measurement conducted at
the beginning and the end of the measurement protocol. However, these kinds of baseline
rest periods have not been recorded in this dataset.

An analysis of confusion matrices revealed that errors made by classifying cognitive
load periods as resting was quite stable for all the window lengths (between a minimum
of 26.2% at 5 s and a maximum of 28.9% at 15 s) whereas the number of errors made by
classifying resting as a cognitive load increased as the window length decreased (38.3% at
25 s and increasing to 53.8% at 5 s). Therefore, it seems that the classifier made the most
errors when the person was recovering from a cognitive load and that the effect of the used
division for cognitive load and resting state may have been especially strong for the shorter
window lengths. Analyzing the dynamics of state detection in short windows might reveal
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more reasons why shorter windows had inferior performance, however, it is beyond scope
of this text and is left for future work.

In this study, overlapping was used to utilize the available data more efficiently. Since
each task lasted for as long as it took for the subject to complete it, the task length varied
between tasks and individuals: easier tasks were completed faster and some subjects were
quicker than others. All in all, approximately 34% of the tasks were completed in less than
60 s (needed to have two windows at a 30 s window length without an overlap), 16% in
less than 45 s (needed to have two windows at 30 s window length with a 50% overlap),
and 23% were completed in less than 50 s (needed to have two windows at a 25 s window
length without an overlap) and 10% in less than 37.5 s (needed to have two windows at
a 25 s window length with a 50% overlap). So, especially for the longer window lengths,
overlapping increased the amount of available data and prevented disregarding data either
from the beginning or the end of each task. Although overlapping is often employed in
feature extraction (see Table 1) and a 50% overlap is commonly used in signal processing
for spectral density estimation [49], its effect on the classification performance in cognitive
state detection [9] and human activity recognition [50] has been found to be insignificant.
However, overlapping can update the output incrementally and more efficiently than fixed
windows [9] and thus it has potential value for future real-time systems with continuous
state estimation.

The focus in this study was on cognitive load detection, which is methodologically
closely related to affect, or emotion, recognition, where rather long windows are also often
employed. Since an affective state tends to last for a very short time [21], shorter feature
windows also for affect recognition should be investigated in future studies.

5. Conclusions and Future Work

Cognitive load assessment could serve multiple applications, e.g., in human–computer
interaction to recognize and adapt to human overload issues. The future direction in as-
sessing cognitive load is in real-time analysis and detecting the state in a streaming mode.
In this study, a step towards more timely, real-time cognitive load detection was taken by
analyzing the effect that ultra-short window lengths (30 s or less) have on detection perfor-
mance.

The results on this dataset showed that longer windows perform better with statisti-
cally significant differences. The best performance of 67.6% was observed at a 25 s window
length and the accuracy decreased to 60.0% at a 5 s window length. The optimal window
length varied on an individual level, and whereas longer windows performed better on
average, shorter windows were better for some individuals. Compared to earlier works
using longer windows, the classification accuracies obtained were low, but the accuracy on
the longer windows tested was similar or higher to those obtained earlier with the same
dataset in [14,45,46] using a 30 s window.

The tasks used in the dataset produced rather mild cognitive load, which is closer to
real-life circumstances but more difficult to detect than a higher load. Moreover, shorter
windows contain less data, and some physiological features could not react on time to
changes in the cognitive load and thus were not useful for state detection. R-to-R interval
statistics as well as time- and non-linear domain HRV features had the fastest response to
changes in cognitive load, followed by GSR statistics and skin temperature.

Short windows allow predicting the state more often, and so they may be more
desirable in applications where more timely state detection is needed. However, shorter
windows contain less data and physiological events, and so it is more difficult to correctly
detect the state with shorter windows than it is with longer windows. Thus, the timeliness
will be achieved on the expense of model accuracy as the results of this study demonstrate.
The performance on a 5 s window was 7.6% behind of the performance on a 25 s window,
despite that it contained five times less data. Although the performance found on this
dataset was rather limited, this motivates future studies for real-time, even streaming,
cognitive load detection.
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Future studies towards this goal would benefit from a larger database to account
for individual differences more effectively, to analyze the effects of window overlapping
in terms of classification performance and continuous state detection, and to be able to
use a larger set of different window lengths. Additionally, the analysis of the effect of
short windows could be extended to other state detection tasks within affect recognition,
to address similar issues in a broader context.

Supplementary Materials: The following are available online at https://www.mdpi.com/2079-929
2/10/5/613/s1. The following supplementary files are available: posterior_distributions. pdf (figures
similar to Figure 3 for all XGB hyperparameters), bayes_opt_results.csv (data generated containing
information on each completed iteration of Bayesian optimization), and individual_accuracies.csv
(subject-wise accuracies for each window length). The source code is available on Github at https:
//github.com/jatervon/ultra-short-cognitive-load-detection.
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Abstract: In many ambient-intelligence applications, including intelligent homes and cities, aware-
ness of an inhabitant’s presence and identity is of great importance. Such an identification system
should be non-intrusive and therefore seamless for the user, especially if our goal is ubiquitous
and pervasive surveillance. However, due to privacy concerns and regulatory restrictions, such
a system should also strive to preserve the user’s privacy as much as possible. In this paper, a
novel identification system is presented based on a network of laser sensors, each attached on top
of the room entry. Its sensor modality, a one-dimensional depth sensor, was chosen with privacy in
mind. Each sensor is mounted on the top of a doorway, facing towards the entrance, at an angle.
This position allows acquiring the user’s body shape while the user is crossing the doorway, and
the classification is performed by classical machine learning methods. The system is non-intrusive,
non-intrusive and preserves privacy—it omits specific user-sensitive information such as activity,
facial expression or clothing. No video or audio data are required. The feasibility of such a system
was tested on a nearly 4000-person, publicly available database of anthropometric measurements
to analyze the relationships among accuracy, measured data and number of residents, while the
evaluation of the system was conducted in a real-world scenario on 18 subjects. The evaluation
was performed on a closed dataset with a 10-fold cross validation and showed 98.4% accuracy for
all subjects. The accuracy for groups of five subjects averaged 99.1%. These results indicate that a
network of one-dimensional depth sensors is suitable for the identification task with purposes such
as surveillance and intelligent ambience.

Keywords: one-dimensional depth sensor; biometrics; identification; machine learning

1. Introduction

For many years, Artificial Intelligence (AI) has played a central role in techniques that
improve system performance in various areas, especially when Machine Learning (ML)
has been used. The immense growth of data due to the Internet and Internet of Things, as
well as the increase in computing power, has led to a great increase in the benefits of AI in
the last decade [1], as there are many data to learn from, and the amount and speed of data
exceeds human capabilities. Therefore, AI has a significant impact on people’s daily lives
nowadays. Ambient Intelligence (AmI) enhances people’s everyday lives by sensing their
presence and responding to their actions [2,3]. To provide this service without interfering
with the users’ activities, the sensing must be non-intrusive. This means that the users
perform their activities in exactly the same way as if the sensors did not exist. Furthermore,
the sensing should preserve the users’ privacy as far as possible, so that such systems can
be used in private environments such as smart homes [4]. In addition, sensors should be
robust, low cost and highly accurate to be used in real life situations. These are the main
requirements for AmI sensors that need to be met in order to introduce them into everyday
life.
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The key information that allows ambience to adapt to the individual user is the
number of people who are present and their identities [5]. This information is helpful in
order to put additional sensor information into the proper context. For example, a user
comes home and turns a thermostat to 20 ◦C. After a while, his wife comes home and sets
the thermostat to 22 ◦C, since this is the temperature she is comfortable at. If the users’
identities are provided, the AmI system can regulate the temperature of the room according
to the preferences of the users who are present, without any further input. Similar problems
affect cooling, ventilation, assistance for the elderly, security systems, etc. In the same way,
non-essential functions, such as the choice of music, movies and even commercials, can be
controlled based on the identity of the people who are present. Furthermore, the history of
the inhabitants’ presence can be used to predict their next action and adjust the ambient
environment in advance (controlling robot cleaners, domestic hot-water preparation and
powering standby devices) [6]. Therefore, detecting the number and identities of the
people who are present is one of the preconditions for successful AmI applications. It
should be noted that the identification task for setting room preferences is quite different in
nature compared to the identification when entering a smart home. The inability to classify
correctly an entry in a home can lead to severe consequences, whereas the smart home
taking care of room residents can always set the preferences to default values if the person
entering a room is not classified with sufficient probability.

Laser-based technology has made remarkable progress in recent decades. It covers a
wide range of fields, such as medical sciences, space sciences and military technologies [7,8].
Laser sensors are capable of detecting, counting, imaging and scanning distances and
proximity, making them ideal for numerous applications such as vehicle automation and
guidance, traffic management, security and surveillance and warehouse management.
They are therefore ideal when it comes to home sensor applications such as user silhouette
detection and authentication.

In recent years, many non-intrusive identification systems were designed; however,
most of them are not able to preserve privacy, while at the same time obtaining a high
identification accuracy. This weakness was the motivation behind our research. For the
sensor to be non-intrusive, no device has to be carried by the user for the identification to be
successful, nor is any additional interaction required—a typical example of such needless
interaction would be putting a finger on a fingerprint scanner. For practical purposes,
this narrows the sensor selection down to measuring the biometrically relevant physical
properties of people. In our case, the shape of the human body was selected as the main
measure. To preserve privacy, a one-dimensional depth sensor mounted on the top of a
doorway, looking downward at an angle, was used. In this way, the person’s body shape
is not captured with a single shot, but with multiple measurements during the whole
doorway-crossing event. Effectively, the sensor follows the best practice for designing
surveillance systems, as set forth by privacy regulators worldwide, known as Privacy by
Design: the system should acquire only the essential data required to solve the problem it
addresses. This means that such a system cannot provide more data than it needs, even
in the event of a third-party intrusion; all the sensor obtains is a partial, one-sided and
relatively low-resolution depth map of a person, and that is all that an attacker could
possibly gain. If, for example, a live video feed were used to recognize people, this would
mean potentially catastrophic privacy consequences in the event of an attack, especially
if such devices are used in private environments. On the other hand, the classification
accuracy should remain as high as possible even with such “blurred” data having in mind
that in a private home only a few people are to be classified. Finally, we are not interested in
exact indoor location to set the room ambient parameters. These are the main assumptions
leading to our approach. In the following, formal definitions of being invasive, intrusive
and privacy-preserving are introduced:
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Definition 1 (Invasive). The term invasive in this paper encompasses involving entry into the
living body, e.g., by an incision or insertion of an instrument, or similar entry into the mental or
cognitive state, including the implantation of changes in the well-being or emotions [9].

In plain English, to be invasive is to have something introduced into the user’s physical
or mental state, either voluntarily or involuntarily. Physically, there does not have to be
an actual physical insertion into the body, for example anything that applies pressure to
any part of the user’s physical state is considered invasive since it changes the physical
state at the point of pressure. Psychologically, it is a bit similar and a bit different in that
no physical influence is required, but the cognitive or psychological effect is similar—if
something is introduced (or pushed) into the user’s mental state or behavior by some
device or system, it is considered invasive in the non-physical sense.

Definition 2 (Intrusive). In this paper, the term intrusive refers to the disruption of user’s normal
behavior [10].

By analogy to the definition of invasive, the term intrusive is physical, mental or
both. In addition, the term intrusive is often relative and refers to the culturally accepted
activities in a particular community. For example, if a person is to enter a home, a certain
activity is required to pass a security test, such as unlocking a door with a door key. If such
entry is generally accepted, it is considered non-intrusive. However, if a camera system
is introduced that unlocks the door based on facial recognition when a user enters the
department, this system is considered non-intrusive and the prior entry with the door key
becomes intrusive as a user has to unlock the door compared to simply approaching the
door when facial recognition is used. Another example of change would be the automatic
unlocking of the door of some modern cars which happens when a user approaches with a
key, which is obviously non-intrusive, and the current normal unlocking of the car door by
pressing a button or using a car key now becomes intrusive.

This paper is about passing an unlocked interior door that is without doors, with
opened doors or needs to be opened in some way. If a user passes the door as usual and
no additional load is introduced by the AmI system, this is considered non-invasive and
non-intrusive.

Definition 3 (Privacy-preserving). The term privacy-preserving in this paper refers to the concept
of security or harmlessness of user data when the data are or could be transmitted or communicated
between different parties. The other party is not able to draw a potentially harmful conclusion from
the data obtained [11].

An example of non-privacy-preserving data are images taken with a camera. Even
without actual security issues, users are usually uncomfortable with the knowledge that
some device is taking accurate pictures of them. On the other hand, if the image captured by
the camera is blurry enough that no one can see anything potentially harmful from it, it is
considered privacy-preserving. This term is—as the previous two terms—in contradiction
with detection accuracy. Nevertheless, there are systems that are both privacy-preserving
and sufficiently accurate—for example, a left–right blurred image caused by a mechanical
lens might allow correct height detection. In reality, systems of different types each establish
their own relationship between these properties and accuracy, trying to accommodate for
user needs and preferences.

Our approach is based on two hypothesis:

Hypothesis 1. Due to the advancements of the laser devices and AI, the proposed laser-based
system using AI methods will enable highly accurate identification of a small number of residents in
a typical home.

Hypothesis 2. The introduced system will be non-invasive, non-intrusive and privacy-preserving.
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The process of data collection is described in detail to show that Hypothesis 2 is
indeed satisfied, while the measurements of classification accuracy reveal relationships
among various factors that affect identification accuracy to show conditions under which
Hypothesis 1 is valid.

Since no such device exists in the mass market, the task is quite challenging and
involves another parameter: the cost scheme. The goal is to use a device that should not
exceed $100 as a general threshold.

In the remainder of the paper, we first present related work. After the related work,
we describe the preliminary study conducted using the publicly available anthropometric
measurements database. Next, we describe our system setup and its geometry. We continue
with a description of the feature extraction process that describes the user’s body shape.
We then describe how the extracted features are used to determine direction and identity,
as well as the evaluation process, its results and the comparison between theoretical
estimates from a database and practical measurements. Finally, we present a discussion
and conclusions with pros and cons.

2. Related Work

In the past decade, we have witnessed many attempts to develop identification sys-
tems that could support AmI applications on a ubiquitous scale and that could be easily
integrated into the environment itself.

The two main application requirements are a high identification accuracy and non-
intrusiveness. The first requirement arises from the need to correctly identify a person in
order to properly personalize the environment. Every misidentification could lead to a
user’s discomfort, security risks and/or non-optimal energy use. The second requirement
allows the user to maintain his/her way of living and interaction with the environment in
exactly the same way as if the identification system did not exist. To meet both requirements,
different sensors and techniques were explored in the scientific community. The most
promising non-intrusive identification methods are the following:

• Pressure sensors are installed in the floor and used for measuring the location and the
force of a foot. The user has to step onto the sensed area where the sensor is installed
to be identified. It has been demonstrated that people can be identified according to
the force profile of their footsteps [12,13]. Orr and Abowd were able to achieve 93%
precision using 15 test people and a variety of footwear. Middleton et al., on the other
hand, used an array of binary contact sensors and achieved 80% precision using the
same number of test people.

• Doppler-shift sensors can determine an object’s velocity based on a reflected wave’s
frequency shift caused by a moving object. According to Kalgaonkar and Raj [14],
this sensor can be used to identify users based on their walking signatures when they
walk straight towards the sensor. They obtained 90% accuracy for 30 test subjects in a
laboratory environment, where only a single subject was observed at a time.

• Cameras are the most widely explored and used non-intrusive identification sensors.
They are used to identify people with both face and gait recognition. Face-recognition
methods much depend on lighting, facial expression, rotation, number of training
examples and similar parameters [15]. Reported precision values vary widely between
37% and 98% [16]. Gait-recognition methods are mostly based on a person’s silhouette
dynamics. An accuracy of 87% was achieved by Tao et al. [17] for a single person
walking on different surfaces. This number falls dramatically to 33% when the view
angles, shoe types and surface types are varied. In some environments, people’s
activities and motion can be used to recognize identity, as in [18], where an 82%
accuracy is observed. There were also some attempts to use extremely low temporal
and spatial resolution cameras; however, the collected data can also be used for activity
recognition, which may be undesirable [19]. Recent work in this field focuses mostly
on much more difficult re-identification problem (e.g., [20,21]). Recent approaches in
this field are based on deep learning (e.g., [22–24]).
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• Scanning range-finders emit a signal and determine the distance of an object according
to the time of flight, phase shift, or reflected angle. Such sensors identify people
according to their body dimensions, which is similar to our approach. By using
range-finders only the distance of a single point, a line or a full two-dimensional depth
map can be obtained. On the basis of multiple single-point sensors, a 90% accuracy
on three test subjects was achieved by Hnat et al. [25], whereas a 94% accuracy was
obtained on eight test subjects by Kouno et al. [26] using full, two-dimensional depth
images, obtained with the widely available Microsoft Kinect sensor.

• A radar-based system mounted at the top of the doorway that analyzes the signals
reflected back from the environment to perform the identification is described in [27].
The identification accuracy for a group of an eight people was 66%. Nonetheless, this
approach is proven to be good at people presence estimation [28].

• The thorough description of human monitoring system based on WiFi connectivity,
in a fashion strictly compliant with the Internet of Things (IoT) paradigm, is given
in [29]. In [30], a human identification system that leverages unique fine-grained gait
patterns from existing WiFi-enabled IoT is proposed. The system achieves an average
human identification accuracy of 91% from a group of 20 people.

• In [31], height based approach using a thermal camera is presented. The authors
reported 92.9% accuracy for people with more than 2.5 cm difference in height tested
on 21 subjects.

• In [32], a system is described that exploits pulsing signals from the photoplethysmog-
raphy sensor in wrist-worn wearables for continuous user authentication. The system
relies on the uniqueness of the human cardiac system and requires little training for
successful deployment. In combination with the location recognition methods already
mentioned, this system shows great potential as it enables seamless user authentica-
tion. However, it is not entirely non-intrusive, as the user must carry a wrist-worn
wearable.

The authors would like to draw the reader’s attention to some other systems that
deal with privacy and authentication based data collection. Mobile crowd sensing is a
sensing paradigm that uses sensor data from mobile devices carried by humans from
a crowd of participants. Such data aggregation systems need to ensure the privacy of
each participant [33]. A novel approach that combats this problem very successfully is
presented in [34]. The mobile crowd-sensing system is not directly related to our work,
as it aggregates data from all participants and does not focus on authenticating each
participant. Privacy-preserving authentication in information retrieval from geographically
based social networks is described in [35]. This method differs from ours in that it depends
on knowing the geographic locations of each end system contained in the network, whereas
our approach identifies the user only when it passes through the door.

It is our belief—and a strongly expressed view of privacy regulators, especially in the
EU—that a high identification accuracy and non-intrusiveness are not the only require-
ments that should be considered. Privacy invasiveness should also be taken seriously, since
the risk–benefit ratio is an important aspect, both when users are deciding whether or not to
use the system and when privacy regulators are deciding whether to allow it for a particular
purpose or not (as the [36] states: “Member States shall provide that personal data must
be ... adequate, relevant and not excessive in relation to the purposes for which they are
collected and/or further processed...”). Sensor solutions for AmI are especially sensitive in
this aspect, as they mainly provide higher comfort to the users, and therefore the privacy
threshold is particularly high. Privacy regulators are bound to be more conservative when
evaluating such solutions, unlike the applications where security or people’s lives are at a
stake.

Although all identification systems can be—and usually are—designed to prevent
third-party access, there is always a security risk from an adversary attack, which might
expose privacy-sensitive data. One of the most promising approaches to promote privacy
and data-protection compliance from the start is Privacy by Design [37,38]. A key guideline
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to reduce the privacy risk is through minimizing the amount of data, meaning only abso-
lutely necessary information is acquired and used in the process, and only a bare minimum
is stored.

From the identification system’s perspective, the amount of acquired data should
be adjusted according to the required identification accuracy and the purpose of use.
For example, in high-security environments (e.g., banks and nuclear power plants), the
identification accuracy should be as high as possible, regardless of the privacy invasiveness.
On the other hand, in private environments, e.g. people’s homes, where the identification
system mostly controls entertainment electronics and other appliances, privacy has a higher
priority than accuracy. Therefore, to make identification systems suitable for home use, the
privacy issues need to be resolved. For example, cameras can be used not only for person
identification at a doorway crossing, but for other purposes as well, such as recognizing
users’ activities, clothing, social behavior and interaction. According to the Privacy by
Design approach, such an amount of acquired data is excessive for the identification
task alone. Therefore, neither camera-based nor a two-dimensional depth-sensor-based
approach is suitable for the identification task in private environments without further
constraints on data acquisition.

On the other hand, unlike surveillance and security systems, many tasks of the
intelligent environment do not require extreme positional accuracy. For example, tasks
such as personalized adjustment of room temperature, lightning and (possibly) music
volume do not require precise localization of people; this results in both less expensive
solutions and greater privacy protection. Additionally, in home environments, the number
of people is small and we assume they are cooperative, e.g., it is not in their interest to seek
out faults in the system, but they may be highly sensitive to privacy issues. Our approach
is intended for such cases.

Finally, the 1D laser scanner we use may be considered mature or even obsolete
in terms of technology, but, again, this is not so if privacy concerns are a factor. In
comparison to other sensors now widely used in home environment (e.g., Asus Xtion Pro
and PrimeSense Carmine [39] provide 2D depth with accuracy about 4 mm in depth axis),
our sensor can be seen simply as single scanline equivalent. It is important to understand
that the latest methods using sensors such as Kinect v2 are able to infer very private
information about people, such as facial expressions [40] and even comprehension [41].
Therefore, the moment such sensor is introduced into the home, it opens the door wide
open to privacy violations.

The two approaches most similar to ours are found in [25,26]. Both rely on the subject’s
body shape for identification and both use depth sensors. However, the one in [25] only
measures the depth at a single point, making it significantly less accurate, but, privacy-wise,
it is very non-invasive. On the other hand, the one in [26] uses a Kinect sensor, obtaining a
dense depth map. Although not used in [26], Kinect provides an RGB camera, which makes
it a significant privacy risk, and a dense depth map has a significant field of view (therefore,
enabling an adversary to observe additional activity in the area, which was not meant
to be observed). In contrast to this, our approach provides high accuracy, but observes
the environment only through a single, static, one-dimensional depth sensor and relies
instead on the motion of the people across the doorway to acquire any useful information.
Therefore, it cannot be used to observe the environment and the user’s activity in any other
way—except when a person moves through the doorway. Any other activity (e.g., a person
standing and gesticulating) would result in a garbled depth map, unlike with 2D depth
sensors or cameras.

3. Identifying People from Body Measurements

Related work shows that people can be identified to a certain degree even from small
amount of information regarding their (apparent) shape. There are many approaches that
use different sensor modalities, but they all rely on shape information:
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• In some cases, researchers found that a single height measurement solves their prob-
lem; this could be done using scanning range-finders [25] or thermal camera [31].

• The next step in complexity is using a 2D sensor, e.g., camera, to obtain silhouette
shape [20].

• A 2D sensor may be augmented with depth estimation (e.g., Kinect 3D sensor), which
allows multiple anthropometric measurements from depth image data [21].

• Finally, ever more popular deep learning approaches actually learn which features
they will use [24]. Algorithms are opaque, but we may assume that shape, whenever
distinct enough for (re)identification, will be included at some point in the computa-
tion hierarchy.

Our approach assumes that the subjects can be identified using a limited number
of body measurements of limited quality, as this intrinsically safeguards privacy. Before
building the actual people-identification system, we examined the theoretical limits with
regards to the accuracy of body-shape-based identification systems.

For this part of the study, we used the ANSUR database [42], which has 132 anthropo-
metric measurements for 3982 subjects aged between 17 and 51. The measurements in the
database were obtained manually with an accuracy in the millimeter range. However, the
data provided by the depth sensor cannot achieve such high-level accuracy, especially in
real-life environments. The main sources of noise for the measurement are different ways
of dressing, different hair styles, body-weight variations, the objects being carried, etc. To
simulate these influences on the identification accuracy, a uniform noise was added to the
anthropometric measurements.

The relation among the peak-to-peak noise amplitude i, the number of people N and
the identification accuracy E based on a single measure can be estimated using Equation (1).
The measurement distribution p was obtained from the ANSUR database.

E(i) =
∫ +∞

−∞
1−

( ∫ x+i/2

x−i/2
p(y)dy

)N
dx (1)

However, the computational complexity increases significantly with a growing num-
ber of subjects and the number of measurement combinations, which prevented us from an
in-depth analysis of the identification accuracy for larger sets of measurements. Therefore,
we decided to perform a large-scale simulation experiment based on randomly picking two,
three and more subjects from the ANSUR database and identifying them. We chose four
measurements that can be reliably obtained by our sensor: height, height of the shoulders,
shoulder width and head width, as part of the silhouette. Based on those four measure-
ments, the identification accuracy was estimated in the presence of a varying amount of
noise.

The accuracy was calculated based on one million randomly chosen groups of 2–10
subjects. The chosen amount of noise was added to their measurements. The result, i.e., the
recognition accuracy, which depends on the number of subjects and the amount of noise, is
shown in Figure 1. Each point on the grid on the surface in Figure 1 represents one million
random trials. The nearest neighbor algorithm [43] was used to determine the identity
of the noised data. If the classified identity corresponded to the ground truth from the
database, it was considered as correct; otherwise, it was considered as a false identification.
In addition to using all four chosen measurements, we performed tests on the subsets of
those measurements. In Figure 1, the identification accuracy of all four measurements, the
best-performing combination of two measurements and the best single measurement are
presented. The single measurement results were additionally verified using Equation (1)
and provided nearly identical results.
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Figure 1. Theoretical identification accuracy according to the different measures, number of people
and peak-to-peak noise amplitudes.

This analysis shows that combining more measurements increases the identification
accuracy and can counteract the effects of noise, which significantly degrades the accuracy.
Combining more measurements also allows us to identify subjects in larger groups, since
the accuracy decreases with an increasing number of subjects as well. Note that this
simulation was performed on four selected measurements that can be acquired with
our sensor, while the developed one-dimensional depth sensor is capable of acquiring
measurements of the whole body, i.e., not only shoulder width, for example, but also other
widths, e.g., of the hips. On the other hand, Figure 1 indicates theoretic measurements
with real-life obstacles such as dress or carried objects will decrease identification accuracy,
which might make the identification useless in particular for larger groups of people. For a
typical family, however, the number of family members is rather small, family members
are usually of different heights and combining more measurements increases the overall
accuracy, therefore Figure 1 provides an indication that our approach might be promising
for home applications.

4. Sensor-Based Data Extraction

In this section, we describe the sensor device, the process of capturing data, identifica-
tion and determination of the crossing direction from one-dimensional depth-sensor data,
along with the sensor geometry and the overall system architecture. The transformation of
the sensor data is applied to ensure data normalization, i.e., to ensure the compatibility
of the acquired data between the sensors, regardless of the sensor characteristics and the
mounting position. After the transformation procedure, the features are extracted and
passed to the crossing-direction detection and the people-identification methods. While
the basic approach presented here is not particularly novel, its understanding is important
to properly describe the silhouette creation.

4.1. Sensor Geometry

The sensor is mounted on the top of the doorway facing down at an angle, as shown
in Figure 2. Its mounting position allows the acquisition of one side of the user’s body
in a single doorway-crossing event. To ensure good-quality data, the sensor has to be set
properly, as follows.

As shown in Figure 2, the sensor effectively projects a laser plane, which, by intersect-
ing with the object of interest, forms a line. The plane’s slope (α in Figure 2) depends on
the sensor’s mounting angle. Therefore, the angle α determines the size of the acquisition
area. A smaller α results in a larger measuring area, and vice versa. A small measuring
area is preferred, since only the people passing should be measured to preserve the privacy
of other users, who may be present in a room, but are currently not passing through
the doorway. However, with a smaller measuring are, a a higher sampling frequency is
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required to obtain sufficiently detailed data. For that reason, the sensor’s mounting angle
should be chosen according to the sensor’s sampling frequency.

Figure 2. One-dimensional depth sensor mounted on the top of the doorway.

Other sensor properties that affect the quality of the measurements are the field of
view (β in Figure 2), the angular resolution and the raw sensor’s accuracy. The field of view
should, ideally, be 180° to cover the whole doorway area; however, smaller angles might be
acceptable, depending on the size of the blind spots. The angular resolution is defined by
the number of measurements along the field of view. From the acquisition perspective, α
and the sampling frequency determine the vertical sampling resolution; β and the angular
resolution determine the horizontal sampling resolution; and the raw sensor’s accuracy
determines the depth resolution. All of these parameters can be changed to provide
different compromises between privacy and performance, especially if the number of users
is small and excessive identification accuracy is not needed. The architecture of a physical
sensor is cost-effective—the material costs for the prototype were under $100. It should also
be noted that similar lasers are used in several home devices, including for small children
to play with, as they are invisible to the human eye and pose no danger to humans or pets.

4.2. Self-Calibration and Input-Data Transformation

The transformation step is required to map the raw sensor data into the real-world
Cartesian coordinate system. This enables the measured data to be used across different
systems (e.g., across multiple sensors in the same household), regardless of the sensor type
and its properties. The raw sensor data can be presented as a vector, where each value
represents a distance at a specific angle (Figure 3, left). These data can be transformed into
a coordinate system, as shown on the right of Figure 3.

The system can self-calibrate when no one is present. This can be done during the
installation and repeated at any subsequent point, if needed. For self-calibration, we
assume that the angle α is known and is fixed during the sensor’s manufacturing. The
sensor’s height is then calculated using Equation (4), where α is the sensor’s mounting
angle and Lβ/2 is the measured distance at the projected line midpoint, i.e., at β/2. The
acquired depth with no one present is also recorded during the self-calibration stage to
help with the users’ body extraction at the acquisition stage.

During the acquisition process, all three Cartesian coordinates can be calculated using
(3)–(5), where L is the measured distance, β′ is the angle at which the distance was measured
and β is the field of view.
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Y0 = Lβ/2 · sin(α) (2)

x = L · sin(α) · cos(β′ − β/2) (3)

y = Y0 − L · sin(α) · cos(β′ − β/2) (4)

z = L · cos(α) · cos(β′ − β/2) (5)

Figure 3. Transformation of the input data: (left) the depth measured with a one-dimensional depth sensor; and (right) the
data transformed into the Cartesian coordinate system.

This kind of data transformation is valid, regardless of the type, technology and
characteristics of a one-dimensional depth sensor. This allows the measured data or
identification models to be shared between multiple sensors (e.g., in the same household).
Sharing data through multiple identification sensors can be used to speed up the learning
and consequently improve the accuracy. Therefore, with a data-transformation procedure,
the identification accuracy of the whole sensor network can be improved.

4.3. Extraction of Features

To robustly identify the users, their body features need to be extracted from the
transformed data. The measurements are pre-processed to remove the static background
(e.g., ground and walls), leaving only measurements of the users for further processing.
Next, for each non-background curve, five features are calculated. These features are used
to determine users’ crossing direction and identity.

The static background is removed from the data across the whole field of view by com-
paring the distance L of each measurement with the corresponding ground measurement,
obtained during the self-calibration stage. Unless the measurement is significantly closer
to the sensor than the background measurement, that data point is discarded. In this way,
we obtain a non-background curve.

Next, five features are extracted from each non-background curve (Figure 4). The
first feature (6) is the horizontal (x) distance between the first and the last curve’s point,
representing the measured object’s width. The second feature (7) is the horizontal surface
area (xz) between the curve and the shortest distance between the first and and last point,
roughly corresponding to the measured object’s volume. The third feature (8) is the
maximum perpendicular distance from the shortest line from the first to the last point and
the curve, representing the maximum object curvature. The last two features (9) and (10)
are the maximum measured height and its horizontal position, which provides the user’s
location. In this way, each non-background curve is represented with these five features,
which describe the user’s body shape at a measured position.
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F1 = |x0 − xn| (6)

F2 =
n

∑
i=1

(xi−xi−1)|∗|
zi−zi−1

2
− (zn−z0)(xi−xi−1)

2(xn − x0)
(7)

F3 = max

(∣∣(zn−z0)xi−(xn−x0)zi+xny0−znx0
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√
(zn − z0)2 + (xn − x0)2

)
; (8)

for 0 < i < n

F4 = max(yi); for 0 ≤ i ≤ n (9)

F5 = x(F4) (10)

Figure 4. Graphical representation of the extracted features.

4.4. Acquisition Triggering and the Crossing Direction

The acquisition procedure is triggered when a non-background measurement (i.e.,
distances for the whole field of view) appears. The procedure stops when non-background
measurements stop appearing. The acquisition yields a set of non-background measure-
ments, which can represent one or more people crossing. To determine the number of
people crossing between two background measurements, one or more rapid changes in the
maximum height and/or horizontal position of the maximum-height features are observed,
as shown in Figure 5D. A sudden drop and rise of maximum height feature indicates a
new person is being measured. According to this logic, the input data are split into single
person crossing events, which are later used to determine crossing direction and people
identification.

Figure 5. Response of the maximum-height feature (9) according to the crossing direction: (A) user walks toward the sensor;
(B) user walks away from the sensor; (C) user first walks toward the sensor and then turns and walks away from the sensor;
and (D) two users walk toward the sensor.

The crossing direction can be determined by observing the maximum-height feature.
For each user, we keep a track of the maximum-height feature through the whole passing
event. Due to the slope of the laser plane, the crossing direction can be determined, as
shown in Figure 5. If the height rapidly increases and then slowly decreases (the laser beam
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encounters person’s head first and the heels last), the user walks away from the sensor, as
shown in Figure 5B; otherwise, the user walks towards the sensor. In this manner, both
walking directions as well as other combinations (i.e., the user starts entering and then
exits and the other way around) can be determined.

4.5. Identification

People identification is done at every crossing event. If multiple people are detected,
it is performed once for each person. The identification is based on the processed body
features acquired from a doorway crossing event, as shown in Figure 4.

In our framework, we do not assume a constant velocity of people; moreover, we
allow for variations in the direction (e.g., as a consequence of hesitation). Therefore, the
maximum-height feature (9) is used to re-order other acquired features (i.e., width (6), area
under curve (7) and the curve depth (8)) along the temporal axis in the descending order of
the maximum height. An example of these features is shown in Figure 6. The horizontal
position feature (10) is not used in the identification, since it does not carry any relevant
identity information. With sorted features, even if a user stops, moves slightly backwards
and then continues the crossing, the features are still valid.

Figure 6. An example of input data and features used: width (6), curve depth (7) and area under the
curve (8) sorted by the maximum-height feature (9).

Differences in the crossing velocity, which yield different amounts of data, are ad-
dressed by re-sampling the ordered features to the fixed number of samples. After re-
sampling, a Fast Fourier Transformation (FFT) is used on each of the three features to obtain
the Fourier descriptors (FD) [44]. From each re-sampled feature, 10 FDs are extracted (11).
The maximum measured height is added to the 30 FDs, which gives 31 descriptors in total.

FD f ,i =|∗|
FFT(Ff , i)
FFT(Ff , 0)

; for 1≤ f ≤ 3 and 1≤ i≤10 (11)

Finally, a ML algorithm is applied to the descriptors to determine the user’s identity.
Since only one side of the body can be measured in a single crossing event (using one
sensor), front and back ML models have to be built. The appropriate module is selected
based on the user’s walking direction. If the user walks away from the sensor, we assume
that the back of the body is measured; otherwise, a model for the front of the body is used.
The necessary assumption here is that the user is walking upright and forward.

5. Dataset

To evaluate the identification accuracy of the proposed approach, we used the de-
scribed sensor setup to acquire a dataset containing the data from 18 subjects. For this
task, a new, one-dimensional depth sensor prototype was developed specifically to meet
all the requirements of our approach. The prototype sensor consists of Raspberry Pi B+
(Raspberry Pi Foundation, Cambridge, UK), NoIR camera module V1.3 (Raspberry Pi
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Foundation, Cambridge, UK), 110° 780 nm laser line module H9378050L (Egismos, Burn-
aby, BC, Canada) and Acrylic NIR Longpass Filter AC760 (Midopt, Palatine, IL, USA).
Laser module includes optics which transforms the beam into the 2D plane, thus enabling
depth measurements along the line and ensuring safe intensity of laser light. However,
any sensor fulfilling the application requirements can be used, regardless of the technology
employed, e.g., a laser scanning device.

The developed one-dimensional depth sensor is based on a triangulation method with
a depth-measuring range of between 0 and 3 m. The depth resolution depends on the
measured depth and varies from 0 to 50 mm, as shown in Figure 7. An average depth of
crossing in a real-life application depends on the height of the installation of the sensor and
the height of an entering person—an adult comes closer to the sensor compared to a small
child. However, in an average application and for an average-height person, the depth of
the most important body parts such as head, shoulders and hips (the last one often covered
by hands) should enable around 10 mm resolution, while for head it should only be around
5 mm on average. The sensor-sampling frequency is 30 Hz where 1240 measurements are
taken simultaneously across the whole 120° field of view. These characteristics allow us
to obtain a sufficient amount of data in a single doorway-crossing event (Figure 6). The
sensor was mounted at an angle α = 60°, and all the results reported were acquired with
that geometry. Despite the relatively high resolution, the privacy-accuracy compromise
could be adjusted simply by changing α.

Figure 7. Sensor resolution with respect to the measured depth.

For the crossing direction detection and identification-accuracy evaluation, 670 cross-
ing events involving 18 subjects aged between 21 and 47 were recorded. The identity
and crossing direction of the subject in each passing event were recorded manually by an
operator. The height of the smallest subject was 1.60 m and the height of the tallest was
1.94 m, whereas the average height of all 18 subjects was 1.76 m. The sample included
7 females and 11 males. The participants, all of whom were our colleagues at the institute,
voluntarily signed written consent forms to conduct this research. At no time during the
research was the health of the participants at risk since they only walked through a door
and only a household common-type laser was applied on them. Both the privacy of the
subjects and the confidentiality of the recorded data were maintained.

To obtain real-life scenarios, users’ shoes and clothes (from a T-shirt to a jacket and
a coat) were changed between the measurements. In addition, people carried everyday
objects, such as umbrellas or backpacks, to make the conditions more realistic. In this way,
a wide range of everyday scenarios was covered.

6. Experiments and Evaluation

To estimate the accuracy, a closed-set identification framework was used, i.e., the user
was classified into one of the previously known identities representing, for example, the
occupants of a household. This scenario is realistic for home use, where the number of
occupants in a typical household is more-or-less fixed and adding another member is not a
frequent event.
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Overall, several experiments were performed to establish various properties of the
proposed system in numerous scenarios. A couple of measurements are presented here. To
determine how much data are needed to reliably identify people, two different approaches
were explored. In the first approach, only the user’s height was used, which is very
privacy-preserving and easy to obtain. This approach is well known [45–47], and therefore
served as our baseline. In the second approach, one-dimensional scanner data were used
within our proposed framework, which might sound a bit privacy-invasive, but in reality
it is not, and the additional data are essential to increase the identification accuracy. Both
approaches were evaluated on the same dataset, but different amounts of acquired data
were used to show the difference in the identification accuracy—only the maximum height
in the first case and the full set of proposed descriptors when evaluating the proposed
approach in the second case. In addition, another measurement was performed to evaluate
which ML method performs best, but on a slightly different scenario.

6.1. Crossing Direction Detection

As described in the Acquisition Triggering and the Crossing Direction section, all the
input data were split into single passing events by observing the maximum-height feature
through the whole data acquisition process and then classified as if the person is walking in
or out of the room. All 670 crossing events were classified correctly. The recorded crossings
events were common for a home environment, i.e., only one person entering or leaving at
the same time.

6.2. Identification by Subject’s Height

It has been shown [45–47] that height can be used for the identification of smaller
groups of people, whereas it is not suitable for larger groups, since sooner or later two
users will be of equal height at least within the sensor’s accuracy and under real-life
circumstances. It should be noted that, in a real-life scenario, the measured user’s height
depends not only on the user’s body measures but also on the shoes, haircut, head position
and the speed or manner of walking. This makes an identification based on a single height
measurement even harder and less robust in real life.

In the first experiment, the user’s height is defined as the maximum height measured
across a single doorway-crossing event (which is in our case max(F4)). The distribution of
measured heights is shown in Figure 8. Note that these measures could be obtained using
single-point depth sensors, but we reused our depth data to calculate the subject’s height
for the purpose of this experiment.

Figure 8. Distribution of heights measurements for the baseline experiment—identification by the
subject’s height. Different colors/textures denote different subjects.
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The accuracy of the closed-set identification system based on height measures was
estimated by using a nearest neighbor ML algorithm [43] and 10-fold cross validation [48].
The nearest neighbor algorithm classifies the person to the most similar person in the
training set. To estimate how the size of a group affects the identification accuracy, the
dataset was split into all possible combinations of groups of people. Next, each group
of people was separately classified. The minimum, maximum and average closed-set
identification accuracy with respect to the size of a group is presented in Figure 9 (lower
curve). It is clear that the identification accuracy decreases with an increasing group size.
Similarly, the maximum accuracy decreases, since larger groups of people are not diverse
enough to properly identify all of the people with such a simple descriptor.

Figure 9. The minimum, maximum and average closed-set identification accuracy with respect to the
size of a group. Whiskers denote the minimum and maximum value, as obtained by a 10-fold cross
validation. The evaluation was made for different group sizes, from 2 to 18, taking into the account
all the possible ways to construct groups of a certain size.

The results show that the closed-set identification accuracy using only the subject’s
height for all 18 subjects is 90%, which is quite better than described in [25], where the same
accuracy was obtained for only three test subjects, but still not good enough for commercial
use. We speculate that there might be several reasons for the relatively good results, e.g.,
not only better accuracy or position of the sensor, better sampling frequency or better height
calculation, but also more consistent head cover, hair style or different shoe soles, as well as
quite different heights of our randomly chosen test subjects. A much higher identification
accuracy might not be achievable only by improving the sensor characteristics, since most
of the noise comes from the environment. That is the rationale behind our approach—that
AI methods are needed on redundant body measures to improve accuracy.

6.3. Our Approach: Identification by Subject’s Body Shape

In this case, the input data are represented by 31 descriptors, as described in the
Sensor-based Data Extraction section. Similar to the previous experiment, the closed-set
identification accuracy estimation was made by using ML algorithms and a 10-fold cross
validation for 18 subjects. Because of the larger number of descriptors, we tested several
ML algorithms on the full dataset to establish the most appropriate one. The comparison of
ML algorithms is shown in Table 1. A couple of the algorithms achieved similar very good
performance, therefore there was no urgent need for testing or designing more algorithms
at this stage, when the emphasis was on the sensor and the use of it. The best results
were achieved by using the AdaBoostM1 ML algorithm [49], but, in terms of transparency,
by a C4.5 classifier [50,51]—J48. Since a C4.5 classifier achieved such a good accuracy, it
suggests that the 18 test subject were perfectly identified by the 31 descriptors if all data
were captured and that additional noise such as object carried left enough descriptors
intact to enable near-perfect identification. Using a full set of 18 subjects, AdaBoostM1
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algorithm achieved 98.4% accuracy and is therefore our algorithm of choice. J48 (C4.5) is
also an interesting choice particularly due to its simplicity, transparency and small number
of required learning data, which is relevant for real-life applications. In the case of complex
real-life domains, it might be more reasonable to opt for AdaBoostM1 since it usually
achieves significantly better results than C4.5 [52]. Since Naive Bayes achieved only 87.76%
accuracy, it indicates that the viewpoint through each single descriptor and then combined
is less informative than the viewpoint through all of the descriptors combined at once.

Table 1. Comparison of ML algorithms in a 10-fold cross validation for 18 subjects.

Classifier Precision Recall F-Measure Accuracy [%]

AdaBoostM1 (J48) 0.98 0.98 0.98 98.36
LogitBoost (DecisionStump) 0.98 0.98 0.98 98.36
Bagging (J48) 0.97 0.97 0.97 97.31
LMT 0.97 0.97 0.97 97.16
IB1 0.97 0.97 0.97 96.87
J48 0.97 0.97 0.97 96.72
SimpleLogistic 0.97 0.97 0.97 96.57
RandomForest 0.96 0.96 0.96 96.12
BayesNet 0.95 0.94 0.94 94.33
MultilayerPerceptron 0.94 0.93 0.93 93.28
RandomTree 0.93 0.93 0.93 92.69
LibSVM 0.94 0.91 0.92 90.60
NaiveBayes 0.88 0.88 0.88 87.76

The results show a significant improvement in the average identification accuracy and
its distribution compared to the height-only measurements, as shown by the minimum
and maximum accuracy in Figure 9 (upper curve). The additional body-shape data in
most of the cases enabled proper distinction of people of the similar height, which was the
main purpose of using our approach. Furthermore, the narrower area of the identification-
accuracy distribution suggests that this sensor is more reliable and robust than a sensor
based on the user’s height only.

6.4. Comparison of Theoretical and Practical Measurements

In Section 3, the theoretically computed accuracy under assumed noise and number
of inhabitants is presented in Figure 1 to provide an initial estimate of which accuracy will
be achieved under what circumstances when using a practical sensor setup. Moreover, the
theoretical estimation allows an analysis on almost 4000 individuals and not only on 18 as
in the physical measurements.

On the other hand, the practical measurements could show significantly different
characteristics than the theoretical measurements, so a comparison between the two ap-
proaches is needed. In Figure 10, the experimental results marked with “our approach” are
related to those from the simulation (without “our approach”). There are some similarities
and some differences. In both approaches, whether theoretical or practical measurements,
more body measurements improved the accuracy. When the same body measurements
were compared, the theoretical results were slightly worse than the practical ones. The
obvious reason for this is that there were 18 subjects with specific body sizes and nearly
4000 subjects in the database where, for example, many body sizes were similar and some
were indistinguishably similar. As a result, the height comparison of the two approaches
differs the most. Classification using only two physical measurements, e.g., height and
shoulder width, already provided enough differences in the population to reduce the
difference in accuracy between the physical and theoretical results. This is because the
number of individuals with similar height is much smaller than the number of individuals
with similar height and similar shoulder width. Since none of the theoretical measurements
includes the full silhouette as in our approach, it was expected that the results of the
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practical measurements would be slightly better than the theoretical evaluations of the
database, and indeed the comparison confirms this. However, the inclusion of four body
measurements allowed an accuracy of about 97% for 10 inhabitants even in the theoretical
measurements. In summary, the theoretical and practical measurements are sufficiently
compatible to confirm the first hypothesis of our approach, once on 18 and the second time
on almost 4000 individuals, from which combinations of 2–10 individuals were selected for
the experiments.

Figure 10. Experimental results along with theoretical identification accuracy according to different
measures.

7. Discussion and Conclusions

In this paper, we present and test a sensor based on one-dimensional measurement
for a novel approach to non-intrusive, non-invasive and privacy-preserving people identi-
fication in a smart environment, e.g., a household. Since the required accuracy in this AmI
application is not as high as in security applications, and the number of people in a house-
hold is typically small, the proposed approach based only on body height or silhouette,
e.g., body features, may prove sufficient for real-world applications.

Our results show that even the height-only approach achieves about 95% accuracy
for nine tested individuals. However, the classification accuracy decreases rapidly as the
number of people increases, dropping to 90% for 18 people, which means one error for 10
entries, which seems too high.

When the body shape approach is used instead of simple sensors that only measure
body height, which requires the introduction of AI methods and more advanced computing,
the accuracy is much higher and the results are more consistent (see Figure 9). The accuracy
for 18 individuals remains above 98%, i.e., two errors in 100 entries. For five individuals,
the accuracy reaches 99.1%. At the same time, the privacy intrusion remains practically
nonexistent. Moreover, the ability to determine the crossing direction enables knowledge
of the person’s location down to the room level, as demonstrated in our experiments.
With a cost-effective sensor implementation in terms of hardware and software, the laser-
based approach, especially the body shape-oriented one, seems to be well suited for
smart environments where data about the presence of people is needed but privacy must
be maintained to a high degree. However, for high precision performance, practical
application seems to be limited to families and small businesses with a small number of
users.

The proposed identification system was evaluated in the laboratory on an apparent
real-world scenario with 18 subjects, and the results were consistent with the preliminary
study conducted using the ANSUR database. The live tests with our method on 18 subjects
and the tests simulated with the ANSUR database on one million randomly selected groups
of 3982 subjects consistently show that sufficiently good classifications can be obtained
with the characteristic anthropomorphic data, e.g., height, shoulder width and hip width,
for a small number of residents and under a reasonable noise. On the other hand, randomly
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selecting a small test group from the pool of nearly 4000 subjects more often results in
individuals with similar characteristics, especially when the number of descriptors is small,
e.g., height only. When multiple descriptors are considered, the differences between the
practical experiments in the laboratory and the theoretical classifications from the ANSUR
database fade away.

To further improve the detection performance, misidentified crossing events were
manually checked. It was found that the sensor had problems with depth measurement in
the presence of reflective clothing and different hairstyles. This problem could be addressed
with an improved sensor design, which should then improve identification accuracy, or
through improved AI methods such as Deep Neural Networks (DNNs). Nevertheless,
both the worst and average identification accuracies remained high despite the depth
measurement errors. Secondly, it was found that interference from another light source,
such as sun reflections on the ground, made the results unreliable. However, this seems to
be a problem for the type of sensor used in the experiments and can be avoided by using a
different type of sensor or with additional filters.

For further work, advanced ML methods along with new feature extraction are being
considered, including DNNs. However, such methods are not applicable in real life since
the learning time of the system is short. Newer methods enable fast learning even with
DNNs, but these new approaches need to be implemented and tested in detail. In addition,
new methods for measuring one-dimensional depth are being tested to improve the overall
identification accuracy. As shown in the preliminary study, the higher is the number and
quality of features, the better is the identification accuracy. With further improvements,
we believe it is possible to achieve face-recognition accuracy without violating privacy.
In addition, extensive measurements are planned to test the performance with multiple
people entering the room.

Finally, we present pros and cons of the proposed approach. The experiments strongly
suggest that the laser-AI approach enables decent accuracy for real-world applications
within the $100 target for a sensor; the system is reliable, non-intrusive, non-invasive and
does not compromise user privacy. In addition, there is no comparable market solution to
date.

However, in the cons category, there are a couple of obstacles. First, with five rooms
in the department, it already requires $500, which can be somewhat of a dilemma. With
massive use, the cost might go down to even $400, but it is yet to be achieved. In addition,
each of the sensors requires power and either cables or batteries provide additional nuance.
There are also competing solutions that are significantly cheaper than the laser system. An
example would be a computer camera that fits into the $10 category. Such an approach
introduces privacy concerns, as observed in several surveys, but there is still a certain
percentage of users who trust their security systems to prevent capturing personal data
for third parties. Finally, the benefit of knowing who is in a room may not be essential
for ordinary residents, even though it is often declared as such in AmI publications. Most
people either live alone or in fixed combinations in their own rooms such as bedrooms,
and there the settings can be permanently matched with any motion sensor to alert the
smart home that the room is no longer empty.

In summary, our approach based on a laser sensor and AI software enables sufficiently
good accuracy to be used in real life, especially if users prefer non-invasive, non-intrusive
and privacy-preserving systems for their smart home. The biggest concern is whether the
cost–benefit ratio is indeed beneficial for current smart homes.
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Abstract: Measuring the quantity of people in a given space has many applications, ranging from
marketing to safety. A family of novel approaches to measuring crowd size relies on inexpensive
Wi-Fi equipment, taking advantage of the fact that Wi-Fi signals get distorted by people’s presence, so
by identifying these distortion patterns, we can estimate the number of people in such a given space.
In this work, we refine methods that leverage Channel State Information (CSI), which is used to train
a classifier that estimates the number of people placed between a Wi-Fi transmitter and a receiver,
and we show that the available multi-link information allows us to achieve substantially better results
than state-of-the-art single link or averaging approaches, that is, those that take the average of the
information of all channels instead of taking them individually. We show experimentally how the
addition of each of the multiple links information helps to improve the accuracy of the prediction
from 44% with one link to 99% with 6 links.

Keywords: Wi-Fi; CSI; crowd counting; Doppler spectrum

1. Introduction

In recent years, mainly due to the COVID-19 health crisis in 2020 and beyond, the im-
portance of technology capable of providing assistance to assess safety in crowds [1–4] has
been brought to mainstream awareness [5]. However, crowd assessment applications are
not limited to those that provide support for safety, and a new set of applications have
been envisioned in businesses [6,7], and in other practical scenarios [8,9]. Of particular
interest to the scientific community is the passive and device-free (meaning that the people
who are monitored do not need to carry a device such as a cellular phone) estimation of the
number of people in a given area. It is important to know the number of people in a room,
to monitor human queues or to track the volume of customers in a commercial location,
to provide valuable information in the context of smart space design, consumer marketing
and venue security [10–12].

Though some recent and some decades-old developments have used computer vision
for crowd measurement [1,13,14], nowadays visible light sensors are used with limitations
due to the need of a line-of-sight which is subject to variable lighting conditions and
coverage, as well as privacy concerns.

Recently, the increasing availability and descending costs of Wi-Fi equipment has
promoted its use even in applications other than digital communications, such as indoor
location [15,16]. In recent years it has begun to be the case of crowd measurement, given
that popular Machine Learning techniques [17] can be used to recognize the disturbance
patterns that human bodies produce when placed between a Wi-Fi transmitter and a
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receiver [10]. Notwithstanding the wide range of potential applications that Wi-Fi sensing
crowd analysis may reach, there are fundamental aspects of the subject (such as accuracy,
reproducibility, and scale) that remain as limitations to overcome the boundaries of the
current body of knowledge.

The aim of this work is to improve the results obtained from Machine Learning
analysis of the disturbance patterns produced by human bodies to the signal propagation
of individual channels of a Wi-Fi connection using the Doppler spectrum experienced in a
crowd [18]. The original contribution of this paper is the systematical use of the Channel
State Information (CSI) [19] of all the available channel links of a Wi-Fi communication (we
refer to this as the ’multi-link’ approach) rather than using indicators of just one link and
discard the rest or to apply summary operations on all the links to reduce them to a single
value (we refer to this as the ’single-link’ approach, which is the one that has been used
so far) to count the people present in one room, using a classification technique based on
supervised Machine Learning. We demonstrate in this paper that the use of our multi-link
approach improves accuracy in a dynamic environment with multiple wireless signals,
multi-path components in the signal propagation through the channel that cause fading
and absorption.

Many of recent works on this subject have used the Received Signal Strength Indicator
(RSSI) as an index of the channel quality. RSSI is processed for feature extraction and
the counting estimation is obtained after carrying out a learning phase [20–24]. For the
estimation of the exact number of people in a place, the best RSSI-based reported results
come from the work of Yoshida et al. [24], with a 77% of accuracy for up to 7 people.
A major drawback of this technique is that RSSI-based algorithms tend to ignore the multi-
path effects of the RF propagation, and as a matter of fact, its performance is greatly affected
by channel disturbances. A more recent approach uses the Channel State Information
(CSI) [19] that provides channel response information for Multiple Input Multiple Output
(MIMO) Wi-Fi systems. As a result, CSI offers better measurements of people activity by
capturing the disturbances the crowd cause in the channel.

Even with the use of CSI-based techniques, the performance of crowd-counting solu-
tions documented in the literature present accuracy challenges that typically worsen with
the group scale. The research carried out by Di Domenico et al. [25], which is commonly
used as an indicator of the state of the art, reports an accuracy of about 80% for counting
up to 7 people. The work from Xi et al. [26], is another common reference in the field, they
achieved a probability of 80% of having either a perfect count or failing by one person
when counting up to 30 people.

In this paper, we present a data driven work that takes advantage of the advances
in Machine Learning (ML) techniques and apply it to multi-link Wi-Fi CSI information
to produce better results than those reported in the literature for the recognition of the
characteristics of a crowd, and specifically its counting.

The proposed method takes the information extracted from a CSI pattern of commer-
cial off-the-shelf (COTS) Wi-Fi and translates it into the Doppler Spectrum where a set of
features that capture information provided by the multi-link nature of the MIMO system
is extracted to achieve high accuracy counting predictions. Furthermore, our approach
can be potentially useful to identify dynamic characteristics of the crowd, such as its size,
growth, dispersion and mobility, that could be applied to many relevant scenarios such as
offering services based on the occupation detected in an environment, trends of influx in
public spaces, occupancy predictions, mobility trends by region, and many more.

The method here presented reports several advantages with respect to other works
such as:

• Fewer features derived from the signal are required for an accurate counting estima-
tion. This results in reduced processing time since feature extraction requires less
computing power.

• It works seamlessly with COTS Wi-Fi access points.
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• Increased accuracy and other performance metrics as a result of using multiple links
instead of one or an average.

The remaining of this paper is structured as follows. In Section 2 we present the
background concepts for the sake of self-containment, as well as a review of the related
work. Then, our method is presented in Section 3, together with the experimental setup
and results description. Finally, in Section 4 we discuss the relevance of our contributions
and provide some ideas for future work.

2. Background and Related Work

The field of crowd dynamics refers to the analysis of the motion of people within a
defined group and its changes over a period of time. The topic has attracted an increasing
interest from the research community due to many potential applications, and more recently
the COVID-19 health crisis under way, makes clear that it is imperative to avoid crowd
concentrations, especially in indoor spaces, in order to avoid further contagion [27]. Crowd
applications are not limited to health issues though, and among other ones, we find crowd
security and management for emergency handling, where the ability to recognize patterns
in the crowd behavior allows better and faster responses or improvements to the space
design [3,28,29]. Hence, several frameworks coming from different disciplines have been
proposed in order to model the motion of a crowd.

The work of Helbing and Johansson [30], explores the analogies between the patterns
of a crowd and the properties of a fluid of particles. Their study provides a framework to
model the interactions of individuals in crowds, and the study of self-organized patterns
of motion they generate as a result of the emerged collective intelligence and the social
forces involved in the process. In a prior work, Helbing et al. [31], introduced the con-
cepts of attraction and repulsion forces to simulate the dynamics of crowds in panic or
evacuation situations.

In the following sections, it is also discussed how different authors put different levels
of emphasis in one or more attributes of the crowd in order to model, describe and predict
its dynamics; and each of them uses a set of metrics, either quantitative or categorical, as a
basis for their work.

2.1. Quantitative Characterization of a Crowd

Still [32] defines crowd speed as ‘the emergent speed of a group of individuals’ that is
a result of the non-linear interactions within the crowd in the local geometry. In his study,
the author describes how crowd speed is modulated by crowd density (number of people
by unit of area), being the flow volume a function of both.

Helbing et al. [33], analyze the relationships among numerical properties of crowds
to describe a motion model. In this study, Helbing defines key crowd parameters such as
density, speed, pressure and flow vectors. The research argues that even at highly dense
crowds the motion of the crowd continues, which in turn causes dangerous ‘turbulence’
spots where crowd pressure is beyond a critical threshold.

The work of Pathan et al. introduces a novel approach for crowd behavior analysis and
anomaly detection in coherent and incoherent crowded scenes [34]. The authors explore the
crowd problem from a data-driven perspective and propose a method to calculate social
entropy. The introduced metric is used as a descriptor of crowd behavior. Support Vector
Machines are used to train and classify the flow feature vectors as normal and abnormal.

2.2. Categorical Metrics of Crowd Dynamics

Vicsek et al. [35], provide a general classification of collective motion. They proposed
that any group of individuals can be categorized in five possible motion states: (i) disor-
dered state (individuals moving randomly); (ii) fully ordered state (individuals moving
at pace in the same direction); (iii) rotational (individuals moving in well-defined pat-
terns); (iv) critical (state very sensitive to perturbations); (v) velocity correlated (individuals
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behave as elongated particles). Saleem et al. proposed a simplified approach to these
categories by grouping them into coherent and incoherent crowds [34].

Interesting to our own work are crowd analysis studies that have been proposed in
the image processing and computer vision fields. In this context, Xu et al. proposed an
algorithm to detect the gathering and dispersing stages of a crowd in video recordings.
To achieve this, the authors combine techniques of crowd counting and group entropy
to estimate the spatial distribution of the individuals. These parameters are then used as
features for the classification process [36].

2.3. Sensing Crowds with Wi-Fi

Human sensing based on commodity Wi-Fi has gained attention in recent years mainly
because of the pervasive availability of Wi-Fi signals, that can be re-purposed sometimes
with little cost. Advances in device-free sensing, where neither special equipment nor
cooperation is required from the sensed subject, have been documented [37–39].

Amplitude and phase of Wi-Fi signals are very sensitive to the surrounded environ-
ment, and it has been shown that it is possible to extract patterns from such variations to
identify human-related activity [23,40–42]. This way of acquiring human or crowd data
is known as passive sensing. It refers to the family of sensing techniques that requires no
cooperation from the sensed subject (as opposite to active sensing that is based, for example,
in wearables or mobile apps used by the sensing target).

There are in the literature two different approaches to passive sensing with Wi-Fi
signals: the first one is passive device-present, here the sensing signals from client-to-Access
Point (AP) communication are exploited; the second one is Passive device-free, where sensing
signals from AP-to-receiver communication are used. Passive device-free sensing based
on commodity Wi-Fi has gained special attention due to the advantages of achieving
crowd sensing without requiring the collaboration of the sensed group. Also, in contrast to
device-present sensing, a device-free approach protects subjects privacy inherently.

2.4. Human-Centric vs. Crowd-Centric Sensing

Research work may also be classified according to the type of inputs it tries to detect:
while human-centric aims to detect events and activities at the person level, crowd-centric
aims to modeling properties of a group of people. Although a plethora of applications
have been subject of study, in practical terms, sensing research may be binary classified in
one of these two approaches.

As opposite to the human-centric perspective, crowd-centric sensing is not interested
on predicting or estimating properties from single individuals, but those that arise from a
group of people as an entity. Models in this category are designed to define crowd variables
such as the size, density, speed and direction.

While human-centric sensing has found applications especially in health care [40,43–45],
crowd-centric sensing has an important range of potential applications in public safety,
mobility planning and marketing [6,46–50].

2.5. Sensing Crowd Properties

As discussed above in this section, crowds present several properties of interest that
can be useful to prevent unwanted situations or stimulate desired behaviors. In this
context, research work on Wi-Fi-based sensing models that can deliver accurate results is
gaining attraction.

Wi-Fi-based crowd counting is the task of estimating the number of people gathered
in a specific area. An increasing amount of research work has been dedicated to crowd
counting with Wi-Fi signals in recent years. Xi et al. published a method to estimate the
size of a crowd of up to 30 people using a Grey Verhulst model [26]. Another important
crowd indicator is its density (i.e., the number of people per unit of area). While there
is few documented research on this subject, a recent work by Tang et al. uses a device-
present approach to calculate crowd density by capturing device’s request probes and RSSI
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signal [51]. Depatla et al. [52] proposed a framework to sense speed of a crowd in both
outdoor and indoor locations.

2.6. Rssi and Csi: The Sensing Signals

Wi-Fi is a commercial denomination for the IEEE 802.11 standard, which is the pre-
dominant technology used for Wireless Local Area Networks (WLAN) that operates in
the 2.4 GHz or 5 GHz frequency bands. The first version of the standard was released in
1997 [53]. A decade later, the idea of using Wi-Fi signals to identify, analyze or predict hu-
man activity started to be increasingly present in researchers’ work desks around the world.
Since then, several techniques have been proposed for capturing, denoising, processing
and classifying the hints of human activity that are intrinsically carried by the wireless
signals the Wi-Fi standard uses.

Estimation techniques are in general based on some kind of measurement of signal
parameters on the RF propagation channel as a function of the variables of interest. There
are two specific types of signal-related parameters that are commonly used in current Wi-Fi
sensing research, which are: RSSI and Channel State Information (CSI).

2.6.1. Rssi

Due to the simplicity of field strength measuring, RSSI has been commonly used
in many applications as those concerned to indoor localization. As its name describes,
RSSI is a measure of the power present in the signal at the time it arrives to the receiver.
According to signal propagation models and measurements, signal energy decreases with
distance. Because of this, RSSI is often used with multilateration methods to estimate
position [15,16]. This is a device-assisted approach, as it requires that the subject to be
localized carry a device with a Wi-Fi receiver. Human tracking with Wi-Fi can, however,
also be accomplished by device-free methods. This is achieved by analyzing the variance
and other statistical properties of the RSSI signal data [54,55]. Youssef et al. for example,
used the moving average of the signal strength values to track the location of a person [56].

Although RSSI can be easily implemented, its suitability as sensing vehicle in non-
controlled environments is limited, as RSSI presents several impairments when obstacles
are present in the area of interest. The strength of a single received signal is greatly affected
by multipath and shadowing effects that yield estimation errors. As a result of this, CSI
has been proposed as an alternative [57].

2.6.2. Csi

Modern Wi-Fi standards, powered with Orthogonal Frequency Division Multiplexing
(OFDM) modulation and MIMO capabilities, utilize CSI as an indicator of the properties of
the channel to dynamically optimize and adapt the transmission parameters to improve
performance. Therefore, CSI is an overall representation of the channel state that sums
up the signal’s propagation effects including scattering, fading and multipath [58]. Al-
though RSSI also offers an overall picture of the channel by providing time averaged total
power of the signal envelope at the receiver, CSI is an estimation of the channel coefficients
that represent either the impulse or the frequency response at the sub-carrier level [59].
Because of its granularity of sub-carrier frequencies and its vector representation, CSI data
provide more information of the channel impairment effects that the signal experiences in
contrast to the received power strength given by RSSI.

The proposed research work makes use of the advantages mentioned above and
employ CSI as the sensing signal. Hence, it is worth providing a more detailed description
of the nature of the CSI data and the context in which it is produced.

2.6.3. Mimo Systems

In wireless communications the information signals are transmitted through a channel,
ideally in line-of-sight (LOS) obstacle-free conditions, but in practical scenarios, the LOS
condition is not met and the transmission paths are not unique, so the beam uniqueness
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does not hold. The objects and subjects located in the surroundings of the channel may
reflect, refract, diffract and scatter the signal, producing multiple new paths the signal
traverse to the receiver, an effect called multipath propagation that exhibits deep fades
with high variance [60].

From the receiver point of view, multiple copies of the signal arrive with different time
delays, amplitudes and phase shifts. This aggregation of signal replicas produces fading, a
multipath-induced interference that results in variations of Signal-to-Noise Ratio (SNR)
of the emerging signal [61]. Such a behavior is traditionally considered as a problem the
wireless communication system has to solve.

A Multiple Input Multiple Output (MIMO) system uses multiple antennas at the
transmitter or the receiver to improve the overall communication performance. In con-
trast to single-antenna systems (SISO) that gather a single signal for reception, MIMO
systems are able to use simultaneously multiple signals carrying information. Then, signal
processing techniques such as space-time coding, beamforming, channel estimation and
symbol detection are used to take advantage of the various signals that are available at
the receiver. This results in significant improvements of spectral efficiency, data rate and
system capacity [62].

A typical configuration of a MIMO channel consisting of M number of antennas at
the transmitter and N antennas at the receiver is shown in Figure 1. The transmission is
expressed in terms of the received vector y, the transmitted vector x, the channel coefficient
matrix H and noise n, as follows:

y = Hx + n (1)

Similarly, each of the N antennas at the receiver, receives signals from all the M
transmitting antennas, creating S number of communications links according to:

S = MN (2)

The general expression for (1) in its matrix representation is
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For example, a 3× 2 MIMO system will have 3 transmitting antennas and 2 receiving
antennas, conforming a total of 6 communications links. Each link’s channel coefficient
hm,n represents the channel effects that the signal that travels to the m-th receiving antenna
from the n-th transmitting antenna undergoes. Thus, for the 3× 2 example, the received
vector is represented as follows:
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 (4)

Notice that, as previously mentioned, a CSI packet is a complex number representing
the amplitude and phase of the channel state; so in MIMO-enabled Wi-Fi, CSI signals
provide the estimated values of the channel coefficient matrix H.

2.6.4. Ofdm Transmission

The IEEE 802.11 standard adopted Orthogonal Frequency Division Multiplexing,
or OFDM, as part of its transmission technique to achieve higher data rates [62]. The idea
behind this technology is to increase data rate using parallelism by dividing the assigned
spectrum into several narrowband sub-carriers that are used for simultaneous transmission.
The OFDM sub-carriers are orthogonal in the mathematical sense, which implies that sub-
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carrier frequencies are selected to cancel out inter-symbol interference (ISI). Therefore,
additionally to delivering higher rates, OFDM offers immunity to the ISI effect caused
by multipath fading and it also requires relatively simple receivers to reconstruct the
transmitted data, since signal processing is done using the Fast Fourier Transform (FFT)
and the inverse FFT algorithms instead of hardware.

According to standard IEEE 802.11n, MIMO data are modulated into 52 sub-carriers
using Inverse Fast Fourier Transformation (IFFT) and transmitted as OFDM symbols in
discrete packets. The receiver measures the CSI for each packet and adapts parameters to
channel variations, the received signal is then demodulated by applying the direct FFT.
The tool provided by Halperin et al. [59], which was used to obtain our experimental data,
allows the extraction of CSI information from an Intel 5300 wireless card, exposing channel
information of 30 of the 52 Wi-Fi sub-carriers. The CSI for each sub-carrier is defined as

h =| h | ejθ (5)

where |h| and θ represent the magnitude and phase of the communication channel,
respectively.

Figure 1. Multiple Input Multiple Output System.

2.7. Related Work

In this section we briefly review relevant literature that documents the current state-
of-the-art of device-free Wi-Fi-based crowd counting. Each subsection corresponds to a
published article in the field. In the last subsection we provide a summary table with the
reported accuracy of each reviewed method for further reference and benchmark.

2.7.1. Trained-Once Device-Free Crowd Counting and Occupancy Estimation Using Wi-Fi:
A Doppler Spectrum Based Approach

The work from Di Domenico et al. [25], performs Doppler Spectrum transformation to
a CSI stream. The authors carried out a series of experiments where groups of people with
several participants (from 0 to 8) where sensed in 3 different locations. Due to the scope of
the experiments, the resultant dataset is of enormous value for the research community
and it is the one we use for the preliminary work of the present research.

Di Domenico also introduces a long list of features that can be extracted from the
Doppler spectrum matrices. Among all the possibilities the authors selected Spectral
Kurtosis as the unique descriptor for their model. The performed series of arithmetical
mean to the sub-carriers and links in order to get to a simpler parameter to work with.

Also, for the learning stage, the authors used a Naive Bayes classifier, because of its
simplicity as a probabilistic algorithm. With this setup, they achieve about 80% of accuracy
for crowd counting estimation. It is worth noticing that the main purpose of the work by
Di Domenico et al. is to show the advantages of their method for a ’training once’ scenario
where there is no need for dedicated training in every different location.
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2.7.2. Frog Eye: Counting Crowd Using Wi-Fi

The article from Xi et al. [26], is another often cited work in the Wi-Fi-based sens-
ing field. In this research the authors documented a sensing framework based on CSI
measurements from off-the-shelf Wi-Fi equipment.

Xi’s model introduces a feature called Percentage of non-zero elements (PEM), which
is a measurement technique based on the non-zero counting of the CSI dilated matrix.
The resulting dataset is classified with the help of a grey Verlhust model factor.

To measure the performance of their method, the authors utilized the probability that
an error equal or less than a defined threshold occurs for a particular counting estimation.
This indicator was reported to be 98% for a threshold of 2 or fewer person and about 80%
for a threshold error of 1 person.

2.7.3. Wicount: A Deep Learning Approach for Crowd Counting Using Wi-Fi Signals

The work from Liu et al. [63,64], explored the capabilities of a deep learning-based
method for crowd counting. It uses a fully connected neuronal network with two hidden
layers. It also implements regularization and exponential decay to improve performance.
The experimental results show that the introduced deep learning model is able to estimate
the number of crowd up to 5 with the accuracy of 82.3%.

The key contribution of the article for the Wi-Fi sensing field is that it documents a
Deep Learning model that is arguably the first in its kind to be applied for crowd counting.
Even if one can claim that the amount of time and computing resources required to train
a DL system are still very demanding and the outcome quality does not correspond to
the effort, the authors clearly pointed out a direction for future work. Similar works with
data coming from Wi-Fi CSI information, which use Deep-Learning, like Cheng et al. [65],
achieve slightly higher accuracy, with a reported 88.66%.

2.7.4. Occupancy Estimation Using Only Wi-Fi Power Measurements

The article from Depatla et al. [20] introduced, to the best of our knowledge, the most
cited RSSI-based method for crowd counting. Their framework is based in a model that
incorporates the pattern of both blocking LOS and scattering that human bodies produces
in the strength of the Wi-Fi signals.

The authors approached the problem from an analytical perspective to obtain a math-
ematical expression that relates the signal strength with the PDF of the number of people
in a crowd. Then, the method uses Kullback-Leiber divergence to estimate the size of a
crowd with up to 9 people.

As in other works in the literature, Depatla presented its results as probabilities of get-
ting errors of certain number of people. Specifically, their method reported P(e ≤ 1) = 55%
and P(e ≤ 2) = 63% for indoor experiments with off-the-shelf equipment. For the outdoor
scenario P(e ≤ 1) was 64%, while achieving 96% for a threshold of 2 or less people of
counting error.

2.7.5. Estimating the Number of People Using Existing Wi-Fi Access Point in
Indoor Environment

Yoshida et al. [24] published a relevant work where the counting estimation is made
using regression algorithms. The method uses RSSI data as feature and test both linear
regression and and SVM regression to make the classifications.

The experiment setup consisted in a single transmitter and four receivers, each of
them working as independent measuring point. A notable contribution of this research is
that it explores, with this kind of layout, additional crowd characteristics such as density
and presence/absence of people.

The accuracy rate of Yoshida’s method for estimating the number of people is 77%,
for estimating the degree of congestion (crowd density) is 95%, and for estimating the
presence/absence of people is 98%. This work was updated by Mabuchi [66] to achieve
93% in counting smalls groups of people.
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2.7.6. Freecount: Device-Free Crowd Counting with Commodity Wi-Fi

FreeCount [67] is a high-accuracy system for crowd counting that uses a set of features
of three kinds: statistics, frequency domain and shape. In their publication, Zou et al. focus
in the problem of temporal variation of the channel conditions and the unpractical need of
re-training the classifier every period of time.

By using a model based on SVM, the author reported a crowd counting accuracy of
99%, and P(e ≤ 1) = 97%. Moreover, FreeCount implements transfer kernel learning (TKL)
to cope with the changes in the channel condition with time. With TKL as the SVM kernel
FreeCount reported an accuracy of 96% two weeks after the actual trainning took place.

A downside of the FreeCount approach is that it requires to modify the Access Points
in the location. This means the solution is not “commercial off-the shelf”, in the sense that
it can not work seamless with currently installed infrastructure as the rest of the methods
reviewed above can. For this reason we considered it a non-COTS solution.

Table 1 shows a summary of the performance of crowd counting methods that use
COTS through Wi-Fi technology

Table 1. Performance summary of crowd counting methods using commercial off-the-shelf (COTS) Wi-Fi.

Accuracy Scale

Author Data Source Classifier Accuracy Rate P (e < 1) P (e < 2) Max # of People Sensing Area (m²)

Di Domenico CSI Naive Bayes 81% - 91% 8 30, 45, 70

Xi CSI Grey Verhulst - 80% 98% 30 -

Liu CSI Deep Learning 82% - - 5 -

Depatla RSSI Math. Exp. - 55% 63% 9 33

Yoshida RSSI SVR 77% - - 7 -

2.8. Theoretical Framework of Crowd Characterization with Wi-Fi Csi in the Doppler Spectrum

In a real propagation environment, a signal propagates along multiple paths, and the
receiver experiences multiple time-delayed replicas of the transmitted signal. Furthermore,
if the receiver is moving, a set of Doppler shifts occurs in the receiving end and a Doppler
spread spectrum arises. In a MIMO-OFDM transmission, random variations on the sub-
carriers frequency causes uncorrelated fading between the different received paths. If
a simple correlation receiver is applied to the received signal, delayed versions of the
transmitted signal will not correlate properly and thus cause self-interference [47].

For multipath communication, the radio signals arrive at the receiver device as the
sum of all the contributions produced by the scattering process. When the scatter objects
are static with respect to the radio source, the radio frequencies do not change in the
propagation channel. However, in the case of scatterers or source motion, there will be a
Doppler shift that depends on the speed and moving direction with respect to the signal
propagation path. At a single frequency level this phenomena is known as Doppler shift,
but in a time-varying scenario (as the scatter objects change direction and speed over time)
a set of Doppler shifts or Doppler spread is also referred to as “Doppler spectrum”.

The work of Yang et al. [68], provides a conceptual framework to analyze the Doppler
spectrum of a Wi-Fi transmission using the CSI signals. We will briefly summarize Yang’s
analytical model in the following lines for convenience. The scenario is illustrated in
Figure 2 and is described as follows: if a transmitter is at a distance d from a moving
receiver with velocity v at a given instant, then the Wi-Fi signal that will arrive at the
receiver is affected by a channel that is multipath and time-varying. Let’s suppose there
are a total of L independent paths l, each of them with different angles of arrival θl to the
receiver’s moving direction.
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Figure 2. Doppler shifts produced by moving scatterers in a Wi-Fi link.

In MIMO-OFDM Wi-Fi there are k sub-carriers and multiple links that will be affected
by the same multipath process, the channel response can be expressed as a function of the
time instant nTs

hk(nTs) =
L

∑
l=1

αle−jwk
dl
c ejwk

vl
c nTs + εk (6)

where αl is the amplitude of the l-th path, c is the propagation velocity of electromagnetic
wave, εk is the measurement error, and wk

vl
c is the Doppler shift.

From the Wi-Fi IEEE802.11n standard [69], we know that the center frequency for each
OFDM sub-carrier k in GHz is given by

fk = 2.4 + k∆ f k = 1, 2, ..., 30 (7)

where ∆ f is the frequency difference between sub-carriers, and it is extremely small
compared with the 2.4 GHz. The Doppler shift can be approximated as

wl = 2π
v1

c
(8)

Hence, a good approximation of the channel response can be given by the average of
the available individual channel responses of the subcarriers, as follows:

h(nTs) =
1
30

L

∑
i=1

30

∑
k=1

αle−jwk
dl
c ejwl nTs + εk (9)

Next, we obtain the frequency domain channel response by using the discrete Fourier
transform as follows:
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ej2π( fl Ts− m
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(10)

Equation (10) is an analytical representation for Doppler Spectrum of WiFi CSI.
From this foundation, different authors take different approaches for crowd counting.
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For instance, Zou et al. [67], use a set of features coming from statistics of magnitude and
phase, Fourier transformation and shaped metrics, all combined to achieve predictors of
human motion. Di Domenico et al. [25], extract Average Spectral Kurtosis as the unique
feature they use for their model, while Yang et al. [68], use only the first link of the MIMO
grid for feature extraction.

3. Proposed Method and Results

The method here presented is based on the hypothesis that the diversity in channel
response information that multiple communication links of a MIMO system carry could
provide better descriptors of the number of people in a crowd than a single channel or a
channel average. While other authors average or discard the multi-link information [25,68],
our method exploits such information to produce high-quality features for the estima-
tion model.

The results presented in this paper follow a data-driven, quantitative approach. We
show how the data can be processed to get estimations of the crowd characteristics with
acceptable accuracy. The methodology followed in this paper includes:

• The use of a reference dataset (see Section 3). On using a public dataset instead of
collecting our own experimental data, we give up the possibility of adding information
we might find useful. However, there is the opportunity to directly compare our results
to the ones obtained by other researchers.

• Implementation of our method in MATLAB, and the further training of the model
with a set of learning algorithms.

• Performance assessment of our method in terms of accuracy and other results pro-
viding quality indices, and a comparison with state-of-the-art approaches by re-
implementing them in order to have a reliable comparison.

A high-level view of our method is illustrated in Figure 3. The data collection (which
we took from the public dataset of Di Domenico et al. referenced before) is on the dotted
box to the left, and our process appears inside the right dotted box. Our data-driven
method comprises the steps:

1. Doppler spectrum estimation: in this step we created a MATLAB script that trans-
forms the available CSI data points to the spectrum domain in order to obtain Doppler
spectrum data as described in Equation (10).

2. Feature extraction: From the CSI readings together with the Doppler spectrum esti-
mated parameters, a vector of signal features is derived, which is supposed to be a
good compact representation of the signal characteristics, at least for the classification
purposes that we have, that is, the estimation of the number of people in the room. We
used mainly statistical descriptors of the signal, which could be a good or bad idea,
and we can only assess this later on, when we obtain the classification performance
figures. The output of the figure extraction phase is a dataset, which is a table in which
rows are individual observations and columns are the features. The dataset is the
starting point of the Machine Learning process itself.

3. Train-test split: In order to assess the prediction quality of the trained Machine
Learning classifier in a fair way, we need that the data used for testing its performance
has not already seen by the classifier; so we make a separation or split of the dataset
into two subsets: the training dataset and the testing one. The relative size of each one is
critical for a good performance, and this will be discussed below in the corresponding
subsection.

4. Classifier training: Using the training part of the dataset, we adjust the parameters of
a standard classifier (like Random Forest and others, described below). All of those
classifiers are readily available in programming libraries, for the different platforms
(MATLAB in our case), so the real work is not to construct the classifiers but to choose
and configure them properly; whether or not it has been well done is only seen later,
when classification performance results are obtained.
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5. Prediction assessment: The already trained classifiers are used to obtain, for each row
in the testing part of the dataset, a predicted class (in this case a number of people
in the room). Once the prediction is done, its quality can be assessed by a number
of well-known metrics such as accuracy, precision, recall and others, which will be
discussed below when we present experimental results.

Figure 3. High-level diagram illustrating our method.

From the 4040-row features dataset to the classification assessment, everything is a
mostly standard Machine Learning process (for which there are even free ML software plat-
forms), so we do not claim to make any contribution there. Our contribution is the process
that goes from the instrumentation readings, available from the Di Domenico et al. public
data base [70] to the dataset construction from which the ML process is done, but of course
the usefulness of the Doppler spectrum information, as well as the features we proposed
can only be seen once the predictive power of the trained classifier is fully assessed.

3.1. Multi-Link Based Csi Crowd Counting Estimation

Our model calculates a set FS of p feature vectors F, each one of them being a combi-
nation function gi of a descriptor di ∈ Di applied to each one of the Tlk available links Hlk
in the MIMO Wi-Fi transmission. From the set of feature vectors our goal is to estimate,
for a given one not previously seen, the number of people in the room with an accuracy as
high as possible.

This set of feature vectors can be represented as follows:

FS =
{

F0, F1, ..., Fp
}

, where Fi = gi(Di) f or i = 0, 1, 2, . . . , p

and Di =
{

di(Hlk1), di(Hlk2), ..., di(HlkTlk
)
} (11)

The exact way of defining the features for Machine Learning prediction is entirely
domain-dependent, and some argue that it is as much an art as is a science. In this paper, we
explore the prediction performance of the model when di are standard statistical measures.
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3.2. Dataset

In order to experimentally test the performance of our multi-link method, we used
a publicly available dataset. The dataset from Di Domenico et al. [19] provides great
opportunities to explore and test our Wi-Fi-based crowd counting hypothesis in a data-
driven way. This dataset consists of the following:

• A 2-antenna Wi-Fi transmitter (an off-the shelf AP) and a 3-antenna Wi-Fi receiver (a
computer with an Intel 5300 NIC) are set in the experiment location.

• Groups from 1 to up to 8 people were sensed using the mentioned setup, additionally
to the ’empty room’ case.

• The volunteers are allowed to move freely, but the only meta-data being labeled is
crowd counting.

• A CSI trace is extracted every 20 ms, with a round lasting about 2 min for every
counting case.

• The whole experiment was repeated in 3 different locations, as follows: Room A
is a small size office room (5 m × 6 m), Room B is a medium size meeting room
(5 m × 9 m), and Room C is a large size meeting room (6 m × 12.5 m).

The Di Domenico’s dataset includes at least 5000 CSI measurements for each count-
ing class, for each type of Room. Also, each CSI trace consists of a channel response
representation for each of the 6 resulting links, and every link includes 30 RF sub-carriers.

3.3. Machine Learning Process for Crowd Counting

For crowd counting estimation, we used standard Machine Learning classifiers so that
each predicted number of people is considered as a class, so that the empty room is one
class, 1 person in the room is another class and so on. Obviously in most future practical
applications, classes would be numeric ranges, like 1-10 persons for one class, 11 to 50 for
another one, etc.

The Machine Learning process follows the following steps:

• Step 1: Shuffle randomly the dataset rows.
• Step 2: Use feature selection criteria depending on the experiment variant.
• Step 3: Train the model with 5-folds cross-validation using the following classifiers:

– Random Forest
– Weighted KNN
– Linear Discriminant
– SVM
– SVM with Gaussian Kernel

• Step 4: Test the model and report performance results (accuracy, AUC, etc.).

In the k-fold cross-validation process of step 3 we used a k = 5 instead of the more
popular k = 10 because of the relative abundance of data, and the absence of improvements
in more intensive computations resulting from increasing the k value.

3.4. Feature Extraction

A first selection of descriptor functions was made from a set of statistics commonly
used in signal processing [71]. Our first objective was to test our multi-link model with all
the descriptors listed in Table 2, and then to proceed to perform feature selection in order
to reduce dimensionality. A more complete list of these kinds of features is provided by Di
Domenico et al. [25].
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Table 2. Features and descriptor functions used in the experiment.

Feature Count Function g Multi-Link Descriptor d

1 Mean Mean

2 Mean Standard deviation (SD)

3 Mean Mean/SD

4 Mean Spectral Energy (E)

5 Mean Spectral Centroid (SC)

6 Mean 2nd Order Spectral Moment (SOSM)

7 Mean 2nd Order Spectral Central Moment (SOSCM)

8 Mean Spectral Kurtosis

9–14 NOP Mean

15–20 NOP Standard deviation (SD)

21–26 NOP Mean/SD

27–32 NOP Spectral Energy (E)

33–38 NOP Spectral Centroid (SC)

39–44 NOP 2nd Order Spectral Moment (SOSM)

45–50 NOP 2nd Order Spectral Central Moment (SOSCM)

51–56 NOP Spectral Kurtosis

All the descriptors are relative to the magnitude of Hlk. Notice that in the last 8 rows
of Table 2 NOP refers to multi-link features without any combination function. As we have
6 links in our setup, there are 6 instances of every descriptor. It is our aim to demonstrate
that this technique provides valuable information to the classification stage.

A MATLAB code was implemented to, first, obtain the Doppler spectrum from the CSI
data as given by Equation (10) and then, process the feature extraction from the frequency
domain function. At this time all the features where loaded into the model. The processed
dataset for each of the 3 reported locations have a total of 4040 vectors of 56 features each;
it also includes a class column with a labeled metadata specifying the number of people in
the crowd that correspond to the row.

3.5. Feature Selection

Our experiment had four variations relative to the features taken into account, each
with different criteria for feature selection, as listed below:

• Variant 1: All features-our first iteration was a ‘brute force’ approach to get a first
estimate of the classification power of the model. The purpose of this variant is to get
a “baseline” against which all other options should be compared: any subset of all
features must either perform better than this one, or else perform very similarly but
with less computing effort.

• Variant 2: Multicollinearity feature selection-a common approach to feature selection
is to find a pair of features that are highly-correlated (i.e., above a correlation threshold)
and drop one of them. We implemented this algorithm in MATLAB and applied to
our dataset. The selected features using a correlation threshold of 0.85 are listed in
Table 3.
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Table 3. Features selected by multicollinearity method.

Feature Count Link # Multi-Link Descriptor d

1 Mean Mean

2 Mean Standard deviation (SD)

3 Mean Spectral Energy (E)

4 Mean Spectral Centroid (SC)

5 Mean Spectral Kurtosis

6 1 Standard deviation (SD)

7 2 Standard deviation (SD)

8 3 Standard deviation (SD)

9 4 Standard deviation (SD)

10 5 Standard deviation (SD)

11 6 Standard deviation (SD)

12 4 Mean/SD

13 5 Spectral Energy (E)

14 1 Spectral Centroid (SC)

15 3 Spectral Centroid (SC)

16 6 Spectral Centroid (SC)

17 2 2nd Order Spectral Moment (SOSM)

• Variant 3: Mean descriptors vs multi-link descriptors-in this experiment we tested
our hypothesis about the quality of multi-link descriptors (those features with multi-
link descriptors without combination function). To achieve this, we compare the
classification performance when only multi-link descriptors are used vs the scenario
in which only multi-link mean descriptors feed into the model.

• Variant 4: Single descriptor analysis-At the opposite extreme of variant 1 we would
have the use of only one feature, which is not really of practical interest, but we find it
useful as another baseline. It answers the question of how well a single feature (per
channel) model can perform using a multi-link approach with respect to the accuracy.

3.5.1. Variant 1: All Features

As shown in Table 4, our model delivered an outstanding accuracy performance when
all the 56 selected features are used. Four out of the five classifiers were able to correctly
estimate the number of people in experiment location with 100% of accuracy. Only Random
forest performed just below perfect.

Table 4. Accuracy rate for model with all features used.

All Features

Training Accuracy Testing Accuracy

Random Forest 99.5% 99.7%

Weighted KNN 100.0% 100.0%

Linear Discriminant 100.0% 100.0%

SVM 100.0% 100.0%

SVM Gaussian 100.0% 100.0%
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3.5.2. Variant 2: Multicollinearity Feature Selection

With the correlation criteria our set of features decreased from 56 to 17. As expected,
many multi-link NOP descriptors were eliminated by the algorithm since of the strong
correlation among them. However, the complete set of multi-link Standard Deviation
descriptors remained. The results are shown in Table 5. All classifiers performed above
90% of accuracy.

Table 5. Accuracy rate for model with multicollinearity feature selection.

Collinear Selection

Training Accuracy Testing Accuracy

Random Forest 99.8% 100.0%

Weighted KNN 99.9% 100.0%

Linear Discriminant 92.8% 92.5%

SVM 98.9% 98.5%

SVM Gaussian 100.0% 100.0%

3.5.3. Variant 3: Mean Descriptors vs. Multi-Link Descriptors

As mentioned before, other authors have disregarded multi-link descriptors in favor
of either single-link descriptors [68], or mean descriptors [25]. In this experiment, we
compared both kinds of descriptors face to face. As shown in Tables 6 and 7 , while using
mean descriptors yield fairly good results, remarkably multi-link vectors provide perfect
accuracy for all the classifiers.

Table 6. Accuracy rate for model with mean descriptors only.

Mean Descriptors

Training Accuracy Testing Accuracy

Random Forest 98.1% 98.8%

Weighted KNN 97.5% 97.6%

Linear Discriminant 86.8% 87.1%

SVM 96.5% 96.8%

SVM Gaussian 99.4% 99.7%

Table 7. Accuracy rate for model with multi-link descriptors only.

Multi-Link Descriptors

Training Accuracy Testing Accuracy

Random Forest 100.0% 100.0%

Weighted KNN 100.0% 100.0%

Linear Discriminant 100.0% 100.0%

SVM 100.0% 100.0%

SVM Gaussian 100.0% 100.0%

3.5.4. Variant 4: Single Descriptor Analysis

Now that we have empirically demonstrated that multi-link descriptors have better
performance than single mean descriptors, our next step was focused on reducing the
dimensionality of the model.

80



Electronics 2021, 10, 315

A hint for this task was provided by variant 2, where we applied multicollinearity fea-
ture selection. That process outlined the quality of multi-link standard deviation descriptor.
As show in Table 8 multi-link SD provides 100% accuracy for the SVM Gaussian classifier.

Table 8. Accuracy rate for every individual multi-link descriptor.

Classifiers SD Mean E SC SOSM SOSCM Kurtosis

Random Forest 99.7% 96.5% 98.7% 98.6% 97.8% 98.2% 98.5%

Weighted KNN 99.8% 98.5% 99.6% 99.1% 99.3% 99.2% 99.3%

Linear Discriminant 85.2% 67.6% 87.1% 77.0% 73.1% 73.1% 80.1%

SVM 90.5% 72.4% 91.8% 81.7% 79.3% 79.3% 83.6%

SVM Gaussian 100.0% 99.4% 99.9% 99.8% 99.4% 99.2% 99.8%

In order to further investigate the performance of each individual descriptor, we
implemented Neighborhood Component Analysis (NCA), a multi-class, high-dimensional
feature selection method initially proposed by Yang et al. [2]. This method maximizes the
expected leave-one-out classification accuracy using the gradient ascent technique.

An examination of the results of NCA shown in Figure 4 indicates that: (1) Multi-link
approach has higher prediction power than single-link based methods, and (2) Multi-link
SD is the best single-statistic feature vector among those under review. These observations
are in line with the outcomes of variants 2 and 3.

Finally, we were interested on knowing how many Wi-Fi links deliver an optimal trade-
off for accuracy in our multi-link model using SD as descriptor function. To accomplish
this, we ran several iterations of the model, including one additional link at each iteration
and repeating the process for every possible link combination. Results in Figures 5 and 6
show that the accuracy of our model increases logarithmically with the number of available
links, and this metric is near-to-perfect with a set of 6 available links (The specific numbers
in this figure are too small to be read; this figure is intended to have a bird’s eye view
comparing the quantity of green squares (good classification) against the pink ones, as well
as the way the AUC, marked in blue color, gets more and more of the area as it upper-left
side grows).

3.5.5. Summary of Results by Number of Features

Table 9 shows a summary of the results from the experiment variants sorted in
ascending order by the number of features for the model involved. It is worth noticing that
SVM with Gaussing kernel provides perfect accuracy in all scenarios. Hence, all scenarios
have at least one classifier with perfect accuracy.

Table 9. Accuracy rates for models with multi-link descriptors.

Classifiers Multi-Link SD Collinear Selection All Multi-Link All Features
6 Features 17 Features 48 Features 56 Features

Random Forest 99.7% 100.0% 100.0% 99.7%

Weighted KNN 99.8% 100.0% 100.0% 100.0%

Linear Discriminant 85.2% 92.5% 100.0% 100.0%

SVM 90.5% 98.5% 100.0% 100.0%

SVM Gaussian 100.0% 100.0% 100.0% 100.0%
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Figure 4. Relative Weights of Features using Neighborhood Component Analysis (NCA) (higher is
better).
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Figure 5. Accuracy of the model at incremental links.

Figure 6. ROC and Confusion Matrix for incremental links.

3.5.6. Results in All Rooms

The four initial scenarios were studied using the dataset of Room A. Now, our interest
was to investigate if the results in the other two rooms are similar to those we have obtained
so far.
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Of special interest was to validate the quality of the multi-link SD descriptor and
whether the high performance of SVM-Gaussian was also observed it in the rest of the loca-
tions.

Table 10 shows the results for Room A, Room B & Room C and provides evidence
that the results obtained in the first iterations with dataset of Room A extend well to the
other available datasets. Multi-link SD descriptor produces accuracies of more than 97%
for Random Forest, Weighted KNN and SVM-Gaussian classifiers in all rooms. We can see
that for SVM-Gaussian, the model delivered perfect accuracy in Room A and nearly perfect
in Room B (99.7%) and Room C (99.9%). The confusion matrices are shown in Figure 7.

Table 10. Accuracy rates for multi-link approach in all rooms.

Multi-Link SD

Room A Room B Room C

Random Forest 99.7% 97.0% 98.2%

Weighted KNN 99.8% 98.8% 99.7%

Linear Discriminant 85.2% 69.2% 64.8%

SVM 90.5% 74.2% 71.3%

SVM Gaussian 100.0% 99.7% 99.9%

Collinear Selection

Room A Room B Room C

Random Forest 100.0% 99.2% 100.0%

Weighted KNN 100.0% 100.0% 100.0%

Linear Discriminant 92.5% 87.2% 87.2%

SVM 98.5% 97.3% 99.4%

SVM Gaussian 100.0% 100.0% 100.0%

All multi-link

Room A Room B Room C

Random Forest 100.0% 100.0% 100.0%

Weighted KNN 100.0% 100.0% 100.0%

Linear Discriminant 100.0% 99.2% 98.4%

SVM 100.0% 100.0% 100.0%

SVM Gaussian 100.0% 100.0% 100.0%

All features

Room A Room B Room C

Random Forest 99.7% 99.7% 100.0%

Weighted KNN 100.0% 100.0% 100.0%

Linear Discriminant 100.0% 99.1% 98.2%

SVM 100.0% 100.0% 100.0%

SVM Gaussian 100.0% 100.0% 100.0%
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Figure 7. Confusion matrices for SVM-Gaussian with multi-link SD descriptors in all Rooms.

‘All multi-link’ feature set show an excellent performance since four out of five
classifiers estimated the size of the crowd present in the Room with perfect accuracy. This
was true for all the test cases in the available dataset.

4. Conclusions

In this paper, we have presented a novel method for crowd measuring (counting,
in particular) using recognition of patterns in the Channel State Information over multiple
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links, and showed that the use of multiple links, instead of a single one –or the aggregation
of several ones in an average– can be translated into an improved performance at least
for the people counting scenario considered in the dataset we used. This was the main
contribution of this work.

Using our method, based on data-driven Machine Learning supervised classifiers, we
empirically demonstrated that multi-link predictors yield better performance in terms of
accuracy than those that use the mean value for multi-link, or single-value of one link.

Another contributions of our work was to show that even reducing the number of
features used for training and predicting with the classifiers, the performance could be
maintained above that of other state-of-the-art methods. Also, we showed the prediction
power of the Standard Deviation when used over the channel response data given by the
Doppler Spectrum.

In Table 11, we summarize the comparison of our approach with other state-of-the-
art methods.

Table 11. Benchmark of accuracy rates for state-of-the-art Wi-Fi-based crowd counting.

Author Wi-Fi APs Features Classifier Accuracy Rate Max # of People

Di Domenico COTS Average Spectral Kurtosis Naive Bayes 0.81 8

Liu COTS - Deep Learning 0.82 5

Zuo Custom Statistics, FFT-based, Shape-based SVM-TKL 0.96 7

Kianoush COTS Statistics in Space Domain LSTM 0.99 5

Our Work COTS Multi-link SD in Doppler Spectrum SVM-Gaussian >0.99 8

For future work, we are interested in exploring the application of our method to less
restricted scenarios (for instance, by increasing the maximum number of people in the
crowd), and to take measurements in real-life situations. We also want to explore other
crowd properties like the direction of movement and cope with limitations imposed by
scale and a dynamic environment.
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Abstract: In this study, an emotion system was developed and installed on smartphones to enable
them to exhibit emotions. The objective of this study was to explore factors that developers should
focus on when developing emotional machines. This study also examined user attitudes and
emotions toward emotional messages sent by machines and the effects of emotion systems on user
behavior. According to the results of this study, the degree of attention paid to emotional messages
determines the quality of the emotion system, and an emotion system triggers certain behaviors in
users. This study recruited 124 individuals with more than one year of smartphone use experience.
The experiment lasted for two weeks, during which time participants were allowed to operate the
system freely and interact with the system agent. The majority of the participants took interest in
emotional messages, were influenced by emotional messages and were convinced that the developed
system enabled their smartphone to exhibit emotions. The smartphones generated 11,264 crucial
notifications in total, among which 76% were viewed by the participants and 68.1% enabled the
participants to resolve unfavorable smartphone conditions in a timely manner and allowed the
system agent to provide users with positive emotional feedback.

Keywords: effective computing; emotion system; emotional machine; agent; human–machine inter-
face

1. Introduction

Human interactions have gradually evolved toward diverse methods of interaction
beyond conventional in-person ones. Software has become integral to human life, and soft-
ware development has led to numerous advances. Currently, human–machine interactions
are more prevalent than person–person interactions. The human–machine interface plays
a crucial role in the diversified interactions between humans and machines, especially in
the era of the Internet of Things (IoT), by enabling information exchange between humans
and machines [1]. With a high market penetration rate, the smartphone market has ma-
tured. The high rates of smartphone ownership indicate that smartphone use has become
widespread in daily life [2]. Since 2015, the percentage of smartphone users has continued
to increase across multiple countries and age groups [3]. In the IoT era, wearable technology
is in a rapid growth phase and has attracted increasing attention from both industry and
academia over the past decade [4]. The use of wearable devices and IoT services in people’s
daily lives is increasing, and individuals are exposed to diverse software and hardware
services. An important objective of human–machine interaction, especially in the field of
machine emotion expression, is to make the behavior of a machine more similar to that of a
human [5].

In an ideal intelligent interactive environment, a machine has the same external stim-
ulus perception ability as a human does. Such a machine can conduct a simulation to
recognize, process, and understand external stimuli, and has the ability of emotion com-
putation [5]. Currently, there is no single, well-developed human–machine interaction
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mechanism that can satisfy the requirements of those working with various related ma-
chines. This phenomenon is a key challenge in the field of human–machine interfaces.
Human emotion is a wide research topic that covers different fields, including psychology,
neuroscience, health science, and engineering. An accurate model of human emotion
would be beneficial for developing an emotion recognition system and its applications [6].
The concept of an emotion system has been applied in various fields and has yielded many
benefits. Emotions can be recognized from speech, activity, and facial expressions. For
example, appropriate and personalized learning can be achieved by applying the affective
tutoring system (ATS) in teaching through emotional computing technology. Thus, each
student faces their own emotional learning system on their smartphones for learning [7].
The system will analyze the emotions of the student at each moment and complete the
course content according to the student’s learning status [8]. However, emotion systems are
mostly designed to serve a specific system. Because few studies have investigated attitudes
toward machines, an emotion system was designed in this study to assign emotions to ma-
chines, thus transforming cold, impersonal machines into life-like entities, and this study
explored users’ attitudes toward emotional machines. When machines have emotions, the
positive effect is that machines with emotional intelligence are not the same as our “human”
friends. The former will know everything about us, and we cannot hide anything from
them. They may know us a lot more than ourselves. Therefore, they may be able to help
us make better decisions and choices in life. It is invaluable to have such a “person” to
accompany us in our lives. Making artificial intelligence more humane and empathetic is
the future development goal of artificial intelligence [9]. Emotion is a necessary condition
for communication. The understanding of both parties can be improved when there is
more human–computer interaction. The emotions of the machine can improve human
emotions in daily life situations [10]. If a machine has emotions, it will not only reduce
the gap between the machine and the user, but also trigger or change the behavior of the
user, allowing the user to actually adopt specific behaviors, thereby creating commercial
value [11].

In this study, an emotion system was developed and installed on smartphones to
enable them to exhibit emotions. The emotion system (in the form of an app) was designed
for Android smartphones to track. Users have access to information on the past and present
conditions of their smartphones. More warm and humane services can be realized by en-
abling emotions in machines. Thus, friendly artificial intelligence can be realized. The test
subject will need a smartphone with the Android operating system. There will be compati-
bility issues when designing Android applications. When using the same application on
different models, the application system cannot be used normally in some circumstances.
Moreover, the app is equipped with a system agent that discloses smartphone conditions
in a human-like manner. When a smartphone has an unfavorable condition (e.g., being
extremely low on battery), the system automatically informs the user by sending them
a timely notification. In addition, the system agent within the application notifies users
of any smartphone problems. The agent also analyzes the view rate of such notifications
and the instruction execution rate, which allows program designers to determine the effect
of the developed emotion system on user behavior. After smartphone malfunctions are
resolved, the agent provides users with positive emotional feedback. This study analyzed
the following aspects:

(1). Factors requiring attention during the development of emotional machines.
(2). Users’ attitudes toward emotional messages.
(3). Effects of the developed emotion system on user behavior.

2. Literature Review
2.1. Affective Computing

The concept of a human–machine interface was proposed by Norman, and Picard [12]
laid the foundation for affective computing. Following these foundational works, the
application of affective computing in human–machine interfaces received considerable
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attention [13]. Affective computing is an interdisciplinary field that focuses on computer
models and methods for recognizing and expressing emotions [14]. Affective computing
was originally proposed in 1997 by Rosalind Picard from the MIT Media Lab [12]. It
results from biomedical engineering, psychology, and artificial intelligence. Affective
computing aims to allow computer systems to detect, use, and express emotions [15]. It
is a constructive and practical approach that focuses on improving human-like decision
support and human–machine interaction [16].

In the field of human–machine interfaces, user experience is essential, and users’
emotions and reactions affect user satisfaction [17]. Many studies on emotion systems have
established affective tutoring systems [18] and verified the positive influence of emotion
system interfaces on learning. In addition, affective computing has been incorporated
into human–machine interfaces. For example, the eMoto system proposed by Sundström
et al. in [19] is an emotional text messaging interface that builds on the physiological data
(e.g., body movement data) captured by a smart pen to generate graphical and expressive
backdrops for messages. The Affective Diary system proposed by Ståhl et al. in [20] collects
data on user emotions through a physiological sensor on the day of use. The results,
represent a user’s affective memories of the day of use. In summary, the aforementioned
research indicates that affective computing positively affects human–machine interfaces
when emotion systems are appropriately designed [21].

2.2. Emotion Systems

Research on affective computing can be divided into two main branches that focus
on (1) detecting and recognizing emotional messages, and (2) expressing emotions. This
study focused on the expression of emotions. Bretan et al. in [22] constructed a robot
with the ability to express emotions and process languages. They found that participants
who interacted with the robot exhibited a greater sense of participation and joy than
those who did not. This result may be attributed to users finding a system more valuable
when it provides emotional feedback. Therefore, the effective expression of emotions is
key to establishing an appropriate emotion system. Research has also been conducted
on enabling machines to exhibit emotions. For example, Bates conducted a preliminary
study by developing a simplified emotional agent that expresses fundamental emotional
states [23]. Subsequently, Ushida et al. in [24] developed a set of emotion modules in which
emotions are expressed through a life-like emotional agent. Maria and Zitar [25] modeled
artificial emotions through agents and proposed emotional algorithms for the operation of
the emotion module. Evidently, the literature on incorporating emotions into machines is
gradually expanding. All studies on this topic have indicated that emotion systems must
be equipped with an emotion module that satisfies the research objective.

2.3. Emotional Expression

Emotional expression refers to how emotions are conveyed. Emotion systems are
generally equipped with emotion modules and use emotional expression as the framework
to support the operational processes of emotion modules. Emotional expression research
is based on two mainstream theories: discrete emotion theory and continuous emotion
theory. Discrete emotion theory is characterized by a discrete classification of emotions.
The most prominent discrete categorization is that proposed by Ekman [26] and comprises
fear, anger, disgust, sadness, happiness, and surprise [27].

Proponents of continuous emotion theory argue that emotions can be fully expressed
through neural and physiological systems. In discrete emotion theory, emotions are clas-
sified according to the neurophysiological systems associated with them. Continuous
emotion theory was first proposed in 1897 by the psychologist Wundt, who divided
emotions into three dimensions: pleasurable versus unpleasurable, arousing versus sub-
duing, and straining versus relaxing [28]. Subsequently, as an extension of Wundt’s
theory, Woodworth and Schlosbeg [29] reformulated the three dimensions of emotions
as pleasantness–unpleasantness, attention–rejection, and level of activation. In addition
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to these three-dimensional models, two-dimensional models, including the circumplex
model [30], vector model [31], and PANA model [32], have been widely applied in the
literature. However, the present study adopted continuous emotion theory and computed
emotional expression.

3. Research Methods
3.1. Assigning Emotions to Smartphones

To assign emotions to smartphones, this study first designed emotion modules in
accordance with Picard’s four motivations for enabling machines to exhibit emotion. Then,
the circumplex model was adopted as the framework for the expression of emotions. The
emotion modules were designed to perform affective computing in a two-dimensional
emotional space (Figure 1).
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3.1.1. Developing Emotional Expression

Russell represented emotional expression by using a spatial model in which affective
concepts fall in a circle in the following order: pleasure, 0◦; excitement, 45◦; arousal, 90◦;
distress, 135◦; displeasure, 180◦; depression, 225◦; sleepiness, 270◦; and relaxation, 315◦ [20].
The present study employed Russell’s circumplex model of affect as the foundation for
constructing a two-dimensional integer space containing valence and arousal dimensions,
which are represented on the horizontal and vertical axis, respectively. The center of the
space represents the origin (0, 0). According to an analysis of system requirements, a
clear correspondence between emotions and behaviors should be achieved. To satisfy
this requirement, the system must convert quantitative emotional data into categories of
emotions. In the aforementioned emotion coordinates, each quadrant covers 45◦; thus, the
two-dimensional space is divided into eight categories of emotions. The first to fourth quad-
rants represent happiness/joy, anger/dissatisfaction, sadness/pain, and calmness/peace,
respectively (Figure 2).
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3.1.2. Developing Emotional Representation

Machines should exhibit emotions in a unique manner, and different emotions for the
same behavior should have different manifestations (Figure 3).
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The agent built within the system can express the emotional state and activities of the
system. The agent follows a certain schedule and plans specific activities for each time
period. An agent’s engagement in certain activities determines the emotional state of the
system, projects it to the activities in practice, and results in the generation of emotional
representations (Figure 4).
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Figure 4. Representations of happiness (left) and pain (right) during eating.

According to the principle of emotion representation, different emotions may corre-
spond to the same behavior, producing different representations. Each activity corresponds
to eight types of emotions. Thus, each activity will have eight emotion representations.
There are 12 types of activity items and 8 types of emotions in this system. Based on the
principle of emotion representation, the system produces 96 emotion representations. At
each specific time, the agent has a type of activity to be performed. However, if the same
activity is performed throughout the day, the activity of the agent is the same throughout
the day for the user, resulting in no variability. The system sets the activity category as
an activity collection, and each activity collection contains an activity subcollection. For
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example, let us consider the activity collection of eating. Its subcollection will include
eating French fries, eating burgers, eating cake, etc. Therefore, users will observe different
agent activities at the same time on different days.

3.1.3. Principles for Multidimensional Emotion Generation

According to the concept of multidimensional emotion generation, emotions can be
generated through various methods. Multidimensional emotions were generated in this
study through the adoption of the reason-generated operation and the quick and dirty
method proposed by Picard [12]. Specifically, this study’s system operates as follows.
First, reason-generated events trigger Picard’s algorithm. The system then processes the
emotional parameters of the emotional event table and determines the system’s present
emotional state through the circumplex model. Picard’s algorithm is subsequently executed
to obtain the new emotional parameters of the events. The emotional event table is then
updated with the new parameters in accordance with the principle of reason-generated
operation (Figure 5).

Electronics 2021, 10, 306 6 of 18 
 

 

subcollection will include eating French fries, eating burgers, eating cake, etc. Therefore, 
users will observe different agent activities at the same time on different days. 

3.1.3. Principles for Multidimensional Emotion Generation 
According to the concept of multidimensional emotion generation, emotions can be 

generated through various methods. Multidimensional emotions were generated in this 
study through the adoption of the reason-generated operation and the quick and dirty 
method proposed by Picard [12]. Specifically, this study’s system operates as follows. First, 
reason-generated events trigger Picard’s algorithm. The system then processes the 
emotional parameters of the emotional event table and determines the system’s present 
emotional state through the circumplex model. Picard’s algorithm is subsequently 
executed to obtain the new emotional parameters of the events. The emotional event table 
is then updated with the new parameters in accordance with the principle of reason-
generated operation (Figure 5).  

 
Figure 5. Principle of reason-generated operation. 

The quick and dirty method was implemented according to the emotional event table 
with timely responses (Table 1). Quick and dirty events prompted the system to generate 
emotional representations rapidly without updating the emotional event table (Figure 6). 

Table 1. List of quick and dirty events. 

Event Content Positive and Negative Emotions Intensity of Emotion 
Power < 25% −4 −4 

RAM dosage > 75% −4 −4 
Call notification 0 1 

Charging 1 2 
When the power < 50%, 
sleeping, and charging 2 3 

 
Figure 6. Schematic of multidimensional emotion generation.  

Figure 5. Principle of reason-generated operation.

The quick and dirty method was implemented according to the emotional event table
with timely responses (Table 1). Quick and dirty events prompted the system to generate
emotional representations rapidly without updating the emotional event table (Figure 6).

Table 1. List of quick and dirty events.

Event Content Positive and Negative Emotions Intensity of Emotion

Power < 25% −4 −4

RAM dosage > 75% −4 −4

Call notification 0 1

Charging 1 2

When the power < 50%,
sleeping, and charging 2 3
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3.1.4. Developing Emotional Experiences

Emotional experience implies that a machine can recognize an event it had encoun-
tered and knows which emotional reactions that type of event typically elicits. The pro-
posed system is a practical cognitive module. First, it establishes an emotional event table
to classify an unfavorable smartphone event and record the emotional parameters induced
by this event. The combination of emotional parameters induced by an unfavorable event
is termed an emotional event table (Table 2).

Table 2. Emotional event table.

Event Id Name Valence Arousal Quick and Dirty

1 Battery > 75 3 2 false

2 Battery 50~75 1 1 false

3 Battery 25~50 −1 −2 false

4 Battery < 50 −4 −4 true

5 RAM > 75 1 −4 true

6 RAM 50~75 −1 2 false

7 RAM 25~50 1 1 false

8 RAM < 50 3 2 false

9 Storage > 90 −4 −4 false

10 Storage 70~90 −1 −2 false

11 Storage 40~70 1 1 false

12 Storage < 40 3 2 false

13 Network increased −1 −1 false

14 Network decreased 1 1 false

15 Temperature good 1 1 false

16 Overheat −1 −1 true

17 Charging 1 2 true

18 Call incoming 0 1 true

19 Sleep-negative
charging 2 3 true

An emotional event stores the parameters of state events, and emotional events
must be mapped to a two-dimensional emotional space. The lengths of the horizontal and
vertical axes are related to the absolute values of the parameters of all events constituting an
emotional event. According to the initial parameters of the emotional event in Table 2, the
horizontal axis length (valence) of the two-dimensional emotional space in the developed
system is 31, and the vertical axis length (arousal) is 37. The system event is divided into
categories such as battery status, network status, memory status, storage space status, and
incoming call notification. Four battery statuses exist, namely: above 75%, 50–75%, 25–50%,
and below 25%. A battery level of 25% or lower is a quick and dirty event. Four memory
statuses exist: above 75%, 50–75%, 25–50%, and below 25% memory use. Memory use of
above 75% is a quick and dirty event. Four storage space statuses exist, namely: above 90%,
70–90%, 40–70%, and below 40% storage use. The memory card has no direct influence on
the smartphone status, thus no quick and dirty events related to storage are handled by
the system. The network status event category has two subcategories, namely increased
and decreased network traffic. The system regularly calculates the network traffic and
records the average traffic during different periods. When the average flow rate in an
interval increases, the system triggers an event that increases the flow rate. When the
average flow rate in an interval decreases, the system triggers a flow decrease event. The
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call notification setting is also set as an emotional event. When the smartphone receives
an incoming call, the system triggers an emotional event. This emotional event has no
parameters for positive and negative emotions; it only has emotional intensity parameters.

Whenever events that are unfavorable to the smartphone occur, the system identifies
the corresponding emotional event from the emotional event table and obtains the corre-
sponding emotional parameter. The system may also update the emotional event with new
emotional parameters according to the principle of reason-generated operation.

3.1.5. Developing Psychophysical Interactionism

Psychophysical interactionism refers to the interaction between the software and
hardware conditions of a machine. The emotions of a machine are affected when both the
aforementioned factors are considered. For example, sufficient memory space increases
efficiency by providing sufficient time for computation, enables software programs to run
smoothly, and ensures that the smartphone remains in a positive emotional state. The
emotional event table records software and hardware events. When predicting the system’s
emotional responses to specific events, the hardware condition is considered. For example,
when a smartphone is completely charged, the system must permit higher memory use to
prevent negative emotions arising from increased memory use.

3.1.6. Method for Detecting Smartphone Conditions

In response to changes in a smartphone’s condition, the developed system identifies
the emotional event corresponding to the changes and the corresponding emotional pa-
rameters from the emotional event table. The developed system is a program that runs
in the background and remains visible on the home screen. Therefore, when a user turns
on their mobile smartphone, the developed system runs automatically. A priority table
comprising emotional events to be prioritized in selection is established by the system. This
system and the algorithm serve as the guide for selecting the emotional events triggered
by changes in smartphone condition. The system detects the condition of the smartphone
through the native battery life tracking and notification functionality of Android systems.
Each event detection is associated with a given level of battery.

To establish an event selection mechanism, the developed system divides the battery
charge level into three intervals: (1) >75%, (2) 35–75%, and (3) <35%. The events prior-
itized and selected by the system vary with the battery charge interval. Specifically, if
a smartphone falls within the first and second battery intervals, the system prioritizes
events with positive and negative emotions, respectively. Under these intervals, when
more than one event occurs, the system prioritizes notifications regarding limited storage
space, followed by increased network traffic, high smartphone temperature, excessive
random-access memory (RAM) usage, and low battery. If none of the aforementioned
events occur, the system randomly selects other suitable events that match the condition of
the smartphone. When the charge level falls in the third interval, the system prioritizes
events with negative emotions. For this interval, when more than one event occurs, the
system prioritizes notifications related to increased network traffic, followed by those
related to high smartphone temperature, excessive RAM usage, insufficient storage space,
and low battery. Because negative events are necessarily highlighted in the third interval,
no other emotional events are randomly selected.

Quick and dirty events are prioritized in the selection of unfavorable smartphone
events. The quick and dirty events are as follows: battery at <25% charge, >75% of RAM
used, overheating battery, battery being charged, an incoming call, and the system having
a negative emotional state when the smartphone is being charged in sleep mode. If two
events occur simultaneously, the developed system prioritizes notifications in the following
order: incoming call, the system having a negative emotional state when the smartphone is
being charged in sleep mode, battery being charged, battery at <25% charge, overheating
battery, and >75% of RAM used. Such prioritization ensures event uniqueness when
multiple quick and dirty events occur simultaneously.

98



Electronics 2021, 10, 306

3.2. Assigning Emotions to Messages

According to the function of the developed system, a message pertaining to the
smartphone’s condition is generated by the system. For example, when a large amount of
memory is used, the system provides a corresponding notification to the user in the form
of a text message containing emotional phrases. The types of emotions in text messages are
determined by the system’s present emotion (Figure 7).
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Figure 8. Schematic of the system message generation method.

The messages sent by the developed system depend on the events that occur and
the system’s emotions. Sentences about such events contain emotional parameters, and
events are divided into positive and negative events according to the system’s emotions.
Sentences about emotions are, by nature, positive or negative. Therefore, the following
four combinations are produced through the combination of sentences about events and
emotions: positive–positive, positive–negative, negative–positive, and negative–negative.
The system redefines these four combinations into two categories: consistent and inconsis-
tent. Consistency between sentences about an event and emotions suggests that the event
and emotional state elicit the same emotions (positive or negative).

3.3. Developing a Crucial Notification Mechanism

On the basis of the push notification function native to the Android operating system,
a crucial notification mechanism was designed for the developed system. The developed
system uses push notifications to highlight events with negative emotional parameters
(Figure 9).
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The system’s notification mechanism was designed to determine whether users are
prompted by crucial notifications to follow related instructions and complete a specific
action. A schematic of the system’s software architecture is shown in Figure 10, in which
four modules are displayed.
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Figure 10. Schematic of the software architecture.

The event detector is a module for detecting the smartphone’s condition. The event
getter in the aforementioned module, which is driven by the operating system, determines
the current state of the smartphone according to the order specified in the priority table
to define the smartphone’s condition. The event getter can notify users of any changes in
the smartphone’s condition by sending crucial notifications. Once users have read these
notifications, the system tracks their follow-up actions, that is, whether they follow the
instructions and complete a specific action.

The event detector transfers the smartphone’s condition to a cognitive module of
emotions called “consciousness.” The consciousness module matches the smartphone
condition with an event in the emotional event table. Conditions identified as quick and
dirty events are then forwarded to the Emo-handler module, whereas those identified as
reason-generated events have their parameters reset according to the principle of affective
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computing. The emotional event table is then updated with new emotional parameters,
which is then forwarded to the emo-handler module.

On the basis of James Russell’s emotional expression method, the emo-handler mod-
ule executes events and affective computing. After receiving information regarding an
event from the consciousness module, the emo-generator projects the event onto a two-
dimensional emotion space to determine the present emotions of the system; thus, the
emo-generator can calculate the emotional parameters of the event and the system emo-
tions to update the emotional state of the system. Subsequently, the event is recorded as
a past event in the archive. In addition, the emo-handler module transmits the system’s
emotional state to the scheduler module, which converts emotional parameters into cate-
gories of emotions. This conversion allows the scheduler module to generate emotional
representations effectively. After obtaining the system’s emotions, the scheduler module
determines the agent’s current activity table and generates corresponding representations
according to the principle of emotional representation.

3.4. Research Tools
3.4.1. System Usability Scale

In this study, the System Usability Scale (SUS) developed by Digital Equipment Co
Ltd. in 1986 was used to assess users’ evaluation of the system usability. This scale contains
10 items, and each item is scored using a 5-point Likert scale ranging from 1 to 5. A higher
score indicates higher user satisfaction with the system’s usability. The SUS, which is
presented in Table A1, is reliable, fast, convenient, and inexpensive [33].

3.4.2. Research Questionnaire

The four dimensions of the research questionnaire are based on the architecture
proposed by Picard [34]. The research questionnaire is divided into four parts to (1) test
whether users believe that the machine has emotions, and determine to (2) users’ attention
to emotional information, (3) users’ interest in emotional information, and (4) the effect of
emotional information about users. This questionnaire is answered using a 5-point Likert
scale ranging from 1 to 5. In this study, expert interviews were conducted in three rounds
by using the Delphi method [35]. The experts had expertise in different fields, such as
affective computing, interaction design, and user experience. Through factor analysis, the
researchers selected 18–23 items for which consensus was reached among the experts. The
research questionnaire is presented in Table A2.

4. Research Results and Analysis
4.1. Reliability Analysis

This study involved 124 individuals as participants, among which there were 62 males
and 62 females. These individuals were college students between the ages of 20 and
25 years, all of whom had experience in using smartphone applications and had been
using smartphones for at least one year. Among the participants, 32 had knowledge about
affective computing, whereas the remaining participants had no experience with affective
computing systems. The experiment lasted for 2 weeks. The research questionnaire’s
reliability was evaluated using Cronbach’s α. The Cronbach’s α value ranges between 0
and 1. The criteria for identifying the internal consistency of a questionnaire are presented
in Table 3. The questionnaire used in this study had excellent reliability (α = 0.914, Table 4).
The reliability of the research questionnaire for different aspects is presented in Table 5.
The questionnaire had high reliability for all the considered aspects.
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Table 3. Ranges of Cronbach’s alpha for different categories of internal consistency.

Cronbach’s Alpha Internal Consistency

α ≥ 0.9 Excellent
0.9 > α ≥ 0.8 Good
0.8 > α ≥ 0.7 Acceptable
0.7 > α ≥ 0.6 Questionable
0.6 > α ≥ 0.5 Poor

0.5 > α Unacceptable

Table 4. Overall reliability of the research questionnaire.

Cronbach’s Alpha Internal Consistency

0.914 Excellent

Table 5. Reliability of different aspects of the research questionnaire.

Research Orientation Cronbach’s Alpha Internal Consistency

Existence of Emotions in Machines 0.790 Acceptable

Attention Paid to Emotional Messages 0.792 Acceptable

Interest Toward Emotional Messages 0.707 Acceptable

Effects of Emotional Messages 0.751 Acceptable

System Usability 0.807 Good

4.2. Descriptive Statistics
4.2.1. Existence of Emotions in Machines

For items regarding participant perceptions of whether the machine had emotions, the
overall mean score provided by the participants was 3.6, with a standard deviation (SD)
of 0.6 and a standard error (SE) of 0.1. A total of 76 participants provided above-average
scores, and 48 participants provided below-average scores (Table 6).

Table 6. Descriptive statistics for items regarding the existence of emotions in machines.

Mean Max Min SD SE

3.6 5 2 0.6 0.1

The mean scores for all the items regarding the existence of emotions in machines were
>3 points. The frequency distribution results for the existence of emotions in machines
are presented in Table 7. The modal scores of Q1 and Q3 was “agree”, and the Q2 score
was “neutral,” which indicates that most of the participants perceived their machines to
have emotions.

Table 7. Frequency distribution table for items regarding the existence of emotions in machines.

Item Strongly Disagree Disagree Neutral Agree Strongly Agree

Q1 0 0 32 (25%) 68 (54%) 24 (19%)

Q2 0 20 (16%) 72 (58%) 24 (19%) 8 (6%)

Q3 0 8 (6%) 40 (32%) 60 (48%) 16 (12%)

4.2.2. Attention Paid to Emotional Messages

For items regarding the attention paid to emotional messages, the participants pro-
vided an overall mean score of 3.0, with an SD of 0.8 and an SE of 0.1. A total of 72 partici-
pants had above-average scores, and 52 participants had below-average scores (Table 8).

102



Electronics 2021, 10, 306

Table 8. Descriptive statistics for items regarding the attention paid to emotional messages.

Mean Max Min SD SE

3 5 1 0.8 0.1

The mean scores of all the items regarding the attention paid to emotional messages
were >3 points. Table 9 presents the frequency distribution results for items regarding
the attention paid to emotional messages. The modal score of Q6 and Q8 was “agree”;
that of Q4, Q5, and Q7 was “neutral”; and that of Q9 was “strongly disagree.” This is
not a positive result on a 5-point Likert scale; thus, on average, the participants did not
pay attention to the emotional information provided by the system. The participants paid
attention to emotional messages when the agent was in sight. Although the participants
were willing to read the emotional messages produced by the system, they tended not to
open the system when the agent was not in sight. Some participants voluntarily turned on
their smartphones to check the system’s emotions.

Table 9. Frequency distribution table for items regarding the attention paid to emotional messages.

Item Strongly Disagree Disagree Neutral Agree Strongly Agree

Q4 0 36 (29%) 40 (32%) 28 (22%) 20 (16%)

Q5 8 (6%) 24 (19%) 40 (32%) 32 (25%) 20 (16%)

Q6 8 (6%) 12 (9%) 28 (22%) 48 (38%) 28 (22%)

Q7 28 (22%) 28 (22%) 40 (32%) 20 (16%) 8 (6%)

Q8 4 (3%) 16 (12%) 48 (38%) 48 (38%) 8(6%)

Q9 48 (38%) 28 (22%) 28 (22%) 16 (12%) 4 (3%)

4.2.3. Interest in Emotional Messages

For items regarding user interest in emotional messages, the participants had an
overall mean score of 3.5, with an SD of 0.8 and an SE of 0.2. A total of 80 participants had
above-average scores, and 44 participants had below-average scores (Table 10).

Table 10. Descriptive statistics for items regarding user interest in emotional messages.

Mean Max Min SD SE

3.5 5 1 0.8 0.2

The mean scores of all the items regarding user interest in emotional messages were
>3 points. The frequency distribution results for items regarding user interest in emotional
messages are presented in Table 11. The modal score of Q10, Q11, and Q12 is “agree.”
For Q11, 54% of the participants agreed that emotional information is interesting, which
is a positive result on a 5-point Likert scale. This result indicates that participants were
generally interested in the emotional message compiled by the system.

Table 11. Frequency distribution table for items regarding user interest in emotional messages.

Item Strongly Disagree Disagree Neutral Agree Strongly Agree

Q10 12 (9%) 16 (12%) 24 (19%) 56 (45%) 16(12%)

Q11 4 (3%) 12 (9%) 40 (32%) 68 (54%) 0

Q12 8 (6%) 12 (9%) 28 (22%) 48 (38%) 28 (22%)
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4.2.4. Effects of Emotional Messages

For items regarding the effects of emotional messages, the participants had an overall
mean score of 3.5, with an SD of 0.7 and an SE of 0.1. A total of 72 participants had
above-average scores, and 52 participants had below-average scores (Table 12).

Table 12. Descriptive statistics for items regarding the effects of emotional messages.

Mean Max Min SD SE

3.5 5 1 0.7 0.1

The mean scores of all items regarding the effects of emotional messages were
>3 points. The frequency distribution results for the aforementioned items are presented
in Table 13. The modal score of Q13, Q14, Q15, Q16, and Q18 was “agree,” whereas that
of Q17 was “disagree,” which represents a positive result on a 5-point Likert scale. The
aforementioned result indicates that emotional messages affected most users and prompted
them to reexamine and be mindful of their smartphone usage habits. Moreover, partici-
pants who read the emotional messages, which served as a trigger for reflections, reflected
on their smartphone usage habits.

Table 13. Frequency distribution table for items regarding the effects of emotional messages.

Item Strongly Disagree Disagree Neutral Agree Strongly Agree

Q13 4 (3%) 12 (9%) 16 (12%) 56 (45%) 36 (29%)

Q14 0 16 (12%) 32 (25%) 56 (45%) 20 (16%)

Q15 4 (3%) 16 (2%) 8 (6%) 60 (48%) 36 (29%)

Q16 4 (3%) 8 (6%) 36(29%) 60 (48%) 16 (12%)

Q17 4 (3%) 40 (32%) 32(25%) 40 (32%) 8 (6%)

Q18 12 (9%) 28 (22%) 24 (19%) 44 (35%) 16 (12%)

4.2.5. System Usability

For items regarding system usability, the participants had an overall mean score of 4.1,
with an SD of 0.5 and an SE of 0.1. A total of 60 participants had above-average scores, and
64 participants had below-average scores (Table 14).

Table 14. Descriptive statistics for items regarding system usability.

Mean Max Min SD SE

4.1 5 2 0.5 0.1

The total score for the aforementioned items was 78.1 points, which indicated that
most of the participants found the developed system to have acceptable usability and be
unobtrusive in terms of daily smartphone use (Table 15).
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Table 15. Frequency distribution table for items regarding system usability.

Item Strongly Disagree Disagree Neutral Agree Strongly Agree

Q1 0 4 (3%) 48 (38%) 56 (45%) 16 (12%)

Q2 0 0 24 (19%) 68(54%) 32 (25%)

Q3 0 0 20 (16%) 68 (54%) 36 (29%)

Q4 0 0 16(12%) 40 (32%) 68 (54%)

Q5 0 8 (6%) 44 (35%) 48 (38%) 24 (19%)

Q6 0 4 (3%) 32 (25%) 48 (38%) 40 (32%)

Q7 0 0 16 (12%) 52 (41%) 56 (45%)

Q8 0 4 (3%) 28 (22%) 36 (29%) 56 (45%)

Q9 0 0 12 (9%) 52 (41%) 60 (48%)

Q10 0 0 16 (12%) 48 (38%) 60 (48%)

4.2.6. View Rate of Crucial Notifications and Instruction Execution Rate

Information on crucial notifications was obtained from the operation data collected by
the developed system. During the experiment, 11,264 crucial notifications were generated,
of which 8636 were viewed by the participants. The overall view rate of crucial notifica-
tions was 76.6%, and 7672 instructions were executed to resolve unfavorable smartphone
conditions and restore the device to normal conditions. The overall instruction execution
rate was 68.1%. In this study, a high view rate of the system’s crucial notifications and a
high instruction execution rate were achieved.

4.3. Experimental Results
4.3.1. Factors Influencing the Participants’ Perception of Emotions in Machines

The participants provided a mean score of 3.0 for items regarding the attention paid to
emotional messages. However, this study revealed that the participants rarely paid active
attention to emotional messages and were sometimes indifferent toward these messages.
Thus, the developed system’s emotional messages can be improved. The participants
provided a mean score of 3.6 for items related to their perception regarding whether their
machine had emotion. Generally, those who devote much attention to emotional messages
tend to perceive that their machine has emotions.

4.3.2. Participants’ Attitudes toward Emotional Messages

The participants had a mean score of ≥3.0 for items regarding their interest toward
emotional messages and the effects of emotional messages. Moreover, the modal score for
these items was satisfactory. However, the participants generally did not pay sufficient
attention to emotional messages. This result implies that the influence of messages on
users is determined by how interested users are in these messages. A high score on the
effects of emotional messages indicates the system’s effectiveness in arousing user interest.
Therefore, the effectiveness of emotional messages can be enhanced by increasing user
interest in them.

4.3.3. Effects of Crucial Notifications on User Behavior

The view rate of crucial notifications was 76.6%, and instruction execution rate was
68.1%. These results indicated that user behavior was affected by the emotions of the system.
The instruction execution rate was high because most of the participants were convinced
that their machine had emotions, and they were willing to reflect on the emotional messages
they received.
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4.3.4. Research Limitations

This study recruited students enrolled in the general education courses of a university
as the research participants. Therefore, the study results could only reflect the characteristics
of the student population in the university and the region where the university is located.
To address this limitation, future scholars should increase their sample size and diversify
the participants in their research. Additionally, the system used in this study is only
operable using Android devices and does not work on iOS devices. Therefore, future
designs should account for compatibility with iOS devices. This will allow more users to
operate the proposed system.

Picard posited that for machines to possess emotions, they must contain the following
components: emergent emotion and emotional behavior, fast primary emotion, cognitive-
generated emotion, emotional experiences, cognitive awareness, physiological awareness,
subjective feelings, and body–mind interaction. Accordingly, this study employed these
components to construct the proposed system. Picard also asserted standards should be
developed to evaluate the performance of these components. The present researchers will
further explore such standards in their future studies.

5. Conclusions

The experimental findings of this study indicate that compared with the participants’
interest in emotional messages, the degree of attention paid by them to emotional messages
more substantially affected their perception of whether their machine had emotions. There-
fore, developers should focus on enhancing such attention to make users more willing to
receive emotional messages or even click on the agent voluntarily to receive emotional
messages. After attracting user attention, program designers should enhance the influence
of emotional messages on users by appropriately designing the content of these messages,
thereby persuading users that the emotion system gives their machine the ability to express
emotions. The frequency of push notifications should not be excessively high. If this fre-
quency is excessively high, users’ willingness to receive emotional messages may decrease.
In the future, researchers should first design an effective method for emotional expression
and then appropriately design the content of emotional messages. Moreover, the system
should affect user behavior by convincing users that their machine has emotions. Finally,
the degree of attention paid to emotional messages determines the quality of an emotion
system, and researchers and designers should bear this in mind. In future, we hope that this
system can be used in medicine to help people with long-term emotional distress achieve
“micro-intervention” psychotherapy to improve their mood. “Micro-interventions,” such
as breathing training and visualization, allow the subjects to use various adopted or more
modern psychotherapy practice modes [36]. Further, it helps the elderly achieve a better
experience in using smartphones and a sense of intimacy similar to younger people.

Author Contributions: Formal analysis, H.-C.K.L.; Data curation, Y.-C.M.; Writing—original draft,
H.-C.K.L., Y.-C.M. and M.L.; Writing—review & editing, H.-C.K.L., Y.-C.M. and M.L.; Methodology,
Y.-C.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding

Conflicts of Interest: The authors declare there are no conflict of interest.

106



Electronics 2021, 10, 306

Appendix A

Table A1. System usability scale.

Items Descriptions -

1 I think that I would like to use this system frequently. 1 2 3 4 5

2 I found the system to be unnecessarily complex. 1 2 3 4 5

3 I thought the system was easy to use. 1 2 3 4 5

4 I think that I would need the support of a technician to use this system. 1 2 3 4 5

5 I found the various functions in this system to be well integrated. 1 2 3 4 5

6 I think that excessive inconsistency exists in this system. 1 2 3 4 5

7 I believe that most people would learn to use this system very quickly. 1 2 3 4 5

8 I found the system to be very cumbersome to use. 1 2 3 4 5

9 I felt very confident using the system. 1 2 3 4 5

10 I had to learn many things before I could begin using this system. 1 2 3 4 5

Table A2. Research questionnaire.

Items Descriptions -

1 When the smartphone expresses emotions, I feel as if the smartphone is alive. 1 2 3 4 5

2 Irrespective of whether the smartphone has emotions, I have the same view
of the smartphone. 1 2 3 4 5

3 I care about the emotions of the smartphone. 1 2 3 4 5

4 Every time I turn on the smartphone, I often observe the emotions of the
smartphone. 1 2 3 4 5

5 Even if I see the system’s emotion icon, I may not always check its emotions. 1 2 3 4 5

6 After closing other apps, if I see the agent of the system, I pay attention to the
emotions of the smartphone. 1 2 3 4 5

7 I turn on the smartphone specifically to check emotional messages. 1 2 3 4 5

8 When I think about the emotions of the smartphone, I do not turn on the
smartphone. 1 2 3 4 5

9 Sometimes, I turn on the smartphone simply to check the agent’s emotions. 1 2 3 4 5

10 I pay attention to the messages and emotional statements of the system. 1 2 3 4 5

11 I am not interested in the messages and emotional statements of the system. 1 2 3 4 5

12 I am curious about the emotional state of the system. 1 2 3 4 5

13 After reading the message of the system, I think about what makes the
smartphone produce such emotions. 1 2 3 4 5

14 Even if I read the messages of the system, I do not understand the reason
why the mobile smartphone produces such emotions. 1 2 3 4 5

15 After reading the information of the system, I can understand why the
smartphone has negative or positive emotions. 1 2 3 4 5

16 The information provided by the system indicates the ways in which I
should avoid using my smartphone. 1 2 3 4 5

17 The information provided by the system does not cause me to change the
way I use my smartphone. 1 2 3 4 5

18 I adjust how I use my smartphone according to the information provided by
the system and guess the emotions that the smartphone may generate. 1 2 3 4 5
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Abstract: Soft grippers are gaining significant attention in the manipulation of elastic objects, where it
is required to handle soft and unstructured objects, which are vulnerable to deformations. The crucial
problem is to estimate the physical parameters of a squeezed object to adjust the manipulation
procedure, which poses a significant challenge. The research on physical parameters estimation
using deep learning algorithms on measurements from direct interaction with objects using robotic
grippers is scarce. In our work, we proposed a trainable system which performs the regression of
an object stiffness coefficient from the signals registered during the interaction of the gripper with
the object. First, using the physics simulation environment, we performed extensive experiments
to validate our approach. Afterwards, we prepared a system that works in a real-world scenario
with real data. Our learned system can reliably estimate the stiffness of an object, using the Yale
OpenHand soft gripper, based on readings from Inertial Measurement Units (IMUs) attached to the
fingers of the gripper. Additionally, during the experiments, we prepared three datasets of IMU
readings gathered while squeezing the objects—two created in the simulation environment and one
composed of real data. The dataset is the contribution to the community providing the way for
developing and validating new approaches in the growing field of soft manipulation.

Keywords: machine learning; tactile sensing; perception for grasping

1. Introduction

Humans have an innate ability to perceive the physics of the world around them.
As we are biologically equipped with a very sophisticated sensory system that delivers data
to the brain, no-one consciously plans how to grab a cup of tea, squeeze a wet sponge or
flip a book page. We all know how to do that and how to predict deformations of different
objects based on their physical properties. Moreover, humans have at their disposal soft
and highly effective grippers—hands. Taking into account our assumptions about the
world that come from our minds, combined with the embodied intelligence [1] of our hands,
we can flawlessly adjust the process of manipulation to fluctuating external conditions.
However, machines do not have such in-built proficiency. Thus, their ability to manipulate
only allows for handling repetitive tasks and prevents them from adapting to new types of
objects efficiently.

Biologically inspired soft grippers [2–5] are designed to handle not only rigid bodies
but also deformable and usually delicate objects. How they interact with the real world
and how they adjust to different objects is ruled by their property called intelligence by
mechanics [1]. One can observe a significant rise in the number of available applications
of sensors capable of capturing high-dimensional deformations of soft and unpredictable
physical objects [6–8]. However, in our work, we state that traditional and widespread
sensors based on microelectromechanical systems can also be successfully used to predict
the physical nature of the robot’s surroundings. Thereby, we propose a hybrid approach
that connects an embodied intelligence of a soft gripper with an artificial intelligence system to

111



Electronics 2021, 10, 96

provide an easy to use, open-source and inexpensive method of estimating the physical
properties of objects with various stiffness parameters.

The following study presents the deep learning, real-world application for stiffness
coefficient estimation based on data from Inertial Measurement Units (IMUs) attached to
the fingers of the gripper. Our contributions are:

1. Creation of simulated environments for generating contact signals from IMU and
examining the soft gripper in various scenarios.

2. Verification of the performance of three neural networks in the task of stiffness
parameter estimation—one purely convolutional and two recurrent models.

3. The real-world verification of the proposed solution.
4. The extensive examination of the reality-gap between the simulated and real data.
5. The open-source implementation and data used in the experiments available online

(https://github.com/mbed92/soft-grip).

To prepare the real-world experiment, we used a two-finger gripper based on the Yale
OpenHand Project [2] with two IMUs attached to its fingers. The motivation behind the
choice of that type of sensor is twofold. First of all, typically soft grippers have no hinges
and do not use encoders; therefore, we cannot track their movement directly. Following
the research on the Pisa/IIT SoftHand [9], the the IMU measurements are sufficient for the
motion tracking of underactuated and elastic fingers of the gripper. Secondly, IMUs are
inexpensive, small and widespread among the robotics community. We than replicated this
setup in simulation to obtain more learning data and the control over generated signals.

The course of the research is shown in Figure 1 and consists of the following stages:
first, for the set of deformable objects of different shape and different stiffness parameters
we performed squeezing motion both in simulation and in the real world. In both cases we
were registering IMU data. For both approaches we trained and tested three different neural
networks architecture. The final outcome of the learning process were estimated/regressed
stiffness parameters of the objects. We started our investigation with experiments carried
out exclusively on data from the physics simulator to verify the capabilities of three different
architectures and examine the generalisation of the stiffness parameter regression between
different shapes of squeezed objects. Thereafter, we investigated the problem of closing the
reality gap between the simulation and real-world data. In our experiments, we exploited
the MuJoCo [10] simulator to provide a sufficient number of training samples. The IMU
device model used in our work was the MPU-9250 model. In Figure 2, there is presented
the setup used in the real-world scenario with its simulation model and exemplary objects.

Figure 1. Schematic diagram of the proposed system. The set of deformable objects is squeezed in simulation and with the
real gripper. The data is registered from Inertial Measurements Units mounted on the gripper fingers. Recurrent Neural
Network is performing deformable object stiffness coefficient regression based on registered data from IMU.

The remainder of the paper organised as follows. First, we will review the state-of-the-
art in the field of physical parameters estimation from haptic data. Then, we will provide a
description of prepared setups and our experiments. Next, we will move on to the results
section followed by the discussion. Finally, concluding remarks will be provided.
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Figure 2. To test our system, we arranged a real-world scenario using a 2-finger Yale OpenHand
gripper [2]. To provide a sufficient number of training samples for the learning process, we modelled
the gripper in the MuJoCo simulator as it is depicted in (a). In (b), real fingers consist of three plastic
blocks with flexible parts made of urethane. In (c), there are presented examples of sponges, exposing
different stiffness, used in our real-world experiments.

2. Related Work

In this section, we provided a comprehensive literature review both on the approaches
to measuring and estimating the object stiffness. Further, we showed current advances in
processing data from IMUs for a wide range of purposes. Finally, we presented a brief
overview of underactuated grippers with an emphasis on the soft grippers.

2.1. Measuring and Estimating a Stiffness

The knowledge about material’s stiffness is highly demanded in many practical appli-
cations such as industrial robotics, where a robot may use this information to predict an
object’s deformation. We present current advances in finding object stiffness in two general
approaches: measurement, where the result was obtained with the usage of advanced,
dedicated sensors and estimation, where we focused on the possible use of all available
information relevant for a given task.

Measurement—The practical application of the stiffness measurement was shown
in [11], where the authors proposed a method for continuous rail rigidity measurements
using the accelerometer and oscillating mass on the rolling wheel. This indicates that
the issue under examination is of great importance in engineering. Unlike the previous
method, the noncontact measurement of spindle stiffness was presented in [12]. The au-
thors proposed a magnetic loading device that enables one to perform the measurement
while the spindle rotates. Due to the usage of magnetic loading, that method is limited
to the ferromagnetic objects. Measuring the stiffness is also possible at a much smaller
scale. The authors of [13] presented the review of the nanoindentation continuous stiffness
measurement technique and its applications. The range of stiffness coefficients of materials
is extensive. To avoid saturation and enhance precision, authors of [14] proposed a portable
measurement tool able to adjust the sensing range by manipulating tool parameters, such as
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touch module separation, indenter protrusion and spring constant of the force sensing
module. Authors of [15,16] analysed the stiffness measurement techniques applied to the
polymer foams, which are cognate to those used in this paper. In [15] a procedure for
measuring the stiffness of the object using dot markers on the object and compression
plates to exert the force on the object was proposed. Authors stress the fact that nonaxial
compression tests result in worse performance, but it is usually the case in robotic ma-
nipulation. As in our method, in [9] authors proposed the IMU-based approach but in a
different task—the reconstruction of the configuration of a soft gripper. As opposed to that
work, we propose to indirectly measure the stiffness property by the change of behaviour
of the soft gripper while squeezing, not the gripper’s configuration itself.

Estimation—The method for the object stiffness estimation from the force sensor
readings was proposed in [17]. Authors used small optical force sensors mounted on the
fingertips, a known kinematic model of the robotic hand and a vision system to calculate
the stiffness based on the force and displacement readings. An alternative approach that
does not require measuring the object deformation was proposed in [18]. The authors
proposed the Candidate Observer-Based Algorithm, which exploits two force observers,
with different stiffness candidates, for estimating the stiffness of objects with complicated
geometry. Unfortunately, the authors did not refer their method to the ground truth
stiffness measurements. However, such a comparison was made in [19], where the neural
network was trained to predict the stiffness coefficient based on the maximum penetration
and the maximum contact pressure variation. An alternative deep learning approach
for understanding the haptic properties of objects was proposed in [20]. The real-world
objects were classified in the set of haptic adjectives in the multilabel fashion based on
haptic signals from BioTac sensors [21] and images. That work shows that there exists
a correlation between haptic sensor readings and the structure of the real-world objects,
and in our work, we took advantage of that fact.

The extensive overview of machine learning methods in the soft robotics aspect is
described in [22]. In the context of sensing, the authors distinguish sensor characterization
and systems characterization. In the group of sensors characterization, the use of Recurrent
Neural Networks for parameters regression is widespread, as we are dealing with signals
and continuous values of sensor parameters. On the system characterization level, we are
more focused on higher-level labels successful grasp [23] or slip detection. The use of
the classification of signals with categorical values is more common. The more focused
approaches are shown in [24], where learned control mechanisms were used, reinforcement
learning [25] or learned differentiable models [26].

2.2. IMU Measurements Applications

The popularity of IMU usage stems from its widespread availability at a low price.
One possible use in the robotics community is a robot’s state estimation. In [27], accelera-
tion and angular velocities collected from sensors located on the humanoid leg, together
with joints positions were used to estimate the velocity of the robot links. Authors in [28]
presented multiple interesting approaches to measure the ground reaction forces indirectly
during the human walk with the use of wearable IMUs. The other field where the measure-
ments of acceleration can be utilised is a material classification. In [29] authors used the
haptic device SensAble Phantom Omni [30] to gather the accelerations and velocities while
scratching the material surfaces. That dataset was used in [31], where a deep convolutional
neural network was taught to map raw signals input to classes of textures. The presented
method stays close to our solution. However, in our work, we performed regression instead
of classification.

2.3. Underactuated and Soft Grippers

As the approach proposed in this paper requires a soft gripper, we present a brief
overview of existing underactuated and soft grippers.
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Underactuated grippers was an area of research for many years. One of the first
grippers was designed by Tomovic and Boni in [32]. They proposed an anthropomorphic
underactuated hand with five fingers and 14 joints, driven by a tendon-driven mechanism
and two servo motors. Using tendons in the gripper designs provides an ability to easily
adjust the gripper’s shape to the object in a gentle way. To achieve grasps available only
to the fully-actuated mechanisms, authors of [33] proposed an underactuated gripper
with electrostatic brakes in joints, which enable to carry heavy objects by reducing power
consumption and motor torque during a steady grasp. Nowadays, hybrid approaches,
which combines fully actuated fingers for precise manipulation and underactuated ones for
power grasp and compliance, are becoming popular [34,35]. A different hybrid approach
is presented in [36], where authors proposed an underactuated gripper with a suction cup
for picking up various objects in different working environments. Such hybrid solution
allows for building multifunction robotic cells [37] for maximising the production rate.

On the other hand, for full compliance and shape adaptability, there is a lot of research
about a special group of underactuated grippers—soft grippers [38]. A popular way of
designing soft grippers is using elastomer actuators. In [39] authors used rubber fingers
driven by the pressure in the chambers located inside the fingers. However, as used
materials are usually soft, they are susceptible to damage. In response to that, authors
of [40] presented usage of self-healing materials to construct a soft gripper able to repair
itself. A different approach to control soft grippers is to use dielectric [41] or shape-memory
based [42] actuators. However, probably the most popular group of soft grippers are those
with passive structure driven by the external motors, such as adaptive compliant gripper
proposed in [43] or biomimetic soft-hand [44]. To this group also belongs a Yale Hand
gripper [2], which we used in our research. It is a low-cost two-fingered open-source
underactuated robotic hand, which is built with 3D-printed components with compliant,
flexible joints, and driven by tendons actuated with servos.

Interested readers may refer to recent more comprehensive underactuated and soft
grippers reviews such as [34,38,45].

3. Method

In the following section, we described the experimental design and provided detailed
information about both real-world and simulated environments for our experiments. Then,
we described the proposed neural network architectures used in our research.

3.1. Real Data

The Yale OpenHand shown in Figure 2 is the underactuated, two-finger soft gripper
with joints in the form of urethane elements to assure the elasticity of fingers. The real-world
model was 3D printed and driven by hobby servos capable of generating a force up to 10 N.
The IMUs were mounted at the fingertips of the hand. The IMU readings were used to
estimate grasped objects stiffness. In our work, we assessed how the embodied intelligence
of such soft gripper could be used alongside with the artificial intelligence system to predict
the real stiffness coefficient of a squeezed object. In the following paragraph, the real-world
data gathering process was presented.

First we estimated the stiffness coefficient for real objects in the dataset. To calculate
ground-truth values of the stiffness coefficient of real-world objects, we used the Universal
Robot UR3 collaborative manipulator, which was able to measure torques and forces
in its joints and tool respectively. The robot had 3D printed plastic bar mounted at the
flange. Using the Dynamic Force Control mode and pressing objects with the desired force,
we were able to accurately measure the displacement under specific force from robot state
readings. Thus, the stiffness parameter was computed according to Equation (1), where f1
and f2 are forces in Z-axis while pressing an object with a tool and |d1 − d2| is the relative
distance that correspond to the deformations under f1 and f2. We are aware that chosen
objects express nonlinear behaviour in their stiffness model (e.g., the greater robot compress
the sponge, the less deformation it adds). However, objects did not reflect that nonlinear
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effects in the specified range of exerted forces. Therefore, in our work, we assumed that
the estimated stiffness parameter is homogeneous for the entire object. Table 1 contains
stiffness coefficients measured experimentally for each object.

k =
| f1 − f2|
|d1 − d2|

(1)

Table 1. Stiffness coefficients computed for 5 different real objects.

Object Stiffness [N/m]

Wire sponge 909
Hard sponge 1020
Polish sponge 735

Soft sponge 380
Squash ball 1353

After measuring the value of the ground-truth stiffness coefficients, we used Yale
OpenHand to perform squeezing motion of each object and collected IMU readings during
motion execution. In total, we gathered 500 series. They consist of 12 sensor readings
(2 · IMU readings: [ax, ay, az, ωx, ωy, ωz]) each 200 time steps long. All samples are
equally distributed among the objects–100 samples per each object. The data was split into
two subsets—200 train and 300 test samples that were used in sim-to-real experiments.
Both sets in all our experiments remain unchanged. Thus, test data is never used in the NN
training. To address the issue of a physical interpretation of obtained stiffness, taking as
input the accelerations and angular velocities, we claim that the motion of gripper fingers
registered while squeezing different objects would vary significantly, which was presented
in Figure 3. One can observe that depending on the object’s stiffness the magnitude and
oscillations of both-angular velocity ω and linear accelerations Acc were significantly
different from each other, e.g., in the range of values or the oscillation rate. Taking that
phenomenon into account we put forward the thesis that it is possible to distinguish
between different stiffness parameters in the space of IMU sensors registered during
squeezing of these objects.

Figure 3. Comparison between exemplary samples from the real-world dataset while squeezing objects with different
stiffness values with a soft gripper. Values a1, a2, ω1 and ω2 refers to the magnitude of registered accelerations and angular
velocities and are expressed in m

s2 and rad
s respectively.

However, in our real-world dataset, there were only five different objects with distinct
stiffness values, which served as labels. In that situation, the number of different labels
was not sufficient to perform a successful regression. In fact with such a low diversity,
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a regression would inevitably turn into a classification and that was not desired in the task
of stiffness estimation. To overcome that problem, we prepared a second dataset based on
the simulation, where there was a possibility to generate more training samples. Stiffness
coefficients were adjusted to meet measured values.

3.2. Simulation

Modern neural networks frequently suffer from the limited ability to generalise to new
domains which are out of their training dataset. However, the rising popularity of machine
learning techniques in the robotics community leads to a significantly increased need for
data from a variety of experiments. To fulfil that demand, the state-of-the-art approach is
to perform experiments in simulation and use them to feed neural networks. In the case
of tasks which involve physical interactions, researchers can choose from a wide range of
available physics simulators. In our case, we selected MuJoCo physics simulator, due to
its new features regarding soft objects modelling. The simulated soft-robotic gripper was
shown in Figure 4. Fingers were connected by tendons and they are pulled by the actuator,
which simulates the pneumatic cylinder. Our model was based on the three-finger real
gripper [3] but with one finger removed. As it is depicted in Figure 4a, during experiments,
our gripper squeezed and released objects of three shapes—a ball, box and a cylinder,
all with a variable stiffness parameter. To simulate elastic deformations of the gripper,
each geometrical block of each finger is connected to others by three hinges. In this setup,
we can easily adjust the ranges of each joint in a roll, pitch and yaw axes, as was depicted
in Figure 4b. Finally, each 8-block finger behaves similarly to the elastic finger.

Figure 4. Soft-robotic gripper in the MuJoCo environment: (a) the gripper squeezes and releases
objects in three shapes—a ball, a box and a cylinder, all with a variable stiffness parameter; (b) each
geometrical block of each finger is connected to others by three hinges. In this setup, we can easily
adjust the ranges of each joint in a roll, pitch and yaw axes.

A stiffness coefficient in all our experiments (including the real-world scenario) is de-
fined in the same way as in the MuJoCo simulator—the softness of an object is characterised
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as the stiffness of springs attached from one side to the geometrical blocks on a surface and
from the other side to the centre of it. We always assume that the object is homogeneous.

The data collection was performed using the following steps. An object is located
between fingers and the actuator starts to close the gripper to squeeze the object. After a
half of an episode, the gripper opens. During the process, an object is embraced by fingers
that adapt themselves to its shape. A stiffness coefficient is expressed in N/m and varies
among episodes to equally cover the range (from 300 to 1400 N

m ), which fits the real-world
data range. A mass of all parts was adapted to the real values, as well as the mechani-
cal impedance of objects, damping, and stiffness of all joints and springs in the system.
Two IMUs are mounted on a MuJoCo’s element called site and located in the 3/4 of the
length of each finger in the outside part of it. For experiments, we prepared two simulation
datasets. The first one resembles the real-world data and consists of 5000 training-validation
samples gathered from squeezing the box object only. We use it for an enrichment of real-
world data. The second one was composed of objects in three different shapes—boxes,
cylinders and spheres. It counts 3999 training-validation samples—1333 samples per each
object. In our research, it was used to verify whether the NN can avoid overfitting to any
particular shape. Additionally, to verify the NN performance among different shapes of
objects we prepared three test datasets—133 samples for each object.

3.3. Experimental Design

The performance of Neural Networks (NN) was verified using a k-fold cross-validation
technique in each experiment. That method assesses the error rate and the generalisation
ability of predictive models. In our research, data is processed as follows: we shuffle the
dataset, then split the dataset into k subsets (folds), proceed with training using the k− 1
folds of data and validate the performance at the end of an epoch using the k-th fold.
Additionally, unless otherwise stated, after each epoch, we test the current NN model
using separate test data. After that, the procedure is repeated by starting the training of
a neural network from scratch on other folds of data. In our research, to ensure a fair
comparison of trained NNs, we did the 5-fold cross-validation for all experiments. As we
perform the regression task, we chose a Mean Absolute Error (MAE) and a Mean Absolute
Percentage Error (MAPE) as the performance metrics, to verify both absolute and relative
errors. Considering the usage of the cross-validation technique, in the following description
of datasets, we provided the number of samples in the training-validation sets together
and separately for test sets if needed. The summary of all datasets used in our experiments
was presented in Table 2.

Table 2. The number of samples in datasets used in our experiments based on the cross-validation.

Name Train/Validation Test

Simulation (box only) 5000 -
Simulation (all shapes) 3999 399

Real-world 200 300

3.4. Network Architecture

Our neural networks were predicting the stiffness parameter from fixed length se-
quences of accelerations and angular velocities measured by IMUs. In our research we
proposed to test three types of neural networks—the ConvNet based entirely on 1D convo-
lutional blocks, the ConvLSTMNet with forward LSTM units and the ConvBiLSTMNet
with bidirectional LSTM units. In both cases of LSTM-based NNs models, the recurrent
part is placed after the convolutional block. At the end of each architecture, we placed a
fully-connected layer named the Regression Block. The scheme of proposed neural network
architectures are depicted in Figure 5.
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Figure 5. In our networks, the Feature Extractor produced high-level features from an input using
1D convolutions. In the ConvBiLSTMNet and the ConvLSTMNet, the Recurrent Block processed
these features to find relevant connections for the stiffness estimation. However, in the former
architecture it was done in the forward and backward manner (from the beginning of the signal and
back). Finally, the Regression Block transformed high-level features into one scalar value. In our
experiments, we exploited three architectures of neural networks. The difference is in the Recurrent
Block—both recurrent NNs have the reduced number of filters in the last convolutional layer and
added LSTM cells with 256 units (2 × 128), while in the ConvNet the output from the Feature
Extractor is passed directly to the Regression Block.

Feature Extractor—The neural network input was a standardised sensor reading in
the form of the two-dimensional tensor. Each sample consisted of 12 time series with a
length of 200. The main task of that block is to extract features while remaining in the time
domain. Hence, data could be further processed recurrently or passed to the Regression
Block directly. The Feature Extractor consisted of three consecutive 1D convolution layers
with strides equal 2. In the ConvNet the number of filters was set to 128, 256, 512, while in
the ConvLSTMNet/ConvBiLSTMNet, the last convolution block was reduced to 256 filters
and replaced by the recurrent block with the same size.

Recurrent Block—It processes high dimensional time series from the Feature Extractor
in a recurrent manner using LSTM [46] or bidirectional LSTM cells [47]. The input is
mapped to a fixed-length vector that represents the entire sensor reading in itself. In that
way, we obtained a global, reduced description of the signal. Each recurrent cell consists of
128 units, as depicted in Figure 6. In the the ConvLSTMNet, both LSTM cells are organised
in two sequential layers processing the input in the forward direction only. Outputs of that
block are finally forwarded to the Regression Block.
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Figure 6. The core idea standing behind the bidirectional LSTM used in the ConvBiLSTMNet is as
follows–to prevent losing a context by the cell, process a sequence from the beginning to the end,
do the same in the reversed direction and concatenate both passes. Input xi refers to the i-th feature
vector returned by the convolutional block.

Regression Block—The last block was used to do a regression and output an estimated
stiffness coefficient. The necessity of using a fully-connected block stems from the fact
that extracted features and time dependencies between them are critical ingredients in the
regression process, but they are not the answer itself. At the very end of the processing,
it is necessary to transform the obtained features into stiffness coefficient estimate, which
can be easily performed using the stack of fully-connected layers. The number of units in
each layer remains unchanged for all tested architectures and is 512, 256, 128, 64, 1.

4. Results

The section of the results was divided as follows. Firstly, the simulation results were
presented. We verified which NN yielded the best performance on the simulation datasets
and how well it was able to generalise among different shapes of squeezed objects. After
that, the real-world experiments were conducted using the NN architecture chosen during
the simulation test stage. Finally, we focused on the closing of the reality gap between
simulation and real-world data. In all experiments we validated or models using the k-fold
cross-validation technique and provided results obtained for the best epoch per each fold
according to the MAPE. To ensure a fair comparison, in all our experiments and tests
we used Adam optimiser with a learning rate set to 0.001. Each model was trained with
the batch size 100 and all our solutions were trained for 100 epochs per each fold of the
cross-validation.

4.1. Neural Network Architecture Comparison

First of all, in our experiments, we compared three types of neural networks using data
from simulation and chose the best one for further experiments. The values of MAE/MAPE
metrics from the cross-validation procedure were presented in Table 3. The best performing
network—the ConvBiLSTMNet, was chosen for further experiments.
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Table 3. The comparison of three NN architectures according to MAE/MAPE metrics. The usage
of bidirectional LSTM units gave an improved performance comparing to the ConvNet and the
ConvLSTMNet .

ConvNet ConvLSTMNet ConvBiLSTMNet

k-Fold MAE MAPE MAE MAPE MAE MAPE

I 19.1 2.4 6.2 0.8 6.2 0.8
II 11.8 1.6 5.4 0.7 5.4 0.7
III 15.1 2.2 7.8 1.1 7.8 1.1
IV 14.6 1.9 6.7 0.9 6.7 0.9
V 18.1 2.1 6.2 1.0 6.2 1.0

MEAN 15.7 2.0 6.8 0.9 6.5 0.9
SD 2.9 0.3 0.9 0.2 0.7 0.1

4.2. Shape Generalisation

To verify the capability of the ConvBiLSTMNet to successfully estimate the stiffness pa-
rameter we conducted more experiments using the simulation-only datasets. We started the
cross-validation procedure from scratch for chosen model and reported the MAE/MAPE
for three different datasets in Table 4. Each test dataset was composed of sensor readings
from squeezing only one type of object so that the findings of the shape-dependent stiffness
parameter regression could be provided.

Table 4. The results from experiments on shape-invariant estimation of the stiffness parameter using
ConvBiLSTMNet.

k-Fold

Dataset

Ball Box Cylinder

MAE MAPE MAE MAPE MAE MAPE

I 20.3 2.0 24.1 1.8 15.6 1.8
II 29.6 2.6 12.9 1.6 15.8 1.9
III 27.1 2.0 22.8 1.8 16.0 1.9
IV 21.8 2.1 17.7 16.6 18.4 1.9
V 19.3 2.0 24.4 1.5 20.8 1.9

MEAN 23.6 2.1 20.4 4.7 17.3 1.9
SD 4.5 0.3 5.0 6.7 2.2 0.0

4.3. Sim-To-Real Gap

The central part of our research was about assessing the reality gap in the task of the
stiffness parameter estimation. In that part of the experiments, we performed 5 training
procedures of the ConvBiLSTMNet on data with different number of real-life examples or
noise added to simulation data, each composed of 5-fold cross-validation. In Table 5 we
reported MAE/MAPE metrics gathered while testing each model on the separate dataset,
not involved in the training/validation procedure. In the sim + noise experiment we tried
to close the reality gap, by adding a zero-mean Gaussian noise with standard deviation
set to 0.7 m

s2 for accelerations and 0.06 rad
s for the gyroscope readings. The parameters of the

noise were adjusted by trials and errors, thus too large standard deviation resulted in the
lack of the convergence ability of the NN, while too small caused model to overfit to the
simulation data and no clear rule for that phenomena is known. Each next cross-validation
turn was performed on simulation datasets without noise and with a small number N of
real-world data samples included in the training part. In Table 5 we refer to them as sim +
N real.
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Table 5. MAE/MAPE results reported for best epochs from each of the cross-validation turns. Introducing to the network
even a small number of real-world sensor readings resulted in a significant improvement in the performance.

Experiment
Name

k-Fold MEAN

I II III IV V
MAE MAPE

MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE

sim + noise 281.3 37.7 275.0 38.5 275.6 38.4 282.7 37.6 256.6 37.9 274.2 ± 10.4 38.0 ± 0.4
sim + 50 real 190.6 23.1 216.1 27.1 187.8 26.4 151.8 21.6 200.7 27.7 189.4 ± 23.8 25.2 ± 2.7

sim + 100 real 134.6 20.6 108.3 17.6 134.9 19.6 126.8 18.6 126.6 18.3 126.2 ± 10.8 18.9 ± 1.2
sim + 150 real 89.3 12.9 85.9 13.7 92.7 13.2 73.9 11.0 79.9 10.2 84.3 ± 7.5 12.2 ± 1.5
sim + 200 real 66.9 9.1 49.3 7.0 82.6 10.9 67.4 8.4 56.6 8.0 64.6 ± 12.6 8.7 ± 1.5

5. Discussion

In the following section, we summarised obtained results and our observations for
three types of experiments carried out in the course of our research.

Architecture Choice—We compared the performance of three types of neural networks
in the task of a stiffness parameter estimation from IMUs readings, to choose the best one
for the further analysis. All models were examined on the simulation dataset without
real-world data samples. In Table 3 one can observe the results from cross-validation
on the simulation dataset. The mean results of the MAE/MAPE show the advantage
of the LSTM-based models in the performed task. The conclusions are twofold. Firstly,
the ConvBiLSTMNet is more accurate in its predictions than ConvNet, resulting in MAE of
6.5 N

m and MAPE of 0.9%,which means the improvement over 9.5 N
m and 1.1% achieved by

the ConvNet. Secondly, the stability of the learning process also improved and it can be
observed in deviations of errors obtained between cross-validation folds. For ConvNet the
standard deviation of results is 2.9 N

m MAE and 0.3% MAPE, while the ConvBiLSTMNet
decreased these values to 0.9 N

m and 0.2% respectively. Comparing two recurrent NNs, one
can observe that the results are similar. However, the ConvBiLSTMNet exhibits better
performance in the MAE, what means than on average it made a lesser absolute error,
hence that architecture was chosen for further experiments.

Shape-Invariant Predictions—To verify the generalisation capability of the ConvBiL-
STMNet and verify its performance on different types of objects, we performed additional
experiments. In Table 4 we gathered the MAE/MAPE from testing the network on three
separate datasets, each of which included only one shape of object, while training on all
shapes at once. All the results suggest that the proposed NN was able to generalise among
different types of shapes and perform the shape-invariant stiffness parameter prediction.
It appears that the cylinder-shaped objects are the easiest in the performed task, which
is reflected in the lowest errors 17.3 N

m MAE and 1.9% MAPE. However, box objects gave
the smaller values of MAE (20.4 N

m ) than ball-shaped objects (23.6 N
m ), while looking at the

MAPE the situation was the opposite—larger error was observed for boxes (4.7%/2.1%).
This means that the NN was inaccurate more often while estimating large stiffness values
for boxes that resulted in the increased relative metric (MAPE), while for ball-shaped
objects the quality of the estimation was decreased for small values that gave increased
absolute measure (MAE).

Closing The Reality Gap—In the task of haptic recognition of physical parameters,
data from the physics simulator appeared to resemble the real-world IMU readings only to
some restricted extent. Although the results from sim + noise tests were significantly worse
than any of the sim + real trail, the mean MAPE 38% suggests that the correspondence
between the simulation-only and real-world signals exists. Additionally, it is important
to note that MAE/MAPE values from each fold in the sim + noise experiment remained
relatively close to each other, which means that the model prediction performance was
similar for the entire dataset, as it was equally balanced in the stiffness parameters range.
However, the reality gap cannot be considered as a solved problem, because the greatest
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improvement was observed for experiments with the real-world sensor readings included
in the training dataset. In Figure 7, one can observe the decreasing value of MAE/MAPE
metrics as the number of real data samples are added to the training dataset. In our
experiments we do not include the results from the training on the real-world data only,
as they would be incomparable with other experiments, due to the low variability of
the stiffness coefficient. Additionally, the number of data samples would be too low to
assess the fair comparison in the real-world scenario. The lowest MAE/MAPE obtained in
experiments on closing the reality gap were achieved for sim + 200 real trial and were equal
to 64.6 N

m and 8.7%. However, in the sim + 50 real experiment, the added number of real
samples constituted only 1.2% of the entire training dataset, but the largest performance
improvement among all experiments was observed. The improvement was 84.8 N

m and
12.8% of the MAE/MAPE.

Figure 7. Results of MAE/MAPE from the testing on real-world data presented in the box plot.
As the number of real data samples included in the training dataset increases, the test error decreases.
Boxes represent consecutive experiments and consist of the five-number summary of the result
(from the bottom of each box): minimum, first quartile, median, third quartile and maximum value.

6. Conclusions

We have shown that estimation of the object’s physical parameters using data from
IMU sensors is possible and beneficial due to the low cost of setup and no further need
for sophisticated equipment. Our deep learning solution solves a problem of the stiffness
estimation in the soft robotics area, introducing a novel approach, which associates an
embodied and artificial intelligence. Their combination may lead to a system robust to
unforeseen and changing external conditions. While currently used methods of stiffness
search exploit techniques of measurement or direct estimation, the method proposed by
us is characterised by the discovery of knowledge and causal relationships related to the
characteristics of a given object and its physical features. Research on the discovery of
knowledge acquired by neural networks may result in the diagnosis of the intuition behind
the natural behaviour of humans in the tasks of manipulating objects. We find it likely
that similar solutions, based on low-cost sensors and deep learning, may be successfully
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applied for robotic manipulation in everyday scenarios. We hope that the published data
and the implementation of neural networks used in our experiments will inspire other
researchers to delve into the research area of soft grippers and perception of the physical
world based on tactile data in robotics.
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Abstract: In this article, the design of a five-fingered anthropomorphic gripper is presented
specifically designed for the manipulation of elastic objects. The manipulator features a hybrid design,
being equipped with three fully actuated fingers for precise manipulation, and two underactuated,
tendon-driven digits for secure power grasping. For ease of reproducibility, the design uses as
many off-the-shelf and 3D-printed components as possible. The on-board controller circuit and
firmware are also presented. The design includes resistive position and angle sensors in each joint,
resulting in full joint observability. The controller has a position-based controller integrated, along
with USB communication protocol, enabling gripper state reporting and direct motor control from
a PC. A high-level driver operating as a Robot Operating System node is also provided. All drives
and circuitry of the PUT-Hand are integrated within the hand itself. The sensory system of the hand
includes tri-axial optical force sensors placed on fully actuated fingers’ fingertips for reaction force
measurement. A set of experiments is provided to present the motion and perception capabilities
of the gripper. All design files and source codes are available online under CC BY-NC 4.0 and
MIT licenses.

Keywords: robotic hand; control; perception; tactile sensing; mechatronics; grasping; manipulation;
PUT-Hand; underactuated

1. Introduction

Manipulation of elastic pipes and wires in factory environments is performed mainly by human
operators. Some of the tasks on the elastic objects are performed by the machines designed specifically
for that operation. Rarely, the manipulation of elastic objects is performed by robots which can adapt
to the changes in the process. This scenario is still challenging, due to the deficiencies in mechanical
design of the grippers and the perception systems. Interaction with elastic objects requires not only
high manoeuvrability but also reliable tactile feedback.

Robots have a potential to manipulate elastic objects autonomously without a supervision of
a human operator. Application of robots in factories improves the production process and reduces
number of errors and mistakes made by humans. However, manoeuvrability of the robot and capability
to work with elastic objects still need development.

Capabilities of the grippers available in the industry are limited, as most of them are two-fingered
or three-fingered [1–3]. They are often fully actuated systems with position-based control, designed for
precise manipulation. This means that they are not designed to deal with variability and uncertainty
of an environment, a slight change in object positioning or its shape may cause a failure.

Contrarily, many adaptive grippers are designed to replace missing body parts, mimicking the
human hand, with five fingers [4]. Digits can be both fully actuated [5] or underactuated for better
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adaptation to shape of grasped objects [6]. However, they are designed to replace human hands, not to
operate as a gripper of an industrial robot.

In this research, we focus on the design of a robotic hand which can be used to manipulate elastic
objects. We carefully study the literature to find a compromise between precision of the grasp and
adaptability, achieved by optimising the number of fully actuated and underactuated fingers. We also
study the perception system of robotic hands and propose the application of optical tactile sensors on
the fingertips. We present the application of the hand in several tasks related to manipulation of elastic
objects, including grasping, tactile sensing, and application-oriented tasks.

1.1. Problem Statement

Our main goal was to design a compact robotic hand which has the capability to interact with
elastic objects. The hand should enable precise manipulation and grasping, while allowing power
grasping with underactuated fingers. We had to determine which joints of the fingers should be
fully actuated and which ones should be underactuated. Moreover, we had to design the actuation
mechanisms to preserve compact dimensions of the hand.

The design of the hand should provide full observability of all joints, including underactuated
ones, as the state of the joint does not depend only on the drive, but also on the shape of grasped object,
and the state of neighbouring joints. The perception system of the hand should also allow measuring
mechanical properties of objects and reaction forces.

Finally, the mechanical design and perception system should allow performing task-specific
modelling. During interacting with elastic objects the sensors should provide information about the
contact with the object and measure the changes in the object’s state. The example scenario is plug
insertion, during which reaction forces increase until the plug reaches a stable configuration. The final
state of the system should be detected by the sensory system of the proposed hand.

1.2. Approach and Contribution

In this article, we present a new open-source design of the dexterous robotic hand - PUT-Hand,
shown in Figure 1. The gripper includes fully actuated fingers with tactile sensing, and underactuated
fingers for power and adaptive grasps. The mechanical part is providing in one design the compact
human-like hand for skilful manipulation with hybrid fully actuated and underactuated fingers.
The hand is lightweight and has a unique feature that all the drives are built-in the palm of the hand,
which is reducing the length of the end effector hence it is minimally shrinking work volume of
manipulator equipped with our hand. The hand is reproducible. The mechanical and PCB design
files, firmware, and ROS node are available at https://github.com/puthand under CC BY-NC 4.0
and MIT licenses. We also provide a broad literature review related to robotic and prosthetic hand
designs. We also contribute to the control and perception system of the hand, presenting hand on-board
controller and a ROS driver. The ROS driver enables computing forward and inverse kinematics,
motion planning, and visualisation. The full software stack is available.

The hand is designed for elastic object manipulation by providing three fingered-like manipulation
when thumb in the first joint is oriented towards the inner part of the palm. The hand operates in robotic
gripper mode and it allows in hand dexterous manipulation of elastic elongated objects i.e., cables
and hoses. Additionally, thanks to full sensorisation of the hand, joint encoders and force sensors at
the fingertips, one can estimate elastic object parameters by performing in hand manipulation and
measuring fingers displacement and reaction forces caused by the movement of the fingers.

Finally, we provide an experimental verification of PUT-Hand and its controllers. We show
manoeuvrability of PUT-Hand during grasping various objects. We demonstrate that the sensory
system of the hand can be used to detect contact with an object but also to measure its physical
properties (e.g., object stiffness). We also provide application-oriented experiments to show the
interaction of the hand with elastic objects during pipe bending and inserting a plug into a socket.
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Figure 1. PUT-Hand—An open source dexterous robotic hand.

2. Related Work

We limit the review to hand designs available in the literature, also considering commercially
available hands only if description and specification are detailed enough. For this reason, we do not
include some of the commercial prosthetic hands, such as VINCENT hands by Vincent Systems [4],
iLimb and iLimb Pulse by Touch Bionics [7], and Michelangelo by Ottobock [8]. If a research team
publishes a series of designs, we only consider the latest version in the review. Multiple hand designs
by the same group are only considered if the mechanical concept of the hands differs significantly.

Most of the hands considered in the review are research platforms presenting unique
mechanical, control or sensing concepts. Additionally, we include five commercial platforms in
the comparison. In the review, we have proposed gripper design taxonomy based on three criteria:
joint drive mechanism type, whether the system is fully actuated or not, and number of digits and
kinematic structure.

2.1. Joint Drive Mechanisms

A large variety of drive to joint power transfer methods can be found in the literature. In this
work we analyse the most common and representative approaches. The classification of joint drive
mechanisms for robotic fingers is presented in Figure 2 as eight categories: direct drive with gears,
fully actuated joints with tendons, backdrivable tendon, underactuated finger with a tendon, rigid
linkage system, underactuated joints with rods, pneumatically actuated, and pneumatic/hydraulic
muscles. We identified 21 structures with tendon mechanisms [2,3,6,9–26], two with direct drive
based on gears [1,5], one rod-based [27], two with rigid linkage system [28,29], one with differential
drivetrain and cams [17], one with pneumatic chamber [30], and one with hydraulic muscles [31].
All the cited papers were grouped in Table 1.
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Figure 2. Joint drive mechanisms for robotic fingers: direct drive with gears (a), fully actuated
joints with tendons (b), backdrivable tendon (c), underactuated finger with tendon (red or blue)
(d), rigid linkage system (e), underactuated joints with rods (green) (f), pneumatically actuated
(g), pneumatic/hydraulic muscles (h). Legend: 1—electrical motor, 2—joint, 3—nut, 4—rod, 5—air
chamber, 6—elastic fabric, 7—inelastic fabric, 8—pneumatic/hydraulic muscles.

Table 1. Related work—joint drive mechanisms review.

Tendon mechanism [2,3,6,9–26]
Gears [1,5]
Rod-based [27]
Rigid linkage system [28,29]
Differential drivetrain [17]
Pneumatic chamber [30]
Hydraulic muscles [31]

The most popular method for joint coupling uses tendons (Figure 2b). The tendon transfers the
torque from an electrical motor or force from a linear actuator to the rotational joint. The tendon might
be coupled with a spring to generate compliant behaviour of the fingers. The popularity of tendon-like
mechanisms comes from the fact that this mechanism is bio-inspired and gives the natural compliance
and adaptation of the hand. This approach reduces the number of actuators and allows obtaining
a robust grasp without additional tactile or force/torque sensors.

Gears are used mainly in the fully actuated fingers to transfer the torque from the drive to the
joint [9,11,31]. Rods become popular when the drives are located in the palm and the rods push the
finger links [27]. This approach reduces the weight of the fingers. The lighter hands are actuated by
the pneumatic chambers [30]. In this case the fingers are made of elastic material and bend when the
pressure inside the chamber changes. Moreover, the finger adapts to the shape of the object [30]. On the
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other hand, the gripper with pneumatic chambers requires the air compressor. The same problem
exists when pneumatic [22] and hydraulic [31] muscles are used.

The fingers of PUT-Hand for the first three fingers are fully actuated with rigid linkage system
and gears [28,29]. The last two fingers are tendon driven, e.g., [15].

2.2. Mechanical and Kinematic Structure

In the review we identified six grippers which are fully actuated [1,9,11,22,31,32]. However,
most of the designs exploit the underactuation concept: [2,3,6,14–16,18–21,23–25,27–30,33], ref. [5,10]
(two joints coupled), ref. [12] (four joints coupled), ref. [13] (20 joints/9 actuated), ref. [17] (18 joints/16
actuated). Furthermore, the review revealed the following categories with respect to digit count:
three-fingered [1–3], four-fingered [6,9,11,25,34]. Most of the grippers described in the literature have
five fingers: [5,10,12–17,17–24,27–32]. All the hand structures were grouped in Table 2 regarding
mechanical structure and in Table 3 regarding kinematic structure.

Table 2. Related work—Robotic hands mechanical structure review.

Fully actuated [1,9,11,22,31,32]
Underactuated [2,3,6,14–16,18–21,23–25,27–30,33]
Hybrid designs [34–41]

Table 3. Related work—Robotic hands kinematic structure review.

Three-fingered [1–3]
Four-fingered [6,9,11,25,34,39,40]
Five-fingered [5,10,12–17,17–24,27–32,35]

In our design we decided to use five fingered design closely resembling human hand in geometry
and size as it was the outlined in [35]. This choice allows us to perform dexterous manipulation
and different grasps and manipulation strategies are obtained in software without changes in the
mechanical hardware of the hand.

2.2.1. Fully Actuated Designs

Most of commercially available grippers have a limited number of joints, with full actuation
and position sensing (e.g., 3-finger Schunk SDH [1]). In a backdrivable CEA hand [10] the joints are
fully actuated, with last two joints in each digit mechanically coupled, providing natural behaviour
of the hand during force control and high robustness. Utah/M.I.T Dextrous hand [9] is a 4-fingered
tendon-driven design, where 32 drives are required. Another 4-fingered design, Sandia hand,
was designed by Quigley et al. [11], with each joint actuated by brushless DC servomotors and
tendons. Focus was put on the robustness of the hand, and fingers separate from the hand in case of
a collision. The UB Hand 3 [17] has 16 degrees of mobility, with joints driven by tendons.

Grasping control algorithm problems become apparent in more complex fully actuated 5-fingered
designs [5]. The gripper with the most complex kinematic structure which is considered in this
review is Shadow hand [12]. The hand has 5 fingers and 24 joints actuated by McKibben muscles and
tendons, which makes it robust to disturbances, but also mechanically complex and of substantial
size and weight. The latest hand built at the University of Washington has a similar kinematic
structure, with two versions built: driven by pneumatic cylinders [22] and driven by servomotors [23].
Both versions use tendons to transfer the energy from drives to the joints and the drives are mounted
in the forearm.

When using a fully actuated design, all joints angles have to be computed according to given
dimensions of handled object. If the measurements are uncertain the hand has limited capabilities
to adapt to the shape, or the adaptation is slow due to delayed feedback from sensors. On the other
hand, fully actuated grippers can be used to perform more complex manipulation tasks. The digits can
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reach any position in the workspace in contrast to underactuated systems, where motion trajectory
also depends on the shape of the manipulated object.

2.2.2. Underactuated Designs

Underactuation concept not only allows designing compliant hands which adapt to the shape
of the objects but also to reduce the number of actuators and weight of the hand. One of the first
underactuated anthropomorphic grippers was built at the University of California and Belgrade [14].
The hand has 5 fingers and 14 joints, driven by two servomotors and a tendon-driven mechanism.
The elastic coupling of the joints allows the fingers to adjust to the shape of an object. TBM hand [28]
is a five-finger design using a rigid linkage system to couple joints, all joints are driven by a single DC
servomotor. Compliance is obtained by application of extension springs pulling the linkage systems.
Similarly, ref. [20] is an underactuated structure driven by one DC motor.

Four fingered design is described in [25] the project uses simple 3D-printed components with
compliant flexure joints and off-the shelf parts to provide low-cost, open-source underactuated hand.

Three-fingered designs often mimic the behaviour of the thumb, index, and middle finger of the
human hand. An underactuated prosthesis proposed by Zollo et al. [2] is optimised to be capable
of reproducing natural human motions. Similarly, the 3-fingered RTR II hand [3] uses differential
mechanisms to control multiple joints. The BarretHand designed for industry [42] uses the mechanism
which shifts torque to appropriate finger joint. The joints are locked when the fingertip reaches contact
with the object. The number of actuators is limited in SRI hand [6] and two fingers can be rotated
on a slider mechanism. Breaks in joints are used to reduce power consumption and motor torque
during a steady grasp. The same authors also propose the tool that is aimed to design underactuated
hands [43]. The simulation tool takes into account the dynamics of the hand, an actuation mechanism,
and contact friction. The core of the simulation engine is based on three-dimensional force fields.
Southampton-Remedi hand [29] has six drivable degrees of freedom. The authors of [24,44] explore
the concept of active synergies in performing grasping and manipulation tasks. The compliance of
SmartHand [18,19] is obtained using Hirose’s soft (differential) finger mechanism [45]. Various hands
were proposed by groups which are interested in anthropomorphic prosthetics. An underactuated
MANUS hand [16] has five fingers but only three of them are actuated. The hand has four grasping
modes: cylindrical, precision, hook and lateral obtained with two servomotors only. Due to simplicity
in mechanical design underactuated grippers can be easily prototyped using 3D printing [27,46].

Underactuated designs have a reduced controllability compared to fully actuated ones; however,
the general trend is to reduce the number of actuators. The Vanderbilt hand [21] has five fingers and
16 joints driven by tendons and five DC motors. The UNB anthropomorphic hand [33] has five fingers
and only three DC motors. The complex motions are obtained using differential drivetrain and cams.

To achieve required dexterity while keeping the design compact and control algorithms simple,
hybrid designs combining both approaches can be explored, with fully actuated fingers dedicated
to precise manipulation and underactuated supporting fingers for power grasp. One of the possible
solutions was presented in [34], where authors presented a unique design of the fingers which allows
for generating linked and adjustable motions. Joints exhibit a coupled movement in free space and
moves adaptively when in contact with the objects. Word hybrid applied to hand-design is understood
differently in the literature. For Mizushima et al. hybrid was used in the context of hybrid design
of the fingers, which skeleton was tendon driven and inside the skeleton the granular material after
removing the air the grasping posture can be fixed [36]. A similar understanding of word hybrid
is present in [38]. In the case of work presented, in [37] word hybrid is used for describing the hand
with three mechanical and three soft fingers. Additionally, in work [35] word hybrid was used to
characterise linkage and tendon driven-based fingers. In work done by Jeong and Cheong, the hybrid
nature of the hand is understood as the mode of operation. Hand uses four fingers for human-like
motions in human hand mode, and three fingers without the thumb when it is used in conventional
robotic hand mode [39,40]. Conversely, Cerruti et al. use word hybrid to describe two actuation
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system present in hand and working in parallel. One is responsible for gesture capability but low force
(linkage mechanism) and the second is used when the grasping force is needed (tendons) [41].

In the case of PUT-Hand, the hybrid is understood two folds. First, the hand is composed of
three actuated fingers and two underactuated. Second, PUT-Hand, like the design proposed in [39,40],
has two modes of operation, which in case of a PUT-Hand depends on the orientation of the thumb.
When the thumb in the first joint is oriented towards the inner part of the palm the hand operates in
robotic gripper mode similar to BarretHand [42]. This configuration allows the robot to perform in
hand manipulation of the elastic objects such as cables. When the thumb is rotated outwards from the
palm, it resembles a human hand as in [35].

2.3. Tactile Sensing

A suitable sensory system is crucial while performing successful grasping and manipulation
tasks, particularly for elastic object handling. In autonomous, unsupervised manipulation, initial
gripper configuration can be chosen based on an object model obtained by a RGB-D sensor [47,48].
Vision-based grasping algorithms can be further improved by active-sensing—a strategy for view
selection to maximise the surface reconstruction and safety of the planned trajectory [49]. However,
data from depth camera can be noisy, causing uncertainty in generated model [50], leading to a
decrease in overall autonomous manipulation performance or even a failure.

Equipping a gripper with tactile sensors can further improve its manipulation capabilities in
robotised setups by providing feedback to the robot controller [51], estimating the contact force
and actively controlling the reaction forces to stabilise the grasp [52], or as a source of object
identification [53,54]. Tactile information can also be used to determine physical properties of an
elastic object or to determine the state of manipulated object. Tomo et al. [55] has proposed uSkin
3D tactile sensors intended for Allegro Hand fingertips and phalanges, providing 16 independent
force measurements for each contact plane. Data from these sensors can be used as an input for
Convolutional Neural Networks in tasks of object identification [56].

Other designs introduce tactile sensing using: inertial units [57], piezoelectric sensors [58,59],
resistive sensors [60], a camera for deformation measurement [61], or capacitive sensors [62,63].
An extended literature review in the field of touch sensing is presented in [64,65].

3. PUT-Hand Design

3.1. Mechanical Design

The main design goal of PUT-Hand project was to create an anthropomorphic gripper which
is capable of performing both precise object manipulation and power grasps, in an industrial
environment, while using as many off-the-shelf parts as possible. A taxonomy of human grasps [66]
shows that most of precision grasps and manipulations is done using three or less fingers—thumb,
index, and middle. Many grasps use virtual fingers, where several fingers work as one functional unit.
Ring and little fingers are used mostly as assisting fingers in power grasps, where individual control of
each joint is not necessary. To provide a balance between grasping capabilities and complexity of the
gripper’s mechanical and control structures, a hybrid structure was proposed. The design incorporates
three fully actuated fingers (thumb, index, and middle), and two underactuated fingers. All movable
joints, in both actuated and underactuated fingers, are fitted with position sensors and observable,
allowing for full grasping planning and simulation. The resulting design, shown in Figure 3, is mostly
3D-printable, with single elements requiring CNC machining from aluminium or turning from stainless
steel. All drives and controllers are integrated within the palm or fingers.
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Figure 3. PUT-Hand—an open-source dexterous robotic hand.

3.1.1. Fully Actuated Fingers (Index and Middle)

Index and middle fingers are designed as fully actuated, with two degrees of freedom. MCP is
driven independently, while PIP and DIP share the same drive. This configuration provides full control
over fingertip position in finger’s 2D plane while maintaining mechanical simplicity (MCP is a single
DoF joint with no adduction or abduction ability). The fingers share the same design and dimensions,
allowing for easier manufacturing and parts interchangeability. Overall finger dimensions of 18 mm
(width) by 20 mm (height) closely correlate with adult mean index finger width [67]. Annotated design
of the finger is shown in Figure 4.

Figure 4. Mechanical design and drives of a fully actuated finger; design intended for index and
middle fingers.
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Due to large torque requirements in MCP, a linear actuator was designed to drive the joint.
The drive uses a Pololu Micro High Power 6 V DC motor with 1:75 gearbox driving an Igus DryLin®

lead screw (2.54 mm pitch). The lead screw is supported by a set of two thrust bearings on the
opposite side. The lead nut is attached to a feed sliding on a CPC MR3ML ball bearing linear guide.
Drive position feedback is obtained from an Alps RDC1022A05 linear resistive position sensor.

The linear actuators fit within the palm of the gripper and flex the fingers using aluminium rods.
The relation between actuator position and finger flexion is shown in Figure 5. The structure reaches
maximum efficiency at θMCP = 61◦, exerting the force of 8.7 N at the fingertip.
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Figure 5. Relation between linear actuator movement and finger flexion in MCP.

The second drive resides inside the proximal phalanx. The drive uses motor and metal gears from
Hitec (gear set 56,396), used in a range of miniature digital servos (e.g., HS-5245MG). The gearbox
was reconfigured to fit in narrow space of the phalanx and drives PIP directly. Movement is passed
to DIP using an aluminium rod. Angle feedback is provided at DIP using an Alps RDC503013A
rotary resistive sensor. Relation between PIP and DIP angles is shown in Figure 6. The rotation ratio
between PIP and DIP was chosen, so with both drives fully flexed, the fingertip touches the metacarpus.
When fully extended, the drive exerts the force of 8.0 N at the fingertip.
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Figure 6. Relation between flexion in PIP and DIP.

The finger features an interchangeable fingertip, allowing for mounting of a 3D OptoForce
OMD-10 force transducer (shown in the drawings) or a resin moulded passive fingertip, according to
particular task requirements.

3.1.2. Thumb

Inclusion of an opposing thumb is vital to the performance of many types of grasps. The thumb
has three degrees of freedom—two joints in planar configuration (MCP and IP), and third CMC placed
at an angle. Thumb’s MCP and IP drive share a similar design to index and middle fingers’ PIP.
The DC motors and gearing are the same, but gearbox layout was altered to fit in the available space in
metacarpal and proximal phalanx. Thumb design is shown in Figure 7.
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Figure 7. Mechanical design and drives of fully actuated thumb; CMC drive motor and worm (not
visible) are enclosed in the metacarpus.

Due to the nature of CMC operation, which is moved mainly when switching between various
grasping types, a worm gear drive was used. The drive uses a Pololu Micro High Power 6 V DC motor
with 1:298 gearbox with an additional 1:20 reduction provided by the worm drive. Resistive rotary
sensors by the Alps were used to provide angle feedback from all joints.

3.1.3. Underactuated Finger

Ring and little fingers were designed as underactuated structures to simplify both mechanical
design and control algorithms. The fingers use a tendon flexion mechanism, as seen in Figure 2d.
The tendon is made from a braided fishing line, providing low extensibility, while maintaining high
compliance. Each tendon is wound onto a spool driven by a Pololu Micro High Power 6 V DC motor
with a 1:298 gearbox.

An eccentric ring is placed around each joint axle and attached to a pair of helical extension
springs. While in other approaches springs have been used to store potential energy for efficiency
improvements [68], here they are required to return the finger to its extended position and distribute
flexion evenly among the three joints. To limit the number of required off-the-shelf part types,
all joints share the same type of springs, with only the anchor radius of the spring differentiating the
extension torque. The torque was adjusted experimentally to allow the fingers to straighten in the
most demanding orientation (with palm facing downwards), without adding too much additional
resistance to the drive. The overall design of the finger is shown in Figure 8. Both fingers share the
same design, but proximal and intermediate phalanges are shorter in the little finger.
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Figure 8. Mechanical design of an underactuated finger; design intended for ring and small fingers;
drive motor not visible.

To provide full joint state feedback to motion planning software, each joint is equipped with
a resistive rotary sensor. An additional rotary sensor is mounted at the spool shaft to enable proper
drive control. To summarise the mechanical concept of the PUT-Hand a short comparison with typical
robotic hand is provided. Namely, DLR-HIT Hand II [5] and Pisa/IIT Softhand 2 [24]. DLR-HIT Hand
II is fully actuated with 15 degrees of freedom, three in each finger. There are five identical fingers.
All the drives are embedded in the palm. The motion of each finger is controllable. On the contrary,
the PISA IIT Softhand 2 has 19 anthropomorphic degrees of freedom controlled by one motor and
relies fully on underactuation concept. PUT-Hand exploits the best of two worlds. It is fully actuated,
as DLR-HIT Hand II, for the first three fingers. These fingers are needed for precise manipulation and
force sensing. Additionally, it is exploiting underactuation, as Pisa/IIT Softhand 2, for the last two
fingers which are supporting the grasping of larger objects.

3.2. Controller

The low-level controller of PUT-Hand was designed with high modularity in mind. The main
unit, called HUB, is responsible for communication with the high-level controller (e.g., a PC),
communication with individual servomechanisms, and (optionally) internal drive position control.
Each servomechanism (referred to as DRIVER) is a separate, independent module consisting of
a direct-current (DC) motor, an adequate number of encoders, and a printed circuit board with all
necessary communication and motor control circuitry. Overall controller architecture is shown in
Figure 9. DRIVER modules are connected to the HUB using a bus configured in a star pattern,
which allows for easy replacement of faulty drives integrated into the mechanical design of the hand.
Controller attachment and arrangement on PUT-Hand is visible in Figure 10. The system is fully
scalable and can be used in designs with various drive configurations, not limited to grippers.
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Figure 10. PUT-Hand with visible controller electronics; not all DRIVER modules are marked.
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3.2.1. HUB Design

HUB is an integration unit serving as a bridge between each separate DRIVER and high-level
controller. Detailed architecture of the HUB is presented in Figure 9. The unit is controlled by STM32F0
family microcontroller with ARM Cortex-M0 core running at 48 MHz. Communication with PC
is carried out using a full-duplex universal asynchronous serial bus (UART), for the ease of use,
a UART⇐⇒ USB converter by FTDI was embedded. The system is powered using 7.5 V DC, HUB
includes a DC/DC step-down converter to 3.3 V DC. Both supply voltages are distributed to populate
DRIVER connectors. Communication with DRIVER modules is implemented using a half-duplex
RS-485 hardware protocol, with a switchable transceiver. Moreover, HUB unit implements two pairs
of isolated input and output for additional high-level control purposes, for operating modes without
a PC.

3.2.2. DRIVER Design

Each DRIVER is a separate servomechanism unit consisting a printed circuit board, a DC motor
and resistive position sensors, presented in Figure 11. Two types, with the different number of position
sensor connectors, are used in the system. Standard DRIVER supports only one potentiometer, in case
of underactuated finger configuration a board with support for four sensors is used. The board features
a RS-485 transceiver in half-duplex mode with the a switchable driver. A Texas Instruments DRV8872
MOSFET-based H-bridge with peak 3.6 A current capacity serves as an execution circuit in controlling
brushed DC motor. An integrated H-bridge with over-current, under-voltage, and over-temperature
protection, including fault interrupt pin is used. High-current side of the motor driver is supplied by
7.5 V DC. Remaining parts of the DRIVER board are supplied by 3.3 V DC. DRIVER also implements
a motor current measurement circuit based on a sense resistor. Acquisition of all sensor data, PWM
generation, and communication with the HUB unit are carried out by low-power STM32L0 family
microcontroller with ARM Cortex-M0+ core running at 32 MHz.
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Figure 11. Diagram of DRIVER servo unit; two configurations, with one or four resistive position
sensors, are used in the system.

3.3. Firmware

DRIVER is only an execution unit, and collects sensor data about itself (position, motor current),
it does not perform any position control tasks of the drive. Using a defined protocol, secured with
a CRC-8 checksum, HUB unit reads the current status of each particular DRIVER and sets the PWM
duty for each DC motor, together with the rotation direction. DRIVER modules are addressed using
a unique address stored in µC EEPROM memory. In case of a communication loss of over 50 ms,
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the DRIVER will engage an electronic motor brake. The protocol uses normalised values for all
communication, and all individual drive data is stored internally. This way, a DRIVER can be easily
replaced in case of a failure, even with a drive of different type, while remaining transparent to the
HUB and overall control scheme.

HUB serves as drive control unit, performing cyclic communication with all DRIVERs at the
frequency of 100 Hz. It allows for control of drives in 3 primary modes:

• Idle—where all DRIVERs engage electronic brake or disable the H-bridge, depending on
user’s choice.

• Internal—where HUB’s internal PID controller with dead-zone is used to position fingers. In this
mode, user sets a desired fingers position via the USB interface. Internal PID does not provide
force regulation, motor currents are neglected. A diagram of internal control mode is presented in
Figure 12a.

• External—in this mode HUB acts as a middleman between external user implemented controller
and particular drives, providing information about DRIVERs status and forwarding PWM duty.
A diagram of external control mode is presented in Figure 12b.

Most communication with PC (high-level controller) is performed on PC request; however, a cyclic
status report can be enabled. In this case, the HUB will transmit a full data vector describing hand
status (positions, motor currents, mode, etc.) with a frequency of 100 Hz.
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Figure 12. Schematics of PUT-Hand control system in selected modes.

All DRIVER modules feature a calibration procedure, which can be triggered by a high-level
controller. During the procedure, the DRIVE module acts independently and moves the joint to both
extreme positions to determine position sensor border values and the direction of the motor rotation.
Calibration data is then stored in the EEPROM memory of the DRIVE module.

3.4. Kinematic Model of PUT-Hand

The kinematic model of the hand is a simplified version of human hand kinematics and a direct
result of developed mechanical design. All digits consist of three rotational joints. In the fingers,
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the joints (MCP, PIP, and DIP) share a common plane. The fingers’ planes are slightly spread outwards
to facilitate spherical grasping.

The thumb creates a more complex kinematic chain, with its CMC joint placed at an angle, and
the remaining joints (MCP and IP) sharing a common plane. CMC axis orientation was chosen to allow
a widest possible range of grasp types and thumb opposition with a simple rotary joint.

Kinematic structure of the gripper together with joint angle naming is presented in Figure 13.
All joint ranges are given in Table 4. The range of movements allows the fingers to fully extend and
flex (touching palm with the fingertips). CMC range enables full thumb opposition, which makes
precision grasping easier (thumb, index, and middle fingers meet each other).

Figure 13. PUT-Hand kinematics with basic dimensions and joint naming: red—fully actuated joints,
yellow—dependent joints, violet—underactuated joints.

Table 4. Joint angle ranges.

Joint Max Min

θ1CMC 0◦ 135◦

θ1MCP −53.8◦ 53.8◦

θ1IP 0◦ 90◦

θ2MCP/θ3MCP 7◦ 90◦

θ2PIP/θ3PIP 0◦ 96◦

θ2DIP/θ3DIP 0◦ 74.2◦

θ4MCP/θ5MCP 0◦ 90◦

θ4PIP/θ5PIP 0◦ 98.9◦

θ4DIP/θ5DIP 0◦ 99.8◦

3.5. High-Level Controller

High-level control of the PUT-Hand is based on the ROS, with core driver written in C++.
The driver communicates with the on-board main controller and receives information about the
state of the hand and re-sends motion orders. Joint states are cyclically published in the ROS topic,
so they can be accessed by multiple programs (ROS nodes) at the same time. In the experiments
presented in the article, the arm and the robotic hand are controlled using the ROS environment.
The motion of the whole setup is planned using the MoveIt module [69]. The MoveIt module is used
to compute forward and inverse kinematic models of the hand, plan the trajectory of the fingers taking
into account self-collisions, and execute the trajectory. In the simulated environment and on the real
hand we use the position-based interface with the linear joint trajectory that guarantees continuity
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at the position level only. In the Gazebo simulation, the hand is controlled by the built-in ROS joint
trajectory controller. On the real hand, the ROS driver sends the goal joint positions only. The joint
trajectories result from the PID controllers in the DRIVER.

A URDF model of the PUT-Hand was also defined, containing information about kinematic
model, visual shape of the links and collision model of the gripper. The URDF model is used in Gazebo
simulations. The gripper can be attached to a robotic arm (in our case Universal Robots UR3). Current
configuration of the PUT-Hand can be visualised using RViz. The example configuration of the hand
and the corresponding visualisation in RViz are presented in Figure 14a,b, respectively.

a b

Figure 14. Sample configuration of the PUT-Hand (a) visualised in the RViz (b).

Concurrently, we have defined the most common configurations of the hand, such as initial
configuration, open hand, power grasp or pinch grasp. These configurations can be quickly obtained
by using predefined commands. We use them to initialise or to show motion capabilities of PUT-Hand
or to recover after the error state.

4. Results

In this paragraph we first show general capabilities of the hand by performing grasp of different
objects. Next, we show the use of the hand for elastic object manipulation in open-loop. Subsequently,
we will present the use of force sensors attached to the hand fingertips. After, successful test
of manipulation and the use of sensors we performed in-hand manipulation for elastic object
identification. Finally, we demonstrate the task of inserting the plug which is often encountered
in industrial setting when the cables manipulation is performed.

4.1. Grasping

To show kinematic capabilities of the hand, we presented configurations of the hand during
grasping of various objects. Example grasps are shown in Figure 15. Objects with various shapes
and dimensions were chosen for demonstration: pen, screwdriver, tape, saucer, cup, bottle, plastic
plate, ball. We tested precise grasps (Figure 15a,c–f,h) and power grasps (Figure 15b,g,i,j). The hybrid
mechanical design of PUT-Hand enables both precision manipulation with fully actuated fingers and
stable power grasps with the help of underactuated digits. The underactuated digits have two main
advantages. Firstly, they stabilise the position of the large or heavy objects (Figure 15d,g). Secondly,
they adapt automatically to the shape of objects without the use of sophisticated tactile feedback
and control systems (Figure 15j). The precision grasps with the fully actuated digits are additionally
supported by the feedback from tactile sensors mounted on the fingertips of fully actuated fingers.
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a b c d e

f g h i j

Figure 15. Sample configuration of PUT-Hand during grasping of various objects. Examples of precise
grasps (a,c–f,h), and power grasps (b,g,i,j).

4.2. Elastic Object Insertion

In the first experiment, we use PUT-Hand attached to a robotic arm (UR3) to bend and force the
elastic pipe into a S-shaped channel. The channel has a circular cross section, with an opening at
the top narrower than its diameter. Thus, to insert the pipe into the channel the robot has to apply
force until the he pipe locks in the channel. The initial configuration of the hand and the pipe are
presented in Figure 16a. During the experiment, the robot uses two fully actuated fingers only (index
and middle finger).

At the beginning of the experiment, the two fingers are used to force the centre of the pipe into
the channel (Figure 16b). Then the procedure uses the index fingertip to bend the pipe (Figure 16c,d).
The same procedure is used to bend the second side (Figure 16f–i). Finally, we use a few effective
steps to bend the pipe and put it in the channel. The results are presented in Figure 16l. During the
experiment, haptic feedback was not used.

a b c d

e f g h

i j k l

Figure 16. Inserting an elastic pipe into a channel using PUT-Hand attached to a UR3 robot: bending
and pushing pipe into the channel (a–k), final result (l).

4.3. Contact Force Measurements

In the third set of experiments, we verify usability of the force sensors attached to the fingertips.
As the model of the hand is defined in ROS, the direction of contact forces can be easily determined in
3D space. The position of each fingertip and corresponding contact forces can be visualised and are
available at any time for the control modules. The example visualisation is available in Figure 17.
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Figure 17. RViz visualisation of measured contact forces; red arrow represents the force, with arrow
length corresponding to its magnitude

4.3.1. In-Hand Elastic Object Identification

In the first contact force experiment, we evaluate the possibility of stable contact event detection
using reaction forces. A pinch grasp was performed using fully actuated fingers. The fingers were
flexed until a specified force threshold was exceeded. Six objects with various physical properties were
used: metal pipe, rubber pipe, squash ball, rubber eraser, and two types of foam. The procedure is
presented in Figure 18.

An example trajectory of the thumb tip and corresponding tactile force during pinching of the
metal pipe and green foam are presented in Figure 19a and Figure 19b, respectively. Tactile information
from the thumb was used because its contact with the object was stable in all of the experiments, and
the event of touching the object can be easily distinguished. In case of a rigid object (metal blue pipe),
the contact force oscillates after the first contact (Figure 19a). In the experiment with green foam, the
soft object dampens the reaction forces and they increase gradually. Obtained force trajectory show
a clear difference between a rigid and a soft object and can be used for identification purposes. In
both cases, the reaction force stabilises at a constant level (0.8 N for the blue pipe and 0.55 N for the
green foam).

We also checked if the force sensors in the hand can identify the properties of manipulated object,
such as object stiffness, during in-hand manipulation. After pinching the object, the hand changes
its configuration to increase and decrease the contact forces periodically, and the results are logged.
A sample relation between contact force and the displacement of the thumb tip during manipulation
of the white rubber eraser is presented in Figure 20. The data shows that the displacement was lower
than one millimetre, which is too small to determine the object stiffness accurately.
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a b

c d

e f

Figure 18. Objects grasped by the hand using force feedback: metal pipe (a), rubber pipe (b), squash
ball (c), rubber eraser (e), and two types of foam (d,f).
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Figure 19. Trajectory of the thumb tip and corresponding tactile force trajectory during pinching the
blue pipe from Figure 18a (a) and green foam from Figure 18d (b).
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Figure 20. Contact force for the thumb and the displacement d of the thumb tip during manipulating
the white rubber (Figure 18e).

4.3.2. Plug Insertion

In the second experiment, a setup consisting of PUT-Hand and UR3 arm performs a task of plug
insertion. This simulates a procedure commonly used in automotive industry, widely performed
by human operators. Figure 21b shows a plug and socket contraption used during the experiment.
Plug contains an elastic component which bends during insertion. Socket is equipped with triangular
components which centre the plug and lock it inside.

23.0 23.2 23.4 23.6 23.8
t  [s]

� 2.0

� 1.5

� 1.0

� 0.5

0.0

F 
[N

] Fm

|F|

a b

Figure 21. Forces (F) measured during plug insertion experiment and its predicate values (Fm) (a);
photo of plug and socket pair used during the experiment (b).

Figure 22 shows a plug insertion procedure, in which the plug is hold with a tree-point spherical
grasp using all tree fully actuated fingers. However, the thumb and the index finger generate opposite
forces which hold the plug. The middle finger support the grasp only and prevents the unwanted
rotation of the plug. In this experiment, during the insertion itself, main reaction forces are lateral to
the tactile sensor base. While forcing two connection elements together, the elastic component of the
plug bends, increasing the force required to further move the gripper.
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Figure 22. UR3 robot equipped with PUT-Hand inserting the plug into the socket.

To model the reaction forces in described setup we use a mechanical system presented in Figure 23.
Vertical motion of the plug compresses the spring, increasing a reaction force in the direction opposite
to the movement. The reaction force is proportional to the spring constant k, friction coefficient µ and
the spring displacement x. The compression of the spring x depends on the motion of the plug y and
the ramp angle θ:

Fm = 2 · k · µ · x = 2 · k · µ · y
tan θ

, (1)

The measured θ angle and spring constant k is equal to 31◦ and 800
[

N
m

]
, respectively. Then,

we estimated the friction coefficient µ to fit the model to the data obtained during the experiment.
Figure 21a presents reaction force Fm predicted using a model in Figure 23 and those measured

during the experiment of plug insertion. The module of the reaction force |F| in Figure 21a is obtained
from the forces measured at the thumb tip Ft and the index finger tip Fi:

|F| = |Ft + Fi|, (2)

In the experiment we show that reaction forces which are lateral to the sensor can be measured
using the given configuration of the sensors in the fingertips. The middle finger is used only to
stabilise the grasp and the tactile sensor does not touch the object during the experiment. We model
the static properties of the system only thus the force decreases instantly when the plug is in the socket.
In practice the mass of the system and elasticities cause the gradual decrease of the reaction forces
shown in Figure 21a.

Θ
k

x

k

x

F
m

Ff Ff Θ

Figure 23. Mechanical model of plug insertion experimental setup.
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5. Conclusions and Further Development

In this article, we propose a design of a five-finger anthropomorphic gripper intended
for elastic object manipulation. All design files are published at https://github.com/puthand.
Main contributions of this work are:

• open-source mechanical design of PUT-Hand, a hybrid anthropomorphic gripper design
consisting of three fully actuated fingers (thumb, index, and middle) for precise manipulation,
and two underactuated tendon-driven digits (ring and small) for power-grasp support;

• open-source on-board controller design and firmware;
• sensory system using optical 3-axis force sensors;
• ROS-based open-source driver for high-level control including motion planning and visualisation;
• experimental verification presenting mechanical and sensory capabilities of the proposed design.

PUT-Hand is a hybrid design, taking advantages of both fully actuated [1,5,11] and
underactuated [6,24] designs. Fully actuated fingers can be used for precise grasping (Figure 15)
and interaction with elastic objects (Figure 16), while underactuated fingers stabilise the grasp during
dealing with heavy objects such as bottles (Figure 15g) or large objects.

The gripper is equipped with three tri-axial force sensors mounted on fingertips of fully actuated
fingers, allowing for measurement of magnitude and direction of contact forces. This information can
be used to measure the physical properties of the objects the robot is interacting with. Moreover, with
simple modelling, we can detect the state of the environment (Figure 22).

Future work includes integration of presented setup (robot equipped with PUT-Hand gripper)
with a visual perception system. Combination of visual and tactile feedback can be used to further
increase the autonomy of the robot, and improve the performance of grasping, modelling and
manipulation of elastic objects.
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Abstract: The efficient multi-modal fusion of data streams from different sensors is a crucial ability
that a robotic perception system should exhibit to ensure robustness against disturbances. However,
as the volume and dimensionality of sensory-feedback increase it might be difficult to manually
design a multimodal-data fusion system that can handle heterogeneous data. Nowadays, multi-modal
machine learning is an emerging field with research focused mainly on analyzing vision and audio
information. Although, from the robotics perspective, haptic sensations experienced from interaction
with an environment are essential to successfully execute useful tasks. In our work, we compared
four learning-based multi-modal fusion methods on three publicly available datasets containing
haptic signals, images, and robots’ poses. During tests, we considered three tasks involving such
data, namely grasp outcome classification, texture recognition, and—most challenging—multi-label
classification of haptic adjectives based on haptic and visual data. Conducted experiments were
focused not only on the verification of the performance of each method but mainly on their robustness
against data degradation. We focused on this aspect of multi-modal fusion, as it was rarely considered
in the research papers, and such degradation of sensory feedback might occur during robot interaction
with its environment. Additionally, we verified the usefulness of data augmentation to increase the
robustness of the aforementioned data fusion methods.

Keywords: multi-modal fusion; machine learning; robotics

1. Introduction

A dynamic fusion of multi-modal information is a key ability that humans utilize for a wide
variety of tasks that demand an understanding of the physical properties of objects. For example,
we fuse visual and haptic data to manipulate dexterously, recognize unknown objects, or localize them
in the scene. However, when we want go to the bathroom at night and we want to open the water
tap, somehow we know that an image under these conditions is not reliable and we should focus
more on our other senses. By touching the tap we can (to some extent) supersede the vision in the
localization task and perform the same task without it. The interaction between information from
different senses was observed and tested experimentally in [1], where a multi-sensory illusion was
called the McGurk effect. In the robotics field, a typical approach to the multi-modal data fusion is
through various probabilistic models that are based mainly on the Bayesian inference. However, due to
large volumes of available multi-modal and multi-relational datasets, that kind of analysis can be
hindered. To overcome that problem machine learning approaches were proposed, as they can handle
large and multidimensional data. In recent years there was a lot of research in the area of efficient
fusion of data using machine learning, especially neural networks [2]. Nevertheless, researchers
focused on the improvements in the accuracy of their models and paid almost no attention to their
robustness to non-nominal conditions, which are ubiquitous in the robotics applications.
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To bridge this gap, in our work we compared the performance of four popular multi-modal
fusion methods utilizing artificial neural networks (ANN) on three datasets. Moreover, we extensively
tested them in various data degradation scenarios, which simulated the typical issues like noisy data
or sensor failure. Furthermore, we verified the influence of data augmentation on a fusion methods
robustness. The general design of our experiments was depicted in Figure 1.

Figure 1. Experimental setup. We tested four different methods of multi-modal fusion and verified
their robustness on a variety of data degradation scenarios common in robotics.

The development of approaches for fairly complicated robotic tasks, like, e.g., dexterous
manipulation, nowadays very often depends more on advances in sensory systems, such as skin-like
sensors [3–5] than fusion algorithms themselves. The use of fusion in dexterous manipulation [6,7]
is emerging field. The more focus on development of multi-modal systems in the field of robotics
is especially visible in areas like image segmentation [8–10], 3D reconstruction [11] and a tactile
understanding [12].

In our work we want to stress the fact that in robotics, a multi-modal fusion is particularly
important due to a possibility to improve the robustness of predictions affected by noise or failure of a
sensor. Typically, it can be achieved by finding pieces of information among different modalities that
exhibit interchangeability and complementarity. However, in most applications researchers focuses
mostly on the improving the accuracies of their systems, by exploiting the complementarity. There is
almost no consideration on interchangeability of the data sources, in the context of the robustness to,
typical for real-life scenarios, noises and sensor faults.

A multi-modal machine learning is a scientific field of growing interest that brings many
challenges. In [2] the authors have listed open questions to which answers should be found to
advance the state of the art—how to represent the data (representation), how to map a knowledge from
one modality to others (translation), how to find dependencies between heterogeneous modalities
(alignment), how to join the multi-modal data stream together (fusion) and how to successfully
transfer a knowledge from training a model on one modality to other (co-learning). We are aware that
there are many more data fusion techniques like Kalman Filter, Bayesian Inference or Early Fusion.
Unfortunately, each of those solutions is somewhat limited to low-dimensional or homogeneous
data, thus we decided to exclude them from our comparison and focused on the most flexible
approaches, which are model agnostic and can operate on any type of data. In our work, we evaluated
a performance of multiple data fusion methods based on neural networks in robotics oriented tasks.
Our contributions are:

1. Experimental evaluation of the performance of four machine-learning fusion methods—Late
Fusion (Late), Mixture of Experts (MoE) [8], Intermediate Fusion (Mid) and the most recent
Low-rank Multi-modal Fusion (LMF) [13]. We tested their capabilities on three multi-modal
datasets in single and multi-label classification tasks.
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2. Validation of the robustness of selected fusion methods to various data degradation scenarios
that may occur when the robot interacts with the environment.

3. Evaluation of the influence of a data augmentation on a fusion methods performance, when a
data degradation occurred during tests.

The remainder of the paper is organized as follows. First, we will provide a comprehensive
review of the related work in the field of multi-modal data fusion. Then, we will present tested fusion
methods and datasets used in our experiments. Next, we will move on to the results section followed
by the discussion. Finally, concluding remarks will be given.

2. Related Work

The section contains a broad review of research conducted on multi-modal fusion approaches
and their evaluation for data degradation, which might occur in real-world scenarios.

2.1. Data Fusion Approaches

In [2] the authors divided the multi-modal fusion techniques into two classes: model agnostic and
model-based. In our paper we limited ourselves to model agnostic fusion methods as they are more
general and widely spread in the robotics community. There exist three main types of model agnostic
data fusion methods—early (data-level), intermediate (feature-level), and late (decision-level) [14],
however it is possible to combine at least two of them into a hybrid fusion [2]. Systematic division of
different sensor fusion methods is given in [15].

In early fusion, data from different modalities are typically concatenated at the early stages of data
processing. It gives the machine learning model a possibility to capture even low-level interactions
between modalities and process them jointly. However, that approach is limited to the cases when
it is possible to concatenate the data, which is sometimes cumbersome. For example, it is not clear
how to combine heterogeneous data such as 2D images with a 1D time series. For that reason, we do
not compare early fusion in this paper, as it is not applicable to all data types. Typical examples
of early fusion can be found in the area of semantic scene understanding using multi-spectral
images [16], where visual streams from RGB, depth, and near-infrared channels are combined to
produce predictions. Another example of an early fusion approach was [17]. The authors proposed to
fuse RGB images with optical flow maps for gesture recognition. Other example is the use of different
depth sensing modalities, with different properties to obtain denser depth image [18].

A feature-level fusion is a very popular technique in machine learning models as it merges data
representations at higher levels of abstraction. That in turn allows for combining even heterogeneous
data from very different sources and lets the machine learning model to process joint representation in
order to produce an output. That type of fusion is widely spread in robotics community in areas such
as object recognition [19] and scene recognition [20] tasks. Multi-modal fusion applied to robot motion
planning was presented in [21] and contact-rich manipulation tasks in [7]. A different approach to
a feature fusion is presented in [22], where instead of features concatenation, only some randomly
chosen parts of feature vectors from different modalities are merged. Another intermediate fusion
approach exploits Tensor Fusion Networks [23,24], which are extensively used for example in the
multi-modal sentiment analysis. However, they, to the best of the authors’ knowledge, are not used in
the robotics applications. The main issue of these approaches is their low computational efficiency,
which is addressed in the paper about Low-rank multi-modal Fusion [13], which exploits the tensor
decomposition to reduce the number of model’s parameters.

Similar to feature-level fusion approaches, late ones can work with any data types. However,
they do not merge the data but only outputs of the models, which process different modalities
separately. Prominent work on late fusion approaches is described in [25]. The typical scheme of
a late fusion was presented in [26–28]. The authors of [27,28] proposed the late fusion approach to
process RGB-D data in the tasks of object detection and discovery respectively. In [26] images and
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point clouds were used to perform semantic segmentation of the urban environment for autonomous
vehicles. In [29] the authors proposed a late fusion model, which took into account the impact of a data
degradation on the model’s decision and used a noisy-or operation to combine these decisions. The use
of three different modalities for terrain classification fused using late fusion approach is presented
in [30].

If the proposed solution merges information on two or more levels, we talk about hybrid fusion.
Examples of that approach are presented in [8,9] where outputs of models are fused with the use of
weights determined by the gating network, which uses an intermediate representation of all modalities.
That approach, called the Mixture of Experts is able to decide, which modality should have a stronger
impact on the final outcome based on the features extracted from all modalities.

2.2. Fusion Robustness

Fusion robustness is a rarely considered topic in the multi-modal fusion literature, however,
it seems to be an important issue in real-world applications, especially in the robotics field. Only several
papers [22,29,31–34] took into account the non-nominal conditions of the multi-modal fusion and
provided some analysis of fusion robustness to data degradation. Such degradation could occur due to
sensor noise, its failure, or unexpected weather conditions. Moreover, the approach proposed in [8] is
potentially able to take into account data degradation and express the belief in terms of the weighting
of the model’s decisions. However, it was not considered by the authors. Even though there are works
on the robustness of multi-modal fusion in the robotic context, one can observe a lack of comprehensive
joint comparison of main fusion paradigms, which were used by individual authors in the presence of
sensor noises and/or failures.

3. Experiment Design

In the following section, we provided a detailed description of multi-modal datasets used in our
experiments including the procedures of data preparation, cross-validation and splitting into train/test
subsets. Moreover, we presented compared fusion methods with a discussion of their architectures.

3.1. Data Preparation

In our work, we measured the performance and robustness against data degradation of different
fusion methods using three datasets containing multi-sensory data. First of all, from each dataset a test
subset was separated and it remained unchanged throughout all of our experiments. The important
note is that the test set was not involved in any training procedures described further and served only
as a reference point for comparisons between methods. To ensure a fair comparison, for each dataset,
we ensured that the distribution of the classes both for train and test set is similar. The same principle
was maintained for the cross-validation. Each class was evenly distributed between consecutive
folds using iterative stratification method [35,36]. Thus the case that some class was under or
over-represented in some part of data was eliminated.

In our work, one turn of cross-validation proceeded as follows. We split the dataset into k chunks
called folds. Folds numbered from 0 to k − 1 were used for training an ANN. After that, the k-th
fold was used for validation. That procedure was repeated 5 times, each time different fold was
chosen as the validation set (5-fold cross validation). Moreover, in all our experiments, input data
was standardized by subtracting the mean taken for all samples from a corresponding modality and
divided by its standard deviation.

3.2. Multi-Modal Datasets

BioTac Grasp Stability Dataset (BiGS): The grasp-stability dataset [37] contained signals recorded
during 2000 trials of grasping three types of objects—a ball, box, and a cylinder. Time series of
gripper’s poses and 3-axis forces gathered while shaking an object with a closed gripper. Each trial was
annotated with a label success or fail that corresponds to the outcome of a trial. To gather tactile signals
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there were used three bio-inspired BioTac [5] tactile sensors mounted on fingers of a gripper and a
force-torque sensor mounted in the wrist. In our experiments, to verify whether a signal represents
a successful grasp or a failure, we used gripper’s positions, orientations, and force readings from
the force-torque sensor. We re-sampled each signal to fit common length using the Fourier method.
Finally, each input element consisted of three-time series with a length equal to 1053. Positions are
expressed as 3-element vectors, orientation is presented as a 4-element quaternion, and force reading
is composed of 3 values corresponding to X, Y, and Z axes. In total, the training dataset used in the
cross-validation was composed of 3197 samples for each modality, while the test set of 801.

The Penn Haptic Texture Toolkit (HaTT): In the toolkit [38] there are 100 different textures
photographed and presented as RGB images. Each texture has associated normal force, acceleration,
and position recordings gathered during unconstrained motions of an impedance-type haptic device
SensAble Phantom Omni [39]. To save time needed for training, in our experiments we used data from
10 classes only, the names of which were presented in Table 1.

Table 1. Textures from the Penn Haptix Toolkit chosen for experiments.

ABS Plastic Aluminium Foil Aluminium Square Artificial Grass Athletic Shirt

Binder Blanket Book Brick 1 Brick 2

Signals in the HaTT dataset were gathered using a haptic device’s tool-tip while moving on
different surfaces for 10 s. In our experiments, we used a normal force, acceleration and velocity as
input modalities. However, it is important to mention that the authors of the dataset used a method
called DFT321 [40] to combine 3-axes signals of acceleration and velocity into single axes, thus in our
experiments, we used the 1-dimensional representations of these quantities. The authors motivated
that dimensionality reduction by the fact that humans do not perceive the direction of high-frequency
vibrations, which was described in [41]. We did not use available RGB images, because each class had
only one associated image, thus there were far too few of them to train an ANN. Every time series was
cut into vectors with a length of 200, which resulted in a total number of 8000 samples included in the
training set and another 2000 in the test set. Again, we made this split maintaining the equal balance
between classes.

The Penn Haptic Adjective Corpus 2 (PHAC-2): The last dataset used in our experiments considers
the problem of multi-label classification of haptic adjectives using data created by the authors of [42]
and dataset was further refined by authors of [12]. The dataset consisted of 53 objects photographed
from 8 different directions. Each photo had corresponding haptic signals from the squeezing of an
object gathered from two BioTac sensors. Moreover, every object was described with several haptic
adjectives used as labels. In the dataset there were 24 haptic adjectives, in Figure 2 we presented
their histogram.

Figure 2. Occurrences of each adjective in the Penn Haptic Adjective Corpus 2 (PHAC-2) dataset.

To perform the experiments on the balanced train and test sets, we used the iterative stratification
to ensure that there is no significant over or under-representation of any adjective in the train/test
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subsets. It is important, because such imbalance can lead to a significant drop in the prediction
performance, hence giving misleading results. A single training sample was composed of an RBG
image with the spatial resolution of 224 × 224 together with two raw signals from 19-electrode arrays
from both of BioTac sensors. As the length of time series was different, we re-sampled them to fit a
fixed number of 67 values. In total, we had 265 samples in the training dataset and 159 in the test set.

3.3. Fusion Methods

In related work we discussed several model agnostic data fusion techniques, but for the
experimental analysis we selected four of them (see Figure 3). Taking into account the simplicity and
popularity we decided to include in our benchmark basic versions of late and intermediate fusion.
The third fusion candidate was the Mixture of Experts [8] fusion model, which was similar to late
fusion, but it was able to decide on the modality importance based on their latent representations.
Moreover, we also included a method that was previously not used in the robotics community but
achieved some very promising results in other areas such as sentiment analysis—the Low-Rank
multi-modal Fusion (LMF). To obtain fair comparison, in our implementation of aforementioned fusion
techniques we first transformed input modalities to the 10-dimensional latent space. In this way we
obtained N latent vectors L1, L2, . . . , LN , which were provided to corresponding ANNs. Approaches to
data fusion, which we decided to examine in this paper, are presented schematically in Figure 3 and
described in detail below.

Late Fusion: The main idea standing behind that method was to process each modality separately
and merge predictions at the very end of the process assuming that they were of the same importance.
The merging is performed on the decision level as it is described in [15]. Referring to Dasarathy
classification this approach is described as Decision In-Decision Out (DEI-DEO). In our experiments we
processed each of latent vectors separately using ANNs (represented in Figure 3 as arrows) to obtain
predictions for each modality p1, p2, . . . , pN in the form of logits. Next, those logits were summed up
and transformed into class probabilities using a softmax function.

Mixture of Experts (MoE): The approach presented in [8] is built upon the Late Fusion method,
however, it could decide on the modalities importance through the gating network. That decision
was encoded in the weights vector w, such that ∑N

i=1 wi = 1. In contrast to the Late Fusion,
before a summation of predictions from all modalities they were multiplied by corresponding weights.
Thus, the value of a vector w was determined by a relatively small fully connected neural network,
which used all latent vectors and produced final predictions. That architecture potentially allowed
ANN to learn how to react to the degradation of some modalities, by assigning lower weights to the
degraded modalities. On the other hand, if the data degradation did not occur during a training phase,
there was a possibility that the MoE would put too much emphasis on the modality affected by some
noise during testing, which might result in false predictions.

Intermediate Fusion (Mid): The fusion of information carried by individual modalities was
made by concatenating their representations in the latent space. Next, a common representation was
processed further to obtain a joint prediction. The merging is performed on the feature level as it is
described in [15]. Referring to Dasarathy classification this approach is described as Feature In-Feature
Out (FEI-FEO). In our experiments joint predictions were produced by ANN. That approach allowed
a fusion model to take into account data from all modalities in the latent space and process them
freely. The Mid method would also be able to gain some robustness to the data degradation during the
training, as it could learn to reduce the impact of degraded modalities. However, in contrast to MoE,
its robustness and decisions were not so clearly interpretable.

Low-rank Modality Fusion (LMF): In our work, we used also a method very different than
others. It was the tensor-based approach for multi-modal fusion, which was focused on revealing
the interactions between features extracted from different modalities. Generally, the core idea of
tensor approaches is a creation of some high-dimensional tensor representation by taking the outer
products over the set of uni-modal latent representations. That representation is then linearly mapped
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to some low-dimensional space using learned weights and biases. Typically, such approaches suffer
from computational inefficiency as that tensor weights and the number of multiplications scales
exponentially with the number of modalities. However, the approach proposed in [13], did not multiply
high-dimensional weight tensor with the tensor representation of the data directly. Instead, the authors
proposed to firstly decompose tensor weights into N sets of modality-specific factors similar to the
representation of the input decomposes into low-dimensional feature vectors. Such decomposition
reduced the number of computations, as it let to directly map from feature space to predictions without
explicitly creating any high-dimensional tensors.

Figure 3. Multi-modal fusion architectures used in experiments. From left: Late Fusion
(Late), Mixture of Experts (MoE), Intermediate Fusion (Mid), Low-rank Modality Fusion (LMF).
Arrows represent the transformations realized with the use of neural networks, while Li, pi, wi denotes
the latent vector, predictions and trainable weight associated with i-th modality.

3.4. Neural Network Architectures

To achieve a fair comparison between fusion methods, we designed neural network architectures
in a way that ensured a similar number of the trainable parameters for each type of fusion. In our
experiments, we operated on two different kinds of signals—time series and images. For time-series
processing we used a few 1D convolutional layers (Conv1D), followed by the Long-Short Term Memory
(LSTM) units and fully connected (FC) layers, whereas for images we used 2D convolutional layers
(Conv2D) with a few FC layers on top of them.

For both BiGS and HaTT datasets, we used similar architectures for determining the latent vectors.
They were composed of 3 Conv1D layers with 64 filters of size 5× 5 with stride equal to 2, followed by
LSTM layer with 32 units, and 2 FC layers with 128 and 10 neurons respectively. However, in the case
of the BiGS dataset, for Mid, Late, and MoE the number of units in the last FC layer was changed to 2,
as we performed binary classification. Moreover, for both BiGS and HaTT we reduced the number of
filters in all convolutional layers for MoE, as it used an additional network to produce the weights wi.
This network for all datasets had the same architecture, namely, 3 FC layers with 128, 64, and N units,
where N is the number of modalities. A similar network was used in the Mid fusion to process the
concatenated latent vectors into the predictions, however, in the last layer, the number of units was
equal to the number of classes.

In the case of PHAC-2 dataset, we had to process both time series as well as images.
Neural networks for time series had similar architecture as for BiGS and HaTT datasets, however with
an increased number of neurons in last FC layer—24 and reduced number of Conv1D layers equal
2 for all methods except the LMF, which stayed with 3 Conv1D layers and 10 neurons in the last FC
layer. For image processing we used 2 Conv2D layers with 64 filters of size 5× 5 with stride equal
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to 2, followed by 2 FC layers with 128 and 24 neurons, except the LMF, which had 10 neurons in the
last layer.

Additional details about the implementation of the fusion methods, as well as the architectures of
the neural network used in the experiments, can be found in the code repository (https://bitbucket.
org/m_bed/sense-switch/).

4. Results

In the following section, we presented results form the performance evaluation of four
multi-modal fusion methods (Late, MoE, Mid, LMF) on three different datasets (BiGS, HaTT, PHAC-2).
We firstly did 5-fold cross-validation (k-folds I-V) and presented results in Section 4.1. At that stage,
we not only did the cross-validation but also chose the best performing models for further experiments.
In tables, the chosen ones were marked with a blue color. After that, we measured the influence
of multiple data degradation scenarios on the performance of each method and reported results in
Section 4.2. Finally, the Section 4.3 contains the outcome of experiments conducted towards data
augmentation and its influence on robustness on data degradation of each fusion method. It is
important to notice that all reported results were verified on separate test subsets, which remains
unchanged among fusion methods.

4.1. Comparison of Fusion Method

In the first stage of experiments, we compared the performance of fusion methods on the BiGS
dataset in the grasp outcome classification—a success or a failure. Input modalities were time series of
gripper positions, orientations, and 3-axis forces from a wrist-mounted force-torque sensor. The final
results were presented in Table 2. We reported the mean accuracy [%] with its standard deviation
among the consecutive folds. The best performing models of Late (I-fold), MoE (III), Mid (II), and LMF
(I) were chosen for the stage of experiments that includes the assessment of their robustness against data
degradation and influence of input data augmentation. The fact that the average results in subsequent
folds were very similar means that differences in data distributions across folds were negligible.

Table 2. The comparison of four fusion methods performed on the BioTac Grasp Stability Dataset
(BiGS) dataset.

I II III IV V Mean

Late 88.9 88.1 87.9 88.5 88.1 88.3 ± 0.4

MoE 89.0 88.3 89.1 87.6 88.4 88.5 ± 0.6

Mid 88.1 89.9 89.0 87.8 88.6 88.7 ± 0.8

LMF 89.6 88.4 88.0 88.4 88.9 88.7 ± 0.6

Cross-validation on the HaTT dataset was another step in our experiments. Results in the form
the classification accuracy [%] were reported in Table 3. As input modalities, we used again time
series—a squashed 1-dimensional representation of acceleration and velocity, together with a normal
force acting on a haptic device’s tool-tip. For the next experiments, we chose the II-fold models for the
Late, MoE, LMF methods, and III-fold model for the Mid fusion approach.

In the task of multi-label classification of haptic adjectives, we used the PHAC-2 dataset. Similarly,
as in the [12], we chose as a performance metric the Area Under a Curve (AUC) that measures the
area under the Receiver Operating Characteristic (ROC) curve. That metric is widely spread in the
multi-label classification field of machine learning. It measures how good the predictive model can
distinguish between classes (in our case—haptic adjectives) taking into account a correspondence
between a sensitivity/specificity ratio and multiple values of a decision threshold. In the AUC-ROC
metric, a value of 1.0 refers to an excellent classification ability, 0 means that the model is always
wrong, while 0.5 means that model has no discrimination capacity. In Table 4 we reported AUC-ROC
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metrics achieved by evaluated fusion methods. For further stages of experiments, we chose V-fold
models of the Late and the MoE methods, I-fold of the Mid and IV for the LMF.

Table 3. The comparison of four fusion methods performed on the Penn Haptic Texture Toolkit
(HaTT) dataset.

I II III IV V Mean

Late 79.5 80.8 79.4 78.3 79.5 79.5 ± 0.9

MoE 77.9 78.9 74.3 76.6 73.4 76.2 ± 2.3

Mid 78.9 75.4 79.8 78.3 76.6 77.8 ± 1.8

LMF 78.1 80.9 78.9 78.3 79.5 79.1 ± 1.1

Table 4. The comparison of four fusion methods performed on the PHAC-2 dataset. All values
represent the Area Under a Curve (AUC)-Receiver Operating Characteristic (ROC) performance metric.

I II III IV V Mean

Late 0.923 0.924 0.922 0.923 0.925 0.923 ± 0.001

MoE 0.923 0.919 0.919 0.923 0.927 0.922 ± 0.003

Mid 0.929 0.922 0.922 0.927 0.925 0.925 ± 0.003

LMF 0.896 0.898 0.902 0.908 0.900 0.901 ± 0.005

4.2. Data Degradation Robustness

In the following section we present the results gathered from experiments regarding the robustness
of selected methods against a variety of input data degradation scenarios. The research carried out
brought very important conclusions on the capabilities of each fusion method to translate knowledge
from one modality to another and revealed that in most cases there exists a phenomenon, which we
called a leading modality. Namely, for each dataset there was a modality, the leading one, which
regardless of the fusion method used is crucial for obtaining good results. To make this dependency
visible, we presented our results in the form of heat-maps (see Figures 4–6).

In heat-maps, there were presented changes in a performance caused by decreasing the quality of
one or more input modalities. We tested fusion methods against scenarios described below (a–e) and
each row in heat-maps corresponds to one of the scenarios:

(a) N—a normal noise N added to selected modalities with a 0 mean and 0.7 standard deviation;
(b) U—a uniform noise U added to selected modalities that varies in the range (−0.5 to 0.5);
(c) 0—setting zeros in place of selected modalities, what simulated a deactivated/broken sensor;
(d) RN—replacing selected modalities with normal noise N;
(e) RU—replacing selected modalities with normal noise U.

Each heat-map column was annotated by a number that specify affected modalities (e.g., by the
added uniform noise). For each dataset we tested fusion methods using three input modalities
numbered as follows:

(a) BiGS—1: gripper positions, 2: gripper spatial orientations, 3: 3-axis force;
(b) HaTT—1: normal force, 2: squashed acceleration, 3: squashed velocity;
(c) PHAC-2—1: images, 2: raw electrodes from the 1st sensor, 3: raw electrodes from the 2nd sensor.

At first, we tested selected fusion methods on the BiGS dataset and visualized the results on
heat-maps in Figure 4. The use of heat-maps enabled one to easily inspect the knowledge alignment
and translation properties of each fusion method. To perform these tests, the best performing models
from Table 2 (marked in blue) were used.
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Figure 4. Results achieved by chosen models from the first stage of experiments on degraded data
from the BiGS dataset. In heat-maps, there was presented a classification accuracy expressed in [%].
Rows correspond to different degradation scenarios, while columns are annotated by the indexes of
affected modalities.

In Figure 5 we presented heat-maps generated for tests on the HaTT dataset. The influence of
each modality on the final prediction is clearly visible and not every method is able to manage data
degradation. Moreover, the 2nd modality (acceleration) appeared to be the leading one what resulted
in a significant drop when it was noisy or faded. On the other hand, removing other modalities from
the input data stream did not affect the final accuracy.

Figure 5. Accuracy [%] of a texture classification achieved while testing different fusion methods on
degraded data from the HaTT dataset. Leading modality played a decisive dominant role, which
resulted in a decreased quality in case of its degradation.

The AUC-ROC metric for the multi-label classification of haptic adjectives was reported in
Figure 6. Similarly as in the experiments on the HaTT dataset, the leading modality is also
visible. However, its correlations with other modalities played an even more important role in
the final performance of methods. Inspecting heat-maps one can observe that the most meaningful
correlations for predictions are between images (1st) and raw electrodes signals (2nd and 3rd). On the
other hand. Noised interactions between both electrodes’ time series only slightly influenced the
classification performance.

Figure 6. The AUC-ROC reported for the multi-label classification task using the PHAC-2 dataset.
The leading modality is visible, but the correlations between modalities also affect predictions.

4.3. Data Augmentation vs. Leading Modality

Generated heat-maps from the previous stage of experiments revealed that in every dataset
there exist one leading modality that had the biggest impact on the prediction. To verify whether the
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degradation of the leading modality was a determining factor for the decreased performance of fusion
methods we conducted more experiments using the data augmentation technique and removing a
leading modality from the input data stream. In the following set of experiments we noised/faded
the 33% of randomly selected training samples of a leading modalities in the training dataset. In the
degraded part of the dataset, a half of samples were zeroed, while others were noised with the
normal noise with the 0 mean and standard deviation set to 0.7. This value should be related the fact
that standard deviation of the data was confined to one through data standardization described in
Section 3.1. Again, to perform the experiments we chose models from the Section 4.1 marked with
a blue color and re-trained them on the same folds as they were trained originally. As in previous
experiments, all of the methods were tested again separate test subsets. Results were reported in
Tables 5–7.

First of all, we re-trained fusion models on the augmented training dataset and tested them on
the same versions of test datasets as in the Section 4.1. We did that to verify the impact of the data
degradation on the performance on test sets without it. An accuracy [%] and AUC-ROC values [-]
were presented in Table 5.

Table 5. Outcomes of multi-modal fusion methods obtained for models trained on datasets containing
noised/zeroed inputs from the leading modality, but tested on the dataset without such samples.

Late MoE Mid LMF

BiGS [%] 88.26 88.89 88.64 89.39
HaTT [%] 78.15 75.8 75.1 76.95

PHAC-2 [-] 0.92 0.93 0.93 0.91

Secondly, we evaluated the performance of each fusion method on test datasets with the same
proportion of the noised samples of the leading modality without zeroed samples. Results obtained
during that trial were reported in Table 6.

Table 6. Results obtained for models trained on datasets containing noised/zeroed inputs from the
leading modality and a noised leading modality channel during tests.

Late MoE Mid LMF

BiGS [%] 88.14 88.64 88.51 89.26
HaTT [%] 65.85 69.95 65.3 68.3

PHAC-2 [-] 0.88 0.86 0.88 0.84

Finally, the influence of zeroed leading modalities on fusion methods was assessed during the
last stage of experiments. Table 7 contains accuracy and AUC-ROC metric results gathered on the test
dataset, where the leading modality was switched-off.

Table 7. Results obtained for models trained on datasets containing noised/zeroed inputs from the
leading modality and a zeroed leading modality during tests.

Late MoE Mid LMF

BiGS [%] 85.77 88.76 86.27 89.01
HaTT [%] 54.85 57.05 53.95 53.25

PHAC-2 [-] 0.23 0.24 0.21 0.61

5. Discussion

The discussion of our experiments was divided into two parts—the discussion on the performance
of each method and the analysis of their properties. In our work, results revealed that methods most
widely spread in robotics can successfully deal with multi-modal data, however, they exhibit a
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fragility to missing/noised modalities, which resulted in decreased performance in such situations.
That phenomenon might be considered as the main drawback of data-driven approaches to
multi-modal fusion. However, as neural networks are included among data-driven methods, we were
able to reduce to some extent the adverse impact of input quality degradation using the data
augmentation technique.

5.1. Comparison of Fusion Methods

We compared the performance of four multi-modal fusion methods on three datasets
including different time series (accelerations, velocities, forces), spatial transformations, and images.
The important thing to note is that our target was to examine methods on the possibly largest set of
homo and heterogeneous signals, hence we used different sets of modalities from each dataset and no
modality was repeated between datasets even though, e.g., in the BiGS and PHAC-2, there were used
the same tactile sensors—BioTacs.

The mean accuracy of all methods tested on the BiGS dataset was 88% and the differences between
them were insignificant. Nevertheless, the most efficient fusion method in the grasp classification
task was the LMF due to a smaller standard deviation among folds than the second method—the
Mid fusion. The HaTT tests exhibited a slight increase of a mean results variance among different
methods and standard deviations among folds comparing to BiGS results. In the texture recognition
classification based on haptic signals, the best method turned out to be Late fusion, achieving a mean
test accuracy of 79.5% between folds and additionally the smallest standard deviation equal to 0.9%.
In the multi-label classification of haptic adjectives based on visual and haptic data the Late, MoE,
and the Mid fusion methods were extremely close to each other in terms of a mean AUC-ROC metric,
achieving a result of 0.92. The LMF turned out to be marginally below the performance represented by
other methods.

On all tested datasets, the results from 5-fold cross-validation and tests on separate subsets
showed that data used in experiments was consistent and there were no significant outliers among
folds. That finding made it possible to carry out reliable experiments and ensure a fair comparison.
Mean values of performance metrics among different fusion methods may suggest that the type of
data fusion affects the performance of the model only to a very small extent. When all modalities
are available and free of any noise it seems that more important was a reliable data preparation
(e.g., ensuring a balanced distribution between classes in the train and test subsets, as well as between
folds) for the training procedure than the fusion algorithm itself. In that section, apart from the
comparison of different methods, we trained and chose the best-performing models for the next
experiments. Chosen models were marked with blue color in Tables 2–4. All of the tested neural
networks were trained in an end-to-end manner and performed relatively well, exhibiting a great
capacity to learn from large (BiGS, HaTT) and small (PHAC-2) datasets. Further tests were conducted
towards an assessment of the impact of each modality on the final result, and verifying the robustness
of each method against input data degradation.

5.2. Data Degradation Robustness

All experiments from Sections 4.1–4.3 revealed the existence of a leading modality, which
means that in our experiments there was always a one modality that played a dominant role for
the discrimination between classes.

In Figure 4, one can observe that, for BiGS dataset, MoE and LMF fusion methods exhibited
significantly decreased performance when the modality no. 3, which was a 3-axis force signal in
combination with other modalities, was replaced by the uniform noise. Hence, we consider this signal
as a leading modality in the BiGS dataset. As it can be observed, the LMF and MoE were also sensitive
to the uniform noise added that affected the force signal. However, the described phenomenon did
not occur for other fusion methods—the Late and Mid. They appeared to be relatively robust for
data degradation scenarios, exhibiting no more than 10% of a drop in the accuracy when the leading
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modality was noised, zeroed or totally replaced by noise. In a case of MoE the drop in the quality
of discrimination between classes to the 16.1% and 29.5% would be caused by the fact that during
the training, the gating network was trained to increase the importance of a leading modality for the
prediction because it played a dominant role in provided data. Thus, when that signal, together with
any of the other modality, were replaced by the noise, too much emphasis was put on the correlation
of these two signals, what resulted in prediction mistakes. However, MoE exhibited robustness for
any other data degradation scenarios. It appeared to be sensitive mainly to the correlations between
the force signal and two other modalities—hand positions and orientations. Henceforth, in the MoE,
the interactions between the modalities were essential for the grasp outcome classification, not the
leading modality itself. Similar results were achieved while testing the LMF method—when the force
signal was replaced by the uniform noise, the method was more likely to make mistakes, thus the
interactions between modalities were meaningless. Additionally, the LMF was sensitive to not only
scenarios with replacing the leading modality with noise and its combinations with other modalities,
but also for the noise added to the signals. This could be observed in the LMF heat-map in Figure 4
looking at the results (36.8%, 35.1%, and 33.5%) in the U-row. The described phenomenon might be
caused due to the fact that LMF is a tensor-based method that highly relies on outer products between
uni-modal representations inside networks, thus the highest emphasis was put on inter-modality
interactions. When a finding of these interactions was difficult/not possible, the LMF struggled to
find a correct prediction for the grasp outcome evaluation task. It can be also observed that the type of
noise introduced to the input data played a significant role for the prediction performance because
presented findings were not observed for a normal noise. To explain that effect, we speculate that
during the training phase, in signals there was already some noise present similar to the normal level,
which resulted in a higher robustness for such a data degradation. The achieved robustness was
truly substantial and it appears that a balance between the importance of modalities was paramount.
Nevertheless, verifying that relevance is very challenging and involves a great number of experiments.

Another dataset involved in experiments was the HaTT, and results gathered during that trial
were reported in Figure 5. Contrary to the BiGS dataset, by inspecting heat-maps one can observe
that the 2nd modality (an acceleration) caused a significant drop of the accuracy for all tested data
degradation scenarios and fusion methods. Hence, we consider an acceleration to be a leading
modality from proposed set of input modalities. In the task of texture classification based on haptic
signals, all methods exhibited a similar performance and sensitivity on different disturbances. A lack
of a legitimate acceleration signal (zeroing or replacing with a noise) always caused a decreased
performance to the level of 5% for all tested methods. This means that in the proposed set of
modalities, the domination of an acceleration was tremendous, and the rest of the signals did not
provide meaningful information about the process under investigation. The late fusion and LMF
heat-maps evaluation gave a similar results for all data degradation scenarios, but the MoE and Mid
fusion differs in terms of managing the added noise—MoE exhibited sensitivity to an appearance of
the noise component in the leading modality, but the Mid was fragile for the same phenomenon but
with the uniform noise added.

The results of the multi-label classification of haptic adjectives performed on the PHAC-2 dataset
were shown in Figure 6. The biggest drop in the performance metric was reported for columns missing
the 1st modality—an image, which was considered as a leading modality. In the MoE, the fact that the
lack of images was able to cause a total failure of the classifier achieving the result of 0 (which means
that the modal was always wrong) again indicates that gating network during a training put too much
emphasis on the dominant modality. Taking into account that every result below 0.5 level means that
the classifier is more often wrong than right on average. The Late, MoE and Mid fusion methods
behaved similarly across all scenarios—the performance without a leading modality was significantly
decreased. The LMF performed slightly different, achieving relatively good results when an input
image was replaced by a noise what can be seen in the first column of the LMF heat-map. However,
it performed worst in case of scenarios where other modalities were replaced by a noise/zeroed.
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Although, it should be noted, that it does not achieved 0 AUC-ROC as it happened in case of MoE
and Mid methods. Additionally, sometimes one can observe an improvement in the classification
performance achieved when one modality was noised/faded. Such a phenomenon was reported,
e.g., for the Mid fusion when the 2nd modality (raw electrode signal) was zeroed or replaced by a
uniform noise. Comparing to Table 4 the improvement was 3%.

5.3. Data Augmentation vs. Leading Modality

In the last stage of experiments we re-trained models from the Section 4.1. We did that on the
same folds as in the original experiment to ensure a fair comparison and provide results comparable
with performed comparison of fusion methods.

First of all, we augmented the training dataset by adding normal noise N (0, 0.7) or switching-off
the leading modality in 33% of the samples. Then, we re-trained selected models on corresponding
folds and reported a mean accuracy and AUC-ROC metric of the classification for test datasets in
Table 5. By measuring the influence of the data augmentation we established a point of reference for
further experiments, as such augmentation could decrease the performance. As we can observe, we
obtained similar results as in Tables 2–4, which means that this partial degradation does not affect
the performance in nominal conditions significantly. In Tables 6 and 7 we reported the results for the
degraded test set. In Table 5 the results from tests for noised leading modality were presented, whereas
in Table 7 those for zeroed modality were presented.

As it can be observed in both tables, the data augmentation procedure increased robustness on
noised and missing modalities entirely for the BiGS dataset, thus all methods gave similar results as
during the tests on the data without any degradation applied on an leading modality. We believe that a
proposed data augmentation procedure is sufficient to ensure a robustness on noised/missing samples
for the proposed set of input modalities.

However, the above statement is not always true, which is clearly visible in results obtained for
the HaTT dataset, when the mean decrease of accuracy was from 6% to 13% when comparing Table 5
to Table 6 and even larger from 18% to 24% between Tables 5 and 7. The results proved the same
conclusions as before—the leading modality in the HaTT dataset possessed so much information
meaningful for the discrimination between textures and other modalities played only a supporting
role for that task. Nevertheless, using data augmentation still brought a significant improvement in
results comparing to data degradation scenarios showed in Table 5. In both tested variants, the best
performing method turned out to be the MoE, which indicates that the gating network learned to more
efficiently refuse a predictions based on a degraded leading modality.

In the multi-label classification task on the PHAC-2 the Late, Mid and MoE methods failed to
properly assign haptic adjectives when the vision was missing. However, the LMF method apparently
was able to find intra- and inter-modality interactions that led to the surprisingly good result of 0.61
AUC-ROC metric. It indicates that the LMF was the only method that was able to actually assign the
haptic adjective properly more often than make a mistake on average. In tests involving noise-only
samples, all methods achieved similar result and the performance metric dropped only by 4–6%.

6. Conclusions

In our work we compared four multi-modal fusion methods that could be regarded as
state-of-the-art. We assessed their performance in the three tasks—a prediction of a grasp outcome,
a texture recognition and multi-label classification of haptic adjectives. Then, selected methods were
verified in the variety of possible scenarios of input data degradation that might occur in real life,
e.g., a sensor turn-off or a measurement noise. Finally, we measured the influence of data augmentation
technique on the predictive capabilities of tested methods and again evaluated their robustness on
noise added to the leading modality and its zeroing. We hope that the findings contained in our paper
will make researchers realize that State-of-the-Art fusion methods are prone to over-fit to specific
modalities, so-called leading modalities, and are rather susceptible to the noise as well as sensor
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failures. Thus, in order to build reliable autonomous systems, we have to focus more on the robustness
of our data fusion methods. Due to that, all our code and data used in experiments were made available
as open-source.
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