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Preface to ”Numerical Simulation in Biomechanics

and Biomedical Engineering”

In the last decades, the improvement of the computational technology has allowed the

introduction of advanced numerical models and high-performance simulations in several fields

of engineering. In particular, biomedical engineering, which can be a bridge discipline between

medicine and engineering, and combines the knowledge of several aspects of both fields, has received

great attention from the scientific community for its direct relation to human health. In a more general

meaning, biomedical engineering also includes the study of the processes related to nature and

animals. Specific applications can be found in the understanding of human pathologies and diseases;

in the advancement of the medical health care; and in the improvement of the diagnosis, therapies,

medical devices, and clinical outcomes, among other aspects. However, biomedical engineering

should theoretically also help to reduce the number of tests in animals, and should also contribute

to the improvement of their health care. More recent applications can be found in the analysis

of biological problems, such as the cells’ culture and motility, and the microfluidic and diffusion

processes.

Numerical methods and computer simulation have been widely used to help the biomedical

engineering for providing computational models able to reproduce many aspects associated to the

human medicine and to the biology. Considerable research has been obtained with the improvement

of the computer performances that allows for the increase of more and more complexity in such

in silico modeling. Despite the extensive investigation in this field and the large improvement

in computer technology, the complex mechanism of different biological problems and related

pathologies has been not fully understood. This is partially due to the difficulties to reproduce,

with the necessary accuracy, the complexity of certain phenomena and the overall limitations of the

computational and experimental modeling.

This e-book presents a collection of several examples of application of the numerical modeling

to complex problems in the field of biomechanics and biomedical engineering. Some of the fields

included in the book are tissue engineering, computational biofluid dynamics, structural analysis of

muscle skeletal system and bone tissue, design and analysis of medical devices, 3D printing technique

for the biomedical engineering, analytical and numerical solution of blood flow, and analysis of

topological data.

The Editor thanks the contribution, effort, and dedication of the authors to describe and show by

means of their papers some of the application of the mathematics by means of the numerical models

to the biomedical engineering. Their recognized expertise in the mentioned fields of the biomechanics

and biomedical engineering have contributed to the scientific quality of this book that will certainly

be appreciated by the readers.

Mauro Malvè

Editor
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Abstract: A marked interest has recently emerged regarding the analysis of the wall shear stress (WSS)
vector field topological skeleton in cardiovascular flows. Based on dynamical system theory, the WSS
topological skeleton is composed of fixed points, i.e., focal points where WSS locally vanishes, and
unstable/stable manifolds, consisting of contraction/expansion regions linking fixed points. Such an
interest arises from its ability to reflect the presence of near-wall hemodynamic features associated
with the onset and progression of vascular diseases. Over the years, Lagrangian-based and Eulerian-
based post-processing techniques have been proposed aiming at identifying the topological skeleton
features of the WSS. Here, the theoretical and methodological bases supporting the Lagrangian- and
Eulerian-based methods currently used in the literature are reported and discussed, highlighting their
application to cardiovascular flows. The final aim is to promote the use of WSS topological skeleton
analysis in hemodynamic applications and to encourage its application in future mechanobiology
studies in order to increase the chance of elucidating the mechanistic links between blood flow
disturbances, vascular disease, and clinical observations.

Keywords: fixed points; manifolds; divergence; hemodynamics; computational fluid dynamics

1. Introduction

Recent advances in medical imaging, modeling, and computational fluid dynamics
(CFD) have allowed the modeling of local hemodynamics in realistic, personalized cardio-
vascular models, fostering understanding of the association between local hemodynamics
and the initiation and progression of vascular disease, and in a wider perspective, con-
tributing to the translation of computational methods in real-world clinical settings to
complement clinical information.

It has long been recognized that hemodynamic factors regulate several aspects of
vascular pathophysiology [1,2]. Wall shear stress (WSS), the frictional force per unit area
exerted by streaming blood on the endothelium, has been identified as a major biomechani-
cal factor involved in vascular homeostasis. In fact, WSS is sensed through several vascular
mechanosensors and biochemical machineries that regulate the expression of genes coding
for extra- and intra-cellular proteins, playing a relevant role in the development, growth,
remodeling, and maintenance of the vascular system [3,4]. In this scenario, a multitude
of WSS-based descriptors of the near-wall hemodynamics has been proposed over the
years to provide potential indicators of flow disturbances associated with aggravating
biological events. In particular, regions at the luminal surface presenting with low [5]
and oscillatory [6] WSS have been identified as localizing factors of vascular disease [3,6].
However, the complex hemodynamic milieu the endothelium is exposed to can be only

Mathematics 2021, 9, 720. https://doi.org/10.3390/math9070720 https://www.mdpi.com/journal/mathematics
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partially characterized by low and oscillatory WSS [7,8], as confirmed by a large body of
literature reporting poor-to-moderate (and sometimes, contradictory) associations between
low and oscillatory WSS with respect to vascular disease, e.g., [7–13]. This indicates a
limited current understanding of the mechanistic link between WSS and vascular disease
that hampers the use of WSS not only as a biomarker of vascular disease but also as a
predictor of its progression within a clinical context [14].

Stimulated by the need to improve the understanding of the link between altered
hemodynamics and clinical observations, the topological skeleton of the WSS vector field at
the luminal surface of an artery is receiving increasing interest [15–20]. Based on dynamical
system theory, the WSS topological skeleton is composed of a collection of fixed points,
i.e., focal points where WSS locally vanishes, and unstable/stable manifolds, consisting
of contraction/expansion regions linking fixed points. Such an interest arises from the
ability of WSS topological skeleton features to reflect cardiovascular flow features like
flow stagnation, separation and recirculation that are known to be promoting factors for
vascular disease [2,17]. Very recent studies have demonstrated that the WSS topological
skeleton governs the near-wall biochemical transport in arteries [15,16,18,21], which plays
a fundamental role in, e.g., the initiation of atherosclerosis and thrombogenesis [22,23]. In
addition, evidence of a direct association between WSS topological skeleton features and
markers of vascular diseases from real-world clinical data have recently emerged [20,24].

In the present study, we report and discuss the theoretical background of Lagrangian-
and Eulerian-based methods currently applied to the analysis of the WSS topological skele-
ton. Based on the recent promising findings highlighting a link between WSS topological
skeleton features and markers of vascular disease [17–21,24], the aim of this study is to
encourage the application of WSS topological skeleton analysis to cardiovascular flows
as an ad hoc instrument that is potentially able to further elucidate the mechanistic link
between WSS and vascular pathophysiology.

2. Topological Skeleton of a Vector Field

Topological features of a vector field have been largely studied in the context of
dynamical systems theory. A dynamical system is defined as a set of n differential equations:

.
x(t) = u(x, t);

x(t0) = x0,
(1)

where t ∈ R+ is the time, x0 ∈ Rn the initial position at time point t0, i.e., x0 = x(t0), and
u(x, t) the velocity field. Given the initial condition x0 ∈ Rn, a unique solution of Equation
(1) exists, called trajectory, given by:

x(t) = x(t0) +
∫ t

t0

u(x(s), s) ds. (2)

Associated with the dynamical system defined in Equation (1), the so-called flow map
can be defined as follows:

Φt
t0

: x0 → x(t), (3)

providing the expression of all the system trajectories at time t. In general, the topological
skeleton of the vector field u is recognized to provide the organizing structures of the
system itself.

In steady-state conditions (i.e., when vector field u(x, t) in Equation (1) does not
explicitly depend on time), the topological skeleton of a vector field consists of a collection
of fixed points (Figure 1A) and the associated stable and unstable manifolds connecting
them (Figure 1B). A fixed point (or critical point) is a point x f p ∈ Rn where the vector field
locally vanishes. The nature of fixed points can be stable or unstable. A stable fixed point
is characterized by a sink configuration, and it attracts the nearby trajectories, while an
unstable fixed point is characterized by a source configuration, and it repels the nearby
trajectories (Figure 1A).
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Figure 1. (A) Possible configurations for a fixed point of a vector field. (B) Explanatory sketch of the
stable/unstable manifolds connecting fixed points.

A fixed point can be classified as a saddle point, node, or focus (Figure 1A): (1) a
saddle point is a point attracting and repelling nearby trajectories along different directions
(i.e., where the streamlines of the vector field intersect themselves); (2) a stable/unstable
node is characterized by converging/diverging streamlines; (3) a focus is characterized by
spiraling trajectories, and it can be attracting or repelling.

Technically, the exact location of fixed points in a domain of interest can be identified
by computing the Poincaré index [25], a topological invariant index quantifying how many
times a vector field rotates in the neighborhood of a point. For the sake of simplicity, we
consider the dynamical system in Equation (1) under steady-state conditions and lying
in a 2D space, i.e., u(x) = (X(x), Y(x)), with x ∈ R2. An explanatory example of how to
calculate the Poincaré index can then be provided. Let x f p ∈ R2 be an isolated fixed point
of u with a neighborhood N such that there are no other fixed points in N than x f p, and let
γ be a closed curve inscribing N. Then, the Poincaré index I(γ, u) of the curve γ relative to
u is the number of the positive field rotations while traveling along γ in a positive direction:

I(γ, u) =
1

2 π

∫
Γ

dθ =
1

2 π

∫
Γ

d arctan
(

Y
X

)
, (4)

where θ is the vector field rotation angle. The Poincaré index is equal to −1 at saddle
point locations (Figure 1A), 1 at node or focus locations (Figure 1A), and 0 otherwise. The
algorithm for computing the Poincaré index for a 3D vector field defined on unstructured
triangle meshes is extensively described elsewhere [19].

The Poincaré index allows identifying fixed point locations, but it does not provide
information about the fixed points nature. Therefore, a criterion to distinguish between a
node or a focus and between the attractive or repelling nature of a fixed point is needed. In
light of this, the vector field u around the fixed point x f p can be expressed by linearization
as:

u(x) = u
(

x f p

)
+ J

(
x f p

)(
x − x f p

)
, (5)

where J is the Jacobian matrix of u. The classification of fixed points can be thus performed
by computing the eigenvalues of the Jacobian matrix J, as summarized in Table 1. In detail,
two real eigenvalues with different signs identify a saddle point. Two real eigenvalues
with the same sign identify nodes characterized as attracting or repelling (i.e., stable or
unstable, respectively) according to their sign (negative or positive, respectively). Complex
conjugate eigenvalues identify a stable or unstable focus according to the sign of the real
part (negative or positive, respectively).
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Table 1. Classification of fixed points based on the eigenvalues of the Jacobian matrix.

λ Fixed Point

λ1 < 0 < λ2 Saddle point
λ1, λ2 > 0 Unstable node
λ1, λ2 < 0 Stable node

λ1,2 = α ± βi Unstable focus
λ1,2 = −α ± βi Stable focus

The stable and unstable manifolds (or critical lines) associated with a fixed point x f p
are composed of all initial conditions x0 ∈ Rn such that the trajectories initiated at these
points x0 approach the fixed point x f p asymptotically. By construction, stable and unstable
manifolds act as separatrices of the vector field, portioning regions of different behavior
and dynamics. In detail, an unstable manifold attracts nearby trajectories, as opposed to
the stable manifold, which repels nearby trajectories (Figure 1B). In mathematical terms, an
unstable manifold Wu associated with the generic fixed point x f p is defined as follows:

Wu
(

x f p

)
=

{
x0 ∈ R

n : Φt
t0
(x0) → x f p as t → +∞

}
, (6)

while a stable manifold Ws can be expressed as:

Ws
(

x f p

)
=

{
x0 ∈ R

n : Φt
t0
(x0) → x f p as t → − ∞

}
. (7)

In general, two different perspectives have been proposed to identify manifolds of a
vector field, namely the Lagrangian and Eulerian perspectives. The Lagrangian perspective
considers individual particles, tracking their motion along their paths as they are advected
by the flow field. By contrast, the Eulerian perspective considers the properties of the vector
field under analysis at each fixed location in space and time. In the following sections, a
brief theoretical background is reported for a better understanding of the theory supporting
the Lagrangian and Eulerian approaches for the analysis of vector field topology, with
particular emphasis on their application to cardiovascular flows.

3. Lagrangian Approach

3.1. Lagrangian Coherent Structures

When the vector field u(x, t) in Equation (1) is time-dependent, solutions can be com-
plex and chaotic, making the interpretation of the topological skeleton made of Wu, Ws and
x f p difficult. The need to robustly define intrinsic structures governing fluid/mass trans-
port under unsteady-state conditions has led to the development of the concept of coherent
structures (CS). Technically, CS are defined as emergent patterns, influencing the transport
of tracers/mass in time-dependent flows [26]. In this context, Lagrangian Coherent Struc-
tures (LCS) are coherent structures identified by applying methods based on a Lagrangian
approach. The theoretical bases of LCS lie in methods of nonlinear dynamics, chaos theory,
and fluid dynamics.

From a mathematical perspective and in relation to fluid mechanics, LCS can be
defined as material surfaces in the flow field that are dominant in attracting or repelling
neighboring fluid elements over a defined time interval [27,28]. These material surfaces are
able to localize where the flow field experiences the largest and the smallest stretching [29].
In detail, material surfaces in the flow field attracting trajectories more strongly than any
other nearby material surface are referred to as attracting LCS. Oppositely, material surfaces
repelling trajectories more strongly than any other nearby material surface are referred to
as repelling LCS.

The detection and visualization of LCS is usually performed by applying two different
Lagrangian-based approaches, namely (1) Lagrangian particle tracking and (2) the compu-
tation of the finite-time Lyapunov exponent (FTLE). Both approaches are based on particle
path information derived from the post-processing of velocity data obtained by CFD simu-
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lation or by in vivo (e.g., phase contrast magnetic resonance imaging (MRI)) and in vitro
(e.g., particle image velocimetry) measurements. The workflow of the Lagrangian-based
approaches to visualize LCS is sketched in Figure 2.

Figure 2. Workflow of the Lagrangian-based approaches to visualize attracting Lagrangian coherent
structures (LCS) starting from a cluster of particles at time t0 over the domain of interest. The same
procedure applies to repelling LCS by considering reversing time. FTLE: finite time Lyapunov
exponent.

The Lagrangian particle tracking is performed by seeding the domain of interest with
tracer particles and by visualizing their motion (Figure 2). The aim of this approach is
to reveal coherent features revealing how the flow under analysis is organized. From a
mathematical perspective, the position of a tracer particle is governed by the differential
equation reported in Equation (1). To obtain the position of such a particle at a desired
time t, Equation (1) is numerically integrated from t0 to t. The direct integration of tracer
particles allows for an in-depth understanding of how tracers are transported through the
domain of interest. In detail, attracting LCS will be generally distinguishable, since tracer
particles are attracted to and along these surfaces (Figure 3). Analogously, repelling LCS
will be distinguishable from the advection of tracer particles by reversing time (Figure 3).
Attracting LCS are traced out with forward time integration of particles, while repelling
LCS are traced out with backward time integration of particles.

5
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Figure 3. Explanatory sketch of attracting and repelling LCS over time interval [t0, t]. A sphere of
tracer particles released at time t0 will spread out along the attracting LCS (time t ). The opposite
occurs for a repelling LCS.

Lagrangian particle tracking represents a Lagrangian-based technique aiming at
overcoming issues related to standard approaches used for topological skeleton extraction
of vector fields with unsteady-state conditions. However, the resulting tracer particle
motion complexity could obscure the interpretation of the vector field topology. For this
motivation, the second approach consists of the computation of the FTLE (Figure 2). Based
on theory, a LCS can be defined as the material surface locally maximizing the FTLE [27,30],
the Lyapunov exponent being a measure of the sensitivity to the initial position of a
dynamical system. Technically, the finite time Lyapunov exponent σ(x0, t0, t) [27,28,31–35]
is defined as:

σ(x0, t0, t) =
1

|t − t0|
ln

√
λmax(C(x0, t0, t)), (8)

where λmax(C(x0, t0, t)) is the maximum eigenvalue of the right Cauchy–Green strain
tensor C(x0, t0, t):

C(x0, t0, t) = ∇Φt
t0
(x0)

T∇Φt
t0
(x0), (9)

where ∇Φt
t0
(x0)

T denotes the transpose of the gradient of the flow map in Equation (3).
From a physical point of view, C(x0, t0, t) in Equation (9) represents the material deforma-
tion of infinitesimal volume elements of fluid, and it is a symmetric and positive-definite
matrix. Roughly speaking, the FTLE σ defined in Equation (8) measures the rate of sep-
aration of initially close vector field trajectories. Let δ0 be a small distance between two
material points at time t0, as depicted in Figure 4 (Panel A). It can be demonstrated [26]
that the separation δt after the time interval |t − t0| satisfies the inequality:

||δt|| ≤ eσ(x0,t0,t)|t−t0|||δ0||, (10)

where equality holds if the initial distance δ0 is aligned with the eigenvector of C(x0, t0, t)
associated with λmax.

The algorithm for LCS identification based on FTLE computation starts with the
initialization of a cluster of massless elemental particles at time t0 over the domain of
interest (Figure 2). Then, particles are numerically integrated by the field in Equation (1)
from t0 to t, and their trajectories are calculated. The flow map Φt

t0
(Equation (3)) is

obtained from the final position of each particle trajectory at time t in the domain, and
subsequently its gradient ∇Φt

t0
(x0) can be computed. For a structured grid like the one

shown in Figure 4 (panel B), ∇Φt
t0
(x0) can be calculated by finite differencing, e.g., using

central differencing as follows:
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∇Φt
t0
(x0) ≈

⎡
⎢⎢⎢⎢⎣

x(i+1)jk(t)−x(i−1)jk(t)
x(i+1)jk(t0)−x(i−1)jk(t0)

xi(j+1)k(t)−xi(j−1)k(t)
yi(j+1)k(t0)−yi(j−1)k(t0)

xij(k+1)(t)−xij(k−1)(t)
zij(k+1)(t0)−zij(k−1)(t0)

y(i+1)jk(t)−y(i−1)jk(t)
x(i+1)jk(t0)−x(i−1)jk(t0)

yi(j+1)k(t)−yi(j−1)k(t)
yi(j+1)k(t0)−yi(j−1)k(t0)

yij(k+1)(t)−yij(k−1)(t)
zij(k+1)(t0)−zij(k−1)(t0)

z(i+1)jk(t)−z(i−1)jk(t)
x(i+1)jk(t0)−x(i−1)jk(t0)

zi(j+1)k(t)−zi(j−1)k(t)
yi(j+1)k(t0)−yi(j−1)k(t0)

zij(k+1)(t)−zij(k−1)(t)
zij(k+1)(t0)−zij(k−1)(t0)

⎤
⎥⎥⎥⎥⎦. (11)

Figure 4. (A) Explanatory sketch illustrating the separation of nearby particles due to the flow map
Φt

t0
, during time interval |t − t0|. (B) Nodal indexing of elemental cells in a 3D-structured mesh.

Indices i, j, k represent the positions along the x, y, z directions, respectively.

Once the flow map gradient is obtained, the Cauchy–Green strain tensor C(x0, t0, t)
can be computed according to Equation (9).

Finally, the maximum eigenvalue λmax(C(x0, t0, t)) and the FTLE σ(x0, t0, t) can be
computed according to Equation (8) (Figure 2). The obtained σ(x0, t0, t) value for each
particle is assigned to the particle position at time t0. This procedure is repeated, varying
the time t0 (e.g., within the cardiac cycle in cardiovascular applications) and aiming at
providing the time series of FTLE values and ultimately the time history of LCS movements
(Figure 2). Positive integration times reveal repelling LCS in the FTLE field, while negative
integration times reveal attracting LCS in the FTLE field.

In general, the computation of the spatial variation of the FTLE field requires the
vector field to be interpolated in both time and space, and high-order integration and
interpolation schemes are needed to ensure accuracy of results. Furthermore, the mesh
used to compute the FTLE distribution over the domain of interest usually needs to be
more resolved than the computational mesh for a more robust detection of LCS.

3.2. LCS Application to Intravascular Flows

Lagrangian-based approaches have been largely applied to identifying LCS in intravas-
cular flows. Indeed, Lagrangian particle tracking has been massively applied to explore
the complexity of intravascular flows, e.g., to provide a measure of stasis in idealized
computational bifurcation models [36], or to study vortices generation and their poten-
tial role in thrombogenesis in idealized aneurysm models [37,38]. Several studies have
applied particle tracking to identify flow disturbances in, e.g., carotid bifurcation models,
contributing to providing a deeper understanding of the hemodynamics-driven processes
underlying atherosclerosis onset/progression [39–42]. Moreover, particle tracking has
been used to study the hepatic perfusion in the Fontan circulation [43,44], identify the
optimal left ventricular assist device cannula outflow configurations [45], obtain a deeper
understanding of the dynamics of embolic particles within arteries [46], and detect peculiar
intravascular helical flow patterns in the aorta from in vivo, 4D-flow MRI data [47,48].

Regarding the FTLE-based analysis of the flow field, its extension to intravascular
flows is relatively recent, motivated by the fact that LCS are determined by blood flow
structures associated to adverse vascular events including flow stagnation, separation, and
recirculation. Among the main contributions, here we mention that Shadden and Taylor [32]
used LCS to quantify the extent of flow stagnation to determine where flow separated
and to understand how flow was partitioned to downstream vasculature in computational
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hemodynamic models of large vessels. LCS have been proposed as a powerful method
to capture vortex transport in blood flow. In this regard, Arzani and Shadden [33] used
LCS to characterize the hemodynamics in abdominal aortic aneurysm (AAA) models,
suggesting that AAA intravascular flow topology is dictated by systolic vortex propagation
through the abnormal vessel. Arzani et al. [49] computed FTLE fields and associated LCS
to capture a large coherent vortex in AAA computational models. Furthermore, LCS have
been applied to identify left ventricle (LV) blood flow features during heart filling. In
detail, Gharib et al. [50] used LCS to demonstrate the existence of a link between the vortex
ring formation inside the LV and the ejection fraction. Charonko et al. [51] quantified the
vortex ring volume by computing LCS from in vivo LV phase contrast MRI data of healthy
and diseased patients. Töger et al. [52] extracted LCS from in vivo LV phase contrast
MRI data to measure the vortex ring volume during LV rapid filling. The identification
of attracting and repelling LCS from LV Doppler-echocardiography data was adopted
as a criterion to discriminate between healthy and diseased patients [53]. Other studies
applied LCS to characterize the flow field through heart valves. In particular, LCS were
extracted to delineate the boundaries of the outflow jet downstream of aortic valves and
used as a measure of the severity of the valve’s stenosis [54,55]. In a very recent study [56],
FTLE-based LCS detection on computational hemodynamics models of aortic bicuspid and
mechanical heart valves was used to study mass transport processes that might be related
to valve disease. The analysis of the fluid dynamics in the neighborhood of blood clots
was another effective application of LCS to hemodynamics [57]. In addition, FTLE-based
analysis was adopted to highlight the hemodynamic impact of flow diverter stents in the
treatment of intracranial aneurysms [58,59].

We refer the interested reader to reference [31] for a broader, detailed overview of
Lagrangian methods used in post-processing of velocity data in cardiovascular flows.

3.3. LCS Application to Near-Wall Flow Features

Recently, in the study of cardiovascular flows, the concept of LCS has been extended to
analyze the near-wall flow topology, i.e., the topology of the flow field close to the luminal
surface of arteries. The rationale is in the well-established involvement of near-wall mass
transport in most of the processes concurring to determine vascular pathophysiology [5]: in
the near-wall region, blood flow regulates the local biotransport processes and imparts me-
chanical shear stress on the endothelium (i.e., the WSS), which in turn regulates important
developmental, homeostatic, and adaptive mechanisms in arteries, as well as susceptibility
to and progression of atherosclerosis [1].

Based on theory, it has been demonstrated [60] that the WSS vector field can be scaled
to provide a first-order approximation for the near-wall blood flow velocity vector field as
follows:

uπ =
τδn

μ
+ O

(
δn2

)
, (12)

where uπ ∈ R3 is the near-wall velocity, τ ∈ R3 represents the WSS vector field, μ is the
dynamic viscosity, and δn is the distance from the wall where the velocity is evaluated. By
construction, the vector field in Equation (12) is defined on the luminal surface of the vessel,
and it represents the near-wall velocity, as the velocity is zero on the surface itself due to
the no-slip condition. The LCS underlying theory described in Section 3.1 can be extended
to analyze the near-wall flow topology by using the expression of near-wall velocity uπ

(given by Equation (12)) in Equation (1). Such near-wall Lagrangian structures, computed
from the WSS vector field, are referred to as WSS LCS [15].

Computationally, WSS LCS can be identified on the luminal surface of the vessel
by numerically integrating a high number of luminal surface tracer particles, applying
the procedure described in the first part of Section 3.1. In detail, attracting and repelling
WSS LCS can be traced out with forward and backward time integration of surface tracer
particles based on the near-wall blood flow velocity (Equation (12)), respectively.
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The recent interest in WSS LCS from the cardiovascular fluid mechanics research
community was driven by WSS LCS ability to highlight blood flow features associated with
vascular disease initiation and progression, like flow stagnation, separation, recirculation,
flow impingement, and the interaction of vortex structures with the vascular wall [19,61,62]
These blood flow features have been classified as “aggravating flow events”, as they trigger
biological processes leading to the development or progression of vascular disease [2,17].
An example of attracting WSS LCS on the luminal surface of a patient-specific compu-
tational hemodynamic model of carotid bifurcation is presented in Figure 5. Details on
the carotid bifurcation hemodynamic modeling are reported elsewhere [9,14,20,63]. In
this specific case, luminal surface tracer particles (Figure 5A) are numerically integrated
in forward time. The resulting LCS is located at the carotid bulb, a region characterized
by flow disturbances (slow, recirculating blood flow) promoting atherosclerosis [2,4]. In
detail, the attracting WSS LCS provides the boundary at the luminal surface of the slow
vortex structure formed inside the carotid bulb (Figure 5C, where the recirculation region
is highlighted visualizing the streamlines of the cycle-average velocity vector field).

Figure 5. (A) Initial tracer particle position on the luminal surface of a carotid bifurcation model.
(B) Attracting wall shear stress Lagrangian coherent structures (WSS LCS) traced out from forward
time integration of WSS trajectories. (C) Streamlines of the cycle-average velocity vector field, colored
by cycle-average velocity magnitude.

In addition, the shear forces exerted by the streaming blood flow in the near-wall
region on the endothelium affect biotransport processes, i.e., the transport of biochemicals
through the subendothelial layer [22]. Biotransport is of paramount importance in many
cardiovascular processes, including the initiation of atherosclerosis and thrombogene-
sis [23]. In general, cardiovascular mass transport is investigated in silico by coupling the
governing equations of motion, the Navier–Stokes equations, with the advection–diffusion
equation, given by:

dC
dt

+ u· ∇C − D∇2C = 0, (13)

where C is a non-dimensional concentration of the species transported in the domain, u
is the fluid velocity vector, and D is the mass diffusion coefficient. However, high com-
putational costs are associated with the class of numerical simulations used to accurately
solve the near-wall transport and blood-wall transfer [64,65], making this approach ex-
pensive in hemodynamics applications. To overcome this limitation, and based on the
well-established role that WSS plays in conditioning the permeability of the endothelium
and the near-wall mass transport process, recent studies [15,18] have brilliantly demon-
strated that WSS LCS can be used as a template for near-wall mass transport. This allows
reduction of the computational effort needed to solve the full transport problem, repre-
sented by Equation (13) [15]. In particular, it has been demonstrated that attracting WSS
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LCS attract biochemicals, leading to high near-wall concentration in their neighborhood,
whereas repelling WSS LCS have been shown to act as near-wall transport barriers [15,17].

In the context of cardiovascular flows, it has been recently demonstrated that attract-
ing/repelling WSS LCS on the luminal surface of an artery match the unstable/stable
manifolds of the cycle-average WSS vector field [15,18], defined as:

τ =
1
T

∫ T

0
τ(x, t)dt, (14)

where τ is the instantaneous local WSS value and T is the time duration of the cardiac cycle.
Technically, the first step in the topological analysis of cycle-average WSS at the luminal
surface of a vessel is the identification of WSS fixed points. The exact position of WSS fixed
points can be identified by computing, e.g., the Poincaré index, as explained in Section 2.
Then, the cycle-average WSS field around a fixed point x f p, according to Equation (5), by
linearization can be expressed as:

τ(x) = τ
(

x f p

)
+ J

(
x f p

)(
x − x f p

)
, (15)

where J is the Jacobian matrix of τ (see Equation (14)). The identified WSS fixed points can
be classified according to their nature (i.e., saddle, node, or focus, Figure 1A) by analyzing
the eigenvalues of the Jacobian matrix J of τ (Table 1), as described in Section 2. Note
that the WSS vector field is embedded in a three-dimensional space even if it lies in a
two-dimensional space (the luminal surface of a vessel). To perform a two-dimensional
analysis, two strategies are possible. In the first strategy, a projection of the vector field into
two orthogonal directions (hence, in a two-dimensional space) is needed. In the second
one, avoiding the projection of the vector field (and thus reducing the computational steps),
a three-dimensional analysis is performed, thus obtaining three eigenvalues of the Jacobian
matrix, with one of them having a value close to zero. Then, the eigenvalue-based analysis
for the WSS fixed points classification considers only the two eigenvalues different from
zero.

Saddle-type fixed points are of particular interest, since typically a stable or unstable
manifold starts from a saddle point and vanishes into a source or sink, respectively, as
depicted in Figure 1B. Saddle point locations (where the Poincaré index is −1 and the
eigenvalues are real with different signs) are perturbed along the positive eigenvector of
J in two opposite directions, obtaining two initial conditions [18,61]. Unstable manifolds
can be traced out by numerically integrating τ from these initial conditions in forward
time until trajectories reach a stable fixed point (sink configuration) or leave the domain.
Similarly, stable manifolds are delineated by integrating τ in backward time starting
from the perturbation of saddle point locations along the negative eigenvector of J until
trajectories reach an unstable fixed point (source configuration) or leave the domain.

An example of unstable manifolds of cycle-average WSS on the luminal surface
of a patient-specific computational hemodynamic model of carotid bifurcation is pre-
sented in Figure 6. Details on carotid bifurcation hemodynamic modeling are reported
elsewhere [9,14,20,63]. WSS fixed points were identified by computing the Poincaré index
(Figure 6A), and subsequently, unstable manifolds were traced out by applying Runge-
Kutta 4-5 numerical integration schemes (Figure 6B). By visual inspection of Figure 6C, it
can be appreciated that cycle-average WSS unstable manifolds co-localize with attracting
WSS LCS, confirming the capability of the latter to identify critical lines of the WSS field.
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Figure 6. (A) Cycle-average WSS fixed points on the luminal surface of a carotid bifurcation model.
(B) Unstable manifolds of cycle-average WSS (blue lines) traced out by integrating cycle-average
WSS vectors, starting from saddle point positions. (C) Cycle-average WSS unstable manifolds
superimposed on the attracting WSS LCS. WSS vectors are normalized for visualization.

The analysis of cycle-average WSS fixed points and manifolds has been applied to
analyze cardiovascular flows. Arzani et al. [18] used WSS LCS from stable and unstable
manifolds of cycle-average WSS on patient-specific computational hemodynamics models
of AAAs, carotid arteries, cerebral aneurysms, and coronary aneurysms to characterize near-
wall flow topology and biochemical transport. Farghadan et al. [16] used WSS topology and
magnitude analysis to predict surface concentration patterns in cardiovascular transport
problems by computing WSS LCS from manifolds of cycle-average WSS in image-based
coronary and carotid artery models. Mahmoudi et al. [21] studied the near-wall transport
of some of the prominent biochemicals contributing to the initiation and progression of
atherosclerosis in computational hemodynamic models of the coronary artery, highlighting
the strength of cycle-average WSS LCS as a template for luminal surface concentration and
flux patterns of biochemicals transported with blood.

Summarizing, the Lagrangian approach for identifying near-wall topological features
is schematized in Figure 7, where the link between attracting/repelling WSS LCS with
unstable/stable cycle-average WSS manifolds, respectively, is highlighted. In addition,
Figure 7 presents a brief summary of the link between Lagrangian-based near-wall flow
topology and mass transport. For a more in-depth analysis, the interested reader can
refer to recent literature [15,17,18,21] where the link between WSS LCS, cycle-average
WSS manifolds, and biochemical transport in cardiovascular flows is unambiguously
documented.
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Figure 7. Identification and significance of the near-wall Lagrangian structures. The link between WSS LCS and cycle-
average WSS manifolds and their role in near-wall flow topology and near-wall mass transport is highlighted.

4. Eulerian Approach

4.1. Volume Contraction Theory

From a Eulerian perspective, the volume contraction theory provides a simple alterna-
tive way to analyze the behavior of a dynamical system. Contrarily to Lagrangian-based
approaches, the Eulerian perspective considers vector field properties at each point in
space and time. The here-presented volume contraction theory, based on fluid mechanics
and differential geometry, is focused on the temporal change of an elemental volume (of
fluid, for the case of interest) in the phase space of a dynamical system (fluid flow, for
the case of interest). Let V(t) be an arbitrary volume in the phase space of the dynamical
system defined in Equation (1). Let S(t) be a closed surface enclosing the volume V(t), i.e.,
such that S(t) = δV(t). S(t) evolves during the time interval dt resulting in a contraction
or expansion of the volume, as depicted in Figure 8. The rate of volume variation, which
we will call volume contraction rate in the following, can be expressed as follows as a
consequence of the application of the Gauss theorem:

dV(t)
dt

=
∫ ∫

S
u·n dS =

∫ ∫ ∫
V
∇·u dV, (16)

where u is the vector field defined in Equation (1) and n is the unit normal to the surface S
(Figure 8). Shrinking the near-wall volume V to a point, it can be written:

lim
V→0

1
V

dV(t)
dt

= lim
V→0

1
V

∫ ∫ ∫
V
∇·u dV = (∇·u). (17)

Equation (17) clearly shows that in the limit as V approaches zero, the local value of
vector u divergence is equal to its total flux per unit volume.

In general, in non-conservative dynamical systems, the volume of phase space is not
preserved, as it can contract or expand. Thus, trajectories tend toward a lower-dimensional
subset of phase space. From Equation (17), the volume contraction rate Λ(x,t) of a n-
dimensional system, representing the rate of separation of infinitesimal close trajectories,
can be obtained as:

Λ(x, t) = ∇·u(x, t) = tr J(u) =
n

∑
i=1

λi, (18)
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where tr J(u) is the trace of the Jacobian matrix of vector field u and λi are its eigen-
values. Physically, the Jacobian matrix describes how a small change at a starting point
x0 propagates to the final point of the flow map Φt

t0
(x0) of Equation (3). In this sense,

Equation (18) represents the sum of the Lyapunov exponents of Equation (8).

Figure 8. Explanatory sketch of (A) volume contraction and (B) volume expansion in the phase space
of a dynamical system.

4.2. Eulerian-Based Approach for WSS Topological Skeleton Identification

It has been recently demonstrated [19] that the application of the volume contraction
theory to cardiovascular flows allows the analysis of the WSS topological skeleton on
the luminal surface of a vessel through the direct calculation of the WSS divergence.
Briefly, considering the expression of the near-wall blood flow velocity vector uπ given in
Equation (12) and substituting it in Equation (17), it follows that:

lim
V→0

1
V

dV(t)
dt

= lim
V→0

δn
Vμ

∫ ∫ ∫
V
∇·τ dV = (∇·τ). (19)

Based on Equation (19), the WSS divergence gives practical information about the
WSS topological skeleton. Note that in general, the WSS vector field defined at the luminal
surface of a vessel is not conservative, even in the case of incompressible flows.

Contextualizing the physical meaning of Equation (19) to the study of the phenomena
at the interface between blood flow and vessel wall, it can be observed that as the divergence
represents the volume density of the outward flux of a vector field from an infinitesimal
volume around a given point:

• a local positive value of the divergence of the WSS field at the luminal surface means
that locally shear forces exert an expansion action on the endothelium;

• a local negative value of the divergence of the WSS field at the luminal surface means
that locally shear forces exert a contraction action on the endothelium.

In general, the application of the volume contraction theory to the analysis of a dy-
namical system faces one limitation in cases where the distance between two neighboring
trajectories increases/decreases in spite of a negative/positive value of divergence, respec-
tively. As WSS divergence depends by construction upon the algebraic summation of the
magnitude of the single gradients of WSS vector components, in some cases, it might fail to
properly identify WSS expansion/contraction configuration patterns. In fact, these regions
describe specific directional arrangements of the vectors, but both variations in magnitude
and in direction are accounted for in the divergence. To overcome this limitation, which
could markedly affect the application of the Eulerian-based approach to study WSS mani-
folds in cardiovascular flows, the use of the divergence of the normalized WSS vector field
has been recently proposed [19]:

DIVW = ∇·τu = ∇·
(

τ

|τ|

)
, (20)
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where τu is the WSS unit vector. Equation (20) can be used to encase the connections
between fixed points, i.e., manifolds, identify basins of attraction, and subdivide the
domain into different vector field behaviors. Then, in the light of the above and as depicted
in Figure 9, luminal surface regions characterized by negative values of DIVW are referred
to as contraction regions and approximate unstable manifolds. Similarly, regions at the
luminal surface characterized by positive values of DIVW are referred to as expansion
regions and approximate stable manifolds (Figure 9).

Figure 9. Explanatory sketch of the topological skeleton of a vector field. Contraction/expansion
regions, colored in blue/red, respectively, approximating unstable/stable manifolds, are highlighted.

To complete the Eulerian-based WSS topological skeleton analysis, once WSS man-
ifolds have been identified using DIVW , the WSS fixed point location can be carried out
using the Poincaré index, as in the Lagrangian-based analysis (as described in Section 2).
Then, the eigenvalues of the Jacobian matrix of the WSS vector field can be used to distin-
guish between a node or a focus and between the attractive or repelling nature of a fixed
point, as described in Section 2 in general terms (Table 1) and in Section 3.3 for the specific
case of a WSS vector field defined on the luminal surface of a vessel.

An example of Eulerian-based topological skeleton analysis of the cycle-average WSS
field on the luminal surface of a patient-specific computational hemodynamic model of
carotid bifurcation is presented in Figure 10A. Details on carotid bifurcation hemodynamic
modeling are reported elsewhere [9,14,20,63]. WSS fixed points were identified and classi-
fied by computing the Poincaré index and eigenvalues of the Jacobian matrix, respectively,
whereas contraction/expansion regions were identified by computing the divergence of
the normalized cycle-average WSS vector field. By visual inspection of Figure 10B, it can
be noted that cycle-average WSS contraction regions co-localize with cycle-average WSS
unstable manifolds, traced out by integrating cycle-average WSS starting from saddle
point positions, thus confirming the capability of the contraction regions to encase WSS
manifolds.

The Eulerian-based approach to analyze the WSS topological skeleton can be easily
implemented. It requires only single snapshots of the WSS vector field, and the post-
processing algorithms, based on a robust theory, are easily reproduced. This approach does
not need the Lagrangian surface transport computation, as required for Lagrangian-based
and integrated trajectory-based methods, thus reducing computational effort. Furthermore,
it is characterized by modularity in the sense that the method can be applied only for the
purpose of fixed point identification and/or classification or only for contraction/expansion
region identification.
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Figure 10. (A) Cycle-average WSS topological skeleton on the luminal surface of a carotid bifur-
cation model using the Eulerian-based approach. Cycle-average WSS fixed points and contrac-
tion/expansion regions (blue/red regions, respectively) are computed simultaneously. (B) Cycle-
average WSS topological skeleton superimposed on the cycle-average WSS unstable manifolds,
traced out by integrating cycle-average WSS vectors starting from saddle point positions. Vectors are
normalized for visualization.

4.3. Application of the Eulerian-Based Method for WSS Topological Skeleton Analysis to
Cardiovascular Flows

The described Eulerian-based method to identify the WSS topological skeleton on the
luminal surface of an artery can be easily applied (1) to cycle average WSS vectors (defined
in Equation (14) in Section 3.3) and (2) to instantaneous WSS vectors along the cardiac
cycle.

The cycle-average WSS topological skeleton highlights blood flow features associated
with vascular disease development, and it is strongly related to arterial near-wall mass
transport. In detail, on the one hand, contraction/expansion regions of cycle-average
WSS vectors, because of their capability to encase unstable/stable cycle-average WSS
manifolds, can be used to identify biochemical concentration patterns at the arterial luminal
surface. On the other hand, the instantaneous WSS topological skeleton allows analyzing
the unsteady nature of WSS fixed points and contraction/expansion regions. In detail,
instantaneous WSS fixed points may have a potential impact on the endothelial cells (ECs)
function. By definition, a WSS fixed point represents a focal point on the luminal surface of
a vessel where WSS vanishes, and low WSS is a biomechanical factor involved in vascular
dysfunction. In light of this, quantitative descriptors of WSS fixed points residence times
along the cardiac cycle were proposed [17,19], aiming at characterizing their unsteady
nature. In detail, a WSS fixed point residence time, that for each surface element measures
the accumulated amount of time that WSS fixed points spend inside that element, weighted
by the sum of the absolute values of the eigenvalues of the instantaneous WSS Jacobian
matrix, was proposed elsewhere [17]. More recently, a different formulation for quantifying
WSS fixed points was proposed [19] where the local residence time of WSS fixed points were
weighted by the absolute value of the sum of the eigenvalues of the WSS Jacobian matrix
(i.e., according to Equation (18), the absolute value of the WSS divergence, representing the
strength of the contraction/expansion of the WSS around the fixed point). In mathematical
terms:

RT∇x f p(e) =
A
Ae

1
T

T∫
0

Ie

(
x f p, t

)
|(∇·τ)e|dt, (21)

where x f p is the location of a WSS fixed point at time t ∈ [0, T], T is the cardiac cycle
duration, e is the generic triangular element of the superficial mesh of area Ae, A is the
average surface area of all triangular elements of the superficial mesh, Ie is the indicator
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function (equal to 1 if x f p ∈ e, 0 otherwise) and (∇·τ)e is the instantaneous WSS divergence
value, representing the local strength of the contraction/expansion of the WSS around the
considered fixed point. Roughly speaking, Equation (21) allows quantifying the fraction of
the cardiac cycle for which a generic triangle mesh surface element e on the vessel luminal
surface hosted as a fixed point, weighting the residence time by the strength of the local
contraction/expansion action.

Furthermore, the strength and the nature of WSS contraction and expansion action
on the ECs lining the luminal surface, as identified by WSS contraction/expansion re-
gions, is expected to have biological consequences linked to vascular pathophysiology.
In particular, the exposure to high variability of WSS contraction and expansion action
may mechanically induce a recurring variation in EC stimulation along the cardiac cycle,
with consequent widening cell–cell junctions and associated increased endothelium per-
meability and EC dysfunction and apoptosis [7,66]. The amount of variation in the WSS
contraction/expansion action exerted at the luminal surface of a vessel along the cardiac
cycle can be quantified using the quantity topological shear variation index (TSVI) [24]:

TSVI =
{

1
T

∫ T

0

[
DIVW − DIVW

]2 dt
}1/2

. (22)

Equation (22) allows localizing regions on the vessel luminal surface exposed to large
variations in WSS contraction/expansion action exerted by the flowing blood along the
cardiac cycle.

An example of the distribution of WSS fixed point weighted residence time (Equa-
tion (21)) and the topological shear variation index (Equation (22)) on the luminal surface
of a patient-specific computational hemodynamic model of carotid bifurcation is presented
in Figure 11. Details on the carotid bifurcation hemodynamic modeling are reported
elsewhere [9,14,20,63]. From Figure 11, it emerged that the highest RT∇x f p(e) values and
highest variation in the contraction/expansion action exerted by the WSS along the cardiac
cycle were mainly located at the carotid bulb and around the bifurcation apex.

Figure 11. (A) Distribution of WSS fixed-point weighted residence RT∇x f p (e) and (B) Topological
shear variation index (TSVI) on a carotid bifurcation model.

Interestingly, very recent studies highlighted a link between WSS contraction/expansion
variability along the cardiac cycle and aggravating biological events at the arterial wall.
In particular, De Nisco et al. [24] applied the Eulerian-based approach for the analysis of
the WSS topological skeleton for personalized computational hemodynamic models of
ascending thoracic aorta aneurysm (ATAA) and healthy aorta, reporting that: (1) the differ-
ent spatiotemporal heterogeneity characterizing the ATAA and healthy hemodynamics
markedly reflect on their WSS topological skeleton features; (2) a link emerged between
the variability of the contraction/expansion action exerted by WSS on the endothelium
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(as quantified by the TSVI) along the cardiac cycle and ATAA wall stiffness. Morbiducci
et al. [20] demonstrated in a longitudinal study integrating clinical data with compu-
tational hemodynamics that WSS topological skeleton features quantified by the TSVI
independently predicted long-term restenosis after carotid bifurcation endarterectomy.

5. Future Directions

The translation into clinical settings of the WSS topological skeleton is hampered by
several barriers that add up to those affecting in general the translation of computational
hemodynamics and the derived knowledge, as discussed elsewhere [67]. Specifically,
as a first step, the analysis of the topological skeleton needs to be distilled into intu-
itive, clinically relevant criteria. To this aim, only semi-quantitative results are obtained
from the definition of fixed points and stable/unstable manifolds, consisting of contrac-
tion/expansion regions. However, quantitative results can be obtained by focusing on
specific features by using ad-hoc topological skeleton descriptors, such as the fixed point
weighted residence time RT∇x f p(e) (Equation (21)) or the topological shear variation index,
TSVI (Equation (22)). Then, the definition of clinically relevant criteria based on the WSS
topological descriptors require cut-off values for an effective translation into the clinic.
These cut-off values need to be accurately defined and tested in terms of performance
including accuracy, sensitivity, specificity, and positive predictive value, among others.
Therefore, the determination of cut-off values requires adequate statistical power, obtained
usually through multiple prospective, randomized trials. Moreover, the endpoint to be
predicted should be clearly defined, as different endpoints correspond to different cut-off
values.

In the perspective of an effective translation into the clinic of quantitative topolog-
ical skeleton features, in a previous study [20], we proved that exposure to high values
of both descriptors RT∇x f p(e) and TSVI was correlated with intima-media thickness (a
marker of vascular disease) at 60 month follow-ups in carotid bifurcations after carotid
endarterectomy. To determine the cut-off values of the descriptors, a pooled distribution
for each descriptor was calculated from 46 models of healthy carotid bifurcation. The 80th
percentile of those distributions was then used. This approach allowed definition of the
cut-off values for abnormally high values of RT∇x f p(e) or the TSVI.

It is evident that cut-off values are specific to the vascular region and to the predicted
endpoint and therefore cannot be extrapolated to other conditions. In the future, the
continuous improvements in imaging and data acquisition, the increasing availability
of computational power, and the development of more and more efficient and robust
methodologies for blood flow modeling are expected to accelerate the translation into
the clinic of the analysis of the WSS topological skeleton. Our paper aims to give the
methodological basis to tackle these future efforts.

6. Conclusions

The need for the identification of hemodynamic coherent structures in blood vessels is
dictated by the so-called hemodynamic risk hypothesis, suggesting a major role of flow
disturbances in vascular pathophysiology [2]. The action of fluid forces on the endothelial
mechanosensors and biochemical machinery has been historically explained in terms of
WSS [3,4]. However, only moderate (and sometimes contradictory) associations between
vascular disease and WSS-based descriptors have emerged to date, motivating a more
in-depth analysis of the fluid near-wall transport phenomena. In this sense, the capability
of the WSS topological skeleton to capture features reflecting cardiovascular flow com-
plexity [17–20] and having a direct link to adverse vascular biological events has recently
attracted a strong research interest. In this regard, recent studies have demonstrated that
the cycle-average WSS topological skeleton governs the near-wall biochemical transport in
arteries [15,16,18], a process linked to, e.g., endothelium-mediated vasoregulation, throm-
bosis, and atherosclerosis [23]. Furthermore, evidence about the role of WSS topological
skeleton features in vascular pathophysiology emerged from very recent studies suggesting
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a direct link between WSS topological skeleton features and, e.g., aortic wall stiffness [24]
and late restenosis in endarterectomized carotid arteries [20].

Motivated by the need to characterize more precisely the WSS phenotype(s) linked
to aggravating biological events, here we provided an overview of the theoretical and
methodological basis for analyzing the WSS topological skeleton in cardiovascular flows.
In detail, the present study is intended to: (1) promote the application of WSS topological
skeleton analysis to cardiovascular flows, aiming at elucidating the role that peculiar WSS
features play in vascular pathophysiology; (2) facilitate the reproducibility and comparabil-
ity of results from WSS topological skeleton analyses among different studies; (3) confirm
its potential as a tool for increasing the chance of elucidating the mechanistic link between
flow disturbance and clinical outcomes when applied to real-world clinical data.

Here, both WSS topological skeleton Lagrangian- and Eulerian-based methods cur-
rently adopted in the literature are presented. Lagrangian-based approaches start from
the processing of Eulerian data, which represent the typical outputs of current in vivo
(e.g., phase contrast MRI), in vitro (e.g., particle image velocimetry), and computational
methods used for the investigation of cardiovascular flows. On the one hand, Lagrangian
approaches are particularly useful for revealing the global organization of the vector field
and characterizing its evolution over time, making the relevant features easy to detect
by visual inspection, as they offer effective three-dimensional (or even four-dimensional,
i.e., including time) visualizations. On the other hand, Lagrangian techniques rely on
the numerical integration of particle trajectories, requiring sufficiently resolved data in
both time and space, thus, in principle, making such methods computationally expensive
and time consuming [29]. Moreover, adopting a Lagrangian approach may result in a
poor control over the zone of investigation, which is determined by particle motion and
accumulation. For this reason, it can also be difficult to get a complete picture of the flow
at specific time instants. Furthermore, the influence of particle distribution and of particle
seeding schemes on quantities of interest is poorly investigated.

In contrast, Eulerian-based approaches usually simplify the data analysis workflow, as
they can be directly applied to the output given by the main current techniques used for the
investigation of cardiovascular flows (e.g., phase contrast MRI, CFD data). Moreover, they
usually have a simpler definition, making their implementation easy and characterized
by a reduced computational cost. More importantly, they can give a picture of the entire
vector field. However, the inherent unsteady nature of the hemodynamic vector fields (e.g.,
velocity, WSS) can make the characterization of the dynamic evolution of the vector field
features difficult with Eulerian-based approaches.

In conclusion, the theoretical background of the advanced methods of analysis of the
WSS presented here and the recent findings related to their application to cardiovascular
flows support their use to further elucidate the cause–effect relationships at the basis of the
links between local hemodynamics and vascular disease. Based on the reported evidence
about the physiological significance of the WSS topological skeleton in cardiovascular
flows, its application in future studies, including longitudinal data, biological mechanism,
and mechanobiology studies, is strongly encouraged and warranted.
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Abstract: Custom reverse shoulder implants represent a valuable solution for patients with large
bone defects. Since each implant has unique patient-specific features, finite element (FE) analysis
has the potential to guide the design process by virtually comparing the stability of multiple
configurations without the need of a mechanical test. The aim of this study was to develop an
automated virtual bench test to evaluate the initial stability of custom shoulder implants during the
design phase, by simulating a fixation experiment as defined by ASTM F2028-14. Three-dimensional
(3D) FE models were generated to simulate the stability test and the predictions were compared
to experimental measurements. Good agreement was found between the baseplate displacement
measured experimentally and determined from the FE analysis (Spearman’s rank test, p < 0.05,
correlation coefficient ρs = 0.81). Interface micromotion analysis predicted good initial fixation
(micromotion <150 μm, commonly used as bone ingrowth threshold). In conclusion, the finite element
model presented in this study was able to replicate the mechanical condition of a standard test for a
custom shoulder implants.

Keywords: finite element analysis; shoulder implant stability; implant design; reverse shoulder
arthroplasty; micromotion

1. Introduction

Since its introduction in the late 1980s, reverse shoulder arthroplasty (RSA) has become a standard
treatment for patients with rotator cuff arthropathy. More recently, surgeons have expanded its
application to fracture care, rheumatoid arthritis, and even failed prior surgery replacements, further
increasing the number of surgeries [1,2]. In many cases, the presence of considerable bone loss at the
glenoid side, due to degenerative arthritis or secondary to revision surgeries, may complicate baseplate
implantation. This limits the treatment options and jeopardizes the clinical outcomes, as insufficient
bone stock can lead to suboptimal component fixation and therefore early implant failure.

Different methods have been described to address glenoid defects, depending on the bone loss
severity [3]. Eccentric reaming can be performed in case of moderate bone loss, while bone grafting is
more suitable for large defects. However, the results of bone grafting are controversial since not all
studies have reported satisfactory outcomes [4]. More recently, custom implants have been introduced
as an alternative treatment. Together with patient-specific preoperative planning and implant design,
custom implants allow for proper joint positioning and fixation of the component in the remaining
native bone [5,6].
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In order to avoid aseptic loosening of the glenoid component, a stable bone–implant interface is
necessary, in which only small relative movements are allowed. Fixation screws are used to provide
initial mechanical stability (primary fixation) which subsequently can lead to biological fixation by
bone ingrowth (secondary fixation). To enable bone ingrowth, custom implants have a porous titanium
structure (spray-coated or 3D printed) [7,8]. However, micro-motion at the bone–implant interface
above 150 μm has been shown to inhibit this mechanism and lead to an unstable fibrous tissue layer
between the metallic porous layer and the host bone [9]. Therefore, implant design should be optimized
to minimize micromotion at the time of initial fixation, thus leading to a stable bone–implant interface
and to a better osseointegration.

For patient-specific shoulder implants, the enormous design space, which allows the glenoid
component to be adapted to the patient anatomy, represents a challenge to the evaluation of the
mechanical stability. While mechanical tests can be performed extensively to assess the stability of
standard implants [10–12], for custom implants with a unique design for each patient, it is not practical
to use mechanical testing to verify the stability. Alternatively, Finite Element (FE) analysis has been
widely used to evaluate the influence of different implant configurations on the initial fixation of an
implant [13–19].

Chae et al. analyzed the bone–implant interface micromotion of an inferiorly tilted glenoid
component virtually implanted in a scapula model and found that the tilted fixation compromised initial
mechanical stability [17]. Suarez et al. investigated how a different type and number of screws impacted
the initial stability of a cementless glenoid component, reporting higher interface micromotions when
the same implant was tested in poor quality bone [14], even when more physiological loads (e.g.,
from musculoskeletal model) were applied [18]. Elwell et al. [19] reported similar results, showing
that the use of only two fixation screws could amplify the negative effect of baseplate lateralization,
thus jeopardizing implant stability and worsening its functional outcome. Hopkins et al. examined
multiple standard designs with different screw angle inclination, concluding that increasing the screw
inclination enhanced stability more than using longer and thicker screws [15]. Other studies explored
instead the effect of the prosthesis repositioning (using different glenosphere sizes or bone grafting)
and found that a lateralization of 10 mm was mechanically acceptable for osseointegration [13,16].

However, the effect of different loading directions, which in case of a custom implant cannot
be neglected due to the asymmetry of the design shape, was never systematically investigated. It is
evident that, since the main parameters (number and type of screws, baseplate dimensions, etc.) are
unique for each custom implant, FE analysis has the potential to guide the design process by virtually
comparing multiple designs without the need of a mechanical test.

Therefore, the aim of this study is to develop an automated workflow to evaluate the initial
stability of custom shoulder implants during the design phase, by simulating a fixation experiment
based on ASTM F2028-14 [20]. To our knowledge, this is the first study to automate, evaluate and
validate a full in silico modeling of the ASTM F2028-14 for a custom-made prosthesis. Moreover, the FE
model can be used to predict the relative motion at the bone–implant interface, which cannot be
quantified by the current mechanical tests.

2. Materials and Methods

A custom reverse shoulder implant was designed and 3D printed to comply with ASTM
standards [20]. To evaluate the preclinical stability of the implant, displacement of the glenoid
baseplate was measured in response to axial and shear loading, after insertion in a bone substitute.
The experimental baseplate displacement was compared to the model estimation to validate the virtual
bench test. A more detailed explanation regarding the mechanical test and the in silico model is
presented in the following sections.
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2.1. Experimental Set-Up

The ASTM F2028-14 [20] is a standard method commonly used for assessing the risk of glenoid
loosening in shoulder implants. The test protocol includes three subsequent steps: (1) an initial static
analysis to measure the baseplate displacement, (2) a fatigue phase in which the implant is cyclically
rotated around an axis loaded with a compressive axial force, and (3) an additional static phase to
measure the glenoid fixation, similarly to step 1.

The custom implant was inserted into a 20 pcf (pounds per cubic foot) polyurethane block
(Sawbones Europe AB, Sweden), which is normally used as substitute of glenoid bone in mechanical
tests [21]. Two locking and two nonlocking (compression) screws were used to fix the implant to the
artificial bone (Figure 1a). Compression screws are able to close the gap at the bone–implant interface,
by pressing the metal component towards the bone. For this reason, nonlocking screws were inserted
first, followed by the locking screws, which instead lock the implant in place thanks to the threaded
head mating the threaded holes of the implant.

 
Figure 1. Left (a), top view of the custom implant with the four main directions: anterior, posterior,
superior and inferior. Four screws were used to fix the implant: two locking (L) and two nonlocking
(compression, C). Right (b), experimental set-up with a shear load (red arrow) applied inferiorly via a
horizontal loading fixture. Axial load was applied through the glenosphere (blue arrow). Axial and
shear components of the baseplate displacement were measured superiorly with two dial indicators
(green arrows).

An axial compressive load of 430 N was applied perpendicular to the glenoid plane by a flat
polyacetal load applicator. An additional shear load of 350 N was applied parallel to the baseplate via
a horizontal loading fixture (Figure 1b). Shear and axial forces were defined in a worst-case loading
scenario, being respectively 42% and 51% of body weight (assumed to be 86 kg) [20].

Contrary to standard baseplates, which normally have a symmetric round shape, custom implants
can present an asymmetric design, consequently the shear load was applied along the four main
directions of the implant: anterior, posterior, superior and inferior (Figure 1a). Dial indicators (MTS
System, USA) were placed to measure the displacement of the baseplate. For each loading direction,
both axial and shear baseplate displacements were measured, resulting in a total of eight measurements.
Each measurement was performed three times and averaged value was obtained. The test was repeated
for six identical samples under the same conditions.

2.2. Generation of Finite Element Models

An automated workflow was developed to set-up FE simulations of a virtual bench test. To obtain
a virtual bench test that can be run multiple times by the design engineers to support possible design
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decisions and adaptations, the computational time of the simulation needs to be limited. For this
reason, the finite element model was created to simulate only the static step of the experimental test,
without considering the fatigue aspect, similarly to the work of Virani et al. [13].

2.2.1. Bone and Implant Models

The geometry files (STL) of the implant were imported into the design software 3-matic (v 14.0,
Materialise N.V., Leuven, Belgium), that includes a Python scripting interface to automate processes
(Figure 2). The bone substitute, which had to match the nonflat contact surface at the interface with the
implant, and the loading box were created through a series of Boolean operations.

Figure 2. Left (a), isometric view of the finite element (FE) model with a shear load applied
inferiorly. In blue the patch defined for the application of the axial load, in red the shear load
patch. Right (b), superior view of the FE model. In green the measurement patch defined to calculate
the baseplate displacement.

The 3D FE models were meshed with tetrahedral C3D4 elements. For the loading box, a coarse
mesh was used, with element edge lengths ranging from 2 to 4 mm. The bone block was meshed
with nonuniform elements, using a more fine mesh at the interface. A mesh convergence study was
performed upfront by evaluating the impact of different mesh size on the interface micromotion.
Ultimately, an average element edge length of 0.5 mm at the baseplate–bone interface was considered
as the converged mesh. Nonmanifold nodes were created at the bone–implant interface, to facilitate
the micromotion calculation and the convergence of the contact analysis. Due to this operation the
elements nodes in the contact surface were shared between implant and bone. The implant was meshed
with an average edge length of 0.5, for a total of approximately 630,000 elements, consistent with the
dimensions of the prosthetic components and necessary to capture the complexity of the custom design.
Ultimately, the glenosphere was meshed with an average element size of 0.5 mm. The meshing process
of the screws is described in Section 2.2.3.

All components were modeled with linear elastic material properties, which is an assumption
commonly made under these experimental conditions [22]. The loading box and baseplate were
assigned with a Young’s modulus of 110,000 MPa and a Poisson’s ratio, ν, of 0.3 (corresponding to
Titanium Ti-6Al-4V, [23]). The porous structure of the baseplate, mainly consisting of 3D printed
Titanium, was modelled as a solid part and characterized by a lower stiffness. A Young’s modulus equal
to 2000 MPa and a Poisson’s ratio of 0.3 were used, consistently with the values reported in the literature
for titanium porous scaffolds [24]. The glenosphere was modeled using cobalt-chromium-molybdenum
material properties (E = 220,000 MPa, ν = 0.3, [25]). The material properties of the foam block,
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representative of human glenoid trabecular bone, were taken as reference for the bone substitute (E =
200 MPa, ν = 0.3, [26]).

Contact surfaces were tied or were modelled as a hard contact with friction, depending on the
interaction of the component. The interface between glenosphere and baseplate, and loading box
and bone block, were considered completely tied, with no relative motion. Coulomb friction contact
was implemented at the bone–implant interface. In the literature, values ranging from 0.5 to 0.7 are
reported for the friction coefficient between bone and porous metal [13,14,22,27], thus an average
friction coefficient of 0.6 was selected for the presented model.

2.2.2. Screw Model

In order to assess the impact of different screw types (compression and locking) on fixation,
particular attention was paid to the screw modeling. A recent study showed that an excessive
simplification of the screw shaft model has an impact on the micromotion in RSA implant design
analysis [22]. Hence, the validity of the simplification assumptions has always to be evaluated
against experimental measurements, aiming for a trade-off between acceptable computation times and
prediction accuracy.

Screws were modeled following a previously described approach [28]. This approach uses
structural elements for the connection to the bone, which avoids the need of meshing screw holes
and the associated computational cost related to additional contact analysis (Figure 3a). A script was
implemented in Python 3.7 to automate the modeling process and include the screws in the Abaqus
input file. As output of the design planning phase, five screw parameters could be extracted: position
(head coordinates), length, direction, outer diameter and root diameter.

Figure 3. Left (a), top view of the model and the four screws. In blue the connectors between screw head
and implant. Right (b), detail of one screw (implant transparent). Right (c), the generated screw model.

Each screw was modeled as a wire connecting the head point (input parameter) to the endpoint
(obtained with the length and direction vector) and penetrating the elements of the bone (Figure 3b,c).
All the nodes of the bone elements lying around the wire and at a maximum distance equal to the
outer screw radius were connected perpendicular to the wire with rigid connector elements. The screw
head was fixed to the implant in a similar way, by connecting the node representing the head with the
nodes within the baseplate holes. To mesh the screw wire, beam elements (B32, three-node) with a
circular cross section equal to the root radius where used, imposing as nodes the calculated intersection
points between wire and connector elements. Since titanium screws were used, a Young’s modulus of
110,000 MPa and a Poisson’s ratio of 0.3 were assigned as material properties.
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To differentiate the mechanical behavior between locking and compression screws, additional
assumptions were made. To model the loose connection between the unthreaded head of a compression
screw and the implant, the stiffness of the first 2 mm of the screw shaft was set to 200 MPa, a value
equal to the elastic modulus of the bone substitute [14].

Moreover, nonlocking screws provide an initial compression that constrains the implant towards
the bone. The impact of this aspect on FE analysis was already examined in literature, demonstrating that
the inclusion of preload in the model is a key parameter when investigating interface micromotion [29].
For this reason, preload was explicitly modeled using the pretension section of Abaqus at the intersection
of the screwed and nonscrewed portion of the shaft, similarly to the study of Virani et al. [13]. For the
current model, the input values of the insertion force were estimated based on experimental data [30].
Briefly, a custom-made load sensor was built to measure the compression force generated by the screw
head. Screws with different lengths were inserted into synthetic bone blocks (Sawbones; Malmö,
Sweden) of 20 pcf and the force was acquired until failure of the bone substitute. This resulted in a
maximum compression of 370 N and 420 N for the two screws used in the loosening test. Since those
values were measured at failure loads, the pretensions in Abaqus were set to 260 N and 300 N, by taking
70% of the force to failure [14].

2.2.3. Boundary Conditions and Simulation Steps

Boundary and loading conditions mimicking the experimental set-up were applied.
Specifically, the bottom and side faces of the rectangular metal box were fully constrained in all
the directions. The axial load of 430 N was applied perpendicular to the glenoid plane through the
glenosphere. A patch (10 mm radius) was defined on top of the glenosphere cup surface and all nodes
lying inside were selected to apply the load (Figure 2). For the shear force, a patch of 1 mm radius was
defined on the inferior side of the cup, as to simulate the horizontal load fixture (Figure 2a).

To estimate the baseplate displacement, measurement patches of nodes (1 mm radius,
representative of the dial indicator tip) were also automatically defined on the baseplate surface, using
the known direction vector of the load (Figure 2b). For example, when the shear load was imposed
inferiorly (Figure 1a), the measurement patch was defined superiorly, centered at the intersection point
between the load direction vector and the edge of the implant surface.

All analyses were performed in Abaqus/Standard 6.14 (Dassault Systèmes, Waltham, MA, USA).
To solve the nonlinear equilibrium equations the Newton’s method was used [31]. A three-step analysis
was implemented to mimic the experimental set-up and take into account the implemented surgical
technique, which consists of inserting the compression screws first followed by the locking screws:
in the first step, screw pretension was modeled (see Section 2.2.3), in the second step shear load was
applied, followed by the axial load in the third step.

The end of the first step was considered as the initial state for the displacement analysis, similarly
to the experimental set-up (pretension of the compression screws already present before the application
of the loads). Consequently, the final baseplate displacement, used for model validation, was defined
as the difference in the average displacement of the patch nodes between the second and third step.

2.3. Statistical Analyses and Sensitivity Study

Predicted implant stability values were calculated as the average of the displacements for the
nodes lying in the measurement patch, as defined in Section 2.2.3. Both the shear and axial components
of the displacements were taken into account. A Spearman’s rank order correlation test was used for
comparing the consistency of results between the experimental and in silico analysis, with a significance
level set to 0.05. Correlation coefficients whose magnitude were lower than 0.7, between 0.7 and 0.9 and
higher than 0.9, indicated respectively a moderate, high and very high correlation [32].

Besides the baseplate displacement, shear and axial micromotion at the bone–implant interface
were calculated using the FE method. These micromotions comprised the displacement values for all
nodes on the contact surface. Since nonmanifold nodes were created at the bone–implant interface,
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micromotion was defined as the relative motion between the corresponding nodes after application of
the loads. In particular, for each contact node on the implant surface, micromotion UP was calculated as:

UP = RP − RB, (1)

where RP and RB are the vector positions of the node on the prosthesis (p) and its corresponding one
on the bone surface (B), respectively. Shear (Ut) and axial (Un) micromotion were then calculated by
projecting the total micromotion on the corresponding loading direction vectors, as follows:

Ut = UP · t̂ (2)

Un = UP · n̂ (3)

where t̂ and n̂ respectively represent the unit vector of the directions along which shear and axial load
were applied. The total relative micromotion between glenoid baseplate and bone, is further referred
to as peak micromotion [33] and was visualized as a color map on the back of the prosthesis.

To evaluate the impact of changes in the model parameters on the FE output interface micromotion,
a sensitivity analysis was performed. In particular, changes in the bone substitute material properties,
the friction coefficient and the screw preload were investigated. A summary of these numerical tests is
presented in Table 1. Each parameter was modified independently, for a total of 24 simulations (six for
each loading condition).

Table 1. Parameter variation for the sensitivity analysis.

Parameter Baseline Value Sensitivity Values

Elastic Modulus Bone 200 MPa 150 MPa, 553 MPa
Coefficient of Friction (CoF) 0.6 0.5, 0.7

Screw pre-load 260 N, 300 N ±20%

For the stiffness of the bone surrogate, the Young’s modulus was modified to mimic the properties
of 15 pcf (osteoporotic bone) and 30 pcf foam blocks, corresponding to 150 MPa and 553 MPa
respectively [16,26].

The Coulomb’s coefficient was adapted to simulate local changes at the bone–implant interface by
imposing values of 0.5 and 0.7, which are representative of the friction ranges found in literature.

Finally, a change in the preload of the compression screws was applied, modifying by ±20% the
baseline pretension value.

A paired t-test was used to compare the peak micromotion of the baseline model with each
sensitivity model, with a significance level set to 0.01, following a Bonferroni correction of the alpha
value (α = 0.05, n = 6: α/n ≈ 0.01).

3. Results

FE results for the baseplate displacement were within the variability of the experimental
measurements for all loading directions (Figure 4). The smallest displacements were found when
the shear load was applied inferiorly to the baseplate. The Spearman’s rank order test revealed a
statistically significant (p < 0.05) high correlation (ρs = 0.81) between the experimental results and
FE results.
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Figure 4. Baseplate displacement measured experimentally (boxplot) and determined from the model
(red dots). For the FE analysis, predicted values were calculated as the average of the displacements for
the nodes lying in the measurement patch, as defined in Section 2.2.3. Data were normalized to the
largest micromotion measured in any of the tests. For each of the four main implant directions, both
axial and shear displacements were measured. Gray points represent outliers in the measurements.

The maximum interface micromotion was found for the anterior shear load (Figure 5). For all
the loading directions, the median peak micromotion was lower than 50 μm. A 95th percentile of 141
μm, 80 μm, 73 μm and 25 μm was reported for the anterior, posterior, superior and inferior loading
respectively. When looking at the axial and shear components, the median shear micromotion was
always higher than the axial. For none of the loading directions, micromotion above 150 μm was
reported (Figure 6).

Figure 5. Interface micromotion. Shear and axial components of the total micromotion (peak) was
evaluated for all the loading directions. The red dashed line represents the 150 μm threshold.
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Figure 6. Back view of the implant. Peak micromotion map at the bone–implant interface for all the
loading directions.

The sensitivity of the model to input parameters showed a peak micromotion for the baseline
model which was significantly different (p < 0.01) when compared to the model with reduced and
increased elastic moduli of bone substitute, for all the loading directions (Figure 7). For the anterior
loading, which reported the highest micromotion values, significant differences were also found
between the baseline model and the one with reduced/increased compression screws pretension.

Figure 7. Change of the interface peak micromotion due to modification of different model parameters:
bone Young’s modulus (150 and 553 MPa), coefficient of friction (CoF= 0.5 and 0.7) and screw pretension
(load ±20%). *: paired t-test, p < 0.01.
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4. Discussion

In this study, an automated workflow to evaluate the preclinical stability of a shoulder implant
through FE simulations was presented and validated. To our knowledge, this is the first work to
report a full in silico modeling of ASTM F2028-14 for a custom-made prosthesis. Although previous
studies [13,14,22] reported FE analysis for a similar experimental set-up, the effect of different loading
directions, which in case of a custom implant cannot be neglected due to the asymmetry of the design
shape, was never systematically investigated. This approach resulted in a total of eight measurements
that were used to support the FE predictions.

The results of the mechanical test showed an influence of the loading direction on the implant
stability. In particular, the presented design reported the lowest displacements when the shear load
was applied inferiorly to the glenosphere. This is mainly due to the presence of two screws, one locking
and one compression, in the superior part of the baseplate, which are almost perpendicular to the
direction of the inferior load and opposite to its application point. Instead, the highest displacements
were measured for the anterior loading directions, due to the absence of a good screw fixation at the
anterior side. These results further corroborate the idea that each new implant should be tested in
those different conditions.

All the experimental measurements showed a high variability. Although one unique design
was tested with six samples, this variability is likely to reflect the variations that occurred during the
production of the implants and the assembly of the different components. The 3D printed technique
used for fabrication could introduce inaccuracies, especially in the porous structure, which influenced
the mechanical measurements. Similarly, the bone substitute blocks were artificially carved to match
the nonflat baseplate surface, possibly causing additional variation.

Direct comparison of the experimental outcomes with previous studies is not possible due to major
methodological divergences. Higher mechanical loads were used to test standard implants (750 N
both in axial and shear) and only the shear displacement was measured when the load was applied
superiorly [12,13,15]. Under this configuration, the presented work reported slightly higher shear
values (Figure 4, inferior direction), meaning that the effect of a smaller applied load was compensated
by the use of a custom implant with nonstandard design (e.g., nonflat contact surface, asymmetry of
the shape).

The good agreement between experimental and FE-predicted micromotions was confirmed by a
Spearman’s rank test, resulting in a correlation coefficient of 0.81 (high), which is lower than the one
reported by Virani et al. (0.96, [13]). The lower correlation coefficient can be explained by the use of a
custom design, which leads to additional complexity in the simulation. Similar to Virani et al. [13]
overstiffening of the model was observed, which, in the context of this study, can be partially explained
by the use of linear tetrahedral elements in the meshing process, a choice justified by the need of low
computational cost.

One limit of the standard mechanical test presented here is related to the lack of micromotion
measurements at the bone–implant surface. In contrast, FE modeling can provide a valuable insight
on the interface behavior, although their accuracy cannot be directly evaluated against experimental
outputs. As previously described, micromotion above 150 μm can jeopardize bone ingrowth and lead
to an unstable fixation [9]. Design engineering should take into account this aspect when looking for
possible design adaptations. For this reason, interface micromotion was estimated through the FE
model. When evaluating the two separated components, higher median values were reported for the
shear component. These results are in accordance with previous studies indicating that micromotion of
reverse implants occurs mainly in shear [34]. For none of the loading directions peak micromotion was
found to be higher than 150 μm, suggesting that the implant design does not jeopardize bone ingrowth.
Additionally, the highest values were calculated at the edge of the interface, where osseointegration is
less likely to happen.

The interface micromotions predicted by the FE model were sensitive to changes in some of the
input parameters: the FE model was sensitive under all the loading directions to a change in bone

32



Mathematics 2020, 8, 1113

quality (150 MPa and 553 MPa), similarly to what has been reported in the literature [14]. Moreover, this
study corroborates the idea that the impact of an adequate modeling of the compression screws cannot
be neglected [29]. A change in the screw pretension can lead to very different micromotion, thus
suggesting that pretension should always be included in the simulation and its value estimated or
derived through experimental measurements.

The generalizability of these results is subject to certain limitations which need to be addressed.
Major assumptions were made during the creation of the in-silico model, looking for a trade-off between
accuracy and computational cost. The bone substitutes were modeled with homogeneous isotropic
material properties, a simplification commonly accepted and implemented in the literature [13,14,16,22],
although not fully representative of the behavior of the bone substitute. The porous structure of
the implant was not explicitly modelled to reduce the complexity of the model. As an alternative,
a lower elastic modulus was used for the corresponding elements. While this assumption impacts
the frictional behavior at the interface, the sensitivity showed that a change in this parameter did not
substantially influence the micromotion estimations (at least in the configurations where highest values
were reported).

While 150 μm is the ASTM accepted threshold to promote osseointegration [20], its application
has been challenged in the literature. Other studies [15,35] referred to lower values (20 μm–50 μm)
during the evaluation of interface micromotion. When lowering the threshold, the presented model
would still predict bone ingrowth in the inner region of the prosthesis, however these results should be
interpreted carefully and always considering the simplifications of the study.

The automated workflow was built to replicate only the static analysis described in the ASTM
standard and additional efforts should be made to include the dynamic loading, which are probably
not compatible with the requirement of a low computational workflow. However, it can be assumed
that minimizing the initial static displacement with an optimized design, will also lead to better
fatigue outcome.

Validation of the model was obtained only for a single design and under a relatively limited degree
of freedom. It is believed that a more complete experimental set of tests is necessary, at least to assess
the impact of additional design changes (e.g., number and type of screws) and to ensure the validity
of the assumptions made. To further strengthen the predictive power of the simulation, alternative
micromotion metrics would be necessary since the current mechanical set-up fails to provide a direct
measure of the full-field interface micromotion [29,35].

In summary, the automated workflow presented in this study was able to replicate the mechanical
condition of a standard test for a patient-specific shoulder implant. The finite element analysis can
potentially support the engineers during the design phase, by virtually comparing different implants.
Moreover, the minimization of the interface micromotion would lead to an improved initial stability
and hence to a better clinical outcome, by allowing for secondary fixation through bone ingrowth and
reducing the risk of revision surgery due to mechanical loosening. Finally, the presented tool could be
used to define which configurations need to be tested when looking for worst case scenarios, thus
reducing the amount of required mechanical experiments.
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Abstract: Electrical and mechanical stimulations play a key role in cell biological processes,
being essential in processes such as cardiac cell maturation, proliferation, migration, alignment,
attachment, and organization of the contractile machinery. However, the mechanisms that trigger
these processes are still elusive. The coupling of mechanical and electrical stimuli makes it difficult
to abstract conclusions. In this sense, computational models can establish parametric assays
with a low economic and time cost to determine the optimal conditions of in-vitro experiments.
Here, a computational model has been developed, using the finite element method, to study
cardiac cell maturation, proliferation, migration, alignment, and organization in 3D matrices,
under mechano-electric stimulation. Different types of electric fields (continuous, pulsating,
and alternating) in an intensity range of 50–350 Vm−1, and extracellular matrix with stiffnesses
in the range of 10–40 kPa, are studied. In these experiments, the group’s morphology and cell
orientation are compared to define the best conditions for cell culture. The obtained results are
qualitatively consistent with the bibliography. The electric field orientates the cells and stimulates the
formation of elongated groups. Group lengthening is observed when applying higher electric fields
in lower stiffness extracellular matrix. Groups with higher aspect ratios can be obtained by electrical
stimulation, with better results for alternating electric fields.

Keywords: in-silico; 3D model; cardiac cell; cardiac muscle tissue; cardiomyocyte; electrical stimulation

1. Introduction

Electrical stimulation (ES) is an essential part of the human body physiology, which has relevant
regulatory effects on cell motility, nutrient transport, and disease signaling, among others [1].
The effects due to the presence of electric fields and electric currents, generated by electric potentials,
at both the cellular and tissue levels, play a key role in processes such as embryogenesis [2],
tissue regeneration [3], and cancer development [4]. In the past decades, the application of cell ES has
been applied to study various effects, including, among others, the development and regeneration
of tissues [5,6], embryonic development [7], and tissue engineering [8]. Furthermore, ES has
been shown to play a key role in maintaining a differentiated phenotype of certain cell lineages,
such as neuroblasts and myocytes, keeping a close relationship between electrical activity and
functionality [4,9,10]. Thus, the application of electric fields during cell maturation can influence
maturation, architecture, and functionality of the developed tissues in-vitro. Different studies have
shown the advantages of applying electrical stimulation in the muscle cell culture, observing benefits
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in cell differentiation [11,12], maturation [13,14], alignment [15,16], sarcomeric organization [17],
and functional assembly [11,17]. In general, there is an improvement in the ultrastructural organization,
an increase in the synchronization and amplitude of tissue contractions, in electrically stimulated
tissues in comparison with non-stimulated ones.

Despite its observable effects [11], the mechanisms that regulate the cell response to electrical
stimulus are still, in part, unknown, especially when it is combined with other stimuli such as
mechanical cues. Cells, guided by electrotaxis, are able to detect the presence of endogenous electric
fields through the extracellular matrix (ECM), polarizing and migrating in the direction of the electric
field [4,6]. In the anodic zone, the cell is hyperpolarized tending to release K+, and acquiring a locally
more negative membrane potential. On the opposite side, in the cathodic side, the cell is depolarized,
tending to absorb Ca2+ from the environment and becoming locally more positive [4]. These two effects
cause migratory effects in opposite directions, being the effective direction of migration as a result
of this balance. In fact, it depends, among other factors, on the cell phenotype, where both cathodic
and anodic migration tendencies can be observed. For instance, Cardiac Progenitor Cells (CPC),
Cardiac Fibroblasts (CF) [18] and Breast Cancer Cells [4] tend to migrate towards the cathodic direction,
while Fibroblasts (FB) [18] and Keratinocytes [19] tend to migrate towards the anodic direction.
However, this migratory tendency can be altered by changing ECM conditions. In fact, Frederich et al.,
studied the effect of the soluble Vascular Adhesion Molecules (sVCAM) on the migration of CPD
and CF [18]. They observed that, in absence of sVCAM, the directionality effects produced by the
electrotaxis disappeared for the CPC, while the direction was reversed for the CF. Thus, the complexity
of cellular environments, which coupling several stimuli simultaneously (mechanical, electrical,
and chemical), makes it difficult to study and obtain conclusions. For instance, T. A. Banks et al.
have observed differences in the direction of cell migration and alignment, between Mesenchymal
Stem Cells (MSCs) from different donors [20] as well as from previously published studies [21].
These differences might be due to the coupling of different stimuli [18]. Besides, H.Heidi Au et al.
have compared the effect of the electric stimulation coupled with mechanical cues. They conclude that
cell orientation was strongly determined by the topographical stimuli, while the electric stimuli had
less relevance in cell orientation [16].

Generally, when damage is generated in cardiac tissues, the regenerative capacity is limited.
This shortage is associated, among other factors, with the lack of cells proliferative capacity [18,22,23].
Stimulating and improving this capacity implies the need to know and control all the parameters
that influence this process. Establishing the optimal conditions necessary to stimulate and accelerate
regenerative processes implies the development of a large number of in-vitro experiments. From an
experimental point of view, performing multiple tests to regulate and optimize different parameters
entails a high time and economic cost, in addition to considerable technological complexity [11,23].
In this way, theoretical and computational models can offer support to study cell response
in complex environments, letting us study the effect of multiple parameters on cell behavior.
Thus, multiple experiments can be designed and evaluated, with reasonable economical and temporary
costs, to obtain suitable conditions for a given objective, such as the stimulation of cell proliferation
and tissue regeneration. Through these models, it is possible to purpose different hypotheses,
breaking down and studying simple cases whose effects are known. After adequate calibration,
it is possible to consider the coupling of different stimuli to analyze their effects in more complex cases.
These models can be especially useful to study the formation of cellular architecture in complex tissues,
where the architecture is closely related to the functionality [24,25]. Despite the advantages that these
models could offer, as far as we know, up to date, there are few published models related to this topic.
N. Ogawa et al. 2006 presented a computational model for cell reorientation in paramecium cells due
to the galvanotaxis stimulus [26]. They considered the electrical effect on ciliary beating to be the
main cue of cell reorientation. Despite their interesting point of view, cell-cell interactions as well as
mechanical effects of the cellular environment were not considered in their model. In previous works,
our group presented a new approach for cell galvanotaxis considering coupled effects of mechanical,
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electrical, thermal, and chemical stimuli in cell migration [27–29] and cell morphology [30] in 3D ECMs.
However complex cell-cell interactions as cell junctions and collective cell behavior for Cardiomyocytes
(CMs) were not considered. In the current work, we present a 3D mechano-electric model for the study
of cell architecture based on the orientation and cellular migration of cardiac cells. This model allows
to study the processes of migration, maturation, and proliferation as well as the formation of stable
cell chains of Cardiomyocytes (CMs), depending on the applied electrical and mechanical stimuli.

2. Methods

In order to study the cellular response to the ES as well as the mechanical stimulus, a 3D
computational model has been developed. The present model includes cell processes such as migration,
maturation, and proliferation, as well as cell interaction and adhesion. The model has been developed
based on the Finite Element Method (FEM) and depending on the cell internal deformations.

2.1. Cell Migration

Cell migration described in this section is based on the contractile effect of the actin-myosin
(AM) machinery [31–33]. During cell migration, the cell, which is anchored to ECM through the
focal adhesions, is contracted by the effect of the AM assembly. This contraction has two effects,
to evaluate the mechanical environment of the cell (stiffness) and to impulse the cell. After evaluating
the conditions of the ECM, the front part of the cell (preferential migration direction) generates new
adhesions, while the rear part releases them [34,35]. This effect, together with the cellular contraction,
drives the cell towards a new location. The direction in which the cell migrates is defined by a set of
events that include actin random [36] or guided [37,38] polymerization [34,39]. Thus, the relationship
between the cell internal stresses generated by the contraction of the AM and the produced deformation
in the ECM (Figure 1) has been established by the following equation [40,41]:

σi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Kpas εi εi < εmin or εi > εmax ,

Kactσmax(εmin−εi)
Kactεmin−σmax

+ Kpas εi εmin ≤ εi ≤ ε̃ ,

Kactσmax(εmax−εi)
Kactεmax−σmax

+ Kpas εi ε̃ ≤ εi ≤ εmax ,

(1)

where σi is the internal stresses generated by a cellular deformation εi at each evaluated FE point of
the cell membrane. Kpas and Kact, correspond to the stiffness of the passive and active elements of the
cell, respectively. σmax, εmax, and εmin, correspond to the maximum stress generated by the contraction
of the AM motor, the maximum and minimum deformation, respectively, for which the AM generates
active stresses. Finally, ε̃, is the cellular strain for which maximum effort is generated, and is defined
by ε̃ = σmax/Kact.

During the migration process, the internal stresses are transmitted to the ECM through the
multiple focal adhesions as traction forces, Fi

trac. The magnitude of these forces depends, in addition to
the internal stresses, σi, on the ligands concentration, ψ, and the number of the available receptors, nr,
on the cell membrane as [27,30]:

Fi
trac = σi S k nr ψ ei , (2)

where S is the membrane surface, k is the binding constant, and ei is a unit vector that points from
the evaluated membrane point towards the cell centroid. Then, the resultant traction force, Ftrac,
is obtained through the contribution of the n forces of the cell as [42,43]:

Ftrac =
n

∑
i=1

Fi
trac . (3)
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In addition to the traction forces, the model considers the effect of the forces generated by the
electric field, Felec, the forces due to protrusions generation, Fprot, and the drag forces, Fdrag, due to the
viscosity of the ECM.

KECM KECM

σcell

fextfext

σcell

AM Kact

Kpas

εAM εact

εcell

Figure 1. Mechanical model of the cell. The Actin-Myosin (AM) filaments generate cell internal
contraction, εAM, which is transmitted through the active, Kact, and passive, Kpas, elements, generating
cell internal deformations, εcell , and the resulting stresses, σcell . Likewise, fext corresponds to the
extracellular matrix (ECM) stresses generated by the deformation of the ECM with a stiffness KECM.

Different studies have observed a linear relationship in the migratory cell behavior with respect to
the electric field [17,20,44]. For instance, B. Frederich et al. studied different cardiac cells under direct
current electric fields of different intensity concluding that the effect of the ES is proportional to the
magnitude of the electric field [18]. Besides, C. Chen et al. showed in their review that ES stimulates
cell migration and the average displacement is increased as the intensity of the ES increases, being a
useful tool for regulating cell behavior [44]. This performance is attributed to the influence of Ca2+,
which generates a hyperpolarization of the cell in the direction of the electric field (Figure 2). Therefore,
the force, FEF, with which the cell is dragged by the electric field, E, can be defined as:

FEF = −E Ω S eEF , (4)

where Ω is the cell surface charge density, S is the surface of the cell membrane, and eEF is the direction
of the electric field. The surface charge density can be obtained using the Gouy-Chapman membrane
charge equations as a function of the resting potential of the membrane [45].

Different experiments conclude that, although there is a linear relationship between the intensity
of the electric field and the velocity of the cell migration, cells also exhibit a threshold for which this
velocity does not increase anymore. This value of EF for which saturation of the electric forces appears,
Esat, seems to be dependent on the analyzed cell type [18,19,21,44]. This saturation effect has been
defined in the calculation of the electrical charge density of the cell as:

Ω =

{
Ω(z, ψ) E ≤ Esat ,

Ωsat E > Esat ,
(5)

where Ωsat is the saturation charge of the cell surface, and Esat is the electric field for which the electric
cell forces show a saturation.
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Figure 2. Cell electrotaxis. Cell membrane towards the anode is hyperpolarized allowing the influx of
Ca2+ by passive electromechanical diffusion. In the cathodic side, the cell is depolarized, and its ion
channels open releasing Ca2+. The net electrotactic force depends on the balance of the two opposing
attraction forces.

The present model also considers the local repulsion force produced by the individual charge
of the cells. The repulsion electric force, F

ij
EF, experienced by the cells i and j, is proportional to the

electric charge of the cells, Ωi and Ωj, and inversely proportional to the distance between them, rij.
It can be calculated by [27,28]:

F
ij
EF =

ke

εr

ΩiSiΩjSj

r2
ij

eij , (6)

where ke is the coulomb constant, εr is the relative permittivity of the ECM, and eij is the direction
from the jth cell towards the ith cell. With the generated forces by each jth neighbor cell and the forces
due to the electric field, the total force on the ith cell, Felec, can be obtained by:

Felec = FEF +
n−1

∑
j=1

F
ij
EF . (7)

Protrusion forces, due to the extension and retraction of protrusions of the cell, generate extensions
of the cell which increase cell penetration. In general, it is considered as a random process.
Thus, the magnitude and direction of the protrusion forces, Fprot, have been calculated as [40,43]:

Fprot = κ ‖ Ftrac ‖ ernd , (8)

where κ is a random value between 0 ≤ κ < 1, and ernd is a random unit vector.
Finally, the drag force effect, Fdrag, has been considered as a force that opposes the movement of

the cell due to the medium viscosity, η. It has been defined by the Strokes law as the resistance force to
a cell of radius r, which is moving at velocity v, as:

Fdrag = 6πrηv . (9)

Proposing a balance of forces on the cell, and neglecting inertial effects due to the scale of the
problem, we obtain:
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Ftrac + Felec + Fprot = Fdrag , (10)

through which the direction and velocity of cell migration are obtained.

2.2. Cell Interaction

Cells show a collective response different from their individual behavior. Cell-cell interaction has
a high impact on processes such as cell proliferation [46,47] and migration [48,49]. Through cell-cell
interactions, cells establish intercellular connections by binding, for example, their cytoskeleton
through desmosomes, or communicating electronically through gap junctions [50–52]. By counterpoint,
the cells lose some of the ability to interact with the ECM along the contact surface between two cells.
In muscle cells, cell-cell interaction is particularly important, where the final functionality of the tissue
depends drastically on the union quality between the cells [24,50]. So, to develop in-vitro muscle
tissues, a correct cell guidance to appropriate architectures is desired. Thus, the cell contact vector is
defined, for any pair of cells, through the position vectors of these cells (Figure 3a), as [41,43]:

Xij = Xi − Xj , (11)

where Xi and Xj are the position vectors of the ith and jth cells, respectively. To avoid cells overlapping,
Xij must fulfill Xij ≥ 2r.

Xij

Xj

Xi

n1

n2

n3

n4

O

Xij

(a) (b)

Gpol
lij

ei
pol

Initial
cell shape

Deformed
cell shape

ei

(c)

Figure 3. Cell interaction. (a) Xi and Xj are the coordinate vectors of the ith and jth cells, respectively,
and Xij is the contact vector, which satisfies ‖ Xij ‖≥ 2r. The contact face, defined by the nodes (n1 : n4)
loses the capacity to interact with the ECM. (b) The global polarization direction Gpol , is defined
through the cell polarization ei

pol . The projection of the cell contact, lij, is defined by the projection
of the contact vector, Xij, in the Gpol direction. Being the cell junction possible when lij ≥ ladh,
and ‖ Xij ‖= 2r. (c) The direction of the internal cell deformation, ei, is considered to establish the
direction of the cell mechanical stimulus.

The direction of cell contact can be defined as:

eij =
Xij

‖ Xij ‖
, (12)

while the direction of cell polarization can be determined by the mechanical, ei
mech, and electrical, ei

elec,
stimuli to which the cell is subjected, as:

ei
pol =

ei
mech + ei

elec
‖ ei

mech + ei
elec ‖

, (13)
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where ei
mech and ei

elec are the direction of the mechanical and electrical stimuli, respectively,
calculated as:

ei
mech =

Ftrac

‖ Ftrac ‖
, (14)

and
ei

elec =
Felec

‖ Felec ‖
. (15)

Cardiac tissues are composed of highly ordered myofibrils, which increase in size, number and
complexity during tissue development [3,23,53]. Thus, cells guided by different stimuli in the ECM,
polarize and join other cells forming myotubule-like structures. For instance, V. Planat-Bénard et al.
studied cardiomyocyte differentiation, observing how cardiac cells differentiate and form myotubule
structures after 14 days of cell culture [54]. Besides, as exposed by N. Tahara et al., cardiac precursor
migration showed that CM become connected to form coherent epithelia in bilateral cardiac precursor
populations [55]. This behavior can be observed in different in-vitro studies [3,15,56,57]. In this context,
we define the global polarization direction, Gpol , is an indicator of the degree of alignment of the cells,
which indicates the major direction on which the cells are structured (Figure 3b). This direction is
obtained by evaluating the polarization direction of all cells as:

Gpol =
Rpol

‖ Rpol ‖
, (16)

where

Rpol =
n

∑
i=1

ei
pol

‖ ei
pol ‖

. (17)

This direction is compared to the cell-cell contact direction to determine the quality of the cell
adhesions. Thus, to compare the direction of cell contact, eij, with the direction of global polarization,
Gpol , the projection parameter, lij, has been defined as:

lij =
Proj(eij, Gpol)

‖ Gpol ‖
, (18)

where its value is limited within the range 0 < lij ≤ 1, being 1 if the cell contact vector, eij, and the global
polarization direction, Gpol , have the same orientation, and 0 if they are in perpendicular directions.

In addition, let us define the cell junction (CJ) as a parameter that represents the union of
appropriately oriented two, or more cells. Thus, when two cells are in contact (‖ Xij ‖= 2r) and the
direction of cell polarization is consistent with the polarization direction of the whole cells (lij ≥ ladh),
CJ represents a strong cell contact. ladh represents the minimum bound of the projection parameter to
consider cell adhesion which is proposed based on the ultrastructure of cardiac tissues [24,43,50,58].

Each cell, through the previously described mechanosensing process, tends to move into a new
location (Figure 4a). Nevertheless, cells attached with strong CJ, form groups that tend to remain
attached during migration [22,59]. Each cell tends to drag the cells to which it is attached. This effect
generated by each cell in the group causes a collective migration behavior (Figure 4b). In this case,
a new equilibrium is established by [43]:

F
grp
drag =

n

∑
i=1

Fi
trac + Fi

elec + Fi
prot , (19)

where Fi
trac, Fi

elec, Fi
prot are corresponding to the contributions of the mechanical, electrical,

and protrusion forces, respectively, of each ith cell in the group. F
grp
drag corresponds to the drag

force of the group, which can be calculated by [43]:
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F
grp
drag = fsh6πrgrpηvgrp , (20)

where rgrp and vgrp are the equivalent radius and the velocity of the group, respectively. fsh is a shape
factor, due to the irregular shape of the group, calculated as [30,43,60]:

fsh =

[
lmaxlmed

l2
min

]0.09

, (21)

where lmax, lmed, and lmin, correspond to the maximum, medium, and minimum dimensions of the
group, respectively, which is defined in an orthogonal coordinate system.

Furthermore, cells can also be relocated to new positions, more favorable, within the same group.
After evaluating the translocation of the group, if the group does not move, the individual migration
of the cells of this group is evaluated, vi. In this case, if a cell has the capacity to migrate to a new,
and available, position within the group, then, it is relocated into that new position (Figure 4c).
Thus, the cells belonging to a group can migrate with the group, or relocate within it [22,43,61].

vi
vgrp

vi

(a) (b) (c)

vi

vi

cell-cell
attachments

Figure 4. Cell migration. (a) Individual cell migration is considered when cells are separated or for
cells which are not attached to another cell by CJ. vi is the individual cell velocity. (b) Collective
cell migration is considered for each group of cells attached by cell junctions. Group velocity, vgrp,
is defined from the migratory tendency of the cells in the group. (c) Cell relocation is considered when
group velocity is insufficient to consider the movement. A cell can migrate to a new position, with its
individual velocity, vi, without leaving the group.

2.3. Cell Fate

The mechanical properties of the ECM not only affect cell migration but also are important
for processes such as cell maturation, proliferation, and apoptosis. In the case of cardiac cells,
the mechano-electric conditions to which they are subjected during their maturation are key in the
development of functional tissues [11]. For instance, under different mechanical stimuli, cells mature
at different rates, showing faster maturation in stiffer ECMs [62–64]. To include the effect of the
mechanical stimulus, γc(t), to which a cell is subjected at each instant of time, t, based on its internal
deformation, εi, the mechanical stimulus can be defined as (see Figure 3c) [28,65]:

γc(t) =
1
n

n

∑
i=1

ei : εi : eT
i , (22)

where εi and ei are the cell internal deformation and the position vector, respectively, of the ith node of
the cell, and n is the number of nodes in which the cell has been discretized.

The cell maturation time, tmat(γc, t), which is the time necessary for a cell to reach the necessary
level of maturity to proliferate, is obtained for each cell at each time step, considering the mechanical
stimulus, γc(t), as:

tmat(γc, t) = tmin + tpγc(t), (23)
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where tmin is the minimum time needed to maturate. tp is a time proportionality factor, which depends
on the mechanical stimulus.

To define the status of maturation of each cell, we have defined a Maturation Index (MI) as:

MI =

{
t

tmat
t ≤ tmat ,

1 t > tmat .
(24)

When maturity is reached, MI = 1, the cell has the possibility of proliferating. However,
the proliferation capacity of cardiac cells is limited [66,67], and closely related to the cell-cycle arrest
and cell junctions [23,68]. In this model, an adaptive cell phenotype is considered. In this way,
cardiac cells, initially considered as CM in the early stages of maturation (early CM), and upon
reaching the maturity state, MI = 1, can advance in the maturity of their cardiac phenotype, and reach
the state of adult CM (late CM). This phenotype change is associated with the ability of cells to
form stable cell-cell adhesions [23,54,68]. In fact, adult CM are highly ordered in stable myofibrils,
which prevents cell division [23]. Thus, CM proliferation is closely related to cell maturation and
cell-cell adhesions [23]. In this way, early CM retains the capability of proliferating where an adult CM
is considered post-mitotic and do not proliferate [23,67,69].

Thus, cell proliferation has been defined as a function of the number of CJ, which defines the
formation of cell-cell stable adhesions, and the MI, which defines the cell-cycle status. Whereas, a cell
fully incorporated into a chain undergoes cell-cycle arrest, which blocked cell proliferation. In contrast,
free cells, or partially attached to a chain, maintain their proliferation capacity due to its consideration
as early CM phenotype. This process is defined by the following equation:

Cell proliferation =

{
1 mother → 2 daughters CJi < CJmax & MI = 1 ,

no proliferation otherwise ,
(25)

where CJi is the number of cell junctions of the ith cell, and CJmax is the number of cell junctions that
promotes cell-cycle arrest [70]. Thus, if the cell is partially surrounded, means attached to at least 4
other cells (CJmax = 4), which corresponds to the 50% of the maximum possible CJ due to the model
discretization, cardiac cell phenotype is considered to achieve an adult phenotype and cell proliferation
is inhibited [43].

Once a cell proliferates, it generates two daughter cells. The locations of these new cells have been
defined as:

x
(1)
daut = xmoth ,

x
(2)
daut = xmoth + 2rerand ,

(26)

where xmoth, x
(1)
daut, and x

(2)
daut, are the coordinates vectors of the mother cell, the first and the second

daughters, respectively. erand is a randomly generated unit vector.

2.4. Computational Model

The model has been implemented via a user-defined subroutine within the commercial Finite
Element software Abaqus Dassault Systems (UELMAT) [71]. Within this subroutine, the cell has
been defined as a discretized quasi-spherical element with 24 nodes located in the cell membrane
(see Figure 3a). The ECM, with which the cell interacts, is defined through trilinear hexahedral
elements, with dimensions of 800 × 400 × 400 μm. The model has 128,000 elements and 136,161 nodes.
Each calculation step is equivalent to 0.8 h of cell-ECM interaction, analyzing a total of 160 h in
each experiment. The ECM has been considered as a linear elastic material. The model algorithm is
described in Figure 5, and the employed parameters have been detailed in Table 1.
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Figure 5. Algorithm of the model implemented for each time step.
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Table 1. Mechanical parameters considered in the model.

Parameter Description Value Refs.

Kpas Stiffness of the cell passive elements 2.8 kPa [72,73]
Kact Stiffness of the actin-myosin machinery 7.0 kPa [72,74]
εmax Maximum strain of the cell 0.09 [30,75]
εmin Minimum strain of the cell −0.09 [30,75]
σmax Maximum contractile stress exerted by the actin-myosin machinery 0.25 kPa [76,77]
ν ECM Poisson ratio 0.4 [78,79]
η ECM viscosity 1000 Pa·s [64,80]
k Binding constant of the cell 108 mol−1 [28,80]
nr Number of available receptors of the cell 1.5 × 105 [28,80]
Esat Saturation value of electric field 1200 Vm−1 [18]
Ωsat Saturation value of cell charge density 5−2 Cm−2 [45,81]
ψ Concentration of the ligands at the of the cell 10−5 mol [28,80]
ladh Minimum bound of projection to consider cell adhesion 0.50 [24]
tmin Minimum time needed for maturation 6 days [54,68]
tp Time proportionality 200 days [72,82]
γlow Minimum level of mechanical stimuli for cardiac cell differentiation −0.04 [11,83]
γmyo Maximum level of mechanical stimuli for cardiac cell differentiation −0.01 [11,83]
γapop Maximum mechanical stimuli which trigger apoptosis 0.6 [50,82]

3. Results

A series of experiments have been developed to calibrate and compare the model results with
those obtained from the bibliography. For this aim, a rigidity range equivalent to that is used in
the bibliography for cardiac cell culture (10–40 kPa) [11,50,78,83] has been considered. Additionally,
a determined range of electric field (50–350 Vm−1) has been chosen based on the data available in the
bibliography, avoiding intensities that could cause cell damage [18,84,85]. In all the cases, the electric
field is applied in the longitudinal direction.

To study the variability of the results, for each case, 10 repetitions with different initial random
cell distributions have been generated. For representations issue, the average value of the results of
these 10 repetitions has been calculated.

3.1. Continuous Mechano-Electric Stimulation

In the first experiment, the effect induced by a constant electric field on cells is studied. Initially,
40 cells have been randomly distributed in the ECM. Their behavior has been monitored for 160 h.
Different experiments with stiffnesses of 10, 20, 30, and 40 kPa combined with electric field strengths
of 50, 150, 250, and 350 Vm−1, with a total of 16 different configurations have been prepared. In this
case, the interaction of two effects on the cell and its variation is observed by changing the stiffness
and the intensity of the electric field. As observed in previous works of our group [40,43], cells tend
to occupy the center of the ECM guided by mechanical stimulation, being the area where the cells
undergo less internal deformations. The presence of a unidirectional ES guides the cells in the direction
of the electric field, while the different stiffness generate a wide range of possible results. For high
stiffness, the effects related to the mechanotaxis tend to be high, with a greater tendency of the cells to
migrate towards the center of the substrate. In the same way, for high ES cases, a high drag effect of
the cells is generated by the galvanotaxis. The final location of the cells depends on the intensity of
both stimuli.

A differentiated effect is observed for different stiffnesses, with a higher impact of the ES in lower
rigidity ECMs. As the ES increases, cells show an increase in the alignment in the longitudinal direction
as well as a high migration tendency in the direction of the electric field. For the maximum ES, cells are
rapidly dragged by the ES, hindering cell-cell interaction (Figure 6).
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Figure 6. Cardiomyocytes (CMs) in 10 and 40 kPa ECMs, under ES of 50 and 350 Vm−1, after 160 h
of simulation (see also Supplementary Materials video 1). (a) Cells tend to form a longer group in
the longitudinal direction as the electric field increases. Under low electrical stimulus (50 Vm−1),
cells remain at the center of the ECM (top). As the stimulus increases, cells tend to move to the outer
surface of the ECM (bottom). Numerical results for Aspect Ratio (AR) (b) and directionality (c).

As the stiffness increases, the impact of the ES seems to decrease slightly, but general behavior
is maintained. For the 10 kPa ECM, cells only remain in the center of the substrate for the minimum
ES (50 Vm−1). In 40 kPa ECM, where the mechanical stimulus is higher, the cells remain in the center
of the ECM for higher electric field strengths (above 150 Vm−1). Thus, as stiffness increases the ES
and the mechanical stimuli seem to be better balanced, obtaining, in general, better results (Figure 6).
In all the cases, the increase in the ES generates a higher cells attraction in the direction of the electric
field. Thus the electric field increases the directionality of the cell migration toward the direction
of the ES, which is consistent with the bibliography [18,84]. The speed with which the cells are
attracted to the electric field also depends on the stiffness of the ECM, being the lower the stiffness the
higher the ES attraction. Besides, directionality is dependent on the ES strength as was reported by
B. Frederich et al. [18]. At the same time, the effect of mechanical stimulation on maturation increases
the number of cells at the end of the simulation as the stiffness increases. The coupled of these two
effects generate groups with a higher number of cells, maintaining a good degree of cell alignment.
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To evaluate the alignment effects in group’s morphology, we define an Aspect Ratio (AR)
parameter by comparing the geometry of the groups. Thus, AR is defined, considering the main
group’s geometry in each simulation, as:

AR =

[
l2
x

lylz

]0.5

, (27)

where lx, ly, and lz are the longitudinal group length, in X direction, and the transversal group length,
in Y and Z directions, respectively. In addition, the directionality of the cells is controlled by the global
polarization vector, Gpol .

Analyzing the effect of the stiffness and ES on the AR, it is observed that the electrical effects
are much higher than the stiffness. Likewise, the variation of AR seems to have a linear dependence
with the electric field intensity (Figure 7a). The effects of the stiffness on the AR are comparatively
low, with higher AR being observed for low stiffness. Similarly, in the directionality analysis, a greater
effect of the ES is observed in comparison with the effect of stiffness (Figure 7b). As with the AR,
the directionality is shown to be higher for cases of less rigidity and a higher electric field.

(a) (b)

Figure 7. Representation of the obtained numerical results applying a continuous electric field with
different intensities in ECM with different stiffnesses. Blue dots represent 10 experiment repetitions,
on which the surface with the best fit to the results is represented. (a) Aspect ratio for the different
combination of stiffness and electric stimulus. (b) Directionality for the different combination of
stiffness and electric stimulus.

3.2. Pulsatory Mechano-Electric Stimulation

In in-vitro experiments, the ES can be applied to mimic the physiological electrical currents of the
heart [17,84,85]. This is a primarily intended to activate and coordinate the spontaneous contraction
of the AM apparatus. These currents are of a pulsating type and low frequency. For instance,
S. Pietronave et al. observed an increase in the cell alignment and the expression of specific cardiac
markers while stimulating CPCs with monophasic and biphasic electric fields [84]. This is also
supported by M. Radisic et al. work, where cardiac myocytes were stimulated with monophasic
electric fields, showing an increase of the cell alignment, with myofibers aligned in the direction of the
electric field application, and ultrastructural improvement with formed GAP junctions and contractile
activity within the cells after five days [17]. In this way, we also tried to study the stimulation of the cells

49



Mathematics 2020, 8, 1875

with monophasic electric fields. So, an electric pulsatory field is applied during the simulation to study
and compare the effect of different ways of stimulation on cell behavior and group’s morphologies.

In this case, the electric field is applied discontinuously with the same configurations of stiffnesses
(10, 20, 30, and 40 kPa), electric fields (50, 150, 250, and 350 Vm−1), and initially random distributed
40 cells. The electric field is initially active and then it alternates its activation at each step (on/off).

The general behavior of the cells, observed in the previous experiment, is maintained (Figure 8).
During the steps in which the electric field is active, the cells tend to migrate in the direction of the
electric field, which is consistent with the bibliography [17,18,84]. In the steps in which the electric
field is disabled, the cells, due to mechanical stimulation, tend to migrate toward the center of the ECM
as it was seen in a previous work of our group [43]. These two effects slow down the migration to the
outer surface of the ECM. Thus, compared with the previous experiment, the effects of the electric field
are less pronounced.
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Figure 8. CMs in 10 and 40 kPa ECMs, under electrical pulsatory stimulation of 50 and 350 Vm−1,
after 160 h of simulation (see also Supplementary Materials video 2). (a) Less effect of the electric field
is observed with a greater tendency of the cells to remain close to the center of the ECM. AR (b) and
directionality (c) increase as the Electrical stimulation (ES) increases.

As in the previous case, the ES is more intensive in low stiffness ECM, showing higher values of
the directionality (Figures 8c and 9b). On the contrary, the results for the AR seems to be balanced for
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all ECM stiffness (Figure 9a). In this second experiment, the dependence of the AR with the ES seems
to follow a linear tendency (Figure 9a). The maximum values of the AR, obtained with the maximum
ES, seem to be reduced compared with the previous experiment. However, in the visual comparison of
the results, a good level of cell alignment is observed for high levels of ES, avoiding excessive drag of
the cells towards the surface of the ECM (Figure 8).

(a) (b)

Figure 9. Representation of the obtained numerical results applying a pulsatory electric field with
different intensities in ECM with different stiffnesses. Blue dots represent 10 experiment repetitions,
on which the surface with the best fit to the results is represented. (a) Aspect ratio for the different
combination of stiffness and electric stimulus. (b) Directionality for the different combination of
stiffness and electric stimulus.

3.3. Alternating Mechano-Electric Stimulation

The cells not only can be stimulated by a discontinuous electric field, as mentioned in the previous
case, but also by alternating electric field [11]. Thus, in the third experiment, the application of an
alternating electric field is considered. For this purpose, the direction of the electric field has been
reversed at each step. As in the previous cases, stiffnesses of 10, 20, 30, and 40 kPa, and electric fields
of 50, 150, 250, and 350 Vm−1 are applied on 40 cells initially randomly distributed. Having in account
that prolonged exposure to high-intensity electric fields can trigger cell apoptosis [18,20], cell-cell and
cell-ECM interactions are studied during 160 h of simulation.

In this case, the electric field guides cells to move alternately in the longitudinal direction while
the mechanical stimulation guides cells toward the center of the ECM. Although the cells are moving
in the longitudinal direction, the migration direction is reversed as the electric field reverses. This is
consistent with experimentally studied cases in the bibliography, where the direction of cell migration
was evaluated when the electric field was reversed [18,21]. This process reduces the effective migration
(total translocation) of the cells in the longitudinal direction. In low ES cases (50 Vm−1), the cells
migrate easily to the center of the ECM, which shows that the electric stimulus effect is lower than
the mechanical stimuli. On the contrary, in high ES (350 Vm−1), cells approach the center of the
ECM moving slightly in the longitudinal direction. Initially, cells’ effective movement is almost
perpendicular to the electric field direction, toward the center of the ECM with slight movement in
the direction of X axis. As the cells reach the central position of the ECM, the presence of other cells
increases the mechanical stimuli, guiding the cells to migrate towards the other cells. The combination
of both stimuli introduce an improvement in the length of the formed groups.
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Compared with the previous cases, the groups are bigger and more elongated (Figure 10). As the
cells remain in the center of the ECM, the region of higher rigidity, the cell proliferation increases.
When the cells join a group, cell proliferation is considered to be inhibited. Unlike the previous cases,
as the cells have a combination of two different directions stimuli, groups are formed later, which gives
de cells extra time to proliferate. As in the previous experiments, the effects of ES are more pronounced
in ECM of less stiffness, where the mechanical stimulus is lower. Besides, better results of AR and
directionality are obtained (Figure 11). In this third case, it is observed that the AR tendency follows a
behavior that can be considered linear, both for the mechanical and electrical stimulus, individually
and/or combined effects (Figure 11a). On the contrary, the directionality follows a clearly non-linear
tendency. For values greater than 150 Vm−1 and for all stiffness, saturation in the directionality of the
cells is observed (Figure 11b).
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Figure 10. CMs in 10 and 40 kPa ECMs, under an alternating electric field of 50 and 350 Vm−1,
after 160 h of simulation (see also Supplementary Materials video 3). (a) Higher tendency to form a
group in the longitudinal direction is observed. Cells remain close to the center of the ECM where the
cells maturate faster and the proliferation rate increases. Larger and better-oriented groups are formed
by applying an alternating electric field, with better results for AR (b) and directionality (c).
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(a) (b)

Figure 11. Representation of the obtained numerical results by applying an alternating electric field with
different intensities in ECM with different stiffnesses. Blue dots represent 10 experiment repetitions,
on which the surface with the best fit to the results is represented. (a) Aspect ratio for the different
combination of stiffness and electric stimulus. (b) Directionality for the different combination of
stiffness and electric stimulus.

4. Discussion

ES is essential for the development of engineered heart tissues, which preserving cells’ mature
phenotype and improving the contractile properties [11,15,17,18]. Likewise, its intensity, frequency,
and duration of application can be key for the development of highly functional tissues [15].
The coupling effects of electrical and mechanical stimuli have been shown to be relevant in cardiac
tissue development [11]. This strongly encourages us to study these effects in computational models
where such stimuli can be studied, modeled, and balanced, saving time, costs, and pain in experimental
studies. Furthermore, through the parametrization of cell behavior, it is possible to evaluate different
cell and ECM conditions, including those associated with different pathologies [10,11,58].

In the proposed model, the cells initially align and migrate in the direction of the electric field
which is consistent with the bibliography [11,18,21,44,85]. It has seen that different electric field
strengths, as well as different stiffnesses of the ECM, generate differences in the direction and speed of
cell migration as was observed in experimental models [18,85]. In general, as observed in the present
model, high values of ES increase the degree of cell alignment and the groups elongated morphology.
Likewise, the greater the stiffness, the faster the cell maturation, which increases cell proliferation until
the cells join in groups where cell proliferation is inhibited. Their coupling effect is also extended to
cell-cell interaction. If the electric stimulus is higher than the mechanical stimulus, cells can be dragged
by the electric field which can delay or impede cell-cell contact and group formation. As it has been
observed in the obtained results, the formation of correctly organized groups depends on the correct
balance between the electrical and the mechanical stimulus.

As observed in the present model, cell response varies depending not only on the intensity but
also on the type of the applied electric field. Comparing the results of the applied different modes
of ES, significant differences are observed in cell response. For instance, in the cases of continuous
and pulsative electric fields, cells are dragged in the direction of the electric field and tend to migrate
towards the external face of the ECM (cathodic zone) [18,20,44]. On the other hand, in the case of the
alternating electric field, cell migration direction is reversed as the electric field changes its direction,
as can be observed in different experimental models [18,21,44].
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Better results are observed when applying a continuous electric field (Figure 6). When applying
ES discontinuously (Figure 8), the results are worse. This can be attributed to the decrease in the
effective electric stimulus which is only active half of the time. Furthermore, by disabling the electric
field, the cells only get stimulated by the mechanical cue. So, they lose some of the directionality
induced by the electric field. On the other hand, when an alternating field is applied, cells maintain
the directionality induced by the electric field. Due to the changing of the electric field polarity, the cell
drag towards the electric field is reduced, keeping the cells in the center of the ECM. Cells alternate
the direction of the migration which reduces the effective cell motility in the longitudinal direction.
Thus, cells migrate towards the center of the ECM, due to the existence of strong mechanical stimulus
and the presence of other cells, which stimulate the cells to form more elongated groups and improve
the cell-cell interaction.

In the first and second experiments, when stiffness increases, slight differences are observed,
in both AR and directionality. On the contrary, higher differences can be observed in the third
experiment. A significant change in the tendency of cell directionality is observed, where a saturation
point is detected when the applied electric field is greater than 150 Vm−1 (Figure 11b). These differences
in the results obtained for the different modes of application of the electric field, which highlights
the relevance of properly understanding the processes that trigger the electrical stimulation of the
cells. In this way, the hypothesis of the use of computational models is reinforced, to support the
experimental work, which allows advancing in the understanding of these processes.

For more rigid ECMs, larger groups can be observed. This can be attributed to, as mentioned
before, the increase in stiffness, which leads to faster maturation of the cells. Besides, as the cells are
considered initially at the stage of early CM, an increase in cell proliferation has been noted. As the
number of cells increases, the AR ratio may be decreased due to the thickening effect of the groups.
This justifies that, although visually the groups are larger in stiffer ECMs, the graphs show a slight
improvement in the results. This effect of stiffness can also be seen when comparing the number of
cells observed in the third experiment with the previous ones. As the cells are kept in the center of the
ECM, which is the stiffest zone, the maturation of the cells is faster, and the total number of cells after
160 h of simulation is higher than in other cases.

5. Conclusions

We have developed a computational model to study cardiac cell behavior in 3D matrices,
with different stiffnesses, under the effects of different external electric fields. The model has been
applied to study cell migration, polarization, organization, and formation of groups through cell
junctions. With this model, we studied the effect of the electric field, with different modes of
application which include continuous, pulsative, and alternating electric fields. Furthermore, different
combinations of ECM stiffness and electric field intensity were simulated to study the effect of the
coupling of the mechanical and electric stimuli. The obtained results are qualitatively consistent with
the bibliography [2,17,18,44,84,85]. Thus, cells tend to migrate, in the direction of the electric field,
proportionally to the intensity of the electric stimulus [18,44]. Besides, cells polarize towards the
electric field direction and tend to form aligned groups in the direction of the electric field which
depends on its intensity [17,18,44,85].

The stimulation of the cells through the application of an external electric field improves the
directionality of the cells in the longitudinal direction, which corresponds to the electric field direction.
As the electric field increases, cells tend to form elongated groups with higher AR. These effects
are more pronounced in less ECM’s stiffness, revealing the effects of the coupling of electrical
and mechanical stimuli. While the ES induce the cells to migrate in the longitudinal direction,
the mechanical stimulation guides cells to the center of the ECM. As a result, an improvement of
the AR and directionality is observed by decreasing stiffness and thereby mechanical stimulation.
Similarly, by increasing stiffness, the effects of ES decrease. In case of lower electric field (50 Vm−1),
cells tend to remain at the center of the ECM, indicating that the mechanical stimulus dominates the
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electric stimulus. Thus, the best directionality and AR results are obtained by applying the maximum
electric field combined with the minimum stiffness. On the other hand, cell maturation is faster in
more rigid ECMs, which increases the maturation speed as well as increasing the proliferation rate of
the early CM. The effect of stiffness on the proliferation can also be observed in the third experiment.
In this case, cells keep at the center of the ECM, which corresponds to the stiffest zone of the ECM,
increasing cell maturation and showing higher proliferation.

The mode of application of the electric field changed the response of the cells. Thus, a considerable
increase in directionality and AR has been observed when applying an alternating electric field. In this
case, a saturation point of the directionality is observed for ES above 150 Vm−1, where this is not
observed in the other modes of the electric field. Significant differences can be observed due to the
coupling of electrical and mechanical stimuli, with substantial variations in the results. Cells are
guided by stimuli with different effects and the cellular response depends on the incidence of each
stimulus. Thus, when a high mechanical stimulus is observed, the effect produced by the electrical
stimulus tends to decrease. In the same way, for high electrical stimuli, the effect of the mechanical
stimulus loses relevance.

In conclusion, groups with higher AR can be obtained by applying higher ES. The increase in
AR seems to increase linearly by increasing the intensity of the electric field. Different electric field
applications (continuous, pulsating, or alternating) show a different influence in AR and directionality,
with better results when the alternating electric field is applied. Likewise, an increase in stiffness is
favorable to promote cell proliferation.

The presented model has been elaborated establishing a series of simplifications that must
be considered with the aim of simplifying and providing stability to the calculations. Among them,
cell morphology, which is considered spherical along with the simulation. Likewise, cellular interaction
with certain growth factors, which can modify or inhibit certain cellular behaviors, has been simplified
by considering neutral cell culture. Despite the model limitations, it is capable of evaluating the
coupling of different stimuli, electrical and mechanical, which is relevant in the case of cardiac cells.
Furthermore, the results indicate that the mode of application of the electric field can significantly
change the cell behavior. This strengthens the idea of using computational models to study the
appropriate conditions for cell culture, giving support to the in-vitro and in-vivo assays. Likewise,
computational models can reproduce a large number of culture conditions with reduced time and
economic cost, thus being able to establish preliminary studies that reduce dramatically the number of
experiments. In this case, it has been seen that the coupling of the electrical and mechanical stimulation
notably increases and accelerates the cell proliferation process. Consequently, it can be considered a
highly recommended combination for the in-vitro and in-vivo experiments.
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Abstract: Modeling and simulation are essential tools for better understanding complex biological
processes, such as cancer evolution. However, the resulting mathematical models are often highly
non-linear and include many parameters, which, in many cases, are difficult to estimate and present
strong correlations. Therefore, a proper parametric analysis is mandatory. Following a previous
work in which we modeled the in vitro evolution of Glioblastoma Multiforme (GBM) under hypoxic
conditions, we analyze and solve here the problem found of parametric correlation. With this aim,
we develop a methodology based on copulas to approximate the multidimensional probability density
function of the correlated parameters. Once the model is defined, we analyze the experimental
setting to optimize the utility of each configuration in terms of gathered information. We prove that
experimental configurations with oxygen gradient and high cell concentration have the highest utility
when we want to separate correlated effects in our experimental design. We demonstrate that copulas
are an adequate tool to analyze highly-correlated multiparametric mathematical models such as
those appearing in Biology, with the added value of providing key information for the optimal design
of experiments, reducing time and cost in in vivo and in vitro experimental campaigns, like those
required in microfluidic models of GBM evolution.

Keywords: copulas; design of experiments; glioblastoma multiforme; mathematical modelling

MSC: 62H20; 62K05; 62P10

1. Introduction

Biological processes usually involve several cell populations interacting in a complex,
dynamic, and multiple interactive micro-environment [1]. Understanding these interactions
between cells and microenvironment is crucial in many physiological and pathological
processes [2]. However, progressing in this understanding with only in vivo experiments
is difficult. Despite them being more realistic, isolating effects or achieving particular
conditions is complex in such experiments due to technical and/or ethical reasons.

In vitro experiments permit better control of the variables, while reducing costly and
ethically-questioned animal assays. Nonetheless, the predictive power of currently avail-
able in vitro models is still poor due to the strong difficulties that we face in reproducing
the structure and distribution of the different cell populations as well as the particular
environmental conditions in which cells live, adapt and react (e.g., three-dimensionality) [3].
Microfluidics is a new in vitro technique that allows more precise reproductions of the

Mathematics 2021, 9, 27. https://dx.doi.org/10.3390/math9010027 https://www.mdpi.com/journal/mathematics

61



Mathematics 2021, 9, 27

microenvironment and cell distribution [4,5], including three-dimensionality, thus making
in vitro tests much closer to the actual in vivo conditions. This permits, for example, a more
reliable and efficient drug testing [6,7].

Finally, mathematical models allow to separate and quantify the effects of each mech-
anism or parameter, as well as to predict the outcome in “what if” situations, which are
sometimes impossible to achieve in in vivo or in vitro experiments [8,9]. Nevertheless, these
models are mostly non-linear, involve highly-coupled multiphysic interactions, and in-
clude many parameters. In many occasions, those parameters are difficult to measure
and have strong hidden correlations. Moreover, it is usual to have a lack of data both
for quantification and validation of the parameters and results [10]. Therefore, they are
fitted only for the results available, which usually correspond to very specific conditions.
This may lead to trivial conclusions that could have been directly derived from the model
assumptions, making the results only useful for those particular experiments, with the
obtained conclusions impossible to generalize.

In a previous paper [11], we addressed this parametric analysis in a particular
problem—the mathematical modeling of the in vitro (using microfluidic devices) evo-
lution of glioblastoma multiforme (GBM), the most aggressive and lethal among primary
glioma tumors [12]. In Ref. [11], we presented a general framework in which the main cell
processes involved (proliferation, chemotaxis, random migration, apoptosis, and necrosis),
in response to changes in the oxygen concentration, were mathematically formulated.
We then analyzed three different experimental configurations, reproducing the main GBM
migratory structures (pseudopalisade and necrotic core formation). An extensive analysis
of all model parameters was performed, both from literature and by fitting the associated
in silico results with those derived from the experiments. As main results of that work,
we identified a unique set of parameters able to accurately reproduce the quantitative
results for the three case-studies. However, we also found two model limitations: (i) the
sensitivity analysis showed that the model is strongly affected by small variations in the
oxygen cell consumption and diffusion and (ii) a strong correlation was found between the
parameters associated with those two mechanisms.

The objective of the present work is to present the possibilities in this context of-
fered by a methodology that is able to separate the correlated effects found in that study,
and to get a more accurate and reliable representation of the experimental results in the
parametric space. With that purpose, we approximate the multidimensional probability
density function of the parameters by means of appropriate copulas. Copulas allow con-
sidering separately the marginal distributions and the dependence between variables in
multivariate statistical problems, including those with high correlation. This permits using
general models for the marginal distributions, while the variable dependence model can
be different [13]. Copulas are today used in a wide range of areas in Economic sciences
and Engineering. The most recent models have been successfully applied in portfolio
management and optimization [14], actuarial analysis [15], quantitative finance and risk
theory [16,17]. A particularly hot topic is the study of climate-agent time series [18,19], hy-
drology [20,21] and weather and climate research [22,23]. Some efforts have been made in
transportation research [24] and traffic policy [25]. Recently, copulas have been successfully
applied in reliability analysis in civil [26], mechanical and structural [27], offshore [28] and
software [29] engineering. In Biology, copulas have been used in the field of genetics [30]
to model gene dependencies.

Up to the authors’ knowledge, there is no work using copulas for the parametric
analysis of evolution processes in Biology, where, as commented, many of the parame-
ters involved are unknown and uncontrolled, and high correlations between parameters
are common. We prove here that copulas are an adequate tool to improve the analysis
of highly-correlated multiparametric mathematical models such as those appearing in
Biology, with the added value of providing key information for the optimal design of new
experiments with the highest information possible, thus reducing time and cost not only in
in vitro experiments but also in scarce and costly in vivo cases.
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2. Rationale of the Approach

2.1. Deterministic and Stochastic Models

Let us suppose that our problem may be represented by the following mathematical
relationship:

u = F(λ, θ), (1)

with

• u (an m-dimensional vector) the output variable, that is, the outcome of the experi-
ments, that we measure.

• λ the variables which we can control when performing the experiments (such as
environmental variables, geometric parameters, or boundary conditions).

• θ the model parameters, that we cannot control and whose values must be determined
(θ ∈ Ω, with Ω the parametric space of dimension n).

• F the mathematical model, that relates the experimental configuration λ with the
output variables u in terms of the set of parameters θ.

In relation to the accuracy and precision of the model, it is possible to define three
levels of analysis: (1) the model is perfect and the experimental measures are noise-free;
(2) the model is perfect and the experimental measures are noisy; and (3) the model is
not perfect and the measurements are noisy. Only the third case is, in general, realistic in
complex problems as the one here analyzed.

In addition, it is difficult to define universal values for the parameters in biological
problems, since they are highly-dependent on the particular experimental context.

As a consequence of all the previous observations, it is more appropriate to consider a
stochastic approach, and reformulate Equation (1) as:

U = F(λ, Θ), (2)

where U and Θ are now random vectors of dimensions m and n respectively.
The proposed approach is therefore suitable when the following conditions are satis-

fied:

• Many coupled phenomena are present, being difficult to design experiments able to
isolate each of them (complexity).

• The measurement space is large and it is possible to perform a sufficiently big number
of experiments N (data availability).

From a mathematical point of view, these two statements may be reformulated as:

• The model F includes many parameters (n 	 1) and/or is non-separable.
The separability of a model is evaluated by the possibility of approximating F as:

F(λ, θ) 
 FM(λ, θ) =
M

∑
i=1

n

∏
j=1

Fi,j(λ, θj). (3)

The lower M, the easier to define a set of different experimental configurations
S = {λj}j=1, ..., k to isolate each of the parameters θj by solving separately each
equation uj = FM(λ, θ). Although this separability definition is not very rigorous,
it is enlightening enough for our purposes.

• The dimension of the measurement space is high (m 	 1) and/or the sample size
is large enough (N 	 1). Without loss of generality, we consider that m is, actually,
the reduced dimensionality of the space or in other words that all variables of the
ambient space are independent.

2.2. Case Study: In Vitro GBM Evolution

There have been many attempts to develop mathematical models to describe how
tumors grow and respond to therapies [10,31]. In particular, in previous works, we demon-
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strated the possibility of developing GBM pseudopalisades [32] and necrotic cores [33]
in vitro. Figure 1 illustrates one of such experiments in which a high density cell cul-
ture is exposed to oxygen flow by two lateral channels but, due to self-induced hypoxia,
the formation of a necrotic core in the central part of the chamber is observed.

Figure 1. Formation of a necrotic core in the microfluidic device.

One of the main problems in these models is the lack of reliable values for the many
parameters involved that forces many times to rely on values fitted from different situa-
tions, leading sometimes to unreliable conclusions. We recently proposed a mathematical
model for GBM in vitro evolution [11], together with an extensive parameter discussion.
This model enables the simulation of different stages of GBM evolution under several
experimental conditions, showing robustness, while keeping a small uncertainty range in
the results. It is established in terms of three advection-reaction-diffusion equations and
the associated parameters that are expressed as:

∂Ca

∂t
=

∂

∂x

(
Da

∂Ca

∂x
− KaχO2

a (O2)χ
Ca
a (Ca)Ca

∂O2

∂x

)

+
1
τa

βa(O2)Ga(Ca, Cd)Ca −
1

τad
Sad(O2)Ca

(4)

∂Cd
∂t

=
1

τad
Sad(O2)Ca (5)

∂O2

∂t
= DO2

∂2O2

∂x2 − αaHa(O2)Ca. (6)

Equation (4) quantifies the evolution of the cell normoxic phenotype concentration,
Ca, with three terms: random diffusion, growth-death source, and chemotaxis. Equation (5)
models the evolution of the necrotic phenotype concentration, Cd, which contains only
the dead cells derived from the normoxic phenotype. Finally, Equation (6) defines the
O2 concentration evolution in the hydrogel in which cells are embedded, considering
both oxygen diffusion and cell consumption. Functions βa, Ga, χO2

a , χCa
a , Sad and Ha are

nonlinear corrections accounting for cell metabolic behavior:
χO2

a defines a chemotaxis correction accounting for the oxygen concentration. It has
been shown that GBM cells present what is called the go or grow behavior [34]: cells spend
resources in proliferating when they are enough oxygenated and activate migration mecha-
nisms under hypoxia conditions, that is, when the oxygen concentration is under a certain
hypoxia threshold OH

2 . Therefore, we state:
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χO2
a (O2) =

{
1 − O2/OH

2 if 0 ≤ O2 ≤ OH
2

0 if O2 > OH
2 .

(7)

χCa
a defines a chemotaxis correction accounting for the cell concentration. We assume

that cellular motility is only possible when the cell concentration is below the saturation
capacity of the hydrogel CM:

χCa
a (Ca) =

{
1 − Ca/CM if 0 ≤ Ca ≤ CM

0 if Ca > CM.
(8)

βa accounts for the dependence of the proliferation activity on the oxygen concentra-
tion, in agreement with the go or grow paradigm [34]. Cell proliferation decreases when the
oxygen concentration is under the hypoxia threshold, OH

2 , and is totally inactivated under
total lack of oxygen:

βa(O2) =

{
O2/OH

2 if 0 ≤ O2 ≤ OH
2

1 if O2 > OH
2 .

(9)

Ga is a logistic growth correction accounting for space and nutrients availability [35].
Cell proliferation decreases when the cell concentration approaches the hydrogel saturation
capacity, CM:

Ga(Ca, Cd) =

(
1 − Ca + Cd

CM

)
. (10)

Sad is a death activation function accounting for the oxygen concentration. Cell death
is a complex phenomenon that can be due to two different cell mechanisms, necrosis,
and apoptosis [36,37]. Cell necrosis is highly dependent on the oxygen concentration,
while cell apoptosis is not. Therefore, we have chosen a soft transition function for Sad
depending on two parameters—a location parameter, OA

2 , identifying the anoxia oxygen
concentration and a spread parameter, ΔOA

2 , associated with the death stochastic nature:

Sad(O2) =
1
2

(
1 − tanh

(
O2 − OA

2

ΔOA
2

))
. (11)

Finally, Ha is the Michaelis-Menten correction factor in oxygen consumption, related to
the oxidative phosphorylation kinetics [38]. The consumption rate is constant for high
oxygen concentrations, but decreases to zero with a homographic shape. The value of the
oxygen concentration for which the consumption rate is halved is the so-called Michaelis-
Menten constant, OM

2 . The function Ha is then stated as:

Ha(O2) =
O2

OM
2 + O2

. (12)

Equations (4)–(6) are complemented with the boundary and initial conditions. For the
experiments carried out in our microfluidic devices, we assume total impermeability
(Neumann boundary conditions) for the cell populations and a fixed value for the oxygen
concentration at both sides of the channel (Dirichlet boundary conditions). Therefore, if L
is the chamber length, we may write:

∂Ca

∂x
= 0, x = 0, L

∂Cd
∂x

= 0, x = 0, L

O2 = Ol
2, x = 0

O2 = Or
2, x = L,

(13)
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with Ol
2 and Or

2 the oxygen levels at the left and right channels of the chip.
The initial oxygen concentration is assumed to be homogeneous over the whole

chamber and equal to the maximum of both lateral oxygen concentrations, that is O2(x, t =
0) = O0

2 = max(Ol
2, Or

2).
The resulting experimental parametric space consists, therefore, of three parameters,

corresponding to the concentration at the boundaries of the chip, (Ol
2, Or

2), and the initial
cell concentration, (C0), assumed constant throughout the chip. That is:

λ = [Ol
2, Or

2, C0]. (14)

OH
2 , OA

2 , ΔOA
2 and OM

2 have a clear meaning in terms of cell metabolism and are
assumed to be known and constant for all cell cultures used in our experiments, at least from
an illustrative point of view. Besides, although CM is very dependent on the experimental
conditions (hydrogel mechanical properties, nutrients, ...), we shall assume it is constant,
for the sake of simplicity. The values for these parameters were taken from a previous
work [11].

Previous research in computational biology has mainly focused on the value of the
parameters or, in the best case, in their (individual) uncertainty. However, in many cases,
the fitting process is very complex and the parameters are highly correlated due to, at least,
two facts:

• Samples variability: Different physical phenomena may have an inherent correlation
supported by physical considerations, being this correlation independent of the exper-
iments performed or the model used. For example, when working with GBM cellular
models, cell motility is induced by the random motion inherent to any cell and several
taxis effects driven by external physical or chemical stimuli. Mathematical parameters
related to these phenomena (e.g., diffusion and chemotaxis coefficients) appearing
in the model equations will present, therefore, a strong correlation in the different
experimental samples.

• Model complexity: The non-separability of the model and/or the experiments does
not allow to isolate the particular mechanisms. For example, when working with
GBM cellular models, without further measurements of cell oxygen consumption or
oxygen flux, it is impossible to establish if a lack of oxygen in a certain region is due to
high cell consumption or due to low oxygen diffusion. The mathematical parameters
related to these phenomena (e.g., oxygen diffusion and cell oxygen consumption
coefficients) should present a strong correlation, although this correlation does not
have a physical meaning, being inherent to the model or to the experimental set-up.

Thanks to the flexibility, portability, automation, integration, and miniaturization of
the microfluidic experiments, a huge amount of data may be generated. Accordingly, this
type of experiments is a perfect domain of application for the framework presented herein.

3. Methods

3.1. Data Generation and Numerical Solution

As the methodology is based on the availability of sufficient data, the data set used
for illustrating the methodology was generated synthetically using numerical simulation.
For this purpose, the assumed values for the parameters were extracted from Ref. [11] and
a data set of “experimental” measurements was generated by simulation, using randomly
generated boundary and initial conditions.

The summary of the model parameters is shown in Table 1, together with the value
used for data generation.
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Table 1. Model parameters and values used for data generation.

Parameter Symbol
Value Used for Data

Generation [11]

Normoxic cell diffusion coefficient Da 5 × 10−10 cm2/s

Normoxic cell chemotaxis coefficient Ka 7.5 × 10−9 cm2/mmHg·s
Oxygen diffusion coefficient DO2 1 × 10−5 cm2/s

Oxygen consumption coefficient αa 1 × 10−9 mmHg·cm3/cell·s
Growth characteristic time τa 200 h

Death characteristic time τad 48 h

Hypoxia activation threshold OH
2 7 mmHg

Growth saturation capacity CM 5 × 107 cell/mL

Anoxia activation location parameter OA
2 1.8 mmHg

Anoxia activation spread parameter ΔOA
2 0.1 mmHg

Michaelis-Menten constant OM
2 2.5 mmHg

With respect to the simulated virtual experiment, we set a chip length of L = 0.1 cm,
a mesh size of Δx = 0.0025 cm and a time step of Δt = 1000 s. N = 400 different ex-
periments, {λi}i=1, ..., 400, were simulated varying the boundary conditions: the left and
right channel oxygen concentrations were set randomly between 0 and 7 mmHg using two
independent uniform distributions while the initial oxygen concentration was set to the
maximum of both values, as mentioned. The initial cell profile is supposed to be uniform
and randomly sampled from a reciprocal distribution (to take into account both the expo-
nential and saturated growth regimes) between 4× 106 and 5× 107 cell/mL. The numerical
solutions are obtained for tm = 8 d and the output variable associated to the experiment i,
ui = us(x, tm; λi), is the numerical solution of the model equations (the mathematical ap-
proach and numerical procedures and algorithms are detailed in Ref. [11]), with boundary
and initial conditions defined by λ, at time tm and at points given by the defined mesh
x. Here, xj = jΔx, j = 1, . . . , 41. The computed data were all perturbed with a uniform
noise εj = 0.2× uj ×V with V a random uniform distribution V ∼ U [−1, 1]. Consequently,
ui

j = us(xj, tm, λi) + εi
j, j = 1, . . . , 41 and i = 1, . . . , 400.

Within the framework presented in Section 2.1, u = F(λ, θ) are the numerical solutions
obtained, with λ the control parameters, θ the unknown parameters and F the mathematical
model presented.

3.2. Copula-Based Parametric Model Analysis
3.2.1. Concept of Copulas

In Probability and Statistics, a copula is an n-multivariate probability distribution
function U whose marginals, Ui, are uniform distributions on [0, 1] [39]. They were intro-
duced by Sklar in 1959 [40]. As the marginal distributions are known, a copula describing
the structural dependence between variables is enough to perfectly define the model.

Mathematical definition.

As mentioned, a copula is a function C : In → I, where I = [0; 1] such that:

• For u1, . . . , un ∈ I, and if ui = 0 for some 1 ≤ i ≤ n:

C(u1, . . . , un) = 0. (15)

• For uj ∈ I, 1 ≤ j ≤ n:
C(1, . . . , 1, uj, 1, . . . , 1) = uj. (16)
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• C is n-non decreasing, that is, for each B = ∏n
i=1[xi; yi] ⊂ In, the C-volume of B is

non-negative: ∫
B

dC(u) = ∑
z∈×n

i=1{xi ;yi}
(−1)#{k:zk=xk}C(z) ≥ 0. (17)

We can distinguish between parametric and non-parametric copulas. In this work,
we use a hybrid approach, as we fit the marginal distributions by means of kernel esti-
mators [41] of the probability density functions and use a parametric copula. With this
approach, the required data-set grows as O(n) where n is the space dimension.

3.2.2. Fitting and Model Validation

Let us suppose we have a data-set of values for different experiments, λi, charac-
terized in terms of a resultant mean value μi and a covariance matrix Σi, i = 1, . . . , N,
obtained from different measurements associated to the configuration i. As the assumed
model F is known, it is possible, for each piece of data ui, to obtain the set of parameters θi

which best fits it.
In order to avoid pathological numerical convergence, we only take into account

those sets of parameters θi which lie inside the bibliography ranges considered in Ref. [11],
amplified by 50% to avoid considering the parameters bounds as deterministic values,
that, as shown in Table 2, are very large ranges. Therefore, the resulting intervals are [(1 −
κ)xinf, (1 + κ)xsup], being xinf and xsup the lower and upper bounds detailed in Ref. [11]
and κ = 0.5, as summarized in Table 2. As a result of this process, we obtain a dataset with
n = 6 (number of parameters), N = 111 (dataset size) and m = 41 (measurement space
dimension), so we are under the scope of the presented framework: N × m 	 n > 1.

Table 2. Parameter ranges considered in the analysis.

Parameter Lower Bound Upper Bound Units

Da 3.3 × 10−12 7.5 × 10−5 cm2/s

Ka 1 × 10−10 1.1 × 10−3 cm2/mmHg·s
DO2 5 × 10−6 3 × 10−5 cm2/s

αa 5 × 10−10 1.1 × 10−6 mmHg·cm3/cell·s
τa 8 3000 h

τad 24 917 h

Once θi, i = 1, . . . , N are obtained, the next step is the adjustment of the marginal
distributions. The values θi

j, j = 1, . . . , n, are used for fitting the marginal random variable
Θj whose cumulative distribution is assumed to be Gj. Here, we can follow either a para-
metric (that is, Gj(x) = Gj(x; αj)) or a non-parametric approach (which is the one followed
in this work). The values θi

j are therefore transformed into uniformly distributed ones via

the standard transformation yi
j = Gj(θ

i
j). As yi are considered uniformly distributed with a

joint dependence, it is possible to fit this structural dependence using parametric copulas.
To summarize, the steps of the training process are:

1. Problem minimization to obtain θi. We have to minimize the residual function Ri:

Ri(θ) =
(

F(λi, θ)− μi
)T

(Σi)−1
(

F(λi, θ)− μi
)

, (18)

where the Mahalanobis distance has been used to take into account the sample vari-
ability. Assuming that Σi = σi2 I, Equation (18) can be rewritten as:

Ri(θ) =
1

σi2

∥∥∥F(λi, θ)− μi
∥∥∥2

. (19)
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2. Kernel density estimation of the marginal distributions from the data θi
j.

3. Transformation into uniformly distributed values yi
j.

4. Copula fitting of the y data to capture the joint dependence.

The presented sequence of steps allows moving from a dataset S = {θi}i=1, ..., N to a
probabilistic model for the random vector Θ (the marginal kernel densities and the copula
parameters encoding the structural dependence), as it is the aim of statistical procedures.

To avoid overfitting, we follow a typical train-test approach: we divide the datasets
λi − ui (where ui includes μi and Σi) in two separate subsets, one used for training and the
other used for testing.

If we consider now the test data-set, the procedure is:

1. Problem minimization to obtain θi.
2. Testing the statistical fitting:

• Marginal fitting: q-q plots, histograms, empirical cumulative distribution func-
tions (ecdf), boxplots, parametric or non-parametric statistical tests [42].

• Joint 2 vs. 2 correlations: correlations, scatterplots, parametric statistical tests for
correlations [42].

• Whole joint structural dependence: multivariate parametric and non-parametric
statistical tests [43].

3.2.3. Model Analysis and Parameter Estimation

Once the distribution of the random vector Θ is learned, the model is known from a
probabilistic point of view. The first straightforward application is parameter estimation
It is important to emphasize that with “parameter estimation” we refer to the parameters
of the mathematical model, not to the parameters of the distributions used in the statistical
characterization (actually, the statistical characterization may be non-parametric), that may
be estimated via common statistical inference techniques. A point estimate of the model
parameters is given by:

θ̂ = P[Θ], (20)

where P is a central tendency operator, for example, the expectation operator E, mini-
mizing the L2 squared norm dispersion (its minimum is the variance), or the geometric
median operator M, minimizing the L2 norm dispersion (its minimum is the mean absolute
deviation).

However, it is more interesting to perform a confidence region estimation. As sug-
gested in Ref. [44], in this work, we use the so-called Highest Density Regions (HDR)
because of their easy interpretation, straightforward generalization to multi-dimensional
spaces and direct computation. Recall that, under some distributional assumptions
(e.g., normality assumption), HDR computation is reduced to other standard confidence
region computation techniques (e.g., χ2 quantile tolerance ellipsoids). HDR computation
enables reliable parameter estimation since, given a significant level threshold α, it is
possible to define an HDR region in which the parameters are located with a p = 1 − α
probability. This may be performed for single parameters, or, in general, k-tuples of param-
eters.

This methodology is also applicable to conditional distributions. Let us suppose that
we know the value of a certain subset of parameters θ∗ and let us define θ = (θ′, θ∗).
Knowing the distribution Θ, that is obtained after the fitting-validation procedure, it is
possible to define the conditioned distribution of Θ given Θ∗ = θ∗ by its density f ′ defined
in terms of the density f of θ:

f ′(θ′|θ∗) = f (θ′, θ∗)∫
f (η, θ∗) dη

, (21)

so all HDR computations are now applied to the distribution of Θ given Θ∗ = θ∗ by
replacing f by f ′.
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3.2.4. Design of Experiments

Design of experiments techniques aim to maximize the information obtained from each
performed experiment, in order to reduce the number of them required [45]. In particular,
in this work, we use the techniques within the Bayesian Experimental Design (BED),
based on the Bayesian interpretation of probability.

BED aims to maximize the expected utility of the experiment outcome [46]. The utility
function expresses how useful is the information provided by an experiment. Of course,
the optimal experiment design depends on the chosen utility criterion. In this work,
the definition of the utility function is based on the Shannon entropy or Information
entropy [47].

Under these assumptions, the utility of an experiment λ is defined as the prior-
posterior gain in Shannon information. That is, the additional information that the experi-
mental configuration λ provides about our model parameters. The utility U(λ) then writes:

U(λ) =
∫ ∫

f (θ, u|λ) log f (u|θ, λ) dθdu −
∫

f (u|λ) log f (u|λ) du, (22)

where u is the experimental observation and θ is a vector of parameters to be determined.
f (u|θ, λ) is the probability density of obtaining an experimental outcome u given the
experimental configuration λ and the model parameters θ and f (θ, u|λ) is obtained as
follows, being f (θ) the prior PDF over the parameters θ:

f (θ, u|λ) = f (θ) f (u|θ, λ). (23)

If we assume that u has a multivariate normal distribution (what is indeed not nec-
essary but has been here considered for illustration purposes) with covariance matrix
Σ = σ2 I, and knowing that the entropy of a multivariate normal distribution of dimension
n is only dependent on the standard deviation σ [48], we have the following expression for
the utility:

U(λ) = −n
2

log
(

2πeσ2
)
−

∫
f (u|λ) log f (u|λ) du. (24)

We assume that we measure the alive cell concentration at 5 given points: uk = Ca(x =
xk), k = 1, . . . , 5, where x1 = 0.015 cm, x2 = 0.035 cm, x3 = 0.050 cm, x4 = 0.065 cm, x5 =
0.085 cm. We work under the homoscedasticity and independence assumption so that each
concentration measurement is assumed to be normally distributed with μi = ui and σi = σ,
i = 1, . . . , 5. The uncertainty associated with the measurement of the cell concentration is
assumed to be σ = 1 × 106 cell/mL.

As we work under the assumptions detailed above, Equation (24), representing the
utility of an experimental configuration λ, may be computed via numerical integration.
A convergence analysis was performed, justifying the use of a given value of Nθ (number of
sampling points for the model parameter) and Nu (number of sampling points for the
experimental outcome) for each computation in the numerical integration process.

The simulations were performed for ten different oxygen levels at each side of the chip
, Ol

2 = O2(x = 0) and Or
2 = O2(x = L) (from 0 to 9 mmHg) and four different initial cell

concentrations (1 × 106 cell/mL, 5 × 106 cell/mL, 1 × 107 cell/mL and 5 × 107 cell/mL).
In order to avoid numerical problems, in all simulations the uniform distributions of

the parameters were sampled from ε = 0.01 to 1 − ε = 0.99.

4. Results

4.1. Copula Fitting
4.1.1. Marginal Distributions

First of all, we obtain the fitting of the univariate marginal distributions. Figure 2
shows the kernel estimation of the marginal distribution of the different parameters.
We have chosen a Gaussian kernel for all the estimations with variable bandwidths
(w1 = 7.46 × 10−11 cm2/s , w2 = 9.52 × 10−10 cm2/(mmHg·s), w3 = 1.66 × 10−6 cm2/s,
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w4 = 2.17 × 10−10 mmHg·cm3/(cell·s), w5 = 9.57 × 104 s and w6 = 2.74 × 104 s). The val-
ues are generally concentrated around the one used for the data generation, although the
distributions present a variable uncertainty, related to the model complexity and its in-
fluence on the minimization procedure. For example, it is interesting to observe that all
distributions present a multimodal feature, surely related to the existence of several local
minima in the minimization procedure.

Figure 2. Kernel density estimation of the marginal distributions.

4.1.2. Parametric Copula Structure

Then, the data are transformed into uniformly distributed values using the cumulative
distribution function (CDF) associated to this kernel estimation and a t-Student copula
fitted by means of maximum likelihood (ML) estimation. The use of a t-Student copula
is justified as it allows a different structural dependence for each of the variable pairs
considered [16] and, besides, it outperforms Gaussian copula when estimating the co-
occurrence of extreme events [49]. We obtain a copula with ν = 1.8 degrees of freedom and
a Pearson correlation matrix of:

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

1.00 0.93 0.71 0.77 0.70 0.40
0.93 1.00 0.74 0.74 0.77 0.38
0.71 0.51 1.00 0.91 0.61 0.20
0.77 0.74 0.91 1.00 0.54 0.26
0.70 0.77 0.61 0.54 1.00 0.24
0.40 0.38 0.20 0.26 0.24 1.00

⎤
⎥⎥⎥⎥⎥⎥⎦

(25)

Note that the value obtained for ν is far from the Gaussian limit (ν → ∞), justifying
the use of the t-Student model.

4.1.3. Complete Probabilistic Model and Bayesian a Posteriori Corrections

In order to briefly analyze the aspect of the whole model, we represent in Figure 3a
the bivariate joint distribution of (DO2 , αa). Knowing the whole joint distribution function
allows us to make a posteriori corrections using Bayesian theory and conditional probability
as explained in Section 3.2.3. If we are interested in the joint distribution of two parameters
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(e.g., DO2 and αa), assuming that we know the rest (Da, Ka, τa, τad), the uncertainty of
the parameter estimation obviously decreases, as can be seen in Figure 3b. In order to
compare the impact of setting a posteriori the rest of the parameters, contour plots of both
distributions, absolute and conditional (normalized between 0 and 1 to compare them
more easily) are depicted in Figure 3c.

(a) Bivariate joint distribution of (DO2 , αa).
(b) Bivariate joint distribution of (DO2 , αa) assuming we
know the rest of parameters.

(c) Comparison between the distribution shape of (a) and (b).

Figure 3. Bivariate joint distribution functions of DO2 and αa.

4.2. Validation of the Results Using Test Data

Over-fitting is one of the main problems in any statistical or numerical parametric
fitting. In our methodology, this is avoided by using a sub-set of the data as test data for
validating the models.

4.2.1. Marginal Distributions

Marginal distributions are validated as pointed out in Section 3.2. To do so, new “ex-
perimental” data are compared to the data generated from the multivariate model. It is
important to note that the original data are not used, but, on the contrary, a new data-set
is strictly generated from the parametric copula and marginal densities, using the same
procedure described for the generation of the original data. The histogram of data, the ecdf
of the test data (with 95% confident interval) compared to the model data, the boxplot of
both test and model data and the Q-Q plot of the test data, when compared to the model,
are shown in Figure 4 for Da as an illustrative example. The validation of the whole set
of variables has been performed and good agreement was found between the model and
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test data except, if at all, for the extreme values, at the tail values of the distributions.
In Figure 5, the ecdf of the test data for each model parameter is shown.

Figure 4. Validation of the marginal distributions for the parameter Da.

Figure 5. Empirical cumulative distribution functions (ecdf) of the test data for each parameter.

4.2.2. Joint Dependencies

Testing the structural dependence between parameters is not trivial. In Section 3.2,
a multivariate statistical test was referenced. However, here we evaluate merely the
differences in the correlation coefficients between the model-based and the test data.
In Figure 6b, we represent the Kendall τ correlation index between the variables for the
model and test data. We observe again a good agreement between the model values of
the correlation coefficients (Figure 6a) and those obtained from the sample of the test data
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(Figure 6b), even though the test sample is finite, which can cause differences between the
model and the statistical values.
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(a) Kendall τ for the training data.
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(b) Kendall τ for the test data.

Figure 6. Kendall τ correlation coefficient for each pair of variables for the training and test data.

4.3. Parameter Estimation

In Figure 7, we show p-confident HDR regions for p = 0.90, p = 0.95 and p = 0.99
for the pair of variables DO2 − αa. We present the results for the absolute distribution
and the conditional distribution when the rest of parameters are known. The results
are compared with the classical ellipsoid estimation, which is based on the normality
assumption. The differences, both in the shape and the size of the regions, are clear and are
explained by the complex dependence structure between variables.
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(a) Absolute distribution.

(b) Conditional distribution.

Figure 7. DO2 – αa point (mean) and region (HDR) estimations.

4.4. Estimation of the Output Variables

Once the multivariate distribution of the random vector Θ is characterized, we know
the distribution of the random vectors U = F(λ, Θ). In Figure 8, we show the distribution
of the vector U for three experiments, which illustrates completely different behaviors
corresponding to the main histopathological features of GBM. For the first one, the oxygen
flow is set to 2 mmHg in the left channel and 0 in the right channel and the initial concen-
tration of cells is C0 = 4 × 106 cell/mL (pseudopalisade experiment in Ref. [11]). For the
second one, the oxygen flow is set to 7 mmHg in both channels and the initial concentration
of cells is C0 = 40× 106 cell/mL (necrotic core experiment in Ref. [11]). Finally, for the third
one, the oxygen flow is set to 7 mmHg in both channels and the initial concentration of
cells is C0 = 4× 106 cell/mL (double pseudopalisade experiment in oxygenated conditions
in Ref. [11]).
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(a) Pseudopalisade experiment.

(b) Necrotic core experiment.

(c) Double pseudopalisade experiment.

Figure 8. Distribution of the measured variable for in silico experiments.
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4.5. Design of Experiments

In this section, the aim is to determine the experimental configuration with the highest
utility, that is, to choose both right and left oxygen flow levels and the initial cell concentra-
tion to get the maximum possible information from the new experiment. We focus here on
the effect of coupling between parameters and how it affects the utility interpretation and
model parameter estimation.

Two different families of simulations were carried out. In the first one, only one
parameter dependence is analyzed at a time, leaving the rest fixed at the value set in
Section 3.1. These figures show configurations where, if the rest of the parameters are
assumed to be known, the unknown parameter will be estimated accurately. This is the case
in Figure 9a,b. In the second family, two parameter dependencies are analyzed. They are
considered as bivariate distributions in order to observe the effect that the parameter
correlation has in characterizing these parameters, that is, how it modifies the utility values.
Figure 9c, which belongs to this family, illustrates experimental configurations where the
two-dimensional vector will be estimated accurately.

In Figure 9 we compare the iso-utility curves when analyzing one or two parameter
dependencies for the pair of parameters related to oxygen, changes in the cell population
and cell motility respectively. We assume for all figures C0 = 5 × 107 cell/mL. In these
figures we can see the most useful experiments (those configurations corresponding to the
highest utility values) and those that lead to a poor adjustment of the model parameters.

This analysis may be performed for different parameter combinations, and for different
degrees of knowledge. For instance, Table 3 summarizes all possibilities when exploring
the relationship between DO2 and αa, as we are interested in the estimation of these two
parameters, both individually or jointly. The cases analyzed in this paper are reported in
the third column.

Table 3. Different possibilities when exploring the relationship between DO2 and αa in the utility
computation.

Parameters to Be Estimated Known Parameters Figure

DO2 None -

DO2 Da, Ka, τa, τad -

DO2 Da, Ka, τa, τad, αa Figure 9a

αa None -

αa Da, Ka, τa, τad -

αa Da, Ka, τa, τad, DO2 Figure 9b

DO2 , αa None -

DO2 , αa Da, Ka, τa, τad Figure 9c
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(a) DO2 .

(b) αa.

(c) (DO2 , αa).

Figure 9. Iso-utility curves for parameters related to oxygen for an initial concentration of C0 =

5 × 107 cell/mL.

5. Discussion

The train-test methodology based on copulas followed in the fitting process has shown
that it is possible to establish a gradation in the strength of the parameter dependencies.
Figure 6a illustrates the strength of this relationship, showing that there are pairs of
phenomena difficult to isolate from the experimental and/or computational points of
view. For example, cell random motility and chemotaxis migration (τ = 0.77). Both
phenomena have similar effects but in the opposite direction. Thus, it is difficult to isolate
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their individual effect on cell behavior if we have limited measurements available on the
cell profiles. It is then only possible to evaluate, on the outcome, their combined resultant
effect, that is, the average cell motility. This analysis may be done for each parameter
couple, justifying the approach adopted in this work.

It is important to note that the high complexity of biological systems, resulting in
coupling between pairs of variables, is moderated by the values of the rest, since the
bivariate random distributions (shown for example in Figure 3a) are only a projection of
the whole 6-dimensional joint distribution. Comparing Figure 3a,b, for example, we can
observe the conditioning effect in location, spread, and directionality of the dependency.

Once the probabilistic model is fitted, predicting the actual value of the model param-
eters is easily carried out. As it is observed in Figure 7, the normality assumption for the
confidence region estimation is not always a good starting hypothesis. First, it does not take
into account the complexity of the relationship between the model parameters (i.e., physical
phenomena) and may lead to non reliable values (meaningless physical magnitudes, such
as negative oxygen diffusion). Secondly, it may mislead with respect to the uncertainty
that we actually have for different significant levels. In any case, the confident region
estimation using HDR and a proper probabilistic analysis are very informative about the
degree of reliability of the mathematical model used for a biological explanation. These
two observations become even more evident when the uncertainty of the model is reduced,
as it can be seen when comparing Figure 7a,b: the chosen significant level has a major
impact on the confidence region size and shape. In all the cases analyzed, this uncertainty
reduction makes the confidence region to concentrate around the parameter values used in
the data generation process.

Knowledge of the model parameter variation (from a probabilistic point of view)
allows to predict the outcome of a given experiment. This can be used not only for
model calibration and validation, but for experimental planning (deciding the appropriate
material, equipment or accuracy of the measuring devices and techniques to be used).
For example, in Figure 8, it may be seen that the necrotic core experiment requires less
accuracy in the measurement of the cell profile in the central part of the chamber for param-
eter estimation, while the pseudopalisade experiment requires a measurement technique
able to detect extremely low alive cell concentrations. It can also be observed that the
appearance of significant alive cells at the right side of the chamber in the pseudopalisade
experiment would not be explained by the model parameter variability, but rather by a
model limitation.

The probabilistic knowledge of the model can be further exploited in experimental
planning and design by using BED theory. In the analysis performed in this work, there
are several aspects important to remark. All graphics showing the utility function are
symmetric with respect to the line Ol = Or. This is coherent with the symmetrical config-
uration of the experimental set-up (geometry and properties). The utility value should
therefore not be modified by flipping the boundary conditions. Besides, it can be seen that
the level curves belonging to DO2 and αa have similar shapes. This is due to the correlation
between parameters, as it can be observed from the Kendall correlation coefficient τ for
each pair of variables (Figure 6b). The coefficient corresponding to DO2 and αa is high and,
consequently, they are strongly correlated, so the experiments needed to characterize the
value of one of them are similar to the ones needed to characterize the other.

Iso-utility curves give us a picture that may be interpreted biologically and is coherent
with the different phenomena occurring in the microfluidic device. However, the coupling
between them makes this interpretation difficult. In this work, the utility has been com-
puted for four different initial cell concentrations, ranging from a low concentration C0 =
1× 106 cell/mL to the chip saturation concentration C0 = CM = 5× 107 cell/mL. The max-
imum utility is always reached for the highest initial concentration (5 × 107 cell/mL).

A summary of the analysis is presented in Table 4, where the best experimental config-
uration is presented for each of the parameters’ calibration, together with the maximum
utility value.
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Table 4. Most useful experimental configuration for each of the parameters’ evaluation.

Parameters to Be
Estimated

Upper O2 Concentration
[mmHg]

Lower O2 Concentration
[mmHg]

Maximum
Utility Value

DO2 7 0 1.58

αa 5 2 1.53

(DO2 , αa) 5 1 2.58

τa 7 0 0.07

τad 7 0 1.29

(τa, τad) 7 0 1.63

Da 8 0 0.51

Ka 7 1 0.35

(Da, Ka) 8 0 0.49

For the analyzed family of experiments, the most useful experiments are always the
ones performed for high concentrated cell cultures. As most phenomena are related to cell
concentrations, the higher the concentration, the more quantifiable the different biological
mechanisms. Besides, it results clear that configurations with oxygen gradient are more
useful for accurately characterizing the parameters related to oxygen (DO2 , αa) and cell
migration (Da, Ka), when the other parameters are assumed to be known. However, this
gradient has to be moderate to avoid regions of total normoxia or total anoxia. When
the aim is to perfectly discriminate between their effects, softer gradients are generally
preferred (Figure 9c, Table 4). Finally, for high initial cell concentrations, growth and
death parameters are also well characterized under gradient conditions: we need to
induce localized hypoxic conditions in order to evaluate growth under saturation capacity
and death.

6. Conclusions

Mathematical modeling of complex cell processes is very challenging due to its in-
trinsic non-linearity, highly-coupled multiphysic interactions, and the many correlated
parameters which are difficult to measure or simply unknown. These parameters are most
times obtained for a particular problem under specific conditions, leading in many cases to
conclusions, directly derived from the modeling assumptions and therefore providing little
new information. Also, they are difficult to generalize.

As a result, a proper and extensive parametric analysis is mandatory. This should
include an extensive and detailed study of the values reported in the bibliography, a careful
sensitivity analysis and a sufficient number of different experiments, not only for calibration
but also for validation, avoiding parameter overfitting.

This analysis, although it allows the identification of the optimal set of parameters,
is most times difficult to extend to other problems with reasonable accuracy and therefore
with a certain validation of its actual physical character and its value range. It is also
difficult to discriminate between correlated parameters associated to mechanisms that
cannot be isolated in the experiments. Hence, we need additional information both to
get a better discrimination between them, and to identify the optimal conditions for
additional experiments to provide the maximum information possible in order to get
such discrimination.

We have proved here that copulas are a simple and powerful tool to detect and
improve highly-correlated multiparametric mathematical models such as those appearing
in Biology, with the added value of providing key information for the optimal design of new
experiments with the highest information possible for the problem in hands, thus reducing
time and cost not only in our in vitro experiments but also in scarce and costly in vivo cases.
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Abstract: We are interested in evaluating the state of drivers to determine whether they are attentive
to the road or not by using motion sensor data collected from car driving experiments. That is, our
goal is to design a predictive model that can estimate the state of drivers given the data collected
from motion sensors. For that purpose, we leverage recent developments in topological data analysis
(TDA) to analyze and transform the data coming from sensor time series and build a machine learning
model based on the topological features extracted with the TDA. We provide some experiments
showing that our model proves to be accurate in the identification of the state of the user, predicting
whether they are relaxed or tense.

Keywords: Morse theory; topological data analysis; machine learning; time series; smart driving

1. Introduction

While there have recently been considerable advances in self-driving car technology,
driving still relies mainly on human factors. Even in self-driving mode, human drivers
must often make decision in a fraction of a second to avoid accidents. Therefore, it is still
of utmost importance to develop systems capable of discerning if the human driver is
attentive or not to the road conditions. In general, the so-called advanced driver assistance
systems (ADAS) [1,2] are systems that are able to improve the driver’s performance, among
which, adaptive speed limiters, pedestrian detectors [3], and cruise controllers are some
of the most popular systems. Fatigue alerting systems are among the most useful among
ADAS systems, and the aim of this work is to contribute to the development of such a
system based on a systematic analysis of drivers in actual driving conditions.

The estimation of the driver’s condition (degree of attention to the road, fatigue, etc.)
is a very important factor to ensure safety in driving [4,5]. A recent review on the topic can
be found in [6]. The goal of this work is to extract behavior patterns from car user data to
be able to accurately estimate their state. We used data obtained by the laboratory of prof.
Hyung Yun Choi at Hongik University in Seoul. His experiment involved the application
of mechanical stimulation to people seated in an automobile.

Our main goal is to extract patterns of behavior from experimental data so as to allow
us to learn the most relevant factors affecting driver’s attention to the situation of the road.

In the present work, we combine some tools from Morse theory [7] and topological
data analysis (TDA) with all of the associated concepts and methods (e.g., Betti numbers,
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homology persistence, barcodes, persistence images, etc.) [8], most of them introduced
and employed later in order to analyze and classify the experimental data. This allows us
to introduce concepts as barcodes, that is, persistent and life-time diagrams in a similar
way to how they are used in persistent homology. Our main goal is to predict car user
behavior following a supervised approach [9]. Instead of considering an original sensor
signal as the quantity of interest, we focus on its topological features. In this sense, the
framework proposed in this paper allows us to unveil the true dimensionality of data or,
in other words, the actual number of factors affecting driver’s performance. Thus, we
model a sensor signal as a dynamical system, and, therefore, our approach seems to be
better at describing its properties, or rather its variations, such as extrema, patterns, and
self-similarity, than other approaches. We note that our approach is, in some senses, similar
to that followed by Milnor and Thurston [10] in the study of the combinatorial properties
of dynamical systems by combining tools from automata theory.

The structure of the paper is as follows: In Section 2, we describe the material and
methods employed in this work. Particular attention is paid to the process of data acquisi-
tion and the description of time series and data curation. In Section 3, we present the main
results of this work, and we discuss the main consequences in Section 4. As a complement,
in Appendix A, we thoroughly illustrate the process of computing persistence images for
the data of interest.

2. Material and Methods

In this section, we describe the collection and preprocessing of the experimental data.
In Section 2.1, we describe the data acquisition, and in Section 2.2, we provide a description
of the time series. Section 2.3 is devoted to data preprocessing. The mathematical tools
used to describe the times series at a topological level are explained in Section 2.4. Finally,
the image classification methodology is given in Section 2.5.

2.1. Data Acquisition

Our proposed predictor directly uses the data collected from the experiments. The data
acquisition process involves measuring the response of human behavior when an excitation
is applied to the seat. Figure 1 shows the location of the sensors in the experiments.

Figure 1. Scheme of the data acquisition process showing the location of the sensors.

The excitation signal is an angular acceleration imposed on the seat of the user. This ac-
celeration is an oscillating chirp function with a frequency range of 1 to 7.5 Hz on the X axis
in rotation. The linear acceleration a = (ax, ay, az) and angular velocity ω = (ωx, ωy, ωz)
were measured in both the head and the seat by two IMU (Shimmer inertia measurement
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unit (IMU) sensors) at 256 Hz. By observing the floor excitation signals, we noted that the
excitation is purely rotational around the X-axis—see Figure 2.

Figure 2. Floor excitation: X-axis angular velocity time series.

Several experiences were conducted by nine people by taking into account a set of
six fixed states: driver, passenger, tense person, relaxed person, rigid seat, and SAV (sport
activity vehicle seat). In particular, for each individual, eight experiments for the six
available states were performed:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Class Label

1 SAVRelaxedPassager
2 SAVTensePassager
3 SAVRelaxedDriver
4 SAVTenseDriver
5 RigidRelaxedPassager
6 RigidTensePassager
7 RigidRelaxedDriver
8 RigidTenseDriver

As a consequence, we worked with a sample of 72 experiences, each of them encoded
in a time series (as we explain later). Our goal is to classify the behavior of a generic driver,
assigning one of the two states (tense or relaxed) by using the sensor data.

2.2. Time Series Description

The data acquired from sensors (see Figures 3 and 4) were stored into six-dimensional
time series, for both linear acceleration and angular velocity of the head movement. The
sampling frequency of the data was 256 Hz, and the duration of the experiment was 34 s;
hence, the resulting data dimensionality is 256 × 34 = 8704. For each times series, where
1 ≤ t ≤ 8704, we constructed three new times series called the sliding window, embedding
a length of 5800. The first one is given by the times values from t = 1 to t = 5800, the
second is given by the times values from t = 1450 to t = 7250, and, to conclude, the
third time window is defined as from t = 2904 to t = 8704. Each element in the sample
(1 ≤ i ≤ 72) was encoded by means of three six-dimensional time series representing each
of the three sliding windows that we represent in matrix form as follows:

TS3(i−1)+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a�x(1) a�x(2) · · · a�x(5800)
a�y(1) a�y(2) · · · a�y(5800)
a�z(1) a�z(2) · · · a�z(5800)
ω�

x(1) ω�
x(2) · · · ω�

x(5800)
ω�

y(1) ω�
y(2) · · · ω�

y(5800)
ω�

z(1) ω�
z(2) · · · ω�

z(5800)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, TS3(i−1)+2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a�x(1450) a�x(1451) · · · a�x(7251)
a�y(1450) a�y(1451) · · · a�y(7251)
a�z(1450) a�z(1451) · · · a�z(7251)
ω�

x(1450) ω�
x(1451) · · · ω�

x(7251)
ω�

y(1450) ω�
y(1451) · · · ω�

y(7251)
ω�

z(1450) ω�
z(1451) · · · ω�

z(7251)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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and

TS3i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a�x(2903) a�x(2905) · · · a�x(8704)
a�y(2903) a�y(2905) · · · a�y(8704)
a�z(2903) a�z(2905) · · · a�z(8704)
ω�

x(2903) ω�
x(2905) · · · ω�

x(8704)
ω�

y(2903) ω�
y(2905) · · · ω�

y(8704)
ω�

z(2903) ω�
z(2905) · · · ω�

z(8704)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Here, the matrices have a size of 6 × 5800 and 1 ≤ i ≤ 72. This allows us to represent
the information by using a third-order tensor, namely, Z ∈ R216×6×5800 defined by

Zi,j,k := (TSi)j,k

for 1 ≤ i ≤ 216, 1 ≤ j ≤ 6 and 1 ≤ k ≤ 5800. We can identify Zi = TSi for 1 ≤ i ≤ 216.

Figure 3. Sensor data: linear acceleration time series.

Figure 4. Sensor data: angular velocity time series.

2.3. Data Preprocessing

In order to obtain a single series for each observation, we concatenated all of the 6 time
series (linear accelerations and angular velocities) for each observation horizontally and
then created a data frame by stacking the 216 in sample observations.
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The concatenation operation on the multidimensional time series collapsed the last
two dimensions into one dimensional arrays with a length of 5800 × 6 = 34,800. The result
is the two-dimensional table of concatenated time series

D =

⎡
⎣ vec(Z1,:,:)

. . .
vec(Z216,:,:)

⎤
⎦ ∈ R

216×34800.

We chose not to filter the signals because the topological sub-level set method should
filter the high-frequency features naturally. We also chose to keep working on acceleration
signals in order to avoid signal deviations after two integrations in time so as to obtain
positions, the sensors not always keeping a zero mean height. Thus, the approach is
completely (topologically) data-based.

The six time series Zi of each observation were collapsed into a single concatenated
time series with a size of 34,800—see Figure 5. The concatenated time series for the 216
observations were then stacked to create the dataset D with a size of 216× 34,800. We also
used binary labels in the chained time series Zi on the two target classes that we were
interested in. In particular, we wrote Z (α)

i where α is "0" for a relaxed driver and “1” for a
tense one.

Figure 5. Tensor reduction of a sensor time series.

2.4. Extracting Topological Features from a Time Series

The idea to extract the topological information regarding the times series is to consider
each sample observation as a piecewise linear continuous map from a closed interval to the
real line. Therefore, we used a construction closely related to the Reeb graph [11] used in
Morse theory to describe the times series at the topological level.

To this end, we consider the time series xt for 0 ≤ t ≤ N − 1 (N ≥ 3) given by a vector

X = (x0, x1, . . . , xN−1) ∈ R
N .

we can view X as a function also denoted by X : {0, 1, . . . , N − 1} −→ R defined by
X(i) = xi for 0 ≤ i ≤ N − 1. Here, to study the topological features of X we use the
sub-level set of a piecewise-linear function fX : R −→ R associated with X satisfying that
fX(i) = X(i) = xi for 0 ≤ i ≤ N − 1.

To construct this function, we consider the basis functions {ϕ0, . . . , ϕN−1} of continu-
ous functions ϕi : R −→ R defined by

ϕi(s) :=

⎧⎨
⎩

s − i + 1 if i − 1 ≤ s ≤ i
i + 1 − s if i ≤ s ≤ i + 1

0 if s /∈]i − 1, i + 1[

87



Mathematics 2021, 9, 634

where i = 1, . . . , N − 2 and

ϕ0(s) :=
{

1 − s if 0 ≤ s ≤ 1
0 if s ∈ [0, 1]

ϕN−1(s) :=
{

s − N + 2 if N − 2 ≤ s ≤ N − 1
0 if s /∈ [N − 2, N − 1[

This allows us to construct a piecewise continuous map fX : R −→ R by

fX(s) =
N−1

∑
j=0

xj ϕj(s),

and also to endow RN with a norm given by

‖X‖ := ‖ fX‖L2(R) =

(∫ ∞

−∞
| fX(s)|2ds

)1/2
.

In particular, we prove the following result, which helps us to identify the time series
given by the vector X in RN with the function fX in L2(R).

Proposition 1. The linear map Φ : (RN , ‖ · ‖) −→ (L2(R), ‖ · ‖L2(R)) given by Φ(X) = fX is
an injective isometry between Hilbert spaces. Furthermore, Φ(RN) is a closed subspace in L2(RN).

Proof. The map is clearly isometric and injective because {ϕ0, . . . , ϕN−1} is a set of linear
independent functions in L2(R).

Here, we describe the maps fX ∈ Φ(RN) at the combinatorial level using the connected
components (intervals) associated with its λ sub-level sets

LSλ( fX) := {x ∈ [0, N − 1] : fX(x) ≤ λ}

for λ ∈ R. For this purpose, we introduce the following distinguished objects related to the
supp( fX) = [0, N − 1] ⊂ R of fX :

• The nodes or vertices denoted by

V := {[0], [1], . . . , [N − 1]}

that represent the components of the vector X,;
• The faces denoted by

F := {[0, 1][1, 2], . . . , [N − 2, N − 1]}

that represent the intervals used to construct the connected components of the sub-
level sets of the map fX. Recall that we consider

[i, i + 1] := {z ∈ R : z = μ xi+1 + (1 − μ)xi, 0 ≤ μ ≤ 1} ⊂ R.

Let
λmax = max

s∈[0,N−1]
fX(s) = max

0≤i≤N−1
X(i),

and
λmin = min

s∈[0,N−1]
fX(s) = min

0≤i≤N−1
X(i).

For each λmin ≤ λ ≤ λmax, we introduce the following symbolic λ sub-level set for
the map fX :

LSλ( fX) := {σ ∈ F : f (σ) ≤ λ}
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For λmin ≤ λ ≤ λ′ ≤ λmax, it holds

LSλ( fX) ⊂ LSλ′( fX).

Our next goal was to quantify the evolution of the above symbolic λ sub-level with.
To this end, we introduce the notion of feature associated with the λ sub-level set LSλ( fX).

We define the set of features for functions in Φ(RN) as

F(Φ(RN)) := {[i, j] ⊂ R : 0 ≤ i < j ≤ N − 1}.

We note that LSλ( fX) ⊂ F ⊂ F(Φ(RN)). Then next definition introduces the notion
of features for a symbolic λ sub-level set as the interval of F(Φ(RN)) constructed by a
maximal union of faces of LSλ( fX).

Definition 1. We suggest that I ∈ F(Φ(RN)) is a feature for the symbolic λ sub-level set LSλ( fX)
if there exists I1, . . . , Ik ∈ LSλ( fX) such that I =

⋃k
j=1 Ik and for every J ∈ LSλ( fX) such that

J �= Ii for 1 ≤ i ≤ k it holds that I∩ J = ∅. We denote by F(LSλ( fX)) the set of features for the
λ sub-level set LSλ( fX).

A feature for a λ sub-level set LSλ( fX) is the maximal interval of F(Φ(RN)) that we
can construct by unions of intervals in LSλ( fX). To illustrate this definition, we give the
following example:

Example 1. Let us consider the time series

X = (11, 14, 9, 7, 9, 7, 8, 10, 9).

This allows us to construct the map fX as shown in Figure 6. Then, λmin = 7 and λmax = 14,
and we have the following symbolic λ sub-level sets.

LSλ=7( fX) = ∅

LSλ=8( fX) = LSλ=7( fX) ∪ {[5, 6]}
LSλ=9( fX) = LSλ=8( fX) ∪ {[2, 3], [3, 4], [4, 5]}

LSλ=10( fX) = LSλ=9( fX) ∪ {[6, 7], [7, 8]}
LSλ=11( fX) = LSλ=10( fX)

LSλ=12( fX) = LSλ=11( fX)

LSλ=13( fX) = LSλ=11( fX)

LSλ=14( fX) = LSλ=11( fX) ∪ {[0, 1]}.

This allows us to compute the available features for each λ-value:

λ = 7 λ = 8 λ = 9 λ = 10 λ = 11 λ = 12 λ = 13 λ = 14
F(LSλ( fX)) ∅ [5, 6] [2, 6] [2, 8] [2, 8] [2, 8] [2, 8] [0, 8]

Let F( fX) be the whole set of features for fX, that is,

F( fX) = {I : I ∈ F(LSλ( fX)) for some λmin ≤ λ ≤ λmax}.
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Figure 6. The map fX for X = (11, 14, 9, 7, 9, 7, 8, 10, 9).

Example 2. From Example 1, we obtain

F( fX) = {[5, 6], [2, 6], [2, 8], [0, 8]}.

We can represent the map λ �→ LSλ( fX) from [λmin, λmax] to F( fX) as shown in Figure 7.

Figure 7. The map λ �→ LSλ( fX) for X = (11, 14, 9, 7, 9, 7, 8, 10, 9).

Let I ∈ F( fX); in order to quantify the persistence of this particular feature for the map
fX, we use the map λ �→ LSλ( fX) from [λmin, λmax] to F( fX). To this end, we introduce the
following definition: the birth point of the feature I is defined by

a(I) = inf{λ : I ∈ F(LSλ( fX))}
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and the corresponding death point by

b(I) = sup{λ : I ∈ F(LSλ( fX))}.

In particular, we note that a([0, N − 1]) = λmax (see Figure 7). Since a(I) ≤ b(I) < ∞
holds for all I ∈ F( fX), I �= [0, N − 1], we call the finite interval [a(I), b(I)] the barcode of the
feature I ∈ F( fX) \ {[0, N − 1]}.

Example 3. From Example 1 we consider the features [5, 6] ∈ LSλ=8( fX), [2, 6] ∈ LSλ=9( fX),
and [2, 8] ∈ LSλ=10( fX). Then, the feature [5, 6] has its birth point at a([5, 6]) = 8 and its death
point at b([5, 6]) = 9; the feature [2, 6] has its birth point at a([2, 6]) = 9 and its death point at
b([2, 6]) = 10. Finally, the feature [2, 8] has its birth point at a([2, 8]) = 10 and its death point at
b([2, 8]) = 14. As a consequence, the set

B( fX) := {([5, 6]; 8, 9), ([2, 6]; 9, 10), ([2, 8]; 10, 14)}

of features and its corresponding barcodes contain the relevant information of the shape of fX

(see Figure 7).

Thus, we define the set of barcodes for fX by

B( fX) = {(I; a(I), b(I)) : I ∈ F( fX) \ {[0, N − 1]}}

and its persistence diagram as

PD( fX) :=
{
(a(I), b(I)) ∈ R

2 : I ∈ F( fX) \ {[0, N − 1]}
}

(see Figure 8). An equivalent representation of the persistence diagram is the life-time
diagram for fX, which is constructed by means of a bijective transformation T(a, b) =
(a, b − a), acting over PD( fX), that is,

LT ( fX) :=
{
(a(I), b(I)− a(I)) ∈ R

2 : I ∈ F( fX)) \ {[0, N − 1]}
}

;

see Figure 9.

Figure 8. Persistence diagram for the map fX when X = (11, 14, 9, 7, 9, 7, 8, 10, 9).
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Figure 9. Life-time diagram for the map fX when X = (11, 14, 9, 7, 9, 7, 8, 10, 9).

In order to determine the grade of similarity between two barcodes from two different
time series, we need to set a similarity metric. To this end, we construct the persistent
image for fX as follows: we observe that LT ( fX) is a finite set of points, namely,

LT ( fX) = {(a1, b1 − a1), . . . , (ak, bk − ak)}

for some natural numbers k ≥ 1 and such that b1 − a1 ≤ b2 − a2 . . . ≤ bk − ak. Then, we
consider a non-negative weighting function w : LT ( fX) −→ [0, 1] given by

w(ai, bi − ai) =
bi − ai
bk − ak

for 1 ≤ i ≤ k.

Finally, we fix M, a natural number, and take a bivariate normal distribution gu(x, y)
centered at each point u ∈ LT ( fX) and with its variance σ id = 1

M max1≤i≤k(bi − ai) id,
where id is the 2 × 2 identity matrix. A persistence kernel is then defined by means of a
function ρX : R2 → R, where

ρX(x, y) = ∑
u∈LT ( fX)

w(u)gu(x, y). (1)

We associate with each X ∈ R a matrix in RM×M as follows: let ε > 0 be a non-
negative real number that is sufficiently small, and then consider a square region ΩX,ε =
[α, β]× [α∗, β∗] ⊂ R2, covering the support of ρX(x, y) (up to a certain precision), such that

∫∫
ΩX,ε

ρX(x, y) dx dy ≥ 1 − ε

holds. Next, we consider two equispaced partitions of the intervals

α = p0 ≤ p1 . . . ≤ pM = β and α∗ = p∗0 ≤ p∗1 . . . ≤ p∗M = β∗.
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Now, we put

ΩX,ε =
M−1⋃
i=0

M−1⋃
j=0

[pi, pi+1]× [p∗j , p∗j+1] =
M−1⋃
i=0

M−1⋃
j=0

Pi,j

The persistence image of X associated with the partition P = {Pi,j} is then described
by the matrix given by the following equation:

PI(X, M,P , ε) =

(∫∫
Pi,j

ρX(x, y)dxdy

)i=M−1,j=M−1

i=0,j=0

∈ R
M×M. (2)

2.5. Classification

Image classification is a procedure that is used to automatically categorize images
into classes by assigning to each image a label representative of its class. A supervised
classification algorithm requires a training sample for each class, that is, a collection of data
points whose class of interest is known. Labels are assigned to each class of interest. The
classification problem applied to a new observation is thus based on how close a new point
is to each training sample. The Euclidean distance is the most common distance metric
used in low-dimensional datasets. The training samples are representative of the known
classes of interest to the analyst. In order to classify the persistence diagrams, we can use
any state-of-the-art technique. In our case, we considered the random forest classification.

Recall that we conducted 9 different experiments, with 24 samples associated with each
one of them corresponding to 3 samples for each of the different experimental conditions:
relaxed rigid driver, relaxed rigid passenger, relaxed SAV driver, relaxed SAV passenger,
tense rigid driver, tense rigid passenger, tense SAV driver, and tense SAV passenger. Their
respective labels are {0, 0, 0, 0, 1, 1, 1, 1}. Therefore, we designed the following training
validation process: The model is trained over 144 samples and evaluated over the remaining
unseen 72 experiments (two-to-one training-to-testing ratio). The split between training
and sampling is achieved using random shuffling and stratification to ensure balance
between the classes. In order to improve the evaluation of the model generalizability, we
also performed a cross-validation procedure following a leave-one-out strategy, consisting
of iteratively training over the full dataset except one sample that was left out and used to
test and score the model. We used the accuracy metric to evaluate the classification model.
We can represent the performance of the model using the so-called confusion matrix: a
2D entries table where elements account for the number of samples in each category, with
the first axis representing the true labels and the second axis the predicted labels. We also
computed the different classification metrics to obtain a more detailed reporting of the
model performances.

3. Results

The trained random forest classifier model for the persistence images has a notably
high accuracy score on the training dataset (144) for both approaches and high accuracy for
the testing dataset (72 samples). This suggests strong differentiation of the images with the
respect to their generating signals, see Figure 10. The scores on the training and testing
are 93 and 83%, respectively. The leave-one-out cross-validation achieved a score of 81%,
indicating a good variance–bias trade-off and good generalization potential of the model.
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Figure 10. Model performance for prediciting the attention state.

4. Discussion

The combination of Morse theory and topological data analysis allows us to extract
information from real data without the need for smoothness or regularity assumption on
the time series. In our case, input data for each experiment were reduced from six-sensor
time series of measurements to one single image containing the persistent pattern for
attention to the road. Using the obtained persistence images as the new inputs, supervised
learning proved to successfully predict the attention state of the driver or passenger.

The procedure used and described in this paper does not involve any additional
pre-processing of the sensor data; is robust to noise and degraded signals; and supports
large quantities of data, which makes it efficient and scalable.

It is important to highlight the fact that while the proposed methodology based on the
TDA (successfully applied in large datasets [9]) seems general and powerful and it was able
to extract the main data features, the validity of the driver behaviors observed in the analyzed
dataset should be carefully checked due to the overly reduced dataset employed (limited to
nine individuals) that does not allow for the full validation of prediction robustness.
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Appendix A

We can illustrate the process of computing the persistence diagrams, the lifetime
diagrams, and the persistence images for the driver time series for each experimental setup:

1. Relaxed driver with SAV seat;
2. Relaxed driver with rigid seat;
3. Relaxed passenger with SAV seat;
4. Relaxed passenger with rigid seat;
5. Tense driver with SAV seat;
6. Tense driver with rigid seat;
7. Tense passenger with SAV seat;
8. Tense passenger with rigid seat.

Figure A1. Relaxed driver with SAV seat.

Figure A2. Relaxed driver with rigid seat.

Figure A3. Relaxed passenger with SAV seat.
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Figure A4. Relaxed passenger with rigid seat.

Figure A5. Tense driver with SAV seat.

Figure A6. Tense driver with rigid seat.

Figure A7. Tense passenger with SAV seat.
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Figure A8. Tense passenger with rigid seat.

Appendix B

To better evaluate a classification model, we are interested in quantities that express
how often a sample is correctly or wrongly labelled into a particular class over all the
samples and all the classes:

• A True positive (TP): the correct prediction of a sample into a class;
• A True negative (TN): the correct prediction of a sample out of a class;
• A False positive (FP): the incorrect prediction of a sample into a class;
• A False negative (FN): the incorrect prediction of a sample out of class.

Therefore, we can examine in more detail the classification model performance using
the following metrics:

• The precision P is the number of correct positive results divided by the number of all
positive results.

P =
TP

TP + FP
(A1)

• The recall R is the number of correct positive results divided by the number of all
relevant samples.

R =
TP

TP + FN
(A2)

• The F-1 score is the harmonic mean of precision and recall.

F1 = 2 × P × R
P + R

(A3)

• The accuracy A is the number of correct predictions over the number of all samples.

A =
TP + TN

TP + TN + FP + FN
(A4)

We can summarize the presented metrics for our model in the following two reports:

(a) Training set. (b) Testing set.
Figure A9. Classification report.
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Abstract: Despite significant progress, malapposed or overlapped stents are a complication that
affects daily percutaneous coronary intervention (PCI) procedures. These malapposed stents affect
blood flow and create a micro re-circulatory environment. These disturbances are often associated
with a change in Wall Shear Stress (WSS), Time-averaged WSS (TAWSS), relative residence time (RRT)
and oscillatory character of WSS and disrupt the delicate balance of vascular biology, providing a pos-
sible source of thrombosis and restenosis. In this study, 2D axisymmetric parametric computational
fluid dynamics (CFD) simulations were performed to systematically analyze the hemodynamic effects
of malapposition and stent overlap for two types of stents (drug-eluting stent and a bioresorbable
stent). The results of the modeling are mainly analyzed using streamlines, TAWSS, oscillatory shear
index (OSI) and RRT. The risks of restenosis and thrombus are evaluated according to commonly
accepted thresholds for TAWSS and OSI. The small malapposition distances (MD) cause both low
TAWSS and high OSI, which are potential adverse outcomes. The region of low OSI decrease with
MD. Overlap configurations produce areas with low WSS and high OSI. The affected lengths are
relatively insensitive to the overlap distance. The effects of strut size are even more sensitive and
adverse for overlap configurations compared to a well-applied stent.

Keywords: hemodynamics; overlap; malapposition; stent; stenosis; thrombosis

1. Introduction

Percutaneous coronary intervention (PCI) with modern drug-eluting stents (DES) has
revolutionized the treatment of arterial diseases. However, their benefits could be compro-
mised by potential complications such as restenosis and thrombosis [1–4]. Complications of
PCI continue to be a concern, with approximately 1–2% of stent patients dying from throm-
botic occlusions and 10–15% requiring additional interventions due to restenosis [3–7]. The
deployment of a coronary stent near a complex atherosclerotic lesion (i.e., located close to a
bifurcation, near concomitant lesions or with eccentric plaque formation) may promote
the occurrence of gaps between the vessel wall and the struts, defined as malapposition
distance (MD) [8–10]. It appears in up to 33% of implanted DES and up to 75% of patients
with very late (i.e., >1 year) stent thrombosis [10–12]. Furthermore, the use of two partially
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overlapped stents (i.e., with a certain overlap distance (OD)) may be necessary in the event
of incomplete coverage of lesions with a single stent. Approximately 30% of PCI patients
requiring stenting are in situations where stents overlap [7].

Stent implantation by itself generates geometric irregularities on the vascular walls
that modify the hemodynamics along the entire length of the stent [13–15]. Local hemo-
dynamic parameters, in particular abnormal wall shear stress (WSS), critically affect the
evolution of atherosclerosis plaque and have been associated with an increased risk of
thrombosis or restenosis [1,2,5,6,16]. Moreover, stent malapposition and overlapping have
been associated with hemodynamic disturbances that may increase the risks of adverse
clinical outcomes [2,8,10,17–22].

Several studies have been performed to analyze how the presence of stents perturbs the
hemodynamics in a vessel. Computational fluid dynamics (CFD) calculations performed
on simplified stent models inside an idealized coronary artery [5,6,8,10,22] have been used
to investigate the effects of malapposed struts on the blood flow. These studies have
shown that, as the MD increases, recirculation regions located near the wall tend to grow
downstream from the malapposed struts until a critical MD is reached. Above this MD
threshold, recirculation regions gradually reduce in size until the interaction between
the wall and the misaligned struts disappears. Moreover, it has been reported that the
regions near the malapposed struts (more specifically at the gaps between the wall and
the struts) are subjected to high wall shear stress [5,6,10] and that the abnormal region
tends to increase with MD [6]. While several studies have been conducted to highlight the
hemodynamic perturbations induced by malapposed stents, few are devoted to studying
overlapping configurations. An in vitro study by [18], using the particle image velocimetry
technique with a vascular phantom under physiological flow conditions, showed that
overlapping sections tend to disrupt the flow and create a WSS deficiency. [17,19] obtained
similar conclusions after performing 3D CFD simulations based on realistic artery-stents
geometries reconstructed from computed tomography images. Additionally, a 2D CFD
study by [22] revealed also that strut overlapping increases the amount of flow recirculation
compared to non-overlapped segments. Moreover, congruent struts (i.e., one strut on top of
the other) have been identified as critical configurations due to the major flow disturbance
that they produce [22] and the important drop of WSS around them [17].

Although complex 3D studies have provided promising results, identifying areas
where malapposed and/or overlapping struts can lead to the development of abnormal
WSS and significantly disturb blood flow on patient-specific geometries, no practical
information has been given yet to clinicians to assist them in their choice when a stent is
incorrectly positioned.

This lack of knowledge is mainly due to the difficulty: (1) to model complex con-
figurations due to the computation times required (often incompatible with operational
workflow) and (2) to identify the disturbance effect of each of the different parameters
separately. Using static CFD models based on 2D geometries, researchers have found the
location and general tendency of disturbed flow regions for different degrees of strut malap-
position and overlapping [6,10,22]. However, to our knowledge, a complete parametric
study designed to highlight critical malapposition and overlapping stent configurations, for
which flow disturbance over a cardiac cycle becomes significant, has never been conducted.

Therefore, in this study, we designed and used two-dimensional parametric CFD
models to investigate the hemodynamic effect of several stent malapposition and overlap-
ping configurations while considering (1) pulsatile flow conditions, (2) the non-Newtonian
nature of blood flow and (3) the most commonly used flow-related indices to assess the
hemodynamic impact on the vessel wall over a cardiac cycle.

The use of 2D axisymmetric models requires much lower computational costs and
enables a systematic evaluation of the effect of all relevant geometrical parameters (malap-
position and overlapping distances) by means of several sequential simulations. The
identification of specific critical configurations that can promote restenosis and thrombosis
and clearly describe the temporal and spatial evolution of hemodynamic disturbances
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remain the main objectives of this study. The present study is complementary to the patient-
specific 3D studies by providing general information and cut-off values for overlapping and
malapposed distances. The purpose of this work is to provide general criteria on the effect
of misalignment and overlapping distances and not patient-specific information (which
must be assessed for each patient). The results could provide a new decision-making
tool for cardiologists by predicting the risks of complications related to malapposition
and overlapping.

2. Materials and Methods

Two distinct CFD Models of stented segments of coronary arteries were considered.
The first one mimics several cases of a single malapposed stent, while the second account
for overlapping stent configurations. Furthermore, all the boundary conditions and con-
stitutive laws used in these models will be described in the following sections, as well
as the chosen hemodynamic metrics to evaluate the impact of each configuration on the
vessel wall.

2.1. Parametric CFD Models of Malapposed and Overlapped Stents
2.1.1. Geometries

Hemodynamic disturbances produced by the stent struts near the arterial wall were
studied numerically with the CFD approach. Moreover, 2D axisymmetric geometries mod-
eling the two “stent-artery” configurations of interest (i.e., malapposition and overlapping)
were used to perform dynamic flow analyses (Figure 1A,B). The geometrical parameters
used to define and design the idealized “stent-artery” were as follows: malapposition and
overlapping distances (i.e., MD and OD) for the two models of interest. Realistic diversity
in clinical data was investigated by varying MD 0 μm ≤ MD ≤ 450 μm and OD (in the
overlapping range of 2 to 3 struts). Moreover, two strut sizes were considered in this study.
The first one is a Cobalt-Chromium drug-eluting stent (CC-DES) (Synergy, Boston Scientific,
Marlborough, MA, USA) with a section of 85 μm × 90 μm (i.e., Height (H) × Width (W)).
The second one is a bioresorbable stent (BVS, Abbot, Abbott Park, IL, USA) with a thicker
section of 150 μm × 215 μm. The diameter of the artery lumen was taken as 3 mm. Once
deployed, the inter-strut distance is 2 mm for both types of stents. Therefore, the total
length of the stents is 10.54 mm and 11.29 mm for CC-DES and BVS respectively. The
insertion of the apposed struts in the arterial wall has also been considered with a strut
indentation of 0.15 * H + 20 μm (see Figure 1A inner box). A luminal protrusion caused
by the stent struts in contact with the arterial walls is also introduced to each model with
the aim of estimating with more accuracy the flow recirculation due to the presence of the
struts and the associated hemodynamics variables (see Figure 1A,B). The latter could be in
fact slightly underestimated, if the struts are just apposed on the arterial walls.

Figure 1. Cont.
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Figure 1. (A) Single stent geometry with three malapposed struts (# 1, 2, and 3) and three correctly
apposed struts (# 4, 5, and 6) and (B) two overlapping stents (first stent: struts # 1 to 6, second stent:
struts # I to (VI) and (C) 3 overlapping configurations, with two congruent struts, with incongruent
struts and three congruent struts.

2.1.2. Studied Malapposition Configurations

This strut configuration is displayed in Figure 1A. It illustrates one stent with three
misaligned struts and three correctly apposed ones. The MD of the first three struts was
between 0 and 450 μm for both stents (i.e., CC-DES and BVS). The three apposed struts were
placed downstream and remained fixed for all simulations. The following configurations
were studied: for the CC-DES: MD = 0, 40, 60, 80, 115, 130, 150, 180, 225, 300 and 450 μm
(i.e., n = 11 cases), and for the BVS: MD = 0, 40, 80, 115, 150, 180, 225, 300 and 450 μm (i.e.,
n = 9 cases). When MD = 0 μm the six struts are correctly apposed (i.e., total stented artery
length of 10.54 and 11.29 mm for CC-DES and BVS, respectively), these two specific cases
(one for each stent) will be considered as the optimal clinical configurations. A total of
20 distinct configurations were studied.

2.1.3. Studied Overlapping Configurations

This strut configuration is illustrated in Figure 1B,C. This configuration corresponds
to the partial overlapping of 2 stents. This overlapping is for example used to treat arteries
with multistenosis, bifurcations... The OD was between 2000 μm + 2W (strut width) and
4000 μm + 3W (strut width). For reasons of simplicity and homogeneity between the two
stents, these distances will be named without considering the width of the struts (different
for the two stents). Two types of geometric configurations were considered, congruent
and incongruent struts [17,22]. In the first case, the well-apposed and overlapping struts
are stacked one on top of the other, forming a higher obstacle. In the second case, both
struts are separated, leaving a gap between the overlapped one and the vessel wall (see
Figure 1B). For the two stent types, simulations were performed for the following con-
figurations: OD = 2000, 2500, 3000, 3500 and 4000 μm (n = 2 × 5 cases). Notice that when
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OD = 2000 μm there are two pairs of congruent struts and when OD = 4000 μm there are
three pairs of congruent struts and for intermediate cases (i.e., from OD = 2500 to 3500 μm)
there are incongruent struts at the overlapping section. A total of 10 distinct simulations
were performed.

2.1.4. Constitutive Law

Blood density was assumed to be constant with a value of 1060 kg m−3. The non-
Newtonian nature of blood flow was taken into account using the Carreau–Yasuda
model [19]:

μ = μ∞ + (μ0 − μ∞)[1 + (λ
.
S)2](m−1)/2 (1)

where μ is the dynamic viscosity, μ0 and μ∞ are the viscosity values at zero and infinity
shear rate, respectively,

.
S is the shear rate, λ is the time constant, and m is the power-law

index. These fluid constants values were taken from [19] and are used in [20] among other
studies: μ∞ = 0.0035 Pa s, μ0 = 0.25 Pa s, λ = 25 s and m = 1/4.

2.1.5. Boundary Conditions

The blood flow was considered laminar and unsteady. The Reynolds number (Re) for
the present simulations was 252.

The artery wall and struts were assumed to be rigid with the no-slip condition and a
time-dependent velocity profile (see Figure 2) was applied at the inlet of the axisymmetric
domain to mimic the pulsatile behavior of coronary blood flow (with a time period equal
to 0.908 s). The physiological waveform was adapted from [23]. The same velocity profile
was used for the outlet to guarantee mass conservation. The inlet and outlet regions were
extended about six times the radius of the artery. These lengths were chosen with precision
after the first series of simulations that proved that these extensions were sufficient to
provide a fully developed flow. Additionally, in order to minimize the effect of the initial
transients, two complete cardiac cycles were simulated for all the configurations studied
and only the results of the second cycle were considered. A third cycle was performed as a
test-case with a malapposition configuration with MD = 150 μm. However, no significant
difference in velocity responses was found compared to the results from the second cycle.
These different tests ensured the quality of the results.

Figure 2. (A) Physiological velocity waveform adapted from Davies et al. (2006) and (B) Velocity
profile imposed at the inlet.

2.1.6. Computational Fluid Dynamics Simulations

An APDL program file (ANSYS v19.2, ANSYS Inc., Canonsburg, PA, USA) was
developed for the two studied configurations (malapposition and overlapping) in order to
simplify the parameterization. The finite element problems are then generated and solved
automatically after the selection of the different parameters. This parametric program
allows easy utilization (for a stent designer, a clinician...). ANSYS FLUENT was used to
mesh the fluid domain with hexahedral and triangular elements and calculate the velocity
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and pressure distributions. Mesh refinement was performed on the regions around the
struts and vessel walls to improve the accuracy of the computations.

The malapposition configuration with MD = 150 μm was used to perform an analysis
of the influence of the mesh on the convergence of the results. A baseline element size was
defined for the different regions (Zone 1: central zone of the artery, Zone 2: intermediate
zone of the artery and Zone 3 in the vicinity of the struts). For each of these zones,
the average element sizes were: zone 1 = 5 μm, zone 2 = 3 μm, zone 3 = 1.5 μm. The
mesh obtained with these values was identified as the baseline mesh. A refined mesh
was obtained by dividing all element sizes by two (i.e., zone 1 = 2.5 μm, zone 2 = 1.5 μm,
zone 3 = 0.75 μm). In addition, a further refinement operation was applied to all lines
representing the struts and wall of the artery. Approximately 60,000 elements were obtained
for the baseline mesh and 180,000 for the refined mesh. After performing a steady-state
analysis, the velocity profiles obtained for the two mesh densities were compared and
were found to be similar. In addition, the maximum velocity in the whole fluid domain
obtained with the base mesh (0.539993 m/s) and the one obtained with the refined mesh
(0.540401 m/s) showed a difference of less than 0.1%.

A similar approach was carried out for an overlapping configuration with
OD = 2000 m. The conclusions were similar.

The time step was 0.001 s (908 time-steps per cardiac cycle) and convergence criteria
for both pressure and velocity residuals were 10−6.

2.2. Hemodynamic Metrics

WSS and its derived indexes, time-averaged WSS (TAWSS) and oscillatory shear index
(OSI), are of great interest while studying the impact of stent struts on hemodynamics. The
definitions of these parameters are recalled below.

TAWSS represents the average stress magnitude experienced by the vascular wall
during a cardiac cycle and is derived as follows:

TAWSS =
1
T

∫ T

0
|WSS| dt (2)

where T denotes the period of the cardiac cycle and |WSS| the modulus of the vector WSS.
TAWSS is insensitive to the direction of the WSS vector.

OSI is a non-dimensional scalar used to evaluate the oscillatory nature of vascular
flows (i.e., how much the WSS vectors change their direction over a cycle) and is calculated
as follows:

OSI =
1
2

⎛
⎝1 −

∣∣∣∫ T
0 WSS dt

∣∣∣∫ T
0 |WSS| dt

⎞
⎠ (3)

OSI varies between 0 and 0.5 with a value of 0 when there is no oscillatory WSS and
0.5 when it is fully oscillatory.

The RRT measures how long the particles stay near the wall of the vessel. Longer time
of contact between atherogenic particles and the arterial wall could cause a high risk of
atherosclerosis formation [20,24,25]. High RRT (RTT > 10 Pa−1) is recognized as critical for
atherogenesis and in-stent restenosis [20]. Thus, RRT was defined as follows:

RRT =

(
1

(1 − 2OSI)TAWSS

)
(4)

As this previous definition shows, RRT combines the information provide by TAWSS
and OSI.

104



Mathematics 2021, 9, 795

2.3. Pathological OSI, TAWSS and RRT Thresholds

It is generally accepted that an abnormally low WSS increases the risk of resteno-
sis [1,14,26,27] A TAWSS < 0.5 Pa is a common threshold value to indicate low WSS over
the cardiac cycle [5,8,19]. On the other hand, high shear stresses (TAWSS > 2.5 Pa) have
been associated with plaque rupture [28] that could lead to thrombosis. In addition, high
shear stresses have been reported to increase the activation of platelets which are the main
cellular components of a thrombus [2,6,10,20,29]. Regarding oscillatory flow, OSI > 0.1 was
associated with an increased risk of arterial narrowing [16,19,30,31]. Additionally, other
authors have reported that thrombus formation is enhanced at areas characterized by high
OSI because slow and reversed flow promotes platelet aggregation [1,29]

In this work the following thresholds were used: TAWSS < 0.5 Pa increases the risk of
restenosis, TAWSS > 2.5 Pa promotes thrombosis and OSI > 0.1 promotes both restenosis
and thrombosis. RRT > 10 Pa−1 promotes restenosis. The threshold for RRT is variable
between studies in the literature. For instance, it is 5 Pa−1 in [20] and 10 Pa−1 in [25]. In the
present study, the RRT should be less than 8 Pa−1. According to [24], RRT is recommended
as a unique and robust measure of low and oscillating shear flow.

3. Results

3.1. Results for Malapposition
3.1.1. Effect of Malapposition on the Velocity Field

Figure 3 displays the most relevant streamlines in the vicinity of the first stent strut
at the diastolic peak (See Figure 2) when the average flow velocity is the highest and
recirculation regions reach their maximum extensions. For the well-apposed configuration
(see MD = 0 μm for both the CC-DES and BVS stents in Figure 3), there were relatively
small recirculation regions upstream and downstream from the apposed strut. It should be
noticed that the recirculation zone is much larger for the BVS stent. As soon as the stent
began separate from the wall (i.e., with further increments of MD), upstream recirculation
disappeared but the one located downstream from the malapposed strut started growing
and moving to the right until it disappeared as well (see MD = 115 μm for CC-DES stent
and MD = 300 μm for BVS stent in Figure 3). As expected, flow disturbance was more
enhanced for the large strut (i.e., BVS stent). Moreover, flow accelerated through the wall
separation gap as MD increased giving, as a result, a larger velocity gradient.

 

Figure 3. Most relevant streamlines in the vicinity of the first strut at the diastolic peak in-
duced by Cobalt-Chromium drug-eluting stent (CC-DES) and bioresorbable stent (BVS) stent for
MD = 0, 40, 80, 115 and 300 μm.
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3.1.2. Effect of Malapposition on TAWSS

Figure 4 illustrates the TAWSS distribution along the arterial wall for the whole
extension of the stent for the most pertinent MD values. First, the normal TAWSS magnitude
of about 1.5 Pa (i.e., the shear stress value for a vessel without stent) was locally disturbed
even for well-apposed stent. Furthermore, peaks of TAWSS, sometimes with maximum
values above 2.5 Pa (see MD > 80 μm in Figure 4), developed in the malapposed region.
The amplitude of these peaks increased with MD values and was higher for BVS stent
(compared to CC-DES stent). In the well-apposed area, there were no TAWSS peaks for all
values of MD. The TAWSS plateaus between two well-apposed struts (1.5 Pa) were slightly
modified. The amplitude of the plateaus between the three well-applied struts rapidly
converges to the values of the plateaus of a well-applied stent. These perturbations were
more significant for BVS stents than for CC-DES stents.

Figure 4. Time-averaged wall shear stress (TAWSS) distribution for the malapposition configuration.
For simplicity reasons, only five representative configurations are displayed for each strut size
(MD = 0, 40, 80, 115 and 300 μm). Strut locations are indicated with black rectangles. Notice that axial
distance = 0 mm corresponds to the location of the first malapposed strut. Three TAWSS ranges can be
defined: TAWSS < 0.5 Pa (Low TAWSS), 0.5 < TAWSS < 2.5 Pa (Normal TAWSS) and TAWSS > 2.5 Pa
(High TAWSS).

For small malapposition distances (see MD = 40, 80 and 115 μm for both strut sizes in
Figure 4), some segments of the vessel wall in the malapposed region were below 0.5 Pa,
indicating an abnormally low TAWSS. These segments, with low values, vanished for
MD = 300 μm (for both types of stents). These areas, with low shear stress, are located
near and downstream of the struts. Additionally, BVS struts produced larger regions with
low TAWSS.

3.1.3. Effect on the Oscillatory Character of WSS Caused by Malapposed Strut

Figure 5 displays the OSI distribution along the stented region of the arterial wall’s
five most representative MD values. First, in the case of a correctly apposed stent (see
MD = 0 μm for both strut sizes in Figure 5), the effect of recirculation was similar for
all the struts. However, as the stent began to separate from the wall, high peaks of OSI
appeared downstream from each malapposed strut. These peaks were present for small
wall separations but disappeared with further increments of malapposition distance (see
Figure 5, MD = 115 μm for CC-DES and MD = 300 μm for BVS). These results suggest that
malapposed struts promote significant flow recirculations during the cardiac cycle, which
confirms the flow perturbation in Figure 3 by considering the temporal evolution of the
flow recirculation regions.
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Figure 5. OSI distribution for malapposition configuration. For simplicity reasons, only five repre-
sentative configurations are displayed for each strut size (MD = 0, 40, 80, 115 and 300 μm). Strut
locations are indicated with black rectangles. Notice that axial distance = 0 mm corresponds to the
location of the first strut. Two OSI ranges can be defined: OSI < 0.1 (Low recirculation) and OSI > 0.1
(High recirculation).

3.1.4. Effect of Malapposition on RRT

Figure 6 displays the RRT distribution along the stented region of the arterial wall
across the stented region, for the five most representative MD values (MD = 0, 40, 80,
115, and 300 μm). Firstly, well-apposed struts produce peaks in the distribution of RRT
located around each strut, with values significantly above the thresholds. These peaks
are significantly larger for BVS stents with larger struts. They split into several peaks at
low MD values. Therefore, the arterial wall affected by RRT values above the threshold is
divided into several critical areas, very close to each other. This phenomenon is much more
important when the dimensions of the struts increase (for BVS stent). On the other hand, all
MD values do not disturb the downstream RRT distributions (for the three well-apposed
struts). When MD is higher or equal to 115 μm for the CC-DES stent and 300 μm for the
BVS stent, the amplitude of the peaks (for the malapposed struts) decreases drastically and
is significantly below the thresholds.

Figure 6. Relative residence time (RRT) distribution for the malapposition configuration. For sake of simplicity, only five
representative configurations are displayed for each strut size (MD = 0, 40, 80, 115 and 300 μm). Strut locations are indicated
with black rectangles. Notice that axial distance = 0 mm corresponds to the location of the first malapposed strut.
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3.1.5. Relationship between OSI and TAWSS for Malapposion Configuration

Figure 7 plots the distribution of TAWSS versus OSI for all the nodal solutions on
the arterial wall. Only the configurations including an OSI peak higher than 0.1 in the
malapposed region were considered (MD = 40, 60 and 80 μm for CC-DES stent and
MD = 40, 80, 115, 150 and 180 μm for BVS stent). The high OSI values were always
associated with low TAWSS < 0.5 Pa.

 
Figure 7. OSI vs. TAWSS plots. Each point represents a nodal solution of the arterial wall. The
considered configurations were MD = 40, 60 and 80 μm for CC-DES stent and MD = 40, 80, 115, 150
and 180 μm for BVS stent.

3.1.6. Effect of MD Distance on Arterial Wall Extent with a Risk of Restenosis/Thrombus

Figure 8 displays the evolution of the total wall length affected by low TAWSS
(<0.5 Pa), high TAWSS (>0.5 Pa) and high OSI (>0.1) versus malapposition distance. First
of all, the evolution of the different affected lengths was similar for both stents, but much
more significant for the BVS one. For both stents: (1) the total wall lengths affected by
high OSI and low TAWSS increased until they reached a maximum value followed by a
decreasing tendency that finished in a plateau (2) The wall extension affected by a high
OSI reached a maximum before that corresponding to low TAWSS (i.e., at about one strut
height) and (3) With regard to the total length affected by a high TAWSS, it has always
tended to increase. Three zones were identified (see Figure 7), the first one prone to develop
restenosis, the second one with risk of developing both restenosis and thrombosis and the
last one prone to develop mainly thrombosis.

Figure 8. Evolution of affected arterial length vs. malapposition distance (MD). High risk of restenosis
(zone 1), restenosis and thrombosis (zone 2) and mainly thrombosis (zone 3).

Malapposed CC-DES struts increased the total extension of the affected wall up to
1.6 mm (at MD = 130 μm) for low shear stress, 1.75 mm (MD = 450 μm) for high shear
stress, and 0.42 mm (at MD = 60 μm) for high flow oscillation. For malapposed BVS struts,
the total affected wall raised up to 4.64 mm (at MD = 180 μm) for low shear stress, 2.65 mm
(MD = 450 μm) for high shear stress, and 1.41 mm (MD = 150 μm) for high flow oscillation.
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These affected lengths were significantly larger for BVS struts (up to 2.9 times for low
TAWSS, 1.51 times for high TAWSS, and 3.31 times for high OSI). The areas of the wall with
high risk of restenosis/thrombus increase drastically with the dimensions of the struts.

3.2. Results for Overlapping
3.2.1. Effect of Overlapping on the Velocity Field

Figure 9 depicts the effect of different OD levels on the blood flow at the diastolic
peak when recirculation regions reach their maximum extensions in the overlapping
section for the diastolic peak. For congruent struts (i.e., with OD = 2000 and 4000 μm,
see Figure 9), large recirculation regions appeared downstream from each pair of piled
struts. With intermediate OD values (i.e., for incongruent struts with OD = 3000 μm, see
Figure 9), these recirculation regions moved downstream from each overlapping strut
and reduced their extensions compared to congruent configuration. Additionally, small
recirculation regions reappeared downstream from each well-apposed strut. Moreover,
flow acceleration occurred through the gap between the overlapping struts and the vessel
wall. Finally, similar to malapposition configurations, flow disturbance was more notorious
for large struts (i.e., BVS stent).

Figure 9. Streamlines at diastolic peak for overlapping stents. For simplicity reasons, just three
representative configurations are presented for each strut size.

3.2.2. Effect of Overlapping on TAWSS

Figure 10 illustrates the TAWSS distribution at the overlapping region of CC-DES and
BVS stents. First, the perturbation of the TAWSS distribution is localized in this overlapping
zone and up to the first strut downstream. TAWSS peaks appear at the location of the over-
lapping struts for configuration with incongruent stents (blue rectangles in OD = 1000 μm,
see Figure 10). Moreover, for all OD values, some regions with a TAWSS below 0.5 Pa
(abnormally low value) appeared on the arterial wall. For congruent configurations (i.e.,
OD = 0 and 2000 μm, see Figure 10) and small strut size, flow reattachment downstream
from each pair of piled struts allowed to recover a normal TAWSS value (1.5 Pa). However,
for large struts, the perturbation was so significant that the normal TAWSS level could not
be reached in the overlapping region.
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Figure 10. TAWSS distribution for overlapping configuration. For simplicity reasons, three represen-
tative configurations are displayed for each strut size. Strut locations on the X-axis are indicated with
black and blue rectangles for the first and second strut respectively. Notice that axial distance = 0 mm
corresponds to the location of the first stent. Three ranges can be defined: TAWSS < 0.5 Pa (Low
TAWSS), 0.5 < TAWSS < 2.5 Pa (Normal TAWSS) and TAWSS > 2.5 Pa (High TAWSS).

3.2.3. Effect on the Oscillatory Character of WSS Due to Overlapping

Figure 11 displays the OSI distribution of overlapping CC-DES and BVS stents. First,
the most important peaks of OSI were located at the overlapping region. Moreover, the
distribution of peaks was different for congruent and incongruent cases. When the struts
of two overlapping stents were piled on top of each other (see OD = 2000 and 4000 μm
in Figure 11), the highest OSI peaks were located downstream from each congruent pair.
On the other hand, when overlapping was incongruent, the highest peak of OSI was
located downstream from each of the overlapping struts of the second stent (see Figure 11,
blue rectangles in OD = 3000 μm). In general, more peaks were present for incongruent
configurations. For the BVS stent, the peaks are wider and higher for all the studied
configurations. Downstream of this zone, the OSI distribution rapidly reverts to that of a
well-apposed single stent.

Figure 11. Oscillatory shear index (OSI) distribution for overlapping configuration. For simplicity
reasons, three representative configurations are displayed for each strut size. Strut locations on the
X-axis are indicated with black and blue rectangles. Notice that axial distance = 0 mm corresponds to
the location of the first stent. Two ranges can be defined: OSI < 0.1 (Low recirculation) and OSI > 0.1
(High recirculation).
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3.2.4. Effect of the Overlapping on the RRT

Figure 12 displays the RRT distribution of overlapping CC-DES and BVS stents.
First, for the set of overlap values studied, the RRT distribution is only modified in this
overlap area and not for the upstream (stent 1) and downstream (stent 2) sections. In the
configurations with congruent struts (OD = 2000 μm and OD = 4000 μm), in addition to
the RRT peaks located in the vicinity of the struts in contact with the arterial wall, another
peak appears downstream of the congruent struts. This new peak is less wide but with
values higher than the threshold chosen for this study (8 Pa−1). For the configurations with
non-congruent struts, the RRT distribution is significantly affected with the appearance of
a weak peak upstream of the struts detached from the wall and especially a downstream
zone (up to the strut in contact with the arterial wall) with several peaks clearly exceeding
the RRT thresholds.

 
Figure 12. RRT distribution for overlapping configuration. For sake of simplicity, three representative
configurations are displayed for each strut size (OD = 2000 μm, 3000 μm and 4000 μm). Strut
locations on the X-axis are indicated with black (upstream stent) and blue rectangles (downstream
stent). Notice that axial distance = 0 mm corresponds to the location of the first stent.

3.2.5. Relationship between OSI and TAWSS for Overlapping Configuration

Figure 13 shows the distribution of TAWSS versus OSI for all the configurations
including an OSI peak higher than 0.1 in the overlapping region (OD = 2000, 2500, 3000,
3500 and 4000 μm for both the CC-DES and BVS stents). It can be seen that, similarly
as found for malapposition configurations (see Figure 8), high OSI values were always
associated with low TAWSS < 0.5 Pa).

 

Figure 13. OSI vs. TAWSS plots. Each point represents a nodal solution of the arterial wall. The
considered configurations were OD = 200, 2500, 3000, 3500 and 4000 μm for both stent types.
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3.2.6. Effect of Overlapping Distance on Arterial Wall Extent with a Risk of
Restenosis/Thrombus

Figure 14 displays the evolution of the total arterial extension affected by low TAWSS
(<0.5 Pa), high TAWSS (>0.5 Pa) and high OSI (>0.1) versus overlapping distance (OD). In
general, the effect of different OD levels on the arterial length affected by low TAWSS and
high OSI was rather constant for both strut sizes but more significant for the BVS stent.
Regarding high TAWSS, it did not affect significantly the vessel wall.

 

Figure 14. Evolution of affected arterial length vs. overlapping distance (OD).

Overlapping CC-DES stents increased the total arterial extension affected by low
TAWSS up to 2.31 mm (at OD = 2500 μm) and the one affected by high flow oscillation up
to 0.41 mm (at OD = 4000 μm). For overlapping BVS stents, the total affected wall raised
up to 5.81 mm (at OD = 4000 μm) and up to 1.55 mm (at OD = 3500 μm) for low TAWSS
and high flow oscillation, respectively. Moreover, the increment of wall extension affected
by high TAWSS was relatively small for both stent sizes (maximum of 0 mm and 0.22 mm
for CC-DES and for BVS, respectively). Finally, the increment of wall segments affected by
low TAWSS and high OSI were significantly larger for BVS stents, up to 2.47 and 3.48 times
respectively (i.e., taking into account the mean total affected lengths shown in Figure 14).

4. Discussion

This study investigated the hemodynamic conditions in coronary arteries with malap-
posed and overlapped stents while considering a pulsatile non-Newtonian blood flow and
WSS-related indices computed over a cardiac cycle. The use of axisymmetric CFD models
simplified the systematic analysis of each geometry by performing a parametric study with
a significant number of computations (n = 30). The obtained results help to clarify the
impact of different degrees of strut misalignment on local hemodynamics (TAWSS, OSI
and RRT).

First, the regions of the vessel wall affected by high OSI were always under low
TAWSS for all the studied configurations (see Figures 7 and 14). This suggests that a
condition for OSI is the occurrence of low TAWSS as stated by [8,18,32].

4.1. Malapposed Configuration

The analysis of the malapposition geometries showed that regions of the arterial
wall affected by both low shear stress and oscillatory flow (i.e., TAWSS < 0.5 Pa and
OSI > 0.1) were present for small degrees of malapposition distance (MD). The extension
of the vessel affected by high OSI reached a maximum when MD was close to one strut
height (i.e., H = 85 μm and H = 150 μm for CC-DES and BVS stents, respectively). With
further increments of MD, the region with high flow oscillation decreased until it vanished
(see MD = 115 μm for CC-DES stent and MD = 300 μm for BVS stent in Figure 4). These
results are confirmed by the RRT distribution (see Figure 6). Indeed, when the MD values
increase (see MD = 115 μm for CC-DES stent and MD = 300 μm for BVS stent in Figure 6),
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the RRT peaks strongly decrease and fall below the threshold. The areas, in the overlap
section, affected by the adverse effect of RRT tend to vanish. In addition, low shear stresses
continued to develop on the arterial wall even when the OSI canceled out, indicating
that the velocity gradient near the wall was low but the flow was no more oscillatory.
These tendencies agree with the conclusions of previous works [8,10,22,33] and can be seen
in Figure 8.

With the increment of MD and the shift of recirculation regions downstream from the
malapposed struts, the free space near the arterial wall increased and the local resistance to
flow decreased. Consequently, fluid accelerated through the gap between the malapposed
struts and the vessel wall (see Figure 3) and caused localized regions with high shear stress
(i.e., TAWSS > 2.5 Pa, see Figure 4). Moreover, the magnitude of the high shear stress
and the size of the affected wall extensions increased gradually with the degree of wall
separation (see Figures 4 and 8, respectively), which is consistent with the conclusions
of [6,10]. Additionally, the presence of consecutive misaligned struts produced a decreasing
effect on TAWSS values. It was always particularly enhanced between the first and the
second strut (see Figure 4).

The configuration that led to the higher risk of potential restenosis occurred when
the malapposed struts were separated from the wall of approximately one strut height
(see zone 1 in Figure 8). This configuration promotes the formation of large recirculation
zones downstream from each malapposed strut, resulting in abnormally low TAWSS. On
the other hand, the risk of potential thrombosis was more significant for configurations
with large wall separations due to the occurrence of larger segments with high TAWSS
(see zone 3 in Figure 8). In such configurations, the risk of thrombus development had
previously been noted by [34]. In the intermediate zone (see zone 2 in Figure 8), the risk
of restenosis and thrombosis coexisted. The conclusions were similar for the two studied
stents. However, the concerned length is much more important for BVS stent.

4.2. Overlapping Configuration

The analysis of the overlapping geometry revealed an important deficit of shear
stress (TAWSS < 0.5 Pa) compared to non-overlapping segments of the stented artery (see
Figure 10), which was in agreement with the results of [17–19]. In general, two congruent
struts (i.e., with OD = 2000 μm and 4000 μm) were found to act as a single apposed strut
with double height. Consequently, congruent struts produced similar TAWSS distributions
than single apposed struts but with more significant hemodynamic disturbances (see
OD = 2000 μm and 4000 μm in Figure 10). Moreover, the configurations with congruent
struts were found to produce a large recirculation area downstream from the stacked struts
at the diastolic peak (see Figure 9). As the RRT is a function of the OSI and TAWSS, the
RRT provides general information combining the two previous information (see Figure 12).
A similar disturbed flow region was identified by [17,22,35] after performing steady-state
analyses on realistic and idealized CFD models, respectively. However, our transient
studies revealed that, in terms of the hemodynamic effect on the vascular wall over the
cardiac cycle, congruent struts configuration was not necessarily worse than incongruent
struts configurations. As seen in Figure 14, the total arterial lengths affected by low shear
stress (TAWSS < 0.5 Pa) and high oscillation (OSI > 0.1) are rather constant for all the
studied range of overlapping distance. It should be noted that the total stented length
varies significantly with the OD value. In fact, this length varies from 18.9 mm to 16.81 mm
for the CC-DES stent and from 19.50 to 17.35 mm for the BVS one.

For overlapping configurations, the wall lengths affected by high shear stresses
(TAWSS > 2.5 Pa) were relatively smaller than for malapposition configurations. Regarding
incongruent strut configurations, TAWSS peaks appeared in regions with significant gaps
between the vessel wall and overlapping struts (see OD = 3000 μm in Figure 10). However,
these peaks were considerably lower than those caused by malapposition configurations
(see Figure 4). Since the gap between the wall and the overlapping struts is less significant
(i.e., 52 μm and 107 μm for CC-DES and BVS struts, respectively) compared to the cases
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with large MDs (i.e., up to 450 μm), the TAWSS peaks were relatively small and in the order
of magnitude of small malapposition distances.

The potential risks of restenosis are relatively similar for all the overlapping struts
configurations studied, as highlighted by [36]. As OSI and TAWSS are fluctuating in the
non-congruent cases, the distribution of RRT is highly variable and shows several peaks in
the overlap area. As seen in Figure 14, low shear stress and flow oscillation always affected
the vessel wall for all the studied cases (i.e., OD from 2000 to 4000 μm). On the other hand,
the risk of thrombosis seems to be reduced for these configurations.

4.3. Effect of the Strut Dimensions

It is obvious that thinner struts (i.e., CC-DES in this study) represent smaller obstacles
to blood flow. So, this improves the shear stress distribution and allows a faster flow
reattachment between strut cells [5,37]. In this work, BVS struts were associated with
larger hemodynamic disturbances for all the studied configurations. The RRT plots (See
Figures 6 and 12) for malapposition and overlapping stents show the adverse effect of the
strut dimensions.

In the case of the correctly apposed stents cases (see MD = 0 μm in Figure 4), the BVS
struts increased the extension of regions with low shear stress and high oscillatory flow
2.43 times and 2.37 times, respectively. However, both strut sizes allowed flow reattachment
to reach normal shear stress values (TAWSS around 1.5 Pa).

Regarding malapposition and overlapping configurations, the performance difference
between CC-DES and BVS struts was more notorious. For malapposition cases, the use
of BVS struts increased up to 2.9, 1.51 and 3.31 times the wall segments affected by low
TAWSS, high TAWSS and high OSI, respectively. Regarding overlapping configurations,
the use of BVS struts increased up to 2.47 and 3.48 times the wall segments affected by
low TAWSS and high OSI, respectively. These results suggest that, in the case of equal
strut misalignment degrees (i.e., malapposition or overlapping), thicker struts will always
induce significantly larger hemodynamic disturbances than smaller struts and will increase
the risk of restenosis and/or thrombosis.

5. Study Limitations

First of all, the use of idealized axisymmetric models disregards the 3D effect that
coronary stents could have on the blood flow. The models in the present study are two-
dimensional, while real blood vessels are three-dimensional. The 2D models assume
rotational symmetry and no tangential flow component. However, this component exists
in the reality but it is neglected in the study. Additionally, stents are not axisymmetric. For
these reasons, the present work is useful to show tendencies of the hemodynamic variables
on the malapposition and overlapping rather than provide detailed information on the
flow structures and WSS patterns.

Moreover, our model does not consider any arterial curvature (i.e., we considered
straight arteries) or residual stenosis that may remain after PCI. These geometric simplifi-
cations affect the hemodynamic results. However, the use of realistic 3D models requires
significant computational costs, which are not compatible with parametric studies. Further-
more, a 3D model is especially justified for the analysis of a patient-specific configuration.
The use of 2D axisymmetric models let us fulfill the objectives of this work which were:
(1) to clarify the hemodynamic evolution for different degrees of strut misalignment, and
(2) to identify critical configurations that may be associated with restenosis and thrombosis.
Such goals can be only be reached with systematic parametric analysis.

In addition, the compliance of the arterial wall was also neglected. However, it is
known that stent deployment and atherosclerotic plaque reduce the compliance of the
artery wall [38]. Additionally, as demonstrated in the literature [39], the WSS and its related
indices are not affected by the vessel compliance for straight arteries.
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Finally, the biological response of the vascular wall was not considered, and only the
hemodynamic effects were investigated. Incorporating more complex models to predict
drug deposition or thrombus formation [10] could give a deeper insight into this subject.

6. Clinical Application

Stent deployment is a challenging task, especially for stenoses with complex con-
figurations (i.e., with excessive lengths, close to bifurcations, concomitant lesions, etc.).
Therefore, the ideal stent implantation is difficult to achieve in clinical practice. The fact is
that interventional cardiologists frequently encounter incomplete strut apposition and over-
lapping. The main conclusions found in this study may provide interesting information for
cardiologists and stent designers to know: (1) how different degrees of malapposition and
overlapping disturb blood flow and (2) which configurations are the most critical ones and
their potential link to poor clinical outcomes.

First, this study highlights that malapposed struts will produce the maximal flow
recirculation near the artery wall when malapposition distance is close to one strut height
(i.e., critical point for restenosis). With further increments of wall separation, recirculation
regions will disappear but the artery wall will be subjected to high shear stresses (critical
point for thrombosis). Since there is a decreasing effect on shear stress for consecutive
struts, the risk of plaque rupture and platelet activation is higher for regions close to the
first group of misaligned struts. Second, stent overlapping was more prone to increase the
risk of restenosis due to the appearance of segments of the artery wall subjected to low
shear stress and flow recirculation. In terms of critical configurations, the risk seems to be
comparable for all of them (i.e., incongruent and congruent struts). From a hemodynamic
point of view, the best is to avoid overlapping if possible. Indeed, for all overlapping
configuration, the extent of the zones where risks of stenosis/thrombus is significantly
greater than for malapposed configuration. Finally, thicker struts are more sensitive to strut
misalignment problems.

7. Conclusions

This axisymmetric numerical study allows evaluation of the risks related to a malap-
position or an overlapping stent. The numerical models show that the relative extent of
the areas with high risk (restenosis/thrombus) is considerably increased in regions with
overlapped stent compared to regions without overlapped stent and even compared to
areas of malapposed stent. Since it is generally accepted that low TAWSS (TAWSS < 0.5 Pa),
high TAWSS (TAWSS < 2.5 Pa), high OSI (OSI < 0.1) and RRT > 8 Pa−1 are important factors
for atherogenesis and thrombogenesis, the results indicate that adverse hemodynamics
caused by overlapping stents may be partly responsible for adverse clinical outcomes in
patients treated with overlapping stents. The development of risk areas for malapposition
is significantly lower than for overlap. In addition, it was shown that the size of the struts
has a very negative effect on the development of risk areas. In cases where stent overlap
cannot be avoided, deployment strategies should be optimized or new stent designs should
be considered to reduce the risk of restenosis.
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Abstract: Radioembolization (RE) is a treatment for patients with liver cancer, one of the leading
cause of cancer-related deaths worldwide. RE consists of the transcatheter intraarterial infusion of
radioactive microspheres, which are injected at the hepatic artery level and are transported in the
bloodstream, aiming to target tumors and spare healthy liver parenchyma. In paving the way towards
a computer platform that allows for a treatment planning based on computational fluid dynamics
(CFD) simulations, the current simulation (model preprocess, model solving, model postprocess)
times (of the order of days) make the CFD-based assessment non-viable. One of the approaches to
reduce the simulation time includes the reduction in size of the simulated truncated hepatic artery. In
this study, we analyze for three patient-specific hepatic arteries the impact of reducing the geometry
of the hepatic artery on the simulation time. Results show that geometries can be efficiently shortened
without impacting greatly on the microsphere distribution.

Keywords: computational fluid dynamics; radioembolization; hemodynamics; liver cancer; hepatic
artery; computational cost analysis; personalized medicine; patient specific

1. Introduction

Liver cancer is one of the leading types of cancer in incidence and mortality rates
worldwide [1]. Radioembolization (RE) is a safe and effective intraarterial targeted therapy
for unresectable primary and secondary liver tumors and it consists in the microcatheter-
based infusion of yttrium-90 (Y-90) radiolabeled microspheres that are transported in the
bloodstream until they get lodged in the tumoral tissue, where they deliver high tumorici-
dal doses of radiation to cancer cells, while ideally sparing healthy liver parenchyma [2].

In the last decade, a number of studies have been published on the computational fluid
dynamics-based (CFD) simulation of the hepatic artery hemodynamics and microsphere
transport during RE [3]. Some studies have focused on the type of microcatheter (e.g.,
standard end-hole microcatheter, antireflux catheter, angled-tip microcatheter) [4–6], and
others have focused on the influence of various treatment and patient parameters (e.g.,
injection velocity, microcatheter location, hepatic artery geometry, etc.) on the microsphere
distribution [7–9]. The ultimate goal of these studies is to provide the multidisciplinary
team (interventional radiologists, hepatologists, nuclear oncologists, nuclear medicine
physicians, etc.) that plans the treatment with additional information that can be of
interest when planning the treatment. Moreover, CFD-based computer platforms have
been presented in the literature for RE planning, such as the Computational Medical
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Management Program, by which the optimal temporal and spatial points for microsphere
infusion are determined [10] or CFDose, a simulation-based tool to calculate the patient-
specific dosimetry to be infused to the patient [11]. However, the former can be used with a
smart microcatheter (not commercially available yet) whose tip can be placed at a specified
location within the infusion cross-sectional plane and a microsphere delivery system (not
commercially available yet) that infuses at a specified temporal point in the cardiac cycle.

These simulation-based tools must be fast enough in providing results to be of use
in the clinical setting. The phenomena involving the microsphere–hemodynamics have
been proved to be dependent on local effects near the microcatheter tip, therefore three-
dimensional (3D) and transient models are needed [3]. One could use CFD simulations or
fluid–structure interaction (FSI) simulations, which consider the interaction between the
fluid and the (rigid or deformable) solid. However, FSI simulations are far more expensive
computationally than CFD simulations. A study by Childress et al. [12] showed that
using CFD simulations instead of FSI simulations resulted in an important simulation-time
reduction (3.5 days vs. 11–14 h [in a 10-processor 6-core 40-GB-RAM 3.33-GHz CPU]), with
minor influence in the results, so CFD simulations could suffice.

One approach to reduce current CFD simulations’ computational time would be the re-
duction of the size of the geometry where the CFD simulation is carried out. This geometry
simplification should not result in marked differences in the calculated segment-to-segment
microsphere distribution. Therefore, the hypothesis behind this study is that simulation
times can be reduced considerably if the arterial geometry is effectively shortened, whether
downstream or upstream (or both) from the microcatheter-tip location, obtaining a segment-
to-segment microsphere distribution similar to that of the baseline geometry simulation. To
do so, a geometry-reduction strategy is developed with one patient-specific case and this
strategy is applied to two other patient-specific cases to assess the impact of the reduction
on the simulation results, in terms of downstream microsphere distribution, and simulation
times were analyzed.

2. Materials and Methods

In this section, we first introduce the three patients that are modeled in this study
(one for developing the geometry-reduction strategy and two additional cases where the
strategy is applied and assessed). Second, we show the baseline and simplified versions
of the three 3D patient-specific hepatic artery geometries used in this study. For the first
geometry, Patient 1, we conducted a step-by-step upstream and downstream simplification
process to analyze to what extent each simplification influences the segment-to-segment
microsphere distribution. Patient 2 and Patient 3′s hepatic arteries were later simplified
accordingly. Finally, the CFD model is presented.

2.1. Patients: Hepatic State and Radioembolization

This study was done using the patient-specific geometry of three patients: hereafter
(Patient 1, Patient 2, and Patient 3, Tables 1–3). Regarding the geometries, these were
reconstructed with MeVis (MeVis Medical Solutions AG, Bremen, Germany). Regarding
the liver segment volumes, with segments defined as proposed by Couinaud [13], these
were either obtained from the report provided by MeVis (Patients 1 and 3, Tables 1 and 3)
or they were taken from the literature to be physiologically realistic (total volume according
to reference [14] and fractional segmental volume according to reference [15]) (Patient 2,
Table 2). As for the cancer scenarios, the same fictional cancer scenario was posited in the
three patients. The scenario consists of a hepatocellular carcinoma (HCC) in segment 8.
The tumor volume is equal to 20% of the healthy tissue volume of segment 8.
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Table 1. Patient 1 liver mass volumes and blood flow rates per segment.

Segment
Healthy Tissue
Volume (mL)

Tumor Volume (mL)
Volumetric Flow Rate

(mL/min)

S1 - - -
S2 241 - 24.1
S3 96 - 9.6

S4a 24 - 2.4
S4b 48 - 4.8
S5 330 - 33
S6 183 - 18.3
S7 228 - 22.8
S8 340 68 68

Total 1490 68 183

Table 2. Patient 2 liver mass volumes and blood flow rates per segment.

Segment
Healthy Tissue
Volume (mL)

Tumor Volume (mL)
Volumetric Flow Rate

(mL/min)

S1 - - -
S2 157.8 - 15.8
S3 157.4 - 15.7
S4 309.4 - 30.9
S5 151.7 - 15.2
S6 193.1 - 19.3
S7 155.3 - 15.5
S8 385.4 77.1 77.1

Total 1510 77.1 189.5

Table 3. Patient 3 liver mass volumes and blood flow rates per segment.

Segment
Healthy Tissue
Volume (mL)

Tumor Volume (mL)
Volumetric Flow Rate

(mL/min)

S1 62 - 6.2
S2 128 - 12.8
S3 181 - 18.1

S4a 73 - 7.3
S4b 11 - 1.1
S5 124 - 12.4
S6 169 - 16.9
S7 373 - 37.3
S8 204 39.8 40.3

Total 1325 39.8 152.4

The perfusion model developed by Aramburu et al. was used to determine the segmental
arterial blood flow rates [16]. A normal/healthy tissue perfusion of k1 = 0.1 mL min−1 mL−1 was
adopted for all segments, with a tumor tissue perfusion of k2 = 0.5 mL min−1 mL−1 [17,18].
In this model, the average blood flow rate flowing towards a segment s, i.e., qs, is calculated
with Equation (1):

qs = V0,sk1 + Vc,sk2, (1)

where qs is the volumetric flow rate to segment s (with s from segment 1 [S1] to segment 8
[S8]), V0,s is the volume of healthy tissue in segment s, Vc,s is the volume of the tumor tissue
in segment s, k1 is the healthy tissue arterial perfusion, and k2 is the tumor tissue arterial
perfusion. Tables 1–3 collect the liver volumes and flow rates of each patient analyzed
per segment.

The RE treatment was computer-simulated with Y-90 resin SIR-Spheres® (Sirtex Med-
ical Limited, Australia). The activity to be delivered was calculated with the body sur-
face area method [19], assuming a 1.76 m 74 kg male in all cases. According to this
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method, 1.7 GBq must be administered in the analyzed cases, that is, approximately
34 million microspheres.

The infusion device modeled was a 2.7 F end-hole microcatheter with inner and
outer diameters of Din = 0.65 mm and Dout = 0.9 mm, respectively, modeling a Progreat®

microcatheter (Terumo, Tokyo, Japan). A selective catheter location was modeled and
located before the first branch that irrigates segment 8, approximately in the initial 1/3 of
the branch. The tip of the microcatheter was radially centered in the lumen of the artery.
An additional microcatheter location was assumed for Patient 2, explained later.

2.2. Baseline and Simplified Hepatic Artery Geometries

As previously said, the geometry of Patient 1′s hepatic artery was modified step
by step, with the aim of generating a rule that ensures that the segment-to-segment mi-
crosphere distributions calculated from the simulations with the baseline and simplified
geometries are similar. Once the simplification with the desired characteristics (i.e., minor
impact on segment-to-segment microsphere distribution) were obtained, hepatic arteries
for Patient 2 and Patient 3 were likewise simplified. For Patient 1 (Patient 1-Baseline),
four simplifications were made to the baseline geometry. Figure 1 shows the geometries
obtained from the simplifications. The arrowhead illustrates the microcatheter-tip position
in each case, arrows indicate the branches feeding the tumor-bearing segment 8, and labels
S1–S8 indicate the segment(s) that each outlet irrigate(s). First, the upstream branches
were removed, giving as a result two simplifications. The first one consists of a simplified
geometry where the branches irrigating the segments with no tumors are truncated (Patient
1-Reduc1, see Figure 1b). In the second (upstream) simplification, in addition to the simplifi-
cations made in the first (upstream) simplification, all the upstream branches that are farther
than 3 cm from the microcatheter-tip are removed (Patient 1-Reduc2, see Figure 1c). Then,
the downstream branches were simplified, truncating at locations where the bifurcation
gives rise to two daughter vessels that irrigate the same segment (Patient 1-Truncated-3cm,
see Figure 1d). Finally, the geometry has been truncated before the first bifurcation, adding
a branch in the perpendicular direction to the inlet boundary, with the same diameter and
a length of 1 cm (Patient 1-Reduc3, see Figure 1e). This final simplification is for obtaining a
fully developed-like flow on original inlet section.

The criterion that we are going to establish to deem a simplification as valid is a
maximum of 10 percent points of difference at a given segment between the segment-
to-segment microsphere distributions of the simulations of the baseline and simplified
geometries. In the clinical application of these simulations, we are interested in predicting
the segment-to-segment microsphere distribution for a potential improvement in the
treatment planning, so the validity criterion of the simplification is based on these results.
Qualitative assessment of velocity contours and vectors is used to analyze if the geometry
reduction-related changes in blood-flow patterns are excessive.
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Figure 1. Patient 1 hepatic artery tree simplifications: (a) Baseline geometry (i.e., Patient 1-Baseline); (b) Upstream branches
truncation (i.e., Patient 1-Reduc1); (c) Upstream truncation, 3 cm from the microcatheter position (i.e., Patient 1-Reduc2);
(d) Intra-segmental branches truncation (i.e., Patient 1-Truncated-3cm); (e) Truncation before the first upstream branch (i.e.,
Patient 1-Reduc3). PHA: proper hepatic artery; LHA: left hepatic artery; RHA: right hepatic artery. Arrowheads indicate
microcatheter-tip location. Arrows indicate branches feeding the tumor-bearing segment. S1–S8 in each outlet indicates that
all the downstream branches arising from that outlet feed that segment.

After analyzing (quantitatively) the segment-to-segment microsphere distributions
and (qualitatively) the flow characteristics (velocity magnitude contours and vectors) near
the microcatheter tip for the truncated geometries of Patient 1, the selected truncated
geometry is the geometry shown in Figure 1d, that is, the geometry with the following
characteristics: all the upstream branches that are farther than 3 cm from the microcatheter
tip are truncated and all the downstream branches that, after a bifurcation feed, had the
same segment truncated as well. This is because this geometry is the shortest geometry that
fulfills the imposed 10 percent point difference limit in microspheres segment-to-segment
distribution for a given segment. The same rule followed to generate Patient 1-Truncated-
3cm was used to define the truncated geometries of Patient 2 (Patient 2a-Truncated-3cm) and
Patient 3 (Patient 3-Truncated-3cm), shown in Figure 2.
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Figure 2. Patient 2 and Patient 3 hepatic artery trees: (a) Baseline geometries (i.e., Patient 2a-Baseline, Patient 2b-Baseline,
and Patient 3-Baseline); (b) Truncated geometries (i.e., Patient 2a-Truncated-3cm, Patient 2b-Truncated-3cm, and Patient 3-
Truncated-3cm). PHA: proper hepatic artery; LHA: left hepatic artery; RHA: right hepatic artery. Arrowheads indicate
microcatheter-tip location. Arrows indicate branches feeding the tumor-bearing segment. S1–S8 in each outlet indicates that
all the downstream branches arising from that outlet feed that segment.

The three cases reported have a bifurcation between the microcatheter tip and the
3-cm upstream truncation. A second microcatheter-tip location was chosen for Patient 2, to
study an extra case that has no bifurcation in this inlet-to-microcatheter-tip zone, hereafter
Patient 2b, being Patient 2a the case with the original microcatheter-tip location (see
Figure 2 top and middle panels).

2.3. Preprocessing
2.3.1. Spatial Domain Discretization

All the geometries described in the Section 2.2 were discretized following the same
procedure and Fluent Meshing 2020R1 (ANSYS Inc., Canonsburg, PA, USA) software pack-
age. The type of elements used was poly-hexahedral. The general settings for generating

124



Mathematics 2021, 9, 839

the mesh include a maximum element size of 0.2 mm, a minimum element size of 0.02 mm
and a growth rate of 1.1. A local body sizing was also used for the microcatheter with
an element size of 0.05 mm. Finally, inflation layers were used in all the walls to capture
the boundary layer in sufficient detail. This refinement has 4 layers, the first layer with
0.01 mm and increases with a growth rate of 1.1. Table 4 shows the quantity of elements of
the baseline and truncated geometries.

Table 4. Element quantity comparison (in millions).

Patient Baseline Geometry Truncated Geometry

Patient 1 3 0.8
Patient 2a 5 0.8
Patient 2b 4.7 0.95
Patient 3 3.8 0.6

2.3.2. Mathematical Modeling

In modeling the RE treatment, the hemodynamics and the Y-90 resin microsphere
transport were modeled. The mathematical model used in this work is the one presented
in Aramburu et al. [8]. Regarding the hemodynamics, blood was assumed an isothermal,
incompressible, non-Newtonian fluid flowing in laminar regime. The governing equations
are the conservation of mass (Equation (2)) and the conservation of the linear momentum
(per unit blood volume) (Equation (3)) read:

∇·u = 0, (2)

ρ

(
∂u

∂t
+∇·(uu)

)
= −∇p +∇·τ+ F, (3)

where u is the fluid velocity vector, ρ is the fluid density (1050 kg/m3 [20]), p is the fluid
pressure, F is the body force per unit volume, and τ is the stress tensor, which is defined as
in Equation (4) for blood:

τ = μapp
( .
γ
)
[∇u + (∇u)T], (4)

where μapp
( .
γ
)

is the apparent blood viscosity, which depends on the shear rate (
.
γ) as

indicated in Equations (5) and (6) [7]:

μ
( .
γ
)
= max

⎧⎨
⎩μ0,

(
√

μ∞ +

√
τ0√

λ+
√ .

γ

)2
⎫⎬
⎭, (5)

.
γ =

√
∇u[∇u + (∇u)T], (6)

where μ0 = 0.00309 Pa·s, μ∞ = 0.002654 Pa·s, τ0 = 0.004360 Pa, and λ = 0.02181 s−1 are the
minimum viscosity, asymptotic viscosity, the apparent yield stress, and the shear stress
modifier, respectively [7,12,21–25].

Microspheres were modeled as 32 μm 1600 kg/m3 spheres. The Discrete Phase Model
of Fluent 2020R1 (ANSYS® Inc.) was used to calculate the microsphere trajectory in a
Lagrangian reference frame, using a two-way blood–microsphere interaction coupling,
and considering no interaction between microspheres. Microsphere motion is governed by
the Newton’s Second Law of Motion, in which the virtual mass force, pressure gradient
force, gravitational force, and drag forces are considered as in reference [8]. This governing
equation expressed per unit microsphere mass reads (Equation (7)):

dup

dt
= fV + fP + fG + fD, (7)
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where up is the velocity of the particle (i.e., the microsphere), and fV, fP, fG, and fD, are the
virtual mass (Equation (8)), pressure gradient (Equation (9)), gravitational (Equation (10)),
and drag (Equation (11)) forces, respectively:

fV = CV
ρ

ρp

[(
up·∇

)
u − dup

dt

]
, (8)

where CV is the virtual mass force coefficient and ρp is the particle (i.e., microsphere) density,

fP =
ρ

ρp

(
up·∇

)
u, (9)

fG =
ρp − ρ

ρp
g, (10)

where g is the vector of the acceleration of gravity, 9.81 m/s2 in magnitude and considering
patient’s recumbent position during injection,

fD =
18μapp

ρpd2
p

CDRep

24
(
u − up

)
, (11)

where dp is the particle (i.e., microsphere) diameter, CD is the drag coefficient, and Rep is
the particle (i.e., microsphere) Reynolds number (Equation (12)):

Rep =
ρdp

∣∣up − u
∣∣

μapp
. (12)

2.3.3. Boundary Conditions

The boundary conditions prescribed are similar to those presented in Aramburu et al. [16],
i.e., inflows at the inlets and inflow fractions (percentages of the total inflow) at the outlets.
This model considers the arterial blood flow need of each segment and distributes the blood
in the computational domain according to these needs. Regarding the inlet section of the
artery, an inflow waveform was prescribed. Figure 3 shows the six periodic (period = 1 s)
waveforms used, two per patient. To calculate the mean values of the waveforms, the
perfusion model developed by Aramburu et al. [16] and applied to these three patients
in Section 2.1 was used (see row “Total” in Tables 1–3) for the baseline geometries. For
the truncated geometries, the segments irrigated from the inlet section were considered.
These waveforms were translated into uniform velocities at the inlet section. At the inlet
section of the microcatheter, a uniform constant velocity equal to the systolic peak velocity
was prescribed. With regard to the outlet sections, the flow fractions were prescribed, i.e.,
the percentage of the total inflow flowing through each outlet. The flow split was defined
as explained in Aramburu et al. [16], where the flow fraction at an outlet depends on the
flow toward the segment that the outlet is feeding (calculated with Equation (1)) and the
level of generation the outlet is located at. For example, if a segment is irrigated by a tree
consisting of an artery that bifurcates into branch 1 and branch 2, which bifurcates into
branch 3, and branch 4 and outlets are at branches 1, 3, and 4, then 50% of the blood flow
will be provided by the outlet at branch 1, and 25% will be provided by each outlet at
branches 3 and 4. Walls were assumed as rigid, impermeable, with no relative velocity
between the wall velocity and fluid velocity (no-slip condition) and the impact between
walls and microspheres was assumed as elastic.
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Figure 3. Inlet volumetric blood flows. Systolic peak (t/T = 0.15, with T = 1 s) and end diastole (t/T = 1, with T = 1 s) are the
points where the postprocessing is done.

For the mass flow rate of microspheres to be injected, it was assumed that all the
microspheres were diluted in a 5-mL vial. Microspheres were assumed to be injected with
the initial concentration in the vial. Hence, the prescribed microsphere mass flow rates
for Patient 1, Patient 2, and Patient 3 were 2.040 × 10−5 kg/s, 2.119 × 10−5 kg/s, and
2.096 × 10−5 kg/s, respectively.

2.4. Solver Settings

The governing equations of hemodynamics and microsphere transport were solved
numerically using the finite volume method-based Fluent 2020R1 (ANSYS Inc.). The
pressure and velocity were solved in a segregated way using the SIMPLE scheme for
pressure–velocity coupling. Gradients were computed using a least squares cell-based
algorithm, and the pressure and momentum interpolations were done with a second order
algorithm. Finally, the transient formulation was defined as a second order implicit, with a
fixed time step of 2 × 10−3 s. The maximum iterations per time step was limited to 80.

Regarding the convergence criteria used, minimum residuals of 1 × 10−5 were fixed
for continuity and the three components of the velocity.

Regarding the number of cardiac cycles simulated, RE was simulated as follows: a
first cardiac cycle was simulated (t = −1 s to t = 0 s) to eliminate the influence of the initial
value (i.e., the convergence cycle). Then the actual simulation began. Microspheres were
injected during the first cardiac cycle (t = 0 s to t = 1 s) (i.e., the injection cycle). Two extra
cardiac cycles were simulated without injecting more microspheres (t = 1 s to t = 3 s) (i.e.,
extra cycle 1 and extra cycle 2). These two extra cardiac cycles are simulated to ensure that
the fraction of exiting microspheres reach a steady value over time. Therefore, four cardiac
cycles are simulated per simulation. With these results, we could extrapolate the final
distribution of all the microsphere of the vial, assuming that the microsphere distribution
will remain unchanged throughout the treatment. This model provides a prediction of the
outlet-to-outlet microsphere distribution (of the microspheres that have been injected in
one second). The simulation tracks the travel of microspheres since they are injected until
they exit the computational domain. With these outlet-to-outlet microsphere distribution
results, the segment-to-segment microsphere distribution can be predicted, although no
extra information can be given about dynamics of the microspheres once they leave the
computational domain.

The CFD model (type of geometry plus governing equations plus type of boundary
conditions) and the simulation strategy (simulation of one cardiac cycle where micro-
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spheres are injected plus sufficient additional cardiac cycles to ensure that most of the
injected microspheres exit the computational domain) used in this study have been recently
validated in vivo in a proof-of-concept study, where the CFD model was defined using pre-
RE imaging techniques and the simulated segment-to-segment microsphere distribution
was compared with the measured segment-to-segment activity distribution taken from
post-RE imaging techniques [26].

2.5. Postprocessing

The main objective of this research is to analyze the possibility of reducing the compu-
tational time of RE simulations by reducing the size of the geometry, without influencing
much in the segment-to-segment microsphere distribution. A threshold of 10 percent
points was established as a maximum difference to be accepted for a given segment in
the simulation results of the baseline and truncated geometries. To analyze the effects of
geometry truncation on simulation time reduction and on microsphere distribution, the
following postprocessing of the results was done:

• Cycle-to-cycle computational time: to quantitatively assess the cost (in time) of each
of the cycles.

• Segment-to-segment microsphere distribution: to qualitatively assess the segment-to-
segment microsphere distribution at the end of the treatment. This is calculated from
the cumulative number of microspheres exiting through each outlet. The final outlet-to-
outlet microsphere distribution is translated into the segment-to-segment microsphere
distribution, which is the important parameters due to its clinical implication.

• Velocity magnitude contours and velocity vectors at the systolic peak and end diastole
(see Figure 3) at the cross-section of the microcatheter tip: to qualitatively analyze
important changes in the blood-flow pattern near the microcatheter tip. The important
postprocessing is the segment-to-segment microsphere distribution for its clinical
implications, but blood-flow patterns should be similar between the baseline and
truncated geometries so that the microsphere distribution is also similar.

3. Results

For each patient, blood flow velocity magnitude contours and vectors at the cross-
sectional plane of the microcatheter tip of baseline and truncated geometries are presented,
together with segment-to-segment prescribed blood flow split and calculated microsphere
distributions. These results are in Figures 4 and 5 for Patient 1, Figures 6 and 7 for Patient 2a,
Figures 8 and 9 for Patient 2b, and Figures 10 and 11 for Patient 3. Figures 5, 7, 9 and 11
show the distribution of the microspheres that exit the computational domain toward the
segments. These values are normalized with respect to the total number of microspheres
that exit the computational domain. In order to be able to compare the blood flow split
and the microsphere distribution, blood flow values have been normalized with the blood
flow through the artery branch where the microcatheter tip is located. It is important
to note that microsphere and blood flow distributions are given in percentage values.
When reporting differences between these magnitudes at a given segment, the absolute
difference is reported, with units being percent points (%). The computational cost is also
studied, focusing on the number of cardiac cycles required for microspheres to exit the
computational domain and on the time reduction due to geometry simplification.
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Figure 4. Patient 1 velocity magnitude contours and vectors: (a) Baseline geometry (i.e., Patient 1-Baseline); (b) Upstream
branches truncation (i.e., Patient 1-Reduc1); (c) Upstream truncation, 3 cm from the microcatheter position (i.e., Patient
1-Reduc2); (d) Intra-segmental branches truncation (i.e., Patient 1-Truncated-3cm); (e) Truncation before the first upstream
branch (i.e., Patient 1-Reduc3).

Figure 5. Patient 1, segment-to-segment blood flow distribution (normalized with the blood flow
through the artery branch where the microcatheter tip is located) and microsphere distributions in the
segments downstream from the injection plane (percentage of microspheres that have reached each
segment, normalized with the total number of microspheres that exited the computational domain).
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Figure 6. Patient 2a velocity magnitude contours and vectors: (a) Baseline geometry (i.e., Patient
2a-Baseline); (b) Upstream truncation, 3 cm from the microcatheter-tip location, and downstream
truncation, intra-segmental branches (i.e., Patient 2a-Truncated-3cm); (c) Upstream truncation, 4 cm
from the microcatheter-tip location, and downstream truncation, intra-segmental branches (i.e.,
Patient 2a-Truncated-4cm).

Figure 7. Patient 2a, segment-to-segment blood flow distribution (normalized with the blood flow
through the artery branch where the microcatheter tip is located) and microsphere distributions in the
segments downstream from the injection plane (percentage of microspheres that have reached each
segment, normalized with the total number of microspheres that exited the computational domain).
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Figure 8. Patient 2b velocity magnitude contours and vectors: (a) Baseline geometry (i.e., Patient
2b-Baseline); (b) Upstream truncation, 3 cm from the microcatheter-tip location and downstream
truncation, intrasegmental branches (i.e., Patient 2b-Truncated-3cm); (c) Upstream truncation, 4 cm
from the microcatheter-tip location, and downstream truncation, intrasegmental branches (i.e., Patient
2b-Truncated-4cm).

Figure 9. Patient 2b, segment-to-segment blood flow distribution (normalized with the blood flow
through the artery branch where the microcatheter tip is located) and microsphere distribution in the
segments downstream from the injection plane (percentage of microspheres that have reached each
segment, normalized with the total number of microspheres that exited the computational domain).
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Figure 10. Patient 3 velocity magnitude contours and vectors: (a) Baseline geometry (i.e., Patient
3-Baseline); (b) Upstream truncation, 3 cm from the microcatheter-tip location, and downstream
truncation, intra-segmental branches (i.e., Patient 3-Truncated-3cm).

Figure 11. Patient 3, segment-to-segment blood flow distribution (normalized with the blood flow
through the artery branch where the microcatheter tip is located) and microsphere distributions in the
segments downstream from the injection plane (percentage of microspheres that have reached each
segment, normalized with the total number of microspheres that exited the computational domain).
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3.1. Patient 1

Figure 4 shows minor differences in velocity magnitude contours and velocity vectors
between Patient 1-Baseline and almost all simplified cases except for Patient 1-Reduc3.
Regarding this last case, Patient 1-Reduc3, blood flow patterns near the microsphere injection
location have changed considerably because of an excessive geometry reduction. This
change in blood flow pattern translates into differences in microsphere distributions. In
fact, differences of 3.9%, 25.9%, and 33.9% are observed in S5, S6, and S8, respectively,
between Patient 1-Baseline and Patient 1-Reduc3 (see Figure 5). With the defined criterion
where a threshold of 10 percent points is taken as the maximum difference we can accept
at a segment, then the simplification done for Patient 1-Reduc3 is unacceptable.

However, if we compare Patient 1-Baseline and Patient 1-Truncated-3cm, where no
considerable differences are seen in velocity contours and vectors (see Figure 4), the
differences in microsphere distributions are 2.8% in S5, 1.5% in S6, and 1.2% in S8 (see
Figure 5). The maximum difference in percent points is below 3%, so this case is regarded
as a case with a valid geometry truncation. As explained before, the same simplification
criteria used to create Patient 1-Truncated-3cm was used in Patients 2 and 3, to analyze the
usefulness of the criteria.

3.2. Patient 2

Additional geometries were generated for Patient 2a and 2b, after observing the
differences in velocity contours and vectors in Patient 2a (see the high-velocity regions in
the systolic peak contours in Figure 6a,b) and in microsphere distributions for Patient 2b
(see Figure 9). For the additional truncated geometries, an extra centimeter was left in the
geometries, resulting in a truncation of all the upstream branches farther than 4 cm from
the microcatheter tip.

3.2.1. Patient 2a

Figure 6 shows differences between Patient 2a-Baseline and Patient 2a-Truncated-3cm
velocity magnitude contours and vectors in the systolic peak (see the area of the high-
velocity regions Figure 6a,b). This could potentially result in differences at the injection
conditions and therefore in the microsphere distribution. As explained before, an extra case
with an extra upstream centimeter was built to assess this difference. Indeed, Figure 6c
shows that the results of Patient 2a-Truncated-4cm improve compared to Patient 2a-Truncated-
3cm. Regarding the segment-to-segment microsphere distributions, all the cases show a
S8-directed treatment (i.e., 100% microspheres targeting S8). Thus, even though some minor
qualitative differences can be seen between Patient 2a-Baseline and Patient 2a-Truncated-
3cm, the latter can be taken as valid because no differences in microsphere distribution
are observed.

3.2.2. Patient 2b

Figure 8 shows that velocity magnitude contours and vectors are similar in all cases.
However, the segment-to-segment microsphere distributions differ (see Figure 9). Segment
to segment microsphere distribution differences between Patient 2b-Baseline and Patient
2b-Truncated-3cm are 8.1% in S5, of 0.3% in S6, and 7.9% in S8.

As explained before, an extra case was generated due to these differences. An extra
centimeter was left upstream, giving as a result of the case Patient 2b-Truncated-4cm. The
differences between Patient 2b-Baseline and Patient 2b-Truncated-4cm are 10% in S5, of 0.1%
in S6, and 9.9% in S8. It is important to note that even though smaller truncation is applied
in Patient 2b-Truncated-4cm, the differences with respect to the baseline case increased,
compared to the differences between Patient 2b-Truncated-3cm and the baseline case. Thus,
the case Patient 2b-Truncated-3cm has been considered a valid simplification.
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3.3. Patient 3

Results show similar qualitative results of velocity contours and vectors between
Patient 3-Baseline and Patient 3-Truncated-3cm (see Figure 9), and segment-to-segment micro-
sphere distributions match—a difference of 0.1 percent points is seen in the microspheres
targeting S8, see Figure 10.

3.4. Computational Times

Reducing computational times by effectively reducing the hepatic artery geometry
is the main goal of this study. In order to reduce the computational time, the size of the
computational domain can be reduced. This reduction potentially allows for an additional
reduction in simulation times because a smaller number of cardiac cycles are necessary
to ensure that most of the injected microspheres exit the computational domain. Before
carrying out the present study, a preliminary study was conducted to analyze the influence
of the number of cardiac cycles simulated on the fraction of injected microspheres that
exited the computational domain. The computational domains used in this preliminary
study were not the same as the ones reported in the present study. Results can be regarded
as representative because the baseline geometries are the same in the preliminary and
actual studies and the reduced geometries are similar in the preliminary and actual studies.
Figure 12 shows the fraction of microspheres that have exited the computational domain
over time since the start of the injection—microspheres are injected between 0 s and 1 s,
t = 1 s is the end of the first cycle (injection cycle) without microsphere injection t = 2 s is
the end of the second cycle (extra cycle 1), etc.

Figure 12. Fraction of microspheres that exited the computational domain over time.

Results show that in most cases a single extra cycle, i.e., extra cycle 1, is sufficient
(t = 1–2 s) to achieve a steady number of the fraction of exited microspheres, but there are
some baseline cases where a second extra cycle, i.e., extra cycle 2, is necessary (t = 2–3 s)
(see Figure 12, Patient 2-Baseline and Patient 3-Baseline). The number of microspheres that
exit the domain in extra cycles 3 and 4 (t = 3–5 s) are negligible. Accordingly, two extra
cycles were considered in the simulations of the actual study. Hence, four cycles were
necessary per simulation: an initial cardiac cycle for the blood flow convergence (t = −1 s
to t = 0 s), another cycle to inject the microspheres (t = 0 s to t = 1 s), and two extra cycles
(t = 1 s to t = 3 s).

For the simulations reported in the actual study, the computational time (i.e., cost) per
cycle was analyzed and the cost of each cycle was assessed. Table 5 collects the fraction of
time needed for each cycle, averaged for the simulations presented in this article. Around
10% of the time is needed for the convergence cycle, a third of the time for the injection
cycle, and half of the time for the extra cycles.
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Table 5. Average relative computational time of each cardiac cycle of the simulation.

Cycle Relative Computational Time

Cycle 1: Convergence 11.6%
Cycle 2: Injection 34.1%
Cycle 3: Extra cycle 1 28.0%
Cycle 4: Extra cycle 2 26.3%

Finally, the relation between the number of mesh elements and the simulation duration
was studied for the “Baseline” and “Truncated-3cm” geometries of the actual study, shown
in Figure 13. The first observation is that simplifying the geometry results in a reduction in
the computational time in all cases. This trend was expected due to the reduction in the
number of mesh elements, but it can be quantified. The reduction in Patient 1 is from 23 h
and 13 min to 16 h and 38 min (i.e., 28.4%); in Patient 2a, from 29 h and 11 min to 8 h and
03 min (i.e., 72.4%); in Patient 2b, from 47 h and 48 min to 8 h and 52 min (i.e., 81.5%); and in
Patient 3, from 25 h and 35 min to 11 h and 00 min (i.e., 57%). Another observation is the fact
that all the “Truncated-3cm” computational domains consist of a similar number of elements
(near one million elements), even though the “Baseline” geometries differ in the number
of elements. This comes as a result of applying the same geometry reduction strategy. It
is also important to note that other factors that influence the simulation time include the
quality of the elements of the mesh and the complexity of the studied blood flow.

Figure 13. Computational time vs. mesh size.

4. Discussion

In this study, we analyzed the possibility of reducing the computational time of
RE simulations by reducing the size of the geometry, without losing much accuracy in
the segment-to-segment microsphere distribution prediction. For that purpose, three
patient-specific hepatic artery trees were used. The geometry of the first patient was used
as a case study to define a simplification strategy. This strategy consisted of removing
from the computational domain branches that were upstream and downstream from the
microcatheter tip. For upstream branches, all the branches that were farther than 3 cm were
removed; for downstream branches, branches were removed at bifurcations where both
daughter vessels fed the same liver segment.

The first observation is that the imposed blood flow split differs from the predicted
or calculated microsphere distribution (see Figures 5, 7, 9 and 11). This finding is not
novel, it is indeed observed in previous studies that used a microcatheter to inject the
microspheres [8] or the studies that used the particle release maps [7,9,26] as a research
tool—particle release maps correlate each point in the injection cross-sectional plane with
the computational domain outlet from which microspheres would exit. Even if a blood
flow split-matching microsphere distribution can be achieved [5], this cannot be assumed
as a general rule. Therefore, unless a blood flow split-matching microsphere distribution

135



Mathematics 2021, 9, 839

is promoted, CFD simulations are necessary to account for the influence of the local
hemodynamic phenomena taking place during RE [3].

With regard to the geometry truncations, the four cases (Patient 1, Patient 2a, Patient 2b,
and Patient 3) meet the criterion we established. It can be seen that the more tortuous
and more intricate the geometry, the easier it is to obtain a good match between baseline
and truncated simulations’ results. For Patient 1 and Patient 3, the biggest differences in
microsphere distributions at a given segment are 2.8 and 0.1 percent points, respectively.
These geometries are very tortuous, having bends close to 90◦ and bifurcations in the 3 cm of
artery before the microcatheter tip. Regarding Patient 2a, the microsphere distribution in the
truncated geometry is the same as the one obtained in the baseline geometry, even though
minor differences in blood flow conditions near the injection location are qualitatively seen.
Patient 2b gives the worst results when the microsphere distributions are compared in
the baseline and truncated cases. However, the established criterion is still met. In these
Patient 2 cases, the geometry has neither bifurcations nor large tortuosity in its initial part,
supporting the hypothesis that the more the intricacies, the easier to replicate the baseline
flow patterns in the simplified geometries. Therefore, it could be concluded that if the
blood flow is intricate inside the 3 cm between the microcatheter tip and the upstream
truncation, then the results of the truncated geometry will match better to the baseline
geometry than if it is not.

Regarding the computational time analysis, it has been first concluded that two extra
cycles are enough to ensure the fraction of exited microspheres reach a steady value over
time (see Figure 12), and a four-cycle simulation is proposed: the first cycle for blood flow
convergence, the second cycle for microsphere injection, and the third and fourth cycles
for microspheres to exit the computational domain. Regarding the fraction of injected
microspheres that do not exit the baseline computational domain, these values are 13.8%,
18.4%, 17.3%, and 9.7% for Patient 1, Patient 2a, Patient 2b, and Patient 3, respectively. These
values are similar to those reported by Bomberna et al. [9]. In the truncated geometries, the
fraction of non-exiting microspheres reduces to 13.8%, 0%, 6.2%, and 7.6% for Patient 1,
Patient 2a, Patient 2b, and Patient 3, respectively. The simulation time of the baseline cases
was 31 h 26 min on average, and that of the truncated cases 11 h 08 min on average (see
Figure 13), meaning an average reduction of 64.6%. The comparison with other studies
in the literature is tricky because the simulation time depends on the modeling approach
and on the computer used to solve the model. Among the models used in the literature
to study RE, the most similar one to the present model is that of Aramburu [27], with
simulations taking 100 h approximately. Other similar models took 11–14 h [12] and around
38 h [7]. Other models have considered reduced order 1D and 0D models, resulting in
simulations times of 1 h [28] and 5 s [29], respectively. However, these last models cannot
capture local effects, which are essential in the microsphere distribution unless blood flow
split-matching microsphere distribution is promoted. In the present case, the simulations
have been carried out on a server with 80 cores and 125 GB of RAM. Although with this
reduction it is possible to simulate the CFD model in half a day, it is still considered an
excessive time for a feasible CFD-based computer platform. It is necessary to reduce
more the computational time to offer to the treatment planning multidisciplinary team a
versatile CFD-based computer platform to plan the intervention based on a patient-specific
basis, being able to adjust the dosimetry with greater accuracy, potentially increasing the
effectiveness of the intervention.

From the clinical point of view, we have posited a cancer scenario and we have
placed the microcatheter at a reasonable location to target the tumor-bearing segment 8.
Once we have performed the analysis with the aim of reducing the simulation time, we
should analyze the results from the medical point of view. Results show that in the reduced
geometries, the fraction of exiting microspheres targeting segment 8 are 39.1%, 100%, 54.5%,
and 85%, for Patient 1, Patient 2a, Patient 2b, and Patient 3, respectively. When seeking
to preserve as much healthy liver as possible, the aim is to advance the microcatheter
as distally as possible. This allows to deliver high radiation doses via the microspheres
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released in the tumor-feeding arteries [2]. In this study, the site of injection of microspheres
is optimal in Patient 2a, with 100% of microspheres reaching segment 8, and acceptable in
the case of Patient 3 with 85% of microspheres reaching the tumoral segment (S8). This is
not the case for the remaining cases. In Patient 1 and Patient 2b most of the radioactive load
is directed to healthy tissue, with only 40% and 50% of the microspheres reaching segment
8, respectively. Patient 2 shows the importance of a correct microcatheter longitudinal
location. In the case Patient 2a, 100% of the microspheres reach the tumor-bearing segment,
whereas in the case of Patient 2b only 50% reach the target segment. However, the aim
of the study was not to optimize the microcatheter location for an optimal microsphere
delivery, but to assess the possibility of reducing the computational time by reducing the
size of the simulated geometry. Moreover, results show that there is room for improvement
and the microcatheter location could be modified in the simulations to improve the segment
8 targeting via simulation-based assessment. Again, the local effects would probably play
an important role in the microsphere distribution and it would be very difficult to mimic
the exact microcatheter location during the actual treatment.

Study Limitations

There are some limitations to this study. Regarding the modeling approach, patient-
specific hepatic arteries have been used, but the hepatic and cancer states have been posited,
with tumors localized in segment 8. Moreover, the first seconds have been taken as repre-
sentative of the treatment that usually lasts half an hour—computationally unaffordable—
without considering the microembolic effect of microspheres.

Regarding the methodology, only three patients—which can be seen as four cases—
have been tested. Further research is needed to make sure that the rule works in most
cases. Moreover, how to further reduce the computational time should be explored in
future studies.

5. Conclusions

In the numerical simulation of RE, a patient-specific CFD analysis is necessary to
capture in detail the influence of local effects near the injection location in order to predict
the segment-to-segment microsphere distribution. Besides, the rule created to shorten
the geometry of the hepatic artery for simulating the microsphere–hemodynamics during
RE has resulted in simulations with differences smaller than 10 percent points in a given
segment between segment-to-segment microsphere distribution results of the baseline and
truncated geometries, as a result of minor changes in blood flow patterns, allowing for
an important reduction in simulation time—in this study, an average time reduction of
62%. This simulation time reduction could be a step forward in the development of a
simulation-based tool to be used in the clinical setting for personalized RE therapy planning
to optimize the treatment.
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Abstract: The finite element method has been widely used to investigate the mechanical behavior of
biological tissues. When analyzing these particular materials subjected to dynamic requests, time
integration algorithms should be considered to incorporate the inertial effects. These algorithms can
be classified as implicit or explicit. Although both algorithms have been used in different scenarios, a
comparative study of the outcomes of both methods is important to determine the performance of a
model used to simulate the active contraction of the skeletal muscle tissue. In this work, dynamic
implicit and dynamic explicit solutions are presented for the movement of the eye ball induced by the
extraocular muscles. Aspects such as stability, computational time and the influence of mass-scaling
for the explicit formulation were assessed using ABAQUS software. Both strategies produced similar
results regarding range of movement of the eye ball, total deformation and kinetic energy. Using the
implicit dynamic formulation, an important amount of computational time reduction is achieved.
Although mass-scaling can reduce the simulation time, the dynamic contraction of the muscle is
drastically altered.

Keywords: finite element method; implicit FEM; explicit FEM; skeletal muscle

1. Introduction

The extraocular muscles (EOM) are responsible for the eye movements of the upper
eyelid and the eyeball. The group that controls the eyeball contains six muscles: four
muscles that run almost a straight course from origin to insertion and hence are called
recti and two muscles that run a diagonal course, the oblique muscles [1]. The group
that controls eye movement in the cardinal directions are the superior (responsible for
elevation, incyclotorsion and adduction), inferior (responsible for depression, extorsion
(outward, rotational movement) and adduction), lateral (responsible for abduction) and
medial (responsible for adduction) rectus muscles. The movements of the extraocular
muscles take place under the influence of a system of extraocular soft tissue pulleys in
the orbit. The extraocular muscle pulley system is fundamental to the movement of the
eye muscles, in particular to ensure conformity to Listing’s law. Certain diseases of the
pulleys (heterotopy, instability and hindrance of the pulleys) cause particular patterns of
incomitant strabismus [2]. Simulating and analyzing eye movements is useful for assessing
the role of these tissues and for exploring the equilibrium of the applied forces that can be
impaired and lead to different pathologies [3,4].

The finite element method (FEM) has been widely used to simulate the behavior of
skeletal muscle both passively and actively [5–10]. The vast majority of studies have focused
on determining the essential parameters that best fit the experimental evidence [4,10,11].
Although different approximations and scenarios have been evaluated with the help of this
numerical technique, the contraction of the muscle has been analyzed assuming quasi-static
conditions with no inertia effects [4].
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An important aspect to consider when reproducing the eyeball movements using FEM
is the fast response of the muscles when activated and how the result of this contraction is
translated to induce the system motion. This movement is achieved in a few tenths of a
second [11]. When tackling these small time periods, realistic simulations should account
for the inertia effect of the mass of the different elements. In such scenarios, the use of a
dynamic formulation of the FEM is essential. Time integration algorithms for dynamic
problems in FEM analysis can be classified as implicit or explicit. Basically, the implicit
method computes the state of the model at each time increment based on the information
of that same time increment and the previous time increment, while the explicit method
uses the data of the previous time increment to solve the motion equations during the new
time increment [12]. Implicit time integration schemes are more expensive per time step,
but can obtain the solution for larger time steps and provide a control on the dynamic
residual force vector, since they are usually used in conjunction with an iterative procedure
within each time step [13]. The explicit algorithm can be solved directly without requiring
iteration. This method is conditionally stable, and the critical time step for the operator
(without damping) is a function of the material specification and the size of the smallest
element of the mesh [12]. Increments larger than this critical time can cause the solution to
be unstable and oscillations to occur in the model’s response, which can lead to excessively
distorted elements. To decrease the total computational time, a mass-scaling technique is
commonly used, whereby the solver can use larger time increments by artificially increasing
the density of the system. However, it is important to ensure that the added mass does
not change the behavior of the model, which in simulating active muscle contraction is
decisive. The choice between implicit and explicit methods with or without mass scaling
has been the subject of many studies [12,14–16]

The aim of this study was therefore to compare dynamic implicit and explicit solutions
using ABAQUS software [17] in the analysis of the contraction of the EOM for eyeball
movements. More specifically, we compared the prediction of dynamic effects, potential
convergence problems, the accuracy and stability of the calculations, the computational
time between the two methods and the influence of mass-scaling in the explicit formulation.

The rest of the paper is organized as follows. Section 2 describes the formulation of
the skeletal muscle behavior, the implicit and explicit algorithms, the implementation of
the user subroutine and the description of the finite element model. In Section 3, selected
results of the model comparing both algorithms are presented and then discussed in
Section 4. Finally, in Section 5, the main conclusions are summarized.

2. Materials and Methods

2.1. Muscle Contraction Model

Let Ω0 be a three-dimensional portion of the space representing the solid initial
geometry of the muscle tissue. This region defines a set of points at a reference configuration
which are identified by the position vector X. The motion of the solid defines the current
configuration at time t, Ωt and can be described by the map x = χ(X) = x(X).

Let F = ∂x
∂X be the deformation gradient associated with the motion, where J ≡ detF > 0

is the Jacobian of the transformation. A multiplicative decomposition of this deformation
gradient into volume-changing and volume-preserving parts is established to handle the
quasi-incompressibility constraint presented by soft tissues (J ∼= 1) [8]

F = J
1
3 F̄, F̄ = J−

1
3 F (1)

C = FTF, C̄ = J−
2
3 C = F̄T F̄ (2)

b = FFT , b̄ = J−
2
3 b = F̄F̄T (3)

where J
1
3 I and F̄ represent the volumetric and deviatoric deformation gradients, respec-

tively. C and b are the right and left Cauchy–Green strain tensors and C̄ and b̄ their
modified counterparts.
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It is assumed in this work that the contraction process can be modelled as two fictitious
steps [8,18] (see Figure 1). The first step is associated with the relative motion of the protein
filaments myosin and actin during the power stroke of the cross bridges, and the second
step relates to the elastic deformation of cross bridges. This contraction process can be
expressed as a multiplicative decomposition of the deformation gradient F̄:

F̄ = F̄eF̄a (4)

where F̄a is the deformation gradient associated with the contractile response induced
by the actin and myosin translation, whereas F̄e defines a deformation due to the cross
bridges elasticity. The gradient F̄a represents the active contraction so it does not need
to be integrable. Thus, infinitesimal parts of the tangent space Ω0 are deformed inde-
pendently, and the configuration they form after the motion may not be compatible. The
gradient F̄e guarantees the compatibility in the deformed configuration Ωt. Accordingly,
let C̄e = F̄T

e F̄e = F̄−T
a C̄F̄−1

a be a deformation measure due to the titin and cross bridges
motion which is not a state variable since it depends on C̄ and F̄a.

Figure 1. Illustration of the contraction process modelled as two fictitious steps. Gi vectors located at a point X in a muscle
fiber in the initial configuration Ω0 transform into new vectors λ̄iGi by the active contraction Fa. The intermediate step
is associated with the relative motion of the protein filaments due to cross bridges power stroke. In the final step, the
cross-bridges are deformed by Fe to restore the compatibility of the deformed configuration Ωt.

The active contraction occurs along the direction that is defined by the muscle fibers,
so let us introduce this direction as n0, and let λ̄a be the active stretch. Thus, the active
contractile tensor, F̄′

a, can be written in the local coordinate system, Gi, as:

F̄′
a = λ̄aG1 ⊗ G1 + λ̄−1/2

a G2 ⊗ G2 + λ̄−1/2
a G3 ⊗ G3 (5)
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where we assume the active contractile tensor F̄′
a to be isochoric. This local coordinate

system varies along the fiber length and is represented at a particular point of the tissue in
Figure 1.

The components of the contractile tensor expressed in the global system of coordinates
Ei, F̄a, can be obtained as:

F̄a = RT F̄′
aR (6)

where R is the rotation tensor.
A strain energy density formulation decoupled into volume-changing and volume-

preserving parts is commonly taken to formulate the elastic constitutive law for transversely
isotropic materials such as skeletal muscle [8,18,19]. This energy is formulated in this
work as:

Ψ = Ψvol(J) + Ψ̄p(C̄, N) + Ψ̄a(C̄e, λ̄a, N) (7)

where N = n0 ⊗ n0. Equivalently, Ψ can be expressed as a function of the invariants of the
strain tensors:

Ψ = Ψvol(J) + Ψ̄p( Ī1, Ī2, Ī4) + Ψ̄a( J̄4, λ̄a) (8)

where Ī1 = trC̄ and Ī2 = 1
2 ((trC̄)2 − trC̄2) are the first and second modified strain in-

variants of the symmetric modified Cauchy–Green tensor C̄, and Ī4 = n0 · C̄n0 = λ̄2 is
the pseudo-invariant related to the anisotropy of the passive response (collagen fibers).
Similarly, the active contribution of the strain energy function, Ψ̄a, is expressed in terms of
the pseudo-invariant associated to C̄e and the preferred direction n0, J̄4 = n0 · C̄en0 = λ2

e .
As shown, the anisotropy in the formulation is induced by a single orientation for both the
passive and the active behavior. Although in fusiform muscles such as the EOM this is com-
monly accepted, in other muscle architectures two families of fibers should be considered
to adopt a more suitable formulation [9,20].

The third term in Equation (8) represents the strain energy associated with the active
response and, consequently, with the actin-myosin interaction. This term is written here
as a function Ψ̄′

a that relates to the energy stored in the cross-bridges, while f1(λ̄a) is a
function that accounts for the filament overlap and f2(t) for the muscle activation level:

Ψ = Ψvol(J) + Ψ̄p( Ī1, Ī2, Ī4) + f1(λ̄a) f2(t)Ψ̄′
a( J̄4) (9)

The function 0 < f1(λ̄a) < 1 has been experimentally characterized in previous
studies for different muscles [19,21] and fitted by a smooth exponential relationship:

f1(λ̄a) = exp
−(λ̄a−λopt)

2

2ξ2 (10)

where λopt is the optimum length of the muscle at which isometric maximum stress is
developed and ξ determines the curvature of the function. To formulate f2(t), we assume
in this work that all muscle fibers are completely recruited in each contraction, and this
function can be expressed as:

f2(t) = α tanh2(s1t) (11)

where 0 < α < 1 governs the activation level, s1 regulates the initial slope of the function
and t is the time variable. Finally, the energy stored in the cross-bridges is expressed
in terms of the invariant associated to C̄e in the direction of the muscle fibers n0 and a
parameter P0 related to the maximum active stress:

Ψ̄′
a =

1
2

P0( J̄4 − 1)2 (12)

During the muscle contraction process, the second law of thermodynamics can be for-
mulated in the shape of the Clausius–Planck inequality neglecting the thermal dissipation
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rate. This inequality allows us to consider that some of the power produced internally is
stored while another portion is dissipated [8]:

Dint = −Ψ̇ +
1
2

S : Ċ +
1
2

Sa : Ċa ≥ 0 (13)

In Equation (13), Sa represents active stress and 1
2 Sa : Ċa the muscle power stroke [18].

Following the work of Hernández-Gascón et al. [8], the following constitutive relations
are obtained:

S = 2
∂Ψ
∂C

+ F−1
a

(
2

∂Ψ
∂Ce

)
F−T

a (14)

(
Pa − 2Fa

∂Ψ
∂Ca

+ 2Ce
∂Ψ
∂Ce

F−T
a

)
: Ḟa ≥ 0 (15)

where Pa is the first Piola–Kirchoff active stress. Since contraction occurs along the muscle
fiber only, Equation (15) reduces to:

[
Pa −

∂Ψ̄
∂λ̄a

+

(
2C̄e

∂Ψ̄
∂C̄e

F̄−T
a

)
:

∂F̄a

∂λ̄a

]
˙̄λa ≥ 0 (16)

This expression leads to the following constitutive relation for the active contraction
velocity ˙̄λa:

Pa −
∂Ψ̄
∂λ̄a

+

(
2C̄e

∂Ψ̄
∂C̄e

F̄−T
a

)
:

∂F̄a

∂λ̄a
= C ˙̄λa (17)

assuming that:

C =
1
v0

P0 f1(λ̄a) f2(t) (18)

where v0 is associated with the initial contraction velocity. The active stress Pa from
Equation (17) is defined as a function of P0, f1(λa) and f2(t), and ν is a friction parameter
that takes into account the relative sliding speed between actin and myosin:

Pa = −νP0 f1(λ̄a) f2(t) (19)

Substituting Equations (18) and (19) and the last term of Equation (9) into Equation (17)
leads to the expression for the contraction velocity:

˙̄λa = v0

[
−ν − 1

f1(λ̄a)

∂ f1(λ̄a)

∂λ̄a
Ψ̄′

a( J̄4) +

(
2C̄e

∂Ψ̄′
a( J̄4)

∂C̄e
F̄−T

a

)
:

∂F̄a

∂λ̄a

]
(20)

Since Ψ̄′
a depends on J̄4, Equation (20) reduces to:

˙̄λa = v0

[
−ν − 1

f1(λ̄a)

∂ f1(λ̄a)

∂λ̄a
Ψ̄′

a( J̄4) + 2
λ̄2

e
λ̄a

∂Ψ̄′
a( J̄4)

∂ J̄4

]
(21)

Taking the first constitutive relation (Equation (14)) and the particular form of the
strain energy density function, the expressions for the Cauchy stress tensor and the elasticity
tensor can be derived. Both tensors must be provided to define the mechanical constitutive
model in the implicit user material subroutine in ABAQUS/Standard [17], whereas only
the definition of the Cauchy stress is needed in ABAQUS/Explicit [17].

From Equations (7) and (14), the second Piola–Kirchhoff stress tensor is found to be:

S = Svol + S̄p + S̄a (22)
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The Cauchy stress tensor is obtained by means of a weighted push-forward operation
of S, σ = J−1χ∗(S) = J−1FSFT :

σ = σvol + σ̄p + σ̄a = p1 +
1
J

dev
[
F̄S̃pF̄T

]
+

1
J

dev
[
F̄eS̃eF̄T

e

]

= p1 +
1
J

dev[σ̃p] +
1
J

dev[σ̃e]

(23)

with:

p =
dΨvol(J)

dJ
, dev[·] = (·)− 1

3
tr[·]1 (24)

Differentiating Equation (22) with respect to C leads to the material elasticity tensor C,
which can be divided into volumetric and deviatoric parts associated with the passive and
active responses as follows:

C = Cvol + C̄p + C̄a = 2
∂Svol
∂C

+ 2
∂S̄p

∂C
+ 2

∂S̄a

∂C
(25)

The elasticity tensor in the spatial configuration, C, is obtained by a weighted push-
forward operation of C, which can be expressed as C = J−1χ∗(C) and results in:

C = Cvol + C̄p + C̄a (26)

For a detailed explanation about these expressions and further information, the reader
is referred to the works of Weiss et al. [22] and Hernández-Gascón et al. [8].

2.2. Principle of Virtual Work and Finite Element Discretization

The principle of virtual work that allows to establish the finite element formulation is
derived from the balance of momentum of a body V with boundary S that can be written as:

∫
S

tdS +
∫

V
ρgdV =

∫
V

ρä (27)

where t is the stress vector, ρ is the material density, g is the gravity acceleration and ä is the
accelerations vector. Applying the relation between the stress vector and the stress tensor
t = nσ with n the normal surface vector and the divergence theorem [13], the following
relation must be fulfilled at each material point:

∇ · σ + ρg = ρä (28)

Multiplying this equation by a virtual displacement field δa and integrating over the
domain V: ∫

V
δa(∇ · σ + ρg − ρä) = 0 (29)

After applying the divergence theorem and some manipulations, the weak form of
the equation of motion that represents the principle of virtual work is obtained:

∫
V

σ : δedV =
∫

S
ρ(g − ä)δadV +

∫
S

tδadS (30)

with e = 1
2 (1 − F−T F−1) the Euler–Almansi strain tensor.

Equation (30) is the basis for the finite element discretization where the displacements
at the nodes of the mesh elements are considered as the fundamental unknowns. The
continuous displacement field a can be approximated at each element as:

a =
n

∑
k=1

φk(ξ, η, ζ)uk (31)
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where φk are the interpolation functions of an element supported by n nodes and (ξ, η, ζ) the
coordinates of the reference element. The proper definition of the interpolation functions
using polynomials (linear in this work) and assembling element matrix contributions to
the integration over all the solid volume in Equation (30) conduct to the well-known finite
element equation system.

2.3. Implicit Solution Method

The dynamic response in ABAQUS/Standard for nonlinear models is obtained by
direct time integration of all of the degrees of freedom of the finite element model [17].
The time step for implicit integration can be chosen automatically on the basis of the
“half-increment residual” by monitoring the values of equilibrium residuals at t + Δt/2
once the solution at t + Δt has been obtained. The accuracy of the solution can be assessed
and the time step adjusted appropriately.

The equilibrium equations are written at the end of the time step (time t + Δt) and are
calculated from the time integration operator. The finite element approximation is:

Mü + I = F (32)

where F is the vector of externally applied forces, I is the vector of internal element forces,
M is the lumped mass matrix and ü is the accelerations vector.

The algorithm defined by Hilber et al. [23] is:

Mü(i+1) + (1 + α)Ku(i+1) − αKu(i) = (1 + α)F(i+1) − αF(i) (33)

where u is the displacement vector and maintaining Newmark’s assumption that the
acceleration ü varies linearly over the time step [13]:

u(i+1) = u(i) + Δtu̇(i) + Δt2
[(

1
2
− β

)
ü(i) + βü(i+1)

]
(34)

u̇(i+1) = u̇(i) + Δt
[
(1 − γ)ü(i) + γü(i+1)

]
(35)

being u̇ the velocities vector and

β =
1
4
(1 − α)2; γ = 1/2 − α; −1

3
≤ α ≤ 0 (36)

α = −0.05 is chosen by default in ABAQUS/Standard as a small damping term to remove
the high frequency noise without affecting the lower frequency response [15]. Taking α = 0,
the Newmark method is obtained. For the algorithmic implementation, it is necessary to
obtain ü(i+1) from Equation (34) :

ü(i+1) =
1

βΔt2 Δu − 1
βΔt

u̇(i) − 1 − 2β

2β
ü(i) (37)

where Δu = u(i+1) − u(i). Substituting this expression into Equation (33) and taking
I(i) = Ku(i) yields:

Δu = (K∗)−1F∗ (38)

with the algorithmic tangential stiffness matrix

K∗ = (1 + α)K +
1

βΔt2 M (39)

and the vector F∗ defined as:

F∗ = (1 + α)F(i+1) − αF(i) − I(i) + M

(
1

βΔt
u̇(i) +

1 − 2β

2β
ü(i)

)
(40)
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Three factors should be considered when selecting the maximum allowable time
step size: the rate of variation of the applied loading, the complexity of the nonlinear
damping and stiffness properties and the typical period of vibration of the structure [17].
A maximum increment versus period ratio Δt/T < 1/10 is recommended for obtaining
reliable results [17], where T is the period of typical modes of response. The Hilber et al. [23]
α-method time integration scheme for solving the implicit problem can be summarized as:

1. Initialize u0, u̇0 and I0

2. Compute the mass matrix M

3. For each time step increment:

(a) Initialize the displacement increment Δu0 and the internal force I
(i+1)
0 = I(i)

(b) Iterations j = 0, . . . for finding “dynamic equilibrium” within the time step
increment:

• Compute tangential stiffness matrix: Kj

• Compute the algorithmic stiffness matrix: K∗
j = (1 + α)Kj +

1
βΔt2 M

• Compute F∗
j = (1 + α)F(i+1) − αF(i) − I

(i)
j + M

(
1

βΔt u̇(i) + 1−2β
2β ü(i)

)
• Solve the linear system: duj+1 = (K∗

j )
−1F∗

j

• Update the displacement increments: Δuj+1 = Δuj + duj+1

• For each integration point k:

– Compute the strain increment: Δuj+1 → Δεk,j+1

– Compute the stress increment: Δεk,j+1 → Δσk,j+1

– Compute the total stress: σk,j+1 = σ
(i)
k + Δσk,j+1

• Compute internal force: I
(i+1)
j+1

• Compute accelerations: ü
(i+1)
j+1 = 1

βΔt2 Δuj+1 − 1
βΔt u̇(i) − 1−2β

2β ü(i)

• Compute residual: r∗j+1 = (1 + α)F(i+1) − αF(i) − I
(i+1)
j+1 − Mü

(i+1)
j+1

• Check convergence: if
∥∥∥r∗j+1

∥∥∥ < η, with η the convergence tolerance, go
to Step (c).

(c) Compute the velocities and displacements at the end of the time step:

- Velocities: u̇(i+1) = u̇(i) + Δt
[
(1 − γ)ü(i) + γü(i+1)

]
- Displacements u(i+1) = u(i) + Δu

2.4. Explicit Solution Method

The explicit dynamics analysis procedure in ABAQUS/Explicit is established by an
explicit integration rule together with the use of diagonal or “lumped” element mass
matrices. The equations of motion for the body are integrated using the explicit central
difference integration rule as follows:

u(i+1) = u(i) + Δt(i+1)u̇(i+ 1
2 ) (41)

u̇(i+ 1
2 ) = u̇(i− 1

2 ) +
Δt(i+1) + Δt(i)

2
ü(i) (42)

The superscripts i, i − 1
2 and i + 1

2 refer to the increment number and mid-increment
numbers. The state of the analysis is advanced by assuming constant values for the
velocities, u̇, and the accelerations, ü, across half time intervals [16]. The accelerations are
computed at the start of the increment by:

ü(i) = M−1(F(i) − I(i)) (43)
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As the lumped mass matrix is diagonalized, it is a trivial process to invert it, unlike
the global stiffness matrix in the implicit solution method. Therefore, each time increment
is computationally inexpensive to solve. Several possibilities of this lumping process are
available, such as nodal quadrature, row-sum lumping, or a “special lumping technique”
where only the latter method produces positive lumped masses for any element type [13].
A stability limit determines the size of the time increment:

Δt ≤ 2
ωmax

(44)

where ωmax is the maximum element eigenvalue. A conservative and practical method of
implementing the above inequality is:

Δt = min
Le

cd (45)

where Le is the characteristic element length and cd is the dilatational wave speed:

cd =

√
λ + 2μ

ρ
(46)

λ and μ are the Lamé elastic constants and ρ is the material density.
To maintain efficiency of the analysis, it is important to ensure that the sizes of the

elements are as regular as possible since one small element reduces the time increment for
the whole model [16]. If the inertia effects in the model are negligible or can be considered
as quasi-static, it is not useful to maintain the stable time increment as the simulation
would take too long. One method that can be used to artificially reduce the runtime of
the simulation involves scaling the density of the material in the model. According to
Equations (45) and (46), when the density is scaled by a factor, f 2, the runtime is reduced
by a factor f . ABAQUS introduces in the explicit solver a bulk viscosity parameter, which
introduces damping associated with the volumetric straining to improve the high speed
dynamics simulations [17]. Two types of bulk viscosity parameter are considered: the
linear set to 0.03 in this study and the quadratic set to 1.2.

The central difference time integration scheme for non-linear problems employed in
most explicit computer codes [13] can be resumed in the following steps:

1. Initialize u0 and u̇0

2. Compute the mass matrix M

3. Compute u̇(
1
2 ) = u̇0 + Δt(1)

2
(
M−1(F0 − I0))

4. For each time step increment:

(a) Solve for total displacements: u(i+1) = u(i) + Δt(i+1)u̇(i+ 1
2 )

(b) Compute the displacement increment: Δu = u(i+1) − u(i)

(c) For each integration point j:

• Compute the strain increment: Δu → Δεj

• Compute the stress increment: Δεj → Δσ j

• Compute the total stress: σi+1
j = σ j + Δσ j

(d) Compute the internal force vector: I(i+1)

(e) Solve for the new accelerations: ü(i+1) = M−1
(

F(i+1) − I(i+1)
)

(f) Compute the velocities at new mid-time: u̇i+ 3
2 = u̇i+ 1

2 + Δt(i+1)+Δt(i)
2 ü(i)

2.5. Development of User Material Subroutine

The active behavior of the muscle is not provided in the libraries of the commercial
finite element codes. It is therefore necessary to implement the active behavior in the form
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of a user-defined stress update algorithm. This was implemented in the finite element code
ABAQUS/Standard by means of a UMAT. Additionally, for ABAQUS/Explicit, a VUMAT
was also developed. Much of the coding involved in the two algorithms is the same but
there are several key issues that must be addressed to maintain consistency of the results
between the two solvers. These subroutines, written in Fortran, implemented the behavior
of the material in the form of a stress update algorithm that is called at each integration
point for every iteration during the finite element simulation. At these integration points,
it is also necessary to define the anisotropy of the material to form the different tensors
and to obtain the set of invariants. The subroutines were able to read a discretized fiber
orientations from an external file during the first time increment.

The most important difference between the two programmed subroutines is that the
explicit one does not update the tangential stiffness matrix. Nevertheless, when writing the
implicit subroutine this matrix should be accurately represented to obtain correct solutions.
The initial time increment used in ABAQUS/Standard is chosen by the user, and subsequent
increments are controlled by an automatic incrementation control. To determine the size of
the initial time increment in ABAQUS/Explicit a bogus set of tiny strain increments are
passed to the VUMAT at the start of the analysis. From the stress response of the material,
a conservative value for the stable time increment is calculated [16].

2.6. Eyeball and EOM Finite Element Model

The geometrical data of the model were obtained from the database of
Mitsuhashi et al. [24], which was created from a whole-body set of 2 mm interval MRI im-
ages of a male volunteer. Some adjustments to the surfaces were made by hand to remove
discontinuities and increase smoothness. The contours of the right eyeball and the four
recti muscles were defined. As intorsion and extorsion movements were not considered
in this study, the oblique muscles were not included in the model [10] To prevent the eye
muscles from slipping away while the globe rotates, connective tissue surrounds the globe
and stabilizes the muscles acting as pulleys and serving as functional EOM origins [25].

Figure 2 shows the finite element mesh used in the model. Solid hexahedral finite
elements were used to mesh the eyeball and the EOMs, whereas one-dimensional truss
elements simulated the action of the connective tissue pulleys. In Table 1, the number of
nodes and elements of the solid parts of the model are shown together with their volume
and mass according to the eyeball density [26] and muscle density [27].

Table 1. Mesh size, volume and mass of the model parts.

Part Nodes Elements Volume (mm3) Mass (g)

Eyeball 2686 2211 8134 8.134
Lateral EOM 2573 1920 488 0.517
Inferior EOM 2291 1680 576 0.611
Medial EOM 1953 1440 419 0.444

Superior EOM 1377 936 461 0.489

The set of mechanical properties used for the muscle material behavior is included
in Table 2. Both passive and active parameters were adapted from a previous work [19].
The passive properties of connective tissues such as the tendon ends of the EOMS and the
pulleys were taken from Calvo et al. [5]. For the latter, circular sections of 1 mm radius
were applied to the truss elements and a rigid body constraint was applied to the eyeball.
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Figure 2. Finite element mesh of the right eyeball, the EOMs and the zones of tendinous insertions
obtained from Mitsuhashi et al. [24] incorporating connector elements to simulate the action of soft
tissue pulleys.

Table 2. Parameters considered in the model for the material behavior of the skeletal-muscle
tissue [19].

Parameters

Passive behavior

c1 = 0.008837 MPa
c3 = 0.00987 MPa

c4 = 2.23787
c5 = 3.06367 MPa

c6 = −4.75963 MPa
c7 = −2.76353 MPa

Ī40 = 1.25638
Ī4re f = 1.25638

Maximum isometric stress P0 = 0.1 MPa

Force length relationship
λ=1

λopt = 1
ξ = 0.1

Force time relationship α = 1
s1= variable

To account for the anisotropy present in the muscles due to the presence of fibers, a
set of directions was generated inside the volume of the EOMs (Figure 3). These direc-
tions define both the passive behavior of the tissue and the direction in which the active
contraction occurs.

Each of the ends of the EOMs in contact with the eyeball was tied, fixing the three
degrees of freedom of both surfaces. The nodes of the other end of the muscles were
clamped, restraining all movements. No contact was considered between the surfaces
of the model since no interaction of the different parts of the model was detected in the
movement. The truss elements connected nodes of the EOMs to a common node that was
pinned. Finally, a rigid solid constraint was applied to the eyeball fixing an instant center
of rotation at the center of the sphere.

151



Mathematics 2021, 9, 1024

Figure 3. Representation of the muscle and collagen fiber orientations.

3. Results

As the maximum time increment in a dynamic implicit algorithm depends on the
typical period of vibration of the system, the natural frequencies and mode shapes were
obtained for the model of the right eyeball, the pulleys and the EOMs. The initial four mode
shapes are represented in Figure 4 which correspond to bending shapes of the four different
muscles at frequencies from 55.33 to 84.16 Hz. The lower natural frequency corresponds to
the inferior EOM muscle which is the muscle with the largest volume. Taking the largest
characteristic frequency obtained, a maximum recommended increment for an implicit
dynamic simulation should be less than 0.001 s.

The model was analyzed under four different movement scenarios characterized by
the evolution of the activation function in Equation (11) along time. Figure 5a shows the
activation function f2(t) considering four s1 parameters that will induce eyeball movements
from a very slow one s1 = 10 to an intended nearly instantaneous s1 = 100. Although all
the muscles contribute in a certain way to the eyeball movements (elevation–depression
and abduction–adduction), the results presented in this work are those obtained for the
single activation of the medial EOM (adduction), as shown in Figure 5b. In this figure,
the distribution of the maximum principal stress is presented. As can be observed, the
maximum values are reached in the medial EOM at the final point of the simulation at
t = 0.3 s.

The inertia of the system provides a response slower than the activation function,
as shown in Figure 6a. The displacement in the x direction is represented for a point
located at the center of the pupil area in the simulated eyeball. Implicit and explicit results
are presented for the four activation function parameters. Comparing both algorithms,
differences under 3% at the end of the simulations were found. Figure 6b shows the x
displacement field at the end of the adduction movement considering s1 = 10 for the
implicit simulation.

To compare the performance of both methodologies, the evolution of the total strain
energy (Figure 7a) and total kinetic energy (Figure 7b) was analyzed in the model. The
total strain energy accumulated by the model for both algorithms and for all the activation
signals is nearly the same at the beginning of the simulation. In contrast, at the end of
the simulation, the models calculated with the explicit algorithm show an extra level of
internal energy compared with the implicit simulations. As can be observed, the total
energy is higher when the contraction velocity increases induced by the activation function.
These higher levels of total energy are a consequence of a greater amount of kinetic energy
when increasing the contraction velocity. The total kinetic energy is shown in Figure 7b
and again the explicit results outperform the implicit ones.
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(a) (b)

(c) (d)

Figure 4. Initial four mode shapes obtained for the right eyeball and EOMs system. These modes
correspond with bending of the EOMs at natural frequencies of: (a) 55.33 Hz for the inferior EOM;
(b) 72.57 Hz for the lateral EOM; (c) 72.84 Hz flexion mode for the superior EOM; and (d) 84.16 Hz
for the medial EOM.

(a) (b)

Figure 5. (a) Evolution of the activation function f2(t) with α = 1 for different s1 parameter values simulating four
contraction velocities; and (b) maximum principal stress distribution for the medial EOM activation with s1 = 10.
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(a) (b)

Figure 6. (a) Evolution of the displacement of a node located at the center of the surface of the mesh where the pupil is
located for all the activation signals considered using both algorithms; and (b) displacement field in the x direction for an
implicit simulation with s1 = 10 at t = 0.3 s.

(a) (b)

Figure 7. (a) Evolution of the total strain energy for all the activation signals considered using both algorithms; and
(b) evolution of the total kinetic energy for all the activation signals considered using the implicit algorithm.

Finally, a comparative analysis of the computational time is summarized in Table 3.
As can be seen, the implicit algorithm takes only a 5% of the time spent with the explicit
algorithm without mass scaling. A series of global mass scaling factors was applied to the
model. Increasing this factor, higher values of fictitious mass are added, penalizing the
range of motion of the system. Although a factor of 100 notably reduces the simulation
time to levels near that of the implicit algorithm, the maximum displacement at the end of
the simulation differs by 36.5% with respect to that obtained with no mass scaling.
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Table 3. Computational time in percent relative to the dynamic explicit simulation without mass
scaling (m.s.) for both algorithms and incorporating different m.s. factors.

Mass Added (%)
Calculation Time

(%)

Maximum
Displacement
Reduction (%)

Implicit 0 5 1.13
Explicit no m.s. 0 100 0

Explicit m.s. factor 1.01 1 99 0.05
Explicit m.s. factor 1.1 10 96 0.52
Explicit m.s. factor 4 300 53 0.9
Explicit m.s. factor 6 500 35 1.6

Explicit m.s. factor 10 900 30 3.1
Explicit m.s. factor 100 9900 11 36.5

4. Discussion

When studying extraocular mechanics, muscle activation and deformation are im-
portant parameters to characterize the movement of the eyeball [11]. In this paper, the
activation of the medial EOM is analyzed under four activation signals which induce
increasing contraction velocities. This function was simplified unlike more realistic previ-
ous models [8,9,19] to reduce the computation of unnecessary terms. This was assumed
considering that all muscle fibers are recruited during activation (tetanic contraction). The
range of motion associated with the region that represents the pupil in the model is in good
agreement with those reported previously in the literature [4,10], although other authors
simulated even larger angles of rotation [11]. The maximum horizontal or x displacement
in Figure 6a can be translated according to the position of the instant center of rotation to
a rotational angle of 7.4 degrees, which is far from the 20 degrees simulated in the work
of Wei et al. [11]. Differences in the maximum isometric stress and in the force length
relationship could be responsible for this disagreement since the properties of the muscle
active behavior incorporated in this model were taken from a previous work [19]. The
use of a single model with a particular geometry also limits the comparison with previous
results but, on the other hand, it proves the potential of the methodology to develop a
functional model based on medical image.

The results obtained for the four activation signal paths (Figure 6a) show that the
predictions of the two algorithms differ at the end of the simulations. Larger time in-
crements in the implicit method could lead to underestimating the contraction velocity
(Equation (21)) implemented in the user subroutine, and consequently the muscle contracts
more slowly.

Using the explicit analyses, the mass-scaling option is available to increase the stable
time increment by artificially adding mass to the system. Although mass-scaling could
decrease the mean computational time in the simulation of the eyeball movement (see
Table 3), the range of motion is reduced drastically. It has been suggested in the literature
that mass-scaling results are acceptable when the proportion of kinetic energy to strain
energy is less than 5% [12]. In this case, the dynamic effect is negligible and problems
can be solved with quasi-static solutions. As can be observed in Figure 7, this ratio is not
satisfied in this model at the beginning of the simulations. Future analysis should consider
increasing the maximum isometric stress developed by the activated muscle to explore
whether it is possible to balance the addition of mass to obtain more realistic results.

As pointed out by other authors [12,16] and indicated by the results in Table 3, for
simpler loading conditions, the implicit method takes a shorter solution time. In the case
of loading conditions involving contact between the muscles and the eyeball or even
incorporating the orbital fat, the explicit method will be the preferable choice [14,15].
Furthermore, the problem solved with this method can be easily parallelized in separated
computer processors since the inverse of the lumped mass matrix can be split in decoupled
set of equations.
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5. Conclusions

In this paper, a comparison between implicit and explicit dynamic algorithms is
presented and applied to model the 3D motion of the eyeball subjected to the action of
EOMs. Our high-speed simulations showed that the dynamic implicit algorithm offers
a substantial reduction in the required computational time in a model with no contact
interactions between the surfaces. Although mass-scaling can provide a reduction in the
computational time with the explicit algorithm, it is not recommended for high-speed
movements taking into consideration the activation of the muscle tissue, due to the system
increment of mass inertia.
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Abstract: The process of bone remodeling requires a strict coordination of bone resorption and for-
mation in time and space in order to maintain consistent bone quality and quantity. Bone-resorbing
osteoclasts and bone-forming osteoblasts are the two major players in the remodeling process. Their
coordination is achieved by generating the appropriate number of osteoblasts since osteoblastic-
lineage cells govern the bone mass variation and regulate a corresponding number of osteoclasts.
Furthermore, diverse hormones, cytokines and growth factors that strongly link osteoblasts to osteo-
clasts coordinated these two cell populations. The understanding of this complex remodeling process
and predicting its evolution is crucial to manage bone strength under physiologic and pathologic
conditions. Several mathematical models have been suggested to clarify this remodeling process,
from the earliest purely phenomenological to the latest biomechanical and mechanobiological models.
In this current article, a general mathematical model is proposed to fill the gaps identified in former
bone remodeling models. The proposed model is the result of combining existing bone remodeling
models to present an updated model, which also incorporates several important parameters affecting
bone remodeling under various physiologic and pathologic conditions. Furthermore, the proposed
model can be extended to include additional parameters in the future. These parameters are divided
into four groups according to their origin, whether endogenous or exogenous, and the cell population
they affect, whether osteoclasts or osteoblasts. The model also enables easy coupling of biological
models to pharmacological and/or mechanical models in the future.

Keywords: biomechanics; mathematical model; cell dynamics; bone physiology; bone disorders

1. Introduction

Fragility fracture rates are growing exponentially, mainly due to population aging. The
World Health Organization has recorded a substantial increase in population growth and
aging, with a life expectancy rising from about 65 years old in 2005 up to 73 years old in 2019;
while in Africa this latter age is around 64 years old, and it is around 78 years old in Europe
and the Western Pacific. Recently, various countries worldwide have experienced a fragility
fracture crisis with this increase in life expectancy. In 2017, the International Osteoporosis
Foundation reported an estimated 2.7 million fragility fractures in six European countries,
mainly Germany, Italy, France, Spain, Sweden and the United Kingdom, which resulted
in an associated annual cost of 37.5 billion euros for their health care systems. On an
individual level, these fragility fractures affected the independence and quality of life of
thousands of people in each of these countries. By 2030, the number of annual fragility
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fractures is expected to have increased by 23%, reaching 3.3 million, with projected costs of
approximately 47.4 billion euros [1]. This makes bone fractures, mainly fragility fractures,
a major public health problem.

The evolution of bone mineral density is related to bone metabolism and the different
factors affecting it. In fact, throughout life, bone is constantly being renewed through
the resorption of old and damaged bone and the formation of new bone. This renewal
is what is known as bone remodeling, a process requiring a strict coordination in time
and space to maintain bone quantity and quality. This coordination mainly involves bone-
resorbing osteoclasts and bone-forming osteoblasts, which are the two major players in
the remodeling process. The delicate balance between the amount of resorbed bone and
the subsequent deposited new bone requires a close coordination of the resorption and
formation activities. This coordination controls the generation of the appropriate number
of osteoblasts for remodeling, which is referred to as the coupling mechanism. Moreover,
several hormones, cytokines and growth factors are involved in linking the osteoblast- and
osteoclast-lineage cells (via a complex network) throughout the remodeling cycle.

The remodeling phenomenon has been a research and discussion subject for over a
century. In 1892, Julius Wolff stated that bones will adapt to the degree of mechanical
loading. This statement is currently known as Wolff’s Law and represents the first ex-
plicit statement that directly links bone microstructure to mechanical loading. This law
establishes that the tendencies of bone trabeculae are aligned with the principal directions
of stress. Since then, the mathematical description of bone behavior has experienced a
remarkable development. At first, most models were phenomenological or purely mechan-
ical, lacking any biological foundation. Afterwards, models started gaining insight into
the biological processes of bone remodeling and the relationship between them and the
mechanical processes. Concepts such as bone multicellular unit activity, metabolic activity,
mineralization processes as well as damage accumulation have now been introduced and
are included in the new mathematical models. These new bone remodeling models have
been classified into mechanological, biological and mechanobiological, according to the
main mechanism of the process.

The mechanological models show the mechanical stimulus and the final bone response
(net resorption or formation) in a black-box manner [2–8]. These models are mainly based
on the mechanostat theory formulated by Frost [9], which represents a sophisticated version
of the statement of Wolff’s law [10]. Additionally, they only focus on bone biomechanical
properties, without taking the biochemical aspects and the cell dynamics into account.
This does not provide a clear understanding of these internal processes, and there is no
inclusion of bone tissue responses to drugs or hormonal dysfunctions. Later models were
then developed as semi-mechanistic versions of this bone remodeling theory to provide
more realistic outcomes [11–13].

Two research groups were mainly responsible for initiating the biological models. The
first research group was Kamarova et al. [14], who combined the autocrine and paracrine
factors into a single exponential parameter. Thus, bone remodeling could be studied
using power-law approximations, which was an almost perfect fit, since osteoblast and
osteoclast activities could be temporally describe throughout a single remodeling cycle.
This Kamarova et al. model [14] has been further developed by several other authors,
such as Ryser et al. [15], who predicted the spatiotemporal evolution of a single Bone
Multicellular Unit (BMU), and Ayati et al. [16] who reformulated the approach to develop
a diffusion bone remodeling model, which enabled the study of myeloma bone disease.
The second research group was Lemaire et al. [17], who developed a model including the
RANK-RANKL-OPG signaling pathway, combined with the influence of the transforming
growth factor-β (TGFβ) and the parathyroid hormone (PTH) on bone cell activities, while
taking into account the differentiation stages of the osteoblasts and osteoclasts. Owing to
its success, this second approach has been developed further by other groups of authors,
such as Maldonado et al. [18], who added the osteocyte function as a mechanotransducer,
and Pivonka et al. [19], who used a set of activator/repressor functions for a more appro-
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priate description of the receptor–ligand interactions that occur throughout the remodeling
process. The first family of models is simplistic, neglecting the cell differentiation stages
that has an important role in the osteoblast–osteoclast interplay, but has the advantage of
requiring a relatively low number of parameters, facilitating the numerical and computa-
tional calculations. On the other hand, the second family of models reduces the number of
simplifications, but requires a significantly high number of parameters, which may affect
the results [20].

The mechanobiological models follow the models of either Lemaire et al. [17] or Ko-
marova et al. [14]. Owing to the complexity of simultaneously modeling mechanical and
biological components, progress in the implementation of this third category of mathemati-
cal models has been successful only in recent years. In this third category of mathematical
bone remodeling models, the modeling process starts by calculating the mechanical param-
eters such as stress, strain, pressure and fluid velocity, which then regulate the biological
process that includes cell activities and tissue formation [21–23]. However, a primary
limitation of mechanobiological models is the need to solve a series of Partial Differential
Equations (PDEs) and to develop a Finite Element (FE) formulation to implement within
an iterative procedure [24–26].

Few models tackle bone remodeling as a mechano-chemo-biological process, going
from the mechanical stimulus applied to bone up to the generated chemical reactions and
followed by bone cell responses [27–33]. All these works were developed using a number
of simple assumptions to model, the so-called mechanotransduction mechanism/process.
In addition, coupling mechanical and chemical phenomenon together with mechanosens-
ing [34], which is a lesser-known component of the remodeling process [35–37], requires
various simplified assumptions.

Following these steps, with the aim to create a novel mechano-pharmaco-biological
model, the current article provides a first step towards this goal. This work presents a
pharmaco-biological approach that is coupled with a previously developed mechanical
approach [38] and the hormonal effects of another previous study [39,40]. Both of these
previous works were focused on modelling the effects of cyclic loading and sex hormones
on the remodeling process throughout the lifecycle of a person. However, the current work
focuses on the effects of sex hormones combined with that of cortisol, TGFβ and PTH on
bone remodeling in the case of healthy persons, and in the case of persons with an endoge-
nous hypercortisolism known as Cushing disease. Then, the effects of bisphosphonates
and denosumab on the enhancement of the pathologic remodeling process were compared.
Since osteoblastic-lineage cells have been found to govern the bone mass variation, the
mechanical stimulus was included in the proposed model as an exogenous paracrine model
acting on osteoblast concentrations, which, in turn, act on the osteoclast concentrations.

2. Materials and Methods

2.1. Development of the Bone Remodeling Mathematical Model

As aforementioned, the proposed approach is based on combining both of the biologi-
cal models of Komarova et al. [14] and Pivonka et al. [19]. Figure 1 summarizes the cell
dynamics according to the model of Komarova et al. [14], and Figure 2 summarizes that of
Pivonka et al. [19].

The proposed approach retains the structure of the Komarova et al. model [14] and
includes the model parameters according to the Pivonka et al. approach [19]. Then,
the effects of sex hormones (estradiol in women and testosterone in men), cortisol and
antiresorptive drugs (bisphosphonates and denosumab) are taken into consideration. The
evolution of each of these parameters is described according to the concept of Hill functions.
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Figure 1. Diagram of the cell dynamics according to the model of Komarova et al. [14]. Here, g11
reflects the action of TGFβ and g22 the action of IGF, both of them representing autocrine factors
secreted by one cell to influence the other cells of its own lineage. g12 reflects the actions of TGFβ and
IGF, acting as paracrine factors secreted by osteoclasts to modulate osteoblasts. g21 reflects the actions
of RANKL and OPG, acting as paracrine factors secreted by osteoblasts to modulate osteoclasts.

 
Figure 2. Diagram of the cell dynamics according to the model of Pivonka et al. [19], which considers
that osteoblasts modulate osteoclast differentiation through g21. In this diagram, g12 only reflects the
action of TGFβ stored in the bone matrix and released by osteoclasts during the bone resorption phase,
and g21 reflects the actions of RANKL and OPG expressed by osteoblasts to modulate osteoclast
differentiation. The model also involves the effect of PTH, as an external factor to the BMU.

2.1.1. Development of the Pharmaco-Biological Model

Several hormones, cytokines and growth factors influence cell behavior within an
active BMU. The development of the proposed biological model was based on including
each factor according to the concept of Hill functions [41].

Transforming growth factor beta (TGFβ)

TGFβ plays a critical role in bone remodeling. It stimulates the synthesis of matrix
protein, dramatically affects osteoblasts and osteoclasts, and is abundant in bone. During
bone formation, osteoblasts accumulate TGFβ in a latent form in the bone matrix. During
bone resorption, osteoclasts release and activate TGFβ that, in turn, induces the activation
of preosteoblasts recruited for the following formation phase and their migration to prior
resorptive sites [42–44]. Thus, the preosteoblast concentration increases due to the differ-
entiation of osteoblast progenitors into preosteoblasts, promoted by TGFβ [45,46], and
decreases due to the differentiation of preosteoblasts into active osteoblasts, suppressed
by TGFβ [45–49]. Additionally, the active osteoclast concentration decreases owing to
active osteoclast apoptosis (Table 1). Mathematically, these effects can be expressed through
functions: Ta(OC) expressing the stimulation of osteoclast apoptosis by TGFβ; Ta(OB)
expressing the stimulation of osteoblast progenitor differentiation to preosteoblasts by
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TGFβ; and Tr(OB) conveying the repression of preosteoblast differentiation into active
osteoblasts by TGFβ:

Ta(OC) =
TGFβ

KTa1 + TGFβ
(1)

Ta(OB) =
TGFβ

KTa2 + TGFβ
(2)

Tr(OB) =
KTr2

KTr2 + TGFβ
(3)

where TGFβ denotes TGFβ concentration, KTa1 the activation coefficient of active osteo-
clast apoptosis mediated by TGFβ, KTa2 the activation coefficient of osteoblast progenitor
differentiation mediated by TGFβ and KTr2 the repression coefficient of preosteoblast
differentiation mediated by TGFβ.

Table 1. TGFβ actions and their mathematical formulation.

TGFβ

Actions
Stimulation of osteoclast apoptosis (Ta(OC) ).

Stimulation of osteoblast progenitor differentiation into preosteoblasts (Ta(OB) ).
Inhibition of preosteoblast differentiation into active osteoblasts (Tr(OB) ).

Diagram

 

Formulation Ta(OC) = TGFβ
KTa1+TGFβ ; Ta(OB) = TGFβ

KTa2+TGFβ ; Tr(OB) = KTr2
KTr2+TGFβ

Parathyroid hormone (PTH)

PTH is one of the main endocrine regulators of extracellular phosphate and calcium
levels. It up-regulates the RANKL expression by osteoblasts and down-regulates the
OPG expression by the same cells, which leads to osteoclast maturation and activity.
Moreover, PTH stimulates the production of osteocytic soluble RANK (sRANK) that also
promotes osteoclast activity. Meanwhile, PTH suppresses the production of osteocytic
sclerostin (SOST) that suppresses osteoblast activity. Although PTH is likely to promote
bone resorption and formation, its precise mechanism remains unclear, because of the
limited in vivo data [50,51].

In the current model, two actions of PTH are considered: its action on stimulating RANKL
production (Equation (4)) and its action on inhibiting OPG production (Equation (5)):

Pa(OC) =
PTH

KPa1 + PTH
(4)

Pr(OC) =
KPr1

KPr1 + PTH
(5)
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where PTH denotes the PTH concentration, KPa1 the activation coefficient of PTH action
on RANKL production rate, increasing the preosteoclast differentiation rate, and KPr1 the
repression coefficient of PTH action on OPG production rate, which also increases the
preosteoclast differentiation rate, Table 2.

Table 2. PTH actions and their mathematical formulation.

PTH

Actions Stimulation of RANKL production by osteoblasts (Pa(OC) ).
Inhibition of OPG production by osteoblasts (Pr(OC) ).

Diagram

 

Formulation Pa(OC) = PTH
KPa1+PTH ; Pr(OC) = KPr1

KPr1+PTH

Estradiol (Es)

Although the mechanism of estrogen transcriptional activity is not fully understood,
it has been suggested that estrogen regulates bone matrix formation by acting on key
factors involved in osteoblast differentiation and maturation [52]. The main effect of
estrogens is the suppression of bone turnover, probably via osteocytes. Yet, they also inhibit
bone resorption, through direct effects on osteoclasts, although the estrogen effects on
osteoblasts/osteocytes are also likely to take part. A gap between the resorption and the
formation activities has been linked to estrogen deficiency, probably because of the loss of
estrogen effects on reducing the osteoblast apoptosis rate, decreasing NF-κB osteoblastic
activity, lowering oxidative stress and perhaps other as yet undefined effects [53].

Estrogens may be classified into three main classes: estriol, estrone and estradiol. The
latter represents the most potent human endogenous estrogen, with a high affinity for es-
trogen receptors. Thus, the proposed model is based on the effect of estradiol concentration
(Table 3) on cells and bone remodeling through the following two repressive functions:

Es(OC) =
KEs1

KEs1 + Es(t)
(6)

Es(OB) =
KEs2

KEs2 + Es(t)
(7)

where Es(t) denotes the estradiol concentration function, KEs1 the repression coefficient of
estradiol action on osteoclast differentiation and KEs2 the repression coefficient of estradiol
action on osteoblast apoptosis.
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Table 3. Estradiol actions and their mathematical formulation.

Estradiol

Actions Inhibition of osteoclast formation and activity (Es(OC) ).
Inhibition of osteoblast apoptosis (Es(OB) ).

Diagram

Concentration
evolution

Formulation Es(OC) = KEs1
KEs1+Es(t) ; Es(OB) = KEs2

KEs2+Es(t)

Testosterone (Ts)

Androgen receptors have been identified in cultured human fetal osteoblasts using
a nuclear-binding assay. Subsequently, mRNA and the androgen receptor protein have
been identified in osteoblasts. Almost all studies have shown that androgens enhance the
expression of androgen receptors in osteoblasts. Testosterone and 5α-dihydrotestosterone
have been found to stimulate the proliferation of cultured preosteoblasts in distinctive
species, and the collected evidence generally suggests that androgens stimulate osteoblast
differentiation [54].

Moreover, androgen deficiency is most likely to be associated with osteoclast prolif-
eration after orchiectomy. Androgens exert their bone defensive effects indirectly via os-
teoblasts, and orchidectomy generates preosteoblast proliferation, which increases RANKL
secretion, thereby stimulating osteoclast proliferation and activation and resulting in bone
loss. In vitro studies have shown that dihydrotestosterone interacts with androgen recep-
tors on osteoclasts and inhibits bone resorption in human osteoclasts [54].

Since testosterone is the main androgen produced by Leydig cells and represents
the most well-known male sex hormone, the effect of its concentrations (Table 4) on bone
cells and remodeling is included in the model, through the repression function and the
activation function, as follows:

Ts(OC) =
KTs1

KTs1 + Ts(t)
(8)
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Ts(OB) =
Ts(t)

KTs2 + Ts(t)
(9)

where Ts(t) denotes the testosterone concentration function, KTs1 the repression coefficient
of testosterone action on osteoclast activity and KTs2 the activation coefficient of testosterone
action on preosteoblasts.

Table 4. Testosterone actions and their mathematical formulation.

Testosterone

Actions Inhibition of osteoclast activity (Ts(OC) ).
Stimulation of preosteoblast differentiation into active osteoblasts (Ts(OB) ).

Diagram

 

Concentration
evolution

Formulation Ts(OC) = KTs1
KTs1+Ts(t) ; Ts(OB) = Ts

KTs2+Ts(t)

Cortisol (Co)

Cortisol has well-established implications for diverse body systems. Specifically, it
exerts direct negative effects on bone mineral density (BMD) by affecting bone cell growth,
disrupting the bone remodeling process, impairing calcium intestinal absorption and renal
reabsorption, as well as by inhibiting activity of sex steroids [55]. Indeed, an imbalance
in the serum calcium homeostasis increases osteoclast-resorptive activity and eventually
reduces BMD. Even a short bout of elevated cortisol levels may result in a reduced bone
formation rate and a lower BMD. Prolonged cortisol oversecretion is consistently associated
with a high prevalence of osteoporosis and may be linked to a decrease in BMD with age
and to an increase in fragility fracture risk in elderly people [56]. The negative association
between cortisol and BMD and the positive association between cortisol and fracture risk
have been reported in several studies conducted on healthy older adults [57,58]. Moreover,
signs of glucocorticoid-induced osteoporosis (GIOP), including a BMD reduction in the
spine, altered ultrasound bone characteristics, as well as a higher number of morphometric
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fractures than healthy individuals, were found in patients with adrenal incidentaloma, and
diagnosed as having subclinical hypercortisolism [59].

Indeed, it is unclear to date whether physiological cortisol levels also contribute to
bone diseases or not. When performing a four-year analysis of single-point serum cortisol
levels, no correlation was found between BMD, bone markers and bone loss. However,
when analyzing integrated serum cortisol levels over 24 h, a correlation was found with
BMD at the femur and the spine. These findings point out that physiological cortisol
concentrations affect bone density. However, analyzing its effects may be difficult owing to
diurnal variations of serum cortisol [60].

Therefore, the proposed model considers that the cortisol concentration (Table 5)
increases osteoclast activity through the activation function; Co(OC) inhibits osteoblast
formation through the repression function; and Co(OB) inhibits estradiol actions and
testosterone actions according to:

Co(OC) =
Co(t)

KCo1 + Co(t)
(10)

Co(OB) =
KCo2

KCo2 + Co(t)
(11)

CoE(OC) = −Es(OC) (12)

CoE(OB) = −Es(OB) (13)

CoT(OC) = −Ts(OC) (14)

CoT(OB) = −Ts(OB) (15)

where Co(t) denotes the cortisol concentration function, KCo1 the activation coefficient
of cortisol action on preosteoclasts and KCo2 the repression coefficient of cortisol action
on preosteoblasts.

Bisphosphonates (Bp)

Bisphosphonates affect osteoclasts, but not their precursors. In fact, bisphosphonates
are internalized in osteoclasts, probably by endocytosis, and inhibit the synthesis of a key
enzyme in the mevalonate (MVA) pathway. This alters the intracellular proteins, accu-
mulates cytotoxic intermediates, and alters the function of osteoclasts, which presumably
increase their apoptosis rate [61]. Thus, bone resorption is inhibited (Table 6). The inhibition
of osteoclast activity is given by the following repressive function:

Bp(OC) = kBp × Bp (16)

where Bp denotes the administered bisphosphonate concentration and kBp the Hill function
parameter for drug regulation.

Denosumab (De)

Denosumab acts in the same way as OPG does, which is the natural antagonist
receptor for RANKL. Denosumab binds to RANKL, thereby deterring the binding of
RANKL to its receptor, RANK, expressed on both osteoclast and preosteoclast membranes.
Subsequently, the RANK-RANKL signaling pathway is not activated, which impairs
preosteoclast differentiation and osteoclast function, and possibly increases the osteoclast
apoptosis rate. All of these effects inhibit bone resorption [61]. Thus, the following
repression function describes the negative effect of denosumab on osteoclast differentiation
and activity (Table 7):

De(OC) =
Cser

D
0.6667 × dD × 3 × 10−16 (17)

where Cser
D denotes the serum concentration of denosumab and dD its administered dose.
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Table 5. Cortisol actions and their mathematical formulation.

Cortisol

Actions

Stimulation of preosteoclast differentiation into active osteoclasts (Co(OC) ).
Inhibition of osteoblast activity (Co(OB) ).

Inhibition of estradiol actions on osteoblasts and osteoclasts (CoE ).
Inhibition of testosterone actions on osteoblasts and osteoclasts (CoT ).

Diagram

 

 

Concentration
evolution

 

Formulation
Co(OC) = Co(t)

KCo1+Co(t) ; Co(OB) = KCo2
KCo2+Co(t)

CoE(OC) = −Es(OC); CoE(OB) = −Es(OB)
CoT(OC) = −Ts(OC); CoT(OB) = −Ts(OB)

Table 6. Bisphosphonate actions and their mathematical formulation.

Bisphosphonates

Actions Inhibition of osteoclast activity (Bp(OC) ).

Diagram

 

Formulation Bp(OC) = kBp × Bp
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Table 7. Denosumab actions and their mathematical formulation.

Denosumab

Actions Inhibition of preosteoclast differentiation into active osteoclasts, and their
activity (De(OC) ).

Diagram

Formulation De(OC) = Cser
D

0.6667×dD×3×10−16

2.1.2. Mechanical Model

The mechanical approach developed by Bonfoh et al. [62] was adopted on a macro-
scopic scale. The local dimension sites of the BMU, the total number of osteocytes and
their sensitivity as well as the interactions between bone cells were not considered when
formulating the expression of the mechanical stimulus. However, when assuming an elastic
isotropic behavior for bone, the mechanical stimulus can be expressed by:

Δψ(
→
x ) = w

(
→
x
(i)
)

ρ
− W∗ (18)

where W∗ denotes the balance stimulus [63], w
(
→
x
(i)
)

the strain energy density and ρ the

apparent density of bone. The mechanical signal w detected by an osteocyte i at its location
→
x

i
is described by:

w
(
→
x
(i)
)
=

1
2

σ

(
→
x
(i)
)

: ε

(
→
x
(i)
)

(19)

where σ and ε denote the stress and strain tensors, respectively.
Bone is naturally damaged under the effect of the daily stresses it is subjected to,

which leads to its fatigue and thereby to its aging and the occurrence and propagation of
microcracks. To describe the evolution of bone mechanical properties over time, a fatigue
damage formulation can be used [64–66], and the damage resulting from cyclic loading
can be modeled using the life cycle approach suggested by Chaboche [67]. The damage
can reach a maximum value of 1 (one), referring to material failure, and can be expressed
in terms of the number of failure cycles, Nf , given by [68–70]:

Nf = CΔε−ϑ (20)

where Δε denotes the amplitude of the applied microstrains, which refer to the equivalent

strain defined by εeq =
√

2
3 εijεij, and C and ϑ are constants obtained from experimental data

in the literature. These two variables, C and ϑ, depend on the nature of the solicitation [71]:

Nf , c = 1.479·10−21Δε−10.3 for compressive loads (21)
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Nf , t = 3.630·10−32Δε−14.1 for tensile loads (22)

The damage at failure (d = 1) represents the accumulated damage at a given cycle
expressed as:

dn+1 = dn + δd (23)

where δd denotes the incremental damage to the cycle (n + 1).
Nonlinear cumulative damage is generally characterized using the expression

δd =
(

1
Nf

)β
. However, here the following nonlinear simplistic evolution is used:

δd =
1

Nf
(24)

Afterwards, cumulative damage is expressed using accumulated stress cycles:

dn+1 = dn + δd =
N + 1

Nf
(25)

where N denotes the number of loading cycles.
When isotropic properties are assigned to the adopted material, the incremental

damage can be expressed using the compressive and/or the tensile fatigue cycles. Hence,

total damage δdi, which is induced by an osteocyte i at its location
→
x
(i)

, refers to the sum of
both compressive δdi, c and tensile δdi, t damages. The latter depends on the microstrain
amplitude Δεi detected by each osteocyte i [69]:

δdi, c =
1

Nf , c
=

1
1.479·10−21Δε−10.3 (26)

δdi, t =
1

Nf , t
=

1
3.630·10−32Δε−14.1 (27)

δdi = δdi, c + δdi, t (28)

Using the example given by Baste et al. [72], an isotropic formulation for the dam-
age affecting bone properties was developed by multiplying blank modules by (1 − di).
Therefore, the elastic moduli are expressed as:

E = E0
i (1 − di)

2 (29)

Since the damage is only considered in the longitudinal directions, the values of the
shear moduli remain constant.

2.2. Overview of the Whole Model

In order to visualize the effects of all the included parameters more clearly, Figure 3
summarizes the developed model, and it depicts the level at which each parameter acts
and whether this action is a stimulation or an inhibition.
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Figure 3. Summary of the proposed bone remodeling model. The shown numbers indicate the
involved parameter; the positive and negative signs indicate stimulation or inhibition, respectively,
exerted by each factor; the blue color indicates the biological parameters of the model, the green the
pharmacological parameters and the purple the mechanical loading.

The pharmaco-biological parameters mentioned above are grouped into autocrine
parameters, Ai, and paracrine parameters that are subdivided into endogenous factors,
Pi

EN
, produced by the human body, and exogenous ones, Pi

EX
, introduced into the human

body. Hence, the differential equations of cell dynamics can be written as follows:

⇒

⎧⎨
⎩

dOC
dt = αOCOCAOC

OBPOC
EN

+POC
EX − βOCOC

dOB
dt = αOBOBAOB

OCPOB
EN − βOBOB

(30)

where OC denotes the osteoclast concentration, OB the osteoblast concentration, αi the cell
production activities and βi the cell elimination activities, with:

POC
EN

← Ta(OC) + Pr(OC) + Pa(OC) + Es(OC) + Ts(OC) + Co(OC) + CoE(OC) + CoT(OC)

POB
EN

← Ta(OB) + Tr(OB) + Es(OB) + Ts(OB) + Co(OB) + CoE(OB) + CoT(OB)

POC
EX

← Bp(OC) + De(OC)

2.3. Mechanobiological Coupling

Nowadays, osteoclast activity is acknowledged as being modulated by the osteoblastic
cell lineage. By adapting the model of Pastrama et al. [31] to that of Bonfoh et al. [62], the
proposed approach considers that the mechanical stimulus, ψ, that the bone is subjected
to, acts as an exogenous paracrine factor on the variation of osteoblast concentration,
according to:

⇒

⎧⎨
⎩

dOC
dt = αOCOCAOC

OBPOC
EN

+POC
EX − βOCOC

dOB
dt = αOBOBAOB+POB

EX OCPOB
EN − βOBOB

(31)

with:
POB

EX
← a + be−γΔψ (32)

where a = 1.6, b = −0.49 and γ = 16.67 g/J.
As mentioned above, the mechanical stimulus was included as an exogenous paracrine

model acting on the osteoblast concentration since osteoblastic-lineage cells govern the
bone mass variation. The osteoblast ability to influence osteoclast formation in a paracrine
manner has been clearly demonstrated over the years. In fact, osteoblasts modulate
osteoclast formation and activity by synthesizing a number of cytokines and growth factors.
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This is achieved through direct contact between the two cells, established by exchanging
small water-soluble molecules through gap junctions [73].

In summary, the mechanical loading that the bone is subjected to activates osteoblasts
and increases their concentration according to its intensity. The increase in osteoblast
concentration generates higher RANKL and OPG production rates, which modulates the
appropriate osteoclast concentration for the subsequent bone resorption activity. Bone
resorption releases the matrix-embedded factors, TGFβs, that act on both cell populations
to regulate their differentiation, activity and apoptosis. Hormones, including PTH, cortisol,
estradiol and testosterone, are also important factors that are external to the BMU, but
which regulate the cell dynamics during the remodeling event (Figure 4). The estradiol
parameter is considered when the study is focused on the remodeling process in women,
and the testosterone parameter is considered when the study is focused on the male
remodeling process. Furthermore, when the cortisol concentration is higher than under
physiologic conditions, RANKL production by osteoblastic cells increases, inducing an
increase in the osteoclast differentiation rate, and thereby leading to a higher resorption
rate. This affects the bone response to the mechanical loading by decreasing the bone mass
density and altering its mechanical response.

 

Figure 4. Diagram summarizing the proposed mechano-pharmaco-biological model.

2.4. Bone Mass Evolution

Bone mass evolution throughout time is giving by:

dm
dt

= (kOB × OB)− (kOC × OC) (33)

where kOB and kOC denote the normalized formation and resorption activities, respectively,
and OB and OC denote the osteoblast and osteoclast concentrations, respectively.
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3. Discussion and Conclusions

The focus of this article was to provide a pharmaco-biological bone remodeling model
that could be easily coupled with mechanical models and was extendable to be able to
include various parameters, and consequently allowing the simulation of bone physiologic
metabolism for pathologic disorders. At present, the model is designed to simulate the
influence of an endogenous hypercortisolism, which is caused by an excessive secretion
of cortisol, on bone response to mechanical stimulus and fatigue damage to which it is
subjected. The current model combines two of the most current biological models used to
predict the evolution of bone mechanical properties.

The most important parameters considered were the autocrine, endogenous paracrine or
exogenous paracrine parameters; in short, these are the different ways any parameter may act
on bone cell dynamics during the remodeling event. Previous models either neglected various
parameters [14,16,74], or the number of parameters were fixed [17,19,75,76]. However, the current
model is easily extendable and can include various other parameters that can provide
support in the remodeling process, since these parameters primarily act on osteoblasts or
on osteoclasts, whether they are endogenous or exogenous. The proposed approach is able
to track the changes in bone remodeling that are specific to each parameter. Consequently,
it gives a better overview of the remodeling process by regrouping several parameters at
once, instead of simulating one or a limited number of parameters each time. Furthermore,
it is able to choose to neglect any unneeded parameter, according to the goal of the study
in question.

The current model has some limitations since it assumes an isotropic homogenous
material, which idealizes the bone behavior and can affect the outcome. Additionally, the
model does not consider any differentiation stages of the bone cells in the mathematical
formulations of the cell dynamics. Still, the aim was to provide a mathematical model that
applied to any metabolic bone disorder, any drug administered to treat such disorder, and
at the same time to track the evolution of hormones and growth factors incorporated in the
model, in order to be able to adjust the drug dosage specifically for each patient.

In summary, the current model was developed based on the role of osteoblasts and
osteoclasts in renewing bone, as the main players in the remodeling process. All the other
factors involved were considered according to their effects on each of the cell lineages
involved. Yet, it is well known that a number of these factors, such as the hormonal
factors, are provided to osteoblasts and osteoclasts through blood microvessels across
bone tissue. This draws the attention to the general problem of the pressure that the
microvessel networks exert on bone, and their role in the bone remodeling response to
the mechanical stimuli applied to it. Therefore, more accurate results may be found when
taking the effect of microvessel networks into account in the mathematical and numerical
bone modeling equations.

In forthcoming studies, the results of the current model will be analyzed, and the work
will be extended to implement the finite element method, and to visualize the effects of
hypercortisolism on a virtual 3D bone model. The proposed model can be confirmed and
validated by conducting an experimental study. This will reveal its accuracy in simulating
and predicting bone strength under cyclic loading, considering the physiologic conditions
and the disorder related to hypercortisolism as described.

Author Contributions: All the authors contributed to this work: R.B.K. and A.B. for the mathematical
model formulation, search for information about the model, and writing; M.C. and J.M.R.S.T. in
the analysis, correction, discussion and writing. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

173



Mathematics 2021, 9, 1401

References

1. Borgström, F.; Karlsson, L.; Ortsäter, G.; Norton, N.; Halbout, P.; Cooper, C.; Lorentzon, M.; McCloskey, E.V.; Harvey, N.C.; Javaid,
M.K.; et al. Fragility fractures in Europe: Burden, management and opportunities. Arch. Osteoporos. 2020, 15, 1–21. [CrossRef]

2. Beaupre, G.S.; Orr, T.E.; Carter, D.R. An approach for time-dependent bone modeling and remodeling-theoretical development.
J. Orthop. Res. 1990, 8, 651–661. [CrossRef]

3. Carter, D.R.; Fyhrie, D.P.; Whalen, R. Trabecular bone density and loading history: Regulation of connective tissue biology by
mechanical energy. J. Biomech. 1987, 20, 785–794. [CrossRef]

4. Carter, D.; Orr, T.; Fyhrie, D. Relationships between loading history and femoral cancellous bone architecture. J. Biomech. 1989, 22,
231–244. [CrossRef]

5. Doblaré, M.; García, J. Anisotropic bone remodelling model based on a continuum damage-repair theory. J. Biomech. 2002, 35,
1–17. [CrossRef]

6. Jacobs, C.R.; Levenston, M.E.; Beaupré, G.S.; Simo, J.C.; Carter, D.R. Numerical instabilities in bone remodeling simulations: The
advantages of a node-based finite element approach. J. Biomech. 1995, 28, 449–459. [CrossRef]

7. Mullender, M.; Huiskes, R.; Weinans, H. A physiological approach to the simulation of bone remodeling as a self-organizational
control process. J. Biomech. 1994, 27, 1389–1394. [CrossRef]

8. Mullender, M.; Huiskes, R. Osteocytes and bone lining cells: Which are the best candidates for mechano-sensors in cancellous
bone? Bone 1997, 20, 527–532. [CrossRef]

9. Frost, H.M. The mechanostat: A proposed pathogenic mechanism of osteoporoses and the bone mass effects of mechanical and
non mechanical agents. Bone Miner. 1987, 2, 73–85. [PubMed]

10. Wolff, J. Das Gesetz der Transformation der Knochen. DMW Dtsch. Med. Wochenschr. 1893, 19, 1222–1224. [CrossRef]
11. Huiskes, H.R.; Ruimerman, R.R.; Van Lenthe, G.H.; Janssen, J.D. Effects of mechanical forces on maintenance and adaptation of

form in trabecular bone. Nature 2000, 405, 704–706. [CrossRef]
12. Rouhi, G.; Vahdati, A.; Li, X.; Sudak, L. A three-dimensional computer model to simulate spongy bone remodeling under

overload using a semi-mechanistic bone remodeling theory. J. Mech. Med. Biol. 2015, 15, 1550061. [CrossRef]
13. Van Schaick, E.; Zheng, J.; Ruixo, J.J.P.; Gieschke, R.; Jacqmin, P. A semi-mechanistic model of bone mineral density and bone

turnover based on a circular model of bone remodeling. J. Pharmacokinet. Pharmacodyn. 2015, 42, 315–332. [CrossRef]
14. Komarova, S.V.; Smith, R.J.; Dixon, S.; Sims, S.M.; Wahl, L.M. Mathematical model predicts a critical role for osteoclast autocrine

regulation in the control of bone remodeling. Bone 2003, 33, 206–215. [CrossRef]
15. Ryser, M.D.; Nigam, N.; Komarova, S.V. Mathematical Modeling of Spatio-Temporal Dynamics of a Single Bone Multicellular

Unit. J. Bone Miner. Res. 2009, 24, 860–870. [CrossRef]
16. Ayati, B.P.; Edwards, C.M.; Webb, G.F.; Wikswo, J.P. A mathematical model of bone remodeling dynamics for normal bone cell

populations and myeloma bone disease. Biol. Direct 2010, 5, 28. [CrossRef] [PubMed]
17. Lemaire, V.; Tobin, F.L.; Greller, L.D.; Cho, C.R.; Suva, L.J. Modeling the interactions between osteoblast and osteoclast activities

in bone remodeling. J. Theor. Biol. 2004, 229, 293–309. [CrossRef]
18. Maldonado, S.; Borchers, S.; Findeisen, R.; Allgower, F. Mathematical modeling and analysis of force induced bone growth. In

Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA,
30 August–3 September 2006; pp. 3154–3157.

19. Pivonka, P.; Zimak, J.; Smith, D.W.; Gardiner, B.S.; Dunstan, C.; Sims, N.A.; Martin, T.J.; Mundy, G.R. Model structure and control
of bone remodeling: A theoretical study. Bone 2008, 43, 249–263. [CrossRef] [PubMed]

20. Peyroteo, M.M.A.; Belinha, J.; Dinis, L.M.J.S.; Jorge, R.M.N. Bone remodeling: An improved spatiotemporal mathematical model.
Arch. Appl. Mech. 2019, 90, 635–649. [CrossRef]

21. Ghiasi, M.S.; Chen, J.; Vaziri, A.; Rodriguez, E.K.; Nazarian, A. Bone fracture healing in mechanobiological modeling: A review of
principles and methods. Bone Rep. 2017, 6, 87–100. [CrossRef] [PubMed]

22. Aitoumghar, I.; Barkaoui, A.; Chabrand, P. Mechanobiological Behavior of a Pathological Bone. In BioMechanics and Functional
Tissue Engineering; IntechOpen: London, UK, 2021.

23. Kahla, R.B.; Barkaoui, A.; Salah, F.Z.B.; Chafra, M. Cell Interaction and Mechanobiological Modeling of Bone Remodeling Process.
In BioMechanics and Functional Tissue Engineering; IntechOpen: London, UK, 2020.

24. Anderson, D.D.; Thomas, T.P.; Marin, A.C.; Elkins, J.M.; Lack, W.D.; Lacroix, D. Computational techniques for the assessment of
fracture repair. Injury 2014, 45, S23–S31. [CrossRef]

25. Betts, D.C.; Müller, R. Mechanical regulation of bone regeneration: Theories, models, and experiments. Front. Endocrinol. 2014,
5, 211. [CrossRef]

26. Isaksson, H. Recent advances in mechanobiological modeling of bone regeneration. Mech. Res. Commun. 2012, 42, 22–31.
[CrossRef]

27. Avval, P.T.; Klika, V.; Bougherara, H. Predicting bone remodeling in response to total hip arthroplasty: Computational study
using mechanobiochemical model. J. Biomech. Eng. 2014, 136, 051002. [CrossRef] [PubMed]

28. Klika, V.; Pérez, M.A.; García-Aznar, J.M.; Maršík, F.; Doblaré, M. A coupled mechano-biochemical model for bone adaptation. J.
Math. Biol. 2014, 69, 1383–1429. [CrossRef]

174



Mathematics 2021, 9, 1401

29. Lerebours, C.; Buenzli, P.R.; Scheiner, S.; Pivonka, P. A multiscale mechanobiological model of bone remodelling predicts
site-specific bone loss in the femur during osteoporosis and mechanical disuse. Biomech. Model. Mechanobiol. 2016, 15, 43–67.
[CrossRef] [PubMed]

30. Martin, M.; Sansalone, V.; Cooper, D.M.L.; Forwood, M.R.; Pivonka, P. Mechanobiological osteocyte feedback drives mechanostat
regulation of bone in a multiscale computational model. Biomech. Model. Mechanobiol. 2019, 18, 1475–1496. [CrossRef]

31. Pastrama, M.-I.; Scheiner, S.; Pivonka, P.; Hellmich, C. A mathematical multiscale model of bone remodeling, accounting for pore
space-specific mechanosensation. Bone 2018, 107, 208–221. [CrossRef]

32. Rouhi, G.; Epstein, M.; Sudak, L.; Herzog, W. Modeling bone resorption using Mixture Theory with chemical reactions. J. Mech.
Mater. Struct. 2007, 2, 1141–1155. [CrossRef]

33. Scheiner, S.; Pivonka, P.; Hellmich, C. Coupling systems biology with multiscale mechanics, for computer simulations of bone
remodeling. Comput. Methods Appl. Mech. Eng. 2013, 254, 181–196. [CrossRef]

34. Rouhi, G.; Vahdati, A.; Li, X.; Sudak, L.J. An investigation into the effects of osteocytes density and mechanosensitivity on
trabecular bone loss in aging and osteoporotic individuals. Biomed. Eng. Lett. 2015, 5, 302–310. [CrossRef]

35. Hinton, P.V.; Rackard, S.M.; Kennedy, O.D. In Vivo Osteocyte Mechanotransduction: Recent Developments and Future Directions.
Curr. Osteoporos. Rep. 2018, 16, 746–753. [CrossRef]

36. Klein-Nulend, J.; Bakker, A.D.; Bacabac, R.G.; Vatsa, A.; Weinbaum, S. Mechanosensation and transduction in osteocytes. Bone
2013, 54, 182–190. [CrossRef]

37. Ashrafi, M.; Gubaua, J.E.; Pereira, J.T.; Gahlichi, F.; Doblaré, M. A mechano-chemo-biological model for bone remodeling with a
new mechano-chemo-transduction approach. Biomech. Model. Mechanobiol. 2020, 19, 2499–2523. [CrossRef]

38. Barkaoui, A.; Ben Kahla, R.; Merzouki, T.; Hambli, R. Age and gender effects on bone mass density variation: Finite elements
simulation. Biomech. Model. Mechanobiol. 2016, 16, 521–535. [CrossRef]

39. Ben Kahla, R.; Barkaoui, A.; Merzouki, T. Age-related mechanical strength evolution of trabecular bone under fatigue damage for
both genders: Fracture risk evaluation. J. Mech. Behav. Biomed. Mater. 2018, 84, 64–73. [CrossRef] [PubMed]

40. Barkaoui, A.; Ben Kahla, R.; Merzouki, T.; Hambli, R. Numerical Simulation of Apparent Density Evolution of Trabecular Bone
under Fatigue Loading: Effect of Bone Initial Properties. J. Mech. Med. Biol. 2019, 19, 1950041. [CrossRef]

41. Hill, A.V. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J. Physiol. 1910,
40, 4–7.

42. Tamma, R.; Zallone, A. Osteoblast and osteoclast crosstalks: From OAF to Ephrin. Inflamm. Allergy Drug Targets 2012, 11, 196–200.
[CrossRef]

43. Tang, Y.; Wu, X.; Lei, W.; Pang, L.; Wan, C.; Shi, Z.; Zhao, L.; Nagy, T.; Peng, X.; Hu, J.; et al. TGF-β1–induced migration of bone
mesenchymal stem cells couples bone resorption with formation. Nat. Med. 2009, 15, 757–765. [CrossRef]

44. Oumghar, I.A.; Barkaoui, A.; Chabrand, P. Toward a Mathematical Modeling of Diseases’ Impact on Bone Remodeling: Technical
Review. Front. Bioeng. Biotechnol. 2020, 8, 1236. [CrossRef]

45. Erlebacher, A.; Filvaroff, E.H.; Ye, J.-Q.; Derynck, R. Osteoblastic Responses to TGF-β during Bone Remodeling. Mol. Biol. Cell
1998, 9, 1903–1918. [CrossRef]

46. Janssens, K.; Dijke, P.T.; Janssens, S.; Van Hul, W. Transforming Growth Factor-β1 to the Bone. Endocr. Rev. 2005, 26, 743–774.
[CrossRef]

47. Alliston, T.; Choy, L.; Ducy, P.; Karsenty, G.; Derynck, R. TGF-β-induced repression of CBFA1 by Smad3 decreases cbfa1 and
osteocalcin expression and inhibits osteoblast differentiation. EMBO J. 2001, 20, 2254–2272. [CrossRef] [PubMed]

48. Bonewald, L.F.; Dallas, S.L. Role of active and latent transforming growth factor β in bone formation. J. Cell. Biochem. 1994, 55,
350–357. [CrossRef]

49. Mundy, G.R.; Boyce, B.F.; Yoneda, T.; Bonewald, L.F.; Roodman, G.D. Osteoporosis; Marcus, R., Feldman, D., Kelsey, J., Eds.;
Academic Press: New York, NY, USA, 1996.

50. Siddiqui, J.A.; Johnson, J.; Le Henaff, C.; Bitel, C.L.; Tamasi, J.A.; Partridge, N.C. Catabolic Effects of Human PTH (1–34) on
Bone: Requirement of Monocyte Chemoattractant Protein-1 in Murine Model of Hyperparathyroidism. Sci. Rep. 2017, 7, 15300.
[CrossRef]

51. Wein, M.N.; Kronenberg, H.M. Regulation of Bone Remodeling by Parathyroid Hormone. Cold Spring Harb. Perspect. Med. 2018,
8, a031237. [CrossRef]

52. Khosla, S.; Monroe, D.G. Regulation of Bone Metabolism by Sex Steroids. Cold Spring Harb. Perspect. Med. 2018, 8, a031211.
[CrossRef] [PubMed]

53. Okman-Kilic, T. Estrogen deficiency and osteoporosis. In Advances in Osteoporosis; IntechOpen: London, UK, 2015.
54. Mohamad, N.V.; Soelaiman, I.-N.; Chin, K.-Y. A concise review of testosterone and bone health. Clin. Interv. Aging 2016, 11,

1317–1324. [CrossRef]
55. Chiodini, I.; Torlontano, M.; Carnevale, V.; Trischitta, V.; Scillitani, A. Skeletal involvement in adult patients with endogenous

hypercortisolism. J. Endocrinol. Investig. 2008, 31, 267–276. [CrossRef] [PubMed]
56. Mathis, S.L.; Farley, R.S.; Fuller, D.K.; Jetton, A.E.; Caputo, J.L. The Relationship between Cortisol and Bone Mineral Density in

Competitive Male Cyclists. J. Sports Med. 2013, 2013, 1–7. [CrossRef]
57. Çetin, A.; Gökçe-Kutsal, Y.; Çeliker, R. Predictors of bone mineral density in healthy males. Rheumatol. Int. 2001, 21, 85–88.

[CrossRef]

175



Mathematics 2021, 9, 1401

58. Reynolds, R.M.; Dennison, E.M.; Walker, B.R.; Syddall, H.E.; Wood, P.J.; Andrew, R.; Phillips, D.I.; Cooper, C. Cortisol Secretion
and Rate of Bone Loss in a Population-Based Cohort of Elderly Men and Women. Calcif. Tissue Int. 2005, 77, 134–138. [CrossRef]

59. Osella, G.; Ventura, M.; Ardito, A.; Allasino, B.; Termine, A.; Saba, L.; Vitetta, R.; Terzolo, M.; Angeli, A. Cortisol secretion, bone
health, and bone loss: A cross-sectional and prospective study in normal nonosteoporotic women in the early postmenopausal
period. Eur. J. Endocrinol. 2012, 166, 855–860. [CrossRef]

60. Siggelkow, H.; Etmanski, M.; Bozkurt, S.; Groβ, P.; Koepp, R.; Brockmöller, J.; Tzvetkov, M.V. Genetic polymorphisms in
11β-hydroxysteroid dehydrogenase type 1 correlate with the postdexamethasone cortisol levels and bone mineral density in
patients evaluated for osteoporosis. J. Clin. Endocrinol. Metab. 2014, 99, E293–E302. [CrossRef]

61. Anastasilakis, A.D.; Polyzos, S.A.; Makras, P. Therapy of endocrine disease: Denosumab vs bisphosphonates for the treatment of
postmenopausal osteoporosis. Eur. J. Endocrinol. 2018, 179, R31–R45. [CrossRef]

62. Bonfoh, N.; Novinyo, E.; Lipinski, P. Modeling of bone adaptative behavior based on cells activities. Biomech. Model. Mechanobiol.
2010, 10, 789–798. [CrossRef] [PubMed]

63. García-Aznar, J.M.; Rueberg, T.; Doblare, M. A bone remodelling model coupling microdamage growth and repair by 3D
BMU-activity. Biomech. Model. Mechanobiol. 2005, 4, 147–167. [CrossRef] [PubMed]

64. Martin, B. A theory of fatigue damage accumulation and repair in cortical bone. J. Orthop. Res. 1992, 10, 818–825. [CrossRef]
65. Nagaraja, S.; Couse, T.L.; Guldberg, R.E. Trabecular bone microdamage and microstructural stresses under uniaxial compression.

J. Biomech. 2005, 38, 707–716. [CrossRef] [PubMed]
66. Zioupos, P.; Casinos, A. Cumulative damage and the response of human bone in two-step loading fatigue. J. Biomech. 1998, 31,

825–833. [CrossRef]
67. Chaboche, J.-L. Continuous damage mechanics—A tool to describe phenomena before crack initiation. Nucl. Eng. Des. 1981, 64,

233–247. [CrossRef]
68. Pattin, C.A.; Caler, W.E.; Carter, D.R. Cyclic mechanical property degradation during fatigue loading of cortical bone. J. Biomech.

1996, 29, 69–79. [CrossRef]
69. Martin, R.B.; Burr, D.B.; Sharkey, N.A. Skeletal Tissue Mechanics; Springer: Berlin/Heidelberg, Germany, 1998; Volume 190.
70. Martin, R.B. Fatigue damage, remodeling, and the minimization of skeletal weight. J. Theor. Biol. 2003, 220, 271–276. [CrossRef]
71. Hambli, R. Connecting mechanics and bone cell activities in the bone remodeling process: An integrated finite element modeling.

Front. Bioeng. Biotechnol. 2014, 2, 6. [CrossRef]
72. Baste, S.; el Guerjouma, R.; Gérard, A. Mesure de l’endommagement anisotrope d’un composite céramique-céramique par une

méthode ultrasonore. Rev. Phys. Appliquée 1989, 24, 721–731. [CrossRef]
73. Chen, X.; Wang, Z.; Duan, N.; Zhu, G.; Schwarz, E.M.; Xie, C. Osteoblast–osteoclast interactions. Connect. Tissue Res. 2018, 59,

99–107. [CrossRef] [PubMed]
74. Martin, M.; Buckland-Wright, J. Sensitivity analysis of a novel mathematical model identifies factors determining bone resorption

rates. Bone 2004, 35, 918–928. [CrossRef]
75. Bahia, M.T.; Hecke, M.B.; Mercuri, E.G.F. Image-based anatomical reconstruction and pharmaco-mediated bone remodeling

model applied to a femur with subtrochanteric fracture: A subject-specific finite element study. Med. Eng. Phys. 2019, 69, 58–71.
[CrossRef] [PubMed]

76. Scheiner, S.; Pivonka, P.; Smith, D.W.; Dunstan, C.; Hellmich, C. Mathematical modeling of postmenopausal osteoporosis and its
treatment by the anti-catabolic drug denosumab. Int. J. Numer. Methods Biomed. Eng. 2014, 30, 1–27. [CrossRef]

176



mathematics

Article

Methodology to Calibrate the Dissection Properties of Aorta
Layers from Two Sets of Experimental Measurements

Itziar Ríos-Ruiz 1,*, Myriam Cilla 1,2,3, Miguel A. Martínez 1,3 and Estefanía Peña 1,3,*

��������	
�������

Citation: Ríos-Ruiz, I.; Cilla, C.;

Martínez, M.A.; Peña, E.

Methodology to Calibrate the

Dissection Properties of Aorta Layers

from Two Sets of Experimental

Measurements. Mathematics 2021, 9,

1593. https://doi.org/

10.3390/math9141593

Academic Editor: Rafael Sebastian

Received: 31 May 2021

Accepted: 2 July 2021

Published: 7 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Applied Mechanics and Bioengineering, Aragón Institute of Engineering Research (I3A),
University of Zaragoza, 50018 Zaragoza , Spain; mcilla@unizar.es (M.C.); miguelam@unizar.es (M.A.M.)

2 Centro Universitario de la Defensa, Academia General Militar, 50090 Zaragoza, Spain
3 CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza, Spain
* Correspondence: itziar@unizar.es (I.R.-R.); fany@unizar.es (E.P.)

Abstract: Aortic dissection is a prevalent cardiovascular pathology that can have a fatal outcome.
However, the mechanisms that trigger this disease and the mechanics of its progression are not
fully understood. Computational models can help understand these issues, but they need a proper
characterisation of the tissues. Therefore, we propose a methodology to obtain the dissection
parameters of all layers in aortic tissue via the computational modelling of two different delamination
tests: the peel and mixed tests. Both experimental tests have been performed in specimens of porcine
aorta, where the intima-media and media-adventitia interfaces, as well as the medial layer, were
dissected. These two tests have been modelled using a cohesive zone formulation for the separating
interface and a hyperelastic anisotropic material model via an implicit static analysis. The dissection
properties of each interface have been calibrated by reproducing the force-displacement curves
obtained in the experimental tests. The values of peak and mean force of the experiments were fitted
with an error below 10%. With this methodology, we intend to contribute to the development of
reliable numerical tools for simulating aortic dissection and aortic aneurysm rupture.

Keywords: aortic dissection; delamination tests; cohesive zone model; porcine aorta; vascular
mechanics

1. Introduction

According to the World Health Organization, cardiovascular disease, the treatment of
which results in a major economic burden, remains the principal cause of mortality and
morbidity worldwide [1]. Among all, aortic dissection and aortic aneurysm rupture are
acute life threatening events. Aortic dissection usually begins with an intimal tear in the
wall, followed by a fissure in a radial direction. The crack then advances into the medial
layer, or between the media and the adventitia, causing the separation of the wall layers and
creating a false lumen through which blood can flow [2]. Aortic aneurysms lead to Stanford
type A dissections—affecting the ascending aorta—or type B dissections—affecting the
descending thoracic aorta [3]. The fissure of the intima that leads to dissection of the
ascending aorta is usually located a few centimetres above the coronary arteries, while
those leading to dissection of the descending aorta are located a few centimetres below the
left subclavian artery [4]. Therefore, it is a location specific disease and its study should
consider the particular biomechanical environment and properties of each site. In addition
to the above pathologies, a trauma of the thoracic aorta during traffic accidents can initiate
the dissection process or cause an instantaneous rupture. Mortality estimates suggest that
20% of cases of Type A acute aortic dissection die before reaching the hospital [5]. There
is about 1% mortality per hour within the first 48 h upon arrival [5] and postoperative
survival at 1 year postdischarge after surgical repair is evaluated at 96.1% [6].

Existing studies in the literature have investigated the dissection of aortic media,
but mechanical investigations of arterial wall delamination of the layer interfaces and the
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numerical simulations have been limited. Sommer et al. [7] worked on understanding
the mechanisms of fissure propagation during aortic dissection. To do so, they performed
uniaxial tension tests in the radial direction to study the dissection strength throughout
the lamellae of the vessels and medial layer peeling tests to obtain the fracture energy
required for fracture propagation, both from healthy human abdominal aortas. The same
group also investigated the mechanical properties of the aneurysmal media and dissected
human thoracic aortas, including the less studied dissection behaviour in shear mode
or mode II [8]. Pasta et al. [9] investigated the dissection properties of non-aneurysmal
and aneurysmal human ascending thoracic aortas and Angouras et al. [10] analysed the
dissection properties of aneurysmal ascending thoracic aortas. Both groups also performed
microstructure-based models of ascending thoracic aortic aneurysms to further characterise
and understand the pathological process [11,12]. Manopoulos et al. [13] characterised
the mechanical properties of specimens from ascending aortas after type A dissection.
Amabili et al. [14] investigated the mechanical properties of the dissected layers of one
single human aneurysmal aorta after chronic Type A (Stanford) dissection. Leng et al. [15]
quantified the energy release rate of the medial layer of a porcine abdominal aorta via two
delamination experiments: the mixed-mode delamination experiment and the “T”-shaped
delamination experiment. All these studies analysed the dissection properties of the medial
layer for porcine or humans, but not the dissection properties of the intima-media or media-
adventitia interfaces, which are necessary to understand crack propagation along the
arterial wall. Recently, FitzGibbon and McGarry [16] presented an experimental technique
to generate and characterise mode II crack initiation and propagation on excised ascending
bovine aorta. Regarding the numerical simulations, several studies have analysed the
behaviour of arterial tissue under delamination mode I [15,17,18] or mixed mode along the
medial layer [15,16], but few investigations have focused on comparing the contributions of
these two failure modes to the process of delamination of the layer interfaces. In each case,
a cohesive zone (CZ) formulation has been used to model the propagation of tissue crack.
Gasser and Holzapfel [17] used a cohesion law within the extended finite element (FE)
method to simulate the controlled peeling (dissection) experiments by Sommer et al. [7].
Subsequently, Ferrara and Pandolfi [18] applied an anisotropic cohesion law to reproduce
the anisotropic behavior observed in the peeling tests. Noble et al. [19] computationally
investigated arterial perforation or dissection by an external body. Leng et al. [15] used a
CZ model to simulate the arterial wall delamination under shear mode-dominated failure
and the opening “T”-shaped delamination modes. Recently, FitzGibbon and McGarry [16]
calibrated the mode II fracture energy based on measurement of crack propagation rates
by a CZ model. However, a methodology to combine “T”-shaped and mixed delamination
experiments with CZ models in order to fit the normal delamination properties for media
and interface layers has not been presented yet in the literature.

Therefore, the aim of this paper is to provide a computational framework to analyse
the normal delamination properties in order to gain a more in-depth understanding of
the possible mechanisms leading to these fatal events. Using data taken from “T”-shaped
(also known as peel) and mixed delamination experiments, together with a FE model that
includes a CZ formulation to model interface properties, we estimate the normal failure
properties of the medial and interface layers of the descending thoracic aorta. We are
motivated by the need for reliable numerical tools for simulating aortic dissection and
aortic aneurysm rupture.

2. Materials and Methods

All the specimens used in the experimental testing were obtained from one healthy
porcine aorta harvested post-mortem. The 45 kg, 3.5 months old female pig was sacri-
ficed for a different study that does not interfere with the aorta or the circulatory system.
The elastic properties of the arteries were fitted from uniaxial tensile tests. The dissection
properties among different layers in the aorta were calibrated via two dissection tests:
the peel and the mixed tests.
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2.1. Experiments

From a proximal porcine descending thoracic aorta, a total of seven 5 × 20 mm
strips were cut in each longitudinal and circumferential directions, all of them located
in a close position. One sample from each direction was used to characterise the elastic
properties of the aorta by means of uniaxial tension tests. The other 12 samples were
divided into two sets of 6 samples, one for the peeling test and the other for the mixed test.
The specimens were dissected throughout each different arterial layer, i.e., intima-media
(IM), media-adventitia (MA) and within the media (M).

Simple uniaxial tension tests were performed in a high precision drive Instron Mi-
crotester 5548 system using a 10 N load cell. A non-contact Instron 2663-281 video-
extensometer was used to measure the strain during the tests. Three loading and unloading
stress levels were performed (60, 120 and 240 kPa uniaxial stress) at 30%/min of strain
rate. Five preconditioning cycles at all load levels were applied. The engineering stress
(first Piola Kirchhoff stress tensor P) was computed as Pi = Fi

ti wi
, where Fi is the load

registered by the Instron machine and ti and wi are the initial thickness and width of
each strip in circumferential and longitudinal directions. Only the elastic properties of the
tissue were considered, therefore only the experimental data at the second loading level
(120 kPa) after preconditioning was considered. For further details about the uniaxial tests,
see Peña et al. [20].

For the dissection tests, an initial incision of around 5 mm was performed in each strip,
facilitating the separation of the layers of interest. This selective incision was carefully
performed with the aid of magnifying eyeglasses, which facilitated the perception of the
different layers. In the peel test, each separated part of the specimen was pulled away
by clamps. These clamps moved in opposite directions at a speed of 1 mm/min each,
separating the layers of the specimen in the direction normal to the interface plane. These
tests were carried out in an Instron BioPulsTM low-force planar-biaxial Testing System.
In the mixed test, the intimal side of the strip was glued to a clamp plate and fixed during
the test and therefore only the other flap was gripped in a moving clamp. This clamp
moved at a speed of 1 mm/min almost parallel to the fixed and not-yet delaminated
interface, via the high precision drive Instron Microtester 5548 system.

The experiments were approved by the Ethical Committee for Animal Research of
the University of Zaragoza and all procedures were carried out in accordance with the
“Principles of Laboratory Animal Care” (86/609/EEC Norm).

2.2. Elastic Properties of Aortic Tissue

The Gasser-Ogden-Holzapfel (GOH) model presented by Gasser et al. [21] is used to
reproduce the elastic response of the aorta tissue. This model proposed by the application
of a generalised structure tensor H = κ1 + (1 − 3κ)M0 (where 1 is the identity tensor and
M0 = m0 ⊗ m0 is a structure tensor defined using unit vector m0 to specify the mean
orientation of fibres) is considered. The strain energy function (SEF) of the GOH model is
as follows:

Ψ = μ(I1 − 3)+ ∑
i=4,6

[
k1

2k2

(
exp

{
k2Êi

]
} − 1

)]
, (1)

where I1 = trC̄ represents the first invariant of the Cauchy-Green tensor (C = FTF), F is
the deformation gradient [22] and

Êi = κ I1 + (1 − 3κ)Ii − 1 i = 4, 6 (2)

where
I4 = λ2

θ cos2(θ) + λ2
z sin2(θ), I6 = λ2

θ cos2(−θ) + λ2
z sin2(−θ). (3)

In this equation, I1 represents the first invariant of the Cauchy-Green tensor [22],
μ > 0 and k1 > 0 are stress-like parameters and k2 > 0 and κ are dimensionless. Here, θ is
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the orientation angle relative to the circumferential direction. κ ∈ [0, 1/3] is a dispersion
parameter (the same for each collagen fibre family).

2.3. Fracture Properties of Aortic Tissue

To model the fracture behaviour of the interface between the arterial layers, we
propose a Traction Separation Law (TSL) that relates the interfacial traction t (normal and
shear) with interfacial displacement δ [23]. The components of the traction stress vector
(τn, τs, and τt) represent the normal and the two shear tractions along the interface and the
related displacements are δn, δs, and δt.

The elastic behavior of the interface is defined by

τ =

⎛
⎝ Knn 0 0

0 Kss 0
0 0 Ktt

⎞
⎠δ = Kδ. (4)

A triangular TSL was considered to model cohesive properties of the tissue, see
Figure 1. The initial interface displacement δ0n,s,t , the tissue maximum strength τn,s,tmax

and the energy release rate (the energy dissipated by the cohesive zone) G0n,s,t define the
mechanics of the cohesive zone following

Kii =
τimax

δ0i

G0i =
δri · τimax

2
, (5)

where i = n, s, t.

Figure 1. Traction Separation Law considered. The cohesive strength σmax, the initial (reversible)
interface displacement δ0 and the maximum cohesive displacement, δr, are parameters to be defined.

The evolution of damage can be defined by specifying either the effective displacement
at complete failure, δrn,s,t , related to the effective displacement at the initiation of damage,
δ0n,s,t , or the energy dissipated due to failure G0n,s,t . Damage law is defined in the context
of Continuum Damage Mechanics Theory [24]. Damage is assumed to initiate when the
maximum nominal stress ratio reaches a value of one

max
{

τn

τnmax

,
τs

τsmax

,
τt

τtmax

}
= 1. (6)

D ∈ [0, 1] is a scalar variable that represents the damage of the material and combines
the effects of all the mechanisms. D monotonically progresses from 0 to 1 upon further
loading after the initiation of damage. In the context of linear softening, the evolution of
the damage variable, D, is computed as

D =
δ

f
m(δ

max
m − δ0

m)

δmax
m (δ

f
m − δ0

m)
, (7)
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where δm is computed as

δm =
√
〈δn〉2 + δ2

s + δ2
t , (8)

and δ
f
m is the displacement at complete failure relative to the displacement at damage

initiation, δ0
m, and δmax

m refers to the maximum value of the displacement reached during
the loading history. The Macaulay brackets (〈x〉 = 0 if x < 0 or 〈x〉 = x if x > 0) are used
to enforce that there is no damage initiation at pure compressive deformation or stress.

Finally, the stress of the traction-separation model is computed according to

τn =

{
(1 − D)τ′

n if τ′
n > 0

τ′
n otherwise

(9)

τs = (1 − D)τ′
s (10)

τt = (1 − D)τ′
t (11)

where τ′
n, τ′

s and τ′
t are the effective stress components of the undamaged material com-

puted by the elastic traction-separation law.

2.4. Methodology to Calibrate the Failure Properties from Experimental Measurements

The elastic properties of the aorta were fitted with the uniaxial tension tests data by
using a Nelder and Mead type minimisation algorithm [25] defining the objective function

χ2 = Σn
i=1

[(
Pθθ − PΨ

θθ

)2

i
+

(
Pzz − PΨ

zz

)2

i

]
using HyperFit software. (www.hyperfit.wz.cz, ac-

cessed on 31 March 2021) . The tissue was assumed incompressible [26], i.e., det(F) =
λ1λ2λ3 = 1, where F represents the deformation gradient tensor and λi, i = 1, 2, 3,
the stretches in the principal directions. Pθθ and Pzz are the First Piola-Kirchhoff (engineering)
stress data obtained from the tests, and PΨ

θθ = ∂Ψiso
∂λθ

and PΨ
zz = ∂Ψiso

∂λz
are the First Piola-

Kirchhoff stresses for the ith point for a homogeneous pure uniaxial state Ψ. The normalised
root mean square error, ε ∈ [0, 1], was computed for the fitting of the material model, following

ε =

√
χ2

n−q

�
, (12)

where � = ∑n
i=1

Pi
n is the mean value of the measured engineering stresses, n is the number

of data points, q is the number of parameters of the SEF and, therefore, n − q represents the
number of degrees of freedom.

The normal values of cohesive properties δ0n , δrn , τnmax , Knn and G0n were calibrated
by an iterative fitting of the experimental measurements of the peeling and mixed tests.
In each iteration, the values of peak and mean force of the computational modelling were
compared to the experimental data until their difference was below 10%.

2.5. Numerical Implementation

The peel and mixed tests were used to identify the normal cohesive material param-
eters that model purely normal failure at the interface of IM, MA and M (δ0n , δrn , τnmax ,
Knn and G0n ). A cohesive zone was introduced in the interface to analyse, where tissue
delamination was expected. A refined mesh in this contact area was needed in order to
obtain appropriate results. A TSL was postulated [27], see Figure 1. The FE geometry was
specific for each experimental strip. The total thickness of the specimens was measured
and the ratio of thickness per layer was obtained from Peña et al. [20]. The corresponding
interfaces were defined with the cohesive contact model previously presented and the
models were meshed with hybrid eight-node linear bricks (C3D8H), see Figure 2. A mesh
sensitivity analysis was performed in both models to achieve the compromise between
accuracy and computational time. The dimensions and number of elements of each speci-
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men are included in Table 1. The symmetry of the problem was taken into account and
only half of the width of the specimens was modelled. The total length of the strips in all
models was of 20 mm.

Table 1. Dimensions and number of elements of each model.

Specimen Width [mm] Thickness [mm] Number of Elements

Peel
test

IM 4.0 1.70 50,340
MA 4.0 2.00 54,700
M 4.0 2.10 57,040

Mixed
test

IM 5.0 1.57 25,265
MA 4.8 2.30 20,370
M 5.0 2.00 27,962

Regarding the boundary conditions, in the peel test, the non-separated end of the strip
was fixed to avoid its movement as solid rigid, and in both flaps at the other end the same
displacement was imposed in opposite directions, causing delamination at the interface of
the layer. As for the mixed test, the inner surface of the intima of the specimen was fixed
and a displacement loading parallel to the strip length was applied to the free end of the
other layer, causing the desired delamination at the interface.

The FE model was computed with Abaqus/Standard v6.14. An iterative trial-error
procedure was performed to fit the delamination properties of aorta layers. The mechanical
data in terms of the load vs. displacement curve from peel and mixed tests was compared
in each iteration. The displacements applied in the free surfaces were prescribed and
the cohesive properties updated in order to fit the mean force recorded during the tests.
The hyperelastic material model was implemented via the in-built material model in
Abaqus. The preferred fibre directions were included manually in the input files. A static
implicit analysis was carried out for all models, as the strips are pulled apart slow enough
to exclude inertial effects.

(a) (b)

Figure 2. FE models of delamination experimental tests (a) Peel test and (b) Mixed test. Both models
represent the IM separation. The thinner copper-coloured parts represent the intimal layer and the
thicker brass-coloured parts, the media and adventitia.

3. Results

3.1. Elastic Properties of Aortic Tissue

The elastic mechanical data obtained by uniaxial tests experiments in each direction—
longitudinal and circumferential—were fitted using the SEF represented in (1). The material
constants resulting from the fitting to the SEF are shown in Table 2. The low value obtained
of ε = 0.0652 demonstrates the goodness of the fitting.
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Table 2. Material parameters obtained from the uniaxial stress-stretch curves. Constants μ and k1 in
kPa, θ in degrees, k2, κ and ε dimensionless.

μ [kPa] k1 [kPa] k2 [−] κ [−] θ [◦] R2 ε

18.0606 504.9060 44.8462 0.24299 35 0.9893080 0.0652

Plots of the fitted stress-stretch behaviour for the longitudinal and circumferential
directions, together with the underlying experimental data are depicted in Figure 3 for the
constitutive law in (1).
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Figure 3. Experimental data of uniaxial tension tests and computational fitting obtained with the
proposed constitutive law.

3.2. Fracture Properties of Aortic Tissue

Several iterations were needed to identify the sets of constants (τnmax , Knn and G0n ) that
minimise the differences between the value of load vs. displacement curve obtained by the
experimental peel and mixed tests and that obtained by the FE model. These parameters
are presented in Tables 3 and 4. The ranges of force achieved in the simulation could mostly
be fitted by modifying the damage parameters τnmax and G0n . The parameter related to
the cohesive behaviour Knn had a reduced impact in the level of force and was found to
account for the convergence of the models.

Table 3. Normal cohesive material parameters obtained by the fitting of the peel test and used to
model normal failure at the interface.

Interface
δ0n δrn τnmax Knn G0n

[mm] [mm] [kPa] [mN/mm3] [mN/mm]

IM
Longitudinal 0.023 0.070 230 10,000 8
Circumferential 0.014 0.100 200 14,000 10

MA
Longitudinal 0.019 0.086 185 10,000 8
Circumferential 0.020 0.063 160 8000 5

M
Longitudinal 0.013 0.092 130 10,000 6
Circumferential 0.010 0.100 80 8000 4

In comparison with the experimental peel data of the interfaces intima-media, media-
adventitia and media, the simulation using the fitted parameters is in good agreement
with results with an error below 10%, see Figure 4. The initial elastic part of the curves is
well reproduced in all cases except for the MA separation in the circumferential direction.
This part of the tests is mainly affected by the modelling of the material and the preferred
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fibre directions. Due to convergence issues, this test could not be computed for a clamp
displacement of more than 2 mm per side. Damage properties shown in Table 3 are
consistently lower in the circumferential direction than in the longitudinal direction in
each interface. This is in accordance with the dissection in the circumferential direction
reportedly being easier, as it can propagate separating lamellar layers and not tearing
them [7]. Furthermore, damage properties are notably smaller in the dissection within the
medial layer compared to the dissection of both interfaces. The cohesive behaviour Knn is
similar in all cases.

In comparison with the experimental mixed data of the interfaces intima-media, media-
adventitia and media, the simulation using the fitted parameters is in good agreement
with results with an error below 10%, see Figure 5. In this case, the initial elastic part of
the curves is well reproduced in all cases. The modelling of the mixed test allowed for
higher convergence, up to 10 mm of clamp displacement. All fitted parameters in this
test shown in Table 4 are consistently higher than those obtained for the simulation of the
peel test. The dissection of the IM provided the lowest damage parameters, in accordance
with this separation presenting the lowest dissection forces. For the IM and M dissections,
the longitudinal direction presented higher values in its properties than the circumferential
direction. The effective displacement at complete failure, δrn , is of around 0.1 mm in all
cases. The cohesive behaviour Knn is the same in all cases, except for the IM separation in
the longitudinal direction.
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Figure 4. Correlation between force/width vs. displacement curves and computation of the peel test of the interfaces
intima-media, media-adventitia and media for longitudinal and circumferential directions.
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Table 4. Normal cohesive material parameters obtained by the fitting of the mixed test and used to
model normal failure at the interface.

Interface
δ0n δrn τnmax Knn G0n

[mm] [mm] [kPa] [mN/mm3] [mN/mm]

IM
Longitudinal 0.040 0.100 800 20,000 40
Circumferential 0.034 0.073 550 16,000 20

MA
Longitudinal 0.078 0.104 1250 16,000 65
Circumferential 0.088 0.107 1400 16,000 75

M
Longitudinal 0.081 0.100 1300 16,000 65
Circumferential 0.075 0.100 1200 16,000 60
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Figure 5. Correlation between force/width vs. displacement curves and computation of the mixed test of the interfaces
intima-media, media-adventitia and media for longitudinal and circumferential directions.

4. Discussion

Aortic dissection is an important cardiovascular pathology and its triggering mecha-
nism and development mechanics are not fully comprehended. In particular, the delam-
ination properties of aortic tissue, which could provide insight into the development of
this disease, have been sparsely studied. To contribute to this field, in this study, we have
numerically reproduced two tissue dissection tests—the peel and mixed tests—of porcine
aorta specimens. These numerical studies allow obtaining different dissection parameters
that characterise the behaviour of the tissue.
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The experimental forces to be fitted are predominantly higher in the mixed test than
in the peel test, with the exception of the separation of the intima-media in the circumfer-
ential direction, in which the mixed test obtained a lower dissection force. The dissection
parameters obtained in all simulations of the mixed tests are notably higher—sometimes
one order of magnitude—than those obtained in the peel tests. The main parameter that
affects the reaction force of the simulations was τnmax and therefore is the one that varies
most throughout the simulations. Ferrara and Pandolfi [18] had checked the relevant
influence of this parameter in the numerical results of a dissection process. The marked
difference between the parameters obtained in both types of simulations is not convenient.
The small impact of the tangential components of the cohesive model in the mixed test
simulations lead to the assumption that not all the damage phenomena are being captured
in the simulations, which could lead to these differences. Moreover, the rupture stress
obtained in the uniaxial tension tests was of 1090 and 660 kPa for the circumferential and
longitudinal directions, respectively. The values of τnmax obtained in the mixed test models
are more similar to these fracture stresses. This could also imply that the low values of
these parameters in the peel test could be due to the specimens experiencing damage in
the tissue and not the specific separation of layers.

This study reproduces the results of two different tests which were carried out once in
each condition and therefore the numerical results depend completely in the data of only
one repetition and do not account for the deviation present in the mechanical testing of
biological tissues. However, the objective was not to determine the cohesive properties of
the porcine descending aorta, but to develop two computational models that could perform
such determination.

When compared to the literature, Leng et al. [15] reproduced computationally these
same two tests for the separation of the medial layer of a porcine abdominal aorta. They
established a τnmax of 440 kPa for both tests, which lies in the same order of magnitude
of our results for the peel test. The energy rate they obtain however is higher—220 and
186 mN/mm for the mixed and peel test, respectively.

The complexity of the numerical models here presented entails some convergence
issues. The simulation of contact and damage has always been a tricky challenge, even
more when combined with hyperelastic anisotropic material models. Carrying out these
computations with a static implicit analysis further hinders a full convergence of the
models. In order to solve this matter, in future studies, these models are to be defined via a
dynamic explicit analysis. As yet another future development, the cohesive model could be
modified to include a more real contribution of shear stresses in the dissection properties
of the tissue. An anisotropic damage model with a different dependence on the separation
direction could probably provide a more uniform fitting for the peel and mixed tests.

This study has provided a calibrated methodology to obtain delamination properties
of arteries. The characterisation of these properties is relevant to achieve a better under-
standing of the mechanical behaviour of vessels in general and of the process of aortic
dissection in particular. Furthermore, numerical studies can benefit from this type of data to
reproduce with more accuracy the physiology and pathology of the cardiovascular system.
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Abstract: Penetration and shared nodes between muscles, tendons and the plantar aponeurosis
mesh elements in finite element models of the foot may cause inappropriate structural behavior of
the tissues. Penetration between tissues caused using separate mesh without motion constraints
or contacts can change the loading direction because of an inadequate mesh displacement. Shared
nodes between mesh elements create bonded areas in the model, causing progressive or complete
loss of load transmitted by tissue. This paper compares by the finite element method the structural
behavior of the foot model in cases where a shared mesh has been used versus a separated mesh
with sliding contacts between some important tissues. A very detailed finite element model of the
foot and ankle that simulates the muscles, tendons and plantar aponeurosis with real geometry has
been used for the research. The analysis showed that the use of a separate mesh with sliding contacts
and a better characterization of the mechanical behavior of the soft tissues increased the mean of the
absolute values of stress by 83.3% and displacement by 17.4% compared with a shared mesh. These
increases mean an improvement of muscle and tendon behavior in the foot model. Additionally, a
better quantitative and qualitative distribution of plantar pressure was also observed.

Keywords: foot finite element method; foot and ankle model; shared nodes; separated mesh; plantar
pressure

1. Introduction

The biomechanical behavior and load transfer of muscles, tendons, ligaments, and
plantar aponeurosis in a finite element foot model (FEFM) are relevant factors that influence
the model’s functional response [1–5]. Inappropriate structural behavior of these biological
tissues may provide inaccurate or limited information about the case study.

Nowadays, several FEFMs have been developed, some of them very complete and
with a degree of detail and complexity superior to others. The creation of a FEFM sig-
nificantly depends on the study to be carried out with it. However, it is important to
clarify that this is not the only factor to consider. The case study or investigation will
define aspects of our model, such as the CAD modeling of the tissues, the meshing of
the model, the mechanical characterization of the tissue´s behavior, the application of
boundary conditions, and the selection of the loads.

All scientific research is subject to limitations of all kinds, and of course, these limita-
tions are reflected in the creation of the finite element model. The creation of simplified
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models is a good option in these cases. Some of these simplified foot models simulate liga-
ments, tendons, the aponeurosis plantar and muscles with one-dimensional elements [6–9],
while other models simulate these soft tissues with three-dimensional solid elements with
scanned human geometry [10–12]. We also see that some of the simplified finite element
foot models mentioned above lack some muscles, tendons, or skin (fat pad). Furthermore,
it is possible to obtain acceptable results. Therefore, what are the difficulties that can arise
when trying to simulate the biomechanical behavior of muscles and tendons in the foot
model? In addition, why is it important to simulate the proper behavior of these tissues?

There are commonly encountered problems when simulating the structural behavior
of muscles and tendons with both three-dimensional solid elements and one-dimensional
elements in FEFM. The first is the penetration between the mesh elements that make up
these biological tissues. Penetration between mesh elements is due to the non-application
of contact and motion constraints between groups of nodes of the mesh elements of the
tissues. In foot models where there is mesh penetration between the tissues, the direction of
the tissue loading can change considerably so that the muscles do not properly transmit the
mechanical stimuli to the areas where they insert with the bone. The second refers to the
shared nodes between the mesh elements of the tissues that do not allow the complexity of
sliding contact between them. These groups of shared nodes between the mesh of tissues
generate bonded areas throughout the model. These involuntary bonded areas between
muscles and tendons cause a progressive loss of load as they travel through the tissue to
the insertion zone with the bone.

The present work compares the structural behavior of muscles, tendons, aponeurosis
plantar, and fat-pad when the finite element model includes a shared mesh versus separated
mesh with a relative displacement between the soft tissues. For this purpose, this paper
evaluates three case studies in which the plantar pressure and the maximum principal
stress in some tissues are used as comparison parameters.

The cases evaluated are the following:

• Case 1: Model with shared mesh and a linearly elastic, homogeneous, and isotropic
mechanical behavior of most of its tissues.

• Case 2: Model with shared mesh and a linearly elastic, homogeneous, and hyperelastic
mechanical behavior of most of its tissues.

• Case 3: Model with separate mesh and a linearly elastic, homogeneous, and hypere-
lastic mechanical behavior of most of its tissues.

The work done in this paper aims to generate knowledge on how the use of a shared
mesh with isotropic properties as opposed to the use of a separate mesh with contacts
and hyperelastic properties could cause changes in the structural response of the tissues
and the model in general. The knowledge generated in this research will allow those
who work in simulation using numerical models based on finite element method to know
the advantages and disadvantages of using a shared mesh versus a separated mesh both
during the model construction process and the simulation of the cases.

2. Materials and Methods

2.1. Model Conformation

The tissue geometries of the foot and ankle model used in this research were generated
through three-dimensional scanning techniques by Morales Orcajo Enrique [13] of the
Applied Mechanics and Bioengineering group (AMB) at the University of Zaragoza, Spain.
The foot and ankle model includes cartilage, skin (fat pad), and the cortical and trabecular
tissue for bones which comprise 15 phalanges (proximal, medial, and distal), 5 metatarsals,
2 sesamoids (medial and lateral), 3 cuneiforms (medial, intermediate, and lateral), navicular,
cuboid, talus, calcaneus, and part of the tibia and fibula (see Figure 1a). Most muscles
and tendons are included with a more realistic three-dimensional morphology. These are
the extensor hallucis longus, extensor hallucis brevis, extensor digitorum longus, extensor
digitorum brevis, dorsal interossei, plantar interossei, adductor hallucis (transverse and
oblique head), abductor hallucis, lumbricals, flexor hallucis brevis, flexor hallucis longus,
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flexor digitorum longus, flexor digitorum brevis, flexor digiti minimi brevis, peroneus
longus, peroneus brevis, tibialis anterior, quadratus plantae, tibialis posterior, aponeurosis
plantar (lateral and central), Achilles, and part of the soleus (see Figure 1b,c). The peroneus
tertius and opponens digiti minimi are the only tissues missing from the foot model.

Figure 1. Foot model composition. (a) Skeletal system; (b) musculoskeletal system; (c) skin.

Table 1 shows the abbreviations of the names of each of the tissues that make up the
model in Figure 1.

Table 1. Abbreviations of the names of the tissues of the foot model.

Tissue Abbreviation Tissue Abbreviation

Phalanx distalis PDn Abductor digiti minimi ABDM

Phalanx media PMn Interossei dorsales ID

Phalanx proximalis PPn Interossei plantares IP

Ossa sesamoidea (laterale) OS(L) Extensor hallucis longus EHL

Ossa sesamoidea (mediale) OS(M) Extensor hallucis brevis EHB

Ossa metatarsalia OMn Aponeurosis plantar (central) AP(C)

Os cuneiforme (mediale) OC(M) Aponeurosis plantar (laterale) AP(L)

Os cuneiforme (intermedium) OC(I) Flexor hallucis longus FHL

Os cuneiforme (laterale) OC(L) Flexor digitorum longus FDL

Os cuboideum OC Tendo calcaneus (soleus) TC

Os naviculare ON Abductor hallucis ABH

Talus TAL Quadratus plantae QP

Calcaneus CAL Tibialis anterior TA

Tibia TIB Tibialis posterior TP

Fibula FIB Peroneus longus PL

Flexor digitorum brevis (musculi) FDB(M) Peroneus brevis PB

Flexor digitorum brevis (tendo) FDB(T) Flexor digiti minimi brevis FDMB

Extensor digitorum brevis (musculi) EDB(M) Adductor hallucis (caput obliquum) ADDH(CO)

Extensor digitorum brevis (tendo) EDB(T) Adductor hallucis (capt transversum) ADDH(CT)

Extensor digitorum longus EDL Lumbricales L

2.2. Mesh

All the tissues in the foot model were meshed using ICEM® CFD (ANSYS® Inc.,
Canonsburg, PA, USA). An auto mesh (unstructured) with the octree method was used.
First-order tetrahedral elements of variable sizes were used to avoid the loss of morphology
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and the appearance of singularities in the tissues. An element size of 1 mm was used for
small or thin tissues, while for large tissues element sizes of 2 to 4 mm were used.

During the meshing stage of the foot model tissues, the software reads the imported
files (stereolithography extension) of each of the tissues as a set of points. When the tissues
are being meshed, the meshing algorithm cannot identify the boundaries between each
tissue. Therefore, the software creates a continuous mesh. Because of that, two problems
arose that would have adverse biomechanical effects on the final FEFM response. The first
was the generation of undesirable tetrahedral elements at the periphery of the areas in
contact between the tissues and the small gaps between them, causing a loss of the model
morphology (see Figure 2a). The second was the shared nodes between mesh elements of
the tissues in contact, causing bonded areas that should not be in the model.

Figure 2. Tissue mesh. (a) Mesh without fixing; (b) fixed mesh.

Because of these two problems, a reworking of the mesh had to be done for most
tissues. In the first stage, which we will call tissue mesh cleaning, those tetrahedral
elements of the meshes that were incorrectly assigned were returned to the mesh of the
correct tissues. In addition, all those tetrahedral elements of the mesh which modified
the morphology of the original tissue were eliminated and, in some cases, new elements
were created manually. This mesh reworking of the foot model was done with the same
meshing software. The final model was made up of 1,128,602 elements and 208,721 nodes
(see Figure 2b).

In a second stage, which we will call mesh separation between tissues, a separation
process of the shared nodes between mesh elements of the tissues was done. During the
meshing stage, the software generated a continuous mesh. Continuous mesh generates
a sharing of nodes between the mesh elements of the tissues in contact, causing bonded
areas. Bonded areas between the FEFM tissues are not physiologically possible because
they increase the stiffness of the general response of the foot model, removing the ability of
the soft tissues to transfer the load appropriately to the insertion areas on the bone besides
erroneously generating the activation of secondary tissues.

The mesh shared between the tissues of the foot model was separated by an algorithm
programmed in C++ language in an open-source integrated development environment
called Code:Blocks.

The program created within the integrated development environment is provided
with an input file, where there is information on the mesh of the bonded tissues as node
groups, node coordinates, and a group of tetrahedral elements with four nodes (C3D4).
The algorithm identifies the nodes of the shared faces between tetrahedral elements by the
direction of their normal. Once the group of shared nodes has been identified, the program
duplicates all the nodes of that group, assigning them the same position as the shared nodes
but with a different identification number. The old group of nodes is assigned to one tissue,
while the new group of nodes is assigned to the opposite tissue (see Figure 3). Additionally,
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the program creates a surface shell with the new nodes between the tissues in contact
where the contact between the shell surface and the group of old nodes is subsequently
declared. Finally, the program generates an output file with the information of the new
nodes, their coordinates, and the three-node triangular shell elements (S3) created. The
information contained in the output file is updated in the main file, and in this way, the
separation between two meshes is performed.

Figure 3. Separation of shared nodes between mesh elements.

It is important to mention that no other meshing software, method, or algorithm was
used at this stage. Some bonded areas between tissues (such as the bone-fat pad) favored
the transmission of loads of the model and avoiding the application of contacts. We only
focused on separating those tissues with greater relevance in the analysis.

2.3. Mechanical Properties of Tissues

The mechanical properties used to model the behavior of the foot model tissues in this
research were taken from the literature. Cortical bone, trabecular bone, hard cartilage, and
soft cartilage were modeled with an isotropic, homogeneous, and linearly elastic mechani-
cal behavior [14–16]. For the rest of the tissues, a nonlinear isotropic and homogeneous
behavior was used with several hyperelastic deformation energy density functions: fourth-
order Ogden function for the lateral plantar aponeurosis, a fifth-order reduced polynomial
function for the central plantar aponeurosis [4], a second-order polynomial function for the
skin [17], and a first-order Ogden function for muscles [18] and tendons [19].

2.4. Boundary Conditions and Loads

Several boundary conditions were considered to simulate the environment during
standing. First, in the three directions, the displacement and rotation were constrained in
the tibia and fibula through a set of nodes taken from the upper cross-section (see Figure 4a).
To simulate the support of the foot model against the ground, a flat surface was generated
with three-dimensional rigid elements of four nodes (rigid body), allowing only vertical
displacement (Y). A force (350 N in the “Y” direction) equivalent to half the subject’s body
weight was applied on the flat surface to simulate the reaction force against the ground.

Finally, a series of loads were applied through eight of the main stabilizing tendons
activated during the analysis (see Figure 4a). The magnitudes of these loads were taken
from a research paper published by Morales-Orcajo Enrique et al. (2017).
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Figure 4. Load and boundary conditions. (a) Loads application and motion constraints; (b) contact
application.

2.5. Contact between Tissues and Ground

Shell surfaces with the shape and extent of the zone of interaction between tissues were
created. Later, contacts between the elements whose mesh was separated were applied to
avoid penetration and ensure load transfer. Only those sliding contacts between the most
relevant tissues of the foot model were generated (see Figure 4b), that is, in those tissues
with greater participation in the transfer of load in the simulation (short extensor-long
extensor, short flexor-long flexor, and short flexor-plantar fascia).

Finally, the foot (sole) interaction with the ground was simulated with frictional
contact. In this case, a friction coefficient of 0.6 was used [20].

2.6. Case Studies

Three case studies have been evaluated with the finite element foot model, where we
have calculated the contact pressure, displacements, and the maximum principal stress in
some tissues to determine the effect that the use of a shared mesh versus a separated mesh
can have on these parameters. In addition, we evaluated the biomechanical, convergence,
and computational effects of using a shared versus separated mesh and isotropic versus
hyperelastic properties in some tissues.

The cases evaluated in this work are detailed below:

• Case 1: Model with shared mesh and a linearly elastic, homogeneous, and isotropic
mechanical behavior of most of its tissues. For this model, a shared mesh was used (a
product of the software), i.e., a mesh with joints (undesired in some cases) between
groups of nodes of the tetrahedral elements that make up the mesh of the tissues.
The joints presented in this model are in all areas of contact between a tissue and its
adjacent tissues. Therefore, a general stiffened FEFM response is expected. Finally, in
this simulation, most of the tissues of the model are considered to have an isotropic
behavior, except the tendons and skin (hyperelastic behavior).

• Case 2: Model with shared mesh and a linearly elastic, homogeneous, and hyperelastic
mechanical behavior of most of its tissues. For this model, the same shared mesh is
used as for Case 1 is still used. The difference is that in this model, hyperelastic proper-
ties are assigned to some tissues (skin, tendons, muscles and the plantar aponeurosis).
The purpose of this model is to evaluate the effect on contact pressure when we used
hyperplastic instead of isotropic properties.

• Case 3: Model with separate mesh and a linearly elastic, homogeneous, and hypere-
lastic mechanical behavior of most of its tissues. Here the mesh was reworked to undo
some joints between muscles, tendons and the plantar aponeurosis.
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It is important to understand that some bonded areas between the mesh of the tissues
of the foot model are necessary for the transmission of mechanical stimuli between them, as
in the case of the musculoskeletal model with the skin (fat) or tendons with some bones. In
some cases, applying a contact or a motion constraint instead of leaving the joint generated
by the software increase the computation time for convergence. However, some other joints
as muscle-to-muscle or muscle-to-bone cause a deficient or abnormal load transmission,
thus generating an inaccurate response from the model. Finally, some sliding contacts that
were considered important (as short extensor-long extensor, short flexor-long flexor, and
short flexor-plantar fascia) were applied in the model to avoid penetration between the
tissues and to guarantee an appropriate interaction between them.

2.7. Foot Model Validation

ABAQUS software (ABAQUS Inc., Pawtucket, RI, USA) was used to solve our FEFM.
The distribution and magnitude of the contact pressure (plantar pressure) on the sole,
specifically under the calcaneus (heel) and the metatarsals heads, reported in previous
experimental and numerical analysis were used to compare and validate the numerical
foot model developed in this work [8,9,17,21–24]. In addition, a study was used of the
plantar pressure (footprint) of the patient from which the model was obtained [19].

Table 2 shows a comparison of the plantar pressure (specifically on the talus and
metatarsal heads) of our FEFM with FEFMs, and experimental foot data (EFD) reported by
other authors. In this validation stage, the plantar pressure results were taken from those
FEFMs whose analyses were performed during standing and under boundary and loading
conditions similar to our analysis. Additionally, the table shows in brackets below of our
FEFM results (Martínez et al.) the percentage difference between our plantar pressure
values and the mean value of the experimental data (ED) and by the finite element method
(FEM) reported in the literature by the authors mentioned in the same Table 2.

Table 2. Foot model validation (maximum contact pressure, CPRESS).

Area

Martínez
et al.

(Present Work)
MPa

Morales
et al.

(2018)
MPa

Cheung
et al.

(2004)
MPa

Cheung
et al.

(2005)
MPa

Chen
et al.

(2010)
MPa

Zhang
et al.

(2014)
MPa

Mao
et al.

(2017)
MPa

Li
et al.

(2017)
MPa

Wang
et al.

(2018)
MPa

OH
FEFM

0.192
(−13.41% FEM)

(7.6% ED)
0.16 0.26 0.23 0.168 0.23 0.233 0.325 0.168

EFD NEFD 0.17 0.15 0.17 0.13 0.15 0.204 0.3 0.157

UMH
FEFM

0.112
(−22.75% FEM)
(−10.70% ED)

0.17 0.19 0.097 0.077 0.18 0.07 0.325 0.051

EFD NEFD 0.16 0.07 0.09 0.08 0.12 NEFD 0.3 0.058

FEFM = finite element foot model; EFD = experimental foot data; NEFD = no experimental foot data; ED = experimental data; OH = on the
heel; UMH = under metatarsal heads; FEM = finite element method.

3. Results

Plantar pressure, principal stress, and displacements are the comparison parameters
that will enable us to quantify the importance of the work done in optimizing the behavior
of the tendons and muscles in the foot model.

Table 3 shows the maximum principal stress and the displacement in the three direc-
tions for the most relevant tissues in the model without a shared mesh (Case 1) and the
model with a separate mesh and sliding contacts (Case 3). In addition, in each column of
the sliding foot model, the percentage difference with the values obtained from the model
without sliding contacts is shown in brackets.
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Table 3. Maximum principal stress (MPS) and displacement (Un) obtained in some relevant tissues.

Non-Sliding Foot Model (Case 1) Sliding Foot Model (Case 3)

Tissue
MPS

(MPa)
Ux

(mm)
Uy

(mm)
Uz

(mm)
MPS

(MPa)
Ux

(mm)
Uy

(mm)
Uz

(mm)

Sole(skin) −0.1169 OH
−0.0892 U3MH −2.821 −6.579 2.823

−0.1753 OH
(49.95%)

−0.0635 U1MH
(−28.81%)

−2.690
(−4.64%)

−6.092
(−7.40%)

2.896
(2.58%)

TC 3.411 2.516 −1.676 −3.186 3.441
(0.87%)

2.638
(4.84%)

−3.483
(107.81%)

−3.038
(−4.64%)

EHL 1.953 −0.3354 −3.967 −1.230 2.127
(8.90%)

−1.243
(270.60%)

−5.450
(37.38%)

−2.032
(65.20%)

EDL 0.6850 −0.3927 −4.267 −1.352 0.7598
(10.91%)

−2.181
(455.38%)

−4.720
(10.61%)

−1.734
(28.25%)

EDB/EHB 3.367 −0.3055 −3.354 −1.122 0.4190
(−87.55%)

−1.620
(430.27%)

−4.861
(44.93%)

−1.910
(70.23%)

FHL 2.529 0.6404 −4.011 −1.722 2.668
(5.49%)

−1.059
(−265.36%)

−5.461
(36.15%)

−2.235
(29.79%)

FHB 0.8868 −0.1773 −3.208 −1.646 0.09633
(−89.13%)

−0.6678
(276.64%)

−4.830
(50.56%)

−2.322
(41.06%)

FDL 2.821 0.7357 −4.251 −3.317 3.016
(6.91%)

−1.761
(−339.36%)

−4.897
(15.19%)

−3.683
(11.03%)

FDB 0.7442 −0.3423 −4.005 −1.480 2.133
(186.61%)

−1.728
(404.82%)

−5.021
(25.36%)

−1.728
(−16.75%)

TA 0.1521 −0.4180 −2.020 −0.7874 0.5087
(234.45%)

−0.5349
(27.96%)

−2.339
(15.79%)

−1.100
(39.70%)

TP 4.551 1.288 −3.773 −3.613 4.779
(5%)

−3.957
(−407.22%)

−4.226
(12.03%)

−2.957
(−18.15%)

PL 1.458 0.2389 −1.805 −0.8958 2.970
(103.70%)

−0.3972
(−266.26%)

−2.240
(24.09%)

−1.204
(34.40%)

PB 0.8265 −0.1556 −1.211 −0.7911 0.7964
(−3.64%)

−0.3812
(144.98%)

−2.564
(111.72%)

−1.253
(58.38%)

AP(C) 1.191 0.3878 −3.60 −1.613 2.862
(140.30%)

−1.389
(−458.17%)

−5.255
(45.97%)

−2.273
(40.91%)

AP(L) 0.6715 0.3841 −2.729 −1.233 5
(644.6%)

−0.966
(−243.85%)

−1.318
(−51.70%)

0.8430
(−168.36%)

OH = on the heel; UnMH = under the metatarsal head.

Table 3 shows that the maximum principal stress obtained on the heel for the non-
sliding foot model was −0.1169 MPa, while for the sliding foot model it was −0.1753 MPa.
This means an increase of 49.95% for the principal stress in the model with the separated
mesh compared to the model with the shared mesh. On the other hand, in the support zone
of the metatarsal bones, the maximum principal stress obtained for the non-sliding foot
model was −0.0892 MPa, located under the head of the third metatarsal. The maximum
principal stress for the sliding foot model was −0.0635 MPa, under the head of the first
metatarsal. In this case, the change of the area under greater stress under the metatarsals,
as well as the variation of the maximum principal stress of the model with the separate
mesh compared to the model with the shared mesh, is attributed to the greater freedom
of movement of the tissues resulting from the separation of their bonded areas with the
mesh of the tissues in contact. In addition, this greater degree of freedom of movement of
the model with the separate mesh can be reflected in the displacements of some tissues
(see Table 3), where there is a tendency towards a greater displacement of up to 458.1% in
the model with the separate mesh in comparison with the model with the shared mesh.
Moreover, the soft tissue with the greatest variation in the principal stress when considering
the condition of mesh separation and slippage, such as aponeurosis plantar (lateral), shows
variations of up to 644.6%.

Overall, the soft tissue results showed a mean absolute variation and standard devia-
tion (SD) in stress values of 83.3% (SD 186.9) for the model with the separate mesh (Case 3)
compared with the model with the shared mesh (Case 1), while the mean absolute value
and standard deviation for the displacements was 17.4% (SD 190.9).
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As can be seen in Figure 5, the distribution of the maximum contact pressure in the
three models was on the heel, with a magnitude of 0.162 MPa for the model with the
shared mesh and an isotropic behavior of most of its tissues (Figure 5a) and 0.187 MPa
and 0.192 MPa for the models with a hyperelastic behavior of most of its tissues but with a
shared mesh (Figure 5b) and a separated mesh (Figure 5c), respectively. For the two latter
models, we have a percentage variation of the maximum plantar pressure of 2.6% in the
model with the separated mesh (Case 3) compared to the model with the shared mesh
(Case 2).

Figure 5. Contact pressure (CPRESS). (a) Isotropic non-sliding foot model; (b) hyperelastic non-
sliding foot model; (c) hyperelastic sliding foot model.

Comparing the maximum principal stress in the metatarsal bones, the maximum stress
in the model with the shared mesh and isotropic properties was in the fourth metatarsal
bone with a value of 5.095 MPa (see Figure 6a), while for the model with the separate mesh
it was in the second metatarsal bone with a value of 5.510 MPa (see Figure 6b).

Figure 6. Maximum principal stress on soft and hard tissues. (a) Metatarsal bones of the non-sliding
foot model; (b) metatarsal bones of the sliding foot model; (c) extensor hallucis longus of the non-
sliding foot model; (d) extensor hallucis longus of the sliding foot model; (e) flexor hallucis brevis of
the non-sliding foot model; (f) flexor hallucis brevis of the sliding foot model.
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It is important to emphasize the non-homogenous distribution of the maximum
principal stress in the extensor digitorum longus and aponeurosis plantar of the model
with the shared mesh and isotropic properties when compared with the model with the
separated mesh and hyperelastic properties. A better distribution of stress was obtained for
the tissues shown in Figure 6d,f (separate mesh) compared with those shown in Figure 6c,e
(shared mesh) where it was observed a higher stress concentration and singularities. A
better distribution of stress is indicative of more appropriate behavior of the tissues by
eliminating anchorage areas due to the shared mesh.

4. Discussion

Simulating proper muscle and tendon behavior in a finite element model of a foot is a
challenge today. The load transmitted by these tissues to the bone and surrounding tissues
can be compromised as early as the meshing stage. During the mesh stage, the software
used may or may not generate joints by sharing nodes between mesh elements in all areas
in contact between tissues. In both cases, if this fact is overlooked, the behavior of the model
may be considerably affected. Before starting the creation of the finite element model, the
researcher must define which tissues are necessary, which are relevant, and which others
might not be considered in the analysis. The larger the number of elements, the more
complicated it becomes to work with the model. In addition, the greater the number of
contacts and hyperelastic characterizations of the tissues, the longer the computation time
when trying to achieve convergence of the model. In short, the more complete and complex
the model, the greater the complexity to obtain a result.

This research shows the structural effect that a shared mesh can have compared to
a separate mesh with sliding contacts on the structural behavior of the fabrics of a foot
model. For this purpose, one of the most complete finite element foot models available
today is used. This model includes almost all muscles and tendons in the foot, with the
exception of the peroneus tertius and opponens digiti minimi, which are not necessary for
the present analysis. In addition, the muscles, tendons and plantar fascia are modeled with
real geometry and simulated with deformable solid elements within the analysis.

According to the values shown in Table 3, there is a mean absolute increase of 10.6% in
the maximum principal stress on the sole for the model with the separate mesh compared
with the model with the shared mesh. This increase in stress translates into a better load
distribution through the soft tissues. A better stress distribution in the foot model can
be observed in a lower number of stress concentrations in different areas of the tissues,
as well as in greater freedom of displacement of the tissues. The increased magnitude
in displacements may be due to the freedom of movement of muscles, tendons and the
aponeurosis plantar resulting from eliminating bonded areas with other tissues. In the
tissues of the non-sliding foot model (shared mesh foot model), a greater number of tissues
with stress concentrations (singularities) were observed. This translates into a progressive
loss of load in these tissues due to the mesh bonding zones of other tissues. This progressive
loss of load generates a global stiffness response of the foot model. Strong evidence that
soft tissues such as the aponeurosis plantar, peroneus brevis, tibialis posterior and extensor
digitorum longus are working better is provided by the values obtained for the mean
absolute variation of displacement (17.4%) and stress (83.3%) in the tissues belonging to
the model in Case 3 compared to Case 1.

The contact pressure analysis of the models showed that the hyperelastic behav-
ior assigned to muscles of the models corresponding to Figure 5b,c, compared to the
model shown in Figure 5a with an isotropic behavior of most of its tissues, improved
the qualitative distribution of the plantar pressure on the sole, resulting in a more ho-
mogeneous pressure. According to the mean of the experimental data taken from the
literature [8,9,17,19,21–24], mesh separation in the model in Figure 5c improved plantar
pressure under the heel and metatarsal head by 1.6% and 18.6%, respectively, compared to
the model in Figure 5a. However, the mesh separation between the tissues in the model
in Figure 5c, compared to the shared mesh in the model in Figure 5b, did not make a con-
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siderable difference either quantitatively or qualitatively in the variation of the maximum
plantar pressure on the sole. However, there was certainly less stress concentration under
the metatarsal head of the third and fourth toes in the model in Figure 5c compared to the
model in Figure 5b. This is attributed to separating the mesh of the long extensor tendons
with adjacent tissues, allowing a large part of the load on these tissues to reach the insertion
in the distal phalanges, generating a slight elevation of the forefoot.

As can be seen in the tissues in Figure 6d,f (where their mesh was separated) compared
to the tissues in Figure 6c,e (with the shared continuous mesh), there is a better distribution
of the maximum principal stresses (fewer singularities), which is indicative of a more
adequate behavior of these muscles in the foot model.

The results obtained in the model presented in this work, where the mesh among
bones, muscles, tendons and plantar fascia was separated, showed a significant improve-
ment in the general behavior of the model. It is, therefore, imperative that in this type of
model used for the analysis of biomechanical phenomena, the soft tissues should be sepa-
rate from their surrounding tissues, especially in those analyses focused on the structural
behavior of muscles, tendons and the plantar fascia.

When creating a model made up of 101 elements (tissues), it is to be expected to find a
high degree of interaction between the tissues. In total, 138 bonded areas were counted in
the foot model. Some of the tissues had more than four bonds. Analyzing the behavior of
the case studies, specifically where it was observed that the separation of the mesh does
not have a considerable effect on the variation of plantar pressure. Furthermore, in some
cases, when separating the mesh between two bonded tissues, it was necessary to apply a
contact, and in turn, the contact considerably increased the calculation time. The decision
was made to separate only those bonded areas that were relevant to the analysis. Given
that skin is a tissue that covers the entire musculoskeletal model, its mesh generates joints
with bone, tendons, muscles and the plantar aponeurosis. Despite considering the skin
as a hyperelastic tissue, the junction with the tendons causes a loss of load. However, it
is difficult to generate an internal contact of the skin with the musculoskeletal model so
that the latter transmits the mechanical stimuli more adequately to the adipose tissue. For
this reason, one of the important limitations in our analysis is the loss of load that the skin
causes on the active tendons in the stance phase due to the shared mesh between them.

Finally, as a result of the analysis, we can suggest for future work that for foot models
which include muscles, tendons, the plantar fascia and ligaments simulated with solid
deformable elements, it is advisable to use a separated mesh in tissues such as bone (cortical
bone) and skin (fat pad). Furthermore, and subsequently, we use specialized meshing
software to generate the joints or separations between the mesh elements where later a
contact condition or motion constraints will be applied that will help to better transmit the
effects from one mesh to another. In this way, it will be possible to obtain a better behavior
of the tissues in the model.

The use of a shared or separate mesh of the skin with the musculoskeletal tissue makes
it very difficult to adequately simulate the behavior of the rest of the soft tissues. Therefore,
depending on the case study, it could be advisable to generate simplified models where a
separated mesh and only some tissues or a portion of them could be used, as shown in Figure 7.

Figure 7. Simplified models. (a) Model with skin (fat pad) on the sole of the foot. (b) Model with
skin (fat pad) on the forefoot.
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5. Conclusions

The results obtained in this work showed that a more appropriate mechanical char-
acterization of tissues such as muscles, tendons, plantar aponeurosis and skin (fat-pad)
improved the quantitative and qualitative distribution of plantar pressure. What is refer-
enced in the text above, can be seen by comparing the results between Figure 5a,c. Contrary
to expectations, the mesh separation work performed did not have a significant impact
on plantar pressure. The above can be corroborated by comparing the model results in
Figure 5b with Figure 5c.

However, the work of mesh separation between the tissues of most relevance for
analysis (plantar aponeurosis and extrinsic musculature) showed an improvement in
the structural behavior of the individual tissues. Quantitatively in the data shown in
Table 3, displacement differences of up to 458.1% can be found. Qualitatively we can see in
Figure 6b,d,f (Case 3) a low concentration of the maximum principal stress on the tissues
compared with the tissues in Figure 6a,c,e (Case 1). The result is a better structural behavior
of the tissues and better load transmission to the areas where they are inserted into the
bone. The improvement made in the model can lead to a better simulation of specific
tissues when a specific pathology is analyzed.

The work carried out in this paper generated knowledge on how the use of a separate
mesh with contacts and hyperelastic properties improves the structural behavior of the
tissues and the model in general, compared to the use of a shared mesh with isotropic prop-
erties. In addition, it could be proven that the use of a very detailed finite element model
generates more computational time in the solution, requires equipment with greater capac-
ity to solve the system of equations, increases the level of difficulty in finding convergence,
and increases the complexity of simulating each of the tissues appropriately.

Therefore, it is recommended to take into consideration, whenever possible, the
creation of simplified models to avoid or reduce some of the problems mentioned in the
research. A simplified model could have a good approximation of the case study, but
without having to face the problems that working with a more detailed model could bring.
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Abstract: Additive manufacturing (AM) of scaffolds enables the fabrication of customized patient-
specific implants for tissue regeneration. Scaffold customization does not involve only the macroscale
shape of the final implant, but also their microscopic pore geometry and material properties, which
are dependent on optimizable topology. A good match between the experimental data of AM
scaffolds and the models is obtained when there is just a few millimetres at least in one direction.
Here, we describe a methodology to perform finite element modelling on AM scaffolds for bone
tissue regeneration with clinically relevant dimensions (i.e., volume > 1 cm3). The simulation used
an equivalent cubic eight node finite elements mesh, and the materials properties were derived
both empirically and numerically, from bulk material direct testing and simulated tests on scaffolds.
The experimental validation was performed using poly(ethylene oxide terephthalate)-poly(butylene
terephthalate) (PEOT/PBT) copolymers and 45 wt% nano hydroxyapatite fillers composites. By
applying this methodology on three separate scaffold architectures with volumes larger than 1 cm3,
the simulations overestimated the scaffold performance, resulting in 150–290% stiffer than average
values obtained in the validation tests. The results mismatch highlighted the relevance of the lack
of printing accuracy that is characteristic of the additive manufacturing process. Accordingly, a
sensitivity analysis was performed on nine detected uncertainty sources, studying their influence.
After the definition of acceptable execution tolerances and reliability levels, a design factor was
defined to calibrate the methodology under expectable and conservative scenarios.

Keywords: finite element modelling; bone tissue engineering; 3D scaffold; additive manufacturing

1. Introduction

In order to manufacture patient-specific bone implants for tissue regeneration (Figure 1),
it is important to keep in mind that any bone is a composite structure subjected to constant
evolution normally composed of a high percentage of inorganic composition and a smaller
organic fraction. The inorganic part is present intrafibrillarly in the bone and occupies up to
40% by volume filling with various degrees of space around the mineralized fibres, forming
pore networks. Hence, human bones can be composed of high amounts of inorganics by
volume, typically ranging from 50–60% up to 80–90% for some highly mineralized tissues,
but always keeping some space for organics [1].
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Consequently, with these boundary conditions, the engineering of patient-specific
bone implants for tissue regeneration follows several approaches [2,3]. One of the most
promising consists of the additive manufacturing of a temporary structure also known as
a “scaffold”, suitable for cell growth, with required porosity to stimulate osteogenesis, as
stated by Jakus et al. [4], Karageorgiou and Kaplan [5] and Hutmacher [6]. These temporary
scaffolds must meet several requirements, such as biocompatibility, biodegradability and
suitable mechanical properties [2,3,7–13], but also printability [14,15]. The mechanical
properties are of great importance, since the scaffolds should ideally have properties
matching those of the surrounding tissue, ensuring its suitability to bear mechanical
loading similar to the original tissue. The mechanical properties are mainly dictated by the
bulk material properties. However, the geometry and porosity of the fabricated scaffolds
also play an important role in the final mechanical properties of the implant [16,17].

There are diverse materials being investigated, spanning from synthetic and natural
polymers, ceramics and combinations of these, with the research focused on finding an
optimal formulation for a successful stimulation of bone healing [2,3], enabling the im-
provement of implants suitable for each patient condition in the future. Thereby, additive
manufacturing of a bone scaffold requires a compatible biocomposite with reinforcing
inorganic fillers to mimic natural bone composition and structure, while improving its me-
chanical behaviour to resist service life loadings [18,19]. Accordingly, there are many stud-
ies regarding material alternatives [20], such as silicate nanocomposites [21,22], graphene
nanocomposites [23] and the extensive work on hydroxyapatite or nano-apatite [24–28].
Additionally, other studies focused on the mechanical optimization and performance of
such material alternatives in the presence of micro and nano hydroxyapatite [29], or on
bone regeneration and thermomechanical properties [30,31].

In this manuscript, a generalized procedure is developed for the numerical mod-
elling of additive manufactured scaffolds for bone regeneration with clinically relevant
dimensions (i.e., volume > 1 cm3). The procedure is applicable to scaffolds made of any
previously mechanically characterized material, and this procedure is then specifically
validated with poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT) with
nano-hydroxyapatite fillers. This generalized procedure allows the scaffolds to be designed
by function, fixing at first the requirements of geometry and the stresses to be supported
and then selecting the optimal filler amount and porosity. A stiffer scaffold, for example,
would require a greater amount of filler and less pores for stress to reduce the concentration
spots. Consequently, this leads to design gradients and patterns for a single bone scaffold,
which can be achieved using established topology optimization techniques.

Figure 1. 3D printed bone scaffolds for tissue regeneration: (a) long bone defect-shaped scaffold printed with PEOT/PBT
alone; (b) Scaffolds presenting longitudinal gradient patterns of plasma polymerized film deposition, visualized using
methylene blue staining [32].
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The mechanical properties of the bone scaffolds are a key aspect for the development
of PEOT/PBT composites and a fast-complete characterization of these bulk materials
can be carried out using monotonic tensile and compression tests according to standards.
Nevertheless, the equivalent testing of non-standardized bone scaffolds made of such
materials is not as easy, for the scaffolds need to be previously manufactured with different
geometries and architectures, which slow down their rapid characterization. Therefore, a
modelling procedure suitable to predict the mechanical performance of bone scaffolds with
a certain pore architecture and bulk material mechanical properties has been developed.

Finally, a set of scaffolds has been produced and mechanically characterised as a
way to confirm the suitability of the developed modelling protocol and its validation.
Nevertheless, the 3D printing of clinically relevant scaffolds with the required micro-
scale precision is a challenging task and the manufacturing process generally produces
unintended imperfections causing uncertainty because of result scattering. Hence, a
sensitivity analysis and statistical study have been conducted in order to derive some
design factors taking into account these issues.

The final output is a finite element modelling (FEM) procedure for 3D-printed bone
scaffolds able to forecast their mechanical behaviour depending on the bulk material
properties. This will enable the optimization of the material development process and
perform topology optimization of such scaffolds for bone tissues. This is not a topology
optimization necessarily based on evolutionary structural optimization (ESO) algorithms,
removing material where it is not working at certain stress level; nor it is based on additive
evolutionary structural optimization (AESO) algorithms, simply adding materials where
the stresses are above certain stress level, since the global shape of the bone implant needs
to be kept “custom made”, performing an external geometry for a specific patient. It is a
topology optimization based on the scaffold properties’ distribution within such a patient
custom made geometry, i.e., manufacturing implants with stronger bone scaffolds at stress
concentration “hot spots” by varying layer height, strand distance, fibre diameter (changing
extrusion nozzle or printing speed), bulk material properties, plasma treatments, etc.

There are several studies regarding the FEM of 3D bone scaffolds for tissue regen-
eration. For instance, there are several bone scaffold aspects being currently analysed in
terms of scaffold design [33], mechanical behaviour during failure [34], or covering the
bone tissue regeneration and the progressive change in properties [35,36]. Nevertheless,
the scope of such studies is focused on the mechanical behaviour of the 3D bone scaffold
itself. Yet, there is little research on the holistic methodology connecting the bulk material
properties with the scaffold mechanical behaviour within a 3D-printed bone, with me-
chanical properties depending on topology and size effect [37–39]. Moreover, this kind of
predictive tool is important to forecast the expected mechanical behaviour of the scaffold
on-site, using an optimizable geometry or bulk material.

In order to do it with FEM, there are two basic steps required. The first one is to
represent every scaffold as an equivalent finite element, characterized by an approximately
cubic shape with eight nodes, each being able to undergo a displacement in three degrees of
freedom. The second step is to discretize the bone geometry in a compatible mesh, made of
such solid finite elements, whose material properties are defined to match the mechanical
behaviour of the scaffold (Figure 2A).
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(A) (B) 

Figure 2. Finite element modelling of 3D-printed bone scaffolds with variable properties depending on bone topology:
(A) Determination of equivalent finite element and bone discretization; (B) Flowchart of required steps for realistic finite
element modelling of bone scaffolds within a bone.

Accordingly, a flowchart of the required works is presented in Figure 2B. It starts with
the scaffold design at iteration i and the material tests for mechanical characterization under
tension and compression. Then, an FEM of the bone scaffold is completed, and a monotonic
compression test is simulated in that model. Thus, the results from the simulation can be
compared to an actual scaffold compression test to calibrate and validate the FE model.
This last step is required because the FEM is based on a theoretical or idealized geometry,
whereas the real scaffolds manufactured at such scales present faults and uncertainties that
need to be taken into account.

For the characterization of additive manufactured scaffolds, an FEM and support
methodology has been carried out in this study, whose main objective is to be able to transfer
the global mechanical properties of the scaffolds to solid eight-node finite elements, which
will be used in FEM analyses. This will enable mechanical calculations to be addressed at a
macroscopic level (complete bones, etc.), minimizing the computational costs, because it
will not be necessary to take into account, in these models, the exact configuration of the
scaffolds, but their equivalent mechanical properties. Additionally, this FEM of additive
manufactured scaffolds has different properties, as equivalent finite elements can be further
used to model mechanical property gradients simply by progressively changing such finite
element material properties accordingly along a certain direction.

2. Materials and Methods

2.1. Materials

The bulk materials composing the scaffolds for bone tissue engineering were selected
from amongst recently investigated new formulations based on combinations of a well
characterized synthetic block copolymer of poly(ethylene oxide terephthalate)/poly(butylene
terephthalate) (PEOT/PBT) with a diverse filler concentration [32,40,41]. For the improvement
of the mechanical properties, the scaffolds produced from PEOT/PBT, including 45% of nano
hydroxyapatite (nanoHA), were chosen due to their superior properties (Figure 3) and,
therefore, were also used for the FE modelling. The mean mechanical behaviour obtained
from the stress–strain curves was used (Figure 4). The stress–strain curves were obtained
from the mechanical testing of the bulk materials according to the ASTM F2027-08 standard
guide [42], prescribing ASTM D638-08 and ASTM D695-10 for tensile and compressive
properties, respectively [43,44], and according also to international standard ISO 527 [45–47]
(Figure 4). A Poisson’s ratio of 0.4 was taken as usual practice for polymers, although
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there is some evidence that it could be higher in the case of PEOT/PBT [16]. The effect
of the bulk material’s Poisson’s ratio on scaffold mechanical properties was studied in a
sensitivity analysis.

Figure 3. (a) Compression samples of PEOT/PBT 45% nano HA; (b) Tension samples made of
different nano HA fillers concentration in PEOT/PBT.

Figure 4. Compression stress–strain curve of PEOT/PBT with 45% nanoHA samples and mean
behaviour considered for FEM.

For the scaffolds, monotonic compression tests, according to ASTM F2150-02 and
ISO 604, were carried out on cylindrical scaffolds [48,49] to study the effect of several
parameters, namely strand distance, the diameter of the extrusion needle (which determines
the scaffold fibre diameter), layer height and the structure of the scaffold (external geometry,
fibre position, scaffold diameter, scaffold height). Figure 5).
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Figure 5. Standardized compression tests over 3D printed scaffold made of PEOT/PBT 45% nano HA.

Three variations of the scaffold were produced and tested, with three specimens each.
The variations tested involved a decrease in the strand distance, meaning a denser, less
porous scaffold, with a smaller inner volume of void spaces. The geometry of the different
scaffold variations is summarized in Table 1.

Table 1. Geometrical properties of the tested scaffolds to be represented in the numerical models.

Scaffold Type
Fibre

Diameter
(mm)

Strand
Distance

(mm)

Layer Height
(mm)

Scaffold
Diameter

(mm)]

Scaffold
Height
(mm)

G25_nanoHA 1.25 0.25 1.25 0.20 4.00 4.05
G25_nanoHA_1.00 0.25 1.00 0.20 4.00 4.05
G25_nanoHA_0.75 0.25 0.75 0.20 4.00 4.05

The monotonic compression tests of the scaffolds showed a good correspondence
between samples of the same type within the elastic range, with a clear improvement
in the mechanical properties as scaffold porosity decreases and scaffold density is, thus,
increased (Figure 6). All scaffolds showed linear elastic behaviour under 10% strain and
good reproducibility of stress–strain behaviour, supporting their suitability for load bearing
bone tissue engineering, i.e., the intended use. Nevertheless, the differences in the strain–
strain relationship of samples of the same type, evidenced in the curves, which were
much more pronounced in the 3D-printed scaffolds than in the equivalent testing of bulk
materials (Figure 4), indicate subsequent result scattering due to printing accuracy issues.
Therefore, the only way to improve the result regularity on the scaffolds is to improve the
manufacturing accuracy and quality control, where possible, whose only alternative is to
deal with uncertainty, taking it into account during the design and calculation stage for a
patient-customized scaffold.
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(a) (b) 

 
(c) 

Figure 6. Curves of Stress (MPa)—Strain (%) relationship of three scaffold types (a) G25_nanoHA 1.25; (b) G25_nanoHA_1.00;
(c) G25_nanoHA_0.75.

The most relevant values of the elastic range are the Young’s modulus, defined as the
slope of the initial linear relationship between the stress and strain, and the yield strength,
defined as the stress where the linear range ends and the non-linear behaviour continues
developing plasticity. Such values are summarized in Table 2, with corresponding Mean
and Standard Deviation (SD) values from the tests of three replicates each.

Table 2. Results from monotonic compression tests of each sample and type, with corresponding
mean value (Mean) and standard deviation (SD) of each type.

Sample
Young Modulus

(MPa)
Yield Strength

(MPa)
Elongation at Yield

(%)

G25_nanoHA 1.25_1 2.33 0.25 9.80
G25_nanoHA 1.25_2 1.86 0.25 12.20
G25_nanoHA 1.25_3 2.56 0.29 11.60

G25_nanoHA_1.25 (Mean) 2.25 0.26 11.20
G25_nanoHA_1.25 (SD) 0.36 0.02 1.25

G25_nanoHA_1.00_1 5.54 0.42 10.90
G25_nanoHA_1.00_2 3.98 0.52 16.00
G25_nanoHA_1.00_3 5.88 0.50 13.50

G25_nanoHA_1.00 (Mean) 5.13 0.48 13.47
G25_nanoHA_1.00 (SD) 1.01 0.05 2.55

G25_nanoHA_0.75_1 6.93 0.78 15.90
G25_nanoHA_0.75_2 6.17 0.80 16.90
G25_nanoHA_0.75_3 5.90 0.79 16.40

G25_nanoHA_0.75 (Mean) 6.33 0.79 16.40
G25_nanoHA_0.75 (SD) 0.53 0.01 0.50

As a final comment, since this manuscript is about FEM of bone scaffolds, the results
of monotonic compression tests on bulk materials and scaffolds are, respectively, just an
input to set the material properties in a finite element model and a comparison basis for
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the output for validation. Thus, since these are boundary conditions of the subject matter
of the manuscript, required to reproduce FEM results, they are presented in this section.

2.2. Methods

Several numerical models have been developed in order to simulate the behaviour
of the three cylindrical scaffolds mentioned in Section 3.1 when subjected to a monotonic
compression test. To this objective, ANSYS v17 finite elements software has been employed.

The numerical models developed within the frame of this study follow the geometrical
characteristics defined in Table 2 in terms of fibre diameter (0.25 mm), strand distance
(1.25/1.00/0.75 mm) and layer height (0.20 mm). A diameter of 4 mm has also been
considered for the samples. Regarding the total height of the scaffolds, due to geometrical
considerations to enable the idealized interlayer link modelling, there is little difference
between the real height (4.00 mm) and the height considered in the numerical models
(4.05 mm).

Considering the double symmetry, not only of the geometry of the scaffolds, but also
of the loadings to be considered, just one quarter of the scaffolds has been represented in
the numerical models, as shown in Figure 7.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 7. Geometry of scaffold numerical models: (a) Global view showing double symmetry
of G25_nanoHA 1.25; (b) Cross-section of the resulting scaffold G25_nanoHA 1.25; (c) Global
view showing double symmetry G25_nanoHA_1.00; (d) Cross-section of the resulting scaffold
G25_nanoHA_1.00; (e) Global view showing double symmetry G25_nanoHA_1.00; (f) Cross-section
of the resulting scaffold G25_nanoHA_0.75.

For the modelling of the fibres that conform to the scaffold, only one type of element
(SOLID187) has been used. The SOLID187 element is a higher order 3D element with a
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quadratic displacement behaviour that is well suited to modelling irregular meshes. This
element is defined by 10 nodes (tetrahedral element with nodes at vertices and mid edges)
with three degrees of freedom at each node (translations in the nodal X, Y and Z directions).
Moreover, for the modelling of the contacts, two additional types of elements have been
automatically introduced by ANSYS, i.e., CONTA174 and TARGE170. CONTA174 is used
to represent contact and sliding between 3D “target” surfaces and a deformable surface
defined by this element, whereas the TARGE170 element is used to represent various 3D
“target” surfaces for the associated CONTA174 contact elements. Hence, for demonstrative
purposes, a detail of the meshing for G25_nanoHA_1.25 FEM with such finite elements is
shown in Figure 8.

 

Figure 8. Detail of the meshing for G25_nanoHA_1.25 finite element model.

Regarding the boundary conditions, as the fibre diameter (0.25 mm) is larger than
the layer height (0.20 mm), there will be stacking between perpendicular fibres. In these
numerical models, it has been considered that there is a perfect bonding between fibres,
as shown in Figure 9a. Additionally, a lower horizontal plane has been included in these
numerical models to limit, by means of a contact, the vertical displacement of the lower
fibres. This plane presenting infinite stiffness and its displacements are totally constrained,
see Figure 9b. Finally, an upper horizontal plane has also been included in these numerical
models in order to impose, by means of a contact, vertical displacement in the upper fibres.
This plane presents infinite stiffness too and its lateral displacements are totally constrained
(Figure 9c).

Finally, regarding the actions and type of analysis, in order to simulate a monotonic
compression test, a vertical displacement has been imposed on the upper plane of the
numerical models. This vertical displacement will be transferred to the scaffold by means
of the contact defined between the upper plane and the upper fibres. Due to the negligible
influence on the results, the self-weight of the scaffolds has not been considered in this study.
Additionally, the need for evaluating the non-linearities related to both the material and
the existence of contacts, has demanded the resolution of the numerical models developed
in this study by means of a non-linear static analysis. In this resolution, the hypothesis of
small displacements has also been taken into account.
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(a) (b) 

 
(c) 

Figure 9. Boundary conditions considered for FEM, only G25_nanoHA_0.75 case is shown: (a) Detail
of bonding between perpendicular fibres; (b) Detail of the lower; (c) Detail of the upper plane.

3. Results

3.1. G25_nanoHA 1.25

In Figure 10a, the stress–strain curve for the G25_nanoHA_1.25 scaffold is shown.
The strain (ε = Δl/l) is then calculated as the displacement of the upper plane divided
by the total height of the scaffold, 4.05 mm. Additionally, the stress is calculated as the
force to be applied in order to obtain a certain displacement of the upper plane divided by
the cross-sectional area of the scaffold (π·ϕ2/4 = 4π mm2), where ϕ is the diameter of the
cylindrical scaffold. In this regard, this stress can be considered as an “apparent stress”.
This is a very important difference, because the stress–strain relationship derived by this
way will differ from the actual stresses obtained using the FE model, depicting stresses of
every prismatic solid FE according to a colour scale.

Figure 10. Results of FEM simulation of a monotonic compression test on a G25_nanoHA_1.25 Scaffold: (a) Stress–strain
curve; (b) Nodal stresses (Von Mises equivalent stress, in Pascals).
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Thus, defining the elastic modulus of the scaffold E as the stress divided by the strain
for a strain value of 0.03 (within this range, the stress–strain relationship is almost linear)
leads to the following Equation (1):

E =
0.1955
0.03

= 6.60 MPa (1)

Additionally, in the following Figure 10b, the Von Mises equivalent stresses for a
scaffold strain of 0.03 are shown. Von Mises stress has been chosen for comparison because
it is able to combine stresses in several axes in a single stress for comparison. Despite
the fact there is a clearly dominant stress direction, since this is a simulated monotonic
uniaxial compression test, it is combined with tangential and normal stresses in other
directions at the spots where the fibres are crossing each other; therefore, simply plotting
the principal stresses will underestimate the real triaxial stress state. As reflected in that
figure, loads are mainly transferred through the columns formed by the intersections
between perpendicular fibres.

It is noteworthy to remark the differences between the stresses of a stress–strain
relationship (Figure 10a) and those depicted in the FEM (Figure 10b). The first going up to
0.5 MPa, while the second is going up to 13.2 MPa at substep 150. This is because, while
the first is the quotient between the applied force divided by the cylinder area, the second
is the actual stress at every SOLID 187 FE.

3.2. G25_nanoHA_1.00

Analogously, the same procedure is applied to the G25_nanoHA_1.00 numerical
model. Accordingly, its stress–strain curve is shown in the following Figure 11a, with the
corresponding Von Mises equivalent stress in Figure 11b. Moreover, the elastic modulus
of the scaffold E, as the stress divided by the strain for a strain value of 0.03 leads to the
following Equation (2):

E =
0.2342
0.03

= 7.90 MPa (2)

  
(a) (b) 

Figure 11. Results of FEM simulation of a monotonic compression test on a G25_nanoHA_1.00 Scaffold: (a) Stress–strain
curve; (b) Nodal stresses (Von Mises equivalent stress, in 10−1 Pascals).

It is noteworthy to remark the differences between the stresses in a stress–strain
relationship (Figure 11a) and those depicted in the FEM (Figure 11b). The first going up to
0.28 MPa, while the second is going up to 20.4 MPa at substep 150. This is because, while
the first is the quotient between the applied force divided by the cylinder area, the second
is the actual stress at every SOLID 187 FE.
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3.3. G25_nanoHA_0.75

Finally, the stress–strain curve of the G25_nanoHA_0.75 is shown in Figure 12a, while
the corresponding equivalent Von Mises Stress is depicted in Figure 12b. The Young’s
modulus E is then calculated as the slope of the stress–strain curve at the point with 0.03
strain, as derived in the following Equation (3):

E =
0.2342

0.03
= 15.49 MPa (3)

  
(a) (b) 

Figure 12. Results of FEM simulation of a monotonic compression test on a G25_nanoHA_0.75 Scaffold: (a) Stress–strain
curve; (b) Nodal stresses (Von Mises equivalent stress, in 10−1 Pascals).

It is noteworthy to remark the differences between the stresses in the stress–strain
relationship (Figure 12a) and those depicted in the FEM (Figure 12b). The first going up to
0.28 MPa, while the second is going up to 13 MPa at substep 150. This is because, while the
first is the quotient between the applied force divided by the cylinder area, the second is
the actual stress at every SOLID 187 FE.

4. Discussion

The results obtained using an FEM of the different scaffolds G25 nanoHA 1.25, 1.00
and 0.75 are compared to the corresponding monotonic compression tests on the Young’s
modulus basis (Table 3). As can be seen in all the cases, the finite element model with
idealized geometry showed a Young’s modulus higher than the one measured using direct
testing. Moreover, this improvement was higher than the mean value plus 2–3 times the
standard deviation of each scaffold. In the case of G25 nanoHA 1.25, the relationship of the
FEM value to the mean measured value was 6.60/2.25 = 2.93 times higher, while in the case
of the other two, G25 nanoHA 1.00 and G25 nanoHA 0.75, it was 1.54 and 2.45, respectively.

Table 3. Comparison between the Young’s modulus obtained using FEM and direct scaffold testing, with corresponding
Mean and Standard Deviation values.

Scaffold
G25 nanoHA 1.25 G25 nanoHA 1.00 G25 nanoHA 0.75

Model Mean SD Model Mean SD Model Mean SD

Young’s Modulus (MPa) 6.60 2.25 0.36 7.90 5.13 1.01 15.49 6.33 0.53

Therefore, after repeating the FEM analysis several times, changing mesh sizes, contact
definition and calculation steps and looking at the results, the difference was so high that it
could not be explained by result scattering only. In fact, there are several assumptions on the
FEM analysis on an idealized scaffold model that are not realistic at all, each contributing to
these differences. For instance, a nominal fibre diameter, fibre position and straightness or
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strand distance are perfect in the model, but in the real world, with a 3D-printing process
at such minimal scales, these parameters are impossible to be guaranteed and difficult to
be controlled in real time. Thus, such imperfections are sources of uncertainty in terms of
mechanical behaviour and the only way to deal with this is to set some execution tolerances
and apply a design factor to the idealized geometry, as is common practice in structural
engineering to deal with such execution imperfections.

Hence, the first step is to identify the main prima facie uncertainty sources. As such
unintentional imperfections are impossible to reproduce, isolated from other errors and
with accuracy in real bone scaffolds for testing, the best approach is to model and simulate
such imperfections and see their influence on the results. In order to be able to simulate it,
each uncertainty source is considered as an independent random variable, whose result is
expected to be within a certain interval, with a reasonable grade of reliability, considering
an according execution control procedure to guarantee some defined tolerances. Finally, all
the variables need to be combined in a single design safety factor considering the global
uncertainty, since each one will contribute to it to a certain degree.

As a last comment, a bone scaffold presents time-dependent properties in vivo. In fact,
it undergoes deterioration processes related to fatigue, because a bone suffers from cyclic
loadings and equivalent biological remodelling acting such as corrosion, since the scaffold
material is progressively removed and substituted by bone tissue and this points for an
initial deterioration up to a valley point where it starts to recover mechanical properties.
Accordingly, the best approach is to develop a simplified model to take into account
these two deterioration processes during service life, such as those presented by Calderon
Uriszar-Aldaca et al. [50–52], developing an additional correction factor to take these
into account.

4.1. Sensitivity Analysis

For the sensitivity analysis, the G25_nanoHA_1.25 numerical model under monotonic
compression is taken as the base reference model, since it showed the highest difference
between the tests and the idealized model, which is already described and whose results
are presented in Section 3.1. Hence, the base characteristics and corresponding variations
are presented in Table 4.

Table 4. Comparison between base G25_nanoHA_1.25 characteristics and developed variations for
sensitivity analysis.

Source Base Variation 1 Variation 2

Poisson’s Ratio 0.4 0.375 0.35
Position of fibres At plane of sym. Out plane of sym. -

Fibre diameter (mm) 0.25 0.235 0.22
Strand distance (mm) 1.25 1.2 1.3

Layer height (mm) 0.2 0.215 0.23
Sample diameter (mm) 4 3.9 4.1

Deflection of fibres (mm) 0 0.06 0.12
Straightness of columns Straight Alternated Cumulated

Existence of broken fibres No broken fibres breakage at crossing far from crossing

4.1.1. Poisson’s Ratio of the Base Material

As mentioned in Section 3.1 materials, a Poisson’s coefficient of 0.4 has been considered
for the base material as common practice for polymeric materials. Nevertheless, as no
specific test has been carried out in the frame of the project in order to determine this value
accurately, it can be considered as a source of uncertainty.

Accordingly, three simulations have been carried varying the Poisson’s ratio with 0.4,
0.375 and 0.35 as inputs for G25_nanoHA_1.25 scaffold finite element model. Then, the
stress–strain relationship and the elastic modulus has been obtained following the same
procedure to see how this variation influences the results.
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Thus, Figure 13 shows the stress–strain relationship when varying the Poisson’s ratio
and the elastic modulus obtained as the slope of such stress–strain relationship, the curves
are so close that they stack over each other. Moreover, Table 5 summarize the results.
According to these results, the influence is almost negligible, i.e., after increasing the
Poisson’s ratio of the base material, only a slight increase in the elastic modulus of the
scaffold can be appreciated, lowering only up to 99.09% in stiffness.

 

Figure 13. Influence of the Poisson’s ratio on the stress–strain relationships from FEM.

Table 5. Compressive elastic modulus of a G25_nanoHA_1.25 scaffold for different values of the
Poisson’s ratio.

Poisson’s Ratio (-) Elastic Modulus (MPa)

0.400 6.60
0.375 6.57
0.350 6.54

4.1.2. Position of the Fibres within the Scaffold

According to Section 3 on results, the compression loads are mainly transferred to
the basement through the columns formed by the intersections between the perpendicular
fibres of the scaffold (Figure 10). Hence, due to the relatively low value of the sample
diameter in comparison with the strand distance, the relative position of the fibres within
the scaffold will affect the number and location of these columns, having some influence
on the compressive stiffness of the scaffold, which can happen as a result of punching
position variability.

As shown in Figure 14, two different configurations have been analysed. In the first
one, at each layer of the scaffold, there is a fibre located in the relevant plane of symmetry.
On the other hand, in the second configuration, at each layer of the scaffold, the relevant
plane of symmetry is in the centre of the gap between two fibres.
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Figure 14. Configurations considered to analyse the influence of the position of the fibres on the
compressive stiffness of the scaffold (G25_nanoHA 1.25).

Therefore, a detail of the geometry of the numerical models used for both configura-
tions is shown in the following Figure 15:

  
(a) (b) 

  
(c) (d) 

Figure 15. Geometry of the numerical models for configurations 1 and 2: (a) Global view of configu-
ration 1; (b) Cross-section of configuration 1; (c) Global view configuration 2; (d) Cross-section of
configuration 2.

The influence of the relative position of the fibres within the scaffold on the stress–
strain relationship of the G25_nanoHA 1.25 scaffold subjected to a compression load has
been analysed using FEM (Figure 16).

217



Mathematics 2021, 9, 1746

 

Figure 16. Influence of the relative position of the fibres within the scaffold G25_nanoHA_1.25 on
the stress–strain curve.

The values of the compressive elastic modulus of a G25_nanoHA_1.25 scaffold of both
configurations are shown in Table 6 (the compressive elastic modulus of the scaffold has
been defined as the stress divided by the strain for a strain value of 0.03).

Table 6. Compressive elastic modulus of a G25_nanoHA_1.25 scaffold for different configurations in
terms of the relative position of the fibres within the scaffold.

Poisson’s Ratio (-) Elastic Modulus (MPa)

0.400 6.60
0.375 6.26

According to these results, there is some influence of the relative position of the fibres
within the scaffold on the compressive elastic modulus of a G25_nanoHA_1.25 scaffold,
with configuration one being stiffer than configuration two, only reaching 94.85% of the
stiffness. Finally, the Von Mises equivalent stresses for a scaffold strain of 0.03 are shown in
Figure 17 for both the configurations.

  
(a) (b) 

Figure 17. Nodal stresses of G25_nanoHA_1.25 (Von Mises equivalent stress): (a) Configuration 1, in Pascals; (b) Configura-
tion 2, in 10−1 Pascals.
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4.1.3. Fibre Diameter

As already disclosed in Table 1, scaffolds have been printed using a theoretical fibre
diameter of 0.25 mm. Nevertheless, the accuracy of the printer in terms of deposition speed,
positioning, temperature and material viscosity and variations in the material flow rate can
lead to the real value of the fibre diameter being different to the theoretical one.

The influence of the fibre diameter on the stress–strain relationship of the
G25_nanoHA_1.25 scaffold subjected to a compression load has been analysed by means
of FEM (Figure 18).

 

Figure 18. Influence of the fibre diameter on the stress–strain relationships from FEM.

The value of the compressive elastic modulus of a G25_nanoHA_1.25 scaffold for each
of the three different values considered in this analysis for the fibre diameter is shown
in Table 7.

Table 7. Compressive elastic modulus of a G25_nanoHA_1.25 scaffold for different values of the
fibre diameter.

Fibre Diameter (mm) Elastic Modulus (MPa)

0.250 6.60
0.235 5.08
0.220 3.39

The cross-sectional area of the columns formed by the intersections between perpen-
dicular fibres of the scaffold will depend on the fibre diameter (the bigger the fibre diameter,
the bigger the cross-sectional area of these columns). As the compression loads applied
on the scaffold will be mainly transferred through these columns, the fibre diameter will
have a great influence on the compressive elastic modulus of the scaffold, as can be seen in
Table 7 and Figure 18.

For two different values of the fibre diameter (ϕfibre = 0.235 mm and ϕfibre = 0.220 mm),
the Von Mises equivalent stresses for a scaffold strain of 0.03 are shown in Figure 19, for
ϕfibre = 0.250 mm (see also Figure 10).
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(a) (b) 

Figure 19. Nodal stresses of G25_nanoHA_1.25 (Von Mises equivalent stress): (a) ϕfibre = 0.235 mm, in 10−1 Pascals; (b)
ϕfibre = 0.220 mm, in 10−1 Pascals.

4.1.4. Strand Distance

The G25_nanoHA_1.25 scaffold samples have been printed using a theoretical strand
distance of 1.25 mm. Nevertheless, the accuracy of the positioning system of the printer
can lead to a real value for the strand distance different from the theoretical one.

The influence of the strand distance on the stress–strain relationship of the
G25_nanoHA_1.25 scaffold subjected to a compression load has been analysed using
FEM and the results of this analysis are shown Figure 20.

 

Figure 20. Influence of the strand distance on the stress–strain relationships from FEM.

The value of the compressive elastic modulus of a G25_nanoHA_1.25 scaffold for each
of the three different values considered in this analysis for the strand distance is shown
in Table 8.

Table 8. Compressive elastic modulus of a G25_nanoHA_1.25 scaffold for different values of the
layer height.

Strand Distance (mm) Elastic Modulus (MPa)

1.20 6.61
1.25 6.60
1.30 6.58
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According to these results, when the variation of the strand distance is low, their
influence on the stress–strain relationship of a G25_nanoHA_1.25 scaffold subjected to a
compression load is almost negligible, i.e., increasing the strand distance causes only a
slight decrease in the elastic modulus of the scaffold, up to 99.55% of the original stiffness.

As the compression loads applied on the scaffold will be mainly transferred through
the columns formed by the intersections between the perpendicular fibres of the scaffold,
variations in the strand distance will have a significant impact on the compressive elastic
modulus of the scaffold, only when these variations lead to an increase/decrease in the
number of those intersections.

For two different values of the strand distance (d = 1.20 mm and d = 1.30 mm), the
Von Mises equivalent stresses for a scaffold strain of 0.03 are shown in Figure 21, for
d = 1.25 mm (see also Figure 10).

  
(a) (b) 

Figure 21. Nodal stresses of G25_nanoHA_1.25 (Von Mises equivalent stress): (a) d = 1.20 mm, in 10−1 Pascals;
(b) d = 1.30 mm, in 10−1 Pascals.

4.1.5. Layer Height

The tested G25_nanoHA_1.25 scaffolds have been printed using a theoretical layer
height of 0.20 mm. The influence of the layer height on the stress–strain relationship of the
G25_nanoHA_1.25 scaffold subjected to a compression load has been analysed using FEM
(Figure 22).

 

Figure 22. Influence of the layer height on the stress–strain relationships from FEM.
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The value of the compressive elastic modulus of a G25_nanoHA_1.25 scaffold for each
of the three different values considered in this analysis for the strand distance is shown
in Table 9.

Table 9. Compressive elastic modulus of a G25_nanoHA_1.25 scaffold for different values of the
layer height.

Layer Height (mm) Elastic Modulus (MPa)

0.200 6.60
0.215 5.53
0.230 4.07

The cross-sectional area of the columns formed by the intersections between the
perpendicular fibres of the scaffold will depend on the layer height; the bigger the layer
height is, the lower the cross-sectional area of these columns is. As the compression loads
applied on the scaffold will be mainly transferred through these equivalent columns, the
layer height will have a great influence on the compressive elastic modulus of the scaffold,
as can be seen in Table 9 and Figure 22. For two different values of the layer height
(h = 0.215 mm and h = 0.230 mm), the Von Mises equivalent stresses for a scaffold strain of
0.03 are shown in Figure 23, for h = 0.200 mm (see Figure 10).

  
(a) (b) 

Figure 23. Nodal stresses of G25_nanoHA_1.25 (Von Mises equivalent stress): (a) h = 0.215 mm, in 10−1 Pascals;
(b) h = 0.230 mm, in 10−1 Pascals.

4.1.6. Sample Diameter

In the frame of this study, monotonic compression tests and dynamic compression
tests have been carried out on cylindrical samples with a theoretical diameter of 4 mm,
extracted from G25_nanoHA_1.25 scaffolds. Nevertheless, the accuracy of the tools used
to extract the samples from the printed scaffolds can lead to a real value for the sample
diameter different from the theoretical one. The influence of the sample diameter on the
stress–strain relationship of the G25_nanoHA_1.25 scaffold subjected to a compression
load has been analysed using FEM (Figure 24).
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Figure 24. Influence of the sample diameter on the stress–strain relationships from FEM.

The value of the compressive elastic modulus of a G25_nanoHA_1.25 scaffold for each
of the three different values considered in this analysis for the sample diameter is shown
in Table 10.

Table 10. Compressive elastic modulus of a G25_nanoHA_1.25 scaffold for different values of
the sample diameter. The theoretical value for the sample diameter has been used for calculating
the stress.

Sample Diameter (mm) Elastic Modulus (MPa)

3.90 6.61
4.00 6.60
4.10 6.62

According to these results, when the variation of the sample diameter is such that the
number of columns formed by the intersections between perpendicular fibres of the scaffold
is not affected, their influence on the stress–strain relationship of a G25_nanoHA_1.25
scaffold subjected to a compression load is negligible. On the other hand, if the actual
sample diameter is used to determine the stress on the sample, a certain influence of this
parameter on the stress–strain relationship of the G25_nanoHA_1.25 scaffold subjected to a
compression load can be observed, as can be seen in Table 10 and Figure 24.

These results highlight that, due to the relative low value of the sample diameter in
comparison with the strand distance, the stress–strain relationship of the G25_nanoHA_1.25
scaffold subjected to a compression load is very sensitive to the diameter of the tested sam-
ple. Nevertheless, this influence is expected to decrease as the sample diameter increases.

4.1.7. Deflection of Fibres during the Printing Process

Due to the low mechanical properties of the fused material, the fibres tend to bend and
lose straightness during the printing process at middle span, between rigid or supporting
nodes, such as the intersections between the perpendicular fibres, as can be appreciated
in Figure 25.
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Figure 25. Detail of printed scaffolds.

The influence of the deflection of the printed fibres on the stress–strain relationship of
the G25_nanoHA_1.25 scaffold subjected to a compression load has been analysed using
FEM (in Figure 26).

 

Figure 26. Influence of the deflection of the printed fibres on the stress–strain relationships from FEM.

The value of the compressive elastic modulus of a G25_nanoHA_1.25 scaffold for each
of the three different values considered in this analysis for the deflection of the printed
fibres is shown in Table 11.

Table 11. Compressive elastic modulus of a G25_nanoHA_1.25 scaffold for different values of the
deflection of the printed fibres.

Deflection of the Printed Fibres (mm) Elastic Modulus (MPa)

0.00 6.60
0.06 6.45
0.12 6.41

According to these results, the influence of the deflection of the printed fibres on the
stress–strain relationship of a G25_nanoHA_1.25 scaffold subjected to a compression load
is very low, i.e., increasing the deflection of the printed fibres means a slight decrease

224



Mathematics 2021, 9, 1746

in the elastic modulus of the scaffold up to 97.12% of the original stiffness. It should be
noted that, in this case, the compression load is parallel to the columns formed by the
intersections between the perpendicular fibres. For compression loads parallel to any of
the fibre directions, the influence of the deflection of the printed fibres on the stress–strain
relationship of a G25_nanoHA_1.25 scaffold subjected to a compression load is expected to
be much higher.

For two different values of the deflection of the printed fibres, f = 0.06 mm and
f = 0.12 mm, the Von Mises equivalent stresses for a scaffold strain of 0.03 are shown in
Figure 27; for no deflection, see Figure 10.

Figure 27. Nodal stresses of G25_nanoHA_1.25 (Von Mises equivalent stress): (a) f = 0.06 mm, in 10−1 Pascals;
(b) f = 0.12 mm, in 10−1 Pascals.

4.1.8. Straightness of the Columns Responsible for Load Transmission

G25_nanoHA_1.25 scaffolds have been printed using a theoretical strand distance of
1.25 mm. However, the accuracy of the positioning system of the printer can lead to a real
value for the strand distance different from the theoretical one.

Hence, the influence of the strand distance on the stress–strain relationship of the
G25_nanoHA_1.25 scaffold subjected to a compression load was analysed in Section 4.1.4
on strand distance. In that case, it was supposed that there was some variation in the strand
distance, but it was also considered that this variation remained constant within the whole
scaffold. Under these circumstances, the columns formed by the intersections between the
perpendicular fibres, which are responsible for the transmission of the compression load
applied on the scaffold, remained vertically straight. Nevertheless, the x and y positioning
in any printer present deviations; therefore, the real positions are x ± Δx and y ± Δy,
meaning that some executions could present alternate positioning or show a displacement
tendency.

In this section, on the other hand, the influence of the strand distance on the stress–
strain relationship of the G25_nanoHA_1.25 scaffold subjected to a compression load
has also been analysed. In this case, this variation in the strand distance affected the
straightness of those columns.

Thus, the following two situations have been analysed:

• Alternate variations in the strand distance (situation one);
• Cumulative variations in the strand distance (situation two).

In the first situation, there is a certain eccentricity e between the theoretical location
of the fibres and their actual location. In addition, it has been considered that the fibre
corresponding to a certain layer is located on the opposite side, regarding the theoretical
location of the fibres, of that of the fibres corresponding to the preceding and the following
layers, see Figure 28.
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Figure 28. Location of fibres in situation 1.

A detail of the geometry of the numerical model used to simulate this situation is
shown in Figure 29. In this situation, the following two values have been considered for
the deviation of the fibres: e = 0.025 mm and e = 0.05 mm.

  
(a) (b) 

Figure 29. Geometry of the numerical model for situation 1 for G25_nanoHA 1.25: (a) Global view; (b) Vertical plane section.

In the second situation, there is also a certain eccentricity between the theoretical
location of the fibres and their actual location. On the other hand, in this case, the deviation
is cumulative, as shown in Figure 30.

 

Figure 30. Location of fibres in situation 2.

226



Mathematics 2021, 9, 1746

A detail of the geometry of the numerical model used to simulate this situation is
shown in Figure 31. In this situation, two values have also been considered for the deviation
of the fibres, e = 0.005 mm and e = 0.009 mm.

  
(a) (b) 

Figure 31. Geometry of the numerical model for situation 2 for G25_nanoHA 1.25: (a) Global view; (b) Vertical plane section.

In both situations, it has been considered that the deviation between the theoretical
location of the fibres and their actual location affects the fibres oriented in both directions.

As can be seen in Figures 29 and 31, in these cases, there is no any symmetry in
the geometry of the scaffolds; therefore, the whole scaffold has been represented in the
numerical models. Therefore, in order to avoid lateral rigid body motions, which may
impede the convergence of the numerical models, a friction coefficient of 0.3 has been
considered in the contact between the upper plane and the upper fibres and the contact
between the lower plane and the lower fibres.

The influence of the deviation between the theoretical location of the fibres and
their actual location, affecting the straightness of the columns formed by the intersections
between the perpendicular fibres, on the stress–strain relationship of the G25_nanoHA_1.25
scaffold subjected to a compression load has been analysed using FEM (Figure 32).

 
(a) 

Figure 32. Cont.
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(b) 

Figure 32. Influence of the straightness of the columns on the elastic modulus from FEM of
G25_nanoHA 1.25: (a) Influence on the stress–strain relationships of configuration 1; (b) Influence on
the stress–strain relationships of configuration 2.

Accordingly, the values of the compressive elastic modulus of a G25_nanoHA_1.25
scaffold for each of the three different values considered in this analysis, for the deviation
between the theoretical location of the fibres and their actual location, are shown in Table 12
for situation one and Table 13 for situation two.

Table 12. Compressive elastic modulus of a G25_nanoHA_1.25 scaffold for different values of the
eccentricity or deviation in situation 1.

Deviation (mm) Elastic Modulus (MPa)

0.000 6.70
0.025 5.76
0.050 3.99

Table 13. Compressive elastic modulus of a G25_nanoHA_1.25 scaffold for different values of the
eccentricity or deviation in situation 2.

Deviation (mm) Elastic Modulus (MPa)

0.000 6.70
0.005 6.69
0.009 6.67

As can be seen in Tables 12 and 13, the compressive elastic modulus of the scaffold
with no deviation (6.70 MPa) differs from the compressive elastic modulus of the reference
scaffold considered in the previous sections (6.60 MPa). This difference lies in the fact
that, as mentioned, the numerical models used in both cases differ regarding the friction
coefficient used for the contacts between the upper and lower planes and the scaffold fibres.

According to these results, when errors are cumulative (situation two), there is no
significative influence, for the range of values considered, of the deviation between the
theoretical location of the fibres and their actual location on the stress–strain relationship
of a G25_nanoHA_1.25 scaffold subjected to a compression load. However, when errors
alternate with respect to the theoretical location of the fibres (situation one), the influence
of the deviation between the theoretical location of the fibres and their actual location on
the stress–strain relationship of a G25_nanoHA 1,25 scaffold subjected to a compression
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load may be considerable, because the straightness of the columns responsible for load
transmission is much more affected in such situation.

4.1.9. Existence of Broken Fibres

The G25_nanoHA_1.25 scaffold samples for testing have been printed using a theoret-
ical fibre diameter of 0.25 mm, leading to relatively fragile fibres that can suffer damage
during the printing process, the cooling and polymerization process or the tooling of
the samples.

Thus, the influence of the existence of broken fibres on the stress–strain relationship of
the G25_nanoHA_1.25 scaffold subjected to a compression load has been analysed using
FEM, having considered the following alternatives:

• No broken fibres within the scaffold—Situation one.
• One broken fibre within the scaffold (breakage located in one intersection between

perpendicular fibres)—Situation two.
• Two broken fibres within the scaffold (breakages located in two different intersections

between perpendicular fibres)—Situation three.
• One broken fibre within the scaffold (breakage located far from any intersection

between perpendicular fibres)—Situation four.
• Two broken fibres within the scaffold (breakages located far from any intersection

between perpendicular fibres)—Situation five.

All the fibre breakages considered in this study had a length of 0.15 mm and their
location was randomly selected.

As in the previous section, in this case there is no symmetry in the geometry of the
scaffolds; therefore, the whole scaffold has been represented in the numerical models.
Therefore, in order to avoid lateral rigid body motions, which may impede the convergence
of the numerical models, a friction coefficient of 0.3 has been considered in the contact
between the upper plane and the upper fibres and the contact between the lower plane
and the lower fibres. The results of this analysis are shown in Figure 33.

Figure 33. Influence of the existence of broken fibres on the stress–strain curve (G25_nanoHA 1.25).

The value of the compressive elastic modulus of a G25_nanoHA_1.25 scaffold for
each of the five different situations considered in this analysis concerning the existence of
broken fibres is shown in Table 14.
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Table 14. Compressive elastic modulus of a G25_nanoHA_1.25 scaffold for different situations
concerning the existence of broken fibres.

Situation (#) Elastic Modulus (MPa)

Situation 1 6.70
Situation 2 6.57
Situation 3 6.43
Situation 4 6.70
Situation 5 6.70

As can be seen in Table 14, the compressive elastic modulus of the scaffold with no
broken fibres (6.70 MPa) differs from the compressive elastic modulus of the reference
scaffold considered in the previous sections (6.60 MPa). This difference lies in the fact
that, as mentioned, the numerical models used in both cases differ regarding the friction
coefficient used for the contacts between the upper and lower planes and the scaffold fibres.

According to these results, when the breakage of the fibres occurs far from any inter-
section between perpendicular fibres, there is no significant influence on the stress–strain
relationship of a G25_nanoHA 1.25 scaffold subjected to a compression load, as the paths
for the load transmission (columns formed by the intersections between perpendicular
fibres) are not affected.

On the other hand, some influence on the stress–strain relationship of a
G25_nanoHA_1.25 scaffold subjected to a compression load can be seen when the breakage
of the fibres is located in the intersection between perpendicular fibres. In this case, it is
expected that the longer the breakage is and the higher the number of affected fibres is, the
bigger the influence is.

4.2. Design Safety Factor to Consider Uncertainty

In view of the Section 4.1 outcome, it is clear that the great differences in terms of
mechanical behaviour summarized in Table 3 could be explained by the printing process
uncertainty. Any model will be performed according to an idealized geometry, conditions
and material properties but, in the end, assuming this idealized behaviour is unsafe because
3D printing bone scaffolds at such small-scale leads to several manufacturing mistakes,
which become uncertainty sources.

Nevertheless, although it is not possible to forecast exact predictions on mechanical
behaviour while unable to perform a perfect 3D-printed bone scaffold, it is possible to
perform enough safe ones. This procedure is analogous to that used in purely structural
or mechanical engineering for other non-medical applications, where the forecasts are
performed running idealized models with reduction factors to consider execution mistakes,
material properties uncertainties, lack of homogeneity, etc.

Thus, such reduction factors need to be balanced to be conservative enough but not
too penalizing for the structure and the building process. Therefore, several tolerances are
defined for each execution variable that need to be checked and controlled during structure
execution or, analogously in this case, for bone scaffold 3D printing. Hence, each variable
is defined by a mean-measured value, μ, and a standard deviation, σ, assuming a Gaussian
distribution according to central limit theorem, since each variable is dependent on several
uncontrolled factors, and defining the check and control intensity in a way that there is
a small probability, typically 5%, of being under a lower boundary limit or exceeding an
upper bound with a reliability level typically of 75%. As an additional comment, these fifth
percentile values are known as characteristic values.

Accordingly, each uncertainty source is defined as a random variable x1, x2, . . . ,
x9 and, since the influence of each isolated random variable on the elastic modulus is
linear dependent and biunivocal. the value of each random variable corresponds with an
uncertainty factor, Fi, that is defined as the quotient between the actual elastic modulus and
the theoretical one if 3D printed perfectly. For instance, the fibre diameter is the variable
x3, the nozzle diameter is 0.25 mm, and it theoretically prints at 0.25 mm but, depending
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on the printing speed, the fibre diameter could be lower. Thus, if the 3D printing process
was perfect, then the fibre diameter would be 0.25 mm and the elastic modulus would
be E = 6.6 MPa with a corresponding uncertainty factor F3 = 6.6/6.6 = 1.0. However, if
the printing speed was higher, then the fibre diameter would be lower instead and, in the
case that it was even 0.22 mm, then the elastic modulus would be E = 3.39 MPa and the
corresponding factor F3 = 3.39/6.6 = 0.5136. Thus, because of the linear dependency, F3 is a
random variable with a Gaussian distribution matching x3. Then, if we define a diameter
tolerance and perform an execution control to guarantee that the fibre diameter is kept
between 0.22 and 0.25 mm, with such an intensity that only 5% of the bone scaffolds present
fibres below 0.22 mm and only 5% over 0.25 mm. Analogously, a mean, μi, and a standard
deviation, σi, can be defined for each isolated uncertainty factor Fi, considering that in any
Gaussian distribution, 90% of the probability is within the mean minus 1.6449 times the
standard deviation and plus it. Hence, Table 15 summarizes the mean, μi, and standard
deviation, σi, of each isolated uncertainty factor Fi, with corresponding limit values, Fi,min
and Fi,max, for the interval.

Table 15. Uncertainty factors Fi and corresponding mean μi and standard deviations σi, whose
minimum and maximum values correspond to percentiles 5 and 95, respectively.

Variable
(xi)

Source
(-)

Fi,min

(#)
Fi,max

(#)
μi

(#)
σi

(#)

x1 Poisson’s Ratio 0.9909 1.0000 0.9955 0.0028
x2 Position of the fibres 0.9485 1.0000 0.9742 0.0157
x3 Fibre Diameter 0.5136 1.0000 0.7568 0.1478
x4 Strand Distance 0.9955 1.0000 0.9977 0.0014
x5 Layer Height 0.6167 1.0000 0.8083 0.1165
x6 Sample Diameter 0.9545 1.0530 1.0038 0.0299
x7 Deflection of the fibres 0.9712 1.0000 0.9856 0.0088
x8 Straightness of the columns 0.5955 1.0000 0.7978 0.1230
x9 Existence of broken fibres 0.9597 1.0000 0.9799 0.0122

Thus, the next Figure 34 shows the probability density functions fi(xi) of each Gaussian
random variable thus defined. For the sake of simplicity, each variable xi directly represents
the uncertainty factor Fi = E(xi)/E(xtheoretical) defined as the quotient between the actual
elastic modulus and the theoretical one if 3D printed perfectly.
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Figure 34. Gaussian density function of each uncertainty reduction factor.
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The mathematical expression of each Gaussian probability density function corre-
sponds to Equation (4), as follows:

fi(xi) =
1

σi·
√

2π
·e
− (xi−μi)

2

2·σ2
i (4)

Hence, considering each isolated uncertainty variable as independent from each
other, the probability density function of the multiplication is the multiplication of the
independent probability density functions, see Equation (5) as follows:

f(x1·x2 · · · x9) = f1(x1)·f2(x2) · · · f9(x9) (5)

Therefore, to derive the probability density function of the multiplication it is required
a variable change. Accordingly, such variable change is shown in Equation (6), where u is
the multiplication of each N = 9 variables xi and there are other N-1 variables zi.⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u = x1·x2 · · · x9
z1 = x1
z2 = x2
...
z8 = x8

(6)

Accordingly, the Jacobian determinant to execute the variable change is derived as the
partial derivation of the variable multiplication by each variable, see Equation (7).

∂(x1·x2 · · · x9)

∂(u, z1·z2 · · · z8)
=

∣∣∣∣∣∣∣∣∣∣∣

∂x1
∂u

∂x1
∂z1

· · · ∂x1
∂z8

∂x2
∂u

∂x2
∂z1

· · · ∂x2
∂z8

...
...

...
...

∂x9
∂u

∂x9
∂z1

· · · ∂x9
∂z8

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

0 1 · · · ∂x1
∂z8

0 0 · · · ∂x2
∂z8

...
...

. . .
...

1
z1·z2 ··· z8

−u
z2

1·z2 ··· z8
· · · −u

z1·z2 ··· z2
8

∣∣∣∣∣∣∣∣∣∣∣
=

1
z1·z2 · · · z8

(7)

Thus, the probability density function of the nine variables, once changed, is shown in
Equation (9), as follows:

ℊ(u, z1, · · · , z8) = f1(z1)·f2(z2) · · · f9

(
u

z1·z2 · · · z9

)
· 1
z1·z2 · · · z8

(8)

In order to obtain the probability density function, the marginal distribution for
variable u, which is obtained by the direct integration of the remaining variables z1 to z8, is
required. See Equation (9) as follows:

ℊ(u) =
�

· · ·
∫

R8

[
f1(z1)·f2(z2) · · · f9

(
u

z1·z2 · · · z9

)
· 1
z1·z2 · · · z8

]
·dz1·dz2 · · · dz8 (9)

As a last comment on Equation (9), it is worthy to remember that each fi(xi) is a normal
Gaussian distribution according to Equation (4) and that, despite being multiplied by the
Jacobian fraction at the end, it is not directly integrable. Therefore, any solution can be
obtained only by complex numerical means. Nevertheless, there is another simpler, more
practical approach, considering that the distribution of the multiplication of Gaussian
distributions is a Gaussian distribution itself. Then, it is possible to derive the mean and
the standard deviation simply by taking into account their properties and their relationship
with the expected value, E(x), and variance, Var(x).

4.2.1. Derivation of the Global Mean

The expected value corresponds with the first order moment of the probability dis-
tribution. Therefore, the expected value of the multiplication of variables is the ninth
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integration of the probability density function of the multiplication multiplied by each
variable xi, between −∞ and ∞. See Equation (10), which is as follows:

E[x̂1·x̂2 · · · x̂9] =
�

· · ·
∫

R9

[
x1·x2 · · · x9·fx̂1·x̂2 ··· x̂9(x1·x2 · · · x9)·dx1·dx1 · · · dx9

]
(10)

Nevertheless, as the probability density function of the multiplication for a set of
independent variables is the product of the isolated probability density function of each
variable, see Equation (5), then the Equation (10) can be developed into Equation (11),
which is as follows:

E[x̂1·x̂2 · · · x̂9] =
�

· · ·
∫

R9

[
x1·x2 · · · x9·fx̂1(x1)·fx̂2(x2) · · · fx̂9(x9)·dx1·dx1 · · ·dx9

]
(11)

Accordingly, as every integral is independent from each other, then they can be
regrouped as in the following Equation (12), presenting them as the product of integrals:

E[x̂1·x̂2 · · · x̂9] =
∫ ∞

−∞
x1·fx̂1(x1)·dx1·

∫ ∞

−∞
x2·fx̂2(x2)·dx2 · · ·

∫ ∞

−∞
x9·fx̂9(x9)·dx9 (12)

Thus, remembering that the mean is precisely the first order moment of a probability
distribution, see Equation (13), which is as follows:

∫ ∞

−∞
xi·fx̂i(xi)·dxi = μi (13)

Then, by direct substitution, the mean of any variable multiplication is the product of
the isolated variable means, see Equation (14), which is as follows:

E[x̂1·x̂2 · · · x̂9] = μ1·μ2·μ3 · · · μ9 (14)

4.2.2. Derivation of the Global Standard Deviation

Regarding the variance of the variable multiplication, it corresponds to the expected
value of the squared product minus the squared expected value of the product, see (15),
which is as follows:

VAR(x1·x2·x3 · · · x9) = E
[
(x1·x2·x3 · · · x9)

2
]
− E([x1·x2·x3 · · · x9])

2 (15)

Now, making use of the expected value properties, the expected value of the prod-
uct of variables is the multiplication of the expected value of such variables. Therefore,
substituting in Equation (15) there it comes Equation (16), which is as follows:

VAR(x1·x2·x3 · · · x9) = E
[
x2

1

]
·E
[
x2

2

]
· · · E

[
x2

9

]
− (E[x1])

2·(E[x2])
2 · · · (E[x9])

2 (16)

Now, considering that the expected value of a variable is the mean value E[xi] = μi, the
expected value of the squared variable corresponds to Equation (17), which is as follows:

E
[
x2

i

]
=

(
μ2

i + σ2
i

)
(17)

Then, by a simple substitution in Equation (16), Equation (18) is then derived as
follows:

VAR(x1·x2·x3 · · · x9) =
(
μ2

1 + σ2
1

)
·
(
μ2

2 + σ2
2

)
· · ·

(
μ2

9 + σ2
9

)
− μ2

1·μ2
2 · · · μ2

9 (18)

4.2.3. Derivation of the Safety Factor

Thus, according to previous Equations (14) and (18), when substituting the mean and
standard deviation values for the uncertainty factors, taken as isolated variables, which
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are summarized Table 15, the mean and standard deviation of the product of variables is
derived. See Equations (19) and (20), which are as follows:

μ = E[x̂1·x̂2 · · · x̂9] ≈ 0.4578 (19)

σ =
√

VAR(x1·x2·x3 · · · x9) ≈ 0.1346 (20)

Therefore, with an execution control of each isolated uncertainty source, keeping 95%
of the bone scaffolds within the required intervals for the fibre diameter, layer height, etc.,
then the combined outcome in terms of the global uncertainty factor will show a Gaussian
distribution (Figure 35). In this figure, the mean value is 0.4578, while the characteristic
value corresponding to fifth percentile (shadowed area) is 0.2364.
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Figure 35. Gaussian density function of global uncertainty factor derived from variable product.

Consequently, there are two reduction factors derived from uncertainty to be applied
to the elastic modulus directly obtained from the bulk material as correction factors for
the scaffolds modelling. The first is derived from the mean value and shall be used for
FEM simulations where the accuracy in terms of deformations and displacements are the
main outcome, and the second is derived from the characteristic value for conservative
forecasts that shall be used for FEM simulations where the main outcome is a safe enough
prediction in terms of stress or an upper bound of deformations. Thus, the design value
for the global elastic or Young’s modulus after printing Ed can be derived from the elastic
modulus obtained from models with idealized or theoretical conditions, EM, and material
input obtained from bulk material testing, but with a reduction material printing factor
as a design safety factor γMP, see Equation (21). Thus, for accurate simulations regarding
deformations it takes 2.2 as value and for safer conservative simulations regarding stresses
or the upper bound of local deformations it takes 4.25 instead, see Equations (22) and (23),
which are as follows:

Ed =
EM

γMP
(21)

Ed = 0.4578·EM ≈ EM

2.2
(22)

Ed = 0.2364·EM ≈ EM

4.25
(23)
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Additionally, this design safety factor can be lowered if the execution control becomes
more intense; thus 99% of the bone scaffolds presents the variables within the defined
tolerance limits instead 95%, or if the intensity remains the same but the tolerance limits
are lowered to ensure that geometry deviations are mitigated and derived, the uncertainty
factors are lowered accordingly. The fibre diameter, layer height and straightness of the
columns are key uncertainty sources affecting the bone scaffold behaviour. Therefore,
the best strategy to improve the resulting scaffold behaviour is to improve the execution
control and reduce the tolerances in these three variables.

4.2.4. Use Case

For instance, let us have a use case analogous to that presented in Figure 1, where a
hollow cylindric scaffold made of G25 nanoHA 1.25, G25 nanoHA 1.00 or G25 nanoHA 0.75
is substituting some damaged length of a femur for tissue regeneration, as representative
of a uniaxial loading case. The specific patient body weight is around 75 kg; therefore, the
scaffold section must face F = 735 N of loading peaks. If the cylindric scaffold length was
20 mm, the external diameter was 50 mm and the inner diameter was 10 mm, then the
cross-sectional area would be A = 1885 mm2. Thus, the axial apparent stress of the scaffold
would be σx = F/A = −0.39 MPa, with σy = σz = 0 Mpa, since this is a monoaxial loading
and a cylindric loading state, and the axial strain εx is, according to Hooke’s Equation (24)
and taking into account the Poisson coefficients μyx and μzx, as follows:

εx =
σx

Ex
− μyx·

σy

Ey
− μzx·

σz

Ez
=

σx

Ex
(24)

Now, using the apparent young modulus obtained from the idealized models EA,FEM
already presented in Table 3 without any correction factor, the mean young modulus, Em,d,
does not present any change. Thus, the mean strain εm is obtained by direct application
of Equation (24). Then, the displacement δ is obtained by multiplying the strain by the
scaffold length. Moreover, the real young modulus, EFEM, taking into account the real
stresses of solid 187 elements at the scaffold, multiplied by the strain εm considered as
uniform, gives the real foreseeable stress, σFEM. This calculation process for each scaffold
type is presented in Table 16.

Table 16. Derivation of displacement δ and stress σ at hollow cylindric scaffold within a femur bone
without correction factor (γMP = 1).

EA,FEM Em,d εm δ EFEM σFEM

(MPa) (MPa) (-) (mm) (MPa) (MPa)

G25 nanoHA 1.25 6.6 6.6 0.059 1.182 566.2 33.4
G25 nanoHA 1.00 7.9 7.9 0.049 0.987 730.7 36.1
G25 nanoHA 0.75 15.49 15.5 0.025 0.503 563.1 14.2

Now, if the design limits were σmax = 40 MPa and δmax = 1.5 mm, then the selected
scaffold type could be G25 nanoHA 0.75 or G25 nanoHA 1.25, as they are the only ones
fulfilling both requirements regarding the maximum displacement and stress. Nevertheless,
if the scaffold was finally made of such materials, considering that the realistic scaffold will
present lower stiffness due to several uncertain sources, then the calculation needs to be
readjusted, taking into account the mean expectable behaviour of the scaffold (Table 17).
This can be made by applying the reduction factor γMP = 2.2 to derive a mean Young’s
modulus for design Em,d and repeating the calculations with this adjusted elasticity. As can
be seen, by calculating it this way, the only scaffold type left fulfilling both requirements is
G25 nanoHA 0.75.
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Table 17. Derivation of displacement δ and stress σ at hollow cylindric scaffold within a femur bone
with mean correction factor (γMP = 2.2).

EA,FEM Em,d εm δ EFEM σFEM

(MPa) (MPa) (-) (mm) (MPa) (MPa)

G25 nanoHA 1.25 6.6 3.0 0.130 2.600 566.2 73.6
G25 nanoHA 1.00 7.9 3.6 0.109 2.172 730.7 79.3
G25 nanoHA 0.75 15.49 7.0 0.055 1.108 563.1 31.2

However, while conducting the calculations this way is a correct procedure to forecast
displacements depending on a mean scaffold behaviour, it is not a safe enough procedure
to consider the mechanical failure due to stress, since a crack starting at certain spot of
the scaffold due to a local weakness could propagate, causing a global structural failure.
This is the reason why the calculations on the resistance take a characteristic value instead,
i.e., the fifth percentile or the value that is exceeded 19 times of every 20 measurements.
This guarantees that there is a certain amount of resistance left to compensate for local
weaknesses. Moreover, it can be made by applying the reduction factor γMP = 4.25 instead
to derive a characteristic Young’s modulus for design Ek,d and repeating the calculations
with this adjusted elasticity. As can be seen, calculating it this way discards the three initial
designs, since the three scaffolds present a stress over 40 MPa (Table 18).

Table 18. Derivation of displacement δ and stress σ at hollow cylindric scaffold within a femur bone
with characteristic correction factor (γMP = 4.25).

EA,FEM Ek,d εk δ EFEM σFEM

(MPa) (MPa) (-) (mm) (MPa) (MPa)

G25 nanoHA 1.25 6.6 1.6 0.251 5.022 566.2 142.2

G25 nanoHA 1.00 7.9 1.9 0.210 4.195 730.7 153.3

G25 nanoHA 0.75 15.49 3.6 0.107 2.140 563.1 60.2

The outcome of this evidence is that, if we cannot reduce the loadings, we need to
increase the effective cross-sectional area to face them. This can be made by increasing
the external diameter or reducing the inner diameter of the scaffold, but most of the time
it is not possible in a patient customized geometry; therefore, the only alternatives are
as follows:

• Increasing the execution control, enabling to reduce the factor γMP;
• Improving the material, pushing forward the stress limits and the global stiffness;
• Increasing the fibre diameter and/or reducing the strand distance, thus increasing the

column area.

Reducing the strand distance from 0.75 to 0.5 leads to an increase in the amount of
“resisting columns”, from 21 to 45; this results in an expectable stress of 37.47 MPa, taking
into account the previous results in columns made of spatially crossed cylinders of the same
geometry. Moreover, increasing the fibre diameter instead, to pass from 60.2 to 40 MPa,
will require a cross sectional augmentation by a scale factor equal to the square root of
the quotient F = (60.2/40)0.5, giving a 0.307-mm diameter. Nevertheless, the diameter
augmentation reduces the fibre cross-sectional curvature, increasing contact in a non-linear
basis; therefore, it should be enough to increase the diameter up to 0.3 mm.

Thus, this patient will require a G25 nanoHA 0.75 with a fibre diameter of 0.3 mm and
a G25 nanoHA 0.5 with fibre diameter of 0.25 mm, both produced from 55% PEOT/PBT +
45% nanoHA material or, finally, a G25 nanoHA 0.75 with 0.25 mm fibre diameter produced
from an improved material.
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5. Conclusions

Thus, comparing the results of finite element modelling to the bone scaffold compres-
sion tests according to considered methodology, and once the uncertainty sources derived
from manufacturing process are analysed during discussion, the following conclusions can
be summarized:

A methodology to perform FEM of 3D-printed bone scaffolds of any initial bulk
material properties and geometry is defined. Moreover, it is experimentally calibrated and
validated by direct testing of the scaffolds. The bone scaffold is then represented as an
equivalent finite element to enable the FEM of bone tissue discretized with a compatible
mesh, enabling the required characteristics to be studied, depending on bone topology.

The methodology is executed for a 55% PEOT/PBT + 45% nanoHA bulk material
and three different scaffold geometries. The results coming from the FEM and the mono-
tonic compression test of the bone scaffolds show significative differences, being that
the idealized simulation is always better than the actual bone scaffolds. Considering the
tests’ mean values and standard deviations, the differences cannot be explained by result
scattering only.

A deep look at the scaffolds show several fabrication imprecisions, meaning a resulting
geometry far different from the theoretical one considered for FEM, such as different strand
distance, layer height, fibre diameter, Poisson’s ratio, fibre position, sample diameter,
straightness of the columns, existence of broken fibres. This is due to the small imprecisions
adding up layer-by-layer as large clinically relevant scaffolds (i.e., volume > 1 cm3) are
being built. Thus, there are up to nine uncertainty sources detected in scaffolds coming
from different variables.

Consequently, a sensitivity analysis is performed for each uncertainty source, deriving
the influence or uncertainty factor and reducing the expected behaviour of each isolated
source in terms of scaffold stiffness. Then, some tolerances are defined for each variable to
be controlled during execution, with such an intensity that every variable presents a 95%
probability of being within the selected interval in a Gaussian distribution.

The two main effects that can give strong changes to the elastic modulus are the strand
overlapping and the fibre diameter. The first can be accommodated by design planning
the shifting of the planes while printing, and the second may be modulating the printing
speed, these will contribute to palliate the effect and minimize the corresponding design
factor. A global design safety factor is defined in a predictive and conservative scenario,
combining each isolated uncertainty factor in a single value taken from the mean value and
fifth percentile of the Gaussian distribution of the product of each reducing uncertainty
factor.

Thus, the aprioristic FEM of a bone tissue region with the inclusion of bone scaffold
volume made of a certain bulk material becomes possible simply by using solid 185
equivalent finite elements to mesh it, assigning as material properties the ones derived
from the FEM simulation of the monotonic tests of the scaffold, divided by the global
design safety factor. This enables the further topological optimization of the scaffold along
the bone tissue and the material selection, depending on the requirements.
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Abstract: Previously, it has been shown that the dynamic geometric configuration of the flow channel
of the left heart and aorta corresponds to the direction of the streamlines of swirling flow, which can
be described using the exact solution of the Navier–Stokes and continuity equations for the class of
centripetal swirling viscous fluid flows. In this paper, analytical expressions were obtained. They
describe the functions C0(t) and Γ0(t), included in the solutions, for the velocity components of such
a flow. These expressions make it possible to relate the values of these functions to dynamic changes
in the geometry of the flow channel in which the swirling flow evolves. The obtained expressions
allow the reconstruction of the dynamic velocity field of an unsteady potential swirling flow in a
flow channel of arbitrary geometry. The proposed approach can be used as a theoretical method for
correct numerical modeling of the blood flow in the heart chambers and large arteries, as well as
for developing a mathematical model of blood circulation, considering the swirling structure of the
blood flow.

Keywords: potential swirling flow; Navier–Stokes equations; unsteady swirling flow; tornado-
like jets

1. Introduction

In our previous work, we investigated the dynamic geometry of the left heart and aorta
to find consistency between the configuration of the flow channel and the directions of the
swirling streamlines of the TLJ (Tornado-Like Jets) class [1–3]. The found correspondence
allowed us to assume that the blood flow in the heart and large vessels belong to the TLJ
class. These flows were described using the explicit solutions [4], which determine the
conditions for a swirling jet of Newtonian fluid in space to appear and evolve.

It has been experimentally proved that swirling flows of this class, under certain con-
ditions, are formed on a concave surface streamlined by the viscous medium. Apparently,
an important role in the formation of such a swirling flow is played by the vortex boundary
layer arising on the concave surface. This layer should consist of some small-scale vortex
structures such as Taylor–Görtler vortices and differ in their properties from the classical
shear boundary layer of L. Prandtl. These vortices are cylindrical structures, the axis of
rotation of which is parallel to the incoming flow. This shape allows the swirling flow to
rely on these vortex structures, conjugating with them only at one point. In this case, the
movement of the swirling flow relative to the concave surface causes the appearance of
rolling stresses, which are much less than the shear stresses in the boundary layer of L.
Prandtl. The geometric shape of the generatrix of the concave surface determines the shape
of the streamlines of the swirling flow. In this case, the vortex boundary layer is able to
change its thickness along the concave surface dynamically. This allows it to compensate
for local inconsistencies between the real surface and the geometric shape built along
streamlines. Such compensation is necessary when the swirling blood flow moves into a
section of the vascular bed with pathological geometry disorders.
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Obviously, blood has complex rheology and, in the general case, cannot be regarded
as a Newtonian fluid. However, the available experimental data allow us to assert that
in large-caliber vessels at relatively high speeds, the dynamic viscosity of blood hardly
changes, and blood can be considered a Newtonian fluid.

Calculating the Reynolds number for the blood flow in the heart and great vessels,
we obtain a value that allows us to make an unambiguous conclusion about the turbulent
nature of the flow under consideration. However, a turbulent flow is characterized by
active mixing of the liquid volume and spontaneous vortex formation. It is obvious that
these properties of turbulent flows do not correspond to the physiological characteristics of
blood circulation. Considering the blood flow as TLJ, the flow structure can be preserved
without noticeable swirls and perturbations at such Reynolds numbers that, for other
principles of flow organization, would lead to flow turbulization. However, it was not
possible to take into account the nonstationarity blood flow because, in the exact solution,
it is determined by arbitrary time-dependent functions that do not have a formal analytical
record. At the same time, it is obvious that the real blood flow is strictly unsteady. A formal
description of the unsteady properties of the swirling blood flow in terms of analytical
functions would make it possible to construct a model of blood circulation with a higher
degree of accuracy.

Earlier it was found that the geometric characteristics of the bloodstream (if we assume
that they correspond to the geometric characteristics of the flow channel) are described
with a high degree of accuracy by quasi-stationary solutions [1–4]. In these solutions, the
non-stationary properties of the flow are determined by the behavior of the time-dependent
functions C0(t) and Γ0(t). These functions could be determined experimentally if measuring
the vector field of flow velocities. However, so far, making such a measurement with suffi-
cient accuracy is rather difficult. The task is complicated by the fact that the bloodstream at
all stages of its evolution interacts with the movable walls of the flow channel, taking the
direction of movement given by the instantaneous geometric configuration of the channel.
At the same time, the bloodstream is a submerged stream, and its structure changes upon
interaction and merging with residual blood volume that retains a certain movement after
the previous cardiac cycle.

In previous studies, we considered the swirling blood flow in the heart and great
vessels as quasi-stationary—a continuous set of values of the functions C0(t) and Γ0(t) on
a time interval was replaced by a discrete subset of values, each of which corresponded to
a certain configuration of the flow channel. This made it possible to replace the functions
C0(t) and Γ0(t) with a set of constants that reflect the nonstationarity behavior of the
flow. The analysis of the dynamic geometry of the left heart and aorta confirmed this
hypothesis; the values of some parameters of the swirling blood flow in this segment
of blood circulation were calculated. However, the accuracy of the obtained results was
limited by the resolution of discretization.

Obtaining formal relations for the functions C0(t) and Γ0(t) will make it possible to
unambiguously relate the structure of an unsteady swirling flow with the conditions that
form it—the dynamics of the inflowing blood flow, the geometry of the flow channel, and
the interaction with residual volumes at each stage of the evolution of the bloodstream
both in time and along the length of the flow channel.

Therefore, the aim of this work was to obtain formal mathematical expressions for the
functions C0(t) and Γ0(t), which describe in general form the unsteadiness of the swirling
flow. Due to the calculation difficulties, we could not validate the proposed equations with
the experimental results. This work will be conducted in the next stage of our study.

The presented paper has the following structure:

• Introduction;
• Materials and Methods;
• Results;
• Discussion;
• Conclusion;
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• References.

2. Materials and Methods

According to [1–4], velocity components of the TLJ in a cylindrical coordinate system
are expressed by the following relations:⎧⎪⎪⎨

⎪⎪⎩
uz = 2C0(t)z
ur = −C0(t)r

uϕ = Γ0(t)
2πr ∗

(
1 − e−

C0(t)r
2

2υ

) (1a)

where uz, ur, and uϕ are the velocity components, ν is the kinematic viscosity, and the un-
steadiness and evolution of the flow are determined by the behavior of the time-dependent
functions C0(t) and Γ0(t). C0(t) is an arbitrary function of time, which, by its meaning,
represents the gradient of the longitudinal component of the velocity (sec−1); Γ0(t) is an
arbitrary function of time, corresponding to the physical meaning of the circulation of the
medium (m2/sec).

It can be seen from the presented evidence that the unsteady properties of the flow
under study are determined by the behavior of the time-dependent functions C0(t) and
Γ0(t). While obtaining relations for the swirling flow velocity (1a) from the original system
of Navier–Stokes equations and continuity, the functions C0(t) and Γ0(t) were considered
as arbitrary functions of time.

These ratios were analyzed using the methods of linear differential equations solving
and standard methods of differentiation for chain functions with several arguments.

3. Results

To obtain an analytical form of the functions C0(t) and Γ0(t), relations (1a) were
substituted into the Navier–Stokes equations.

For this, the equations for the three velocity components were considered separately
in a cylindrical coordinate system.

Azimuthal velocity component of the Navier–Stokes equation can be expressed as
follows [5]:

uruϕ

r +
∂uϕ

∂r ur +
1
r

∂uϕ

∂ϕ uϕ +
∂uϕ

∂z uz +
∂uϕ

∂t = Fϕ − 1
ρr

∂p
∂ϕ + υ

(
Δuϕ − uϕ

r2 + 2
r2

∂ur
∂ϕ

)
Δ = ∂2

∂r2 +
1
r

∂
∂r +

1
r2

∂2

∂ϕ2 +
∂2

∂z2

(1b)

In the case of axial symmetry of the considered swirling flow (this condition means
that all partial derivatives with respect to ϕ must be equal to 0), the Equation (1b) has the
following form:

uruϕ

r
+

∂uϕ

∂r
ur +

∂uϕ

∂z
uz +

∂uϕ

∂t
= υ

(
∂2uϕ

∂r2 +
1
r

∂uϕ

∂r
+

∂2uϕ

∂z2 − uϕ

r2

)
(1c)

It is seen from relations (1a) that uϕ does not depend on z. This means that the partial
derivative uϕ with respect to z equals 0. Then Equation (1c) can be changed as follows:

uruϕ

r
+

∂uϕ

∂r
ur +

∂uϕ

∂t
= υ

(
∂2uϕ

∂r2 +
1
r

∂uϕ

∂r
− uϕ

r2

)
(1d)

We substitute relations (1a) into Equation (1d), writing out each term separately:

∂uϕ

∂t
=

dΓ0(t)
dt

∗ 1
2πr

∗
(

1 − e−
C0(t)r

2

2υ

)
+

Γ0(t)r
4πυ

∗ dC0(t)
dt

∗ e−
C0(t)r

2

2υ
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Substituting the obtained relations into the original Equation (1d), the left-hand side
is transformed as follows:
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Similarly, the right-hand side of Equation (1d) can be transformed as follows:
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The final Equation (1d) will be written as follows:
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The Navier-Stokes equation for calculating the radial velocity component is written as
follows [5]:

∂ur

∂t
+ ur

∂ur

∂r
− uϕ

r
∂ur

∂ϕ
−

u2
ϕ

r
+ uz

∂ur

∂z
= −1

ρ

∂p
∂r

+ ν

(
∂2ur

∂r2 +
1
r

∂ur

∂r
− ur

r2 +
∂2ur

∂z2

)
(2a)

Considering the axisymmetric flow, we have:

∂ur

∂t
+ ur

∂ur

∂r
−

u2
ϕ

r
+ uz

∂ur

∂z
= −1

ρ

∂p
∂r

+ ν

(
∂2ur

∂r2 +
1
r

∂ur

∂r
− ur

r2 +
∂2ur

∂z2

)

Substituting the expressions for the velocity Components (1a) into this equation,
we get:

− r
dC0(t)

dt
+ C2

0(t)r −
Γ0(t)

2

4π2r3

(
1 − e−

C0(t)r
2

2υ

)2

= −1
ρ

∂p
∂r

(2b)
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The Navier-Stokes equation for calculating the longitudinal velocity component will
then be written as follows [5]:

∂uz

∂t
+ ur

∂uz

∂r
+

uϕ

r
∂uz

∂ϕ
+ uz

∂uz

∂z
= −1

ρ

∂p
∂z

+ ν

(
∂2uz

∂r2 +
1
r

∂uz

∂r
+

1
r2

∂2uz

∂ϕ2 +
∂2uz

∂z2

)
(3a)

In the case of axial symmetry of the considered swirling flow, Equation (3a) is written
as follows:

∂uz

∂t
+ ur

∂uz

∂r
+ uz

∂uz

∂z
= −1

ρ

∂p
∂z

+ ν

(
∂2uz

∂r2 +
1
r

∂uz

∂r
+

∂2uz

∂z2

)

Substituting relations (1a) into Equation (3a), writing out each term separately, we get:

2z
dC0(t)

dt
+ 4C2

0(t)z = −1
ρ

∂p
∂z

(3b)

Thus, finding the functions C0(t), Γ0(t) is reduced to solving the following system of
differential equations:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dΓ0(t)
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1
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2
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2

4π2r3

(
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2

2υ

)2
= − 1

ρ
∂p
∂r

2z dC0(t)
dt + 4C2

0(t)z = − 1
ρ

∂p
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(4)

It should be noted that the equations in the written system (4), in addition to the
sought-for time-dependent functions, also contain the derivatives of pressure with respect
to coordinates and these coordinates. Thus, the conditions for which the exact solutions
were derived are satisfied if and only if any function of the partial derivatives of pressure
with respect to coordinates and of the coordinates themselves is a function only of time.

The last equation of system (4) contains only one unknown function—C0(t); therefore,
such an equation is most conveniently solved using the method of Lie groups. The solution
to this equation gives the following expression for the desired function:

C0(t) = − α1

2tanh(α1 ∗ (C1 − t))
(5a)

where C1 is the constant of integration and can be taken as 0.
Then the resulting expression for C0(t) was substituted into the second equation of the

system (4). After this, the equation is a differential equation from one unknown function
Γ0(t). Its solution gives the following result:

Γ0(t) =

π

√
α3∗tanh2(α1∗(C1−t))+α4

exp
(

α2
4ν∗tanh(α1∗(C1−t))

)
−1

tanh(α1 ∗ (C1 − t))
(5b)

The following notations are introduced in Expressions (5a) and (5b):
⎧⎪⎪⎪⎪⎪⎪⎨
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[
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s2

]
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[
m4

s2

]
(5c)
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If the pressure change along the longitudinal and radial coordinates is constant,
the parameters (α1, . . . , α4) show only the change in the geometric configuration of
the jet over time. If the jet is enclosed in a flow channel that takes its shape, then the
parameters (α1, . . . , α4) can be determined experimentally by measuring the dimensions
of the channel.

In [6,7], the empirical dependences on time of Γ0(t) and of C0(t)/Γ0(t) were obtained.
Comparing these dependencies, the approximate order of values of the constants was
determined as (α1, . . . , α4) = (10−1, 10−6, 10−4, 10−2).

Using the suggested values of the parameters, the graphs of the dependence of the
functions C0(t) and Γ0(t) on time were plotted (Figures 1 and 2).

Figure 1. Plot of the C0(t) function.

 
Figure 2. Plot of the Γ0(t) function.

4. Discussion

As a result, we managed to obtain a general analytical form of the functions C0(t)
and Γ0(t). The ratios for these functions contain several parameters, the exact value of
which should be determined within the framework of a specific problem. As can be seen
from the graphs, the studied functions C0(t) and Γ0(t) are strictly positive and decrease
monotonically with time. This behavior expresses the fulfillment of the energy conservation
law for the considered swirling flow. Indeed, solution (1a) shows that if the values of the
functions under study could increase in absolute value over time, the kinetic energy
of the swirling flow would have increased in the absence of external action, which is
impossible. The dynamics of the functions C0(t) and Γ0(t) approximately corresponds to
the experimental curves plotted, based on studies of the blood flow structure in the left
ventricle [7].
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Analysis of the constants (α1, . . . , α4) allows the following statements:
The dimensions of the constants correspond to the dimensions of the studied functions

C0(t) and Γ0(t). In particular, the dimension α1 coincides with the dimension C0(t), the
dimension α2 coincides with the dimension Γ0(t) and the dimensions α3, α4 coincide with
the dimensions Γ0(t)

2.
The swirling flow belongs to the TLJ class and can be described by exact solutions (1a)

if and only if the form of the dynamic pressure dependence on the channel coordinates
does not change with time.

Two swirling flows belonging to the TLJ class and having different geometric charac-
teristics can be determined by the same functions C0(t) and Γ0(t) and, accordingly, have
an identical dynamic structure if the set of constants (α1, . . . , α4) is the same for both.

Therefore, the obtained relations (5a) and (5b) make it possible to describe in a general
form the unsteady swirling flow of a viscous fluid, the velocity components of which are
expressed by solution (1a). Considering the obtained expressions for the functions C0(t)
and Γ0(t), the exact solution can be used for numerical modeling of the swirling blood flow
in the heart and large vessels without considering the non-Newtonian properties of blood.

Attempts to formally describe the unsteady blood flow have been undertaken earlier
by many researchers [8–11]. Computational fluid dynamics methods were mainly used
in these works. With the development of computing power, it has become possible to
simulate the geometry of heart cavities using neural networks [12]. However, despite great
advances in the field of numerical modeling, these models turn out to be rather complex
and lose the necessary clarity. This is even more true for models based on neural networks.

In this work, based on the well-studied non-stationary equations of hydrodynamics,
relatively simple relations were obtained that describe the non-stationary properties of the
swirling blood flow in the heart and great vessels. The use of the obtained ratios in CFD
models and for calculating initial approximations of the geometry of flow channels for
training neural networks will enable the development of relatively simple and effective
blood circulation models.

5. Conclusions

Most modern circulatory models are based on numerical modeling of blood flow
and based on methods of computational hydrodynamics and deep learning [8–12]. This
approach simplifies the calculations but does not allow derivation of the physical and
mathematical meaning of the functional dependencies, which are included in the ratios
for the components of the blood flow velocity. So, it was possible to obtain analytical
relations for functions reflecting the unsteady properties of the swirling blood flow. These
relations, on the one hand, make it possible to perform a more accurate analysis of the
physical characteristics of an unsteady swirling blood flow. On the other hand, they allow
formulating characteristic flow parameters that can be verified by experiment. Thus, the
results of this study allow us to deepen the physical understanding of the peculiarities of
the evolution of the swirling blood flow, as well as to provide convenient characteristic
parameters for validating experimental data.

It should be noted that the obtained ratios do not consider the pulsating nature of the
blood flow in the heart and large vessels. The necessary improvements are planned to be
added to the model at subsequent stages of the study.

The next steps in the development of this study will be to carry out experimental
measurements of the field of velocities and pressures and to validate the obtained results
using the functional relationships obtained in this work.
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Abstract: We present a continuum scale particle transport model for red blood cells following
collision arguments, in a diffusive flux formulation. The model is implemented in FOAM, in a
framework suitable for haemodynamics simulations and adapted to multi-scaling. Specifically, the
framework we present is able to ingest transport coefficient models to be derived, prospectively, from
complimentary but independent meso-scale simulations. For present purposes, we consider modern
semi-mechanistic rheology models, which we implement and test as proxies for such data. The model
is verified against a known analytical solution and shows excellent agreement for high quality meshes
and good agreement for typical meshes as used in vascular flow simulations. Simulation results for
different size and time scales show that migration of red blood cells does occur on physiologically
relevany timescales on small vessels below 1 mm and that the haematocrit concentration modulates
the non-Newtonian viscosity. This model forms part of a multi-scale approach to haemorheology
and model parameters will be derived from meso-scale simulations using multi-component Lattice
Boltzmann methods. The code, haemoFoam, is made available for interested researchers.

Keywords: haemorheology; blood flow modelling; particle transport; numerical fluid mechanics

1. Introduction

Blood is a non-Newtonian fluid with very complex behaviour deriving from a meso-
scopic composition which—minimally described—is a dense, mono-disperse suspension
of deformable vesicles suspended in incompressible plasma. Accordingly, blood rheology
is dominated by the interaction of cells, with a multitude of models having been proposed
to account for such meso-scale effects as deformation, aggregation, and rouleaux formation
which underline emergent macroscopic flow properties like concentration dependant vis-
cosity and shear thinning. The authors are currently developing a multi-scale approach,
explicitly modelling meso-scale effects using Lattice Boltzmann Models (LBM), in which
erythrocyte mechanics are fully resolved, while describing the macro-scale rheology us-
ing particle transport modelling and quasi-mechanistic non-Newtonian rheology models
described using traditional Eulerian numerics. We give the rationale of this pairing of
methodologies shortly, in the next sub-section. In essence, though, it is intended that
the latter model will eventually be parameterised using LBM data. Here, we present the
continuum mechanical part of this multi-scale modelling approach, which is designed to
facilitate the simulation of realistic vessel geometries and spatially complex flow patterns.

Multi-scale models are necessary in many applications. In meteorology, the Eulerian
grids of the macroscopic simulation are characterised by a 1 km spatial resolution. Clearly
it is necessary to account for more local variation of field variables and macroscopic atmo-
spheric simulations are parameterised based on data gathered from, e.g., semi-analytic
meso-scale models of convection [1]. (Note, we use the term meso-scale (macroscale) to
identify the shortest (largest) length scale considered. We use the term continuum-scale to
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describe a scale where particle dynamics are neglected and integral bulk material parame-
ters are used—within the scope of this paper macroscale is treated as continuum-scale).

Similarly, in the simulation of turbulent flow fields, temporal or spatial averages are
used to derive macroscopic turbulence properties, like an isotropic turbulent viscosity,
which describes the statistical effect of the inherently chaotic, and anisotropic nature of
meso-scale and micro-scale turbulence. While the micro-scale can be simulated (Direct Nu-
merical Simulation), this approach is limited by size, Reynolds number and computational
resource and thus it is mostly used in fundamental research and in the development and
parametrisation the macro-scale model.

In a high particle load suspension like blood, many types of mechanical interactions
between particles and carrier fluid occur [2]. A variety of models are used from 1 to d re-
duced order models, through meso-scale models to continuum-scale models [3]. Meso-scale
modelling, e.g., Particle Dynamics Methods [4], or the multi-component Lattice Boltzmann
Method [5] has a widely acknowledged facility for Lagrangian particulate flows [6–10] and
has been employed to describe these interactions and the dynamics of the collisions in de-
tail. Very recently, we have developed a single framework, three-dimensional methodology
for capturing detailed, particle-scale interactions between neutrally buoyant suspended
vesicles (i.e., erythrocytes), using our novel chromodynamics multi-component Lattice
Boltzmann method variant [11]. We have previously shown that this same essential model
is able to capture detailed hydrodynamic interactions, lubrication effects and ballistic colli-
sions between transported particles, in two dimensional simulations containing O(1000)
liquid drops at high volume faction [12]. Current work aims to scale these models up, to
allow extraction, through statistical averaging and measuring mechanical dissipation, of
relevant transport coefficients, e.g.,

ν = ν(φ, γ̇), D = D(φ, γ̇). (1)

Above, ν and D denote kinematic viscosity and diffusion co-efficient and φ and γ̇ denote
particle density and local shear rate.

As with direct numerical simulation in turbulence modelling, finite computational
resource means that these detailed explicit particulate models are limited to small volumes
containing relatively few particles in their simulation domain (an the order of magnitude
of hundreds to thousands at the time of writing). To address the much greater scales of
medical significance, it is, therefore, necessary to develop macro or continuum scale models,
which encapsulate an integrated effect of these interactions, without explicitly resolving
them. Crucially, these continuum models must be amenable to parametrisation, in the
present context using meso-scale information such as that encapsulated in the data of
Burgin [12].

Based on the work of Leighton and Acrivos [13], and Phillips et al. [14], we present
here a macro-scale, or continuum-scale model for haematocrit transport, which, together
with modern formulations of “quasi-Newtonian” (i.e., not considering viscoelastic and
viscoplastic effects) non-Newtonian model, allows for the simulation of macroscopic flows,
accounting for the integral effect of meso-scopic phenomena.

Currently, the models which have been proposed for continuum-scale haematocrit
transport models can, roughly, be divided [15] into suspension balance models [13,16] and
diffusive flux models [14].

Suspension balance models use an Euler–Euler mixture modelling approach, where
the carrier fluid and the particle load are represented as separate species, with a transport
Equation (typically convection-diffusion) and physical transport properties for each species;
in diffusive flux models, the suspension is modelled as a single species, with the particle
volume fraction being modelled as a scalar property, which influences the bulk transport
coefficients.

Our macroscopic model is a particle transport model after Phillips [14]. It follows the
collision arguments by Leighton and Acrivios [13] by describing the particle migration
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based on the gradients of shear strain, concentration and viscosity. The local concentration
of haematocrit is then used to establish the local effective viscosity.

The haematocrit distribution emerges, locally, from a balance of the competing effects
of diffusion-driven flux down the local concentration gradient (which, for steady, developed
flow, lies in the radial direction) and shear-induced migration (which, for steady, developed,
flows, would be in the negative radial direction). Clearly, the problem of flow-concentration
coupling is made still more complex since the diffusion co-efficient varies with local shear
rate and particle concentration.

Previous attempts to implement this class of particle transport model in a finite volume
code were either limited to a single viscosity model (due to the necessity of linearising the
source terms [17]) or they had to introduce damping terms (to suppress instability [18],
mostly due to the fact that they attempted to implement the non-linear transport equation
for haematocrit into commercial software packages (Fluent), which does not allow a fully
implicit additional transport equation in user subroutines).

The framework we present in this work expands on those commonly used in the
simulation of clinically relevant vascular flows in the following important aspects:

• It includes a transport equation for the most important group of suspended particles
based on continuum-scale, semi-mechanistic modelling.

• It includes more sophisticated non-Newtonian viscosity models that couple to local
haematocrit concentration in addition to shear rate in the viscosity function.

• The implementation does not require linearisation of the viscosity source term in the
haematocrit transport equation, which, crucially, allows for other viscosity models to
be implemented eventually.

It is implemented using the Field Operation And Manipulation (FOAM) framework.
FOAM, or OpenFOAM, is an open source library which allows easy implementation of
Finite Volume Method (FVM) solvers and achieves stability without artificial damping by
implementing the non-linear terms in a hybrid explicit-implicit fashion which allows stable
simulations even in realistic physiological geometries at high rates.

2. Materials and Methods

2.1. Particle Migration Model

In a particle transport model, the transport of haematocrit is dominated by advection
—following the bulk flow—variations in concentration are evened by diffusive processes,
and the migration within the bulk is driven by a migration pressure. This migration
pressure is the result of two phenomena: (1) spatial variation of collision (interaction)
frequency and (2) spatial variation of viscosity [14]

A detailed treatise on the rationale behind the compression arguments can be found
in Leighton and Acrvios, and Phillips [13,14], we only give a brief outline at this point.

2.1.1. Spatial Variation of Collision Frequency

Particles that are moving relative to each other in neighbouring shear surfaces will
experience collisions. The frequency of these collisions is proportional to the shear rate
γ̇, the particle concentration φ, and the particle collision radius a. In a field of constant
concentration and constant shear, γ̇φ = const, the collisions are in equilibrium either side
of the shear surface, and no net migration will occur. In the presence of gradients of shear
rate or concentration, the imbalance of collisions will lead to a “migration pressure” down
the gradient. This collision driven migration pressure can be described as a function of
a∇(γ̇φ)). Using a proportionality factor of Kc and assuming a displacement proportional
to the particle radius a, the migratory flux Nc due to variations in collision frequency can
be expressed as (using the chain rule):

Nc = −Kca2(φ2∇γ̇ + φγ̇∇φ) (2)
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2.1.2. Spatial Variation of Viscosity

The displacement of particles after a collision is moderated by viscous effects. In
a constant viscosity field the displacement is isotropic and thus balanced with no net
migration effects. In a viscosity gradient the displacement will be less damped in direction
of the lower viscosity, leading to a net migration effect down the viscosity gradient.

The displacement velocity is proportional to the relative change in viscosity over a
distance that is of order a: a(1/μ)∇μ. With the displacement frequency scaling with γ̇φ,
and a proportionality factor of Kμ, the migratory flux due to viscosity gradient can be
described as (flux is proportional to φ):

Nμ = −Kμγ̇φ2
(

a2

μ
∇μ

)
(3)

The scalar transport equation for haematocrit, φ, is then (neglecting molecular diffu-
sion, Brownian motion), where D/Dt is the total differential:

Dφ

Dt
= ∇ ·

(
Nc + Nμ

)
(4)

Dφ

Dt
= ∇ ·

(
a2Kcφγ̇∇φ

)
+ a2Kc∇ ·

(
φ2∇γ̇

)
+ a2Kμ∇ ·

(
γ̇φ2 1

μ
∇μ

)
, (5)

with a, particle radius, γ̇, shear strain rate magnitude, μ, dynamic viscosity, Kc and Kμ,
collision parameters.

Typically, the viscosity is μ = f (γ̇, φ), which makes the last source term non-linear,
which can, in turn, make the solution of this transport equation difficult.

Previous attempts to solve this problem analytically or implement this type of migra-
tion model in a numerical model used linearisation of this source term, which involves the
derivative of μ in both γ̇ and φ, and thus limits the model to a specific viscosity model,
for which it has been implemented [17,19]. Our current implementation deals with the
non-linear viscosity source term in a way that leaves the viscosity gradient term intact and
is thus agnostic to the rheology model used.

2.2. Rheology Models

It is obvious from the third RHS term in Equation (5), that the particle transport
strongly depends on the rheology model it is coupled with. This model implementation
aims to be independent of the rheology model. The draw-back of this approach is that errors
present in the rheology model, which influence the particle transport, cannot be calibrated
out with the parameters of the migration model alone, but the combined set of model
parameters will need to be found for any new rheology model that is to be implemented.

Typically, only the shear thinning effects are taken into account, when modelling
the non-Newtonian properties of blood in CFD. Common models are of the Carreau and
Casson types. In these models, the haematocrit concentration is only used as a bulk
parameter in the parametrisation, if at all. Our framework, incorporating the transport
of haematocrit, allows the rheological model to take the local particle concentration into
account when calculating the local, effective viscosity.

The rheology models that have been implemented and tested in this study are the
concentration dependent Krieger–Dougherty model [20], the Quemada model [21–23] with
modification by Das [24] (and a new parameter set, which avoids the singularity problem
commonly associated with this model), an extended Krieger model, accommodating shear
thinning and aggregation effects [25], a Casson model with haematocrit dependence follow-
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ing Merril et al. [24,26], and a modified Carreau type model, proposed by Yeleswarapu [27].
All model parameters have been fitted to the experimental data of Brooks [28] (Figure 1).

2.2.1. Krieger–Dougherty Model

The traditional Krieger–Dougherty model [20] was developed to describe the rheology
of high volume ratio suspensions of rigid spherical particles. Rigid, spherical particles do
not exhibit shear-thinning behaviour, so the Krieger–Dougherty model is only dependent
on the haematocrit concentration φ. It shows a singularity for φ = φ∗, where φ∗ is the
haematocrit concentration for which the suspension does stop to behave like a fluid. For
rigid spheres φ∗ = 0.68 [20], while for blood it can go up to φ∗ = 0.98, which is usually
attributed to the deformability of the erythrocytes [25].

μ = μP

(
1 − φ

φ∗

)−n
. (6)

The parameter n = kφ∗ is often set to n = 2, but more commonly to the high shear
limit of n = 1.82 for φ∗ = 0.68 [22,29], which is also the value used in this work to allow
comparison with the results from Phillips and others [14,17,19]. μP is the Newtonian
viscosity of the liquid phase (plasma).

In this study, the Krieger–Dougherty model is not used as for modelling blood viscosity
but as a reference model for verification and validation.

2.2.2. Quemada Model

The Quemada model is based on “optimisation of viscous dissipation” [21]. In its
original form it is formulated as a Newtonian, concentration dependent viscosity:

μ = μP(1 − kφ)−2, (7)

with k being related to the packing concentration and (for the high shear limit) given as:
k = 2/φ∗. In this form it is closely related to the Krieger–Dougherty model (Equation (6)).

In its non-Newtonian form k is expressed as [22,23]:

k =
k0 + k∞

√
γ̇/γ̇c

1 +
√

γ̇/γ̇c
, (8)

where k0 and k∞ are the intrinsic viscosities at zero and infinite shear, respectively, and γ̇c
is a critical shear rate.

The shear rate magnitude γ̇ is defined as

γ̇ :=
√

2D : D, (9)

with D, the symmetric part of the velocity gradient tensor.
Different parameter fits have been proposed for k0, k∞, γ̇c. Cokelet [26,30] proposed:

k0 = exp(a0 + a1φ + a2φ2 + a3φ3) (10)

k∞ = exp(b0 + b1φ + b2φ2 + b3φ3) (11)

γ̇c = exp(c0 + c1φ + c2φ2 + c3φ3). (12)

Das [24] noted that Cokelet us parameter set causes the viscosity to be non-monotonous
over haematocrit concentration for low shear, and exhibits singularities for zero shear. Das
changed the parameter fit for k0 to

k0 = a0 +
2

a1 + φ
, (13)
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which results in a monotonous behaviour for low shear (the lowest shear measured in
the Brooks dataset is around γ̇ = 0.15 s−1), but still shows a singularity for φ = 80.4%.
While this is outside the haematocrit values typically encountered in clinical practice, it
can still pose a problem if cell migration is taken into account, which will concentrate cells
in the core region. In order to overcome this problem, a new parameter set, based on Das’s
formulation, is derived in this work, which does not show a singularity. Figure 2 shows
viscosity over shear rate for low shear rate (γ̇ = 0.15 s−1) and zero shear rate. While all
the curves show a good fit with the data, the new parameter set does show monotonous
behaviour throughout and no singularity below the critical haematocrit.

2.2.3. Modified 5 Parameter Krieger Model

Hund et al. [25] proposed and developed a quasi-mechanistic extension to the Krieger–
Dougherty model.

Starting from the traditional formulation of the Krieger–Dougherty model:

μ = μP

(
1 − φ

φ∗

)−n
, (14)

describing the haematocrit dependence, the shear-thinning behaviour is introduced by a
variable exponent n:

n = n∞ +

{
0, φ < φst

nst, φ > φst,
(15)

where φst is the threshold haematocrit concentration below which no shear-thinning is
observed. Based on Brooks [28], this threshold is around φ = 0.15, and n∞ is modelled
using a exponential dependency on φ:

n∞ = a + b exp(−c φ). (16)

Hund’s [25] shear-thinning exponent nst comprises contributions of red blood cell
aggregation and deformability:

nst = nagg + nde f , (17)

where each component is described by a power law:

nagg/de f = βagg/de f γ′
agg/de f

−νagg/de f , (18)

with the empirical coefficient β and ν, and the non-dimensional shear rate γ′ = 1 + (λγ̇)νg ,
as defined by Carreau and Yasuda [31], with a time constant λ, and νg = 2. This formulation
ensures finite nst at zero shear.

In the 5-component form the aggregation and deformation influences on the shear-
thinning exponent are combined into a single power law, due to the limited data on
these effects:

nst = βγ′−ν. (19)

The model proposed by Hund et al. allows for inclusion of the influence of large
molecule concentration (proteins polysacharides, lipids), as well as fibrinogen, and tem-
perature on the constitutive model. Due to a lack of data these are not included in the
5-parameter model.

2.2.4. Yeleswarapu-Wu Model

This model is based on a visco-elastic Oldroyd-B model developed by
Yeleswarapu et al. [27,32]. In this study, the visco-elastic effects are neglected, only the
shear-thinning behaviour and haematocrit dependency are implemented. The shear-
thinning behaviour follows a modified Carraeu-type model based on a mixture model by
Jung et al. [33].
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The model is based on a mixture model and thus the viscosity is decribed as a function
of plasma viscosity μP and red blood cell viscosity μrbc [32]:

μmix = (1 − φ)μP + φμrbc, (20)

where the red blood cell viscosity is described as:

μ∞(φ) + (μ0(φ)− μ∞(φ))
1 + ln(1 + kγ̇))

1 + kγ̇
, (21)

where, in this implementation, k is a constant model parameter, and μ0 and μ∞ are modelled
as third order polynomials of φ:

μ0 = a1φ + a2φ2 + a3φ3 (22)

μ∞ = b1φ + b2φ2 + b3φ3 (23)

2.2.5. Casson-Merrill Model

The Casson model [34] is a classical non-Newtonian model in which the viscosity is
modelled as:

μ =

(√
μ∞ +

√
τ0

γ̇

)2

, (24)

where μ∞ is the Casson viscosity (asymptote at high shear rate) and τ0 is the yield stress.
The yield effect means that this model has a singularity at zero shear, leading to infinite
viscosity. While there is an argument that blood does exhibit yield at slow time scales
and low shear, this effect will typically make this type of model unsuited for numerical
simulation within a generalised Newtonian approach with a local effective viscosity due to
numerical instability.

For blood, Merill et al. gave the expressions for μ∞ and τ0 as [24,26]

μ∞ =

(
μpl

(1 − φ)α

)
(25)

τ0 = β2

[(
1

1 − φ

)α/2
− 1

]2

, (26)

with the fitting parameters α and β.

2.2.6. Characteristics of Rheology Models

All viscosity model parameters were fitted to experimental data for varying levels
of haematocrit in ADC plasma reported by Brooks [28]. While these data are for steady
state shear only, it is still considered on of the best datasets for blood rheology data and
is used in the majority of work on blood rheology. The parameters were fitted using a
Levenberg–Marquardt least squares fit, implemented in Scientific Python (SciPy), using
the MINPACK library. Table 1 shows the parameter sets for the different models, Figure 1
shows the comparison of model results and experimental data. All models show a good fit
to the experimental data in the range were experimental data is available (γ̇ > 0.15 s−1),
while the behaviour for low shear stress varies between the models. The Casson model
shows a singularity for zero shear (yield stress behaviour), while the other models all
have finite viscosity for zero shear. However, the values at low shear vary widely. For
γ̇ = 10−2 s−1, the range of relative viscosity is between μ/μP = 71.4 to 936. This variation
will heavily influence the behaviour at low shear rate, e.g., on the axis of the flow.

Figure 2 shows the parameter fit for the Quemada model, where the classical Cokelet
fit [30] exhibits singularities at 12.2%, 18%, 73.1%, and 85.6% for zero shear. The Das
variation [24] improves on this, but the original parameter set by Das still shows a sin-
gularity for 80.4% haematocrit. The new parameter fit performed in this study removes
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the singularities completely and shows monotonous behaviour for the whole range of
haematocrit concentrations and shear rates.

Figure 1. Comparison of non-Newtonian rheology models: Quemada (a), modified 5-parameter
Krieger (b), Yeleswarapu-Wu (c), and Casson-Merril (d) model. All model parameters have been
fitted to Brooks’ data. Dots: experimental data (Brooks), dotted lines: model equations, data series:
haematocrit concentration.

Table 1. Viscosity model parameters. Levenberg–Marquardt least squares fit (SciPy, MINPACK), to
Brooks’s data (all viscosities calculated in Pa s), μP = 1.23 × 10−3 Pa s.

Quemada MKM5 Yeleswarapu Casson

- - - -
a0: 0.06108 - a1: −0.02779 -
a1: 0.04777 - a2: 1.012 -
- - a3: −0.636 -
b0: 1.803 b: 8.781 b1: 0.0749 α: 1.694
b1: −3.68 c: 2.824 b2: −0.1911 β: 0.01197
b2: 2.608 β: 16.44 b3: 0.1624 -
b3: −0.001667 λ: 1296 - -
- - k: 8.001 -
c0: −7.021 ν: 0.1427 - -
c1: 34.45 - - -
c2: −39.94 - - -
c3: 14.09 - - -
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Figure 2. Comparison of Quemada parameterisation for zero (a) and low (0.15 s−1) (b) shear rate.
The classic Cokelet parameter set shows singularities at 12.2%, 18%, 73.1%, 85.6%, the modified
parameterisation by Das improves on this, but still shows a singularity for 80.4% haematocrit. The
current parameter set removes the singularity and shows monotonous behaviour.

2.3. Implementation

The fundamental equations for mass and momentum conservation were implemented
using the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) [35] method for
steady state, and the PISO (Pressure-Implicit with Splitting of Operators) [36] and PIMPLE
(combining PISO and SIMPLE) methods for transient simulations.

Discretision is typically second order in space and time. The code supports all discreti-
sation methods that are supported in the FOAM library.

The haematocrit transport Equation (5) is implemented as a scalar transport Equation
(Listing 1), solved outside of the SIMPLE loop. The Laplacians in φ are implemented
implicitely (fvm) as diffusion terms, while the source terms in γ̇ and μ are calculated
explicitely (fvc).
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Listing 1. Haematocrit transport equation as implemented in Openfoam.

gammaDot = pow(2,0.5)*mag(symm(fvc::grad(U)));

sourceC = fvc::laplacian(Kc*sqr(a)*sqr(H), gammaDot);

sourceV = fvc::laplacian(Kmu*sqr(a)

* gammaDot*sqr(H)/laminarTransport.nu(),

laminarTransport.nu());

fvScalarMatrix HEqn

(

fvm::ddt(H)

+ fvm::div(phi, H)

- fvm::laplacian(Kc*sqr(a)*H*gammaDot, H)

==

sourceC

+ sourceCnonlin

+ sourceV

);

For steady state (SIMPLE) and transient cases with the PIMPLE algorithm, underre-
laxation is required. Typically the underrelaxation factor that is required can be estimated
from the order of magnitude of the ratio between collision radius and vessel radius. Sta-
ble simulation has been achieved for relaxation factors of 0.1 log(O(a/R)), e.g., a radius
R = 50 μm and collision radius of 3.5 μm will require an underrelaxation factor of ≈0.1
with no underrelaxation for the final iteration. The PISO algorithm does not use underre-
laxation and requires a time estimated as the smaller of (a) timestep estimated from the
Courant number (Co < 1), and (b) time step calculated based on a Courant number scaled
with the migration velocity (instead of the convective velocity).

The discretisation schemes used in the calculations presented in this paper are: second
order Euler backward in time and second order (Gauss linear, and Gauss linear upwind
for advective terms) in space, gradients are approximated using the least squares theme.

Rheology models are implemented as quasi-Newtonian, with calculation of local
cell viscosity based on the shear rate and haematocrit value in the cell from the previous
iteration/time step. The new rheology models that are implemented at the time of writing
are the standard Krieger–Dougherty, the modified 5-parameter Krieger, the Yeleswarapu–
Wu, and the Quemada model.

3. Results

All results shown in this paper are for fully developed pipe flow, with periodic
boundary conditions between outlet and inlet, with prescribed average velocity. The radius
of the pipe varies between 50 μm and 5 mm, to represent typical vessel diameters. The
pipe length is two diameters.

3.1. Verification and Influence of Mesh Type

The verification case for the implementation is a pipe of radius 50 μm, average
velocity V = 0.0065 m s−1. The rheology model used in the verification case is the Krieger–
Dougherty model to allow comparison to the analytical solution [14] (no analytical solution
available for the non-linear terms in the shear-stress and concentration dependent models).
Model parameters for the Krieger–Dougherty model are Kc = 0.41, Kμ = 0.62, φ∗ = 0.68,
and n = 1.82.
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The simulation was performed for different meshes, Figure 3, (a) an axisymmetric (2D)
wedge with 50 cells resolution in radial direction, (b) a hexahedral, block structured mesh—
50 cells radial, and (c) a polyhedral mesh with boundary layer inflation with ~60 cells across
the diameter—this type of mesh is common in the simulation of vascular flow in patient
specific geometries. The given resolutions were chosen based on a mesh convergence study
and realistic mesh resolutions as typically used in vascular simulations. The migration
model requires a mesh that is of similar resolution as meshes that aim at resolving wall
shear stress (WSS) and WSS derived metrics.

Figure 3. Mesh topology for the verification of the model: axisymmetric wedge, 50 cells radial;
hexahedral, block-structured, 50 cells radial; polyhedral with boundary layer extrusion, 60 cells
diameter.

Figure 4 shows the results for the different meshes in comparison to the analytical
solution of the migration model with the Krieger–Dougherty model. The axisymmetric
two-dimensional and the hexahedral three-dimensional meshes show excellent agreement,
with only a slight rounding of the peaked analytical solution at the axis. The polyhedral
three-dimensional mesh also shows good agreement, but the additional numerical diffusion
blunts the profile at the axis, the concentration close to the wall is well represented.

Figure 4. Steady state particle distribution (a) and velocity profiles (b) for different mesh types,
compared with analytical solution for particle distribution by Krieger et al. Parameters: fully
developed pipe flow, R = 50 μm, V = 0.0065 m s−1, Kc = 0.41, Kμ = 0.62, n = 1.82, φ∗ = 0.68,
Standard Krieger–Dougherty Model.
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3.2. Length and Time Scale Dependency
3.2.1. Wall Shear Strain Scaling

The parabolic velocity profile for a Newtonian flow is given as:

v = −2 V
(

r2

R2 − 1
)

, (27)

where V is the average velocity.
Therefore, the velocity gradient in radial direction is:

∂v
∂r

= −4 Vr
R2 . (28)

So the gradient at the wall (r = R) scales with V and R−1. The velocity is, therefore,
scaled with R, such that the wall velocity gradient is constant. The Reynolds number scales
with R2. For the given values of R = 0.05, 0.5, 5 mm, V = 0.0065, 0.065, 0.65 m s−1, the
wall velocity gradient is constant at γ̇w ≈ 650 s−1, to cover the significant three decades of
shear strain magnitude for shear-thinning non-Newtonian blood models.

The steady state particle distribution profile is independent of the length scale and
the diameter ratio. It will only depend on the ratio of Kc/Kμ. Figure 5 shows steady state
profiles for a range of diameters from 0.1 to 10 mm. The computational effort for the
particle migration model, however, scales with R2/a2, with R, the vessel radius, and a, the
particle collision radius. While the small diameter D = 0.1 mm case is fully converged
after around 104 iterations, the D = 10 mm case requires 106 iterations. This corresponds
to the diffusion timescales.

Figure 5. Steady state particle distribution (a) and velocity profiles (b) for different diameters.
Parameters: fully developed pipe flow, R = 0.05, 0.5, 5 mm, V = 0.0065, 0.065, 0.65 m s−1,
Kc = 0.41, Kμ = 0.62, n = 1.82, φ∗ = 0.68, Standard Krieger–Dougherty Model.

3.2.2. Kinematic and Particle Migration Timescales

Blood flow with particle migration is governed by several different time scales for
flow kinematics and particle migration. The timescale for the development of the velocity
profile (kinematic timescale) is

τk =
R2

ν
. (29)
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The timescales for the development of the particle migration profile can be derived
from the particle migration flux diffusion terms as:

τcφ =
R2

Kca2φγ̇
, (30)

τcγ̇ =
R2

Kca2φ2 , (31)

τμ =
R2

Kμa2γ̇
∂(ln μ)

∂φ

. (32)

The kinematic timescale scales with R2/ν, while the particle migration timescales
scale with the square diameter ratio R2/a2, where R is the pipe radius, and a is the particle
(collision) radius.

The kinematic viscosity, ν ≈ 3 × 10−6 m2 s−1, while for an average collision radius of
red blood cells of a = 3.5 μm, the particle migration diffusion coefficients are of the order
of 10−9–10−11 m2 s−1. This means the particle migration happens on timescales that are
three orders of magnitude greater than the kinematic timescales.

Figure 6 shows the temporal development of the particle distribution and non-
Newtonian velocity profile. The flows were initialised with a fully developed parabolic
velocity profile and a uniform particle distribution of φ = 0.45 volume fraction. The 0.1 mm
case has reached steady state conditions within 0.5 s, the 1.0 mm case shows significant
particle migration after physiologically relevant times, while the 10 mm case does show
only minimal migration after 10 s. It can be seen that temporal scaling follows the predicted
R2/a2 scaling factor.

3.3. Variation of Rheology Model and Collision Parameter Ratio

As is obvious from Equation (5), the particle migration is strongly dependent on
the viscosity model and the balance between collision and viscosity driven migration, as
expressed in the model parameters Kc and Kμ.

While the magnitude of Kc and Kμ controls the magnitude of the migration pressures
and thus the temporal response of the system, the concentration profile only depends
on the balance between collision and viscosity driven fluxes. This balance is expressed
by the ratio between the parameters Kc/Kμ. Figure 7 shows the haematocrit profiles as
they develop for different viscosity models—Krieger–Dougherty (K-D), Quemada (Q),
Yeleswarapu–Wu (Y), modified 5-parameter Krieger model (K5), and varying K-ratios
Kc/Kμ = 0.4 to 0.75.

Compared to the verification K-D case with K-ratio of 0.66, it can be seen that a shift
in the balance to higher influence of the collision frequency (higher K-ratio) steepens the
profile, while a lower K-ratio, i.e., a shift of the balance to the resistive influence of the
viscosity increase in the low shear region causes a flatter profile.

Comparing the different viscosity models clearly shows the main difference in the
core region, where the strong variation in the low shear behaviour, discussed earlier, leads
to a strong variation in the relative viscosity gradient (last term in Equation (5)). It is
obvious that there is a need for further study and comparison with experimental or meso-
scale modelling data to find realistic parameters for each of the potential viscosity models.
Especially the modified Krieger model (K5) shows a, most likely unrealistic, double-bump
profile at the axis.

Based on these results, the Quemada model with a K-ratio of between 0.5 and 0.6
seems to be the most promising candidate for a semi-mechanistic rheology model for blood.
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Figure 6. Transient particle distribution (a,c,e) and velocity profiles (b,d,f) for different diameters.
Parameters: fully developed pipe flow, R = 0.1 (a,b), 1.0 (c,d), 10 (e,f) mm, V = 0.0065 (a,b),
0.065 (c,d), 0.65 (e,f) m s−1, Kc = 0.41, Kμ = 0.62, n = 1.82, φ∗ = 0.68, Standard Krieger–Dougherty
Model.
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Figure 7. Steady state particle distribution (a,c,e,g) and velocity profiles (b,d,f,h) for different viscosity
models and collision parameter ratios (Kc/Kμ). Parameters: fully developed pipe flow, R = 0.05 mm,
V = 0.0065 m s−1, Kc/Kμ = 0.4–0.75 (given in legends). Standard Krieger–Dougherty (a,b), Quemada
(c,d), Yeleswarapu (e,f), and modified 5-parameter Krieger (g,h) model.
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3.4. Application to Realistic Vessel Model

The hybrid implicit–explicit implementation presented here allows for transparent
change of viscosity model and does not use any artificial stabilisation, allowing for low
residual solutions on realistic complex geometries.

Figure 8 shows the time-averaged haematocrit concentration near the wall and the
time-averaged WSS for a realistic human common carotid artery (CCA).

The variation of haematocrit in this case is around ±1%, which is in agreement with
the expected haematocrit variation for the size (RCCA = 3 mm).

While the haematocrit transport is not significant in this case, it shows that the imple-
mentation is also stable for physiological vessel shapes (and the reduced grid quality that is
typical for clinical applications) and for highly dynamic flow. The haematocrit-dependent
viscosity models can be employed, and for larger vessels, where the haematocrit transport
can be neglected, the haematocrit equation can be frozen, to reduce simulation overhead.

Figure 8. Time averaged haematocrit (a) and WSS (b) in a realistic human carotid, 900 k cells.

4. Discussion

While previous implementations [17,19] of this class of model are limited by the fact
that the viscosity term in Equation (5) is linearised in the viscosity gradient with H, our
implementation avoids this by implementing the non-linear term directly, which (i) allows
the use of different viscosity models and, crucially, (ii) facilitates the functional forms of
transport parameter dependence on field variables we are constructing from the operation
of our explicit, meso-scale models. Furthermore, the present implementation avoids the
use of artificial stabilisation terms, that lead to underestimation of RBC migration [18].

The particle migration time scales with (a/R)2, where a is the RBC collision radius.
This means that the particle migration is most relevant for small vessels of a diameter of
1 mm or lower, where the migration occurs on physiologically relevant timescales. For
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larger vessels, minor effects are caused by a synergy of particle migration and secondary
flows [18] (Figure 8).

Limitations of the Model and Future Work

It has to be noted that the implementation presented here uses the magnitude of the
shear in the particle flux formulation. As noted by Phillips [14], this assumes an essentially
one-dimensional shear state, and an isotropic response. This limits the application of
the model macroscopic to flow situations where the shear tensor is aligned with the
flow and the main shear in radial direction, though it also provides a convenient initial
simplification to our microscopic modelling. As with isotropic turbulence modelling
the isotropic migration model will over-predict migration pressure in regions with high
anisotropy, e.g., stagnation points, strong acceleration, or rotational shear. The authors
are currently looking to implement an explicit formulation for a localised, anisotropic
shear and migration pressure tensor, similar to approaches proposed by Miller [37] or
Fang et al. [15].

Clearly, the parameters of the particle migration model we have used in this work
are intentional targets for assignment using data from the operation of our explicit meso-
scale simulations. Of course, for immediate impact, one might calibrate them to suitable
experimental data, using established phenomenology. (Though note that the improved
quantitative understanding we hope to obtain from our direct, meso-scale studies might
produce the further benefit of insight into the functional form of transport parameter
dependence upon field variables). While such experimental data are available, albeit scarce,
for rigid particles in suspension, e.g., based on nuclear magnetic resonance measurements
of particle profiles, the authors are not aware of any such data for soft vesicles, in particular
RBCs. Here again, we hope eventually to use our recent meso-scale models (MCLBM)
which account for the cellular-scale interactions in full detail [11] to refine and parameterise
a constitutive equation for concentrated suspensions of deformable vesicles and hence to
inform the present continuum model parameters. The results presented here provide us
with the reassurance that, the final discussions below notwithstanding, a suitably sensitive,
macro-scale model exists for this undertaking.

5. Software

The continuum-scale haemorheology framework was implemented in OpenFoam,
version 1912 and 2012.

haemoFoam is a modelling framework for vascular flow simulation based on FOAM,
that is intended to cater for the particular requirements of haemodynamics, in particu-
lar with respect to WSS related phenomena like atherosclerosis. At the time of writing
it includes:

• Haematocrit transport model, modelling the shear driven transport of red blood cells
in direction of the shear gradient.

• Blood specific non-Newtonian rheology models including haematocrit dependency
and shear thinning behaviour:

– Krieger Dougherty (non shear-thinning);
– Modified K-D [25] (shear-thinning);
– Quemada;
– Yeleswarapu;
– Casson–Merrill;
– Carreau model (not concentration dependent, Fluent implementation).

• Windkessel boundary conditions for outlets.
• Fluid-Structure-Interaction (FSI) for flexible vessel walls.
• Post-processing for WSS and established WSS derived parameters:

– TAWSS, TAWSSMag;
– OSI;
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– Transverse WSS;
– Relative Residence Time;
– Temporal and spatial WSS gradients.

Planned future features are:

• Viscoelastic rheology models (e.g., Oldroyd B);
• Platelet transport;
• Low density lipoprotein (LDL) transport.

haemoFoam is open-sourced under GPL3 and will be made available to interested
parties upon request.
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The following abbreviations are used in this manuscript:

LBM Lattice Boltzmann Method
CFD Computational Fluid Mechanics
ADC Antibody Drug Conjugates
MKM5 Modified 5-parameter form of the Krieger model
FVM Finite Volume Method
SIMPLE Semi-Implicit Method for Pressure Linked Equations
PISO Pressure-Implicit with Splitting of Operators
PIMPLE compination of PISO and SIMPLE
CCA Common Carotid Artery
WSS Wall Shear Stress
OSI Oscillatory Shear Index
TAWSS Time Averaged WSS
TAWSSMag Time Averaged WSS magnitude
RRS Relative Residence Time
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Abstract: The management of complex airway disorders is challenging, as the airway stent placement
usually results in several complications. Tissue reaction to the foreign body, poor mechanical
properties and inadequate fit of the stent in the airway are some of the reported problems. For this
reason, the design of customized biomedical devices to improve the accuracy of the clinical results
has recently gained interest. The aim of the present study is to introduce a parametric tool for the
design of a new tracheo-bronchial stent that could be capable of improving some of the performances
of the commercial devices. The proposed methodology is based on the computer aided design
software and on the finite element modeling. The computational results are validated by a parallel
experimental work that includes the production of selected stent configurations using the 3D printing
technology and their compressive test.

Keywords: tracheobronchial stent; finite element method; parametric model; 3D printing; customized
prosthesis

1. Introduction

Tracheobronchial or airway stents are tubular scaffolds used for enlarging a constricted
airway or supporting the trachea and/or bronchi from collapse. This can be due to airways
obstructions caused by prolonged intubation, or benignant or malignant carcinoma and
tracheomalacia that may lead to several morbidities. Normally, tracheobronchial prosthesis
is necessary as a last chance if the stenosis cannot be treated with surgical means [1].
Airway stents are available in different materials and shapes and can be classified into
four categories: silicone, balloon-expandable metal, uncovered and covered self-expanding
metal [2]. Solid silicone tubes have been designed for avoiding in-stent restenosis, but are
affected by migration and obstruction as main side effects [3]. Metallic devices, usually
made of steel or nitinol, are similar to those used in the cardiovascular field. They promote
re-epithalization that avoids migration, but cannot avoid restenosis, becoming less efficient
as soon as the airway tissue grows and cause frequent granulations [4]. Partially, the
covered metallic stents or hybrid stents have solved the problem of the restenosis [5].
However, covered self-expanding metal devices are associated to necrosis of mucosa and
fistula formation due to the radial force applied by the stent [6].

The choice of a specific stent is determined by the type of lesion [7]. Silicone prostheses
are usually used for both benign and malign pathologies. Metallic devices are indicated
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for malignant obstructions, but their use has been recently not recommended if not fully
covered [8]. Silicone prostheses are commonly used in Europe and Japan [9,10] while
metallic or hybrid stents are more frequently implanted in U.S.A. so that the use of these
scaffolds are also driven by the clinicians school. In this sense, each stent has advantage and
contraindications, but the response of the tissue to their implantation is always problematic
due to unavoidable inflammations and reaction to the foreign body. Additionally, all stent
categories are, in general, very rigid and tend to impede the physiological maneuvers of
coughing, swallowing and forced breathing [2,11–13]. For these reasons, the design of
new prostheses capable of addressing the flaws of the existing stents is necessary. Several
absorbable polymeric stents have been experimentally tested for their possible use in the
airways. The associated inflammatory reaction has been less extensive with respect to
permanent stents [14]. Unfortunately, the degradation time of these type of stents in the
trachea or bronchi remains difficult to control, or is even undefined [15]. In the last three
decades, the clinical experience has demonstrated that there is a large number of situations
in which commercial stents could not solve the clinical problem [16].

A tracheobronchial prosthesis should satisfy different requirements. It should be
easy to be inserted and eventually removed. It should ideally avoid migration and be
biocompatible, limiting the tissue reaction [10]. It should adapt to the airway and possibly
be patient customizable [17]. Airway stent implantation could in fact result in inefficient
clinical results due to the poor fit of the stent in the airway [18]. Personalized prosthesis can
already be ordered to commercial factories. The personalization regards size, diameters and
angles measured by computerized tomography (CT) scan and bronchoscopy. Nevertheless,
the baseline design remains unchanged despite the personalization, as the stents are still
straight tubes [16]. In this context, clearly, a customization that only provides changes of
main geometrical characteristics is too simple and not efficient. The three dimensional
(3D) printing offers a new opportunity that is rapidly entering in the clinics and allows
rapid prototyping and fabrication of patient-specific anatomical shapes [10]. This tech-
nique has been rapidly entered in the clinics and it has been used recently for surgical
treatment [19]. In the literature, it is stated that it is already capable of manufacturing
optimized devices made of silicone or elastic thermoplastics for a particular patient. Stents
can be designed for matching a particular patient specific anatomy and for exerting the
necessary radial force [16]. The FDA has recently released guidelines on the 3D printing of
medical devices [20].

The 3D-dimensional printing technique has already been reported in many clinical
applications, including the thoracic surgery [21,22]. The possibility to convert anatomic
images into 3D objects using this technique helps the surgeon to overcome specific problems
and prepare the surgery [23]. Miyazaki et al. [24] used a 3D printed airway model to manage
a post-transplant airway complications of bronchial anastomosis. Guilbert et al. [10] utilized
a 3D printed models of corrected airways to select and customize airway stents. Although
promising results have been obtained, other clinical complications such as mucus plugging
and migration have been not solved. In the same line, Gildea et al. [18] treated complex
stenoses due to granulomatosis with polyangiitis in two patients while Cheng et al. [25]
treated a patient with a tracheal dehiscence. Morrison et al. [26] successfully applied
the 3D printing technology to produce a personalized medical device for treating the
tracheobronchomalacia. Debiane et al. [27] use the stereology to quantify the granulation.
They have analyzed which type of tissue contributes more to the pathology and used this
information for designing a customized drug eluting tracheo-bronchial stent.

Furthermore, a few studies have presented engineering tools for the design of new
tracheobronchial parametric and/or customizable stents. Melgoza et al. [28,29] presented
an integrated tool for the design of an innovative customized tracheal stent with aim of
meeting the most critical requirements of a prosthesis. For this, the experience collected by
clinicians and patients during the interviews and hospital visits has been used. Vearick and
coworkers proposed a modification of the commercial Dumon stent [30] and introduced
a fiber reinforced silicone prosthesis [31]. Schopf et al. [14] introduced a new polymer
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absorbable stent with a spiral shape evaluating the clinical signs and histological reaction
in an experimental rabbit model.

Taking into account these aspects, in the present study we focus on the silicone
Dumon stent. We aimed to design, simulate, produce and test a new tracheobronchial
prosthesis that is customized to the patient, printable with 3D technology and overtakes
some of the limitations of the commercially available devices. In particular, we proposed a
parametric tool capable of simulating the influence of several variations in the geometry
of the prosthesis, yet assessing the importance of each single parameter. Additionally,
the tool was validated against an experimental test aimed to prove the reliability of the
computational results.

2. Materials and Methods

2.1. Parametric Geometry of the Tracheobronchial Prosthesis

The new stent was designed to be tubular. The baseline CAD model, created with
the in-house code, is represented in Figure 1. The outside of the tube was designed with
an upward reinforcing structure that is similar to the typical X-pattern metallic stents (see
Figure 2). The device geometry has been parametrized in order to study the effect of each
single feature on the mechanical properties. Through modulating the different parameters
in fact, the flexibility, the radial stiffness and the mechanical strength of the stent can be
manipulated. In Figure 2, the parameters considered in this work are depicted on the
unwrapped stent (Figure 2a), on the frontal view of the stent (Figure 2b) and on a detail
representing the fibered stent wall Figure 2c). The baseline tube resembles the widely
known Dumon prosthesis [32]. The outer skewed fibers that reinforce the baseline tube are
located only in a percentage of the total outer surface area and they progressively reduce
their thickness (see Figure 2). Differently from the commercial Dumon prosthesis, but
similarly to the natural stent [33], the new prototype presents a novel design in which
the radial stiffness varies. The reason is the particular behavior of the trachea during the
physiological maneuvers of forced breathing, coughing and swallowing. The trachea is
composed by a transversal muscular membrane and stiffer cartilage rings. During breathing
and coughing, for example, the trachea dilates and collapses, enlarging and reducing its
diameter. Especially during coughing, it is the muscular membrane that considerably
deforms. It has been reported that the Dumon stent is rigid, as it has a constant thickness.
For this reason, the side of the prosthesis that corresponds to the transversal membrane
has been designed without fibers. Hence, as visible in Figures 1 and 2 the fibers cover only
a portion of the outer prosthesis surface that could be also varied as it is the parameter p as
explained below.

Figure 1. Baseline geometry of the stent prototype.

The shape of the cells that reinforces the outer prototype surface is governed by their
number in longitudinal (nL) and radial (nR) direction. An increase of the cells number in
longitudinal direction promotes smaller pitch angle α ( also called braiding angle in metallic
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stents, see Figure 2) while an increase of the cells number in circumferential direction pro-
motes higher pitch angle α. As visible in Figure 2, with smaller pitch angles, the cell shape
is a rhombus circumferentially oriented around the outer prosthesis surface. With higher
pitch angles, the cell shape is a rhombus longitudinally oriented. As visible in Equation (1),
the pitch angle α can be computed as a function of the number of circumferential and
longitudinal cells given to the prosthesis:

α = atan

(
L/nL

p(2πR)/nR

)
(1)

where L is the length of the prosthesis, nL is the number of cells in longitudinal direction,
p is the percentage of the external prosthesis surface that is fiber reinforced, r is the inner
radius of the prosthesis and nR is the number of cells in radial direction. The parameter
p governs the extension of the fibers around the external surface of the tube and, as a
consequence, the width of the region of the prosthesis without fibers.

R 

L 

p(2πR) 

α 

wt 

wb 

tW 

tf 

a) b) 

c) 

Figure 2. Parametrization of the tracheobronchial stent prototype: (a) unwrapped geometry, (b) top section of the tubular
configuration and (c) detail of the stent fiber.

The dimensions of the fibers are parametrized. In particular, fiber bottom and top
width are represented with wb and wt in Figure 2c). Finally, the thickness of the stent is
represented by tw and that of the fibers by t f . Of course, stent radius R and length L are
also parameters and they can be adapted to a specific patient. In this way, the device is
customizable.

In Figure 2b), it is visible that the fiber thickness gradually decreases (see also Figure 1.
This thickness has a biomechanical relevance, as it is known that a roundoff of the edges of
the whole geometry of the prosthesis reduces tissue damages. For these reasons, the thick-
ness was gradually reduced (from 2 to 0.8 mm in Figure 2b) for the prosthesis fabrication
and for computational models of the experimental validation. On the contrary, as the me-
chanical response of the prosthesis is not affected by this parameter, the overall numerical
simulations of the computational study were generated with a constant thickness.
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In Table 1, the parameters and corresponding values are summarized. The number
of the necessary computations that consider all the variations would imply a number
n = 972 simulations. In this work, only n = 86 simulations were run, considering the most
important parameter variations and taking into account the computational costs. In fact,
the goal of the study is twofold: for one side, a parametric analysis of the new prototype is
carried out. On the other side, the final aim of the study is to present a computational tool
capable of performing all the necessary simulations for the customization of a prosthesis
for a specific patient. For this reason, not all the possible parameter combinations are given
or simulated.

Table 1. Summary of the parameters and their corresponding values.

tw [mm] t f [mm] nR nL L [mm] p [%] R [mm] wb wt /wb

0.5–1 1–0.5 3–5 3–5 50 0.75 9 1–4 0.5–1

2.2. Stent Fabrication

Three tracheobronchial stent prototypes were fabricated by ACEO - 3D PRINTING
WITH SILICONES (Wacker Chemie AG, ACEO Campus, Burghausen, Germany) starting
from the STL (Stereolithography) files of the prostheses. The stents were 3D-printed using
medical silicone technology. They were printed using medical silicone of modulus of
elasticity of 15 ± 0.4 MPa and hardness 3.5 ± 0.2 MPa that were obtained after a material
property analysis at AIN (Asociación de la Industria Navarra, Pamplona, Spain). In
particular, the stress–strain curve was obtained by means of a traction test. The obtained
curve evidenced a linear elastic region for deformation until about 37%. The three samples
were built adding single layers composed by thin longitudinal slices using a manufacturing
process. In Figure 3, the three prosthesis are shown after the printing process. The stents’
height and outer diameter were 50 mm and 18 mm, respectively. The stent wall and
fiber thickness was 1 mm each and the fibered reinforced surface covered the 75% of
the device perimeter. The pitch angle α was changed within the three prototypes. Its
values, summarized in Table 2, produce different cell configurations longitudinally and
transversally. The number of cells in the two direction changes: prototype #1, later called
A3, has 3× 5 cells, prototype #2 or A4 has 4× 5 cells, and prototype #3 or A5 has 5× 3 cells.
As can be seen in the Figure 2, the difference between the three fibered stents is represented
by the pitch angle that promotes different cell shapes as explained in the previous section.

Table 2. Summary of the geometrical feature of the printed prototypes.

tw [mm] t f [mm] nR nL α [◦] L [mm] p [%] R [mm] wt /wb

#1 1 1 3 5 35.27 50 75 0.9 1
#2 1 1 4 5 43.35 50 75 0.9 1
#3 1 1 5 3 63.03 50 75 0.9 1
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Figure 3. Stent prototypes printed by ACEO and used for the experimental compressive tests: #1
prototype, #2 prototype, #3 prototype.

2.3. Prosthesis Experimental Testing

As the prototypes are tubular, it was not possible to perform a traditional radial
compressive test for assessing their radial stiffness as in the case of bare metallic stent for
cardiovascular applications. With the aim of assessing the resistance of the prosthesis to
compressive loads and to determine the effect of the fibers on the mechanical response of the
prosthesis, a flat plate test have been carried out in NAITEC (Navarre Technology Center
of Automotive and Mechatronics, Pamplona, Spain). The printed prototypes were placed
between two flat plates (Figure 4a), compressed under displacements control until the inner
prosthesis diameter was reduced to zero (Figure 4b) and unloaded with a compression
rate of 0.1 mm/s. The force was measured by means of an Advanced Digital Force Gauge
(AFG250N) LE01/50 (Mecmesin, Slinfold, West Sussex, UK).

a) b) 
Figure 4. Flat plate experimental testing: (a) unloaded and (b) crushed configuration.

2.4. Prosthesis Computational Modelling

The geometry was parametrized using an in-house software that automatically gener-
ates the computational grid. The aim of the parametrization is the analysis of the effect
of each geometrical feature and of the customization of the stent to different patients. For
facilitating the automatization of the simulations, the geometries and grids were generated
contemporaneously. The generation of the mesh has been carried out using prismatic
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elements selecting the desired element size directly on a specific geometrical configuration
hence fixing first the desired values of each parameter described in the previous section. In
details, the in-house code was developed in C language and consists in five steps.

In the first step, the basic planar geometry has been generated. The corresponding
parameters are the prosthesis length L, radius R, number of longitudinal fibers nL and
fiber thickness t f . According to Figure 5a six areas are firstly defined: rectangular surfaces
corresponding to the fibers (a), rhomboidal or quadratic surfaces corresponding to the
cell unit (b), triangular surfaces corresponding to regions between the unit cells and the
non-fibered region (c), triangular surfaces between fibers (d) or unit cells (e) and boundary
of the fibered region of the prosthesis sections and rectangular non-fibered surfaces (f).

b 
a

e 

f c 

d 

(a) (b)

(c) (d)

(e)

Figure 5. Generation of the prosthesis using the in-house code. (a) Planar geometry: generated surfaces a, b, c, d e, f; (b)
Planar mesh; (c) Fiber extrusion; (d) Planar 3D mesh; (e) Final 3D mesh of the prosthesis.
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In the second step, the surfaces a, b, c are meshed with structured quadrilateral
elements as sketched in Figure 5b. In contrast, surfaces d, e and f are meshed with
unstructured quadrilateral elements. The quadrilateral mesh is obtained starting from a
previous triangularization of the surfaces performed by means of a Delaunay algorithm.
The grid obtained after step 2 is represented in Figure 5b.

In step 3, the planar mesh of the surfaces a, b and c is extruded in normal direction
obtaining the tridimensional brick mesh sketched in Figure 5c. Here, the considered
parameters are the fiber thickness t f and the top and bottom width wt and wb, respectively,
(see Figure 2c).

Then, in step 4, the rest of the surfaces mesh are extruded in normal direction, obtain-
ing the grid sketched in Figure 5d.

In the last step, the mesh is bent, obtaining a cylindrical solid meshed with hexahedral
elements obtaining the tubular prosthesis depicted in Figure 2e.

In the Figure 6, the mesh topology is shown for the unwrapped geometries used for
the experimental validation. The total number of elements used for the computations varies
depending on the particular configuration to be studied. In particular, it ranges from 8198
to 61,480 prismatic elements, while the number of nodes ranges correspondently between
14,218 to 81,387. The average element size of the grid is 0.7 mm. The mesh element size
was selected after an appropriate mesh size sensitivity analysis. The Figure 7 shows the
force-displacements curve for grids with different maximum element sizes from 1 mm
to 2 mm (that correspond to average element sizes of 0.7 mm and 1.6 mm, respectively).
For this analysis, we used a prosthesis with nR = 5, nL = 5, tw = 0.5 mm, t f = 2 mm,
wb = 2 and wt = 2. A comparison of the presented force-displacement curves proves the
independency of the results on the discretization. The finest mesh refinement (black line
with circles) converged adequately within 2% of the densest evaluated mesh (yellow line
with circles).)

#1 #2 #3 
Figure 6. 2D grid topology of the unwrapped model #1, #2 and #3.

The computational analysis was performed using ANSYS Mechanical APDL Release
18 (ANSYS Inc., Canonsburg, PA, USA). In this commercial software, the simulation of
compression test of biodegradable stents was performed by a static structural analysis
with the aim of determining the load-displacements diagram and eventual additional
variables such as the principal stresses and strains. The grids generated with the in-house
code described above were imported in Ansys where the set-up of the models and the
corresponding boundary conditions were applied. Steady loading was assumed. The
order of element shape function was selected as linear and of the first order. The material
properties of the medical silicone estimated during the experimental test were specified in
Ansys for defining the material. In particular, the modulus of elasticity and the Poisson
coefficient used for the simulations are 15.2 MPa and 0.29, respectively. The linear elastic
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behavior of the material used in the presented simulations is reasonable as the strains are
achieved up to 0.2. This value is overtaken only in high compressive states and specific
flexible models. Furthermore, as mentioned before, the linear elastic behavior can be
correctly assumed until a strain value of about 0.37.
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Figure 7. Mesh size sensitivity analysis: for a specific geometrical configuration, it is visible that the
force-displacement curves obtaining compressing the stent varies only reasonably slightly within
different grids.

Based on the experimental compression test, the lower plate was fixed, and the
upper plate was moved until the desired radial displacements are reached (14 mm). The
contact between the plates and the prosthesis has been carried out frictionlessly. Large
displacements have been switched on in the Ansys solver. The loads and displacements
were registered and plotted as shown in the next section. It has to be noted that the radial
stiffness was measured only for a single orientation of the prosthesis. In particular, the
prosthesis was compressed in the direction in which the trachea usually experiments with
the larger displacements [11].

3. Results

3.1. Flat Plate Test Simulation

In Figure 8, the radial force is plotted versus the radial displacement for different
values of the fiber bottom width wb and fiber thickness t f . The comparison is shown for a
specific configuration in which the ratio wt/wb is fixed and equal to unity and the same
number of cells in radial and longitudinal direction have been considered (nL = nR = 5).
The plot shows an increase of radial force caused by an increase of the fiber bottom width
wb and fiber thickness t f . For a fixed fiber thickness t f the increase of the radial force
becomes more marked for increasing fiber bottom widths wb, being the increase of the last
case (t f = 1, wb = 1 and 2) the highest (blue lines with circles).
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Figure 8. Variation of the radial force for selected values of fiber bottom width wb and fiber thickness t f .

In Figure 9, the influence of the number of cells located in circumferential (nR) and
longitudinal direction (nL) on the radial force is analyzed. Figure 9 shows selected pros-
thesis configurations with a combination of nR = 3, 4, 5 and nL = 3, 4, 5. However, the
presented results can be generalized for different values of nR and nL. The comparison
is shown for fixed width ratio wt/wb = 1 and fiber and wall thickness tw = t f = 0.5 mm.
The comparison allows clarifying the role of the cell shape on the radial stiffness. It is
clearly visible in fact that an increase of the stiffness is promoted when nR < nL, i.e., for
smaller pitch angle α (see Section 2.1). On the contrary, if nR > nL, i.e., for higher pitch
angle α, the radial stiffness decreases. Summarizing, fixing the fiber and wall thickness
and the top and bottom fiber width, a prosthesis with α < 45◦ is stiffer than a prosthesis
with α > 45◦. For α = 45◦ the shape of the stent cell is squared and this configuration
corresponds to a change of the trend. Maintaining α = 45◦, the plot of Figure 9 highlights
that if the number of cells increases, the radial stiffness also increases as demonstrated by a
comparison between the black line with triangle (nL = nR = 3), the red line with squares
(nL = nR = 4) and the green line with circles (nL = nR = 5). In any case, the increase is not
extremely marked, as demonstrated by other cases such as nL = nR = 3 and nL = nR = 4.

In Figure 10, the total thickness of the prosthesis fixed and equal to 1.5 mm is dis-
tributed to the wall thickness tw and to the fiber thickness t f . Different percentages are
given to these two parameters, keeping their sum constant. The figure shows the case of
number of radial and longitudinal cells nR = 3 and nL = 4, respectively. As for the previ-
ous plots, the results can be generalized for other configurations with different numbers
of cells (with nR < nL). Additionally, the bottom and top width are wb = 2 mm and wt =
1.2 mm. The figure shows that, as expected, a higher radial stiffness can be obtained if
tw > t f . Notwithstanding, the radial stiffness can be increased when tw < t f , changing the
fiber dimensions, increasing wb and eventually wt.

278



Mathematics 2021, 9, 2118

δ(mm)

F (N)

0 2 4 6 8 10 12 14
0

2

4

6

8

10

nR=3,nL=3
nR=3,nL=4
nR=3,nL=5
nR=4,nL=3
nR=4,nL=4
nR=4,nL=5
nR=5,nL=3
nR=5,nL=4
nR=5,nL=5

Displacement vs load

tw=0.5 , tf=0.5

wb=1.0 , wt=1.0

Figure 9. Variation of the circumferential and longitudinal cells number.
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Figure 10. Variation of the thickness distribution within the prosthesis.

In Figure 11, the variation of the fiber shape is studied varying the bottom width wb
and the bottom and top width ratio wt/wb. The figure clearly highlights that an increase
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of the fiber width promotes a increase of the radial stiffness for a fixed wall thickness tw
and fiber thickness t f . In the figure, it is shown the specific case in which again nR = 3
and nL = 4. Furthermore, in this case, similar curves have been obtained for different
configurations (with nR < nL).
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Figure 11. Variation of the fiber bottom width within the prosthesis.

In Figure 12, the stiffness of selected prosthesis configurations is compared. The figure
illustrates that different stiffness can be obtained, modulating the different parameters in
which the prosthesis has been designed. In the figure, we can see the specific configuration
nR = 3 and nL = 4 as in the Figures 10 and 11. The figure shows the case of prosthesis with
the same total thickness tw + t f = 1.5 mm. As visible, the stiffness of the prosthesis with
the wall thickness tw = 0.75 mm (black line with squares, Figure 12 is very similar to that
obtainable with a reduced wall thickness tw = 0.5 mm and a higher fiber bottom width wb
= 2 mm, with a constant fiber thickness wb/w f = 1 (red line with circles). Additionally, the
same stiffness could be also obtained using a fiber bottom width wb = 3 mm and a ratio
wb/w f = 0.5 (green line with triangles). In the same way, the prosthesis with tw = 1 mm,
with a fiber bottom width of wb = 2 mm and a ratio wb/w f = 0.6 (black line with triangles,
Figure 12) has a similar stiffness of a prosthesis with wall thickness tw = 0.5 mm, with a
fiber bottom width of wb = 4 mm and a ratio wb/w f = 0.5 (yellow line with triangles in
the Figure 12) and of a prosthesis with wall thickness tw = 0.5 mm, with a fiber bottom
width of wb = 3 mm and a ratio wb/w f = 0.5 (green line with circles). In this last case, the
stiffness is different among the three configurations at the beginning of the deformation (for
a compressive force in the range 0–7 N). Here, a thicker tube promotes a stiffer prosthesis
of course. For higher deformations (after a displacement δ > 7.5 mm), the stiffness of the
three prostheses tends to be the similar.
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Figure 12. Comparison of different radial compression force within different prostheses.

The equivalent Von Mises stress and strain evolution during the compression test is
shown in Figure 13a,b. The figure refers to specific configurations indicated in a and b.
Nevertheless, this behavior is the same in all the configurations. Von Mises stresses and
strains are initially located at the top of the prosthesis surface (Figure 13c) and tend to
increase. Furthermore, at the prosthesis sides, the stresses and strains tends to increase, until
the values at both locations meet (close to the 68% of the total compression, Figure 13a,d.
Then, the maximum stress changes location from the top to the side of the prosthesis
surface (Figure 13e).

3.2. Flat Plate Experimental Testing

The comparison of the simulations results with the experimental test performed on
the three 3D-printed prostheses allows the validation of the computational parametric
framework. In Figure 14, the compressive force is represented as a function of the radial
displacements for both in silico and experimental model for the prototype #1 (a), #2 (b)
and #3 (c). The results offer a very good match. In particular, an excellent match can be
seen in the range of radial displacements between zero and 8 mm for all the prototypes
while between 8 mm and 15 mm the curves tend to separate. Prototypes #1 and #2 seem to
moderately overestimate the force in the displacement range 8–14 mm while prototype #3
seems to slightly underestimate the necessary force in the same interval. The maximum
difference between curves in this range is 1 mm for prototype #1, 0.5 mm for prototype
#2 and 0.4 mm for prototype #3. However, the agreement between curves for prototypes
#1 and #2 is very good until a a radial displacement of 10 mm while the prototype #3
shows a separation between experimental and computational curve that starts already
at a radial displacement of 2 mm. From this displacement, the separation between the
curves increases moderately, it stays almost constant between 8 and 10 mm then further
increases, even very slightly, between 10 and 14 mm. The reason of these differences at
higher displacements may be due to the different value of the friction in the experimental
and computational study and to the complex deformation of the prototypes at crushing. In
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Figure 4b, the prototype is compressed between plates. Unfortunately, in the computational
analysis, the complete buckling cannot be obtained.
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Figure 14. Experimental and computational results: flat plate test of the printed prototypes.

4. Discussion

The goal of this study was the evaluation of the mechanical properties of a new
tracheobronchial stent prototype, through the use of computational and experimental
modeling. For this reasons, we have presented a parametric in-house tool capable of
designing and meshing several geometrical configurations of the prosthesis. Then, the
effect of each single parameter variation on the stent radial stiffness was analyzed by
means of numerical simulations. In the presented tool, there are additional parameters
that could be changed and even they do not contribute to the mechanical performance
of the prosthesis, they are useful for creating a patient specific device. For example, the
typical main variables such as the inner radius and the length of the prosthesis can be
adapted to the patient necessities and a customized device can be rapidly created. In the
literature, it is stated that one of the important requirements of a medical device should be
patient-customizable [17]. Progress towards customization of commercial airway stents has
been made in the recent years. In fact, many manufacturers already produce personalized
prostheses. Parameters such as prosthesis shape, size, diameter and angles can be directly
measured using CT scan and bronchoscopy [10]. Notwithstanding, the personalization
of the device is based on the commercial design of the prosthesis of each fabricant and
only a few dimensions can be changed. As a result, almost all stents are still straight and
round-shaped [16]. Clinical studies have reported complications [10] so that the use of
such stents has been demonstrated to not be definitive. In many cases, of course the use
of customized commercial prosthesis could be a good compromise, but frequently this is
not sufficient [16]. Thus, the proposed methodology offers the possibility of addressing a
part of these limitations. In addition to the personalization of the main typical dimensions,
the creation of an individual prosthesis using the degree and the type of the lesion and its
exact location, for instance, could be possible.

Several different polymers can be adopted in medicine, taking advantage of their
specific properties [16]. In general, polymeric stents are made from silicone, and only a
few contain additional copolymers and additives. The material used to produce the stent
must exhibit a good resistance to the deformation as it is placed into the bronchoscope and
then, once open inside the trachea or the bronchi, it must be capable of adapting to the
physiological activities of the respiratory system [31]. The radial strength of the prosthesis
depends mainly on its thickness and, as stated in the literature, unfortunately the ratio
between inner and outer diameter is unfavorable for silicone stents respect to that of the
metallic stents [30]. Due to their much lower modulus of elasticity, silicone prostheses
have in fact normally a thicker walls respect to metallic stents. Despite this fact, the Food
and Drug Administration (FDA) recommends the insertion of a metallic stent only when
the pathology cannot be treated by other means such as surgery or insertion of silicone
stents [34,35]. For this reason, silicone prostheses is still widely used and their design needs
to be improved for reducing their post placement complications [32].
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With the introduction of the additive manufacturing in the medical field, patient-
specific implants made from 3D-printing technique represents a new opportunity for the
airway surgical treatment and stent design [26]. Differently from the patient-adapted
commercial devices, the 3D-printing based on the patient CT-images offers a new op-
portunity for a more accurate stent choice and on-site customization [10,18]. In the very
recent years, the 3D printing and prosthesis customization has been entered in the clinics
and several studies have reported the associated experience [18,23–26,36]. Nevertheless,
in these studies, the radial force, that is the most important mechanical property of the
prosthesis is only estimated, using the difficulty to pass over the stenotic portion [10]. Thus,
the presented computational tool could be helpful as the customization is performed with
the computation of the radial stiffness of the device. The prosthesis could be tailored to
the patient, and the necessary prosthesis radial stiffness could be computed as a function
of the degree of stenosis and the type of lesion. With this information, among others, the
parameters of the stent design could be optimized, retaining the estimated radial stiffness,
even though, as discussed, this information is difficult to be obtained [10]. In the litera-
ture, a few optimization methodologies have been proposed, especially for cardiovascular
stent [37,38]. Nevertheless, the necessary radial stiffness of a prosthesis remains a variable
depending on several aspects. In any case, with the estimated values, an optimization of
the prosthesis with the stent radial stiffness as goal may improve the actual devices and
the clinical results.

The presented work demonstrates that the thickness of the medical device can be
reduced by adequately increasing the external fibers thickness, for instance. This could have
important applications to the stent design, as the obstruction and mucus plugging caused
by these devices is one of the more frequent problem after the surgery and it is caused by
the thickness of the prosthesis [16]. The outer fibers add in fact radial strength without the
necessity of increasing the entire device thickness, yet limiting the use of the material in the
sites where necessary. Then, similar radial stiffnesses can be obtained accurately modifying
the design. The compression tests indicated that at high deformation and at buckling,
the prosthesis shows a high compressive strength. The latter can be obtained varying the
fibers pitch angle, once fixed all the other parameters. In particular, the study shows that
a reduction of the pitch angle promotes an increase of the radial stiffness. Additionally,
as discussed above, the increase of stiffness can be obtained increasing other parameters,
such as the fiber bottom width without increasing the fiber thickness. In this context, it is
clear that the entire design of the prosthesis can be adapted to the patient and its clinical
situation.

5. Limitations

Limitations of the work include the use of the type of loading applied to the tracheo-
bronchial stent. These are difficult to be reproduced in experimental settings even though
extremely important. The loading conditions have been reported to influence the way how
to evaluate the stent design [39]. In the present study we have performed a flat compressive
tests, but a nonuniform compression is probably more adequate as it is clear looking at the
tracheal physiology and the loading conditions of the human trachea [39]. Furthermore, a
comprehensive computational analysis that takes into account the interaction between pros-
thesis and biological tissue would also be interesting and necessary. The latter could in fact
assess the regions where higher stresses are located during the physiological maneuvers.
These regions, that normally are located in the proximity of the device have been found to
produce tissue reaction and inflammation [40]. In addition, an experimental study needs to
be carried out for assessing the foreign body reaction after implantation and observe in situ
possible re-epithalization, inflammation and granulation among other biological responses.
While this study is pursued in parallel work, in the present study we have focused on the
mechanical properties and on the capability to design customizable devices and in the
generation of a useful tool for prosthesis design, customization and analysis. In a next step,
the interaction of the device with the human patient specific trachea could be also taken
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into account. Because of the patient variability, of course this aspect is challenging. In the
literature, it is suggested for example a categorization of patients and of pathologies [37].
Besides trying to overcome the aforementioned limitations, it is of course possible to extend
the proposed parametric strategy by implementing additional design parameters, such
as the material of the prosthesis, and the composition of the fibers. The presented study
is limited to the use of one specific silicone type. A composition of different polymers or
silicones may add useful information for the optimal design or patient customization of the
tracheo-bronchial prosthesis. Of course, the analysis of different polymers including, in the
future, biodegradable materials, could be interesting. Finally, even though the presented
method is aimed to overtake some of the existing stenting technique limitations, it has to
be accepted that a prosthesis is a foreign body, and as such, it will always affect the tissue
and promote obstruction [16].

6. Conclusions

This study proposed a computational tool for designing and analyzing a new tra-
cheobronchial stent prototype. By means of an in-house code, a baseline model has been
parametrized and meshed, allowing a comprehensive finite element analysis. The com-
putational simulations consider several variations of the presented main parameters for
elucidating their effect on the stent radial stiffness. Furthermore, in the code, additional
parameters such as the inner diameter and the length of the prosthesis can be changed
so that the presented parametric tool allows a customization of the device to the patient
necessities. The results of the computational study show that the radial stiffness of the
prosthesis increases for decreasing pitch angle. Additionally, the radial stiffness also in-
creases if the fiber width or the fiber thickness increases, i.e., the cells inner dimensions
reduce. The presented tool allows a manipulation of the fibers geometry for obtaining
different prostheses with equivalent radial stiffnesses by reducing for example the tube
thickness, the value of which is normally one of the most important problems of the silicone
stent. Lastly, the computational study was validated by means of an experimental study
performed on three selected geometries. The latter proves that the in-house code and
subsequent simulations are reliable and the presented computational tool could be used
for the design of printable patient specific tracheobronchial stents.
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