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1. An Overview of the Topic and Its Ramifications

1.1. Introduction

Guided waves represent a vast class of phenomena in which the propagation of collective
excitations in various media is steered in required directions by fixed (or, sometimes, reconfigurable)
conduits. Arguably, the most well-known and practically important waveguides are single-mode and
multi-mode optical fibers [1,2], including their more sophisticated version in the form of photonic
crystal fibers [3] and hollow metallic structures transmitting microwave radiation [4]. Light pipes,
in the form of hollow tubes with reflecting inner surfaces, are used in illumination techniques. On the
other hand, medical stethoscopes offer a commonly known example of a practically important acoustic
waveguide. New directions of studies in photonics are focused on waveguides for plasmonic waves
on metallic surfaces [5–7] (which provide the possibility of using wavelengths much smaller than
those corresponding to the traditional optical range, and thus offer opportunities to build much more
compact photonic devices) and on the other hand, on the guided transmission of terahertz waves,
which also have a great potential for applications [8].

Outside of the realm of photonics (optics and plasmonics) and acoustics, wave propagation plays
a profoundly important role in many other areas; accordingly, waveguiding settings have drawn
a great deal of interest in those areas as well. In particular, as concerns hydrodynamics, natural
waveguides—which may be very long—exist for internal waves propagating in stratified liquids
(e.g., in the ocean) [9]. Various settings in the form of waveguides for matter waves are well known
in studies of Bose–Einstein condensates in ultracold bosonic gases [10,11]. In solid-state physics,
guided propagation regimes for magnon waves in ferromagnetic media are a subject of theoretical and
experimental studies [12]. In superconductivity, long Josephson junctions are waveguides for plasma
waves [8,13]. The significance of waveguiding in plasma physics is also well-known; e.g., Ref [14–16].

Below, a very brief overview of basic theoretical models and experimental realizations of various
physical implementations of the waveguiding phenomenology is given. The text is structured
according to the character of the guided wave propagation: linear or nonlinear and conservative
or dissipative, as well as according to the materials used in the underlying settings, natural or artificial.

This presentation definitely does not aim to include an exhaustive bibliography on this vast
research area. References are given chiefly to review articles and books summarizing the known
results, rather than to original papers where the results were first published. However, in some cases
original papers are also cited if it is necessary in the context of the presentation.

1.2. Linear Waveguides

The basic waveguiding structure is a single-mode conduit, designed with a sufficiently small
transverse size and boundary conditions at the boundary between the guiding core and surrounding
cladding, which admits the propagation of a single transverse mode, while all higher-order modes
get imaginary propagation constants (i.e., they cannot actually propagate). A commonly known—and
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arguably the most important—example is provided by single-mode optical fibers (although, strictly
speaking, all such fibers are bimodal if the polarization of light is taken into consideration) [17,18].
Single-mode waveguides are crucially important components of telecommunication systems, while other
applications (e.g., the delivery of powerful laser beams for material processing and the creation of complex
spatiotemporal patterns) are best served by multimode conduits [19,20].

Parallel to waveguiding fibers, planar waveguides are a subject of many studies in optics.
In the corresponding models, as well as in their fiber-optics counterparts, the evolution variable is the
propagation distance, z; see Equation (2) below (this is a common feature of all guided-wave-propagation
settings, not only in optics, but in other physical realizations of waveguides as well). Meanwhile,
the transverse coordinate, x, in the spatial domain plays the same role as the reduced-time variable,

τ ≡ t − V−1
gr z, (1)

where t is the time proper, and Vgr is the group velocity of the carrier wave in the temporal domain in
fiber optics. The waveguiding structure in the planar waveguide is represented (roughly speaking) by
a stripe with a locally increased effective refractive index.

Effective equations which model the temporal-domain propagation of optical waves in fibers
and the spatial-domain propagation in planar waveguides are similar to each other, taking the form of
the linear Schrödinger equation for local amplitude u of the electromagnetic wave, which is written
here in terms of the spatial-domain propagation, and in the scaled form:

i
∂u
∂z

+
1
2

∂2u
∂x2 − U(x)u = 0. (2)

In particular, the aforementioned stripe waveguiding channel is represented by trapping potential
U(x) in Equation (2), while the second derivative in Equation (2) represents the paraxial (weak)
transverse diffraction in the planar waveguide. A ubiquitous form of the potential is

U(x) = −ε sech2(x/l), (3)

where ε > 0 determines the effective depth of the potential well, and l determines its width.
In the temporal domain, the transverse coordinate, x, is replaced by the above-mentioned temporal
variable (1). and the diffraction term in Equation (2) is replaced by −(β/2)∂2u/∂τ2, where β is the
coefficient of the group-velocity dispersion (β > 0 and β < 0 correspond to the normal and anomalous
dispersion, respectively).

Further, the similarity between the wave-propagation Equation (2) in optics and the Schrödinger
equation in quantum mechanics suggests a similarity between the guided transmission of waves
in the guiding channel and propagation of real quantum particles in holding channel potentials [21].
The consideration of the transport of quantum particles in such channels gives rise to many intriguing
peculiarities, such as the consideration of curved guiding channels. In this context, it is relevant
to mention a well-known result which demonstrates a strong effect of the confinement imposed by
a pipe-shaped potential on the character of the effectively one-dimensional mutual scattering of two
quantum particles, which amounts to full reflection of the colliding particles [22]. This theoretical
prediction had suggested the experimental realization of the concept of the Tonks–Girardeau gas;
i.e., a gas composed of hard-core bosons, which bounce back from each other when they collide [23,24].

A natural generalization of single-channel waveguides is provided by a coupler, which may
be considered as a set of two parallel waveguiding cores, coupled in the transverse direction by
tunneling of guided wave fields steered by each tunnel in the longitudinal direction. The respective
system of coupled equations for amplitudes u and v of electromagnetic waves in the two cores is [25]
(cf. Equation (2)):

2
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i
∂u
∂z

+
1
2

∂2u
∂x2 + κv − U(x)u = 0.

(4)

i
∂v
∂z

+
1
2

∂2v
∂x2 + κu − U(x)v = 0,

where κ is the coefficient of the linear inter-core coupling.
The next step is to consider arrayed systems, composed of many parallel guiding cores, which are

also coupled in the transverse direction(s) by the tunneling of longitudinally guided wave fields
(planar and bulk arrays have, respectively, one or two transverse coordinates). The simplest model of
such a guiding medium is provided by the two- or three-dimensional scaled Schrödinger equation with
a periodic transverse potential, which represents the (idealized) structure of the multi-core bundle:

i
∂u
∂z

+
1
2

(
∂2u
∂x2 +

∂2u
∂y2

)
− ε

[
cos

(
2πx

l

)
+ cos

(
2πy

l

)]
u = 0. (5)

Here l is the array’s period (defined in scaled units, in which Equation (5) is written), and 2ε

is the scaled depth of the effective trapping potential. In particular, in optics bulk arrays have
been created as permanent structures by burning (also by means of an optical technology) a large
number of parallel guiding cores in a bulk piece of silica [26]. As concerns planar guiding arrays,
an interesting ramification of the topic is the propagation of optical waves in such arrays made
with a curved shape [27]. On the other hand, a technology for the creation of reconfigurable virtual
conduit patterns in the form of photonic lattices was elaborated for photorefractive materials [28].
The latter technology makes use of the fundamental property of the photorefractive materials,
in which the propagation conditions for light with ordinary and extraordinary polarizations are
linear and nonlinear, respectively. To create a photonic lattice, the experimentalist first illuminates the
sample by counterpropagating pairs of mutually coherent laser beams in the ordinary polarization,
which create a classical interference pattern in the photorefractive crystal, which is an effectively linear
medium for these beams. Next, a probe beam is launched, with the extraordinary polarization in the
transverse direction. Due to its inherent nonlinearity, the probe beam is affected by the originally
created photonic lattice, as if it is a material structure that creates a spatially periodic modulation of
the local refractive index in the transverse directions; i.e., essentially, another version of the multi-core
guiding structure.

The propagation of light or waves of a different physical nature in arrays with weak coupling
between guiding cores may be naturally approximated by the discrete Schrödinger equation. The basic
realization of such a medium is represented by planar arrays of parallel optical waveguides coupled
by evanescent waves penetrating dielectric barriers separating individual cores, the basic model being
a scaled discrete version of Equation (2):

i
dun

dz
+

1
2
(un+1 + un−1 − 2un)− Unun = 0, (6)

where the discrete coordinate, n, which replaces x, is the number of the guiding core in the array.
The study of light propagation in various multi-core systems—which may be approximated by lattice
models similar to Equation (6)—is a vast area known as discrete optics [29].

1.3. Nonlinear Waveguides

In many situations, tightly confined guided waves propagating in conduits with a small effective
cross-sectional area acquire high amplitudes, which is a source of a great many fascinating nonlinear
effects. In particular, waveguides often provide a combination of the nonlinearity, group-velocity
dispersion, and low (or sometimes completely negligible) losses which are necessary ingredients for

3
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the creation of solitons (robust self-trapped solitary waves). The simplest and ubiquitous model of
the nonlinear wave propagation is based on the nonlinear Schrödinger equation (NLSE), which in
the simplest case includes a cubic term. In optics, this term represents the Kerr effect; i.e., nonlinear
self-focusing (or, sometimes, self-defocusing) of light in the dielectric medium. The accordingly
amended linear Schrödinger Equation (2) becomes the NLSE:

i
∂u
∂z

+
1
2

∂2u
∂x2 − U(x)u + σ|u|2u = 0, (7)

where σ = +1 and −1 corresponds, respectively, to the self-focusing and defocusing nonlinearity;
i.e., self-attraction and self-repulsion of light in the nonlinear medium. Equations (4) and (5) each
acquire the same cubic terms as in Equation (7). In particular, the nonlinear version of Equation (4),

i
∂u
∂z

+
1
2

∂2u
∂x2 + κv − U(x)u + σ|u|2u = 0,

(8)

i
∂v
∂z

+
1
2

∂2v
∂x2 + κu − U(x)v + σ|v|2v = 0,

is the basic model of nonlinear couplers, their remarkable property being spontaneous symmetry breaking
in the case of self-focusing in the parallel-coupled cores, σ = +1 [25,30,31].

A remarkable property of the one-dimensional NLSE in the absence of the potential (U = 0
in Equation (7)) is that it is an integrable equation for which a very large number of exact solutions—
including multi-soliton states—can be produced by means of a mathematical technique based on the
inverse scattering transform [32–34]. These are bright and dark solitons in the cases of self-focusing and
defocusing, respectively. In particular, the exact bright-soliton solution to Equation (7) with σ = +1
and U = 0 is

u(x, z) = η exp
(

i
2

(
η2 − c2

)
z + icx

)
sech (η(x − cz) , (9)

where η and c are, respectively, the arbitrary amplitude and velocity of the soliton (in fact, in the spatial
domain—in terms of which Equation (7) is written—the soliton represents a self-trapped light beam,
and accordingly c is not a velocity, but rather a parameter which determines the tilt of the beam in the
(x, z) plane).

The discrete Schrödinger Equation (6) also has its natural nonlinear counterpart in the form of
discrete NLSE:

i
dun

dz
+

1
2
(un+1 + un−1 − 2un)− Unun + σ|un|2un = 0; (10)

i.e., a discrete version of NLSE (7). The discrete NLSE gives rise to discrete solitons and their bound
states, which cannot be found in an exact form, but may be efficiently produced by numerical and
approximate analytical methods [35]. The propagation of nonlinear waves in discrete waveguiding
arrays was the subject of numerous theoretical and experimental works [29,36].

The multidimensional extension of the NLSE also has direct realizations in optics, as well as
in the mean-field model of atomic Bose–Einstein condensates (BECs) [37,38], and in many other
areas. In particular, the spatial-domain light propagation in bulk media is modelled by the effectively
two-dimensional version of Equation (7), with two transverse coordinates (x, y):

i
∂u
∂z

+
1
2

(
∂2u
∂x2 +

∂2u
∂y2

)
− U(x, y)u + σ|u|2u = 0. (11)

Unlike its one-dimensional counterpart (7), Equation (11) in the free space (U (x, y) = 0) is not
integrable. It admits formal soliton solutions, looked for as

u (x, y; z) = exp (ikz + iSθ)US(r), (12)

4
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in terms of the polar coordinates (r, θ) in the (x, y) plane, where k > 0 is a real propagation constant,
S = 0,±1,±2 , ..., is an integer vorticity that may be embedded in the two-dimensional soliton (shaping
it as a vortex ring), and US(r) is a real radial amplitude function satisfying boundary conditions
US(r) ∼ exp

(
−
√

2kr
)

at r → ∞, and U(r) ∼ r|S| at r → 0. Solitons (12) with S = 0 are often called
Townes solitons [39]. However, the Townes solitons—as well as their vortex counterparts, with S �= 0
in Equation (12)—are completely unstable, being vulnerable to destruction by the critical collapse
(formation of a singularity after a finite propagation distance) in the case of S = 0, and by a still
stronger instability which splits vortex rings with S �= 0 [39].

An important example of nonintegrable one-dimensional system modelling nonlinear light
propagation in optics is the system of coupled-mode equations which describe the fiber Bragg gratings
(i.e., nonlinear optical fibers with a periodic lattice of local defects permanently written in their cladding,
with a period equal to half the wavelength of light coupled into this waveguide). The coupled-mode
equations govern the evolution of amplitudes u and v of right- and left-traveling waves, which are
mutually converted (reflected) into each other by the Bragg grating [40,41]:

iut + iux + κv +

(
1
2
|u|2 + |v|2

)
u = 0,

(13)

ivt − ivx + κu +

(
1
2
|v|2 + |u|2

)
v = 0,

where κ is the Bragg-grating reflectivity, and the group velocity of the light waves in the fiber is scaled
to be 1. This system admits exact solutions in the form of solitons, but it is not an integrable one.
Such solitons—moving in the fiber Bragg grating as in the waveguide—have been created in the
experiment [42]. Roughly half of the soliton family is stable, and half unstable.

The use of fiber Bragg gratings operating in the linear regime has grown into a large industry
with many applications, such as sensors, dispersion compensators, optical buffers, etc. [43].

Another fundamentally important nonlinear model for the guided wave propagation is the one
with the quadratic (alias second-harmonic) nonlinearity, instead of the cubic (Kerr) term in NLSE (7).
The model is based on the propagation equations for complex amplitudes u (x, z) and v(x, z) of the
fundamental and second harmonics [44,45]:

iuz +
1
2

uxx + vu∗ = 0,

(14)

2ivz − qv +
1
2

vxx +
1
2

u2 = 0,

where q is a real mismatch parameter. Although it is a nonintegrable system, Equations (14) also give
rise to solitons, which are generically found in a numerical form. These solitons form a family which is
chiefly stable, with a small instability area [44,45].

In BEC models, Equation (7), with evolution variable z replaced by (scaled) time, t, is called the
Gross–Pitaevskii equation, in which the cubic term represents—in the mean-field approximation—an
average effect of collisions between atoms [37,38]. The natural sign of the collision-induced term
corresponds to self-repulsion (self-defocusing) (i.e., σ = −1 in Equation (7)), but for atomic species
such as 7Li, 39K, and 85Rb, the sign may be switched to self-attraction by means of the Feshbach
resonance, which is in turn controlled by a magnetic or laser field acting on the experimental setup [46].

Theoretical and experimental work with solitons and other diverse nonlinear effects (such as
the modulational instability [47] and rogue waves [48,49], shock waves, separation of immiscible
components in binary systems, kinks, and domain walls [50], instantons [51], etc.) is a huge research
area in many branches of physics [52], including optics [47], matter waves in atomic BECs [53],
and BECs of quasi-particles (in particular, excitons-polaritons) [54], plasmas [55], ferromagnetic
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media [56], long Josephson junctions in superconductivity [57], acoustics [58], etc. In many cases,
waveguiding settings offer media in which many species of solitons can be created and/or
stabilized if the solitons do not exist (or exist but are unstable) in the respective uniform media.
Characteristic examples are various methods elaborated for the stabilization of three-dimensional
spatiotemporal solitons (“light bullets” [59]), which are subject to strong instabilities in both two- and
three-dimensional uniform media [60–62]. It was demonstrated experimentally that both fundamental
spatiotemporal solitons [63] and ones with embedded vorticity [64] can be made stable (in fact,
as semi-discrete solitons) in the above-mentioned systems created as bundles of parallel waveguiding
cores in bulk silica samples [26]. In fact, the commonly known stability of temporal optical solitons
in nonlinear fibers [47] is also an example of the stabilization of a localized mode which is—strictly
speaking—a three-dimensional one, with the self-trapping in the temporal (longitudinal) direction
induced by the nonlinearity, while the transverse trapping is secured by the fiber’s guiding properties,
which are not essentially affected by the nonlinearity. Furthermore, the stability of matter–wave
solitons in cigar-shaped trapping potentials [53] is provided by a similar mechanism, in spite of
a completely different physical nature of the latter setting: the longitudinal self-trapping is induced by
the self-attraction of the condensate, due to attractive interactions between atoms, while the confining
potential prevents spreading of the condensate’s wave function in the transverse directions. Moderate
deviation from the effective one-dimensionality essentially affects the shape of the matter–wave
solitons, but still relies upon the trapping potential to prevent the collapse of the three-dimensional
self-attractive condensate [65].

1.4. Waveguides Built of Artificial Materials

The experimental and theoretical results outlined above were obtained in naturally existing media
(and, accordingly, theoretical models of such media), or in settings produced by straightforward
modifications of natural media, such as the aforementioned multi-core bundled guiding structures
burnt in bulk silica [26,63,64].

Still natural—but more unusual—optical materials are photonic crystals (PhCs) [66]
and quasicrystals [67,68], as well as PhC-based heterostructures and interfaces [69], and PhC fibers [70–72];
i.e., holey fibers in which inner voids form a PhC structure in the transverse plane. The difference
between the traditional monolithic conduits (which guide light by means of the appropriate transverse
profile of the refractive index) and PhCs is that PhCs implement the bandgap-guidance principle, steering
the transmission of different optical modes according to the spectral bandgap structure, as induced by
the underlying crystalline lattice.

Related to PhC fibers are waveguides built as large-radius hollow fibers, with a specially designed
multi-layer cladding, which—by means of the Bragg-reflection mechanism (acting in the radial
direction)—support the omniguiding regime of the transmission of light in such conduits. As a result,
the omniguiding fibers (alias Bragg fibers) may provide a quasi-single regime of the propagation for
selected modes, even if the large-area fiber is a multi-mode one. This is possible because all the modes
except for the selected one will be suppressed by strong losses [73].

It is relevant to mention that another guidance mechanism is also possible which makes use
of lattice structures similar to those underlying PhCs and PhC fibers; however, differently from
them, these are nonlinear lattices [74]; i.e., spatially periodic modulations of the local nonlinearity
coefficient. Naturally, such nonlinear lattices and their combinations with the usual linear lattices [75]
are appropriate for steering nonlinear modes—first of all, solitons [74,75].

Furthermore, a new mechanism (thus far elaborated theoretically) for guided transmission
of one- and two-dimensional spatial optical solitons, as well as their matter–wave counterparts
in BEC, makes use of a purely self-defocusing nonlinearity, growing from center to periphery in the
D-dimensional space faster than rD, where r is the radial coordinate [76]. This scheme was predicted
to stabilize a large number of diverse self-trapped (soliton-like) modes, both fundamental ones and
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complex topologically-organized objects, such as three-dimensional hopfions [77] (i.e., vortex rings with
internal twist which carry two independent topological numbers: the vorticity and the twist).

PhCs and their various modifications may indeed be considered as natural materials because
such structures are found in various animals, accounting for their coloration [78]. On the other
hand, the recent progress in photonics has produced remarkable results in the form of artificially
built media, which exhibit completely novel properties that are not possible in natural media;
a very important example is provided by left-handed metamaterials, featuring negative values of
the refractive index [79,80]. This property may be used for realization of fascinating applications,
such as superlensing (which breaks the diffraction limit of imaging [81]), and optical cloaking
(lending partial invisibility to small objects [82]). Other well-known examples of purposely designed
artificial optical media with extraordinary properties include hyperbolic metamaterials, whose
tensors of the dielectric permittivity and/or magnetic permeability feature principal values of
opposite signs [83,84], planar metasurfaces [85,86], epsilon-near-zero materials, in which the refractive
index nearly vanishes [87], photonic topological insulators [88,89] (which exemplify the area of
topological photonics [90]), and others. The use of such media opens numerous possibilities to implement
diverse optical effects, including nonlinear ones [91] and guided-wave propagation, in forms that were
not known previously (for instance, in the form of the surface waveguiding in photonic topological
insulators, which is immune to scattering on defects because the scattering is suppressed by the
topology of the guiding system), and are unified under the name of metaoptics [92,93]. Another
unifying concept is nanophotonics, the name originating from the fact that many of these materials are
assembled of elements with sizes measured on the nanometer scale (which is deeply subwavelength,
in terms of optics). One of the fundamentally interesting subjects of nanophotonics is trapping and
transmitting light in nanowires. Nanowires are optical filaments (usually made of silicon) whose
diameter—measured in nanometers—is much smaller than the wavelength of light, while a typical
length may be a few millimeters; one of their important applications is in solar photovoltaic
elements [94].

1.5. Dissipative and Parity-Time Symmetric Waveguides

The brief discussion of the waveguiding mechanisms given above did not address the presence
of losses and the necessity of compensating them by gain. This assumption is valid for relatively
short propagation distances, as well as in the case when the compensating gain matches the action
of losses so accurately that both factors may be simultaneously neglected in the first approximation.
In reality, losses are an inevitably existing gradient in plasmonics and metamaterials, as the respective
waveguides are based on metallic elements, which introduce the Ohmic dissipation.

Generally speaking, if the medium is essentially lossy, the above-mentioned index-guiding and
bandgap-guiding mechanisms which define the guiding channel(s), respectively, in terms of a transverse
profile of the local refractive index, or the transmission-band structure induced by the PhC or PhC
fiber may be replaced by a gain-guiding scheme in which the signal propagates in a lossy planar or bulk
medium along a narrow stripe of gain locally embedded into the medium [95–97].

A recently developed topic which is closely related to the light transmission in dissipative
waveguides deals with the parity-time (PT ) symmetry, which implies balance between symmetrically
(in space) placed gain and loss elements. A paradigmatic model (it often includes nonlinearity, although
the PT symmetry is by itself a linear property) is represented by NLSE (7), in which the potential is
made complex, with real and imaginary parts being, respectively, spatially even and odd ones:

i
∂u
∂z

+
1
2

∂2u
∂x2 − [Ur(x) + iUi(x)] u + σ|u|2u = 0,

Ur(−x) = Ur(x), Ui(−x_ = −Ui(x). (15)
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Another fundamental realization of the PT symmetry in optics and related fields is offered
by a coupler, in which one core carries uniformly distributed gain, and the parallel-coupled one is
uniformly lossy, the accordingly modified Equation (8) being

i
∂u
∂z

+
1
2

∂2u
∂x2 + κv − U(x)u + σ|u|2u = iγu,

(16)

i
∂v
∂z

+
1
2

∂2v
∂x2 + κu − U(x)v + σ|v|2v = −iγv,

where γ > 0 is the gain–loss coefficient. The PT symmetry has been experimentally realized
in photonics, and a large number of guided-wave-propagation regimes have been investigated in such
systems [98–101]. In particular, as concerns solitons, although PT -symmetric systems belong to the
class of dissipative ones, where solitons generally exist as isolated attractors, selected by the condition
of the double balance between the dispersion (or diffraction) and nonlinearity, and between the gain
and loss (the latter principle is very important for the creation of stable temporal solitons in fiber
lasers [102]), in PT -symmetric systems solitons exist in continuous families, similar to their counterparts
in conservative models [100,101]. In addition to the interest to fundamental studies, systems with
the PT symmetry offer promising applications, such as “light diodes”, admitting unidirectional
propagation of light in the waveguide, and lasers operating in the PT -symmetric regime [103].

2. Annotation of Articles Included in the Special Issue

The present Special Issue is composed of a collection of 20 contributions, which include 5 relatively
brief reviews summarizing recently obtained results in various areas of the guided-wave propagation
in photonics, and 15 original papers reporting novel findings in this broad field. The contributions may
be naturally grouped according to different forms and manifestations of the guided-wave propagation
addressed in these works. Accordingly, the list of papers published in the Special Issue (following
below) is divided into 11 topics (A)–(K), and review articles are highlighted. In all cases, subjects
addressed in the papers are sufficiently clearly defined by their titles.

(A) A batch of three papers may be classified as addressing problems arising in the fundamental
(general) theory of the guided wave transmission in conservative (i.e., lossless) nonlinear media.

(A1) J. Fujioka, A. Gómez-Rodríguez, and Á. Espinosa-Cerón, Pulse Propagation Models with
Bands of Forbidden Frequencies or Forbidden Wavenumbers: A Consequence of Abandoning the
Slowly Varying Envelope Approximation and Taking into Account Higher-Order Dispersion. Appl. Sci.
2017, 7, 340.

(A2) Chan, H.N.; Chow, K.W. Rogue Wave Modes for the Coupled Nonlinear Schrödinger System
with Three Components: A Computational Study, Appl. Sci. 2017, 7, 559.

(A3) Govindarajan, A.; Malomed, B.A.; Mahalingam, A.; Uthayakumar, A. Modulational
Instability in Linearly Coupled Asymmetric Dual-Core Fibers. Appl. Sci. 2017, 7, 645.

(B) A related topic is the study of bright and dark soliton in various settings. This topic is
represented in the Special Issue by the following four contributions, one of them being a review article:

(B1) Mai, Z.; Xu, H.; Lin, F.; Liu, Y.; Fu, S.; Li, Y. Dark Solitons and Grey Solitons in Waveguide
Arrays with Long-Range Linear Coupling Effects. Appl. Sci. 2017, 7, 311.

(B2) Katsimiga, G.C.; Stockhofe, J.; Kevrekidis, P.G.; Schmelcher, P. Stability and Dynamics of
Dark-Bright Soliton Bound States Away from the Integrable Limit. Appl. Sci. 2017, 7, 388.

(B3) Rodriguez, P.; Jimenez, J.; Guillet, T.; Ackemann, T. Polarization Properties of Laser Solitons.
Appl. Sci. 2017, 7, 442.

(B4) Mitschke, R.F.; Mahnke, C.; Hause, A. Soliton Content of Fiber-Optic Light Pulses. Appl. Sci.
2017, 7, 635.

(C) Specific aspects of transmission in optical waveguides are considered in the following three
papers (the first two address problems of direct relevance to practical applications):
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(C1) Lamy, M.; Finot, C.; Fatome, J.; Arocas, J.; Weeber, J.C.; Hammani, K. Demonstration
of High-Speed Optical Transmission at 2 μm in Titanium Dioxide Waveguides. Appl. Sci. 2017, 7, 63.

(C2) Memon, F.A.; Morichetti, F.; Melloni, A. Waveguiding Light into Silicon Oxycarbide. Appl. Sci.
2017, 7, 561.

(C3) Morales, J.D.H.; Rodríguez-Lara, B.M. Photon Propagation through Linearly Active Dimers.
Appl. Sci. 2017, 7, 587.

(D) Different aspects of the transmission of light in waveguides based on fiber Bragg gratings
is considered in two papers:

(D1) Yang, S.-C.; He, Y.-J.; Wun, Y.-J. Designing a Novel High-Performance FBG-OADM Based on
Finite Element and Eigenmode Expansion Methods. Appl. Sci. 2017, 7, 44.

(D2) Review: Liu, Y.; Fu, S.; Malomed, B.A.; Khoo, I.C.; Zhou, J. Ultrafast Optical Signal Processing
with Bragg Structures. Appl. Sci. 2017, 7, 556.

(E) A specific phenomenon of bound states existing in the continuous spectrum of a waveguide
built as an array of dielectric spheres is summarized in the following Review article:

Bulgakov, E.N.; Sadreev, A.F.; Maksimov, D.N. Light Trapping above the Light Cone
in One-Dimensional Arrays of Dielectric Spheres. Appl. Sci. 2017, 7, 147.

(F) A topic of the propagation of self-accelerating beams in the form of Airy waves is overviewed
in a Brief Review:

Zhang, Y.; Zhong, H.; Belić, M.R.; Zhang, Y. Guided Self-Accelerating Airy Beams-A Mini-Review.
Appl. Sci. 2017, 7, 34.

(G) A specific aspect of the light propagation in metamaterials is considered in:
Mazzone, V.; Gongora, J.S.T.; Fratalocchi, A. Near-Field Coupling and Mode Competition

in Multiple Anapole Systems. Appl. Sci. 2017, 7, 542.
(H) Some fundamental aspects of the light transmission in dissipative waveguides are addressed

in the following paper:
Descalzi, O.; Cartes, C. Stochastic and Higher-Order Effects on Exploding Pulses. Appl. Sci. 2017,

7, 887.
(I) Theoretical studies of the propagation of light in PT -symmetric nonlinear waveguides are

represented by an original paper,
D’Ambroise, J.; Kevrekidis, P.G. Existence, Stability and Dynamics of Nonlinear Modes in a 2D

Partially PT Symmetric Potential. Appl. Sci. 2017, 7, 223.
(J) The propagation of plasmonic waves is addressed in the following two experimental works,

with direct implications for applications:
(J1) Moon, K.; Lee, T.; Lee, Y.J.; Kwon, S. A Metal-Insulator-Metal Deep Subwavelength Cavity

Based on Cutoff Frequency Modulation. Appl. Sci. 2017, 7, 86.
(J2) Iwanaga, M. Perfect Light Absorbers Made of Tungsten-Ceramic Membranes. Appl. Sci. 2017,

7, 458.
(K) Specific aspects of the general topic of fiber lasers, which are significant to fundamental and

applied studies alike, are the subject of a Review article:
de Araújo, C.B.; Gomes, A.S.L.; Raposo, E.P. Lévy Statistics and the Glassy Behavior of Light

in Random Fiber Lasers. Appl. Sci. 2017, 7, 644.

Conflicts of Interest: The author declares no conflicts of interest.
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Abstract: The influence of additive noise, multiplicative noise, and higher-order effects on exploding
solitons in the framework of the prototype complex cubic-quintic Ginzburg-Landau equation is
studied. Transitions from explosions to filling-in to the noisy spatially homogeneous finite amplitude
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1. Introduction

Soliton explosions, fascinating nonlinear phenomena in dissipative systems, have been observed
in at least three key experiments. As has been reported by Cundiff et al. [1], a mode-locked laser
using a Ti:Sapphire crystal can produce intermittent explosions. More recently, a different medium for
explosions was reported by Broderick et al., namely, a passively mode-locked fibre laser [2]. In 2016,
Liu et al. showed that in an ultrafast fiber laser, the exploding behavior could operate in a sustained
but periodic mode called “successive soliton explosions” [3].

Almost all parts of these exploding objects are unstable, but nevertheless they remain localized.
Localized structures in systems far from equilibrium are the result of a delicate balance between
injection and dissipation of energy, nonlinearity and dispersion (compare [4] for a recent exposition of
the subject). This fact leads to a generalization of the well known conservative soliton to a dissipative
soliton DS (Akhmediev et al. [5]). Experimental observation of DSs, apart from explosions, shows
a wide spectrum in nature including binary fluid convection, granular systems, chemical surface
reactions, nonlinear optics and starch suspensions [6–15].

Explosions, being chaotic phenomena, are not identical, resulting in a random distribution of
times between explosions. Real systems, where explosions were observed, are not continuous, however,
explosive behavior was predicted theoretically in the complex cubic-quintic Ginzburg-Landau equation,
whose parameters vary continuously [16,17].

The complex cubic-quintic Ginzburg-Landau equation (CQGLE), a prototype envelope equation,
derived near the onset of a subcritical instability (inverted Hopf bifurcacion), was first introduced by
Brand et al. when modeling binary mixtures [18,19]. However, Thual and Fauve were the first to report
explicitly the existence of stable pulse solutions in the CQGLE [20]. In optics, this equation describes
laser systems [21–23], soliton transmission lines [24], and nonlinear cavities with an external pump [25].
A natural parameter to be varied in this equation is the distance from linear onset. For a large range of
parameters, the following sequence was found: stationary pulses, pulses with one and two frequencies,
and finally exploding pulses [26]. This fact revealed a quasiperiodic route to chaos for spatially
localized solutions [27]. In addition, we have studied the effect of small and large additive noise
on the formation of localized patterns [28,29]. We concluded that weak additive noise is enough to
induce explosions while the interaction of localization and noise can lead to noisy localized structures.
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Recently, we have reported that multiplicative noise can reduce and even suppress the existence of
explosions in localized solutions [30].

In this article, we study the influence of additive noise, multiplicative noise, and higher-order
effects on exploding solitons in the framework of the prototype envelope complex cubic-quintic
Ginzburg-Landau equation. Transitions from explosions to filling-in to the noisy spatially homogeneous
finite amplitude solution, collapse (zero solution), and periodic exploding dissipative solitons are reported.

2. Influence of Additive and Multiplicative Noise on Exploding Dissipative Solitons

Sources of noise are always present in physical systems, which can be external or internal
(as examples, we can mention thermal noise, fluctuations in pressure, temperature or electrical
signals, etc.). Ordinary or partial differential equations take account of the behavior of systems
under the influence of fluctuations [31–33]. Internal noise becomes typically additive [34] while
external noise becomes typically multiplicative or both [35].

2.1. Stochastic Equations

The stochastic complex cubic-quintic complex Ginzburg-Landau equation (SCQGLE) under the
influence of additive noise reads

∂t A = μA + β|A|2 A + γ|A|4 A + D∂xx A + η ξ. (1)

Here, A(x, t) is the complex envelope, β = βr + i βi; γ = γr + i γi; D = Dr + i Di; μ is the distance
from linear onset (real), and η the noise strength. βr > 0 and γr < 0 in order to guarantee that we are
in the presence of an inverted Hopf bifurcation saturating to quintic order. The complex white noise
ξ(x, t) satisfies 〈ξ〉 = 0 (zero mean), 〈ξ(x, t) ξ(x′, t′)〉 = 0 and 〈ξ(x, t) ξ∗(x′, t′)〉 = 2δ (x − x′) δ (t − t′)
(delta correlated in space and time). Discretization in space and time should not affect quantitative
noise features, so that ξ(x, t) becomes replaced by (χr + i χi)/

√
dx dt, where χr and χi are uncorrelated

random numbers (in space and time) obeying a normal distribution with zero mean and unit variance.
The SCQGLE with multiplicative noise that we investigate here is of the form

∂t A = (μ + η ζ)A + β|A|2 A + γ|A|4 A + D∂xx A, (2)

where the white noise ζ(t) satisfies 〈ζ〉 = 0 (zero mean), and 〈ζ(t) ζ(t′)〉 = δ (t − t′) (delta-correlated
in time but homogeneous in space), so that ζ(x, t) is replaced by χr/

√
dt, where χr corresponds to

uncorrelated random numbers obeying a normal distribution with zero mean and unit variance.
Additive noise implies perturbations on short length and time scales. However, homogeneous
multiplicative noise leads to a homogeneous enhancement and suppression of the modulus as
a function of time. As an example, we can mention electroconvection in nematic liquid crystals
by superposing noise on the driving voltage [36].

2.2. Numerical Method

The parameters we used are β = 1 + 0.8 i, γ = −0.1 − 0.6 i, D = 0.125 + 0.5 i. The complex
cubic-quintic Ginzburg-Landau equation has seven parameters. After scaling t, x and A, we can fix
βr = 1, γr = −0.1 and Dr = 0.125. Nevertheless, explosions occur as a function of μ only in a subset
of the space (βi, γi, Di). According to our previous experience in explosions [26], we choose βi = 0.8,
γi = −0.6 and Di = 0.5.

We considered periodic boundary conditions and by varying the box size we made sure that our
box is sufficiently large so that none of the results presented in the following are sensitively dependent
on the box size.
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The bifurcation parameter μ is varied from −0.26 until −0.16. This range includes values of
μ where deterministically we find stationary solutions and oscillatory solutions (with one and
two frequencies) and exploding solitons [28]. Initial conditions are deterministic solutions of the CQGLE.

To numerically solve Equations (1) and (2), we used a pseudo—spectral split—step method,
where the derivatives are computed in Fourier space using a fast Fourier transformation and the
non-linear part is integrated in time by a fourth order Runge-Kutta method. To perform these
operations, we write our equations in the following way

∂t A = M[A]A + D∂xx A, (3)

where M[A]A represents the part of the equation containing the linear and non-linear terms with
the exception of the double derivative in x. If we split Equation (3) into two operators, we get
∂t AL = D∂xx AL and ∂t AM = M[A]AM.

We integrate the differential part over a small interval Δt, by performing a Fourier transformation
∂t ÂL = −Dk2 ÂL, where k2 is the squared wave vector. After integrating the differential and nonlinear
part separately, we obtain

ÂL(t + Δt) = e−ΔtDk2
ÂL(t), (4)

AM(t + Δt) = eΔtM[A]AM(t).

The second integration is performed by a fourth order Runge-Kutta method which gives us
a more numerically stable result. Finally, we get the solution for A integrated over a small time step Δt

A(t + Δt) = eΔtM[A]eΔtD∂xx A(t) . (5)

This numerical method was implemented using a Python code with Fortran subroutines. For the
numerical simulations, we used N = 1024 Fourier modes over a discretized grid of length L = 50 and
a time step of size Δt = 0.005.

2.3. Results

In [28], we studied the effect of weak additive noise on the spatially localized pulses (either
stationary or oscillating with one and two frequencies) concluding that small additive noise is enough
to induce exploding dissipative solitons, which are mostly chaotic.

Here, we report (Figure 1a) three types of pulses emerging as a function of μ, including the range
where deterministically exploding solitons exist, for varying two decades of η (logarithmic scale).
For μ � 0.22 and small values of η, we find (in agreement with [28]) noisy non-explosive localized
solutions, either chaotic or non-chaotic. Large enough values of noise always induce explosions.
Non-chaotic explosions are observed at the border separating non-explosive states from exploding
solitons. For sufficiently large noise strength η, we observe a transition to filling-in, that is, a noisy
spatially homogeneous finite amplitude solution.

The phase diagram shown in Figure 1a is rather insensitive to the maximum run time T, as we can
notice from Figure 1b. There, the filling-in time for the transition from an exploding dissipative soliton
to filling-in under the influence of additive noise for μ = −0.25 is shown. The average time scale T for
filling-in is plotted as a function of the noise strength η. Black solid circles represent an average over
50 realizations shown as open squares (�). Inspecting this figure, we see that to decrease T by about
one decade, one needs to increase η by 0.01.

For μ = −0.25 and η = 0, we have a stationary solution. When a small noise (η ∼ 0.003) is
added to Equation (1), it acts mainly as a perturbation on short length and time scales giving the state
a noisy appearance (Figure 2a). When η is increased to ∼0.03, a perturbation starts growing in the
wings. Once this peak has grown, it interacts with the main pulse forming a wide chaotic localized one
(this instant is shown as a snapshot in Figure 2b). After this, rapidly the system collapses to a state,
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similar to the original starting peak. This is what we call explosion. For large enough noise (η � 0.06),
the whole system jumps to a noisy spatially homogeneous finite amplitude solution (Figure 2c).
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Figure 1. Phase diagram: Effect of additive noise on exploding solitons for a fixed time scale T = 104.
(a) Black triangles (�) denote filling-in to the spatially homogeneous finite amplitude solution under
the influence of additive noise. Red solid circles (•) stand for exploding dissipative solutions and
blue squares (�) for noisy non-explosive localized solutions; (b) Filling-in time for the transition from
an exploding dissipative soliton to filling-in under the influence of additive noise for μ = −0.25.
The average time scale T for filling-in is shown as a function of the noise strength η. Black solid circles
(•) represent an average of over 50 realizations shown as open squares (�).
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Figure 2. Three snapshots for μ = −0.25 and additive noise for different values of the noise strength η.
(a) Noisy non-explosive localized solution, η = 0.003; (b) Exploding dissipative solution, η = 0.03;
(c) Noisy spatially homogeneous finite amplitude solution, η = 0.2.

For spatially homogeneous multiplicative noise, where we observe a collective enhancement and
suppression (in space) of the amplitude, we report in Figure 3a three types of patterns, as a function of
the bifurcation parameter μ, and η the noise strength: exploding dissipative solitons (red solid circles
(•)), oscillating localized states (blue squares (�)). Either they are not explosive or their frequency of
explosions is undetectable for T = 104. In the range of μ shown in Figure 3, values of η � 0.3 induce
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collapse (black triangles (�)). In a previous article [30], we reported that multiplicative noise can lead
to a reduction of the number of explosions and even to the collapse of dissipative solitons.
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Figure 3. Phase diagram: Influence of multiplicative noise on exploding solitons for a fixed time scale
T = 104. (a) Black triangles (�) denote collapsed states. Red solid circles (•) stand for exploding
dissipative solutions and blue squares (�) for oscillating localized solutions. (b) Collapse time for
exploding dissipative solitons under the influence of multiplicative noise for μ = −0.18. The average
time scale T for collapse is shown as a function of the noise strength η. Black solid circles (•) represent
an average over 50 realizations shown as open squares (�).

In Figure 3b, collapse time for exploding dissipative solitons under the influence of multiplicative
noise is shown for μ = −0.18. The average time scale T for collapse is plotted as a function of the noise
strength η. Black solid circles represent an average of over 50 realizations shown as open squares (�).
One can see from the plot that decreasing η at the border in 0.03 means to increase T in one decade.

3. Exploding Dissipative Solitons and Higher-Order Effects

The inclusion of higher-order terms to the complex cubic-quintic Ginzburg-Landau equation has
a clear physical motivation, namely, modeling the propagation of short pulses along a mode-locked
fiber laser. According to Agrawal [37], for short pulses (T0 � 1 ps), where T0 is the width of the pulse,
one should include the higher-order effects. Therefore, the generalized pulse-propagation equation reads

∂z̃ Ã − g(z̃, P)
2

Ã − i ∑
k≥2

βk
k!
(i∂T)

k Ã = i (γ(ω0) + i γ1 ∂T)(Ã(z̃, T)
∫ ∞

0
R(T′)|Ã(z̃, T − T′)|2dT′), (6)

where Ã(z̃, T) is the envelope (slowly varying function of z̃ and T) of the complex electrical field in
a comoving frame, g the gain or loss of energy, P the pumping power, βk stands for the dispersion
coefficients, γ1 ≈ γ/ω0, γ = ω0n2/cAeff, where Aeff is the effective mode area, n2 is called the
nonlinear Kerr parameter, and ω0 the carrier frequency. The integral in this equation accounts for the
energy transfer resulting from intrapulse Raman scattering.

3.1. Complex Ginzburg-Landau Equation and Short Pulses

For short pulses but wide enough (T0 ∼ 0.1 ps), expanding |Ã(z̃, T − T′)|2 in a Taylor-series up to
first order in T′, and considering up to the third-order dispersion β3, we can deduce from Equation (6)
the following non-integrable quation [38]

∂z̃ Ã − g(z̃, P)
2

Ã + i
β2

2
∂2

T Ã − β3

6
∂3

T Ã = i γ |Ã|2 Ã − 1
ω0

∂T(|Ã|2 Ã)− i TR Ã ∂T(|Ã|2), (7)

where TR ≡
∫ ∞

0 tR(t)dt is the first moment of the Raman response function and
∫ ∞

0 R(t)dt = 1.
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One can note that |Ã|2 has dimensions of power. Therefore, one can define the dimensionless
variable A as Ã = A

√
|β2|/(T0

√
γ). In the same way, using the dispersion length, the dimensionless

variable z: z̃ = zT2
0 /|β2|, and the dimensionless variable τ: T = T0τ. Thus, introducing the variables A,

z and τ in Equation (7), we can obtain a dimensionless complex CQGLE including three higher-order
effects: third-order dispersion, self-steepening, and intrapulse Raman scattering.

i ∂z A +
1
2

∂2
τ A + |A|2 A − ν |A|4 A = i δ A + i ε |A|2 A + i μ |A|4 A + i β ∂2

τ A, (8)

+ i δ3 ∂3
τ A − i s ∂τ(|A|2 A) + τR A ∂τ(|A|2),

The left side of Equation (8) is nothing but the cubic-quintic non-linear Schrödinger equation,
which is conservative. On the right side, the three first terms are related to g, taking account of the
linear gain and loss of energy (δ), and for the non-linear gain or absorption of energy (ε, μ). The term
associated to β plays the role of spectral filtering. The last three terms on the right side are precisely the
higher-order effects, which are conservative and whose coefficients δ3, s, and τR are defined as follows:

δ3 ≡ β3

6T0|β2|
; s ≡ 1

ω0T0
; τR ≡ TR

T0
. (9)

3.2. Results

Equation (8) without considering higher-order effects is the optical version for the CQGLE studied
in Section 2. Coefficients can easily be converted from Equations (1)–(8): δ = μ; ε = βr; 1 = βi; μ = γr,
ν = −γi; β = Dr; and D

2 = Di. In optics, to use ε as a control parameter is meaningful because ε is
related to the pumping power.

As in Section 2, to solve Equation (8), we used a pseudo-spectral split-step numerical method
along to N = 8192 Fourier modes, dt = 0.01 and dz = 0.004. Our parameters are: δ = −0.1, β = 0.125,
μ = −0.1, ν = 0.6 and ε ∼ 1.0.

For ε around 1.02 (and δ = s = τR = 0), the energy Q(z) =
∫ T

0 |ψ|2dτ exhibits different maxima
Qmax, which can be plotted in a logistic map (see Figure 4a), giving the aspect of a complex picture,
natural consequence of explosive chaotic behavior. While in Figure 5a, one can observe the evolution
of the amplitude |A| in a τ − z plot for ε = 1.02. There, one can notice the random distribution
of locations in z between explosions (the analogue of the random distribution of times between
explosions in Equation (1)). The distribution of locations in z obeys a narrow distribution centered
around a mean value.

Figure 4. (a) Logistic map for Qmax without including higher-order effects. Complex picture, natural
consequence of explosive chaotic behavior; (b) Logistic map for Qmax including higher-order effects.
One can observe a window without chaos around ε = 1.022.
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Figure 5. τ − z plot of |A| following the dimensionless complex CQGLE (8) for ε = 1.02, (a) without
including higher-order effects, showing chaotic explosions, and (b) including higher-order effects,
showing periodic explosions.

Considering TR ∼ 3 fs [37] and T0 ∼ 0.1 ps, we estimate τ ∼ 0.03, and noticing that ω0T0 ∼ N ∼ 100
(number of cycles tangled by |A|), s can also be estimated as s ∼ 0.01. Now, following the
same above procedure for the CQGLE, but including higher-order nonlinear and dispersive effects
(δ3 = 0.016, s = 0.009, τR = 0.032), we notice the appearance of windows corresponding to non-chaotic
behaviors (see Figure 4b). Around ε = 1.022, one can observe period-halving bifurcations leading
to order, and period-doubling bifurcations leading to chaos. Around ε = 1.019 and ε = 1.024,
the limit of the ratio of distances between consecutive bifurcation intervals tends to 4.6 (close to the
Feigenbaum constant).

Figure 5b shows the evolution of the amplitude |A| in a τ − z plot, for ε = 1.02, considering
higher-order nonlinear and dispersive effects. In contrast to Figure 5a, we see that there is a fixed
distance in z between explosions and explosions repeat exactly after a period. We are in the presence
of periodic explosions.

4. Conclusions and Discussion

In summary, we have studied the influence of additive noise, multiplicative noise,
and higher-order effects on exploding solitons in the framework of the prototype complex cubic-quintic
Ginzburg-Landau equation.

For the stochastic CQGLE with enough large additive noise, we report a transition from explosions
to filling-in, that is, a noisy spatially finite solution. Under the influence of large multiplicative noise,
homogeneous in space, a collapse occurs in the zero amplitude solution.

We show that the phase diagrams for different outcomes under the influence of additive or
multiplicative noise are rather insensitive to the choice of the run time. The transitions to filling-in and
collapse follow an exponential law for the transition time as a function of the noise strength. This is
a typical behavior for a transition between different potential barriers triggered by noise.

For short pulses, we deduced a dimensionless complex CQGLE including three higher-order
effects: third-order dispersion, self-steepening, and intrapulse Raman scattering. Periodic exploding
dissipative solitons are reported. We notice that a long time ago, but in the context of envelope
equations, the effect of nonlinear gradient terms on localized solutions was studied by Deissler and
Brand [39].
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Abstract: This study designed a novel high-performance fiber Bragg grating (FBG) optical add/drop
multiplexers (OADMs) by referring to current numerical simulation methods. The proposed
FBG-OADM comprises two single-mode fibers placed side by side. Both optical fibers contained
an FBG featuring identical parameters and the same geometric structure. Furthermore, it fulfills
the full width at half maximum (FWHM) requirement for dense wavelength-division multiplexers
(DWDMs) according to the International Telecommunication Union (i.e., FWHM < 0.4 nm). Of all
related numerical calculation methods, the combination of the finite element method (FEM) and
eigenmode expansion method (EEM), as a focus in this study, is the only one suitable for researching
and designing large-scale components. To enhance the accuracy and computational performance,
this study used numerical methods—namely, the object meshing method, the boundary meshing
method, the perfectly matched layer, and the perfectly reflecting boundary—to simulate the proposed
FBG-OADM. The simulation results showed that the novel FBG-OADM exhibited a −3 dB bandwidth
of 0.0375 nm. In addition, analysis of the spectrum revealed that the drop port achieved the power
output of 0 dB at an operating wavelength of 1550 nm.

Keywords: fiber bragg grating; optical add-drop multiplexer; finite element method; eigenmode
expansion method; perfectly matched layer; perfectly reflection boundary; object meshing method;
boundary meshing method

1. Introduction

Fiber gratings refer to periodic structures that change according to the refractive index (RI) of
the core of photosensitive optical fibers. According to the periodic length of fiber gratings, they can
be categorized as short- or long-period fiber gratings. Short-period fiber gratings, also known as
fiber Bragg gratings (FBGs), were first proposed by Hill et al. at the Canadian Communication
Center in 1978 [1–3]. Of all related methods currently used to produce FBGs, the interferometric and
phase mask methods are the most common ones. The interferometric method involves irradiating
a photosensitive optical fiber with two interleaved beams of UV light; the UV light wavelength or angle
between the interleaved beams is adjusted to change the RI of the optical fiber, thereby producing the
desired fiber grating. The phase mask method involves irradiating UV light onto a phase mask, which
creates constructive and destructive interference in the core of the photosensitive optical fiber. Changes
in energy intensity then cause the RI of the optical fiber to display a periodic distribution [4–6].

Optical add/drop multiplexers (OADMs) are key components for creating wavelength-division
multiplexers (WDMs) in fiber-optic communication networks. The main function of an OADM is to
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drop or add a client signal in the fiber-optic communication network. Specifically, OADMs employ
wavelength division multiplexing techniques in the frequency domain to emulate the time division
multiplexing capabilities of the traditional synchronous digital hierarchy standard in the time domain.
In the past several decades, numerous types of OADM have been proposed, many of which are widely
used in various fiber-optic communication systems [7–12]. Of all of the currently available OADMs,
the most common one is composed of an FBG and two optical circulators. However, this particular
OADM is disadvantageous because of its large size and high-cost, complex production process.

To overcome the disadvantages of current OADMs, the present study referenced optical coupling
theory to develop a novel high-performance FBG-OADM model comprising two single mode fibers
(SMFs), which are placed side by side so that they work in the same manner as a 2 × 2 optical fiber
coupler, and two FBGs, which have identical parameters so that the they work in the same manner as
a mode coupler. In contrast to traditional OADMs, the proposed FBG-OADM is advantageous because
it is a miniature-sized all-optical fiber-based multiplexer that can be fabricated through a low-cost and
simple manufacturing process [12]. In researching and designing the proposed FBG-OADM, this study
combined the finite element method (FEM) and eigenmode expansion method (EEM) to perform
numerical simulations for calculation and analysis.

The remainder of this paper is organized as follows: Section 2 details the geometric structure,
parameters, and working principle of the proposed FBG-OADM. Optical coupling theory is used to
explain how the FBG-OADM achieves outstanding bandwidth performance (−3 dB). In addition,
to minimize discrepancies between simulations and actual performance results, a perfectly matched
layer (PML) and perfectly reflecting boundary (PRB) were integrated into the FBG-OADM design.
Section 3 explains how the FEM technique was used to solve and analyze the FBG-OADM mode.
To obtain suitable mesh-cutting resolutions, the object meshing method (OMM) and boundary meshing
method (BMM)—two methods that are currently used in the FEM—were adopted to determine the
optimal tradeoff between computational performance and cost. Mathematically, solutions derived from
partial differential equations (PDEs) with boundary conditions must be pairwise orthogonal; in other
words, their orthogonal value must be equal to zero. However, in numerical simulations, because of
memory and computational time constraints, achieving pairwise orthogonality between modes is
impossible. In other words, errors are inevitable. Therefore, in this study, the acceptable maximum error
value was set at −40 dB as the review standard. All subsequently employed mesh-cutting resolutions
must, therefore, generate modes with an orthogonal value of less than −40 dB. For mesh-cutting
resolutions that failed to meet this standard, the resolution was increased; subsequently the solutions to
the modes were recalculated and the orthogonal values were reevaluated [12]. Section 4 introduces the
roles and functions of EEM in the numerical simulations and expounds why the combined FEM-EEM
approach is superior to traditional numerical simulation methods for designing and analyzing large
optical components containing periodic structures. Mathematically, EEM embodies an operation
concept similar to that of the Fourier series expansion method; that is, if too few expansion functions
are used, discrepancies will occur between the expansion and expanded functions. In numerical
operations, it is impossible to include all modes; consequently, errors are unavoidable. To overcome
this problem, similar to the FEM approach adopted in this study, the acceptable maximum error
(i.e., power loss) for modal expansions was set to −40 dB. Section 5 shows how the FEM and EEM
were combined to research and design the proposed FBG-OADM. The design process involved the
following procedure: (1) solve the FBG-OADM modes, (2) plot 2D power distribution maps of the
modes, (3) review the orthogonal values of the modes, (4) identify the optimal design parameters,
(5) inspect the overall power loss, (6) plot the spectrum for the drop port, (7) examine heterodyne
and homodyne crosstalk, and (8) calculate the −3 dB bandwidth. Finally, Section 6 summarizes the
study findings. This study developed a novel, high-performance FBG-OADM that was designed
through the combined FEM-EEM approach. To minimize the number of errors, a PML and PRB were
simulated through various numerical methods (i.e., the OMM and BMM) and a review standard was
formulated to assess the orthogonal values and power loss. The numerical simulations showed that
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the proposed FBG-OADM overcomes the disadvantages of current OADMs. Moreover, the proposed
FBG-OADM possesses nearly zero heterodyne and homodyne crosstalk and meets the full width at
half maximum (FWHM) requirement for dense wavelength-division multiplexers (DWDMs) according
to the International Telecommunication Union (ITU; FWHM < 0.4 nm).

2. Novel FBG-OADM

Figure 1 shows the geometric structure of the proposed FBG-OADM [12]. The structure comprises
two SMFs placed side by side (Fibers 1 and 2), a 1 μm thick PML (purple lines), a PRB (yellow lines),
a noncoupling area (L1 and L3); a mode-power coupling area (L2); an HE11 core mode (red lines); and a
cladding mode (black lines).

Figure 1. Side view (X-Z plane) of the proposed FBG-OADM.

When the drop wavelength of the FBG-OADM is set to λ1 and N core mode signals with different
wavelengths (i.e., λ1, λ2, . . . λn) are inputted via the input port, core mode signals of all wavelengths
(except for that with a wavelength of λ1) are unaffected by the FBG and are outputted directly via the
output port. However, the core mode signal with a wavelength of λ1 is subjected to perturbation from
the FBG and is coupled to the cladding mode propagated along the −Z direction. Mode theory posits
that the power distribution in the core mode exists in the cladding layer in the form of exponential
decay (red lines). In other words, the core mode in the figure cannot detect the presence of the surround
layer. Thus, the core mode cannot couple Fiber 1 to Fiber 2. Conversely, because the power in the
cladding mode can be extended to the surround layer (black lines), the cladding mode can couple
Fiber 1 to Fiber 2. Subsequently, the cladding mode in Fiber 2 is subjected to perturbation from the
FBG, prompting the coupled core mode to be propagated along the Z direction and outputted via the
drop port, thus completing the signal drop process. Regarding the signal add process, because the
proposed FBG-OADM has a symmetric structural design, signal adding works according to the same
principle as signal dropping; that is, when a signal is inputted via the add port of Fiber 2, it will be
outputted via the output port of Fiber 1, thus completing the signal add process [12].

Compared with a previous long-period fiber grating (LPG) OADM proposed by the author of the
present study (in which the LPG-OADM comprised two LPGs and a 2 × 2 optical fiber coupler) [7],
the present OADM uses FBGs instead of LPGs. Roughly speaking, the overall spectrum of the
two OADMs is the product of the spectrums of the two LPGs (or two FBGs) and 2 × 2 optical fiber
coupler, as shown in Table 1. According to the table, the newly-proposed FBG-OADM features
a narrower spectrum, indicating that it can achieve exceptional bandwidth performance (−3 dB).
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Table 1. Comparison of spectrums between the LPG-OADM and FBG-OADM.

LPG LPG 2 × 2 Coupler LPG-OADM

FBG FBG 2 × 2 coupler FBG-OADM

In real-world environments, signals in an optical fiber structure may take the form of one
of two mode types: discrete guided modes and continuous radiation modes. However, because
continuous radiation modes cannot be measured in real-world environments, they are considered
a type of power loss. Moreover, the limitations imposed on numerical simulations by memory and
computation time constraints render it impossible to contain continuous radiation modes. To overcome
this drawback and, thus, improve the accuracy of simulation results, this study employed a PRB to
convert continuous radiation modes into discrete radiation modes. In addition, to enable the converted
discrete radiation modes to achieve expected power loss, a PML was incorporated into the surround
layer, enabling the propagation constant of the discrete radiation modes to be −(α + iβ), where α is the
attenuation constant and β is the phase constant [13,14].

SMFs were employed as the optical fiber technology in this study. SMFs are a type of fiber in
which the solution for the core and the nearly infinite number of solutions for the cladding layer can
be identified once the size and constituent materials of the fibers are determined (using PDEs). From a
physics perspective, all solutions are referred to as guided modes and each solution corresponds to
an equivalent RI. Thus, the equivalent RI (i.e., ncore

ne f f ; n2 < ncore
ne f f < n1) of the core mode as well as

nearly infinite number of equivalent RIs (i.e., ncladding
ne f f ; n3 < ncladding

ne f f < n2) of the cladding modes can
be determined, where n1 is the RI of the core layer, n2 is the RI of the cladding layer, n3 is the RI of
the surround layer, ncore

ne f f is the effective RI of the core mode, and ncladding
ne f f is the effective RI of the

cladding mode.
FBGs involve irradiating UV light signals on phase masks with a specific cycle to cause periodic

variation in the RI of the fiber core. These variations in the core RI are called fiber gratings. A uniform
fiber grating can be expressed using the following mathematical equation [12,15]:

n1(z) = n1 + δn
[

1 + cos
(

2π
ΛFBG

z
)]

(1)

where δn is the peak induced-index change, n1 is the RI of the core, and ΛFBG is the FBG period.
Mathematically, before light signals are affected by fiber gratings, all guided modes in the optical fiber
display pairwise orthogonality. In order words, powers between the modes do not couple to, or swap
with, each other during propagation. However, as light signals become affected by fiber gratings,
powers between the modes undergo perturbation, causing coupling and crosstalk between the modes.
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3. Finite Element Method

The calculation principles underlying the FEM [12,16–18] are briefly explained here. The FEM
can be applied to solve PDEs and it can be combined with numerical simulation methods for
evaluating boundary conditions. The FEM is based on the variational principle, region segmentation,
and interpolation functions. In the FEM, the variational principle is used to convert original problems
(i.e., PDEs and boundary conditions) into functional functions to find the extrema. Next, geometric
regions are divided, and hypothetically known element nodes are substituted into interpolation
functions to describe the unknown functions in the elements. Then, multivariate linear equations
are substituted into the functional functions, and boundary conditions are incorporated to identify
the interpolation functions of all elements. When solutions to the interpolation functions are
obtained, unknown nodes and the solutions of an entire region can be derived. The FEM procedure is
summarized as follows: (1) convert the problems of PDEs and boundary conditions into quadratic
functional functions to identify the extrema; (2) divide the geometric regions into subblocks, which
are referred to as elements (e.g., triangular or quadrilateral elements); (3) assuming that the nodes in
a triangular element are known, substitute the known nodes into the interpolation functions to create
polynomial linear equations and describe the unknown variables in the elements; and (4) substitute
the polynomial linear equations into the extrema-based functional functions while incorporating the
boundary conditions to identify the solutions to the interpolation functions. By obtaining the unknown
nodes using the interpolation function, calculate the solutions of the entire region.

Figure 2. BMM- and OMM-derived meshes for the FBG-OADM simulation.

This study used FEM to solve the guided modes in an optical fiber structure. As shown in Figure 2,
the OMM was used to obtain the standard mesh size, which was based on the geometric size of
the objects [12]. Then, the BMM was used to obtain boundary meshes with a higher resolution.
Since the numerical simulations were limited by memory and computation ability constraints,
achieving pairwise orthogonality between modes was impossible. Thus, errors were unavoidable.
Therefore, the acceptable maximum error value (i.e., the orthogonal value) was set at −40 dB as
the review standard. In other words, all mesh-cutting resolutions were required to produce modes
with an orthogonal value of less than −40 dB [9,12,19]. Mesh sizes that satisfied the review standard
were obtained through adjusting the mesh-cutting resolutions and testing the orthogonal values.
The orthogonal value equation is shown as follows [15,19]:

∫
A∞

Etν × Htμ · ẑdA =
∫

A∞
Etμ × Htν · ẑdA = 0 f or ν �= μ (2)

The mesh size used in this study was 1:5:17:43 (i.e., the object boundary/small object/medium
object/large object ratio).
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4. Eigenmode Expansion Method

The primary function of the EEM was to transmit the power of simulated guided modes. The RI
of FBG-OADM underwent cyclical changes and each change in RI during a cycle was called a segment.
The first segment of the FBG-OADM was first dropped with each division referred to as a “block”.
Each block was assumed to be a uniform waveguide. Next, the FEM was used to solve all guided modes
in each block, and the EEM was then employed to transmit the power between the block boundaries.
Since changes in the RIs of FBG-OADM were cyclical, the power transmission in the segments during
the simulations resembled the power transmission situation of the overall FBG-OADM [7,13,14].

The aforementioned information shows that, in contrast to using traditional numerical simulation
techniques, this study performed FBG-OADM-based numerical simulations by using the combined
FEM–EEM approach, which can complete numerical simulations within a shorter timeframe.
Although the finite-difference time-domain (FDTD) method has been used in previous research [20],
it requires considerable computation time and memory capacity during simulations—especially for
complex structures, such as the FBG-OADM. In summary, the combined FEM–EEM approach is
more efficient than conventional numerical simulation techniques for designing devices with a cyclic
structure (e.g., FBG-OADM, LPG-OADM, and resonance sensors with a long-period fiber grating).

Mathematically, EEM embodies an operation concept similar to that of the Fourier series expansion
method; that is, if too few expansion functions are used, discrepancies will occur between the
expansion and expanded functions. In numerical operations, because including all modes is impossible,
errors are unavoidable. To overcome this problem, similar to the FEM approach adopted in this study,
the acceptable maximum error (i.e., power loss) for modal expansions was set to −40 dB [7,13,14].
In other words, when the power loss failed to reach the review standard, the number of modes was
increased and simulations were repeated until the power loss satisfied the review standard.

5. Result and Analysis of the FBG-OADM

FBG-OADM simulations, designs, and research were made using the combined FEM–EEM
approach. The parameters in Figure 3 are explained as follows: a1 is the core radius; a2 is the cladding
layer radius; n1 is the RI of the core layer; n2 is the RI of the cladding layer; n3 is the RI of the surround
layer; δn is the peak induced-index change by the UV light; dpml is the thickness of the PML; L1 and L3

are the noncoupling areas of the FBG-OADM; L2 is the mode–power coupling area; dWPC and dHPC

are the width and height between the cladding layer and the PML, respectively; W and H are the width
and height of the overall structure, respectively. The parameters were set as follows: a1 = 2.25 μm,
a2 = 12.25 μm, n1 = 1.454, n2 = 1.43, n3 = 1.415, δn = 1.454 × 10−3, dpml = 1 μm, L1 = 1 μm, L3 = 1 μm,
L2 = ΛFBG × Np, dWPC = 13.7 μm, dHPC = 11.25 μm, W = 78.4 μm, and H = 49 μm, where Np is the
number of period in the FBG-OADM. Moreover, the distance between the two optical fibers was set to
zero and the operating wavelength λ = 1550 nm. Figure 4 shows the side view (i.e., X-Z plane) of the
FBG-OADM during the numerical simulations.

Figure 3. Geometric structure of the FBG-OADM: (a) sectional view from the X-Y plane; and (b) side
view from the Y-Z plane.
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Figure 4. Side view (X-Z plane) of the FBG-OADM in the numerical simulation.

After repeatedly adjusting the number of modes, recalculating the solutions, and reexamining
the power loss, this study found that the number of guided modes that met the power loss review
standard was 80. Figures 5–8 show the power distribution maps of modes when v = 9, 22, 56,
and 79, respectively; the corresponding equivalent RIs were nν=9

ne f f = 1.429881, nν=22
ne f f = 1.427474,

nν=56
ne f f = 1.422949, and nν=79

ne f f = 1.420274, respectively.

Figure 5. 2D power distribution plot for guided-mode ν = 9 (nν=9
ne f f = 1.429881).

Figure 6. 2D power distribution plot for guided-mode ν = 22 (nν=22
ne f f = 1.427474).

Figure 7. 2D power distribution plot for guided-mode ν = 56 (nν=56
ne f f = 1.422949).
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Figure 8. 2D power distribution plot for guided-mode ν = 79 (nν=79
ne f f = 1.420274).

According to optical coupling theory, the only guided modes that are subjected to the influence
of the 2 × 2 optical fiber coupler and could subsequently transmit and couple power from Fiber 1 to
Fiber 2 are the cladding modes. In addition, because of the perturbation effect of the FBG, core modes
couple only to cladding modes with a powered core. In other words, of the four guided modes
shown in Figures 5–8, only the one in Figure 5 (v = 9) achieved acceptable FBG-OADM drop and
add functionality.

Mathematically, all guided modes must display pairwise orthogonality. However, in numerical
simulations, because of memory and computation time constraints, it is impossible to achieve pairwise
orthogonality between modes. Therefore, in this study, the OMM and BMM were combined to
determine the appropriate segmentation size and formulate a review standard for the orthogonal
value. Figure 9 shows the orthogonal values between the 80 modes, which confirms that the results
satisfied the review standard.

Figure 9. Relationships between the orthogonal values of 80 guided modes for the proposed FBG-OADM.

The FBG-OADM was designed after determining the optimal mesh resolution and number of
modes. The ratio of the drop power to input power for the FBG-OADM must equal 1. In other words,
its drop power should be 0 dB. Thus, ΛFBG and NP values that satisfied this condition had to be
identified to design an FBG-OADM that achieved zero insertion loss and minimal heterodyne and
homodyne crosstalk. Figure 10 shows the scanning diagram of the optimal ΛFBG. According to the
power transmission curve in Figure 10, the power transmission approached 0 dB when ΛFBG = 0.5396 μm.
Figure 11 illustrates the scanning diagram of the optimal FBG-OADM length, showing that the power
transmission approached 0 dB when L2 = 0.9908 cm. Next, from Equation (3), NP (i.e., the number of
period in the FBG-OADM) was calculated and found to be 18,361.

L2 = ΛFBG × Np (3)
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Figure 10. Scanning diagram of the optimal ΛFBG.

Figure 11. Scanning diagram of the optimal FBG-OADM length.

According to the EEM descriptions in Section 4, a small amount of power loss can be observed
in all modes during transmissions; to address this, the power loss review standard was established.
Figure 12 details the correlations between the power loss and length of the FBG-OADM, showing that
the power loss in the power transmission over the entire FBG-OADM met the review standard for all
segment cycles (Np).

Figure 12. Diagram of the relationship between the transmission distance and power loss when the
core mode was completely dropped.
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To verify that the optimal parameter values were ΛFBG = 0.5396 μm and NP = 18,361, the power
transmission along the X-Z plane was examined with light inputted via the input port of the
FBG-OADM, as shown in Figure 13. The figure shows that the input power was successfully coupled to
the drop port of Fiber 2. To further investigate the coupling performance, a 2D power distribution map
of the input port, z = 4955.3991 μm, and drop port were collected, as shown in Figures 14–16. Figure 14
shows the power distribution map of the input port. Figure 15 displays the 2D power distribution
during coupling, showing the perturbation effect of the FBG inducing the core mode to couple to
the cladding mode, as well as the cladding mode under the effect of the 2 × 2 optical fiber coupler,
which facilitated cross-coupling between the two optical fibers. Figure 16 is the power distribution
map of the drop port, showing that the cladding mode was subjected to the perturbation effect of the
FBG, causing cladding mode to couple to the core mode. Thus, the numerical simulation results in
Figures 13–16 confirm the accuracy of the proposed FBG-OADM.

Figure 13. Diagram of the power propagation in the X-Z plane when the core mode was
completely dropped.

Figure 14. 2D power distribution map of the input port (z = 0.0000 μm).

Figure 15. 2D power distribution map (z = 4955.3991 μm).
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Figure 16. 2D power distribution map for the output port (z = 9910.7982 μm).

To investigate whether the −3 dB bandwidth of the proposed FBG-OADM satisfied the ITU
guidelines, the spectrum of the drop port was plotted, as shown in Figure 17. The figure shows that the
FBG-OADM exhibited transmission power of 0 dB in the drop port. In other words, power inputted
via the input port was outputted via the drop port with zero power loss, showing that heterodyne and
homodyne crosstalk were unlikely to occur in the FBG-OADM. When an OADM drops a signal, power
that is not outputted via the drop port of Fiber 2 is restored in the output port in the form of residual
power, which creates heterodyne crosstalk with other wavelengths. Similarly, when an OADM adds
a signal, power remaining in the output port creates homodyne crosstalk. Figure 18 shows the −3 dB
spectrum of the drop port, indicating that the FBG-OADM demonstrated considerably high bandwidth
efficiency. In addition, the FBG-OADM exhibited an FWHM of ≤0.0375 nm (i.e., ≤0.0000375 μm),
which is markedly lower than the ITU requirement for DWDMs (FWHM < 0.4 nm). In this simulation,
four Intel Xeon CPUs (E7530@1.87 GHz) and 128 GB memory were used and the computation time
was approximately 118 h.

Figure 17. Spectrum of the FBG-OADM when the core mode was completely dropped.
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Figure 18. Spectrum of the FBG-OADM for the −3 dB bandwidth (FWHM).

6. Conclusions

The emergence of optical fiber technology in recent years has considerably improved network
stability and bandwidth development. OADMs are crucial components for connecting computers in
fiber-optic networks. In the past several decades, many types of OADMs have been introduced and
used in network systems. Of all the OADMs currently available, the most common one is composed of
an FBG and two optical circulators. However, this particular OADM is disadvantageous because of its
large size and high-cost, complex production process. The proposed high-performance FBG-OADM
model, which was developed on the basis of optical coupling theory, overcomes these shortcomings.
The model comprises two SMFs, which are placed side by side so that they work in the same manner
as a 2 × 2 optical fiber coupler, and two FBGs, which have identical parameters so that they work
in the same manner as a mode coupler. To analyze the performance of the FBG-OADM, simulations
were performed to predict the performance of the device in a real-world environment. The simulated
system comprised an internal part (for simulating the FBG-OADM) and an external part (for simulating
the radiation mode absorption). The combination of the FEM and the EEM provided a rigorous yet
simple process for designing OADMs and for testing models in an environment that is comparable
to the real world. Next, the results were produced in the form of graphs. Concerning the design
structure, the FEM was used to obtain solutions for the guided modes in the FBG-OADM and to
analyze the modes. Next, the EEM was employed to simulate the guided modes for power transmission
simulations. In cyclic components such as the FBG-OADM, because guided modes are identical during
a cycle, using the FEM to obtain solutions for the guided modes and using the EEM to simulate power
transmission inference during each cycle yielded results representing the simulation results of the
overall FBG-OADM. This considerably reduced the memory and computation time requirements for
the simulations. When optical signals are inputted into an internal simulation structure, they create
both discrete guided modes and continuous radiation modes. However, because continuous radiation
modes are considered power loss in real-world environments, they cannot be measured. Therefore,
this study designed an external simulation, in which two numerical methods were used to simulate the
PRB and PML in order to reduce discrepancies between the simulations and actual performance results.
The PRB was used to convert continuous radiation modes into discrete radiation modes, and the PML
was used to absorb the power of the discrete radiation modes.

The numerical simulations revealed the optimal FBG-OADM cycle (i.e., ΛFBG = 0.5396 μm) as
well as the optimal number of period (i.e., NP = 18,361). These two parameters were used to develop
the high-performance FBG-OADM. The findings are summarized as follows: (1) the orthogonal values
between all guided modes satisfied the preset orthogonal value review standard; (2) power loss during
transmission in the FEM simulations met the preset power loss review standard; (3) the 2D power
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distribution maps of the input and drop ports showed that the FBG-OADM accurately transmitted
and dropped signals; (4) the frequency distribution of the drop port showed that at an operating
wavelength (λ) of 1550 nm, the power approximated 0 dB, indicating that homodyne and heterodyne
crosstalk did not occur; and (5) the FBG-OADM exhibited an FWHM of 0.0375 nm, which is lower
than the ITU requirement for DWDMs. These simulation results confirm the feasibility and accuracy
of the proposed FBG-OADM, the advantages of which are that it is a miniature-sized all-optical
fiber-based multiplexer with a low FWHM and that it can be fabricated through a low-cost and simple
manufacturing process.
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Abstract: We propose a plasmonic cavity using the cutoff frequency of a metal-insulator-metal (MIM)
first-order waveguide mode, which has a deep subwavelength physical size of 240 × 210 × 10 (nm3)
= 0.00013 λ0

3. The cutoff frequency is a unique property of the first-order waveguide mode and
provides an effective mode gap mirror. The cutoff frequency has strong dependence on a variety of
parameters including the waveguide width, insulator thickness, and insulator index. We suggest
new plasmon cavities using three types of cutoff frequency modulations. The light can be confined in
the cavity photonically, which is based on the spatial change of the cutoff frequency. Furthermore,
we analyze cavity loss by investigating the metallic absorption, radiation, and waveguide coupling
loss; the radiation loss of the higher-order cavity mode can be suppressed by multipole cancellation.

Keywords: MIM; deep subwavelength; cutoff; first order waveguide mode

1. Introduction

Surface plasmon polaritons (SPPs), electron oscillations upon coupling with photons, appear at
dielectric-metal interfaces by coupling with photons [1]. Recently, many researchers have investigated
the miniaturization of photonic devices by using SPPs because of their ability to manipulate photons
in subwavelength-sized cavities and waveguides beyond the diffraction limit, which is a fundamental
size limit of dielectric photonic devices [2–5]. In particular, plasmon cavities are exploited in
deep subwavelength volume lasers [4,6], switches [7,8], index sensors [9,10], and plasmonic optical
filters [11–13].

Metal-insulator-metal waveguides can strongly confine SPPs in thin insulators (even in several
nanometer-scale dielectric gaps [14–16]), where it has been reported that visible light is confined
in an ultrasmall dielectric layer. For this reason, MIM waveguide–based cavities were proposed to
realize compact devices with various structures, such as disks [17,18], rings [19,20], and blocks [21–23].
As the dielectric layer between metals becomes thinner, the propagating SPP mode has a larger k
(wavevector), thereby miniaturizing the physical size of the photonic device [13,21,24]. In MIM-based
devices, there are two main optical losses: the metal absorption loss and the radiation loss. Although
suppression of the absorption loss has been widely studied by introducing high-index dielectric layers
inside of low-index dielectric layers [25], radiation loss into free space has not been investigated,
despite the fact that it represents a large portion of the total loss.

In this study, we propose MIM cavities made by using a cutoff frequency mechanism that only
appears in the dispersion relation of the first-order waveguide mode [13]. The cutoff frequency is
strongly dependent on the effective size of the waveguide mode and, therefore, it can be modulated by
varying the waveguide width, dielectric thickness, and index of the dielectric. We investigated the
optical properties of cavities consisting of two mirror waveguides and a sandwiched waveguide by
modulating the cutoff frequency with three different techniques.

Appl. Sci. 2017, 7, 86 37 www.mdpi.com/journal/applsci
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The mode gap, which is due to the cutoff frequency difference, prevents radiation loss along the
waveguide direction. Alternatively, the higher-order cavity mode observed in a longer cavity has more
intensity nodes than the fundamental cavity mode, thereby suppressing radiation loss in the direction
orthogonal to the waveguide by multipole cancellation [26].

2. Dispersion Properties and Cutoff Frequency

Figure 1a shows a schematic diagram of a MIM waveguide consisting of two silver strips with
a sandwiched low-index dielectric layer. Each strip has a thickness (h) of 100 nm and a width (w)
of 240 nm. The dielectric layer has a thickness (t) of 10 nm. The refractive index of the dielectric
layer is set to 1.5. In this MIM waveguide, the waveguide modes can be classified into fundamental
and first-order waveguide modes according to the mirror symmetry of the dominant electric field
(Ez) profiles for the plane with y = 0 (dotted lines of Figure 1b,c). Figure 1b,c show the top and
side views for the Ez profiles of the fundamental and first-order waveguide modes, respectively,
with a wavelength of 1550 nm (λ0). In both modes, the electric fields of the waveguide modes are
strongly localized in the deep subwavelength cross-section of the dielectric layer, 240 (w) × 10 (t) (nm2)
= 0.00099 (λ0

2), by index guiding in the y-direction and plasmonic coupling between the silver strips.

Figure 1. (a) Schematic of a metal-insulator-metal (MIM) waveguide consisting of two silver strips and
a low-index dielectric layer. The variables w, h, and t represent the waveguide width, the thickness
of the silver strip, and the thickness of the dielectric layer, respectively; (b,c) Top and side views of
the Ez electric field profiles of the fundamental and first-order waveguide modes with a wavelength
of 1550 nm, w = 240 nm, h = 100 nm, and t = 10 nm. The top view (left) is obtained in the center of the
dielectric layer and the side view (right) is obtained along the solid line of the top view; (d) Dispersion
curves of fundamental (black) and first-order (red) waveguide modes, respectively. The yellow box
indicates the mode gap region for the odd waveguide mode. Light line is indicated by blue line.

Fundamental and first-order MIM waveguide modes have distinct dispersion properties, as
shown in Figure 1d. The dispersion curve of the fundamental waveguide mode (black) shows a linear
dependence between the frequency and the wavevector. The frequency linearly increases from the
zero frequency as the wavevector increases. Alternatively, the dispersion curve of the first-order
waveguide mode (red) has a nonzero lowest frequency at the zero wavevector; this is referred to as
the cutoff frequency. Below the cutoff frequency, the first-order waveguide mode cannot exist in this
MIM waveguide. Thus, the waveguide operates as a mirror for the first-order waveguide mode at
frequencies below the cutoff frequency. The frequency region can be considered to be the mode gap
of the first-order waveguide mode, which is indicated by the yellow box in Figure 1d. Therefore, the
cutoff frequency mechanism can be used to make an effective mirror in the MIM-based cavity.
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The cutoff frequency strongly depends on the waveguide width (w) as well as the thickness
(t) and refractive index (n) of the dielectric material. This is the case because the effective index of
the first-order waveguide mode is sensitive to changes in these structural parameters. By spatially
modulating the mode gap with these structural parameters, a photonic well can be formed for the
first-order waveguide mode, localizing photons inside of the well. In this paper, we propose three
types of deep subwavelength-sized cavities using the difference in cutoff frequency in the first-order
waveguide mode.

3. Results

3.1. Waveguide Width-Modulated Cavity

In this paragraph we introduce a MIM first-order mode cavity with width modulation by using
the strong width-dependence of the cutoff frequency. Figure 2a shows a schematic of a cavity consisting
of a broad waveguide (w = 240 nm) and two narrow mirror waveguides (w = 120 nm), where the
waveguides consist of two silver strips and a low-index (n = 1.5) dielectric layer (t = 10 nm). Here,
the mirror waveguide length (Lm) is set to 1000 nm.

Figure 2. (a) Schematic of a cavity consisting of a broad waveguide (w = 240 nm) and two narrow
mirror waveguides (w = 120 nm). Here, h = 100 nm, t = 10 nm, Lm = 1000 nm, and the cavity length is
Lc; (b) Dispersion curves of first-order waveguide modes for waveguide widths of w = 240 nm (black)
and w = 120 nm (red); their cutoff frequencies (cutoff wavelengths) are 2πf = 1059 THz (1779 nm) and
1945 THz (968 nm), respectively. The horizontal blue line indicates a frequency (wavelength) of
1215 THz (1550 nm). The light line is indicated by the blue line; (c) Cutoff frequency of the first-order
waveguide mode along the x-axis for the cavity in (d). The allowed and forbidden regions are indicated
by white and yellow colors, respectively. The allowed frequency region for the first-order waveguide
mode is spatially changed by modulating the waveguide width; (d,e) Top and side views of the
electric field profiles of the fundamental (Lc = 210 nm) and second-order (Lc = 770 nm) cavity modes,
respectively. The solid lines indicate the cross-sections of the side views.
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The dispersion curves of the first-order waveguide modes for broad (w = 240 nm, black) and
narrow (w = 120 nm, red) waveguides are plotted in Figure 2b. Since the first-order mode in the
narrower waveguide experienced more air outside of the MIM waveguide, the dispersion curve moves
upward due to the smaller effective index. In particular, the cutoff frequencies (cutoff wavelength)
of the broad/narrow waveguides are 2πf = 1059 THz (1779 nm) and 1945 THz (968 nm), respectively.
Propagation of first-order waveguide modes with a frequency between the two cutoff frequencies is
allowed for the broad waveguide (w = 240 nm); however, this is forbidden for the narrow waveguide
(w = 120 nm). For example, light with a wavelength of 1550 nm (1215 THz), indicated by the horizontal
blue line in Figure 2b, is only allowed in the broad waveguide region of Figure 2a. Indeed, the cavity
formed a photonic well by modulating the cutoff frequency with the waveguide width, as shown in
Figure 2c. The allowed frequency region from 1059 THz (1779 nm) to 1945 THz (968 nm) was localized
in the broad waveguide with a length of Lc.

The resonant wavelength of the cavity mode can be controlled by changing the length (Lc) of
the cavity region. In addition, the cavity mode is classified as a fundamental and higher-order cavity
mode, depending on the number of intensity nodes along the y-direction. Figure 2d,e show the electric
field profiles of the fundamental and second-order cavity modes with the same resonant wavelengths
(1552 nm) where the dominant electric field is orthogonal to the two metal surfaces. Because both
modes are based on the first-order waveguide mode, there is a common intensity node along the x-axis.
However, the fundamental cavity mode in the short cavity (Lc = 210 nm) has one intensity antinode
along the y-direction. Alternatively, in the long cavity (Lc = 770 nm), the second-order cavity mode has
two intensity antinodes along the y-direction.

3.2. Refractive Index-Modulated Cavity

The effective waveguide width increases for dielectric materials (between the silver strips) with
higher indices, increasing the cutoff frequency of the first-order waveguide mode. Therefore, a
first-order mode cavity can be formed by introducing index modulation, as shown in Figure 3a.
The cavity consisted of a cavity region with a low-index dielectric layer (n = 1.5) and two mirror
waveguides with an air gap (n = 1.0). The waveguide width of 240 nm was kept constant. Here,
the height (h) of the silver strips, the distance (t) of the silver strips, and the mirror waveguide
length (Lm) were set to 100 nm, 10 nm, and 1000 nm, respectively. Figure 3b shows the dispersion
curves of the first-order waveguide modes for dielectric materials with different refractive indices of
n = 1.5 (black) and n = 1.0 (red). The cutoff frequency increased from 1059 THz (1779 nm) to 1493 THz
(1261 nm) when the dielectric index decreased from 1.5 to 1.0. A photonic well, such as the one shown
in Figure 2c, can be generated by the difference in cutoff frequencies at the boundaries, where the
refractive index of the dielectric layer changes.

Figure 3c,d show the electric field profiles of the fundamental and second-order cavity modes
for resonance wavelengths of 1554 nm and 1550 nm for Lc = 300 nm and Lc = 850 nm, respectively.
The mode shapes are similar to those of the width-modulated cavity (Figure 2d,e).

Figure 3. Cont.

40



Appl. Sci. 2017, 7, 86

Figure 3. (a) Schematic of a cavity consisting of a cavity region (n = 1.5, green color) and two mirror
waveguides (n = 1.0). Here, w = 240 nm, h = 100 nm, t = 10 nm, Lm = 1000 nm, and the cavity length is Lc;
(b) Dispersion curves of first-order waveguide modes for dielectric materials (between the silver strips)
with different refractive indices of n = 1.5 (blue) and n = 1.0 (red). The cutoff frequencies (wavelengths)
are 2πf = 1059 THz (1779 nm) and 1493 THz (1261 nm), respectively. The horizontal blue line indicates
a frequency of 1215 THz (1550 nm). The light line is indicated by the blue line; (c,d) Top and side views
of the electric field profiles of fundamental (Lc = 300 nm) and second-order (Lc = 850 nm) cavity modes.

3.3. Gap Size-Modulated Cavity

In the MIM waveguide, the effective index of the waveguide mode increased for thinner dielectric
layers between the metal layers [24]. Therefore, as the thickness (t) of the dielectric layer increased,
the dispersion curve moved upward due to the smaller effective index (caused by weaker plasmonic
coupling). Indeed, the cutoff frequency increased from 1059 THz (1779 nm) to 1945 THz (1414 nm),
as shown in the dispersion curves of Figure 4b for t = 10 nm (black) and t = 30 nm (red). Here,
the waveguide width (w) and mirror length (Lm) were 240 nm and 1000 nm, respectively. The heights
of the cavity and mirror waveguide silver strips were 100 nm and 80 nm, respectively. Because the
height of the silver was much larger than the skin depth, changes in the height did not affect the
properties of the cavity. Figure 4a shows the schematic of a cavity consisting of a cavity waveguide
(t = 10 nm) and two mirror waveguides (t = 30 nm), where the thickness of the dielectric layer was
modulated from 10 nm to 30 nm.

Similarly to the waveguide width- or dielectric index-modulated cavities (Figures 2 and 3,
respectively), in the dielectric thickness-modulated cavities, the fundamental and second-order cavity
modes were observed for Lc = 220 nm (Figure 4c) and Lc = 780 nm (Figure 4d), respectively. Based
on the cutoff frequency mirror modulation (similar to the width-modulated cavity (Figure 2) and the
index-modulated cavity (Figure 4)), the fundamental and second-order cavity modes were observed at
Lc = 220 nm (Figure 4c) and Lc = 780 nm (Figure 4d), respectively.

Figure 4. Cont.
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Figure 4. (a) Schematic of a cavity consisting of a cavity waveguide (t = 10 nm) and two mirror
waveguides (t = 30 nm). The gap size between the two silver strips is modulated. In the gap, a
low-index dielectric layer (n = 1.5) is assumed. Here, w = 240 nm, Lm = 1000 nm, and the heights of the
cavity and mirror waveguide silver strips are 100 nm and 80 nm, respectively. The cavity waveguide
length is Lc; (b) Dispersion curves of the first-order waveguide modes for t = 10 nm (blue) and
t = 30 nm (red). The cutoff frequencies (wavelengths) are 2πf = 1059 THz (1779 nm) and 1945 THz
(1414 nm). The light line is indicated by the blue line; (c,d) Top and side views of the electric field
profiles of the fundamental (Lc = 220 nm) and second-order (Lc = 780 nm) cavity modes.

3.4. Loss Analysis for the Three Cavities

To understand the loss mechanisms of the MIM cavity modes, we investigated each type of loss
(i.e., radiation loss, mirror loss, and metallic absorption loss) separately in terms of the quality (Q)
factors. The Q factor is defined by 2πf × (stored energy in the cavity/power loss) [13]. The radiation
loss corresponds to radiation from the cavity’s sides to free space due to the imperfect horizontal
modal confinement of index-guiding. Mirror loss originates from energy loss tunneling through the
cutoff frequency mirrors of the narrow waveguides, which have a finite length. In addition, metallic
absorption loss results from intrinsic ohmic loss in the silver strips. We were able to obtain Qtot,
Qrad, Qm, and Qabs by directly calculating the respective losses because the Q factors were inversely
proportional to each loss, the total cavity loss, radiation loss, mirror loss, and absorption loss.

We calculated each Q factor as follows. Qtotal was obtained from the time decay of the total energy
in the cavity. Qabs could be obtained by directly calculating the absorbed energy in the metal. Next,
we calculated Qoptical with the equation: 1/Qtotal = 1/Qoptical + 1/Qabs. Radiation loss and mirror
loss, which consists of the total optical loss, were estimated by calculating the sums of Poynting vectors
into free space and through two mirror waveguides, respectively. Qrad and Qm were obtained by the
ratio of the sums of Poynting vectors and the following equation, 1/Qoptical = 1/Qrad + 1/Qm.

Table 1 shows the Q factors of the three cavities. The Q factors for the three different cutoff
frequency-modulated cavities (i.e., width-/index-/gap-modulated cavities) were similar and showed
only slight differences. Therefore, by analyzing one of the three cavities, the loss properties of all
three cavities could be understood. For example, in the case of a width-modulated cavity, the total Q
factors (Qtotal) of the fundamental and the second-order cavity modes were 45.5 and 63.2, respectively.
Qm, which is inversely proportional to the mirror loss, was three orders of magnitude larger than the
other Q factors when Lm = 1000 nm; therefore, tunneling loss through the cutoff frequency mirror
was negligible. Qabs, which is related to the absorption loss (i.e., the dominant loss of the cavities),
was between 80 and 90, regardless of the fundamental/second-order cavity modes of the cavities.
Additionally, the radiation loss was comparable with the absorption loss. For example, Qrad of the
width-modulated cavity was 101 for the fundamental cavity mode and 260 for the second-order cavity
mode. Since radiation into free space is difficult to collect (because of its large divergence from
10 nanometer-scale light confinement), it is desirable to minimize this type of loss for practical
application of the proposed MIM cavity. Because radiation from the two oppositely-phased Ez intensity
antinodes of the second-order mode along the intensity node direction into free space was strongly
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suppressed by multipole cancellation [26], Qrad of the second-order cavity mode became larger than
that of the fundamental cavity mode, increasing Qtotal. On the other hand, the calculated propagation
length was 4.8 μm and the reported value was ~5 μm in a similar MIM waveguide [14], which is at
least an order of magnitude larger than the proposed cavity size.

Table 1. Quality factors of the three cavities.

Cavity Type
Fundamental Mode Second Order Mode

Qtotal Qrad Qabs Qm Qtotal Qrad Qabs Qm

Width-modulated cavity (Figure 2) 45.5 101 82.8 9.05 × 105 63.2 260 83.6 1.81 × 106

Index-modulated cavity (Figure 3) 38.6 71.7 83.7 9.68 × 104 56.8 175 84.2 1.71 × 105

Gap-modulated cavity (Figure 4) 37.3 64.0 89.7 1.42 × 104 56.6 164 86.6 2.82 × 104

4. Conclusions

In summary, we proposed new plasmonic cavities based on modulating the cutoff frequency of
MIM first-order waveguide modes. The first-order waveguide mode has a cutoff frequency that
depends on the waveguide width, refractive index, and gap size of the dielectric layer. Light
(with a wavelength of 1550 nm) can be confined in a cavity region with a deep subwavelength
physical volume (0.00013 λ0

3~0.00055 λ0
3) in cavities that are modulated by changing the width, index,

and gap size. The second-order cavity mode shows higher Q factors than the fundamental cavity mode
because radiation along the intensity node is suppressed by multipole cancellation.

The proposed ultrasmall cavity is a good candidate for low-threshold lasers [27], ultrafast optical
switches [28], and as the light source for quantum optics [6] due to its extremely small mode size
of 1/10,000 λ0

3. In addition, its waveguide-based design allows for efficient light coupling with
integrated detectors [29] or other photonic devices [8,30–32]. The light coupling can be achieved
by using a tapered coupler from a dielectric waveguide [33] or a dielectric air slot waveguide [34].
The cutoff frequency mechanism can be widely applied to build efficient and strong mirror waveguides
for various optical components operating at any wavelengths. Since the mirrors of the proposed cavity
have adjustable reflectivity, unidirectional emission can be easily achievable. Usually, although the
control of directionality is highly demanded for an efficient light source in quantum optics and
photonic circuits, it is extremely difficult to control the directionality in the deep subwavelength cavity.
The cavity mode can be directly excited by the odd waveguide mode from the dielectric waveguide
with an external light source or internal light emitter such as quantum dots. The continuation
of this study will involve modulating the nanocavity width, dielectric index, dielectric thickness,
and structure to miniaturize key optical devices into deep subwavelength-scaled ones in integrated
devices and nano-emitters.
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Abstract: We demonstrate bound states in the radiation continuum (BSC) in a linear periodic array
of dielectric spheres in air above the light cone. We classify the BSCs by orbital angular momentum
m = 0,±1,±2 according to the rotational symmetry of the array, Bloch wave vector β directed along
the array according to the translational symmetry, and polarization. The most simple symmetry
protected BSCs have m = 0, β = 0 and occur in a wide range of the radius of the spheres and dielectric
constant. More sophisticated BSCs with m �= 0, β = 0 exist only for a selected radius of spheres at
fixed dielectric constant. We also find robust Bloch BSCs with β �= 0, m = 0. All BSCs reside within
the first but below the other diffraction continua. We show that the BSCs can be easily detected by
bright features in scattering of different plane waves by the array as dependent on type of the BSC.
The symmetry protected TE/TM BSCs can be traced by collapsing Fano resonance in cross-sections of
normally incident TE/TM plane waves. When plane wave with circular polarization with frequency
tuned to the bound states with OAM illuminates the array the spin angular momentum of the incident
wave transfers into the orbital angular momentum of the BSC. This, in turn, gives rise to giant vortical
power currents rotating around the array. Incident wave with linear polarization with frequency
tuned to the Bloch bound state in the continuum induces giant laminar power currents. At last,
the plane wave with linear polarization incident under tilt relative to the axis of array excites Poynting
currents spiralling around the array. It is demonstrated numerically that quasi-bound leaky modes of
the array can propagate both stationary waves and light pulses to a distance of 60 wavelengths at
the frequencies close to the bound states in the radiation continuum. A semi-analytical estimate for
decay rates of the guided waves is found to match the numerical data to a good accuracy.

Keywords: bound state in the continuum; Fano resonance; nanophotonics

1. Introduction

The scattering of electromagnetic waves by an ensemble of dielectric spheres has a long history
of research beginning with Mie who presented a rigorous theory for scattering by a single dielectric
sphere [1]. The overwhelming majority of papers since the pioneering papers by Ohtaka and his
coauthors [2–4] considered the periodical two- and three-dimensional arrays [5–8]. Surprisingly, less
interest has been payed to scattering by a linear array of dielectric nanoparticles mostly restricted
to aggregates of a finite number of spheres [9–11]. Guiding of electromagnetic waves by a linear
array of dielectric spheres below the diffraction limit attracted more attention. There were two
types of consideration: finite arrays [12–16] and infinite arrays which were studied by means of the
coupled-dipole approximation [17–23]. Only in 2013 a full-wave analysis of waves on linear arrays
of dielectric spheres below the light cone was provided by Linton, Zalipaev, and Thompson [24].

Appl. Sci. 2017, 7, 147 46 www.mdpi.com/journal/applsci
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It has been widely believed that only those modes whose eigenfrequencies lie below the light cone,
are confined and the rest of the eigenmodes have finite life times. However recently confined
electromagnetic modes were shown to exist in various periodical arrays of:

(i) long cylindrical rods [25–43]
(ii) photonic crystal slabs [44–51] and

(iii) two-dimensional arrays of spheres [40,52].

Surprisingly, less attention is paid to the one-dimensional array of dielectric nanoparticles.
Similar one may expect light trapping in the one-dimensional array of nanoparticles with the bound
frequencies above the light cone. The array of dielectric spheres or discs is interesting due to the
rotational symmetry giving rise to that the orbital angular momentum (OAM) of light is preserved.
Therefore one can expect the the BSCs with non-zero OAM. The angular momentum is composed of
the spin angular momentum (SAM) and OAM describing the polarization and the phase structure
distribution of EM fields, respectively [53–55]. In this review we summarize our resent results on
BSCs in arrays of dielectric spheres [56] including some findings on transport properties of dielectric
arrays [57] and BSCs with OAM [58,59]. For a thorough review of BSCs the reader is addressed to [60].

2. Basic Equations for EM Wave Scattering by a Linear Array of Spheres

In the present paper we consider a free-standing one-dimensional infinite array of dielectric
spheres in air Figure 1. In what follows we refer all length quantities in terms of the period h of
the array.

Figure 1. A periodic infinite array of dielectric spheres illuminated by a plane wave (blue arrow).
The wave can be transmitted and reflected to discrete diffraction continua enumerated by integers m
and n in accordance with Equations (17) and (21) shown by red arrows.

We formulate the scattering theory by a periodic array of dielectric spheres in the form similar to
the approach developed for a periodic array of dielectric cylinders [37,61]

Ŝ−1Ψ = L̂Ψ = Ψinc. (1)

where the matrix L̂ accounts for both the scattering matrix of the isolated sphere as well as the mutual
scattering events between the spheres, Ψinc is given by the incident wave, and the column Ψ consists
of amplitudes am

l of the multipole expansion of the scattering function.
The exact expression of the matrix L̂ was derived by Linton et al. [24] for EM guided waves on

a periodic array of dielectric spheres. For the reader’s convenience we present the equations and
notations from the above reference. We seek the solutions of the Maxwell equations, which obey the
Bloch theorem:
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E(r + Rj) = eiβjE(r), H(r + Rj) = eiβjH(r)

with the Bloch wave vector β directed along the array aligned with the z-axis (see Figure 1).
Here Rj = jez is the position of the center of the j-th sphere and ez is the unit vector along the
array. Scattered electromagnetic fields are expanded in a series over vector spherical harmonics Mm

n
and Nm

n [1,24].

E(r) = ∑j eiβj ∑lm[am
l Mm

l (r − Rj) + bm
l Nm

l (r − Rj)],

H(r) = −i ∑j eiβj ∑lm[am
l Nm

l (r − Rj) + bm
l Mm

l (r − Rj)]. (2)

In series (2) the first/second terms presents TE/TM spherical vector EM fields.
In absence of an incident wave Linton et al. [24] derived the homogeneous matrix equation for

the amplitudes am
l , bm

l .

Z−1
TE,l a

m
l − ∑ν(am

ν Amm
νl + bm

ν Bmm
νl ) = 0,

Z−1
TM,lb

m
l − ∑ν(am

ν Bmm
νl + bm

ν Amm
νl ) = 0, (3)

where summation over ν begins with max(1, m), and the so-called Lorenz-Mie coefficients are given by

ZTE,l =
jl(kR)[rjl(k0r)]′r=R−jl(k0R)[rjl(kr)]′r=R
hl(k0R)[rjl(kr)]′r=R−jl(kR)[rhl(k0r)]′r=R

,

ZTM,l =
εjl(kR)[rjl(k0r)]′r=R−jl(k0R)[rjl(kr)]′r=R
hl(k0R)[rjl(kr)]′r=R−εjl(kR)[rhl(k0r)]′r=R

, (4)

where k =
√

εk0 and ε is the dielectric constant of the spheres

Amm
lν = 4π(−1)miν−l

√
ν(ν + 1)
l(l + 1)

l+ν

∑
p=|l−ν|;l+ν+p=even

(−i)pglνpG(l, m; ν,−m; p)sp, (5)

Bmm
lν =

2π(−1)m√
l(l + 1)ν(ν + 1)

l+ν−1

∑
p=|l−ν|+1;l+ν+p=odd

iν−l−p

√
2p + 1
2p − 1

H(l, m; ν,−m; p)sp. (6)

The coefficients

glνp = 1 +
(l − ν + p + 1)(l + ν − p)

2ν(2ν + 1)
− (ν − l + p + 1)(l + ν + p + 2)

2(ν + 1)(2ν + 1)
, (7)

G(l, m; ν, μ; p) =
(−1)m+μ

√
4π

√
(2l + 1)(2ν + 1)(2p + 1)

(
l ν p
m μ −m − μ

)(
l ν p
0 0 0

)
(8)

are expressed in terms of Wigner 3-j symbols,

H(l, m; ν,−m; p) =
1

∑
s=−1

Gs(l, m; ν,−m; p) (9)

with

G0(l, m; ν,−m; p) = −2m|p|G(l, m; ν,−m; p − 1),

G±1(l, m; ν,−m; p) = ∓
√
(ν ± m)(ν ∓ m + 1)p(p − 1)G(l, m; ν,−m ± 1; p − 1), (10)

and

sp = λp0

∞

∑
j=1

hp(k0 j)(eiβj + (−1)pe−iβj), (11)

where λlm is normalization factor given in Appendix A. The next step is to account for an incident
plane wave which can be expanded over vector spherical harmonics [1,6].
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Eσ(r) = ∑∞
l=1 ∑l

−l [q
σ
lmMm

l (r) + pσ
lmNm

l (r)],

Hσ(r) = −i ∑∞
l=1 ∑l

−l [p
σ
lmMm

l (r) + qσ
lmNm

l (r)]. (12)

Here, index σ stands for plane TE/TM wave.

pTE
lm = −Flmτlm(α), qTE

lm = Flmπlm(α),

pTM
lm = −iFlmπlm(α), qTM

lm = iFlmτlm(α), (13)

kx = −k0 sin α, ky = k0 cos α,

Flm = (−1)mil
√

4π(2l+1)(l−m)!
(l+m)! ,

τlm(α) =
m

sin α Pm
l (cos α),

πlm(α) = − d
dα Pm

l (cos α). (14)

For a particular case of normal incidence kz = 0, α = −π/2 we obtain from Equation (14)

τlm = −mPm
l (0), πlm = − d

dα
Pm

l (0). (15)

The general equation for the amplitudes am
l , bm

l which describe the scattering by a linear array of
spheres takes the following form:

Z−1
TE,l a

m
l − ∑ν(am

ν Amm
νl + bm

ν Bmm
νl ) = qσ

lm,

Z−1
TM,lb

m
l − ∑ν(am

ν Bmm
νl + bm

ν Amm
νl ) = pσ

lm. (16)

Here the left hand term formulates explicitly the matrix L̂ in Equation (1) and the right hand term
corresponds the vector of incident wave Ψinc in the space of vector spherical functions notified by two
integers l, m and polarization σ.

3. The Diffraction Continua of Vector Cylindrical Modes

Thanks to the axial symmetry of the array we can exploit the vector cylindrical modes for
description of the diffraction continua which are doubly degenerate in TM and TE polarizations σ.
The modes can be expressed through a scalar function ψ [1].

ψm,n(r, φ, z) = H(1)
m (χnr)eimφ+ikz,nz. (17)

Then for the TE modes we have

Ez = 0, Hz = ψm,n,

Er =
ik0
χ2

n

1
r

∂ψm,n
∂φ , Hr =

ikz
χ2

n

∂ψm,n
∂r ,

Eφ = −ik0
χ2

n

∂ψm,n
∂r , Hφ = ikz

χ2
n

1
r

∂ψm,n
∂φ , (18)

and for the TM modes

Ez = ψm,n, Hz = 0,

Er =
ikz
χ2

n

∂ψm,n
∂r , Hr =

−ik0
χ2

n

1
r

∂ψm,n
∂φ ,

Eφ = ikz
χ2

n

1
r

∂ψm,n
∂φ , Hφ = ik0

χ2
n

∂ψm,n
∂r , (19)
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where
χ2

n = k2
0 − k2

z,n (20)

and
kz,n = β + 2πn, n = 0,±1,±2, . . . . (21)

In what follows we consider the BSCs in the diffraction continua specified by two quantum
numbers m and n where the m is the result of the axial symmetry and n is the result of translational
symmetry of the infinite linear array of the dielectric spheres. Note that each diffraction continuum is
doubly degenerate relative to the polarization σ. As a result of the interplay between the frequency k0

and the wave number kz,n the continua can be open (χ is real) or closed (χ is imaginary). In the present
paper we restrict ourselves by the case of one, two and three open continua.

4. Classification of BSCs in the Array of Spheres

In the previous section we presented the theory for scattering of plane waves by a periodic array
of dielectric spheres based on the approach by Linton et al. [24]. If there is no incident wave we
have L̂a = 0 whose solutions are bound modes of the array. There might be two kinds of the bound
modes. The first type of modes have wave number β > k0 and describe guided waves along the
array. These solutions found by Linton et al. exist in some interval of the material parameters of
spheres, dielectric constant ε or radius R, and the Bloch wave number β [24]. The second type of
bound modes with β < k0 resides above the light cone (BSCs). It is much more difficult to establish
the existence of the second type of bound states because a tuning of material parameters is required.
However there might exist symmetry protected BSCs which are robust with respect to the material
parameters. These BSCs have been already considered in the linear array of infinitely long dielectric
rods [31,33,35,37,40–45].

The axial symmetry of the array implies that the matrices A and B split into the irreducible
representations of the azimuthal number m which therefore classifies the BSCs. Next, the discrete
translational symmetry along the z-axis implies that the respective wave number β specifies the
BSC. At last, additional optional symmetries arise due to the inversion symmetry transformation
K̂ f (x, y, z) = f (x, y,−z) for β = 0, π. It follows from Equation (11) that s2k+1 = 0, and respectively
from Equations (5) and (60) we obtain Amm

νL = 0 if l + ν is odd, and Bmm
νL = 0 if l + ν is even.

Moreover for arbitrary β: B00
νl = 0 (see Appendix A). These relations establish the selection rules for

the amplitudes am
l , bm

l which determine allowed BSC modes listed in the Table 1.

Table 1. Classification of the bound states in the radiation continuum (BSCs).

m β Type I of BSC Type II of BSC

�= 0 0 (am
2k, bm

2k+1) (am
2k+1, bm

2k)

0 �= 0 (a0
l , 0), Ez = 0 (0, b0

l ), Hz = 0

0 0 (a0
2k, 0), Ez = 0 (0, b0

2k), Hz = 0

0 0 (0, b0
2k+1), Hz = 0 (a0

2k+1, 0), Ez = 0

The cartesian components of the vector spherical functions transform under the inversion of z
as follows

Mm
l,x,y(π − θ) = −(−1)l−m Mm

l,x,y(θ), Mm
l,z(π − θ) = (−1)l−m Mm

l,z(θ),

Nm
l,x,y(π − θ) = (−1)l−mNm

l,x,y(θ), Nm
l,z(π − θ) = −(−1)l−mNm

l,z(θ). (22)
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For β = 0 we have

∑j Mm
l,x,y(r − Rj) = −(−1)l−m ∑j Mm

l,x,y(K̂r − Rj),

∑j Mm
l,z(r − Rj) = (−1)l−m ∑j Mm

l,z(K̂r − Rj).

∑j Nm
l,x,y(r − Rj) = −(−1)l−m ∑j Nm

l,x,y(K̂r − Rj),

∑j Nm
l,z(r − Rj) = (−1)l−m ∑j Nm

l,z(K̂r − Rj). (23)

Then from these equations and Equation (2) one can obtain the following symmetric properties
for the cartesian components of EM fields collected in Table 2.

Table 2. Symmetry properties of the eigenmodes with β = 0.

Type I Type II

Ex,y(−z) = (−1)m+1Ex,y(z) Ex,y(−z) = (−1)mEx,y(z)

Ez(−z) = (−1)mEz(z) Ez(−z) = (−1)m+1Ez(z)

Hx,y(−z) = (−1)m Hx,y(z) Hx,y(−z) = (−1)m+1Hx,y(z)

Hz(−z) = (−1)m+1Hz(z) Hz(−z) = (−1)m Hz(z)

Tables 1 and 2 will be useful for the symmetry classification of the bound modes in the
next sections.

5. Symmetry Protected BSCs

In this section we present numerical solutions of Equation (3) for the symmetry protected BSCs
with m = 0, β = 0 embedded into the first diffraction continuum n = 0. They constitute the majority of
the BSCs in the array. The symmetry protected BSCs are either pure TE spherical vector modes (Type I
in Table 1) with a0

2k �= 0, b0
k = 0 or TM spherical vector modes (Type II in Table 1) with a0

k = 0, b0
2k �= 0.

We show that the symmetry protected BSCs are symmetrically mismatched to the first open continuum.
Below we present numerical solutions for Type I BSCs with accuracy of 10−4:

k0 = 4.24, R = 0.3, ε = 12, a0
l =

⎛
⎜⎝

0
0.7563 − 0.6542i

0

⎞
⎟⎠ , b0

l = 0, l ≥ 1 (24)

and for Type II as

k0 = 4.7504, R = 0.3, ε = 15, a0
l = 0, b0

l =

⎛
⎜⎜⎜⎝

0
−0.6017 + 0.7988i

0
0.0004 − 0.0006i

⎞
⎟⎟⎟⎠ , l ≥ 1, (25)

Patterns of EM fields and EM force lines are shown in Figure 2. Hereinafter we plot only real
parts of electromagnetic fields. Other patterns of the symmetry protected BSCs the reader can find in
Ref. [56]. One can see from Figure 2 that in the BSC of Type I (II) electric (magnetic) force lines are
parallel the sphere surface.
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Figure 2. Patterns of the symmetry protected TE BSC (transverse electric bound state in the
continuum) (24) (a) and TM BSC (25) (b). Left panels show the real parts of electromagnetic (EM) field
components, right panels show the electric force lines in red and magnetic force lines in blue.

The symmetry protected Type I and Type II BSCs have qualitatively similar field structure with
respect to E ↔ H but are not degenerate because of different boundary conditions for E and H at the
sphere surface. From Table 2 one can see why the eigenmodes (24) and (25) are protected by symmetry
against decay into the diffraction continuum m = 0, n = 0. From Equations (18) and (19) we obtain that
the TE/TM continuum with kz,0 = 0 (β = 0) has the only Hz/Ez �= 0 independent of z. The Type I
BSC has Ez = 0 and odd Hz so that these type of BSCs is symmetrically mismatched to both TE and
TM continua. The Type II BSC has odd Ez and Hz = 0 to decouple from the both TE and TM continua.

Besides the fully symmetry protected BSCs from the third row in Table 1 (a0
2k, 0) and (0, b0

2k),
we found a partially symmetry protected Type II BSC (a0

2k+1, 0) from the fourth row of Table 1:

k0 = 2.934, R = 0.4805, ε = 15, a0
l =

⎛
⎜⎜⎜⎜⎜⎝

0.6826 + 0.0332i
0

−0.7291 − 0.0354i
0

−0.0008

⎞
⎟⎟⎟⎟⎟⎠

, b0
l = 0, l ≥ 1, (26)

however the Type I BSCs with (0, b0
2k+1) were not revealed in our computations. The BSC (26) is

symmetrically mismatched relative only to the TM continuum. Zero coupling of this BSC with the TE
continuum can be achieved by tuning the radius of spheres. Patterns of EM fields and EM force lines
are shown in Figure 3.
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Figure 3. Pattern of the BSC (26) which is symmetrically protected in respect to the first TM radiation
continuum and decoupled with the TE continuum by tuning of R = 0.4805.

5.1. ±m Degenerate BSCs with β = 0

The above described mechanism for partially symmetry protected BSCs with m = 0 can be
exploited for even more complicated case m �= 0. Their orbital angular momentum (OAM) m �= 0 of
these BSCs is the result of azimuthal rotation symmetry of the array and provide unique properties in
the form of spinning or spiralling currents of the Poynting vector [58,59]. Besides, the system has the
time reversal symmetry which implies that these BSCs are degenerate over ±m. Let us start with the
Type I BSC with m = 1 which has the odd Ez and the even Hz according to Tables 1 and 2. This BSC is
symmetrically mismatched with the TM diffraction continuum m = 1, n = 0 which is independent of z.
The coupling with the TE continuum can be cancelled by tuning the radius. The result of computation
of this partially symmetry protected Type I BSC (a2k, b2k+1) is the following

m = 1, k0 = 2.847, R = 0.3945, (a1
l , b1

l ) =

⎛
⎜⎜⎜⎝

0 0.6662 + 0.4273i
−0.33 + 0.5145i 0

0 −0.0048 − 0.0031i
0 0

⎞
⎟⎟⎟⎠ , l ≥ 1 (27)

and shown in Figure 4a. The Type II BSC (a2k+1, b2k) with m = 2 has even Ez and odd Hz. It is
symmetry protected against decay into the TE continuum with m = 2, n = 0 and coupling with the
TM continuum is cancelled by tuning the radius with the following result

m = 2, k0 = 3.086, R = 0.471, (a2
l , b2

l ) =

⎛
⎜⎜⎜⎜⎜⎝

0 0.6545 + 0.2013i
−0.2142 + 0.6964i 0

0 −0.0057 − 0.0018i
0 0
0 0

⎞
⎟⎟⎟⎟⎟⎠

, l ≥ 2. (28)

All components of electric and magnetic fields are nonzero and localized around the array as
shown in Figure 4. We show the EM field around only one sphere because the pattern is periodically
repeated along the z-axis. One can see that the value of OAM m reflects in the structure of force lines
in the xy-plane while the number of the amplitudes am

l reflects in the structure of lines along the z-axis.

53



Appl. Sci. 2017, 7, 147

Figure 4. BSC with β = 0: (a) BSC (27) with orbital angular momentum (OAM) m = 1 and (b) BSC (28)
with OAM m = 2. Electric field force lines are shown in red, magnetic field force lines are shown in
blue. Both BSC have the Bloch vector β = 0.

5.2. Robust Bloch BSCs with β �= 0, m = 0

Could the Bloch BSC occur at β �= 0 in the continuum of free-space modes? This question was
first answered positively by Porter and Evans [26] who considered acoustic trapping in an array of
rods of rectangular cross-section. Marinica et al. [32] demonstrated the existence of the Bloch BSC with
β �= 0 in two parallel dielectric gratings and Ndangali and Shabanov [33] in two parallel arrays of
dielectric rods. In a single array of rods positioned on the surface of bulk 2d photonic crystal multiple
BSCs with β ≥ 0 were considered by Chia Wei Hsu et al. [44]. The Bloch BSCs in a single array of
cylindrical dielectric rods in air were also reported in Refs. [37,49,62]. Such travelling wave Bloch BSCs
with the eigenfrequencies above the light cone are interesting because the array serves as a waveguide
although only for fixed β (see summary of BSCs in Figure 5) in contrast to the bound states below the
light cone [24].

According to Table 1 the Bloch BSCs with β �= 0, m = 0 have only nonzero components a0
l or b0

l .
Let us first consider Type I BSCs with b0

l = 0 which have Ez = 0 and, therefore, are decoupled with
the TM continuum but coupled with the TE n = 0, m = 0 continuum. We show numerically that this
coupling can be cancelled under variation of β. The numerical results are collected in Equation (29)
below with the pattern of EM fields shown in Figure 6.
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k0 = 3.6505, R = 0.4, ε = 15, β = 1.2074, (a1
l , b1

l ) =

⎛
⎜⎜⎜⎜⎜⎝

0.1053 − 0.0638i 0
0.1918 + 0.3161i 0
0.6046 + 0.5572i 0
0.7873 + 0.4777i 0
−0.0033 − 0.0054i 0

⎞
⎟⎟⎟⎟⎟⎠

, l ≥ 1. (29)

0 0.5 1
β/π

0

k 0
4π/h

2π/h

|m| = 1
n = 0

n = −1

n = 1

n = −2

|m| = 2

Figure 5. Summary of BSCs: the symmetry protected BSCs marked by open circles, Bloch BSC with
β �= 0, m = 0 is marked by +. Two BSCs with OAM are marked by closed circles, the partially symmetry
protected BSC (9) is marked by cross. All BSC points are calculated for spheres with ε = 15. The area
filled by gray corresponds to below the light cone. Dash and dash-dot lines show thresholds where the
next continua n = ±1 and n = −2 are opened.

Figure 6. EM field configurations given by Equation (29) and currents of the Poynting vector of the
Bloch BSC with βc = 1.2074 for k0c = 3.6505, Rc = 0.4, ε = 15.
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Although this BSC occurs at the fixed value of β there is no necessity to tune the material
parameters of the spheres and therefore the BSC can be referred to as robust which is attractive from
experimental viewpoint. We managed to find only Type I BSCs for ε = 15 but none of Type II. Such a
difference between the types is related to different boundary conditions for electric and magnetic fields
at material interfaces. We collected all BSCs in Figure 5.

6. Light Guiding above the Light Line

The arrays of dielectric nanonparticles can serve as subwavelength waveguides to be emploied as
the key components for future integrated optics [15–19,21]. They could be potentially advantageous
against nanoplasmonics due to, for instance, the opportunity to control the frequencies of electric and
magnetic Mie resonances by changing the geometry of high-index nanoparticles, and the absence of
free carriers resulting in a high Q-factor. Arguably, the arrays of dielectric nanoparticles provide one of
the most promising subwavelength set-ups for efficient light guiding [16,22] as well as more intricate
effects such as resonant transmission of light [22], and optical nanoantennas [23].

So far the major theoretical tool for analyzing the infinite arrays of spherical dielectric
nanoparticles has been the coupled-dipole approximation [63–65]. In that approximation guided
waves in arrays of magnetodielectric spheres were first considered by Shore and Yaghjian [66,67] who
derived the dispersion relation and computed the dispersion curves for dipolar waves. Recently a
more tractable form of the dispersion equations was presented by the same authors [68] with the
use of the polilogarithmic functions. The dipolar waves in arrays of Si dielectric nanospheres were
thoroughly analyzed in [21]. It was shown that only two lowest guided modes could be fairly described
by the dipole approximation which breaks down as the frequency approaches the first quadruple
Mie resonance. This limits the application of the dipolar dispersion diagrams to realistic waveguides
assembled of dielectric nanoparticles. As an alternative to the dipole approximation a “semiclassical”
approach based on the coupling of the whispering gallery modes of individual spheres could be
employed to recover the array band structure [69,70] if the wavelength is much smaller than the
diameter of the spheres. The general case, however, requires a full-wave Mie scattering approach to
account for all possible multipole resonances [19] involving a very complicated multiscattering picture
which mathematically manifests itself in infinite multipole sums. Luckily, such an approach was
recently developed by Linton, Zalipaev, and Thompson who managed to obtain a multipole dispersion
relation in a closed form suitable for numerical computations [24]. The above approach was used for
analyzing the spectra of dielectric arrays above the line of light in Ref. [56]. It was demonstrated that
under variation of some parameter such as, for example, the radius of the spheres the leaky modes
dominating the spectrum can acquire an infinite life-time. In other words, the array can support bound
states in the radiation continuum (BSCs) [33,35,37,48,71]. In this letter, we will address the ability of
the BSCs to propagate light along the array primarily motivated by finding new opportunities for
designing subwavelength waveguides.

The dispersion diagram of an array of dielectric nanoparticles was obtained [57]. The dispersion
curves were computed by solving the dispersion equations fd,m(k, β) = 0, where k is the vacuum
wave number k = ω/c, and β is the Bloch wave number, while the subscripts d, m designate either
dipole [21,68], or multipole [24] dispersion relations. For brevity we do not present the exact dispersion
relations fd,m(k, β) = 0. A mathematically inquisitive reader is referred to the above cited papers to
examine the rather cumbersome expressions for fd,m(k, β). Here we assume that the array consists of
spherical noanoparticles of radius R with dielectric constant ε = 15 (Si) in vacuum. The centers of the
nanoparticles are separated by distance a. It is worth mentioning that at a given dielectric constant the
dispersion is only dependent on a single dimensionless quantity R/a. This allowed to scale the model
for a microwave experiment [21]. There are three types of dipolar solutions [21], namely; longitudinal
magnetic (LM), longitudinal electric (LE), and transverse electromagnetic (TEM) waves. In Figure 7
we plot the lowest frequency modes of each type in comparison against the multipole solution [24].
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In all cases if the k − β curve is above the light line k = β the vacuum wave number becomes complex
valued. The imaginary part of k is linked to the mode life-time through the following formula:

τ = −[c�(k)]−1. (30)

Figure 7. Dispersion diagram of an infinite array of dielectric nanospheres of radius R with dielectric
constant ε = 15, R/a = 0.4. The array centerline is aligned with the x-axis as shown in the south-east
corner of the plot. The real parts of dipolar solutions are shown by dash-dot red lines. The thick gray
lines are the real parts of the full-wave solutions; negative imaginary parts −�(k) of the full-wave
solutions are shown by blue dashed lines. The thin gray line is the light line.

Two approaches are possible for description of the leaky modes; complex frequency ω [61,72],
or complex Bloch number β [21,73]. In the latter case the inverse of the imaginary part of β is the
penetration depth into the array Lτ = [�(β)]−1. The quantities τ and Lτ are, in fact, proportional

Lτ = vτ, (31)

where v is the group velocity v = d	(ω)/dβ. Here, we do not present the imaginary part of β

mentioning in passing that the penetration depths for dipolar waves were analyzed in refs. [21,73].
What is important the numerical data available so far [21,56,73] indicate that all dipolar leaky modes
are relatively short-lived, in particular, no dipolar BSCs were found in Ref. [56]. In compliance
with Ref. [21] Figure 7 demonstrates that only two lowest eigenmodes are fairly described by the
dipole approximation.

Now, let us consider the multipolar quasi-guided modes within the first radiation continuum [56].
The dispersion curves for a leaky mode for two different ratios R/a are plotted in Figure 8a. One can
see that in contrast to the dipolar waves in Figure 7 now the solutions could be long-lived with the
life-time Equation (30) growing up to infinity at the BSC points. It should pointed out that for both
R/a of all leaky modes of the array we plot only one which has a Bloch BSC point �(k) = 0 at β �= 0.
As shown in Figure 8b the BSC exists in a wide range of parameter R/a. The magnetic and electric
vectors could be found in terms of Mie coefficients am

n , bm
n . For instance, outside the spheres one has for

the electric vector E(r) [24]

E(r) =
∞

∑
j=−∞

eiajβ
∞

∑
n=m∗

[
am

n Mm
n (r − rj) + bm

n Nm
n (r − rj)

]
, (32)

where j the number of the particle in the array, m - azimuthal number, m∗ = max(1, m),
and Nm

n (r), Mm
n (r) are spherical vector harmonics [1]. Only m = 0 Bloch BSCs were found in Ref. [56].
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Our numerics indicate that for BSCs in Figure 8 the dominating term in the expansions (32) corresponds
to coefficient a0

3. In the insets in Figure 8b we plot the components of the electric and magnetic vectors
of the BSC solution. One can see that the electromagnetic field is localized in the vicinity of the
array. The amplitude of a wave propagating along the array attenuates exponentially according to
a simple formula

F(x) = e−x/Lτ , (33)

where x = ja is the distance. In the vicinity of a BSC the ω − β dependance could be approximated as

ω − ω0 = v0(β − β0) +O[(β − β0)
2], (34)

where ω0, β0, v0 are the BSC eigenfrequency, Bloch number, and group velocity, correspondingly.

Figure 8. (a) Quasi-guided modes above the light line; R/a = 0.4—solid line, R/a = 0.44—dash line,
ε = 15. Imaginary part of k - the main plot, real part - the inset. The positions of the BSCs are shown
by red stars. The imaginary parts are non-smooth as the real parts cross the boundary of the second
radiation continuum ka = 2π − βa shown by thin grey line; (b) Bloch BSC β �= 0 vacuum wave number
k vs. R/a, ε = 15. The insets show the real parts of the y-component of electric vector Ey and the
x-component of magnetic vector Hx in x0y-plane for the BSC at R/a = 0.4.

−�{k} = α(β − β0)
2 +O[(β − β0)

3]. (35)

Combining Equations (30), (31) and (33)–(35) one obtains in the vicinity of a BSC

F(x) = exp

[
−αxc

v3
0
(ω − ω0)

2

]
. (36)

Thus, for the width of the transparency window in the frequency domain we have
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Δ(x) =

√
v3

0
αc

1√
x

(37)

with α and v0 extracted from the data in Figure 8 by a polynomial fit. Nevertheless, care is needed
in applying Equation (36) as the frequency may fall out of the range where the dispersion is well
approximated by the leading terms in Equations (34) and (35).

Using a full-wave multiscattering method [19] we simulated wave propagation in a finite array
of 400 nanoparticles. In our numerical experiment a linearly polarized Gaussian beam [74] with the
Rayleigh range z0 = 5a was focused on the first nanoparticle in the array. The wave vector of the beam
was directed along the y-axis perpendicular to the array (see Figure 7), and the magnetic vector aligned
with the array axis. In Figure 9a we plot the the leading Mie coefficient a0

3 for the last nanoparticle
in the array. The result shows a pronounced resonant behavior due to formation of standing waves
as a consequence of the finiteness of the array. The distance between the resonances Δω could be
assessed as Δω ≈ πv0/(aN) where N is the number of particles in the array. The resonant features
could be averaged out by integration over small frequency intervals larger than Δω. The result is
shown in Figure 9a in comparison against Equation (36). One can see that Equation (36) matches the
numerical data to a good accuracy. The finiteness of chain also results in additional attenuation due to
the radiative losses at the ends of the array. A detailed study of that effect was undertaken in Ref. [19]
where it was shown that the Q factor of the finite arrays of high index nanoparticles scales as CN3 with
0.1 < C < 10 which makes such radiative losses negligible for N = 400. The discrepancy in Figure 9 is
due to the higher order terms in Equations (34) and (35).
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Figure 9. Light propagation in the array of 400 nanoparticles ε = 15, R/a = 0.4, v0 = 0.054c, α = 0.005a.
(a) Absolute value of the leading coefficient a0

3 vs. wave number k of stationary wave injected into
the array. The averaged data are plotted by thick blue line against the analytical result Equation (36)
shown by dashed red line; (b) Absolute value of the leading coefficient a0

3 vs. the particle number
j for a light pulse with k0 = π1.162/a, t0 = a/c. The pulse widths σω = 0.0025/t0—blue solid,
ω = 0.005/t0—green dashed, ω = 0.025/t0—red dash-dot lines. Thin black line shows analytical
result Equation (38) for the pulse with σω = 0.025/t0.
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Finally, pulse propagation along the array was considered in the above set-up with a continuous
superposition of Gaussian beams forming a Gaussian light pulse of width σω in the frequency domain.
The central wave number of the pulse was adjusted to the BSC wave number k0 = π1.162/a. At the
moment t = 0 a light pulse was injected into the left end of the array. In Figure 9b we plot four
snapshots of the leading Mie coefficient a0

3 against the distance along the array for three different initial
pulse widths σω. One can clearly see in Figure 9b that the pulse propagating along the array tends
to spread as the harmonics distant in the ω-space from the BSC frequency decay into the continuum.
The pulse profile f (x, t) could be found by Fourier-transforming the initial Gaussian pulse to the
real space:

f (x, t) =
1

σ(t)
e
− (x−v0t)2

σ2(t) ei(β0x−ω0t) (38)

with

σ2(t) = 4a2

[(
v0

aσω

)2
+

cα

a2 t

]
. (39)

Analyzing Equation (39) for a given distance L = v0t one can identify two possible regimes for
the pulse propagation. In the "overdamped" regime the second term dominates on the left hand side
of Equation (39) resulting in a noticeable spreading of the pulse in the real space. If, however, the first
term dominates the pulse retains its profile during propagation time (σω = 0.0025/t0 in Figure 9b).
One finds from Equation (39) that the pulse doubles its width after travelling to the distance

L =
3a2

α

(v0

c

)3
(

c
aσω

)2
. (40)

So far the material losses due to the imaginary part of the dielectric constant were neglected.
Particulary in silicon the material losses vary significantly in the optical range [75]. We ran a numerical
test at 725 nm with �(ε) = 0.0075 to find that the propagation distance L ≈ 100a, a = 421 nm so the
light can travel to approximately 60 wavelengths. It should be pointed out that in the near infrared
λ ≈ 1000 nm the losses can be tens of times less allowing propagation to hundreds wavelengths [21]
as shown in Figure 9.

7. Emergence of the BSC in Scattering

Scattering of plane waves by periodic two-dimensional arrays of dielectric spheres originates since
pioneering papers by Ohtaka et al. [3,4] (see also Ref. [5]). Scattering by aggregates of finite number
of spheres was considered in the framework of multi sphere Mie scattering [6,9,11], however to our
knowledge the scattering by the one-dimensional infinite array of dielectric spheres was not considered
yet. The following subsections aim to present results of numerical calculation of differential and total
cross-sections of the infinite array with focus to follow resonant traces of the BSCs in the cross-sections
similar to the scattering by array of dielectric rods [37,44,45]. For the present case of the array of
dielectric spheres we revealed different types of the BSCs. We show that excitation of corresponding
quasi-BSCs needs in different ways of injection of EM waves.

The BSC has zero coupling with the continuum, i.e., the BSC has infinite quality factor [76].
Also the BSC is unique by that the solution of the scattering problem becomes ambiguous [25] and can
be written as superposition of particular scattering state and the BSC [77,78].

Ψ = ΨS + αΨBSC (41)
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where α is arbitrary coefficient. This equation is well known mathematical consequence of the
linear Lippmann-Schwinger Equation (1) when the inverse of the matrix L̂ does not exist, i.e., when
Det(L̂) = 0. Then the BSC is the eigenmode of the matrix L̂

L̂ΨBSC = λcΨBSC (42)

with real eigenvalue λc. At the first sight the BSCs are not interesting because they are invisible for
probing waves incident from the continuum. However the BSC point is isolated in the parametric
space and experimentalist can approach to this point only approximately. Other words, in reality we
have only the quasi-BSCs whose quality factor is restricted by set-up imperfectness. Moreover for the
case of arrays of dielectric rods or nanoparticles we have always finite number of them to give rise to
a leakage of trapped modes into the diffraction continua. In this case the parameter α in Equation (47)
is defined by the point in the parametric space. When the point is sufficiently close to the BSC point α

can achieve enormous value however as dependent on the way of approaching [78]. That observation
is important for applications [26,52,78,79].

According to above equation the BSC is a null eigenvector of matrix L̂ with zero eigenvalue.
As soon as one deviates from the BSC point in the parametric space the BSC emerges in the form of
a collapsing Fano resonance. That phenomenon was observed in scattering of EM waves by arrays
of rods [30,33,37,40,44,45,52,62]. The Fano resonance for the present system can be interpreted as
interference of two optical paths, one through the spheres and another between the spheres. In what
follows we highlight these features of the BSCs using the biorthogonal basis of eigenvectors of the
non-Hermitian matrix L̂ [37,80].

L̂X f = L f X f , L̂+Y f = L∗
f Y f , Y+

f X f ′ = δ f f ′ . (43)

It immediately follows that

L̂−1 = ∑
f

X f
1

L f
Y+

f . (44)

Because of the axial symmetry matrix L̂ has OAM preserving block structure

L(m)
ll′ =

(
Z−1

TE,lδll′ − Amm
ll′ −Bmm

ll′

−Bmm
ll′ Z−1

TM,lδll′ − Amm
ll′

)
, (45)

where each block correspond to a specific value m.
In the nearest vicinity of the BSC point one of the complex eigenvalues Lc is close to zero.

That allows us to substantially simplify Equation (44) leaving in the sum only the leading contribution
related to Lc. Respectively the solution for the scattering function in Equation (1)

Ψ = L̂−1Ψinc (46)

is simplified as follows

Ψσ ≈ 1
Lc

Xc(Y+
c · Ψσ

inc), σ = TE/TM. (47)

This equation manifests one remarkable as well as important for applications property of the
BSCs to enormously enhance the incident wave Ψinc by the factor 1/Lc [52,77,78].

7.1. Symmetry Protected BSCs

First the effect of enhancement of scattering function in the near zone of the infinite periodic
array of dielectric spheres was shown in Ref. [56] in the vicinity to the symmetry protected BSCs with
m = 0. As it follows from Equations(20) and (21) only one diffraction channel n = 0 is open for low
frequencies k0 where the majority of the BSCs occur as shown in Figure 5. Although the BSCs can
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not be probed directly by an incident wave they are seen as collapses of Fano resonance when the
BSC point is approached in the parametric space. That phenomenon was observed for scattering of
EM waves by arrays of rods [30,33,37,40,44,45,51,52,81]. In this subsection we report a similar Fano
resonance collapse in the differential and total cross-sections vs. frequency when the wave number
kz tends to zero or the radius of the spheres approaches the BSC radius. The Fano resonance for
the present system can be interpreted as an interference of the optical paths through and between
the spheres.

Let us consider an incident plane wave with the wave vector in the x, z plane and polarizations:
(a) TE polarized with electric field along the y-axis and (b) TM polarized with magnetic field along
the y-axis.

For m = 0, kz �= 0 Equations (13) and (14) gives that pTE
l0 = 0, qTM

l0 = 0. Then taking into account
that B00

νl = 0 (see Appendix A) we have from Equations (16) for the TE incident plane wave

Z−1
TE,l a

0
l − ∑ν a0

νA00
νl = qTE

l0 ,

Z−1
TM,lb

0
l − ∑ν b0

νA00
νl = 0. (48)

The second equation gives b0
l = 0, and scattering of plane wave with TE polarization is given

by only ak. Then the type I BSCs is quasi BSC weakly coupled with the TE continuum for small
kz. That results in sharp resonant contribution in the cross-section σTE,TE as shown in Figure 10a.
The cross-sections σTE→TM, σTM→TM and σTM→TE have no features related to these BSCs and are
not shown in Figure 10a. If the plane wave falls onto the array normally α = −π/2 (kz = 0) we
have fully invisible type I BSC that is shown by dash line in Figure 10a. Alternatively, the symmetry
protected type II of the symmetry protected BSCs with the only amplitudes bk can be observed via the
cross-section σTM→TM as shown in Figure 10b. Thus, although the BSCs have no effect for the normal
incidence they are detected by collapse of Fano resonances in total cross-sections for kz → 0.
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Figure 10. Total cross-section for scattering of plane wave incident by the angle φ onto the array.
(a) Scattering of TE plane wave is strongly affected by the presence of the symmetry protected Type I
BSC (24) with the eigenfrequency k0 = 4.24 for R = 0.3, ε = 12; (b) Scattering of TM plane wave is
strongly affected by the presence of the symmetry protected Type II BSC (25) with the eigenfrequency
k0 = 4.7504 for R = 0.3, ε = 15.

7.2. Scattering of Plane Waves in the Vicinity of the Quasi-BSCs with OAM

Next, consider the effect of the BSCs with m = 2 given by Equation (28) on the cross-section.
We begin with the TE plane waves incident onto the array normally (kz = 0). Then we have from
Equations (13)–(30) that pTE

l2 = 0, qTE
l2 �= 0 for odd l, and pTE

l2 �= 0, qTE
l2 = 0 for even l. Therefore as

Equation (16) shows there are only Type II solutions for scattered waves with the amplitudes
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(a2k+1, b2k). Table 1 shows that they belong to the same type of BSCs with m = 2. Therefore in
the vicinity of RBSC = 0.471 this BSC is coupled with the TE continuum and gives the resonant
contribution in the cross-section σTE,TE that is demonstrated in Figure 11a,b. As for the scattering of
the TM plane waves there are no resonant features as shown in Figure 10b by dash line. One can see in
Figure 11c bright features of the differential cross-sections near the eigenfrequency of the BSC caused
by the resonant contribution of the amplitude A2 at the azimuthal angles φ = 0,±90◦, 180◦:

dσ

dφ
= σ0|∑

m
Amcos(mφ)|2. (49)
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Figure 11. The effect of the BSC (28) with m = 2, k0 = 3.086, R = 0.471 in: (a) differential cross-section
vs. frequency and the azimuthal angle; (b) total cross-sections for different radii of the spheres close
to the BSC radius (27) for plane wave illuminating the array normally; (c) Frequency behavior of the
amplitudes Am in the expansion (49); (d) Harvesting capability of the quasi BSC at R = 0.473. Dash red
line shows the contribution of the BSC into the scattering function, blue solid line shows background φ.

It is clear that for the sphere radius close to RBSC = 0.471 the BSC solution dominates in the near
field zone. The solution can be presented as

Ψ = αΨBSC + Φ (50)
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where α has a resonant behavior over frequency k0 with the resonant width γ ∼ |R − RBSC|.
Analytical expression for the resonant width can be derived following Refs. [77,78]. Thus we have
slowly decaying quasi BSC modes above the light cone similar to those considered in Ref. [82].
That effect is important for concentration of light by touching spheres [52,83] notified as the harvesting
capability of the system. Figure 11d illustrates the harvesting capability of the array of spheres in the
vicinity of the BSC (28). Solid blue line shows the contribution of the background φ = ||Φ|| where
|| · · · || is the norm of vector Φ. We do not present here the scattering of plane incident normally to the
array at the vicinity of the BSC with m = ±1. The results are very similar to those shown in Figure 11
except that differential cross-section has two maxima around the azimuthal angle equal φ = 0 and
φ = π while scattering near the BSC with m = ±2 shows maxima at φ = 0, π/2, π, 3π/4.

8. Scattering of Plane Waves in the Vicinity of the Bloch BSC

In this section we consider the Bloch BSC with zero OAM whose field configuration is shown in
Figure 6. Since the Bloch number βc = 1.2074 the EM field configuration is incommensurate with the
period of the array the EM field is different at each sphere. The numerical results for scattering by the
array in the vicinity of this Bloch BSC are presented in Figure 12a which shows that under illumination
of the array by a TE plane wave there is a resonant peak only in the total cross-section σTE,TE [56].
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Figure 12. (a) Total cross-section for scattering of plane wave with β = 1.3074 in the vicinity of the
Bloch BSC vs. the frequency; (b) The plane wave supports giant laminar power current at the point
marked in the left panel by open circle. The color bar at the right indicates absolute value of the current.

If a plane wave with TE polarization, the wave vector (kx, 0, β ≈ βc) and the frequency
k0 = k0c = 3.6505 illuminates the array, the running Bloch quasi-BSC with β is excited as shown
in Figure 12b with giant laminar power flows.

9. Transfer of SAM into OAM of the BSC with m �= 0

It is well known that electromagnetic (EM) fields can not only carry energy but also angular
momentum. The angular momentum is composed of the spin angular momentum (SAM) and the
orbital angular momentum (OAM) describing the polarization and the phase structure distribution
of EM fields, respectively. The research on the OAM of EM fields has been in focus of researches
since Allen et al. investigated the mechanism of the OAM in laser modes [54,84]. In contrast to SAM,
which has only two possible states of left-handed and right-handed circular polarizations, the states of
OAM are in principle unlimited owing to the unique characteristics of spiral flow of propagating EM
waves [55]. The OAM has the potential to tremendously increase the spectral efficiency and capacity of
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communication systems [85]. Among numerous investigations on OAM effects, one of the subjects of
intensive recent studies is the link between the near-field chirality and the far-field OAM. For different
types of chiral polaritonic lenses, it was shown that the near-field chirality can lead to the tailoring
optical OAM in the far-field region [86,87]. There were many proposals to generate OAM beams by
use of chiral plasmonic nanostructures [86], ferrite particles [88], the monolithic integration of spiral
phase plates [89], chiral polaritonic lenzes [90], and by designer metasurfaces [91], etc.

Schäferling et al. [92] have shown that chiral fields, i.e., electromagnetic fields with nonvanishing
optical chirality, can occur next to symmetric nanostructures without geometrical chirality illuminated
with linearly polarized light at normal incidence. Rodriguez-Fortuño et al. [93] demonstrated
a planar photonic nanostructure with no chirality consisting of a silicon microdisk coupled to two
waveguides. The device distinguishes the handedness of an incoming circularly polarized light beam
by driving photons with opposite spins toward different waveguides. It was shown theoretically and
experimentally that the fundamental resonance of a silicon microdisk resonator can inherit the angular
momentum carried by anormally incident light beam and transfer it as linear momentum into one of
two output waveguides. Remarkably, the microdisk is not chiral: it responds equally to the left chiral
polarization and the right chiral polarization without exhibiting optical activity nor circular dichroism.
Instead, it couples light to different waveguides (with opposite linear momenta) depending on the
handedness of incoming light and the relative position between the microdisk and the waveguides.

The above results have a simple interpretation as an analogue with the spin-orbit interaction [94].
Rodríguez-Fortuño et al. [95] demonstrated circularly polarized dipole results in the unidirectional
excitation of guided electromagnetic modes in the near field, with no preferred far-field radiation
direction. In the present section we show a similar excitation of the Bloch BSC mode however with
OAM in the near field transfer. Other words, we show a transfer of SAM to OAM of bound states in
all-dielectric system in the near field of the array. Because of the time-reversal symmetry BSCs with
OAM are degenerate with respect to the sign of m. That modifies Equation (47) as follows

Ψm
σ ≈ 1

Lc
∑
±
[Xc(±m)(Yc(±m)+ · Ψ±m,σ

inc )] (51)

where the incident wave according to Equation (16) is given

Ψm,σ
inc =

(
sign(m)pσ

|m|
qσ
|m|

)
, m are odd, σ = TE

Ψm,σ
inc =

(
pσ
|m|

sign(m)qσ
|m|

)
, m are odd, σ = TM

Ψm,σ
inc =

(
pσ
|m|

sign(m)qσ
|m|

)
, m are even, σ = TE

Ψm,σ
inc =

(
sign(m)pσ

|m|
qσ
|m|

)
, m are even, σ = TM. (52)

and subvectors pm and qm are given by Equation (13). In particular, for the plane wave incident
normally to the array β = 0 we have
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pTE
|m| =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
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0

pTE
m,4
...

⎞
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, qTE
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0

qTE
m,3
0
...

⎞
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pTM
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0
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0
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0
qTM
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0

qTM
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...

⎞
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pTE
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m,1
0

pTE
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0
...

⎞
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⎛
⎜⎜⎜⎜⎜⎜⎝

0
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m,2
0
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...
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m,1
0
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⎟⎟⎟⎟⎟⎟⎠

, m are even. (53)

By virtue of Equation (45) and B(m)
ll′ = −B(−m)

ll′ the eigenvectors can be decomposed over the
polarizations as follows

Xc(±m) =

(
xm

TE
±xm

TM

)
, Yc(±m) =

(
ym

TE
±ym

TM

)
. (54)

Then it follows from Equation (51)

Ψm
σ ≈

⎧⎨
⎩

D|m|
σ

Lc,m
[Xc(m) + (−1)m(Xc(−m)], σ = TE

D|m|
σ

Lc,m
[Xc(m) + (−1)m+1Xc(−m)], σ = TM,

, (55)

where
D|m|

σ = y+
TEpσ

|m| + y+
TMqσ

|m|. (56)

Assume that the elliptically polarized plane wave ΨTE
inc + αΨTM

inc is incident with small β. By taking

α =
D|m|

TE

D|m|
TM

(57)

we obtain from Equation (55) that

Ψσ ≈ F|m|X
+m
c , F|m| =

2D|m|
TE

Lcm
. (58)
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The scattering function has only a contribution with the positive OAM m > 0. Here we introduced
the enhancement factor F which defines to what extent the scattering function is amplified in the near
zone. Respectively for DTE = −αDTM the scattering function has only a contribution with the negative
OAM m < 0.

One can show from Equations (53), (54) and (56) that asymptotically D|m|
TM → 0 for β → 0.

From Equation (58) it follows that the enhancement factor for scattering of plane waves in the vicinity
of the BSC point is determined by the ratio Dσ/Lc. In what follows we sweep the frequency of the
incident wave k0 and the angle of incidence defined by β in the vicinity of the BSCs with OAM m = 1
and m = 2. Figure 13 illustrates the behavior of the enhancement factor in the plane of the frequency k0

and β calculated with the use of Equation (58). Following the line with |α| = 1 we found the maximal
enhancement marked by open green circles in Figure 13 for the following parameters. (i) For the case
of the BSC with m = 1 the optimal parameters are k0 = k0c + 0.0025, β = 0.0052, α = 0.63 + 0.77i for
R = Rc − 0.0005; (ii) For the case of the BSC with m = 2 : k0 = k0c + 0.02, β = 0.031, α = 0.31 + 0.94i
for R = Rc − 0.003. Fixing these parameters except β we plot the lowest eigenvalue of the matrix L̂ in
Figure 14 and the values of |Dσ| Equation (56) in Figure 15 versus β. From these Figures one can see
that, first, the enhancement is determined by the lowest eigenvalue Lcm while DTE is almost constant.
Second, the value DTM grows from zero. Therefore, to achieve enhancement one has to inject a plane
wave with elliptic polarization. In what follows we take for simplicity the circular polarization |α| = 1
of the incident wave.

Figure 13. Enhancement factor |Fm| vs. k0 and β. White line corresponds to polarization (57) |α| = 1.
Open circles mark of maximal enhancement.
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Figure 14. The lowest eigenvalue |Lc| of matrix (45) in the vicinity of the BSCs with OAM.
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Figure 15. The values Dσ given by Equation (56) in the vicinity of the BSCs with OAM.

Because of the smallness of the eigenvalue Lcm in Equation (55) EM fields given by the scattering
function can reach extremely high values near the spheres. Clearly this is an effect of the BSCs
with infinitely high quality factor that presents a possibility to enormously enhance the incident
light [40,52,78]. In Figure 16 we demonstrate that the enhancement is very sensitive to the choice of
the sphere radius in the vicinity of Rc when other parameters are tuned to the BSC point.
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Figure 16. Values of the maximal enhancement factor |F| vs. k0 and β as dependent on radius of
spheres for |α| = 1.

Thanks to carrying OAM the BSC with m �= 0 supports vortical power currents [96] as
demonstrated in Figure 17. Owing to the enhancement of the scattered field in the near zone the
spinning currents can reach giant values with respect to the incident power currents as demonstrated
in Figure 18. All currents are measured in terms of the incident power with β = 0.00517 for the case
m = 1 and β = 0.0307 for the case m = 2. The value of the current is extremely high inside the spheres
but rapidly drops outside the spheres as shown in Figure 19. As soon as the polarization is linear,
for example α = 0, vortical currents around the array vanish as demonstrated in Figure 20.
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Figure 17. Pointing current circulates around the spheres when circularly polarized light is injected.
Currents around other spheres are repeating periodically.
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Figure 18. Value of angular component of the power current around the spheres at distance r from the
center of sphere and z = 0.

Figure 19. Iso surfaces of constant angular component of the power current.
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Figure 20. Power currents in the middle plane between spheres induced by linearly polarized light
with α = 0.
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Figures 21 and 22 demonstrate that the orbital angular momentum of the BSCs affects the
scattering of plane waves with linear polarization. The effect is a conversion of the incident
polarizations TE → TM and visa versa. For the normally incident waves β = 0 there is no polarization
conversion and no resonant peaks in the total cross-sections TM → TM. Once the angle of incidence
deviates from zero β �= 0 all three total cross-sections acquire resonant response as shown in Figure 21.
Note that there is polarization conversion when the frequency is far from the BSC frequencies.
The absence of polarization conversion is clearly seen in the differential cross-section TE → TM
as shown in Figure 22. It is also remarkable that this cross-section distinctively reflects the value of the
OAM m.
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Figure 21. Total cross-section for scattering of plane wave by the array in the vicinity of the BSC with
OAM at β = 0.0052 (left panel) and β = 0.031.

Figure 22. Differential cross-section for scattering of plane wave illuminating the array in the vicinity
of the BSC with OAM.

10. Propagating Bloch BSCs with Orbital Angular Momentum

−→
ψ ≈ −→

X m=1
BSC Bm=1

⊕−→
X m=−1

BSC Bm=−1 (59)

where
Bm=±1 =

1
Lc

(DTE ± κDTM), Dσ =
−→
Y +

BSC
−→
ψ σ, (60)

σ = TE, TM labels the polarization of electromagnetic field.
−→
Y +

BSC is the left eigenvector of the matrix
−→
Y +

BSCL̂ = Lc
−→
Y +

BSC. This eigenvector becomes a true BSC when Lc = 0. Here the amplitudes Bm=±1

are the responses with OAM m = ±1 to the incident wave with linear polarization in the vicinity of
the BSC point as dependent on the sign of κ. In particular the case κ > 0 is shown in Figure 23a which
demonstrates a resonant enhancement in the vicinity of the BSC frequency k0c = 4.327. What is more
important Figure 23 shows that the amplitudes Bm=±1 are substantially different for a plane wave with
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oblique incidence. The change of the sign of κ interchanges priority of Bm=±1 that in turn changes the
direction of spiralling.
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Figure 23. The enhancement factor Bm=1 (dash line) and Bm=−1 (solid line) vs. frequency for the
parameters listed in Figure 1 and β = βc + 0.0062 and (a) κ = 1 and (b) κ = 0.5. In the case
κ = −1,−0.5 dash and solid lines are interchanged.

The spiralling currents near by the array become giant because of enhancement of the EM fields
for the frequency close to the BSC frequency as shown in Figure 24. This Figure is complemented by
Figure 25a,b with iso-surfaces of absolute value and the azimuthal component in Figure 25b of the
Poynting vector which demonstrates the enhancement.

Figure 24. (a) Streamlines of Pointing vector; (b) currents in the x, y plane at selected slices along the
array axis z = 0.25 (inside the sphere) and z = 0.5 (between spheres); (c) currents in the x, z plane at
selected slices y = 0.
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Figure 25. (a) Iso surfaces of Poynting vector at two selected values and (b) value of azimuthal
component of the Poynting vector normalized to that of the incident wave around the spheres at
distance r = 0.588 from the center of sphere and z = 0.

The next unique property of the BSC is related to the Fano resonance collapse [78,97] that reflects
in resonant features of the cross sections of the array in the vicinity of the BSC frequency. Similar to the
BSCs with β = 0 and m �= 0 which were presented in Ref. [58] the Bloch BSC with OAM demonstrate
resonant features shown in Figure 26.
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Figure 26. Total cross-section for scattering of plane wave by the array in the vicinity of the Bloch BSC
with OAM at β = βc + 0.0062.

11. Array with the Finite Number of Dielectric Spheres

For finite number of the spheres the translational invariance is broken. Then Equation (2) can be
modified as follows [24]

E(r) =
N

∑
j=1

∑
lm
[alm

j Mm
l (r − Rj) + blm

j Nm
l (r − Rj)],

H(r) = −i
N

∑
j=1

∑
lm
[alm

j Nm
l (r − Rj) + blm

j Mm
l (r − Rj)]. (61)

The expansion coefficients alm
j , blm

j were found numerically [11] and presented in Figure 27.
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Figure 27. (a) Values of coefficients alm
j (open blue circles) and blm

j (closed green circles) in Equation (61)
and (b) values of power current at z = n + 0.5, r = 0.25 where the current is maximal for different
number of spheres with R = 0.468 for k0 = 3.10705, kz = 0.0307, α = −0.31 + 0.95i.

At the first sight it seems that for growing N the solution for amplitudes aj and bj should saturate
except in the vicinity of the edges of the finite array. However the EM field is a massless field which
has no characteristic scale. Hence we have the behavior of the amplitudes as shown in Figure 27.
Nevertheless we can see a tendency for saturation of the amplitudes to the maximal value with the
growth of N, but we always observe non-negligible effect of the edges of the finite array. That affects
the transfer of SAM of incident light into the giant vortical currents in the vicinity of a quasi-BSC.
A similar effect which transforms the BSCs into quasi-BSCs is the volatility of the material parameters
of the spheres.

12. Summary and Discussion

Recently the BSCs above the light line were shown to exist in various systems of one-dimensional
arrays of dielectric rods and holes in a dielectric slab [31–33,37,38,44–46]. Similar acoustic BSCs
called embedded trapped Rayleigh-Bloch surface waves were obtained in system of material
rods [26,29,47,98]. One could ask why BSCs occur in periodic dielectric structures (gratings) but not in
homogeneous structures like a slab or a rod which can support guided EM modes below the light line
only. Let us begin with the simplest textbook system of a dielectric slab infinitely long in the x, y plane
with the dielectric constant ε > 1. The Maxwell equations can be solved by separation of variables for
scalar function ψ(x, y, z) = eikx x+ikyyψ(z) to result in bound states below the light line k2

0 = k2
x + k2

y [99]
while all solutions above the light line are leaky [100]. The situation can be cardinally changed by
replacing the continual translational symmetry by the discrete symmetry ε(x, y, z) = ε(x + p, y, z)
where p = 0,±1,±2, . . .. All space variables are measured in the period length.. Then the radiation
continua of plane waves eikx,nx+ikyy+ikzz are quantized kx,n = β + 2πn, n = 0,±1,±2, . . . with the
frequency k2

0 = k2
x,n + k2

y + k2
z. Here β is the Bloch wave vector along the x-axis, and the integer n

refers to the diffraction continua [33]. The physical interpretation of this statement is related to that
the slab with the discrete translational symmetry can be considered as a one-dimensional diffraction
lattice in the x-direction. Let us take for simplicity β = 0, ky = 0. Assume there is a bound solution
with the eigenfrequency k0,BSC > 0 which is coupled with all diffraction continua enumerated by n.
Let k0,BSC < 2π, i.e., the BSC resides in the first diffraction continua but below the others. Because of
the symmetry or by variation of the material parameters of the modulated slab we can achieve that the
coupling of the solution with the first diffraction continuum equals zero [37,38,44–46]. However the
solution is coupled with evanescent continua n = 1, 2, . . . giving rise to exponential decay of the
bound solution over the z-axis. The length of localization is given by L ∼ 1√

4π2−k2
0,BSC

. Therefore, the

evanescent diffraction continua play a principal role in the space configuration of the BSCs. Moreover,
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one can see from Figure 5 that in the limit h → ∞ the BSCs frequency k0BSC → 0 to leave no room for
the BSCs with k0,BSC > 0.

In the present paper we chose another strategy to quantize the radiation continuum. We replace
the rod with continual translational symmetry by a periodic array of dielectric spheres. Because of
the axial symmetry of the array aligned along the z-axis the quantized continua are specified by two
integers, m and n. The first integer is the azimuthal quantum number and the second number defines
discrete directions of outgoing cylindrical waves (17) given by the wave vector kz,n = β + 2πn in each
sector m where β is the Bloch vector along the array. Bottoms of the particular continua with m = 0
and n = 0,±1 and n = −2 are shown in Figure 5. By arguments similar to those presented above
for the grated slab we obtain that the BSC with β = 0 embedded into the first radiation continuum
m = 0, n = 0 is localized around the array.

The symmetry of the system is also important for classifications of the BSCs which are labelled
by the azimuthal number of the continuum m of cylindrical vectorial waves and the Bloch wave
vector β. The symmetry properties of the BSC play a very important role since it is difficult to provide
a zero coupling even with the lowest continua n = 0 because of the degeneracy in polarization.
Nevertheless the symmetry allows to decouple the BSC at least with some particular continua.

(1) The symmetry protected BSCs constitute the vast majority of BSCs which are symmetrically
mismatched with the first diffraction continuum m = 0, n = 0 of both polarizations. The EM field
configurations of such BSCs presented in Figure 2 show hybridizations of a few orbital numbers
l = 2, 4, 6, . . . which specify the BSCs as multipoles of high order. Therefore the BSC solutions can
not be obtained by the use of the dipole approximation [20,21]. The most remarkable property
from experimental viewpoint is the robustness of the BSCs relative to choice of the material
parameters of the dielectric spheres. We present in Figure 3 an example of the BSC which is
symmetry protected relative to the TM diffraction continuum but a zero coupling to the TE
continuum obtained through variation of the sphere radius.

(2) We demonstrated that the BSC can be accessed not only by variation of the material parameters
but also by variation of Bloch wave vector β along the array axis. Patterns of the Bloch BSCs are
presented in Figure 3.

(3) By tuning of the radius of the spheres we found BSCs in the next sectors of continua with
m �= 0. These BSCs shown in Figure 4 are remarkable by that they carry the OAM with spinning
Poynting vectors.

(4) The most sophisticated Bloch BSCs with OAM demonstrate spiralling Poynting vector as shown
in Figures 24 and 25.

The advantage of dielectric structures is a high quality factor and a wide range of BSC wavelengths
from microns (photonics) to centimeter (microwave) as dependent on the choice of the radius of the
spheres. Although the BSCs exist only in selected points in the parametric space there is a nearest
vicinity of the BSC point where the BSC predominantly contributes into the cross-section and the
EM field in the near field zone as seen from Figures 10 and 11. That leads to extremely efficient light
harvesting capabilities [83]. The far zone EM fields can also show abundant features related to the BSCs.
In particular Figure 11a demonstrates the effect of antenna when the BSC with azimuthal number
m = 2 converts the EM energy into the perpendicular directions.

The BSCs with OAM m = ±1 emerge in the response of the array to incident plane waves with
circular polarization. A transfer of the SAM of the incident plane wave into the OAM of EM field takes
place for any frequency and wave vector of the incident wave as shown in Figure 13. The transfer
results in the power current spinning around the array. The most remarkable is that as seen from
Figures 13 and 16 in the nearest vicinity of the BSCs with m �= 0 the array supports giant vortical
power currents which are directly related to the extremal enhancement of the scattered field. The value
of the current is also sensitive to the distance from the array. It rapidly goes down away from spheres
as shown in Figure 19.
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Theoretically the value of the circulating currents can grow up to infinity in the BSC point.
However there is a difference between the present theory and possible experimental realization of
the transfer of SAM into OAM, that is (1) a finite number of the spheres and (2) there are always
some losses when the waves transport through the sample because of material for spheres. The most
profound effect of finite arrays is that the BSCs become quasi-BSCs because, unlike a plasmonic sphere,
finite dielectric systems can not support BSCs [101–103]. Therefore the effect of giant vortical currents
around the array can be suppressed. Indeed, as our calculations show in Figure 27 for finite number N
the currents decay for approaching to ends of the array. However with since N ≥ 100 at middle of the
array the BSC is restoring.

The next problem which can seriously damage the effect of giant spinning currents is the complex
dielectric permittivity ε = ε′ + iε′′. Fortunately, for silicon dielectric particles there is a wide frequency
window in the nearest infrared range where the ε′′ is extremely small [75]. The advantage of dielectric
structures is a wide range of BSC wavelengths from microns (photonics) to centimeter (microwave
range) as dependent on the choice of the radius of spheres. Losses when the waves transport through
the array result in the finite free path length L = vg/ε′′ω where vg is the group velocity. Therefore
it is sufficient to take the number of spheres not exceeding L/h where h is the period of the array.
This problem was considered in details in Ref. [57].

Moreover we have shown the propagating Bloch BSC with both β �= 0 and OAM m = ±1 for
the array of dielectric particles with the permittivity around 10. The Bloch vector βc can be tuned by
variation of the permittivity. Although we revealed only the value of OAM m = ±1 in general there
is no restriction for the Bloch BSCs with OAM |m| > 1. To the best of our knowledge, the BSCs with
OAM guided along the array has not been previously advanced as a possible fundamental effect for
device applications. One of the most important application we consider that the array is capable for
lasing through the BSC as it was demonstrated in Refs. [104,105]. However the principal feature of
lasing by the array of dielectric spheres is that the laser beam carries the OAM without use of special
chiral symmetry broken media [86,90,91].
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Appendix A

The value B00
lν is expressed via

H(l, 0, ν, 0, p) = G+ + G− (A1)

for l + ν + p odd according to Equations (10)–(60) where

G± = ∓
√

ν(ν + 1)p(p − 1)G(l, 0, ν,±1, p − 1)

G(l, 0, ν,±1, p − 1) = −
√
(2l + 1)(2ν + 1)(2p − 1)

(
l ν p − 1
0 ±1 ∓1

)(
l ν p − 1
0 0 0

)
(A2)

according to Equation (8). Using the property of 3j-symbols

(
j1 j2 j3

m1 m2 m3

)
= (−1)j1+j2+j3

(
j1 j2 j3

−m1 −m2 −m3

)
(A3)

we obtain (
l ν p − 1
0 1 −1

)
=

(
l ν p − 1
0 −1 1

)
(A4)
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if l + ν + p − 1 is even. Therefore we have from Equations (A1) and (A2) that H(l, 0, ν, 0, p) = 0 and
respectively, B00

lν = 0.
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45. Zhen, B.; Hsu, C.W.; Lu, L.; Stone, A.D.; Soljačić, M. Topological Nature of Optical Bound States in the
Continuum. Phys. Rev. Lett. 2014, 113, 257401, doi:10.1103/PhysRevLett.113.257401.

46. Yang, Y.; Peng, C.; Liang, Y.; Li, Z.; Noda, S. Analytical Perspective for Bound States in the Continuum in
Photonic Crystal Slabs. Phys. Rev. Lett. 2014, 113, 037401, doi:10.1103/PhysRevLett.113.037401.

47. Colquitt, D.J.; Craster, R.V.; Antonakakis, T.; Guenneau, S. Rayleigh-Bloch waves along elastic diffraction
gratings. Proc. R. Soc. A Math. Phys. Eng. Sci. 2014, 471, 20140465, doi:10.1098/rspa.2014.0465.

48. Gao, X.; Hsu, C.W.; Zhen, B.; Lin, X.; Joannopoulos, J.D.; Soljačić, M.; Chen, H. Formation Mechanism
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85. Čelechovský, R.; Bouchal, Z. Optical implementation of the vortex information channel. New J. Phys.
2007, 9, 328, doi:10.1088/1367-2630/9/9/328.

86. Gorodetski, Y.; Drezet, A.; Genet, C.; Ebbesen, T.W. Generating Far-Field Orbital Angular Momenta from
Near-Field Optical Chirality. Phys. Rev. Lett. 2013, 110, 203906, doi:10.1103/PhysRevLett.110.203906.

87. Yu, H.; Zhang, H.; Wang, Y.; Han, S.; Yang, H.; Xu, X.; Wang, Z.; Petrov, V.; Wang, J. Optical orbital
angular momentum conservation during the transfer process from plasmonic vortex lens to light. Sci. Rep.
2013, 3, 3191, doi:10.1038/srep03191.

88. Berezin, M.; Kamenetskii, E.; Shavit, R. Magnetoelectric-field microwave antennas: Far-field orbital angular
momenta from chiral-topology near fields. arXiv 2015, arXiv:1512.01393.

89. Žukauskas, A.; Malinauskas, M.; Brasselet, E. Monolithic generators of pseudo-nondiffracting optical vortex
beams at the microscale. Appl. Phys. Lett. 2013, 103, 181122, doi:10.1063/1.4828662.

90. Dall, R.; Fraser, M.D.; Desyatnikov, A.S.; Li, G.; Brodbeck, S.; Kamp, M.; Schneider, C.; Höfling, S.;
Ostrovskaya, E.A. Creation of Orbital Angular Momentum States with Chiral Polaritonic Lenses.
Phys. Rev. Lett. 2014, 113, 200404, doi:10.1103/PhysRevLett.113.200404.

91. Yu, N.; Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 2014, 13, 139–150.
92. Schäferling, M.; Yin, X.; Giessen, H. Formation of chiral fields in a symmetric environment. Opt. Express

2012, 20, 26326–26336.
93. Rodriguez-Fortunño, F.J.; Barber-Sanz, I.; Puerto, D.; Griol, A.; Martínez, A. Resolving Light Handedness

with an on-Chip Silicon Microdisk. ACS Photonics 2014, 1, 762–767.
94. Petersen, J.; Volz, J.; Rauschenbeutel, A. Chiral nanophotonic waveguide interface based on spin-orbit

interaction of light. Science 2014, 346, 67–71.
95. Rodriguez-Fortunño, F.J.; Marino, G.; Ginzburg, P.; O’Connor, D.; Martinez, A.; Wurtz, G.A.; Zayats, A.V.

Near-Field Interference for the Unidirectional Excitation of Electromagnetic Guided Modes. Science 2013,
340, 328–330.

96. Bulgakov, E.N.; Sadreev, A.F. Giant optical vortex in photonic crystal waveguide with nonlinear optical
cavity. Phys. Rev. B 2012, 85, 165305, doi:10.1103/PhysRevB.85.165305.

97. Kim, C.S.; Satanin, A.M.; Joe, Y.S.; Cosby, R.M. Resonant tunneling in a quantum waveguide: Effect of
a finite-size attractive impurity. Phys. Rev. B 1999, 60, 10962–10970.

98. Linton, C.; McIver, P. Embedded trapped modes in water waves and acoustics. Wave Motion 2007, 45, 16–29.
99. Jackson, J.D. Classical Electrodynamic; Wiley: Hoboken, NJ, USA, 1999.
100. Hu, J.; Menyuk, C.R. Understanding leaky modes: Slab waveguide revisited. Adv. Opt. Photon. 2009,

1, 58–106.
101. Silveirinha, M.G. Trapping light in open plasmonic nanostructures. Phys. Rev. A 2014, 89, 023813,

doi:10.1103/PhysRevA.89.023813.
102. Alù, A.; Silveirinha, M.G.; Salandrino, A.; Engheta, N. Epsilon-near-zero metamaterials and electromagnetic

sources: Tailoring the radiation phase pattern. Phys. Rev. B 2007, 75, 155410, doi:10.1103/PhysRevB.75.155410.

79



Appl. Sci. 2017, 7, 147

103. Hrebikova, I.; Jelinek, L.; Silveirinha, M.G. Embedded energy state in an open semiconductor heterostructure.
Phys. Rev. B 2015, 92, 155303, doi:10.1103/PhysRevB.92.155303.

104. Zhang, Z.; Li, Y.; Liu, W.; Yang, J.; Ma, Y.; Lu, H.; Sun, Y.; Jiang, H.; Chen, H. Controllable lasing behavior
enabled by compound dielectric waveguide grating structures. Opt. Express 2016, 24, 19458–19466.

105. Kodigala, A.; Lepetit, T.; Gu, Q.; Bahari, B.; Fainman, Y.; Kante, B. Bound State in the Continuum
Nanophotonic Laser. Conf. Lasers Electro-Opt. 2016, 1–2.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

80



applied  
sciences

Article

Existence, Stability and Dynamics of Nonlinear
Modes in a 2D Partially PT Symmetric Potential

Jennie D’Ambroise 1,* and Panayotis G. Kevrekidis 2

1 Department of Mathematics, Computer & Information Science, State University of New York (SUNY)
College at Old Westbury, Westbury, NY 11568, USA

2 Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003, USA;
kevrekid@math.umass.edu

* Correspondence: dambroisej@oldwestbury.edu; Tel.: +1-516-628-5640

Academic Editors: Boris Malomed and Paolo Minzioni
Received: 3 January 2017; Accepted: 21 February 2017; Published: 27 February 2017

Abstract: It is known that multidimensional complex potentials obeying parity-time (PT ) symmetry
may possess all real spectra and continuous families of solitons. Recently, it was shown that for
multi-dimensional systems, these features can persist when the parity symmetry condition is relaxed
so that the potential is invariant under reflection in only a single spatial direction. We examine
the existence, stability and dynamical properties of localized modes within the cubic nonlinear
Schrödinger equation in such a scenario of partially PT -symmetric potential.

Keywords: nonlinear optics; solitons; PT -symmetry

1. Introduction

The study of PT (parity–time) symmetric systems was initiated through the works of Bender
and collaborators [1,2]. Originally, it was proposed as an alternative to the standard quantum
theory, where the Hamiltonian is postulated to be Hermitian. In these works, it was instead found
that Hamiltonians invariant under PT -symmetry, which are not necessarily Hermitian, may still
give rise to completely real spectra. Thus, the proposal of Bender and co-authors was that these
Hamiltonians are appropriate for the description of physical settings. In the important case of
Schrödinger-type Hamiltonians, which include the usual kinetic-energy operator and the potential
term, V(x), the PT -invariance is consonant with complex potentials, subject to the constraint that
V∗(x) = V(−x).

A decade later, it was realized (and since then it has led to a decade of particularly fruitful research
efforts) that this idea can find fertile ground for its experimental realization although not in quantum
mechanics where it was originally conceived. In this vein, numerous experimental realizations
sprang up in the areas of linear and nonlinear optics [3–8], electronic circuits [9–11], and mechanical
systems [12], among others. Very recently, this now mature field of research has been summarized in
two comprehensive reviews [7,8].

One of the particularly relevant playgrounds for the exploration of the implications of
PT -symmetry is that of nonlinear optics, especially because it can controllably involve the interplay
of PT -symmetry and nonlinearity. The relevant efforts have gradually progressed from the simpler
setting of coupled waveguides (bearing gain and loss) to entire PT -symmetric lattices and the
identification of optical solitons in them. These developments hold considerable promise for the
potential realization of more complex settings, such as the one proposed herein. In this context,
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the propagation of light (in systems such as optical fibers or waveguides [7,8]) is modeled by the
nonlinear Schrödinger equation of the form:

iΨz + Ψxx + Ψyy + U(x, y)Ψ + σ|Ψ|2Ψ = 0. (1)

In the optics notation that we use here, the evolution direction is denoted by z, the propagation
distance. Here, we restrict our considerations to two spatial dimensions and assume that the potential
U(x, y) is complex valued, representing gain and loss in the optical medium, depending on the sign
of the imaginary part (negative for gain, positive for loss) of the potential. In this two-dimensional
setting, the condition of full PT -symmetry in two dimensions is that U∗(x, y) = U(−x,−y). Potentials
with full PT symmetry have been shown to support continuous families of soliton solutions [13–18].
However, an important recent development was the fact that the condition of (full) PT symmetry
can be relaxed. That is, either the condition U∗(x, y) = U(−x, y) or U∗(x, y) = U(x,−y) of, so-called,
partial PT symmetry can be imposed, yet the system will still maintain all real spectra and continuous
families of soliton solutions [19]. Other subsequent results include stable vortex structures in cubic
nonlinear media under the influence of partially PT -symmetric azimuthal potentials [20].

In the original contribution of [19], only the focusing nonlinearity case was considered for two
select branches of solutions and the stability of these branches was presented for isolated parametric
cases (of the frequency parameter of the solution). Our aim in the present work is to provide
a considerably more “spherical” perspective of the problem. The corresponding physical scenario
that we have in mind involves a medium featuring a cubic nonlinearity. Given that the potential
of [19] was principally featuring four “nodes”, we are envisioning an implementation involving
a four waveguide system. This is both in the spirit of the pioneering (two waveguide) work of [3]
and also in that of subsequent proposals for trimers and quadrimers (i.e., three and four waveguide
systems, respectively) [21,22]. A more remote possibility is that of a continuous cubic nonlinearity
medium bearing a complex index of refraction in accordance with the prescription of [19], although,
to the best of our understanding, such a possibility appears less tractable on the basis of current
experimental capabilities.

In what follows, we examine the bifurcation of nonlinear modes from all three point spectrum
eigenvalues of the underlying linear Schrödinger operator of the partially PT -symmetric potential.
Upon presenting the relevant model (Section 2), we perform the relevant continuations (Section 3)
unveiling the existence of nonlinear branches both for the focusing and for the defocusing nonlinearity
case. We also provide a systematic view towards the stability of the relevant modes (Section 4),
by characterizing their principal unstable eigenvalues as a function of the intrinsic frequency parameter
of the solution. In Section 5, we complement our existence and stability analysis by virtue of direct
numerical simulations that manifest the result of the solutions’ dynamical instability when they are
found to be unstable. Finally, in Section 6, we summarize our findings and present our conclusions,
as well as discussing some possibilities for future studies.

2. Model, Theoretical Setup and Linear Limit

Motivated by the partially PT -symmetric setting of [19], we consider the complex potential
U(x, y) = V(x, y) + iW(x, y) where

V =
(

ae−(y−y0)
2
+ be−(y+y0)

2
) (

e−(x−x0)
2
+ e−(x+x0)

2
)

W = β
(

ce−(y−y0)
2
+ de−(y+y0)

2
) (

e−(x−x0)
2 − e−(x+x0)

2
)

. (2)

with real constants β, a �= b and c �= −d. The potential is chosen with partial PT -symmetry so that
U∗(x, y) = U(−x, y). That is, the real part is even in the x-direction with V(x, y) = V(−x, y) and the
imaginary part is odd in the x-direction with −W(x, y) = W(−x, y). The constants a, b, c, d are chosen
such that there is no symmetry in the y direction.
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In [19], it is shown that the spectrum of the potential U can be all real as long as |β| is below
a threshold value, after which a (PT -) phase transition occurs; this is a standard property of
PT -symmetric potentials. For the case of a = 3, b = c = 2, d = 1, the spectrum is real below
the threshold value of |β| ≈ 0.214; we focus on β = 0.1, i.e., we operate well below this critical point.
Figure 1 shows plots of the potential U. The real part of the potential is shown on the left, while the
imaginary part associated with gain-loss is on the right; the gain part of the potential corresponds
to W < 0 and occurs for x < 0, while the loss part with W > 0 occurs for x > 0. Figure 2 shows the
spectrum of U, i.e., eigenvalues for the underlying linear Schrödinger problem (∇2 + U)ψ0 = μ0ψ0.
The figure also shows the magnitude of the corresponding eigenvectors for the three discrete real
eigenvalues μ0. It is from these modes that we will seek bifurcations of nonlinear solutions in what
follows. It is worthwhile to mention here, in comparison, e.g., with the real four-well potential of [23]
that the latter possessed four localized modes, with the fourth antisymmetric, quadrupolar one being
absent from the point spectrum in the case of interest herein.

Figure 1. The plots show the spatial distribution of real (V, left panel) and imaginary (W, right panel)
parts of the potential U with x0 = y0 = 1.5.

Figure 2. The top left plot shows the spectrum of Schrödinger operator associated with the potential U
in the complex plane (see also the text). Plots of the magnitude of the normalized eigenvectors for the
three discrete eigenvalues μ0 are shown in the other three plots.

3. Existence: Nonlinear Modes Bifurcating from the Linear Limit

As is customary, we focus on stationary soliton solutions of (1) of the form Ψ(x, y, z) = ψ(x, y)eiμz.
Thus, one obtains the following stationary equation for ψ(x, y).

ψxx + ψyy + U(x, y)ψ + σ|ψ|2ψ = μψ (3)
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In [19], it is discussed that a continuous family of solitons bifurcates from each of the linear
solutions in the presence of nonlinearity. In order to see this, let μ0 be a discrete simple real eigenvalue
of the potential U (such as one of the positive real eigenvalues in the top left plot of Figure 2). Now,
following [19], expand ψ(x, y) in terms of ε = |μ − μ0| << 1 and substitute the expression

ψ(x, y) = ε1/2
[
c0ψ0 + εψ1 + ε2ψ2 + . . .

]
(4)

into Equation (3). This gives the equation for ψ1 as

Lψ1 = c0

(
ρψ0 − σ|c0|2|ψ0|2ψ0

)
(5)

where ρ = sgn(μ − μ0) and

|c0|2 =
ρ〈ψ∗

0 , ψ0〉
σ〈ψ∗

0 , |ψ0|2ψ0〉
. (6)

Here, ψ∗
0 plays the role of the adjoint solution to ψ0.

Thus, in order to find solutions of (3) for σ = ±1, we perform a Newton continuation in the
parameter μ where the initial guess for ψ is given by the first two terms of (4). The bottom left panel of
Figure 3 shows how the (optical) power P(μ) =

∫ ∫
|ψ|2dxdy of the solution grows as a function of

increasing μ for σ = 1, or as a function of decreasing μ for σ = −1 (from the linear limit). The first
branch begins at the first real eigenvalue of U at μ0 ≈ 0.286, the second branch at μ0 ≈ 0.487, and the
third branch begins at μ0 ≈ 0.785. Plots of the solutions and their corresponding time evolution and
stability properties are shown in the next section.

Figure 3. The bottom left plot shows the power of the solution ψ plotted in terms of the continuation
parameter μ. The curves begin at the lowest power (i.e., at the linear limit) at the discrete real
eigenvalues of approximately 0.286 (branch 1), 0.487 (branch 2), 0.785 (branch 3). Each power curve is
drawn with its corresponding stability noted: a blue solid curve denotes a stable solution and a red
dashed curve denotes an unstable solution. The other three plots track the maximum real part of
eigenvalues ν as a function of the continuation parameter μ: the red dashed line represents the max
real part of eigenvalues that are real (exponential instability) while the blue dotted line tracks the
max real part for eigenvalues that have a nonzero imaginary part (quartets); this case corresponds to
oscillatory instabilities.

As a general starting point comment for the properties of the branches, we point out that all the
branches populate both the gain and the loss side. In the branch starting from μ0 ≈ 0.286, all four
“wells” of the potential of Figure 1 appear to be populated, with the lower intensity “nodes” being
more populated and the higher intensity ones less populated. The second branch starting at μ0 ≈ 0.487,
as highlighted also in [19], possesses an anti-symmetric structure in x (hence the apparent vanishing of
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the density at the x = 0 line). Both in the second and in the third branch, the higher intensity nodes of
the potential appear to bear a higher intensity.

4. Stability of the Nonlinear Modes: Spectral Analysis

The natural next step is to identify the stability of the solutions. This is monitored by using the
linearization ansatz:

Ψ = eiμz
(

ψ + δ
[

a(x, y)eνz + b∗(x, y)eν∗z
])

(7)

which yields the order δ linear system
[

M1 M2

−M∗
2 −M∗

1

] [
a
b

]
= −iν

[
a
b

]
(8)

where M1 = ∇2 + U − μ + 2σ|ψ|2, M2 = σψ2. Thus, max(Re(ν)) > 0 corresponds to instability and
max(Re(ν)) = 0 corresponds to (neutral) stability.

In the bottom left panel of Figure 3, the power curve is drawn with stability and instability as
determined by ν noted by the solid or dashed curve, respectively. The other three plots in Figure 3
show the maximum real part of eigenvalues ν for each of the three branches: the red dashed curve is
the max real part of real eigenvalue pairs, and the blue dotted curve is the max real part of eigenvalue
quartets with a nonzero imaginary part. The former corresponds to exponential instabilities associated
with pure growth, while the latter indicate so-called oscillatory instabilities, where growth is present
concurrently with oscillations. In Figure 4, we plot some example eigenvalues in the complex plane for
some sample unstable solutions. The dominant unstable eigenvalues within these can be seen to be
consonant with the growth rates reported for the respective branches (and for these parameter values)
in Figure 3.

Figure 4. Eigenvalues are plotted in the complex plane (Re(ν), Im(ν)) for a few representative solutions.
One can compare the maximal real part with Figure 3. For example, the top left complex plane plot
here shows that for branch 1 at μ ≈ 0.71, the eigenvalues with the maximum real part are complex; this
agrees with the top left plot of Figure 3 where at μ ≈ 0.71, the blue dotted curve representing complex
eigenvalues is bigger. Similarly, one can check whether the other three eigenvalue plots here also agree
with what is shown in Figure 3, the top right for branch 1, the bottom left for branch 2 and the bottom
right for branch 3.

The overarching conclusions from this stability analysis are as follows. The lowest μ branch,
being the ground state in the defocusing case, is always stable in the presence of the self-defocusing
nonlinearity. For the parameters considered, generic stability is also prescribed for the third branch
under self-defocusing nonlinearity. The middle branch has a narrow interval of stability and then
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becomes unstable, initially (as shown in the top right of Figure 3) via an oscillatory instability and then
through an exponential one. In the focusing case (that was also focused on in [19] for the second and
third branch), all three branches appear to be stable immediately upon their bifurcation from the linear
limit, yet all three of them subsequently become unstable. Branch 1 (that was not analyzed previously)
features a combination of oscillatory and exponential instabilities. Branch 2 features an oscillatory
instability which, however, only arises for a finite interval of frequencies μ, and the branch restabilizes.
On the other hand, for branch 3, when it becomes unstable, it is through a real pair. Branches 2 and
3 terminate in a saddle-center bifurcation near μ = 1.9. The eigenvalue panels of Figure 4 confirm
that the top panels of branch 1 may possess one or two concurrent types of instability (in the focusing
case), branch 2 (bottom left) can only be oscillatorily unstable in the focusing case (yet as is shown in
Figure 3, it can feature either type of instability in the defocusing case), while for branch 3, when it is
unstable in the focusing case, it is via a real eigenvalue pair.

5. Dynamics of Unstable Solutions

Figures 5–7 show the time evolution of three unstable solutions, one on each branch, in the
focusing case for the value of σ = 1. That is, they each correspond to a μ-value that is bigger than the
initial discrete value μ0 and pertain to the focusing case. The time evolution figures show a similar
feature for the unstable solutions, namely that over time the magnitude of the solutions will increase
on the left side of the spatial grid. This agrees with what is expected from PT -symmetry since the left
side of the spatial grid corresponds to the gain side of the potential U. Importantly, also, the nature of
the instabilities varies from case to case, and is consonant with our stability expectations based on the
results of the previous section.

In Figure 5, branch 1 (for the relevant value of the parameter μ) features an oscillatory instability
(but with a small imaginary part). In line with this, we observe a growth that is principally exponential
(cf. also the top panel for the power of the solution), yet features also some oscillation in the amplitude
of the individual peaks. It should be noted here that although two peaks result in growth and two
in decay (as expected by the nature of W in this case), one of them clearly dominates between the
relevant amplitudes.

Figure 5. This figure shows the time evolution of the branch 1 solution for the value μ ≈ 0.71.
The bottom left plot shows the magnitude of the solution |Ψ| at z = 0. Observe that this solution has
four peaks in its magnitude over the two-dimensional spatial grid. The bottom right plot shows the
solution at z = 23. Observe that the magnitudes of the peaks on the left side have increased. The top
left plot shows the time evolution of the power of the solution as a function of the evolution variable z.
The top right plot here shows the evolution of the four peaks in the magnitude of the solution as
a function of z (blue = bottom left peak, red = top left peak, green = bottom right peak, cyan = top
right peak).
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In Figure 6, it can be seen that branch 2, when unstable in the focusing case, is subject to
an oscillatory instability (with a fairly significant imaginary part). Hence the growth is not pure,
but is accompanied by oscillations as is clearly visible in the top left panel. In this case, among the
two principal peaks of the solution of branch 2, only the left one (associated with the gain side) is
populated after the evolution shown.

Figure 6. This figure is similar to Figure 5 (the final evolution distance however is about z = 114). Here,
the plots correspond to the time evolution of the branch 2 solution for the value μ ≈ 0.94. In the top
right plot, the blue curve corresponds to the left peak of the magnitude of the solution over z and the
green corresponds to the right peak of the magnitude.

Lastly, in branch 3, the evolution (up to z = 42) manifests the existence of an exponential instability.
The latter leads, once again, to the indefinite growth of the gain part of the solution, resulting in one of
the associated peaks growing while the other (for x > 0 on the lossy side) features decay.

Figure 7. This figure is similar to Figure 5 (with an evolution up to distance z = 42). Here, the plots
correspond to the evolution of the branch 3 solution for the value μ ≈ 1.0. In the top right plot, the blue
curve corresponds to the left peak of the magnitude of the solution over z and green corresponds to the
right peak of the magnitude. Clearly, once again, the gain side of the solution eventually dominates.

It is worthwhile to mention that in the case of branch 2—the only branch that was found (via our
eigenvalue calculations) to be unstable in the self-defocusing case—we also attempted to perform
dynamical simulations for σ = −1. Nevertheless, in all the cases considered, it was found that,
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fueled by the defocusing nature of the nonlinearity, a rapid spreading of the solution would take
place (as z increased), resulting in the interference of the wave pattern with the domain boundaries.
In Figure 8, we show an example where the maximum real part of the eigenvalues is ≈ 0.016. This weak
instability is of exponential type with eigenvalues having a nonzero real part lying on the real axis
similar to the eigenvalues in the bottom right panel of Figure 4 (but very close to the origin). Figure 8
shows that the solution initially seems to follow the expected pattern of dominating on the gain side
(left) and there is a power growth similar to the focusing cases, but accompanied by a quick increase of
the spatial extent of the solution leading to interference with the computational domain boundary.

Figure 8. This figure is similar to Figure 5 (with an evolution up to distance z = 300). Here, the plots
correspond to the evolution of the branch 2 solution for the value μ ≈ 0.244. In the top right plot,
the colors follow the same pattern as in Figure 5 representing the four peaks. While the gain side of the
solution seems to dominate, we also observe a quick increase in the spatial footprint of the solution.
Shortly after the plotted time interval, the solution interferes with the boundary of the computed
spatial grid.

6. Conclusions and Future Challenges

In the present work, we have revisited the partially PT -symmetric setting originally proposed
in [19] and have attempted to provide a systematic analysis of the existence, stability and evolutionary
dynamics of the nonlinear modes that arise in the presence of such a potential for both self-focusing and
self-defocusing nonlinearities. It was found that all three linear modes generate nonlinear counterparts.
Generally, the defocusing case was found to be more robustly stable than the focusing one. In the
former, two of the branches were stable for all the values of the frequency considered, while in
the focusing case, all three branches developed instabilities sufficiently far from the linear limit
(although all of them were spectrally stable close to it). The instabilities could be of different types,
both oscillatory (as for branch 2) and exponential (as for branch 3) or even of mixed type (as for
branch 1). The resulting oscillatorily or exponentially unstable dynamics, respectively, led to the gain
overwhelming the dynamics and leading to indefinite growth in the one or two of the gain peaks of
our four-peak potential.

Naturally, there are numerous directions that merit additional investigation. For instance, and
although this would be of less direct relevance in optics, partial PT symmetry could be extended to
three dimensions. There, it would be relevant to appreciate the differences between potentials that
are partially PT symmetric in one direction vs. those partially PT symmetric in two directions.
Another relevant case to explore in the context of the present mode is that where a PT phase
transition has already occurred through the collision of the second and third linear eigenmode
considered herein. Exploring the nonlinear modes and the associated stability in that case would
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be an interesting task in its own right. Such studies are presently under consideration and will be
reported in future publications.
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Abstract: In J. Phys. Soc. Jpn. 83, 034404 (2014), we designed a scheme of waveguide arrays with
long-range linear coupling effects and studied the bright solitons in this system. In this paper,
we further study the dynamics of dark and grey solitons in such waveguide arrays. The numerical
simulations show that the stabilities of dark solitons and grey solitons depend on the normalized
decay length and the scaled input power. The width of dark solitons and the grey level of grey solitons
are studied. Our results may contribute to the understanding of discrete solitons in long-range linear
coupling waveguide arrays, and may have potential applications in optical communications and
all-optical networks.
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1. Introduction

Nonlinear discrete systems attract considerable attention in many branches of physics, and exhibit
various physical characteristics [1–3]. In the fields of optics [4–6] and Bose–Einstein condensates
(BECs) [7–9], the evolution of nonlinear waves in discrete systems is a popular topic.

The basic model of a nonlinear discrete system in optics is an array of evanescently-coupled
waveguides consisting of nonlinear materials. In a waveguide array, the propagation of light is
primarily characterized by the coupling caused by the overlap between the fundamental modes of
nearest-neighbouring waveguides. A crucial issue is to study the formation and properties of discrete
solitons (DSs) in such nonlinear waveguide systems. DS formation is the result of a balance between
on-site nonlinearity and the discrete diffraction induced by linear coupling among adjacent waveguides
or lattice sites. DSs show strong potential for application in all-optical data processing; their most
attractive feature is that DSs can enable intelligent functional operations such as routing, blocking,
logic functions, and time gating in many all-optical devices [10].

An interesting extension is to investigate the formation of solitons in the presence of nonlocal
effects. Trillo and colleagues studied the shock waves and dark solitons in nonlocal nonlinear
media [11,12]. A next-nearest neighbour (NNN) model in which the linear coupling matrix
becomes a quadruple-diagonal matrix after higher-order diffraction was studied by Kevrekidis and
colleagues [13]. In 2012, Noskov and colleagues conducted significant studies of the nonlinear dipolar
field in a nanoparticle train [14–16]—which can be viewed as a discrete nonlinear system—and reported
that a linear coupling effect can exist among all lattice sites because of long-range dipole–dipole
interactions. This system can produce all non-zero off-diagonal elements in the linear coupling matrix.
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Long-range coupling in waveguide arrays is the coupling between the waveguides that were
spaced with certain distance—it can affect the propagation dynamics of light field. Long-range
coupling is different from that of the conventional waveguide arrays, which only consider the
coupling between the adjacent waveguides (i.e., the short-range coupling). We have designed such
a waveguide array with long-range coupling and studied the formation of bright solitons—see our
previous paper in [17]. In this work, we further study the dynamics of dark and grey solitons in such
a waveguide array, which was not considered before. The numerical results show that: regarding
the dark solitons, the stability and width strongly depend on the mean power and the normalized
decay length, which describes the effective length of the coupling effects in the waveguides; regarding
the grey solitons, the stability and grey level are determined by the mean power and the normalized
decay length.

The remainder of this paper is organized as follows. We provide a brief description of the model
and basic equations in Section 2. Then, we study dark solitons in Section 3 and the grey solitons in
Section 4. The paper is concluded in Section 5.

2. Model and Basic Equations

In [17], we designed a scheme for an optics experiment to apply our model of long-range
linear coupling waveguide arrays. The model is built based on an AlGaAs single-mode waveguide
structure. The real-scale linear coupling parameter between different waveguides can be fitted with
an exponential decay, hence the long-range linear coupling effect is introduced in the system.

In our scheme, DSs can be described by the following equation, which is adapted from the discrete
nonlinear Schrödinger equation [18,19]:

i
∂

∂z
un = γ|un|2un − ∑

m
Cmnum. (1)

Here, γ is the fixed nonlinear parameter of the system, where γ = 1 or γ = −1 indicates that the
system features self-focusing or self-defocusing nonlinearity, respectively. un is the field amplitude
of the n-th mode. Because each waveguide is identical, for simplicity, the propagation constant β is
absorbed into the phase of un. z is the propagation distance along the waveguides, n is the number of
waveguides, and the coefficient Cmn defines the coupling, which depends on the optical wavelength
and the field overlap between m-th waveguide and n-th waveguide. Generally, Equation (1) can be
expressed in matrix form as follows:

i
∂

∂z
U = (C + V)U, (2)

where the matrix U and the elements of the matrix V are defined as U = (u1, · · · , uN)
T (where the

superscript T indicates the transposition of the matrix and N is the number of waveguides) and
Vmn = γ|um|2δmn (where δmn is the Kronecker symbol), respectively.

The total power of the guide mode in the system is given by P = ∑N
n |un|2. In the model,

we consider the matrix elements Cmn in Equation (1) to be given by

Cmn =

{
c0 exp(−j/d) (j �= −1),

0 (j = −1),
(3)

where c0 is the control parameter, j = |m− n| − 1, and d is the normalized decay length, which describes
the effective length of the coupling effects in the waveguides. When d � 1, the system corresponds to
a nearest-neighbour-coupled model. By contrast, when d � 1, the system exhibits strong coupling
effects. Equation (3) forms the linear coupling matrix C, which represents the long-range linear
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coupling interactions among all lattice sites. In optics, when the separation between waveguides is
sufficiently narrow, such higher-order cross-coupling effects can be induced [20].

The relationship between the scaled parameters in Equation (1) and the real-scale parameters are
given in [17] in detail.

We assume that the soliton solutions for Equation (1) are written as

un(z) = φne−iμz, (4)

where φn is the stationary solution and −μ is the propagation constant, which is defined as

μ =
U†(C + V)U

P
. (5)

U is the solution of field amplitude in matrix form and U† is the conjugated matrix
of U. The stability of stationary solitons can be numerically determined by computing the
eigenvalues for small perturbations or through direct simulations. The perturbed solution is given as
un = e−iμz(φn + wneiλz + v∗ne−iλ∗z). Substituting this solution into Equation (1) and linearizing yields
the following eigenvalue problem:

(
C − μ + 2V Φ

−Φ∗ −C + μ − 2V

)(
w
v

)
= λ

(
w
v

)
, (6)

where the elements of the matrix Φ are defined as Φmn = γφ2
mδmn.

The solution φ is stable if all eigenvalues λ are real.

3. Dark Solitons

In numerical simulations, we apply the imaginary time propagation (ITP) method [21] to study
the fundamental solution to Equation (1) for dark solitons. We find that the stability of the dark
soliton solutions changes with the scaled total power P and the normalized decay length d. When
the eigenvalues λ have an imaginary part, this means that the solution of φ is unstable. Figure 1a,b
show that the value of the imaginary part of λ (Im(λ)) varies with P and d. From Figure 1a, we can see
two traits of dark solitons in this long-range linear coupling waveguide array. First, the nonlinearity
strengthens when P increases, and the system requires a stronger coupling effect to achieve a stable
solution for dark solitons. It can be seen that d increases as P increases. For example, when P = 0.5 and
d > 1.5, the solitons are stable (Im(λ) = 0); however, when P increases to P = 1, the coupling effect must
be enhanced to d > 2.2 to achieve stable solitons. Second, when the effective length d of the coupling
effect is fixed, Im(λ) increases with larger P. This means that the instability is enhanced when the
scaled total power P is higher. From Figure 1b, we can see when the system has either a strongly local
effect (d = 0.0001) or a strongly coupling effect (d = 5); the dark soliton solution is stable regardless
of the value of P. However, for 0.0001 < d < 5, the system is subject to the combined action of the
short-range and long-range effects, and the stability conditions for dark solitons are more complex.
In this region of d, the tendency is that dark solitons become more unstable as P increases. Figure 1c,d
show the amplitude and intensity, respectively, of the fundamental solution for dark solitons with
P = 1 and d = 3. In Figure 1e, we present an example of the evolution of stable dark solitons with
P = 1 and d = 3. In Figure 1f, we present an example of the evolution of unstable dark solitons with
P = 0.5 and d = 0.8.

We also present the widths of dark solitons in this system for different d and P values, as shown
in Figure 2. The dotted lines represent unstable dark soliton solutions (with Im(λ) �=0), and the solid
lines represent stable solutions.
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Figure 1. Dark solitons in a 513-waveguide array. (a) The imaginary part of the eigenvalues λ (Im(λ))
for different d values; (b) The imaginary part of the eigenvalues λ (Im(λ)) for different P values;
(c) The amplitude of the fundamental solution for dark solitons (P = 1 and d = 3); (d) The intensity of the
fundamental solution for dark solitons (P = 1 and d = 3); (e) The evolution of a stable solution for dark
solitons (P = 1 and d = 3); (f) The evolution of an unstable solution for dark solitons (P = 0.5 and d = 0.8).

Figure 2. Widths of dark solitons for different d and P values.
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4. Grey Solitons

We use the same method (ITP) to study the fundamental solution for grey solitons. Figure 3 shows
the characteristics of grey solitons. Figure 3a,b show that the value of the imaginary part of λ (Im(λ))
varies with P and d. Grey solitons in this long-range linear coupling system have features similar to
those of dark solitons: d increases as P increases (Figure 3a); when the effective length d of the coupling
effect is fixed, Im(λ) increases with higher P (Figure 3a), and grey solitons become more unstable
as P increases in the region of 0.0001 < d < 5 (Figure 3b). However, grey solitons also show some
distinct features compared with dark solitons; for example, the instability of grey solitons is stronger
than that of dark solitons. First, by comparing Figure 3a,b with Figure 1a,b, we can see that Im(λ) is
larger for grey solitons than for dark solitons given the same P and d. Second, the threshold in d where
solitons transition from instability to stability lies at a higher value for grey solitons than for dark
solitons. For example, as seen in Figure 1a, the threshold is d = 2.2 for P = 1, whereas in Figure 3a,
the threshold is d = 3 for P = 1. Figure 3c,d show the amplitude and intensity, respectively, of the
fundamental solution for grey solitons with P = 1 and d = 3. In Figure 3e, we present an example of
the evolution of stable grey solitons with P = 1 and d = 3. In Figure 3f, we present an example of the
evolution of unstable grey solitons with P = 0.5 and d = 0.8.

We also plot the grey levels for grey solitons with different d and P values, as shown in Figure 4.
The grey level is defined as follows:

Greylevel =
|max(un)|2
|min(un)|2

. (7)

The dotted lines represent unstable grey soliton solutions (with Im(λ) �= 0), and the solid lines
represent stable solutions.
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(e) (f)

Figure 3. Grey solitons in a 512-waveguide array. (a) The imaginary part of the eigenvalues λ (Im(λ))
for different d values; (b) The imaginary part of the eigenvalues λ (Im(λ)) for different P values;
(c) The amplitude of the fundamental solution for grey solitons (P = 1 and d = 3); (d) The intensity of
the fundamental solution for grey solitons (P = 1 and d = 3); (e) The evolution of a stable solution for
grey solitons (P = 1 and d = 3); (f) The evolution of an unstable solution for grey solitons (P = 0.5 and
d = 0.8).

Figure 4. Grey levels of grey solitons with different d and P values.

5. Conclusions

In conclusion, we performed numerical studies of dark solitons and grey solitons in a waveguide
array with long-range linear coupling effect. This system is described by the discrete nonlinear
Schrödinger equation with off-diagonal elements in the linear coupling matrix filled with non-zero
interaction terms. The stabilities of dark solitons and grey solitons are studied. The features of solitons
such as the widths of dark solitons and the grey levels of grey solitons are comprehensively studied.
Our results may fill the gap in the understanding of discrete solitons in long-range linear coupling
waveguide arrays, and our design may have potential applications in optical communications and
all-optical networks.
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Abstract: We study linear and nonlinear pulse propagation models whose linear dispersion relations
present bands of forbidden frequencies or forbidden wavenumbers. These bands are due to the
interplay between higher-order dispersion and one of the terms (a second-order derivative with
respect to the propagation direction) which appears when we abandon the slowly varying envelope
approximation. We show that as a consequence of these forbidden bands, narrow pulses radiate in a
novel and peculiar way. We also show that the nonlinear equations studied in this paper have exact
soliton-like solutions of different forms, some of them being embedded solitons. The solutions obtained
(of the linear as well as the nonlinear equations) are interesting since several arguments suggest that
the Cauchy problems for these equations are ill-posed, and therefore the specification of the initial
conditions is a delicate issue. It is also shown that some of these equations are related to elliptic curves,
thus suggesting that these equations might be related to other fields where these curves appear, such
as the theory of modular forms and Weierstrass ℘ functions, or the design of cryptographic protocols.

Keywords: optical solitons; embedded solitons; soliton radiation; nonlinear Schrödinger equation;
elliptic curves; forbidden frequencies; spectral gap

1. Introduction

The nonlinear Schrödinger (NLS) equation:

i
∂u
∂z

+ ε2
∂2u
∂t2 + γ1|u|2u = 0 (1)

plays a central role in the study of light pulses propagating in optical fibers. In this equation z
represents the distance along an optical fiber, t is the so-called retarded time, u(z, t) is the envelope of
the electric field of a laser beam, ε2 is a real constant whose value depends on the laser´s frequency,
and γ1 depends on the characteristics of the fiber (and also on the frequency of the light). It is worth
mentioning that Equation (1) is sometimes referred to as the temporal NLS equation, to distinguish it
from the spatial NLS equation, whose physical meaning is different, even though it has the same form
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as Equation (1), but with a spatial variable x (corresponding to a transversal coordinate) instead of the
retarded time t.

In spite of its great importance, it should be remembered that Equation (1) is an approximate
equation. In order to arrive at this equation several terms have been neglected. Some of these neglected
terms are the following:

(a) −iuttt and/or u4t: these higher-order derivatives are necessary to describe sub-picosecond
pulses [1–12]; in particular, conditions for including u4t and discarding −iuttt are discussed in [7,9],

(b) |u|4u: this higher-order nonlinearity is used when we want to describe the propagation of pulses
when the light intensity approaches the values which produce the “saturation” of the refractive
index [13–20],

(c) i(|u|2u)t: this term is necessary to describe the self-steepening of the optical pulses [21–23],

(d) u(|u|2)t: this term is associated with the effect of Raman scattering [24–27].

The effects of including these terms in generalized NLS equations have been thoroughly studied
in the literature. Moreover, an additional approximation introduced in the deduction of the NLS
equation is the slowly-varying-envelope approximation (SVEA). This approximation is adequate
when the complex amplitude of an optical pulse varies slowly in space and time. However, when we
deal with optical pulses whose widths only contain a few cycles of the carrier wave, it is necessary
to improve the SVEA. Several alternatives have been proposed to improve this approximation.
As early as 1985, Christodoulides and Joseph studied an extended NLS equation which contained
higher-order dispersion and the additional terms uzz, i(|u|2u)τ and (|u|2u)ττ , where τ was the standard
(laboratory) time [28], and they found an interesting exact soliton solution by an algebraic tour de
force. In more recent times completely different models have been proposed to describe ultra-short
optical pulses, and the famous Kortweg-de Vries (KdV), modified KdV (mKdV) and sine-Gordon (sG)
equations have been found useful for this purpose, as well as a combination of the last two of these
equations [29,30]. Another two equations which have been useful to describe ultra-short spatiotemporal
pulses are a two-dimensional sG equation [31] and a cubic generalized Kadomtsev-Petviashvili (cgKP)
equation [32,33]. It is worth observing that in all these models (KdV, mKdV, sG, mKdV-sG, 2D-sG and
cgKP) the temporal variable which appears in the equations is a delayed time (not the laboratory time),
similar to the retarded time that appears in the standard NLS equation.

In the context of spatial solitons the paraxial approximation plays a role analogous to the SVEA in
temporal solitons, and the effects of nonparaxiality have also been studied. In particular, the following
non-paraxial extensions of the spatial NLS equation have been studied [34–36]:

iuz + αuzz +
1
2

uxx + |u|2u = 0 (2)

iuz + αuzz + ε2uxx − γ1|u|2u + γ2|u|4u = 0 (3)

The study of Equation (2) addresses a basic question which might be of interest to any reader
interested in optical solitons: what is the effect of introducing the non-paraxial term uzz in the
standard NLS equation? On the other hand, the study of Equation (3) considers an equally interesting
question, albeit a slightly more specialized one: what is the effect of taking into account simultaneously
nonparaxiality and higher-order nonlinearities? This question suggests that in the field of temporal
solitons it would be interesting to investigate the effect of taking into account simultaneously non-SVEA
terms, higher-order dispersion and higher-order nonlinearities such as |u|4u. A study of this type
was carried out in Ref. [28], where a model with these characteristics was proposed (except that the
nonlinearity |u|4u was not considered). Complex models of this type, which include many different
terms, may provide adequate descriptions for the behavior of very short pulses. However, in such
models it might be difficult to appreciate the individual effect of each of the terms which have been
taken into account.
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In the present communication we are interested in studying approximate linear and nonlinear
pulse propagation models which incorporate higher-order dispersion, higher-order nonlinearities and
one of the terms that appear when we drop the SVEA (a second-order derivative with respect to the
propagation direction). When we abandon the SVEA, the terms uzz, i(|u|2u)τ and (|u|2u)ττ must be
introduced in the NLS equation (τ being the standard laboratory time). However, if we use the retarded
time to describe the propagation of the optical pulses, in addition to the term uzz, it is also necessary
to introduce a mixed derivative of the form uzt in the resulting equation [37]. To study the complete
equation containing these two derivatives (uzz and uzt), the nonlinear terms i(|u|2u)t and (|u|2u)tt, an
additional nonlinearity of the form |u|4u, and higher-order dispersive terms (−iuttt and/or u4t) might
be interesting and important, but it is not the objective of the present work. In this communication we
are only interested in studying simplified models where the terms uzt, i(|u|2u)t and (|u|2u)tt have been
discarded. It is clear that these models do not pretend to provide a quantitative accurate description
of a particular real system, but we will see that the study of these simplified models reveals that the
simultaneous presence of the non-SVEA term uzz and higher-order dispersive terms such as −iuttt or
u4t may produce interesting results. In particular, we will show that the combined effects of these
terms generate bands of forbidden frequencies, which may be related to the gaps which have been
experimentally observed in the spectral profiles of very narrow pulses propagating in photonic crystal
fibers [38]. Moreover, we will see that just the mathematical structure of the equations considered
in this paper is interesting by itself, since we will show that these equations are related to elliptic
curves, thus suggesting that a relationship may exist between the study of optical solitons and other
fields where these curves play an important role, such as the abstruse theory of modular forms and
Weierstrass ℘ functions, or the design of cryptographic protocols.

We will begin this communication by studying the linear equations:

iuz + c0uzz + c2utt − ic3uttt = 0 (4)

iuz + c0uzz + c2utt + c4u4t = 0 (5)

and afterwards we will focus our attention on the nonlinear equations:

iuz + c0uzz + c2utt + c4u4t + γ1|u|2u − γ2|u|4u = 0 (6)

iuz + c0uzz + c2utt − ic3uttt + c4u4t + γ1|u|2u − γ2|u|4u = 0 (7)

iuz + c0uzz + c2utt + c4u4t + γ1|u|2u = 0 (8)

The study of the linear Equations (4) and (5) will reveal how the interplay between the non-SVE term
uzz and the higher-order dispersive terms generates bands of forbidden frequencies or forbidden
wavenumbers. Then, we will show that the nonlinear Equations (6)–(8) have exact solitons of different
types, some of them being embedded solitons.

The structure of this paper is the following. In Section 2 we will show that the linear dispersion
relations of Equations (4) and (5) have highly unusual forms. We shall see that the dispersion relation
of Equation (4) is an elliptic curve, while that of Equation (5) presents bands of forbidden frequencies,
or forbidden wavenumbers. As the occurrence of elliptic curves in this context opens the possibility of
relating Equation (4)—or its solutions—to other areas where elliptic curves play an important role, in
Appendix A we describe in more detail the basic characteristics of these curves, and in Appendix B
we briefly discuss the relationship of these curves with modular forms and Fermat´s last theorem.
In Section 3 we study the linear Equations (4) and (5). We will begin this section by paying attention
to the fact that several results indicate that the Cauchy problems for these equations are ill-posed,
and consequently the specification of initial conditions is a delicate issue. Then we present different
solutions of these equations. These solutions will show that narrow pulses that evolve according to
Equations (4) and (5) emit radiation in a completely novel and unexpected way, never observed in
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other models of optical pulses. In Section 4 exact soliton solutions of Equations (6)–(8) are presented.
It is shown that Equation (6) has two different types of solitons (embedded solitons and solitons with a
nonlinear frequency shift), Equation (7) has moving solitons of different heights and different velocities,
and the solitons of Equation (8) are given by squared hyperbolic secants, thus proving that the interplay
between the non-SVEA term uzz and higher-order dispersive and nonlinear terms permits the existence
of different types of solitons. Finally Section 5 contains the conclusions of the paper.

2. Dispersion Relations and Elliptic Curves

2.1. Dispersion Relation of Equation (4)

Let us begin by paying attention to the form of the dispersion relation of Equation (4). If we
substitute the tentative solution:

u(z, t) = ε exp(i(kz − ωt)) (9)

in Equation (4), the following dispersion relation is easily found:

c0k2 + k = c3ω3 − c2ω2 (10)

and this equation can be rescaled by defining k̃ = c1/2
0 k and ω̃ = c1/3

3 ω, thus obtaining (after supressing
the tildes):

k2 + a3k = ω3 + a2ω2 (11)

where a3 = c−1/2
0 and a2 = −c2c−2/3

3 . This equation describes an elliptic curve (if a2 �= 0 and a3 �= 0),
which is an interesting result since elliptic curves have important roles in areas which might seem
completely unrelated to the study of light pulses in optical fibers, such as the abstruse theory of modular
forms [39], or the development of cryptographic protocols [40]. For the sake of simplicity in the following
we will also say that Equation (10) itself is an elliptic curve, although, being rigorous, we should say
that Equation (10) is an elliptic curve up to scaling. In other words, it is an elliptic curve distorted by
a non-uniform scaling (i.e., a scale transformation which applies different scale factors in the k and
ω axes).

Now let us pay more attention to the shape of the curves described by the dispersion relation
(10). From Equation (10) it follows that the wavenumber k is given by the following function of
the frequency:

k(ω) =
−1 ±

√
1 − 4c0(c2ω2 − c3ω3)

2c0
(12)

and the form of this function is quite different from the dispersion relations found in other optical
systems. If we choose, for example, the coefficients c0 = 1/30, c2 = 1/2 and c3 = 1/15, the form of the
curve k(ω) is shown in Figure 1.

Figure 1. Dispersion relation of Equation (4), given by Equation (12), with c0 = 1/30, c2 = 1/2 and
c3 = 1/15.
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We can see that the curve is symmetrical with respect to a horizontal line, but completely
asymmetrical with respect to the k-axis, which is an unusual behavior. However, the behavior of k(ω)

can be more bizarre. If we choose the coefficients c0 = 1/40, c2 = 1/2 and c3 = 1/50, k(ω) has the
form shown in Figure 2.

Figure 2. Dispersion relation of Equation (4), given by Equation (12), with c0 = 1/40, c2 = 1/2 and
c3 = 1/50.

We can see that in this case the dispersion relation exhibits two bands of forbidden frequencies,
thus implying that small-amplitude linear waves cannot propagate with frequencies in the ranges:

−∞ < ω < ω1 and ω2 < ω < ω3, (13)

where:
ω1 = 10

(
1 −

√
2
)

, ω2 = 5 and ω3 = 10
(

1 +
√

2
)

(14)

are the frequencies which make the radicand that appears in Equation (12) equal to zero. This radicand
becomes negative for frequencies in the intervals shown in (13), and therefore k(ω) becomes complex
for these frequencies. In the next section we will investigate the consequences of the existence of these
bands of forbidden frequencies.

The fact that the linear dispersion relation of Equation (4) is an elliptic curve suggests that this
equation might be related to other subjects where these curves also appear. In particular, a relationship
may exist between optical solitons and the theory of modular forms, which played a central role in the
proof of Fermat’s last theorem. For this reason in Appendix A we explain more precisely what an
elliptic curve is, and in Appendix B we briefly review what was the role played by elliptic curves and
modular forms in the proof of Fermat’s last theorem.

To close this sub-section it is worth observing that if we introduced the mixed derivative uzt in
Equation (4), the resulting dispersion relation would still be an elliptic curve.

2.2. Dispersion Relation of Equation (5)

Now let us direct our attention to Equation (5). If we substitute the plane wave (9) into Equation (5)
we arrive at the following dispersion relation:

c0k2 + k +
(

c2ω2 − c4ω4
)
= 0 (15)

Let us now study the form of this dispersion relation in more detail. To determine the range of
wavenumbers permitted by this relation it is convenient to write it in the form:

ω2 = (2c4)
−1

{
c2 ±

√
c2

2 + 4c4(c0k2 + k)
}

(16)

102



Appl. Sci. 2017, 7, 340

This equation implies that every real value of k will be permitted (i.e., every real value of k
corresponds to a positive ω2) if and only if:

c0c2
2 > c4 (17)

In the opposite case, when:
c0c2

2 < c4 (18)

the dispersion relation contains a band of forbidden wavenumbers. When the condition (18) is satisfied,
the analysis of the function defined by Equation (16) shows that ω2 turns out to be negative if k is in
the interval:

k1 < k < k2 (19)

where:

k1,2 = (2c0)
−1

{
−1 ±

√
1 − c0c2

2/c4

}
(20)

Therefore, when the condition (18) holds, the inequalities (19) define a band of
forbidden wavenumbers.

In Figure 3 we can see the shape of the dispersion relation k(ω) defined by Equation (15) when
c0 = 1/30, c2 = 1/2 and c4 = 1/80. As these values satisfy the condition (18), the gap of forbidden
wavenumbers seen in the figure is explained. The dashed horizontal lines indicate the wavenumbers
C1 and C2 of the soliton solutions of Equation (6) (with γ1 = 5 and γ2 = 1) that will be determined in
Section 4.

Figure 3. Dispersion relation of Equations (5) and (6), defined by Equation (15), with c0 = 1/30,
c2 = 1/2 and c4 = 1/80, which satisfy the condition (18). The dashed lines k = C1,2 indicate the
wavenumbers C1 and C2 of the solution of Equation (6) given by Equations (52)–(55) with γ1 = 5 and
γ2 = 1.

Now let us study in more detail what happens when the condition (17) holds. In this case the
linear dispersion relation presents two bands of forbidden frequencies, which is a novel situation in the
study of optical solitons. To convince ourselves that such forbidden frequency gaps really exist, it is
convenient to write the linear dispersion relation (15) in the form:

k = (2c0)
−1

{
−1 ±

√
1 − 4c0(c2ω2 − c4ω4)

}
(21)

This equation implies that if c0c2
2 > c4 holds, there are frequencies for which k turns out to be

complex. Analyzing the radicand which appears on the right-hand-side of Equation (21) we find that
these forbidden frequencies are in the intervals:

−ω2 < ω < −ω1 and ω1 < ω < ω2 (22)
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and the frequencies ω1 and ω2 are defined by:

ω2
1,2 = (2c4)

−1
{

c2 ±
√

c2
2 − c4/c0

}
(23)

where the minus sign corresponds to ω1, and the plus sign defines ω2. In Figure 4 we can see the shape
of the dispersion relation (21) in the particular case when c0 = 1/15, c2 = 1/2 and c4 = 1/256. These
coefficients satisfy the condition (17), and therefore there are two bands of forbidden frequencies, as
we can see in the figure. The consequences of the presence of these forbidden frequency gaps will be
investigated in the following section. The dashed horizontal lines shown in this figure indicate the
values of the wavenumbers of the soliton solutions of Equation (6) (with γ1 = 5 and γ2 = 1) that will
be found in Section 4.

Figure 4. Dispersion relation of Equations (5) and (6), given by Equation (21), with c0 = 1/15, c2 = 1/2
and c4 = 1/256, which satisfy the condition (17). The dashed lines k = C1,2 indicate the wavenumbers
C1 and C2 of the solution of Equation (6) given by Equations (52)–(55) with γ1 = 5 and γ2 = 1.

We now know that the dispersion relation (15) has interesting forms: when c0c2
2 < c4 there is a

band of forbidden wavenumbers (as in Figure 3), and when c0c2
2 > c4 there are two bands of forbidden

frequencies (as in Figure 4). The only case that we have not examined is when the coefficients c0, c2

and c4 are on the surface defined by the equation:

c0c2
2 = c4 (24)

Only in this case (intermediate between the inequalities (17) and (18)) does the dispersion relation
(15) have no gaps. An example of this case is obtained when c0 = 1/20, c2 = 1/2 and c4 = 1/80.
With these coefficients the shape of the dispersion relation is shown in Figure 5.

Figure 5. Dispersion relation of Equation (5), defined by Equation (15), with c0 = 1/20, c2 = 1/2 and
c4 = 1/80, which satisfy the condition (24).

We have thus seen that the dispersion relations of Equations (4) and (5) have interesting and
unusual forms. Now we will investigate the behavior of solitary waves that obey these equations.
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3. The Linear Equations (4) and (5)

3.1. The Issue of the Initial Conditions

In the study of optical solitons many variants of the nonlinear Shrödinger (NLS) equation have
been considered in the past in order to describe the propagation of light pulses in optical fibers
under different conditions. However, different as they are, most of these variants share a common
denominator: they are first-order equations with respect to the evolution variable z. This characteristic
implies that in all these cases the initial condition u(z = 0, t) is sufficient to determine particular
solutions of the corresponding equations. This fact seems to be consistent with physical reality: if we
have an optical fiber (with well-defined characteristics: shape, composition, refraction index, type of
cladding, etc.), and a laser beam (of known frequency) is sent into the fiber, the light intensity (as a
function of time) at the beginning of the fiber (i.e., at z = 0) is all we need to determine completely the
behavior of light along the fiber.

On the other hand, the situation with Equations (4)–(8) is completely different. These equations
are of second order in z, and this characteristic has two important consequences:

CONSEQUENCE 1:

With these equations we require two initial conditions, u(z = 0, t) and uz(z = 0, t), in order to
determine a particular solution. This requirement is somewhat perplexing since physical intuition
suggests that u(z = 0, t) should be enough to determine the evolution of light along the fiber. Therefore,
it seems as if we were in the presence of a contradiction: while mathematics indicates that Equations
(4)–(8) require two initial conditions to define a particular solution, physics suggests that the knowledge
of u(0, t) should be enough to define completely the behavior of the system.

CONSEQUENCE 2:

Although formal proofs are still lacking, several arguments suggest that the Cauchy problems for
Equations (4)–(8) might be ill-posed (in certain regions of the space of coefficients cn). The following
results permit us to understand why this ill-posedness is to be expected:

(i) The presence of the non-paraxial term uzz in the equation:

iuz + εuzz +
1
2
(
uxx + uyy

)
+ |u|2u = 0 (25)

makes the Cauchy problem for this equation ill-posed [21,41].
(ii) The presence of higher-order nonlinearities in equations of the form:

iuz + utt + λ|u|mu = 0 (26)

makes their Cauchy problems ill-posed if m ≥ 4 and λ > 0 [42].
(iii) The presence of higher-order derivative u4t in the equation:

uzz = utt + 2u2
t + 2uutt + u4t (27)

makes the Cauchy problem for this equation linearly ill-posed [43].
(iv) The solutions of the linear Equations (4) and (5) and the linear parts of Equations (6)–(8) contain

decaying as well as growing modes of the form exp(±σz − iωt), as we shall see in Sections 3.2
and 3.3. The existence of these modes makes the corresponding Cauchy problems linearly
ill-posed [43].

(v) Attemps of solving initial value problems for Equations (4)–(8) by finite differences in t, and
Runge-Kutta algorithms in z, encounter difficulties that are typical of ill-posed problems.
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At first sight these two consequences seem to be unrelated. However, as we explain in the
following, there is a connection between them. Let us begin by paying attention to Consequence 2.
If the Cauchy problems associated to Equations (4)–(8) are indeed ill-posed, then (as Hadamard first
observed [44]) it would be necessary to impose certain compatibility conditions among the initial
conditions, for these problems to have global solutions (i.e., solutions defined for all t). Consequently,
these compatibility conditions will establish a link between the two initial conditions u(z = 0, t) and
uz(z = 0, t), thus implying that, essentially, the initial condition u(z = 0, t) does indeed determine the
future of the system, as physical intuition suggested. In this form, the compatibility conditions required
by the ill-posedness of these problems (i.e., by Consequence 2), solve the apparent contradiction
contained in Consequence 1 (i.e., the contrast between the mathematical requirement of two initial
conditions, and the physical suggestion that only one condition should be necessary).

In the following two sub-sections we will examine different solutions of Equations (4) and (5),
corresponding to different initial conditions u(z = 0, t). We will see that the behavior of these solutions
is particularly interesting if the initial condition is a narrow solitary wave.

3.2. Solutions of Equation (4)

Let us obtain the solution of Equation (4) corresponding to a given initial condition u(0, t). We will
see that we do not have to specify the value of uz(0, t).

Let us begin by calculating the Fourier transform (FT) of Equation (4) (with respect to t):

iUz + c0Uzz − c2ω2U + c3ω3U = 0 (28)

In this equation we have defined:

U(z, ω) =
∫ +∞

−∞
u(z, t) eiωt dt (29)

The solution of Equation (28) can be obtained immediately:

U(z, ω) = a(ω) exp(λaz) + b(ω) exp(λbz) (30)

where λa and λb are the following functions of ω:

λa,b =
−i ±

√
S(ω)

2c0
(31)

where the plus sign in front of the radical corresponds to λa, the minus sign corresponds to λb, and the
radicand S(ω) is given by:

S(ω) = −1 − 4c0

(
c3ω3 − c2ω2

)
(32)

From Equation (30) it follows that:

Uz(z, ω) = λaa(ω) exp(λaz) + λbb(ω) exp(λbz) (33)

and from Equations (30) and (33) we can obtain the system:

U(0, ω) = a(ω) + b(ω) (34)

Uz(0, ω) = λaa(ω) + λbb(ω) (35)

and this system gives us the values of the coefficients a(ω) and b(ω) in terms of the functions U(0, ω)

and Uz(0, ω):

a(ω) =
Uz(0, ω)− λbU(0, ω)

λa − λb
(36)
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b(ω) = U(0, ω)− a(ω) (37)

Now we can observe something interesting. Let us consider, for example, the particular case
when c0 = 1/40, c2 = 1/2 and c3 = 1/50. In this case the radicand S(ω) (given in (32)) has the form
shown in Figure 6.

Figure 6. Function S(ω) given by Equation (32), with c0 = 1/40, c2 = 1/2 and c3 = 1/50. S(ω) = 0 at
the values ωn given in Equation (14).

We can see in this figure that S(ω) > 0 if ω < ω1 or ω2 < ω < ω3, and S(ω) < 0 if ω1 < ω < ω2

or ω > ω3, where the frequencies ωn are the values shown in (14). Taking into account the signs of
S(ω), we can write λa and λb in the following way:

λa =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[
−i +

√
S(ω)

]
/2c0, ω < ω1[

−i + i
√
−S(ω)

]
/2c0, ω1 < ω < ω2[

−i +
√

S(ω)
]
/2c0, ω2 < ω < ω3[

−i + i
√
−S(ω)

]
/2c0 , ω > ω3

(38)

λb =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[
−i −

√
S(ω)

]
/2c0, ω < ω1[

−i − i
√
−S(ω)

]
/2c0, ω1 < ω < ω2[

−i −
√

S(ω)
]
/2c0, ω2 < ω < ω3[

−i − i
√
−S(ω)

]
/2c0, ω > ω3

(39)

We can see that λa has a positive real part when ω < ω1 and ω2 < ω < ω3, and therefore for
frequencies within these two intervals the first term on the right-hand-side (rhs) of Equation (30) grows
exponentially in z. As this growth is completely unphysical (as it would imply a fictitious energy
growth), the coefficient a(ω) has to be equal to zero, and consequently from Equation (36) it follows
that there is an unexpected relationship between Uz(0, ω) and U(0, ω):

Uz(0, ω) = λb(ω)U(0, ω) (40)

thus implying that:

uz(0, t) =
1

2π

+∞�
−∞

λb(ω) u(0, τ) eiω(τ−t)dτ dω (41)

Therefore, as far as Equation (4) is concerned, the perplexing situation associated to the
Consequence 1 (mentioned in the previous sub-section) is completely clarified: physically realistic
solutions of Equation (4) are indeed completely determined by the initial condition u(0, t), as physics
suggested. Once u(0, t) is chosen, the function uz(0, t) is determined by Equation (41).
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Now let us calculate the solution of Equation (4) corresponding to a soliton-like initial condition
of the form:

u(0, t) = A sech(Bt) (42)

If we take the coefficients c0 = 1/40, c2 = 1/2 and c3 = 1/50 in Equation (4), and the parameters
A = 1 and B = 1.5 in Equation (42), the evolution of the pulse can be seen in Figure 7, which shows
the form of |u(z, t)| for z = 0.5, 1.0 and 1.5. We do not see anything special in this figure, which is
somewhat disappointing, since we expected an unusual behavior due to the awkward form of the
dispersion relation k(ω) shown in Figure 2.

Figure 7. Modulus |u(z, t)| of the solution of Equation (4) with c0 = 1/40, c2 = 1/2, c3 = 1/50 and the
initial condition (42) with A = 1 and B = 1.5. The shape of |u(z, t)| is shown for z = 0.5 (continuous),
1.0 (dashed) and 1.5 (dotted).

If we now obtain the solution of Equation (4) (with the same coefficients indicated above) and
using again an initial condition of the form (42), but with A = 1/2 and B = 14, the result is more
interesting. In this case small ripples are generated on the leading edge of the pulse (i.e., the left hand
side of the pulse), as shown in Figure 8.

Figure 8. Modulus |u(z = 0.05, t)| of the solution of Equation (4) with c0 = 1/40, c2 = 1/2, c3 = 1/50
and the initial condition (42) with A = 1/2 and B = 14.

As the pulse advances along the fiber these ripples form a well-defined radiation wavetrain which
propagates to the left of the pulse, as shown in Figures 9 and 10.
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Figure 9. Same as Figure 8, but with z = 0.25.

Figure 10. Same as Figure 8, but with z = 1.5.

At first sight, the radiation seen in Figure 9 might seem similar to the small-amplitude radiation
waves emitted by solitary pulses which obey equations such as the following [1,2,11]:

iuz + c2utt − ic3uttt + γ1|u|2u = 0 (43)

iuz + c2utt + c4u4t + γ1|u|2u − γ2|u|4u = 0 (44)

However, Figures 9 and 10 show that the radiation emitted by the solution of Equation (4)
possesses a unique characteristic, that no other model of optical pulses has ever predicted: the emission
of radiation stops abruptly at a certain point along the retarded-time axis, and this point moves away from the
pulse’s peak at a constant velocity. To understand clearly what this means we should remember that the
independent variable “t” which appears in Equations (1), (4)–(8) and (26), and appears at the horizontal
axes in Figures 8–10, is not the laboratory time, but the so-called retarded time. Therefore, the graphs
shown in Figures 8–10 display the time-dependence of the square of the light intensity as measured by
observers placed at different points (i.e., different values of z) along the optical fiber, but each of these
observers has shifted his/her time origin in such a way that the time t = 0 corresponds to the instant
when the pulse’s maximum passes through the point z. Consequently, a graph such as the one shown
in Figure 10 tells us that the radiation arrives at the observer placed at the position z before the arrival of
the pulse. This implies that the radiation advances faster than the pulse. Moreover, it should be noticed
that the point where we see an abrupt interruption of the radiation wave corresponds to the endpoint of
the radiation wavetrain, since the first radiation waves that were emitted have already moved far away
towards the left of the graph.

If we obtain numerical results similar to those shown in Figures 9 and 10, but for z = 2 and z = 2.5,
we can see that if the observer advances a distance Δz = 0.5 along the optical fiber, the endpoint of the
radiation wavetrain recedes to the left of the retarded time axis approximately Δt ≈ −5, thus implying
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that this endpoint moves along the time axis with an “inverse velocity” Δt/Δz ≈ −10. It might be
worth emphasizing that in the study of light pulses along optical fibers the evolution variable is not the
time, but the distance along the fiber, and therefore the “inverse velocity” Δt/Δz is more adequate to
describe the movement of radiation fronts (or pulses) such as those shown in Figures 9 and 10, when
they travel along the retarded time axis.

To understand why the end point of the radiation wave moves to the left of the retarded time axis
with an inverse velocity Δt/Δz ≈ −10 we must remember that the radiation emitted by optical pulses
is usually the result of a resonance between these pulses and the small-amplitude radiation waves
capable of traveling along the fiber. This resonance occurs when an optical pulse has a wavenumber kp

that is contained in the range of wavenumbers permitted by the dispersion relation k(ω) of the system.
In the case of Equation (4) we know that the dispersion relation is given by Equation (12), and the form
of k(ω) is shown in Figure 2 for the coefficients c0 = 1/40, c2 = 1/2 and c3 = 1/50. What we do not
know is the wavenumber corresponding to the solution of Equation (4) whose profiles are shown in
Figures 8–10. However, we can determine this wavenumber from the graphs of the real and imaginary
parts of u(z, t = 0) shown in Figures 11 and 12.

Figure 11. Real part of u(z, t = 0), where u(z, t) is the solution of Equation (4) with the same coefficients
and the same initial condition used to obtain Figures 8–10.

Figure 12. Imaginary part of u(z, t = 0), where u(z, t) is the solution of Equation (4) with the same
coefficients and the same initial condition used to obtain Figures 8–10.
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From these figures it follows that kp = −40, and therefore a horizontal line placed at k = −40
intersects the dispersion relation k(ω) shown in Figure 2 at two points: (k, ω) = (−40, 0) and
(k, ω) = (−40, 25). The first of these points does not correspond to a traveling wave (as its frequency
is zero), but the second one corresponds to a linear wave with a resonant frequency ω = 25, phase
velocity k/ω = −1.6 and group velocity dk/dω = −12.5 (i.e., in fact we are talking of inverse velocities,
Δt/Δz, as mentioned in the previous paragraph). We can see, therefore, that the endpoint of the
radiation wavetrain that we see in Figures 9 and 10 moves to the left of the retarded time axis at the
group velocity corresponding to the resonant frequency ω = 25.

It should be noticed that the value kp = −40, which we obtained from Figures 11 and 12, could
also be obtained from Equations (31) and (32). If we define f (ω) = c3ω3 − c2ω2, we can approximate√

S(ω) ∼= i(1 + 2c0 f (ω)), and therefore Equation (31) implies that λb
∼= −i/c0 − i f (ω). Consequently,

when a(ω) = 0, Equation (30) takes the form U(z, ω) = b(ω)exp(λbz), and from this equation it
follows that u(z, t) will contain the factor exp(−iz/c0), thus implying that u(z, t) has a wavenumber
kp = −1/c0. As we used c0 = 1/40 to obtain Figures 11 and 12, the origin of the value kp = −40 is
now clear.

We now understand the origin of the velocity of the endpoint of the radiation wavetrain shown in
Figures 9 and 10. However, we still do not know why this endpoint exists. In other words, we still do
not know why the pulse stops emitting resonant radiation at a certain instant.

The clue to understand why the emission of radiation ends abruptly lies in the contrast between
Figures 7 and 10. Figure 7 shows no radiation at all, while in Figure 10 the radiation is quite conspicuous.
The reason for this difference must be necessarily in the initial conditions used to obtain the solutions
of Equation (4) which led to these two figures. These initial conditions are shown in Figure 13, and
the absolute values of their Fourier transforms are shown in Figures 14 and 15. We can see that the
initial condition which lead to Figure 10 is much narrower than the initial condition corresponding to
Figure 7, but the graphs which really suggest the answer to the presence of radiation in Figure 10, and
its absence in Figure 7, are the Fourier transforms (FT) shown in Figures 14 and 15.

The FT shown in Figure 14 shows that the spectrum corresponding to the initial condition which
lead to Figure 7 is essentially contained in the interval −5 < ω < 5, and it is practically zero for
ω > ω3 = 10

(
1 +

√
2
)

≈ 24.14, which is the second interval where the dispersion relation k(ω)

is well defined (remember, from Figure 2, that k(ω) is defined in two intervals: ω1 < ω < ω2 and
ω > ω3) Therefore, it is impossible for the initial condition which lead to Figure 7 to resonate with the
linear waves with frequencies ω > ω3, since this initial condition has no frequency components in this
interval. On the contrary, the spectrum shown in Figure 15 shows that the initial condition which leads
to Figure 10 contains significant frequency components with ω > ω3. Consequently, when this initial
pulse starts traveling along the fiber, it resonates with the linear wave with wavenumber kp = −40
(the pulse’s wavenumber) and resonant frequency ω = 25, and thus the emission of radiation begins.
However, the pulse’s width will begin to grow (and its spectrum will become narrower) as a result of
the dispersive terms c2utt and ic3uttt which appear in Equation (4). As the dispersion of the pulse will
continue indefinitely (since Equation (4) does not contain any nonlinear term which could cancel this
dispersion), a moment will necessarily arrive when the pulse will be too wide, and its spectrum will
be too narrow to have frequency components with ω > ω3. Moreover, the components of the pulse
with frequencies in the interval ω2 < ω < ω3 will die quickly, since the dispersion relation (shown in
Figure 2) does not permit the propagation of linear waves with these frequencies. Therefore, a moment
will arrive when the pulse´s spectrum will be essentially contained in the interval ω1 < ω < ω2 (where
the dispersion relation allows the propagation of linear waves), and then the pulse will no longer be
able to resonate with the wave with ω = 25 (the resonant frequency), and the emission of radiation
will stop. So, the interruption of the radiation is due to the fact that the pulse’s spectrum is confined to
live in the interval ω1 < ω < ω2 (far from the resonant frequency ω = 25), and the presence of the
forbidden frequency gap ω2 < ω < ω3 seen in Figure 2 strongly contributes to this confinement.
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Figure 13. Initial conditions for Equation (4) used to obtain Figure 7 (continuous line) and Figures 8–10
(dashed line).

Figure 14. Fourier transform of the curve shown with the continuous line in Figure 13.

Figure 15. Fourier transform of the curve shown with the dashed line in Figure 13.

We have thus seen that a very original consequence of having a dispersion relation given by
an elliptic curve such as that shown on Figure 2 is the abrupt interruption of the resonant radiation
emitted by a narrow pulse which obeys the linear Equation (4). Therefore, this novel radiation process
is the consequence of the simultaneous presence of the non-slowly-varying-envelope term uzz and the
third-order temporal derivative.

To close this sub-section it is worth observing that no qualitative changes are to be expected if we
introduced the mixed derivative uzt in Equation (4). The equation thus obtained could be solved by
Fourier transforms, just as we solved Equation (4). The form of the Equation (30) would still be valid,
although the form of the functions λa,b(ω) and S(ω) would be slightly different. In this case (when
we take into account a term of the form cuzt in Equation (4)), instead of Equations (31) and (32) we
would have:

λa,b =
−i(1 − cω)±

√
S(ω)

2c0
(45)
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S(ω) = −1 − 4c0c3ω3 +
(

4c0c2 − c2
)

ω2 + 2cω (46)

It should be emphasized that the key ingredient which produces the peculiar radiation process
shown in Figures 9 and 10 is the presence of gaps of forbidden frequencies in the dispersion relation of
Equation (4). It is interesting to investigate if these gaps survive if we introduce a term of the form cuzt

in Equation (4). Therefore, let us consider the equation:

iuz + c0uzz + cuzt + c2utt − ic3uttt = 0 (47)

and let us take the same coefficients c0 = 1/40, c2 = 1/2 and c3 = 1/50 used to obtain Figures 7–12.
Concerning the coefficient c, one of the reviewers that revised this paper observed that in typical fibers
c < 0 and the absolute value of the ratio c/c0 is approximately equal to the dimensionless number
δ = 2v−1

g Z/T, where Z and T are characteristic values of length and time, respectively, and v−1
g is the

reciprocal group velocity. In Figures 16–19 the dashed curves show the form of the dispersion relation
of Equation (47) for three different values of c (−c0, −2.8 c0 and −3.2 c0), and the continuous curve
shows the dispersion relation when the term cuzt is absent.

We can see that the finite gap of forbidden positive frequencies survives in Figures 16 and 17,
but it disappears in Figure 18. Therefore, the presence of the term cuzt in Equation (47) modifies the
gaps of forbidden frequencies in a significant way. In fact, the gap of forbidden positive frequencies
will disappear if the coefficients c, c0, c2 and c3 are such that the equation S(ω) = 0 has only one real
root (S(ω) being the polynomial shown in Equation (46)). In particular, for pulses propagating in a
typical optical fiber with a group velocity vg ∼= 0.68cL (cL being the light speed in vacuum) the band of
forbidden frequencies may not exist for processes whose characteristic dimensions are Z ∼= 1 mm and
T ∼= 1 ps, as for these values δ ≈ 10, and Figures 16–18 show that the band of forbidden frequencies
does not exist if δ ≥ 3.2 (and c0, c2 and c3 have the values used to obtain Figures 16–18). However, the
value of δ might be smaller in special fibers where vg is closer to cL (as in photonic fibers with air holes),
and we consider processes where Z/T is also closer to cL. In such conditions the band of forbidden
frequencies might exist. In fact, the generation of a band of forbidden frequencies has already been
observed by Fang et al. [38] during the propagation of very short optical pulses in photonic crystal
fibers, a result that Fang et al. considered “the most distinctive feature” of this process.

It might be interesting to see how pulses evolve when the width of the band of forbidden
frequencies shrinks, as in the dispersion relation shown by the dashed curve in Figure 17. In Figure 19
we can see the modulus of the solution (at z = 1.5) of Equation (47) corresponding to a narrow initial
pulse of the form (42), with A = 1/2 and B = 14, and the coefficients used to obtain the dashed curve
in Figure 17.

Figure 16. Dispersion relations of Equations (4) (continuous line) and (47) (dashed line) for c0 = 1/40,
c2 = 1/2, c3 = 1/50 and c = −c0.
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Figure 17. Dispersion relations of Equations (4) (continuous line) and (47) (dashed line) for c0 = 1/40,
c2 = 1/2, c3 = 1/50 and c = −2.8c0.

Figure 18. Dispersion relations of Equations (4) (continuous line) and (47) (dashed line) for c0 = 1/40,
c2 = 1/2, c3 = 1/50 and c = −3.2c0.

Figure 19. Modulus |u(z = 1.5, t)| of the solution of Equation (47) with c0 = 1/40, c2 = 1/2, c3 = 1/50,
c = −2.8c0 and the initial condition (42) with A = 1/2 and B = 14.

We can see that the graph shown in Figure 19 is similar to that shown in Figure 10, but the
amplitude of the radiation is significantly higher. However, the radiation also stops at a definite time
(as in Figure 10), due to the presence of the band of forbidden frequencies shown in Figure 17.
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If we now calculate the solution of Equation (47) corresponding to the broader initial condition
used to obtain Figure 7, and the same coefficients used in Figure 19, we obtain Figure 20. This figure
shows that the pulse does not emit any radiation at all, as expected, since the initial condition is now
a broad pulse, and its Fourier transform is too narrow to have frequency components which may
resonate with the small-amplitude linear waves corresponding to the right branch of the dispersion
relation seen in Figure 17. Figure 20 also shows that the position of the pulse has been shifted to the
left, a result that is due to the presence of the term cuzt in Equation (47), and the negative value of the
coefficient c (Figure 7 shows that the pulse does not move to the left when the term cuzt is absent).

Figure 20. Modulus |u(z = 1.5, t)| of the solution of Equation (47) with c0 = 1/40, c2 = 1/2, c3 = 1/50
c = −2.8c0 and the initial condition (42) with A = 1 and B = 1.5.

3.3. Solutions of Equation (5)

Now let us investigate how the solutions of Equation (5) behave. As we saw in Figure 4, when the
coefficients c0, c2 and c4 satisfy the condition (17), the dispersion relation presents two finite bands
of forbidden frequencies (defined in (22)). Therefore, we expect that narrow solitons will exhibit a
behavior similar to that of the solutions of the Equation (4). More precisely, we expect that if take
an initial condition whose Fourier transform (FT) is wide enough to contain significant frequency
components in the intervals ω < −ω2 and ω > ω2, the pulse will start radiating, but the radiation will
stop at some time, when the pulse widens and its FT becomes too narrow. To verify this expectation we
obtained the numerical solution of Equation (5) with coefficients c0 = 1/15, c2 = 1/2 and c4 = 1/256,
and using an initial condition u(0, t) of the form (42) with A = 1 and B = 7. As in the case of
Equation (4), we can obtain the solution of Equation (5) by calculating the Fourier transform (FT)
of this equation, and the FT of the solution also has the form shown in Equation (30), with λa,b(ω)

given by Equation (31), but with the function S(ω) which appears within the square root now defined
as follows:

S(ω) = −1 − 4c0

(
c4ω4 − c2ω2

)
(48)

As this function is positive on two regions of the ω axis, the function U(z, ω) (given in
Equation (30)) would grow exponentially in z, unless we impose the restriction a(ω) = 0.
This restriction implies that Equation (41) is also valid in this case (but using Equation (48) in the
expression (31) which defines the function λb(ω)). Therefore, to solve Equation (5) we used u(0, t) as
defined in Equation (42), and we calculated uz(0, t) with Equation (41). In Figure 21 we can see the
profile of |u(z = 1.5, t)| corresponding to the initial condition (42) with A = 1 and B = 7. As expected,
we see that the pulse starts emitting radiation, but afterwards the radiation stops. The only important
difference in comparison with the behavior of the solutions of Equation (4) is that the solution of
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Equation (5) emits radiation in both directions, due to the fact that its dispersion relation, shown in
Figure 4, is now symmetrical with respect to the wavenumber axis.

Figure 21. Modulus |u(z = 1.5, t)| of the solution of Equation (5) with c0 = 1/15, c2 = 1/2, c4 = 1/256
and the initial condition (42) with A = 1 and B = 7.

On the other hand, in Figure 22 we can see the profile of another solution of Equation (5)
corresponding to an initial condition of the form (42), but now using A = 1 and B = 2 (and the
same coefficients c0, c2 and c4). In this case no radiation is observed because the initial pulse was very
wide, and its FT was very narrow, and therefore the initial FT has no significant frequency components
in the intervals ω < −ω2 and ω > ω2 (where the resonant frequencies are located).

Figure 22. Same as Figure 21, but with B = 2.

We have thus seen that the behavior of the radiating pulses of Equations (4) and (5) is similar,
except that the solutions of Equation (5) emit radiation in both directions, and those of Equation (4)
only radiate to the left. However, Equations (4) and (5) differ in a significant aspect. In the case of
Equation (4) the function S(ω) defined by Equation (32) is always positive in a portion of the real
axis, and consequently is always necessary to impose the restriction a(ω) = 0 which leads to the
relationship between u(0, t) and uz(0, t) given by Equation (41). On the other hand, in the case of
Equation (5), depending on the values of the coefficients c0, c2 and c4, the function S(ω) defined
by Equation (48) may be positive over certain frequency intervals, and in these cases the restriction
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a(ω) = 0 is necessary, and the Equation (41) again defines a necessary relation between u(0, t) and
uz(0, t). However, for certain coefficients, the function S(ω) might be always negative, and then the
values of the functions λa,b(ω) would be imaginary for all frequencies. In these cases there is no reason
to impose the restriction a(ω) = 0, and with the disappearance of this restriction also the relations (40)
and (41) disappear. Therefore, in the case of Equation (5), when λa and λb are both imaginary, we face
again the question: how do we specify the initial condition uz(0, t)? In the following paragraph we
address this question.

When a(ω) �= 0 the Equations (40) and (41) no longer hold, but we can obtain an approximate
relation between uz(0, t) and u(0, t) by considering what happens when we send a light pulse at the
beginning of an optical fiber. As the pulse enters into the fiber, the wavelength of the carrier wave
changes (since the light’s velocity is different inside the fiber), and this change introduces a factor
exp(iΔk z) in the mathematical form of the pulse. In other words, at the beginning of the fiber (inside
the fiber, near the point z = 0) the form of the light pulse will be:

u(z, t) = f (t) eiΔk z (49)

where f (t) defines the temporal profile of the pulse. Consequently, from Equation (49) it follows that:

uz(0, t) = iΔk u(0, t) (50)

and this equation, whose FT is similar to Equation (40), implies that the form of the function u(0, t)
determines the form of uz(0, t). It should be noticed, however, that we do not know the value of the
parameter Δk. This parameter depends on the exact form of the refractive index of the fiber as a function
of the light intensity. However, if we approximate the wavelength of the light inside the fiber in the
form λ ∼= λ0/n0, where λ0 is the wavelength outside the fiber, and n0 is the intensity-independent
part of the refractive index, then we can approximate Δk in the form:

Δk ∼= 2π(n0 − 1)/λ0 (51)

Therefore, when there is no justification for using Equation (41) to calculate uz(0, t), this function
might be calculated by means of the approximate Equations (50) and (51). In fact, in the following
section we will see that the exact soliton solutions of Equation (6) are indeed consistent with a linear
relationship between uz(0, t) and u(0, t), such as that given by Equation (50).

To close this section, it is important to emphasize that the peculiar radiation behavior observed
in Figures 9, 10, 19 and 21 is a direct consequence of the presence of bands of forbidden frequencies in
the dispersion relations of Equations (4), (5) and (47), and these forbidden bands are the result of
the interplay between the non-SVEA tem uzz and higher-order dispersive terms such as −iuttt or u4t.
Therefore, the principal lesson to be learnt from the study of Equations (4), (5) and (47) is the following:
when a very short pulse is launched along an optical fiber, some of the frequencies which are contained
in the initial pulse may not be permitted to travel along the fiber, since bands of forbidden frequencies
may appear in the dispersion relation of the equation which controls the propagation of the pulse.
Although these forbidden bands may be cancelled by the influence of the term cuzt (which we did not
include in Equations (4) and (5)), a band of this type has already been observed in a photonic crystal
fiber, as mentioned before [38].

4. The Nonlinear Equations (6)–(8)

In this section we will show that the nonlinear Equations (6)–(8) have exact soliton solutions of
different forms, some of them being embedded solitons (as we shall explain in the following).
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4.1. The Solitons of Equation (6)

Equation (6) is an interesting generalization of Equation (5) because it accepts soliton solutions of
two different types. The first of these solutions is the following:

u(z, t) = A sech(Bt) eiCz (52)

where A, B and C are the following constants:

B2 =
γ1

20c4

(
24c4

γ2

)1/2
− c2

10c4
(53)

A =

(
24c4

γ2

)1/4
B (54)

C = (2c0)
−1

[
−1 ±

√
1 + 4c0(c4B4 + c2B2)

]
(55)

Equation (55) defines two values for C, and consequently Equation (6) has two solutions of the
form (52) with different wavenumbers C1 and C2 corresponding, respectively, to the signs “plus” and
“minus” in front of the radical that appears in Equation (55).

It is worth observing that the solution defined by Equations (52)–(55) is the particular solution of
Equation (6) corresponding to the initial conditions:

u(0, t) = A sech(Bt) (56)

uz(0, t) = iC u(0, t) (57)

with A, B and C given by Equations (53)–(55). We can see that Equation (57) has the same form as
Equation (50), but with a particular value of the wavenumber. Therefore, the use of initial conditions
of the form (50) in order to look for particular solutions of Equations (5) and (6) seems justified.

We must now remember that in Section 2 we saw that if the inequality (17) holds, the range of
wavenumbers permitted by the linear dispersion relation of Equation (6) (given by Equation (15)
or, alternatively, by Equation (21)), covers the entire real axis, and consequently, in this case
(when c0c2

2 > c4) the soliton wavenumbers C1 and C2 are obviously contained within the range of
wavenumbers permitted by the linear dispersion relation of the system. This characteristic implies that
these solitons are not standard ones (since standard solitons have wavenumbers lying outside the linear
spectrum of the system), but they are embedded solitons. It is worth remembering that prior to 1997 it
was believed that soliton wavenumbers must necessarily lie outside the linear spectra of the systems.
Otherwise (it was believed) the solitons would resonate with the small-amplitude linear waves capable
of propagating in the system, and the solitons would emit resonant radiation. However, in 1997 it was
discovered that exact radiationless soliton solutions with wavenumbers contained within the range of
the linear dispersion relation of the system may indeed exist [11], and the term “embedded soliton”
was coined two years later to distinguish these peculiar solitons from the standard ones [45,46].

In Figure 4 we showed the form of the dispersion relation, given by Equation (21), in the particular
case when c0 = 1/15, c2 = 1/2 and c4 = 1/256. This figure also shows the position of the soliton
wavenumbers, C1 and C2, given by Equation (55) with γ1 = 5 and γ2 = 1. If we look at this figure
an interesting question arises: how is the frequency spectrum of the exact soliton solution (52) in
comparison to the dispersion relation? To answer this question, in Figure 23 we have superimposed
the Fourier transform (FT) of the exact soliton (52) and the scaled dispersion relation k(ω)/8.6287.
The scaling factor (8.6287)−1 was introduced for the amplitude of the FT and the scaled dispersion
relation to have the same size at ω = 0. This figure shows that the amplitude of the spectrum of
the exact soliton solution is completely insignificant in the range of frequencies where the lateral
branches of the dispersion relation are placed. Therefore, even though the two soliton solutions of
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Equation (6) have wavenumbers C1 and C2 that intersect these branches (as the dashed lines show in
Figure 4), and this fact favors a resonance between the solitons and the radiation modes, the soliton
spectrum is practically zero at the frequencies where k(ω) = C1,2, thus implying that the solitons
do not have frequency components capable of resonating with the radiation modes satisfying the
resonance condition k(ω) = C1,2.

Figure 23. The continuous curve shows the scaled dispersion relation k(ω)/a of Equation (6) with
c0 = 1/15, c2 = 1/2, c4 = 1/256, γ1 = 5, γ2 = 1, k(ω) given by Equation (21) and a = 8.6287.
The dashed line shows the Fourier transform of the initial form of the soliton solution (52), with A and
B given by Equations (53) and (54).

This qualitative argument is helpful to understand why these embedded solitons do not resonate
with the radiation modes, in spite of the fact of having wavenumbers contained in the range of the
dispersion relation. However, if desired, it is also possible to use the procedure shown in Refs. [18,20]
to construct a rigorous proof (not just a qualitative one) which shows that the absence of resonances
between the solitons and the radiation modes is the consequence of a delicate balance between
the linear and the nonlinear terms of Equation (6). This procedure consists in taking the FT of
Equation (6), using a function of the form (52) to calculate the FT of the nonlinear terms. In this way,
an expression for the FT of u(z, t) is obtained, which contains a quotient of two polynomials in ω.
The polynomial in the numerator depends on the nonlinear coefficients, and that in the denominator
depends on the coefficients of the linear terms. Moreover, the roots of the polynomial that appears
in the denominator determines the resonant frequencies. The next step is to prove that if the values
of the parameters A, B and C which appear in (52) have the values given by the Equations (53)–(55),
then the two polynomials cancel out, and the denominator disappears. With the disappearance of this
denominator, the possibility of a resonance also disappears, thus explaining why the solution given by
Equations (52)–(55) does not resonate with the radiation modes.

The above paragraph shows that the soliton solutions of Equation (6) (defined by
Equations (52)–(55)) are embedded solitons if the inequality (17) holds. On the other hand, when
the inequality (18) holds, the linear dispersion relation (21) presents a band of forbidden wavenumbers
(defined by (19) and (20)), and in this case it is not evident if the soliton wavenumbers C1 and
C2 are located within the forbidden band (in which case the solitons would be standard), or they
lie outside this band (and they are contained within the linear spectrum of the system), in which
case they would be embedded solitons. A careful comparison of the soliton wavenumbers C1 and C2

given by Equation (55), and the boundaries k1 and k2 of the band of forbidden frequencies (given by
Equation (20)), show that:

C2 > k2 and C1 < k1 (58)

These inequalities imply that the soliton wavenumbers lie outside the forbidden band k1 < k < k2,
and consequently there are contained within the range of wavenumbers permitted by dispersion
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relation, thus implying that also in this case (when the inequality (18) holds) the solitons defined by
Equations (52)–(55) are embedded solitons. In Figure 3 we showed the dispersion relation k(ω) defined
by Equation (15) when c0 = 1/30, c2 = 1/2 and c4 = 1/80, and the dashed horizontal lines show the
position of the soliton wavenumbers C1 and C2 (corresponding to γ1 = 5 and γ2 = 1), evidencing that
these wavenumbers lie outside the forbidden band.

Now let us consider the second type of soliton solutions of Equation (6). Direct substitution shows
that if the coefficients of the equation satisfy the following relation:

γ2
1c4 = −18

7
γ2c2

2 (59)

then Equation (6) has an exact solution of the following form:

u(z, t) = F sech(Gt)ei[Pz+Q ln{cosh (Gt)}] (60)

where:

F2 = −9
4

c2
2

γ1c4
(61)

G2 =
c2

8c4
(62)

Q = ±
√

5 (63)

and P is the solution of:

c0P2 + P +
9c2

2
16c4

= 0 (64)

which, if c0 �= 0, implies that:

P = (2c0)
−1

[
−1 ±

√
1 − 9c0c2

2/(4c4)

]
(65)

The solution given by Equations (60)–(65) is an interesting one, as it contains an unusual nonlinear
frequency shift. This type of frequency shift was also found in [17], and if c0 = 0 our Equations (59)–(64)
coincide with the results found in this reference.

It should be noticed that Equation (6) does not accepts simultaneously the solutions (52) and (60).
The solution (52) exists for certain values of the coefficients c0, c2, c4, γ1 and γ2, and the solution (60)
exists for other values of these coefficients. For example, if c2 and c4 are both positive, the solution (52)
only exists if γ1 is also positive (as a consequence of Equation (53)), while the solution (60) will only
exist if γ1 is negative (as a consequence of Equation (61)).

The existence of two different types of solitons in Equation (6) suggests that this equation might
have additional exact analytical solutions. It would be interesting to investigate if the new methods
described in Refs. [47–49] and the references therein, might be successful in finding new solutions for
Equation (6).

4.2. The Solitons of Equation (7)

Direct substitution shows that Equation (7) has moving soliton solutions of the following form:

u(z, t) = R sech
(

t − Vz
W

)
ei(qz−rt) (66)

where r, q, V, R and W are constants whose values can be calculated as explained in the following.
First we calculate r:

r = − c3

4c4
(67)
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and then we define the following parameters:

Y = c4r4 + c3r3 − c2r2 (68)

M =
3c0γ2

20c4

(
−8c4r3 − 2c2r

)2
(

24c4

γ2

)1/2
(69)

L =
3γ2

40c4

(
24c4

γ2

)1/2
[

γ1

(
24c4

γ2

)1/2
− 3

4
c2

3
c4

− c2

]
(70)

Then we can obtain the possible values of q from the following equation:

(1 + 2c0q)4
[
γ2

1 − 6γ2

(
q + c0q2 − Y

)]
=

[
L(1 + 2c0q)2 − M − γ1(1 + 2c0q)2

]2
(71)

and with each of the possible values of q we can calculate V, R and W with the following expressions:

V =
−8c4r3 − 2c2r

1 + 2c0q
(72)

R2 =
1

20c4

(
24c4

γ2

)1/2
[

γ1

(
24c4

γ2

)1/2
− 3

4
c2

3
c4

− 2c2 − 2c0V2

]
(73)

W =

(
24c4

γ2

)1/4 1
R

(74)

As Equation (71) is a sixth-order equation for q, we may have up to six different values for q,
and consequently Equation (7) might have six different soliton solutions for a given set of coefficients
{c0, c2, c3, c4, γ1, γ2}. This result suggests that Equation (7) might have a continuous family of
soliton solutions, in which case the solitons defined by Equations (66)–(74) would only be particular
elements of this family that can be expressed in terms of hyperbolic secants.

Now let us investigate if the solitons defined by Equations (66)–(74) are standard or embedded.
Apparently, in order to determine if the soliton (66) is embedded, we would only need to investigate
if the soliton’s wavenumber q (defined by Equation (71)) is contained in the range of wavenumbers
permitted by the linear dispersion relation corresponding to Equation (7), which is given by:

c0k2 + k = c4ω4 + c3ω3 − c2ω2 (75)

However, this is not true. When we deal with a moving soliton (i.e., a soliton which moves along
the retarded time axis, as the soliton in Equation (66)), the determination if the soliton is embedded
is more involved. As explained in Ref. [18], in this case we must investigate if the intrinsic soliton’s
wavenumber defined as:

Q = q + Vr (76)

is contained in the range of a modified dispersion relation, which is obtained by substituting a linear
wave written in the form u = exp[kz − ω(t − Vz)] into the linear part of the equation under study.
In the case of Equation (7), this modified dispersion relation takes the form:

c4ω4 + c3ω3 − c0(k + Vω)2 − (k + Vω) = 0 (77)

This equation permits us to write k as function of ω, but now something unexpected occurs.
As Equation (77) involves V, and V depends on q (as shown in Equation (72)), the dispersion relation (77)
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will depend on the value of q. In other words: we will have a different dispersion relation for each of the
different real values of q defined by Equation (71). Consider, for example, the following set of coefficients:

c0 = 0.025, c2 = 0.5, c3 = 0.07, c4 = 0.02, γ1 = 5, γ2 = 1 (78)

Substituting these values in Equations (67)–(70) we obtain the values of Y, M and L. Then,
substituting these values into Equation (71), and solving this equation, we find that there are
two complex values for q, and the following four real values:

q1 = −42.80, q2 = −22.11, q3 = −17.89, q4 = 2.80 (79)

Each of these values defines a dispersion relation given by Equation (77). The form of these
dispersion relations can be seen in Figure 24. The dashed horizontal line which appears in each of the
four figures indicates the position of the corresponding intrinsic soliton’s wavenumber Qi = qi + V(qi)r.
The values of these Qi are the following:

Q1 = −42.05, Q2 = −13.96, Q3 = −26.04, Q4 = 2.05 (80)

In each of the four graphs shown in Figure 24 the dashed horizontal line intersects the dispersion
relation k(ω), thus implying that the four solitons corresponding to the coefficients shown in (78) are
embedded solitons.
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Figure 24. Dispersion relations of the form (77), corresponding to the four values of qi shown in (79),
which are the real roots of Equation (71) with the coefficients ci and γi shown in (78). The dashed lines
indicate the values of the corresponding intrinsic solitons’ wavenumbers Qi given in (80).

We may wonder if all the solitons of Equation (7) are embedded. It is difficult to answer such
a question. We have examined the solitons corresponding to other coefficients, different from those
shown in (78), and in all the cases that we have studied the solitons turned out to be embedded.
However, it is difficult to prove that in general, for every set of coefficients which lead to real values of
the parameters M, L, q, R and W (defined by Equations (69)–(74)), the corresponding solitons are all
embedded. In fact, it might be impossible to generate such a proof, since we would need to compare
the values of the intrinsic solitons’ wavenumbers Qi (which depend on the values of the solutions qi
of Equation (71)) with the boundaries of the forbidden bands that appear in the dispersion relations,
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and it is impossible to obtain analytical expressions for qi in closed form, since Equation (71) is a
sixth-order equation.

4.3. The Solitons of Equation (8)

Equation (8) is worth being studied because, in spite of being a particular case of Equation (6),
it has soliton solutions which are different from those of Equation (6). Direct substitution shows that
Equation (8) has exact soliton solutions of the following form:

u(z, t) = D sech2(Et) exp(iH1,2z) (81)

where the parameters D, E and H are defined by following equations:

D2 = − 3
10

c2
2

c4γ1
(82)

E2 = − c2

20c4
(83)

H1,2 = (2c0)
−1

⎛⎝−1 ±
√

1 − 16
25

c0c2
2

c4

⎞⎠ (84)

Optical solitons with profiles given by squared hyperbolic secants are not unknown in optics [50,51],
but they are far less common than the typical sech-type solitons. Consequently, it is interesting that the
solitons of Equation (8) have the form given by Equation (81). Moreover, it is also worth observing that
even though Equation (6) reduces to Equation (8) when γ2 = 0, neither of the two soliton solutions
of Equation (6) (given either by Equations (52)–(55) or by Equations (60)–(65)) reduces to the soliton
solution of Equation (8) given by Equations (81)–(84) in the limit when γ2 → 0 . This is not an unusual
situation. It occurs in many systems with embedded solitons. For example, the equation:

iuz + ε1utt + ε2u4t + γ1|u|2u − γ2|u|4u = 0 (85)

reduces to the standard NLS equation when ε2 → 0 and γ2 → 0 , but it is known that the solitons of
Equation (85) do not reduce to NLS solitons in this limit [11]. In a similar way, Equation (8) reduces to
the NLS equation when c0 = c4 = 0, but the solution defined by Equations (81)–(84) does not reduce
to a NLS soliton in this case. In fact, as c4 → 0 the soliton’s height (given by the parameter D defined
by Equation (82)) tends to infinity, and the soliton’s width (given by the parameter E−1 defined by
Equation (83)) tends to zero.

Are the soliton solutions of Equation (8) embedded solitons? This is a question which deserves
some attention. In the case when the inequality (17) holds, it is obvious that the solitons defined
by Equations (81)–(84) are embedded, since in this case the wavenumbers permitted by the linear
dispersion relation (15) cover the entire real axis (as explained in Section 2), and therefore the solitons’
wavenumbers H1,2 will necessarily be contained in the range of this dispersion relation. On the other
hand, when the inequality (18) holds, the range of the dispersion relation will contain a band of
forbidden wavenumbers, and the boundaries of this band are the values k1 and k2 given by Equation
(20). In this case it is not evident if the solitons defined by Equations (81)–(84) are embedded or not.
However, if we choose values of c0 and c4 which lead to real values of H1,2 (when substituted in
Equation (84)), an algebraic exercise shows that:

• if c4 > 0 then: H1 < k1 and H2 > k2 ⇒ the solitons are embedded
• if c4 < 0 then: k1 < H1 < H2 < k2 ⇒ the solitons are NOT embedded

Therefore, the soliton solutions of Equation (8) are interesting because, depending on the values
of c0, c2 and c4, they may be embedded solitons or standard ones.
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5. Conclusions

In this paper we have studied five pulse propagation models (Equations (4)–(8)) which take
into account the non-SVEA term uzz, higher order dispersion, and a nonlinearity of the form |u|4u.
Several terms which also participate in the propagation of short optical pulses along optical fibers
have been discarded, not because they are negligible or unimportant, but to get a better understanding
of the interplay between the terms uzz, −iuttt, u4t and |u|4u. The dismissal of significant terms implies
that the models considered in this communication cannot aspire to provide quantitatively accurate
descriptions of short light pulses propagating along an optical fiber. However, the analysis of the
equations here considered (Equations (4)–(8)) reveals interesting aspects of the propagation of short
pulses under conditions which are beyond the SVEA, and shows that the mathematical structure of
these equations is interesting by itself, because it suggests that the study of optical solitons might be
connected to other fields which seemed to be completely unrelated to optics.

The analysis of the nonlinear models (6)–(8) reveals that short solion-like pulses of different forms
might be able to propagate under non-SVEA conditions. Equation (6) has soliton solutions of two
different types: one of them with a phase linear in the propagation distance (as usual), and the second
one with a nonlinear phase shift (see Equation (60)). Equation (7) has moving solitons of different
heights and velocities, and the determination of the parameters that appear in these solitons involves
the solution of a sixth-order algebraic equation (see Equations (66)–(74)). In the case of Equation (8),
the profile of its solitons is given by a squared hyperbolic secant and, depending on the values of the
coefficients of the equation, these solitons may be standard or embedded (i.e., with a wavenumber that
is contained in the linear spectrum of the system).

On the other hand, the analysis of the linear models (4) and (5) shows that the interplay between
uzz and a higher-order dispersive term such as −iuttt or u4t generates bands of forbidden frequencies or
forbidden wavenumbers. As a consequence of the existence of these forbidden bands, the behavior of
short optical pulses which propagate along an optical fiber is particularly interesting. At the beginning
of their journey along the fiber, the pulses start emitting radiation, due to a resonance between the
pulses and the small-amplitude continuous waves (radiation modes) capable of propagating in the fiber.
However, after some time, the radiation stops quite abruptly. This abrupt interruption of the radiation
is a phenomenon that had never been predicted before. This unusual behavior is a consequence of
the presence of bands of forbidden frequencies in the dispersion relations of Equations (4) and (5), as
shown in Figures 2 and 4, respectively. The dispersion relation of Equation (4) (given by Equation (11))
is particularly interesting, because it is an elliptic curve, and these curves have had a profound influence
in other fields, as in the proof of Fermat’s last theorem, or in the development of new cryptographic
protocols. As explained in Appendix B, in the process of proving Fermat’s last theorem it was found
that every elliptic curve is associated with a modular form. Consequently there must exist a certain
relationship between Equation (4) (and its nonlinear extensions such as Equations (A12) and (A13)) and
modular forms. The investigation of this hidden relationship may deserve further studies. On the other
hand, as elliptic curves are useful in encrypting information, it is natural to wonder if a relation may be
found between cryptography and equations such as Equations (4), (A12) or Equation (A13). Although
the possibility of finding such a relation might seem remote, it is interesting to observe that it has
already been pointed out that ideas related to ill-posed problems might be useful in cryptography [52].
Therefore, as Equations (4), (A12) and (A13) are related to elliptic curves, and are also related to
ill-posed problems, it might be worth investigating if these equations may be used to design new
cryptographic algorithms. It is worth mentioning that the new methods to obtain exact solutions for
nonlinear and evolution equations described in Refs. [47–49], and references therein, might be helpful
to investigate if Equations (A12) and (A13) can be indeed related to modular forms, or to Weierstrass ℘
functions, which are closely related to elliptic curves [39].

We would like to emphasize that the appearance of bands of forbidden frequencies in the
dispersion relations of Equations (4)–(8), (47) (A12) and (A13) is the principal consequence of the
interplay between uzz and higher-order dispersive terms (such as −iuttt or u4t). We have seen (at the
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end of Section 3.2), that these forbidden bands may be cancelled by the effect of the term cuzt, but there
may exist systems where such bands appear. The experimental observation by Fang et al. [38] of a gap
of forbidden frequencies in the spectral profile of very short optical pulses propagating in a photonic
crystal fiber may be an example of a process of this type.

The main results of this communication are, therefore, the following:

• the discovery of a relationship between Equations (4), (47), (A12) and (A13) and elliptic curves,
• the discovery that the interplay between uzz and higher-order dispersive terms generates bands of

forbidden frequencies or forbidden wavenumbers in the dispersion relations of Equations (4)–(8)
and (47),

• the discovery that the Cauchy problems associated to Equations (4)–(8) are probably ill-posed,
• the discovery that short pulses who evolve according to Equations (4), (5) and (47) radiate in a

novel and peculiar way,
• the discovery of four different types of soliton solutions in Equations (6)–(8),
• the discovery that some of the solitons of Equation (6)–(8) are embedded solitons,
• the discovery that Equations (A12) and (A13) might be related to modular forms or Weierstrass

℘ functions,
• the discovery that we might find a relation between the equations studied in this paper

and cryptography.

Several of these results suggest further topics of research, and consequently we hope that this
article encourages the research along these lines.
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Appendix A. Elliptic Curves

Equation (11) is a particular case of equations of the form:

k2 + a1kω + a3k = ω3 + a2ω2 + a4ω + a6 (A1)

which are called Weierstrass equations [53]. The curves described by these equations may have
interesting forms, and some examples are shown in Figure A1.

(a) (b) (c)

Figure A1. Different curves described by Equation (12): (a) k2 = ω3 − 3ω + 2; (b) k2 = ω3;
(c) k2 = 4ω3 + 4ω.
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As we can see in this figure, these curves may have singular points where the curve intersects
with itself (as in the curve k2 = ω3 − 3ω + 2 shown in Figure A1a), or where the curve presents cusps
(as in the curve k2 = ω3, shown in Figure A1b), but they may also describe regular curves without
intersections or cusps (as in the curve k2 = 4ω3 + 4ω shown in Figure A1c).

Weierstrass equations without singular points are termed regular (nonsingular) Weierstrass equations,
and the curves described by these equations are so important in some contexts that they have received
a special name: elliptic curves. Therefore, we have the following:

Definition A1. An elliptic curve is a curve described by a regular Wierstrass equation.

This definition implies that every elliptic curve is described by a Weierstrass equation.
The converse, however, is not true: not every equation of the form (A1) defines an elliptic curve.
Only the regular Weistrass equations describe elliptic curves.

Now, as the rescaled dispersion relation (11) is a Weierstrass equation, we would like to know if it
describes an elliptic curve. In other words, we would like to know if the Weierstrass equation (11) is a
regular one, or not. The answer to this query can be easily found, as there is a well-known criterion
which tells us when a Weierstrass equation is regular [53]. This criterion can be easily modified to tell
us when an equation of the form:

k2 + a1kω + a3k = a0ω3 + a2ω2 + a4ω + a6 (A2)

describes a regular curve without singular points (notice that (A2) only differs from (A1) by the presence
of the coefficient a0). The criterion is the following:

Criterion A1. An equation of the form (A2) is regular if and only if the discriminant Δ defined below is not zero.

To define the discriminant Δ it is useful to define the following quantities:

b2 =
(

a2
1 + 4a2

)
/a0 (A3)

b4 = (2a4 + a1a3)/a0 (A4)

b6 =
(

a2
3 + 4a6

)
/a0 (A5)

b8 =
(

a2
1a6 + 4a2a6 − a1a3a4 + a2a2

3 − a2
4

)
/a2

0 (A6)

In terms of these quantities we can write the discriminant Δ in the following form:

Δ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6 (A7)

If we put a0 = 1 in Equations (A3)–(A6), Criterion A1 tells us when a Weierstrass equation is
regular. If we apply this criterion to the Weierstrass equations which describe the curves shown in
Figure A1 we will see that only the curve (c) is an elliptic curve, since the discriminant Δ is zero for
curves (a) and (b).

Now we would like to determine if our dispersion relation describes an elliptic curve.
Equation (A2) reduces to Equation (10) if the coefficients an take the values:

a1 = a4 = a6 = 0, a0 = c3/c0, a2 = −c2/c0, a3 = 1/c0, (A8)

and in this case Equation (A7) takes the simpler form:

Δ = 16c2
2/

(
c0c4

3

)
(A9)
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Therefore, if c0, c2 and c3 are different from zero, the condition Δ �= 0 will be satisfied, thus
implying that the dispersion relation (10) is always a regular curve, and its rescaled form (11) is always
an elliptic curve.

At this point it may be worth observing that if we apply in Equation (A2) the following changes
of variables:

k = K − a1

2a1/3
0

Ω − a3

2
, ω =

Ω

a1/3
0

(A10)

Equation (A2) transforms into:

K2 = Ω3 + α2Ω2 + α4Ω + α6 (A11)

where α2 =
(
a2 + a2

1/4
)
/a2/3

0 , α4 = (a4 − a1a3/2)/a1/3
0 and α6 = a3 + a2

3/4. For this reason we may
find references where the curves defined by equations of the form K2 = f (Ω), where f (Ω) is a cubic
polynomial (with no repeated roots), are called elliptic curves [54]. However, this restricted definition
is unable to recognize that Equation (11) describes an elliptic curve, since Equation (11) is not in the
form (A11). For this reason it is more convenient to use Definition A1 (presented above) to identify
elliptic curves.

Appendix B. Fermat’s Last Theorem

The fact that the linear dispersion relation of Equation (4) is an elliptic curve suggests that this
equation might be related to other subjects where these curves also play an important role. Among
these subjects there is one which stands out among the others: Fermat’s last theorem. The proof of this
theorem rests, precisely, on the existence of a one-to-one correspondence between elliptic curves and a
rare kind of complex functions: modular forms. Every elliptic curve is related to a modular form, and
consequently, as Equation (4) is related to an elliptic curve, it should also bear some relationship with a
modular form. Moreover, also the nonlinear extensions of Equation (4), such as the following:

iuz + c0uzz + c2utt − ic3uttt + γ1|u|2u = 0 (A12)

iuz + c0uzz + c2utt − ic3uttt + γ1|u|2u − γ2|u|4u = 0 (A13)

might be related to modular forms, since the three equations (Equations (4), (A12) and (A13)) share the
same linear dispersion relation (the elliptic curve (10)). Therefore, as it might be important to advance
in the study of the relationships between Equations (4), (A12) and (A13), elliptic curves and modular
forms, in the following we describe the main steps which lead to the proof of Fermat’s last theorem.

STEP 1: The Taniyama-Shimura conjecture.

In 1955 the young mathematician Yutaka Taniyama discovered that an unexpected (and surprising)
relation seemed to exist between elliptic curves and modular forms. These “forms” are complex functions
F(τ) which satisfy (among other requisites) the following condition [55]:

F
(

aτ + b
cτ + d

)
= (cτ + d)kF(τ) (A14)

where a, b, c, d and k are integers such that ad − bc = 1, and τ is a complex number with positive
imaginary part. Taniyama, and a friend of him, Goro Shimura, studied various elliptic curves, and
all of them turned out to be related to modular forms. Therefore, they conjectured that a one-to-one
correspondence existed between elliptic curves and modular forms.

STEP 2: Hellegouarch’s discovery.
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In 1975 Yves Hellegouarch discovered that the elliptic curve [56]:

y2 = x(x − ap)(x − bp) (A15)

where a, b and p > 2 are integers, would have rather unusual properties if ap + bp were also a pth
power, i.e., if there existed an integer c such that:

ap + bp = cp (A16)

STEP 3: Frey’s proposition.

In 1984 Gerhard Frey announced in a conference in Oberwolfach, Germany, that if there existed
integers a, b, c and p > 2 satisfying (A16), then the elliptic curve (A15) would not have a modular form
associated with it [57]. In other words: if Fermat’s last theorem were false, then the Taniyama-Shimura
would also be false, and this implied that:

If the Taniyama-Shimura is true, then Fermat’s last theorem is also true!
Therefore, Frey had discovered that one way to prove Fermat’s last theorem was to prove

the Taniyama-Shimura conjecture. However, a problem remained: Frey’s procedure to “prove”
that the elliptic curve (A15) had not a corresponding modular form, contained an error. This
problem was solved in 1986 by Ken Ribet, who presented a correct proof of Frey’s proposition [57].
Therefore, the way to prove Fermat’s last theorem was clearly indicated: it was necessary to prove the
Taniyama-Shimura conjecture.

STEP 4: Wiles’ proof.

In 1993 Andrew Wiles announced that he had proved a restricted form of the Taniyama-Shimura
conjecture that was sufficient to prove Fermat’s last theorem. It turned out that Wiles’ proof had a
mistake, but in 1994, in collaboration with Richard Taylor, the mistake was corrected, and Fermat’s
last theorem was finally proved. The full Taniyama-Shimura conjecture (now known as modularity
theorem) was proved in 2001 by Christophe Breuil, Brian Conrad, Fred Diamond and Richard Taylor,
thus completing the intellectual adventure started by Taniyama and Shimura 46 years before [58].
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Abstract: Owing to their nondiffracting, self-accelerating, and self-healing properties, Airy beams
of different nature have become a subject of immense interest in the past decade. Their interesting
properties have opened doors to many diverse applications. Consequently, the questions of how
to properly design the spatial manipulation of Airy beams or how to implement them in different
setups have become important and timely in the development of various optical devices. Here,
based on our previous work, we present a short review on the spatial control of Airy beams,
including the interactions of Airy beams in nonlinear media, beam propagation in harmonic potential,
and the dynamics of abruptly autofocusing Airy beams in the presence of a dynamic linear potential.
We demonstrate that, under the guidance of nonlinearity and an external potential, the trajectory,
acceleration, structure, and even the basic properties of Airy beams can be adjusted to suit specific
needs. We describe other fascinating phenomena observed with Airy beams, such as self-Fourier
transformation, periodic inversion of Airy beams, and the appearance of spatial solitons in the
presence of nonlinearity. These results have promoted the development of Airy beams, and have
been utilized in various applications, including particle manipulation, self-trapping, and electronic
matter waves.

Keywords: Airy beam; harmonic potential; dynamic linear potential; self-Fourier beam; phase
transition; soliton

1. Introduction

Diffraction is a fundamental phenomenon in physical optics, due to which beams bend and spread,
and the peak intensity of the beam decreases upon propagation. Sometimes it is beneficial, as in the
diffraction gratings, sometimes a nuisance, as in the diffraction limit. In situations where diffraction is
not desired and needs to be overcome, the nondiffracting beams come to the fore. These beams are
a class of nondispersive solutions of the Helmholtz wave equation that display exotic characteristics:
they are nondiffracting, self-accelerating, and self-healing, among other properties. The representative
nondiffracting beams include the radially symmetric Bessel beams and the asymmetric Airy beams.

In comparison with the Bessel beam, the most remarkable feature of an Airy beam is the
self-acceleration in free space [1–3]. The Airy beam concept originated from quantum mechanics.
In 1979, Berry and Balazs demonstrated that the Airy function is an eigenmode of the linear Schrödinger
equation [1] and that it is the only nontrivial solution that does not expand with time and it accelerates
in space. The paraxial wave equation—the wave equation in the paraxial approximation—has the same
form as the linear Schrödinger equation. Based on this mathematical similarity between optics and
quantum mechanics, one can get not only Airy beams and Airy pulses, but also other types of waves

Appl. Sci. 2017, 7, 341 131 www.mdpi.com/journal/applsci



Appl. Sci. 2017, 7, 341

which satisfy the paraxial wave equation, such as surface plasmon polaritons [4,5], acoustic waves [6]
and water waves [7,8], among others. Notably, the nondiffracting feature of an Airy beam comes
from its infinite transverse extension and power, since the ideal Airy function is not square integrable.
This feature is similar to the simple plane wave. Hence, to possess finite energy and become a physical
quantity, the Airy beam must be truncated. In optics, this is simply achieved by an exponential
aperture, as first put forward in 2007, by Siviloglou et al. [2,9]. The truncated Airy beam can still
propagate for a long distance, preserving major characteristics of an ideal Airy beam, but eventually
it will diffract and lose its unique structure and properties. Nonetheless, this method of generation
makes the Airy beam experimentally available and of wide interest for applications in optical beam
manipulation. However, this method also limits the light energy utilization and the stability of
beams in the nonlinear domain. Still, by exploiting these unique characteristics of Airy beams, various
application possibilities have been explored or implemented, for example, for Airy plasma guiding [10],
routing surface plasmon polaritons [11], image signal transmission [12,13], laser filamentation [14],
optical micromanipulation [15,16], optical trapping [17–20], light bullet generation [21–24], electron
acceleration [25], and other applications [25–29].

In addition to research on Airy beams in free space and linear media, work has also been extended
to nonlinear (NL) media and regimes. In the most common optical NL media, i.e., the Kerr, saturable
and quadratic media, the nonlinearity is spatially modulated, so that the beam diffraction can be
effectively balanced by the nonlinearity through a soliton-like beam generation process. In 2009,
Ellenbogen et al. produced an Airy beam in an asymmetrically modulated quadratic optical NL
medium by the three-wave mixing process [30]. This novel nonlinear generation method not only
produced an Airy beam at a new wavelength and a higher energy, but also provided new possibilities
for manipulating the dynamics of Airy beams in NL media [31–35]. According to the nonlinear
Schrödinger equation, the nonlinearity plays a nontrivial role in controlling the persistence as well as
the breakdown of Airy beams [36–38]. It has been demonstrated that the main lobe of an Airy beam
experiences self-phase modulation in NL media that results in the self-focusing or trapping of the
beam [33]. And the field distribution of the Airy beam varies differently in different NL media [36,39].

As is well known, the beam focusing is an efficient way to improve laser power density. Thanks to
the self-accelerating feature of Airy beams, in 2010, Efremidis and Christodoulides proposed a novel
abruptly autofocusing (AAF) beam [40]. The beam possesses a ring-shaped initial transverse Airy
amplitude pattern, and accelerates in either the inward or outward direction, determined by the Airy
wave function tail [41]. During propagation, the AAF beam can keep a low intensity profile initially, and
then abruptly converge to a focal point where the intensity grows by orders of magnitude [40,42–46].
This abruptly autofocusing property of an AAF beam avoids the possible interaction of the beam with
the transmission medium before focusing. It can be used in biomedical treatments, bottle beams, light
bullets, and in other nonlinear settings.

To date, immense research work has been devoted to Airy beams, from theoretical predications
to experimental verifications, from fundamental research to potential applications. Without doubt,
it has become one of the hottest developing fields in linear and nonlinear optics [47–50]. In this short
review, based on our previously published work, we discuss some robust and flexible manipulation
techniques applied to Airy beams. The organization of the paper is as follows. Section 2 provides
results and discussion. In Section 2.1, we describe the interaction of two Airy beams as they propagate
simultaneously in a NL medium; in Section 2.2, we summarize Airy beam propagation in a harmonic
potential; in Section 2.3, we discuss the controllable spatial modulation of AAF beams, under an action
of different dynamic linear potentials. In Section 3, we conclude the paper.

2. Results and Discussion

In quantum mechanics, the Schrödinger equation (SE) for a quantum particle moving in free
space is written as:
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ih̄
∂ψ

∂t
+

h̄2

2m
∂2ψ

∂x2 = 0, (1)

where h̄ is the reduced Planck’s constant and m is the particle mass. This equation describes the
development of the wave function ψ of the particle, but in appropriate units it could also describe the
development of an Airy wave packet.

In optics, the propagation of a scalar wave packet obeys the Helmholtz equation:

(
∂2

∂x2 +
∂2

∂z2

)
ψ + k2ψ = 0, (2)

where x and z are the transverse and longitudinal coordinates, and k = 2πn/λ0 is the wavenumber
(n is the index of refraction and λ0 the wavelength in free space). Under the paraxial approximation
|∂2

zψ| � |2k∂zψ|, one obtains the paraxial wave equation,

i
∂ψ

∂z
+

1
2

∂2ψ

∂x2 = 0, (3)

where now the variables x and z are the normalized transverse coordinate and the propagation
distance, scaled by some characteristic transverse width x0 and the corresponding Rayleigh range kx2

0.
Obviously, Equation (3) has the same form as Equation (1) in scaled units—it is just the SE without
potential—so one of the accelerating solutions of Equation (3) is the well-known Airy function with
the characteristic infinite oscillatory tail,

ψ(x, z) = Ai
(

x − z2

4

)
exp

[
i

12

(
6xz − z3

)]
. (4)

From this solution, it is not hard to see that the trajectory is determined by the transverse
accelerating term x − z2/4, so the beam propagates along a parabolic curve. Note that the intensity of
an ideal Airy wave packet remains invariant during propagation, as displayed in Figure 1a. However,
the ideal Airy beam does not exist in reality, due to its infinite energy. To make it realizable in
an experiment, an exponentially tapered Airy beam is introduced [2,9],

Figure 1. (a) Propagation of the ideal Airy beam according to Equation (3). The inset in the right
corner represents the energy distribution of the beam at z = 0; (b) Same as (a), but for a truncated Airy
beam, with a = 0.1; (c) Self-healing process of the truncated Airy beam. The white dashed line is the
theoretical trajectory.

ψ(x) = Ai(x) exp(ax), (5)
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where a ≥ 0 is an arbitrary real decay parameter. In the momentum space, the corresponding Fourier
transform is

ψ̂(k) = exp(−ak2) exp
[

a3

3
+

i
3

(
k3 − 3a2k

)]
, (6)

which is of limited energy. So, according to the Parseval’s theorem, the energy of the attenuated Airy
beam is also limited. The propagation of the attenuated Airy beam is depicted by the solution

ψ(x, z) = Ai
(

x − z2

4
+ iaz

)
exp

[
i

12

(
6a2z − 12iax + 6iaz2 + 6xz − z3

)]
, (7)

as shown in Figure 1b. Compared with the ideal Airy beam, the tail of the truncated beam quickly
decays during propagation, which makes the nondiffracting and self-accelerating properties preserved
only over a finite distance. In Figure 1c, the healing property of the Airy beam is displayed. The main
lobe of the Airy beam is screened out initially, but it recovers quickly during propagation, due to the
transfer of energy from the tail to the head of the beam [19,51,52].

Similarly, the AAF exponentially apodized radially symmetric Airy beam is written as:

ϕ0(r) = Ai[±(r0 − r)] exp[±a(r0 − r)], (8)

where r0 is the initial radius of the main lobe, and ± corresponds to the inward or outward going
beams, respectively.

2.1. Nonlinear Guidance

Based on the above analysis, one finds that the properties of Airy beams are stable in free space.
Naturally, one wonders whether these concepts can be extended to inhomogeneous or nonlinear
media. Indeed, it has been confirmed that Airy beams can exist in photonic lattices and give rise to
interesting phenomena, such as accelerating lattice solitons [53]. Furthermore, we have investigated
the interactions of Airy beams in different NL media [34,35]. The governing nonlinear Schrödinger
equation (NLSE) can now be written as

i
∂ψ

∂z
+

1
2

∂2ψ

∂x2 + δnψ = 0, (9)

where δn—a function of the intensity |ψ(x)|2—is the refractive index change. It acts as a potential
in the Schrödinger equation. The index change depends both on the light and the material, and it
may vary widely. In Kerr media, for example, this change is proportional to n2 I, where n2 is the
second-order nonlinear index and I is the intensity of the wave. For most materials, the value of n2 is
rather small, e.g., between 10−16 and 10−14 cm2/W for glasses and transparent crystals, but in liquid
crystals it can reach 10−4 cm2/W. Thus, with a laser of 1 GW/cm2, these nonlinear effects are easily
observable over relatively short propagation distances (km in fibers and mm in liquid crystals).

For the sake of obtaining an accelerating solution of NLSE—a nonlinear accelerating
beam—one introduces x − z2/4 as a new variable, instead of x in Equation (9), to end up with

i
∂ψ

∂z
− i

z
2

∂ψ

∂x
+

1
2

∂2ψ

∂x2 + δnψ = 0. (10)

Assuming the solution of Equation (10) of the form ψ(x, z) = u(x) exp[i(xz/2 + z3/24)], allows
Equation (10) to be recast into

∂2u
∂x2 + 2δnu − xu = 0, (11)
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which is simpler than Equation (9). We treat it as an initial value problem with a required asymptotic
behavior u(x) = αAi(x) and u′(x) = αAi′(x) for large x > 0; here α represents the strength of the
nonlinearity induced by the assumed solution. Similar to the ordinary Airy beams, the nonlinear
accelerating beams are accelerating along parabolic trajectories.

To investigate the interaction of Airy beams, we take the initial beam as a superposition of
two Airy components

ψ(x) = A1Ai[(x − B)] exp[a(x − B)] + exp(ilπ)A2Ai[−(x + B)] exp[−a(x + B)], (12)

where B is the transverse position shift and l controls the phase shift. If l = 0, the two components are
in-phase, while if l = 1, they are out-of-phase.

2.1.1. Kerr Medium

Initially, we consider the beam interaction in a Kerr NL medium, with δn = |ψ(x)|2. Since the
energy is mainly stored in the main lobe of the Airy beam, a large distance between components will
lead to a weak interaction, so we just consider the interaction for relatively small distances. The results
are shown in Figure 2.

Figure 2. Soliton formation in the interaction of two in-phase (a1–h1) and out-of-phase (a2–h2) incident
Airy beams with A1 = A2 = 3, in the Kerr medium. (a3–h3) The same as (a1–h1), but with A1 = A2 = 4.
The distance between beams is chosen by varying B (on the top of the figure). Black solid and dashed
curves represent the ideal accelerating trajectories of the main lobes. Reproduced with permission
from [35], Copyright the Optical Society of America, 2014.

Obviously, the major difference between the first two rows is the attraction of beams when the
beams are in-phase and the repulsion when they are out-of-phase. Also visible is the breathing or
the filamentation of the beams when they strongly interact. In the in-phase case, for a large distance,
the two Airy components form two parallel solitons, as depicted in Figure 2a1,h1. With decreasing
distance between the beams, the attraction between components increases, and the bound breathing
solitons form. In general, the smaller the distance, the stronger the attraction and the smaller the
period of soliton breathing. Curiously, the intensity image shown in Figure 2e1 has a smaller period
than the one in Figure 2d1, even though in that case B = 0. The reason is that the main lobe of the Airy
beam with B = 0 is located at about −1, and there is still an interval between the two main lobes in
the incidence, so the attraction is the biggest when B = 1 and the period of the formed soliton is then
the smallest.
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The results for the out-of-phase beams are shown in Figure 2a2–h2. One can see that the soliton
pairs formed from the incidence actually repel each other; the smaller the distance, the stronger the
repulsion, until the beams overlap. Considering that the two Airy components are out-of phase, the
main lobes will balance each other out at B = 1, so the soliton pair shown in Figure 2e2 is generated
from the secondary lobes, while the other two come from main lobes. This is why the repulsion of
the soliton pair in Figure 2d2 is stronger than that in Figure 2e2. Notably, only two soliton pairs in
Figure 2h2 are visible: the outer pair comes from the main lobes of the Airy components and the other
from the secondary lobes. These results will be different when A is varied; for small A (less than 1),
there will be no solitons generated; for large A (∼10), multiple soliton pairs will be produced, but the
propagation may become unstable because of the catastrophic self-focusing effect.

The results for the in-phase beams when A1 = A2 = 4 are shown in Figure 2a3–h3; from these,
one finds repulsion between the two solitons, especially in the cases B = 0 and B = 1. As shown in
Figure 2e3, when B = 1, the refractive index change will make the solitons attract each other, and the
attraction is quite strong over a long distance, but eventually the repulsion overtakes the attraction.
The intensity of the superposed main lobes is enhanced, while the width is suppressed, in comparison
with the case B = 0. Thus, the two solitons generated in the splitting of the overlapping main lobes
will experience a smaller repulsion force than in Figure 2d3. When B is further increased, the main
lobe of one component will superpose with the high-order lobes of the other component, so the
solitons will come from the overlapping main and high-order lobes, as shown in Figure 2h3. When the
distance between two solitons is large, their interaction becomes weak, and they propagate in parallel,
as in Figure 2a,h. In general, when the two interacting Airy beams are of different amplitudes, their
energy distribution will be asymmetric, and the generated solitons will be of different intensities and
mostly breathing.

2.1.2. Saturable Medium

In the saturable NL medium, the nonlinearity is of the form δn = |ψ|2/(1 + |ψ|2). The behavior
of interacting Airy beams is quite similar to the case of the Kerr medium, but the interactions also
become “plastic”. As a rule, the in-phase case can generate individual solitons that are positioned
centrally. For small amplitudes A1 and A2, the individual solitons or soliton pairs cannot be formed in
the interaction. Importantly, the repulsion between soliton pairs formed in the saturable NL medium
is stronger than that in the Kerr medium. Different from the Kerr case, the propagation in saturable
NL medium is stable for arbitrary A1 and A2.

2.1.3. Soliton and Kerr Case

Thus far, we have considered the interaction of Airy beams in different NL media; in this
subsection, we investigate the interaction between a solitary beam and a Kerr nonlinear accelerating
beam. As it is well known, in the Kerr medium, Equation (9) supports a stationary soliton solution of
the form

ψ(x, z) = sech(x) exp(iz/2). (13)

In principle, the emerging breathing soliton comes from the soliton component, modulated by the
lobes of the Kerr accelerating beam. When the distance between two components is big, the soliton will
collide with the relatively weak lobes of the nonlinear accelerating beam. In this case, the soliton will
exhibit fluctuations and the main lobes will preserve the accelerating property of the beam, because of
the insufficient interaction between beams to produce solitons from the main lobe. When the distance
between the beams is small, the main lobes interact with the soliton, and the propagation properties
depend on the profile of the superposed beam. Owing to the conservation laws and the stability
of both beams, the properties of the soliton and nonlinear accelerating beam are quite immune to
the collision, although the main lobe is affected both in amplitude and width, but it still conserves
accelerating property, which is different from the cases mentioned above.
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We would like to note that interactions of Airy beams have also been carried out in other types
of nonlinear media, for example, nonlocal nonlinear media [54,55] and photorefractive nonlinear
media [56,57]. In recent years, nonlinear modulation of Airy beams in the temporal domain [58–60]
has attracted special attention.

2.2. Harmonic Potential Guidance

In optics and photonics, an external potential embedded in the medium’s index of refraction is
often used as an effective tool to modulate light beams. It comes in different forms, as exemplified
by vastly different photonic crystal structures. In this subsection, we investigate the management
of Airy beams by a harmonic potential added to the linear medium. Typically, such a potential is
easily achieved in gradient-index (GRIN) media [61,62] and frequently utilized as a harmonic trap in
Bose–Einstein condensates.

2.2.1. One-Dimensional Airy Beams

In the one-dimensional (1D) case, the paraxial propagation of a beam in a linear medium with
an external harmonic potential is described by the following equation [63,64]:

i
∂ψ

∂z
+

1
2

∂2ψ

∂x2 − 1
2

α2x2ψ = 0, (14)

where α determines the width of the harmonic potential. The Fourier transformation (FT) of Equation (14)
leads to the corresponding equation in the inverse space:

i
∂ψ̂

∂z
+

1
2

α2 ∂2ψ̂

∂k2 − 1
2

k2ψ̂ = 0. (15)

Clearly, if α = 1, Equations (14) and (15) have the same form, so that both equations have the
same solutions but expressed in real (x) and inverse (k) spaces [63], respectively. As before, we are
interested in the behavior of Airy beams. The propagation of a truncated Airy beam in the harmonic
potential is shown in Figure 3.

Figure 3. (Color online) Propagation of a finite energy Airy beam in a harmonic potential. (a1,a2) Real
space; (b1,b2) Inverse space. Periodic inversion and an automatic Fourier transform of the beam are
evident. The parameters are: a = 0.1, α = 1 (a1, b1) and α = 0.5 (a2, b2). Reproduced with permission
from [63], Copyright Elsevier, 2015.
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Generally, the solution of Equation (14) can be written as [63–69]:

ψ(x, z) =
∫ +∞

−∞
ψ(ξ, 0)

√
H(x, ξ, z)dξ, (16)

where

H(x, ξ, z) = − i
2π

α csc (αz) exp
{

iα cot (αz)
[

x2 + ξ2 − 2xξ sec (αz)
]}

(17)

is associated with the corresponding kernel. Combining Equations (16) and (17), after some algebra
one arrives at

ψ(x, z) = f (x, z)
∫ +∞

−∞

[
ψ(ξ, 0) exp

(
ibξ2

)]
exp(−iKξ)dξ, (18)

where b = α
2 cot (αz) , K = αx csc (αz) , and

f (x, z) =

√
− i

2π

K
x

exp
(

ibx2
)

.

One can see that the integral in Equation (18) is a Fourier transform of ϕ(x, 0) exp(ibx2). In other
words, the propagation of a beam in a harmonic potential is equivalent to an automatic FT, that is,
to the periodic change from the beam to the FT of the beam with a parabolic chirp and back. It is
worth mentioning that the same formula also represents a fractional Fourier transform of the initial
beam [67,70,71], the “degree” of which is proportional to the propagation distance.

By choosing the input as ψ(x, 0) = Ai(x) exp(ax), the solution in Equation (18) can be found
using the following steps:

(i) Find the Fourier transforms of ψ(x, 0) = Ai(x) exp(ax) and exp(ibx2), which can be written
as [2,9,63,64]:

ψ̂(k) = exp
(
−ak2

)
exp

[
a3

3
+

i
3

(
k3 − 3a2k

)]
, (19)

and √
i
π

b
exp

(
− i

4b
k2
)

, (20)

respectively.

(ii) Perform the convolution of the two Fourier transforms in Equations (19) and (20), and using the
definition [72]

Ai(x) =
1

2πi

∫ +i∞

−i∞
exp

(
xt − t3

3

)
dt,

find the inverse Fourier transform:

ψ(x, z) =− f (x, z)
√

i
π

b
exp

(
a3

3

)
Ai
(

K
2b

− 1
16b2 + i

a
2b

)

× exp
[(

a +
i

4b

)(
K
2b

− 1
16b2 + i

a
2b

)]
exp

[
−i

K2

4b
− 1

3

(
a +

i
4b

)3
]

.
(21)

From this expression, one obtains the accelerating trajectory of the initial beam:

x =
1

4α2
sin2(αz)
cos(αz)

, (22)
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with the period D = 2π/α. Here, z �= (2m + 1)D/4, where m is a positive integer. This trajectory is
ideal, because it indicates that the Airy beam can accelerate all the way to infinity x → ±∞, when
z → (2m + 1)D/4. However, upon exponential apodization of the Airy beam, such an acceleration will
stop when z is close to the points mentioned. At these points, the beam will turn around, accelerate in
the opposite direction, and change the shape. We call these points the phase transition points, for the
reasons explained below.

So, several issues concerning Equation (21) must be addressed:

(i) When z = mD, we have ψ(x, z) = ψ(x, 0)—an initial beam recurrence.
(ii) When z = (2m + 1)D/2, we have ψ(x, z) = ψ(−x, 0)—an inversion of the initial beam.
(iii) When z = (2m + 1)D/4, by directly solving Equation (18) for the FT of the initial beam, we have

ψ

(
x, z =

2m + 1
4

D
)
=

√
−i

sα

2π
exp

(
−aα2x2

)
exp

[
a3

3
+ i

s
3

(
α3x3 − 3a2αx

)]
, (23)

where s = 1 if m is even and s = −1 if m is odd. This field is unrelated to the initial Airy beam—that is,
it represents a new “phase” of the propagating beam.

Equation (23) displays a Gaussian intensity profile, which is completely different from the intensity
profiles elsewhere during propagation. It is similar to the propagating Gaussian pulse as it bounces
off the harmonic potential wall—but the Gaussian beam remains Gaussian in propagation, whereas
this pulse inverts and becomes an inverse Airy beam. On the other hand, it is different from a free
Gaussian wave packet hitting an infinite potential wall—there, during the bounce, the packet becomes
a rapidly oscillating multi-peaked structure, owing to the interference between the incoming and the
reflected beam. Since the inversion introduces a discontinuity in the velocity and a singularity in the
acceleration, for lack of a better word, we refer to the phenomenon as the phase transition of the finite
energy Airy beam, due to the harmonic potential. Correspondingly, z = (2m + 1)D/4 are the phase
transition points.

When we introduce a transverse displacement x0 of the beam, the initial beam is ψ(x, 0) =

Ai(x − x0) exp[a(x − x0)], and the solution can be written as:

ψ(x, z) =− f (x, z)
√

i
π

b
exp

(
a3

3

)
Ai
(

K
2b

− 1
16b2 + i
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2b

− x0

)

× exp
[(

a +
i

4b

)(
K
2b

− 1
16b2 + i

a
2b

− x0

)]
exp

[
−i

K2

4b
− 1

3

(
a +

i
4b

)3
]

. (24)

The corresponding trajectory is:

x =
1

4α2
sin2(αz)
cos(αz)

+ x0 cos(αz), (25)

At the transition points, we have:

ψ

(
x, z =

2m + 1
4

D
)
=

√
−i

sα

2π
exp(−ix0αx) exp

(
−aα2x2

)
exp

[
a3

3
+ i

s
3

(
α3x3 − 3a2αx

)]
. (26)

Comparing with the former case, the transverse displacement introduces a linear chirp at the
transition points. There is no change of the period and phase transition points, so one can predict that
the beam executes the same motion as before, but it is transversely stretched. One can also predict that
with an increasing transverse displacement |x0|, the beam will accelerate along an ever more elongated
cosine curve.
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To explore the phase transition region more clearly, we show the numerical simulations of
trajectories, velocities, and accelerations of the beam during propagation in Figure 4, for different cases.
One can observe that the accelerating trajectories are modulated by the transverse displacement; the
beam acceleration with x0 < 0 being opposite to the case with x0 > 0. In addition, the beam inversion
produces a discontinuity in the velocity and a singularity in the acceleration, which demonstrates
nicely that the motion is not harmonic and that there exist two phase regions: the Airy phase and
the single-peak phase. According to Equations (24) and (26), the single-peak structure only occurs at
the phase transition points; before and after these points, the beam still exhibits multi-peak structure,
having to reconnect the accelerating motion before the point with the decelerating motion after
the point. The length of the single-peak phase is determined by the size of the decay parameter,
as displayed in Figure 4b; the smaller a, the smaller the length, and the harder it is for the beam to
make a sudden inversion, so the region in Figure 4c is narrower than that in Figure 4d. However,
x0 has no effect on the width of the single-peak phase region when a is fixed.

Figure 4. (a) Numerical trajectory (a1), velocity (a2) and acceleration (a3) of the Airy beam during
propagation in a harmonic potential. Red, black, and blue curves correspond to the transversely
displaced beams, with displacements x0 = −10, 0, and 10, respectively, and with a = 0.1; (b) The width
of the single-peak phase region versus the decay parameter a. (c,d) Corresponding to the green dots
in (b). In the left panel, a = 0.01; in the right, a = 0.05. Other parameters: α = 0.5. Reproduced with
permission from [64], Copyright the Optical Society of America, 2015.

We next consider the initial beam with a linear chirp:

ψ(x, 0) = Ai(x − x0) exp[a(x − x0)] exp(iβx), (27)
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with β being the constant wavenumber. Thus, the solution is written as:

ψ(x, z) =− f (x, z)
√

i
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exp
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3
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,
(28)

with K′ = K − β. Clearly, the period D does not change and the phase transition point is still an odd
integer multiple of the quarters of the period. Mathematically, the trajectory is given by

x =
1

4α2
sin2(αz)
cos(αz)

+ x0 cos(αz) +
β

α
sin(αz),

and is modulated greatly by the linear chirp. At the phase transition points, we have:

ψ

(
x, z =

2m + 1
4
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)
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√
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× exp
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]}
.

(29)

In this case, the beam is equivalent to an obliquely incident beam, but without the ballistic
properties due to the harmonic potential [3,73].

If the initial finite energy Airy beam carries a quadratic chirp,

ψ(x, 0) = Ai(x − x0) exp [a(x − x0)] exp
(

iβx2
)

, (30)

the analytical solution will be

ψ(x, z) =− f (x, z)
√
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(31)

Here, b
′
= b + β, but the period in this case is still D. However, the phase transition points are

not the same as before; they are obtained as:

z =
1
α

arctan
(
− α

2β

)
+

m
2
D. (32)

Concerning the trajectory, it is now:

x =
sin2(αz)

4α[α cos(αz) + 2β sin(αz)]
+ [α cos(αz) + 2β sin(αz)]x0, (33)

and obviously, the influence from the quadratic chirp is not negligible.
Comparing these two chirped cases, we note that in both cases the trajectories are modulated

greatly. In the linear chirp case, the phase transition points and the period do not change, but the
beam at the phase transition point has a transverse displacement. While in the quadratic chirp case,
the phase transition point is moved, but the beam profile is not affected.
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By now, it is apparent that the propagation of beams according to the linear Schrödinger equation
with parabolic potential is intimately connected with the self-Fourier (SF) transform. Generally, for
an arbitrary ψ(x) propagating to π/4 in a harmonic potential, an SF beam will be obtained at that
point [74]. Here, when a truncated Airy beam ϕ(x) = Ai(x) exp(ax) propagates to z = π/(4α),
we find the corresponding Fourier transform pair:

F [ψ(x)](k) =

√
2π

α
ψ

(
− k

α

)
. (34)

Therefore, the expression for the self-Fourier beam is:

ψ(x) = − 4
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)
exp
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)]
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√
2

α
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a2

α
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1
6α3

)]
. (35)

In Figure 5, the intensity of the SF beam is shown by the black curve, and the corresponding
intensity in Fourier space is shown by the red curve. One can see that the beam profiles are the same
except for the inversion, which is in accordance with the theoretical result presented in Equation (34).
This way of generating SF beams is universal, it does not depend on the form of the initial beam.
Furthermore, we have recently demonstrated that the linear and nonlinear Talbot effects might be
interpreted as a fractional SF or a regular SF transform phenomenon, respectively [75,76]. Such SF
beams may find potential applications in optical information processing, routing, and switching.

Figure 5. (Color online) Comparison of intensities of an Airy beam at z = π/4 in real space and inverse
space, corresponding to Figure 3a. Intensities in real and frequency spaces refer to the left and right y
scales, respectively. Reproduced with permission from [63], Copyright Elsevier, 2015.

2.2.2. Two-Dimensional Case

Naturally, the harmonic oscillator model in Equation (14) is easily extended to two, three or even
four dimensions [64]. In 2D, it has the form:

i
∂ψ

∂z
+

1
2

(
∂2ψ

∂x2 +
∂2ψ

∂y2

)
− 1

2
α2
(

x2 + y2
)

ψ = 0, (36)

with the initial beam being:

ψ(x, y, z = 0) = Ai(x)Ai(y) exp[a(x + y)]. (37)

By the separation of variables, the 2D problem can be reduced to two 1D cases [64,77]. The result
is displayed in Figure 6. Similar to the 1D case, the 2D Airy beam displays inversion and phase
transition (the gaps represent the single-peak regions) during propagation. From Figure 6c,d, one can
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clearly see that the beam at z = π/(4α) is still an SF beam, just like in the 1D case. Thus, the wave
function is a product of two finite-energy Airy beams: one along x and the other along the y direction.
In a 2D parabolic potential, the wave exhibits all the properties of 1D Airy beams: periodic inversion,
phase transition, and anharmonic oscillation.

Figure 6. Propagation of a 2D finite energy Airy beam ψ(x, y) = exp(ax)Ai(x) exp(ay)Ai(y) in
a harmonic potential. (a) Iso-surface plot; (b) Intensity in the cross section x − y = 0; (c) Intensity of
the beam at π/(4α) in the real spaces; (d) The corresponding intensity at π/(4α) in the inverse space.
The parameters are a = 0.1 and α = 0.5. Reproduced with permission from [64], Copyright the Optical
Society of America, 2015.

For the cases that cannot be treated with the variable separation method, e.g., when the initial
beam is a superposition of AAF beams carrying orbital angular momentum [18,41,42,45,78], in the
radially symmetric case one can switch to the polar coordinates. Then, the input can be written as:

ψ(r, θ) = Ai[±(r0 − r)] exp[±a(r0 − r)]
4

∑
n=1

exp(inθ), (38)

where ± represents the inward and outward AAF beams, r0 determines the location of the main ring,
and θ represents the spatial frequency in polar coordinates. An analytical propagating solution of
Equation (38) is hard to obtain. However, using a fairly accurate approximation method developed
in [18,79], the AAF beam propagation can be described as a superposition of Bessel beams:

ψ(r, θ, z) ≈ −A0 f (r, θ, z) exp
(

ibr2
0

) 4

∑
n=1

i1−n exp(inθ)Jn(r0r), (39)

where A0 ≈ (1 − a2/r0) exp(a3/3). The results are depicted in Figure 7. The first row of panels
presents the intensity of an outward AAF beam; the second row of panels presents the intensity of an
inward AAF beam.
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Figure 7. Propagation of circular Airy beams. From left to right: Intensity distributions at z = 0,
z = D/4, z = D/2, and z = 3D/4. Intervals inside give the relative measure of the beam size.
(a–d) Outward abruptly autofocusing (AAF) beam; (e–h) Inward AAF beam; (i) Iso-surface plot of the
propagation of the inward AAF beam. Parameters: α = 0.5, a = 0.1 and r0 = 10. Reproduced with
permission from [79], Copyright the Optical Society of America, 2015.

In the 3D plot, one can see that the oscillation is more continuous, and there are no phase
transition points.

2.3. Dynamic Linear Potential Guidance

As mentioned in the introduction, the AAF beams are radially symmetric beams that possess
autofocusing property. It has been shown that the propagation trajectory as well as the positions of
autofocusing points of the AAF beams can be controlled by potentials [41]. In our investigation [80],
we theoretically analyzed the propagation and autofocusing effect of the AAF beams in a dynamic
linear potential. We found that the linear potential may weaken (even eliminate) or strengthen the
autofocusing effect of the AAF beams, depending on the form of the linear potential. In this case,
the governing equation is written as [41,81,82]:

i
dψ

dz
+

1
2

(
∂2ψ

∂r2 +
1
r

∂ψ

∂r

)
− d(z)

2
rψ = 0. (40)

Here, the external potential is linear in r, with the scaling factor d that depends on the longitudinal
coordinate; this is the so-called dynamical linear potential [81,82]. Again, it is hard to find an analytical
solution of Equation (40), so we resort to an approximate analysis, by introducing an azimuthal
modulation of the inward AAF beam:

ψaz(x, y) = Ai(r0 − r) exp[a(r0 − r)] exp

(
− (θ − θ0)

2

w2
0

)
, (41)

with w0 being the width of the modulation, θ = arctan(y/x) being the azimuthal angle, θ0 representing
the modulation direction. If the value of w0 is small enough, the azimuthal modulation will result
in a very narrow structure, so with w0 → 0 the result will be quite similar to the one-dimensional
finite-energy Airy beam. In this way, the AAF beam can be transferred into the 1D finite-energy Airy
beam [81,83], as:

ψ(x, y) =
+π

∑
θ0=−π

Ai(r0 − xp) exp[a(r0 − xp)]. (42)
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Thus, by an analogy with the analytical result in [81], we describe the autofocusing effect and the
propagation of the AAF beam as follows:

ψ(x, y, z) = C
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(43)

where, g(z) =
∫ z

0 d(t)dt, f1(z) = f0 +
∫ z

0 g(t)dt and f2(z) =
∫ z

0 g2(t)dt. The trajectory of each
component in a linear dynamic potential is

xp = r0 +
1
2

f1 −
1
4

z2. (44)

Clearly, the AAF beam can be effectively manipulated by the linear potential.
If there is no autofocusing during propagation, Equation (43) can be reduced to the following form:
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(45)

which becomes invalid when autofocusing happens. In this way, using Equations (43) and (45),
the propagation of an AAF beam manipulated by a dynamic linear potential can now be reduced to
a simple 1D case.

When we set d(z) = 1, the trajectory of the beam is xp = r0, that is, a straight line,
so the autofocusing does not occur during propagation, and the propagation can be described by
Equation (45). For this case, the linear potential exerts a “pulling” influence that can balance the virtual
force which makes the beam focus. While, if the potential is a periodic function d(z) = 1+ 4π2 cos(πz),
as in the former case, the potential also exerts a pulling effect, and the trajectory is a cosine-like curve,
which is also periodic. The corresponding results are displayed in Figure 8.

Figure 8. (a) Analytical intensity distribution of an AAF beam during propagation in the x − z plane
at y = 0, according to Equation (43), for d = 1; (b) Same as (a), but for d(z) = 1 + 4π2 cos(πz).
Reproduced with permission from [80], Copyright the Optical Society of America, 2016.

For the case with d(z) = 13 − 12z, from the corresponding trajectory xp = r0 − z3 + 3z2, we know
that the beam will undergo autofocusing during propagation, so the process should be described by
Equation (43). From the inset in Figure 9, the two components (θ0 = 0, θ0 = π) separate before the
focusing point, and then converge. Since the slope of the components at the colliding point is much
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bigger than without a potential, as in [40], this can be viewed as the components acquiring a larger
speed because of the “pushing” effect, hence the autofocusing is strengthened. Similar to the former
study, the maximum of the beam intensity (MBI) is also a function of both r0 and the propagation
distance, as displayed in Figure 9b; the MBI first increases and then decreases with the increasing of r0.
Besides this effect, one can also see that the location of the MBI also changes with r0, the reason being
that the autofocusing effect requires a longer distance to establish itself when r0 increases. As stated
above, the transverse and longitudinal coordinates are normalized to some characteristic transverse
width x0 and the corresponding Rayleigh range kx2

0. The unit of intensity of the beam is arbitrary.

Figure 9. Manipulation of an AAF beam by a dynamical linear potential. (a) Maximum of the beam
intensity during propagation for d(z) = 13 − 12z and r0 = 5. The maximum of the beam intensity at
z = 0 is 1. Inset shows the propagation of the components corresponding to θ0 = 0 and θ0 = π, and the
corresponding theoretical trajectories; (b) The maximum of the beam intensity as a function of r0 and z.
The white dashed line corresponds to the curve in (a). The decay parameter is a = 0.05. Reproduced
with permission from [80], Copyright the Optical Society of America, 2016.

3. Conclusions

In conclusion, in this short review, we have briefly discussed the origin and the fundamental
developments concerning Airy beams, and made a systematic review of the modulation of Airy
beams under the guidance of nonlinearity and different potentials. This review is based on our
recently published work. Our investigations will hopefully attract researchers who work on the related
phenomena in other fields. Thus, the results presented here are not just limited to optics, but can
lead to potential applications in biology, particle manipulation, microparticle trapping, Bose–Einstein
condensates, signal processing and manipulating, and other disciplines. Actually, the Airy and other
self-accelerating beams are among the hottest topics in optics. The investigations related to such
beams are interesting and show impressive progress. Still, there are many unknown and important
phenomena to be researched and new effects to be discovered concerning the accelerating beams.

Acknowledgments: The work was supported by China Postdoctoral Science Foundation (2016M600777), National
Natural Science Foundation of China (11474228), and NPRP projects (6-021-1-005, 8-028-1-001) of the Qatar
National Research Fund (a member of the Qatar Foundation). MRB acknowledges support by the Al Sraiya
Holding Group.

Author Contributions: Y.Q.Z., H.Z. and M.R.B. wrote and organized the paper; Y.P.Z. supervised the project.
All authors discussed the findings in paper.

Conflicts of Interest: The authors declare no conflict of interest.

146



Appl. Sci. 2017, 7, 341

References

1. Berry, M.V.; Balazs, N.L. Nonspreading wave packets. Am. J. Phys. 1979, 47, 264–267.
2. Siviloglou, G.A.; Christodoulides, D.N. Accelerating finite energy Airy beams. Opt. Lett. 2007, 32, 979–981.
3. Siviloglou, G.A.; Broky, J.; Dogariu, A.; Christodoulides, D.N. Ballistic dynamics of Airy beams. Opt. Lett.

2008, 33, 207–209.
4. Minovich, A.; Klein, A.E.; Janunts, N.; Pertsch, T.; Neshev, D.N.; Kivshar, Y.S. Generation and Near-Field

Imaging of Airy Surface Plasmons. Phys. Rev. Lett. 2011, 107, 116802.
5. Li, L.; Li, T.; Wang, S.M.; Zhang, C.; Zhu, S.N. Plasmonic Airy Beam Generated by In-Plane Diffraction.

Phys. Rev. Lett. 2011, 107, 126804.
6. Lin, Z.; Guo, X.; Tu, J.; Ma, Q.; Wu, J.; Zhang, D. Acoustic non-diffracting Airy beam. J. Appl. Phys. 2015,

117, 104503.
7. Fu, S.; Tsur, Y.; Zhou, J.; Shemer, L.; Arie, A. Propagation Dynamics of Airy Water-Wave Pulses. Phys. Rev. Lett.

2015, 115, 034501.
8. Bar-Ziv, U.; Postan, A.; Segev, M. Observation of shape-preserving accelerating underwater acoustic beams.

Phys. Rev. B 2015, 92, 100301.
9. Siviloglou, G.; Broky, J.; Dogariu, A.; Christodoulides, D. Observation of Accelerating Airy Beams.

Phys. Rev. Lett. 2007, 99, 213901.
10. Polynkin, P.; Kolesik, M.; Moloney, J.V.; Siviloglou, G.A.; Christodoulides, D.N. Curved plasma channel

generation using ultraintense Airy beams. Science 2009, 324, 229–232.
11. Salandrino, A.; Christodoulides, D.N. Airy plasmon: A nondiffracting surface wave. Opt. Lett. 2010,

35, 2082–2084.
12. Liang, Y.; Hu, Y.; Song, D.; Lou, C.; Zhang, X.; Chen, Z.; Xu, J. Image signal transmission with Airy beams.

Opt. Lett. 2015, 40, 5686–5689.
13. Jia, S.; Vaughan, J.C.; Zhuang, X. Isotropic three-dimensional super-resolution imaging with a self-bending

point spread function. Nat. Photon. 2014, 8, 302–306.
14. Polynkin, P.; Kolesik, M.; Moloney, J. Filamentation of Femtosecond Laser Airy Beams in Water. Phys. Rev. Lett.

2009, 103, 123902.
15. Zheng, Z.; Zhang, B.F.; Chen, H.; Ding, J.; Wang, H.T. Optical trapping with focused Airy beams. Appl. Opt.

2011, 50, 43–49.
16. Cao, R.; Yang, Y.; Wang, J.; Bu, J.; Wang, M.; Yuan, X.C. Microfabricated continuous cubic phase plate

induced Airy beams for optical manipulation with high power efficiency. Appl. Phys. Lett. 2011, 99, 261106.
17. Baumgartl, J.; Mazilu, M.; Dholakia, K. Optically mediated particle clearing using Airy wavepackets.

Nat. Photon. 2008, 2, 675–678.
18. Zhang, P.; Prakash, J.; Zhang, Z.; Mills, M.S.; Efremidis, N.K.; Christodoulides, D.N.; Chen, Z. Trapping and

guiding microparticles with morphing autofocusing Airy beams. Opt. Lett. 2011, 36, 2883–2885.
19. Schley, R.; Kaminer, I.; Greenfield, E.; Bekenstein, R.; Lumer, Y.; Segev, M. Loss-proof self-accelerating beams

and their use in non-paraxial manipulation of particles’ trajectories. Nat. Commun. 2014, 5, 5189.
20. Vettenburg, T.; Dalgarno, H.I.; Nylk, J.; Coll-Lladó, C.; Ferrier, D.E.; Čižmár, T.; Gunn-Moore, F.J.; Dholakia, K.
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Abstract: The existence, stability, and dynamics of bound pairs of symbiotic matter waves in the
form of dark-bright soliton pairs in two-component mixtures of atomic Bose–Einstein condensates is
investigated. Motivated by the tunability of the atomic interactions in recent experiments, we explore
in detail the impact that changes in the interaction strengths have on these bound pairs by considering
significant deviations from the integrable limit. It is found that dark-bright soliton pairs exist as stable
configurations in a wide parametric window spanning both the miscible and the immiscible regime
of interactions. Outside this parameter interval, two unstable regions are identified and are associated
with a supercritical and a subcritical pitchfork bifurcation, respectively. Dynamical manifestation
of these instabilities gives rise to a redistribution of the bright density between the dark solitons,
and also to symmetry-broken stationary states that are mass imbalanced (asymmetric) with respect to
their bright soliton counterpart. The long-time dynamics of both the stable and the unstable balanced
and imbalanced dark-bright soliton pairs is analyzed.

Keywords: Bose–Einstein condensates; ultracold atoms; mixtures; Gross–Pitaevskii equation; nonlinear
Schrödinger equation; symbiotic matter waves; dark-bright solitons

1. Introduction

After the experimental realization of Bose–Einstein condensates (BECs) in ultracold atoms,
a plethora of studies has been devoted to examining and understanding the coherent structures
that arise in them [1–4]. Among these structures, the formation, interactions and dynamics of matter
wave dark [5–7] and bright solitons [2,8,9] have been a central focus of research both from the
experimental and from the theoretical side. Such nonlinear waves were experimentally generated
in single-component BECs over a decade ago [10–14]. The nature of nonlinear matter waves that
can be created in a BEC background depends on the type of the interatomic interactions. Namely,
dark solitons can be created in BECs with atom–atom repulsion resulting from a positive scattering
length, while bright solitons exist in single-component settings with attractive interatomic interactions
resulting from a negative scattering length.

In addition to the above single-component context, soliton states can arise also in multi-component
settings. Such condensates have been created as mixtures of different spin states of 87Rb [15,16] and
23Na [17], and triggered numerous theoretical studies involving soliton complexes. A prototypical
example of the latter is a coupled dark-bright (DB) soliton state in a highly elongated (quasi-one-
dimensional) condensate cloud, consisting of a dark soliton in one component and a bright soliton in
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the second component of a binary BEC featuring intra- and inter-species repulsion. Since bright solitons
are not self-sustained structures in repulsive (self-defocusing) media, DB solitons are often called
symbiotic, that is, the dark soliton can be thought of as acting as an effective potential well trapping
the bright soliton [18–22]. Such symbiotic entities were first observed and theoretically studied in the
context of nonlinear optics [23–32]. However, their experimental realization in the atomic realm [33]
opened a new and highly controllable direction towards a deeper understanding of the dynamics and
interactions of these states both with each other as well as with external traps [34–38].

Additionally, current state-of-the art experiments offer the possibility of manipulating in
a controllable fashion the nonlinear interactions via the well-established technique of Feshbach
resonances [39–45]. This motivated recent theoretical activities where the static and dynamical
properties of dark-bright symbiotic matter waves have been investigated on the level of mean
field theory. Mathematically, tuning the interactions corresponds to deviating from the integrable
limit [46–48] of the relevant nonlinear Schrödinger system, where nonintegrability is introduced when
considering arbitrary nonlinearity (i.e., interaction) coefficients. The latter nonintegrable setting forms
also the main focus of the present effort. In this context, despite the nonintegrability, analytical
expressions of specific single-DB soliton states and lattices thereof have been obtained in [49]. Adding
a parabolic trapping potential, it was revealed how the effective restoring force acting on the DB
soliton depends on the inter-atomic interactions [49], verifying that the particle-like nature [34] of the
symbiotic soliton is preserved. In the same spirit, the dependence of the binding energy of a DB soliton
on the inter-species interactions was found analytically in [22], where, moreover, a proper bound on
a phase imprinted in the bright soliton constituent was obtained (i.e., considering also moving single
DB states), above which a breaking of the symbiotic entity was observed.

In our previous work [50], the interactions between DB matter waves and the consequent
formation of bound states for out-of-phase (anti-symmetric) bright soliton components has been
studied. Based on a two-soliton ansatz of the hyperbolic type [37,49], the full analytical expressions for
the interaction energies between two DB solitons were obtained for arbitrary nonlinear coefficients,
and in the absence of a confining potential. Furthermore, the key intuition that repulsion mediated
by the dark solitons at short distances, and attraction mediated by anti-symmetric bright solitons at
longer distances, would be counterbalanced, leading in turn to a bound state formation, has been
enriched by taking into account the significant role of the cross-component interaction energy term.
The crucial dependence of the latter on the inter-species interaction coefficient has been analyzed.
It was shown that anti-symmetric stationary states exist and remain robust for a wide parametric
window of inter-species repulsions. Importantly, an exponential instability of the anti-symmetric
states was identified upon crossing a critical inter-species repulsion. The latter was found to be
associated with a subcritical pitchfork bifurcation, giving rise to asymmetric stationary states with
mass imbalanced bright soliton counterparts.

In the present work, we extend the aforementioned findings of [50] upon considering significant
deviations from the integrable limit. By this, we mean that we always utilize a more realistic selection of
the nonlinear inter- and intra-species repulsion coefficients motivated by 87Rb (see details in Section 3),
under which it is never possible that all coefficients are equal (which would represent the integrable
limit). In our analysis, we vary the inter-species repulsion towards both the immiscible (i.e., dominated
by inter-species repulsion and thus phase separated in the ground state) regime, but also towards
the miscible (i.e., dominated by intra-species repulsion) regime. To this end, we investigate the
stability and dynamics of the anti-symmetric states, the so-called “solitonic gluons” [24], as well
as the above-mentioned asymmetric modes covering both the miscible and immiscible parameter
regime. In particular, the full excitation spectrum of these symbiotic states is explored in detail by
means of a Bogolyubov–de Gennes linearization analysis [1]. It is found that, for the asymmetric
modes, the linearization spectrum is strongly affected when crossing the immiscibility-miscibility
threshold, which is, in turn, directly connected with a rapid change of their density profiles as observed
already in [50]. As a next step, the stability and dynamics of the anti-symmetric DB pairs are explored
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past the immiscibility-miscibility threshold. It is found that, in addition to the destabilization in
the immiscible regime reported in [50], a second critical point occurs deep in the miscible regime,
rendering the anti-symmetric state unstable once more. This instability scenario is found to be
associated with a supercritical pitchfork bifurcation, giving rise to another family of mass imbalanced
(asymmetric) symbiotic structures which are found to be stable. As the inter-species repulsion is
decreased, the miscible character of this regime alters the bright soliton component, resulting into
asymmetric pairs with the bright solitons ”living” on top of a finite background. Comparing and
contrasting the instability mechanisms in the different parameter regimes, the long-time evolution of
the asymmetric and anti-symmetric states is performed numerically at different interaction ratios.

The presentation is structured as follows. In Section 2, a description of the theoretical model and
prior results regarding the existence of the anti-symmetric DB soliton pairs are provided. Furthermore,
we briefly comment on the methods to be used for the numerical analysis of our findings. Section 3
contains the results regarding both the stability and the dynamics of asymmetric and anti-symmetric
DB soliton pairs beyond the integrable limit. Finally, in Section 4, we summarize our findings and
discuss future perspectives.

2. Setup and Prior Background

2.1. Model and Theoretical Considerations

The system of interest is a two-component BEC strongly elongated along the x-direction, subject
to a tight transverse harmonic trap of frequency ω⊥. Such a mixture can e.g., be composed of two
different hyperfine states of the same alkali isotope, like 87Rb. Within mean field theory and after
integrating out the frozen transverse degrees of freedom, this mixture is described by the following
two coupled (1+1)-dimensional Gross–Pitaevskii equations (GPEs) [51,52]:

ih̄∂tψj =

(
− h̄2

2m
∂2

x − μj +
2

∑
k=1

gjk|ψk|2
)

ψj. (j = 1, 2). (1)

In the above equation, ψj(x, t) denote the mean-field wave functions of the two components
normalized to the numbers of atoms Nj =

∫ +∞
−∞ |ψj|2dx, while m and μj are the atomic mass (identical

for both components) and chemical potentials, respectively. The effective one-dimensional coupling
constants are given by gjk = 2h̄ω⊥ajk, where ajk denote the three s-wave scattering lengths that account
for collisions between atoms belonging to the same (ajj) or different (a12 = a21) species. We restrict our
considerations to purely repulsive interactions, i.e., all gjk > 0, and consider an idealized homogeneous
setting with no longitudinal trapping potential along the x-axis.

By measuring densities |ψj|2, length, time and energy in units of 2a11, a⊥ =
√

h̄/ (mω⊥), ω−1
⊥ ,

h̄ω⊥, respectively, and in a second step rescaling space-time coordinates as t → μ1t, x → √
μ1x,

and the densities |ψ1,2|2 → μ−1
1 |ψ1,2|2, the system of Equation (1) can be written in the following

dimensionless form:

i∂tψd +
1
2

∂2
xψd − (|ψd|2 + g12|ψb|2 − 1)ψd = 0, (2)

i∂tψb +
1
2

∂2
xψb − (g12|ψd|2 + g22|ψb|2 − μ)ψb = 0. (3)

In the above system of equations, we slightly changed the notation, using ψ1 ≡ ψd and ψ2 ≡ ψb,
indicating this way that the component 1 (2) will be supporting dark (bright) solitons. Furthermore,
μ ≡ μ2/μ1 is the rescaled chemical potential, while the interaction coefficients are normalized to
the scattering length a11, i.e., g12 ≡ g12/g11, and g22 ≡ g22/g11. The system of Equations (2) and (3)
conserves the total energy, E, the rescaled total number of atoms in each component (Nd and Nb,
respectively) and the rescaled total number of atoms N, where:
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E =
1
2

∫ +∞

−∞

[
|∂xψd|2 + |∂xψb|2 + (|ψd|2 − 1)2 + g22|ψb|4 − 2μ|ψb|2 + 2g12|ψd|2|ψb|2

]
dx, (4)

N = Nd + Nb = ∑
i=d,b

∫ ∞

−∞
dx|ψi|2. (5)

2.2. Interactions of Symbiotic Matter Waves beyond the Integrable Limit

In the special case where the nonlinear coefficients are all equal to each other, i.e., g12 = g22 = 1,
the system of Equations (2) and (3) admits exact single-DB-soliton solutions of the form [34]:

ψd(x, t) = cos φ tanh [D(x − x0(t))] + i sin φ, (6)

ψb(x, t) = ηsech [D(x − x0(t))]× exp [ikx + iθ(t) + i(μ − 1)t] , (7)

subject to the boundary conditions |ψd|2 → 1, and |ψb|2 → 0 for |x| → ∞. In the aforementioned
solutions, φ is the so-called soliton’s phase angle, which fixes the “grayness” of the dark soliton, while
η denotes the amplitude of the bright component. Furthermore, x0(t) and D correspond to the soliton’s
center and inverse width, respectively, while k = D tan φ is the wave-number of the bright soliton,
associated with the speed ẋ0 of the DB soliton, and θ(t) is its phase.

While such a general exact expression can only be obtained in the integrable limit, one can utilize
an approximate ansatz based on the expressions given in Equations (6) and (7) and depart from the
integrable limit. Such a method was employed in our very recent work of Ref. [50] in order to analyze
effective interactions between symbiotic matter waves in the general case of different inter-atomic
repulsion strengths within each and between the species. Our aim in what follows is to briefly comment
on the key results obtained there, in order to be connected with the numerical findings that will be
presented below. In particular, a pair of two equal-amplitude dark-bright solitons travelling in opposite
directions was considered having the approximate form:

ψd(x, t) = (cos φ tanh X− + i sin φ)× (cos φ tanh X+ − i sin φ) , (8)

ψb(x, t) = η sechX− ei[kx+θ(t)+(μ−1)t] + η sechX+ ei[−kx+θ(t)+(μ−1)t] eiΔθ . (9)

In these expressions X± = D (x ± x0(t)) where 2x0(t) is the distance between the two DB solitons,
while Δθ is the relative phase between the bright solitons. If Δθ = 0, the bright solitons are in-phase
(IP), while if Δθ = π, the bright solitons are out-of-phase (OP) or anti-symmetric. Within a Hamiltonian
variational approach [3,7,37,49], the approximate ansatz of Equations (8) and (9) is substituted into the
total energy of the system given by Equation (4), and the relevant integrations are performed under
the assumption that the soliton velocity is sufficiently small (φ ≈ 0, k ≈ 0). Full analytical results
for all the integrals contributing to E were obtained in [50]. At large distances between the solitons,
Dx0 � 1, simplified asymptotic expressions can be derived by expanding with respect to exp [−2Dx0]

(see also the earlier findings for the integrable case [37]). The total energy can be decomposed as
E = 2E1 + Edd + Ebb + Edb, where E1 corresponds to the energy of a single DB soliton, contributing
twice to the total energy, while the remaining three terms, namely, Edd, Ebb and Edb, account for the
interaction between: the two dark solitons, the two bright solitons, and the cross-interaction of a dark
soliton in the first component with the bright soliton of the second component, respectively.

Figure 1 illustrates our key findings regarding the interaction energy of two out-of-phase DB
solitons as a function of their distance. Here and throughout this work, the chemical potential and
the intra-species interaction coefficients are fixed to μ = 2/3 and g22 = 0.95 [53,54], respectively,
while the interatomic interaction coefficient g12 is left to widely vary. In panels (a)–(c) both the full
and the approximate asymptotic, i.e., expanded to second order with respect to exp(−2Dx0), forms
of the variationally obtained total interaction energy, Etot = Edd + Ebb + Edb, are shown with solid
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green and dashed yellow lines, respectively. As it can be seen in all cases, the two results coincide at
large distances as they should. Strikingly, in all three cases, a pronounced local energy maximum is
identified. The identification of this extremum suggests, if we further take into account the effective
negative mass of the DB soliton [7], the existence of an effective stable (with respect to variations in x0)
fixed point, thus a bound state for the two OP dark-bright solitons. Such an anti-symmetric two-DB
soliton bound state can indeed be identified also in the full Gross–Pitaevskii system (for the numerical
methods used, we refer the reader to the following section). The predictive strength of the variational
approximation is directly checked by comparing with the full numerical computation of the respective
equilibria x0 on the level of Equations (2) and (3), and the outcome is illustrated in panel (d), showing
good agreement.
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Figure 1. Variational estimate of the total interaction energy Etot between two OP dark-bright solitons.
From left to right in panels (a–c), the value of the inter-species interaction coefficient is increased
from g12 = 0.75 to g12 = 1.4, while g22 = 0.95 and μ = 2/3 throughout. In all cases, both the full
and the asymptotic (valid for large x0) expressions are shown with solid green and dashed yellow
lines, respectively. The equilibrium separation x0 of the stationary DB soliton pair as a function of g12

is shown in panel (d). In this latter panel, circles in yellow correspond to the equilibrium distance
obtained by numerically solving the GPE system of Equations (2) and (3), while triangles in green
denote the variational prediction of the equilibrium, i.e., the respective maximum of Etot.

It is worth mentioning at this point that, in order to evaluate the energy functional, we need
as input the width D and amplitude η occurring in Equations (8) and (9). These are obtained by
numerically identifying the exact single-DB state at the given g12 and fitting to it the profile known
from the integrable limit, i.e., Equations (6) and (7). There are thus two main sources of error of
this scheme, namely: (i) the imperfect fit of the tanh-sech profile (strictly valid only in the integrable
limit) to the single DB soliton mode and (ii) the limited accuracy of the two-DB soliton ansatz of
Equations (8) and (9), especially at small separations x0. For details regarding this and also a discussion
of the case of in-phase bright solitons, we refer the interested reader to Ref. [50]. We note also that
as g12 increases (while μ and g22 are kept fixed), the norm Nb of the bright species is increasingly
suppressed and eventually vanishes [50], beyond which point there is no bound two-soliton state
anymore, since the presence of the bright component is a necessary ingredient for holding the dark
solitons together [24,37]. This suppression of the bright norm is compatible with the overall decrease
of the total energies from panel (a) towards (b) and (c) in Figure 1.

Having variationally predicted and numerically confirmed the existence of anti-symmetric
stationary dark-bright soliton bound states for a large interval of values of the inter-species interaction
parameter g12 (typically, we study 0.75 ≤ g12 ≤ 1.5 in the present work), our main goal in the following
is to address their stability and (where applicable) decay dynamics.

2.3. Numerical Methods

In this section, we briefly comment on the numerical methods to be used so as to obtain stationary
symbiotic states consisting of two dark-bright solitons and to determine their stability and time
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evolution. In the numerical computations that follow, we initially obtain stationary solutions of the
system of Equations (2) and (3) in the form of ψd(x, t) = ud(x) and ψb(x, t) = ub(x) by means of
a fixed-point numerical iteration scheme [55]. The linear stability of the latter is adressed by using the
Bogolyubov–de Gennes (BdG) analysis [7,52]. Particularly to assess the stability of the obtained fixed
points, we substitute the following ansatz into Equations (2) and (3):

ψd(x, t) = ud(x) + ε
(

a(x)e−iωt + b�(x)eiω�t
)

, (10)

ψb(x, t) = ub(x) + ε
(

c(x)e−iωt + d�(x)eiω�t
)

. (11)

In the above equations, the asterisk denotes complex conjugation while ε is the amplitude
of infinitesimal perturbations. The resulting system of equations is then linearized, by keeping
only terms of order O(ε), and the eigenvalue problem for the eigenfrequencies ω and eigenmodes
(a(x), b(x), c(x), d(x))T is solved numerically. Note that an instability occurs if modes with purely
imaginary or complex eigenfrequencies are identified [1]. Since the linearization spectrum is invariant
under ω → −ω and ω → ω�, only results in the first quadrant of the complex plane will be shown
below. For the simulation of the time evolution based on Equations (2) and (3), a fourth order
Runge–Kutta algorithm is employed and a second-order finite differences method is used for the spatial
derivatives. The grid spacing is fixed to Δx = 0.08, while the time step used is Δt = 0.005. In all cases,
the numerical computations are performed on a spatial grid in the presence of an almost hard-wall
super-Gaussian potential [50] that is chosen wide enough for boundary effects to be negligible on the
small and intermediate time scales considered herein.

3. Numerical Results

Having verified that stationary anti-symmetric pairs of symbiotic matter waves can be found
in a wide range of values of the inter-species repulsion coefficient g12, a natural next step is to
consider the fate of these solutions under small perturbations, providing information on their stability
in the different regions of existence. The latter is explored by using the BdG linearization analysis
discussed in Section 2.3. For the presentation of our results, we will distinguish the miscible (g12 < g12th )
and immiscible (g12 > g12th ) regimes, separated by the miscibility–immiscibility threshold [56]
g12th =

√
g22 = 0.975 for our choice of g22 = 0.95.

In Figure 2, the BdG spectrum of the anti-symmetric stationary two dark-bright soliton states
is shown as a function of g12. In particular, both the real (	(ω)) and the imaginary parts (
(ω)) of
the eigenfrequencies ω are depicted in the top (a) and middle (b) panels, respectively. Panels (c) and
(d) depict profiles of the dark and bright wave functions at selected values of g12 in the miscible and
immiscible regime, respectively. Two general comments can be made before examining in detail the
excitation spectrum. The most significant one is that, within the background spectrum denoted with
blue circles, there exist two distinguished modes. The trajectories of the latter are illustrated with red
stars. These modes are the so-called anomalous modes since they possess a so-called negative Krein
signature K [57], which, for the two-component system considered herein, is defined as:

K = ω
∫ (

|a|2 − |b|2 + |c|2 − |d|2
)

dx. (12)

The sign of this quantity is a topological property associated with the excited nature of this state,
and the eigenvectors of such anomalous modes result in a variation of the solitary waves (as opposed
to a variation of the system’s background). Furthermore, we note in passing that each continuous
symmetry of the system corresponds to a pair of zero modes, ω = 0, in the BdG spectrum. Thus,
we expect three pairs of such modes related, respectively, with the conservation of the particle number
(or the U(1) gauge invariance) in each of the two components, and with the translation invariance due
to the absence of a confining potential. This is confirmed in the numerical data.
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Just by inspecting the trajectories of the two anomalous modes that appear in the spectrum,
their very different behavior becomes apparent. As it is observed in panel (a) of Figure 2, the higher
frequency mode decreases almost monotonically upon increasing g12. We were able not only to identify
this mode but also to relate it with an out-of-phase vibration of the bound DB soliton pair around its
equilibrium distance. The latter can be done by adding the corresponding BdG eigenvector, which
turns out to be localized in the vicinity of the DB pair, to the relevant stationary anti-symmetric state
(results not shown here). Next, and also in the same panel of Figure 2, let us closely follow the trajectory
of the lower-lying anomalous mode. The trajectory of this mode is more complicated than the former
one. In particular, starting from the aforementioned reference point, g12th ≈ 1, and increasing the
interspecies interactions towards the immiscible regime, i.e., for g12 > g12th , it can be seen that there

exists a critical point g(1)12cr
= 1.18 where this mode destabilizes. This destabilization corresponds

to an eigenvalue zero crossing and signals the instability of the anti-symmetric configuration deep
in the immiscible regime. Notice the non-zero imaginary part that appears past this critical point
shown in panel (b) of Figure 2. The existence and destabilization of this mode was found to be related
with a symmetry breaking of the bright soliton component, being linked, in turn, to other stationary
states that are mass imbalanced with respect to their bright soliton counterpart. The identification of
these asymmetric states which exist below g(1)12cr

and collide with the anti-symmetric branch at g(1)12cr
in

a subcritical pitchfork bifurcation was established in [50]. It is worth mentioning, at this point, that such
asymmetric states were also analytically obtained in [31] in the integrable limit of the theory. However,
to the best of our knowledge, the stability of such states has not been addressed. The following
paragraphs will be devoted to a discussion of these asymmetric two-DB solutions, before we then
return to an analysis of the BdG spectrum of the anti-symmetric pair, Figure 2, at small values of g12.
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Figure 2. Full BdG spectrum of anti-symmetric two-DB soliton states, upon varying the inter-species
interaction coefficient g12 within the interval 0.75 ≤ g12 ≤ 1.5. (a) real part, 	(ω), of the
eigenfrequencies ω as a function of g12. The corresponding imaginary part, 
(ω), is shown in panel (b).

Upon increasing g12, there exist two critical values, g(2)12cr
= 0.81, and g(1)12cr

= 1.18, indicated with light
blue and gray boxes, respectively, below and above which the anti-symmetric branch destabilizes.
The trajectories of the two anomalous modes (see text) appearing in the spectrum are shown with red
stars. (c,d) profiles of the anti-symmetric states for g12 = 0.75, and g12 = 1.4, i.e., deep in the miscible
and immiscible regime, respectively.

As mentioned above, the asymmetric and the anti-symmetric two-DB states coincide at the
bifurcation point g(1)12cr

. Below this critical g12, the anti-symmetric state is stable and there are two
symmetry-broken asymmetric solutions which are unstable (as is characteristic of a subcritical pitchfork
bifurcation). Indeed, these asymmetric branches can themselves be continued towards much smaller
values of g12 and exist both in the immiscible and the miscible regime (see the profiles shown in
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Figure 3c,d). In both panels, dashed black lines denote the wavefunction of the dark soliton component,
while solid green lines depict the corresponding bright soliton counterpart. To gain further insight
regarding the nature of the instability of these asymmetric states, their full BdG spectrum is illustrated
in Figure 3a,b. Once more, both the real 	(ω) and the imaginary 
(ω) parts of the eigenfrequencies
ω are shown as a function of the interspecies interaction. As expected from the above discussion,
only one of the anomalous modes appears in the excitation spectrum of these mass imbalanced states
and is depicted with stars in red. Replacing the second anomalous mode, there is now throughout
a purely imaginary frequency signaling the instability of the asymmetric branch. Remarkably, as the
immiscibility-miscibility threshold is crossed, the growth rate of the instability is drastically decreased,
rendering these states only weakly unstable for g12 < g12th . This latter observation is in close
contact with the change in the spatial character of these asymmetric states, and also in line with
our previous findings [50]. Namely, as the interspecies interactions decrease towards the miscible
region, the asymmetric states change gradually from only weakly asymmetric (i.e., weakly mass
imbalanced with respect to their bright amplitudes), to maximally asymmetric (i.e., almost purely
dark/dark-bright bound states). The difference is clearly seen in the profiles provided in panels (c)
and (d) of Figure 3. The existence of such maximally asymmetric bound states can be intuitively
understood as follows. We have found in [50] that the effective interaction between dark solitons
(Edd) is repulsive while the interaction between OP bright solitons (Ebb) with fixed g22 = 0.95 and
μ = 2/3 is attractive. Furthermore, the cross term effective interaction (Edb) is also attractive within
the g12 interval considered herein (again, we refer the reader to the relevant analytical expressions
obtained in [50]). Thus, in the limiting case of maximal asymmetry, while the bright-bright interaction
is absent, the dark-bright one is still present. It is this latter cross term attraction that counterbalances
the dark-dark repulsion, leading in turn to the observed bound state formation.
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Figure 3. BdG spectrum for the asymmetric two-DB soliton states. (a) real part, 	(ω), of the
eigenfrequencies ω as a function of g12. The corresponding imaginary part, 
(ω), is shown in panel (b).
Notice in this case the significant modification of the stability properties (i.e., a nearly vanishing
imaginary part of the eigenfrequency in panel (b)), as the miscibility-immiscibility threshold g12th ≈ 1
is crossed. (c,d) profiles of the asymmetric states for g12 = 0.8, and g12 = 1.1, i.e., in the miscible and
immiscible regime, respectively.

Having identified the unstable linearization eigenmodes, we now turn to the associated decay
dynamics. In particular, Figure 4 shows the long-time dynamics of the above-obtained stationary
asymmetric states for different values of the nonlinear coefficient g12. Panels (a)–(d) correspond to
the dark soliton component while the respective bright wave functions are depicted in panels (e)–(h).
For g12 < 1 shown in panels (a)–(c) and (e)–(g), respectively, it is observed that, as a result of the
instability, the solitons move towards each other forming breathing-like structures. This is accompanied
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by a redistribution of the bright “filling” component between the two dark solitons, in the form
of almost complete tunneling back and forth. For parameter values slightly above g12th , as e.g.,
the one depicted in panels (c) and (g), a strong beating phenomenon is observed, clearly evident
in the dark soliton component, with the solitons oscillating around a fixed distance from each other
forming an almost stationary breather that persists until the end of the propagation. Below the
above-mentioned threshold and towards the miscible region, the picture becomes progressively more
dramatic. The beating gets much more pronounced with the solitons experiencing more frequent
collisions as shown in panels (b) and (f). Finally, when entering even deeper into the miscible side
illustrated in panels (a) and (e), eventually the bound pair fully splits into an essentially empty dark and
a dark-bright soliton that are released (i.e., are no longer bound by each other) and propagate towards
the outer parts of the simulation domain (where they are ultimately reflected by the boundaries).
However, for g12 > 1, i.e., upon increasing g12 towards the immiscible side depicted in panels (d) and
(h) of Figure 4, a rather different picture is painted by the symbiotic entities when compared to the
asymmetric states presented above. In particular, slightly after the beginning of the propagation, where
the asymmetric entity looked quite robust, a dramatic redistribution of the bright soliton’s mass occurs.
The latter results in a strong repulsion between the single DB soliton formed and the almost empty
dark one, leading in turn to their subsequent separation. Note that a similar decaying mechanism was
also observed in [50] but for the unstable anti-symmetric states (see also later on in the text).
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Figure 4. Space-time evolution of the unstable asymmetric two-DB soliton state for different values
of the inter-species interaction coefficient g12. From left to right, the interaction is increased from
g12 = 0.75 to g12 = 1.1, while panels (a–d) ((e–h)) correspond to the densities |ψd|2 (|ψb|2) of the dark
(bright) component.

We have now characterized the branch of asymmetric two-DB soliton modes, which were seen
to bifurcate from the anti-symmetric two-DB soliton branch in a subcritical pitchfork bifurcation in
the immiscible regime, at g(1)12cr

= 1.18. Let us now return to the anti-symmetric branch itself and
study its fate in the miscible regime. This regime is also covered in the full excitation spectrum
depicted in Figure 2, with a typical profile of the state being shown in panel (c). Departing from
g12 ≈ 1 towards the miscible regime, and in particular by following once again the lower-lying
anomalous BdG mode, we observe that as g12 decreases a second critical point that exists deep
within the miscible side. The eigenvalue zero crossing occurs at g(2)12cr

= 0.81, and is indicated by the
solid light blue box. We note here that this latter critical point was not discussed in our previous
work [50], where only larger values of g12 were studied. The destabilization of the aforementioned
mode suggests the existence of a second pitchfork bifurcation. This is, once again, related with a
symmetry breaking of the bright soliton component, resulting in mass imbalanced (i.e., asymmetric)
two DB states. Indeed, we were able to identify these new pairs. In contrast to the previous instability
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scenario, these mass imbalanced states exist past the critical point but are stable, i.e., the pitchfork
deep in the miscible domain is found to be supercritical. The corresponding bifurcation diagram
is shown in panel (a) of Figure 5. In order to obtain this diagram, we measure the relative bright
imbalance defined as ΔNb ≡

(∫ 0
−∞ |ub|2dx −

∫ ∞
0 |ub|2dx

)
/
∫ ∞
−∞ |ub|2dx upon varying g12. Notice that

four branches are identified, i.e., three stable ones consisting of two asymmetric and an anti-symmetric
branch all denoted by solid blue lines, and one unstable anti-symmetric branch illustrated with
a dashed green line. To further demonstrate the stability of the new asymmetric symbiotic pairs in
panels (b)–(d), the BdG spectra are shown for different values of the inter-species interactions below the
associated critical point g(2)12cr

= 0.81. Two anomalous modes appear in the linearization spectra of these
asymmetric states illustrated with red stars. The respective stationary wave profiles are depicted in
panels (e)–(g), where the dark (bright) soliton wavefunction is shown with a dashed black (solid green)
line. We observe, that upon decreasing g12, the asymmetry between the bright solitons increases, as
was also the case for the respective asymmetric but unstable states found in the immiscible regime.
Furthermore, for g12 < 0.7, a background gradually builds up for the bright solitons as is evident
in the stationary state shown in panel (e) of Figure 5, revealing the miscible character of the regime
supporting these states. Our detailed BdG analysis indicates that, for all values within the miscible
regime that we have checked, the asymmetric states exist as stable configurations and should remain
dynamically robust. This result is verified and highlighted in panels (h)–(m) of Figure 5, where we
use as initial condition the stationary asymmetric states depicted in panels (e)–(g). We note that, in all
three cases, panels (h)–(j) ((k)–(m)) show the evolution of the dark (bright) soliton component. Having
studied both the static and the dynamical properties of the new asymmetric structures that bifurcate
from the OP dark-bright states, we now turn our attention to the dynamics of the anti-symmetric
DB waveforms.
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Figure 5. (a) bifurcation diagram obtained by measuring the relative bright imbalance ΔNb as a function
of the inter-species interaction coefficient g12. The stable anti-symmetric and asymmetric branches are
denoted with solid blue lines, while the unstable anti-symmetric one is shown with a dashed green line.

Notice that the asymmetric branches exist before the critical point, g(2)12cr
= 0.81, but are stable verifying

the supercritical nature of the bifurcation. (b–d) BdG spectra at three different values of g12 showcasing
the stability of the asymmetric states. In all cases, the anomalous modes are illustrated with red stars.
The associated stationary DB profiles are depicted in panels (e–g). (h–m) spatio-temporal evolution
of the stationary asymmetric states shown in panels (e–g) showing the dynamical stability of these
symbiotic structures. Panels (h–j) ((k–m)) correspond to the dark (bright) soliton component.

In particular, we explore the long time evolution of the OP DB states so as to reveal the decay
mechanisms that such a pair suffers from. The dynamics at different values of g12 are summarized
in Figure 6, all initiated at equilibrium. As before, the upper row of panels (a)–(d) shows the
spatio-temporal evolution of the dark soliton counterpart, while panels (e)–(h) depict the corresponding
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bright component. From the stability analysis presented above, it is expected that for all values of the
interspecies interaction coefficient g(2)12cr

< g12 < g(1)12cr
, the anti-symmetric two dark-bright soliton states

exist as stable configurations, and as such should be robust throughout the propagation. This latter
result is confirmed in panels (c) and (g) of Figure 6, for g12 = 0.82, which is slightly above the lower
critical point. However, and as anticipated, a very different picture is found below the critical point g(2)12cr
depicted in panels (b) and (f), (a) and (e), respectively. Starting with the former, we observe that slightly
below g(2)12cr

the initial stationary state quickly decays and in (b) and (f) we observe periodic tunneling
of the bright component between the two dark solitons, while the dark solitons are only relatively
weakly affected here. It is worth mentioning that similar tunneling dynamics have been identified
and interpreted in terms of a bosonic Josephson junction model in [58], but with the crucial difference
that the soliton pair was further supported by the restoring force of a harmonic trap in that work,
while, in our present setup, there is no external potential that would keep the dark solitons in place.
Remarkably, in this regime, despite the mass exchange, the bound soliton pair does not disintegrate.
Further decreasing g12 in panels (a) and (e), the effects of the instability are more drastic. The time scale
of the bright component oscillations decreases and the dark solitons vibrate more strongly. After some
time of almost periodic oscillations, a more irregular type of motion sets in, with both dark solitons
(one filled by most of the bright component, the other almost empty) eventually moving towards
positive x while separating and recolliding in the process, suggesting still a kind of effective attractive
interaction between them. This decay mechanism deep in the miscible regime is to be contrasted to
the unstable dynamics in the immiscible regime above g(1)12cr

. In panels (d) and (h), we show the time
evolution of the anti-symmetric two-DB soliton state at g12 = 1.4. While initially almost no dynamics
are visible in the densities, especially no oscillations within the bright component, on intermediate time
scales, a strong asymmetry in the bright filling builds up (see again [50] for a more detailed discussion)
and subsequently the filled and the empty dark soliton split, showing no sign of effective attraction.
Notice that the above described decaying mechanism is rather similar to the one observed for the
unstable asymmetric states for g12 > 1 (see panels (d) and (h) of Figure 4).
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Figure 6. Space-time evolution of the anti-symmetric stationary two-DB state for different values of the
inter-species interaction coefficient g12. From left to right, the interaction is increased from g12 = 0.75

to g12 = 0.82 > g(2)12cr
and then to g12 = 1.4 > g(1)12cr

. Panels (a–d) ((e–h)) correspond to the densities
|ψd|2 (|ψb|2) of the dark (bright) component.

4. Discussion

In the present contribution, we investigated in detail the stability and dynamics of bound pairs
of dark-bright symbiotic solitons, which arise as nonlinear matter wave excitations in mixtures of
Bose–Einstein condensates featuring inter-atomic repulsion. In particular, we explored the scenario
of differently weighted inter- and intra-species interaction coefficients, breaking the integrability of
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the relevant nonlinear Schrödinger model. It was argued by means of a recently proposed variational
approach [50] and shown numerically that, upon departing from the integrable limit, bound states
of such symbiotic entities exist for anti-symmetric bright soliton counterparts, the so-called solitonic
gluons. These anti-symmetric states were found to be robust within a bounded interval of the
inter-species repulsion coefficient g12, limited by critical points both in the miscible and in the
immiscible regime of the model, associated with a supercritical and a subcritical pitchfork bifurcation,
respectively. Below and above these boundaries, i.e., deep in the miscible and the immiscible regime,
respectively, the anti-symmetric pair becomes unstable. Long-time propagation revealed differences,
but also common characteristics of the decay mechanisms in the two domains of instability. Specifically,
a striking common feature is the relevance of bright mass transfer between the two dark-bright solitons.
In particular, in the miscible domain, we identified new stationary asymmetric states that bifurcate
from the anti-symmetric ones in a supercritical pitchfork. The stability of the new asymmetric states
was also dynamically confirmed. Moreover, it was shown that a further decrease of the interspecies
repulsion results in asymmetric states with the bright solitons living on top of a finite BEC background,
highlighting in this way the miscible character of such bound pairs. In contrast to the above picture,
upon entering the immiscible regime, we had found in our recent work [50] that the destabilization of
the anti-symmetric dark-bright soliton pair is caused by a subcritical pitchfork bifurcation involving an
unstable stationary, mass-imbalanced dark-bright soliton pair mode. In the present work, we further
explored the range of existence and stability of this asymmetric branch, demonstrating its overall
instability and its substantial deformation upon entering the miscible regime.

There are many directions that are worth considering in the future along the lines of this work.
In particular, by fixing the intra-species interactions g22 = 0.95 in this work, we have not addressed the
fate of the dark-bright soliton pair states when actually approaching the integrable limit, which would
require g12 = g22 = 1. In this respect, it would be particularly interesting to see if the asymmetric
state fully stabilizes upon restoring integrability or maintains its weakly unstable nature. Towards
this direction, and since in the integrable limit exact solutions are available [31,59], one could link the
anti-symmetric and asymmetric states obtained here with the exact families of dark-bright soliton
solutions known in the integrable case. Establishing a possible connection of this type would also open
a new direction of exploration and understanding of the symbiotic soliton pairs, since, in such a case,
one could depart once more from the integrable limit, but having at hand exact analytical expressions
for the two-soliton problem rather than the approximate ones constructed only from the single soliton
solution, as used in our present work. Furthermore, and also in this direction, in the integrable model,
exact closed form expressions exist not only for static symbiotic states like the ones considered here,
but also for moving and scattering ones. Based on these, one could hope to get insights into the
collisional dynamics of symbiotic entities at least in the vicinity of the integrable limit, paving the
way for a detailed understanding of features like the breathing state formation observed here. Studies
along these lines are left for future work.

5. Conclusions

In the present work, the existence, stability, and dynamics of symbiotic matter wave solitons that
exist as nonlinear excitations in (1 + 1)-dimensional repulsively interacting mixtures of BECs has been
investigated. Significant deviations from the integrable limit of the theory were considered, by utilizing
a more realistic selection of the inter- and intra- species repulsion coefficients. In particular, by fixing
the latter while varying the former thus examining the aforementioned system mono-parametrically,
bound pairs consisting of two DB solitons have been identified for OP bright soliton counterparts.
Our detailed stability analysis revealed that such anti-symmetric states exist as stable configurations in
a wide window of inter-species repulsions that spans both the miscible and the immiscible regime of
interactions. Below and above this domain, the anti-symmetric pair destabilizes giving rise to new
symmetry-broken states that are asymmetric (mass imbalanced) with respect to their bright soliton
counterpart. In particular, the destabilization of the OP pair deep in the miscible side was found to
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be connected with a supercritical pitchfork bifurcation resulting in stable asymmetric bound pairs.
Deep in the immiscible regime of interactions, asymmetric states have been also identified, but were
found to bifurcate from the anti-symmetric ones in a subcritical pitchfork bifurcation, and as such are
unstable. In all cases our stability analysis results were verified by considering the long-time dynamics
of both the stable and unstable anti-symmetric and asymmetric soliton pairs.
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Abstract: The objective of this paper is to summarize the results obtained for the state of polarization
in the emission of a vertical-cavity surface-emitting laser with frequency-selective feedback added.
We start our research with the single soliton; this situation presents two perpendicular main
orientations, connected by a hysteresis loop. In addition, we also find the formation of a ring-shaped
intensity distribution, the vortex state, that shows two homogeneous states of polarization with very
close values to those found in the soliton. For both cases above, the study shows the spatially resolved
value of the orientation angle. It is important to also remark the appearance of a non-negligible
amount of circular light that gives vectorial character to all the different emissions investigated.

Keywords: cavity solitons; vortex beams; vectorial light; spatially resolved polarization

1. Introduction

The appearance of stable structures, solitons, in laser emission is an important topic in the field
of nonlinear optics. Depending on their nature, they can be classified as temporal [1] and spatial
solitons [2].

The spatial solitons are self-localized states of light capable of beating diffraction through
nonlinearities; this attribute makes them useful for potential application in all optical processing
and switching operations [3,4]. Among them, cavity solitons (CS) are bistable spatially self-localized
waves that exist in the transverse aperture of broad-area nonlinear optical resonators. Examples of
spatial CS have been found in many different experiments, e.g., laser with a saturable absorber [5],
Kerr media [6], liquid crystal light valve [7] or vertical-cavity surface-emitting laser (VCSEL) [8].

The VCSEL is one of the most used and investigated kinds of solid state laser [9]. Since its
development, it has been widely utilized in different applications [10]. In conditions of normal
emission, above the threshold value for the injected current, a well characterized linear polarization is
observed [11]. Depending on the state of polarization, the CS with only one component is called scalar;
otherwise these structures are called vector CSs.

In this contribution, we create the solitonic structure in a very simple system—a VCSEL with
a frequency-selective feedback setup as is shown in different publications of some of the authors [12,13].
In the aforementioned conditions, a rich collection of spatially self-localized intensity structures can be
found, from the single spot CS to much more complex formations, i.e., the appearance of a ring-shaped
structure, usually made by a circular intensity pattern with peaks—the vortex beam. In this particular
experiment, a novel feature associated with the state of polarization of the single soliton is discovered,
i.e., the existence of a hysteresis loop that connects two orthogonal orientations. Also remarkable is
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the discovery of a significant amount of circular light in all the cases studied, for the first time in this
system, in accordance to other authors’ results [14] for the VCSEL emission, making it a full Poincare
beam [15].

Our objective is to resolve the spatial distribution of the polarization in all these situations;
starting from the case of homogeneous polarization found in the CS and applying also our analysis to
the vortex.

The organization of the paper is as follows. In Section 2, the experimental setup and the method
are included; in Section 3, the results are presented; in Section 4, we make an interpretation of the
results and the future directions of our work.

2. Materials and Method

The experimental setup and the instrumentation used in this experiment are very similar to
those used in previous works on laser solitons in our group [8,12]. A detailed representation of this
arrangement is shown in Figure 1. The VCSEL on this experiment is a large aperture device with
a diameter of 200 mm. The emission takes place in the 975–980 nm region through the n-doped Bragg
reflector and the transparent substrate, the so-called bottom emitter [16]. A Peltier element with
a feedback circuit is utilized to stabilize the VCSEL temperature at 20 ◦C.

Figure 1. Experimental setup: A volume Bragg grating (VBG) provides frequency-selective feedback
to a vertical-cavity surface-emitting laser (VCSEL). BS: beam sampler, CCD: charge-coupled device
camera, PD: photo-detector, LP: linear polarizer, QWP: quarter-wave plate, HWP: half-wave plate.
The upper arm is used to measure the spatially resolved Stokes parameter at high magnification (CCD1),
the lower monitors power (PD) and near (CCD3) and far field (CCD2) distributions of potentially the
whole laser.
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The output of the VCSEL is collimated by an aspheric lens of f1 = 8 mm focal length. A second
lens with f2 = 50 mm is used to focus the light onto the frequency-selective element, a volume Bragg
grating (VBG). These two lenses are adjusted to form an a focal telescope, i.e., the external cavity is
self-imaging after a round trip. The VBG has a narrow-band reflection peak of 95% at λg = 978.1 nm,
with a reflection bandwidth of 0.1 nm full-width half-maximum (FWHM).

For monitoring the output, a wedged glass plate with an uncoated facet at the front and
an anti-reflection coated facet at the back serves as an outcoupler or beam sampler (BS). The reflection
is relying on Fresnel reflection and therefore is polarization dependent. The reflectivity is on the order
of 10% for s-polarized light and 1% for p-polarized light. Note that the polarization asymmetry is much
smaller (1:1.1) in transmission. Via a half-wave plate and an optical isolator, polarization resolved
light-current (LI) characteristics as well as near and far field intensity distributions can be obtained
with a photo-diode and CCD cameras, respectively.

The use of the intra-cavity BS also allows measurements without feedback. However, the main
results for the polarization distributions are obtained by observation after the VBG, as the intra-cavity
polarization state can be accessed directly from there. The light that goes through the VBG is re-imaged
onto another CCD-camera (CCD1) by two telescopic systems, providing enough magnification to
accurately resolve the different polarization zones. Within the collimated range between the two lenses
of the second telescope, a linear polarizer (LP) and a quarter-wave plate (QWP) are used with different
combinations in its orientation.

To analyze the state of polarization of the VCSEL’s emission, all our work relies on the spatially
resolved measurement of the well-known Stokes parameters [17]. The data needed to accomplish this
task are the different intensity patterns obtained for the different orientations of the polarizer’s axis.
The polarization orientation is defined with respect to the propagation direction of the beam, i.e., in the
plane orthogonal (x, y) to its wave vector.

The measurements necessary to determine the Stokes parameters are:

• Ix: Horizontally polarized component of the intensity.
• Iy: Vertically polarized component of the intensity
• I45: Intensity component diagonally polarized.

Usually, this study is restricted to the linear components of the polarization but it is important to
comment that in our case the results obtained confirm the existence of a non-negligible quantity of
circular light. To measure this factor, a fourth value of the intensity is taken:

• Icirc: Circular component of the emission. In this case, a QWP is used in addition to the linear
polarizer. including the S3 factor associated with this component, the Stokes parameters are
calculated from the following set of equations:

S0= Ix + Iy (1)

S1=

(
Ix − Iy

)
S0

(2)

S2=
2·I45

S0
− 1 (3)

S3=
2·Icirc

S0
− 1 (4)

where S0 represents the total intensity; S1 the degree of horizontally (positive values of S1) or vertically
(negative values of S1) polarized light; in the same way, S2 accounts for the polarization degree
across the diagonals (positive for 45◦, negative for −45◦); and S3 represents the degree of circular
polarization (the sign denotes the direction of rotation). Furthermore, two additional calculations have
been done—the fractional polarization (FP):
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FP =
√

S2
1 + S2

2 + S2
3 (5)

in order to ensure the validity of our results, they are checked against the ideal value of 1,
corresponding to the radius of the Poincare sphere.

The last parameter calculated is the value of the direction of polarization ψ, calculated with:

ψ = 0.5·atan2
S2

S1
(6)

Once the different intensity patterns for the VCSEL emission have been measured and recorded,
the analysis is carried out using specific software developed in our group that allows us to have
access to every individual pixel of the camera (CCD1 in Figure 1). This tool permits us to know not
the mean value or average of the aforementioned parameters but the complete, spatially resolved
description of these. In particular, we can obtain ψ(x, y) as the polarization state which is the main goal
of our research.

3. Results

We start our experiment with a low value for the injection current, well below the lasing threshold,
that places the device in the spontaneous emission regime. When the current applied to the VCSEL is
increased, it switches up abruptly; then, we can observe the appearance of different bright single spots
(CS) or the formation of more complicated structures.

From here on, the experiment is completed by decreasing the current again. In this part, two main
aspects are observed in the L–I diagram: a significant grade of hysteresis in the emission and the
existence of abrupt transitions; this last effect happens when the whole structure simplifies as shown
in Figure 2.

Figure 2. Typical L–I characteristic curve obtained by monitoring the output power of the VCSEL.
The black dots account for regular spaced samples taken when the current is rising (continuous
line); the constant value of the power measured is due to the absence of any output apart from the
spontaneous emission. Once the system switches on, a complicated structure is formed (zone III); as we
lower the injection current (dotted line), this structure changes and simplifies as can be seen in the
second upper image (zone II) corresponding to the vortex beam. The last picture shows the single
soliton (Zone I).
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In order to achieve a better understanding of the results, we split them in two parts. The first group
deals with the treatment of the results obtained for the single soliton, its different polarization states
and the transitions between them; the second part explains the polarization distribution obtained in
the vortex pattern observed in the VCSEL’s emission. In both cases, a clear homogeneous polarization
across all the intensity structure is found. The intensity characteristics for the soliton and vortex profile
appear in Figure 3 .

Figure 3. The left column depicts the intensity profile and dimensions of the single soliton. The right
column accounts for the shape of the ring distribution; in this case, the distance between peaks is
about ten microns. The intensity pattern resembles the shape of an optical vortex, including the phase
singularity at the center.

3.1. Single Soliton Case. The Cavity Soliton

To start with, in the analysis, we are going to focus on the simplest result obtained—the single
soliton. The existence of CS in semiconductor microcavities has been predicted theoretically [18]
and experimentally achieved in VCSEL’s below lasing threshold and proposed as pixels in all-optical
systems [19].

Our case of study corresponds to those solitons formed in a cavity (CS) with a frequency-selective
feedback term obtained from a VBG as is described in the second section. It is important to note that
although it is possible for localized states to exist at any position of a homogeneous device, a strong
pinning at preferred locations—traps—is found [20]. This effect is depicted in Figure 2; the complex
cluster that appears for the highest value of the current evolves to the single soliton when the current
decreases, but this behavior is restricted to a specific area on the VCSEL’s surface.

The intensity distribution of the single-peaked spots is reasonably Gaussian, with sizes ranging
from 4.8 μm to 5.8 μm radius at 1/e2 point of intensity, as can be seen in the left column of Figure 3.
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In this situation, two possible directions for the polarization are found, mutually orthogonal.
Both orientations are homogeneous across all the soliton area, therefore we can assign just a single
value to represent it, as is shown in Figure 4.

Figure 4. Results obtained for the single soliton showing the existence of two orthogonal directions
clearly represented by streamlines with constant orientation.

The aforementioned states are connected by a switch when the injection current makes a cycle for
a particular range of values. The change between orthogonal polarization orientations in a VCSEL
is a well-known topic [21]. In our work, this effect appears for the first time between CS through
a hysteresis region, as can be seen in the right part of Figure 5, where this effect is analyzed for three
different linear polarizer orientations. Another important element in this part of our experiment is
the measurement of the frequency for both orientations. These data are taken out of the cavity by
the BS and clearly exhibit the existence of two different modes, each one corresponding to the two
polarizations observed, as is shown in the left part of Figure 5.

Figure 5. Results obtained for the frequency spectrum (left), and the I-L diagram for a cycle centered
in the zone where the change in the soliton polarization orientation happens (right) using a linear
polarizer with different orientations as the analyzer.

The amount of circular light in the emission is also studied by the analysis of the S3 parameter; in
all the cases measured, this quantity represents about one-tenth of the total emitted intensity. The origin
of this component is explained in the framework of the spin–flip model [22] in recent experiments for
VCSELs [14]. For the polarization case investigated here, a theoretical treatment is currently under
development in our group. Also remarkable is the association between the linear polarization and
the circular component, i.e., the circular component changes its sense of rotation when the linear
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component flips, giving a complete vectorial character to both polarization states. This fact could be
utilized in the aforementioned all-optical systems [19] to improve their performance by the use of the
complete set of Stokes values as parameters in the information processing.

In order to verify the accuracy of our results, the FP factor is measured for both polarization
orthogonal states. The results obtained are very close to the ideal value of one—radius of the Poincare
sphere—ranging in the interval [0.96–0.98] for both orientations.

3.2. The Ring-Shaped Structure. The Optical Vortex Beam

A more complicated structure than the single soliton appears at higher values for the injection
current, as can be seen in the picture corresponding to zone II in Figure 2. This emission pattern is
normally made by a three-peak ring with a central hole in the middle and we can call it an optical
vortex [23,24]. Its dimensions are of about ten microns for the distance between peaks; a plot of this
structure is shown in Figure 3.

These were observed recently in coupled VCSELs—one operated as a gain device and one as
a saturable absorber [25]. Vortices in self-focusing Ginzburg–Landau models were predicted [26].
References [27,28] investigate a nonlinear cavity with a saturable or cubic, i.e., Ginzburg–Landau-like
nonlinearity, coupled to an additional linear filter which provides a minimal model for a VCSEL with
frequency-selective feedback, similar to our experiment.

The homogeneous polarization, in the same way as in the previous section, describes a constant
orientation for the whole area of the emission, obtaining one value or its orthogonal depending on
the injection current value, with a very similar intensity pattern (S0) in both cases. This structure is
essentially identical to the vortex soliton observed in a prior work of our group [12], including a phase
singularity in the dark center.

Corresponding generalized vortex solitons were predicted [29] and indications observed [30]
in single-pass conservative systems and termed azimuthons. Theoretical predictions also exist for
dissipative systems [31].

Figure 6 shows the states of polarization for the vortex. The angle takes again a very similar value
to that already shown for the single soliton. In addition, the linear and circular components have the
same behavior already seen in the soliton case, i.e., a particular sense of rotation is associated to one of
the linear orientations.

Figure 6. Total intensity S0 for the vortex case showing two-peak structure in the left and three-peak
structure in the right part of the figure. The polarization streamline representation for the two
orthogonal polarization orientations that appear in the vortex beam reaches values very close to
those of the single soliton.

4. Discussion

The observations presented establish the existence of solitons and vortex solitons in a cavity
with a self-focusing medium. This phenomenon happens through a direct transition from the
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off-state, with only spontaneous emission, to the vortex appearance when we rise the injection current;
this structure simplifies to the single soliton once we lower the current.

The setup described here is much simpler than the typical schemes to create vectorial vortex
beams; this fact opens the possibility for the monolithic implementation of the external cavity in order
to build a complete useful device to generate them.

In this work, the spatially resolved analysis of the polarization of single solitons and vortex
structure is shown; it reveals two main directions for the polarization state in both cases. In addition,
a relevant quantity of circular light is also found, which gives a full vectorial character to this
light emission.

Another set of experiments, intended for the investigation of the polarization state for the soliton
at different temperatures, is currently under way. Finally, the possible existence of more complex
polarization structures for the vortex is another line of research in our group.
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Abstract: Plasmonic materials are expanding their concept; in addition to noble metals that are
good conductors even at optical frequencies and support surface plasmon polaritons at the interface,
other metals and refractory materials are now being used as plasmonic materials. In terms of complex
permittivity at optical frequencies, these new plasmonic materials are, though not ideal, quite good to
support surface plasmons. Numerical investigations of the optical properties have been revealing new
capabilities of the plasmonic materials. On the basis of the precise computations for electromagnetic
waves in artificially designed nanostructures, in this article, we address membrane structures made of
tungsten and silicon nitride that are a typical metal and ceramic, respectively, with high-temperature
melting points. The membranes are applicable to low-power-consuming thermal emitters operating
at and near the visible range. We numerically substantiate that the membranes serve as perfect
light absorbers, in spite of the subwavelength thickness, that is, 200–250 nm thickness. Furthermore,
we clarify that the underlying physical mechanism for the unconventional perfect absorption is
ascribed to robust impedance matching at the interface between air and the membranes.

Keywords: perfect light absorber; membrane; tungsten; ceramics; impedance matching; guided mode;
plasmonic resonances

1. Introduction

Membrane structures can be used to manipulate light in outstanding ways. One example is
photonic crystals made of high-refractive index materials such as semiconductors [1]. However,
such membrane structures are generally fragile and difficult to handle since they are free-standing
in air and have thickness less than the wavelength of light in vacuum, that is, subwavelength.
Today, ceramic membranes can be realized, thanks to reliable thin-film fabrication techniques such
as plasma-enhanced chemical vapor deposition. Here, we focus on membrane structures based on
free-standing thin films made of ceramics. To make the application clear, we design perfect light
absorbers (PLAs) suitable for thermal emitters in the short-wavelength infrared range of 1–2 μm.
Thermal emitters made of nanostructured materials are currently optimized for the mid-infrared
range of 2–5 μm, using metal-insulator-metal structures that typically comprise noble metals [2–5],
aluminum [6], etc., as constituent materials; however, these metals cannot withstand high temperatures.

A basic requirement exists for the thermal emitters, that is, high melting points exceeding 2000 K.
From this point of view, we chose silicon nitride (SiN) as the ceramic and tungsten (W) as the metal in
this study. Both of them are stable at high temperatures. Considering practical application, the thickness
of SiN membranes and W are assumed to be 100–200 nm and 50–100 nm, respectively, which are usual
values in commercial products [7] and laboratory use. A 3D photonic crystal made of only W was once
produced with a similar goal as mentioned above and worked as a thermal emitter at about 2 μm [8].
However, production of thermal emitters based on such structures still has a high demand and has not
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been standardized to date; thus, much simpler structures are highly preferred from the viewpoint of
practical application.

Light absorbers in infrared ranges have a long history. Originally, the idea to obtain PLAs was
simple; that is, to use materials as analogous to black bodies as possible. The absorbed infrared
light has been converted to electric signals since the 1940s [9]; the devices are well known as
conventional bolometers. However, it has been difficult to attain PLAs over the whole wavelength
range. Accordingly, PLAs based on the artificially designed structures were conceived for the particular
wavelength ranges [2–6]; in fact, the PLAs do not look like black bodies. Thus, there are distinct
differences between black-body-based and artificial-structure-based PLAs.

Figure 1 illustrates schematics of W-SiN membrane structures studied in this work. Figure 1a–c
shows simply stacked W and SiN layers. The two-layer membrane structure is formed using a SiN
membrane on a Si substrate. The section view is shown in Figure 1b. The image of the original SiN
membrane is shown in Figure 1c; the central square domain of 2 × 2 mm2 is the SiN membrane. Once
deposition of W is performed, the W-SiN membrane structure in Figure 1a,b is obtained. The white
dashed line indicates a section corresponding to Figure 1b. Figure 1a also indicates the coordinate
axes and optical configuration of p polarization, which is defined such that the incident polarization
vector is parallel to the plane of incidence. Without loss of generality, we set the plane of incidence to
be parallel to the xz plane.
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Figure 1. Schematics of metal-ceramic membrane structures. The metals are W (gray) and the ceramics
are SiN (pale blue) in this study. (a) simply stacked W-SiN membranes, which are assumed to be formed
on SiN membrane grown on a Si substrate. Both-end arrows represent p polarization where the incident
electric-field vector is parallel to the plane of incidence; (b) a section view of the whole SiN-membrane
substrate; (c) a photograph of SiN membrane supported by a Si substrate. White dashed line shows
a section corresponding to (b). The SiN membrane is located at the center and has a dimension of
2 × 2 mm2; (d) W-SiN-W membranes with 1D periodic structures on the top. The plane of incidence is
set to be parallel to the xz plane. Both-end arrows show s polarization where the incident electric-field
vector is perpendicular to the xz plane; (e,f) W-SiN-W membranes of 2D periodic structures with on-top
rectangular and circular W patches, respectively.

Figure 1d–f shows schematics of W-SiN-W membrane structures, whose top layers are set to be
periodic. Figure 1d also shows the coordinate axes and s polarization. When the plane of incidence
is parallel to the xz plane, s polarization means that the incident polarization is perpendicular to the
xz plane and parallel to the y-axis. Figure 1d shows a 1D periodic structure along the x axis. Figure 1e,f
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shows 2D periodic structures of square arrays of W patches; we set the coordinate axes to be similar to
Figure 1d. In Figure 1d–f, we define notations P, S, Wd, and Dm for the periodic lengths, slit length,
width of the W bars or square patches, and diameter of the circular W patches, respectively.

In the optical linear response regime, light absorptance A is evaluated using the following equation:

A = 1 − ∑
m,n

(Rmn + Tmn), (1)

where Rmn and Tmn denote the mn-th reflective and transmissive diffraction, respectively. R00 and T00

are ordinary reflectance (R) and transmittance (T), respectively. As we describe in detail in Section 3.2,
the linear optical responses of Rmn and Tmn are directly computed in a numerically precise way, based
on Maxwell equations. Note that Equation (1) is represented in the (0, 1) range where 0 and 1 denote
0% and 100%, respectively.

Perfect light absorption is related to perfect emittance by reciprocity [10]; therefore, when thermal
emitters were produced, researchers tried to attain perfect-absorption structures [2–6]. Recently,
nearly perfect absorption was observed in stacked complementary structures [11], which show
significant enhancement of electric-dipole emission loaded on the outmost surfaces [12–14]. In addition,
it was lately reported that high-emittance plasmonic cavities substantially enhance both electric- and
magnetic-dipole emissions of Er ions [15]. Thus, it has been quite common to relate efficient light
absorption with high emittance.

In this study, we aim at designing PLAs made of a set of representative refractory metal and
ceramic, based on precise numerical calculations. To propose realistic designs, we conduct the
numerical calculations using reliable material parameters. As for the metal W, the complex relative
permittivity is taken from the literature [16], and, as for the ceramic SiN, we adopt a representative
value, that is, permittivity of 4.3. Further details are provided in Section 3.1. The representative value
is sufficient to extract fundamental properties of the W–ceramic systems. We show that the W-SiN
membranes are able to serve as PLAs even when they have subwavelength thickness, suggesting
that they can function as low-power-consumption thermal emitters near the visible range. We also
clarify that the working mechanism of the PLAs is unconventional, robust, and different from that of
noble-metal–insulator systems studied so far [2–6].

2. Results and Discussion

In this section, we show numerical results for PLAs made of W and SiN. Periodic structures are
introduced to absorb incident light efficiently in the very thin membrane structures of subwavelength
thickness. Below, we confirm the basic optical properties of the constituent materials.

Figure 2 shows the basic optical properties of W and SiN. Figure 2a presents R and T spectra of
W membrane with red solid and dashed lines, respectively. The W membrane is assumed to be free
standing in air. The spectra are shown in the (0, 1) scale. Note that the T spectrum is close to 0 in
the whole wavelength range shown. Figure 2a also shows R spectrum of bulk W of 1 mm thickness
with blue curve, which is almost identical to the R spectrum of the W membrane. This means that
the W membrane of 100 nm thickness is optically thick enough, being almost equivalent to bulk W in
terms of the optical properties.

As for the spectral shapes of the W membrane in Figure 2a, R decreases as the wavelength becomes
shorter. For example, at 500 nm, R is 0.48 and, at 1000 nm, R is 0.58. In comparison with a noble metal
Ag, the R values are quite small. This means that W is associated with substantially large optical loss
even at the near-infrared range.

Figure 2b shows R and T spectra of SiN membranes of thickness t = 100, 200, and 300 nm with
red, green, and blue curves, respectively. The R and T spectra are shown with solid and dashed
curves, respectively. The SiN membranes were assumed to be free-standing in air. The spectral shapes
manifest the Fabry–Perot-type interference that is determined by the refractive index and thickness.
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Since we are assuming loss-less refractive index, light absorption does not take place at all in the
SiN membranes.
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Figure 2. Basic optical properties of constituent materials. (a) R and T spectra of W slab (red solid and
dotted curves, respectively) and bulk W (blue solid curve). The slab thickness was set to 100 nm and
the bulk thickness was 1 mm; (b) R and T spectra of SiN membranes. Solid curves denote R spectra
and dotted curves T spectra. The thickness t was set such as t = 100 (red), 200 (green), and 300 nm
(blue). All the spectra in this figure were computed at the normal incidence.

2.1. Nearly PLA of Simply Stacked W-SiN Membrane

Figure 3 shows typical results on light absorption and electromagnetic (EM) fields in a simply
stacked W-SiN membrane. The schematic is shown in Figure 1a. We fix the thickness of the W and SiN
layers to be 100 nm because we intend to elucidate representative properties of the two-layer membrane.

Figure 3a,b shows 2D color and contour plots of light absorptance under p and s polarizations,
respectively. The horizontal and vertical axes represent incident angles and photon energy in
eV, respectively. Note that the normal incidence of 0◦ is in common with the two polarizations.
The absorptance was evaluated using Equation (1). High absorptance of more than 0.8 (or 80%)
appears both at p and s polarizations in the 1.0–1.5 eV (that is, 1239.5–826.3 nm in wavelength) range
including the normal incidence. Perfect absorption also appears both at p and s polarizations; under
p polarization, it is located around 78◦ and 2.8 eV, and, under s polarization, it is around 60◦ and 1.2 eV.

Figure 3a,b explicitly shows perfect absorption by the two-layer W-SiN membrane. Multilayers
of noble metals and insulators have been studied since the 1960s [17,18]. Although several papers
reported experimental observations of the optical responses [19–23], perfect light absorption, to our
best knowledge, has not been observed in the noble-metal–insulator multilayer membranes. Thus,
the optical response of the two-layer W-SiN membrane turns out to be unconventional.

Figure 3c,d shows snapshots of electric-field distributions under conditions of large light
absorption; each condition is indicated by open circle (◦) and cross (×), respectively, in Figure 3b.
The corresponding incident angles are 0◦ and 60◦. Under both conditions, the incident polarization
was s polarization; accordingly, the Ey component is plotted with blue-to-red colors in Figure 3c,d.
We set the incident |Ey| equal to 1.0. The incident light propagates from the top. The interfaces of
air/SiN, SiN/W, and W/air are shown with green lines.

Figure 3e,f corresponds to Figure 3c, and shows the absolute value of electric field |E| and the
profile along the z-axis, respectively. The green lines indicates the interfaces, similarly to Figure 3c.
We set the interface of air/SiN at z = 0. Note that Figure 3f is plotted in decreasing order on the
horizontal axis. Obviously, the electric field rapidly decays inside the two-layer W-SiN membrane;
in other words, it is efficiently absorbed in the membrane. From Equation (1), perfect absorption (A = 1)
requires R = 0, which is often called impedance matching. Under the open-circle condition in Figure 3b,
although the absorptance is not exactly equal to 1, the electric-field distribution is qualitatively
understood to be due to impedance matching and does not arise from a plasmonic resonance.
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Figure 3. Light absorption properties and electromagnetic (EM)-field distribution at nearly
perfect-absorption conditions. (a,b) 2D color and contour plots of light absorptance under p and
s polarizations, respectively. In (a,b), the vertical axis is in common, representing photon energy in eV,
and the horizontal axes represent incident angles. In addition, the common color bar is presented at the
right-hand side. (c,d) snapshots of Ey components near the W-SiN membrane at the normal incidence
and incident angle of 60◦, respectively. The photon energy was set to 1.208 eV. These conditions are
indicated by open circle (◦) and cross (×) in (b). The incident electric-field vector Ein was set to be
parallel to the y-axis and |Ein| = 1; (e) |E| distribution at the condition ◦ in (b); (f) profile of the |E|
distribution in (e) along the z-axis; (g) |H| distribution at the condition ◦ in (b); (h) profile of the |H|
distribution in (g) along the z-axis; (i–l) a set of EM-field distribution and the z profiles at the condition
indicated by × in (b), shown in a similar way to (e–h), respectively. The green lines in (c–l) denote the
interfaces of the hetero-materials.

Figure 3g,h corresponds to Figure 3e,f, and shows the absolute value of magnetic field |H| and the
profile along the z axis, respectively. The |H| profile takes the maximum value at the W/SiN interface.
We mention that the magnetic-field distribution is uniquely determined by the boundary-connection
conditions in the membrane structure and that light absorption mostly takes place in the W layer
through one of Maxwell equation,

∇× H = ε0εW
∂E

∂t
, (2)
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where ε0 is permittivity in vacuum because spatial distribution of H is directly affected by the complex
relative permittivity in the W layer (εW); the permittivity εW has a large imaginary part [16] that is
associated with optical loss.

Figure 3i,j corresponds to Figure 3d and shows the |E| distributions in a similar way to Figure 3e,f.
Also under the oblique incidence (× in Figure 3b), the |E| profile indicates efficient light absorption.

Figure 3k,l corresponds to Figure 3i,j, and shows the |H| distribution and the z profile, respectively.
Qualitatively, the descriptions for Figure 3g,h are true for Figure 3k,l as well.

In short, the large light absorption at 1.0–1.5 eV and wide incident angles including 0◦ is ascribed
to impedance matching of the two-layer membrane structure. The efficient absorption primarily
originates from the property of W permittivity. We point out that the single layer of W does not realize
efficient light absorption as shown in Figure 2a. In this sense, the two-layer membrane structure is the
minimal requirement for large light absorption in W–ceramic systems.

2.2. 1D Periodic PLAs Made of W-SiN-W Membranes

Figure 4 shows absorptance spectra of on-top 1D periodic W-SiN-W membranes. The schematic
is shown in Figure 1d. We set the periodicity P to be 1000 nm and the incidence was set to be normal;
we found signatures of diffraction at 1000 nm such as small steps in Figure 4a and kinks in Figure 4b.
Various absorptance spectra represent light absorption in the 1D periodic W-SiN-W membranes with
different widths of air slit S, which was varied from 150 to 850 nm. Accordingly, the width of metal,
Wd, was varied from 850 to 150 nm because P = S + Wd. The linear optical responses (Rmn and Tmn)
were numerically computed and the absorptance was evaluated using Equation (1).
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Figure 4. (a,b) Absorptance spectra of 1D periodic W-SiN-W membranes under p and s polarizations,
respectively. The schematic is given in Figure 1d. The incidence was set to be normal. Width of air
slit, S, was varied from 150 to 850 nm, which is symbolized as S150 to S850, respectively, while the
periodicity was fixed at 1000 nm. The color usage is in common with (a,b).

As S increases under p polarization in Figure 4a, the absorptance spectra for S = 450 (purple
curve) to 750 nm (red curve) have perfect-absorption peaks around 1300 nm. For S = 750 nm,
another nearly perfect-absorption peak appears at 2200 nm, whose signature is seen for S = 650 nm
(green curve) at the longest wavelength edge.

As S increases under s polarization in Figure 4b, the absorptance gradually increases and reaches
almost 1 for S = 500 nm (blue curve), and keeps the perfect absorption at approximately 1050 nm for
larger S.

Color cones in Figure 4 indicate some of the perfect-absorption peaks for which we next examine
the EM fields. Symbols such as 5a and 6a associated with the color cones denote the corresponding
EM distributions shown in Figures 5a and 6a, respectively.

Figure 5 presents EM-field distributions at perfect-light-absorption conditions of 1D W-SiN-W
membranes with air slit S = 550 nm and width of the metal Wd = 450 nm. The incidence conditions of
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polarization and wavelength are indicated in Figure 4 with the sky-blue cones. The absolute values |E|
and |H| are shown in linear scale in the minimum-to-maximum-value manners.
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Figure 5. EM-field distributions of the 1D W-SiN-W membrane of S550 in Figure 4. (a,b) absolute values
of electric- and magnetic-field distributions, |E| and |H|, respectively; the incident polarization and
wavelength are indicated by the sky-blue cone in Figure 4a; (c,d) |E| and |H| distributions, respectively;
the incidence condition is indicated by the sky-blue cone in Figure 4b. The green lines commonly
represent the boundaries of the 1D W-SiN-W structure. The coordinate axes are shown, in common,
at the left-hand side. All the panels are shown in linear scale in the minimum-to-maximum manners.

Figure 5a,b shows an xz-section view of |E| and |H| distributions under the incidence condition
indicated by the sky-blue cone in Figure 4a (p polarization and 1350.2 nm). The incidence was normal,
being normalized such that the incident |E| = |Ex| = 1.0 and |H| = |Hy| = 1.0. The boundaries of the
involved materials are shown with green lines, except for the air/W boundary in Figure 5a because
of the high contrast and to avoid concealing small hot spots by the lines. The electric field is locally
amplified at the W corners, exhibiting the small hot spots, whereas the magnetic field is localized at
the flat SiN/W interface. The |H| profile is quite similar to the two-layer system in Figure 3. We point
out that the so-called gap mode in the W-SiN-W structure is not responsible for the perfect absorption.

Figure 5c,d shows the |E| and |H| distributions in the xz section under another perfect-absorption
condition, indicated by the sky-blue cone in Figure 4b (s polarization and 1032.1 nm). Then, the incident
polarization vector is parallel to the y-axis and satisfies |E| = |Ey| = 1.0; accordingly, the incident
|H| = |Hx| = 1.0. Figure 5c shows that there is no hot spot and the electric field reaches the bottom
W layer unless the top W bar interrupts the propagation. Figure 5d shows that the magnetic field is
mainly enhanced at the flat SiN/W interface, similarly to Figure 5b. Thus, in this 1D periodic system
of S = 550 nm, the perfect absorption takes place with a mechanism similar to that in the two-layer
membrane structure. It is to be stressed that, even though the structure is certainly anisotropic in the
1D periodic W-SiN-W membrane, the perfect-absorption mechanism is primarily independent of the
incident polarizations and the structural anisotropy.

Figure 6 displays EM-field distributions at perfect-light-absorption conditions of 1D W-SiN-W
membranes with air slit S = 750 nm and width of the metal Wd = 250 nm. The corresponding
absorptance spectra are shown with the red curves in Figure 4 and the three nearly perfect-absorption
peaks are indicated by the red cones. Green lines indicate the boundaries of the 1D periodic membrane,
similarly to Figure 5.
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Figure 6. EM-field distributions of the 1D W-SiN-W membrane of S750 in Figure 4. (a,b) |E| and |H|
distributions, respectively; the p-polarized incidence condition is indicated by the red cone with the
mark 6a in Figure 4a; (c,d) |E| and |H| distributions, respectively; the p-polarized incidence corresponds
to the longer wavelength peak in Figure 4a, indicated by the red cone with the mark 6c. (e,f) |E| and
|H| distributions, respectively; the s-polarized incidence condition is indicated in Figure 4b with the
red cone with the mark 6e. The green lines commonly represent the boundaries of the 1D W-SiN-W
structure. The coordinate axes are shown in common. All the panels are shown in linear scale in the
minimum-to-maximum manners.

Figure 6a,b shows the |E| and |H| distributions, respectively, under p polarization and 1252.0 nm.
The EM-field distributions are qualitatively similar to those in Figure 5a,b, irrespective of the substantial
difference in air slit S.

Figure 6c,d shows the |E| and |H| distributions, respectively, under the condition of p polarization
and 2201.6 nm, which correspond to nearly perfect absorption sensitive to S. We note that only the scale
in Figure 6c is shown in a peak-cut way; that is, although the maximum value of |E| in Figure 6c is 64,
the scale is set to have the maximum at 30 and the locations exceeding 30 are represented in sky blue.
Qualitatively, the EM-field distributions are distinct from those in Figure 6a. The electric- and magnetic
fields show strong localization around the W-SiN-W gap. It is obvious that the |H| distribution takes
the maximum value in the gap. These EM-field distributions are peculiar to the gap mode or plasmonic
waveguide mode [12]. Thus, it is found that the plasmonic gap mode appears at a particular condition,
being sensitive to the structural parameters.

Figure 6e,f shows the |E| and |H| distributions, respectively, under s polarization and 1060.2 nm.
The EM-field distributions are quite similar to those in Figure 5c,d, strongly suggesting that the perfect
absorption owing to the impedance matching is quite robust to the structural modifications.

2.3. 2D Periodic PLAs Made of W-SiN-W Membranes

Figure 7a,b shows absorptance spectra of 2D periodic W-SiN-W membranes of on-top rectangular
and circular patches, respectively. The schematics are shown in Figure 1e,f. Each panel in Figure 7
presents two spectra for the 2D periodic membranes with periodicity P = 1000 nm and the middle
SiN-layer thickness t = 100 and 200 nm, which are shown with black and green curves, respectively.
One side of the W square was set to Wd = 450 nm and the diameter of the circular W was Dm = 504 nm,
where Dm was chosen to keep the volume of the circular patch equivalent to that of the square one.
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The thickness of the top and bottom layers of W was set to 50 and 100 nm, respectively. Quantitatively,
they exhibit similar absorptance spectra, irrespective of the difference of the patch shapes.
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Figure 7. Absorptance spectra of 2D periodic W-SiN-W membranes at the normal incidence. (a,b) on-top
rectangular (side Wd = 450 nm) and circular patches (diameter Dm = 504 nm), whose schematics are
illustrated in Figure 1e,f, respectively. The black and green curves denote the 2D membranes of SiN
thickness (t) 100 and 200 nm, respectively. The periodicity P was set to P = 1000 nm in these cases.

One common feature in Figure 7a,b is that perfect-absorption bands appear at 1050–1200 nm.
We note that, in the 1D periodic membranes in Figure 4, the perfect absorption appears as peaks
(not band). This feature is due to the 2D periodic structures and probably originate from the
dimensionality. The cone at 1126.8 nm in Figure 7a indicates the wavelength corresponding to
EM-field distributions in the next Figure.

Figure 8 shows a set of EM-field distributions of the 2D periodic W-SiN-W membrane at a
perfect-absorption condition indicated by the cone (1126.8 nm) in Figure 7a. The incidence was set to
be normal and to have |Ein| = 1.0 and |Hin| = 1.0. Note that the scales for |E| and |H| are in common
to provide systematic views. Green lines indicate the boundaries in the 2D membrane.

Figure 8a,b shows the |E| and |H| distributions, respectively, in a xz section that cut through
the center of the on-top square W patch. The incident polarization vector Ein is parallel to the x-axis
and induces hot spots at the corner of the W patch. The |H| distribution takes larger values than the
incidence at the interfaces of air/W and SiN/W.

Figure 8c,d shows the corresponding yz-section view through the center of the on-top square
W patch. The |E| distribution does not include any hot spot whereas the |H| distribution is strongly
localized at the SiN/W interface, being scattered at the corner of the on-top W patch.

Figure 8e displays an xy-view |E| distribution at a representative z position, which was set to be
1 nm above the air/W interface and indicated by the cones in Figure 8a,c. The position of the square
W patch is shown with green lines for better visibility. The |E| distribution takes the maximum value
at the corners of the W patch and mainly localizes around the W patch.

Figure 8f shows an xy-view |H| distribution at a representative z position, which was set to
be 1 nm above the interface of the SiN/W and indicated by the cones in Figure 8b,d. The |H|
distribution is mostly enhanced at the positions between the on-top W patches and localizes at
the SiN/W interface. Thus, it is found that the perfect-absorption band is realized by the combination
of local electric-field scattering by the on-top W patch and magnetic-field localization at the SiN-W
interfaces. The local scattering can be interpreted as local plasmon at the rectangular W nanostructures
and includes substantial longitudinal components that are usually excited as continuum [12] and are
considered to realize the perfect-absorption continuum. In terms of the structures, the 1D structures
in Figure 4 do not have the rectangular corners in the xy plane and therefore do not tend to form
perfect-absorption continuum.

183



Appl. Sci. 2017, 7, 458

(a)
|E| |H|

(b)

(d)

(e) (f)

0

3.0

3.0

0

0

0

0

4.1

4.1

4.1

|E|

|H|

|H|

x

z

x

y

e

f

(c)
3.0

0

y

z

|E|

SiN

W

air

W

e

f

Figure 8. EM-field distributions of the 2D W-SiN-W membrane at the perfect-absorption condition
indicated by the black cone in Figure 7a. (a,b) the xz-section views of |E| and |H| distributions,
respectively. The xz section cuts through the center of the rectangular W patch; (c,d) the yz-section
views, corresponding to (a,b), respectively; (e,f) the xy-section views of |E| and |H| distributions,
respectively. The z positions are indicated by the cones in (a–d), respectively. The green lines represent
the boundaries of the 2D periodic W-SiN-W structure. The relevant coordinate axes are shown on the
left-hand side. All of the panels are shown in linear scale in the minimum-to-maximum-value manners.

3. Materials and Methods

3.1. Material Parameters

As for the metal W, the complex relative permittivity is taken from the literature [16], in which the
measured data were well fitted by the Lorentz–Drude model over a wide wavelength range including
the range of interest in this study. Therefore, we use the complex permittivity approximated by
the model.

As for the ceramic SiN, although literature is available [24], the measured data are quite sparse in
the near-infrared range of interest. Therefore, we adopt a representative value, that is, a permittivity
of 4.3. Although there is slight wavelength dispersion in the range of present interest, the representative
value is sufficient to extract fundamental properties of the W–ceramic systems. In addition, the
representative value is a good approximation for other ceramics such as Ta2O5 and allows us to
consider other alternatives for ceramics.

3.2. Numerical Method

Here, we employed the rigorous coupled-wave analysis (RCWA) method to compute the optical
responses and EM field distributions of the different PLA structures. To evaluate the optical responses
of the periodic structures in the frequency domain, the RCWA method is suitable and one of the most
reliable methods because it directly solves Maxwell equations for the periodic structures in a numerical
manner without any simplification and modelling. The RCWA method was originally formulated in
the frequency domain, using Fourier transformation from the spatial coordinate to the wavenumber
space and was substantially improved in the truncation order of the Fourier expansion [25].

To handle stacked structures, it is important to incorporate the scattering-matrix algorithm
in order to avoid numerical divergence that makes the numerical calculations impossible [26].
The optical spectra and the resultant absorptance spectra were obtained based on the RCWA method
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incorporating the scattering-matrix algorithm, which was implemented in a multi-parallel manner
on supercomputers.

4. Conclusions

We have numerically examined several W-SiN membrane structures and demonstrated that they
are able to serve as PLAs in the short-wavelength infrared range. The unconventional mechanism of
perfect light absorption has been revealed and was ascribed to the robust impedance matching of the
membranes to air, irrespective of the dimensionality. We also showed that the minimal requirement
for the nearly perfect absorption is the two-layer W-SiN membrane. In addition, the plasmonic
waveguide mode was observed in the 1D periodic W-SiN-W membrane with a particular structural
parameter. The 1D and 2D periodic structures were found to be useful to obtain perfect absorption
though their fabrication is more complicated, compared to the simple two-layer membrane. Overall,
the W-SiN membranes are found to be practical solutions for thermal emitters working near the visible
range. On the basis of the present designs, we would fabricate low-power-consuming thermal devices
emitting visible and near-infrared light.
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Abstract: All-dielectric metamaterials are a promising platform for the development of integrated
photonics applications. In this work, we investigate the mutual coupling and interaction of an ensemble
of anapole states in silicon nanoparticles. Anapoles are intriguing non-radiating states originated
by the superposition of internal multipole components which cancel each other in the far-field.
While the properties of anapole states in single nanoparticles have been extensively studied, the
mutual interaction and coupling of several anapole states have not been characterized. By combining
first-principles simulations and analytical results, we demonstrate the transferring of anapole states
across an ensemble of nanoparticles, opening to the development of advanced integrated devices and
robust waveguides relying on non-radiating modes.

Keywords: anapole; silicon nanoparticles; integrated photonics; FDTD; near-field coupling

1. Introduction

Dielectric nanostructures at optical frequencies are characterized by an extremely complex
landscape of interacting resonant states. By finely tuning the material and geometrical properties
of the nanostructures, it is possible to engineer advanced functionalities and applications such as,
e.g., anti-reflection surfaces [1] and integrated waveguides based on chains of nanoparticles [2].
One of the most fascinating manifestations of multi-mode interaction in dielectric nanoparticles is the
formation of radiationless states known as anapoles. These states have recently been demonstrated in
silicon nanoparticles [3]. Anapoles are characterized by a strong reduction of the scattering from the
nanoparticle at the anapole wavelength, which acquires the character of a fully-cloaked structure [4,5].
The mechanism underlying the formation of anapole states is the superposition of internal multi-mode
components of the nanoparticle, which cancel each other in the far-field and which produce a radiation
pattern confined to the near-field. As a result, anapole states are not the result of any resonant
process (as in the case of dark resonances), but their origin lies entirely in modal competition and
superposition [6]. While the theoretical description of anapole states in single dielectric nanoparticles
is well established, the mutual coupling and interaction along a chain of anapole nanoparticles
have yet to be investigated. Arrays of nanoparticles have been the subject of intense study, starting
from the remarkable guiding properties demonstrated in plasmonic nanochains [7,8]. To mitigate the
effect of metal losses, researchers have focused on all-dielectric solutions based on high refractive
index nanoparticles [9]. As discussed in [10], the guiding properties of nanoparticle arrays can be
strongly enhanced by minimizing the electromagnetic scattering from each nanoparticle in the array.
As a result, anapole states could represent—in principle—a perfect candidate for efficient integrated
waveguides based on silicon nanoparticles. However, due to their intrinsic non-resonant nature,
anapoles should not manifest mutual coupling (as would be expected in the case of standard resonant
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states). Therefore, it should not be possible to transfer radiationless states among closely-packed
dielectric structures. As recently demonstrated in two-dimensional cylinders, however, anapole states
can be re-interpreted as the result of Fano interference between two or more, overlapping resonant
states in the proximity of the anapole wavelength [11]. If such analysis could be extended to the
three-dimensional case, it would be possible to describe and tailor the mutual coupling of an ensemble
of invisible nanostructures. In this work, we address this problem by combining first-principles
simulations and analytical theory, showing how the anapole state can be effectively transferred among
distinct nanoparticles. Our results play a key role in the development of integrated optical circuitry
based on non-radiating states (e.g., anapole-based wave-guides). Due to the near-field confinement
produced by the anapole excitation and the suppression of the scattered field, wave-guides based
on non-radiating states are extremely robust against physical bending and splitting, opening to the
realization of high-density optical circuitry entirely based on silicon.

2. Results

2.1. Ab-Initio Analysis of Multiple Anapole Systems

We performed finite-differences time-domain (FDTD) analysis by considering an ensemble of
three-dimensional anapole nanoparticles, each composed of a silicon nanodisk of radius R = 150 nm
and height h = 50 nm. Each nanodisk is aligned with the z-axis, and it is illuminated by an Ex

polarized plane wave propagating along the cylinder axis. In order to characterize the mutual
coupling of closely-packed anapole nanoparticles, we consider a system of two slightly displaced
nanodisks (see Figure 1a). The relative displacement of the identical nanoparticles is described by a
centre-to-centre distance d and by a rotation angle α measured from the x-axis (Figure 1a-inset).

The anapole wavelength λan is identified by analysing the scattering cross-section Csca of the
isolated structures, as reported in Figure 1b (blue line). In the proposed configuration, the anapole
state corresponds to λan = 568 nm (green dashed line). Despite the strong reduction of the scattering
cross-section, the anapole state is associated with a strong enhancement of the electric field inside
the nanodisk. The field enhancement is measured by integrating the electric intensity inside the
resonator (Figure 2b, dashed orange line), which exhibits a strong peak at the anapole wavelength
λan. The strong field enhancement associated to the anapole state is a counter-intuitive feature of
the non-radiating state, and it has recently been exploited to amplify light–matter processes in
semiconductor nanostructures [12,13]. To characterize the mutual coupling between anapole states,
we performed a set of simulations for different rotation angles α and distances d, whose results
are reported in Figure 1c,d. In our numerical experiments, we selectively excited one of the two
nanoparticles at the anapole wavelength λan, and we measured the steady-state electric field intensity
|E| in the second resonator. In terms of angular displacement α, the anapole coupling is characterized
by a symmetric dipolar profile (Figure 1c). The near-field coupling is maximum in the direction
of the three-lobe profile of the anapole state (α = 0, 2π), while it is negligible in the orthogonal
direction (α = π/2, 3π/2). Conversely, in terms of the mutual distance d, the anapole coupling
exhibits a more complex profile, with a sharp 20% reduction in less than 150 nm total displacement
(Figure 1d). Interestingly, the spatial decay of the anapole coupling does not follow a power
law decay, as would be expected from near-field dipolar states. To verify this, we compared the
anapole coupling distribution from Figure 1c,d to the scattered field of an isolated nanoparticle (see
Supplementary Figure S1). Even in the case of an isolated nanoparticle, the scattered field is mostly
dipolar, as multipole-components are negligible at the anapole wavelength [3]. The dipolar angular
distribution—associated with a complex decay profile—can be considered as a first signature of a
complex modal interaction between closely-packed anapole nanoparticles.
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Figure 1. Mutual coupling of non-radiating anapole states. (a) Near-field coupling between two
silicon nanodisks (n = 3.5) excited at the anapole wavelength λan = 568 nm. (inset) The dielectric
resonators are mutually displaced by a centre-to-centre distance d and by an angle α; (b) Scattering
cross-section Csca (blue line) and internal electric energy (orange dotted line) as a function of the
incident wavelength λ. The anapole state (green-dashed line) is characterized by the simultaneous
suppression of the scattering cross-section, and by a strong enhancement of the internal field intensity;
(c) Coupled electric energy as a function of the rotation angle α (d = 450 nm). The mutual coupling is
maximum at α = 0, π and negligible at α = π/2, 3π/2; (d) Coupled electric energy as a function of the
mutual distance d. The results correspond to the angular condition of maximum scattering α = 2π.

2.2. Fano–Feshbach Analysis of the Internal Modes

The counter-intuitive coupling properties of anapole–anapole systems can be explained by
analysing the internal resonances of the system. The resonant properties of the single nanostructures
can be extracted from the integrated density of states (DOS) ρ(λ), which can be directly computed
from FDTD simulations [14]. The integrated DOS is defined as:

ρ(λ) =
∫

dx ρ(x, λ) (1)

where ρ(x, λ) is the local DOS, which is a function of the spatial position inside the resonator. In the
FDTD framework, the local DOS corresponds to the spectral response to a single pulse excitation, and it
can be defined separately for each component of the electromagnetic fields. For a generic component
Ej of the electric field, as an example, the integrated DOS reads:

ρEj(ω) =
∫

dx
∣∣F {Ej(x, t)

}∣∣2 , (2)
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where F [· · · ] stands for Fourier transform and Ej(x, t) is the electric field along the j-th direction
(j = x, y, z). An analogue definition holds for the magnetic field components Hj(x, t).

As can be easily verified by solving Maxwell’s equations in cylindrical coordinates (r, φ),
the response from the anapole resonator can be fully represented in terms of the Ez and Hz field
components [15]. In Figure 2, we report the integrated DOS for the (a) Hz and (b) Ez field components.
The integrated DOS are computed by considering a single pulse excitation centred at λ = 700 nm, and
the spectral responses are normalized to the source spectrum. Interestingly, the transverse electric
(TE) spectrum exhibits a strong peak exactly at the anapole wavelength (red vertical line), while
the transverse magnetic (TM) spectrum shows only a slight enhancement at the anapole frequency
(Figure 2b).
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Figure 2. Local density of states and interacting resonant modes. (a,b) Local density of state for
the (a) Hz and (b) Ez field components, corresponding to the transverse electric (TE) and transverse
magnetic (TM) modes of the silicon nanostructure, respectively. The resonant wavelengths (vertical
dashed lines) in both configurations are computed by means of Equation (4).

Further insights on the resonant properties of the anapole state can be obtained by decomposing
the electromagnetic fields into a set of orthogonal eigenmodes. By definition, however, the silicon
resonator represents an open cavity, and the definition of a set of orthogonal resonator modes is
a challenging task [16,17]. As recently shown in [11], a possible way to circumvent such difficulties is
the introduction of a Fano–Feshbach partitioning of the system [18]. In a nutshell, the Fano–Feshbach
partitioning consists of the mathematical splitting of the total system into two orthogonal eigenspaces,
corresponding to the resonator and environment regions. Maxwell’s equations are rewritten in the
partitioned subspaces, providing a rigorous description of light–matter interaction in open resonators.
For a cylinder aligned along the z-axis, the Fano–Feshbach internal resonances for the fields Hz and
Ez correspond to the TE and TM modes of a perfect electric conductor (PEC) cavity [19]. They are
expressed as:

⎧⎪⎪⎨
⎪⎪⎩

TEmpq = Nmpq Jm(
χ′

mp

R
r) sin(

qπ

hn
) exp(imφ)

TMmpq = Mmpq Jm(
χmp

R
r) cos(

qπ

hn
) exp(imφ)

(3)

where Jm is a Bessel function of the first-kind of order m; Nmpq, Mmpq are normalization constants;
and where χmp, χ′

mp denote the p-th zero of the Bessel function Jm and its derivative J′m = ∂Jm/∂ρ,
respectively. The resonance frequencies of the internal modes are defined as:
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ω2
mpq =

c2

n2

[( qπ

hn

)2
+

(
χ′

mp

R

)]
TE modes,

ω2
mpq =

c2

n2

[( qπ

hn

)2
+
(χmp

R

)]
TM modes.

(4)

The choice of PEC boundary conditions for the internal modes is not fixed, as it is only dictated
by the mathematical partitioning scheme adopted. As thoroughly discussed in [11,18,20], they can
be easily exchanged with perfect magnetic conductor (PMC) boundary conditions, which are usually
employed to analyse high refractive index nanoparticles [21,22]. A preliminary analysis of the system
in terms of Fano–Feshbach internal resonances allows us to unveil some fundamental properties of the
anapole excitation. By solving Equation (4), we computed the Fano–Feshbach resonant frequencies
ωmpq of the system, which are reported as sets of dashed vertical lines on Figure 2. Interestingly,
the anapole state is generated in the proximity of a few orthogonal resonances. Among all the
available candidates, the characteristic three-lobes mode profile of the anapole state can be obtained by
superimposing two TM modes (Figure 3): a cylindrically symmetric TM020 and a quadrupolar TM210.
Remarkably, these modes constitute the three-dimensional version of the eigenmodes composing the
anapole state in two-dimensional cylinders (cfr. Figure 3 of [11]).

+

TM
020

TM
210

anapole
state

Figure 3. Fano–Feshbach partitioning of the anapole state. The characteristic mode-profile of the anapole
state is originated by the superposition of a cylindrically symmetric TM020 and a quadrupolar TM210.

3. Discussion and Conclusions

By combining FDTD simulations and analytical theory, we have shown how anapole states
can be coupled and transferred among closely-packed nanoparticles. This result—which recalls the
coupling properties of standard resonant modes—is at first counter-intuitive due to the non-resonant
character of the anapole state. However, as can be demonstrated by performing a Fano–Feshbach
partitioning of the anapole resonator, the three-dimensional state is characterized by the superposition
of several distinct resonances of the system, which collectively produce a scattering-suppression
state at the anapole wavelength and which mutually couple among the ensemble of nanoparticles.
The Fano–Feshbach analysis of three-dimensional anapole states—including a detailed analysis of the
scattered fields—goes beyond the scope of this work, and it will be the subject of a future specialized
work on the topic.

The ability to control and transfer non-radiating states along optical circuitry, however, opens to
intriguing possibilities in the development of advanced integrated photonics platforms. As shown in
Figure 4, anapole nanoparticles can in fact be arranged in a compact nanochain with remarkable guiding
properties. Due to the efficient near-field coupling between adjacent nanoparticles, the nanochain can
support guided modes which propagate without radiative losses at distances of several μm. In these
simulations, we selectively excited the first anapole state in the nanochain (not shown in the figure)
and we characterized the propagation of energy along the chain. Such excitation can be achieved
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experimentally, as single anapole nanoparticles can be excited by means of a near-field scanning
optical microscopy (NSOM) setup [3]. As an appealing alternative, anapole-based waveguides could be
combined with integrated nanolasers emitting at the anapole frequency [13].
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anapole propagation

Figure 4. Anapole nanochain. Steady-state electromagnetic energy distribution along a chain of
anapole nanoparticles. The centre-to-centre distance is d = 400 nm. The external excitation is restricted
to the first anapole of the chain (not included in the panel).

As the anapole states are tightly confined in the near-field, optical nano-circuitry based on
non-radiating modes is extremely robust to bending and splitting, as shown in Figure 5. In standard
photonics applications, wave-guide deformation produces significant radiation losses, in particular
when considering 90-degree bends and turns [23]. Conversely, in the case of an anapole nanochain,
the near-field properties of the non-radiating state allow for efficient transmission of the guided mode
across deformations and bends, such as in the case of wave-guide splitting (Figure 5a) or 90-degree
bending and re-routing (Figure 5b). These illustrative examples strongly suggest the possibility of
integrating anapole nanoparticles with state-of-the-art integrated photonics applications.
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Figure 5. Robust sub-wavelength guiding via near-field transfer of anapole states. Due to the
near-field confinement produced by the anapole state, the anapole nanochain is robust against bending
and splitting of the integrated wave-guide. This opens to the realization of (a) integrated splitters and
(b) 90-degree bends without introducing radiation losses.

4. Materials and Methods

4.1. FDTD Simulations

We performed fully-dispersive three-dimensional FDTD simulations using our home-made
simulator NANOCPP [24–29]. In our simulations, the computational domain was organized as follows:
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the z-aligned nanodisks were placed at the centre of a 2 μm × 2 μm × 1 μm box, with uniaxial perfectly
matched layer (UPML) boundary conditions emulating an open system [30]. The numerical resolution
was set as Δx = 2 nm, corresponding to 81 points per internal wavelength at the anapole frequency λan.
The system was illuminated by plane wave, implemented according to the total-field scattered-field
(TFSF) formalism [31]. The scattering cross-section (Figure 1b) was computed by integrating the
Poynting vector along a three-dimensional surface surrounding the objects and entirely placed in
the scattered-field region of the TFSF. In order to characterize the anapole coupling among distinct
nanoparticles, we included one of the resonators in the total-field region of the TFSF, while the other
resonators were placed in the scattered-field region.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/7/6/542/s1,
Figure S1: Scattered field from an isolated anapole state.

Acknowledgments: This research is supported by KAUST (Award No. OSR-2016-CRG5-2995). For the computer
time, we have used the resources of the KAUST Supercomputing Laboratory and the Redragon cluster of the
PRIMALIGHT group.

Author Contributions: V.M. and J.S.T.G. performed first principle parallel simulations and analytical modelling.
A.F. supervised the research. All authors contributed to the analysis of data. All authors contributed equally to
manuscript preparation.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
FDTD Finite-Differences Time-Domain
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TFSF Total-Field Scattered-field
TM Transverse Magnetic
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PEC Perfect Electric Conductor
PMC Perfect Magnetic Conductor
NSOM Near-field scanning optical microscopy
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Abstract: The phase, amplitude, speed, and polarization, in addition to many other properties of light,
can be modulated by photonic Bragg structures. In conjunction with nonlinearity and quantum effects,
a variety of ensuing micro- or nano-photonic applications can be realized. This paper reviews various
optical phenomena in several exemplary 1D Bragg gratings. Important examples are resonantly
absorbing photonic structures, chirped Bragg grating, and cholesteric liquid crystals; their unique
operation capabilities and key issues are considered in detail. These Bragg structures are expected
to be used in wide-spread applications involving light field modulations, especially in the rapidly
advancing field of ultrafast optical signal processing.

Keywords: Bragg structure; ultrafast; optical signal process

1. Introduction

In the next generation of high-speed information networks, the direct processing of optical signals
is required. On the other hand, the basic signal-processing capabilities, such as switching, logic
operations, and buffering, are still lacking in practically usable forms. Useful for achieving these
objectives should be the deceleration of optical signals and the creation of standing ones. These effects
have been demonstrated with the help of various techniques, such as electromagnetically-induced
transparency [1,2], but those interference-based techniques are often not suitable for broadband signal
processing, when the carrier waves are represented by picosecond or even femtosecond pulses [2].
The light can also be retarded in optical fibers by a stimulated Brillouin scattering effect [3], and in
photonic-crystal waveguides by manipulating the dispersion [4,5]. Light-matter interactions can be
enhanced by the retardation of light. Since the light-matter interaction time t is inversely proportional
to the group velocity vg, the use of slow light with a small vg implies longer interaction times,
and consequently, a more efficient energy conversion [6]. Slow light also offers the possibility to
compress optical signals in space, thus reducing the device size [7,8].

In this article, we review both theoretical and experimental results concerning the processing of
ultrafast optical signals in one-dimensional (1D) Bragg gratings, which exhibit a 1-D photonic bandgap
that makes it possible to significantly reduce the speed of light launched at a carrier frequency close
to the bandgap. We discuss both artificially engineered Bragg structures, made of optoelectronic
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materials, and those produced by natural self-assembly, such as cholesteric liquid crystals. We provide
a critical review of the performance of the Bragg gratings and the limitations in their use. In particular,
we describe how some of the inevitable deleterious effects that accompany a strong dispersion
experienced by light at the band-edge, can be balanced by the material nonlinearity, which provides
the laser-induced self-phase modulation of the optical field. Theoretical modeling of these processes in
some Bragg structures have shown that ultrafast laser pulses can be decelerated, stopped, and buffered;
as a result, stationary nonlinear optical frequency conversion can be very efficient, even with a very
thin resonant absorption Bragg reflector sample [9–13]. In a tailored optical structure, such as one
into which defects and spatial chirp are integrated, various optical logic operations can be efficiently
realized [14–16]. Recently, BG structures consisting of cholesteric liquid crystals (CLCs), which possess
extraordinarily large ultrafast optical nonlinearities due to photonic crystal band-edge enhancement,
have also been shown to be highly effective for direct-action compression, or for the stretch and
recompression of pico- and femto-second pulses, opening up new possibilities for efficient broadband
optical-signal processing [17,18].

2. The Bragg-Grating (BG) Structure

Bragg structures are basically 1D photonic crystals (PCs) [19,20] comprising materials with
periodic refract index modulation along one direction, taken as:

n(z) = n0[1 + a1 cos(2kcz)], (1)

with constant kc, a1, and n0 values. The fabrication, characterization, and optical properties of PCs
have been thoroughly investigated since the original works of John and Yablonovitch [19,20]. It is well
known that the BG structure gives rise to a bandgap, with its central wavelength located at λ0 = 2πn0

kc

and a bandwidth of Δλ = 2πn0a1
kc

. Strong dispersion and velocity reduction occur at the photonic
band edges [21]; in some materials, losses can also be significant. Both a low group velocity and
low dispersion can be obtained by designing the structures of BG. In Reference [22], a low velocity
of 0.02c (c is light speed in vacuum), in combination with a 10 nm-bandwidth and low dispersion,
was demonstrated by changing the structure of a PC’s waveguide [22].

A frequently studied 1-D Bragg structure is the fiber Bragg grating, which can be fabricated by
interference lithography in fibers [23]. Fiber Bragg gratings are widely used in sensors [24], optical
telecommunications [25], and for dispersion compensation [26]. 1D Bragg structures can also be
fabricated in other solid materials, such as silicon [27] and AlGaAs [28], for optical switching and
limiting operations [29]. Besides such artificial Bragg structures, self-assembled Bragg structures can
also be found in liquid-crystal materials, such as cholesteric liquid crystals, whose optical properties
can be modulated by the light field [30]. Cholesteric liquid crystals can also be used as temperature
sensors [31], due to their temperature-dependent pitch.

By introducing nonlinear optical effects, many interesting discoveries have been made in
one-dimension (1D) fiber Bragg grating. These include multistability, a zero velocity, and the creation
of wobbling or oscillating solitons [32–36]. Using Kerr nonlinearity to balance the strong dispersion
near the bandgap’s edge, BG solitons with speeds of 0.5 c [35,37] and as low as c/7 [33] were observed
in experiments. Furthermore, it was predicted that standing light can be created using BG fibers with
defects [38–40], Bragg reflectors combined with resonant nonlinearity [41], and the collision of BG
solitons [42,43]. However, high input power densities (>10 GW/cm2) and long propagation lengths
are required to achieve strong nonlinear effects, which may pose serious problems in experiments
and applications.

Several Bragg structures have been evoked to address the power and interaction length issues,
as detailed in the following sections.
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3. Optical Signal Processing in Resonantly Absorbing Bragg Reflector (RABR)

3.1. Theoretical Considerations

RABR is produced by adding narrow stripes, doped by two-level atoms resonantly interacting
with the transmitted electromagnetic fields, to a BG structure, as schematically shown in Figure 1 [9–11].

Figure 1. A scheme of RABR with black stripes representing thin layers of two-level atoms. White and
gray bands represent a periodically structured nonabsorbing medium (After Reference [11]).

Light-matter interaction in RABR, built of infinitely thin atomic layers, is modeled by the
Maxwell-Bloch equations for electric-field components E+ and E− of the forward- and backward-
propagating waves, and population W [12]:

∂Σ±

∂τ
± ∂Σ±

∂ζ
= iηΣ± + P, (2)

∂P
∂τ

= −iδP + (Σ+ + Σ−)W (3)

∂W
∂τ

= −Re
[
(Σ+ + Σ−)P∗] (4)

where Σ± ≡ (2τcμ/�)E±, τc ≡ (2�n0/μ0c2ωcμρ)
1/2 is the cooperative time (ranging from pico- to

femto-seconds )which is determined by the presence of the two-level atoms; n0 is the average refraction
index; ωc is the resonant frequency of the two-level atom; μ is the magnitude of the dipole matrix
element ρ is the density of the dopant atoms; η ≡ (n1ωτc)/4 is the dimensionless coupling constant;
P and W are the material polarization and population inversion density, respectively; δ ≡ (ω − ωc)/τc

is the dimensionless detuning; τ ≡ t/τc and ζ ≡ (n0/cτc)z are the dimensionless time and spatial
coordinates, respectively; and ω is the frequency of the incident light. Here, τc is equal to 300 fs [13].

Solutions of the Maxwell-Bloch equations, some being available in an analytical form [10],
produce a vast family of stable gap solitons, of both a standing and moving nature. Compared
to the self-induced-transparency (SIT) in uniform media, the solitons generated in RABR may have
an arbitrary pulse area, while in uniform media solitons, are only created by pulses with an area exactly
equal to 2π [44,45]. Stable dark solitons can also be excited in RABR [11]. Thus, the theoretical analysis
demonstrates that light signals with any velocity can indeed exist in the RABR.

An optical pulse with a hyperbolic-secant shape, generated by the input with a small area,
undergoes complete Bragg reflection in the RABR. With an increase in the input intensity, the SIT
solitons can be excited, making it possible for light pulses to propagate without loss. If the intensity
is still higher, the splitting of the pulse occurs. Most remarkably, with a suitable incident pulse,
an oscillating gap soliton trapped in the RABR as a standing wave can be created. Figure 2a shows the
evolution of the optical energy, which is represent by the population distribution W [12,13], in this case.
Furthermore, we have found that multiple gap solitons can be simultaneously created as standing
modes, thus predicting a possibility of efficient storage of the optical energy in the RABR structure
(Figure 2b).
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(a) (b)

Figure 2. (a) The evolution of the population inversion, W, illustrating the creation of an oscillatory
standing soliton in the RABR from a sech-shaped input. The pulse width is τ0 = 0.5τc, and the injected
amplitude is Σ+

0 = 4.3; (b) The generation of two standing oscillatory solitons, with the pulse widths
τ0 = 0.5τc and injected amplitude Σ+

0 = 3.6 [12].

For an input pulse with a suitable area, the numerical simulations have shown that the pulse can
evolve into a standing gap soliton that can be stored as a stable self-localized state. The minimum
length of the sample, necessary for the realization of the storage of the standing light pulse, is 1200 BG
periods [12,13]. The self-trapping dynamics of the laser pulse may be considered as the motion of
a quasi-particle in an effective potential representing the nonlinear interaction between the input pulse
and the two-level atomic medium [46]. As a result, the pulse decelerates and eventually comes to
a halt inside the structure, under the action of the trapping potential.

By colliding with another input pulse, the stored pulse can be released; both pulses can be released
from the RABR with an efficiency of up to 96% (Figure 3) [13].

Figure 3. A contour plot illustrating the release of a laser pulse stored in the RABR by dint of its
collision with an additional pulse injected into the structure [13]. The pulse width is τ0 = 0.5τc, and the
injected amplitude is Σ+

0 = 3.5, for the stopped pulse, and Σ+
0 = 3.84 for the incident one. Both input

pulses have a standard sech profile.

The nonlinear frequency conversion of zero-velocity (standing) short light pulses, based on the
stimulated Raman scattering (SRS), has also been studied [7]. To reduce the walk-off effects, both the
pump and Stokes waves must be phase-matched, traveling with equal speeds. This can be realized
in a 1D doubly resonant Bragg reflector (DRBR), where “doubly” implies supporting the resonant
interactions at two different wavelengths simultaneously, as specified below [7].

The DRBR structure consists of 1D periodically arranged layers of two-level atoms and a passive
BG. The period of the array of the two-level-atom layers is equals to the half-wavelength of the pump
pulse. The bandgap center of the passive BG is equal to the wavelength of the Stokes pulse. In the
DRBR, the pump pulse can be decelerated and stopped by thin atomic layers [41]. On the other hand,
the Stokes pulse can be generated as a standing or slowly oscillating soliton by the passive Bragg
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reflector [14]. Due to the interaction of these two kinds of stopped light pulses, the energy of the pump
pulse can be efficiently transferred to the Stokes pulse. Furthermore, the energy of the Stokes pulse
will eventually leak out from both edges of the finite-length of DRBR in the form of Raman solitons.

The propagation of light in the DRBR is modeled by the Maxwell-Bloch equations, which take
into account the Raman and Kerr nonlinearities [7]:
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where Σ±
p,s ≡ (2τcμ/�)E±

p,s represents the forward- and backward-propagating pump and Stokes
waves; K ≡ κcτc/n0 and Δ ≡ δcτc/n0 are the dimensionless coupling constants and detuning,
respectively; fR is the fraction of the nonlinearity arising from molecular vibrations with a typical
value of 0.18 [45]; and Gp,s ≡

(
ε0c2

�
2/8μ2τc

)
gp,s and Γp,s ≡ ωp,sn2ε0c�2/8μ2τc are the dimensionless

nonlinearity and gain coefficients for the pump and Stokes waves, respectively.
When the time of the interaction of the standing Raman active medium and soliton is large

enough, the intensity of the zero-velocity Stokes pulse starts to increase at the expense of the pump
field. Following the efficient power exchange between the pump and Stokes pulses, the energy of
the Stokes pulse can leak out from both edges of the DRBR. By comparing the output energy of the
Stokes pulses with the energy of the standing pump pulse, the efficiency of the Raman shift can
be estimated (Figure 4). Remarkably, it may exceed 85%, i.e., higher than the efficiency in the bulk
medium [47]. In practice, such an efficient conversion can be achieved by using a periodically arranged
multi-quantum-well structure, [48]. The required length and power are only a few millimeters and
100 μJ, respectively.

Figure 4. The evolution of the energy density of (a) pump and (b) stokes pulses in the DRBR under the
action of the SRS [7].

RABR can also be used to reshape and compress ultrashort laser pulses. From the Maxwell-Bloch
Equation (1), one can show that the RABR may compress the sech-shaped input, with a pulse width
ranging from 2τc to 5τc (τc is the cooperative time), into a 2π SIT soliton [49]. Furthermore, input
pulses with a multiple-peak shape can be re-shaped to produce a single-peak output. Figure 5 shows
the transformation of the three-peak pulse into a single-peak pulse in the RABR structure. In fact,
SIT in bulk media can also be applied to compressed optical pulses. However, in that case, the input
pulse with single peak is split into multiple ones, rather than morphed into a single-peak SIT soliton,
as in RABR. The difference is explained by the fact that reshaping in the RABR originates from
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multiple reflections in the Bragg structure, while no reflections occur in the the bulk SIT medium.
Other interesting phenomena, such as the negatively refracted light in the RABR, have also been
discovered [50].

Figure 5. The input (solid line) and output (dash line) from the RABR, when a three-peak pulse is used
as the input [40].

The validity of the numerical predictions was also checked by the comparison with a more realistic
finite-atomic-width approach [51]. The result shows that stable moving solitons can be generated,
but the zero-velocity soliton no longer exists if the thickness of the two-level atom layer exceeds
a critical value (1.2 nm).

3.2. Experimental Work on RABR

Many methods, such as photo lithography, e-beam, and self-assembling, can be used to fabricate
1D photonic structures. Due to the extremely thin layers filled by dopant atoms, the molecular-beam
epitaxy technique is particularly suitable for fabricating RABRs. In Reference [51], InGaAs/GaAs
multi-quantum-well structures, which may be seen as typical RABRs, have been made by using this
technique. In a 200 layer InGaAs/GaAs multi-quantum-well pattern, ultrafast switching based on the
ac Stark has been observed [52].

For the purpose of buffering the optical pulse, the number of layers should be increased to about
1000 [43]. In this case, the sample will be very easy to peel off from the substrate with the help of
demoulding. Normally, for measuring the nonlinear effect of the InGaAs/GaAs multi-quantum-well,
the experiment should be performed at a low temperature (4 K–10 K) [48,52]. These strict experimental
conditions limit the application of InGaAs/GaAs multi-quantum-wells in optical signal processing.

4. Optical Signal Processing in Chirped Bragg Structures

Chirped fiber BGs with a gradually varying local BG period, have been widely used to provide
a strong positive/negative dispersion in a fiber system to stretch and compress the optical pulse [26].
Recently, the nonlinear propagation of the optical pulse in a silicon chirp Bragg structure was
investigated [14,15]. The simulation result shows that the optical pulse can be buffered and released in
the silicon chirp Bragg structure.

Generally, for the purpose of creating very slow BG solitons, two conditions should be met. First,
the grating-induced dispersion must be balanced by the nonlinearity [53]. Second, since the optical
field in the 1D Bragg structure is represented by forward-traveling and backward-traveling waves,
an initial configuration should have nearly-equal powers in the two waves [54]. The former condition
can be achieved by using a high-power input, and therefore, sufficient nonlinearity [12]. The latter
condition is much harder to meet with the single incident pulse [55], as it does not initially contain any
backward component.
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In other studies [14,15], concatenated BGs were used to generate slow ultrashort pulses, or even
standing ones. Such concatenated BGs are built by linking a linearly chirped grating with a uniform
one. The main advantage of this setting is that the initial conditions for pulses at the input edge of
the uniform BG segment may be manipulated by means of the preceding chirped BG, which provides
a possibility of preparing the right mix of forward and backward fields.

As in Bragg superstructures, light propagation in chirped gratings can be described by the
standard coupled-mode theory [53,56–59]. For slowly varying envelopes of forward and backward
waves, Ef and Eb, the coupled-mode equations are written as [14,56]:
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where t is the time; vg = c/n0 is the group velocity in the material of which the BG is fabricated;
and γ = n2ω/c is the nonlinearity strength, where ω is the frequency of the carrier wave and n2 is
the Kerr coefficient. Further, z is the propagation distance, L is the total length of the grating, n0 is the
average refractive index with modulation depth Δn, Λ0 is the BG period at the input edge, and C is the
chirp. The wavenumber-detuning parameter δ (Figure 6), and the coupling between the forward and
backward field, κ = πΔn/Λ0, are functions of the propagation distance.

(a) (b)

Figure 6. (a) The relation between wavenumber detuning and propagation distance in the concatenated
BG, which does not include the local defect; (b) The evolution of the pulse with peak intensity equal to
(d1) 0.65 GW/cm2, (d2) 2.26 GW/cm2, (d3) 2.29 GW/cm2, and (d4) 2.30 GW/cm2 [14].

The pulse-propagation properties are first investigated with a different input-pulse peak intensity
(Figure 6). The analysis leads to the following conclusions.

(i) At low intensities, e.g., 0.65 GW/cm2, the pulse is almost totally reflected by the Bragg structure
due to the presence of the photonic bandgap (Figure 6bd1). Since the pulse’s dispersion is not
compensated by the weak nonlinearity, pulse stretching is observed.

(ii) At higher intensities, an unstable standing light pulse trapped at the interface is generated.
In particular, at IP = 2.26 GW/cm2, the pulse will be reflected after stopping for a short time,
as seen in panel (d2) of Figure 6b. Slightly increasing IP to 2.29 GW/cm2, in the range of 2.26 to
2.29 GW/cm2, gives rise to a stopping time of ~1.3 ns for the pulse that is eventually reflected,
as shown in panel (d3).

(iii) A slow moving Bragg soliton can be observed, as shown in panel (d4), for IP = 2.30 GW/cm2.
In this case, the velocity of the pulse is equal to 0.005 c. Further simulations demonstrate that the
velocity of the moving soliton increases with a further increase of IP.
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Since the standing pulse is unstable, a defect is introduced between the chirped and uniform BG
segments, as shown in Figure 6a. By introducing such a defect, the stability of pulse trapping can be
much improved. Additionally, the intensity range of achieving a standing pulse can be made several
times larger than without the defect (Figure 7).

Figure 7. Simulations of the pulse propagation in the concatenated BG, with a defect located
at the conjunction of the chirped and uniform segments, for different injected peak intensities:
(a) 1.94 GW/cm2; (b) 2.14 GW/cm2; (c) 2.33 GW/cm2; and (d) 2.59 GW/cm2 [14].

To control the trapping position, a periodic set of defects is introduced into the uniform part of
the BG structure, as shown in Figure 8, which shows δd(z) as a function of z. Here, ε is the strength of
each defect and dw is its width [15].

(a) (b)

Figure 8. (a) A schematic of the system, built of the linearly chirped BG segment (on the left-hand side)
followed by the uniform grating with an inserted periodic array of local defects. The system can be
described by parameters (S; dw; ε), and the definition of S, dw, and ε are shown in (a); (b) Relations
between the trapping position and the initial pulse’s intensity IP for (S; dw; ε) = (0.132 cm; 50 μm; 0.04)
and (0.132 cm; 50 μm; 0.06) (blue and red curves, respectively) [15].
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The results of the simulations show that, at different input-pulse intensities, the pulse can be
trapped at different defects. Such a defect array can also trap several pulses at different defects
(Figure 9). In addition to that, the trapped pulses can interact with each other.

Figure 9. The simulation result of the trapping of three pulses in the BG structure. Here (S; dw; ε)
= (0.132 cm; 50 μm; 0.04). The peak intensities of the three pulses are 3.04, 2.78, and 2.07 GW/cm2.
Such pulses are launched into the gratings at t = 0, t = 3, and t = 6 ns, respectively [15].

An all-optical femtosecond soliton diode can also be designed, using a tailored BG heterojunction.
Highly nonreciprocal transmission, with an extinction ratio of up to 120, was produced by simulations
of this setting (see Figure 10).

Figure 10. A typical example of the predicted femtosecond diode effect. The pulses with a width of
100 fs are injected from the left (a) and right (b) hand sides, respectively. The incident peak intensity of
the pulse is I = 0.35 GW/cm2. (a) The femtosecond soliton can propagate from A to B; (b) the soliton
bounces back when it is injected from B [16].

5. Ultrafast Pulse Modulations Based on Cholesteric Liquid Crystal (CLCs) Bragg Gratings

For modulating the optical signal in a compact photonic device, the following properties of
the device materials are required: (i) Fast response to process a high speed optical signal; and (ii)
Strong dispersion and nonlinearity to achieve a shorter dispersion and nonlinear length to decrease the
required propagation length. Many works on the pulse modulation have been completed in fiber Bragg
grating, and for which, the typical nonlinear coefficient is on the order of 10−16 cm2/W; in conjunction
with a peak power of kilowatts [26], the resulting nonlinear effective length is on the millimeter
scale [60]. In this section, we show that naturally occurring Bragg grating in a highly nonlinear CLCS
can enable the same ultrafast (femtoseconds-picoseconds) pulse modulation operations in sub-mm
interaction lengths.
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After decades of studies, liquid crystals have emerged as highly versatile and nonlinear optical
materials, due to their organic molecular constituents and unique liquid crystalline properties [61].

In liquid crystals, the underlying mechanisms generally fall into two classes, as depicted in
Figure 11 for the nematic phase (which include the chiral nematic phase often called cholesteric liquid
crystals (CLCs)): (i) Macroscopic crystalline responses including the director axis, reorientation by light
fields or a light/DC field induced photorefractive effect, index/birefringence change by laser induced
order parameter and/or temperature changes, and flow reorientation; these bulk effects generally
respond in the millisecond to a sub-microsecond regime [62]; and (ii) Individual molecule’s nonlinear
polarization associated with single- and multiple photonic transitions within the molecular energy
levels; these respond on the sub-picoseconds to a femtoseconds scale [63–67].
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Figure 11. Observed optical nonlinearity in terms of the nonlinear index coefficients of nematic
liquid crystals (including chiral nematics) for several mechanisms and the characteristic relaxation
time constants.

CLCs are formed by introducing a chiral agent in standard nematic liquid crystals used in
ubiquitous liquid crystal display devices. In CLC, the birefringent molecules self-assemble with the
director (crystalline) axis arranged in a spiral, with a pitch on the order of the optical wavelength
stretching from the UV to the infrared regime, as seen in Figure 12. As a result, CLC’s possess not
only the advantageous features of liquid crystals such as fabrication ease and low cost, and a very
wide spectral dynamic range of operation [68,69], but also the 1-D photonic crystals’ unique ability to
enhance the nonlinear ultrafast all-optical responses of the CLC constituent molecules [mostly due
to the nematic constituent], in addition to the dispersion effect at the photonic band-edges. A typical
magnitude of the non-resonant nonlinear index coefficient n2 is in the order of 10−14–10−13 cm2/W,
but owing to the photonic crystal band-edge enhancement, the magnitude of the effective n2 can be
as large as 10−12–10−11 cm2/W. In comparison to other materials [70] used for ultrafast pulsed laser
modulation applications, these n2 values are orders of magnitude larger, and thus, one can envision
a tremendous miniaturization possibility.
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(a) (b)

Figure 12. (a) Observed transmission spectrum of linearly polarized light through the CLC cell used
in the experiment; (b) Observed dependence of the transmission of a left-handed circularly polarized
laser pulse (λ = 815 nm) on the peak intensity [17].

Depending on the electronic resonances of the nematic constituent used in synthesizing a CLC and
the wavelength of the laser under study, the sign of n2 can be positive [18] or negative [17]—a common
feature found in the electronic nonlinearities of most materials [70]. As shown in Figure 12b for
the nematic compound used in [18], the refractive index change induced by the laser causes the
bandgap to shift towards the shorter wavelength region (i.e., blue-shit), and consequently gives rise to
an increasing intensity dependence since the laser wavelength is located at the long wavelength edge
of the CLC (Figure 12b). In Reference [17], the CLC sample with self- defocusing nonlinear properties
is used to compress the femtosecond pulse (Figure 13). The nonlinear coefficient of the CLC used in
that study was measured to be about −10−11 cm2/W using a similar intensity dependent transmission
measurement. This is four orders of magnitude higher than silica [12]; as a result, the required the
thickness of the CLC sample is merely 6 microns in order to compress a 100 fs laser pulse to about
50 fs [17]. If the constituent nematic molecules possess a lower optical nonlinearity, thicker CLC cells of
several 100’s microns are required [18], which are nevertheless thin/short compared to other materials
used for ultrafast laser pulse modulations.

Figure 13. Observed direct pulse compression effect on an initial transform-limited 100 fs pulse
(black line) to a 48 fs output pulse (red line); the inset figure corresponds to the simulation results using
the measured experimental parameters [17].
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The pulse propagation can be simulated by the nonlinear coupld-mode theory presented in Part 4.
In [17,18], it is shown that the simulations for the pulse width and the spectra are in good agreement
with the experimental results, as seen in Figures 13 and 14. The compression ability for the pulse
with different widths is determined by the propagation length, since the differences of dispersion for
different widths lead to a difference in the dispersion length. Another work reported in Reference [18]
shows that by using a CLC sample with a 500 μm cell gap, the sub-picosecond pulse with 800 fs can
be compressed to 286 fs. The corresponding spectra broadening can also be observed (Figure 15).
This result clearly indicates that by cascading the CLC sample with a different cell gap, the pulse can
be compressed in a wide temporal range.

Figure 14. Observed spectral broadening effect due to the pulse compression for an input pulse peak
intensity of 1.04 GW/cm 2; the inset depict simulation results for the spectrum (solid lines) and spectral
phase (dashed lines) [17].

  
(a) (b) 

Figure 15. (a) Observed direct pulse compression effect on an initial transform-limited 847 fs pulse
(open circles) to a 286 fs output pulse (open squares); the inset figure corresponds to the simulation
results using the measured experimental parameters; (b) Observed and simulated spectra for the input
and output (compressed) pulses [18].
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Another possible pulse-modulation device is based on two tandem CLC cells that are tailor-made
so that their respective blue/red photonic band-gap edges match the operating laser wavelength,
and to utilize the opposite linear dispersions (i.e., without involving the optical nonlinearity) from
these band edges to impart an opposite chirping effect on these pulses. As a result, an incident
100 femtoseconds laser pulse can be stretched to nearly 2 picoseconds by the first CLC cell, and then
recompressed to the original pulse length by the second CLC cell, as seen in Figure 16. Such pulse
stretching and recompressing operations are commonly employed in chirped pulse amplification
(CPA) systems [71] that require an intermediate pulse stretching process to prevent amplification
saturation. In this case, the entire stretch-recompress operation can be done all-optically with CLC
cells measuring <1 mm in interaction length, contrasting greatly with the bulky optics employed in
conventional CPA systems.

Figure 16. Results of pulse modulations by two tandem 550 μm thick CLC cells. Observed pulse shape
for the input (upper trace), output after traversing the first cell (middle), and output after traversing
the second cell (bottom trace). Initial pulse width: 100 fs laser pulse; wavelength: 780 nm [18].

6. Conclusions

We have discussed several methods to realize an ultrafast optical signal process in 1D Bragg
structures, including resonantly absorbing Bragg reflectors (RABR), chirped BGs (Bragg gratings),
and transparent but highly nonlinear CLCs (cholesteric liquid crystals) that exhibit properties of 1D
photonic crystals. The result shows that an ultrafast pulse can be buffered and subsequently released
in the RABR Additionally, based on the reduction of the light speed, a nonlinear frequency conversion
can be achieved over a short propagation distance. Using a linearly chirped BG concatenated with
a uniform one, we have demonstrated the possibility of achieving the efficient slow-down of light with
the right mix of forward and backward propagating fields. Such chirped gratings can also function
as all-optical photodiodes. Finally, we have discussed a unique class of self-assembled BGs based on
CLCs. They feature extraordinarily large and ultrafast-responding optical nonlinearities, which enable
direct compressions, as well as the stretching and recompressions of femtoseconds laser pulses over
very short (sub-mm) propagation lengths.
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Abstract: The system of “integrable” coupled nonlinear Schrödinger equations (Manakov system)
with three components in the defocusing regime is considered. Rogue wave solutions exist for
a restricted range of group velocity mismatch, and the existence condition correlates precisely
with the onset of baseband modulation instability. This assertion is further elucidated numerically
by evidence based on the generation of rogue waves by a single mode disturbance with a small
frequency. This same computational approach can be adopted to study coupled nonlinear Schrödinger
equations for the “non-integrable” regime, where the coefficients of self-phase modulation and
cross-phase modulation are different from each other. Starting with a wavy disturbance of a finite
frequency corresponding to the large modulation instability growth rate, a breather can be generated.
The breather can be symmetric or asymmetric depending on the magnitude of the growth rate. Under
the presence of a third mode, rogue wave can exist under a larger group velocity mismatch between
the components as compared to the two-component system. Furthermore, the nonlinear coupling
can enhance the maximum amplitude of the rogue wave modes and bright four-petal configuration
can be observed.

Keywords: rogue waves; manakov system; modulation instability; numerical simulation

1. Introduction

Rogue waves or freak waves are extreme events in the ocean which are characterized by the
emergence of large waves from an otherwise tranquil background [1–3]. The unexpectedly large
displacements of the sea surface pose threats to maritime activities and offshore structures. Intensive
research efforts are conducted to understand the physics of rogue wave and to develop measures
to predict or detect such waves [4,5]. Although rogue waves originate from the context of water
waves [1–3,6–9], these studies have been extended to other physical contexts like optical fibers [10–12]
and Bose-Einstein condensates [13]. Moreover, it has been demonstrated that optical rogue waves are
related to supercontinuum generation [10,11]. The high repetition rate of optical experiments is an
advantage in the study of these rare events.

For hydrodynamic surface waves, the nonlinear Schrödinger (NLS) equation governs the slow
evolution of a weakly nonlinear wave packet [2]. The NLS equation can also describe the dynamics
of temporal pulses in an optical fiber [10]. The Peregrine breather of the NLS equation is localized
in both space and time, and is a widely utilized model for rogue waves [14,15]. This solution is only
nonsingular in the focusing regime unless higher order terms are considered [16].
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When there are two or more wave trains present, the governing model is then the system of
coupled nonlinear Schrödinger equations [17,18]. The special case where all the coefficients of cubic
nonlinearities are identical is known as the Manakov system. In optics, the Manakov equations provide
an analytical account on the propagation of two optical beams in a photorefractive medium [19].
Moreover, when polarization effects are taken into account, the evolution of slowly varying, mutually
perpendicular electric fields along an optical fiber with birefringence can be described by a system
of coupled NLS equations too [20]. Another relevant example in optical physics is the issue of data
communication using multi-mode fibers. Spatial multiplexing can relieve the capacity constraints
of single-mode fibers. Random coupling of degenerate or quasi-degenerate modes for multi-mode
fibers in the nonlinear propagation regime can then lead to generalized Manakov equations with
many components [21]. Subsequently, transmissions in multi-mode fibers exhibiting rapidly varying
birefringence will also give rise to Manakov equations upon averaging [22], and intermodal modulation
instabilities for coupled Schrödinger systems can be analyzed [23]. Finally, the Manakov system is also
a useful model in the dynamics of cold atomic species studied in Bose-Einstein condensates [13,24].

Theoretically, the Manakov equations are obtained by considering the evolution of slowly
varying electric fields in temporal or spatial waveguides. For temporal waveguides, group velocity
dispersion is balanced by Kerr (cubic) nonlinearity. Rogue waves of the two-component Manakov
system in the focusing regime have been studied intensively [25–27]. In contrast to the single
component case, rogue wave modes had been discovered for the coupled NLS equations in the
defocusing regime [28–31] with group velocity mismatch between the two components. This scenario
is closely related to new ranges of modulation instability in the defocusing regime. Theoretically,
baseband instability is associated with the unstable behavior of disturbances in the low frequency
regime. Remarkably these theoretical studies are amply supported by experimental efforts. Indeed,
wavelength-division-multiplexed systems have been extended in the laboratory setting beyond the
soliton formation regime, or more precisely to baseband and passband regimes for polarization
modulation instabilities and the existence of rogue wave modes of the Manakov equations [32].
In another multi-component investigation, optical dark rogue waves are demonstrated by a suitable
injection of two colliding and modulated pump beams with orthogonal states of polarization [33].
Furthermore, rogue waves for the three-component Manakov system in the focusing regime had been
derived. Four-petal patterns are possible [34,35]. Such wave profiles are otherwise inadmissible for
the one-component and two-component counterparts. Interactions of rogue waves with solitons and
breathers were investigated by utilizing the Darboux transformation [36].

In this work, we extend the study to the three-component Manakov system in the defocusing
regime. For mathematical convenience, the system is taken in the non-dimensional and normalized
form. We incorporate symmetrically placed group velocity differences between the complex valued
components u, v, and w:

iuz + iδut + utt − σ
(
|u|2 + |v|2 + |w|2

)
u = 0,

ivz − iδvt + vtt − σ
(
|u|2 + |v|2 + |w|2

)
v = 0,

iwz + wtt − σ
(
|u|2 + |v|2 + |w|2

)
w = 0,

(1)

where δ describes the group velocity mismatch and σ measures the coefficient of cubic nonlinearity.
The objective of this paper is to investigate the dynamics of rogue waves and breathers in

a multi-component system through a combination of theoretical perspective and computational
approach. Theoretically, the formation of rogue wave and breathers can be explained in terms of
modulation instability (MI). A detailed numerical investigation on the evolution of a plane wave
perturbed by a single wavy disturbance would supplement the theoretical framework. In particular,
a disturbance from the baseband of the MI spectrum would generate a rogue wave. For a mode with a
finite frequency, both symmetric and asymmetric breathers are observed from the computational study.
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The outline of the paper is as follows. In Section 2, the rogue wave mode is derived by the
Hirota bilinear method. The coupling effect is discussed in Section 3. The generation of rogue
wave mode from baseband modulation instability is confirmed directly by computer simulation
in Section 4. Similarly, the generation of symmetric and asymmetric breathers is demonstrated in
Section 5. In Section 6, a numerical method for finding rogue wave modes in non-integrable systems is
proposed. The conclusion is drawn in Section 7.

2. Formulation of the Rogue Wave Modes

Under the transformations, u = ρ1 exp(−iω1z) g1
f , v = ρ2 exp(−iω2z) g2

f , w = ρ3 exp(−iω3z) g3
f ,

Equation (1) can be rewritten in terms of the Hirota bilinear operator [37] as[
iDz + iδDt + D2

t

]
g1 · f = 0,

[
iDz − iδDt + D2

t

]
g2 · f = 0,(

iDz + D2
t

)
g3 · f = 0,(

D2
t − C

)
f · f = −σ

(
ρ2

1|g1|2 + ρ2
2|g2|2 + ρ2

3|g3|2
)

,

where ω1 = ω2 = ω3 = C, and C = σ
(
ρ2

1 + ρ2
2 + ρ2

3
)
.

The methodology in deriving the rogue wave solution is similar to that used in our earlier
works [31] and thus the details are omitted here. The amplitude of the plane wave background, �, is
taken to be identical for all three waveguides. Basically a breather is first derived using a two-soliton
expression with complex conjugate wavenumbers. By taking the small frequency limit of the breather,
the rogue wave mode is given by

u = ρ exp
(
−3iσρ2z

)⎧⎪⎪⎨⎪⎪⎩1 − 4
1 + i(b − δ)t + i

(
a2 − b2 + bδ

)
z[

a2 + (b − δ)2
] [

(t − bz)2 + a2z2 +
1
a2

]
⎫⎪⎪⎬⎪⎪⎭,

v = ρ exp
(
−3iσρ2z

)⎧⎪⎪⎨⎪⎪⎩1 − 4
1 + i(b + δ)t + i

(
a2 − b2 − bδ

)
z[

a2 + (b + δ)2
] [

(t − bz)2 + a2z2 +
1
a2

]
⎫⎪⎪⎬⎪⎪⎭,

w = ρ exp
(
−3iσρ2z

)⎧⎨⎩1 − 4
1 + ibt + i

(
a2 − b2) z

(a2 + b2)
[
(t − bz)2 + a2z2 + 1

a2

]
⎫⎬⎭,

(2)

where a and b are the real part and imaginary part of Ω0: Ω0 = a + ib. The parameter Ω0 is the leading
order term in the asymptotic expansion of the wavenumber, which satisfies the dispersion relation,

Ω6
0 + 2

(
δ2 + 3σρ2

)
Ω4

0 + δ4Ω2
0 + 2δ4σρ2 = 0. (3)

This cubic polynomial in Ω2
0 will dictate the dynamics and profiles of the rogue waves, to be

highlighted in the following section.
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3. The Effect of Coupling

3.1. Extension of Existence Regime

The rogue wave solution in Equation (2) is nonsingular if and only if a never vanishes.
Since Ω0 cannot be real, this is equivalent to having a non-real root for the cubic polynomial
p3(x) = x3 + 2

(
δ2 + 3σρ2

)
x2 + δ4x + 2δ4σρ2. By considering the discriminant of p3(x), complex roots

(and hence rogue waves) will exist for 0 < δ2 < 16.9σρ2. One highlight of the present work is that
this constraint is much less restrictive than the corresponding existence condition for the Manakov
system with two components, namely, 0 < δ2 < 4σρ2 [31]. We conjecture that the addition of more
components to coupled systems may in general induce further modulation instabilities and enhance
the existence of rogue waves. This hypothesis obviously must be tested for other dynamical systems
in the future.

Moreover, the incorporation of the third component increases the complexity of the geometry of the
wave profiles. Analytically, the dispersion relation is expressed as a higher order algebraic polynomial
and will allow multiple rogue wave solutions under the same input physical parameters. From Equation
(3), if a + ib is a root of the dispersion relation, then a − ib will also be admissible and provides another
rogue wave solution. This phenomenon was also observed in other multi-component system [38–41].
Such multi-rogue-wave scenarios are not allowed in the two-component Manakov system.

3.2. Enhancement of Amplitude

For the two-component Manakov system in the defocusing regime [31], the range of amplitude
and configurations of the rogue waves in the two components are identical. Either both wave profiles
are eye-shaped dark rogue waves (EDRW) with the main displacement below the background, or both
patterns are four-petal-shaped rogue waves (FPRW) with two local maxima and two local minima.
Moreover, the maximum and minimum values attained are identical in both components.

For the three components case, the scenarios are drastically different as the various components
in Equation (1) can exhibit distinct forms of rogue waves and the maximum displacements can be
different (Figure 1). Interestingly, there must be at least one component in the form of an EDRW
where the minimum amplitude is bounded below by about 0.4 (See Proof in Appendix A). However,
the rogue wave solution cannot take the form of an eye-shaped bright rogue wave with the main
displacement above the background (See Proof in Appendix A). As compared to the two-component
system, the nonlinear coupling of the third component can enhance the rogue wave in two ways:
increasing the maximum amplitude and ‘squeezing’ a bright rogue wave.

The maximum amplitude can be greater than
√

2ρ (Figure 1a), which is the upper bound of
amplitude for the two-component Manakov system [31]. Similar increment in amplitude due to
coupling was also found in other coupled systems such as the long wave-short wave resonance model
with two short wave components [41] and a system of coupled derivative nonlinear Schrödinger
equations [38].

Although the formation of eye-shaped bright rogue wave is also prohibited [31], a tendency
towards the formation of bright rogue wave can be observed in the three-component system. Such
bright type rogue wave has a four-petal configuration where the saddle point is above the background
and is closer to the maximum than the minimum. The u-component in Figure 1a exhibits a bright
four-petal configuration where the amplitude at the saddle point is about 1.3 and the rogue wave
ranges from 0 to about 1.5. Such geometry closely resembles the widely studied eye-shaped bright
rogue wave.
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(a) (b) (c)

(d) (e) (f)

Figure 1. The rogue wave solution given by Equations (2) and (3) with � = 1, σ = 1, δ = 0.1 and
Ω0 = 0.0537 + 0.0537i: (a) u-component (bright FPRW); (b) v-component (EDRW); (c) w-component
(FPRW); (d) the top view of (a); (e) the top view of (b); (f) the top view of (c).

4. Baseband Modulation Instability

Baseband modulation instability, the instability due to low frequency disturbances, has been
shown to be intimately related to the existence condition of rogue waves [29]. The connection was
established theoretically in several dynamical systems [38,39,41,42]. This section focuses on the role of
baseband modulation instability in the formation of rogue wave.

4.1. Analytical Approach

To study the correlation between rogue waves and modulation instability, plane waves with
identical amplitude are considered,

u0 = ρ exp
[
i
(
−3σρ2z

)]
,

v0 = ρ exp
[
i
(
−3σρ2z

)]
,

w0 = ρ exp
[
i
(
−3σρ2z

)]
.

(4)

Small perturbations of the form exp[i(Kt − Wz)] would be governed by

W6 −
[
3K4 + 2

(
δ2 + 3σρ2

)
K2

]
W4 +

(
3K8 + 12σρ2K6 + δ4K4

)
W2

−
[
K12 + 2

(
−δ2 + 3σρ2

)
K10 + δ2

(
δ2 − 8σρ2

)
K8 + 2σρ2δ4K6

]
= 0.

(5)

Focusing on the instability of low frequency disturbances (K → 0), c = W/K = O(1) is determined
from c6 − 2

(
δ2 + 3σρ2

)
c4 + δ4c2 − 2σρ2δ4 = 0.

This is identical to the dispersion relation Equation (3) with a slight change in variable:

(iΩ0)
6 − 2

(
δ2 + 3σρ2

)
(iΩ0)

4 + δ4(iΩ0)
2 − 2δ4σρ2 = 0, confirming again the relation between

baseband modulation instability and rogue waves.
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4.2. Computational Approach

The generation of localized modes resembling rogue waves starting from a chaotic field initial
condition was studied in the literature [14]. Such modes can only be generated in parameter regimes
with baseband modulation instability [42]. Here we demonstrate the emergence of rogue waves from a
plane wave perturbed by one single mode instead of a random noise. More precisely, we consider the
initial condition

u(t, 0) = [1 + 0.05 exp(iKt)]u0(t, 0),
v(t, 0) = [1 + 0.05 exp(iKt)]v0(t, 0),
w(t, 0) = [1 + 0.05 exp(iKt)]w0(t, 0),

(6)

where u0, v0 and w0 are the plane waves given in Equation (4). Equation (1) is numerically solved with
a combination of pseudospectral method and a fourth-order Runge-Kutta scheme [43].

The result is illustrated with the typical case of σ = 10, � = 1 and δ = 5. The modulation instability
gain spectra exhibit multiple bands due to the existence of multiple complex roots of Equation (5)
(Figure 2). For small frequency K, patterns resembling rogue waves are observed (Figure 3, only
patterns for u are shown, as profiles for the other two waveguides are similar). If there exists a pair of
rogue wave modes for the same input parameters, the rogue wave with a higher baseband growth rate
would dominate the other mode [39]. However, both modes here share the same baseband growth
rate because they correspond to a pair of complex conjugate roots of Equation (3). Similar co-existence
of rogue waves in a chaotic wave field was also reported earlier in the literature [40].

Figure 2. Multiple bands of the modulation instability gain spectra with σ = 10, � = 1 and δ = 5: (a) the
first band; (b) the second band.

Figure 3. With σ = 10, � = 1 and δ = 5, (a) the u-component of the first rogue wave mode given by
Equations (2) and (3); (b) the u-component of the second RW mode; (c) the simulated results with the
initial condition given by Equation (6) and K = 0.2.
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5. Asymmetric Breathers

Breathers can be generated through these simulations by starting with a disturbance of higher
frequency in the unstable band. For typical values of σ = 10, � = 1 and δ = 5, there exist two pairs of
complex conjugate roots for Equation (5) at the baseband and the instability growth rates are identical.
Two breathers can be generated concurrently and superposition leads to an asymmetric breather
(Figure 4). For most rogue waves studied in the literature, the local extrema are usually symmetric
with respect to the main displacement and attain the same value. For an asymmetric rogue wave or
breather [27,44], symmetry is broken, e.g., the four-petal arrangement is destroyed and one of the
minimum points splits into two minima (Figure 4a).

(a) (b)

Figure 4. The u-component of the asymmetric breathers generated by simulation with the initial
condition given by Equation (6) at (a) K = 1; (b) K = 1.5. In both cases, σ = 10, � = 1 and δ = 5.

6. Rogue Wave in Non-integrable Systems

In many physical applications, the coefficients for the self-phase modulation (SPM) and
cross-phase modulation (XPM) are distinct from each other, analytical schemes will usually fail for
such coupled nonlinear Schrödinger equations [17,18]. It will be instructive to apply the mechanism
developed here for such ‘non-integrable’ equations. Based on the numerical solution, wave profile and
amplification ratio of the rogue wave can be calculated.

We demonstrate the idea with a special case where the ratio of SPM to XPM is a constant:

iqz + iδ′qt + qtt − σ′
(
|q|2 + γ|r|2 + γ|s|2

)
q = 0,

irz − iδ′rt + rtt − σ′
(
γ|q|2 + |r|2 + γ|s|2

)
r = 0,

isz + stt − σ′
(
γ|q|2 + γ|r|2 + |s|2

)
s = 0,

(7)

where γ is the ratio of XPM to SPM. Under the initial condition

q(t, 0) = [1 + 0.05 exp(iKt)]ρ,
r(t, 0) = [1 + 0.05 exp(iKt)]ρ,
s(t, 0) = [1 + 0.05 exp(iKt)]ρ,

(8)

where K is a low frequency of the wavy disturbance, rogue wave modes are generated (Figures 5 and 6).
Four-petal RW-like waveforms can be observed with γ = 2 (Figure 5). As compared to Figure 3, the minima
get closer and the saddle point attains a smaller intensity. Dark RW-like patterns are observed for the case
where XPM is half of SPM (Figure 6). Apparently, only one type of RW waveform can be observed.
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(a) (b)

Figure 5. (a) The q-component of the simulated RW mode for Equation (7) with σ′ = 10, � = 1, δ′ = 5
and γ = 2; (b) an enlarged view of a RW-like structure in (a). The frequency K of the single mode
disturbance is 0.2.

(a) (b)

Figure 6. (a) The q-component of the simulated RW mode for Equation (7) with σ′ = 10, � = 1, δ′ = 5
and γ = 0.5; (b) an enlarged view of a RW-like structure in (a). The frequency K of the single mode
disturbance is 0.2.

In practice, many evolution equations governing dynamical systems for laboratory and
engineering settings are not integrable. Several approaches were demonstrated to be feasible as
approximations or the estimations of properties of rogue waves in such non-integrable systems.
For instance, analytical rogue wave solutions of the NLS equation with periodic modulated coefficients
were taken as initial conditions in the numerical approximations of rogue waves for the non-integrable
case with constant nonlinearity coefficient and periodic dispersion coefficient [45]. Furthermore, rogue
waves from well-studied equations like the NLS equation can be utilized to study rogue waves in
less thoroughly studied physical systems. With a suitable physical assumption, optical quadratic
solution can be related to the solution of the NLS equation through the second-harmonic asymptotic
expansion and the method of repeated substitution [46]. Hence, useful approximations of rogue waves
in a quadratic medium can be obtained. It was shown that breathers and RW-like entities emerge from
simulations with random initial conditions, which serve as an alternative methodology to examine
rogue waves in a general nonlinear system.

In this work, an alternative method is proposed which is based on the generating mechanism of
rogue waves. The method is independent of the exact rogue wave solution of the integrable system.
Hence, this scheme should hopefully be quite widely applicable to general systems, and should not be
restricted to the “quasi-integrable” regime where the coefficients are close to the ”integrable” case. As
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compared to the detection of rogue waves in a chaotic field, the baseband disturbance can isolate the
rogue-wave-like structures among entities such as breathers. A comprehensive study on rogue waves
in a general multi-component system of coupled nonlinear Schrödinger equations will be carried out
in the future. This numerical approach initiated from the insight gained from rational solutions should
complement the limitation of analytical methods in the study of rogue waves.

7. Discussions and Conclusions

It was known that a multi-component Manakov system can effectively model wave propagation
in a multicore optical fiber [22]. Besides temporal waveguides, such Manakov systems are relevant in
other settings in optical physics too. For spatial solitons, diffraction will play the role of group velocity
dispersion, and continuous variations of diffraction, nonlinearity, and gain/loss might lead to novel
rogue wave patterns [47]. Similarly, Manakov soliton can arise for biased guest-host photorefractive
polymer too [48]. Furthermore, reductive perturbation techniques can be employed to establish
Manakov equations as approximations for propagation of electromagnetic fields along isotropic chiral
metamaterials [49].

In this work, a theoretical study is performed to understand the increasing complexity of
the Manakov models with larger number of components. It will be worthwhile if analytical and
computational predictions here can be verified in experiments in the future. More precisely, rogue
wave solutions for the defocusing three-component Manakov system with group velocity mismatch
are derived by the Hirota bilinear method. The nonlinear coupling effect is highlighted, namely, the
extension of existence regime of rogue waves and the enhancement of amplitude. The main focus of
the work is to demonstrate the generation of rogue wave from baseband disturbance.

Recently, the onset of baseband modulation instability has been proven to be equivalent to
the existence condition of rogue waves in several systems. In this work, the role of low frequency
disturbance in the formation of rogue waves is further consolidated through numerical simulations.
By perturbing the plane wave solution by a single mode disturbance with a small frequency, rogue
wave modes with configuration similar to the analytical rogue wave solutions can be generated. This
idea can be generalized to approximate rogue wave modes in non-integrable systems where most
analytical methods fail. The proposed numerical methodology can greatly enrich our knowledge of
rogue waves in such systems. Detailed investigations on evolution of rogue waves in general systems
of coupled nonlinear Schrödinger equations without any restriction on coefficients would be conducted
in the future. Moreover, modified NLS equation or the corresponding systems can be studied [50].

Secondly, the single mode wavy disturbance to a plane wave can generate breathers as well. It is
well-known that the formation of breathers is closely related to MI. Depending on the MI spectrum,
both symmetric and asymmetric breathers can be generated from a single mode wavy disturbance.
For the case where there are multiple unstable bands, the unstable mode can generate multiple
breathers which superimpose to form an asymmetric breather. On the other hand, a conventional
symmetric breather is generated if there exists only one unstable band.

In conclusions, rogue wave and breather formation are closely related to the nature of the
MI spectrum. Through the study of the MI spectrum supplemented with numerical simulations,
more intriguing wave dynamics of general non-integrable systems can be revealed in the future.
Theoretically, three-component or multi-component systems with variable coefficients and external
potential can be further investigated through a similarity transformation [13]. Recently, nonlocal
equations have been widely studied due to their PT symmetric property [51]. Many nonlocal evolution
equations display remarkable similarities in comparison with intensively studied classical ones, e.g.,
the nonlocal NLS equation

iAz + Att + AA∗(−t, z)A = 0, (9)

which can be analyzed by direct and inverse scattering techniques [51]. Indeed, the nonlocal NLS
model (Equation (9)) also possesses an infinite number of conservation laws. Thus total self-induced
potential A(t,z)A*(−t,z) over the entire spatial domain is conserved, but not the usual intensity AA*.
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This feature may have implications on the size of the “elevation” and “depression” regions of the
rogue waves [52]. Naturally the structure of the scattering problem and Painlevé property are slightly
different from those of the classical NLS equation. These features and other extensions, e.g., coupled
waveguides, higher order dispersion, and discrete models will likely constitute fruitful paths of
research in the future.
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Appendix A

To analyze the shape of the rogue wave solution, consider the normalized intensity function

of w defined by F = |w|2
ρ2 . At the stationary point (0,0), the second derivatives are given by

Ftt|(0,0) =
48a4(b2−a2)
(a2+b2)

2 and
(

FzzFtt − F2
zt
) ∣∣

(0,0) =
256a10(3a2−b2)(a2−3b2)

(a2+b2)
4 . Similarly, for the evolution of u

and v, b is replaced by b − δ and b + δ respectively.
From the real part and imaginary part of the dispersion relation Equation (3), note that[

2
(
δ2 + 3σρ2

)
+ 3c

]
d2 = c3 + 2

(
δ2 + 3σρ2

)
c2 + δ4c + 2δ4σρ2 and

d2 = 3c2 + 4
(
δ2 + 3σρ2

)
c + δ4,

(A1)

where c = a2 − b2 and d = 2ab. It can be deduced that c is negative. Otherwise equating d2 in both

equations will result in a cubic equation in c, 8c3 + 16
(
δ2 + 3σρ2

)
c2 +

[
2δ4 + 8

(
δ2 + 3σρ2

)2
]

c+ 2δ6 +

4δ4σρ2 = 0, which leads to a contradiction since the polynomial is positive if c is positive.
Existence of EDRW with non-zero lower bound
Without loss of generality, consider the case when both a and b are positive. If a = b, then it is

trivial from the second order derivative test that |v| attains minimum at (0,0). The case when a > b
will lead to a contradiction, so it remains to consider the case when a < b. From Equation (A1), it can be
shown that δ2 − 2c >

√
c2 + d2 which implies that (b + δ)2 − 3a2 > 2bδ > 0. From the second order

derivatives, it can be concluded that v is an EDRW when Ω0 = a + ib. On the other hand, u is an EDRW
in the solution corresponding to the alternative root, Ω0 = a − ib. Hence, there must be a component
with the configuration of an EDRW.

Moreover, the amplitude of the dark rogue wave has a lower bound of about 0.4�. By considering
the coefficient of the quadratic term in the dispersion relation, it can be shown that δ >

√
2a. With b > a

and (b + δ)2 − 3a2 > 2bδ, it is easy to obtain the bound |v| > 1
1+

√
2
ρ ≈ 0.4142ρ. In particular, v cannot

be a black rogue wave with zero minimum intensity.
Non-existence of eye-shaped bright rogue wave
Since a2 < b2, (0,0) is either a minimum point or a saddle point. Hence, w cannot be an eye-shaped

bright rogue wave. Similarly, u and v cannot be an eye-shaped bright rogue wave. When a2 > (b + δ)2,
then a2 > b2 and from the above analysis 3b2 > a2. It is then obvious that 3(b + δ)2 > a2 and from the sign
of the Hessian, it can be concluded that (0,0) is a saddle point for |v| and v cannot be an eye-shaped
bright rogue wave. Furthermore, by the symmetry between u and v, it is trivial that u cannot possess
such configuration either.
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Featured Application: Silicon oxycarbide is demonstrated to be a potential photonic platform for
integrated optics applications.

Abstract: In this work, we demonstrate the fabrication of single mode optical waveguides in silicon
oxycarbide (SiOC) with a high refractive index n = 1.578 on silica (SiO2), exhibiting an index contrast
of Δn = 8.2%. Silicon oxycarbide layers were deposited by reactive RF magnetron sputtering of
a SiC target in a controlled process of argon and oxygen gases. The optical properties of SiOC
film were measured with spectroscopic ellipsometry in the near-infrared range and the acquired
refractive indices of the film exhibit anisotropy on the order of 10−2. The structure of the SiOC
films is investigated with atomic force microscopy (AFM) and scanning electron microscopy (SEM).
The channel waveguides in SiOC are buried in SiO2 (n = 1.444) and defined with UV photolithography
and reactive ion etching techniques. Propagation losses of about 4 dB/cm for both TE and TM
polarizations at telecommunication wavelength 1550 nm are estimated with cut-back technique.
Results indicate the potential of silicon oxycarbide for guided wave applications.

Keywords: silicon oxycarbide; optical waveguides; optical materials; guided waves; integrated optics

1. Introduction

Materials offering refractive index tunability and low absorption are extremely useful for realizing
optical integrated devices. In silicon nitride (SiN) compounds, like silicon oxynitride and silicon rich
nitride, the refractive index can be tuned over a wide range, potentially from 1.45 to about 2, yet at the
expense of higher losses [1,2]. Silicon oxycarbide (SiOC) is a versatile material that has been used in a
variety of applications including Li-ion batteries [3], photoluminescence [4], electroluminescence [5],
and low-k interlayer dielectric [6,7]. It has been demonstrated that the change in composition of SiOC
compound can lead to a change in the refractive index n over a wide range from ~1.45 to ~3.0 under
pre- and post-deposition conditions [8,9]. Structural and chemical properties of SiOC films have been
extensively reported in the literature [10–13]. Recently, we have demonstrated the synthesis of SiOC
films with reactive RF magnetron sputtering and showed that, under different deposition conditions,
the refractive index n can be varied from 1.41 to 1.85 at wavelength λ = 1550 nm, while the extinction
coefficient k is below 10−4 above λ = 1000 nm [14]. The low extinction coefficient k of SiOC films
indicates the suitability of this material for fabrication of optical waveguides. However, to the best of
our knowledge, SiOC has never been exploited as a core material for guided wave applications.

In this paper, we demonstrate the fabrication of silicon oxycarbide optical waveguides with
reactive RF magnetron sputtering. Reactive sputtering is a well-established technique, relatively
simple and cost effective to set up compared to conventional chemical vapor deposition (CVD). First,
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SiOC films are deposited by sputtering the SiC target in the presence of argon (Ar) and oxygen
(O2) gases in a controlled process at room temperature. The prepared films are characterized with
variable angle spectroscopic ellipsometry over near-infrared wavelength range. The deposited SiOC
film exhibits anisotropy on the order of 10−2 between in-plane and out-of-plane refractive indices
as acquired from the ellipsometric data. To quantify the root mean square (RMS) roughness of the
deposited SiOC film on SiO2/Si wafer, atomic force microscopy is used. RMS roughness is an important
parameter that affects the performance of optical waveguides and contributes to the scattering of
light. The sputtered SiOC films are then used as core layer to fabricate channel waveguides using UV
photolithography and reactive ion etching (RIE) techniques. The SiOC channel waveguides are buried
between two layers of SiO2 (n = 1.444). The optical waveguides with different widths are characterized
at an optical communication wavelength (1550 nm) with different lengths. Propagation losses of about
4 dB/cm for both TE and TM polarizations have been achieved indicating the suitability of sputtered
SiOC for integrated optics applications.

The paper is organized as follows: Section 2 explains deposition and characterization techniques
used to grow and study the properties of SiOC films (Section 2.1), and the fabrication process and
the measurement setup for SiOC optical waveguides (Section 2.2). Section 3 discusses results on the
characterization of SiOC films (Section 3.1) and optical waveguides (Section 3.2). Finally, conclusions
are presented in Section 4.

2. Experimental Details

2.1. Layer Fabrication and Characterizations Techiques

SiOC films were deposited with reactive RF magnetron sputtering of a silicon carbide (SiC) target
in presence of argon (Ar) and oxygen (O2) gases at room temperature. The SiOC films are deposited
on a 4 inches Si (100) wafer with 8 μm SiO2 buffer layer that isolates SiOC core from high index Si
substrate. To achieve the desired refractive index, an optimized sputtering recipe with the following
parameters is used: rf power = 350 W, Ar flow = 60 sccm, and O2 flow = 2.6 sccm. The sputtering was
run for around three minutes to obtain a SiOC layer with a thickness of 400 nm. Further details on
deposition process, obtained deposition rate of sputtering, and optical parameters of SiOC films are
provided in [14].

The surface roughness of the deposited SiOC layer was determined with atomic force microscope
(5600LS AFM system, Keysight, CA, USA) at five different places on the four-inch wafer. The SiOC
layer was probed in contact mode over an area of 10 by 10 μm2 at each location. Cross-sectional images
of SiOC film and waveguides were obtained with scanning electron microscope (SEM LEO 1525,
One Zeiss Drive, NY, USA) to investigate the morphology and verify the profile and thickness.
Since SiOC is a dielectric material, a thin layer of platinum (≈2 nm) was deposited on the SiOC films
to avoid electrons charging effect. The high-resolution images were captured by accelerating electrons
at a voltage of 20 kV and the signal was collected from in-lens detector while keeping a distance of
around 6 mm between the SiOC sample and the electron gun.

The optical properties of the deposited SiOC film on SiO2/Si wafer are measured with variable
angle spectroscopic ellipsometer (VASE J.A. Woollam Inc., Lincoln, NE, USA). The ellipsometric data
were acquired at multiple incidence angles (65◦, 70◦, and 75◦) in the spectral range from 1200 to
1600 nm with a step size of 10 nm between two wavelengths. The ellipsometry measures the change
in polarization state of the light reflected from the surface of the film/substrate under investigation.
The measured quantities are psi (ψ) and del (Δ) which are angles defining the ratio of Fresnel reflection
coefficients Rp and Rs for parallel (p) and normal (s) polarized light as [15],

Rp

Rs
= tanψexp(iΔ) (1)
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Ellipsomteric measurements were performed taking in to account the possible depolarization
originated by thickness non-uniformity and surface roughness. Since ellipsometry is an indirect
technique, an optical model is necessary to obtain the optical constants (n, k) of film/substrate.
A four-layer film/substrate stack including surface-roughness, SiOC film, SiO2 layer, and Si substrate
as shown in Figure 1a was used as a model to extract the optical constants n and k of the SiOC film.
The surface roughness layer is based on Bruggeman EMA [16,17] that is AFM equivalent and provides
peak-to-valley roughness. The SiOC film index was represented by Cauchy dispersion model,

n(λ) = A +
B
λ2 (λ in μm) (2)

where A and B constants are the fit parameters in modelling the measured ellipsometric ψ and Δ
data. The SiOC film was modeled as anisotropic layer by introducing uniaxial anisotropy in the
Cauchy model. The optical axis was considered perpendicular to the surface as illustrated in Figure 1b.
From the frame of reference of ellipsometry, ordinary axis no corresponds to transverse electric (TE)
polarization and extra-ordinary axis ne to transverse magnetic (TM) polarization as shown in Figure 1b.
The data was fitted by the commercial WVASE32 software [17] using the optical model given in
Figure 1a. The mean squared error (MSE) is the basis for validating an optical model and determining
the quality of the match between the experimental and calculated data. WVASE32 software [17] uses a
maximum likelihood estimator with MSE based on the Lavenberg-Marquardt regression algorithm.

Figure 1. (a) Four-layer optical model employed to retrieve optical constants of SiOC film from
ellipsometric data—not to scale, (b) schematic of SiOC anisotropic layer with optical axis perpendicular
to surface and ordinary no and extraordinary ne refractive indices.

2.2. Waveguide Fabrication and Characterizations Techniques

Before fabrication, the geometry of the SiOC waveguides was designed to obtain a single
mode operation by using a commercial electromagnetic tool based on Finite Element Method (FEM).
The optical waveguides were then fabricated with UV photolithography and reactive ion etching (RIE)
processes as follows. To define waveguide patterns, a photoresist AZ 5214 E was spin coated on the
SiOC layer and soft baked on a hot plate; then the photoresist was exposed in hard contact mode with
photo mask using I-line 365 nm mercury arc lamp emitting a power of 1000 W. The photo mask includes
a set of waveguides with different widths. A controlled RIE process of CHF3 and O2 gases mixture
was used to etch channel waveguides in SiOC layer with an etch rate of 20 nm/min. The realized
channel waveguides were covered with 8 μm thick SiO2 (n = 1.444) deposited by a plasma enhanced
chemical vapor deposition (PECVD) process (STS CVD tool) to yield symmetric optical modes.

The optical waveguides were characterized on the optical bench through butt-coupling with
small-core fibers as shown in Figure 2. The schematic diagram of the waveguide measurement
setup is given in Figure 2a. The light signal was coupled from a laser source operating around
telecommunication wavelength λ = 1550 nm. The SiOC waveguides were aligned with small core
fibers having mode field diameter MFD ≈ 3.6 μm using index matching oil to reduce the gap between
the fiber and chip facet. The light at the output facet of SiOC chip was collected and read with optical
power meter. The polarization state (TE and TM) of the light wave at the input facet of the waveguide
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was selected with a fiber polarization controller. The real optical waveguide measurement setup is
shown in Figure 2b where a SiOC chip is aligned with small core fibers.

 

Figure 2. (a) Schematic of optical bench setup used for SiOC waveguides characterizations, (b) the
measurement setup showing alignment of SiOC chip with small core optical fibers.

3. Results and Discussion

3.1. SiOC Layer Properties

SEM cross-section image of the SiOC film deposited on SiO2/Si wafer under the optimized
sputter process is displayed in Figure 3. The thickness of the SiOC layer is determined to be 400 nm.
The deposited SiOC film shows dense columnar structure with pillars perpendicular to the plane of
film. The columnar structure of the film provides a basis for anisotropy investigation and is taken into
consideration during the optical characterization of SiOC film. The columnar structure is a typical
feature in sputtered SiOC films that were deposited under different conditions, however the films
were amorphous to XRD [14].

 

Figure 3. SEM cross-section image of SiOC deposited layer on SiO2/Si wafer.
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Figure 4a shows 3D topographical image of the SiOC film scanned with AFM in contact mode
over an area of 100 μm2. The scans were performed at five different locations on the four-inch wafer
and the rms roughness is estimated to be 0.88 nm, sufficiently smooth for the realization of optical
waveguides. In Figure 4b, 1D measured profile of the AFM image is given showing peak-to-valley
roughness that is in-line with surface roughness estimated with ellipsometry.

Figure 4. (a) 3D AFM topography scan of SiOC film surface (color scale from -5 nm to + 5 nm); (b) 1D
measured profile of AFM image: a peak-to-valley roughness of about 2 nm is observed that agrees well
with surface roughness estimated with spectroscopic ellipsometry.

The optical properties of the deposited SiOC film were characterized with variable angle
spectroscopic ellipsometry in the infrared wavelength region from 1200 nm to 1600 nm.
The measurement angles were 65◦, 70◦, and 75◦ which are around the Brewster’s angle of Si substrate.
Prior to SiOC film, the SiO2/Si wafer was characterized with ellipsometry to obtain the thickness
and accurate optical constants of SiO2. The refractive index of SiO2 was determined as 1.444 at
λ = 1550 nm. The tabulated optical constants of crystalline Si substrate were used from the WVASE32
database [17]. Since ellipsometry is sensitive to film roughness conditions, surface roughness (SR)
layer [16] was added to simulate roughness on SiOC film which improved fit and MSE. The SR layer
that is the ellipsometry equivalent of AFM is estimated around 2 nm and agrees well with the AFM
data. The ellispometric ψ and Δ data acquired at different angles and their respective model curves
are given in Figure 5.

The four-layer anisotropic optical model discussed in Section 2 was used to fit the experimental
data (green curves) and the calculated model data (red curves) matches well over the entire spectral
range. Material anisotropy is expected from the columnar structure present in the sputtered SiOC film
as shown in SEM image (see Figure 3). Our measurements indicate that the out-of-plane refractive index
(ne) is higher than the in-plane index (no) by 0.02438. These results agree with the studies reporting
anisotropy in different material thin films with columnar structure where the in-plane refractive
index is smaller than out-of-plane refractive index [18–20]. Therefore, the origin of the anisotropy
is attributed to the columnar structure oriented normal to the plane of SiOC film. The anisotropy
exhibited by SiOC film is on the order of 10−2, the optical waveguides are sensitive to even this level
of anisotropy because the two polarizations (TE and TM) will see a different index of refraction and
propagate with different effective indices.
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Figure 5. Ellipsometric (a) psi (ψ) and (b) del (Δ) data acquired at three angles of measurements
(65◦, 70◦, and 75◦) and their respective model curves (solid red lines) calculated with a four-layer
film/substrate optical stack.

The optical constants (n, k) of the deposited SiOC film are shown in Figure 6. The extinction
coefficient k is less than 10−4 (this value being the minimum detectable value for the ellipsometer) in
agreement with previous observations [14] and is not visible in Figure 6. The ordinary axis refractive
index no is determined to be 1.554 while it is 1.578 for extra-ordinary axis ne at the wavelength
λ = 1550 nm. The values of dispersion constants A and B of Cauchy model (Equation (2)) are 1.5528
and 4.0353 × 10−3, respectively.

Figure 6. Ordinary (no) and extra-ordinary (ne) refractive index curves of the deposited SiOC film
extracted from measured ellipsometric data.
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3.2. SiOC Optical Waveguides

The channel waveguides are fabricated in silicon oxycarbide (SiOC) using UV photolithography
and reactive ion etching (RIE) techniques as described in Section 2.2. The channel waveguides are
realized because they provide high confinement of electromagnetic light wave in two dimensions.
The light confinement in the SiOC core region can be enhanced by increasing waveguide core
dimensions (width and height).

After each step during the whole process, the optical chips were analyzed under optical
microscope to check for the quality, defects, and residual of photoresist. The photomask used to
define waveguide patterns with photolithography has a set of hundreds of waveguides with different
widths ranging from 1.8 to 4.5 μm. Figure 7a shows micrograph of the SiOC waveguides (black strips)
captured with optical microscope at the end of the waveguide fabrication process (after photoresist
lift-off, before upper cladding deposition). The width of the waveguides increases from top to bottom
(arrow direction). The waveguides definition is clear and free from defects. High resolution SEM
image of one of the SiOC channel waveguides with refractive index ne = 1.578 and dimensions of
4400 nm by 400 nm is shown in Figure 7b before the deposition of the silica upper cladding. The SiOC
waveguides were buried under 8 μm thick upper SiO2 cladding (n = 1.444) and provide an index
contrast Δn of 8.2%. The index contrast between core and clad is calculated using the relation [21],

Δn =

(
n2

core − n2
clad

)
2n2

core
(3)

 

Figure 7. (a) Optical micrograph of straight SiOC waveguides with different widths (increasing from
top to bottom with arrow) captured with optical microscope after photoresist lift-off, (b) high resolution
SEM image of SiOC channel waveguide with dimensions (width W = 4400 nm by height H = 400 nm).

Based on the defined geometry of SiOC waveguides, electromagnetic simulations were performed
to understand the mode of operation (single- or multi-mode) of the waveguides and compute the
effective refractive index neff values of the propagating TE and TM modes. Figure 8a shows the
fundamental TE ad TM modes of the SiOC waveguide with dimensions 4400 × 400 nm2 (see Figure 7b)
and their calculated neff values are 1.458 and 1.4602 at λ = 1550 nm. The confinement factor of the
SiOC waveguides for the fundamental TE and TM modes is around 30%. In Figure 8b, neff of TE
and TM modes of the SiOC waveguide are computed as a function of width (2–4.4 μm). The SiOC
waveguides are single mode as no higher order TE or TM modes appear when the width is varied
from 2 to 4.4 μm. The neff of fundamental TM modes is larger than TE modes due to the anisotropy
exhibited by columnar structure in SiOC film that is on the order of 10−2.
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Figure 8. (a) Fundamental TE and TM modes of the SiOC waveguide (W = 4400 × H = 400 nm2) and
their respective effective indices neff computed with FEM based software, (b) Plot of effective refractive
index neff of SiOC waveguide modes as a function of increasing width (2–4.4 μm), only fundamental
TE and TM modes exist at λ = 1550 nm.

Figure 9 shows the experimental analyses of losses of single mode SiOC channel waveguides for
different widths (2–4.4 μm) by using a cut-back technique. This technique enables to identify both
the propagation losses of the waveguide and the coupling losses due to mismatch between fiber and
waveguide modes overlap. As shown in Figure 9a, the propagation losses of SiOC optical waveguides
having dimensions of W = 4400 nm by H = 400 nm are estimated to be 4 ± 0.5 dB/cm from the data
slope versus waveguide length. The excited TE and TM polarizations (shown with black right and
red left triangles, respectively) exhibit similar propagation losses. The coupling losses due to the
mismatch between fiber and waveguide modes are estimated around 1.5 dB/facet, and are in good
agreement with numerical simulations, which predict 80% coupling efficiency. In general, the coupling
efficiency varies between fiber and waveguide modes with waveguide core size. The difference in
coupling efficiency among SiOC waveguides with different core widths (between 2 μm and 4.4 μm) is
5% for both polarizations as evaluated from electromagnetic simulations. A difference of 5% means an
additional loss of 0.2 dB that is within measurement error of our setup and has no appreciable effect on
the assessment of waveguides losses. Furthermore, the coupling efficiency for TE and TM polarizations
differing by 1% for respective waveguide width is negligible. The similar coupling efficiency is due to
the anisotropy of the material that brings the neff of TE and TM modes closer to each other.

Figure 9b shows propagation loss as a function of core width. The average losses for both TE
and TM polarizations are similar while there is a small increase in the propagation losses from wider
(4.4 μm) to narrower (2 μm) waveguides. The confinement factor is calculated to decrease by about 8%
from wider to narrower core waveguides for both TE and TM polarizations is a small number and
has no impact on losses. The increase in propagation loss in narrower core waveguides can hence be
attributed to the sidewall roughness that contribute to scattering of light. Moreover, from ellipsometric
measurements the extinction coefficient k is undetectable which implies that SiOC material losses
are low. Therefore, the origin of the waveguide losses is expected from the surface roughness and
columnar structure of the sputtered SiOC film. To reduce the waveguide losses, the sputter process may
further be optimized to obtain more compact SiOC films, annealing may be considered to smoothen
the film structure or CVD process [22].
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The results on SiOC waveguides indicate the significance of this material for guided wave
applications. SiOC optical waveguides with higher refractive index (n > 1.578) are under development
and will be demonstrated in a future study.

Figure 9. (a) Insertion loss plot of the SiOC waveguides with different chip lengths (1–3 cm), (b) SiOC
waveguides propagation losses as a function of width (2–4.4 μm) for both TE and TM polarizations.

4. Conclusions

We have demonstrated for the first time the possibility of using silicon oxycarbide (SiOC) as a
core material for guided wave applications. Detailed characterization on morphology, topography,
and optical properties of sputtered SiOC film are presented. The channel waveguides are fabricated
using UV photolithography and reactive ion etching processes. SiOC optical waveguides with core
refractive index ne = 1.578 and SiO2 cladding provides a much higher index contrast (of about 8.2%)
with respect to a conventional glass photonic platform. Moreover, SiOC offers the possibility of tuning
the refractive index across a wide range, potentially from 1.45 to ~3.0, which means that index contrast
as high as 38% can be achieved. Systematic investigation of SiOC waveguides with different widths
(2–4.4 μm) and lengths (1–3 cm) is reported. The propagation losses of 4 ± 0.5 dB/cm for both TE and
TM polarizations are presented as estimated from cut-back technique. Results indicate the potential of
SiOC as a promising platform for integrated optics.

In order to reduce the losses of SiOC waveguides, the sputter process may further be optimized
to achieve uniform films. Losses are perceived to originate mainly due to scattering from surface
roughness and columnar structure present in the films. The annealing step may also be considered
to smoothen the film structure. The study provides proof of concept for the SiOC photonic platform
which may further be developed with CVD.

Higher index contrast waveguides and advanced optical devices in silicon oxycarbide are under
development and will be demonstrated in future work.
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Abstract: We provide an analytic propagator for non-Hermitian dimers showing linear gain or
losses in the quantum regime. In particular, we focus on experimentally feasible realizations of
the PT -symmetric dimer and provide their mean photon number and second order two-point
correlation. We study the propagation of vacuum, single photon spatially-separable, and two-photon
spatially-entangled states. We show that each configuration produces a particular signature that might
signal their possible uses as photon switches, semi-classical intensity-tunable sources, or spatially
entangled sources to mention a few possible applications.

Keywords: PT -symmetric dimer; non-Hermitian dimer; quantum linear dimer; optical waveguide
couplers; photon sampling

1. Introduction

Propagation through classical PT -symmetric optical systems has been extensively studied;
cf. Ref. [1] and references therein from the initial description of linear loses in directional couplers
with a more complex non-Hermitian symmetry [2], the quantum-like description of classical planar
waveguides [3], to all the contemporaneous work derived from the seminal introduction of optical
PT -symmetric structures [4]. It is well known that the propagation of electromagnetic field through
a linearly active two-waveguide coupler can be described by the classical PT -symmetric dimer,

−i
d
dz

(
E1(z)
E2(z)

)
=

(
iγ g
g −iγ

)(
E1(z)
E2(z)

)
, (1)

where the effective evanescent coupling between the two single waveguide field modes is given by the
real parameter g and the effective gain and loss by the real positive parameter γ. Such a system can be
realized experimentally by balanced gain and loss in the waveguides, but it is also possible to realize it
with gain-gain, loss-loss, passive-gain [5], and passive-loss [6,7] waveguide, microcavity rings [8,9],
and electric circtuits [10] setups.

In the quantum regime [11–14], the importance of adequately modeling media with linear gain
or loss has been brought forward recently [15,16]. In this regime, linear media induces quantum
fluctuations, such that the ideal PT -symmetric optical dimer dynamics is effectively described by
quantum Langevin equations [15],
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in terms of the effective balanced gain and loss parameter, γ, the effective mode coupling, g, between
the two modes of the optical resonators, described by the annihilation operators â1(z) and â2(z),
and the delta-correlated Langevin forces introduced by the gain and loss media,

〈 f̂ †
1 (z) f̂1(ζ)〉 = 2γδ(z − ζ),

〈 f̂2(z) f̂ †
2 (ζ)〉 = 2γδ(z − ζ), (3)

in that order. These Gaussian fluctuations modify the well-known dynamics produced by the classical
optical PT -symmetric dimer and generate second order correlations in the ideal quantum optical
PT -symmetric dimer [15], Figure 1. Here, we want to discuss the different types of correlations that
might arise from feasible experimental realizations of the quantum PT -symmetric dimer beyond
the balanced gain-loss setup. In the following section, we will introduce the quantum model for
a generalized linear active dimer, a non-Hermitian quantum optical dimer, and provide its propagation
solution. Then, we will discuss the dynamics of spontaneous photon generation as well as photon
bunching and anti-bunching in the different configurations. We will study single-photon propagation
with spatially separable and two-photon propagation with entangled states through the mean photon
number and second order two-point correlations. Finally, we will close with a brief conclusion and
discuss how mean photon propagation and second order spatial correlations might provide insight to
their application in photon switching or as semi(non)-classical light sources.

Figure 1. Schematic showing the renormalized light intensity arising from the spontaneous
generation of photons through two coupled waveguides in the PT -symmetry regime with balanced
gain-loss configuration.

2. Quantum Model and Configurations

In the laboratory, we can think about a more general realization of the effective quantum
PT -symmetric dimer provided by the quantum non-Hermitian dimer,

−i
d
dz

(
â1(z)
â2(z)

)
=

(
n1 g
g n2

)(
â1(z)
â2(z)

)
+

(
f̂1(z)
f̂2(z)

)
. (4)

Again, the field annihilation operators in the first and second waveguides are given by the
operators â1(z) and â2(z), in that order. The effective refractive indices of the optical waveguides are
given by the complex numbers n1 and n2, the effective coupling between the optical modes is given
by the real positive parameter g. Finally, the Gaussian fluctuations, due to the active linear media,
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are described by the Langevin forces f̂1(z) and f̂2(z), such that the only nonzero mean values involving
them are their second order correlations [17],

〈 f̂ †
j (z) f̂ j(z′)〉 = 2�(nj)δ(z − z′), for gain media,

〈 f̂ j(z) f̂ †
j (z

′)〉 = 2�(nj)δ(z − z′), for loss media. (5)

It is straightforward to write a formal propagator for this quantum optical system,

(
â1(ζ)

â2(ζ)

)
= ein0ζ

(
b̂1(ζ)

b̂2(ζ)

)
, (6)

where we have factorized an average refractive index, n0 = (n1 + n2)/(2g), that introduces a common
phase, �(n0), and a scaling factor due to gain or loss, �(n0). We have also scaled the propagation
variable by the effective coupling of the dimer, ζ = gz. Note that the average refractive index cannot
be zero for experimental realizations. It becomes a pure real number, a phase factor, for passive
materials, and a pure imaginary number, a scaling factor, for identical media with balanced gain and
loss. The second term in the propagator,

(
b̂1(ζ)

b̂2(ζ)

)
= eiĤζ

(
b̂1(0)
b̂2(0)

)
+
∫ ζ

0
eiĤ(ζ−t)e−in0t

(
f̂1(t)
f̂2(t)

)
dt, (7)

provides us with the effective dynamics of the system. Here, we need use the scaling property of Dirac
delta, δ(ζ) = δ(z)/|g|, and have defined a complex effective refractive index n = (n1 − n2)/(2g) that
provides us with an auxiliary effective non-Hermitian matrix,

Ĥ =

(
n 1
1 −n

)
. (8)

Note that the case of waveguides with identical real part of their effective refractive indices,
�(n1) = �(n2), yields a purely imaginary effective refractive index that we can rename as n = iγ in
order to recover the standard quantum PT -symmetric dimer [15]. Again, let us stress that the dynamics
introduced by a more realistic model of linearly active media, where configurations beyond balanced
gain-loss are easily obtained, will include a phase and scaling factor proportional to the average
refractive index that are not taken into consideration in the ideal PT -symmetric dimer configuration.

The coupling matrix exponential can be easily calculated following an approach similar to that
used in the classical PT -symmetric dimer [1],

Û(ζ) = eiĤζ ,
= 1̂ cos (Ωζ) + Ĥ ζ sinc (Ωζ) , Ω ∈ C.

(9)

Here, the symbol 1̂ stands for the two by two identity matrix, we have used the cardinal sine
function sinc(x) = sin(x)/x, and the complex dispersion relation is given by the following expression,

Ω =
√

1 + n2. (10)
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Note that this analytic propagator can describe any non-Hermitian dimer and, in the special case
of purely imaginary auxiliary refractive index, n = iγ, we recover the propagator for the standard
classical PT -symmetric dimer [18],

Û(ζ) =

⎧⎪⎨
⎪⎩

1̂ cos (Ωζ) + i Ĥ ζ sinc (Ωζ) γ < 1,
1̂ + i ζ Ĥ, γ = 1,
1̂ cosh (|Ω|ζ) + i Ĥ ζ sinhc (|Ω|ζ) , γ > 1.

(11)

Experimentally, the effective PT -symmetric dimer can be reached via different configurations:
balanced gain-loss dimer, n1 = nR − inI and n2 = nR + inI , in that order, such that
n0 = nR/g and γ = −nI/g; gain-gain dimer, n1 = nR − inI,1 and n2 = nR − inI,2 such that
n0 = [2nR − i (nI,1 + nI,2)] /(2g) and γ = −(nI,1 − nI,2)/(2g); passive-gain dimer, n1 = nR and
n2 = nR − inI , in that order, such that n0 = (2nR − inI)/(2g) and γ = nI/(2g); passive-loss dimer,
n1 = nR and n2 = nR + inI , in that order, such that n0 = (2nR + inI)/(2g) and γ = −nI/(2g); and
loss-loss dimer, n1 = nR + inI,1 and n2 = nR + inI,2 such that n0 = [2nR + i(nI,1 + nI,2)] /(2g) and
γ = (nI,1 − nI,2)/(2g); for all of these configurations, we have assumed nR, nI , nI,j > 0. The formal
solution presented in this section allows us to explore the propagation properties of all of these
experimentally feasible configurations. Table 1 shows the values of these parameters for the different
configurations delivering an effective PT -symmetric dimer; and we have added the imaginary part
of the effective bias refractive index, β = (nI,1 + nI,2) /(2g) = −�(n0), as it will be useful in the
following sections.

Table 1. A summary of the parameters involved in the different feasible experimental realizations of
the PT -symmetric dimer .

Realization n1 n2 n n0 γ β

Gain-loss nR − inI nR + inI −i nI
g

nR
g − nI

g 0

Gain-gain nR − inI,1 nR − inI,2 i−nI,1+nI,2
2g

nR
g − i nI,1+nI,2

2g
−nI,1+nI,2

2g
nI,1+nI,2

2g

Gain-passive nR − inI nR −i nI
2g

nR
g + i nI

2g − nI
2g

nI
2g

Passive-loss nR nR + inI −i nI
2g

nR
g + i nI

2g − nI
2g − nI

2g

Loss-loss nR + inI,1 nR + inI,2 i nI,1−nI,2
2g

nR
g + i nI,1+nI,2

2g
nI,1−nI,2

2g
−nI,1−nI,2

2g

3. Spontaneous Generation of Photons

The first signature that differentiates a quantum from a classical PT -symmetric dimer is the
spontaneous generation of photons due to the gain medium in presence of vacuum input fields,

n(00)
j (ζ) = 〈0, 0|â†

j (ζ)âj(ζ)|0, 0〉,
= e2βζ〈0, 0|b̂†

j (ζ)b̂j(ζ)|0, 0〉.
(12)

In other words, vacuum fluctuations are enough to make the linear active media spontaneously
generate photons [17]; something that is lacking in the classical model. The signatures available
through the spontaneous generation of photos in diverse configurations are provided in the following
for the standard balanced gain-loss dimer,

n(00)
1 (ζ) = −2γ

∫ ζ
0

∣∣Û11 (t)
∣∣2dt,

n(00)
2 (ζ) = −2γ

∫ ζ
0

∣∣Û21 (t)
∣∣2dt,

(13)

237



Appl. Sci. 2017, 7, 587

where the (i,j)-th component of the two by two propagation matrix has been written as Ûij(ζ), and it
is important to note that these integrals can be solved analytically but yield expressions too long to
write here. The gain-gain dimer yields the following expressions,

n(00)
1 (ζ) = 2 (β − γ)

∫ ζ
0

∣∣Û11 (t)
∣∣2e2βtdt + 2 (β + γ)

∫ ζ
0

∣∣Û12 (t)
∣∣2e2βtdt,

n(00)
2 (ζ) = 2 (β − γ)

∫ ζ
0

∣∣Û21 (t)
∣∣2e2βtdt + 2 (β + γ)

∫ ζ
0

∣∣Û22 (t)
∣∣2e2βtdt.

(14)

For the gain-passive dimer, we can write the spontaneous generation as:

n(00)
1 (ζ) = −4γ

∫ ζ
0

∣∣Û11 (t)
∣∣2e−2γtdt,

n(00)
2 (ζ) = −4γ

∫ ζ
0

∣∣Û21 (t)
∣∣2e−2γtdt,

(15)

and, obviously, there is not spontaneous generation in the passive-loss and loss-loss dimer,

n(00)
1 (ζ) = n(00)

2 (ζ) = 0. (16)

While the expressions for the spontaneous generation are complicated, it is straightforward to
realize from the analytic expressions that they will present different signatures through propagation in
the dimer.

The signatures from the different configurations can be seen in Figure 2, where we show
an instantaneously renormalized spontaneous generation of photons,

ñ(00)
j (ζ) =

n(00)
j (ζ)

n(00)
1 (ζ) + n(00)

2 (ζ)
, ζ > 0, (17)

and avoid the position ζ = 0 due to the divergence induced by the initial vacuum field.
The rows in Figure 2 present the spontaneous emission in the balanced gain-loss, gain-gain,
gain-passive configurations, from top to bottom, and the columns show results in the PT -symmetric,
Kato exceptional point, and broken symmetry regimes, from left to right. The spontaneous emission in
the ideal PT -symmetric is shown in Figure 2a–c. Note that the oscillations in the PT -symmetric regime
appear earlier in the propagation for the gain-gain, Figure 2d, and gain-passive configurations, Figure 2g.
In the Kato exceptional point, the spontaneous emission is equivalent in the ideal dimer, Figure 2b,
and the gain-passive configurations, Figure 2h, and follows a slightly different initial distribution in
the gain-gain case Figure 2e. Finally, something similar happens in the broken symmetry regime, the
distinction between spontaneous emission in the waveguides for the ideal, Figure 2c, and gain-passive
configurations, Figure 2i, is almost null and follows a slightly different initial distribution for the
gain-gain case, Figure 2f. Note that the spontaneous generation is asymptotically equal in both
waveguides when the dimer is at the Kato exceptional point for any configuration with linear gain,
Figure 2b,e,h. In addition, in the broken symmetry regime, the asymptotic value for the renormalized
spontaneous generation is the same for the different configurations including linear gain, Figure 2c,f,i,
and converges to the same value than the classical PT -symmetric dimer [1,18],

limζ→∞ ñ(00)
1 (ζ) = 1

2γ

(
γ +

√
γ2 − 1

)−1
,

limζ→∞ ñ(00)
2 (ζ) = 1

2γ

(
γ +

√
γ2 − 1

)
.

(18)
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Figure 2. Instantaneously renormalized spontaneous generation, ñ(00)
j (ζ), along different realizations

of the effective PT -symmetric dimer. The first row, (a–c), shows balanced gain-loss, second row,
(d–f), shows gain-gain, and third row, (g–i), shows gain-passive configurations in the PT -symmetric
regime, the first column with |γ| = 0.5, the Kato point with |γ| = 1, the second column, and broken
symmetry regime, and the third column with |γ| = 1.2. Values for the first and second waveguides
are shown with a solid blue and a dashed red lines, in that order. Note the oscillatory behavior of the
spontaneous generation inside and its asymptotic behavior outside the PT -symmetric regime.

4. Photon Bunching in Spontaneous Generation

We can also look at the signatures provided by the probability to detect simultaneously one
photon at each of the waveguides output in the different configurations. This can be written in the
following form for the spontaneous generation of photons,

〈
0, 0|â†

1 (ζ) â†
2 (ζ) â1 (ζ) â2 (ζ) |0, 0

〉
=

〈
0, 0|â†

1 (ζ) â1 (ζ) |0, 0
〉 〈

0, 0|â†
2 (ζ) â2 (ζ) |0, 0

〉
+

〈
0, 0|â†

1 (ζ) â2 (ζ) |0, 0
〉 〈

0, 0|â†
2 (ζ) â1 (ζ) |0, 0

〉
= n(00)

1 (ζ)n(00)
2 (ζ) +

∣∣∣n(00)
12 (ζ)

∣∣∣2 ,
(19)

where he have used the Gaussian nature of Langevin forces [15] to simplify this probability using the
expressions derived in the last section and defining the following first order two-point correlation,

n(00)
12 (ζ) = 〈0, 0|â†

1(ζ)â2(ζ)|0, 0〉,
= e2βζ〈0, 0|b̂†

1(ζ)b̂2(ζ)|0, 0〉.
(20)

Note that the detection probability will always be positive independently of the form taken by
the first order two-point correlation for the different configurations: balanced gain-loss dimer,

n(00)
12 (ζ) = −2γ

∫ ζ

0
Û∗

11 (t) Û21 (t) dt, (21)
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gain-gain dimer,

n(00)
12 (ζ) = 2 (β − γ)

∫ ζ

0
Û∗

11 (t) Û21 (t)e2βtdt + 2 (β + γ)
∫ ζ

0
Û∗

12 (t) Û22 (t)e2βtdt, (22)

gain-passive dimer,

n(00)
12 (ζ) = −4γ

∫ ζ

0
Û∗

11 (t) Û21 (t)e−2γtdt, (23)

and, obviously, for the passive-loss and loss-loss dimer,

n(00)
12 (ζ) = 0. (24)

Again, we have to be careful to consider the appropriate parameters γ and β for each configuration
summarized in Table 1.

In order to visualize the information, we can use a quantity similar to Mandel Q-parameter [19],

q(00)(ζ) = g(00)
2 (ζ)− 1,

=
|n(00)

12 (ζ)|2

n(00)
1 (ζ)n(00)

2 (ζ)
, ζ > 0,

(25)

given in terms of the second order two-point correlation function,

g(00)
2 (ζ) = 1 +

|n(00)
12 (ζ)|2

n(00)
1 (ζ)n(00)

2 (ζ)
, ζ > 0, (26)

that provides us with the probability of simultaneously detecting a photon in each waveguide
output. The values of this two-point parameter are always positive, q(00)(ζ) ≥ 0, thus, the different
configurations only show photon bunching. Figure 3 shows the photon bunching signatures obtained
with the different dimer configurations discussed before. The ordering is the same than in Figure 2,
rows show the balanced gain-loss, gain-gain, and gain-passive dimer configurations, in that order,
and columns show the symmetric, exceptional and broken symmetry regimes from left to right.
We can immediately see that the signatures in the PT -symmetric regime, Figure 3a,d,g, present
an oscillatory behavior, while those in the Kato exceptional point, Figure 3b,e,h, and the broken
PT -symmetry regimes, and Figure 3c,f,i, saturate to the unit. The dimer configuration also influences
the photon bunching signature, the balanced gain-loss dimer presents oscillations that do not approach
zero, Figure 3a, while the gain-gain and the gain-passive dimers present oscillations that reach zero,
Figure 3d,g. In addition, the balanced gain-loss dimer saturates in a manner similar to that of the
gain-passive dimer starting from a nonzero value, Figure 3b,h as well as Figure 3c,i, while the gain-gain
dimer starts from zero and saturates faster, Figure 3e,f.

0

1
(a) (b) (c)

)
ζ(

(0
0
)

q

1>|γ|1<|γ|<0 = 1|γ|

Figure 3. Cont.
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Figure 3. Photon bunching shown in terms of the q(00)(ζ) parameter for different realizations of the
effective PT -symmetric dimer. The first row, (a–c), shows balanced gain-loss, second row, (d–f), shows
gain-gain, and third row, (g–i), shows gain-passive configurations in the PT -symmetric regime, the
first column with |γ| = 0.5, the Kato point with |γ| = 1, the second column, and broken symmetry
regime, and the third column with |γ| = 1.2.

5. Photon Propagation

In general, we can study the propagation of any given initial photon state through our dimer,

n(ψ0)
j (ζ) = 〈ψ0|â†

j (ζ)âj(ζ)|ψ0〉,
= e2βζ〈ψ0|b̂†

j (ζ)b̂j(ζ)|ψ0〉,
(27)

and realize that the mean photon number in each waveguide,

n(ψ0)
1 (ζ) = e2βζ

∣∣Û11 (ζ)
∣∣2 〈ψ0| â†

1 (0) â1 (0) |ψ0〉+ e2βζÛ∗
11 (ζ) Û12 (ζ) 〈ψ0| â†

1 (0) â2 (0) |ψ0〉
+ e2βζÛ∗

12 (ζ) Û11 (ζ) 〈ψ0| â†
2 (0) â1 (0) |ψ0〉+ e2βζ

∣∣Û12 (ζ)
∣∣2 〈ψ0| â†

2 (0) â2 (0) |ψ0〉
+ e2βζ

∫ ζ
0

∫ ζ
0 Û∗

11 (ζ − t′) Û11 (ζ − t)ein∗
0 t′ e−in0t

〈
ψ0| f̂ †

1 (t′) f̂1 (t) |ψ0

〉
dt′dt

+ e2βζ
∫ ζ

0

∫ ζ
0 Û∗

12 (ζ − t′) Û12 (ζ − t)ein∗
0 t′ e−in0t

〈
ψ0| f̂ †

2 (t′) f̂2 (t) |ψ0

〉
dt′dt,

n(ψ0)
2 (ζ) = e2βζ

∣∣Û21 (ζ)
∣∣2 〈ψ0| â†

1 (0) â1 (0) |ψ0〉+ e2βζÛ∗
21 (ζ) Û22 (ζ) 〈ψ0| â†

1 (0) â2 (0) |ψ0〉
+ e2βζÛ∗

22 (ζ) Û21 (ζ) 〈ψ0| â†
2 (0) â1 (0) |ψ0〉+ e2βζ

∣∣Û22 (ζ)
∣∣2 〈ψ0| â†

2 (0) â2 (0) |ψ0〉
+ e2βζ

∫ ζ
0

∫ ζ
0 Û∗

21 (ζ − t′) Û21 (ζ − t)ein∗
0 t′ e−in0t

〈
ψ0| f̂ †

1 (t′) f̂1 (t) |ψ0

〉
dt′dt

+ e2βζ
∫ ζ

0

∫ ζ
0 Û∗

22 (ζ − t′) Û22 (ζ − t)ein∗
0 t′ e−in0t

〈
ψ0| f̂ †

2 (t′) f̂2 (t) |ψ0

〉
dt′dt,

(28)

will have a component related to spontaneous generation, those terms with the integrals, and another
to stimulated generation, the rest. As a practical example, let us use as the initial state a single photon
impinging the first waveguide, |ψ0〉 = |10〉. Again, we can calculate the mean photon number in the
balanced gain-loss dimer,

n(10)
1 (ζ) =

∣∣Û11 (ζ)
∣∣2 − 2γ

∫ ζ
0

∣∣Û11 (t)
∣∣2dt,

n(10)
2 (ζ) =

∣∣Û21 (ζ)
∣∣2 − 2γ

∫ ζ
0

∣∣Û21 (t)
∣∣2dt,

(29)
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and realize that the spontaneous generation terms are identical to those in the spontaneous generation
in Equation (13). The same occurs to all the dimer configurations. In the gain-gain dimer,

n(10)
1 (ζ) = e2βζ

∣∣Û11 (ζ)
∣∣2 + 2 (β − γ)

∫ ζ
0

∣∣Û11 (t)
∣∣2e2βtdt + 2 (β + γ)

∫ ζ
0

∣∣Û12 (t)
∣∣2e2βtdt,

n(10)
2 (ζ) = e2βζ

∣∣Û21 (ζ)
∣∣2 + 2 (β − γ)

∫ ζ
0

∣∣Û21 (t)
∣∣2e2βtdt + 2 (β + γ)

∫ ζ
0

∣∣Û22 (t)
∣∣2e2βtdt,

(30)

we recover the spontaneous generation terms from Equation (14). In the gain-passive dimer,

n(10)
1 (ζ) = e2βζ

∣∣Û11 (ζ)
∣∣2 − 4γ

∫ ζ
0

∣∣Û11 (t)
∣∣2e−2γtdt,

n(10)
2 (ζ) = e2βζ

∣∣Û21 (ζ)
∣∣2 − 4γ

∫ ζ
0

∣∣Û21 (t)
∣∣2e−2γtdt,

(31)

we recover those from the spontaneous generation in Equation (15). Finally, in the passive-loss and
loss-loss dimers, the intensity only depends on the initial state and decays due to the nature of the
auxiliary β parameter,

n(10)
1 (ζ) = e2βζ

∣∣Û11 (ζ)
∣∣2,

n(10)
2 (ζ) = e2βζ

∣∣Û21 (ζ)
∣∣2.

(32)

In these expressions, it is easier to identify that the spontaneous generation component is identical to
the one in the vacuum propagation case and the stimulated component, in the specific case of single
photon propagation, will be the same than in the classical dimer, as expected.

Figure 4 shows the renormalized mean photon number for the propagation of a single photon in
the first waveguide,

ñ(10)
j (ζ) =

n(10)
j (ζ)

n(10)
1 (ζ) + n(10)

2 (ζ)
. (33)

Note that the initial state is not excluded, as in the spontaneous generation case, because now
there will always be a nonzero probability that the dimer will have a photon propagating through it.
Now, as the renormalized mean photon number will have a spontaneous and stimulated component,
it is possible to see that the strongest differences in the PT -symmetric regime will occur at small
propagation distances, and the oscillation frequency will be larger than in the spontaneous generation
case, Figure 4a,d,g. In the Kato exceptional point, Figure 4b,e,h, and the broken symmetry regime,
Figure 4c,f,i, the same will happen. The strongest deviation from the spontaneous generation signature
will occur for small propagation distances and it will take slightly longer propagation distances to
reach an asymptotic limit identical in value to that of the spontaneous generation,

limζ→∞ ñ(10)
1 (ζ) = 1

2γ

(
γ +

√
γ2 − 1

)−1
,

limζ→∞ ñ(10)
2 (ζ) = 1

2γ

(
γ +

√
γ2 − 1

)
.

(34)

Finally, it is possible to follow the renormalized mean photon number for the passive-loss and
loss-loss dimer which will have identical signatures in all regimes, Figure 4j,k,l, and is able to provide
photon localization at any of the waveguides, Figure 4j.
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Figure 4. Instantaneously renormalized mean photon number, ñ(10)
j (ζ), along different realizations

of the effective PT -symmetric dimer. The first row, (a–c), shows balanced gain-loss, the second row,
(d–f), shows gain-gain, the third row, (g–i), shows gain-passive, and the fourth row, (j–l), shows both
passive-loss and loss-loss configurations in the PT -symmetric regime, the first column with |γ| = 0.5,
the Kato point with |γ| = 1, the second column, and the broken symmetry regime, and the third
column with |γ| = 1.2. Values for the first and second waveguides are shown with a solid blue and
a dashed red lines, in that order.

6. Photon Bunching and Anti-Bunching in Photon Propagation

We can also study the effect of photon propagation on second order two-point correlations as we
did for spontaneous generation. In order to study a different state, we will consider as initial state
a N00N state, |N00N〉 = (|N0〉+ |0N〉) /

√
2, in order to see negative values of the two-point Mandel

parameter at least for the initial state,

q(N00N)(ζ) =
n(N00N)

1212 (ζ)

n(N00N)
1 (ζ)n(N00N)

2 (ζ)
− 1, (35)

where we have defined the following second order two-point correlation function,

n(N00N)
1212 (ζ) = e4βζ

〈
N00N|b̂†

1 (ζ) b̂†
2 (ζ) b̂1 (ζ) b̂2 (ζ) |N00N

〉
, (36)

and we take the mean photon numbers as defined in Equation (27).
For the two-photon N00N state, N = 2, the mean photon numbers at the waveguides are provided

by the following expressions,

n(2002)
1 (ζ) = e2βζ

∣∣Û11 (ζ)
∣∣2 + e2βζ

∣∣Û12 (ζ)
∣∣2 + n(00)

1 (ζ),

n(2002)
2 (ζ) = e2βζ

∣∣Û21 (ζ)
∣∣2 + e2βζ

∣∣Û22 (ζ)
∣∣2 + n(00)

2 (ζ),
(37)
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where the first and second terms corresponds to the stimulated generation, and the third term is related
to the spontaneous generation and can be recovered from Section 3 for each and every configuration.
The general expression for the two-point correlation is summarized in the following,

n(2002)
1212 (ζ) = e4βζ

∣∣Û11Û21 + Û12Û22
∣∣2 + n(00)

1 (ζ)n(00)
2 (ζ) + |n(00)

12 (ζ)|2
+ e2βζ

[
n(00)

1 (ζ)
(∣∣Û21

∣∣2 + ∣∣Û22
∣∣2)+ n(00)

2 (ζ)
(∣∣Û11

∣∣2 + ∣∣Û12
∣∣2)]

+ 2 e2βζ �
[
n(00)

12 (ζ)
(
Û∗

21Û11 + Û∗
22Û12

)]
.

(38)

For the balanced gain-loss dimer, we use the spontaneous generation terms, n(00)
j (ζ), provided by

Equation (13), and the first order two-point correlation, n(00)
12 (ζ), from Equation (21). In the gain-gain

dimer, the expressions for n(00)
j (ζ) and n(00)

12 (ζ) are given by Equations (14) and (22), in that order.
In the gain-passive dimer, we only need the definitions provided by Equations (15) and (23) for the
spontaneous generation and the first order two-point correlation, respectively. Finally, for passive-loss
and loss-loss dimers, the spontaneous generation is null, n(00)

j (ζ) = n(00)
12 (ζ) = 0, such that

n(2002)
1212 (ζ) = e4βζ

∣∣Û11Û21 + Û12Û22
∣∣2. (39)

Obviously, the adequate parameter β from Table 1 should be used for each configuration.
These expressions become complicated enough that we must rely on a figure-based analysis.

Figure 5 shows the two-point Mandel parameter for the different dimer configurations in the
PT -symmetric, the Kato exceptional point, and broken PT -symmetry regimes. Now, the initial state
shows anti-bunching, a negative value of the two-point Mandel parameter, due to its delocalization
of the two-photon state. For the balanced gain-loss, the initial state propagates and, after a critical
propagation distance, presents bunching in the PT -symmetric, Figure 5a, the Kato exceptional point,
Figure 5b, broken symmetry, Figure 5c, and regimes. The gain-gain and gain-passive dimers show
a similar, more interesting behavior where the propagated state oscillates between an anti-bunched
and bunched state in the PT -symmetric regime, Figure 5d,g, and the transition from an anti-bunched
to a bunched state in the Kato exceptional point, Figure 5e,h, and broken symmetry regimes, Figure 5f,i.
Finally, in both the passive-loss and loss-loss dimers, the probability of losing photons makes the
propagated state anti-bunched in all regimes, Figure 5j–l.
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Figure 5. Photon bunching and anti-bunching shown in terms of the q(2002)(ζ) parameter for different
realizations of the effective PT -symmetric dimer. The first row, (a–c), shows balanced gain-loss,
the second row, (d–f), shows gain-gain, the third row, (g–i), shows gain-passive, and the fourth row,
(j–l), shows both passive-loss and loss-loss configurations in the PT -symmetric regime, the first
column with |γ| = 0.5, the Kato point with |γ| = 1, the second column, and the broken symmetry
regime, the third column with |γ| = 1.2.

7. Conclusions

We have calculated the propagation of photon states through non-Hermitian linear dimers
with Gaussian gain and losses. As a practical example, we studied propagation in the different
experimentally feasible configurations of the PT -symmetric dimer and show that each and every
configuration presents a different signature in the propagation of vacuum, single and two-photon
states. These signatures go beyond the mean photon number at the waveguides, which can be split
into spontaneous and stimulated generation components, and can be found, for example, in the second
order two-point correlation of the photon state propagating through the dimers.

First, let us focus on the mean photon number signatures. They show that the propagation of
vacuum and single photons through dimers in the PT -symmetry regime might provide us with
directional coupler devices controllable by the propagation length. Furthermore, devices that provide
full single photon switching can only be designed using dimers in the passive-loss and loss-loss
configuration. Outside the PT -symmetric regime, the asymptotic stability of the dimers in any given
configuration suggest their use as symmetric intensity sources at the Kato exceptional point and, in the
broken symmetry regime, they might provide asymmetric intensity sources where the intensities ratio
can be controlled by the linear properties of the material.

On the other hand, second order two-point correlation signatures can help us choose
configurations depending on the type of state needed for a particular application. For example,
if spatially separable states are needed, choosing a configuration showing photon bunching comes
naturally. Spatially entangled states are provided by passive-loss and loss-loss configurations where
the initial two-photon state is delocalized in the waveguides.

We want to note that our description of linear media is far from complete. Real world linear
materials saturate; this induces further restrictions on the model that we do not consider in this
manuscript and could provide further avenues of research. Furthermore, the addition of new
interactions, like introducing a two-level system to create more complex hybrid devices [20], requires
a first principle reformulation in order to recover adequate effective models.
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The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute.
PT Parity-Time.
�(α) and �(α) Real and imaginary parts of a complex number α, in that order.
CONACYT Consejo Nacional de Ciencia y Tecnología
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Abstract: We demonstrate the transmission of a 10-Gbit/s optical data signal in the 2 μm waveband
into titanium dioxide waveguides. Error-free transmissions have been experimentally achieved
taking advantage of a 23-dB insertion loss fiber-to-fiber grating-based injection test-bed platform.
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1. Introduction

Nowadays, optical communication traffic continuously increases, inexorably approaching a
“capacity crunch” [1–3]: the conventional C-band around 1.55 μm will not be sufficient anymore and
alternative approaches have to be adopted [4]. Recently, the 2 μm spectral region has been suggested
as a new transmission window [5], benefiting from the emergence of thulium-doped fiber amplifiers
(TDFA) with broadband and high gain spanning from 1900 to 2100 nm [6]. This has stimulated
studies of dedicated photonic components such as InP-based modulators [7,8] or arrayed waveguide
gratings [9]. High bit rate communications over distances exceeding one hundred meters have already
been successfully demonstrated [10–13] in low-loss hollow core bandgap photonic fibers designed to
present minimal losses around 2000 nm [14] or in solid-core single mode fibers [15].

Optical transmissions over much shorter distances (typically a few hundred micrometers) also
deserve interest in the context of on-board connections and photonic routing operations. Therefore, this
open issue requires further experimental investigations to evaluate the potential of various materials
transparent in this new spectral band. Optimally, such a material should be also transparent in
other telecommunication bands ranging from O-band (1310 nm) to C-band (1550 nm) and eventually
also in the 850-nm band. Regarding the recent research, a natural choice could be silicon nitride
(Si3N4), which has already stimulated many works in the visible but also in the mid-infrared range,
mainly in the context of frequency combs [16]. In this new contribution, we are interested in another
material which remains to date relatively unexplored: titanium dioxide (TiO2). This cost-efficient
material is indeed transparent from visible to mid-infrared wavelengths [17] and can be considered as
a complementary metal-oxide semiconductor (CMOS) compatible material [18]. Compared to Si3N4,
TiO2 presents several advantages. Among them, it presents lower stress constraints for thicknesses
beyond 250 nm and has an easier deposition process possible at lower temperatures. Note also that
it exhibits a higher linear refractive index, which is critical for a stronger confinement [19]. Up to
now, detailed studies have taken advantage of its negative thermo-optic coefficient [18,20] and its
transparency in the visible range [21,22], or have reported on its linear and nonlinear properties in
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the C-band [19,23,24]. In this work, we experimentally explore, for the first time, TiO2 as an efficient
medium for a photonic component operating at 2 μm. After describing the design and fabrication of
our TiO2 waveguides, we detail the experimental setup under use and validate the device for error-free
transmission of a 10 Gbit/s on-off keying signal for both a subwavelength single mode waveguide
and a multimode waveguide.

2. Design and Fabrication of the Photonic Structure

2.1. Design and Fabrication of the Photonic Structure

Whatever the platform involved for the design, a critical issue in integrated photonics is always
how to efficiently couple the light into the device. In a dedicated article [25], we recently investigated
and experimentally validated a new kind of metal grating that is embedded directly within the
dielectric layer instead of being deposited on it [26]. Thus, we were able to efficiently couple a 1.55 μm
signal into a TiO2 photonic waveguide. Here, a similar design is exploited, as depicted in Figure 1a.
More precisely, the structure consists of a metal (Au) grating embedded between two TiO2 layers on a
glass substrate.

Figure 1. (a) Embedded metal gratings in TiO2 layout; (b) Numerical simulations of the coupling
efficiency for one facet as a function of the width w1 of the grating lines for the following parameters:
hbottom = 70 nm, hAu = 5 nm, htop = 234 nm, Λ = 1900 nm at the central wavelength of our laser source
(1.98 μm). The results for the transverse electric (TE) mode are compared to those for the transverse
magnetic (TM) mode. The circles highlight the values where the efficiencies of both modes are equal.
The green circle corresponds to the best value; (c) Corresponding coupling efficiency per facet for the
TE and TM modes as a function of the wavelength (for w1 = 700 nm—green circle on panel (b)).

Using a commercial finite element-based software (Comsol Multiphysics), we can optimize the
parameters of the design to obtain the best coupling around the 2 μm wavelength. We have taken into
account the fabrication and experimental setup constraints, leading to fixed values for the bottom layer
height hbottom = 70 nm and of the incident angle Θ = 30◦. Thus, using a Monte Carlo algorithm varying
(hAu, htop, Λ, w1) in a 4D parameter space, the coupling efficiency could reach 52% for transverse
magnetic (TM) mode when the gold height hAu = 57 nm, the top layer height htop = 234 nm, the period
Λ = 1904 nm, and the width of grating lines w1 = 980 nm. However, with these parameters, the coupling
efficiency for the transverse electric (TE) mode drops down to 10%. Similarly, the optimization of
parameters for the TE mode gives an efficiency reaching up to 36% for hAu = 45 nm, htop = 234 nm,
Λ = 1679 nm, and w1 = 356 nm, whereas those parameters give a poor efficiency of 1% for the TM mode.

However, contrary to Reference [25], our aim is not to reach the best coupling efficiency. Here,
we tried to find numerically the geometric parameters that allow a fair coupling efficiency in both the
TE and TM modes for a slab. From the previous optimization, the top layer should be 234 nm and,
given that hbottom = 70 nm, the total TiO2 thickness considered is 304 nm. The thickness of the gold
lines hAu is chosen to be 56 nm, while the period Λ = 1900 nm. To adjust the efficiency of the TM mode
compared to the TE mode, we adjust the filling factor by sequentially varying the width w1, as shown
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in Figure 1b. It appears that three values of w1 allow a similar coupling for the TE and TM modes, but
the width of the grating lines that gives the best efficiency (−8.5 dB) is around 700 nm.

2.2. Modal Analysis

Here, we focus our attention on two strip waveguides (Figure 2a): an 8.0-μm wide waveguide
and a subwavelength 1.6-μm wide waveguide. The 8-μm wide waveguide is clearly multimode with
nine TE modes and three TM modes. Considering a refractive index of 1.44 for the glass substrate and
2.41 for the TiO2 layer [17], Figure 2b shows that the first TE and TM modes in the multimode (MM)
waveguide have an effective index of 1.87 and 1.49, respectively. Note that the TM mode is clearly
much less confined than the TE mode, as can be seen in Figure 2(b2), but over the length considered,
the lossy behavior of the TM mode has very low impact, as demonstrated in the following sections.
The subwavelength 1.6-μm wide waveguide is single-mode (SM) with an effective index of the TE
mode around 1.78, shown in Figure 2c.

Figure 2. (a) Sketch of the cross-section of the 304-nm strip waveguides. Corresponding mode profile
of the electric field and associated effective index for (b) a multimode waveguide (width, 8 μm) and
(c) a subwavelength waveguide (width, 1.6 μm). Subplot (b1) corresponds to the fundamental TE
mode, whereas subplot (b2) is related to fundamental TM mode.

2.3. Fabrication

The fabrication process relies on traditional techniques. Titanium dioxide layers are deposited
on a glass substrate by reactive direct current (DC) magnetron sputtering of a 99.9% pure titanium
target under argon and oxygen control atmosphere. Electron-beam lithography, followed by thermal
gold evaporation (here, 3 nm of chromium are used as an adhesion layer) and a lift-off process is
used to fabricate the gold gratings. Then the top layer of TiO2 is deposited, followed by overlay
electron-beam lithography. After metallic mask evaporation, reactive ion etching is performed to make
the waveguides. Finally, wet etching removes the mask to obtain the final device to be tested.

As mentioned previously, we fabricated two structures of interest (Figure 3): an MM waveguide
(with a width of 8 μm) and an SM waveguide (slightly overexposed leading to a width of 1.65 μm).

These waveguides have the same length fixed at 575 μm but, for the SM waveguide, two 85-μm
long tapers (with a maximal width of 30 μm) are used at the input and output. The parameters
measured on the fabricated device differ slightly from the targeted one: we measured a 304-nm total
thicknesss with hbottom = 69 nm and htop = 235 nm. Moreover, the waveguide width is actually 1.65 μm,
which induces the existence of the TE0,1 with an effective index close to 1.47. For each structure, two
widths of grating lines (related to filling factor) have been fabricated. The two targeted widths were
the best values for which TE and TM were equal in Figure 1b (i.e., 550 and 700 nm). However, due to
overexposure, we measured both widths to be 630 and 860 nm.
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Figure 3. Images of (a) a subwavelength waveguide and (b) a large waveguide considered as a slab.
Insets 1 show scanning electron microscopy (SEM) pictures of embedded metal grating on one end
of the waveguides whereas insets 2 show optical images of the waveguides. Contrary to the slab,
the subwavelength waveguide is equipped with tapers. Insets 3 correspond to SEM pictures of the
subwavelength that has a width of 1.65 μm (a3), and the slab which is actually 8.0 μm wide (b3).

2.4. Test of the Device

We then characterized the coupling efficiency of the waveguides with a setup similar as in
Reference [25]. Two focusers oriented with an angle of 30◦ were used to inject and collect the signal at
the input and output gratings, respectively. The injection of light emitted by an amplified spontaneous
emission (ASE) source spanning from 1900 to 2050 nm was adjusted (thanks to two cameras operating
in the visible and 2-μm ranges (model Xeva 2.35-320, Xenics nv, Leuven, Belgium). After transmission
in the waveguide and decoupling by the grating, the output light was collected by a lensed-fiber
focuser and recorded with an optical spectrum analyzer (OSA) (model AQ6375B, Yokogawa Electric
Corporation, Musashino, Japan). Figure 4 shows the total insertion losses as a function of the injected
wavelength for the two waveguides under test. Note that those transmission spectra are normalized
with respect to a reference spectrum obtained by optimizing the light collected by the output focuser
after specular reflection of the incident light onto a gold mirror [25]. It is noted that, in Figure 4,
oscillations of high amplitude and short period are particularly marked for the large waveguide. These
spectral oscillations are attributed to a Fabry–Perot effect, the spectral range between two maxima
being in agreement with what can be expected from the roundtrip distance. The experimental loss
should be twice as large as the value expected from our numerical simulation (Figure 1) performed for
one facet, given that we neglect the propagation loss. Then, the discrepancy between the numerical
simulations and the maximum experimental efficiency is about 3 dB, mainly attributed to the strong
dependency on the width of the grating lines and also probably due to fabrication issues (in particular
related to the roughness). Even though, for the MM waveguide configuration, the TE mode was
expected to be as efficient as the TM mode for a grating line width of 700 nm, here it was the case for
w1 = 630 nm. Regarding the TE SM waveguide, as expected, the coupling efficiency is similar to the
one obtained for the large waveguide. Let us once again recall that a (6 dB) better efficiency can be
reached for optimized parameters, but our goal here was to establish a fair comparison between the
MM and SM components.
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Figure 4. Total insertion losses as a function of the injected wavelength for an MM waveguide (grey
curve) and an SM waveguide (black curve) obtained with the amplified spontaneous emission (ASE)
source (for w1 = 630 nm). The oscillations of short period on the grey curve are due to a Perot–Fabry
effect. The grey dashed line corresponds to the central wavelength of the laser source used in the
next section.

3. Validation of the Transmission of a 10 Gbit/s Signal

In order to demonstrate the suitability of our TiO2 devices for 2-μm optical communications,
we implemented the experimental setup detailed in Figure 5, based on 2-μm commercially available
devices. The transmitter (TX) was based on a laser diode centered at 1980 nm and was intensity
modulated by means of a commercial Niobate–Lithium modulator (model MX2000-LN-10, iXblue
Photonics, Besançon, France). The Non-Return-to-Zero On-Off-Keying signal under test was a 231–1
pseudorandom bit sequence (PRBS) at 10 Gbit/s. Since the SM waveguide is polarization-sensitive, a
polarization controller was used after the intensity modulator. Then, a thulium-doped fiber amplifier
(TDFA) was used before a 90/10 coupler, allowing us to monitor the power injected into the waveguide.
Note that the variable optical attenuator is usually implemented just in front of the receiver, but due to
limited sensitivity of the available power meters working at 2 μm, it was more convenient to insert it
before the waveguide.

Figure 5. Experimental setup for a 10-Gbit/s 2-μm optical transmission. CW: continuous wave;
IM: intensity modulator; PC: polarization controller; PRBS: pseudorandom binary sequence; TDFA:
thulium-doped fiber amplifier; VOA: variable optical attenuator; PM: power meter; OSA: optical
spectrum analyzer; PD: photodiode; BERT: bit error rate tester (model MU181040A, Anritsu
Corporation, Atsugi-shi, Japan).

The receiver (RX) was based on a second TDFA. This TDFA was set to work with a constant
gain instead of a constant output power, as usually used in C-band. Therefore, a variable optical
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attenuator was implemented at its output to ensure that the photodiode operated at a constant power
level. An optical bandpass filter (0.64 nm bandwidth) (model OETFG-100, O/E Land Inc., LaSalle,
QC, Canada) was also inserted at the output of the system, in order to limit the accumulation of
amplified spontaneous emission from the TDFAs. The signal was finally analyzed both in the spectral
and temporal domains. An optical spectrum analyzer was used to measure the optical signal-to-noise
ratio (OSNR) of the received signal (using the usual 0.1 nm noise bandwidth), whereas a photodiode
(12.5 GHz electrical bandwidth) (model 818-BB-51F, Newport corporation, Irvine, CA, USA) enabled
bit error rate measurements in addition to recording of the output eye diagram on a high-speed
sampling oscilloscope.

Figure 6 summarizes the results obtained at 1980 nm. Error-free operation can be achieved for
back-to-back measurements as well as in the presence of the TiO2 waveguides. Examples of the
corresponding eye-diagrams are provided in panels (a): in both configurations, a widely open eye can
be recorded and the insertion of the waveguides under test does not induce any visible degradations
of the transmission.

Figure 6. (a) Eye diagrams for the back-to-back configuration and after transmission in the 1.65 μm
wide waveguide (panels 1 and 2 respectively). In both cases, eyes diagrams were recorded for error-free
measurements; (b) Bit-Error-Rate (BER) as a function of optical signal-to-noise ratio (OSNR) for the
two previously described waveguides. On the graph, the black points of measurements are associated
with back-to-back configuration. The crosses are used for BER measurements for TiO2 devices (red for
the 1.65-μm SM wide waveguide and blue for the 8-μm wide MM waveguide).

The quality of the transmission through the TiO2 waveguide was more quantitatively evaluated
through systematic measurements of the Bit-Error-Rate according to the OSNR on the receiver.
The results obtained for the various configurations are summarized in Figure 6b. From a general
point of view, the global trends are very similar, with very moderate penalty (~1.5 dB) obtained after
transmission through the waveguides and compared to the back-to-back configuration for BER lower
than 10−8. Moreover, no significant difference was observed between the SM and MM waveguides.
Therefore, for the length of propagation under consideration, the multimode nature of the waveguide
does not seem to impair the transmission quality.

Before concluding, we would like to emphasize here the fact that such measurements are not
as straightforward as in the C-band. Indeed, the 2-μm devices have not reached the same level of
maturity and it is still difficult to find such devices commercially available. This experiment shows
that despite the lack of optimized devices, error-free transmission is possible, confirming that this new
waveband is definitely an effective alternative, especially if new solutions appear in the next few years.

4. Conclusions

To conclude (thanks to embedded metal gratings) we have been able to efficiently couple an
incident light beam into a TiO2 waveguide in the 2-μm spectral range. This particular design allows us
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to demonstrate, for the first time, an error-free transmission of a 2-μm optical data stream at 10 Gbit/s
in a 575-μm long TiO2 waveguide. A full set of BER measurements has been performed with a fair
comparison between a single-mode 1.65-μm wide waveguide and a multimode 8-μm wide waveguide
insensitive to the polarization. No significant difference was then observed. With the future progress
of the emitter/receiver stages, we believe that the present component will also be able to handle higher
transmission speeds.

This study paves the way to integrated photonics at 2 μm, and introduces titanium dioxide as a
serious candidate for photonics from the visible to the mid-infrared range. With technological progress
and the maturity gain that can be expected in the near future for fiber and optoelectronics solutions
operating around 2 μm, we are confident in the possibility of involving longer TiO2 waveguides up to
a few centimeters in length.
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Abstract: This is a review of fiber-optic soliton propagation and of methods to determine the
soliton content in a pulse, group of pulses or a similar structure. Of central importance is the
nonlinear Schrödinger equation, an integrable equation that possesses soliton solutions, among others.
Several extensions and generalizations of this equation are customary to better approximate real-world
systems, but this comes at the expense of losing integrability. Depending on the experimental situation
under discussion, a variety of pulse shapes or pulse groups can arise. In each case, the structure will
contain one or several solitons plus small amplitude radiation. Direct scattering transform, also known
as nonlinear Fourier transform, serves to quantify the soliton content in a given pulse structure, but
it relies on integrability. Soliton radiation beat analysis does not suffer from this restriction, but has
other limitations. The relative advantages and disadvantages of the methods are compared.

Keywords: direct scattering transform; fiber optics; inverse scattering transform; nonlinear Fourier
transform; nonlinear Schrödinger equation; soliton; soliton radiation beat analysis

1. Introduction

Light pulses in optical fibers carry the bulk of all telecommunication today. In comparison to
electrical pulses in cables, fiber-optic transmission is vastly superior, mostly due to two fundamental
advantages: light in fibers suffers extremely low power loss, and fibers provide an extremely wide
bandwidth. For the loss, a rough number is 0.2 dB/km. This implies that even after 100 km, still, 1% of
the launch power is left, which is unrivaled. The available bandwidth can be estimated as 30 THz
(maybe 50 THz if one accepts slightly higher loss), which is several orders of magnitude better than
anything that can be achieved with electronics.

Further comparison of optical and electrical transmission brings us to an imperfection shared
by both: in either type of conduit, group velocity depends on frequency; as any signal requires
a certain bandwidth, transmitted signals suffer from distortion due to group velocity dispersion.
This is a linear distortion, which means that it can be perfectly compensated by adding an element of
opposite dispersion.

In one respect, however, optical fibers are very different from electrical cables. The response of
glass to light is nonlinear, whereas that of copper to current is not (within reasonable limits). Therefore,
the physics of data transmission with light pulses through optical fibers is fundamentally different
in that it involves a nonlinear response of the material to the signal [1,2]. Nonlinear distortions are
not as easily compensated as linear ones. This has led to a widely-held conception that optical power
in fibers must always be kept low enough so that nonlinear distortions are avoided.

To this argument, one can give two responses: One, nonlinearity can actually be put to good
use, even be used to an advantage, when the concept of solitons is adopted. It has already been
demonstrated even in a commercial setting. Two, the ever-growing demand for data-carrying capacity
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brings us close to a capacity crunch, unless means are found in just a few years to improve technology.
It may become necessary to look at solitonic formats again.

2. The Nonlinear Schrödinger Equation and Some of Its Solutions

The glass of optical fiber is a dispersive material. With the index being a function of wavelength
or optical frequency, i.e., n = n(ω), the group velocity is also frequency dependent. The glass is also
a nonlinear material. This chiefly means that the refractive index follows the instantaneous intensity,
i.e., n = n(I). Across the duration of a short pulse of light, the index experiences a slight modulation,
which gives rise to intensity-dependent phase shifts known as self-phase modulation [3].

A propagation equation for light pulses in fibers must contain these two influences, at least
in leading order. The equation that fits this description is known as the nonlinear Schrödinger equation
(NLSE). It plays an absolutely central role in all of the nonlinear fiber optics. It describes the evolution
of the pulse amplitude envelope (the fast oscillation at some central optical frequency ω0 is removed)
in a frame of reference comoving with the traveling light, i.e., with the group velocity at ω0. Written in
physical quantities, it is given by:

i
∂

∂z
A − β2

2
∂2

∂t2 A + γ|A|2 A = 0 . (1)

Here, A = A(z, t) is the complex amplitude with z the position along the fiber and t the retarded
time. β2 is the coefficient of group velocity dispersion, and γ is the coefficient of nonlinearity.
Depending on the situation, it may become necessary to add corrective terms for loss, higher-order
dispersion or other nonlinear effects, as we shall see in Section 3.1. The equation received its name
due to its formal similarity to the Schrödinger equation of quantum mechanics fame: The quantum
mechanical version typically describes how a wave function spreads out in space as time goes by;
here, the equation describes how a short pulse gets broadened temporally as it propagates down
the fiber. Therefore, time and space coordinates switch roles. The potential, in the nonlinear case,
comes from the self-phase modulation, which is captured in the nonlinear term.

The effort to find solutions to this equation benefited from the fact that the NLSE is integrable.
Integrable equations have very special mathematical properties like an infinite number of preserved
quantities. A first solution was found by Vladimir E. Zakharov and Aleksei B. Shabat in 1972 [4] using
the inverse scattering technique, developed by Gardner et al. in 1967 [5] (see Section 4.1). It exists for
a particular combination of algebraic signs of the two parameters; with γ always positive, one would
have the correct signs for β2 < 0, i.e., for what is known as anomalous dispersion. Two years later,
Junkichi Satsuma and Nubuo Yajima [6] treated the pertaining initial-value problem. Between them,
these two papers already form a solid base of the understanding of solitons. In the time between
those two, Akira Hasegawa and Frederick Tappert suggested that the NLSE was applicable to pulse
propagation in optical fibers, so that fiber-optic solitons would exist [7]. At that time, optical fibers were
a novelty and not yet technologically matured. Attempts to transmit light pulses for data transmission
suffered from dispersive distortions. It was therefore a bold proposal that the use of solitons as
signaling pulses might overcome dispersive broadening, in other words that nonlinearity could be
exploited to cancel distortions arising from a linear mechanism.

Of course, the proposal required as a very first step that the existence of fiber-optic solitons
be corroborated experimentally. In the anomalously dispersive regime, i.e., at wavelengths longer than
ca. 1.3 μm, they were still too lossy for any meaningful test. By 1980, this situation had improved,
and Linn F. Mollenauer, Roger H. Stolen and James P. Gordon could experimentally verify the existence
of solitons [8].
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2.1. Soliton Solutions

2.1.1. The Fundamental Soliton

In the anomalous dispersion regime, the NLSE Equation (1) supports a stable solution known as
the fundamental soliton:

A(z, t) =
√

P0 sech
(
(t − ts)− Ωβ2(z − zs)

T0

)

× exp
[

i
γP0

2
(z − zs)− iΩ

(
(t − ts)−

1
2

Ωβ2(z − zs)

)
+ iϕs

]
. (2)

Here, P0 is the peak power; T0 is the pulse duration; Ω is the deviation of the soliton’s center optical
frequency from that of the frame of reference, ω0. ts, zs and ϕs are the initial values of center time, start
position and phase offset, respectively. As long as a single soliton is considered, frequency offset and
initial values may be set to zero without loss of generality so that a considerably simplified version:

A(z, t) =
√

P0 sech
(

t
T0

)
exp

[
i
γP0

2
z
]

(3)

remains. In either case, amplitude and duration are coupled and must fulfil:

P0T2
0 =

|β2|
γ

. (4)

The propagation of a fundamental soliton with Ω = ts = zs = ϕs = 0 is shown in Figure 1.
As the temporal evolution (sech term) does not contain z, the temporal shape does not change
during propagation. Without nonlinearity, the shape would change appreciably after one dispersion
length LD = T2

0 /|β2|. The other relevant length scale is the nonlinearity length LNL = 1/(γP0) after
which self-phase modulation becomes appreciable. As Equation (4) shows, for the soliton LD = LNL.
This equality expresses the balance between both.

Among the conserved quantities of the integrable equation are the soliton energy:

Esol = 2P0T0 (5)

and the soliton center frequency Ω. As will be described below (Section 4.1), these two values are found
from inverse scattering in the form of imaginary and real parts of a complex eigenvalue. We point out
that in a dispersive medium, a nonzero frequency translates to a relative motion, so that the frequency
is usually referred to as the velocity. The number of solitons is also preserved, even in cases when
there is more than one.

Figure 1. Evolution of a fundamental nonlinear Schrödinger equation (NLSE) soliton.
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2.1.2. Radiation and Higher-Order Solitons

To create a soliton, one can launch a sech-shaped pulse as in Equation (3) for z = 0 into a fiber
with parameters conforming to Equation (4). If, however, the parameters are only approximately right,
we can do as follows: In the spirit of [6] and as also detailed in [9] (but they call A what we call N as
in [1,2,10]), we write the initial condition as:

A(0, t) = N
√

P0 sech
(

t
T0

)
. (6)

where the pulse is scaled by a factor N ≥ 0, N ∈ R called the soliton order. The energy is then:

E = N2Esol . (7)

Of course, at N = 1, there is the fundamental soliton, but at non-integer N, there is also a part
of the pulse energy that is not part of the soliton energy. This balance is a linear wave; in the soliton
context, it is called radiation. Linear waves are subject to dispersive broadening, so that after a
sufficiently long propagation, radiation will be dispersed away from the soliton, and the soliton itself
emerges. Until that happens, the different phase evolution of soliton and radiation creates a beat note,
visible as a slowly-decaying beat pattern. This is shown for N = 1.2 in Figure 2 (left), where lengths
are scaled to z0 = (π/2) LD. Evaluation of the beat pattern can yield soliton parameters, see Section 4.2.

Figure 2. (Left) If a pulse with soliton order N = 1.2 is launched, a slowly decaying beat with radiation
lets the soliton emerge gradually; (right) at N = 2, one generates a higher-order soliton, a structure
with periodic shape oscillation.

There is a threshold value of N to generate a soliton. As long as N < 1/2, all energy goes into
radiation. At N = 1, the radiative part dips to zero. At N = 3/2, it reaches the same energy as at
N = 1/2 again, and that suffices to generate a second soliton. At N = 2, there is a combination of
two solitons without any radiative part. This structure, for which an explicit expression was already
given in [6], is called an N = 2 soliton (Figure 2 right). More generally speaking, for any N ∈ N, N > 1,
one has a so-called higher-order soliton of order N in the pure form, i.e., without radiation. An explicit
expression for the N = 3 case solitons was found in [11]. The power profile of all higher-order solitons
oscillates with period z0. For all non-integer values of N, there is a radiative contribution.

Figure 3 gives an overview of this situation. In its upper part, the pulse energy according to
Equation (7), shown in units of Esol, is represented by the dashed parabola. Beginning at N = 1/2,
the first soliton appears. Its energy then rises linearly and passes through unity at N = 1. Similarly,
at other half-integer values of N, more solitons begin, each of them contributing energy to a cumulative
value shown in blue. The latter is tangent to the parabola at integer N values; here, the individual
soliton energies are also integer in Esol units. They take the first N values of the sequence 1, 3, 5, 7, . . . ,
which add up to N2. For all non-integer N, there is a gap between the cumulative solitonic and
the total energy, which represents the radiative part of the energy. Radiation energy is shown in the
figure’s lower part on an inverted, magnified scale (green curve). Whenever, at some half-integer N,
it reaches Erad = 1/4 Esol, the next soliton is created. Always the integer number closest to N determines
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the number of solitons involved, while the fractional part determines the amount of radiation created
along with them.

Figure 3. Soliton and radiation energies as a function of soliton order N. Energy is normalized to units
of fundamental soliton Esol of Equation (5). The fundamental soliton is at the black dotted markers.
Individual soliton energies (grey lines) add up to a cumulative value (piecewise linear blue trace);
the latter approximates the total pulse energy (red dashed parabola). The difference between both
is shown on an expanded, inverted scale in the lower part (green curve). From [2].

2.1.3. Soliton Interaction

When two or more pulses are launched in rapid succession, each of them is affected by
the presence of the others due to the index nonlinearity. In an integrable system, they cannot merge
(the number is preserved), but they can be set in relative motion as if there were interaction forces.
Gordon investigated the soliton-soliton interaction [12] and found that an effective force would decay
exponentially with growing separation between pulses and vary sinusoidally with their relative phase.
This means that there can be both attraction (in phase) or repulsion (opposite phase). This prediction
was tested experimentally in [13] and was found to be fully correct, with the only caveat that in
the attractive case, the first close encounter (collision) leads to processes of higher order not captured
in the NLSE.

Note that this view of interaction forces between particles is metaphorical and justifiable only if
both are well separated. In a nonlinear system, the superposition principle does not hold; therefore,
two sech-shaped pulses in close proximity to each other are not really two identical, but overlapping
solitons, but form a somewhat more involved two-soliton compound [14]. For that, energy and velocity
are preserved quantities.
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2.2. Breather Solutions

There is a different family of solutions of the NLSE, which is best explained by starting with
the continuous wave (cw) case. The NLSE is solved by the cw ansatz:

A =
√

P0 eiγP0z (8)

with constant power P0. It turns out that this solution is stable for normal (β2 > 0) and unstable
for anomalous dispersion (β2 < 0). The instability implies growth of small perturbations of the cw;
this is known as modulation instability [1]. The frequency of maximum gain is offset by ±ωmax from
the carrier frequency, with:

ωmax =

√
2γP0

|β2|
. (9)

If the cw is perturbed by white noise, there is always energy in these Fourier components,
and a ripple with frequency ωmax will begin to grow with gain:

gmax = 2γP0 . (10)

The further fate was widely appreciated only a couple of years ago even though the mathematical
results had all been worked out as early as 1986 [15]. There is a family of solutions of the NLSE
characterized by an infinitely extended cw background and some modulation on top. Its general form
can be written as [16]:

A(a, z, t) =
√

P0

[
1 + M(a, z, t)

]
exp(iγP0z) . (11)

where M(a, z, t) describes the modulation term. In the case of what is now known as the Akhmediev
breather, it takes the form:

M(a, z, t) =
2(1 − 2a)cosh

[
b(a)γP0z

]
+ ib(a) sinh

[
b(a)γP0z

]
√

2a cos
[
ωmodt

]
− cosh

[
b(a)γP0z

] . (12)

with parameters 0 < a < 1/2 and b(a) =
√

8a − 16a2. The modulation frequency is ωmod =

ωc
√

1 − 2a, and:

ωc =

√
4γP0

|β2|
≥ |ωmod| (13)

is the frequency range where gain is possible. Gain maximum occurs at a = 1/4 with ωmax = ωmod/
√

2,
and Equations (9) and (10) are recovered. This particular case is illustrated in Figure 4. From a cw
background, the modulation grows, until at z = 0, it reaches a maximum amplitude. Here, one has
a periodic train of pulses. During further evolution, the modulation decays until for z → ∞, the cw
is recovered.

Figure 4. Evolution of an Akhmediev breather at a = 1/4. Tmod = 2π/ωmod.
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The first experiments to demonstrate the Akhmediev breather in optical fibers were described
in [17] and in more detail in [18]. The process was initiated either from random perturbation [17] or
from a suitable weak modulation as suggested in [19] and performed experimentally in [18].

If we let a → 1/2, this implies that ωmod → 0, and the temporal separation between the pulses
in the train diverges. The modulation then takes the form:

M(z, t) = − 4(1 + i2γP0z)
1 + ω2

c t2 + 4(γP0z)2 . (14)

This is a structure that is localized in both time and space, known as the Peregrine soliton [20].
It is shown in Figure 5 (left); a first experimental demonstration was given in [21]. A further member
of this family of NLSE solutions was studied in [22] and is known as the Kuznetsov–Ma soliton.
Mathematically, that solution is described by the modulation term:

M(a, z, t) =
2(1 − 2a)cos

[
|b(a)| γP0z

]
− i |b(a)| sin

[
|b(a)| γP0z

]
√

2a cosh
[
|ωm| t

]
− cos

[
|b(a)| γP0z

] (15)

with a parameter range of a > 1/2. It consists of a periodically-recurring peak; see Figure 5 (right).

Figure 5. Evolution of a Peregrine soliton (left) and a Kuznetsov–Ma soliton (right). Tc = 2π/ωc.

3. Extensions to the Nonlinear Schrödinger Equation

3.1. Generalized Nonlinear Schrödinger Equation

The NLSE neglects linear loss, approximates dispersion by the leading group velocity dispersion
term and ignores nonlinear effects other than the intensity dependence of the refractive index.
Depending on the situation and/or the required accuracy of the calculated results, terms must be
added to include what is not represented. This leads to a generalized NLSE, which may take the form:

i
∂

∂z
A − β2

2
∂2

∂t2 A − i
β3

6
∂3

∂t3 A +
β4

24
∂4

∂t4 A . . .︸ ︷︷ ︸
higher-order dispersion

+γ|A|2 A

+ i
γ

ω0

∂

∂t

(
|A|2 A

)
︸ ︷︷ ︸
self-steepening

− TRγ A
∂

∂t
|A|2︸ ︷︷ ︸

Raman

+ i
α

2
A︸︷︷︸

loss

= 0 . (16)

As the generalized NLSE is not integrable, it usually must be treated numerically. The impact of
the new terms is as follows:

The dispersion curve can be written as a Taylor expansion around the carrier frequency ω0;
the NLSE is written so that the β2 term appears. All higher-order terms (shown here up to the fourth
order) provide corrections that become relevant when either the pulse spectrum gets quite wide
or when the carrier frequency is close to a zero-dispersion point (wavelength where β2 passes through
zero) of the fiber.
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The ‘self-steepening’ term [1,23] results from the intensity dependence of the group velocity and
leads to an asymmetry in the pulse shape. It can produce shifts in spectral and temporal positions
even in the absence of the Raman term.

The Raman effect leads to a redistribution of spectral power to the advantage of the low-frequency
slope of the pulse spectrum. A first study of the Raman gain in fibers was done by R. H. Stolen et al. [24].
The gain curve peaks at a frequency offset of ≈13 THz, but is nonzero all the way down to zero offset.
As a result, the spectral ‘center of mass’ of a pulse is shifted to lower frequencies. This ‘redshift’ scales
with the inverse fourth power of the pulse width [25]. The term expressing this in the NLSE is shown
here in a simplified version, which contains the Raman response time TR. This model is valid for
pulses being longer than ≈100 fs; more accurate models are described in [26–28].

The loss term contains Beer’s loss coefficient α; the impact of the loss can be characterized by
the characteristic loss length Lα = 1/α. As long as the loss is weak, i.e., Lα � LD, LNL, the equilibrium
of dispersive and nonlinear effects that characterizes the soliton is only mildly perturbed. In that
situation, the soliton can rearrange its shape: With the peak power drooping and the width increasing
slightly, Equation (4) can still be approximately fulfilled even when the energy is reduced [29,30].

3.2. Dispersion-Managed Fibers

As a further complication in a realistic assessment of pulse propagation in fibers, one must
acknowledge that in the telecommunications field, a special type of fiber has been preferred for
20 years now in which β2 is not a constant. Originally, an attempt was made to cancel dispersive
effects by concatenating segments of fiber with alternatingly positive and negative group velocity
dispersion. As it turned out, a perfect cancellation (path average β2 = 0)—possible at a single
wavelength only anyway—did not work as well as if a small negative value were left. This is on
account of the fiber’s nonlinearity.

Figure 6 illustrates the structure of a dispersion-managed fiber (DM fiber). The dispersion map
is described by the spatial period Lmap = L+ + L− with which the alternating pattern is repeated [31].
Strictly speaking, the value of the nonlinearity coefficient γ will also alternate from one fiber segment
to the other.

Figure 6. Dispersion-managed fiber consists of alternatingly normally (dispersion compensating fiber
(DCF)) and anomalously dispersive fiber (standard single mode fiber (SSMF)) segments. The dispersion
parameter β2 alternates between values of β+2 and β−2 ; the lengths of segments are L+ and L−,
respectively. The dispersion map period is Lmap = L+ + L−.

It is not immediately clear whether in a dispersion-managed (DM) fiber something like solitons
can exist, as they are solutions of the NLSE for anomalous dispersion only. However, as it turned
out, a type of pulse exists that is stabilized by nonlinearity [32–37]. These pulses were then
called dispersion-managed (DM) solitons. Their shape is neither of the usual unchirped sech type,
nor constant. Rather, it breathes over a full dispersion period so that after a full period, the shape in
both the amplitude and phase profile is restored. An example of a DM soliton is shown in Figure 7.
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Mathematically, dispersion management is captured by making fiber parameters z-dependent:

i
∂

∂z
A − β2(z)

2
∂2

∂t2 A + γ(z)|A|2 A = 0 . (17)

This modifies the NLSE into a non-integrable form so that it does not support solitons in the usual
sense. Depending on the dispersion modulation strength (essentially, β+

2 –β−
2 ), the DM soliton shape

may be nearly sech-shaped or closer to a Gaussian [38]. In the strong modulation limit DM, solitons
exhibit oscillating tails [38,39]. There is no closed analytical expression for it, but good approximations
to its shape can be found by numerical procedures like that given in [40]. During propagation, a DM
soliton suffers from continuous radiative loss, which may be weak, but nevertheless must lead to
its eventual decay. Fortunately, for applications, the decay distance typically exceeds any practically
relevant fiber length.

Figure 7. Evolution of a dispersion-managed soliton over two dispersion map periods.

It was eventually understood that dispersion-management provides advantages over
a constant-dispersion fiber. It suppresses four-wave mixing, a process occurring in a transmission
system with many wavelength channels filled simultaneously with independent data streams, where
it leads to cross-talk and, thus, errors. An extensive review of dispersion-management is given in [31].

3.3. Cases Involving Several Solitons

We mention a few more cases in which solitons or their compounds play a role and which have
received attention in the research literature.

3.3.1. Soliton Molecules

In DM fibers, stable compounds of solitons exist, which have been called soliton molecules [41].
The alternating dispersion creates a rapid to-and-fro of the chirp of DM solitons and, thus, a varying
mutual force. If two DM solitons are in a particular mutual separation, the net force is zero,
and an equilibrium is obtained [42,43]. For larger separations, there is attraction, for smaller, repulsion:
it is a stable equilibrium. Soliton molecules also exist for more than two DM solitons and have been
discussed as information carriers in data transmission [44,45]. As it turns out, there can be several
equilibrium positions [46].

3.3.2. Soliton Gas and Crystal

Another situation in which soliton propagation is subject to periodic perturbation was described
in a series of experiments about a synchronously-driven fiber resonator [47] (using non-DM fiber).
Free propagation in the fiber alternated with interference at an input coupler. As a result, relatively
long input pulses organized themselves into a pattern that contained a multitude of short pulses;
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each of those fulfilled the soliton condition Equation (4). The pattern could be either chaotic (soliton
gas) [48] or periodic (called soliton crystal) [49], depending on the drive power.

Similar phenomena have also been reported from fiber lasers [50–52], which, however, are not
described by the NLSE, as that does not consider nonlinear gain and loss. An equation including these
effects is the cubic-quintic complex Ginzburg–Landau equation. One finds that there are soliton-like
solutions of this equation that are called dissipative solitons [53–55].

3.3.3. Supercontinuum Generation

For some metrological purposes like coherence tomography, wide bandwidth light with good
focusability is required. Thermal light sources cannot deliver adequate power due to both their
insufficient spatial coherence and the limitations set by Planck’s radiation law. One can, however,
generate broadband light in a fiber by exploiting the nonlinearity to create new frequency components.
Experiments involve, in most cases, a powerful mode-locked laser and a piece of highly nonlinear
fiber. Either a modulation instability according to an Akhmediev breather scenario evolves, but the
structure then breaks apart, or the input pulse represents a high-order (N � 1) soliton, which
undergoes fission [56]. In either event, the initial light signal breaks up into an arrangement of several
pulses, many of which have soliton characteristics, and radiation. This arrangement has similarities
to the soliton gas described above. Through the action of the Raman effect, four-wave mixing and
cross-phase modulation combined with complex phase matching properties in the fiber’s dispersion
curve (see, e.g., [57]), the light quickly develops a spectrum that may easily be one octave wide and
often much more. Such a structure is referred to as an optical supercontinuum and has found much
research interest; commercial supercontinuum sources are being offered. A good review is [58].

A corollary to this is the phenomenon of optical rogue waves. Rogue waves of the ocean have been
identified as a real phenomenon, not a myth. Unusually, large single waves can occasionally appear
without warning, possibly wreaking havoc on ships, and disappear again just as suddenly. It was first
discussed in [59] that in the context of optical supercontinuum generation, single spikes of extreme
power can occur every once in a while. There is an ongoing discussion about the mechanisms [60].

4. Methods to Verify Soliton Content

The inverse scattering technique allows one to find solutions to integrable nonlinear wave
equations. However, in practice, one quite often is faced with the reversed task of determining
the soliton content of a given signal. The task is relatively straightforward when the signal consists
of isolated bell-shaped pulses. One can check whether the power profile approximates a sech2(t)
shape and whether the chirp is close to zero. Then, duration and peak power can be checked with
Equation (4). This way, an N = 1 soliton can be directly identified, and for pulses with N �= 1, the
local value of N can be found. However, the applicability of this direct method is limited to simple
cases. It is of no use for waveforms, as they may be found in more complex situations like soliton gas
or optical supercontinuum; see Section 4.1.3.

We will therefore briefly describe more advanced techniques. The direct scattering method is
often considered as the benchmark for the determination of soliton parameters. However, it has
its limitations, chief among which is that it relies on the integrability of the system. An alternative is
soliton radiation beat analysis, which does not have that same restriction, but the price to be paid for
that is that (i) more input data are required and that (ii) in complex cases, the obtained pattern may get
too complicated to interpret.

4.1. The Inverse and Direct Scattering Transform

4.1.1. The Method

The inverse scattering transform (IST) is a technique that can be used to solve certain nonlinear
partial differential equations (PDE) like the Korteweg–de Vries equation, the sine-Gordon equation

264



Appl. Sci. 2017, 7, 635

or the nonlinear Schrödinger equation. The basic concepts of this method were presented in 1967
in a groundbreaking paper by Gardner and coworkers dealing with the Korteweg–de Vries equation [5].
Shortly after, Lax showed how to apply the method also to other nonlinear PDEs when certain
conditions are met [61]. The IST was successfully adapted to the NLSE by Zakharov and Shabat
in 1972 [4].

The method of IST is based on transformations between the time-space domain and a nonlinear
spectral domain, in which the nonlinear evolution of some given input field reduces to a linear
problem. In the spectral domain, a given field is represented by its scattering spectrum, which is
calculated by the so-called direct scattering transform (DST). The inverse operation is called the inverse
scattering transform. As these transformations can be regarded as extensions to the well-known
Fourier transform, they are also known as nonlinear Fourier transform and inverse nonlinear Fourier
transform, respectively. Using the nonlinear Fourier transform, one can get insight into the linear and
nonlinear components of a given field by analyzing its scattering spectrum. Generally, it consists of
a continuous part, which represents the small amplitude radiation, and a discrete part, which can
be attributed to the solitons contained.

In recent years, several groups took up the idea of using multi-soliton pulses for nonlinear optical
data transmission, which originally was suggested by Hasegawa and Nyu [62]. In the course of this
renewed attention, several nonlinear transmission schemes and techniques for the nonlinear Fourier
transform and its inverse transform have been (and still are) developed to overcome the linear capacity
limits of fiber-optical transmission lines. An overview about the latest developments can be found in [63].

DST is a great tool to analyze given pulses, but its application is somewhat involved. The DST
has been applied analytically to only a few simple pulse shapes like sech-shaped [6] or rectangular
pulses [64]. Even for such a standard shape as a Gaussian,

A(t) = A0
√

P0 exp

[
−1

2

(
t

T0

)2
]

, (18)

no analytical result is known to the authors’ best knowledge. Instead, approximate solutions can
be found numerically. As an example, when setting A0 = 3 and choosing P0 and T0 according to
Equation (4), DST reveals that the pulse consists of two solitons and a small amplitude radiation part
of nontrivial spectral shape (see Figure 8).

Figure 8. Nonlinear spectrum calculated for a Gaussian pulse shape (Equation (18)) with A0 = 3 and
P0, T0 fulfilling Equation (4). (Left) The discrete spectrum, consisting of two solitons of the same center
frequency. The reference energy here is chosen as E0 = 2P0T0. (Right) The power spectral density (PSD)
of the linear radiation part.

Various schemes for numerical calculations of the DST are available [63,65–68]. They all
solve the Zakharov–Shabat eigenvalue problem of a discretized input field with M sample points
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and determine the nonlinear spectrum. One can distinguish between matrix methods that calculate
the eigenvalues directly from a M × M matrix and search methods in which the eigenvalues are found
in an iterative manner. For a recent discussion, see, e.g., [63,66–68].

In the following, we will sketch briefly how to calculate the scattering spectrum using a search
method. Using the formulation of Ablowitz et al. [69], one finds that solving the dimensionless NLSE:

∂q
∂z

=
i
2

∂2q
∂t2 + i|q|2q (19)

is equivalent to the integration of the system of equations:

∂Φ
∂t

+ TΦ = 0 , (20)

∂Φ
∂z

+ ZΦ = 0 . (21)

T and Z are operators (matrices) that determine the temporal and spatial evolution of some
auxiliary function:

Φ =

(
φ1

φ2

)
(22)

where φ1 and φ2 are called Jost functions. Explicitly, the operator T can be written as:

T =

(
−iλ q
−q∗ iλ

)
. (23)

Calculation of the DST can be done by integrating Equation (20) with respect to time with different
test values of the eigenvalue candidate λ = ζ. The initial condition can be chosen as:

Φ(z0, t, ζ) =

(
1
0

)
exp(−iζt) with t → −∞ , (24)

when q is localized in the sense that for t → ±∞, q → 0 at an exponential rate [65,66]. As a result,
one obtains the scattering coefficients a(ζ) and b(ζ) from Φ(z0, t, ζ):

a(z0, ζ) = φ1(z0, t, ζ) exp(iζt) with t → ∞ , (25)

b(z0, ζ) = φ2(z0, t, ζ) exp(−iζt) with t → ∞ . (26)

Additionally, the derivatives of a and b with respect to ζ can also be calculated by extending
the integration scheme to include Φ′ = ∂Φ/∂ζ.

In the scattering spectrum for anomalous dispersion, solitons are present in the form of
discrete eigenvalues ζk with a(ζk) = 0 and Im(ζk) > 0. Re(ζk) represents the frequency,
and 2 Im(ζk) corresponds to the amplitude of the soliton; both values are preserved during
propagation. The continuous part of the spectrum (radiation) can be calculated from the values
of a(ζ), with Re(ζ) = 0. The spectral power density |F |2 is then obtained as:

|F |2 = − 1
π

ln(|a(ζ, z)|) . (27)

4.1.2. Numerical Restrictions

We have applied numerical DST to a case for which exact analytical results are known,
i.e., the fundamental soliton Equation (3), to assess inaccuracies of the numerical procedure. They arise
from various sources; we identify three main error sources.
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Truncation error: At the edges of the computational time window of finite width TW, the pulse
wings are truncated. A fraction Etrunc of the energy is not represented in the numerical field:

Etrunc = 2
∞∫

TW/2

P̂ sech2
(

T
T0

)
dT = Etot

(
1 − tanh

(
TW/2

T0

))
. (28)

Sampling error: Sampling error arises from coarse sampling when the temporal discretization
step is too wide for the pulse duration.

Floating point error: Computers store numbers in some format with a limited number of digits;
‘double precision’ usually offers 15 digits plus the exponent. After a large number of floating point
operations, numerical errors accumulate.

To disentangle these contributions, we varied the number of sampling points and the width of the
time window for a given pulse width; the results are shown in Figure 9. To the right, the computational
window is sufficiently wide (TW � T0). Then, the three curves shown are for discretization step
numbers as indicated by the labels. For 212 points, sampling is increasingly coarse when these points
are spread over a wider window, and the error rises. Larger numbers of points improve the situation
quadratically because the error scales with the square of the sampling point separation. To the
left, truncation error dominates; the prediction of Equation (28), plotted as a solid curve, fits well.
Floating point error becomes relevant only where these two contributions are small and where the
number of calculation steps is large; in our example, it appears as ‘noise’ in the central section of the
curve for 222 points. We convinced ourselves that the transfer-matrix (TM) method presented in [65]
yields the same results.

Figure 9. Direct scattering analysis of an N = 1 soliton with different time window widths TW/T0.
The difference between the soliton energy found by direct scattering transform (DST) and the analytical
value is shown. Labels on the right indicate the number of sample points used. Solid curve: expected
truncation error, Equation (28) of the input pulse.

4.1.3. Applications and Limitations of DST

The DST method as described so far is quite generally applicable to arbitrary pulse profiles
provided two conditions are met: One is integrability, which is not fulfilled for many structures
in the generalized NLSE in Section 3.1 and for DM systems in Section 3.2. The other is that for time to
infinity, the structure must decay to zero sufficiently fast [65,66]. This is not the case for the structures
described in Section 2.2.

If integrability is violated only weakly either by loss or through the Raman effect, the concept
of solitons remains valid in an approximate sense as pulses that maintain an (near-) equilibrium
between dispersive and nonlinear influences. It might be more accurate to speak then of solitary pulses.
Strictly speaking, though, all preserved quantities are no more. Perturbation theory has shown [29,30]
that solitons rearrange their shape in terms of width and peak power; in the process, they acquire
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a new energy value, as well. In the sense that this may still be interpreted as solitons, some researchers
have adopted the following strategy: In a mildly non-integrable system with loss [70] or Raman
effect [71–73], the pulse structure is propagated numerically up to some position zi, where DST is then
applied to find what one may call ‘local eigenvalues’. Then, one lets zi slide and repeats DST, in order
to find the position dependence, or spatial evolution, of the eigenvalues. An example of such a case
is shown in Figure 10 where the Raman effect, third-order dispersion and loss are treated separately.
The most conspicuous effects are the energy reduction by the loss term and the frequency downshift
by the Raman effect.

Figure 10. Energy and frequency eigenvalues of a fundamental soliton obtained using the DST
method. The soliton was perturbed by Raman self-frequency shift (blue, solid, Raman response time:
TR = 0.03 T0), third-order dispersion (orange, solid, TODparameter: β3 = 0.5 T0β2), and linear loss
(green, dashed, loss length: Lα = 200 LD).

When it comes to complex situations like in the context of optical supercontinuum generation
where many interactions and collisions of several pulses take place, energy can be transferred between
pulses, and more changes to local eigenvalues will occur. In any event, one has to interpret the results
produced in this way with caution.

If one considers infinitely-extended structures, one first needs to acknowledge that they have
infinite energy. One possible approach is to start with a finite piece (‘window’) of the infinite structure
and determine eigenvalues, then increment the window width and follow the eigenvalues; finally, let
the window width tend to infinity [74]. In the limit, one obtains an infinite number of eigenvalues,
but with a finite density (number of eigenvalues per unit time). These eigenvalues cover a continuum
of energies from zero up to some maximum; if one considers the simplest case of an unmodulated
continuous wave, this maximum depends only on its power P0 and is given by Emax = 2

√
|β2| P0/γ.

With respect to the interpretation of these eigenvalues as signatures of solitons, the following was
shown in [74]: Consider a finite window, which contains m eigenvalues, and allow it to propagate.
On account of integrability, it contains a constant number of m solitons. If one then applies a
perturbation, e.g., by Raman effect, precisely m separate pulses emerge; once they are sufficiently
separated from each other after some propagation, it can be checked that each fulfills the soliton
criterion Equation (4).

The other approach to infinitely extended fields is to consider periodic problems, like the
Akhmediev breather. Adaptations of IST to periodic boundary conditions (periodic IST, also called
finite gap theory) have been given in [75–77] where the obtained eigenvalues are not necessarily
interpreted as solitons, but rather as the representation of linear and nonlinear modes [78–80]. Like the
nonperiodic IST, this periodic case gained renewed interest in recent years. Different theoretical
and numerical schemes have been developed with a view toward the application of nonlinear data
transmission [63,66,67,81–83]. A variant of the periodic DST based on the artificial periodization of
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field components was used to analyze rogue events and numerically to find the eigenvalue spectra of
the breather solutions of Section 2.2 [84]. Another approach to characterize rogue events via DST was
taken in [85,86].

We have here concentrated on pulse-like initial conditions. Recently, the scope was extended to
integrable turbulence [87] with a view towards understanding rogue waves. Initial conditions for
the NLSE were generated by superimposing random perturbations in both amplitude and phase on
a continuous wave; the resulting field was characterized by its eigenvalue spectrum.

4.2. Soliton Radiation Beat Analysis

Soliton radiation beat analysis (SRBA) is a numerical method to determine the soliton content of a
pulse in an optical fiber even if the system is not integrable. In contrast to DST, which requires the pulse
profile at a single position in the fiber, SRBA requires knowledge of the evolution over a certain length
section of the fiber. This is easily understood: In integrable systems, soliton parameters are invariant
so that if they are known in one place, they are known everywhere. SRBA can follow the evolution of
soliton parameters in a non-integrable setting; the price to pay is that representative information about
it must be introduced into the calculation.

As early as in 1974, it was noted [6] that the envelope of a pulse not exactly conforming to a soliton
undergoes oscillations. Such a pulse contains a soliton and some radiation; the oscillation arises as
a beating between both. The radiation evolves linearly; the soliton contains a power-dependent phase
term as shown in Equation (3). The frequency of the beat note therefore allows a direct conclusion
about the soliton energy.

The SRBA method was first introduced in [88]. The propagation of a sech pulse with the initial
form A(z = 0, t) = N

√
P0 sech(t/T0) was simulated numerically. This was repeated while

incrementing the soliton parameter N. As the oscillation of the peak power is damped due to dispersive
spreading of the radiative part, it was found advantageous to evaluate the peak spectral power, which
undergoes undamped oscillation. A windowed Fourier transform was applied to the spatial evolution
of the power at the center frequency |Ã(Ω = 0, z)|2. This produces a spectrogram of spatial frequencies
called the soliton radiation beat pattern. An example is shown in Figure 11 (left).
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Figure 11. (Left) Soliton radiation beat analysis (SRBA) chart from repeated numerical simulations
with increasing soliton number N; (right) corresponding predictions of beat signals and its overtones
(from [88]).

As N is increased, a soliton radiation beat first appears at its expected threshold near N = 1/2.
The figure shows that this beat note also has overtones. Its amplitude (grey scale) vanishes at integer N
(apparent ‘white stripes’), which is of course because there, the radiation amplitude vanishes; the beat
amplitude is proportional to the product of both amplitudes.

If there is more than one soliton involved, the beat pattern will contain the frequencies of beats
between all pairs of solitons, as well as that of each soliton beating with radiation. In Figure 11 (left),
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traces pertaining to the second soliton begin at N = 3/2 as expected and have amplitude nulls at N = 2.
Difference frequencies are visible as downward-bending curves. In the right panel of Figure 11,
analytical results for beat frequencies are plotted for comparison. Shown are all calculated frequencies,
up to four overtones, and all combination frequencies of this multitude. It is obvious that all SRBA
traces of the left panel can be identified in this way. SRBA provides the additional information that
there are notches in the amplitudes of all traces involving radiation at integer N values.

This shows that SRBA reproduces all known features of the soliton energies as known analytically
from IST. In [89], this method was shown to work for chirped Gaussian pulses in the NLSE.
Going beyond the NLSE to non-integrable situations is also possible as SRBA makes no assumption
about integrability. A lossy fiber was treated in [90]. It was shown that a mild, ‘adiabatic’ loss, if it
persists for a long fiber length, eventually turns diabatic because the relevant length scales LD and
LNL also change in the process. Once the loss is diabatic, the soliton decays. In that situation, however,
the applicability of DST even in the approximate sense as described above in Section 4.1.3 is ultimately
lost, and interpretations based on that approach [70] are doubtful and at variance to the SRBA results.

A further important example of the application of SRBA is the determination of the dispersion-managed
soliton content. This case is just not accessible for DST, not even in the sense of ‘local’ analysis as in
Section 4.1.3. Other than SRBA, no other numerical method to analyze DM structures is known. In [88],
a suitably-scaled Gaussian pulse was used as a good approximation to an ideal DM soliton, and an
SRBA pattern was obtained. Both the modification of the soliton energy and the characteristic minima
of soliton radiation beat traces were found.

In subsequent research, SRBA was also applied to analyze Akhmediev breathers and a sinusoidally
modulated cw [91], as well as soliton crystals [92]. One can assume that in principle, the SRBA
method can be applied to all non-integrable systems where a nonlinear phase shift appears. Potential
applications are soliton molecules (see Section 3.3.1) or dissipative solitons (see Section 3.3.2).

SRBA as described so far relies on the evaluation of the central spectral power Ã2(Ω = 0, z).
In a generalization of the technique, the consideration is extended to the full spectrum, Ã2(Ω, z) [93].
In this variant, the technique also yields information about soliton velocities. Figure 12 shows
an example for the case of an N = 2 soliton.

The pattern was generated using a value of N = 2.01, so that there is always a little bit of radiation
copropagating with the second-order soliton, and a beat note is generated. Parabola-like curves are
due to radiation; horizontal flat lines touching the parabolas are due to solitons. Once the traces are
identified, the soliton energies can be obtained from the spatial frequency of the nonlinear phase
rotation. To illustrate the interpretation of such data, we point out that the two solitons appear with
spatial frequencies in the ratio of 9:1. According to Equation (3), this means that the peak powers are
P0(S1) = 9P0(S2). Equation (4) then dictates that T0(S1) = 1/3 T0(S2). The ratio of energies obtained
from Equation (5) is then 3:1, precisely as expected from Figure 3. Any frequency shifts would appear
as horizontal displacements; in this particular example, there are none. There is no scan of N here;
this extended procedure has the advantage that only a single propagation simulation is necessary.

A particular difficulty with DM solitons is that their shape undergoes continuous changes.
At various positions within Lmap, the shape varies considerably, but the pulse shape repeats after
Lmap (it is ‘stroboscopically’ stable). Even then, when the power is modified, the shape varies from
‘nearly sech’ to ‘nearly Gaussian’, and depending on the dispersion modulation depth, oscillating tails
may appear. Therefore, extra measures need to be taken when the energy is scanned for an SRBA
pattern calculation. For the data in the left panel of Figure 13, at 0.5 pJ increments of energy, the best
approximation to the DM soliton shape was found using Nijhof’s method [40]. If the pulse shape were
exact, there would be no beat note with radiation. This is why in 0.5 pJ increments, there seem to be
white lines in the figure. Above and below each such step, the energy was scanned by simple scaling
of the pulse shape to ±0.25 pJ. The slight deviation from the best pulse shape suffices to produce beat
notes, and a full survey of their positions is obtained. For better clarity, the data from this calculation
are transferred to the right panel of Figure 13, and different line thicknesses are standardized into
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three classes in the process. The data show that a DM soliton consists of several constituent solitons;
the pertaining traces are labeled S1–S3.

Figure 12. Full-frequency SRBA chart to determine the soliton content of an N = 2 soliton. Grey scale
corresponds to the log of the Fourier transform of the spatial evolution of the spectral power density.
Arrows labeled S1 and S2 mark traces pertaining to the first and second soliton; their beat note is also
highlighted (from [93]).

Figure 13. (Left) SRBA chart for an energy scan of a DM soliton. For an explanation of the procedure,
and the apparent white vertical stripes in particular, see the text. (Right) Extract of the left panel,
with standardized line types. The fundamentals pertaining to three constituent solitons are labeled
S1–S3. The dashed line labeled ‘sol’ is for reference; it represents the spatial frequency for a non-DM
soliton in a fiber with β2 = β2 (from [93]).

A comparison of DST and SRBA reveals the advantages and weaknesses of both. SRBA requires
more input data. These can only be available from numerical simulations; it is hard to imagine how
suitable data could be obtained from an experiment. On the other hand, SRBA can treat cases that are
inaccessible to DST. Its limit is reached when for a growing number of solitons involved, the number
of traces becomes too large to disentangle them all. DST can be applied to many-soliton cases [94],
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but only in strictly integrable systems, or with the limitations in ‘nearly integrable’ systems as pointed
out in Section 4.1.3.

5. Conclusions

Solitons in optical fibers are pulses of light that maintain a balance between linear and nonlinear
distortions. Real-world systems are rarely, if ever, of the integrable kind. It is therefore appropriate to
apply the word ‘soliton’ also to pulses for which the balance is maintained at least approximately; to do
so is now common usage. However, one occasionally sees research papers in which the word is used
in a very loose sense, with no effort being made to actually check whether the balance is fulfilled.

In this review, we outline the concept of fiber-optic solitons, with a particular view toward
methods of verification of the solitonic nature of a given pulse, or group of pulses, or a similar
structure. Soliton content has been discussed in the context of structures like soliton molecules,
soliton gas and crystal, Akhmediev breather, optical supercontinuum and rogue waves. The simplest
method is to check pulse parameters with Equation (4), which directly expresses an equilibrium
condition. Unfortunately, this straightforward test is only applicable in very simple situations when
there are clean, well-isolated pulses, and it does not fully quantify the soliton content. Grown from
inverse scattering theory, the first method to analytically find the soliton solution of the NLSE is direct
scattering transform. It basically tests whether the structure under test contains pulses that hang
together as entities even when they collide, the property that gave solitons their ‘particle-like’ name
[95]. An alternative method is soliton radiation beat analysis, which basically tracks the nonlinear
phase rotation, which is the signature of solitons. We discuss some issues of practicality and accuracy
and compare the ranges of applicability of both DST and SRBA.

There is no single method that covers all cases; indeed, in some relevant cases, no available
method is fully satisfactory. In the complex evolution of supercontinuum, for example, the method
is often adapted ad hoc to the situation, for want of alternatives. In some interesting cases, soliton
content analysis has not been pursued yet, to our knowledge. Dissipative solitons are subject to yet
another condition beyond Equation (4), but should be accessible for SRBA. This article is meant to
provide the reader with a survey to what is currently known, to foster future research.
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Abstract: The interest in random fiber lasers (RFLs), first demonstrated one decade ago, is still
growing and their basic characteristics have been studied by several authors. RFLs are open systems
that present instabilities in the intensity fluctuations due to the energy exchange among their
non-orthogonal quasi-modes. In this work, we present a review of the recent investigations on the
output characteristics of a continuous-wave erbium-doped RFL, with an emphasis on the statistical
behavior of the emitted intensity fluctuations. A progression from the Gaussian to Lévy and back to
the Gaussian statistical regime was observed by increasing the excitation laser power from below to
above the RFL threshold. By analyzing the RFL output intensity fluctuations, the probability density
function of emission intensities was determined, and its correspondence with the experimental
results was identified, enabling a clear demonstration of the analogy between the RFL phenomenon
and the spin-glass phase transition in disordered magnetic systems. A replica-symmetry-breaking
phase above the RFL threshold was characterized and the glassy behavior of the emitted light was
established. We also discuss perspectives for future investigations on RFL systems.

Keywords: random fiber laser; Lévy statistics; photonic spin-glass behavior

1. Introduction

Proposals for the operation of random lasers (RLs) were made five decades ago by Ambartsumyan
and co-workers [1,2], who visualized the possibility of a new kind of laser that does not require the use
of optical cavities. Initially, they reported on the operation of a laser in which one of the cavity mirrors
was replaced by a piece of paper that scattered the light in such way that a fraction of the backscattered
light was enough to provide feedback for the laser operation. Following the original work, the same
group published a series of papers studying the line-narrowing [3], frequency stability [4], and the
statistical emission properties [5] of lasers with the so-called nonresonant feedback.

Apparently, the initial motivation for these studies was the observation of laser emission from
interstellar media [6], and the interest of the group on this subject continued in the subsequent
years [7–9].

For about fifteen years, the majority of research on this theme was pursued by groups that
concentrated their effort on the operation of RLs based on microcrystals doped by rare-earth ions [10].
However, the first efficient RL system built in a laboratory environment was reported in 1994 by
Lawandy and co-workers [11], who demonstrated the operation of an RL based on dye molecules
dissolved in alcohol with suspended titanium dioxide particles. That report was followed by a great
number of papers from different authors that investigated other physical systems for efficient RL
operation. A large variety of materials have been tested in the past years, and recent publications
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on RLs describe, for example, experiments with dyes dissolved in transparent liquids, gels or liquid
crystals with suspended micro or nanoparticles as light scatterers [12–17], powders of semiconductor
quantum dots [18,19], dielectric nanocrystals doped with rare-earth ions [20,21], polymers and
organic membranes doped by luminescent molecules [22–27], semiconductor and metallic nanowires
structures [28–31], and even atomic vapors that present interesting analogies with astrophysical
lasers [32].

There is a large literature on RLs motivated by the interest in a deeper understanding of the
fundamental properties of RLs [33–36], as well as reports on their possible application in sensing [37],
optofluidics [38,39], and imaging [40], among other fields [41]. Moreover, although from a fundamental
point of view there are many reports focusing on the basic characteristics of RLs and their operation,
the analogies between RLs and other complex systems have only recently been investigated by
experiments. For example, in the work by Ghofraniha and co-authors [42], the analogy between RLs
and the spin-glass phenomenon typical of highly-disordered magnetic systems was demonstrated for
the first time.

In the present work, we review the recent advances on the characteristics of random fiber lasers,
which have large potential for applications in various areas, as mentioned below. The article is organized
as follows. In Section 2, we describe the Materials and Methods used. In Section 3, the experiments with
erbium-doped fibers to characterize the RL behavior and the analysis of the intensity fluctuations are
presented, along with the theoretical framework to understand the system behavior. Finally, in Section 4,
a summary of the article contents and a discussion on perspectives for future work are presented.

2. Materials and Methods

2.1. Random Fiber Lasers

Random fiber lasers (RFLs) are akin to RLs, being the one-dimensional (1D) or quasi-1D version
of the 2D or 3D RLs. They bear the same nonconventional remarkable characteristic: the optical
feedback is provided by a scattering medium, rather than by fixed mirrors or fiber Bragg gratings
(FBGs), as in conventional fiber lasers. Similarly to conventional fiber lasers, a gain medium is excited
by an appropriate optical pump source.

The first demonstrated RFL, by de Mattos and co-workers in 2007 [43], can be seen as a quasi-1D
extension of the colloidal-based RL reported by Lawandy and co-workers in 1994 [11]. In [43],
the hollow core of a photonic crystal fiber was filled with a colloid al consisting of Rhodamine 6 G
and 250 nm rutile (TiO2) particles suspended in ethylene glicol. By transversely pumping with
nanosecond pulses from the second harmonic of a Nd:YAG laser, directional emission was generated
axially, and the feedback was due to the TiO2 scatterers. Shortly after the report of ref. [43], Lizárraga
and co-authors [44] and Gagné and Kashyap [45] demonstrated the operation of a continuous-wave
(CW) pumped erbium-based RFL (Er-RFL), with random FBGs providing the scattering mechanism.
We anticipate that this special type of RFL will be exploited as the photonic platform for all of the work
described here, and will be detailed later.

A new breakthrough in the research of RFL systems occurred in 2010, when Turitsyn and
co-workers [46] first reported on the operation of an RFL system which exploits Rayleigh scattering
as the optical feedback mechanism in rather long (~83 km) conventional single-mode optical fibers.
In this pioneer work, the gain mechanism was the stimulated Raman scattering excited in the fiber.

We observe that following this work, the interest in RFL systems and applications has fantastically
grown, as reviewed in refs. [47,48]. Indeed, by further exploiting the Rayleigh scattering due to
refractive index fluctuations as the mechanism for the multiple light scattering, a myriad of novel types
of RFL systems have been demonstrated using a stimulated Raman or Brillouin scattering process.

As most of the works between 2007 and 2014 have been reviewed in refs. [47,48], including
polymer-based optical fibers or plasmonically-enhanced RFLs, we highlight here the diversity of
works reported over the years 2015 and 2016 (see [49–66] and references therein). As examples,
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we mention that a Q-switched operation has been reported using Brillouin scattering [56], with
pulses as short as 42 ns at 100 kHz being demonstrated. Regarding the fiber length, since the first
observation of RFL made using conventional fibers with 83 km [46], RFLs with fiber lengths as short
as 120 m have been reported [58], also providing 200 W of output power. Other recent features of RFLs
include tunability using graphene-based devices [56] or high-order Raman scattering [57], second
harmonic generation [59], polarized emission from disordered polymer optical fibers [60], and photonic
turbulence [67].

2.2. Fiber Bragg Grating-Based Random Fiber Lasers

As mentioned above, FBG-based RFLs were first introduced in 2009 [44,45]. Currently, the FBG
fabrication methods, characterization, and management constitute a well-developed field, and further
information on this subject is deferred to ref. [68].

Typically, a writing setup based, for instance, on CW UV radiation or femtosecond sources at
800 nm, is employed to inscribe an FBG into a conventional or core-doped optical fiber. The case of
interest here exploits an active core single-mode fiber, using trivalent erbium ions, Er3+, which can be
excited at 980 nm or 1480 nm, and emits in the 1540–1560 nm spectral region. Instead of inscribing the
FBGs in an evenly spaced way, thus leading to conventional resonators, the erbium-based FBGs are
randomly spaced and play the role of random scatterers, leading to RFL emission. Generally, the fiber
is placed on a movable stage which is randomly displaced, thus providing the randomness in the
FBG writing process. Several tens to hundreds of gratings can be inscribed along several tens of cm of
fiber length.

In the next section, we will describe the fabrication and characterization of the Er-RFL system with
a specially-designed FBG [45]. We comment that this system has been lately used as an experimental
platform to study complex photonic phenomena, such as the observation of unconventional Lévy-like
statistics of output intensity values and the demonstration of the nontrivial replica-symmetry-breaking
regime, which marks the signature of the phase transition from a photonic paramagnetic to a photonic
spin-glass phase.

3. Results

3.1. Characterization of the FBG-Based Er-RFL Explored as a Statistical-Physics Experimental Platform

As reported by Gagné and Kashyap [45], a unique FBG was produced by writing an exceptionally
high number of gratings (>>1000) over a 30 cm length fiber. A polarization-maintaining erbium-doped
fiber from CorActive (peak absorption 28 dB/m at 1530 nm, NA 0.25, mode field diameter 5.7 μm) was
employed, in which the randomly distributed phase errors grating was written, instead of a random
array of gratings as in [44]. It was realized in [45] that during the movement of the translation stage,
the friction between the fiber and the mount introduced irregularities in the grating spectrum that
could be controlled by managing the air flow from the vacuum. Such irregularities were perceived as
small phase errors, randomly but continuously distributed along the grating profile being inscribed.
Thanks to this procedure, a high number of modes were observed, which is very important for several
applications, as we will see later.

The Er-RFL described in [45] had a very low threshold of 3 mW, with a throughput efficiency of
~4.5% for 100 mW pump power. The number of emitted modes was dependent on the pump power
and fiber length (20 or 30 cm fiber lengths were characterized in [45]), and a single or few modes were
observed, limited by the system measurement resolution [69].

For the experiments described here, the 30 cm long fiber was employed with the experimental
setup shown in Figure 1, reproduced from ref. [68]. The pump source was a semiconductor laser
operating in the CW regime at 1480 nm, delivering 150 mW output power at the fiber pigtail.
The Er-RFL output was split, through a 1480 nm/1550 nm wavelength-division multiplexer (WDM),
with a split ratio of 10/90 for 1480 nm and 1550 nm, respectively, to a power meter and a spectrometer.
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The employed fiber splices were lossy, if compared to the original work [45], leading to a higher
threshold. The spectrometer (SpectraPro 300i, Acton Research, Acton, MA, USA), coupled to a
liquid-N2 cooled InGaAs CCD camera, had a nominal resolution of 0.1 nm.

Figure 1. Experimental setup for the erbium-based random fiber laser (Er-RFL) system. (1) Fiber
pigtailed semiconductor laser operating in the continuous-wave (CW) regime. (2) Fiber connector.
(3) Er-doped RFL. (4) Wavelength-division multiplexer (WDM) 1480–1550. (5) Power meter to measure
the output power Pout at 1480 nm. (6) RFL emission out to the spectrometer. (7) Spectrometer.
(8) Liquid-N2 cooled InGaAs CCD camera. (Reproduced with permission from ref. [68]).

Figure 2a shows the Er-RFL output spectrum for intensities below and above the RFL threshold,
while Figure 2b shows the linewidth narrowing (left y-axis) and emitted Er-RFL intensity (right y-axis)
as a function of the pump power P normalized to the threshold power Pth. The threshold power was
Pth = 16.30 ± 0.05 mW [68], which is higher than in the original work of ref. [45] due to the lossy
components employed. However, this fact did not affect the experimental studies, and the output was
typically around 1–2 mW.

Figure 2. (a) Emitted spectrum of Er-RFL before (red) and after (blue) the laser threshold; (b) Emitted
intensity (squares) and FWHM (triangles) of the Er-RFL system as a function of the normalized input
power. The measured threshold power was Pth = 16.30 ± 0.05 mW. The dotted lines are a guide to the
eyes. (Reproduced with permission from ref. [68]).

Besides the routine characterization illustrated in Figure 2, two other analyzes were performed in
order to show that the laser is multimode, i.e., with many longitudinal modes, and that the intensity
fluctuations do not depend on the pump laser fluctuations.

First, in order to demonstrate the multimode characteristic of the Er-RFL, we employed the
technique of speckle contrast [69], following the work of refs. [40,70,71]. To generate the speckle,
a scattering medium with dried TiO2 (250 nm) nanoparticles in water solution on a microscope slide
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along with a Kohler illumination system was used. Different CCD cameras were employed for the
data acquisition, depending upon the source wavelength in the visible or near-infrared. The relation
between the speckle contrast C and the number m of longitudinal modes of the source is given by [71]
C = σ/〈I〉 = 1/

√
m, where σ and 〈I〉 are the standard deviation and the average intensity determined

from the speckle, respectively. Figure 3 shows the obtained results for different light sources.

Figure 3. (a,c,e) display the measured speckle of the second harmonic of a pulsed Nd:YAG laser (a);
a CW diode laser operating at 980 nm (c); and a similar diode laser, but operating at 1480 nm (e);
(b,d,f) show a colloid random laser (RL) (b); the Er-RFL at 1540 nm pumped at 980 nm (d); and the
same Er-RFL pumped at 1480 nm (f). The values of the speckle contrast C and number of longitudinal
modes m for each optical source are indicated at the side. (Adapted with permission from ref. [69]).

To confirm the experimental results for the Er-RFL system, we initially characterized a well-known
colloidal-based RL consisting of Rhodamine 6 G and TiO2 nanoparticles. The pump source was the
second-harmonic of a pulsed Nd:YAG laser (Ultra, BigSky Laser, Paris, France), operating at 5 Hz
and delivering pulses of ~7 ns. Figure 3a shows the speckle image from the pump source, which is a
highly coherent source (basically a single mode), and Figure 3b shows the equivalent image from the
colloidal RL. Just as in the work of refs. [40,70], the speckle-free RL emission is corroborated, and the
calculated values of the parameters C and m for the RL are 0.058 and 297, respectively, which are very
much distinct from the respective values obtained for the pump laser. Additionally, the speckle images
from Figure 3a,b are strikingly different, as already reported [40].

The same behavior is reproduced for the Er-RFL system, in which the pump laser at 1480 nm
presents m = 2 longitudinal modes (Figure 3e), whereas the Er-RFL displays the presence of m = 204
longitudinal modes (Figure 3f). For completeness, the pump semiconductor laser at 980 nm was also
employed, giving similar results, i.e., a 980 nm pump laser was a quasi-single mode (m = 3, Figure 3c),
whereas the Er-RFL system showed m = 236 longitudinal modes, as illustrated in Figure 3d. Actually,
being a multimode system is a fundamental requirement for the observation of the spin-glass type of
behavior in RLs, as discussed below.

On the other hand, we also remark that the fluctuations of the pump source (less than 5%) were
not correlated with the RFL fluctuations, as similarly demonstrated in [42,72]. This important point is
corroborated by the results displayed in Figure 4a,b, showing, respectively, the spectral variance of the
Er-RFL system and the normalized standard deviation of both the pump laser and Er-RFL. It is thus
clear from Figure 4b that the pump laser fluctuations do not affect the Er-RFL fluctuations, particularly
because the pump laser was kept working all the time well above the threshold, so that the kind of
new physics observed around the threshold in the Er-RFL would not be detected, even if present.
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Figure 4. (a) Variance of the emitted intensity as a function of the normalized input power P/Pth;
(b) Standard deviation of the maximum intensity (normalized by its average value) of the CW
semiconductor pump laser (as function of the output power Pout; squares) and the Er-RFL system (as
function of the normalized input power P/Pth; diamonds). (Reproduced with permission from ref. [68]).

3.2. Theoretical Framework

A great advance in the theoretical understanding of the combined effect of amplification,
nonlinearity, and disorder in RL systems was put forward in a series of articles [73–82] published
within the last decade. In this subsection, we review the physical mechanisms and some analytical
developments underlying the richness of photonic behaviors displayed in the phase diagram of RL
systems, as a function of the input excitation power and disorder strength. In fact, in refs. [73–80],
a variety of interesting photonic phases emerge, which keep close analogies with some characteristic
behaviors of magnetic systems, such as spin glass, paramagnetism, and ferromagnetism.

Moreover, such richness is also present in the diversity of statistical regimes observed in the
output intensity emitted by RL systems. Interestingly, as we shall see below, the same theoretical
starting point that gives rise to the variety of photonic behaviors also explains the shifts in the statistical
properties of the distribution of intensity values. In fact, as discussed in the following, the increasing
of the excitation power promotes a sequence of changes in the distribution of intensity values, from a
Gaussian regime below the RL threshold to a Lévy-type behavior around the RL transition, and back
to a second Gaussian regime well above the threshold. The theoretical basis [81,82] for these statistical
aspects of RL emission is also reviewed below.

We start by reviewing the theoretical background [73–80] underlying the diverse photonic
behaviors displayed by RLs. In a photonic system with intrinsic disorder, arising either from the
inherent optical random noise or from the presence of randomly-located light scatterers (e.g., micro or
nanoparticles [12–17], or dielectric nanocrystals doped with rare-earth ions [20,21]), the amplitudes ak
of the electromagnetic modes generally present stochastic dynamics. The Langevin approach is thus a
suitable theoretical framework to describe such dynamics through the following set of equations,

dak
dt

= − ∂H
∂a∗k

+ Fk, (1)

where Fk represents a Gaussian (white) uncorrelated optical noise term, and in the slow-amplitude
regime of the modes, the general complex-valued functional H is given by [73–80] (closely following
the notation of [78]):

H = ∑
{k1k2}′

g(2)k1k2
ak1 a∗k2

+
1
2 ∑

{k1k2k3k4}′
g(4)k1k2k3k4

ak1 a∗k2
ak3 a∗k4

(2)

The symbol {. . .}′ implies the frequency-matching conditions |ωk1 − ωk2 | < γ and
|ωk1 − ωk2 + ωk3 − ωk4 | < γ in the quadratic and quartic terms, respectively, with γ denoting the
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finite linewidth of the modes. The disordered nature of the scattering medium directly affects both the
quadratic and quartic interactions among the spatially-overlapping modes in Equation (2). Indeed, the
physical origin of the quadratic coupling g(2)k1k2

lies in the spatially inhomogeneous refractive index,
as well as in the nonuniform distribution of the gain and effective damping contribution due to the
cavity leakage. In systems with null or weak leakage, in which the off-diagonal contribution in g(2)k1k2

is
negligible, the coefficient rates of amplification (γk) and radiation loss (αk) are related to the real part
of the diagonal coupling through g(2)R

kk = Re{g(2)kk } = αk − γk. On the other hand, the quartic coupling

g(4)k1k2k3k4
is associated with the modulation of the nonlinear χ(3)-susceptibility with a random spatial

profile [73–80].
The spatial disorder in the scattering medium generally makes the explicit calculation of the

quadratic and quartic couplings in Equation (2) rather difficult. Consequently, in [73–80], these
couplings were considered as quenched Gaussian variables, with probability distributions independent
of the mode combinations {k1k2}′ and {k1k2k3k4}′, respectively. In addition, in the mean-field
approach of refs. [73–80], the above frequency-matching constraints were relaxed, implying that
all modes interact unrestrictedly. In the case in which the total optical intensity, I = ∑k ck|ak|2, is a
constant, with time-independent prefactors ck, the real part HR of the Functional (2) is shown in [78,80]
to become analogous to the Hamiltonian of the magnetic p-spin model with a spherical constraint [83].
Indeed, the p-spin Hamiltonian also presents a sum of quadratic (p = 2) and quartic (p = 4) interaction
terms, just as in Equation (2), with the couplings drawn from Gaussian distributions [83]. Moreover,
in the p-spin model, the sum of the squared spin variables is a constant (spherical constraint), as also
happens to the total optical intensity I in the photonic system. This photonic-to-magnetic analogy is
indeed relevant, since it allows identifying the amplitudes of the modes with the spin variables, and
the excitation (pump) energy in the photonic system with the inverse temperature in the magnetic one.
In this sense, we comment below that the typical magnetic phases exhibited by the disordered p-spin
model can also find an analogous counterpart in the phase diagram of an RL system.

Once the disordered Hamiltonian HR, given by the real part of Equation (2), has been built in
terms of mode amplitudes that are spin analogues, a repertoire of statistical-physics-based analytical
techniques to treat disordered magnetic systems becomes immediately available to the photonic
system. In particular, the so-called replica trick [84] can be readily applied to HR. This approach
essentially consists of considering identical copies (i.e., replicas) of the system in order to compute
the powers Zn of the partition function, while calculating the free energy from the limit expression
ln Z = limn→0(Zn − 1)/n. At the end, the phase diagram of the RL system is obtained as a function
of the input pumping rate and disorder strength [77–79]. Remarkably, the physical equivalence (or
symmetry) among these replicas can be broken in some circumstances, as discussed below.

Following this photonic-to-magnetic analogy, the photonic phases identified in the RL system
maintain some resemblance to the magnetic behaviors of the p-spin model. Indeed, we next describe
the main properties of the four photonic regimes obtained in the phase diagram of refs. [77–79], namely:
incoherent wave, mode-locking laser, phase-locking wave, and spin-glass RL behavior.

In the incoherent-wave regime, which occurs for low input powers and any disorder strength,
the modes oscillate incoherently in an uncorrelated way. In this case, the system operates in a regime
with amplified spontaneous emission. According to the analogy above, this phase is similar to the
paramagnetic behavior in spin systems at high temperatures and for any degree of disorder, in which
the uncorrelated spin directions are random and present fast dynamics. Moreover, just as in the
paramagnetic phase, the incoherent-wave solution preserves the symmetry among the photonic
replicas (see also below).

The mode-locking laser behavior presents modes oscillating coherently with the same phase,
at high input powers, without disorder or for low degrees of disorder. It corresponds to the
ferromagnetic phase in spin systems at low temperatures, either without disorder, in which all spins
align parallel, or in the presence of low disorder, as in the case of the random bond ferromagnet, with a
few clusters of disordered spins in a predominantly ferromagnetic background.
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Remarkably, the regime described as the phase-locking wave has no perfect analogous counterpart
in disordered spin modes. In the pumping rate versus disorder strength diagram, it occupies an
intermediate region between the incoherent-wave and spin-glass RL phases. In this regime, the mode
phases are only partially locked.

Finally, in the RL regime, obtained for input powers above the threshold and in the presence
of strong disorder, the synchronous oscillation of the modes is frustrated (in contrast with the
mode-locking laser behavior), and they acquire phase coherence and nontrivial correlations (differently
from the incoherent-wave regime). In this case, the analogue magnetic phase is the spin-glass regime
observed in highly disordered magnetic systems at low temperatures, in which the spins point at
random directions, while being strongly correlated in time and with rather slow (frozen) dynamics.
In the photonic, as well as in the magnetic spin-glass phase, the replicas undergo a nontrivial breaking
of symmetry, which is explained as follows.

The concept of replica symmetry breaking (RSB) was introduced by G. Parisi in 1979 in the context
of the theory of disordered magnetic systems [84]. In this framework, for sufficiently low temperatures
and strong disorder (e.g., in the spin couplings or locations), the free energy landscape breaks into a
large number of local minima in the configuration space. Due to the frustrated magnetic interactions
in the disordered Hamiltonian, the spins fail to align in a spatially regular configuration, as in the
ferromagnetic state. Instead, spins “freeze” along random directions, with rather slow dynamics, in a
spin-glass state. As a given spin configuration can be trapped for a long time in a local free energy
minimum, metastability and irreversibility effects arise in the spin-glass phase, e.g., magnetic hysteresis.
Consequently, identical systems, with the same distribution of spin interactions and prepared under
identical conditions (i.e., replicas of the spin system), can reach rather distinct states that lead to
different measures of observable quantities and nontrivial correlation patterns. In this case, the system
replicas are no longer physically equivalent (or symmetric), and an RSB scenario emerges. Later on,
the scope of the concept of RSB was much extended to reach other complex systems [84], including
neural networks and structural glasses.

In order to identify a regime with RSB, it becomes necessary to calculate a correlation function
that gives a measure of the overlap between two given replicas [84]. In the case of magnetic systems,
the replica overlap parameter is a spin-spin correlation function defined by the product of a certain
spin occupying the same position in two distinct replicas. In the sequence, the sum of all spins is
performed. By considering each pair of replicas, a distribution P(q) of values of such an overlap
parameter q is thus obtained. If this distribution is centered around zero, the replicas are considered
symmetric, a scenario that is observed in the paramagnetic phase in spin systems. However, if the
distribution peaks at non-zero values of the replica overlap parameter, then the symmetry of replicas
is broken, and an RSB spin-glass phase can emerge. Therefore, in this sense, a parameter qmax can be
defined to indicate the locus of the maximum of the distribution P(q), which is considered as the Parisi
order parameter [84]. The value of qmax thus signalizes a replica-symmetric paramagnetic or an RSB
spin-glass phase, respectively, if the maximum of P(q) occurs exclusively at qmax = 0 (no RSB) or also at
values |qmax| �= 0 (RSB).

In the photonic context, an analogue correlation function between modes can also be suitably
defined [42,79] (see details below). Its distribution of values determines, in a similar way, the presence
or absence of the photonic RSB spin-glass phase.

On the experimental side, the very first evidence of photonic RSB glassy behavior in an
RL system arose in the 2D functionalized T5OCx oligomer amorphous solid-state material [42].
Subsequent demonstrations appeared in 3D functionalized TiO2 particle-based dye-colloidal [85]
and neodymium-doped YBO3 solid-state [82] RLs. Here, we highlight that the RSB spin-glass phase
has also been characterized in the above-mentioned Er-RFL system [68,69]. The emergence of such
behavior in Er-RFL is actually justified since this system also presents the disorder and nonlinear
ingredients necessary to induce the RSB glassy RL phase, as discussed above in the context of the
effective photonic Hamiltonian (2).
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We now turn to the discussion on the statistical regimes of output intensities emitted by
RL systems.

We first review some analytical developments regarding the distribution of intensity values.
Noteworthy, the set of Langevin equations, given by Equation (1), also provides the underlying
theoretical basis for such analysis. Indeed, by writing Ik = ck|ak|2, a manipulation of Equation (1)
yields [82]:

1
ck2

dIk2

dt
= −2Re

⎧⎨
⎩ ∑

{k1}′
g(2)k1k2

ak1 a∗k2
+

1
2 ∑

{k1k3k4}′
[g(4)k1k2k3k4

+ g(4)k1k4k3k2
]ak1 a∗k2

ak3 a∗k4
+ a∗k2

Fk2

⎫⎬
⎭ (3)

The restricted sum in the quartic coupling generally involves three classes of mode:
combinations [73,86]: ωk1 = ωk2 and ωk3 = ωk4 , ωk1 = ωk4 and ωk2 = ωk3 , and the remaining
possibilities satisfying the frequency-matching conditions, which have been usually disregarded [73,86].
We consider the diagonal contribution in the quadratic coupling to dominate over the off-diagonal part.
By expressing the optical white noise as the sum of additive and multiplicative statistically independent
stochastic processes [87], so that Fk(t) = F(0)

k (t) + ak(t)F(1)
k (t), and considering slow-amplitude

modes ak(t) (if compared to the rapidly evolving phase dynamics), we obtain the Fokker-Planck
equation [81,82,87] for the probability density function (PDF) of the output intensity,

∂P
∂t

= − ∂

∂Ik
[(−dk Ik − bk I2

k + 2QIk)P] + 2Q
∂2

∂I2
k
(I2

k P) (4)

where the parameter Q controls the magnitude of the multiplicative fluctuations through:
[F(1)R

k (t)F(1)R
m (t′)] = 2Qδk,mδ(t − t′), bk = g(4)R

kkkk /ck, and

dk = ∑
n �=k

[g(4)R
kknn + g(4)R

knnk + g(4)R
nkkn + g(4)R

nnkk]In/cn − 2(γk − αk) (5)

The steady-state solution of Equation (4) is [81,82,87]:

P(Ik) = Ak I−μk
k exp (−bk Ik/2Q) (6)

with Ik > 0, Ak as the normalization constant, and μk = 1 + dk/2Q. This PDF presents a power-law
decay combined with exponential attenuation. Its second moment can be very large, though still finite,
depending on the value of μk, mainly if bk/2Q 	 1. Indeed, the experimental results obtained for
the Er-RFL (see below) indicate [68] that the distribution of output intensities displays much larger
variance and much stronger fluctuations close to the threshold, if compared with those below and
above the threshold. In this sense, as argued below, the PDF of intensities is most properly described
by the Lévy α-stable distribution [88] for long time measurements performed in CW pumped RLs,
such as the Er-RFL system [68], or during an extensive number of shots in the case of pulsed RLs [89].

As we now turn the focus to the physical discussion on the PDF of intensity values, Equation (6),
we initially observe that the analysis is strictly connected with the central limit theorem (CLT) and
generalized CLT of statistics. These theorems determine the attraction of the PDF of the sum of a
large number of random variables to one of the possible asymptotic stable distributions, namely the
Gaussian or the Lévy α-stable family [88]. In the present photonic context, if the stochastic values
assumed by the intensity I are identically distributed and uncorrelated over the long sequence of output
spectra (or even if they present finite-time correlations), and if the second moment of the PDF P(I) is
finite, then the CLT assures [88] that the intensity fluctuations are driven by the Brownian (Gaussian,
normal) dynamics. On the other hand, if the second moment of P(I) diverges, the generalized CLT
states [88] that the fluctuations are asymptotically governed by the Lévy statistics. The continuous
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family of Lévy α-stable distribution is described [88] by the Fourier transform of the characteristic
function defined in k-space,

P(k) = exp{−|ck|α[1 − iβsgn(k)Φ] + ikν}. (7)

The Lévy index α  (0,2] is the most important parameter, since it drives the magnitude of the
intensity fluctuations. Indeed, whereas strong fluctuations with relevant deviations from the Gaussian
behavior are associated with values in the range 0 < α < 2, the Gaussian statistics with relatively
weak fluctuations and the result of the CLT are recovered for the boundary value α = 2. Therefore,
Equation (7) can suitably describe both Gaussian and Lévy statistical regimes, depending only on
the value of the single parameter α. In other words, the parameter α, which can be experimentally
determined from the direct analysis of the PDF P(I), effectively works as an indicator of the statistical
regime (Gaussian or Lévy) of intensity fluctuations. The other independent parameters describe the
asymmetry or skewness of the distribution (β  [−1, 1]), location (ν  (−∞, ∞)), and scale (c  (0,
∞)), along with the function Φ(k) = −(2/k)ln|k| if α = 1, whereas Φ = tan(πα/2) if α �= 1.

Though the Lévy PDF, given by the Fourier transform of Equation (7), displays closed analytical
form only for a few values of α (e.g., the Cauchy distribution arises for α = 1 and β = 0), its large-I
asymptotic behavior is power-law tailed, P(I) ~I−μ, with exponent μ = 1 + α. Conversely, it is also
true that random variables with power-law distribution are governed by the Lévy PDF with α = μ − 1
if 1 < μ < 3 (diverging second moment), and by the α = 2 Gaussian statistics if μ ≥ 3 (finite second
moment) [88]. Therefore, if the PDF of intensities presents asymptotic power-law behavior, then the
power-law exponent μ also indicates the type of statistical regime (Gaussian or Lévy) of the output
intensity values.

At this point, some words of caution are necessary in order to properly interpret the
actual experimental data of the Er-RFL system under the statistical framework of the CLT and
generalized CLT.

We initially remark that in the present case of intensity fluctuations, as well as in any case
of realistic stochastic phenomena, a PDF with a diverging second moment actually represents an
unphysical possibility. Nevertheless, it has been demonstrated [90] that a truncated power-law PDF,
with a large but finite second moment, behaves rather similarly to the Lévy PDF to a considerable
extent, defining the so-called Lévy-type (or Lévy-like) statistical behavior. In this case, the crossover to
the Gaussian dynamics, predicted by the CLT, is only attained in a very long term [90,91]. In this sense,
theoretically justified truncation schemes have been suitably implemented, for example, by restricting
the values of the random variable to a finite range [90,91], with P(I) = 0 for I > Icutoff, or by tempering
the power law with an exponential attenuation [81,82,89], P(I) ~exp(−ηI)/Iμ, in a form similar to
Equation (6). Therefore, the experimental reports of Lévy PDFs of intensities with index 0 < α < 2
should be properly interpreted as representative of this extensive Lévy-like statistical regime of
intensity measurements.

Lastly, in addition to the description above of the truncated power-law with exponential
attenuation, which was based on the Langevin dynamics of the amplitudes of the normal modes, we
also comment that a PDF of output intensities emitted by RL systems with power-law form, P(I) ~I−μ,
has been derived in [92]. In contrast with the above developments, in this case, the theoretical approach
took into account the statistics of the photon trajectories subjected to multiple scatterings within the
sample [92]. The power-law exponent was found to be μ = 1 + �g/<l>, where �g and <l> denote,
respectively, the gain length of the active medium and the average length of the photon paths.

3.3. Lévy Statistics and Glassy Behavior in Er-RFL

In this subsection, we focus on the statistical analysis of the experimental data of the
Er-RFL system.
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We start by analyzing the intensity spectra. Figure 5a–c display 5000 spectra for each input power,
from which the intensity fluctuations can be appreciated in the regimes below (Figure 5a), around
(Figure 5b) and above (Figure 5c) the RL threshold [68]. According to the discussion in Section 3.2, the
strong intensity fluctuations observed near the threshold suggest that the PDF of the output intensities
can be described by the family of Lévy α-stable distributions, including the Lévy statistical regime if
0 < α < 2 and the Gaussian limit if α = 2.

Figure 5d–f portrays the distributions P(I) obtained from the data of Figure 5a–c, as well as the
respective best fits to Equation (7) by applying the quantile-based method [93,94]. Best-fit values of
the parameters are summarized in Table 1. The values of α are consistent with the Gaussian profiles
(α = 2.0) shown in Figure 5d,f, respectively, below and above the threshold, and also with the Lévy-like
PDF (α = 1.3) around the threshold, observed in Figure 5e. The unit value of β, indicating the maximum
skewness of the distribution, in all cases reflects the asymmetry related to the positiveness of the
intensity. Furthermore, the values of the location parameter ν in the Gaussian regimes, ν = 0.858 for
P/Pth = 0.6 and ν = 0.682 for P/Pth = 1.8, agree with the mean values, respectively, observed in Figure 5d,f.
Indeed, the actual Gaussian distributions, which are equivalent to the α = 2 Lévy PDFs in Figure 5d,f,
present the mean ν and standard deviation

√
2c, as theoretically predicted [88]. Interestingly, when

comparing the Gaussian regimes below and above the threshold, we notice a considerable broadening
of the PDF P(I) at P/Pth = 1.8, leading to a wider spread of intensities (Figure 5f). This result is associated
with the larger second moment of the distribution and more intense fluctuations observed above the
threshold. Those fluctuations still remain, however, much weaker than the ones measured in the
crossover region.

 

Figure 5. (a–c) 5000 intensity spectra of the Er-RFL system for each input power (a) below; (b) around;
and (c) above the RL threshold; (d–f) Probability density functions (PDFs) P(I) of maximum intensities
obtained from the data shown in (a–c). The best fits using Equation (7) are depicted in dotted lines and
portrait Gaussian profiles (d) below and (f) above the threshold (α = 2.0); and (e) a Lévy distribution
(α = 1.3) around the threshold. (Reproduced with permission from ref. [68]).

Table 1. Summary of best fit parameters to Equation (7) for the intensity distributions of Figure 5d–f [68].

Input Excitation Power α β c ν

P/Pth = 0.6 1.9 1.0 0.021 0.858
P/Pth = 1.2 1.3 1.0 0.061 −0.193
P/Pth = 1.8 2.0 1.0 0.091 0.682
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The main result confirming the Lévy behavior of the output intensities of the Er-RFL system is
shown in Figure 6. With a basis on ref. [68], we first notice that the variation of the Lévy index α as
a function of the normalized input power clearly points to the presence of three distinct statistical
regimes. Indeed, as P/Pth increases, the statistics of the output intensities progressively shift from
the prelasing Gaussian (α = 2) to the Lévy (0 < α < 2) behavior around the threshold, and to the
subsequent Gaussian (α = 2) regime deep in the RL phase. Noticeably, this sequence also resembles
the statistical behavior of the output intensity of 3D bulk RLs [82,89,93,95,96]. We also notice that,
as pointed in ref. [93], the second Gaussian regime is rather distinct from the first one. Indeed, in the
second Gaussian phase above the RL threshold, the system is in the regime with self-averaging of
the gain [93]. In contrast, in the first Gaussian phase, it is still in the prelasing regime. Moreover, we
also comment that the observed independence on the spatial dimensionality of the Lévy character of
intensity fluctuations finds support in the theoretical analysis based on Langevin equations, previously
discussed in Section 3.2, which is considered to hold, irrespective of the spatial dimension [69,82].

Figure 6. Lévy index α (circles) and FWHM (triangles) as a function of the normalized input pump
power P/Pth. Three statistical regimes of intensity fluctuations are observed: prelasing Gaussian with
amplified spontaneous emission (α = 2), Lévy-type RL (0 < α < 2) around the threshold, and Gaussian
RL (α = 2) well above the threshold. The sharp decrease in α at the first Gaussian-to-Lévy transition
nicely coincides with the abrupt change in FWHM at the RL threshold. (Reproduced with permission
from ref. [68]).

We further notice in Figure 6 that the abrupt decrease in the Lévy index α at the onset of RL
behavior is closely related to the sharp linewidth reduction observed in Figure 2. Therefore, our
results for the Er-RFL system corroborate the suggestion of [93], that the transition from the Gaussian
to the Lévy regime in RLs could be used as a universal identifier of the RL threshold (however,
see also the comment below on the results of ref. [97]). In fact, we also included in Figure 6 the FWHM
measurement, whose drastic change at the RL threshold nicely coincides with the first Gaussian-to-Lévy
statistical transition. For higher values of the input power, after reaching a minimum around the
threshold, the index α smoothly rises back to the Gaussian value α = 2 achieved above the threshold.

We finally discuss the connection of the above findings with the photonic spin-glass behavior
recently reported in the Er-RFL system [68,69].

As mentioned in Section 3.2, the characterization of the photonic RSB glassy phase in the RL
regime requires the calculation of a specific two-point correlation function, which in the present context,
can be defined either among the mode amplitudes, mode phases, or intensity fluctuations. In the latter
case, that can be accessed experimentally, where the replica overlap parameter is defined as [42,79]:

qγβ =

∑
k

Δγ(k)Δβ(k)√[
∑
k

Δ2
γ(k)

][
∑
k

Δ2
β(k)

] , (8)

where γ, β = 1, 2, . . . , Ns denote the replica labels (Ns = 5000 in ref. [68]), the average intensity
at the wavelength indexed by k reads < I >(k) = ∑Ns

γ=1 Iγ(k)/Ns, and the intensity fluctuation is
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Δγ(k) = Iγ(k)−< I >(k). In the photonic context, each output spectrum is considered a replica, i.e.,
a copy of the Er-RFL system under fairly identical experimental conditions. The PDF P(q) represents
the distribution of values q = qγβ of the mode-mode correlations between intensity fluctuations,
Equation (8). In fact, as discussed in the previous subsection, P(q) is analogous to the Parisi order
parameter in the RSB spin-glass theory of disordered magnetic systems [84]. In the present context,
the distribution P(q) signalizes a photonic replica-symmetric paramagnetic prelasing regime if its
maximum occurs exclusively at qmax = 0 (no RSB), or a RSB spin-glass RL phase if the maximum also
assumes values |qmax| �= 0 (RSB) (see Section 3.2).

Figure 7 shows a remarkable agreement between the onset of the Lévy statistical regime of
intensity fluctuations and the emergence of the RSB glassy RL phase in Er-RFL. Indeed, we observe
that both the Lévy and spin-glass behaviors are simultaneously present around the RL threshold.
Therefore, besides signaling the Gaussian-to-Lévy shift in the statistical characteristics of intensity
fluctuations, which is illustrated by Figure 6, the RL threshold also marks the sharp phase transition
from the qmax  0 replica-symmetric paramagnetic prelasing regime with amplified spontaneous
emission to the qmax  1 spin-glass RL phase with RSB properties. This coinciding behavior, firstly
demonstrated in a 3D RL [82], is thus also shared by the Er-RFL system, although a recent report [97]
has pointed out that this might not be a universal property of RL systems. Indeed, in ref. [97] it was
demonstrated that a rigorous connection between the photonic phases and the statistics of intensity
fluctuations is not mandatory, so that there can be circumstances in which, for example, a glassy
phase emerges along with a Gaussian statistical regime of fluctuations. Therefore, though a complete
theoretical understanding of such a finding is still lacking, it is possible in some instances to trace
back the common physical origin of the Lévy and glassy behaviors to the Langevin equations for
the amplitudes of the normal modes, which, as discussed, are the basis on which to explain both the
statistical regimes of intensity fluctuations and the photonic RSB spin-glass behavior of RL systems.

Figure 7. Lévy index α (circles) and overlap parameter |q| = qmax at which the PDF P(q) of
the photonic replica overlaps with output intensity fluctuations at a maximum (squares) as a
function of the normalized input power P/Pth. The abrupt decrease in the parameter α at the first
Gaussian-to-Lévy transition coincides nicely with the photonic phase transition observed from the
qmax  0 replica-symmetric paramagnetic prelasing behavior, with amplified spontaneous emission,
to the qmax  1 replica-symmetry-breaking (RSB) spin-glass phase of the Er-RFL system. Dotted lines
are a guide to the eyes. (Reproduced with permission from ref. [68].)

4. Summary and Discussion

In this work, we described the operation of an RFL based on an erbium-doped fiber imprinted
with randomly-spaced Bragg gratings. By exciting the fiber with a CW diode laser, we investigated
the statistical fluctuations of the output intensity emitted by the erbium ions in the near infrared.
The results allowed us to identify different statistical regimes for excitation powers P below, around,
and above the laser threshold, Pth. In particular, the Lévy statistics were clearly identified for P ≈ Pth,
while the Gaussian statistics were observed for P < Pth and P > Pth. Moreover, we also found that the
probability distribution for the emitted intensity around the laser threshold reveals a glassy phase of
light that is compatible with an RSB analogue of the spin-glass phase transition.
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The studies reported here led to a deeper understanding of the physical processes underlying the
RFL operation, and the results were also consistent with recent findings in 2D and 3D RLs.

As illustrated by the references cited in this work, the research on RFLs is still a hot subject
after ten years since the first demonstration. The low fabrication cost, small fiber length, and simple
operation scheme enable various potential applications of RFLs, for example, in imaging, sensing,
and optofluidics. Further research with a basis on the investigation of the intensity fluctuations in
RFL systems may include the study of their temporal dynamics, as well as the emergency of extreme
events, analogues of rogue waves, and photonic turbulent transitions around the excitation threshold.
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Abstract: We investigate modulational instability (MI) in asymmetric dual-core nonlinear directional
couplers incorporating the effects of the differences in effective mode areas and group velocity
dispersions, as well as phase- and group-velocity mismatches. Using coupled-mode equations for
this system, we identify MI conditions from the linearization with respect to small perturbations.
First, we compare the MI spectra of the asymmetric system and its symmetric counterpart in the
case of the anomalous group-velocity dispersion (GVD). In particular, it is demonstrated that the
increase of the inter-core linear-coupling coefficient leads to a reduction of the MI gain spectrum in
the asymmetric coupler. The analysis is extended for the asymmetric system in the normal-GVD
regime, where the coupling induces and controls the MI, as well as for the system with opposite GVD
signs in the two cores. Following the analytical consideration of the MI, numerical simulations are
carried out to explore nonlinear development of the MI, revealing the generation of periodic chains
of localized peaks with growing amplitudes, which may transform into arrays of solitons.

Keywords: modulational instability; asymmetric nonlinear fiber couplers; linear stability approach;
coupled nonlinear Schrödinger equations

1. Introduction

The modulational instability (MI) is a ubiquitous phenomenon originating from the interplay
of linear dispersion or diffraction and the nonlinear self-interaction of wave fields. This effect was
first theoretically identified by Benjamin and Feir in 1967 for waves on deep water [1]; hence, MI is
often called the Benjamin–Feir instability. Studies of the MI draw steadily growing interest in nonlinear
optics [2–4], fluid dynamics [5,6], Bose–Einstein condensates [7–9], plasma physics [10,11] and other fields.

In its standard form, the MI applies to continuous waves (CWs) or quasi-CW states in media
featuring cubic (Kerr) self-focusing nonlinearity and anomalous group-velocity dispersion (GVD),
giving rise to the instability against infinitesimal perturbations in the form of amplitude and phase
modulations, which eventually generates trains of soliton-like pulses [12]. MI can also be observed
in the normal-GVD regime in systems incorporating additional ingredients, such as the cross-phase
modulation interaction between two components [13], in the case of the co-propagation of optical
fields and other effects, in particular the loss dispersion [14] or fourth-order GVD [15]. In all of these
cases, destabilizing perturbation may originate from quantum noise or from an additional weak

Appl. Sci. 2017, 7, 645 295 www.mdpi.com/journal/applsci



Appl. Sci. 2017, 7, 645

frequency-shifted wave [16]. Based on the nature of the underlying optical propagation, the MI is
classified as the temporal (longitudinal) instability [17,18], if the CW is subject to the GVD in fibers,
or spatial (transverse) instability [19], if the CW state experiences the action of diffraction in a planar
waveguide. More general spatio-temporal MI occurs in bulk optical media when both the GVD and
diffraction are essential [20].

The MI has found many important applications, including the creation of pulses with ultra-high
repetition rates [21,22], the expansion of the bandwidth of Raman fiber amplifiers [23], the generation
of optical supercontinuum [24] and all-optical switching [25]. In the context of nonlinear fiber optics,
MI can also drive the four-wave mixing initiated by the interaction of a signal wave with random
noise [13]. MI is also often regarded as a precursor to soliton formation, since the same nonlinear
Schrödinger equation, which governs the MI, gives rise to stable solitary pulses. Indeed, the breakup
of the original CW into soliton arrays may be an eventual outcome of the development of the MI [16].

Starting from the theoretical analysis by Jensen [26], followed by the experimental verification [27],
nonlinear directional couplers (NLDC), which are built as dual-core fibers, have been one of the
promising elements of integrated photonic circuits for the realization of ultrafast all-optical switches,
as well as a subject of intensive fundamental studies [25,28–33]. The operation of the NLDC is governed
by the interplay of the Kerr self-focusing, which induces a change in the refractive index in each
core, intra-core linear GVD, and linear coupling between the cores. The linear-coupling coefficient
determines the critical value of the power, which gives rise to the spontaneous breaking of the
symmetry between the two cores [34]. Based on such power-dependent transmission characteristics,
many applications of the NLDC have been proposed, such as all-optical switching and power
splitting [25], logic operations [35,36], pulse compression [37] and bistability [38].

The MI dynamics in NLDC models was investigated in many works. In particular, in [39],
Trillo et al., who first studied soliton switching in NLDC [25], also investigated the MI, considering
different combinations of linear and nonlinear effects in a saturable nonlinear medium. In [40], the MI
was investigated for antisymmetric and asymmetric CW states in the dual-core fibers, demonstrating
that they are subject to the MI even in the normal-GVD regime. In [41], MI was explored by considering
the effects of intermodal dispersion, along with higher-order effects, such as the third-order dispersion
(TOD) and self-steepening, leading to the conclusion that the intermodal dispersion does not affect
the MI growth rate of symmetric or antisymmetric CW states, but can drastically modify the MI of
asymmetric CW configurations. Moreover, TOD, as usual, has no influence on the MI gain spectrum
in NLDC, while self-steepening can significantly shift the dominant MI band at a sufficiently high
input power level. In [42], Li et al. extended the MI to birefringent fiber couplers by including
the cross-phase modulation, polarization mode dispersion, and polarization-dependent coupling.
Furthermore, in [43], MI was studied under the combined effects of the intermodal dispersion and
saturable nonlinear response. In [44], Porsezian et al. carried out analytical and numerical investigation
of MI for asymmetric CW states in a dissipative NLDC model, based on cubic-quintic complex
Ginzburg–Landau equations. In a similar way, in [45], MI was investigated for asymmetric dissipative
fiber couplers, which are used in fiber lasers. In that work, the system was asymmetric, as the bar
channel was an active (amplified) one, while the cross channel was a passive lossy core (the same
setting was investigated as a nonlinear amplifier [46]).

In all of the works dealing with the MI, except for [45], it was assumed that the NLDC is completely
symmetric with respect to the two cores. Extension of the analysis to asymmetric nonlinear couplers is
a subject of obvious interest, as new degrees of freedom introduced by the asymmetry may enhance
the functionality of NLDC-based devices [47,48]. In a simple way, an asymmetric NLDC (ANLDC)
can be manufactured using the difference in diameters of the cores, which tends to produce not only
the phase-velocity mismatch between them, but also a change in nonlinearity coefficients. Further,
the asymmetry can be imposed by deforming transverse shapes of the cores, while maintaining their
areas equal. In such birefringent couplers, one can induce a phase-velocity mismatch without a change
in the nonlinearity coefficients. Furthermore, to attain the asymmetry, cores with different GVD
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coefficients may be used as well. A number of works addressed the switching dynamics [32,49–53],
stability of solitons [47,54–57], logic operations [35,36], etc., to elucidate possible advantages of the
ANLDC over the symmetric couplers.

In particular, switching of bright solitons has been studied [49] in the model taking into regard the
group- and phase-velocity mismatch and differences in the GVD coefficients and effective mode areas
of the two cores. Recently, switching dynamics of dark solitons and interaction dynamics of bright
solitons have been investigated in [48,58]. However, systematic investigation of the MI dynamics and
ensuing generation of pulse arrays in ANLDC has not been reported, as of yet. This is the subject of
the present work.

The remainder of the paper is structured as follows. Section 2 introduces the coupled-mode system for
the propagation of electromagnetic fields in the asymmetric coupler. Section 3 presents the linear-stability
analysis for the MI induced by small perturbations, followed by further analysis in Section 4. Section 5
reports direct simulations of the nonlinear development of the MI. Section 6 concludes the paper.

2. Coupled-Mode Equations

The propagation of optical waves in asymmetric nonlinear couplers is governed by a pair of
linearly-coupled nonlinear Schrödinger equations [22,48];

i
∂q1

∂z
+ iβ11

∂q1

∂t
− β21

2
∂2q1

∂t2 + γ1|q1|2q1 + cq2 + δaq1 = 0, (1)

i
∂q2

∂z
+ iβ12

∂q2

∂t
− β22

2
∂2q2

∂t2 + γ2|q2|2q2 + cq1 − δaq2 = 0, (2)

where q1, q2 and γ1, γ2 are amplitudes of slowly varying envelopes and nonlinearity coefficients in
the two cores of the ANLDC, while δa accounts for the phase-velocity difference between the cores.
Further, β1j ≡ 1/vgj and β2j (j = 1, 2) are the group-velocity and GVD parameters in the j-th core,
and c is the coefficient of the linear coupling between the cores.

To derive normalized coupled equations, we perform rescaling,

qj ≡ (γ1LD)
1/2uj, τ ≡ t − β11z/T0, ξ ≡ z/LD, (3)

where LD = T2
0 / |β21| is the dispersion length corresponding to a characteristic pulse width T0,

the result being:

i
∂u1

∂ξ
+

σ1

2
∂2u1

∂τ2 + |u1|2 u1 + κu2 + χu1 = 0, (4)

i
∂u2

∂ξ
+ iρ

∂u2

∂τ
+ α

σ1

2
∂2u2

∂τ2 + Γ |u2|2 u2 + κu1 − χu2 = 0. (5)

Here, the normalized coupling coefficient is κ ≡ cLD, σ1 = +1 and −1 correspond to the
anomalous and normal GVD in the first core, while the normalized phase- and group-velocity
mismatches and differences in the GVD and effective mode areas are represented, respectively, by:

χ = δaLD, ρ = (β12 − β11)LD/T0, α = β22/β21, Γ = γ2/γ1. (6)

To design such asymmetric fiber couplers and to calculate the asymmetry coefficients, we adopt
physical parameters for the first core, corresponding to standard nonlinear directional couplers,
as follows: β21 = 0.02 ps2/m, γ1 = 10 kW−1/m, TD = 50 fs at wavelength λ = 1.5 μm. Physical
parameters for the second core are then determined by normalized coefficients, according to the design
outlined above. Furthermore, in terms of this normalized system, we will call “bar” and “cross” the
cores corresponding to Equations (4) and (5), respectively.

297



Appl. Sci. 2017, 7, 645

3. The Linear-Stability Approach

Steady-state CW solutions with common propagation constant Q are looked for as:

u1 = A1 exp(iQξ), u2 = A2 exp(iQξ), (7)

where A1, A2 are real amplitudes, which determine the total intensity and asymmetry ratio:

P = A2
1 + A2

2, η = A1/A2. (8)

The substitution of Ansatz (7) in Equations (4) and (5) yields an expression for propagation
constant Q and a relation between η and the phase velocity mismatch, χ:

Q =
P(Γ + η2)

2(1 + η2)
+

κ(η2 + 1)
2η

, (9)

χ =
P(Γ − η2)

2(1 + η2)
+

κ(η2 − 1)
2η

, (10)

Next, we add infinitesimal perturbations aj to the CW solutions, as:

u1 = [A1 + a1] exp(iQξ),

u2 = [A2 + a2] exp(iQξ).
(11)

Substituting Expression (11) into Equations (4) and (5), we arrive at linearized equations for the
complex perturbations:

i
∂a1

∂ξ
+

σ1

2
∂2a1

∂τ2 + η2 P
1 + η2 (a1 + a∗1) + κa2 − κη−1a1 = 0, (12)

i
∂a2

∂ξ
+ iρ

∂a2

∂τ
+ α

σ1

2
∂2a2

∂τ2 + Γ
P

1 + η2 (a2 + a∗2) + κa1 − κηa2 = 0. (13)

Solutions to Equations (12) and (13) are looked for, in the usual form, as:

a1 = F1ei(Kξ−Ωτ) + G1e−i(Kξ−Ωτ), (14)

a2 = F2ei(Kξ−Ωτ) + G2e−i(Kξ−Ωτ), (15)

where K and Ω are a (generally, complex) wave number and an arbitrary frequency of the perturbation.
A set of linear coupled equations for perturbation amplitudes Fj and Gj are derived by substituting
Expressions (14) and (15) in Equations (12) and (13):

M × (F1, F2, G1, G2)
T = 0, (16)

where M is a 4 × 4 matrix, whose elements are written in Appendix A. A nontrivial solution exists
under condition det M = 0. Straightforward algebraic manipulations transform the latter condition
into a dispersion relation, in the form of a quartic equation for K as a function of Ω:

K4 − aK3 + bK2 + cK + d = 0. (17)

Rather cumbersome expressions for coefficients (a, b, c, d) are also given in Appendix A. The MI
growth rate (gain), defined here for the amplitude of the waves (rather than for the power),
is determined by the largest absolute value of the imaginary part of the wave number:

G = {|Im(K)|}max . (18)
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4. Analysis of the Modulational Instability

4.1. The Anomalous-Dispersion Regime

We start by considering the case of the anomalous GVD in both cores, i.e., σ1 = 1 in
Equations (4) and (5), as in this case the MI is well known to occur in nonlinear optical fibers. First,
in Figure 1, the red line shows the MI gain in the conventional symmetric NLDC (“SNLDC”), with
α = Γ = 1 and ρ = χ = 0. In the same figure, the solid blue line shows the gain for the asymmetric
NLDC (“ANLDC”) with a particular choice of asymmetry parameters (the reason for choosing these
values is explained below), such that the effective mode area of the second core is twice that of the first
core, and the GVD of the bar channel is ten-times higher than in the cross one. The figure makes it
evident that the MI gain increases by a factor >2 in the ANLDC, and the MI bandwidth is wider by
a factor �4. The enhancement of the MI is a new result in the context of the nonlinear directional coupler
(similar enhancement was earlier found in the single-core decreasing-GVD fibers with a tapered core [59].

Figure 1. Modulational instability (MI) gain spectra for symmetric nonlinear directional couplers
(SNLDC) and asymmetric (ANLDC) couplers in the anomalous group-velocity dispersion (GVD)
regime (σ1 = 1). Parameters of the symmetric system are P = η = α = Γ = κ = 1 and ρ = χ = 0.
For the asymmetric ones, the parameters are the same, except for α = 0.1, Γ = 2, χ = 0.66 and ρ = 0.1.

4.1.1. The Effect of the Input Power on the Instability Spectrum

To elucidate the role of individual effects in the dramatic expansion of the MI region in the
asymmetric coupler, we first examine the variation of the MI gain spectrum as a function of the CW
power, in both the symmetric and asymmetric systems. Figure 2a clearly demonstrates that the MI
gain in the former case increases as in the case of the usual MI [16], i.e., linearly with the power. For the
asymmetric system, Figure 2b shows not only the growth of the MI gain with the increase of the power,
but also strong expansion of the MI bandwidth.

4.1.2. The Role of the Coupling Coefficient

Figure 3a shows the MI spectrum as a function of the normalized coupling coefficient in the
ANLDC, i.e., κ in Equations (12) and (13). The limit case of zero coupling, i.e., the system with
decoupled cores, is included too. It is seen that the dependence of the largest gain and MI bandwidth
on κ is very weak.

4.1.3. The Impact of Asymmetry Parameters

The influence of the GVD difference, α, on the instability spectra is presented in Figure 3b. The limit
case of the coupler with zero GVD in the cross channel, α = 0, is included as well. As seen in the
figure, the MI bandwidth of MI is infinite in the limit case. Both the gain and bandwidth of the
MI monotonically decrease with the increase of α, with the MI vanishing in the limit of α → +∞.
In other words, relatively weak anomalous GVD in the cross channel strongly affects MI bandwidth in
the ANLDC.
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The influence of the difference in effective mode areas of two cores (Γ) is illustrated by Figure 3c.
In this case too, we start with the limit case of an extremely asymmetric coupler, in which the second
core is purely dispersive, with zero nonlinearity (Γ = 0). In this limit, the MI gain vanishes. The MI
gain and bandwidth monotonically increase with the growth of Γ. This dependence on Γ is opposite to
that on α, which is displayed in Figure 3b. Thus, the MI can be effectively controlled by means of the
two asymmetry parameters, Γ and α.

(a) (b)

Figure 2. Contour plots showing the dependence of the MI gain on the continuous wave (CW) power,
P, and perturbation frequency, Ω, for symmetric and asymmetric couplers in the anomalous-GVD
regime (σ1 = 1). Parameters of symmetric system (a) are η = α = Γ = 1, κ = 2 and ρ = χ = 0.
For the asymmetric system (b), η = α = 0.1, Γ = 2, κ = 1, ρ = 0.1, and the phase-velocity mismatch is
defined in terms of P, in order to produce the largest gain: χ = −4.95 + 0.985P. Note the difference in
horizontal scales between (a) and (b).

(a) (b) (c)

Figure 3. The MI gain spectra in the asymmetric coupler with anomalous GVD (σ1 = 1). (a) The results
for different values of the normalized coupling coefficient, κ. Parameters of the system are
P = 2, η = 0.5, α = 0.1, Γ = 2 and ρ = 0.01. (b) For different values of the ratio of the GVD coefficients
in the cross and bar channels, α, indicated near each curve with P = 1, η = κ = 0.5, Γ = 1 and ρ = 0.01.
(c) For different values of the ratio of the nonlinearity coefficients in the two cores, Γ, which are
indicated near the curves. Other parameters are P = 0.5, η = 0.1, κ = 0.2, α = 1 and ρ = 0.1.

Next, we study the effect of the group-velocity mismatch (walk-off between the cores), ρ. Figure 4a
shows the impact of ρ when the asymmetry is represented only by the GVD ratio, α = 0.1, while the
nonlinear coefficients in both cores are equal. The figure demonstrates that the variation of ρ in the
range of ρ � 1 weakly affects the MI spectrum. The effect is much stronger at larger values of the
walk-off. In particular, the MI spectral band splits into two at ρ = 2. The latter effect seems interesting
even if the value of ρ = 2 may be difficult to attain in real couplers. On the other hand, the analysis
demonstrates that the variation of ρ produces almost no effect on the MI gain in the case when the
asymmetry is determined by the difference in the nonlinearity coefficients (Γ �= 1), while the GVD
coefficients are equal (α = 1). The latter result is not shown here in detail, as it does not display
noteworthy features.
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It is obviously interesting as well to investigate the effect of the CW asymmetry ratio, η

(see Equation (8)), on the MI. These results are presented in Figure 4b, which makes it obvious
that the gain and bandwidth of the MI quickly decrease with the increase of η from small values ∼0.1
to η = 2. With the further increase of the asymmetry ratio to values η > 2, the largest MI gain slightly
increases, while the bandwidth remains practically constant.

(a) (b)

Figure 4. The MI gain spectra in the anomalous-GVD regime (σ1 = 1). (a) Results for different values of
the group-velocity mismatch (ρ in Equation (5)), which are indicated near the curves. Other parameters
are P = κ = Γ = 1, η = 0.5 and α = 0.1 (b) Results for different values of asymmetry ratio η of the
CW state (see Equation (8)), which are indicated near the curves. Other parameters are P = 0.5, κ = 1,
α = 0.1, Γ = 2 and ρ = 0.01.

4.2. The Normal-Dispersion Regime

The combination of the self-focusing Kerr nonlinearity and normal GVD usually supports stable
CWs. However, as mentioned in the Introduction, MI may occur under the normal GVD in more
complex systems, including couplers. Following the pattern of the MI investigation presented above for
the anomalous GVD, we first consider the effect of the CW power, P, on the MI gain. We also compare
the instability spectrum of the asymmetric system with that of the symmetric one in Figure 5a,b,
respectively. As seen in Figure 5, in both cases, two distinct MI bands determine the instability, and
(similar to the anomalous-GVD regime) the MI gain of the asymmetric system linearly grows with P,
featuring a broad bandwidth.

To illustrate the essential effect of the coupling coefficient κ, Figure 6a depicts the MI gain spectra
for various values of κ. Naturally, no MI takes place in the normal-GVD regime in the absence of the
coupling, κ = 0. It is worthy to note the appearance of two separated MI bands at κ > 1, the MI gain
increasing in both bands, along with their widths, with the growth of κ.

The effect of the relative difference in the magnitude of the normal GVD in the two cores, α,
is shown in Figure 6b. Like in the anomalous-GVD regime, here, as well, the MI bandwidth is infinite
for α = 0 (it also contains a separate finite MI band). The MI spectrum features two separate bands at
α > 0 and the largest gain at α = 0.1. The gain decreases with the subsequent increase of α.

Figure 7a shows the effect of the relative difference in the effective mode areas between the two
channels, i.e., the ratio of the nonlinearity coefficient, Γ. It is seen that no MI occurs when the cross
channel is linear (Γ = 0), and two distinct MI bands emerge and expand, featuring a growing largest
value of the instability gain, with the increase of Γ.

The influence of the group-velocity mismatch (walk-off between the cores), ρ, is depicted in
Figure 7b. Once again, the MI appears in the form of two separated bands. The MI gain and bandwidth
nontrivially depend on ρ: at ρ < 1 the low-frequency band is narrower, with smaller values of the
instability gain, while at ρ ≥ 1, the situation is inverted.

We have also analyzed the effect of the CW’s asymmetry η (see Equation (8)) on the MI in the
normal-GVD regime. No MI occurs for small values of η, viz. η < 0.2. At η > 0.2 (in particular,
at η = 0.5), there again emerge two separate MI bands, as shown in Figure 8. The MI gain and
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bandwidth attain their maxima at η = 1 (equal amplitudes of the CW in the two cores), decreasing
with the further increase of η.

(a) (b)

Figure 5. Contour plots showing the dependence of the MI gain on the CW power, P, in the
normal-GVD regime (σ = −1) in the symmetric and asymmetric systems. Parameters of the symmetric
system (a) are α = Γ = 1, η = 2, κ = 0.9 and ρ = χ = 0. For the asymmetric system (b),
η = 0.5, α = 0.1, Γ = 2, κ = 1.1 and ρ = 0.01, χ = −0.825 + 0.7P.

(a) (b)

Figure 6. (a) The MI gain spectra in the normal-GVD regime (σ1 = −1) for different values of (a) the
coupling coefficient, κ, indicated near the curves. Other parameters are P = 1, η = 0.5, α = 0.1, Γ = 2
and ρ = 0.01. (b) The change of values of the difference in normal-GVD coefficients (σ1 = −1), α, in the
two cores of the nonlinear coupler (the values of α are indicated near the curves). Other parameters are
P = 1.5, η = 0.5, κ = Γ = 1 and ρ = 0.1.

(a) (b)

Figure 7. (a) The MI gain spectra in the normal-GVD regime (σ1 = −1); (a) the results for different
values of the ratio of the nonlinearity coefficient in the two cores (Γ), indicated near the curves. Other
parameters are P = 1, η = 0.5, α = 1, κ = 0.7 and ρ = 0.1. (b) The results for different values of
the group-velocity mismatch (ρ), indicated near the curves. Other parameters are P = 1, η = 0.5,
α = 0.1, Γ = 2, κ = 1.
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Figure 8. The MI gain spectra in the normal-GVD regime (σ1 = −1) at different values of the asymmetry
ratio of the CW state (η in Equation (8)). Other parameters are P = 1, κ = 1.1, α = 0.1, Γ = 2 and ρ = 0.01.

4.3. The Coupler with Opposite Signs of the Dispersion in the Two Cores

The case of the opposite (“mixed”) GVD signs in the two cores of the coupler, which corresponds
to α < 0 in Equation (5), is obviously interesting, as well [47]. For this purpose, we assume the
anomalous and normal GVD in the bar and cross channels, respectively.

Figure 9 shows the effect of the CW power, P, on the MI in the mixed-GVD coupler. The figure
demonstrates that the MI gain and bandwidth monotonically increase with the growth of P. It should
be noted that the spectra obtained for this case are somewhat different in comparison with the
conventional MI spectra, as the gain is stretched over a broad interval of the perturbation frequency
when the CW power is low (P < 1). In the present case, the effect of the coupling coefficient, κ, on the
MI, which is shown in Figure 10, is essentially the same as demonstrated above for the coupler with
the normal GVD in both cores; see Figure 6a. Namely, the MI gain and bandwidth increase with the
growth of κ.

The effects of the negative value of the ratio of the GVD coefficients, α < 0, and the ratio of the
nonlinearity coefficients (Γ) in the two cores are shown in Figure 11. Similar to the coupler with the
anomalous GVD in each core, cf. Figure 3b, the increase of α (see Figure 11a) leads to shrinkage of
the MI band. Like in the coupler with the anomalous GVD in both cores, cf. Figure 3c, the MI gain
increases with the growth of Γ, which is depicted in Figure 11b; however, the difference is that, in the
present case of the mixed-GVD coupler, the bandwidth is not affected by the variation of Γ.

Figure 12 displays quite nontrivial evolution of the MI spectra with the variation of the
group-velocity mismatch (walk-off) between the cores, ρ in Equation (5). The evolution is very
different from what is demonstrated above for the coupler with the anomalous GVD in both cores,
cf. Figure 4a. Namely, Figure 12 shows that the increase of ρ from zero to one suppresses the MI, which
completely vanishes at ρ = 1. The system recovers the MI, which features monotonically increasing
gain and bandwidth, with the further increase of ρ to values ρ > 1.

Figure 9. The contour plot showing the dependence of MI gain on the CW total power, P, in the
mixed-GVD coupler (α < 0). The parameters are η = 0.5, α = −0.1, Γ = 2, κ = 1, and ρ = 0.1.
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Figure 10. The MI gain spectra for different values of the coupling coefficient, κ (indicated near the
curves), in the mixed-GVD coupler (α < 0) for P = 1, η = 0.7, α = −0.1, Γ = 2 with ρ = 0.01.

(a) (b)

Figure 11. The MI gain spectra in the mixed-GVD coupler (α < 0). (a) The results for different negative
values of the ratio of the GVD coefficients in the two cores (α), which are indicated near the curves
for P = 2, η = 0.5, κ = 1.1, Γ = 2 with ρ = 0.01. (b) The results for different values of the ratio of the
nonlinearity coefficients in the two cores (Γ), which are indicated near the curves. Parameters are same
as in (a), except for κ = 1 and α = −0.1.

Figure 12. The MI gain spectra for different values of the group-velocity mismatch (walk-off) between
the cores in the mixed-GVD coupler (α < 0) for P = κ = 1, η = 0.5, α = −0.1, Γ = 2.

Next, we consider the impact of the asymmetry parameter η in the CW state; see Equation (8).
As show in Figure 13, there is no MI at small values of η, such as η = 0.1. With the subsequent increase
of η up to η = 1, the MI gain and bandwidth increase, similar to what was observed above in the
coupler with anomalous GVD in both cores; see Figure 4b. However, the situation becomes completely
different at η > 1, when the CW amplitude is higher in the bar channel: the MI band splits into two
narrower ones, with smaller values of the gain.
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Figure 13. The MI gain spectra for different values of the asymmetry ratio, η, of the CW state
(see Equation (8)), which are indicated near the figures, in the mixed-GVD coupler (α < 0) for
P = 0.5, κ = 1.1, α = −0.1, Γ = 2 with ρ = 0.01.

5. Direct Simulations

The analytical results obtained above for the MI have been checked against numerical calculations
of the instability spectra. Numerical methods are actually more relevant for direct simulations of the
nonlinear evolution of the MI, which was analyzed above in the linear approximation. The simulations
were carried out by dint of the well-known split-step Fourier method [48] (using MATLAB). Most results
displayed below were obtained using numerical meshes with 512 Fourier points and periodic boundary
conditions with respect to variable τ. Simulations performed with denser meshes have produced
virtually identical results. Furthermore, results of the nonlinear development of the MI are not sensitive
to details of initial small perturbations, which initiate the onset of the MI.

The initial conditions were taken in the form of the CW to which a small periodic perturbation
was added:

uj(0, τ) = Aj + a0 cos(ω0τ), (j = 1, 2), (19)

where a0 is a small amplitude of the perturbation and ω0 is its frequency.
Various outcomes of the MI development for CW states with different parameters are displayed in

Figures 14–23. First, in Figure 14, we show the results for the symmetric coupler in the anomalous-GVD
regime when the amplitudes of two CW components are equal (A1 = A2 = 1). As seen in the figure,
a periodic chain of well-shaped soliton-like pulses is produced on top of the nonzero background in
both cores. Longer simulations demonstrate regular dynamics of the quasi-soliton arrays. In this work,
we do not aim to study the latter in detail, as it is not closely related to the initial MI.

(a) (b)

Figure 14. The evolution of the MI in the symmetric coupler with anomalous GVD (σ = 1) in the
bar (a) and cross (b) channels for equal amplitudes of the underlying CW state, A1 = A2 = 1, with
perturbation parameters a0 = 0.0001 and ω0 = 1, in Equation (19). Other parameters are α = Γ = κ = 1
and ρ = χ = 0.
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We now turn to simulations of the MI in the asymmetric coupler and the analysis of effects of
its different parameters. The impact of the group-velocity mismatch (walk-off) between the cores
in the anomalous-GVD regime is presented in Figure 15. As seen in the figure, pulses generated by
the MI drift away from their original positions, which implies spontaneous symmetry breaking, as a
particular drift direction is selected by the system. We have also investigated the spectral evolution
of the MI for different values of the group-velocity mismatch. The results (not shown here in detail)
corroborate, in particular, that the group-velocity mismatch has no impact on the instability spectrum,
as predicted by the analytical results in Figure 4a. Further, Figure 16 shows the influence of the
phase-velocity mismatch on the MI evolution in the anomalous-GVD regime. In this case, the main
effects are oscillations of the background and retaining of the power chiefly in the bar channel.

(a) (b)

Figure 15. The influence of the group-velocity mismatch, ρ = 1, on the evolutions of the MI in
the bar (a) and cross (b) channels in the anomalous-GVD regime. Other system parameters are,
A1 = A2 = ω0 = α = Γ = κ = 1, χ = 0 and a0 = 0.0001.

(a) (b)

Figure 16. The influence of the phase-velocity mismatch, χ = 1, on the evolution of the MI in the
bar (a) and cross (b) channels in the anomalous-GVD dispersion regime. Other system parameters are
A1 = A2 = ω0 = α = Γ = κ = 1, ρ = 0 and a0 = 0.0001.

The role of the ratio of the GVD coefficients in the two cores, α, is shown in Figures 17 and 18,
for the case of the anomalous GVD in both cores. In the case of zero GVD in the cross channel
(α = 0) (Figure 17) shows that a chain of quasi-solitons with growing amplitudes is generated on top
of a nonzero background in the bar channel, while narrow growing peaks emerge at edges of the
background in the cross channel. If α increases to α = 2, the former picture is essentially reversed,
so that a chain of solitons on top of the background appears in the cross channel, and a chain of very
narrow solitons is generated in the bar channel. In all of these cases, the soliton chains keep the initial
modulation period, 2π/ω0.
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Figure 19 reveals the impact of the ratio of nonlinearity coefficients between the two cores. In this
case, the MI generates a chain of very narrow solitons with a higher amplitude, whose peak powers
are growing in the cross channel and growing peaks on an oscillating background with a relatively
low amplitude in the bar channel. Next, we plug in all of the parameters, to identify their combined
effect on the MI evolution in the anomalous-GVD regime, in Figures 20 and 21. In the former case,
it is observed that the MI gives rise to a single soliton in the bar channel, whereas the field in the cross
channel decays into radiation. In the latter case, a single soliton is generated too (which is natural for
the case of the anomalous GVD), but with components in both cores.

Focusing our attention on the asymmetric coupler in the normal-GVD regime, in Figure 22,
we address the case when the amplitudes of the two CW components are equal. In this case as
well, a periodic array of peaks with growing amplitudes is generated in both the bar and cross
channels. However, its shape is essentially different from the soliton chains displayed above in the
anomalous-GVD regime, as in the present case, the array is built of alternating peaks and wells. Lastly,
if the amplitudes of the two CW states are widely different, such as in the case of a large amplitude in
the bar channel and a relatively small one in the cross channel, the MI evolution leads to a chaotic state,
as shown in Figure 23.

(a) (b)

Figure 17. The MI evolution in the bar (a) and cross (b) cores, in the case of the anomalous GVD in the bar
channel, and zero GVD (α = 0) in the cross channel. Other parameters are A1 = A2 = ω0 = Γ = κ = 1
and a0 = 0.0001.

(a) (b)

Figure 18. The same as in Figure 17, but when the difference in the GVD coefficients is α = 2.
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(a) (b)

Figure 19. The influence of the ratio of the nonlinearity coefficients in the two cores, Γ = 2, on the MI
evolution in the bar (a) and cross (b) channels in the anomalous-GVD regime. Other parameters are
A1 = A2 = 0.75, ω0 = 2, α = κ = 1, ρ = χ = 0 and a0 = 0.0001.

(a) (b)

Figure 20. The MI-driven evolution in the bar (a) and cross (b) channels in the anomalous-GVD regime
(σ = 1) for initial CW amplitudes A1 = 0.75, A2 = 0.5 and perturbation parameters a0 = 0.0009, ω0 = 1.
Other parameters are α = 2, Γ = 1, ρ = 0.01, χ = 0.001 and κ = 1.

(a) (b)

Figure 21. The same as in Figure 20, but for A1 = 0.5, A2 = 0.1, a0 = 0.0007, χ = 0.01 and κ = 0.5.
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(a) (b)

Figure 22. The MI evolution in the bar (a) and cross (b) channels in the normal-GVD regime (σ = −1) for
the amplitudes of the CW components A1 = A2 = 1 and perturbation parameters a0 = 0.002, ω0 = 1.
Other parameters are α = 2, Γ = 1, ρ = 0.01, χ = 0.001 and κ = 1.

(a) (b)

Figure 23. Creation of a chaotic (turbulent) state by the MI in the bar (a) and cross (b) channels in the
normal-GVD dispersion regime (σ = −1) for CW amplitudes A1 = 2, A2 = 0.001, with perturbation
parameters a0 = 0.09, ω0 = 1. Other parameters are α = 2, Γ = 0.5, ρ = 0.01, χ = 0.02 and κ = 1.

6. Conclusions

In this work, we have investigated the MI (modulational instability) in the model of asymmetric
dual-core NLDCs (nonlinear directional couplers), based on the system of nonlinear Schrödinger
equations, which include differences in the GVD and nonlinearity coefficient in the two cores, as well
as the group- and phase-velocity mismatch between them. The MI of symmetric and asymmetric CW
states in the NLDC against small perturbations was investigated using the linearized equations for the
perturbations. This was followed by direct simulations to investigate the nonlinear development of the MI.

First, we have considered the dependence of the MI gain spectra on the total power of the
two-component CW states in the coupler with the anomalous sign of the GVD in both cores. It was
found that the MI bands in the asymmetric couplers are broader in comparison with their symmetric
counterparts. Then, we focused on the impact of the magnitude of the inter-core coupling coefficient, κ,
demonstrating that the increase of κ leads to gradual suppression of the MI. Next, a large GVD
coefficient in the bar channel, in comparison with the cross channel, generates very broad MI spectra
with large values of the instability gain. If the asymmetry between the cores is introduced only through
the difference in the GVD coefficients, high values of the group-velocity mismatch cause splitting of
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the single MI band into two. The effect of asymmetry between two components of the CW state, η,
was identified as well. It was found that the MI gain and bandwidth reduce with the increase of η

from small values to one, while the further increase of η leads to shrinkage of the MI band.
Next, the MI was explored in the normal-GVD regime, in which the MI occurs in two separated

spectral bands. The increase of the coupling coefficient makes the size of the MI gain in the two
bands strongly different. The influence of the difference in the GVD and nonlinearity coefficients was
analyzed, as well. The increase of these coefficients leads, respectively, to the decrease and increase of
the MI gain in the two bands.

Noteworthy results were produced by the analysis of the MI in the coupler with opposite signs of
the GVD in the cores. While the difference in the negative values of the GVD coefficient, and in the
nonlinearity coefficients, produce approximately the same effects as in the anomalous-GVD regime,
the response to the increase of the coupling coefficient is similar to that in the case of the normal
GVD, leading to the increase of the MI gain. A notable effect was observed with the variation of the
group-velocity mismatch, ρ, between the cores: the increase of ρ from small values to one suppresses
the MI, which disappears at ρ = 1. It appears again and enhances at ρ > 1. The asymmetry ratio of
the two components of the underlying CW state, η, also produces a nontrivial effect: while the MI is
absent at small values of η, it appears at η � 0.5 in the form of a single spectral band, which grows up
to η = 1 and then splits into two bands.

Finally, we have also performed systematic simulation of the nonlinear development of the
MI in different regimes, which were studied analytically. Typical outcomes feature the generation
of periodic chains of growing peaks in the anomalous-GVD regime. In particular, the group-velocity
mismatch naturally causes a walk-off effect, while the phase-velocity mismatch and difference in the
nonlinearity coefficients produce oscillations on the background, on top of which soliton arrays emerge.
The difference in the GVD coefficients facilitates the generation of arrays of very narrow solitary pulses
in the bar channel, whereas arrays of regular pulses appear in the cross channel. The formation of a
single soliton is possible as well. In the normal-GVD regime, the formation of arrayed peaks with a
growing amplitude was observed. The MI of the CW states with widely different amplitudes of its
two components may produce a turbulent state.

These results, especially the generation of regular arrays of solitary pulses and of a single pulse, can
find applications for the design of signal sources for optical systems. The variations of many parameters
that control the dynamics of the asymmetric couplers may be used to optimize these applications.

For further work, it may be relevant to take into regard higher-order terms, such as those
accounting for the third-order dispersion and self-steepening, and analyze their effects on the MI in
the asymmetric dispersive nonlinear couplers.
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Appendix A

Elements of matrix M in Equation (16) are:

m11 = −K − (σ1Ω2/2) + η2S − κ/η,

m12 = m21 = m34 = m43 = κ,

m13 = η2S,

m14 = m23 = m32 = m41 = 0,

m22 = −K + ρΩ − (σ1αΩ2/2) + ΓS − κη,

m24 = ΓS,

m31 = η2S,

m33 = K − (σ1Ω2/2) + η2S − κ/η,

m42 = ΓS,

m44 = K − ρΩ − (σ1αΩ2/2) + ΓS − κη,

(A1)

where S = P/(1 + η2). Coefficients of quartic Equation (17) for K, as functions of Ω, are given by:

a = 2ρΩ (A2)

b = 2Sηκ + 2SΓηκ − 2κ2 − κ2

η2 − η2κ2 + Ω2
(

ρ2 + Sη2σ1 − κσ1
η + SαΓσ1 − αηκσ1

)
+ Ω4

(
− σ2

1
4 − 1

4 α2σ2
1

)
(A3)

c =
(
− 4Sηκρ + 2κ2ρ +

2κ2ρ

η2

)
Ω + Ω3

(
− 2Sη2ρσ1 +

2κρσ1

η

)
+

1
2

ρΩ5σ2
1 (A4)

d = Ω2
(

2Sηκρ2 − κ2ρ2

η2 + 2S2Γη3κσ1 − SΓκ2σ1 − Sη4κ2σ1 + 2S2αΓηκσ1 − SαΓκ2σ1
η2 − Sαη2κ2σ1

)

+Ω4
(

Sη2ρ2σ1 − κρ2σ1
η − 1

2 SΓηκσ2
1 + 1

4 η2κ2σ2
1 + S2αΓη2σ2

1 − SαΓκσ2
1

η − Sαη3κσ2
1

+ 1
2 ακ2σ2

1 − 1
2 Sα2ηκσ2

1 +
α2κ2σ2

1
4η2

)
+ Ω6

(
− 1

4 ρ2σ2
1 − 1

4 SαΓσ3
1 + 1

4 αηκσ3
1 − 1

4 Sα2η2σ3
1 +

α2κσ3
1

4η

)
+ 1

16 α2Ω8σ4
1

(A5)
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