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Evaluating the Latest IMERG Products in a Subtropical Climate: The Case of Paraná State, Brazil
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Preface to ”Remote Sensing in Hydrology and Water
Resources Management”

In the last few decades, remote sensing (RS) technology has developed rapidly, which provides a

means of observing hydrological and hydraulic state variables including precipitation, temperature,

soil moisture, water levels, evapotranspiration, flood extent, flow velocity, river discharge, and

land water storage over regional/global areas. All these variables could be the input files for

integrated hydrodynamics or hydrological or hydrometeorological models to simulate and assess

water resources and water-related issues, contributing to fully understand global- and regional-scale

hydrological processes under climate change and human activities, which could be useful for

improving sustainable water management. The objective of this book is to present reviews and

recent advances of general interest that make use of remote sensing techniques in hydrology and

water resources management. In general, remote sensing technology can improve land-surface

and hydrologic modeling from three aspects, including model inputs (watershed information,

atmospheric information, boundary conditions, etc.), state estimation (data assimilation), and model

calibration and parameter estimation. This book aspires to stimulate further research into the remote

sensing technology of hydrology analysis and water resources management.
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1. Introduction

Water is undoubtedly the most valuable resource of human society and an essen-
tial component of the ecosystem. Under climate change and human activities, water
resources management for sustainable socio-economic development presents many chal-
lenges around the world, especially in arid regions and high-altitude regions, with sparse
in situ hydro-meteorological monitoring networks. Rare and uncertain hydrological in-
formation generally causes uncertainty in hydrologic modeling and eventually impedes
continuous water resources management.

In recent decades, remote sensing (RS) technology has been developed rapidly to
obtain sufficient information on hydrological state variables including precipitation, tem-
perature, soil moisture, water levels, evapotranspiration, flood extent, flow velocity, river
discharge, and land water storage over regional/global areas, especially in those remote
regions where measurements are not feasible or can only be carried out under very difficult
circumstances with high costs. This remote sensing information could be the input files for
integrated hydrodynamics or hydrological or hydrometeorological models to simulate and
assess water resources and water-related issues, largely supporting the development of
more efficient hydrological models and water resources management.

Therefore, in order to fully understand recent advancements in remote sensing tech-
nology for hydrology analysis and water resources management, this special issue hosts
18 papers devoted to remote sensing in hydrology and water resources management. The
volume includes studies on satellite remote sensing for water resources management, water
quality monitoring and evaluation using remote-sensing data, remote sensing for detect-
ing the global impact of climate extremes, the use of remote sensing data for improved
calibration of hydrological models, and so on.
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The following section concludes the individual articles hosted in this Special Issue in
alphabetical order according to the first author’s name.

2. Overview of Contributions

Based on the fuzzy C-means algorithm and L-moment-based regional frequency
analysis method, Chen et al. [1] evaluated the performance of 3B42-V7 satellite-based
precipitation product on extreme precipitation estimates compared with the China Gauge-
based Daily Precipitation Analysis (CGDPA) product in China.

An improved water change tracking (IWCT) algorithm was proposed by Han et al. [2],
which could remove built-up shade noise and correct omitted water pixels by taking the
time-series data into consideration and was applied to evaluate water changes in Tianjin
during the period 1984–2019.

Using the Global Land Surface Satellite (GLASS) leaf area index (LAI), Hu and Mo [3]
used a remote sensing-based process to model spatial-temporal patterns of the actual
evapotranspiration (ETa) and available water resources in the Mekong River Basin from
1981 to 2012.

In order to reduce and quantify parameter uncertainty in hydrological simulations,
Hui et al. [4] attempted to introduce additional remotely sensed data (such as evapotran-
spiration (ET)) into the Soil Water Assessment Tool in the Guijiang River Basin (GRB) in
China and found that the simulation accuracy of ET was substantially improved when
adding remotely sensed ET data.

Kulua et al.’s [5] study compares measurements of evapotranspiration (ET) from a
commercial vineyard in California using data collected from the Small Unmanned Aerial
Systems (sUAS) and the Earth Observation System (EOS) sources for 10 events over a
growing season using multiple ET estimation methods. This study indicates that limited
deployment of sUAS can provide important estimates of uncertainty in EOS ET estimations
for larger areas and also improve irrigation management at a local scale.

Based on the Tropical Rainfall Measuring Mission (TRMM) 3B42 3-hourly, daily, and
3B43 monthly rainfall data, the rainfall erosivity (RE) was quantified by Li et al. [6]. They
found that all three TRMM rainfall products can generally capture the overall spatial
patterns of RE and could be used to assess the risk of soil erosion.

By developing an allocation factor, Ma et al. [7] proposed a new field-scale ET es-
timation method to quantitatively evaluate field-level ET variations and allocate coarse
ET to the field scale. Results from the new method can fully meet the demands of wide
application for controlling regional water consumption, which is beneficial to effective
management and control of water resources.

Muhadi et al. [8] reviewed the potential and the applications of light detection and
ranging (LiDAR) technology in flood studies, and pointed out that LiDAR-derived data
are very useful in flood mapping and risk assessment, especially in the future assessment
of flood-related problems.

In developing countries, generally, water resources management is highly restricted be-
cause of the lack of high-precision measurement of precipitation in large areas. Nowadays,
the Integrated Multi-satellite Retrievals for GPM (IMERG) can offer a new source of pre-
cipitation data with high spatial and temporal resolution. Therefore, Nascimento et al. [9]
evaluated the performance of the GPM products in the state of Paraná, Brazil, from June
2000 to December 2018.

Peng et al. [10] evaluated the performances of six gauge-adjusted-version satellite
precipitation datasets in the Bosten Lake Basin, a typical arid land watershed of Central
Asia, which provides a reference for the hydrological and meteorological application of
satellite precipitation datasets in Central Asia with sparse in situ hydro-meteorological
monitoring networks.

Based on water levels from satellite altimetry and surface areas from optical imagery,
Schwatke et al. [11] developed a new approach for estimating water volume variations of
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lakes and reservoirs. The method was applied to investigate volume changes in 28 lakes
and reservoirs located in Texas.

The study by Sirisena et al. [12] evaluated the use of measured streamflow and RS-
based ET data to calibrate a Soil and Water Assessment Tool (SWAT) and evaluate the
performances for Chindwin Basin, Myanmar. The results indicated the advantage of
remote-sensing-based and multiple data sources for calibration of hydrological modelling
in data poor basins.

By interpreting satellite imagery from 1990, 2000, and 2015, Sun et al. [13] investigated
the dynamic evolution of the desert-oasis ecotone in the Tarim River Basin and then
predicted the near-future land-use change based on the cellular automata-Markov (CA-
Markov) model.

After collecting high frequency (moderate-resolution imaging spectroradiometer)
MODIS images, altimetry, and data from the Hydroweb database, Sun et al. [14] delineated
the detailed hydrological changes of 15 lakes in three basins—Inner Basin, Indus Basin,
and Brahmaputra Basin—on the southern Tibetan Plateau.

Because remote sensing and reanalysis quantitative precipitation products are in-
evitably subject to errors, Tang et al. [15] proposed a novel daily-scale precipitation bias
correction framework to combine these precipitation products from various institutions.
The framework was applied to do error correction for multi-source weighted-ensemble
precipitation in the Lancang-Mekong River Basin.

Through combining the Weather Research and Forecast (WRF) model with the three-
dimensional variation (3DVar) data assimilation system, Xu et al. [16] put the satellite data
assimilation to wind speed simulation in wind resource assessments in Guangdong, China.

In the paper by Yang et al. [17], five gridded precipitation products including Multi-
Source Weighted-Ensemble Precipitation (MSWEP), CPC Morphing Technique (CMORPH),
Global Satellite Mapping of Precipitation (GSMaP), Tropical Rainfall Measuring Mission
(TRMM) Multi-Satellite Precipitation Analysis 3B42, and Precipitation Estimation from Re-
motely Sensed Information using Artificial Neural Networks (PERSIANN) were evaluated
against observations in the Yellow River Basin, China, at daily, monthly, and annual scales
during 2001−2014.

Using multiple satellite data, Zhou et al [18] analyzed the spatiotemporal changes of
hydrological elements in semiarid areas from 2002 to 2014 and their effects on vegetation,
which demonstrated that the application of satellite data could significantly improve the
water assessment capability in semiarid areas.

3. Conclusions

This Special Issue aimed to summarize the recent advancement in remote sensing
technology for hydrology analysis and water resources management. In general, remote
sensing technology can improve land-surface and hydrologic modeling from three aspects
including model inputs (watershed information, atmospheric information, boundary con-
ditions, etc.), state estimation (data assimilation), and model calibration and parameter
estimation. This special collection of papers aspires to stimulate further research into the
remote sensing technology of hydrology analysis and water resources management.
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Abstract: Flood occurrence is increasing due to escalated urbanization and extreme climate change;
hence, various studies on this issue and methods of flood monitoring and mapping are also increasing
to reduce the severe impacts of flood disasters. The advancement of current technologies such
as light detection and ranging (LiDAR) systems facilitated and improved flood applications. In a
LiDAR system, a laser emits light that travels to the ground and reflects off objects like buildings
and trees. The reflected light energy returns to the sensor, whereby the time interval is recorded.
Since the conventional methods cannot produce high-resolution digital elevation model (DEM) data,
which results in low accuracy of flood simulation results, LiDAR data are extensively used as an
alternative. This review aims to study the potential and the applications of LiDAR-derived DEM
in flood studies. It also provides insight into the operating principles of different LiDAR systems,
system components, and advantages and disadvantages of each system. This paper discusses several
topics relevant to flood studies from a LiDAR-derived DEM perspective. Furthermore, the challenges
and future perspectives regarding DEM LiDAR data for flood mapping and assessment are also
reviewed. This study demonstrates that LiDAR-derived data are useful in flood risk management,
especially in the future assessment of flood-related problems.

Keywords: airborne LiDAR; DEM; flood inundation; flood map; flood model; LiDAR; terrestrial LiDAR

1. Introduction

Floods are a major severe natural catastrophe experienced in many countries around the world
including Malaysia. In Malaysia, flooding is the most frequent danger among all disasters, and it can
be considered as an annual disaster due to its consistent occurrence [1,2]. The flood issue is gaining
attention globally with significant efforts made to develop effective flood prevention and monitoring
solutions. Preparation of flood hazard and floodplain maps is one of the examples of the preparedness
phase in a disaster management cycle, which is widely used to reduce the impact of disasters, to react
during the event, and to take action to recover after a disaster occurs, including flood disasters [3].

Information on how far the floodwater inundates and how deep the area is flooded at what velocity
is required in floodplain management and flood damage estimation. To obtain such information,
elevation data that represent the earth’s surface represent one of the primary components for flood
studies. Accurate elevation information is crucial to both the input and the output of flood hydraulic
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analysis, as well as to producing floodplain maps [4]. A flood hydraulic model requires several
input parameters that can be derived from the digital elevation data. The output of the flood model
simulation is then mapped onto a digital elevation surface to determine the flood hazard zone and
to further analyze the products to estimate probable flood damage in terms of flood inundation and
flood depth.

A digital elevation model (DEM) is a predominant source of elevation data due to its simplicity
and easy-to-use data [4,5]. A DEM provides gridded elevation data in a raster structure that represents
the terrain’s surface. It contains x-, y-, and z-values, which represent x- and y-coordinates and elevation
information, respectively. A DEM is commonly generated by extracting surface features from a
digital surface model (DSM). DEMs can be generated from many sources such as ground surveys,
digitizing existing hardcopy topographic maps, or remotely sensed technology. DEM sources range
from no cost to high-cost data sources depending on their accuracy. With the rapid development
of remote sensing technology, DEMs generated from this technology are a preferred choice using
photogrammetry, interferometric synthetic aperture radar (IfSAR), or light detection and ranging
(LiDAR). Photogrammetry is the science of measuring features without physical contact with the
features from photographs [6]. Aerial photographs are widely adopted due to their ability to provide
high-resolution and high-accuracy DEMs. However, this emerging technology can only be acquired
during cloud-free and low-haze conditions, which is not the finest condition during flood events.

On the other hand, IfSAR uses a microwave sensor to send signals to the earth’s surface and
records the scattered signal from the surface. It is an active microwave radar system that can obtain
imagery over a vast area at night or in cloud cover. Spaceborne IfSAR such as shuttle radar topography
mission (SRTM) is the most commonly used global DEM because it is an open-access DEM with
acceptable resolution and accuracy. In contrast to spaceborne IfSAR, airborne IfSAR systems have
more flexible system deployment and provide higher spatial resolution. However, both spaceborne
and airborne IfSAR have limitations in urban areas due to complex scattering environments [7].
Furthermore, using this technology in densely vegetated areas is challenging because the radar cannot
penetrate the ground surface beneath vegetation canopy.

Another emerging technology is LiDAR. A LiDAR sensor that is mounted on platforms such as
aircraft and helicopters is known as airborne LiDAR. Meanwhile, LiDAR systems that collect data
from the ground are referred to as ground-based LiDAR or terrestrial LiDAR. The generation of DEM
data using the LiDAR system has several advantages over other sources. LiDAR data can be acquired
during daylight or night time, as well as during cloudy conditions [7,8]. Moreover, it has the ability to
penetrate the ground surface in vegetated and urban areas more reliably than either photogrammetry
or IfSAR. Due to these reasons, it became a recent solution for flood-related problems. The ability of
LiDAR systems to provide higher-resolution and centimeter-accuracy outcomes diversified their use in
wide-ranging applications of flood studies.

In studies involving the application of remote sensing in floodplain and flood risk assessment,
DEMs are used to visualize the interface of floodwater with the elevation of the ground surface.
Moreover, a DEM is an important indicator in determining the flood inundation and flood depth [4,9,10].
The accuracy of a DEM is critical in hydrological modeling as it can affect the discharge values,
water depth, and the extent of flood inundation maps [11,12]. In a flat floodplain, a vertical error of
1 m in the DEM leads to an error of 100 km2 in the estimated flood inundation [10]. Hence, accurate
and high-resolution DEM data are needed to produce reliable flood mapping, especially in the context
of flood simulation modeling.

In Malaysia, the Department of Irrigation and Drainage (DID) is responsible for providing flood
forecasts and flood hazard maps. A higher level of accuracy of the DEM such as LiDAR data will
improve the accuracy and reliability of the flood maps. Hence, the DID provides LiDAR-derived DEM
as the backbone of the hydrological model. Nevertheless, the existing LiDAR data coverage is minimal;
thus, IFSAR data are used to cover the rest of the potentially flooded area. Furthermore, LiDAR-derived
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DEM was also applied for flood risk assessments in some regions of the Philippines, as well as using
IFSAR and SAR DEM as other alternatives in the absence of LiDAR in certain areas [13,14].

In flood inundation modeling, DEM resolution and accuracy play an important role in terms of
modeling resolution and accuracy. For instance, a low-resolution DEM allows quick model simulations
but it simplifies the topographic information that may affect the flood propagation. High-resolution
DEM is needed, especially for urban areas, due to the presence of small features such as road curbs
and dykes; thus, it is likely that the accuracy of flood simulations can be affected by the resolution
of the DEM. Therefore, many researchers carried out studies to see whether coarser DEM resolution
decreases the accuracy of the predicted flood inundation extent.

Tamiru and Rientjes [15] investigated the effects of LiDAR-derived DEM resolution in flood
modeling. In this study, several DEMs with different resolutions were used as the input to the flood
model. The authors concluded that the DEM resolution has a significant effect on simulation results.
The affected flood simulation characteristics are inundation extent, flow depth, and flood velocity.
In short, a coarser-resolution DEM results in a larger loss of information, while a high-resolution DEM
results in excessive computational time. Furthermore, Casas et al. [16] conducted a study on different
topographic data sources and resolution on flood modeling. The differences between each DEM were
measured in terms of flood model outputs such as water discharge, water level, and flood inundation.
The authors emphasized that the flood modeling results are majorly dependent on the DEM accuracy,
whereby a LiDAR-derived DEM has the least root-mean-square error (RMSE) in terms of elevation
accuracy and estimated flood inundation.

Vaze et al. [17] carried out a study on the accuracy and resolution of LiDAR DEM to improve
the quality of hydrological features extracted from DEMs. The authors also investigated the effect of
re-sampling DEM data into coarser resolution. The results obtained demonstrate that the accuracy
and resolution of input DEM have a significant impact on the values of the hydrologically important
spatial indices derived from the DEM. Hsu et al. [18] conducted a case study on the influence of DEM
resolutions on the simulation of flood inundation in Tainan City, Taiwan. Five different grid sizes of
DEM from 1 × 1 m to 40 × 40 m were used as the input of the flood models. The results showed that
coarser DEM may cause losses of important small-scale features. Therefore, the inundation area may
increase with a coarser DEM, resulting in a reduction in the accuracy of flood inundation models.

Ozdemir et al. [19] investigated the impact of using different high-resolution terrestrial LiDAR
data on water depth, inundation extent, arrival time, and velocity predicted by the flood simulations.
It was found that increasing the terrain resolution significantly affected the flood simulation results.
The finding demonstrated that fine-resolution DEM can lead to significant differences in the dynamics
of flood inundation. On the other hand, a coarser resolution reduced the performance of flood
inundation prediction due to changes in flow paths at coarser resolution caused by losses of feature
representation [20]. Furthermore, de Almeida et al. [21] investigated the influence of fine-resolution
DEM on the flood inundation model over urban areas. The authors performed four different scenarios
with small-scale modifications to analyze the influence of the decametric-scale changes. The findings
from this study confirmed that flood hazard prediction was sensitive to decimetric-scale features,
and they had an impact on the dynamic and distribution of flooded areas.

In summary, the findings from previous studies confirmed that accurate terrain data had a big
impact on flood hazard prediction. Results of flood simulations varied in response to different DEM
resolutions, which could be associated with the degree of topography representation. It was found
that high-resolution DEM can provide relevant and reliable flood modeling results [22]. In contrast,
coarser resolutions deteriorate the performance of flood models [20]. The previous studies confirmed
that accurate terrain data have a big impact on flood hazard prediction and that the inundation
area evaluation increases with coarser DEMs. Hence, a finer model resolution is necessary if the
decision-maker is interested in local-scale inundation predictions [23]. Based on previous studies,
the researchers suggested that LiDAR data offer high-quality data as an essential input of flood modeling.
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Therefore, this review highlights the basic principles of LiDAR systems, system components,
and their applications in flood studies. It also presents a brief discussion on the number of papers
published in the Scopus database that focused on LiDAR data in flood studies over the past 10 years.
Moreover, this paper reviews the challenges and future directions of the technology when using LiDAR
data for flood modeling.

2. Principles of LiDAR Systems

LiDAR is an active remote sensing system, which allows the system to operate during the day
and at night. LiDAR systems are used in various applications, and their advantages are well noted by
researchers and practitioners all around the world. The development of laser scanning differs by the
position of a sensor, i.e., whether an airborne-based LiDAR system or a ground-based LiDAR system.
These two systems vary in terms of data acquisition modes, scanning mechanisms, and product
accuracy and resolution, with several similarities. One similarity is that both systems can capture point
cloud data and simultaneously acquire imagery [24].

2.1. Airborne LiDAR: Fundamentals and System Components

An airborne LiDAR is a multi-sensor system [25] that consists of several components which
are the platform, laser scanner, positioning hardware, photographic or video recording equipment,
computer, and data storage. For airborne LiDAR, the platform to mount the laser scanner can either be
a fixed-wing aircraft or a helicopter, which is used to fly the laser sensor over a region of interest.

A LiDAR sensor with a wavelength of 1000–1600 nm emits laser pulses toward the ground,
and the signal is backscattered by different objects, such as man-made structures, vegetation, and the
ground surface [26]. The reflected light energy returns to the sensor, whereby the sensor logs the
returning signal. The time of travel of the return pulse is used to measure the distance traveled.
The measurements of distance and orientation are done by utilizing positioning systems, including a
global positioning system (GPS) and inertial measurement unit (IMU).

LiDAR can produce high-resolution and high accuracy data by relying on the accuracy of GPS
and IMU components [27]. IMUs are used to measure the accurate position, trajectory, and orientation
of the aircraft. Meanwhile, the purpose of the GPS is to identify the X, Y, and Z location. The GPS
is responsible for providing the precise location of the sensor; hence, differential GPS is adopted by
setting up a ground GPS station to achieve a required position accuracy of better than 10 cm in the
airborne LiDAR [28,29].

The camera or video recording equipment flies along with the LiDAR sensor to provide color
information to represent the real-world color. The process is carried out by mapping red, green,
and blue values onto the georeferenced point location [30]. Other components in the airborne LiDAR
system are the control and data recording unit and onboard computer. The control and data recording
unit stores raw data collected by the scanner, IMU, and GPS. Laser scanners can produce about
20 gigabytes of ranging data per hour as compared to the summation of GPS and IMU data, which only
produce about 0.1 gigabytes per hour [31].

2.2. Terrestrial LiDAR: Fundamentals and System Components

Terrestrial LiDAR, also known as terrestrial laser scanning, is a ground-based version of the
airborne LiDAR, which is frequently used for terrain and topographic mapping. Terrestrial LiDAR
includes stationary laser scanning, whereby the sensor is mounted on a tripod for fixed positions and
mobile laser scanning, while the sensor is mounted on a mobile ground-based platform such as a
vehicle. The term terrestrial LiDAR usually refers to static laser scanning. Because static and mobile
laser scanning differ in terms of components and mechanisms, these two categories are discussed
separately in this section.

Nevertheless, both systems still have several similarities. For instance, the main component of
both terrestrial LiDAR systems is a laser scanner. Lasers with a wavelength of 500–600 nm are typically
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used in ground-based LiDAR systems [26]. Furthermore, terrestrial LiDAR, just like airborne LiDAR
systems, utilizes an integrated digital camera or video recording, which is responsible for colorizing
point clouds and three-dimensional (3D) models to represent color in the real world.

2.2.1. Static Laser Scanner

Static laser scanning is performed from the top of a fixed surveying tripod. Static terrestrial laser
scanning needs a two-dimensional (2D) scanning pattern to complete a scan survey, which is why static
terrestrial LiDAR integrates with one or two mirrors that can change the direction of laser pulses [32].
Therefore, this LiDAR system can scan and measure the distances of the surrounding objects. Terrestrial
LiDAR systems identify the range between the sensor and the targets by measuring the time required
for the laser pulse to travel to the target and return to the sensor. The basic components for this system
include the ranging unit, scanning mechanisms, laser controller, data recorder, and (optionally) a
digital camera.

Theoretically, the laser scanner operates by emitting an infrared laser beam to the center of a
rotating mirror, which deflects the laser beam around the scanning area. Once the scattered light hits
the objects, it reflects onto the scanner. The digital camera can be mounted on the scanner rotating axis
to provide images of the surroundings [33] The recorded time it takes is divided by two and multiplied
by the speed of light to get the distance. The coverage of terrestrial laser scanning usually ranges from
100 m to 300 m [24]. Because static terrestrial LiDAR scans are provided from a stable position and
orientation, point clouds with good geometric quality are obtained [31].

2.2.2. Mobile Laser Scanner

On the other hand, mobile laser scanning has similar data collection modes to airborne LiDAR.
Showing many similarities with airborne LiDAR, mobile laser scanning requires only one scanning (1D)
direction, whereas the other is performed by the moving platform. In mobile laser scanning systems,
the laser scanner is mounted on a moving vehicle such as a car or van. Due to the continuous motion of
the scanner, positioning systems based on GPS and IMU technologies are required to precisely measure
the respective positions and orientations. The systems perform as the vehicle moves around, while the
positioning systems track the trajectory and attitude of the vehicle for producing a 3D point cloud from
the range of data collected. Figure 1 illustrates the operating principles of all types of laser scanning.
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2.3. Advantages and Disadvantages of Airborne and Terrestrial LiDAR

Both LiDAR systems have their advantages and drawbacks. Airborne LiDAR data offer rapid
data acquisition capability and a high degree of automation. Data are captured with a speed of up
to about 50 km2/h [34]. Due to this, it is considered to be a fast method of generating accurate DEM.
Furthermore, because airborne LiDAR captures data from above, it gives a direct and clearer view of
roads and rooftops of buildings as compared to terrestrial LiDAR.

In contrast, terrestrial LiDAR is preferable compared to airborne LiDAR in certain situations
because terrestrial LiDAR is more cost-effective for small-scale areas and can be portable, while it
produces high-resolution of terrain data. The main advantages of terrestrial LiDAR data are the
high measurement density and high data accuracy. It can collect higher point density, typically
100 points/m2 [35]. It can also provide scan rates up to half a million points per second for 100 m to
300 m, depending on the distance range of the scanner [31]; thus, it provides detailed terrain description
and high-resolution surface roughness [15,36–39]. Terrestrial LiDAR yields high-resolution digital
elevation models (DEMs) with pixel sizes on the scale of centimeters rather than the 1–3-m-resolution
DEMs derived from airborne LiDAR [40].

Even though terrestrial LiDAR data can be used to provide information in small-scale areas,
it cannot provide data in certain areas such as private lands and steep slope areas. Therefore, several
researchers suggest fusing terrestrial LiDAR with airborne sources to cover topographic features in
inaccessible areas [38,41].

2.4. Overview

In summary, there are different ways of achieving data acquisition using LiDAR data, including
airborne LiDAR and terrestrial LiDAR. Previous studies demonstrated that terrestrial LiDAR data held
an advantage over other DEM sources, including airborne LiDAR, as they responded to small-scale
topographic features, which were important factors that influenced the flood prediction results.
Airborne LiDAR has difficulty in detecting small-scale features which are often not well represented
in DEMs, which is the reason why many researchers opted for terrestrial LiDAR to generate a
high-resolution DEM. Nevertheless, both LiDAR sensors proved to be able to maintain high accuracy
and produce high-resolution data due to their high scanning rates [42] compared to other DEM sources.

3. Applications of LiDAR System in Flood Monitoring

The application of LiDAR in supporting many science research activities such as geologic mapping,
landslide hazards, and flood risk management cannot be disputed [43]. The number of publications of
peer-reviewed research literature recorded in the Scopus database for the past 10 years, from 2010 to
2019, which discussed LiDAR data in flood studies, was determined. The related papers were searched
using the boolean “AND” to combine the words “LiDAR” and “flood”, and we sought these words
in the abstract, title, and keywords of the documents. This study decided to focus only on research
articles and conference proceedings of the related topic to be counted, as presented in Figure 2.

The graph shows that there was a rapid increase in the rate of publishing papers on LiDAR
and flood applications in early 2010, and this increasing trend remained until 2019. There may be
various reasons for the increase such as the availability and accessibility of LiDAR technology and the
occurrence of flood disasters in the world. For instance, Duan et al. [44] suggested that flood disasters
became more severe in China in recent years based on flood variations from 1950 to 2013. Furthermore,
the potential of LiDAR technology to provide high-quality data may receive attention from researchers
and practitioners, which leads to an increment in LiDAR data applications in multidisciplinary studies,
especially in flood applications.
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Figure 2. The number of papers that discussed on LiDAR and flood applications by year in the
Scopus database.

LiDAR provides detailed information on the elevation of the ground surface for predicting flood
inundation from rivers. Detailed LiDAR measurements not only offer higher-resolution elevation
data for floodplain modeling, but they also provide a source of high-resolution surface roughness
information. High resolution and high accuracy of a topographic dataset are also important in
predicting the flood inundation [45].

Due to this, LiDAR technology is in demand for creating DEMs for flood-prone areas, especially
in urban areas. The application of high-resolution LiDAR data is increasing in developed countries [46]
such as in the United Kingdom, as well as in the United States. This section reviews the previous studies
on the application of the airborne and terrestrial LiDAR in flood mapping and monitoring applications.
This paper discusses several topics relevant to flood studies from a LiDAR data perspective.

3.1. Development of Flood Models Using DEM LiDAR

One of the important factors in producing reliable flood inundation maps is the availability of
high-accuracy topographic data [47]. Detailed and accurate DEMs are needed, to represent specific
properties that may obstruct and conduct the flow of water in the real world. Inaccurate topographic
representation in a small-scale area would affect the simulation results [15], especially in urban areas;
hence, researchers tend to use high-resolution input data for flood simulation in urban areas and
floodplains to collect important small-scale features. Many studies were carried out to demonstrate the
effectiveness of using LiDAR-derived DEMs in developing flood models. Results from the flood model
simulations were compared with the observed water level during previous flood events to validate the
simulated results.

Priestnell et al. [36] discussed the methods of extracting surface features from DSMs generated
by airborne LiDAR. The extraction of features could help in many applications, including flood
inundation modeling. This study explained the way in which the DEM and surface roughness layer
could be generated from the original DSM from LiDAR by using a simple filtering procedure and
an artificial neural network. The findings were illustrated in the case of flood inundation modeling.
Furthermore, Webster et al. [48] investigated the coastal impacts due to climate change and sea-level
rise in Charlottetown, Canada. Detailed topographic data were derived from airborne LiDAR for
flood risk mapping, and they were used to define flood risk hazards. This finding demonstrates
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the effectiveness of airborne LiDAR for identifying the impact of climate change and storm surge in
coastal areas.

Webster et al. [49] generated a flood risk map by using airborne LiDAR and geographical
information system (GIS) processing to study flood inundation in Southeast New Brunswick, Canada.
The flood inundation and flood depth of the proposed approach were validated by comparing the
results with water levels observed during the flood event in January 2000. It was found that the flood
extent and flood depth were accurate within 10–20 cm. Bales et al. [50] also carried out a study on
flood inundation maps derived from LiDAR data for real-time flood mapping applications in Tar River
Basin, North Carolina. This study used airborne LiDAR data with a vertical accuracy of about 20 cm
to produce topographic data for the inundation maps. The difference between the measured and
simulated water levels to high-water marks was less than 25 cm.

For terrestrial LiDAR, the first attempt at developing an urban hydraulic model using terrestrial
LiDAR was done by Fewtrell et al. [51]. The performance of the flood model was analyzed by comparing
the simulation results with the 50-cm-resolution model as a benchmark. This study found that errors
in coarse-scale topographic datasets were significantly high. Moreover, the authors concluded that
terrestrial LiDAR data can be used to provide information in small-scale flood risk management and
suggested fusing airborne and terrestrial LiDAR to cover topographic features in inaccessible areas.
Sampson et al. [52] investigated the capability of terrestrial LiDAR to provide high accuracy of DEMs
for improving flood inundation models in urban areas. The study found that small features such as
curbs and dykes, which had a significant impact on the flood propagation, could be represented from
the terrestrial LiDAR data. The authors concluded that terrestrial LiDAR could be employed when an
accurate representation of surface features is required, especially in urban inundation studies.

Furthermore, Poppenga and Worstell [53] demonstrated the need for hydrologic information
derived from airborne LiDAR elevation surfaces for flood inundation monitoring in coastal regions.
The study demonstrated how inland areas are hydrologically disconnected to ocean water due to
bridge decks or culverts. Next, Yin et al. [54] used LiDAR-derived DEM in a high-resolution 2D
hydraulic model to study the impact of land subsidence on urban pluvial flooding. The authors
concluded that land subsidence could lead to moderate impacts on flood extent and flood depth in
the urban areas. Chen et al. [55] assessed the accuracy of airborne LiDAR-derived flood extent by
evaluating the data during the 2008 Iowa flood in the United States (US) with field measurements
collected by the US Geological Survey (USGS) and Federal Emergency Management Agency (FEMA).
The root-mean-square error (RMSE) of the floodwater surface profile from LiDAR to field measurement
was 30 cm. The finding showed that LiDAR surveys could be used in measuring floodwater heights
with reliable quality.

After the devastating flood in 2008, the Iowa Flood Center (IFC) was established to improve the
availability of flood-relevant information to the community. Krajewski et al. [56] discussed several
projects conducted by the IFC that were related to flood disasters. One of the projects was flood
mapping that could be accessed online, working as flood inundation map libraries. Hydrodynamic
modeling was used to simulate river and floodplain flows by using the best approach to describe river
and floodplain topography, which was LiDAR data. In summary, these findings demonstrated the
effectiveness of airborne LiDAR for identifying the impact of flooding.

In the past few years, LiDAR technology was widely used in flood inundation research due to its
high potential of providing inundation models with detailed elevation data. Based on these studies,
it was found that LiDAR data produce high-resolution DEMs for flood simulation modeling, which can
be an efficient tool in floodplain inundation management.

3.2. Generation of Surface Roughness Maps Using LiDAR Data

One of the essential input parameters in a flood model is surface roughness, which is useful for
boundary conditions. Roughness maps can be derived from different sources such as orthophoto,
LiDAR data, and land-use data. The surface roughness has a significant effect on the output of
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hydrodynamic modeling. The roughness parameter is often defined through Manning’s formula [57].
Meanwhile, the roughness values are mostly derived from a look-up table based on land-use/land-cover
classification (LULC).

According to Straatsma and Baptist [58], roughness values have to be estimated accurately to
reduce the variation of input parameters during calibration. The authors carried out a study to derive
roughness parameterization using multispectral and airborne LiDAR data. After that, the results
of the proposed method were compared with a traditional roughness parameterization approach,
which was a manual interpretation of aerial photographs and a look-up table. This approach led to a
high-resolution roughness map.

Vetter et al. [59] used airborne LiDAR to derive hydraulic surface roughness estimations based
on geometry data by using vertical vegetation structure analysis. The effects of different roughness
coefficient values were quantified by calculating the inundated depth maps. The results showed that
the roughness values derived from airborne LiDAR represented the area in detail as compared to the
traditionally derived map.

High-resolution data are recommended as the best option for damage assessment applications.
Joyce et al. [60] recommended using airborne LiDAR data to generate DEMs and surface roughness
layers to be included in hazard models. Moreover, the high density of LiDAR data provides a
high-resolution surface roughness of floodplains. This information is very useful for boundary
conditions in flood simulations [61].

Dorn et al. [57] derived roughness maps based on several different datasets, including LiDAR.
This study aimed to analyze the effect of the roughness maps on flood simulations. LiDAR point
clouds were used to derive surface roughness by using a voxel structure, an approach developed by
Vetter et al. [59]. The results based on different roughness maps differed in terms of inundation area,
water depth, and flood intensity. The authors suggested using LiDAR data to derive a roughness map
for estimating the consequences of floods. Moreover, the authors mentioned that the use of the same
LiDAR data in producing the DEM data and the roughness maps is beneficial, as there is no issue of
temporal difference.

In short, in addition to topography, surface roughness has a great influence on hydrodynamic
models as it affects the flow regime [62–64]. Hence, appropriate roughness maps should be generated for
the use of hydrodynamic models for predicting the reliable consequences of flood disasters. Based on
previous research, it was concluded that LiDAR data provide high-resolution surface roughness,
which will increase the accuracy of the flood extent simulated by the hydrodynamic model. Hence,
laser scanning technology is able to produce a roughness map with a high level of spatial detail [58].

3.3. Comparisons of LiDAR-Derived DEMs with Other DEM Sources

Due to the significant impacts of DEM accuracy on the flood model outputs, it is important to
know which DEM sources could provide higher accuracy and spatial resolution before the selected
DEM is used for the assessment of flood hazard risk. Therefore, many comparative studies were carried
out using different DEM sources to understand the importance of the accuracy of DEM on the flood
model. The results were analyzed based on significant differences in the model output. This section
discusses the comparisons between LiDAR-derived DEM and other DEM sources, as well as their
significant characteristics in flood applications.

Casas et al. [16] evaluated the effects of DEM sources on the hydraulic modeling of floods in terms
of the hydraulic model outputs such as flood inundation and water surface elevation. The results of this
study demonstrated that the flood model output was highly dependent on the DEM quality with LiDAR
data, showing a high potential source for the parameterization of channel and floodplain topography.

Schumann et al. [65] carried out a comparison of DEMs generated from airborne LiDAR, contours,
and SRTM in terms of the effect on a flood inundation model. The results were compared with
inundation maps from a model calibrated with ground-surveyed maximum watermarks. As expected,
the authors found that LiDAR had the lowest RMSE, followed by contour DEM and SRTM. The estimated
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inundated area for LiDAR was the largest area and the nearest to the reference value. It was concluded
that LiDAR is the most reliable source of topographic data for flood hazard estimation.

Moreover, Wang and Zheng [66] compared LiDAR-derived DEM with United States Geologic
Survey (USGS) national elevation data (NED) on floodplains in North Carolina. Sanders [67] extended
the scope by evaluating the difference between LiDAR-derived DEM and NED with airborne IfSAR
and SRTM for flood inundation modeling. Sanders found that flood model predictions were highly
dependent on the DEM resolution. The author also concluded that LiDAR-derived DEM was more
accurate than other DEM sources which overestimated the flood extent. The need for LiDAR data is
now a fundamental input to hydrologic and hydraulic models, especially in flood inundation models.

Furthermore, Coveney and Fotheringham [68] examined the impact of DEM data sources on flood
risk prediction in the coastal areas. The authors used national-coverage DEM known as Ordnance
Survey Ireland, two GPS-derived DEMs generated at low and medium resolution, and terrestrial
LiDAR-derived DEM to model flood risk. The findings demonstrated that the DEM generated from
terrestrial LiDAR was more advantageous than other DEM data sources, especially in representing
small topographical features in a local flood.

Additionally, Papaioannou et al. [69] investigated the influence of different DEM sources used in a
hydraulic model for flood analysis. The results of the flood models were compared with historical flood
records. According to this study, DEMs derived from terrestrial LiDAR were best, as they generated
the closest values to the historical data. This finding indicated that the high accuracy of DEMs helped
improve the flood risk analysis task. This study concluded that the accuracy of DEMs is the major
factor that affects flood modeling results.

In addition, Li and Wong [70] studied the effects of different DEM sources on flood simulation
results. The authors concluded that different DEM sources have major impacts on inundation areas
from flood prediction results as compared to DEM spatial resolution. Based on the experimental
results, it was found that inundation areas from LIDAR-derived DEM were the closest to reality.
Furthermore, this study also highlighted that the reliability of the DEM source significantly affected
the flood simulation results.

Jakovljevic and Govedarica [71] simulated flood inundation by selecting the grid cell of a DEM
lower than the projected water level, connected to an adjacent flooded grid cell. In this study, the authors
used LiDAR-derived DEM and the Advanced Spaceborne Thermal Emission and Reflection Radiometer
Global Digital Elevation Model (ASTER GDEM) to study the difference in the estimated flood extents.
It was found that land elevation from ASTER GDEM was overestimated, which directly resulted in
an underestimation of flood inundation risk. The inundation map generated from ASTER GDEM
indicated that the inundation area was two times smaller than that generated from LiDAR-derived
DEM. Figure 3 shows the visual comparison of the flood extent from LiDAR and ASTER GDEM.

Based on previous research, LiDAR proved to be an efficient method to provide terrain data
with high resolution as compared to other DEM sources [72]. According to Sampson et al. [73],
LiDAR-derived DEMs are considered the most reliable DEMs for flood modeling to date. In summary,
hydrological modeling studies showed that the vertical accuracy of DEMs does affect the accuracy of
hydrologic predictions [70].
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3.4. LIDAR as a Source of Information for Hydrodynamic Model Verification

Based on previous studies, it was found that LiDAR data are capable of producing high-resolution
DEMs for flood simulation modeling, which can be an efficient tool in floodplain inundation
management. Hence, they are commonly used for hydrodynamic model verification. Courty et al. [74]
mentioned that inundation areas from LIDAR-derived DEM were the closest to reality as reported
by Li and Wong [69]; therefore, they used LiDAR-derived DEM as a reference when comparing
DEMs generated from Advanced Land Observing Satellite (ALOS) World 3D-30m (AW3D30), SRTM,
and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) for flood modeling
purposes. Based on the flood simulation results, AW3D30 performed better than SRTM, while ASTER
was the worst performer of all global DEMs.
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Hashemi et al. [75] also used LiDAR-derived DEMs as a reference when investigating the quality
of DEMs generated from an unmanned aerial vehicle (UAV) used in flood modeling. These studies
concluded that the reliability of floodplain maps is dependent on the quality of DEM. Van de
Sande et al. [76] adopted LiDAR DEM data as ground truth referring to the terrain elevation. Hence,
the flood risk assessment of publicly available DEMs such as ASTER and SRTM DEM was compared
with flood risk based on LiDAR DEM. The inundation maps of these publicly available DEMs were
smaller than inundation maps produced using LiDAR DEM. The underestimations of the flood
risk influence the credibility when making appropriate decisions regarding flood risk management
and mitigation.

Furthermore, most small river basins in many countries are not characterized by high-quality
DEMs such as LiDAR data [77]. Hence, aerial photographs or globally available DEMs such as ASTER
and SRTM are commonly used, which leads to low accuracy of flood prediction due to the significant
effect of low-accuracy DEMs. Therefore, this study proposed using corrected DEMs generated from
aerial photographs as an option in flood modeling. The correction of DEM was performed based on
field measurements to determine vertical errors. Then, a reference DEM that was developed from
LiDAR data was used to validate the performance of the original and corrected DEM. The impact of
DEM accuracy was evaluated using the flood model. The results from the model indicated that the
flood prediction of corrected DEM was better than that of the original DEM when compared with the
simulated result of the reference DEM, as shown in Figure 4. However, the authors suggested that the
proposed method was not suitable for urban areas.
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3.5. LiDAR DEM for Flood Hazard and Flood Risk Mapping

Flood risk assessment and management rely on the accuracy of flood extent simulated using a
flood model. Most flood risk mapping is based on a conceptual risk approach that uses DEMs to
predict the flood hazard according to the projected water levels and to indicate the vulnerability of
areas to flood events with damage to properties and livelihood. Hazard mapping is an important
element in assessing risk and designing mitigation measures for flood-prone areas.

Flood hazard is usually generated based on the outcome of hydrological models that simulate
the water movement across the floodplain like flood extent, water velocity, or water depth [11,37,78].
In addition, flood hazards can also be produced using a statistical or machine-learning approach
integrated with GIS technology by using fluvial stage records and topographic data [79,80]. Flood hazard
and flood risk maps indicate the flood-prone area with possible destructive impact, which is used for
flood planning purposes.
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For instance, existing digital mapping was not sufficient enough to provide a high accuracy
of flood risk maps for Annapolis Royal, Nova Scotia, Canada, an area that is vulnerable to coastal
flooding [81]. Hence, the need for a high-resolution DEM was studied to produce accurate inundation
maps based on sea level and climate change. As the sea level rises, water inundates the nearby lands;
thus, it is important to define the extent of the flood inundation. The predicted results were compared
with the benchmark of a past storm event to test the model. Based on the prediction results, mitigation
structures such as dykes could be suggested if coastal development is planned to take place in any of
the risk areas.

Puno et al. [13] conducted flood simulations at different return periods with LiDAR-derived
DEMs as a primary source of elevation data in the hydrologic model. The model was calibrated by
comparing the predicted flood simulation with a real flood event in 2016. Flood hazard maps were
generated from the simulated flood events using GIS and LiDAR-derived DEM. The generated maps
were validated through an interview with the affected localities. The authors found that using LiDAR
data in the hydrologic model could produce high-resolution flood hazard maps that can offer more
accurate decisions and actions in disaster management and mitigation.

Ogania et al. [14] evaluated the effect of DEM resolutions on generating flood hazard maps using
hydraulic modeling software for disaster preparedness and mitigation. This study presented the
performance of three different DEM resolutions, which were LiDAR, IfSAR, and SAR DEMs in flood
modeling studies. The accuracy of each generated flood map was evaluated using a confusion matrix
approach by comparing the generated maps with the actual flood data. This paper revealed that
LiDAR-derived DEMs provide a more defined flood extent and clear distribution of flood hazards.
Furthermore, they offer more accurate flood maps compared to other DEM data sources, which aligned
with the findings from previous researchers such as Hailes and Rientjes [82] and Schumann et al. [65].

Mihu-Pintilie et al. [83] used high-density LiDAR data with 2D hydraulic modeling to improve
urban flood hazard maps. This study simulated four different multi-scenarios at different discharge
values. Because LiDAR data provide a precise representation of the hydraulic conditions such as
channels and roads, the combination of 2D hydraulic and LiDAR DEMs produced accurate information
regarding flood hazard vulnerability. Flood hazard maps were generated based on flood depth
classification according to the Japanese criteria of the Ministry of Land Infrastructure and Transport
(MLIT). The criteria suggested five hazard classes of very low, low, medium, high, and extreme classified
as H1, H2, H3, H4, and H5, respectively. Figure 5 shows that all hazard classes were encountered
according to scenario 1 (s1). However, most of the affected areas were assigned with the very low or
low class of hazard (H1 and H2).

LiDAR datasets were implemented in a new procedure of flood hazard estimation proposed
by Guerriero et al. [84]. The authors developed algorithms of interpolation of multiple probability
models of hydrometric time-series data combined with topography derived from LiDAR data for the
production of flood hazard maps. Flood hazard maps produced from this method were compared
with a flood event observation in 2015 for validation. This suggested method can be considered as
another option for hydraulic simulations to provide flood hazard analysis.

In conclusion, high-resolution DEMs have great influence on producing accurate and reliable maps
in the field of flood simulations. Using these maps helps in disaster risk reduction and management,
especially in identifying specific areasthat need to be prioritized for providing appropriate flood
risk management measures to be taken to combat flood disaster. Previous studies implied that
LiDAR-derived DEMs improve the accuracy of flood parameters; hence, they can help in producing
high-quality flood hazard and flood risk mapping.
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Figure 5. Flood hazard map based on flood depth classification according to the Ministry of Land
Infrastructure and Transport (MLIT) [83].

4. Challenges and Future Perspectives

The frequency of flood disasters all over the world is increasing due to climate change and
rapid urbanization. Future climate projections could provide an additional understanding of extreme
climate changes, including the risk of flood events [85]. Furthermore, studies on flood mapping
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and monitoring increased with the advancement of current technologies to reduce the impact of
flood disasters. LiDAR data acquisitions seem to be a promising approach to solve the problems
associated with the inadequate representation of topographic data. Both airborne and terrestrial
LiDAR systems are active imaging techniques operating with light that allow the systems to collect
data during daylight or nighttime. Previous studies revealed that LiDAR technology has many
advantages, which makes it suitable for flood modeling, particularly in flat areas and complex urban
environments. Depending on the spatial scale, LiDAR data offer different advantages for accurate
terrain mapping compared to other sources. Moreover, LiDAR could be advantageous to provide
information in small-scale flood risk management by having small important topographic features such
as dykes, ditches, and levees [15,51,86,87]. Furthermore, the integration of LiDAR technology with any
remotely sensed products may be used to increase the effectiveness of this technology, especially in
flood modeling.

However, there are some restrictions in using LiDAR-derived DEM in the context of flood
applications. The main drawback of both LiDAR systems is the process of classifying ground from
non-ground data for DEM generation, which is needed in simulations of the flood model. Ground
surface information is not easily extracted, especially in areas with complex terrain surface and features
such as buildings and vegetation [88]. The ground filtering process proves to be a challenging task as it
can affect the accuracy of the LiDAR products [8,49,89]. Several filtering algorithms were developed
by previous researchers to process LiDAR data. However, the LiDAR data must be correctly processed
because they could influence the outcomes of flood mapping [69]. The algorithms perform differently
depending on the specific surface conditions. This means that not all algorithms are competent in
producing high-quality LiDAR-derived DEM data [90]. A filtering algorithm should be selected based
on its ability to produce the desired result [91]. Common filtering algorithms used in LiDAR data
processing include elevation threshold with expand window (ETEW), maximum local slope, adaptive
triangulated irregular network (TIN), and progressive morphology [90,92,93]. Filtering problems are
expected to be better solved with the evolution of machine learning [88].

In addition, the sensitive response of flood inundation to small changes in topography
representation gives rise to several challenges [21]. Collecting small-scale features needs a high
resolution of DEM data, but the data are rarely available, especially for developing countries. Not all
countries can afford to use LiDAR data due to economic constraints. The high cost and the difficulty
of processing huge LiDAR datasets could be the main reason why LiDAR data are not used in some
developing countries. Even developed countries like the United States and the United Kingdom do not
have LiDAR data available for the entire country. Another challenge when using LiDAR data is the
need for huge data storage due to the high-point-density data. High-point-density data need a longer
computational time to process [94,95]. Between airborne and terrestrial LiDAR systems, the time
required for flood model simulations using terrestrial LiDAR is 10 times longer than that required for
airborne LiDAR [96].

Furthermore, even though high-resolution DEMs offer detailed information topography, they take
a longer time to process or analyze the data. Abucay and Tseng [97] carried out a visibility analysis
that could be used in identifying flood-prone areas using various DEM sources. The authors reported
that the LiDAR-derived DEM required 28 min to complete the visibility analysis, followed by the SAR
DEM that took 19 s, while ALOS and ASTER GDEM both required only 3 s to complete the process.
Nevertheless, the computational time problem may be solved with future advancements in computer
technology. Moreover, the LiDAR system cannot penetrate water bodies as its laser beam is absorbed
by the water. Therefore, the inaccurate elevation measurement of water-covered areas influences
cross-section attributes, leading to inaccuracies in hydrodynamic simulations [98].

5. Conclusions

Detailed topographic information is a crucial input parameter for flood modeling and monitoring.
The performance of flood modeling is highly dependent on the DEM accuracy [10], especially in

19



Remote Sens. 2020, 12, 2308

small-scale flood modeling studies. Flood model simulation results show differences in water depth
and inundation when using detailed DEMs, proving that DEM accuracy has a significant impact on
flood hazard estimation [21,41]. Therefore, the need for high-resolution DEM explains the interest in
exploring new technology to generate detailed elevation data. In this review, the promising applications
in numerous flood studies demonstrate that the LiDAR system is capable of offering high-density and
high-resolution DEM data to improve the flood model input, thus resulting in a higher accuracy of
flood modeling results. However, LiDAR data also face several difficulties that need to be addressed
in the future regarding the filtering process for DEM generation and enormous point density data
that need huge data storage, resulting in a longer computational time to simulate flood models.
Additionally, integration between terrestrial and airborne LiDAR or any remotely sensed products
seems to be a promising approach to solve the problems associated with the inadequate representation
of topographic data in topographically complex areas [99]; hence, more investigation and research
work for the expansion of LiDAR systems can be foreseen in upcoming applications of flood detection
and monitoring.
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Abstract: Currently, soil-moisture data extracted from microwave data suffer from poor spatial
resolution. To overcome this problem, this study proposes a method to downscale the soil moisture
spatial resolution. The proposed method establishes a statistical relationship between low-spatial-
resolution input data and soil-moisture data from a land-surface model based on a neural network
(NN). This statistical relationship is then applied to high-spatial-resolution input data to obtain
high-spatial-resolution soil-moisture data. The input data include passive microwave data (SMAP,
AMSR2), active microwave data (ASCAT), MODIS data, and terrain data. The target soil moisture
data were collected from CLDAS dataset. The results show that the addition of data such as the
land-surface temperature (LST), the normalized difference vegetation index (NDVI), the normalized
shortwave-infrared difference bare soil moisture indices (NSDSI), the digital elevation model (DEM),
and calculated slope data (SLOPE) to active and passive microwave data improves the retrieval
accuracy of the model. Taking the CLDAS soil moisture data as a benchmark, the spatial correlation
increases from 0.597 to 0.669, the temporal correlation increases from 0.401 to 0.475, the root mean
square error decreases from 0.051 to 0.046, and the mean absolute error decreases from 0.041 to 0.036.
Triple collocation was applied in the form of [NN, FY3C, GEOS-5] based on the extracted retrieved
soil-moisture data to obtain the error variance and correlation coefficient between each product and
the actual soil-moisture data. Therefore, we conclude that NN data, which have the lowest error
variance (0.00003) and the highest correlation coefficient (0.811), are the most applicable to Qinghai
Province. The high-spatial-resolution data obtained from the NN, CLDAS data, SMAP data, and
AMSR2 data were correlated with the ground-station data respectively, and the result of better NN
data quality was obtained. This analysis demonstrates that the NN-based method is a promising
approach for obtaining high-spatial-resolution soil-moisture data.

Keywords: soil moisture; neural network; downscaling; microwave data; MODIS data

1. Introduction

Moisture stored in surface soil accounts for less than 0.001% of total global freshwater
by volume but plays an important role in connecting global terrestrial water, energy, and
carbon cycling processes [1]. By influencing soil evaporation and transpiration, soil mois-
ture (SM) strongly affects the interaction between the land surface and the atmosphere [2].
Thus, a thorough understanding of SM can contribute to efficient monitoring of the climate
and environmental changes and provide valuable guidance for drought monitoring and
flood forecasting in agriculture and forestry [3]. In addition, SM determines the distribution
of precipitation infiltration and surface runoff, which controls plant growth [4]. There-
fore, high-quality SM data is crucial in multiple technological fields, such as hydrology,
meteorology, climatology, and water-resources management.
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Traditional methods to monitor SM usually rely on automatic or manual collection
methods, which have the advantages of temporal continuity and guaranteed accuracy.
However, these methods are unsatisfactory because, for starters, there are insufficient
observation stations, which is especially serious because SM results are representative only
of the soil near the given station. In addition to poor spatial representation, these methods
are time-consuming and labor-intensive [5].

However, recent developments in remote-sensing methods have created the possibility
to obtain large-scale, long-term soil-moisture data. In this field, microwave radiometers
have become the most important source of global SM data due to their better tempo-
ral sampling features. In particular, microwave bands such as the L (0.5–1.5 GHz), C
(4–8 GHz), and X (8–12 GHz) bands have been widely used to measure SM [6]. Currently,
four passive microwave satellites and one active microwave satellite monitor SM glob-
ally. Four passive microwave sensors are currently in orbit: the microwave radiation
imager (MWRI), which operates in the X-band, onboard the Fengyun-3 (FY3) satellite
launched by the China National Space Administration (2008–present) [7], the Advanced
Microwave Scanning Radiometer (AMSR2), which operates in the X and C bands, on-
board the Global Change Observation Mission-Water (GCOM-W) satellite launched by
the Japan Aerospace Exploration Agency (JAXA) (2012–present) [8], and two dedicated
satellites equipped with L-band radiometers: the Soil Moisture and Ocean Salinity (SMOS)
(2009–present) instrument launched by the European Space Agency (2010–present) [9] and
the Soil Moisture Active Passive (SMAP) instrument launched by the National Aeronautics
and Space Administration (NASA) (2015–present) [10]. Another contributor is the ASCAT
(2007–present) instrument, which monitors active scatterer in the C band from the MEOP
satellite launched by the ESA and is an important source of active microwave data [11].
These microwave radiometers have the advantages of providing a complete observation of
the global land surface within two to three days and providing surface soil-moisture infor-
mation on a large scale. Their major disadvantage, however, is the poor spatial resolution
of the microwave radiometer, which is typically about 25–40 km. However, SM is subject
to complex interactions between topography, soil, vegetation, and other meteorological
factors, which leads to high spatial variability. Therefore, many regional hydrological and
agricultural applications require SM data with a spatial resolution of several kilometers or
even tens of meters. It is thus vital to develop techniques to obtain accurate, high-precision,
soil-moisture data with high coverage.

The low spatial resolution of soil-moisture data extracted from passive microwave
data is typically downscaled by combining it with other high-spatial-resolution data. Based
on the combined data type, the following two categories emerge: (i) combinations of active
and passive microwave data and (ii) combinations of visible, infrared, and microwave data.
In previous work, Njoku et al. combined radar (active) and radiometer (passive) data to
study SM under vegetated-terrain cover and analyzed the sensitivity with which multi-
channel low-frequency passive and active measurements can detect SM under different
vegetation conditions [12]. In other work, Das et al. obtained a linear relationship between
radar backscatter and soil-moisture data by merging coarse-scale radiometer SMAP SM
data with the fine-scale backscatter coefficient to produce high-spatial-resolution (9 km) SM
data [13]. Zhan et al. used a Bayesian method to merge relatively accurate 36-km radiome-
ter brightness temperature with the relatively noisy 3-km radar backscatter coefficient
and explored the potential for retrieving SM from these results. Their results prove that
the Bayesian method produces better data than direct extraction of either the brightness
temperature or radar backscatter [14]. To combine visible and infrared remote sensing with
passive microwave data, Wilson et al. combined and weighted terrain maps and other
spatial attributes according to the correlations to generate SM data [15]. Srivastava et al.
used artificial neural networks (NN), support vector machines, relevance vector machines,
and generalized linear models to combine MODIS surface temperature with SM retrieved
by SMOS to conclude that the artificial NN produced better results than other methods [16].
Yang et al. estimated soil parameters by assimilating the brightness temperature data
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simulated by the land surface model and the radiative transfer model. By minimizing the
brightness temperature errors of AMSR2, they estimated the SM [17]. In researching SM
downscaling, Chen et al. used dual Kalman filters to assimilate the brightness temperature
of AMSR-E with the MODIS surface temperature [18]. Finally, Chauhan et al. used the uni-
versal triangle approach to link the high-resolution normalized difference vegetation index
(NDVI), surface albedo, and land-surface temperature to SM data, thereby disaggregating
low-spatial-resolution microwave SM into high-spatial-resolution SM [19]. The common
idea behind these methods is to establish a statistical correlation or physical model between
SM and auxiliary variables.

Qinghai Province is in the northeastern part of the Qinghai-Tibet Plateau, which is
the source of the Yangtze River, the Yellow River, and the Lancang-Mekong River, and
is an important water-conserving area in China and Asia [20]. In recent years, under the
influence of global warming, the climate of Qinghai has been warming and humidifying,
glaciers and snowfields are shrinking year by year, rivers, lakes, and wetlands are shrinking,
soil erosion is expanding, and the water-conserving function is deteriorating seriously. Soil
moisture is an important surface characteristic parameter and has an irreplaceable role in
related land degradation, drought monitoring, and water conservation monitoring [21].
Therefore, an urgent need exists to systematically monitor the soil moisture information in
Qinghai Province, which is an area that seriously lacks ground truth data, making the use
of remote sensing data to retrieve SM in Qinghai Province of significant potential value.

The quality of remote sensing data largely determines the results of remote-sensing
retrieval of soil moisture. Existing studies, such as those mentioned above, usually involve
only a single passive microwave radiometer or a single passive microwave radiometer
combined with a single active microwave radar for SM retrieval and do not involve the
three bands L, C, and X simultaneously [22]. In this paper, we use the powerful multivariate
and nonlinear fitting capability of NN to analyze the single-band as well as multi-band
synergy in detecting soil moisture in the region of Qinghai Province for the three bands L,
C, and X and select multiple microwave sensors (SMAP, AMSR2, FY3C, ASCAT) as data
sources. The ability to detect SM information in Qinghai Province through multi-band
synergy compensates for the shortcomings of insufficient information from a single sensor.
At the same time, elevation and slope data are introduced to treat the complex topography
of Qinghai Province to make the algorithm more universal [23]. Finally, we use MODIS
data with high spatial resolution and topographic data to downscale SM experiments with
the NN model trained with low-resolution data.

The paper is organized as follows: Section 2 explains the data and methods used in
this study. Section 3 presents and discusses the main findings. Finally, Section 4 gives the
main conclusions of the study.

2. Materials and Methods
2.1. Data
2.1.1. Microwave Data

This study relies mainly on the passive microwave soil-moisture datasets SMAP, FY3C,
and AMSR2 and the active microwave soil-moisture dataset of ASCAT as input microwave
data. The datasets FY3C (10.65, 18.7, 23.8, 36.8, 89 GHz) and AMSR2 (6.925, 7.3, 10.65,
18.7, 23.8, 36.5, 89 GHz) have multiple frequencies, whereas SMAP (1.41 GHz) and ASCAT
(5.3 GHz) have fixed frequencies; see Table 1 for details. In general, the L, C, and X bands
are sensitive to SM, whereas other bands in other frequency ranges are not sensitive to
SM. Therefore, this study uses the brightness temperature from the 1.41 GHz channel
from SMAP, from the 6.9, 7.3, and 10.65 GHz channels of AMSR2, and from the 10.65 GHz
channel of FY3C. Specifically, the SMAP radiometer uses a 24 MHz bandwidth centered
at 1.41 GHz. The AMSR2 radiometer uses 0.35, 0.35, 0.10 GHz bandwidths centered at
6.9, 7.3, and 10.65 GHz, respectively. The FY3C radiometer uses a 180% ± 10% MHz
bandwidth centered at 10.65 GHz. In addition, we use the backscatter coefficient (σ40)
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from the 5.3 GHz channel of the ASCAT active microwave data as the input variables for
the NN. The specific spatial distribution of soil moisture is shown in Figure 1.

Table 1. Comparison of global soil-moisture products.

Satellite Unit Ascending/Descending Spatial Resolution Time Series

SMAP m3/m3 18:00/6:00 36 km 2015–present
AMSR2 m3/m3 13:30/1:30 0.25◦ 2012–present
FY3C m3/m3 13:40/1:40 25 km 2014–present

ASCAT m3/m3 —— 25 km 2007–present
GEOS-5 m3/m3 —— 0.25◦ × 0.3125◦ 2014–present
CLDAS m3/m3 —— 0.0625◦ × 0.0625◦ 2017–present

Figure 1. Daily average soil-moisture maps from (a) FY3C; (b) AMSR2; (c) SMAP; (d) CLDAS.

2.1.2. Data from Land Surface Model

As target data, we use the CLDAS soil volumetric water content analysis product,
which is published by China Meteorological Data Service Centre. Comparing the quality-
controlled SM observation data from automated monitoring stations in China with the
CLDAS-V2.0 soil volumetric water content data shows that the CLDAS soil volumetric
water content product fits the actual ground observation data [24], with a national regional
average correlation coefficient of 0.89, a root mean square error (RMSE) of 0.02 m3/m3,
and a deviation of 0.01 m3/m3. Therefore, CLDAS SM products are considered of higher
quality than similar international products (such as the GLDAS and NLDAS products), and
they also offer better spatial and temporal resolution. In addition, we use the SM data from
the SM ground model GEOS-5 as the input product for triple collocation (TC). The GEOS-5
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model provides hourly products, and this study uses the time of 05:30 for the surface SM
dataset to represent the SM between 0 and 7 cm within the surface layer [25].

2.1.3. MODIS Data and Terrain Data

The auxiliary input data included land surface temperature (LST) and vegetation
index (VI), and the VI data further included the enhanced VI (EVI) and the NDVI [26]. The
daily LST data were provided by the MODIS-Terra LST product (MOD11A1) with a spatial
resolution of 1 km. The EVI and NDVI data were provided by the MODIS-Terra VI products
(MOD13A2) and have a temporal resolution of 16 days and a spatial resolution of 1 km. This
study also uses data from the MODIS-Terra surface reflectance product (MOD09A1), with
a temporal resolution of 8 days and a spatial resolution of 500 m. The annual land cover
data (MCD12Q1) were also used here. The specific spatial distribution of vegetation cover
is shown in Figure 2. In addition, we use the results of the SRTM 90-m digital elevation
model (DEM) data and the calculated slope data (SLOPE) based on the DEM data for the
study area. Table 2 summarizes the datasets used. The above data were obtained from the
land processes distributed active archive center (https://lpdaac.usgs.gov/, accessed on
29 March 2021).

Figure 2. Map of vegetation cover (MCD12Q1).

Table 2. Summary of auxiliary input variables.

Input Variables Dataset Spatial
Resolution

Temporal
Resolutions Time Series

NDVI MOD13A2 1 km 16 days 2000–present
EVI MOD13A2 1 km 16 days 2000–present
LST MOD11A1 1 km daily 2000–present

DEM SRTM 90 m - 2000
SLOPE SRTM 90 m - 2000
NSDSI MOD09A1 500 m 8 days 2000–present

2.1.4. In Situ Observations

The measured data used in this paper are mainly divided into SM data and precip-
itation data from stations in Qinghai area. SM data are obtained from a soil depth of
10 cm and in time intervals of hours from six automated SM stations (Delingha, Dulan,
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Golmud, Nomuhong, Tianjun, and Wulan). The time interval for precipitation data is one
day, and the areas contain the seven stations Yeniugou, Xiaozaohuo, Dachaidan, Chaka,
Wudaoliang, Xinghai, Qumarai.

2.1.5. Data Preprocessing

Due to snow and ice coverage in winter, active and passive microwave data were not
available from December to March in the study area because snow cover and frozen soil
typically cover the land surface, which might introduce large biases in satellite-retrieved
products such as SM [27]. Therefore, this study uses the satellite data and ground station
data for Qinghai Province (31◦–40◦ N, 89◦–103◦ E) from 1 April 2017 to 30 November
2017 and from 1 April 2018 to 30 November 2018. To apply satellite observation data and
SM data in the NN model, all data were resampled to a grid of 0.25◦ × 0.3125◦. SMAP
and AMSR2 data were treated by using bilinear interpolation, ASCAT and FY3C data by
the inverse distance weighted method, and CLDAS, MODIS, and terrain data by simple
average aggregation. Since the passive microwave datasets (SMAP, AMSR2, and FY3C)
include both ascending and descending orbits, we processed the data from these orbits
separately. In addition, the brightness temperature data of the passive microwave data
could be divided into vertical and horizontal polarization channels, based on which the
microwave polarization difference index (MPDI) is calculated as [28]

MPDI = (Tbv − Tbh)/(Tbv + Tbh), (1)

where Tbv and Tbh are the brightness temperature of the vertical and horizontal polar-
izations, respectively. Based on the assumption that the microwave channel is not subject
to strong atmospheric attenuation, the MPDI is designed to eliminate the influence of
surface temperature on microwave signals. In addition, it is a normalized polarization
difference, which can serve as an indicator of SM status as a function of incident angle. In
addition, the MPDI is sensitive to the dielectric properties of soil, and even more so to the
surface roughness. Therefore, the MPDI is high for flat surfaces but relatively low for rough
surfaces, such as areas with vegetation cover. In the preprocessing of the ASCAT data,
the σ40 time series of each grid was renormalized to the range of [0 1], which means that
the highest (lowest) backscatter value measured in this study is assigned the value 1 (0).
The backscatter time index obtained from this preprocessed ASCAT data is abbreviated
“BTI” [29]. This processing method emphasizes the time mode of the ASCAT signal and
has been shown to reduce the retrieval time. However, since the processing is performed
on the grid, it might reduce the spatial information provided by the radar.

2.2. Method
2.2.1. Triple Collocation Method

The traditional error estimation method typically compares retrieved SM data with
actual observation data obtained from ground stations. However, such comparisons are
usually limited in number and location of instrument verification points, which makes it
difficult to ensure robust datasets. In addition, the spatial mismatch between the ground
data and the remote-sensing satellite data, as well as the heterogeneity of the ground
surface, lead to representative errors and scale-conversion errors. Therefore, we used TC
analysis [30–32] to estimate SM error. Compared with the traditional method to estimate
SM error, it (1) does not require a high-quality reference dataset, which means that it
can verify the three different SM data in the study area without ground measurement
data. (2) Triple collocation simultaneously obtains the error variances of the three different
SM data and (3) avoids the representative error caused by the spatial mismatch between
the ground measurement data and the remote-sensing satellite data in the traditional
estimation method. (4) Finally, the improved extended TC method [33] detects correlations
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between the retrieved SM data and the actual surface layer SM data. The error variance is
expressed by [33]

σ2
εY
= σ2

Y − σYXσYZ

σXZ
,

σ2
εY
= σ2

Y − σYXσYZ
σXZ

,

σ2
εZ
= σ2
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,
(2)

where σ2
X is the variance of X, and σXY is the covariance of X and Y. The correlation

coefficient is [33]

RX =

√
σXYσXZ

σ2
XσYZ

, (3)

where RX is the correlation between X and the unknown true SM state.
In this study, the SMs retrieved by the NN method, collected from satellite data, and

obtained from the ground model GEOS-5 are triple-matched in the form [NN data, satellite
data, reanalysis data] to estimate the error variance and correlation coefficient of the TC.
The SM obtained from the NN method is evaluated based on these results.

2.2.2. Evaluation Index

This study uses spatial correlation, temporal correlation, root mean square error, and
mean absolute error to quantitatively analyze the aspects that differentiate SM retrieved by
the NN and SM obtained from a model, as well as aspects that differentiate SM retrieved
by the NN and SM collected from ground stations.

(1) Spatial correlation: ρspatial

Spatial correlation serves to evaluate the accuracy with which the spatial model
retrieves SM. It is obtained by calculating the Pearson correlation coefficient between the
retrieved SM, which produces a daily correlation value between the whole area and the
simulated SM map. For a better comparison, the average spatial correlation is calculated as
the average of all daily spatial correlations with a significance greater than 95%.

(2) Temporal correlation: ρtemporal

Temporal correlation is used to evaluate how well the retrieved SM matches the
temporal variations in the SM. It is a location-related metric calculated at the pixel level.
The Pearson correlation between the retrieved time series and the modeled SM is calculated
for each pixel, which gives a correlation map. The mean temporal correlation is the mean
value of all the pixels in the temporal correlation map.

(3) Root mean square error: RMSE

The RMSE is calculated based on the unit error and the deviation from a reference
of the unit error. Therefore, it provides a comprehensive assessment of recalculation,
including the accuracy and precision of data retrieval. The RMSE is calculated at the pixel
level by using the original SM time series, and a map of the RMSE is obtained for each
retrieval. The mean RMSE is the mean value of all the pixels in the RMSE map.

(4) Mean absolute error: MAE

The MAE is the absolute error between the retrieved SM and the simulated SM. It
is calculated at the pixel level, and each search generates a map. The MAE correlation
is the mean value of all the pixels in the MAE map.2.2.3. Downscaling scheme based on
neural network.

A NN [34–36] is essentially a system to do nonlinear mathematical calculations and
can represent any complex nonlinear process. The multivariable nature and nonlinear
ability of NN fully exploit the synergy between different data. The NN used in this study
has three parts: (1) an input layer, which receives the satellite observation data and auxiliary
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variable inputs; (2) a hidden layer; and (3) an output layer, which provides the SM. This
structure suffices to fit any continuous function.

The NN was trained with satellite observation data as input data and the correspond-
ing ground model data as target data. The training dataset must represent the entire range
of expected scenarios, which means that it must include all climate regimes and seasons.
If the training data are well selected, the NN’s performance when applied to the training
data should differ little from its performance when applied to the entire dataset. Similarly,
a NN should perform in the same way when applied to two sufficiently representative but
completely different target datasets, meaning that any potential local or regional bias in the
target data is corrected. These characteristics can be traced to the fact that the estimated
spatial-temporal structure of the NN is determined by satellite observations instead of by
target data [37]. In addition, the NN correlates the satellite observations with the most com-
mon SM among the input values in the target data, regardless of the location or acquisition
time of the data [29].

The NN constructed in this study uses the Levenberg-Marquardt (LM) [38,39] training
algorithm and applies error backpropagation [40] to update the weights. Since the LM
algorithm stops when it finds a local minimum, the error surface is not fully explored.
Therefore, in this study, the NN training was repeated four times, each time using random
initial NN weights to ensure different starting points on the error surface; the optimal NN
was selected for retrieving SM products.

The key step in downscaling SM in this study is to build a statistical relationship using
low spatial-resolution data, and then input high-spatial-resolution data into the statistical
relationships to obtain the downscaled SM. [26,41,42] The spatial scale of different data is
unified and scaled by different resampling methods, as shown in Section 2.1.5. In particular,
the low-spatial-resolution microwave data are resampled to 1 km spatial resolution by
replication expansion, without changing the specific values, to make them consistent with
the spatial resolution of MODIS and other auxiliary data. Figure 3 shows a flow chart of
this process, which is described as follows:

• Aggregate auxiliary data (NDVI, EVI, LST, NSDSI, DEM, and SLOPE) into a grid with
a resolution of 0.25◦ × 0.3125◦, which is consistent with the spatial resolution of the
resampling microwave data (Tbh, Tbv, σ40, and BTI). Specific bands of microwave
data are available in Section 2.1.1. The relationship between these different input
variables and the ground model CLDAS SM was established through the NN, and the
quality of the NN SM was evaluated by comparing it with the CLDAS SM.

• Evaluate the SM dataset obtained from the NN model by using the TC method.
• Input the 1 km medium-resolution data from 2017 to 2018 into the verified NN model

to obtain 1-km-resolution SM data.
• Use the data collected from the ground station to verify the downscaled NN SM data.
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Figure 3. Schematic of the proposed SM downscaling method.

3. Results and Discussion
3.1. Selection Microwave Band

By studying the quality of data retrieved from various satellites and in different
bands, we identified the SM data from different sensors. This exercise was done using the
CLDAS SM dataset as reference data. Although the NN model was trained on a small
subset of the available dataset, the entire dataset was used for retrieval and evaluation.
Table 3 summarizes the average quality index of the SM calculated by comparing a single
microwave input dataset with the target SM dataset (CLDAS). Table 4 summarizes the
average quality index of the SM calculated by comparing a combination microwave input
dataset with the target SM dataset (CLDAS). Below, we discuss in detail the results of using
different satellites and different bands.
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Table 3. Average quality index for soil moisture calculated by comparing a single microwave input dataset with data from
CLDAS.

Ascending ρspatial ρtemporal RMSE MAE Descending ρspatial ρtemporal RMSE MAE

SMAP SMAP
1.41 Tbv 0.388 0.322 0.065 0.053 1.41 Tbv 0.374 0.235 0.066 0.055
1.41 Tbh 0.254 0.333 0.067 0.055 1.41 Tbh 0.306 0.260 0.068 0.056

1.41 MPDI 0.186 0.291 0.069 0.057 1.41 MPDI 0.121 0.259 0.070 0.058
AMSR2 AMSR2
6.9 Tbv 0.159 0.158 0.070 0.058 6.9 Tbv 0.250 0.182 0.068 0.056
6.9 Tbh 0.396 0.187 0.064 0.052 6.9 Tbh 0.474 0.182 0.062 0.050

6.9 MPDI 0.486 0.186 0.063 0.051 6.9 MPDI 0.509 0.214 0.061 0.050
7.3 Tbv 0.171 0.176 0.069 0.057 7.3 Tbv 0.275 0.166 0.067 0.056
7.3 Tbh 0.406 0.191 0.063 0.052 7.3 Tbh 0.488 0.194 0.061 0.050

7.3 MPDI 0.491 0.186 0.062 0.051 7.3 MPDI 0.511 0.217 0.061 0.050
10.7 Tbv 0.186 0.201 0.069 0.057 10.7 Tbv 0.312 0.216 0.066 0.054
10.7 Tbh 0.459 0.202 0.062 0.050 10.7 Tbh 0.525 0.205 0.059 0.048

10.7 MPDI 0.513 0.182 0.061 0.050 10.7 MPDI 0.529 0.214 0.060 0.049
FY3C FY3C

10.7 Tbv 0.249 0.183 0.067 0.055 10.7 Tbv 0.182 0.232 0.067 0.055
10.7 Tbh 0.471 0.188 0.061 0.049 10.7 Tbh 0.428 0.233 0.060 0.049

10.7 MPDI 0.511 0.177 0.060 0.049 10.7 MPDI 0.470 0.185 0.060 0.049
ASCAT ASCAT
σ40 0.259 0.334 0.066 0.054 BTI 0.269 0.336 0.064 0.053

Table 4. Average quality index for soil moisture calculated by comparing different microwave observation combinations
with data from CLDAS.

Input Variable ρspatial ρtemporal RMSE MAE

SMAP_TBV_A_AMSR2_TBH_D 0.621 0.393 0.053 0.043
SMAP_TBV_A_AMSR2_TBH_D_σ40 0.604 0.393 0.051 0.041
SMAP_TBV_A_AMSR2_TBH_D_BTI 0.597 0.401 0.051 0.041

SMAP_TBV_A_AMSR2_MPDI_D 0.600 0.362 0.055 0.044
SMAP_TBV_A_AMSR2_MPDI_D_σ40 0.583 0.354 0.053 0.043
SMAP_TBV_A_AMSR2_MPDI_D_BTI 0.573 0.381 0.053 0.042

SMAP_TBV_A: Ascending Tbv in the 1.41 GHz (SMAP) band; AMSR2_TBH_D: Descending Tbh in the 10.7 GHz (AMSR2) band;
AMSR2_MPDI_D: Descending MPDI in the 10.7 GHz (AMSR2) band; σ40: σ40 from ASCAT; BTI: BTI from ASCAT.

As shown in Table 3, in the 1.41 GHz (SMAP) band, Tbv has a higher spatial sensitivity
to SM than Tbh, and the quality of Tbv in the ascending orbit exceeds that of Tbv in the
descending orbit, with the average spatial correlation increased by 0.014 and the average
temporal correlation increased by 0.087, and RMSE and MAE decreased by 0.001 and
0.002, respectively. In the 6.9, 7.3, and 10.7 GHz bands, Tbh is more sensitive to SM
than is Tbv. In addition, the MPDI obtained from preprocessing in these bands also has
greater spatial sensitivity to SM. Based on the AMSR2 microwave data, the 10.7 GHz
band produces greater spatial and temporal correlation and lower RMSE and MAE in
Qinghai Province compared with the 6.9 and 7.3 GHz bands and FY3C’s 10.7 GHz band,
which indicate a higher sensitivity to SM. In addition, the experiments show that Tbh and
MPDI are highly similar in terms of spatial distribution in the 6.9, 7.3, and 10.7 GHz bands
but differ significantly from Tbv in the 1.41 GHz band, which leads to the assumption
that complementary relationships exist between them. The processed BTI data were also
more sensitive to soil moisture than the original σ40 data, with an increase of 0.01 in the
average spatial correlation and an increase of 0.002 in the average temporal correlation,
whereas the RMSE and MAE decreased by 0.002 and 0.001, respectively. Finally, the best
microwave band combination in Qinghai province was selected by joint retrieval of Tbv in
the ascending orbit of 1.41Ghz (SMAP) band, Tbh and MPDI in the descending orbit of
10.7Ghz (AMSR2) band, and BTI, σ40 data of ASCAT. Figure 4 shows the raw images of
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these five single bands, a map of daily average SM as obtained by the NN, and a map of
the temporal correlation between the NN SM and the CLDAS SM, respectively.

Figure 4. From top to bottom: (a) Ascending Tbv in 1.41 GHz band (SMAP); (b) Descending Tbh in 10.7 GHz band (AMSR2);
(c) Descending MPDI in 10.7 GHz band (AMSR2); (d) and BTI data from ASCAT; and (e) σ40 data from ASCAT. From left to
right: original image, map of daily average soil moisture map, as obtained by the NN, and map of temporal correlation
between NN soil moisture and CLDAS soil moisture.
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Figure 4 shows the SM monitoring capability of different wavebands in Qinghai
Province. The first row of Figure 4 shows that the original Tbv data at 1.41 GHz indicate
higher temperatures in bare land and forest areas than in grassland areas, and both bare
land and forest areas have lower daily average SM, which means that more information is
needed to distinguish forest areas from bare lands when retrieving SM. Meanwhile, lake
areas, such as the Qinghai Lake area in the northeast, are coolest. The temporal correlation
map indicates a weak negative correlation in hotter areas (higher Tbv), such as the bare
lands in the northwest (Qaidam Basin) and the bare lands in the northeast corner, and a
strong positive correlation in cooler areas. The original Tbh maps in the second row reveal
a high sensitivity to vegetation; combining these with the maps of average daily SM shows
that higher vegetation coverage and higher temperature results in greater SM. However,
the poor distinction between the bare lands in the northwest and the mixture of bare lands
and grassland in the southwest indicates that more information is needed to distinguish
between these two areas. The observation of the MPDI image in the third row shows a
high similarity in spatial distribution with the TBH in the second row. The BTI maps in
the fourth row show higher BTIs in the grassland in the southeast and in the hinterland
of the Qaidam Basin in the northwest, which reflects greater SM in the SM map, and the
mixture of bare lands and grassland around the Qaidam Basin has a lower BTI, which
reflect a lower SM. Therefore, the correlation map shows a negative correlation of BTI in
the northwest corner of Qaidam Basin and a strong positive correlation for the mixture of
bare lands and grassland in the southwest and the mixture of bare lands and grassland
in the northeast. The observation of the σ40 image in the fifth row shows that its spatial
distribution is highly similar to that of the NN SM and CLDAS SM time correlation map of
BTI in the fourth row. However, the differentiation between different areas of vegetation
cover is worse in the SM map.

Figure 5 shows that the spatial distributions of SM obtained by NN retrieval of the four
different combinations of data are highly similar to each other, and the overall SM increases
from northwest to southeast, which clearly distinguishes bare soil areas, bare soil and
grassland mixed areas, grassland areas, and forest areas, making up for the lack of detection
capability of the single microwave band in Figure 4. Figure 5b,d with BTI data added at
the same time do a better job distinguishing bare soil areas compared with Figure 5a,c
with σ40 added [i.e., bare soil areas in Figure 5b,d have lower SM values and are better
distinguished compared with grassland areas in the same image]. The NN SM and CLDAS
SM time-correlation maps show that all four images are poorly correlated with CLDAS
data in the northwest bare soil region and in the southeast corner of the mixed forest-steppe
region but achieve better correlation in all other regions. Figure 5a,b show greater positive
correlation in the northeast region than do Figure 5c,d, which confirms that the 10.7 Ghz
(AMSR2) band descending-orbit TBH is more capable of detecting SM information in
Qinghai province than is the 10.7Ghz (AMSR2) band descending-orbit MPDI.

The results in Table 4 show that the combined SMAP_TBV_A and AMSR2_TBH_D pro-
duce higher-quality SM data than the combination of SMAP_TBV_A and AMSR2_MPDI_D.
Taking the CLDAS soil moisture data as a benchmark, for SMAP_TBV_A and AMSR2_TBH_D
the combination spatial correlation and temporal correlation reach 0.621 and 0.393, re-
spectively, for SMAP_TBV_A and AMSR2_MPDI_D the spatial correlation and temporal
correlation reach 0.600 and 0.354, respectively. Meanwhile, given the high similarity be-
tween Tbh and MPDI (see Figure 4), AMSR2_TBH_D is used as a final input variable.
Furthermore, the addition of σ40 and BTI to the above NN reduces the RMSE and MAE.
Compared with the original σ40 data, BTI data obtained after preprocessing translate into
a greater temporal correlation between the SM obtained by the NN model and CLDAS
data. And based on experience, active and passive microwaves have different sensitivities
to SM, vegetation, and surface roughness. The 5.3 GHz observation frequency of ASCAT
also differs significantly from that of SMAP (1.41 GHz) and AMSR2 (10.7 GHz). Therefore,
the ASCAT dataset is considered as a potentially useful dataset that could compensate for
the combination of passive microwave data in the NN. BTI is used as a final input variable.

36



Remote Sens. 2021, 13, 1583

Figure 5. From left to right: Map of daily average SM retrieved by applying the NN, map of temporal correlation between
NN soil moisture and CLDAS soil moisture. From top to bottom: (a) NN input data: SMAP_TBV_A, AMSR2_TBH_D, and
σ40. (b) NN input data: SMAP_TBV_A, AMSR2_TBH_D, and BTI. (c) NN input data: SMAP_TBV_A, AMSR2_MPDI_D,
and σ40. (d) NN input data: SMAP_TBV_A, AMSR2_MPDI_D, and BTI. SMAP_TBV_A: Ascending Tbv in the 1.41 GHz
(SMAP) band; AMSR2_TBH_D: Descending Tbh in the 10.7 GHz (AMSR2) band; AMSR2_MPDI_D: Descending MPDI in
the 10.7 GHz (AMSR2) band; σ40: σ40 from ASCAT; BTI: BTI from ASCAT.
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Finally, the input variables are ascending Tbv in the 1.41 GHz (SMAP) band, descend-
ing Tbh in the 10.7 GHz (AMSR2) band, and BTI data from ASCAT.

3.2. Selection of Auxiliary Data

This section discusses the results of a collaborative analysis of microwave data and
auxiliary input data for SM retrieval. The purpose is to determine the content and type of
information that can be extracted from microwave data and auxiliary observation data and
determine how to combine these data to provide maximal information for SM retrieval.
Experimental trials were conducted to add and combine various auxiliary input data based
on microwave data and to retrieve SM from different combinations of datasets using the
NN model. These results are compared with the CLDAS data to determine the optimal
combination (see detailed results in Table 5). In addition, for completeness, the SM products
retrieved from all available data are compared among themselves.

Table 5. Average quality index of soil moisture calculated from auxiliary input variables compared with data from CLDAS.

Auxiliary Input Variable ρspatial ρtemporal RMSE MAE

TBV_TBH_BTI 0.597 0.401 0.051 0.041

Use of vegetation data

TBV_TBH_BTI_NDVI 0.623 0.409 0.050 0.040
TBV_TBH_BTI_EVI 0.614 0.409 0.051 0.040

Use of terrain data

TBV_TBH_BTI_SLOPE 0.616 0.407 0.051 0.040
TBV_TBH_BTI_DEM 0.634 0.412 0.049 0.039

TBV_TBH_BTI_SLOPE _NDVI 0.636 0.415 0.050 0.040
TBV_TBH_BTI_DEM _NDVI 0.658 0.443 0.048 0.038

TBV_TBH_BTI _DEM_SLOPE_NDVI 0.676 0.450 0.047 0.037

Use of land surface temperature data

TBV_TBH_BTI _LST 0.604 0.441 0.049 0.039
TBV_TBH_BTI_LST _NDVI 0.617 0.448 0.049 0.039

TBV_TBH_BTI_LST _NDVI_DEM_SLOPE 0.663 0.477 0.046 0.036

Use of surface reflectance data

TBV_TBH_BTI_NSDSI 0.608 0.410 0.051 0.040
TBV_TBH_BTI_NSDSI _NDVI 0.631 0.417 0.050 0.040

TBV_TBH_BTI_NSDSI _NDVI_DEM_SLOPE 0.684 0.453 0.047 0.037
TBV_TBH_BTI_ NSDSI _NDVI_DEM_SLOPE _LST 0.669 0.475 0.046 0.036

The brightness temperature and backscattering coefficient obtained by active and
passive microwave data are all affected by the opacity of vegetation cover, which reduces
the radiation from the soil surface. Therefore, information about the vegetation strongly
affects SM retrieval. Table 5 also shows that adding the VI data to the microwave data
improves spatial and temporal correlations and reduces MAE and RMSE. Compared with
EVI, NDVI improves the spatial correlation to 0.623. Given the high correlation between
NDVI and EVI, NDVI is used as a final input variable.

Terrain data such as DEM and SLOPE also play an important role in the retrieval
of SM by physical models. The complex mountainous terrain reduces the quality of the
microwave data retrieved. In addition, precipitation is mainly concentrated at higher
altitudes in many areas of Qinghai Province, leading to relatively lush vegetation cover,
which strongly affects the SM. As a result, DEM and SLOPE are also used as final input
variables. Table 5 shows that adding DEM to the NN model improves the spatial correlation
to 0.634 and the temporal correlation to 0.412. When NDVI, DEM, and SLOPE are all added
to the NN model, the spatial correlation reaches 0.676, and the temporal correlation reaches
0.450. The surface temperature information strongly affects the soil surface emissivity,
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which directly affects the brightness temperature and the backscatter coefficient. Table 5
shows that when a single auxiliary input variable for the NN model, adding LST produces
the greatest improvement of the temporal correlation, which attains 0.441.

Compared with CLDAS data, the SM retrieved (see Table 5) from the combination
of microwave data and auxiliary inputs NSDSI, NDVI, DEM, and SLOPE produces the
highest spatial correlation of 0.684, whereas the temporal correlation is only 0.453. The
SM retrieved from the combination of microwave data and auxiliary inputs LST, NDVI,
DEM, and SLOPE produces the highest temporal correlation of 0.477, whereas the spatial
correlation is only 0.663. The SM retrieved from the combination of microwave data
and auxiliary inputs NSDSI, LST, NDVI, DEM, and SLOPE produces a spatial correlation
of 0.669 and a temporal correlation of 0.475, which is the most balanced combination.
Therefore, we use herein the microwave data and auxiliary inputs NDVI, DEM, SLOPE,
LST, NSDSI, etc. as final input variables to obtain the daily average SM map of Qinghai
Province, which is shown on the left side of Figure 6. On the right side of Figure 4 is shown
the correlation map between SM data retrieved from the NN and CLDAS SM data.

Figure 6. (a) Map of daily average soil moisture retrieved by applying the NN to the combination of microwave data and
auxiliary inputs NDVI, LST, DEM, SLOPE, and NSDSI. (b) Map of temporal correlation between the NN SM data (left side)
and CLDAS soil moisture data.

Figure 6 shows that the overall SM in the entire study area increases from northwest to
southeast. Also, the high positive correlation in the grassland areas and poor correlations
in the Qaidam Basin (northwest corner) and the mixture of forest and grassland (southeast
corner) show that the above input variables do not allow us to retrieve SM from bare lands
and forest areas but do allow us to retrieve SM from grassland areas.

3.3. Triple Collocation Method to Verify Soil Moisture as Determined by Neural Network

To estimate how accurately the NN model determines the SM on a large scale, we
apply TC to analyze the SM from the NN. TC estimates the distribution of spatial error
for each dataset by locally solving the linear relationships between the three SM datasets.
One of the assumptions is that the errors in all three datasets are independent, so the FY3C
SM data, which were not used to train the NN model, are combined with the GEOS-5
ground-model SM data and the SM data used to train the NN model in the form of [NN
SM, FY3C SM, GEOS-5 SM] for TC. Furthermore, to ensure the accuracy of the TC results,
the areas with a correlation coefficient between the three different datasets less than 0.2 are
masked and are not involved in the final TC calculation. Finally, the error variance and
correlation coefficient are estimated between the NN data and the actual SM data.

The spatial distribution shown in Figure 7 of the variance in TC error indicates that
the variance in error between the SM retrieved from NN and FY3C and the actual SM is
lowest in the Qaidam Basin in the northwest, whereas the variance in the error between
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the SM retrieved from GEOS-5 and the actual SM in the Qaidam Basin area is significantly
greater. Combining these results with the maps of the spatial distribution of TC correlation
coefficients shows that the spatial distribution of the correlation coefficient between the SM
retrieved from NN and FY3C and the actual SM correlates to the error variance, meaning
that the areas with greater error variance correlate more to the actual SM data.

Figure 7. (a) Top row from left to right, Map of error variance for NN SM, FY3C SM, and GEOS-5 SM compared with actual
SM data. (b) Bottom row from left to right, Map of correlation coefficient for NN SM, FY3C SM, and GEOS-5 SM compared
with actual SM data.

Figure 8 show that the error variance between NN SM and the actual SM is much
less than the error variance between (i) FY3C SM and GEOS-5 SM and (ii) the actual SM,
with a median error variance of 0.0003 (NN) < 0.00017 (FY3C) < 0.00030 (GEOS-5). The
correlation coefficient between (i) NN SM and FY3C SM and (ii) the actual SM is much
greater than that for GEOS-5 SM, with a median correlation coefficient of 0.811 (NN) > 0.792
(FY3C) > 0.516 (GEOS-5). Among these three datasets, NN and FY3C have similar median
correlation coefficients, but NN has Q1 = 0.681 and a lower-limit outlier of 0.338, which
are much greater than for FY3C (Q1 = 0.594 and lower-limit outlier of 0.115). Therefore,
after comprehensive analysis and comparison, the SM data retrieved by the NN model is
of better quality for Qinghai Province.

Figure 8. (a) Box-whisker plots of error variance for NN SM, FY3C SM, and GEOS-5 SM compared with actual SM data.
(b) Box-whisker plots of correlation coefficients for NN SM, FY3C SM, and GEOS-5 SM compared with actual SM data.
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3.4. Verification of Downscaled Soil Moisture from Neural Network

In this study, the downscaled SM dataset for Qinghai Province and the map of the
daily average SM (Figure 9) were obtained by inputting MODIS data with high spatial
resolution and resampled microwave data into the NN model verified by the TC. To verify
the adaptability of the downscaled SM data for Qinghai Province, we apply a correlation
analysis where we compare the downscaled 1 km SM data, original SMAP SM data, original
AMSR2 SM data, and CLDAS SM data with the SM data collected from six ground stations
in Qinghai Province. In terms of data selection, for each time series, we use data from
all available at ground stations and from CLDAS, SMAP, AMSR2, and NN. In addition,
each time series extends over at least 30 days to obtain good statistics. Furthermore, to
determine whether the downscaled SM data capture the actual ground SM dynamics, we
verify the variations over time of the downscaled SM by studying the time series of the
seven ground precipitation stations (see Figure 10).

Figure 9. Map of downscaled daily average soil moisture.

Figure 10. Cont.
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Figure 10. Daily precipitation, downscaled SM, and CLDAS SM over time for seven ground precipitation stations (Yeniugou,
Xiaozaohuo, Dachaidan, Chaka, Wudaoliang, Xinghai, Qumarai).
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Table 6 shows that the correlation of the downscaled SM results of the NN model at
the Dulan, Tianjun, and WuUlan sites exceeds 0.6, which is a larger average than CLDAS,
SMAP, and AMSR2, thereby demonstrating that the NN model properly downscales the
SM. Table 6 also reveals negative correlations with CLDAS SM at both the Golmud and
Nuomuhong sites, whereas SMAP, AMSR2, and NN produce negative correlations at
the Golmud site but positive correlations at the Nuomuhong site. This indicates that
the temporal and spatial structures based on the NN model are driven by the satellite
observations rather than by the target data. Figure 7 shows a map of the daily average SM
in Qinghai Province after downscaling; these results provide much more SM information
than do large-scale maps of SM.

Table 6. Correlation coefficients between downscaled NN soil moisture, CLDAS soil moisture, SMAP
soil moisture, AMSR2 soil moisture, and soil moisture collected from ground stations.

Station Delingha Dulan Golmud Nuomuhong Tianjun Wulan

CLDAS 0.427 0.759 −0.025 −0.270 0.391 0.670
SMAP 0.185 0.762 −0.587 0.193 0.548 0.776

AMSR2 0.117 0.328 −0.655 0.051 0.398 0.584
DOWNSCALED 0.212 0.768 −0.524 0.251 0.620 0.616

Figure 10 shows that the downscaled SM strongly correlates with the precipitation data
because the SM increases significantly after precipitation and decreases significantly during
drought. Furthermore, the downscaled SM data from Xiaozaohuo, Chaka, Wudaoliang and
other sites depart significantly from the absolute value of the CLDAS data, whereas both
maintain good time consistency. The results demonstrate that downscaling the SM captures
better the variations in precipitation over time, which indicates that the downscaled SM
better reflects the actual variations in SM over time.

4. Conclusions

This paper presents a method to retrieve soil moisture (SM) by combining multi-
instrument observation data. The method is based on a neural network (NN) to retrieve SM
information from passive microwave sensors SMAP and AMSR2, active microwave sensors
ASCAT, as well as MODIS data (LST, NSDSI, NDVI) and topographic data (DEM, SLOPE).
The greatest advantage of this method is that it can give full play to the potential of the
joint retrieval of SM by each microwave sensor and also make full use of the segmentation
capability of high-spatial-resolution MODIS data and topographic data.

From the microwave band selection, the best retrieval effect was achieved by the
combination of Tbv in the ascending orbit for the 1.41 GHz (SMAP) band, Tbh in the
descending orbit for the 10.7 GHz (AMSR2) band, and BTI data of ASCAT through the
neural network method. The final NN SM dataset is obtained by combining the auxiliary
data LST, NDVI, NSDSI, DEM, and SLOPE with the above three bands of microwave data.
The above two models were compared with the CLDAS model SM dataset, and the result
shows that the spatial correlation increases from 0.597 to 0.669, the temporal correlation
increases from 0.401 to 0.475, the root mean square error decreases from 0.051 to 0.046,
and the mean absolute error decreases from 0.041 to 0.036. All indicators improve, which
confirms that the use of the auxiliary data improves the performance of the NN model.

The low-resolution SM products obtained from the NN retrieval in the triple colloca-
tion are higher quality than the SM products from the FY3C satellite and the ground model
GEOS5 in Qinghai Province (i.e., the NN low-resolution products have the highest median
correlation of 0.811, the highest correlation Q1 value of 0.681, and the lowest error variance
of 0.00003).

Based on the comparison with the ground stations data, the NN SM dataset obtained
on the small scale is also of better quality than the CLDAS product, and the correlation with
SM at three stations, namely, Dulan (0.768), Tianjun (0.620), and Wulan (0.616), exceeds 0.6,
showing strong correlation. The correlation between CLDAS SM products is greater than
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0.6 only in Dulan (0.759) and Wulan (0.670). In addition, comparing with the rainfall site
data shows that downscaled NN SM data also better capture the dynamic changes of SM in
the study area, producing higher SM values when there is more rainfall and a decrease in
SM during the long dry season. Comparing the images before and after downscaling also
shows that the SM after downscaling can provide more detailed SM information. We also
discuss some shortcomings in the downscaling process. The downscaled SM is susceptible
to interference from clouds and rain, leading to a significant quantity of missing data, so
future work will focus on data completion.

The results of this study confirm that the NN method can be used to obtain SM with
high spatial resolution and can be applied to the Qinghai Province area. The data used
herein can be downloaded for free from the official websites of the National Aeronautics
and Space Administration (NASA), the Japan Aerospace Exploration Agency (JAXA),
the European Centre for Medium-Range Weather Forecasts (ECMWF), and the China
Meteorological Information Sharing Platform (CIMISS) without regional restrictions and
can be used to produce sTable 1 km SM data in the Qinghai Province area.
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Abstract: Water stress is one of the primary environmental factors that limits terrestrial ecosystems’
productivity. Hense, the way to quantify gobal vegetation productivity’s vulnerability under water
stress and reveal its seasonal dynamics in response to drought is of great significance in mitigating
and adapting to global changes. Here, we estimated monthly gross primary productivity (GPP) first
based on light-use efficiency (LUE) models for 1982–2015. GPP’s response time to water availability
can be determined by correlating the monthly GPP series with the multiple timescale Standard-
ized Precipitation Evapotranspiration Index (SPEI). Thereafter, we developed an optimal bivariate
probabilistic model to derive the vegetation productivity loss probabilities under different drought
scenarios using the copula method. The results showed that LUE models have a good fit and estimate
GPP well (R2 exceeded 0.7). GPP is expected to decrease in 71.91% of the global land vegetation area
because of increases in radiation and temperature and decreases in soil moisture during drought
periods. Largely, we found that vegetation productivity and water availability are correlated posi-
tively globally. The vegetation productivity in arid and semiarid areas depends considerably upon
water availability compared to that in humid and semi-humid areas. Weak drought resistance often
characterizes the land cover types that water availability influences more. In addition, under the
scenario of the same level of GPP damage with different drought degrees, as droughts increase in
severity, GPP loss probabilities increase as well. Further, under the same drought severity with
different levels of GPP damage, drought’s effect on GPP loss probabilities weaken gradually as the
GPP damage level increaes. Similar patterns were observed in different seasons. Our results showed
that arid and semiarid areas have higher conditional probabilities of vegetation productivity losses
under different drought scenarios.
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1. Introduction

The Intergovernmental Panel on Climate Change (IPCC) report shows that the world
will continue to warm in the 21st century [1]. This indicates that as the future temperature
rises, the occurrence and frequency of extreme weather and climate, such as heatwaves
and droughts, will increase rapidly [2]. This trend and its associated adverse effects on
natural and social ecosystems are expected to increase further [3]. Terrestrial ecosystems’
gross primary productivity (GPP) is the largest component of global terrestrial carbon
flux, and slight fluctuations in GPP have a significant influence on atmospheric CO2
concentration [4]. On a global scale, particularly in arid and semiarid regions, water stress
is the primary environmental factor that limits terrestrial ecosystems’ productivity [5].
Hence, studying drought’s effects on their productivity has become an important priority
in global change research.
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The terrestrial ecosystem’s productivity characterizes its quality, it is the key to con-
trolling the ecosystem’s carbon, water, energy and nutrient cycles, and plays a decisive role
in regulating its function and controlling its carbon source and sink [6]. At the same time,
ecosystem productivity is also the basis of a variety of ecosystem services [7] and is the
source of food, fiber, wood, livestock grains and biofuels in human society [8]. As the main
outcome and important manifestation of global climate change, drought not only affects
photosynthesis and ecosystem productivity directly [9], but it can also affect terrestrial
ecosystem productivity in directly by changing the intensity and frequency of other forms
of disturbance, such as increasing the frequency and intensity of fires, plant mortality and
the occurrence of pests and diseases [10]. In recent years, many studies have investigated
drought’s effects on terrestrial ecosystems’ productivity at different spatio-temporal scales
based on long-term observations from ecological research sites, field experiments, eddy co-
variance measurements, large-scale satellite measurements and model simulations [11–13].
Satellites data used commonly to evaluate vegetation productivity include primarily the
Moderate Resolution Imaging Spectroradiometer-Fraction of Photosynthetically Active Ra-
diation (MODIS-FPAR) and the Global Inventory Modeling and Mapping Studies-Fraction
of Photosynthetically Active Radiation (AVHRR GIMMS-FPAR), remotely-sensed data for
atmosphere state, MODIS Enhanced Vegetation Index, leaf area index, spatially distributed
CO2 concentrations, and canopy information. For example, Reichstein et al. [11] found that
the drought stress in Europe in summer 2003 caused the reduction of ecosystem productiv-
ity by jointing flux tower, remote sensing (including MODSI and AVHRR-GIMMS FPAR)
and modelling datasets. Zhang et al. [14] emphasized that the drought in Southwestern
China in spring 2010 reduced primary productivity by using primary productivity products
derived from MODIS. Stocker et al. [15] used four remote sensing data-driven models and
demenstrated that drought’s effects on terrestrial primary production were underestimated.
Previous studies have shown that different vegetation types and environmental conditions
(such as climate and soil factors) largely determine biological communities’ resistance and
ability to recover from drought stress [16].

Although there is increasing recognition of drought’s adverse effects on terrestrial
vegetation productivity, few studies have focused on the seasonal dynamics in global
productivity in response to drought across various climate zones and land biomes. More-
over, studies of drought’s lag effect on terrestrial vegetation productivity and vegetation’s
responses to drought at various time-scales on a global scale are scare. The Standardized
Precipitation Evapotranspiration Index (SPEI) quantifies different drought types based on
the water balance, and is used widely on global and regional scales because of its multiple
time scales and spatial comparability [17]. Therefore, determining the corresponding time
scale when GPP and SPEI have the highest correlation based upon different time scales
is of great significance in understanding the variations in different terrestrial ecosystems’
productivity depending uopn drought resistance. In addition, we give greater attention
here to the way to quantify the probability of varying degrees of damage to vegetation
productivity under predictable drought scenarios. Copulas can be used to couple multiple
variables and construct their joint probability distribution by considering their correla-
tions [18], which can derive the vegetation productivity loss distributions conditioned
on any drought scenario. For example, Madadgar et al. [19] estimated the probability
of drought in agricultural production in Australia based on a copula model, while Fang
et al. [20] constructed a bivariate probabilistic framework to assess vegetation vulnerability
and map drought-prone ecosystems in China’s Loess Plateau.

Given ecosystem productivity’s key role in affecting the global carbon budget and
the supply of ecosystem services, in the context of global warming, the rapid increase in
atmospheric carbon dioxide concentration, and increasing human food production and
resource demand, estimating ecosystem productivity accurately is important to assess
drought’s effects on terrestrial ecosystems precisely [21]. Three main methods are used to
estimate ecosystems’ productivity at the regional and global scales—remote sensing-based
light-use efficiency (LUE) models [22], machine learning algorithms [23], and process-
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based physiological and ecological models [24]. Remote sensing observations can provide
information continuously on land surface features that affect ecosystem productivity, such
as ecosystem structure, vegetation phenology, biomass, soil moisture, and land cover
over a large area. The LUE model relies on remote sensing observation data to estimate
ecosystem productivity through the utilization rate of photosynthetically active radiation
in the ecosystem [25]. We gave special attention to determining water stress and produced
a data set of monthly LUE GPPs at the global scale based on various representations of
water stress: Water stress based on vapor-pressure deficit, humidity deficit and root-zone
soil-water content separately.

Our study had two primary objectives. The first was to determine the seasonal dynam-
ics of global vegetation productivity’s response to drought across various climate zones
and land biomes, and the second was to quantify the probability of varying degrees of
damage to vegetation productivity under predictable drought scenarios. First, we used
a LUE model to produce a dataset of global monthly satellite-observed GPPs, which are
designed primarily to determinate water stress. Second, we explored vegetation productiv-
ity’s spatio-temporal evolution of dependence and response time to water availability by
correlating monthly GPP series with the multiple timescale SPEIs (1- to 24-months). Finally,
we develpoed an optimal bivariate probabilistic model in each pixel of the globe using the
copula method, which was used to derive the vegetation productivity loss probabilities
under different drought scenarios.

2. Materials and Methods
2.1. Data
2.1.1. Remote Sensing Data

The actual evapotranspiration, potential evapotranspiration and soil moisture (in-
cluding surface soil and root-zone soil moisture) data were derived from the Global Land
Evaporation Amsterdam Model (GLEAM), which is designed to be determined by remote
sensing observations only [26]. The GLEAM_V3.3a dataset has a 0.25◦ spatial resolution
at a monthly time step that spans the 39-year period from 1980–2018 (www.gleam.eu (ac-
cessed on 25 March 2021)). Fraction of Photosynthetically Active Radiation (FPAR)3g data
were generated from AVHRR GIMMS NDVI3g using an Artificial Neural Network (ANN)
derived model, with a spatial resolution of 1/12◦ and a 15 days time interval [27]. We used
the MODIS MCD12C1 product, which contains yearly, worldwide distributions of 17 land
cover types from 2001–2017 at a spatial resolution of 0.05◦ (https://lpdaac.usgs.gov/ (ac-
cessed on 10 December 2020)) [28]. In this study, barren land, water bodies, permanent
snow, and ice were removed.

2.1.2. Meteorological data and FLUXNET data

Downward shortwave radiation, air temperature, specific humidity and air pressure
were obtained from the CRU-NCEPV6.1 dataset with a spatial resolution of 0.5◦ and a 6-h
time interval. We used gross primary productivity (GPP) data from the FLUXNET2015
dataset to compare flux site measurement of GPP and LUE GPP (https://fluxnet.org/data/
fluxnet2015-dataset/ (accessed on 1 December 2020)).

2.2. Drought Index

SPEI can be calculated by fitting the difference between precipitation and potential
evapotranspiration based on a log-logistic probability distribution, which combines the
multi-temporal characteristic of standardized precipitation index and the sensitivity of
palmer drought severity index to changes in evaporation demand. A global gridded dataset
of the SPEI was calculated using monthly precipitation and potential evapotranspiration
from the CRU TS3.24.01 dataset [29]. This dataset is generated at a 0.5◦ spatial resolution
and at a monthly time step and covers the period from 1902 to 2015. We used the SPEI
dataset from 1982 to 2015 in this study, which contains timescales from 1- to 24-months.
A 6-month SPEI value is formulated by the cumulative water deficit or surplus from
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five months before to the current month. Three drought scenarios including moderate
(−1.5 < SPEI ≤ 1), severe (−2 < SPEI ≤ −1.5), and extreme (SPEI ≤ −2) can be differenti-
ated using a set of SPEI thresholds [29]. The yearly aridity index (AI), which has a spatial
resolution of 0.5◦, was calculated with Feng and Fu’s formula [30]. (Response: we cited the
citation 31 in Section 2.3) According to this dataset, global land can be classified into arid
(0.05 ≤ AI < 0.2), semiarid (0.2 ≤ AI < 0.5), semihumid (0.5 ≤ AI < 0.65) and humid zones
(AI ≥ 0.65).

2.3. LUE GPP

The global GPP for the 1982–2015 period was calculated based on the LUE equation,
as follows [31]:

GPP = εmax × SOL× 0.45× f PAR× f (T)× f (W), (1)

in which εmax is vegetation type related maximum light use efficiency, SOL is downward
solar shortwave radiation, and f PAR represents the fraction of photosynthetically active
radiation vegetation absorbs. f t and f w are temperature and water stress respectively to
plant productivity. We adopted the meteorological data from the CRU-NCEPV6.1 dataset,
which includes downward shortwave radiation, air temperature, specific humidity and
air pressure, and so forth. We used f PAR Zhu et al. [27] developed. We calculated the
temperature stress with Equation (2), as follows:

f t =
(T − TMIN)(T − TMAX)

[(T − TMIN)(T − TMAX)]−
(
T − Topt

)2 , (2)

in which TMIN and TMAX are the minimum and maximum temperature for plant’s photo-
synthesis, with the specific parameters can be found in Zhang et al. [32].

In this study, we focused particularly on determining water stress ( f w) in the LUE
equation. The MODIS-GPP algorithm [33] calculates f w with the daily vapor pressure
deficit (VPD) on consideration that leaf stomatal conductance is mainly restricted by cold
stress and VPD, named VPDMOD expressed as in Equation (3):

f w = f (VPD) =





1 VPD ≤ VPDopen
VPDclose−VPD

VPDclose−VPDopen
VPDopen < VPD < VPDclose

0 VPD ≥ VPDclose

, (3)

in which VPDclose represents VPD that induces full stomatal closure, while VPDopen rep-
resents VPD that results in full stomatal opening, all parameters are set based on the
vegetation type.

The GLO-PEM algorithm [34] considers each vegetation type’s optimum growth tem-
perature (Topt). The algorithm calculates water stress with vegetation type, independently
with Equation (4) named VPDGLO:

f w = f (VPD) =

{
1− 0.05δq 0 < δq ≤ 15

0.25 δq > 15
, (4)

in which δq is the specific humidity deficit (g/kg), the difference between saturated and
actual specific humidity.

The CASA model provides a framework that considers water stress with a multidisci-
plinary algorithm [35], shown in Equation (5), as follows:

f w = f (VPD)×Ws

Ws =





1 VPD only model
0.5 + ETR VPD + ETR model
0.5 + KS VPD + SM model

,
(5)
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in which ETR is the ratio of actual evapotranspiration to potential evapotranspiration. Ac-
cording to FAO 56 [36], ETR can be equal to KS, which is calculated based on root zone soil
moisture (hereinafter SM) and soil and vegetation properties, written as Equations (6) and (7):

KS =
SM−WP

(1− p)× TAW
(6)

p = pstd + 0.04× (5− ET0), (7)

in which WP and TAW represent soil wilting point and total available soil water derived
from the International Geosphere-Biosphere Programme Data and Information System
(IGMP-DIS) dataset [37] and the World Inventory of Soil property Estimates (WISE) derived
soil properties [38]. ET0 is calculated with Hagreaves equation [39] while pstd is a vegetation
type-specific depletion factor (allowable extent of soil water deficit before water stress)
at ET0 of 5 mm per day. Actual evapotranspiration, potential evapotranspiration, and
root-zone soil moisture data were all acquired from the GLEAM dataset.

In this study, we provided a dataset of monthly plant productivity that spans the
34-year period from 1982–2015 at the global scale, composed by five LUE GPPs derived
from the multidisciplinary framework in Equation (5). These five GPPs represent different
considerations of water stress in the LUE equation, the VPD only model, VPDGLO-ETR
model, VPDMOD-ETR model, VPDGLO-SM model, and VPDMOD-SM model. Because the
LUE equation estimate GPP from multiple satellite data, for example, NDVI, FPAR, and
GLEAM soil water, it is considered satellite-observed GPP.

2.4. Determining LUE GPP’s Response Time to Water Availability

To screen out vegetation productivity’s response time to water availability, a monthly
GPP series from 1982 to 2015 was correlated with the multiple timescale SPEI (1- to 24-
months). For the i-th month in a year, Spearman’s correlation analysis was performed
between the monthly GPP and SPEI series at different timescales as follows

Ri
j = corr

(
GPPi, SPEIi

j

)
i = 1, 2 , . . . , 12, j = 1, 2, . . . , 24, (8)

in which R is the correlation coefficient and a timescale j denotes the cumulative water
deficit or surplus from j-1 months before to the current month. Finally, a timescale able to
maximize the GPP-SPEI association, is retained as the vegetation productivity response
time (VPRT) to water variations for the i-th month.

VPRTi = max
{

Ri
j

}
j = 1, 2, . . . , 24. (9)

2.5. Copulas

We chose the extreme value (EV), generalized extreme value (GEV), exponential (EXP),
gamma (GAM), Poisson (POISS), normal (NOR), generalized Pareto (GP) and Weibull
(WBL) distribution functions to fit the monthly GPP series (Table S1). The SPEI series is
a statistic distributed normally and accordingly, the normal distribution is employed as
its marginal. The probability distribution functions of monthly GPP and SPEI series are
defined as FGPP (gpp) and FSPEI (spei), respectively.

We constructed a joint distribution function in each pixel of the globe in every month
based on monthly GPP and SPEI series. Considering FGPP (gpp) and FSPEI (spei), these two
marginal distribution’s joint distribution function can be defined as a copula C:

FGPP,SPEI(gpp, spei) = C(FGPP(gpp), FSPEI(spei)). (10)

In this study, we used the methods of maximum likelihood and inference functions
for margins to estimate the fitted parameters in FGPP (gpp), FSPEI (spei) and FGPP,SPEI
(gpp, spei) [40]. The bivariate distribution functions used commonly, including the Frank,
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Clayton, Gumbel, t and Normal copulas, were constructed to couple FGPP (gpp)) and
FSPEI (spei) in each pixel of the globe (as shown in Table S2).

Next, we obtained the optimal joint distribution function of FGPP (gpp) and FSPEI (spei)
as follows by referring to the method of the goodness-of-fit test Zhang et al. [41] provided.

FGPP,SPEI(gpp, spei) = P(GPP ≤ gpp, SPEI ≤ spei) =
∫ gpp

−∞

∫ spei

−∞
f (gpp, spei)dudv. (11)

Ultimately, we generated a set of conditional probabilities of vegetation productivity
losses for diverse drought conditions with a bivariate statistical framework. Larger values
of vegetation productivity loss probabilities under the same scenario imply greater ecosys-
tem vulnerability, and such ecosystems are categorized thereby as the drought-prone class.
Given multiple drought scenarios, conditional probabilities of vegetation productivity
lower than different percentiles (e.g., the 10th, 20th, 30th, 40th percentiles were consid-
ered in the study) are derived using copula-based joint distribution and the conditional
distribution formulas. The conditional probabilities of different percentiles of vegetation
productivity loss under moderate, severe and extreme drought scenarios can be calculated
by the following formula.

P(GPP < gpp| − 1.5 < SPEI ≤ −1) =
FGPP, SPEI(gpp,−1)− FGPP, SPEI(gpp, −1.5)

FSPEI(−1)− FSPEI(−1.5)
(12)

P(GPP < gpp|−2 < SPEI ≤ −1.5) =
FGPP, SPEI(gpp,−1.5)− FGPP, SPEI(gpp, −2)

FSPEI(−1.5)− FSPEI(−2)
(13)

P(GPP < gpp| SPEI ≤ −2) =
FGPP, SPEI(gpp,−2)

FSPEI(−2)
. (14)

2.6. Statistical Tests

We used the linear regression method to calculate the GPP’s mean change rate over the
entire temporal domain. A two-tailed t-test and the Mann-Kendall test were used to examine
the significance of the trend, while the Kolmogorov–Smirnov test was used to establish the
optimal marginal distribution function of GPP (p < 0.05). In addition, we adopted several
goodness-of-fit measures to evaluate different copula models’ performance, including the
squared Euclidean distance (SED) between the theoretical copula and the empirical copula,
the root mean squared error (RMSE) and the Akaike information criterion (AIC).

3. Results
3.1. Validation of LUE GPPs’ Accuracy, Dynamics Trends and Drought’s Effect on GPP

In this study, special attention was given to determining water stress (including
atmosphere vapor pressure deficit, soil moisture content and the humidity deficit) in
the LUE model to estimate the global GPP. By comparing with the FLUXNET GPP site
data, we found that different LUE models have a good fit in estimation of LUE GPP. The
fitted R2 of VPDGLO-SM, VPDMOD-SM, VPDGLO-ETR, and VPDMOD-ETR were 0.7739,
0.7399, 0.7427, 0.7459 and 0.7628, respectively (Table 1). The average goodness of fit of
multiple models reached 0.78 (Figure S2). Overall, LUE GPP had a greater response to
the atmospheric vapor pressure deficit, followed by soil water content, and the humidity
deficit. The LUE GPP showed greater sensitivity to soil moisture content than the vapor
pressure deficit only in evergreen needleleaf forest (ENF), mixed forest (MF) (R2 = 0.7833
and 0.8479, respectively, RMSE = 1.6399 and 1.3825, respectively). The annual average
spatial distribution of GPP in multiple models is shown in Figure S1. From 1982 to 2015,
the global average annual GPP of terrestrial vegetation continued to increase at a mean rate
of 0.134 Pg C a −1 (p < 0.001), but its growth rate declined after the mid-1990s (Figure 1a).
From the spatial distribution of the mean annual GPP change trend, it can be seen that the
global mean annual GPP still had a largely increasing trend, and the significant increase
area accounted for 36.83% of the global terrestrial vegetation area, located primarily in the
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mid-high latitudes of the northern hemisphere, India, Southeastern China, Southeastern
South America, Northern and Southern Africa, and Eastern Australia. 11.62% of the
regional GPP showed a significant downward trend, largely in Eastern Brazil and Central
and Southern Africa (Figure 1b).

Taking SPEI-12 as an example, a drought episode with an SPEI value less than −1
and no less than 3 consecutive months was considered a drought event. We counted the
total frequency of droughts from 1982 to 2015 in each grid around the world. It can be
seen that the global drought-prone areas are concentrated primarily in Central Russia,
Southeast Asia, the Mediterranean coast and most parts of Africa, and the frequency of
droughts has increased more than 10 times (Figure 2a). We divided the entire time period
from 1982 to 2015 into a dry period and a non-dry period, and compared the changes
in LUE GPP during the dry period relative to the non-dry period. It can be seen that
in the high latitudes of the Northern hemisphere, Eastern Asia, the Amazon basin and
Central Africa, vegetation productivity under drought conditions increased (accounting for
28.09% of the total global land vegetation area), while in 71.91% of the total land vegetation
area in the world, the occurrence of drought led to a decrease in GPP (Figure 2b). To
reveal the cause of this phenomenon further, we considered the effect of climate factors
(including temperature, solar radiation and soil moisture) on vegetation productivity. As
shown in Figure 3, temperature and solar radiation play important roles in the changes
in GPP in the high latitudes of the Northern hemisphere, Eastern Asia, the Amazon basin
and Central Africa during drought periods, while in other regions, soil moisture limits
GPP primarily. In arid and semiarid areas, GPP is correlated negatively with temperature
and solar radiation, while in humid and semi-humid areas, the converse is true. GPP is
correlated positively with soil moisture globally.

Table 1. Regression statistics for different light-use efficiency models between each land-use type’s measured FLUXNET
GPP and LUE GPPs.

Light-Use Efficiency Models

Type Statistics VPD only VPDGLO-SM VPDMOD-SM VPDGLO-ETR VPDMOD-ETR

DBF (N: 1693) R2 0.7822 0.7467 0.7610 0.7275 0.7454
RMSE 2.1887 2.3839 2.3068 2.4894 2.3932

EBF (N: 857) R2 0.6388 0.3798 0.3663 0.5599 0.6662
RMSE 1.9865 2.8458 2.8692 2.5501 1.9500

ENF (N: 2968) R2 0.7706 0.7833 0.7733 0.7671 0.7590
RMSE 1.6990 1.6399 1.6919 1.7278 1.7697

MF (N: 863) R2 0.8480 0.8479 0.8484 0.8486 0.8496
RMSE 1.3900 1.3825 1.3877 1.3873 1.3904

WET (N: 541) R2 0.6860 0.5871 0.6297 0.5953 0.6406
RMSE 2.0777 2.5013 2.3196 2.4670 2.2742

CSH/OSH (N: 317) R2 0.6563 0.4718 0.4369 0.6829 0.6609
RMSE 1.3422 1.7781 1.8739 1.3185 1.3611

WSA (N: 545) R2 0.8103 0.7806 0.7947 0.7784 0.8001
RMSE 1.1185 1.3406 1.2351 1.3736 1.2354

SAV (N: 427) R2 0.6776 0.6511 0.6517 0.6749 0.6746
RMSE 1.3769 1.6252 1.6233 1.4901 1.4919

GRA (N: 1767) R2 0.7667 0.7727 0.7730 0.7754 0.7763
RMSE 1.9214 1.9175 1.9088 1.9137 1.9012

CRO (N: 1392) R2 0.5290 0.4686 0.5047 0.4564 0.4953
RMSE 3.5701 /

All sites except cropland
(N: 9978)

R2 0.7739 0.7399 0.7427 0.7459 0.7628
RMSE 1.8089 1.9817 1.9679 1.9739 1.8855

Note:The sites are deciduous broadleaf forest (DBF), evergreen broadleaf forest (EBF), evergreen needleleaf forest (ENF), mixed forest (MF),
wetlands (WET), closed shrublands/open shrublands (CSH/OSH), woody savanna (WSA), savanna (SAV), grassland (GRA) and cropland
(CRO). VPD only, VPDGLO-SM, VPDMOD-SM, VPDGLO-ETR and VPDMOD-ETR stand for the moisture stress algorithms. N represents the
total number of data points; R2 is the R2e values of linear regressions with intercept. RMSE represents root mean square error. For each
land-use type, the corresponding “best algorithm” is highlighted in bold.
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Table 1. Regression statistics for different light-use efficiency models between each land-use type’s measured FLUXNET 
GPP and LUE GPPs. 

  Light-Use Efficiency Models 
Type Statistics VPD only VPDGLO-SM VPDMOD-SM VPDGLO-ETR VPDMOD-ETR 

DBF (N: 1693) R2 0.7822 0.7467 0.7610 0.7275 0.7454 
RMSE 2.1887 2.3839 2.3068 2.4894 2.3932 

EBF (N: 857) R2 0.6388 0.3798 0.3663 0.5599 0.6662 
RMSE 1.9865 2.8458 2.8692 2.5501 1.9500 

ENF (N: 2968) R2 0.7706 0.7833 0.7733 0.7671 0.7590 
RMSE 1.6990 1.6399 1.6919 1.7278 1.7697 

MF (N: 863) R2 0.8480 0.8479 0.8484 0.8486 0.8496 
RMSE 1.3900 1.3825 1.3877 1.3873 1.3904 

WET (N: 541) R2 0.6860 0.5871 0.6297 0.5953 0.6406 
RMSE 2.0777 2.5013 2.3196 2.4670 2.2742 

CSH/OSH (N: 317) R2 0.6563 0.4718 0.4369 0.6829 0.6609 
RMSE 1.3422 1.7781 1.8739 1.3185 1.3611 

WSA (N: 545) R2 0.8103 0.7806 0.7947 0.7784 0.8001 
RMSE 1.1185 1.3406 1.2351 1.3736 1.2354 

SAV (N: 427) R2 0.6776 0.6511 0.6517 0.6749 0.6746 
RMSE 1.3769 1.6252 1.6233 1.4901 1.4919 

GRA (N: 1767) R2 0.7667 0.7727 0.7730 0.7754 0.7763 
RMSE 1.9214 1.9175 1.9088 1.9137 1.9012 

CRO (N: 1392) R2 0.5290 0.4686 0.5047 0.4564 0.4953 
RMSE 3.5701 / 

All sites except cropland (N: 9978) R2 0.7739 0.7399 0.7427 0.7459 0.7628 
RMSE 1.8089 1.9817 1.9679 1.9739 1.8855 

Note:The sites are deciduous broadleaf forest (DBF), evergreen broadleaf forest (EBF), evergreen needleleaf forest (ENF), 
mixed forest (MF), wetlands (WET), closed shrublands/open shrublands (CSH/OSH), woody savanna (WSA), savanna 
(SAV), grassland (GRA) and cropland (CRO). VPD only, VPDGLO-SM, VPDMOD-SM, VPDGLO-ETR and VPDMOD-ETR 
stand for the moisture stress algorithms. N represents the total number of data points; R2 is the R2e values of linear 
regressions with intercept. RMSE represents root mean square error. For each land-use type, the corresponding “best 
algorithm” is highlighted in bold. 
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pattern of drought frequency from 1982–2015 (based on Standardized Precipitation Evapotranspiration Index (SPEI)–
12month). (b) GPP anomalies during drought period relative to non-drought period. 
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of drought frequency from 1982–2015 (based on Standardized Precipitation Evapotranspiration Index (SPEI)–12 month). (b)
GPP anomalies during drought period relative to non-drought period.
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Figure 3. Geographic distributions of potential climate factors (temperature, radiation and soil
moisture) to GPP from 1982 to 2015.

3.2. Spatio-Temporal Dynamics of Vegetation Productivity’s Dependence on Water Availability

The monthly LUE GPP series was correlated with the SPEI of multiple time scales (1–
24 months) to determine the extent to which water resources determine global vegetation
productivity changes. As shown in Figure 4a, vegetation productivity and water availability
are largely correlated positively globally, indicating that vegetation productivity tends to
increase (decrease) as water supply increases (decreases). In 47.30% of the global terrestrial
ecosystem, the correlation coefficient between GPP and SPEI can exceed 0.6. Particularly
in the Southwest United States, Southeastern Argentina, South Africa, Central Asia, and
Australia, the correlation coefficient between GPP and SPEI can exceed 0.8, indicating
that vegetation productivity in these areas depends more upon water supply. Seasonal
changes also affect the correlation between GPP and SPEI. As Figure S3a–d shows, the
regions with a high correlation between GPP and SPEI in the United States and Central
Asia were located primarily in the Southwest of these two regions in March–May, and
from June to August, the scope and intensity of GPP that SPEI affected in these two
regions reached the maximum (the correlation coefficient was 0.6 or higher). As the rainy
season in the Northern hemisphere fades, the correlation between GPP and SPEI in the
United States and Central Asia weakens gradually, and from December to February of the
following year, the correlation coefficient between GPP and SPEI in this region fell below
0.4. Vegetation productivity and water availability’s dependence in the high latitudes of the
Northern hemisphere is relatively stable, and remains largely between 0.2 and 0.4, while
the correlation between GPP and SPEI in Australia is strong throughout the year.
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Figure 4. Geographical patterns of vegetation productivity’s dependence upon, and response to, water availability.
(a) Spatial distribution of the maximum correlation coefficients recorded between LUE GPP and SPEI in each pixel during
1982–2015. (b) SPEI timescales at which the maximum correlation coefficient between LUE GPP and SPEI was found over
the period 1982–2015.

As shown in Figure 5a, an analysis of the changes in the correlation between GPP and
SPEI in various climate zones indicated that as the climatic conditions become gradually
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humid, the dependence between vegetation productivity and water availability continues
to decrease (the correlation coefficient between GPP and SPEI declined from 0.76 to 0.47).
Different seasons showed consistent characteristics, indicating that the vegetation produc-
tivity in arid and semiarid areas is more sensitive to changes in water availability than in
humid and semi-humid areas. By comparing the maximum correlation coefficients of GPP
and SPEI under different land cover types (Figure 6a), it can be seen that the productivity
of GRA, SAV and DBF has a greater correlation with water availability (the correlation
coefficients are 0.69, 0.64 and 0.61 respectively), followed by CRO, MF, DNF, ENF, OS and
EBF (correlation coefficients of 0.57, 0.55, 0.53, 0.51, 0.50, and 0.50 in order). WSA and
WET’s productivity had the weakest correlation with water resources. Our results showed
that various land cover types have different adaptation strategies to the increase and loss
of water resources.
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Figure 5. The correlation coefficient (a) and response time (b) of vegetation productivity to water
availability in various climatic regions and different seasons. MAM, JJA, SON, DJF, and ALL
represent March–May, June–August, September–November, December–February and the entire year,
respectively. The error bars indicate ±1 standard error.
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Figure 6. The correlation coefficient (a) and response time (b) of vegetation productivity to water
availability in different land cover types. ENF, EBF, DNF, DBF, MF, OS, WSA, SAV, GRA, WET and
CRO represent evergreen needleleaf forest, evergreen broadleaf forest, deciduous needleleaf forest,
deciduous broadleaf forest, mixed forest, open shrublands, woody savannas, savannas, grasslands,
wetlands and croplands, respectively. Boxes represent interquartile ranges of the values of 25th
and 75th percentiles (Q25, Q75), whiskers cover Q25 − 1.5 × (Q75 − Q25) to Q75 1.5 × (Q75 − Q25),
horizontal lines represent the median, black empty squares represent the mean, and black solid
diamonds indicate outliers.

3.3. Spatio-Temporal Dynamics of Vegetation Productivity’s Response Time to Water Availability

We analyzed the temporal and spatial dynamics of vegetation productivity’s response
time of to water availability changes further. Productivity’s response time to water availabil-
ity is defined as timescales over which the maximum GPP-SPEI correlations are recorded.
It can be seen from the spatial distribution of productivity’s response time to water avail-
ability (Figure 4b) that the response time of 56.8% of the global terrestrial ecosystems to
water resources is based primarily on short-term and medium-term time scales. In Canada,
Northwestern Colombia, Eastern Russia, and Northeastern and Southeastern China, the
response time of vegetation productivity to SPEI is relatively long, typically more than
12 months. The longer the response time to water availability changes, the stronger the
ability of vegetation productivity in these areas to withstand long-term water shortages.
Seasonal changes also affect the length of time in which GPP responds to SPEI in different
regions. It can be seen from Figure S3e–h that 34.92% of the global terrestrial ecosystem
GPP requires a long time to respond to SPEI during the period from March to May and is
concentrated largely in the mid-high latitudes of the Northern hemisphere. With the passage
of seasons, the proportion of GPPs in these high latitude regions with a longer response time
to SPEI decrease gradually from June to November. From December to November of the
following year in Australia, GPP’s response time to SPEI changes from a short-term time scale
(less than 6 months) to a medium- and long-term time scale (6–9 months).

As shown in Figure 5b, an analysis of the changes GPP’s in the response time to SPEI in
various climate zones indicates that as the climatic conditions become gradually humid, the
response time of vegetation productivity to changes in water availability increased (GPP’s
mean response time to SPEI extended from 3.9 months to 8.9 months). The characteristics
were consistent in different seasons, indicating that vegetation’s productivity capacity
to withstand long-term water shortages is weaker in arid and semiarid areas than in
humid and semi-humid areas. By comparing GPP’s response time to SPEI under different
land cover types (Figure 6b), it can be seen that DNF has the strongest ability to resist
long-term water shortages (the mean response time reached 13.6 months), followed by
OS, EBF, WET, CRO, ENF, WSA and MF (mean response time of 9.9, 8.5, 8.4, 8.1, 7.9, 7.8
and 7.5 months, respectively). SAV, GRA, and DBF have poor ability to resist and mitigate
drought (mean response time of 6.1, 6, and 4.9 months, respectively). It is worth noting that
the land cover types that are more relevant to water availability are often accompanied by
weak drought resistance.
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3.4. Vegetation Productivity Loss Probability under Different Drought Scenarios

We first fitted GPP’s optimal marginal distribution during different months based on
the Kolmogorov–Smirnov test. According to the criterion that the smaller the SED, RMSE,
and AIC values, the better the copula function’s fit effect, we fitted the optimal copula
function with the GPP and SPEI in each grid. We set GPP’s damage degree to four levels,
the 10th, 20th, 30th, and 40th percentile values of GPP in different seasons. Figure 7 shows
the spatial distribution of the LUE GPP values at the four percentiles over the globe in
March–May, and those in June–August, September–November and December–February
are provided in Figures S4–S6. It can be seen that there are obvious differences in the
level of global GPP damage during different seasons. At the same time, three drought
scenarios were set based on SPEI, moderate (−1.5 < SPEI ≤ 1), severe (−2 < SPEI ≤ −1.5)
and extreme (SPEI ≤ −2). In this way, the temporal and spatial distribution characteristics
of the probability of different degrees of damage to vegetation productivity under different
drought scenarios were studied to determine areas around the globe susceptible to drought
during different seasons.

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 21 
 

 

3.4. Vegetation Productivity Loss Probability Under Different Drought Scenarios 
We first fitted GPP’s optimal marginal distribution during different months based on 

the Kolmogorov–Smirnov test. According to the criterion that the smaller the SED, RMSE, 
and AIC values, the better the copula function’s fit effect, we fitted the optimal copula 
function with the GPP and SPEI in each grid. We set GPP’s damage degree to four levels, 
the 10th, 20th, 30th, and 40th percentile values of GPP in different seasons. Figure 7 shows 
the spatial distribution of the LUE GPP values at the four percentiles over the globe in 
March-May, and those in June-August, September-November and December-February 
are provided in Figure S4–S6. It can be seen that there are obvious differences in the level 
of global GPP damage during different seasons. At the same time, three drought scenarios 
were set based on SPEI, moderate (-1.5 < SPEI ≤ 1), severe (-2 < SPEI ≤ -1.5) and extreme 
(SPEI ≤ -2). In this way, the temporal and spatial distribution characteristics of the 
probability of different degrees of damage to vegetation productivity under different 
drought scenarios were studied to determine areas around the globe susceptible to 
drought during different seasons. 

 
Figure 7. Spatial distribution of global LUE GPP values at 10th (a), 20th (b), 30th (c) and 40th percentiles (d) during March-
May. 

As Figures 8d,h,i shows, the proportion of high-probability areas in the global 
terrestrial ecosystem increases with the increase in drought intensity when the GPP is 
lower than the 40th percentile in March-May. Under moderate drought conditions, the area 
with a probability of occurrence higher than 75% covers only 5.04% of the global terrestrial 
vegetation area, while under extreme drought conditions, the proportion increases to 
27.78%. Further, when the GPP is lower than the 10th, 20th, and 30th percentiles, it still 
shows the same characteristics of change (the area with a probability of occurrence higher 
than 75% increases from 0.005% to 2.13%, from 0.12% to 9.24%, and from 1.65% to 18.71%). 
In other seasons, as the degree of drought increases, the conditional probabilities that GPP 
will be damaged at different levels increase as well (Figures S7–S9). Under the same 
drought severity with different levels of GPP damage, drought’s influence on GPP loss 
probabilities weaken gradually as the GPP damage level increases (Figure 8a–d). We 
explored the seasonal evolution in vegetation productivity’s loss probability further 
under the same drought scenario and the same level of damage of GPP. Using Figures 8h, 
S7h, S8h and S9h as examples, it can be seen that under severe drought conditions, the 
area with a conditional probability higher than 75% was 17.48, 21.89, 17.37, and 14.25% in 
March-May, June–August, September–November, and December–February respectively, 
in which vegetation productivity was more sensitive to drought in June–August. The 

Figure 7. Spatial distribution of global LUE GPP values at 10th (a), 20th (b), 30th (c) and 40th percentiles (d) during
March–May.

As Figure 8d,h,i shows, the proportion of high-probability areas in the global terrestrial
ecosystem increases with the increase in drought intensity when the GPP is lower than
the 40th percentile in March–May. Under moderate drought conditions, the area with
a probability of occurrence higher than 75% covers only 5.04% of the global terrestrial
vegetation area, while under extreme drought conditions, the proportion increases to
27.78%. Further, when the GPP is lower than the 10th, 20th, and 30th percentiles, it still
shows the same characteristics of change (the area with a probability of occurrence higher
than 75% increases from 0.005% to 2.13%, from 0.12% to 9.24%, and from 1.65% to 18.71%).
In other seasons, as the degree of drought increases, the conditional probabilities that
GPP will be damaged at different levels increase as well (Figures S7–S9). Under the same
drought severity with different levels of GPP damage, drought’s influence on GPP loss
probabilities weaken gradually as the GPP damage level increases (Figure 8a–d). We
explored the seasonal evolution in vegetation productivity’s loss probability further under
the same drought scenario and the same level of damage of GPP. Using Figure 8h, Figures
S7h, S8h and S9h as examples, it can be seen that under severe drought conditions, the
area with a conditional probability higher than 75% was 17.48, 21.89, 17.37, and 14.25% in
March–May, June–August, September–November, and December–February respectively,
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in which vegetation productivity was more sensitive to drought in June–August. The
primary reason for this phenomenon is drought’s effect on GPP in mid- and high-latitude
regions of the Northern hemisphere, as this period is the growing season of vegetation in
those regions. The occurrence of drought during the growing season reduced the carbon
sequestration capacity of vegetation greatly, and increased the GPP loss probability thereby.
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(a–d) represent the conditional probabilities when the GPP ≤ 10th, ≤ 20th, ≤ 30th, and ≤ 40th percentiles in the moderate
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Further, we analyzed the conditional probabilities of vegetation productivity losses
under different drought scenarios in various climatic regions. Take the conditional prob-
ability when GPP is less than the 40th percentile from March to May as an example (as
shown in Figure 9). Under the moderate drought scenario, the conditional probabilities of
GPP loss are 0.54, 0.49, 0.45, and 0.44 in arid, semi-arid, semi-humid, and humid regions,
respectively. (They are 0.74, 0.67, 0.56, and 0.56 under the severe drought scenario, and are
0.81, 0.72, 0.59, and 0.58 under the extreme drought scenario). Our results showed that arid
and semiarid areas are more likely to suffer different levels of damage than are humid and
semi-humid areas under different drought scenarios. As the degree of drought increases,
the conditional probabilities of GPP loss also increase in different climate zones (similar
results were also evident in other seasons (Figures S10–S12). By comparing the probability
of vegetation productivity losses under different drought scenarios in different land cover
types when the GPP ≤ 40th percentile (Figures 10 and S13–S15), it can be seen that as the
degree of drought increases, the productivity loss probability of EBF, DNF, OS, SAV, and
GRA show an increasing trend in different seasons. From March to August, for other land
cover types, such as ENF, compared with extreme drought, severe drought has the greatest
effect on the degree of damage to vegetation productivity, indicating that different land
types respond differently to drought during different seasons.
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4. Discussion
4.1. Estimating GPP and Drought’s Effects on GPP

In this study, special attention was given to determining water stress (including
atmosphere vapor pressure deficit, soil moisture content and the humidity deficit) in the
LUE model to estimate the global GPP. We found that different LUE models have a good
fit-in estimating the LUE GPP (R2 exceed 0.7). Cai et al. [42] showed that the range of global
GPP estimated by different light energy utilization efficiency models was 95–140 Pg C yr−1,
which is consistent with this study’s estimation results. Generally, because of the lack
of water during drought periods, vegetation’s stomatal conductance tends to decrease
to minimize water loss and prevent hydraulic conductivity loss [43,44], which reduces
GPP. Many studies have shown that drought reduces terrestrial ecosystem carbon sinks
significantly, and may even transform them into carbon sources [13,45]. However, our
results showed that approximately 30% of the global GPP values increased after being
disturbed by drought (Figure 2b), a phenomenon attributable to climatic factors’ influence.
Our results showed that GPP is correlated negatively with temperature and solar radiation
in arid and semiarid areas, while the converse is true in humid and semi-humid areas.
Further, GPP is correlated positively with soil moisture globally. When a drought episode
occurs, because of lower radiation and temperature, and the replenishment of soil moisture
in the high latitudes of the Northern Hemisphere, Eastern Asia, the Amazon River basin
and Central Africa, it causes an increase in GPP in these regions relative to those in non-dry
periods (as shown in Figure 11). This result can be confirmed by Zhao and Runing [46]. In
contrast, in most parts of the world, GPP decrease during drought periods because of the
increase in radiation and temperature and the decrease in soil moisture.
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4.2. Terrestrial Ecosystems’ Drought Resistance

Terrestrial ecosystems’ drought resistance can be characterized as: a water deficit must
continue for a period of time before negative anomalies occur in ecosystem variables [47].
In this study, response time of productivity to water availability was defined according to
timescales over which the maximum GPP-SPEI correlations were recorded. To some extent,
the response time of vegetation productivity to drought can characterize terrestrial ecosys-
tems’ drought resistance. Our research results showed that 56.8% of the global terrestrial
ecosystems’ response time to water availability is based largely on short- and medium-term
time scales. Because different hydrological backgrounds and vegetation composition affect
terrestrial ecosystems, their drought resistance demonstrates strong spatial heterogeneity.
In Canada, Northwestern Colombia, Eastern Russia, and Northeastern and Southeastern
regions China, the response time of vegetation productivity to SPEI is relatively long,
usually greater than 12 months. The longer the response time to water availability changes
in these regions, the stronger the vegetation productivity’s capacity to withstand long-term
water shortages. Seasonal changes also affect the resistance of the ecosystem to drought
in the same region, particularly in mid-to-high latitude regions (Figure S3). Taking the
mid-to-high latitude regions of the Northern hemisphere as an example, it can be seen that
the proportion of GPPs in the high latitude with a longer response time to SPEI decreases
gradually with the passage of seasons. This result indicates that vegetation has a strong
resistance to drought in the early stage of growth, and as subsequent vegetation growth
requires considerable water, the occurrence of drought at this stage is more likely to cause
vegetation productivity to decline.

Climatic conditions and different types of land cover often affect terrestrial ecosystems’
drought resistance [48,49]. Our results showed that as the climatic conditions become grad-
ually humid, the response time of vegetation productivity to changes in water availability
increases. This indicates that vegetation productivity in arid and semiarid areas is more
vulnerable to drought than in humid and semi-humid areas. Vicente-Serrano et al. [49]
also found that arid biomes respond to drought at short time-scales. This may be related
to the adaptation strategies of vegetation to water availability in different climate zones.
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When a water deficit occurs, arid ecosystems adapt quickly to water shortages by reducing
water loss and respiratory costs and increasing growth rates. Fang et al. [20] demonstrated
that, as there is a long-term water surplus in humid areas, a short-term drought can not
cause changes in vegetation productivity easily. Further, our results revealed different
land biomes’ role in drought resistance. By comparing GPP’s response time to SPEI under
different land cover types, we found that DNF, OS, EBF, and ENF have a greater ability to
adapt to drought, while WSA, MF, SAV, and GRA have a weak ability to resist and mitigate
drought. Forests generally have deep root systems, and thus, under severe drought condi-
tions, they can use the water stored in the deep soil to achieve strong resistance to drought.
Whether drought disturbs a forest ecosystem is related closely to its intensity and duration.
The water use strategy of shrubs is generally to increase the use of surface soil water during
non-arid periods and absorb deep soil water during dry periods to maintain their own
production needs [50]. However, herbaceous plants’ xylem system has low water and
carbon storage capacity compared with that of woodland and shrubs, so it is less resistant
to drought. Ivits et al. [51] found that steppic ecosystems also showed weak resistance
against drought. Our results are more consistent with the research above.

4.3. The Significance for Ecosystem Management of Estimating the GPP Loss Probability

We developed an optimal bivariate probabilistic model to derive the vegetation pro-
ductivity loss probabilities under different drought scenarios using copula method. The
vegetation productivity loss probability drought causes can also reflect the ability of terres-
trial ecosystems to resist interference. Under the same drought conditions, the higher the
probability of vegetation loss, the weaker the resistance to drought. Our results showed that
arid and semiarid areas have higher conditional probabilities of vegetation productivity
losses under different drought scenarios. The productivity loss probability of EBF, DNF,
OS, SAV, and GRA showed an increasing trend during different seasons. Quantifying the
probability of varying degrees of damage to vegetation productivity under predictable
drought scenarios has great significance in mitigating and adapting to global changes.
However, there is none of the comparisons either between vegetation are types or the
prediction is self are not statistically significant. Huang et al. [52] found that the persistence
of a water deficit (11 months) with an intensity of −1.64 (SPEI) led to negligible growth
of conifer species. Berdugo et al. [53] showed that aridification can lead to systemic and
abrupt changes in multiple ecosystem attributes. Therefore, in future studies, to determine
how much drought can cause significant changes in ecosystem productivity and to estimate
the corresponding GPP loss probability can better reflect the differences between arid to
humid areas.

5. Conclusions

In this study, we explored satellite-observed global terrestrial vegetation production
in response to water avaliability by determining gobal vegetation productivity’s seasonal
dynamics in response to drought in various climate zones and land biomes and quanti-
fying its vulnerability under predictable drought scenarios. Our primary conclusions are
as follows:

1. Different LUE models have a good fit effect in estimating GPP. The fitting R2 of VPDGLO-
SM, VPDMOD-SM, VPDGLO-ETR and VPDMOD-ETR were 0.7739, 0.7399, 0.7427, 0.7459
and 0.7628, respectively. From 1982 to 2015, the global mean annual GPP of terrestrial
vegetation continued to increase at an average rate of 0.134 Pg C a −1 (p < 0.001), but
its growth rate declined after the mid-1990s. GPP is expected to decrease in 71.91% of
the global land vegetation area because of increases in radiation and temperature and
decreases in soil moisture during drought periods.

2. Vegetation productivity and water availability are largely correlated positively glob-
ally. Further, seasonal changes also affect vegetation productivity’s dependence upon
water availability. The correlation coefficient between GPP and SPEI declined from
0.76 to 0.47 as the climatic conditions became gradually humid, indicating that the
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vegetation productivity in arid and semiarid areas depends more heavily on water
availability than that in humid and semi-humid areas. Various land cover types have
different adaptation strategies to the increase and loss of water resources, and the
productivity of GRA, SAV, and DBF has a higher correlation with water availability.

3. 56.8% of the global terrestrial ecosystems’ response time to water resources is based
primarily on short and medium-term time scales (3–6 months). The GPP’s mean
response time to SPEI increased from 3.9 to 8.9 months as the climatic conditions be-
came gradually humid, which indicates that the capacity of productivity of vegetation
in arid and semiarid areas to withstand long-term water shortages is weaker than
that in humid and semi-humid areas. The land cover types that are more relevant to
water availability are often accompanied by weak drought resistance, while DNF, OS,
EBF and WET have a stronger ability to resist long-term water deficits.

4. Under the scenario of the same level of GPP damage with different drought degrees,
as droughts increase in severity, GPP loss probabilities increase as well. Further,
under the same drought severity with different levels of GPP damage, drought’s
effect on GPP loss probabilities weakens gradually as the GPP damage level increases.
Similar patterns were observed in different seasons. Our results showed that arid and
semiarid areas have higher conditional probabilities of vegetation productivity losses
under different drought scenarios. The productivity loss probability of EBF, DNF, OS,
SAV, and GRA show an increasing trend in different seasons, and different land types
have different responses to drought in different seasons.
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GPPs from 1982 to 2015, Figure S2: The comparison between monthly flux site measurement of GPP
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of vegetation productivity losses under different scenarios in various climatic regions in June–August,
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Abstract: Analyzing the spatiotemporal characteristics and causes of landscape pattern changes in
watersheds around big cities is essential for understanding the ecological consequence of urbanization
and provides a basic reference for the watershed management. This study used a land-use transition
matrix and landscape indices to explore the spatiotemporal change of land use and landscape
pattern over Liuxihe River basin of Guangzhou in the southeast of China from 1980 to 2015 with
multitemporal Landsat satellite data in response to the rapid urbanization process. Primary temporal
and spatial influencing factors were first quantitatively identified through grey relation analysis
(calculating correlation degree between land use changes and influencing factors) and Geodetector
(detecting landscape spatial heterogeneity and its driving factors), respectively. Considerable spatial
and temporal differences in land use and landscape pattern changes were observed herein, thus
determining the influencing factors of these differences in the Liuxihe River basin. These changes
were characterized by a large increase in construction land converted from cropland, particularly
in the middle and lower reaches of the basin from 2000 to 2010, causing dramatic fragmentation
and homogenization of the landscape pattern there. Meanwhile, the landscape pattern gradually
transitioned from an agricultural land use dominant landscape to a construction land use dominant
landscape in these regions. Furthermore, the rapid growth of a nonagricultural population and the
transformation of industry primarily caused the temporal changes of landscape pattern, and the
landscape spatial heterogeneity was mainly caused by the interaction of complicated geomorphology
and anthropogenic activities in different spatial locations, particularly after 2000. This study not
only provides an improved approach to quantifying the main spatiotemporal influencing factors
of landscape pattern changes during different time periods, but also offers a reference for decision-
makers to formulate optimal strategies on ecological protection and urban sustainable development
of different regions in this study area.

Keywords: landscape pattern; spatiotemporal changes; influencing factors; watershed; China SE;
satellite data

1. Introduction

The increasing expansion of big cities has been a common social and economic phe-
nomenon taking place all around the world, especially in the developing countries since
the 21st century [1,2]. This process, with no sign of slowing down, may be the most critical
anthropogenic force that has brought about dramatic changes in land use and landscape
pattern at local, regional, and global scales [3–5]. Numerous studies have found that
these immense changes can not only contribute to various environmental issues [6,7], but
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also affect the structure, function, and health of the ecosystem [8,9], and further threaten
the sustainable development of big cities [10,11]. Therein, watersheds around rapidly
urbanizing areas are more sensitive to these changes due to its richer and fragile natural
ecosystems [12]. Moreover, a watershed is a complete natural and unnatural circulation
unit, which is more conducive to conduct the ecological protection and restoration. The
problem related to landscape pattern changes in these kinds of watersheds has been re-
ceiving more and more attention from international scholars in recent decades [13,14].
Therefore, gaining a deep understanding of the processes and causes of landscape pattern
changes is crucial for protection, management, and sustainable planning of these areas
under rapid urbanization [15,16].

Previous studies have illustrated that the analysis of land use changes is usually
regarded as the basis for studying the landscape patterns change [17], because the landscape
pattern is usually defined as the spatial arrangement of various landscape patches of
different types, sizes, and shapes, which are classified by different land use types [18].
Changes in the landscape pattern were proved to be the results of changes in various
land use types [19]. Most scholars choose a land use transition matrix to reflect the
mutual transformation characteristics between any two different land use types [20,21],
and use landscape metrics to detect the characteristics of spatial-structural composition
and configuration in different landscape patches [22,23]. Therein, the former emphasizes
changes of land surface properties in different periods [24], and the latter stresses the
changes of potential ecological pattern [25]. When studying the changing characteristics of
landscape pattern, it is necessary to analyze land use changes first, and emphasize both the
temporal and spatial changes of them.

Currently, previous studies on the change of watershed landscape pattern in rapidly
urbanizing areas seldom quantified spatiotemporal processes and causes of landscape
pattern changes comprehensively. For example, Su et al. [26] analyzed the land use and
landscape pattern in a different period to reflect its spatiotemporal changes characteristics
and its causes, but ignored the overall spatial heterogeneity of landscape pattern. Zhang
et al. [27] and Shi et al. [28] systematically analyzed the spatiotemporal changes processes
of land use and landscape pattern in watersheds. The former study only quantified the
temporal influencing factors of land use changes, and the latter study described the tempo-
ral and spatial influencing factors respectively, but not quantitatively. In addition, when
analyzing the influencing factors of landscape pattern changes quantitatively, many studies
failed to solve the problem of insufficient multi-temporal land use data [29–31], nor did
they consider the interactive effects of different factors on the spatial landscape heterogene-
ity [32,33]. Some studies even analyzed the transition driving forces of different land use
types in different locations of different period to meet the requirements of large quantities
data for commonly used analysis methods [34]. But the causes of the spatial characteristics
of landscape pattern were ignored in this case. Considering the fact that the analysis of
both spatial and temporal causes were all important for guiding the management and
protection of the natural ecosystem in watershed [35]. There is no doubt that researchers
should carry out a systematic analysis on the process and cause of watershed landscape
pattern spatiotemporal changes quantitatively.

With the continuous improvement of the remote sensing technology, more and more
remote sensing data with different sensors, time periods, spectrum and spatial resolution
can be acquired [36]. It provides the most stable and accurate multi-temporal data source
for land use analysis, thus the land use and landscape pattern changes under the rapid
urbanization can be monitored and analyzed spatiotemporally [37]. There existed many
studies that using these kinds of data analyzed the land use change of different regions
in Guangzhou city [38,39], and compared the relationships between these changes and
urban expansion [40,41]. Liu et al. [31] also discussed the land use change and its causes
based on the Landsat satellite data with remote sensing technology. These researches all
illustrated the feasibility of using land use data provided by remote sensing technology
to analyze the changes of landscape patterns in Guangzhou city. Besides, along with the
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rapidly urban expansion of Guangzhou city, the intensive interaction between natural and
human elements in the LXH has brought about the large transition of construction land
from lots of forest and cropland [42]. The water quality and natural environment of the
LXH were degraded, especially in the downstream [43,44]. The Liuxihe River basin (LXH),
as the final ecological barrier on the northwest of Guangzhou city, is an important water
resource conservation area. Therefore, compared with areas divided by the administrative
units in Guangzhou city, analyzing the landscape pattern changes in the LXH has greater
ecological significance and protection value for Guangzhou.

This study mainly analyzes the spatiotemporal differences of process and causes on
landscape pattern changes under rapid urbanization of the Guangzhou city. The specific
objectives are: (1) To analyze the changes of different land use types in time and space;
(2) to characterize the spatial configuration of the landscape pattern in time and space;
(3) to establish the relationship between changes in different land use types and different
influencing factors temporally; and (4) to determine the impact of different factors on the
landscape heterogeneity. Thus, these differences in the spatiotemporal changes and causes
of landscape pattern in the LXH under the rapid urbanization since 1980 are revealed. The
decision-makers will be more clear about how to formulate an appropriate strategy for
planning and management.

2. Materials and Methods
2.1. Study Area

The Liuxihe River basin is in the rapidly developing and urbanizing city of Guangzhou,
southeast of China (Figure 1). The river, about 171 km in length with an area of 2300 km2,
flows through Guangzhou, and eventually empties into the Beijiang River, a tributary of
the Pearl River. The annual precipitation rate over the LXH is 1750 mm and more than 80%
of precipitation occurs from April to September. Its daily mean air temperature is about
20 ◦C and annual rate of evaporation is about 1200 mm [45]. The elevation of the LXH
falls gradually from northeast to southwest, characterized by mountains in the upstream,
hills in the midstream, and plains in the downstream, thus making the upstream more
difficult to develop than the middle and lower watershed. At present, the distribution of
land use in the LXH is characterized by forests in the upstream, croplands and orchards
in the midstream, and construction lands in the downstream. In addition, the speed of
the urbanization process in the midstream and downstream of the LXH is faster and
stronger than in the upstream [46]. The special location conditions, the unbalancing effect
of urbanization, the difference in natural topography, and the land uses/land covers all
make the LXH an appropriate case for the research processes and influencing factors for
spatiotemporal changes of watershed landscape pattern in rapidly urbanizing areas.

2.2. Data and Data Processing

Satellite images taken in 1980, 1990, 1995, 2000, 2005, 2008, 2010, and 2015 (Landsat
MSS/TM/ETM, Landsat 8) with a spatial resolution of 30 m were provided by Data
Center for Resources and Environmental Sciences, Chinese Academy of Sciences (http:
//www.resdc.cn, accessed on 30 December 2017). The method of visual interpretation was
used to derive thematic land use maps based on the land resource classification system of
Chinese academy of sciences [47]. Meanwhile, the accuracy of interpretation was improved
through reference data, such as geomorphic maps, vegetation maps, ground truth data
at different sample points, and local resident interview data. The calculated results of
Kappa coefficient were larger than 0.80, which verified the accuracy and reliability of
these land use maps [48]. This paper reclassified these land use maps into nine types
including cropland, forest, orchard, grassland, shrub, water, floodplain, construction land,
and unused land (Appendix A Table A1).

Besides, data from 1980 to 2015 about demographic factors, socioeconomic factors, and
urbanized activities of the LXH were collected from the Guangzhou Statistical Yearbook
(http://tjj.gz.gov.cn/, accessed on 1 April 2018) and the Outline of Guangzhou Urban
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Construction Overall Strategic Concept Plan (http://ghzyj.gz.gov.cn/, accessed on 30
October 2018), which is provided by the Chinese government. The detailed factors are
total population (TP), proportion of non-agricultural population (PNAP), gross domestic
product (GDP), proportion of primary industry (PPI), proportion of secondary industry
(PSI), proportion of tertiary industry (PTI), annual per capital income (APCI), and total
investment in real estate development (IRE).

Figure 1. The location and digital elevation map (DEM) of the Liuxihe River basin (LXH).

Spatial data such as topographical elements (digital elevation map (DEM) and SLOPE)
were obtained from NASA’s Earth Observing System Data and Information System
(https://search.earthdata.nasa.gov/search, accessed on 30 December 2018). And other
spatial data were obtained from Data Center for Resources and Environmental Sciences,
Chinese Academy of Sciences (Source: China, Satellite images, http://www.resdc.cn, ac-
cessed on 30 December 2018), including population density (TP), socioeconomic level
(GDP), urbanized activities (NLD), and land use intensity (LUIN). These main parameters
of the LXH with a spatial resolution of 1000 m (except for the DEM and SLOPE data with a
spatial resolution of 30 m) were all cut out by the ArcGIS software.

2.3. Methods
2.3.1. Selection of Landscape Metrics and Influencing Factors

• Landscape Metrics

The factor analysis method [49] was taken to screen the notable landscape metrics
from 23 frequently used metrics (Appendix B Figure A1). First, if the absolute value of
the correlation coefficient between two indices was more than 0.9, only one was used;
second, indices representing different aspects of landscape characteristics were selected
to reduce the information redundancy among them [50]. Five representative indices were
used in the final analysis, including the patch density (PD), aggregation index (AI), largest
patch index (LPI), area-weighted mean patch fractal dimension (AWMPFD), and Shannon’s
diversity index (SHDI). These landscape metrics were calculated for 1980, 1990, 2000,
2010, and 2015 using the public domain software FRAGSTATS 4.2 at both the class-level
and landscape-level in 14 different granularities (30 m, 50 m, 100 m, 200 m, 300 m, 400
m, 500 m, 600 m, 700 m, 800 m, 900 m, 1000 m, 1100 m, 1200 m). FRAGSTATS is a
computer software program designed to compute a wide variety of landscape metrics for
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categorical map patterns at different levels (the detailed introduction of this software can
be found at https://www.umass.edu/landeco/research/fragstats/fragstats.html, accessed
on 1 February 2018). Thus, the characteristic scale interval which is appropriate for spatial
analysis of the Liuxihe River basin was determined (Appendix B Figure A2). The calculation
formula and ecological significance of these indices are given in Table 1.

Table 1. Landscape metrics used in this study, their formula and ecological interpretation.

Index Definition Equation Ecological Significance Scale Level

Patch Density (PD) Number of patches per unit
area. PD = Ni/A

Representing the degree of
landscape fragmentation and

heterogeneity.
Land use class/landscape

Aggregation Index (AI)

By calculating the adjacent
matrix between different

types of patches, AI is used to
describe the aggregation

degree of different patches.

AI =
2 ln(m) +

m
∑

i=1

n
∑
j=1

Pij ln(Pij)

Representing the degree of
landscape connectivity and

fragmentation.
Land use class/landscape

Largest Patch Index (LPI)
Quantify the percentage of

the largest patches in the total
landscape area.

LPI =
Max(aij)

A (100)
Representing the degree of

landscape dominance. Land use class/landscape

Area-weighted Mean Patch
Fractal Dimension

(AWMPFD)

Fractal dimension theory is
used to measure the shape

and structure complexity of
patches and landscape
(ranging from 1 to 2).

AWMPFD =
m
∑

i=1

n
∑

j=1
[

2 ln(0.25pij)

ln(aij)
]

N

Representing the interference
degree of human activities to

some extent.
Land use class/landscape

Shannon’s Diversity Index
(SHDI) An index based on the

relative area proportion of
each landscape type and the
total number of types. It is

somewhat more sensitive to
rare patch types than

Simpson’s diversity index.

SHDI = −
m
∑

i=1
(Pi · ln Pi)

Representing the degree of
landscape heterogeneity and

diversity.
Landscape

Note: i = 1 . . . m patch types (classes); j = 1 . . . n patches; A = total area of each landscape type (m2); aij = area (m2) of patch ij;
Pij = perimeter (m) of patch ij; Ni = number of patches in the landscape of patch type (class) i; m = number of patch types (classes) present
in the landscape, excluding the landscape border if present; Pi = proportion of the landscape occupied by patch type (class) i.

• Land Use Transition Matrix

The changes in landscapes were detected by calculating each land use type transition
matrix of any two adjacent periods from 1980 to 2015. The following equation (Equation (1))
was applied to calculate the matrix:

p =




p11 p12 · · · p1j
p21 p22 · · · p2j

...
...

...
...

pi1 pi2 · · · pij




(1)

where pij indicates the area in transition from landscape i to j. Each element of the transition

matrix meets two standards: (1) pij is non-negative, and (2)
n
∑

j=1
pij = 1.

For a better characterization of landscape changes, the transition matrix between any
two adjacent periods was displayed in a two-dimensional table by many researchers [51].
Therein, the diagonal entries of the table reflect the total size of persistent land use types
whereas the off-diagonal entries show the transition size of one land use type to another.
Besides, the gross gain and gross loss of each land use type were also displayed in the table,
which could be used to calculate the total exchange (sum of the gross gain and the gross
loss) and net change (the gross gain minus the gross loss).

• Selection of Landscape Change Influencing Factors

The influencing factors on the development of landscape pattern vary at different
spatial and temporal scales [52], which were categorized into natural and anthropogenic
factors in most of the related researches [53,54]. This study focused on the small-scale
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watershed around rapidly urbanization city in a short research period. In these areas,
anthropogenic factors such as population growth, socioeconomic activities, urbanization
activities, and related policies usually play a major role [29]. In terms of natural factors,
they are relatively stable and unchanged in short term compared with anthropogenic
factors [55], thus their impact on landscape changes can be ignored in this case [56–58].
Finally, only anthropogenic factors were selected to reflect the temporal influencing factors
in this study, including the total population (TP), the proportion of the non-agricultural
population (PNAP), gross domestic product (GDP), the proportion of the primary industry
(PPI), the proportion of the secondary industry (PSI), the proportion of the tertiary industry
(PTI), annual per capita income (APCI), and total investment in real estate development
(IRE). These factors are about the demographic, socioeconomic, and urbanized activities of
a region. Besides these, the policies related to the rapid urbanization were also considered.

In addition, researchers found that climate conditions had no significant influence on
the spatial distribution of landscape in a small-scale catchment [33], and topographical and
anthropogenic factors were commonly used to interpret the landscape spatial heterogeneity
in this case [28,59]. As we all know, the spatial difference of soil and hydrological conditions
always depend on topographical factors. Therefore, this study mainly analyzed the spatial
difference of topographical and anthropogenic factors on landscape spatial heterogeneity.
Herein, the spatially distributed data of GDP and TP were selected to represent the spatial
difference between socioeconomic level and population density. The nighttime light
(NLD) spatial data were used to represent the urbanization degree. Moreover, the spatial
distribution of the LUIN was calculated using the land use comprehensive degree index,
representing the urbanization activities related to land use changes. Additional details
on the calculation of land use comprehensive degree index can be found in Yu et al. [60].
Besides, the topographical variables (DEM and SLOPE) were also considered.

2.3.2. Quantifying the Influence on the Change of Landscape Pattern

Considering the spatiotemporal characteristics of land use and landscape pattern
changes and their interactions, this study mainly analyzed the factors that influence the
temporal change of land use types and spatial differences of landscape patterns (i.e., the
spatial heterogeneity of landscape). Since the data for each year could not be obtained, it
made the commonly used quantitative statistical analysis impractical. This study applied
grey correlation analysis to explore the impact of different influencing factors on land
use changes in an attempt to effectively solve the problem of insufficient sample data.
Meanwhile, spatial correlation analysis using the Geodetector was carried out to assess
the influence degree and interaction of each influencing factor toward different spatial
characteristics of landscape index.

• Grey Correlation Analysis

Grey correlation analysis is an impacting factor measurement method in the grey
system theory proposed by Deng [61] in 1982, which analyzes the uncertain relationship
between a main factor and all other influencing factors in a given system. It can complement
the defects of statistical analysis methods and can work with small amounts of irregular
data; it also negates the inconsistency between quantitative and qualitative results. The
analysis method mainly compares the time series of each influencing factor to determine
which one is dominant. That is, when the trend of changes between an independent
variable and a dependent variable is consistent or the degree of synchronization change is
high, a strong correlation results [62]. The relationship is often expressed by grey correlation
degree (Equation (2)). The greater the degree of grey correlation is, the more the influence
degree of the factor will be and vice versa.

γij =
1
n

n

∑
k=1

min
i

min
k

∆i(k) + ξmax
i

max
k

∆i(k)

∆i(k) + ξmax
i

max
k

∆i(k)
,∆i(k) =

∣∣xj(k)− xi(k)
∣∣ (2)
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where xi and xj are the independent variable series and the dependent variable series,
respectively; γij is the grey relational degree between independent variables xi and depen-
dent variables xj; ξ is the resolution coefficient, ξ ∈ (0, 1), and usually ξ takes a value of
0.5; k = 1, 2, · · · , n is the time series.

• Spatial Correlation Analysis

Spatial autocorrelation can be defined as the coincidence of value similarity with
location similarity, and is used to detect patterns of spatial association [63]. In this study,
the global Moran’s I index [64,65] (Equation (3)) was adopted to analyze the spatial autocor-
relation of each landscape metric in its characteristic scale interval (500~1200 m), providing
appropriate spatial scales for launching the bivariate spatial correlation analysis between
each landscape metric and the influencing factors (Appendix A Table A2).

I =
n

∑
i

∑
j

wij
×

∑
i

∑
j

wij(xi − x)

∑
i
(xi − x)

2 (3)

where wij is the spatial weight matrix between observation unit i and its neighboring units j:
i and j are established by diving the study area into uniform grids based on its appropriate
scale; xi and xj are the observed values of adjacent research area i and j, respectively; n is
the number of spatial units of the research area, and x is the average value of all observed
values in the sample. Index I ranges from −1 to 1, and as the absolute value of I increases,
the spatial correlation gets stronger. I = 0 indicates a random spatial distribution.

Further, bivariate Moran’s Ixy [66] (Equation (4)), which is based on the principle of
univariate spatial correlation, has been adopted on the specific scale of 1000 × 1000 m. On
this spatial scale, the analysis scale between each landscape metric and each influencing
factor can be unified. The spatial autocorrelation analysis of each landscape metric at
this scale was extremely significant. Through the spatial autocorrelation analysis, the
relationship between the landscape metric and spatial influencing factors was captured
and the strength of the association between the two variables was measured over the study
area.

Ixy =
n

∑
i

∑
j

wij
×

∑
i

∑
j

wij(xi − x)(yj − y)

√
∑
i
(xi − x)

2
√

∑
j
(yj − y)

2
(4)

where Ixy also ranges from −1 to 1, xi is the attribute values of adjacent research areas i and
x, while xj is the attribute values of adjacent research areas j and y; x and y are the average
attribute values of x and y in the sample, respectively; and n is the number of the spatial
units of the research area.

• Geographical Detector Model

The geographical detector model (Geodetector), which is based on the theory of
spatial stratified heterogeneity [67], was used to analyze the interaction between landscape
metrics and various influencing factors in this study. First, we obtained the spatial data of
independent variables through discrete classification for various influencing factors using
the geometrical interval method [68–70], and then analyzed the influence of these variables
on each landscape metric of the same spatial scales via Geodetector.

Specifically, the factor force q in Equation (5), ranging from 0 to 1, quantified the
effect of different influencing factors on the spatial distribution of landscape metrics [32],
and reflected the degree of spatial stratified heterogeneity of the metrics. The larger the q
became, the more heterogeneous the landscape pattern.

q = 1− 1
Nσ2

L

∑
i=1

Niσ
2
i (5)
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where N and σ2 stand for the number of units and the variance of the dependent variable,
respectively; i = 1 · · ·L is the stratification of the dependent or independent variable;
Ni and σ2

i stand for the number of units and the variance of the dependent variable in
stratification layer i, respectively.

3. Results
3.1. Spatiotemporal Variations of Land Use Types

As shown in Figure 2, the overall landscape of the LXH is dominated by forests and
croplands, while other seven land use types (including forest, shrub, orchard, grassland,
water, floodplain and unused land) occupy a relatively small portion, accounting for less
than a quarter of the total basin. Clearly, it is noticed that the proportion change in land use
types were not large in general, but their temporal and spatial differences were obvious.
Therein, the proportion changes of cropland and construction land were more prominent
than any other land use types, particularly in the middle and lower watershed during 2000
and 2010. Temporally, the decreases of cropland and increases of construction land in this
decade were more than 50% of that in total 35 years (See subfigures b in Figure 2). Spatially,
it can be seen from the results of (c) in Figure 2 that the cropland decreased by 16.96% in
the lower watershed and 2.70% in the middle watershed, respectively. The construction
land increased by 17.78% in the lower watershed and 3.33% in the middle watershed,
respectively. Their changes were all less than 1% in the upper watershed.

Figure 2. The types of land use in the LXH (1980–2015) (a) Spatial distribution of land use; (b) Percent
coverage of the land use types; and (c) percent coverage of the land use types in the upper, middle
and lower watershed of the river basin.

More importantly, land use changes, characterized by the transition from one type to
another, were extremely prominent. From the land use conversion matrix between 1980
and 2015 in Table 2, it can be calculated that the total exchange area is 578.93 km2, or
24.71% of the total catchment area. Specifically, the conversions among cropland, forest,
orchard, water, and construction land comprised 94.78% of the total exchange. Among
them, construction land has increased by 158.67 km2 or 127.47%. Cropland and forest
have decreased by 146.33 km2 or 20.00% and 39.24 km2 or 3.08%, respectively. Other
changes were all less than 20.00 km2. It can be observed that cropland and forests primarily
contributed to land use exchanges and were the major land use types encroached on by
urbanization. Of the 158.67 km2 increases in construction land, 89.17% resulted from
conversion of cropland and 10.35% resulted from conversion of forests.
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Table 2. Land use types conversion matrix between 1980 and 2015 (km2).

1980
2015 2015

Total Gain
Cropland Forest Shrub Orchard Grassland Water Floodplain Construction Land Unused Land

Cropland 555.34 12.47 2.96 2.14 0.91 1.68 0.16 9.65 0.20 585.51 30.17
Forest 13.37 1213.02 1.13 2.09 2.52 2.11 0.13 1.79 1236.17 23.15
Shrub 2.64 1.66 57.76 0.07 0.09 0.09 0.28 0.01 62.60 4.83

Orchard 2.30 22.86 0.42 37.14 0.08 0.19 0.07 0.60 63.65 26.51
Grassland 1.11 4.32 0.13 0.73 36.11 0.08 0.06 42.55 6.44

Water 15.52 4.55 0.22 0.20 0.25 41.60 2.66 1.73 66.73 25.13
Floodplain 0.08 0.11 0.13 0.04 1.79 2.16 0.36

Construction land 141.48 16.43 3.59 4.84 2.57 3.57 0.15 110.35 0.16 283.14 172.78
Unused land 0.08 0.01 0.38 0.48 0.09

1980 Total 731.84 1275.40 66.30 47.34 42.53 49.37 4.96 124.47 0.76
Loss 176.50 62.38 8.53 10.20 6.42 7.77 3.17 14.12 0.38

Besides, there also exist great temporal and spatial differences in land use exchanges.
Temporally, the Sankey diagram in Figure 3 visualizes exchanges of each land use type over
different time periods. Therein, exchanges in almost all land use types during 2000–2010
are the most significant. Notably, the increase of construction land in this decade accounted
for more than 50% of the total increase in the entire period, and 78.11% of the construction
land increase came from conversion of cropland and 10.10% from conversion of forest.
Spatially, Figure 4 shows that the conversions mainly occurred in the middle and lower
reaches of the basin where a large amount of cropland was converted into construction
land. Particularly, the lower reaches experienced the most drastic changes in the river basin
regarding croplands and construction areas.

Figure 3. Comparison of exchanges of land use types in four time periods.

3.2. Spatiotemporal Variations of Landscape Patterns

The different landscape pattern indices were calculated at both landscape and land
use class levels on the specific scale of 1000 × 1000 m. The former represents the overall
spatial arrangement characteristics of each landscape patch, and the latter reflects the
spatial arrangement characteristics of each landscape patch in different types. That is,
the landscape pattern of each landscape patches at the class level can determine it at the
landscape level, but not vice versa.

Figure 5 shows that changes of those indices are all obvious at the landscape level.
For example, the landscape fragmentation index PD has an increasing trend and increased
by 8.03%, while AI shows a decreasing trend and decreased by 2.25%. Meanwhile, the
interference index AWMPFD and dominance index LPI decreased by 0.71% and 4.86%,
respectively. The diversity index SHDI shows an increasing trend and increased by 5.25%.
Temporally, these indices altogether indicated an increasing fragmentation and homoge-
nization in landscapes, intensified human interference, and a weakening dominance of the
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once-dominant landscape (forest and cropland) in the early years. Similar to the changes
in land use types, the decade from 2000–2010 experienced the most significant changes in
landscape pattern.

Figure 4. Spatial variations of land use type transition in different time intervals (1980–1990, 1990–2000, 2000–2010,
2010–2015 and 1980–2015).

Figure 5. Changes of landscape metrics (a) Shannon’s diversity index (SHDI), (b) patch density (PD), (c) aggregation index
(AI), (d) area-weighted mean patch fractal dimension (AWMPFD), and (e) largest patch index (LPI) at the landscape level
from 1980 to 2015.
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Moreover, similar to land use changes, landscape pattern also showed distinct spatial
characteristics, reflecting the landscape heterogeneity in the LXH. As shown in Figure 6,
the PD and SHDI are relatively small while AI, AWMPFD, and LPI are relatively large in
the upstream area. However, this pattern reverses in the middle and lower watershed. This
indicated that the landscape in the middle and lower watershed was more fragmented and
heterogeneous than the landscape in the upper watershed, with a higher interference and
lower dominance. Moreover, by comparing the values of these landscape metrics in 1980
and 2015 shown in subfigures c in Figure 6, we find that they are almost unchanged in
most regions, except for part of the middle and lower watershed where cropland had been
largely converted to construction land.

Figure 6. Spatial distribution of the changes in landscape metrics between (a) 1980 and (b) 2015, and (c) showed the results
of subtraction of the indices in 1980 from 2015.

At the land use class-level, it can be found that the PD and AI value of cropland
and forest changed more significantly than the other types during the total study period.
The PD of cropland and forest increased by 42.26% and 41.59%, and the AI decreased
by 1.68% and 0.21%, respectively. Meanwhile, the LPI values of cropland and forest
decreased by 67.45% and 3.07%, respectively. The LPI of construction land in 2015 was
12 times that of the LPI in 1980, second only to the LPI of cropland. Among all land use
types, the AWMPFD of cropland decreased most significantly, by 4.39% in total, while
the net change of the AWMPFD of other types was less than 1.00%. That is, the degree of
fragmentation, homogenization, and human alteration of cropland in this river basin was
the most significant of all terrains. At the same time, the degree of landscape dominance of
cropland was greatly reduced, while that of construction land was greatly improved. This
indicated that the fragmentation and homogenization of cropland was mainly contributed
by occupation of the construction land.
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3.3. Impacts of the Anthropogenic Factors on Temporal Landscape Changes

Since the effect of natural factors on landscape changes was minor compared with
anthropogenic factors in a short period of time, this paper selected eight anthropogenic
factors involving demographic factors, socioeconomic factors, and urbanized activities to
reflect their impacts on landscape changes temporally (refer to Figure 7 for detailed indices
and their change trends). Meanwhile, due to the difficulty of quantitatively expressing the
related policies, they were not included in the following quantitative analysis.

Figure 7. Temporal trends of influencing factors (a) Total population, (b) Proportion of non-
agricultural population, (c) Gross domestic product, (d) Proportion of primary industry, (e) Propor-
tion of secondary industry, (f) Proportion of tertiary industry, (g) Annual per capita income and (h)
Total investment in real estate development during 1980 to 2015.

First, from the Figures 7 and 8, it can be found that the temporal changes of some
influencing factors and land use types are non-linear; we chose the method of grey cor-
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relation analysis in this context. According to the results from the relational analysis in
Table 3, all the grey correlation coefficients are greater than 0.55, indicating that the changes
of these eight anthropogenic factors are all significantly correlated with the changes of
various land use types in the LXH temporally. More specifically, the four most correlated
factors on each land use type were the TP, the PNAP, the PSI, and the PTI, which were
demographic and socioeconomic factors and their correlations were all above 0.73. Among
them, for cropland and each natural land (forest, shrub, grassland, water, floodplain, and
unused land), the most correlated factors were PSI and TP; while for construction land,
the most correlated factors were PNAP and PTI. From the Figure 7, it is clear that the TP,
PNAP, and PTI all increase dramatically from 1980 to 2015 in the LXH. The PSI shows a
trend of first increasing and then decreasing, but it also increases on the whole. Therefore,
combined with the characteristics of the proportion changes in various land use types in
Figure 8, it can be concluded that the increase of construction land was mainly correlated
with the increase of non-agricultural population and the continuous development of the
tertiary industry in the LXH. The decreasing of cropland and each natural land was mainly
correlated with the increase of TP and the changes in secondary industry. This might be
attributed to the growing population (especially the growth of urban population) and
the transformation of industry (especially the growth of tertiary industry), which has
accelerated the encroachment on cropland and natural lands to meet the demands for
more construction land in the LXH [71,72]. Alternately, the other four influencing factors
were also crucial to the changes of different land use types, but they had less of an effect
compared with these main influencing factors.

Figure 8. Temporal trends of each land use type (a) Proportion changes of Cropland, (b) Proportion changes of Forest, (c)
Proportion changes of Shrub, (d) Proportion changes of Grassland, (e) Proportion changes of Floodplain, (f) Proportion
changes of Unused land, (g) Proportion changes of Orchard, (h) Proportion changes of Water and (i) Proportion changes of
Construction land during 1980 to 2015.
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Table 3. Grey correlation coefficients of influencing factors on land use changes.

Grey
Correlation
Coefficients

TP PNAP GDP PPI PSI PTI APCI IRE

Degree Rank Degree Rank Degree Rank Degree Rank Degree Rank Degree Rank Degree Rank Degree Rank

Cropland 0.89 2 0.79 3 0.60 7 0.71 5 0.92 1 0.73 4 0.63 6 0.57 8
Forest 0.91 2 0.80 3 0.60 7 0.67 5 0.93 1 0.74 4 0.64 6 0.57 8
Shrub 0.90 2 0.80 3 0.60 7 0.68 5 0.93 1 0.74 4 0.64 6 0.57 8

Orchard 0.93 1 0.87 3 0.62 7 0.63 6 0.89 2 0.79 4 0.67 5 0.58 8
Grassland 0.91 2 0.81 3 0.60 7 0.67 5 0.92 1 0.74 4 0.63 6 0.56 8

Water 0.95 1 0.83 3 0.61 7 0.65 5 0.92 2 0.76 4 0.64 6 0.57 8
Floodplain 0.84 2 0.77 3 0.60 7 0.76 4 0.84 1 0.73 5 0.64 6 0.57 8

Construction
land 0.83 3 0.89 1 0.64 6 0.55 8 0.77 4 0.84 2 0.70 5 0.59 7

Unused land 0.87 2 0.80 3 0.61 7 0.74 5 0.91 1 0.75 4 0.65 6 0.58 8

3.4. Impacts of Anthropogenic and Natural Factors on Spatial Landscape Changes

Considering the fact that landscape pattern experienced the most significant changes
from 2000 to 2010, we took this period as an example to study the influencing factors
of spatial heterogeneity toward landscape pattern in this river basin. Table 4 manifests
the significant spatial correlation between each landscape metric and each investigated
influencing factor in 2000 and 2010 respectively. Among them, topographic elements DEM
and SLOPE were all spatially negatively correlated with PD and SHDI, and positively
correlated with AI, AWMPFD, and LPI. This indicated that in areas with low elevation and
gentle slopes, the degree of landscape fragmentation, landscape interference, and landscape
homogenization was stronger, and that the landscape dominance was weak. Table 4
also shows that all anthropogenic influencing factors (GDP, TP, and NLD) are positively
correlated with PD and SHDI, and negatively correlated with AI, AWMPFD, and LPI
spatially. This illustrates that the degree of landscape fragmentation, landscape interference,
and landscape homogenization is relatively strong in more developed regions. In terms of
the impact of land use changes brought by rapid urbanization on landscape patterns, the
LUIN was positively correlated with PD and SHDI spatially and negatively correlated with
AI, AWMPFD, and LPI. This reflected that areas with high LUIN were usually accompanied
with a relatively stronger degree of landscape fragmentation, landscape interference, and
landscape homogenization.

Table 4. Bivariate Moran’s I correlation analysis between landscape metrics and influencing factors
in the spatial dimension in 2000 and 2010.

Moran’s I
PD AI AWMPFD LPI SHDI

2000 2010 2000 2010 2000 2010 2000 2010 2000 2010

DEM −0.46 −0.39 0.38 0.32 0.51 0.42 0.46 0.39 −0.52 −0.44
Slope −0.30 −0.26 0.25 0.21 0.22 0.28 0.30 0.26 −0.33 −0.29
GDP 0.18 0.14 −0.14 −0.11 −0.21 −0.15 −0.18 −0.14 0.19 0.14
TP 0.15 0.11 −0.11 −0.08 −0.17 −0.12 −0.14 −0.11 0.15 0.11

NLD 0.30 0.23 −0.23 −0.19 −0.34 −0.25 −0.30 −0.23 0.33 0.26
LUIN 0.49 0.49 −0.40 −0.23 −0.53 −0.31 −0.49 −0.29 0.55 0.31

Note: Permutation test was used to test in this study, and the P value of each group of variables was equal to
0.001, indicating that the spatial correlation was significant under 99.9% confidence.

Geographic detector analysis showed that the interpretation of DEM on the spatial
distribution of each landscape metric was the largest among all influencing factors in 2000
or 2010, with the highest average q value being 0.28 or 0.23, followed by GDP, TP, and
NLD, while Slope had the lowest q value (Figure 9). Results indicated that the spatial
distribution of elevation was the key factor that induced the spatial heterogeneity of
landscape pattern, and the spatial distribution of socioeconomic level, population density,
and urbanized activities also played an important part. The analysis of interactions between
the influencing factors and landscape metrics (Figure 10) showed that the interpretation
of spatial distribution characteristics of landscape pattern by any two influencing factors
was greater than that of any single influencing factor, indicating that the formation of
spatial heterogeneity was the result of interactions between various influencing factors.
Specifically, from the subfigures a in Figure 10, the interaction between DEM and LUIN is
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the strongest among other factors. The interaction between LUIN and other four influencing
factors on each landscape metric was almost stronger than that between any other two
influencing factors in 2000. This indicated that the spatial differences of DEM and LUIN
jointly resulted in the spatial heterogeneity of landscape pattern in 2000, stronger than the
interactions between DEM and GDP, TP, NLD, Slope comparatively. However, compared
with the results from 2000, since the interaction between DEM and TP, GDP, and NLD
was strengthened, the interaction between DEM and LUIN was no longer the strongest
among the other factors in 2010 (see subfigures b in Figure 10). These indicated that the
spatial differences of the topographic elements and other influencing factors also jointly
contributed to the spatial heterogeneity of landscape pattern in 2010.

Figure 9. The force q among each influencing factor on each landscape pattern metric in (a) 2000 and (b) 2010.

Figure 10. The force q among any two influencing factors on each landscape pattern metric interactively in (a) 2000 and (b) 2010.

4. Discussion
4.1. Spatiotemporal Changes of Land Use and Landscape Pattern

The results of this study showed that in the LXH, there exist large spatial and temporal
differences in land use changes and landscape pattern changes. These changes appeared
to be more prominent in the middle and lower watershed, and their changing rates were
fastest during 2000 to 2010. Specifically, the land use change was featured by the increasing
transition of cropland and forest to construction land, and the fragmentation and homoge-
nization of landscape pattern was contributed to the encroachment of construction land on
forest and cropland. That is, the decrease of cropland and forest was accompanied with the
decreased degree of the cropland and forest landscape dominance and the increased degree
of the cropland and forest landscape fragmentation and homogenization. These further
proved the synchronization characteristics and interaction relationship between land use
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changes and landscape pattern changes proposed by scholars [17,19]. Thus, it is possible
for researchers to use the temporal change of a land use type to reflect the temporal change
pattern of a certain landscape type in a period of time.

Besides, our findings of the land use and landscape pattern changes are consistent
with the previous research in the whole Guangzhou city. For example, Zhang et al. [73]
and Gong et al. [74] also found that the increase of construction land in new urban areas of
Guangzhou city mainly came from cropland, forest, and other ecological land, especially
after 2000. Gong et al. [41] also confirmed that the fragmentation and homogenization of
cropland in Guangzhou was mainly contributed by the expansion of construction land.
However, their research paid more attention to the urbanization expansion pattern of
Guangzhou by comparing the changing differences of certain land use types and landscape
patterns in different jurisdictions, instead of focusing on these spatiotemporal changes
brought by urbanization [38,75]. Researches on the analysis of land use and landscape
pattern changes in a watershed under the urbanization expansion pattern also exist, which
provide theoretical basis and method reference for this study. But watersheds selected in
their studies are relatively large, spanning multiple cities [9,21]. As a case study in this
paper, the LXH was relatively small and in the range of Guangzhou city. Its middle and
lower watershed is adjacent to the central urban area of Guangzhou, while the upstream
area is far away from the central urban. This pushed the gradual widening of the difference
between the northern and southern parts of the watershed influenced by urbanization. Our
results also found that changes of land use and landscape pattern were different between
the northern and southern parts.

Moreover, analysis results above reflected that the time period from 2000 to 2010 and
the southern parts of the LXH with the most prominent changes should be taken seriously
by relevant stakeholders. First, changes of land use and landscape pattern in southern
parts of the LXH should be slow down and controlled, and the northern parts should be
protected timely under the rapidly urbanizing trends. Then, the special time period from
2000 to 2010 needs to pay much attention to in related researches about the LXH. It means
that this study gives not only a supplement to previous studies in these regions, but also is
of great value for managers, planners, and scholars to make appropriate strategies.

4.2. The Temporal and Spatial Influencing Factors

In terms of the influencing factors of the changes of land use types and landscape
patterns, previous studies mainly discussed the reasons for land use type conversion
at different locations [32,76] and in different time periods [21,29], but few analyzed the
factors responsible for the spatial heterogeneity of landscape patterns in river basins, nor
did they comprehensively quantify the factors that contributed to the spatiotemporal
change of land use types and landscape patterns. In this study, considering the fact that
various land use type changes emphasized the transition of different landscape patches
in different time periods, and that changes of landscape patterns reflected the difference
of spatial configuration characteristics in different landscape patches, we analyzed the
influencing factors on the temporal change of land use types and spatial heterogeneity
of landscape pattern, respectively. We found that there was a greater difference in the
spatiotemporal influencing factors of land use and landscape pattern changes in the LXH.
Thus, it is very important to propose a targeted protection and development strategy,
which can meet the current needs of the different regions in the LXH. Temporally, we
found that the demographic factors, socioeconomic factors, and urbanized activities were
important in shaping the temporal variations of land use types in this river basin, and
changes of major land use types were more sensitive to the increasing of non-agricultural
population and transformation of industry than any other factors. This was consistent
with the findings in other studies on the influencing factors of land use types changes
in other river basins [15,28]; they also found that the growth of urban population and
changes of industries contributed to the increase of construction land [4,77]. Moreover,
similar studies elsewhere underlined that government policy also played an important
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role in the change of land use types during different periods [78–80]. Although there
was no appropriate method for analyzing the impact of the related policies on land use
changes quantitatively, we found that various land use types in the LXH have undergone
significant changes in the last three decades after 1980, and these changes were particularly
dramatic after 2000. Zhang et al. [73] found that the implementation of China’s reform and
development policy in 1978 was an important driving force for economic development and
population migration of Guangzhou, pushing the continuous expansion of construction
land to gradually occupy the cropland, forest, shrub, and grassland in the suburbs. Thus,
the observed expansion of the construction land in the LXH after the early 1980s may be
attributed to the implementation of this policy. In addition, the overall urban development
master plan of Guangzhou in 2000 had put forward the strategy of expanding the urban area
to the north and built Guangzhou into an international metropolis by 2010, which could
further accelerate the expansion of construction land if practices continue. Correspondingly,
the land use types in the LXH changed significantly after 2000 compared with the pre-
2000 practices, accounting for more than 50% of the total variation in 35 years. Moreover,
Baiyun, Huadu, and Conghua districts in the north had successively merged into the
jurisdiction of Guangzhou in the year 2000, 2010, and 2015, respectively. The different
speed of urbanization in different regions altered the variation characteristics of land
use types. We also found that the lower watershed that contains the Baiyun and Huadu
districts had the largest proportion of cropland conversion to construction land, which
was five times higher than that of the upper and middle watershed. Therefore, apart from
the demographic factors, socioeconomic factors, and urbanized activities, the relevant
government policy, which is difficult to quantify, also significantly affected the variations
of land use types.

Focusing on the impact of various influencing factors on landscape pattern changes
in spatial dimension will be very useful in identifying and controlling the major driving
forces, guiding the watershed protective management and sustainable planning. How-
ever, most of the current studies adopted the classification method to describe the spatial
characteristics of landscape pattern and their influencing factors of different regions, and
seldom analyzed the spatial relationships among variables quantitatively [9,33]. In the
research of Ju et al. [70], the applicability of the geographic detector model in analyzing the
driving force of construction land expansion was proved, providing a quantitative method
for the analysis of the interaction among various spatial factors. But their research did not
conduct a comparative analysis of the spatial driving relationships in different periods.
Here, using the model of geographic detector by Wang et al. [69], this study compared
the impact of different influencing factors on spatial landscape heterogeneity during 2000
and 2010, when the most dramatic land use changes happened. It can be found that the
spatial distribution of LUIN and elevation were the two critical factors for the formation
of landscape heterogeneity in 2000 compared with other factors, while the interaction
between elevation and other human factors was strengthened in 2010; this illustrated that
elevation was always a basic factor that directly determined the spatial distribution of
landscape pattern. Liu et al. [61] also proposed that it was difficult for people to break
through existing natural obstacles in the hilly regions of southern China, and this difficulty
had largely restricted human activities. From Figure 11, it is clear that great differences
in the terrain conditions exist in this study. Because areas with high elevation or greater
slopes were difficult to develop and not suitable for urban construction, they were seldom
disturbed by human activities [33], so that the degree of landscape fragmentation and
homogenization in the upper reaches was low and the degree of landscape dominance
was high. Therefore, elevation was a prerequisite for the impact of anthropogenic factors
to occur. On the other hand, based on the difference of elevation in different regions of
LXH, the human influencing factors, such as population and socioeconomic and urbanized
activities, played an increasing role in the formation of the heterogeneous characteristics
of the landscape pattern after 2000. This may be due to the fact that the spatial difference
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of human influence factors increased significantly after 2000, as it shown in subfigure c in
Figure 11.

Figure 11. Spatial distributions of the selected influencing factors selected in this study in (a) 2000 and (b) 2010, and (c)
shows the results of the subtraction of each influencing factor between 2000 and 2010.

The above discussion illustrates that it is necessary to control the increasing trends of
non-agricultural population and the continuous development of secondary and tertiary
industry in the future, thus the demand for more construction land will be decreased.
Meanwhile, relevant policies should try to meet these demands. We also should pay much
attention to the southern parts of the LXH, and strengthen its adjustment ability to deal
with the intensive population density, higher GDP, and greater urban construction. For
example, the urban occupancy rate in these areas can be increased, artificial green land can
be increased, the native forest and grassland must be strictly protected, etc. This means
that establishing the spatiotemporal change trends and causes of land use and landscape
pattern in a rapidly urbanizing watershed is very important for guiding the diagnosing of
urbanization problems, clarifying the main protection areas and main control factors.

4.3. The Limitations and Potential Outlooks

This study produces a quantitative estimate of the spatiotemporal variations in land
use types and landscape patterns and analyzes the dominant influencing factors leading
to these changes in LXH quantitatively, which provides a systematic integration and
deepening of previous studies. The main land use maps used in this study interpreted
by the common method of visual interpretation, and their errors mainly came from the
personal subjective judgment of the interpreters and the similarity of the tones and textures
of the satellite image. Although these errors in the interpretation process were considered
and improved through some reference maps (including topographic maps, vegetation
maps, ground truth data at different sample points, and local resident interview data),
there also existed uncertainties in the data measurement and description [36]. These errors
will also affect the accuracy of the research results to some degree. Therefore, it is necessary
to compare any two measurement methods to improve the analysis accuracy of land use
maps and express them on different scales as much as possible in the future. Besides, due
to the scarcity of historical landscape information, e.g., land use maps from 1980 to 2015,

84



Remote Sens. 2021, 13, 1168

Topography data and Nighttime Light Image Data in 2015, we were unable to accurately
establish the relationship between each land use type and different influencing factors,
nor could we compare the driving factors of spatial heterogeneity of landscape patterns in
each period. In addition, there are some factors that cannot be quantified, such as policy
factors, which make the analysis of influencing factors still not comprehensive enough. In
the future, it may be possible to construct a comprehensive model combining qualitative
and quantitative analysis on all possible influencing factors of land use changes.

Resolution of available spatial data set of spatial influencing factors was also a limita-
tion. We conducted the driving analysis between the influencing factors and landscape
indices at a 1 km grid. Although on this scale the influencing factors also had good spatial
correlation, the resolution limitation of influencing factors might affect the accuracy of
the analysis results to some degree. Therefore, spatial data with appropriate accuracy at
a higher resolution and longer periods could substantially improve the accuracy when
analyzing the change of landscape patterns and their driving forces. In that sense, models
of land use change would be a good alternative for such studies by simulating the land use
in different years to increase the range and length of land use data [81], and hence guide
the urbanization development of this region by analyzing the change of land use types and
landscape patterns in the future. Moreover, the extensive establishment of the real-time
monitoring data platform of different spatial influencing factors such as social economic ac-
tivities, population density, and urbanization activities in the future with higher resolution
will improve the accuracy of spatial analysis, thereby realizing its dynamic analysis.

Moreover, based on our comprehensive analysis of the spatiotemporal changes and
causes of landscape pattern in the LXH and its ecological and hydrological effects in related
researches [43], it is more urgent to establish specific strategies to guide the sustainable
development of LXH in the future. The Hellwig classification and measurement method
introduced by Hellwig in 1968 provides a decision-making method for formulating sus-
tainable development strategies based on the evaluating of urban development [82]. This
method was first applied in the sustainable decision-making process of urban green space
biodiversity management in Lublin, eastern of Poland, thus the main ecological areas
that should be protected can be established [83]. Then, other scholars used and extended
this method at different scales in European Union to formulate sustainable development
strategies based on the different goals. These application of the Hellwig method in different
researches prove its effectiveness in evaluating the level of development of different regions
in different fields at different scales, which provide a new direction for the future research
of establishing the sustainable development strategy in the LXH based on the analysis
of its changes about land use, landscape pattern, hydrological and ecological conditions
under the rapid urbanization. After that, the specific areas of the LXH under the rapid
urbanization process, in which its land use transition and landscape pattern fragmentation
should be extremely controlled can be found.

5. Conclusions

In this study, we analyzed the spatiotemporal changes of land use types and landscape
pattern of the LXH from 1980 to 2015 under the rapid urbanization of Guangzhou city, as
well as quantified the major influencing factors temporally and spatially. The main conclu-
sion can be concluded as one sentence that there exist great spatiotemporal differences in
land use and landscape pattern changes and its causes in the LXH during the past 35 years.
Specifically, it can be drawn as follows:

• The most obvious land use change was characterized as the large transition from
cropland to construction land, bringing about the fragmentation of cropland that was
encroached on by the construction land. The landscape pattern showed an increasing
trend of landscape fragmentation, homogenization, and landscape interference, and
a decreasing trend in landscape dominance. These changes mainly occurred in the
lower watershed, particularly between 2000 and 2010. Therein, these changes were
more than 50% in this decade compared with total 35 years.
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• Many influencing factors affected the temporal variations in landscapes, including
population growth, economic and industrial development, urbanized activities, and
relevant policies. Among them, changes of major land use types were more sensitive
to the increase of a non-agricultural population and transformation of industries than
other factors. In addition, the spatial distribution of land use types and elevation were
found to be the two key factors for the formation of landscape heterogeneity in 2000,
while the spatial distribution of the other three human factors and elevation gradually
became the same important factors after 2000.

• Our research shows that the temporal and spatial difference of changes in land use
and landscape pattern at a watershed with unbalance urbanization degree in different
regions was great. This is not only affected by the difference of the degree in socioe-
conomic level, population growth rate, and urbanizing expansion in different time
and space, but also determined by the related policies. Besides, the topographical
factors were also the basis of the formation on landscape pattern. When developing,
we need to consider both the geographical conditions and the urbanizing degree of
the watershed, thus a sustainable development strategy could be formulated and the
goals of protecting and restoring the watershed ecosystem can be achieved.

The findings are of great significance for review and outlook of the ecological protec-
tion and sustainable development of the watershed around the rapidly urbanizing areas. It
can not only allow decision-makers to clarify their main problems, but also guide them
to clarify the key protection areas and control indicators. However, the analysis of the
landscape patterns above was limited to the period from 1980 to 2015, and the comparison
of influencing factors on spatial landscape configurations focused only on 2000 and 2010.
Nonetheless, results in this study are insightful, although they could be more generalized
with the analysis over a longer period.
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Appendix A

Table A1. Description of land use types in the LXH.

Land Use Types Description

Cropland Arable agricultural land, including paddy fields and dry land

Forest Natural and semi-natural manmade woodland

Shrub Dwarf woodland (height < 2 m) and shrubbery

Orchard Intensively managed orchards (fruit orchards, mulberry orchards, tea
orchards) and plant nursery

Grassland Natural and artificial grassland

Water Rivers, creeks, canals, ponds, lakes, reservoirs, and bays

Floodplain Permanent and seasonal floodplains

Construction land Mainly urban and rural settlements, mining land, transportation land, and
other special construction land

Unused land Mainly land without vegetation cover and difficult to use, including bare
soil, sandy land, desert, saline, and landfills

Table A1 gives a detailed description of the content about each land use type in this
study, which can better display the classification standard of land use types.

Table A2. Analysis results of spatial autocorrelation of each landscape metric in different scales in
2000 and 2015 of LXH

Scales/(m ×m) PD AI AWMPFD LPI SHDI
2000 2015 2000 2015 2000 2015 2000 2015 2000 2015

500 × 500 m 0.47 0.47 0.45 0.45 0.46 0.47 0.47 0.46 0.47 0.47
600 × 600 m 0.47 0.47 0.45 0.45 0.46 0.47 0.47 0.46 0.47 0.47
700 × 700 m 0.46 0.46 0.45 0.45 0.46 0.46 0.46 0.46 0.46 0.46
800 × 800 m 0.46 0.46 0.43 0.43 0.45 0.46 0.46 0.45 0.46 0.46
900 × 900 m 0.46 0.46 0.43 0.43 0.45 0.46 0.46 0.45 0.46 0.46

1000 × 1000 m 0.44 0.44 0.42 0.42 0.43 0.44 0.44 0.43 0.44 0.44
1100 × 1100 m 0.44 0.44 0.41 0.41 0.43 0.44 0.44 0.43 0.44 0.44
1200 × 1200 m 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44

Note: Permutation test was used to test in this study, and the P value of each landscape metrics in
different scales was equal to 0, indicating that the spatial correlation was significant under 99.9%
confidence. The Z value of them were all >1.96, reflecting that there exists extremely significant
spatial autocorrelation among these landscape metrics in different spatial scales.

Table A2 reflects the degree of spatial autocorrelation about each landscape metric
selected in this paper. It confirms that the spatial autocorrelation of these landscape metrics
is extremely significant in different spatial scales ranging from 500 to 1200 m. Therefore, it
can be proved that these spatial scales are all appropriate for analyzing the bivariate spatial
correlation between each landscape metric and each influencing factor.

Appendix B

This Figure A1 is provided to screen the notable landscape metrics from 23 frequently
used metrics. It demonstrates the correlation between any two kinds of landscape metrics
among these 23 metrics above. Clearly, most of them were highly correlated with each
other. Thus, when the absolute value of correlation coefficient between two indices is
more than 0.9, only one is used; second, indices representing different aspects of landscape
characteristics were selected to reduce the information redundancy among them. Finally,
five representative indices were selected in this paper, including patch density (PD), aggre-
gation index (AI), largest patch index (LPI), area-weighted mean patch fractal dimension
(AWMPFD), and Shannon’s diversity index (SHDI), which represent different aspects of
landscape characteristics.
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Figure A1. Results of the factor analysis among 23 common metrics.

Figure A2 presents the changing value of five selected landscape metrics at landscape-
level in 14 different granularities (including 30 m, 50 m, 100 m, 200 m, 300 m, 400 m, 500 m,
600 m, 700 m, 800 m, 900 m, 1000 m, 1100 m, 1200 m). It proves that 500~1200 m was
the common characteristics interval of these landscape metrics. Thus, the spatial scale for
analyzing the spatial autocorrelation of each landscape metric has been established.
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Abstract: The accuracy of the rain distribution could be enhanced by assimilating the remotely sensed
and gauge-based precipitation data. In this study, a new nonparametric general regression (NGR)
framework was proposed to assimilate satellite- and gauge-based rainfall data over southeast China
(SEC). The assimilated rainfall data in Meiyu and Typhoon seasons, in different months, as well
as during rainfall events with various rainfall intensities were evaluated to assess the performance
of this proposed framework. In rainy season (Meiyu and Typhoon seasons), the proposed method
obtained the estimates with smaller total absolute deviations than those of the other satellite products
(i.e., 3B42RT and 3B42V7). In general, the NGR framework outperformed the original satellites
generally on root-mean-square error (RMSE) and mean absolute error (MAE), especially on Nash-
Sutcliffe coefficient of efficiency (NSE). At monthly scale, the performance of assimilated data by NGR
was better than those of satellite-based products in most months, by exhibiting larger correlation
coefficients (CC) in 6 months, smaller RMSE and MAE in at least 9 months and larger NSE in
9 months, respectively. Moreover, the estimates from NGR have been proven to perform better than
the two satellite-based products with respect to the simulation of the gauge observations under
different rainfall scenarios (i.e., light rain, moderate rain and heavy rain).

Keywords: precipitation; assimilation; nonparametric modeling; multi-source

1. Introduction

As a key component within the water and energy cycle system, precipitation plays a
crucial role in the fields of hydrology, meteorology and water resources management [1–7].
Accurate precipitation is an essential model input to predict the hydrological responses of
the selected watershed and the potential rain-induced hazards [8–11]. Therefore, attention
is drawn to estimating the precipitation distribution using different methods. The ground
rain gauge is a common approach for measuring precipitation at specific locations during
a prescribed period, which is of high credibility after calibration. In many cases, how-
ever, the sparsely distributed rain gauges could not provide sufficient precipitation data
which can represent its spatial variability in detail [1,12]. Alternatively, remote sensing
techniques can supply precipitation data on a global scale [13], which is exempt from the
topographic restriction.

During the past two decades, on the merits of satellite sensors and signal-processing
algorithms, rainfall products are emerging, such as the Precipitation Estimation from
Remotely Sensed Information Using Artificial Neural Networks (PERSIANN) (as listed
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in Table 1) [14], the precipitation dataset based on the Climate Prediction Center (CPC)
Morphing (CMORPH) technique [15] derived using the motion vectors and morphed
method, the Integrated Multi-satellite Retrievals for Global Precipitation Measurement
(IMERG) dataset [16] and the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite
Precipitation Analysis (TMPA) [17]. Particularly, the TRMM satellite started to serve
on 27 November 1997 and was decommissioned in 2015, nevertheless the corresponding
blended rainfall data is still provided to the public until the transition (from TRMM to
IMERG) is completed. The TMPA precipitation dataset including post-real time product
(3B42V7) and near-real-time product (3B42RT) has been widely used over China [18–21].

Table 1. The information of rainfall datasets employed in this study.

Products Spatial/Temporal Resolution Time Period Available Coverage Source of Data

3B42V7 0.25◦/3 h January 1998 to January 2020 50◦ S to 50◦ N Goddard Space Flight
Center (GSFC)

3B42RT 0.25◦/3 h February 2000 to January 2020 60◦ S to 60◦ N GSFC

PERSIANN 0.25◦/3 h March 2000 to present 60◦ S to 60◦ N
Center for

Hydrometeorology and
Remote Sensing (CHRS)

Rain gauge observation Point/Daily 1951 to present China China Meteorological Data
Service Center (CMDC)

The satellite-based rainfall products with fine spatio-temporal resolution is desir-
able, but the uncertainty and error originated from indirect measurements of precipita-
tions inferred from micro-wave and infrared radar measurements are non-negligible [22].
Moreover, according to the evaluation of the satellite-based precipitation products over
China [20,23,24], the performance of these products varies with different spatial and tempo-
ral scales. For instance, 3B42RT and PERSIANN significantly overestimate rainfall amounts
across the Tibetan Plateau [25], but 3B42RT can detect the most flood warning events
compared to IMERG [23]. Guo et al. [20] reported that 3B42V7 performed relatively better
in northwestern China, but overestimated rain rates in southern China. Therefore, to obtain
more accurate estimates which incorporate the merits of satellite-based and ground-based
rainfall, multi-source precipitation datasets need to be assimilated. The satellite-based
rainfall, ground-based gauge/radar rainfall data and some reanalysis precipitation datasets
are typically selected as one of the assimilated sources [22,26,27]. Moreover, meteorological
and land surface data, such as temperature, elevation and soil moisture, could also be
adopted to estimate precipitation [22,28,29]. Introducing the meteorological and land
surface data, however, might cause uncertainties due to the relatively low correlation
between precipitation and the corresponding factors at a daily scale [30]. Moreover, the
meteorological factors may involve lag effects or/and spatial variance, which should be
investigated and discussed ahead. In addition, the accuracy of the precipitation products
as part of the source datasets could be evaluated specifically with comparison to the gauge
data under a certain assimilation framework. Therefore, two groups of TMPA dataset,
namely the real-time product of 3B42RT and the post-real-time product of 3B42V7, were
employed as source data in this study.

In general, the methodologies for assimilating multi-source precipitation datasets can
be categorized into two major types, i.e., parametric and nonparametric methods [31,32].
In terms of parametric algorithms, a functional form with finite number of parameters
must be specified by users, and the unknown parameters can be determined by evaluating
the attributes of input–output data [33]. Nonparametric methods, alternatively, can reduce
the complexity of determining the unknown parameters, which can construct the input–
output relationship without prior knowledge of specifying functional form [34]. Moreover,
nonparametric methods can be exempt from limitation of data types, such as spatial
non-stationary rainfall data [24], and modeling of the relationships among independent
and dependent variables. That is, nonparametric methods employ relatively weaker
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assumptions of data than traditional parametric approaches and model the nonadditive
effects without explicit functional form.

In light of its advantages, some nonparametric algorithms have been developed
recently and applied to assimilate the rainfall data. Bhuiyan et al. [35] combined multiple
precipitation datasets using quantile regression forests (QRF) and evaluated the results
from the perspective of stream simulations on the Iberian Peninsula. Ma et al. [36] derived
the merged rainfall data over the Tibet Plateau by adopting the dynamic Bayesian model
averaging scheme, and also evaluated the assimilated precipitation data in four seasons
and at different elevations over Tibet. The artificial neural networks (ANNs) have also been
used to assimilate multi-source precipitation data including satellite-based, gauge-based
and radar datasets in different regions [37–39]. There are also other nonparametric methods,
such as the general regression neural network (GRNN) [40] and Bayesian nonparametric
general regression [41]. The performance of these nonparametric models in assimilating
the rainfall data has not been tested. Nevertheless, studies to evaluate the application
scenarios, such as the rainfall events with different intensities on different time scales, are
still insufficient. The applicability of a certain fusion algorithm needs to be assessed for
rainfall in Meiyu and Typhoon seasons, in different months, as well as rainfall events with
various rainfall intensities.

In this study, a framework based on a nonparametric general regression (NGR) is
proposed for assimilating gauge- and satellite-based precipitation data, and then it is
applied to southeast China (SEC). Besides, this study yields more insights into evaluations
of assimilated data on multiple scales. The study area and precipitation data resources are
introduced first. Then, the proposed framework is depicted. Thereafter, the performance of
the nonparametric framework is analyzed and the comparisons of assimilated results using
NGR and multiple linear regression (MLR), as well as PERSIANN products, are conducted.
In the end, some major conclusions are drawn.

2. Materials and Methods
2.1. Study Area

The southeast China (SEC) was selected as the study area, ranging from (15◦ N, 105◦ E)
to (35◦ N, 125◦ E). Figure 1 shows the location of the study area, and the distribution of rain
gauges. In this area, East Asian monsoon dominates. Influenced by the summer monsoon,
the majority of rainfall occurs in summer, which accounts for 60–85% of the annual total
precipitation in SEC [42]. The precipitation is characterized by the trend of increasing
from northeast to southeast, which shares a similar pattern with that of temperature over
this region [43]. It is in general warm and humid in summer, while mild in winter [44].
The complex topography and climate features of SEC result in prominent spatiotemporal
variability of precipitation [45]. Due to the increasing extreme precipitation events, SEC is
becoming more and more prone to floods, landslides and other natural disasters [46].

2.2. Data Sources

Under the influence of the super El Nino, 20 severe rainstorms occurred in 2016 over
SEC [47]. As a result, deadly floods and landslides were triggered, leading to serious
damages [48]. Furthermore, 88% of severe rainstorms occurred from June to September.
Therefore, the daily rainfall data at 330 rain stations (as shown in Figure 1) across SEC,
covering a period from 01 January to 31 December in 2016, were adopted in this study.
The gauge dataset was provided by China Meteorological Data Service Center (CMDC),
which has been examined by extreme values check, internal consistency check and spatial
consistency check [36].
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Figure 1. (a) The location of study area, and (b) rain gauge stations. 

2.2. Data Sources 
Under the influence of the super El Nino, 20 severe rainstorms occurred in 2016 over 

SEC [47]. As a result, deadly floods and landslides were triggered, leading to serious dam-
ages [48]. Furthermore, 88% of severe rainstorms occurred from June to September. There-
fore, the daily rainfall data at 330 rain stations (as shown in Figure 1) across SEC, covering 
a period from 01 January to 31 December in 2016, were adopted in this study. The gauge 
dataset was provided by China Meteorological Data Service Center (CMDC), which has 
been examined by extreme values check, internal consistency check and spatial con-
sistency check [36].  

The latest Version-7 TRMM TMPA near-real-time (3B42RT) and post-real-time 
(3B42V7) products were adopted in this study. The National Aeronautics and Space Ad-
ministration (NASA) Goddard Space Flight Center (GSFC) developed 3B42V7 and 
3B42RT datasets with the spatial resolution of 0.25° ×  0.25° and the temporal resolution 
of 3 h, respectively [49]. In order to match the temporal resolution between gauge and 
satellite-based data, the 3-hourly satellite-based products were adjusted to daily accumu-
lated datasets in Beijing time. To keep consistent with the format of gauge data, the rainfall 
value at the corresponding location was derived from the satellite product (in grid format) 
using the inverse distance weighting (IDW) method [50]. The information of rainfall data 
employed in this study is listed in Table 1. 

2.3. Methods 
2.3.1. The Framework Based on Nonparametric General Regression 

In this study, a new framework based on nonparametric general regression is pro-
posed. This method is composed of the general regression network and the parameter 
identifying model. The nonparametric general regression network is designed as follows. 
Let 2

1 2= [ , ,..., ]∈ ×N
NT T T T  be the satellite-derived datasets, namely 3B42V7 and 3B42RT 

datasets, and 1 2= [ , ,..., ]∈  N
NG G GG  denotes the gauge-based data in this study. N  is 

the number of samples, i.e., N = N  * Ndays stations , where Ndays  and Nstations  are the number of 
days and stations, respectively. There is the following relationship between T  and G : 
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The latest Version-7 TRMM TMPA near-real-time (3B42RT) and post-real-time (3B42V7)
products were adopted in this study. The National Aeronautics and Space Administration
(NASA) Goddard Space Flight Center (GSFC) developed 3B42V7 and 3B42RT datasets with
the spatial resolution of 0.25◦ × 0.25◦ and the temporal resolution of 3 h, respectively [49].
In order to match the temporal resolution between gauge and satellite-based data, the 3-
hourly satellite-based products were adjusted to daily accumulated datasets in Beijing time.
To keep consistent with the format of gauge data, the rainfall value at the corresponding
location was derived from the satellite product (in grid format) using the inverse distance
weighting (IDW) method [50]. The information of rainfall data employed in this study is
listed in Table 1.

2.3. Methods
2.3.1. The Framework Based on Nonparametric General Regression

In this study, a new framework based on nonparametric general regression is proposed.
This method is composed of the general regression network and the parameter identify-
ing model. The nonparametric general regression network is designed as follows. Let
T = [T1, T2, . . . , TN ] ∈ R2×N be the satellite-derived datasets, namely 3B42V7 and 3B42RT
datasets, and G = [G1, G2, . . . , GN ] ∈ RN denotes the gauge-based data in this study. N is
the number of samples, i.e., N = Ndays ∗ Nstations, where Ndays and Nstations are the number
of days and stations, respectively. There is the following relationship between T and G:

G = F(T), (1)

Then, use θ to represent the unknown parameter vector in the nonparametric gen-
eral regression network. The conditional probability density function (PDF) of G based
on T and θ can be expressed by Equation (2), which is also called the likelihood in a
frequentist framework.

p(G|θ, T) = p(G1, G2, . . . , GN |θ, T) =
N

∏
m=1

p(Gm|G1, . . . , Gm−1,θ, T), (2)
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The conditional PDFs in the right hand of Equation (2) can be given by:

p(Gm|G1, . . . , Gm−1,θ, T)= (2 πσ2
2,m)

−1/2 exp



−

[Gm − Ĝm|m−1(Tm)]
2

2σ2
2,m



, (3)

where Ĝm|m−1(Tm) is

Ĝm|m−1(Tm) =
∑m−1

n=1 Gn exp[−(Tm − Tn)
2/(2σ2

1,m)]

∑m−1
n=1 exp[−(Tm − Tn)

2/(2σ2
1,m)]

, (4)

where σ2
1,m and σ2

2,m are the smooth parameters and the prediction-error variances respec-
tively, m = 1, 2, . . . , N. Ĝm|m−1(Tm) is one estimate of G. σ2

1,m and σ2
2,m are computed using

the following forms:

σ2
1,m =

v1

m− 1

m−1

∑
n=1

(Tm − Tn)
2, (5)

σ2
2,m =

v2

∑m−1
n=1 exp[−2(Tm − Tn)

2]
, (6)

where v1 and v2 are two unknowns: θ = [v1, v2]
T.

Based on the general regression network, there are now two unknown parameters
to be determined. Note that we can rewrite the likelihood in Equation (2) in terms of the
unknown parameters as:

p(G|v1, v2, T) ∝ (v2)
(− N

2 ) exp[− 1
2v2

N

∑
m=1

Ωm(Gm − Ĝm|m−1,v1
(Tm))

2

], (7)

where Ωm can be given by:

Ωm =
m−1

∑
n=1

exp[−2(Tm − Tn)
2], (8)

Particularly, if v1 is given, v̂2 (v̂2 is the estimation of v2) can be expressed by Equation (9)
by solving ∂p(G|v1,v2,T)

∂v2
= 0, which means that only one parameter needs to be calculated.

v̂2(v1) =
1
N

N

∑
m=1

Ωm(Gm − Ĝm|m−1,v1
(Tm))

2, (9)

v̂1 (estimation of v1) can be obtained by maximizing the function of v1:
f (v1) = p(G|v1, v̂2(v1), T) , which is usually realized by standard optimization algorithms,

such as genetic algorithm (GA) herein. Thereafter, v̂1, v̂2 and Ĝ can be obtained.

2.3.2. Data Processing for the Framework Validation

To comprehensively assess the NGR framework, k-fold cross-validation was per-
formed. In this study, k was set to 11. In the 11-fold cross-validation, the data derived from
the 330 stations is divided into 11 mutually exclusive subsets, one of which is employed
as a validation dataset, while the other 10 are used as the training datasets. This process
needs to be repeated 11 times. When k equals to 1, k-fold cross-validation is a special case,
which is also termed as hold-out validation. The hold-out validation method is mainly
conducted in this study as suggested by previous studies [28,36,51]. The data is divided
into two non-overlapping sets. One is referred to as training dataset, which is adopted to
train the framework, and the other is referred to as validation dataset, which is used to
compare with the assimilated rainfall to assess the performance of NGR. The flowchart of
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training and validating the framework for assimilating multi-source rainfall datasets based
on hold-out validation is shown in Figure 2. Under the framework, the 330 sites over SEC
were assigned into training and validation sites from which the training and validation data
were extracted, respectively. With reference to previous studies, the ratio of the training
data to the validation data was set to be 10:1 [36,38,52]. That is, 30 out of 330 sites were
selected randomly as validation sites, and the remaining 300 sites were set as training sites
(in Figures 1b and 2). Note that the satellite-based data was derived from the original
gridded satellite-based data using the inverse distance weighting (IDW) method. In the
training process, the proposed nonparametric framework was trained using the satellite-
based training data extracted at 300 training sites as inputs and the gauge-based training
data recorded at 300 training sites. After that, the gauge-based validation data recorded by
30 validation sites was adopted to validate the performance of the NGR framework.
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2.3.3. Statistical Metrics for Evaluating the Performance of the NGR Framework

In order to compare the outputs (assimilated rainfall data) of the trained NGR frame-
work from different perspectives, four statistical metrics, i.e., Pearson correlation coefficient
(CC), root mean square error (RMSE), mean absolute error (MAE) and Nash-Sutcliffe coef-
ficient of efficiency (NSE), were adopted in this study. CC denotes the linear agreement
between the assimilated data and the validation gauge observations. RMSE and MAE are
the measures of errors between the estimated and the gauge data. NSE, whose best value is
1, is used to assess the fit of two data pairs. The mentioned statistical indices are calculated
by the following formulas:

CC =
∑k

i=1 (ŷi − ŷ)∑k
i=1 (yi − y)√

∑k
i=1 (ŷi − ŷ)

2
√

∑k
i=1 (yi − y)

2
, (10)

RMSE =

√√√√1
k

k

∑
i=1

(ŷi − yi)

2

, (11)

MAE =
∑k

i=1|ŷi − yi|
k

, (12)

NSE = 1− ∑k
i=1 (ŷi − yi)

2

∑k
i=1 (yi − yi)

2 , (13)
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where k is the number of samples, yi is the ith data of the validation rainfall dataset y, ŷi
is the assimilated rainfall data, and ŷ and y are the mean values of the assimilated and
gauge-based validation data, respectively.

In addition, the Kling-Gupta efficiency (KGE) [53], as a statistical metric combin-
ing with correlation coefficient, standard deviation and simulation mean, is increasingly
employed to evaluate models. It can be expressed as:

KGE = 1−
√
(CC− 1)2 + (

σestimates
σobservations

− 1)
2
+ (

µestimates
µobservations

− 1)
2
, (14)

where σestimates and µestimates are the standard deviation and mean of estimates respectively,
and σobservations and µobservations stand for the standard deviation and mean of gauge-based
observations. According to these studies [54–56], although KGE = 1 indicates perfect
agreement between the estimates and observations, various KGE values should be set as
the index of good agreement in order to ensure more accurate evaluation of different models.
Therefore, negative KGE values are considered as bad agreement between estimates and
observations in this study.

2.3.4. Multiple Linear Regression Method

The MLR method [57] is usually adopted to model the linear relationship between
dependent and independent variables, which is described by the following general form:

Y = a0 + a1 × X1 + . . . + aM × XM + ε, (15)

where Y is the dependent variable, X1, X2, . . . , XM are the independent variables,
a0, a1, a2, . . . , aM are the coefficients for independent variables, M is the number of in-
dependent variables and ε is the model’s error term. In this study, the independent
variables and dependent variables denote two satellite-based datasets and assimilated
rainfall data, respectively. According to the form of MLR, it is obvious that the mapping
relationship between independent and dependent variables has been set to be linear in
advance, whereas it is unnecessary to prescribe the mapping function when using NGR.
Based on the mentioned characteristics of MLR and NGR, comparison was performed to
evaluate the blended results calculated from the two schemes.

3. Results

The mean values of daily statistical metric of rainfall estimates originated from the
eleven-fold cross-validation are listed in Table 2. The proposed scheme in general per-
formed better on RMSE, MAE and NSE, while a little worse on CC. Although all the KGE
values are positive, 3B42V7 obtained the largest KGE.

Table 2. The mean values of daily statistical metric of rainfall estimates originated from the eleven-
fold cross-validation.

Products CC RMSE (mm) MAE (mm) NSE KGE

Estimates 0.68 9.76 3.61 0.45 0.58
3B42V7 0.70 9.98 3.78 0.43 0.70
3B42RT 0.67 11.38 4.19 0.25 0.63

Note: The numbers in bold indicate the optimum values for the indices.

To evaluate the applicability of the framework, the rainfall in Meiyu (June and July)
and Typhoon (July, August and September) seasons, in different months and rainfall events
with different rainfall intensities, were included. According to the China Meteorological
Association (http://www.cma.gov.cn, accessed on 11 January 2020), the severity of rain
events in China can be categorized in terms of the 24 h accumulated rainfall, which are
light rain (0.1–10 mm/day), moderate rain (10–25 mm/day), heavy rain (25–50 mm/day),
rainstorm (50–100 mm/day), heavy rainstorm (100–250 mm/day) and severe rainstorm
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(>250 mm/day). In this study, the rainfall events with rainfall intensity > 50 mm/day were
considered as a rainstorm. Since there were quite a few heavy and severe rainstorms in
SEC during 2016, only four rainfall intensities (i.e., light rain, moderate rain, heavy rain
and rainstorm) were discussed in this study. Note that in order to show the performance of
rainfall estimates spatially, the assimilated rainfall data at the 30 validation sites (Figure 1b)
from the hold-out validation was evaluated at different scales in the following sections.

3.1. Assimilated Precipitation Data at Meiyu Seasons

Figure 3 shows the bias from 3B42V7, 3B42RT and NGR at 30 selected validation
sites (Figure 1b) during Meiyu season, which was the absolute deviation between the
mean daily estimates and gauge-based observations at each validation site. A bounding
circle in Figure 3 indicates that the estimates yield the smallest absolute deviation at this
validation site compared to those from the other two products at the same location. Table 3
summarizes the numbers of stations corresponding to the best performance of estimates
on CC, RMSE, MAE and smallest absolute deviation in Meiyu and Typhoon seasons. The
absolute deviation from NGR exhibited the smallest value at 18 validation sites, followed
by 3B42V7 (11 validation sites) and 3B42RT (1 validation site), respectively. Specifically,
the large deviations from 3B42RT data (in Figure 3b) corresponded to the sites in the
south of Guangxi, Hunan province, and coastal areas, where smaller errors were obtained
by 3B42V7 and NGR. Regarding to the spatial distribution of errors, NGR and 3B42V7
tended to exhibit lager bias in inland areas, while the major errors from 3B42RT were
discovered across the middle and south of the study area. From the perspective of error
values, 3B42RT yielded the largest bias with value of 8.40 mm at the site located at the
south of Guangxi province, while 3B42V7 and NGR obtained relatively smaller bias values
of 4.61 and 5.21 mm, respectively. The minimum bias with value of 0.05 mm was from
NGR, followed by 0.07 mm from 3B42V7 and 0.41 mm from 3B42RT. The mean value of the
total absolute deviation at the 30 validation sites from 3B42RT was the largest with value
of 2.97 mm, followed by 3B42V7 with value of 1.30 mm and NGR with value of 1.17 mm.
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Figure 4 presents the distribution of the statistical metrics between estimates (assimi-
lated NGR data and satellite products) and gauge observations at each validation site in
Meiyu season. In general, the spatial variations of CCs from the three products are of high
spatial consistency, especially those between 3B42V7 and NGR. Moreover, NGR exhibited
the largest CC values at 40% of validation sites, but 3B42V7 and 3B42RT data corresponding
to 36% and 24% of validation sites were highly correlated with gauge observations (Table 3).
As for RMSE, the indicator from 3B42RT corresponding to the majority of validation sites
was larger than those from NGR and 3B42V7. Meanwhile, there were 19 out of 30 stations
having smaller RMSEs from estimated datasets compared to satellite products. The largest
MAE was originated from 3B42RT and located south of Sichuan province, where the MAE
values from 3B42V7 and NGR were relatively smaller. MAE from NGR at 16 validation
sites were smaller than those from 3B42V7 (14 validation sites) and 3B42RT (none of the
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validation sites), as shown in Table 3. According to the definition of NSE, the closer the
value is to 1, the better fit between the two models. Therefore, as for NSE values, the
estimated rainfall data at 12 sites from 3B42RT, 9 sites from 3B42V7 and 2 sites from NGR
did not match the gauge observations well (i.e., NSE was smaller than 0). The proposed
nonparametric framework yielded the largest NSE values at the majority of validation sites,
which were mainly located at in inland areas of the study area.

Table 3. The number of validation stations corresponding to the best performance in Meiyu and Typhoon seasons.

Statistical Metrics Products Number of Stations (Meiyu) Number of Stations (Typhoon)

3B42V7 11 12
CC 3B42RT 7 6

Estimates 12 12

3B42V7 11 8
RMSE 3B42RT 0 2

Estimates 19 20

3B42V7 14 10
MAE 3B42RT 0 3

Estimates 16 17

3B42V7 11 8
NSE 3B42RT 0 2

Estimates 19 20

3B42V7 11 8
Deviation 3B42RT 1 4

Estimates 18 18

Note: The numbers in bold indicate the maximum number of stations.

Figure 5 shows the box plots for statistical metrics of daily precipitation at the 30 vali-
dation sites. In terms of CC, the performance of three datasets was in general in the same
level, whereas the median value from 3B42V7 was the largest. Besides, the values of CC
at the 25th and 75th percentile corresponding to NGR were both higher than those from
the other two products. NGR yielded the lowest median values for RMSE and MAE (in
Figure 5b,c). As for NSE in Figure 5d, the outliers based on the assimilated NGR dataset
were closer to the median line. In contrast to satellite-based products, NGR yielded larger
NSE values at the 25th and 75th percentile, as well as a smaller range between these two
quartiles, indicating that the assimilated rainfall data using NGR agreed better with gauge
data overall.
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3.2. Assimilated Precipitation Data at Typhoon Seasons

The blended precipitation in Typhoon season, as another rainy period in SEC, was
also evaluated. Figure 6 shows the spatial distributions of absolute deviation of the
mean merged precipitation products against mean gauge data at each validation site in
the Typhoon season of 2016. Neither satellite-based datasets can accurately estimate the
rainfall amounts on the seashores of Guangxi, Jiangxi, Fujian and Zhejiang provinces, as
shown in Figure 6a,b. Moreover, the largest errors from 3B42RT were marked at the sites in
Sichuan and Guangxi provinces, where the estimates (Figure 6c) attained comparatively
smaller errors. The total errors from NGR were substantially smaller than those generated
by 3B42RT and 3B42V7 in the Typhoon season. From Table 3, estimates based on the
NGR framework obtained the smallest absolute deviations at 18 sites, while the 3B42V7
and 3BN42RT yielded the smallest errors at 8 sites and 4 sites, respectively. NGR tended
to obtain the estimates with the smallest deviations along coastal lines. In general, the
proposed approach was capable of effectively diminishing more absolute errors compared
to the two satellite-based products in the Typhoon season of 2016 across SEC.
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Figure 6. Absolute deviation of mean daily rainfall estimates against gauge observations at each validation site in Typhoon
season from (a) 3B42V7, (b) 3B42RT and (c) NGR in 2016.

Figure 7 demonstrates the spatial patterns of daily metrics at each validation site in
the Typhoon season over SEC. There were no significant spatial variances among NGR-,
3B42V7- and 3B42RT-Gauge CCs, but obvious spatial variances for RMSE, MAE and NSE.
Specifically, the assimilated rainfall and satellite products exhibited highly different RMSE
across SEC, with the range between 0 and 23 mm. The larger RMSE from 3B42V7 and
3B42RT was found in Hainan province, while a lower value was observed from NGR in this
area. Moreover, 3B42RT tended to obtain larger RMSE values than the other two products
over SEC. In terms of MAE, all the maximum values of MAE from the three approaches
appeared in the south of the study area, where NGR exhibited the best performance,
followed by 3B42V7 and 3B42RT. There were more stations with smaller RMSE (20 out
of 30 sites) and MAE (17 out of 30 sites) yielded by NGR than those from 3B42V7 and
3B42RT. For NSE (in Figure 7), there were more NSE values from satellite-based datasets far
smaller than 1. In other words, the estimates from the nonparametric framework at each
validation site matched the gauge precipitation better than those by 3B42V7 and 3B42RT in
the Typhoon season.
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Figure 7. Spatial distribution of statistical metrics for precipitation at daily scale from 3B42V7 data, 
3B42RT data and estimated rainfall data at 30 validation sites during the Typhoon season in 2016 
over SEC. 

Figure 8 depicts the box plots of metrics of the indices in the Typhoon season. The 
maximum CC value was obtained by NGR while the minimum was attained by 3B42RT, 
whereas the median lines from the three products were almost at the same level. Although 
3B42V7 exhibited the smallest range between upper quartile and lower quartile in terms 
of RMSE (in Figure 8b) and MAE (in Figure 8c), the median values from NGR were the 
smallest. Figure 8d shows that the 25th/75th percentile and the upper/lower end of outliers 
from NGR were much closer to 1 compared to the corresponding values from satellite-
based data, indicating that the estimates obtained by the proposed scheme better captured 
the gauge observations at each validation site in the Typhoon season. 

Figure 7. Spatial distribution of statistical metrics for precipitation at daily scale from 3B42V7 data,
3B42RT data and estimated rainfall data at 30 validation sites during the Typhoon season in 2016
over SEC.

Figure 8 depicts the box plots of metrics of the indices in the Typhoon season. The
maximum CC value was obtained by NGR while the minimum was attained by 3B42RT,
whereas the median lines from the three products were almost at the same level. Although
3B42V7 exhibited the smallest range between upper quartile and lower quartile in terms
of RMSE (in Figure 8b) and MAE (in Figure 8c), the median values from NGR were the
smallest. Figure 8d shows that the 25th/75th percentile and the upper/lower end of
outliers from NGR were much closer to 1 compared to the corresponding values from
satellite-based data, indicating that the estimates obtained by the proposed scheme better
captured the gauge observations at each validation site in the Typhoon season.
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3.3. Assimilated Daily Precipitation at Monthly Scale

Due to the climatic features in SEC, precipitation amounts vary significantly at differ-
ent time scales. Therefore, in order to capture the accurate temporal patterns of rainfall, the
accuracy of precipitation at monthly scale needs to be evaluated. Figure 9 demonstrates
the statistical metrics of blended and original satellite-based daily rainfall data from 30 val-
idation sites in 12 months over SEC. All three datasets had similar trends of RMSE and
MAE, which decreased from January to February, increased from February to June and
then decreased from July to December. CCs dominated by values larger than 0.5 and varied
slightly in each month, whereas RMSEs, MAEs and NSE changed significantly from month
to month. According to the three datasets, 3B42RT performed worst, as indicated by the
smallest CCs and NSE, largest RMSEs and MAEs in almost all of months except for October.
Moreover, compared to satellite-based data, the NGR-based rainfall data exhibited larger
CC values in 6 months, smaller RMSE in 9 months and smaller MAE in 10 months, as well
as larger NSE in 9 months. CCs from 3B42V7 in February, March, May, July and November
were higher than those from NGR, whereas NGR performed better on RMSE, MAE and
NSE in two of the five months. Overall, compared to these two satellite-based schemes,
the estimates based on the proposed NGR framework exhibited the best performance
with respect to the four statistical metrics in April, June, August and September of 2016
over SEC.
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3.4. Assimilated Rainfall with Different Intensities

The metrics from 3B42V7, 3B42RT and NGR precipitation datasets with different
rainfall intensities during 2016 are listed in Table 4. All the CCs were relatively small and
mainly ranged from 0.124 to 0.295, except for those corresponding to rainstorm events,
whereas the CC from NGR was the largest in each category. In terms of errors, both RMSE
and MAE increased with the rainfall intensities, indicating that as the rainfall amounts
increased, the inaccuracy of estimated rainfall datasets was enlarged, even though, when
the rainfall intensity is light rain, moderate rain, as well as heavy rain, NGR yielded
estimates with smaller RMSE and MAE than the other two satellite products. As for NSE,
all the values were negative, but compared to those from 3B42V7 and 3B42RT, the NSE
values from NGR were the largest with rainfall intensities of light rain, moderate rain
and heavy rain, indicating that the estimated data can simulate the gauge observations
better when rainfall intensity was less than 50 mm/day. The metrics, especially RMSE and
MAE from rainstorm events, were quite large, and the root relative mean squared errors
(RRMSE) from 3B42V7, 3B42RT and NGR rainfall datasets were more than 50%. According
to Chen and Li [58], the monthly satellite-based datasets were unreliable if the RRMSE was
more than 50%. Thus, all three products cannot precisely estimate the large precipitation
amounts, especially under the circumstances that the rainfall is more than 50 mm.
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Table 4. Statistical metrics for daily precipitation with various rainfall intensities at 30 validation sites in 2016.

Classification of
Rainfall Intensities Products CC RMSE (mm) MAE (mm) NSE

Light rain 3B42V7 0.284 8.75 4.61 −9.86
3B42RT 0.263 9.99 5.01 −13.16

Estimates 0.295 6.77 4.01 −5.45

Moderate rain 3B42V7 0.161 17.01 13.00 −14.41
3B42RT 0.124 20.27 14.45 −20.90

Estimates 0.163 12.63 10.28 −7.49

Heavy rain 3B42V7 0.148 24.09 19.79 −11.95
3B42RT 0.150 27.42 22.23 –15.79

Estimates 0.152 21.47 18.77 −9.29

Rainstorm 3B42V7 0.541 44.88 34.89 −0.33
3B42RT 0.501 47.05 37.38 −0.46

Estimates 0.600 53.11 43.88 −0.86

Note: The numbers in bold indicate the optimum values for the indices.

4. Discussion
4.1. Comparison with the Blended Rainfall Data Obtained by MLR and ANN

The assimilated precipitation data from the multiple linear regression (MLR) method
and PERSIANN product was adopted for comparison to the proposed approach. Table 5
summarizes the daily statistical metrics in the rainy season (from June to September) of
assimilated precipitation computed by the NGR, MLR and ANN approaches at 30 valida-
tion sites of SEC in 2016. For the daily statistical metrics in the rainy season, compared
with those of satellite-based and MLR methods, as well as PERSIANN rainfall data, the
performance of NGR was better in terms of CC, RMSE and NSE, with values of 0.715,
11.54 and 0.51 mm respectively, and marginally larger MAE (4.83 versus 4.76 mm from the
MLR method). MLR estimates are better than the PERSIANN products, as indicated by
the indicators in Table 5. The daily KGE of rainfall estimates from four methods against
gauge-based observations in the rainy season are shown in Figure 10. Positive KGE values
can be observed from MLR and NGR, indicating that MLR and NGR rainfall data in the
rainy season can simulate the gauge-based rainfall well. Furthermore, KGE values from
NGR at 18 validation sites were larger than those from MLR at the same sites, which means
that NGR can achieve better results at these stations compared to MLR. However, negative
KGE values (one from 3B42V7 and three from 3B43RT) and fluctuant variation of KGE of
the two satellite products were observed, indicating worse consistency compared to the
estimates from the proposed NGR framework. Figure 11 shows the spatial distribution of
absolute deviations of mean daily rainfall estimates from MLR and NGR against gauge-
based observations. Obviously, in comparison to NGR, MLR tended to underestimate
or overestimate the mean rainfall amount in the rainy season at some validation sites,
especially at Sichuan and Hainan provinces. In addition, the mean value (0.91 mm) of the
total absolute deviation from MLR was larger than that (0.80 mm) of NGR, indicating that
NGR can reduce errors more effectively than the MLR method in the rainy season.

Table 5. Daily metrics of assimilated precipitation obtained by the proposed framework, MLR and
ANN at validation sites in rainy season over SEC.

Products CC RMSE (mm) MAE (mm) NSE

Estimates 0.715 11.54 4.83 0.51
MLR 0.701 11.79 4.76 0.49

3B42V7 0.700 12.31 5.08 0.44
3B42RT 0.673 13.94 5.78 0.29

PERSIANN 0.571 13.73 5.49 0.31
Note: The bold text stands for the optimum values for the indices.
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4.2. Uncertainties, Strengths and Weaknesses

Uncertainty, as a factor that disturbs the accuracy of evaluation, should be considered.
The uncertainty may be from several aspects. In this study, gauge data was used as a
reference to verify the assimilated rainfall data. Nevertheless, gauge precipitation data
also suffers from errors. Ye et al. [59] reported that the annual rainfall amount recorded
by gauges over China was increased by 8 to 740 mm after bias corrections by considering
wind-induced under-catch, wetting loss and light rain. Hence, these error-induced factors
should be considered and eliminated as much as possible. Moreover, the scale discrepancy
also introduces uncertainty. In order to transform the gridded satellite rainfall data into
point-based data, the IDW method was employed during the training and validation
process, which is likely to induce errors.

The modeling errors between the estimates and gauge-based rainfall data are assumed
to follow a Gaussian distribution, which is suggested by the previous study [21]. For each
data point, the obtained σ2

2,m in Equation (3) represents the variance of the modeling error.
Then, the confidence interval (CI) of the estimated value of a data point can be directly
acquired with the assumption of Gaussian residuals. Figure 12 shows the percentages
of gauge-based data falling in different confidence intervals of estimates based on the
nonparametric framework under light rain, moderate rain, heavy rain and rainstorm
scenarios. The proposed model can provide accurate quantifications of the uncertainties
for the large confidence intervals (CI) under the light, moderate and heavy rain scenarios.
Specifically, the percentage corresponding to 95% CI is the largest one (in Figure 12a)
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among the three, indicating that most of the gauge-based rainfall data falls within 95% CI
during light rain scenarios. That is, estimates from NGR during light rain are the most
accurate, followed by the ones during moderate rain, heavy rain and rainstorms.
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Although uncertainties were inevitable, the estimated NGR rainfall data were substan-
tially improved upon almost all of the statistical indicators, except for the similar daily CCs
in Meiyu and Typhoon seasons (in Figures 5 and 8). According to the aforementioned com-
parisons, the 3B42V7 data, in general, performed better than 3B42RT data at 30 validation
sites across SEC in 2016. Figure 13 plots daily assimilated and satellite-based rainfall data in
Meiyu and Typhoon seasons at 30 validation sites. The CCs between the estimates and the
satellite-based data were calculated and marked in the sub-figures. The CC between NGR
and 3B42V7 daily rainfall data was larger than that between NGR and 3B42RT daily rainfall
data, indicating that the 3B42V7 dataset, as one of the data sources, contributed more to
the NGR rainfall data than those from 3B42RT. In addition, because of the relatively worse
performance of 3B42RT on statistical indexes, less information from the 3B42RT dataset
and more details from the 3B42V7 dataset were retained by NGR during the process of
framework construction. Thus, although similar CC values were observed between the
NGR and 3B42V7 rainfall data in Meiyu and Typhoon seasons, the NGR framework is
capable of automatically selecting the original satellite-based dataset with better perfor-
mance. Moreover, this proposed NGR framework can not only be used in SEC, but also in
other places where the derived satellite-based rainfall data is available. Nevertheless, the
performance of this proposed framework applied in other regions, especially the data-gap
areas, still needs to be evaluated.
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in Typhoon season at 30 validation sites in 2016.

The proposed framework also has its limitations. As listed in Table 4, the statistical
indictors of RMSE and MAE became more and more fluctuant as the rainfall intensity
increased, especially for rainstorm events. NGR cannot precisely estimate the large pre-
cipitation amounts based solely on two satellite-based rainfall data as merged sources,
as indicated by Figure 12. The uncertainty of assimilated precipitation data using NGR
originated from the satellite-based datasets, i.e., 3B42V7 and 3B42RT, whose RRMSEs were
both more than 50% during rainstorm events. Thus, to improve the performance of merged
data during rainstorm events, higher quality of remote sensing rainfall data needs to be
utilized as the blended sources.

5. Conclusions

In this study, a new framework was proposed to assimilate multi-source precipitation
datasets in regions of SEC based on nonparametric general regression. The daily training
datasets, including 3B42V7, 3B42RT and gauge-based data, corresponding to 300 training
sites in 2016, were adopted to train the NGR framework. The gauge-based data at 30
validation sites was used to assess the trained framework. To evaluate the applicability
of the framework, the rainfall in Meiyu and Typhoon seasons, in different months and
rainfall events with different rainfall intensities, were included. Based on the study, the
major findings were summarized as follows:

(1) During Meiyu season, the proposed framework in general outperformed 3B42V7 and
3B42RT on the mean value of the total absolute deviation, with a value of 1.17 mm.
NGR exhibited the largest CC values at 40% of validation sites and the minimum
RMSE at 19 out of 30 validation sites. For NSE, the estimates from NGR can match
the gauge observations much better at 28 validation sites.

(2) During Typhoon season, the total absolute deviation from NGR was smaller than
those from satellite-based schemes. Except for similar CC over SEC, NGR exhibited
smaller RMSE and MAE, as well as larger NSE at most of the validation sites.

(3) At a monthly scale, NGR performed better on CC in 6 months, RMSE in 9 months
and MAE in 10 months, as well as NSE in 9 months. Compared with 3B42V7 and
3B42RT, NGR yielded estimates with larger CC, smaller RMSE and MAE, as well as
larger NSE, when the rainfall intensity was less than 50 mm/day.
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(4) The 3B42V7 data, in general, performed better than 3B42RT data at 30 validation sites
across SEC in 2016, which contributed more to the assimilated rainfall data than those
from 3B42RT. The NGR framework is capable of automatically selecting the original
satellite-based dataset with better performance.
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Abstract: Poyang Lake is the largest freshwater lake connecting the Yangtze River in China. It
undergoes dramatic dynamics from the wet to the dry seasons. A comparison of the hydrological
changes between the wet and dry seasons may be useful for understanding the water flows between
Poyang Lake and Yangtze River or the river system in the watershed. Gauged measurements
and remote sensing datasets were combined to reveal lake area, level and volume changes during
2000–2020, and water exchanges between Poyang Lake and Yangtze River were presented based on
the water balance equation. The results showed that in the wet seasons, the lake was usually around
1301.85–3840.24 km2, with an average value of 2800.79 km2. In the dry seasons, the area was around
618.82–2498.70 km2, with an average value of 1242.03 km2. The inundations in the wet seasons were
approximately quadruple those in the dry seasons. In summer months, the lake surface tended to be
flat, while in winter months, it was inclined, with the angles at around 10′ ′–16′ ′. The mean water
levels of the wet and dry seasons were separately 13.51 m and 9.06 m, with respective deviations
of around 0–2.38 m and 0.38–2.15 m. Monthly lake volume changes were about 7.5–22.64 km3 and
1–5.80 km3 in the wet and dry seasons, respectively. In the wet seasons, the overall contributions
of ground runoff, precipitation on the lake surface and lake evaporation were less than the volume
flowing into Yangtze River. In the dry seasons, the three contributions decreased by 50%, 50% and
65.75%, respectively. Therefore, lake storages presented a decrease (−7.42 km3/yr) in the wet seasons
and an increase (9.39 km3/yr) in the dry seasons. The monthly exchanges between Poyang Lake and
Yangtze River were at around −14.22–32.86 km3. Water all flowed from the lake to the river in the
wet seasons, and the chance of water flowing from Yangtze River in the dry seasons was only 5.26%.

Keywords: Poyang Lake; Yangtze River; hydrological changes; water balance

1. Introduction

As the largest freshwater lake in China [1], Poyang Lake has drawn more and more
attention [2–5], especially after the implementation of the Three Gorges Dam (TGD),
which is located upstream of Yangtze River and began to impound water in 2003 [6–8].
The inundation extent of Poyang Lake showed a declining trend of around 30.2 km2/yr
during 2000–2010 [9]. Some research pointed out that the discharge flowed from Poyang
Lake into Yangtze River increased by 7.86 km3 after the implementation of TGD [10].
Nearly 1/3 of the Nanjishan Wetland National Nature Reserve has transformed from
water into vegetation area even in the wet seasons during 2000–2010 [11]. With the water
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level decreased, the western part of the lake region was changed to emerged land, and
many kinds of vegetation began to grow. In 2016, a dam was proposed, which would
be built on the northern end of the lake to keep Poyang Lake in a sustainable state by
managing the river–lake water flow, and this proposal was finally rejected from the view
of ecology. The deteriorating hydrological conditions of Poyang Lake will finally lead to a
negative impact on the diversity of the aquatic vegetation and marsh wildlife. Revealing
the hydrologic changes of Poyang Lake is very important to understand the water flows
between Poyang Lake and Yangtze River or the river system in the watershed. Though there
are several hydrological stations around Poyang Lake, there are some restrictions in terms
of hydrological data sharing, especially in recent observations. In addition, hydrological
stations tend to be decentralized and punctate and thus may not reflect the comprehensive
and objective dynamics of the whole lake.

Remote sensing can be used to monitor lake hydrologic conditions and their
changes [12–14]. Altimeter data have been widely used to continuously monitor the water
level changes of large rivers, lakes, and flood plains [15,16]. Since the 1990s, 25 years of
altimeter data have been collected, which cover the globe with the highest frequency of
10 days, such as the Topex/Poseidon (T/P), Jason-1, and Jason-2 datasets. At present, there
are four kinds of water level databases for large rivers, lakes, and reservoirs derived from
altimeter data in the world: the Database for Hydrological Time Series of Inland Waters
(DAHITI) [17], Global Reservoir and Lake Monitor (GRLM) [18], River Lake Hydrology
product (RLH) [19], and Hydroweb [20]. T/P data during 1992–2002 were used in the six
largest lakes in China, and the derived water level changes, with the precipitation and south
oscillation, were analyzed [21]. Zheng et al. (2016) used T/P and ENVIromental Satellite
(ENVISat) data during 1992–2010 to monitor the water level changes of Hulun Lake in
Northeast China and found that the lake presented a decreasing trend, with the rate of
−0.36 m/yr, and climate warming was the main cause [22]. Ice, Cloud, and Land Elevation
Satellite (ICESat) data during 2003–2009 were applied to 56 lakes in China, which showed
that the surface level of the lakes in Inner Mongolia and Xinjiang presented a decreasing
appearance, while the lakes in the eastern plain fluctuated [23]. In addition, T/P data
during 1992–1999 were applied to rivers with a width of more than 1 km in the Amazon
watershed [16]. Chipman and Lillesand (2007) revealed the shrinkage of the Toshak lakes
in Southern Egypt based on the ICESat data [24]. Additionally, remotely sensed images
are able to capture lake area fluctuations occurring in a short period and to reveal long-
term changes. Feng et al. (2012) used MODerate-resolution Imaging Spectro-radiometer
(MODIS) images to monitor dynamic changes of Poyang Lake during 2000–2010 and found
that the lake was 714.1 km2 in the dry season and 3162.9 km2 in the wet season [9]. Sun
et al. (2014) used MODIS images to study the inundation changes of more than 600 large
lakes in China during 2000–2010 [25]. Multisource remote sensing images were employed
to delineate the monthly spatial distribution of global land surface water bodies during
1993–2004 [26,27].

In order to quantify the water storage of a water body, bottom topography is necessary.
The traditional method for obtaining a bathymetry map was to survey the depth of water
using sonar sensors. However, this method consumed a lot of time, labor, and money [28].
The Airborn Lidar was also used to detect underwater topography near the ocean up to a
depth of 40 m; although this technique was sensitive to water turbidity, surface waves, and
sun glint, its maximum detectable depth was only 2–3 times of the Secchi depth [14,29].
Some researchers have studied volume changes of large rivers and lakes based on altimeter
data and remote sensing images. Water mass changes of the Negro River basin were
revealed by Synthetic Aperture Radar (SAR), T/P, and in situ water level observations [30].
The ICESat data and Landsat images were used to construct area–level curves for 30 lakes
on the Tibetan Plateau in order to study their volume changes, and the result showed
an increase of 92.43 km3 in volume for the 30 lakes from the 1970s to 2011 [31]. Cai et al.
(2016) constructed area–volume models for 128 lakes and 108 reservoirs in the Yangtze
River watershed, according to gauged measurements and MODIS images. The research
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found that 53.91% of lakes were shrinking at a rate of 14×106 m3/m, while reservoirs were
expanding at a rate of 177×106 m3/m [10]. Crétaux et al. (2005) used bottom topography
and water levels derived from T/P altimeter data to construct the water volume changes of
the Aral Sea [32]. Medina et al. (2010) applied gauged water level measurements, ENVISat
and Advanced Synthetic Aperture Radar (ASAR) images to estimate the storage changes
of Lake Izabal [33].

Based on the above researches, it is practical to describe the detailed hydrological
changes of Poyang Lake. The aim of this research was to obtain the variations of hydro-
logical aspects of Poyang Lake during 2000–2020. An accurate and automatic method
of extracting water-land boundaries was used to accomplish high frequency mapping
of Poyang Lake. Water level records were obtained based on gauged observations and
DAHITI. Then variations of lake storages were calculated by combining the surface area
and water level data. The water flows between the lake and Yangtze River were derived
from the view of water balance. Finally, driving forces were analyzed to illustrate the
quantitative contributions of inflow (ground runoff, precipitation on the lake surface) and
outflow (lake evaporation and exchanges with Yangtze River).

2. Study Area

Poyang Lake is located in the south of the Yangtze River and it is the largest lake
directly connected to the Yangtze River. Poyang Lake absorbs water from five tributaries
(Ganjiang river, Fu river, Xinjiang river, Rao river, and Xiu river) and flows into the Yangtze
River at Hukou connection in most of time. The geographical range of Poyang Lake is
28◦11′N–29◦51′N and 115◦49′E–116◦46′E. The lake spans around 173.0 km from north to
south, and the average west–east width is around 16.9 km. The width of northern part
of the lake is only 5–8 km due to the restriction of the neighboring mountains, while the
southern part of the lake tends to be an open surface, with a width of up to 60 km, as shown
in Figure 1. The watershed of Poyang Lake has an area of about 162068.68 km2, which is
nearly 9% of Yangtze River basin and 97% of Jiangxi Province [1].
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The local climate is a subtropical monsoon climate. The local precipitation shows an
obvious intra-annual variety and the annual average is around 1570 mm. Precipitation
mainly occurs during April–June, accounting for about 45–50% of the annual rainfall.
The annual average temperate is 16.5–17.8 ◦C. In summer, the temperature can reach
28.4–30.0 ◦C, while in winter, it is around 4.2–7.2 ◦C [1].

In the wet season (Jun–Sep), the lake surface usually presents a flat state, with the
maximum inundation of more than 3000 km2. Conversely, in the dry season (Nov–next
Feb), with less rainfall and water flows from the south to Yangtze River, the corresponding
water extent can shrink to less than 1000 km2, showing a narrow and inclined state. The
drop of the water level at Hukou Station can reach 3 m from summer to winter. The average
water flow from Poyang Lake to Yangtze River is 1436.0 × 108 m3 each year, accounting for
about 15.5% of the annual Yangtze River discharge [11].

The seasonal changes of water level and inundation were favorable for Poyang Lake
to create habitats for rich biodiversity/diversity of life. The famous Nanjishan Reserve is
located in the main body of the lake. In hot summers, subtropical vegetation prospers and
in cool and wet winters, temperate vegetation is productive [34]. In addition, over 98% of
the population of the endangered Siberian crane, Leucogeranus, gathers in this reserve in
winter [35].

3. Data and Methods
3.1. Data
3.1.1. Hydrological Data

Daily measurements of the flow rate of the five feeding rivers during 2001–2006 were
obtained to calculate the total ground runoff flowing into Poyang Lake. The daily gauged
water level at five hydrologic stations during 2001–2013 were used to present the fluctuation
of the lake.

3.1.2. DAHITI

DAHITI is a database, presenting the time-series water level of 457 global lakes/
reservoirs and rivers. DAHITI combines T/P, Jason-1, Jason-2, European Remote Sensing
Satellites (ERS)-2, ENVISat, and Satellite with ARgos and ALtika (SARAL) altimetry
data [17]. Compared with gauged measurements, the accuracies for lakes/reservoirs and
rivers are 4–36 cm and 8–114 cm, respectively. DAHITI was used to analyze the fluctuation
of Poyang Lake during 2000–2017.

3.1.3. MODIS Images

The 8-day level-3 composited product, MOD09A, with a 500 m resolution, available in
the Earth Observing System (https://reverb.echo.nasa.gov/reverb/, accessed on 5 March
2021), was able to capture short-term and rapid fluctuations of inundations. MODIS images
in the wet and dry seasons for each year from 2000–2020 were selected. Some images
showed that Poyang Lake was covered by thick clouds, especially in the rainy seasons, and
the lake could not be recognized correctly. In order to accurately depict the changes, these
kinds of images were discarded, and 349 scenes were finally used in this research.

3.1.4. Meteorological Data

The daily gauged precipitation, evaporation, and temperature data of the stations from
2000–2010 were obtained from the China Meteorological Data Sharing Service System (http:
//cdc.cma.gov.cn/, accessed on 5 March 2021). The precipitations of the whole watershed
were estimated by Kriging interpolation of the measured data, based on 66 meteorological
stations, shown in Figure 1. The research assessed Kriging interpolated results of rainfall
data in both wet and dry months in Lijiang River basin, and obtained that the average
accuracy was 94.74% [36]. The land evaporation in the basin was calculated based on
gauged observations, and the lake surface evaporation was estimated from the nearest in
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situ stations, according to the Penman–Monteith equation [37]. Penman–Monteith model
was evaluated by gauged data in Taihu Lake and the accuracy was 93.50% [38].

3.2. Method
3.2.1. Inundation Extraction

An accurate water–land discrimination method was applied to delineate lake surface
dynamics between 2000 and 2020. The method used the automatic selection of training data
and Support Vector Machine (SVM) classifier. First, the classification system, including
the water body, bare soil (including urban area), vegetation, ice, snow, and clouds was
determined. Second, the training data of each image were collected based on six rules,
considering the spectral characteristics of each class. Then, k-means and automated water
extraction index (AWEI) were integrated and iterated to remove noise from the training
samples. Finally, the filtered training data and SVM were combined to extract water bodies.
The procedure can be implemented on long series of images automatically. The details of
this method are illustrated in the literature [39]. This method has been used for the surface
extraction of several major lakes on the Tibetan Plateau and Aral Sea, and the omission
errors and commission errors were 0.9–1.5% and 2.94–4.23%, respectively [40,41].

Compared with several water indexes, such as the normalized differenced water index
(NDWI), modified NDWI (MNDWI), and AWEI, this method has a high robustness. Water
indexes need suitable thresholds, which depend on imaging environments, such as aerosol
interference and viewing geometry. However, the proposed method was solely based on
the spectrum presentations of the pixels of each image. The automatic selection of training
data and the filtration of noise through iterated clustering can help obtain a high-accuracy
water extraction, without manual intervention.

3.2.2. Water Level

The water level of Poyang Lake during 2000–2020 consisted of three kinds of data
sources. The first part is gauged observations of five hydrological stations, which were
taken daily from 2001 to 2013. The second part is DAHITI records from 2001 to 2017, and
the third part is the left lake levels derived from the level–area relationship to match the
length of the lake area data.

The five hydrological stations located around Poyang Lake were Hukou, Xingzi,
Duchang, Tangyin, and Kangshan, from north to south. The available observed data
from the five stations were for the following periods: 2001–2009, 2001–2013, 2001–2013,
2001–2007, and 2001–2007 respectively. As the inter- and intra-annual variabilities of
Poyang Lake, the water level fluctuated greatly. In general, in the dry seasons, the 5 gauged
water levels had large standard deviations, and the southern level was higher, suggesting
that the lake surface was in an inclined state, supplying Yangtze River. In the wet seasons,
the observations were high, and the corresponding deviations were small, indicating that
there was little difference among them, and the surface tended to be flat.

To supplement data and create long-term records on the water level, DAHITI results
were used in this research. DAHITI results start in 2002 and are missing for 2011–2012. To
maintain consistency with the DAHITI data, the gauged heights of the lake surface relative
to Wusong were converted to WGS-84. The DAHITI results showed a similar fluctuation
with the average in-situ measurements, while they showed higher values. The DAHITI
results were usually 3.39–5.02 m and 3.58–8.51 m higher than the gauged records in the wet
and dry seasons, respectively. To assess the accuracy of DAHITI, comparisons of DAHITI
results and the gauged records were executed separately for the wet and dry seasons, as
shown in Figure 2.
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The same dates during 2001–2007 for the two datasets were selected. There were
36 pairs of data in the wet seasons and the R2 value of their relation reached 0.99 (Figure 2a),
indicating that DAHITI results were able to capture level changes in the wet seasons. There
were also 36 pairs of data in the dry seasons, while the R2 value was only 0.60 (Figure 2b),
indicating that DAHITI results had large errors. In winters, the gauged data had standard
deviations of around 0.96–2.17 m, while the deviations of DAHITI were around 0.33 m. The
winter results of DAHITI were not able to present surface fluctuations, as in dry seasons,
when Poyang Lake shrunk to a small lake of less than 1000 km2, altimeter footprints may
fall on the lakeside and the returned signals involved the wetland or vegetation, showing
a low accuracy. The footprints of two kinds of altimeter data ICESat and ENVISat were
shown in Figure 1. In the wet seasons, the lake was large, and the footprints could fully fall
on the water surface. Thus, DAHITI could correctly delineate the lake level changes. Based
on the linear relation shown in Figure 2a, 29 DAHITI results in the wet seasons during
2002–2017 were transformed into the gauged measurement standard.

Based on gauged observations and converted DAHITI results, there were 169 water
level results, including 140 observed records, and each record was the mean value of the
five observations. However, there were 349 records in the lake area data. To match the
length between the level and area, the 180 missing water level data were derived according
to the level–area relation, shown in Figure 3, which was constructed from the available
level and area datasets.
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Finally, the 349 water levels of Poyang Lake in the wet and dry seasons between 2000
and 2020 were integrated based on 29 DAHITI results, 140 in-situ measurements, and
180 area–level relation-derived data.

3.2.3. Lake Storage Changes

In this research, we assumed the lake to be a conical frustum [42,43], and the variation
of the lake volume from one state to another was deduced by the following Formula (1).
Volume changes of Poyang Lake were computed with the aid of the 349 pairs of level and
area data acquired on the most proximate dates.

∆V =
1
3
(H2 −H1)×

(
A1 + A2 +

√
A1 ×A2

)
(1)

where ∆V means the changed lake storage from one state with level H1 and area A1 to
another state with level H2 and area A2.

3.2.4. Water Balance of the Watershed

The water balance equation of Poyang Lake, considering precipitation, ground runoff,
evaporation, and water exchange with the Yangtze River, was established based on climate
data and gauged measurements. The main replenishments of Poyang Lake were rainfall
and the five feeding rivers in the basin. The outflows were lake surface evaporation and
water flowing to Yangtze River. The equation is as follows:

At × P + R− E−W + Vt = Vt+1 (2)

where At is the area of Poyang Lake at time t, and P is the corresponding precipitation on
the lake surface. R is the accumulated runoff, which is the total discharge from the five
feeding rivers, and E is the evaporation of the lake. W indicates the water flowing from
Poyang Lake to Yangtze River. When W is less than 0, this indicates that the water flows
from Yangtze River to Poyang Lake. Vt and Vt+1 are the water storages of Poyang Lake at
two consecutive moments. In addition, according to the research [44,45], the infiltration of
the lake was very stable and accounted for only 1.30% of the whole water resources in this
region. Therefore, the infiltration was neglected in this research.

As the lake volume change data were on a monthly scale, daily observation data
on precipitation and evaporation were accumulated on a monthly basis, so the monthly
measurements were interpolated in the study area to calculate the land precipitation and
land evaporation of the watershed. The evaporation of Poyang Lake was estimated from
three nearest in-situ stations, according to the Penman-Monteith equation.

The gauged flowing data of the five feeding rivers from 2001–2006 on a monthly scale
were obtained from Jiangxi Hydrologic station. Figure 4 shows that the total discharge
of the five tributaries was highly related to net basin precipitation, which was the effect
of precipitation on the land of the watershed. The net basin precipitation was the result
of land precipitation minus land evaporation. Therefore, the total discharge from the five
rivers of the rest years from 2000–2020 was deduced based on this linear relationship and
the net basin precipitation.
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Figure 4. The relationship between the total discharge of the five rivers and net basin precipitation
during 2001–2006.

Based on the above variables and lake volume changes, the water exchange W between
Poyang Lake and Yangtze River was derived from the water balance equation.

4. Results
4.1. Comparison of the Water Surface in the Wet and Dry Seasons

The inundation areas in the wet and dry seasons during 2000–2020 were calculated,
and the fluctuations of the surface extents are shown in Figure 5.
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Figure 5. Inundation dynamics of Poyang Lake in the wet and dry seasons from 2000–2020 (a), and its seasonal (b) and
yearly (c) variations. A white rectangle in (a) indicates that the data is not available for this month. The green and black
dotted lines in (c) separately indicate wet and dry years, as the values in the wet and dry seasons were both local maximums
(wet years) or local minimums (dry years).

In the wet seasons, the lake was usually around 1301.85–3840.24 km2, with an average
value of 2800.79 km2. The maximum extent occurred in August 2020. In the dry seasons, the
area was around 618.82–2498.70 km2, with an average value of 1242.03 km2, and Poyang
Lake shrank and separated into several small water bodies. The smallest surface area
occurred in February 2004. The lake underwent dramatic fluctuations, and the area in the
wet seasons was usually 4 times of that in the dry seasons.

Poyang Lake usually begins to increase from May and then shrink in September. In the
wet seasons, the lake usually had the highest extents in July, at around 3071.56 ± 399.00 km2,
and tended to be in a small state in each September, with an area of 2445.02 ± 778.41 km2,
as shown in Figure 5b. In the dry seasons, the lake presented a medium state, at around
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1385.67 ± 530.56 km2, and reached its minimum in December, with an area of
1104.39 ± 395.26 km2.

In the years 2006, 2011, 2013 and 2018, the lake had small areas in the wet seasons, at
around 2118.13–2326.42 km2, and it even shrank to 1900 km2 in August in the years 2006,
2011 and 2013. In the years 2000, 2002, 2010, 2012 and 2020, the lake presented large extents
in the wet seasons with an area of around 3000–3349.82 km2.

In the years 2004, 2007, 2009, 2011, 2014 and 2019, the lake was frequently in a small
state in the dry seasons, with an average value of less than 1000 km2. In the years 2000,
2005, 2012, 2015, and 2002, the surface in the dry seasons showed relatively ample states,
with an area of around 1527.01–1744.58 km2.

From Figure 5c, the average areas in the wet and dry seasons were both local maxi-
mums in the years 2002, 2005, 2010, 2012, 2016 and 2020, indicating these years were wet
years and Poyang Lake was in an ample state. However, the values were both minimums
in the wet and dry seasons in the years 2001, 2004, 2009 and 2011, implying these years
were very dry. This result coincided with the drought and flood events in researches and
news reports [46–49]. In the years 2003, 2006, 2013, 2017 and 2018, though the areas in the
wet and dry seasons were not all local minimums, the lake tended to be in droughts. In
a word, for Poyang Lake, the number of wet years were less than dry years during the
studied period. Some researches indicated that the drought frequency and intensity in the
Poyang Lake region increased after TGD began to impound water in 2003 [5,7,33,48].

In each extracted result of lake surface, water pixels were with the value “1” and no
water pixels were with the value “0”. To obtain a clear picture of the spatial fluctuations of
Poyang surface extents, 179 results in the wet seasons and 170 results in the dry seasons
were separately overlaid and added to reflect the inundation frequency of each part. For
each pixel on the summed images of the wet and dry seasons, the value ranged from 1 to
180, and this value indicated the inundated times, as shown in Figure 6.
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Figure 6. The inundation frequency of Poyang Lake in the wet (a) and dry (b) seasons during
2000–2020.

In the wet seasons, most regions were frequently inundated. In the dry seasons, the
most frequently inundated regions were the central channel and several low-lying lakes,
including Junshan Lake. In the south of Poyang Lake, Junshan Lake maintained a stable
coverage in both the wet and dry seasons. In fact, Junshan Lake has been a reservoir since
the 1950s, when the floodgates were constructed to separate it from the main lake. Thus, it
was lightly influenced by the water flow between Poyang Lake and Yangtze River. In the
dry seasons, the edge region of the lake had large dynamics, with the water and wetland
replacing each other and the wetland vegetation period appearing longer year-by-year. In
the central part of Poyang Lake, near Songmen mountain, the wetland vegetation area was
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becoming more abundant and prospering. Some research showed that in this area, the
mudflats of the Nanjishan Wetland National Nature Reserve presented a shrinking trend,
with a rate of −12.1km2/yr, during the last three decades [11].

In addition, in the wet seasons, the lake, with an inundated frequency greater than
150, 120, 90, 60, and 30 during the studied period, had areas of 1687.65 km2, 2470.51 km2,
2926.66 km2, 3311.97 km2, and 3640.61 km2, respectively. In the dry seasons, these results
changed to 504.66 km2, 741.00 km2, 1007.18 km2, 1378.11 km2, and 2055.79 km2, respectively.
The differences between these several states revealed the drastic dynamics of Poyang Lake.

4.2. The Inclination of the Lake Surface

Figure 7 presents the daily fluctuations of gauged water level of the five hydrologic
stations. As two stations had data during 2001–2007, one station had data during 2001–2009
and the rest two stations in the south had data during 2001–2013, curves in Figure 7 shows
low variability after 2007. The gauged measurements were comparatively high in the wet
seasons, with little difference (0–0.07 m), implying that the surface was flat. However,
the water levels varied a lot in the dry seasons, with a standard deviation of 2–3 m. The
minimum standard deviation of the five observations was 0.0027 m in June, 2011. The
maximum standard deviation was 2.57 m in February 2002. The difference of the water
level between the upper south and lower north could reach 7 m, which occurred in January–
March, and only reached around 0.15 m during summer. When the mean water level was
greater than 15.18 m, which usually occurred in summer, the standard deviation of the five
measurements was less than 0.17 m. When the mean water level was less than 13.72 m,
which generally occurred in winter, the standard deviation was usually greater than 1.05 m,
showing fluctuations of the lake.
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Figure 7. Daily in situ water level observations from the five stations during 2001–2013. The highest,
mean and lowest lines indicate the maximum, mean and minimum of the five observations. Because
only two observations were available after 2009, the three lines overlap with each other.

In the dry seasons, the lake levels had their lowest values from Dec–next Feb, and the
five observations were all lower than 13.00 m. The gauged levels increased from north to
south, with great deviations, by around 1.52–2.59 m. The northernmost station Hukou had
large fluctuations during 2001–2009 of around 4.71–8.75 m, with a mean level of 6.35 m.
The lake levels in the southernmost station of Kangshan were around 10.09–12.67 m, with
the minimum occurring in April 2004. In the wet seasons, the gauged levels had high
values greater than 15.2 m, with small deviations of around 0.01–1.36 m. Hukou station
varied from 8.32 m to 16.51 m, and the mean value was 13.69 m, while Kangshan station
fluctuated from 11.60 m to 16.53m, with a mean value of 14.20 m.

The research indicated that there was an obvious linear relationship between the
latitudes and observed water levels of the stations in winter [9]. The correlations between
the latitudes and daily water levels of the five stations were evaluated in this research.
Nearly 50% of the relationships had R2 values of more than 0.90, especially in the dry
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seasons from November to February, as shown in Figure 8. In the dry seasons, R2 had
high values and little variance. If the lake surface was supposed to be a plane, then the
corresponding inclined angles could be derived by the gradient of the linear relation. Based
on this supposition, the inclined angles were calculated and they were usually greater
than 10′ ′ in the winter months. Conversely, in the summer months, the R2 values showed
fluctuations, and sometimes they were less than 0.3, indicating that there were no strong
relationships between the latitudes and water levels. In these cases, the corresponding
derived angels were nearly 0′ ′, especially in July. In addition, the negative values for the
angles meant that the surfaces declined from south to north.

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 20 
 

 

The lake levels in the southernmost station of Kangshan were around 10.09–12.67 m, with 
the minimum occurring in April 2004. In the wet seasons, the gauged levels had high val-
ues greater than 15.2 m, with small deviations of around 0.01–1.36 m. Hukou station var-
ied from 8.32 m to 16.51 m, and the mean value was 13.69 m, while Kangshan station 
fluctuated from 11.60 m to 16.53m, with a mean value of 14.20 m. 

The research indicated that there was an obvious linear relationship between the lat-
itudes and observed water levels of the stations in winter [9]. The correlations between 
the latitudes and daily water levels of the five stations were evaluated in this research. 
Nearly 50% of the relationships had R2 values of more than 0.90, especially in the dry sea-
sons from November to February, as shown in Figure 8. In the dry seasons, R2 had high 
values and little variance. If the lake surface was supposed to be a plane, then the corre-
sponding inclined angles could be derived by the gradient of the linear relation. Based on 
this supposition, the inclined angles were calculated and they were usually greater than 
10′′ in the winter months. Conversely, in the summer months, the R2 values showed fluc-
tuations, and sometimes they were less than 0.3, indicating that there were no strong re-
lationships between the latitudes and water levels. In these cases, the corresponding de-
rived angels were nearly 0′′, especially in July. In addition, the negative values for the 
angles meant that the surfaces declined from south to north. 

 
Figure 8. Daily changes of R2 and inclined angles based on in situ measurements. The black 
dashed lines are the daily mean values of R2 and inclined angles. The area in shallow blue shows 
the ranges of standard deviation, relative to the means. The area in pink shows the daily max and 
min ranges of the inclined angles, which were determined based on the linear relationship of the 
latitudes and daily measurements of the gauged stations. 

4.3. Variations of the Lake Level and Volume 
In the wet seasons, the water level had relatively low values of around 11.94–12.87 m 

in the years 2001, 2006, 2011, 2013, 2015, and 2017, while it had high values of around 15–
16.34 m in the years 2002, 2007, 2010, 2012, 2016, and 2020, as shown in Figure 9. The 
deviation of the water level in the wet seasons was around 0–2.38 m. In the dry seasons, 
the lake had low mean levels of around 8.02–8.32 m in 2004, 2007, 2009, 2011, 2014, and 
2019 and high values between 10.00 m and 10.70 m in the years of 2000, 2012, 2015, and 
2016. The deviation of the water level in the dry seasons was around 0.38–2.15 m. High 
levels were usually accompanied by large deviations of around 1.50–2.15 m in 2000, 2008, 
2015, and 2017. Low levels with small deviations of less than 0.50 m occurred in 2006, 2009, 
2011, and 2014. As for monthly fluctuations, the largest variation reached 2.30 m, which 

Figure 8. Daily changes of R2 and inclined angles based on in situ measurements. The black dashed lines are the daily mean
values of R2 and inclined angles. The area in shallow blue shows the ranges of standard deviation, relative to the means.
The area in pink shows the daily max and min ranges of the inclined angles, which were determined based on the linear
relationship of the latitudes and daily measurements of the gauged stations.

4.3. Variations of the Lake Level and Volume

In the wet seasons, the water level had relatively low values of around 11.94–12.87 m
in the years 2001, 2006, 2011, 2013, 2015, and 2017, while it had high values of around
15–16.34 m in the years 2002, 2007, 2010, 2012, 2016, and 2020, as shown in Figure 9. The
deviation of the water level in the wet seasons was around 0–2.38 m. In the dry seasons,
the lake had low mean levels of around 8.02–8.32 m in 2004, 2007, 2009, 2011, 2014, and
2019 and high values between 10.00 m and 10.70 m in the years of 2000, 2012, 2015, and
2016. The deviation of the water level in the dry seasons was around 0.38–2.15 m. High
levels were usually accompanied by large deviations of around 1.50–2.15 m in 2000, 2008,
2015, and 2017. Low levels with small deviations of less than 0.50 m occurred in 2006, 2009,
2011, and 2014. As for monthly fluctuations, the largest variation reached 2.30 m, which
occurred in September, followed by 1.85 m in August. Several months in the dry seasons
had low variations of around 1.00 m.
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As the data were only available on a monthly scale, the water exchange between Po-

yang Lake and Yangtze River can only be derived according to the volume changes be-
tween two adjacent months. The wet and dry seasons both consist of four consecutive 
months; therefore, the water exchanges over six months (Jun, Jul, Aug, Nov, Dec, and Jan) 
for each year were calculated. In total, there were 110 values indicating the monthly water 
exchanges, as shown in Figure 11. They ranged from −14.22 km3 to 32.86 km3, with 53 

Figure 9. The fluctuations of the lake level from the gauged observations, results converted from DAHITI records, and
results converted from the area–level relationship (a) and its seasonal variations (b).

From Figure 10, in the wet seasons, the monthly volume changes were usually greater
than 20 km3 in 2002, 2010, and 2020, mainly from Jul–Aug. The maximum was 22.64 km3,
which occurred in August 2002. The volume changes were low in the wet seasons of 2006,
2011, and 2013, with a monthly mean value of around 7.5 km3. In the dry seasons, the
volume changes had low values of less than 1 km3 in the years 2003, 2007, 2013, and 2014,
while high values of between 4.36–5.80 km3 were found in the years 2002, 2012, and 2015.
The lake volumes from November to December were usually 1.61 km3 higher than those
from January to February. Considering monthly variations, the largest monthly variation
reached 5.28 km3, which occurred in September, followed by 4.72 km3 in August. Several
months in the dry seasons had low variations of around 1.19–2.54 km3.
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4.4. Water Flowing into Yangtze River

As the data were only available on a monthly scale, the water exchange between
Poyang Lake and Yangtze River can only be derived according to the volume changes
between two adjacent months. The wet and dry seasons both consist of four consecutive
months; therefore, the water exchanges over six months (Jun, Jul, Aug, Nov, Dec, and
Jan) for each year were calculated. In total, there were 110 values indicating the monthly
water exchanges, as shown in Figure 11. They ranged from −14.22 km3 to 32.86 km3, with
53 values in the wet seasons and 57 values in the dry seasons. Positive values imply that
Poyang Lake supplied Yangtze River, while negative values mean that water flowed from
the river to the lake, which occurred occasionally.
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Water all flowed from the lake to the river in the wet seasons, with a value of around
0.94–32.86 km3/m. The values in June were usually higher than those in July and August.
In the last two decades, the average volume that flowed to the Yangtze River in June was
18.49 km3, followed by 12.66 km3 in July and 12.04 km3 in August. Some studies have
pointed out that the summer monsoon was in the south of Yangtze River during May–Jun,
causing increased precipitation in the watershed of Poyang Lake. Therefore, the discharge
from the five tributaries increased in June, and more water flowed to Yangtze River.
However, the summer monsoon moved to the north of Yangtze River during Jul–Aug,
resulting in more rainfall in the upstream of the river. Thus, the increased discharge of
Yangtze River flowed backward to the supply from Poyang Lake. The annual mean flow
discharge from Poyang Lake to the river in the whole wet seasons was 14.36 km3 from
2000–2020, with a maximum of 23.44 km3 occurring in 2017. The exchange was low in the
years 2003 and 2013, with values of 8.38 km3 and 9.36 km3, respectively.

The exchanges in the dry seasons were around −14.22–18.75 km3/m. In total, there
were three negative values, indicating that the chance of water flowing from Yangtze
River in the dry seasons was only 5.26%. The maximum value of the water flow from the
river was −14.22 km3 in December 2011. The mean exchanges in January, November, and
December were 3.90 km3, 8.35 km3, and 3.50 km3, respectively. During 2000–2020, the
mean water flowing from the lake to the river in the dry seasons was 4.96 km3/yr, with a
maximum of 13.06 km3 in 2015 and minimum of −2.50 km3 in 2011.

In 2002, 2012, 2015, 2017, and 2020, the exchanges were higher than those in the
adjacent years, with values of between 10.56 km3/m and 11.32 km3/m. The exchanges in
2003, 2007, 2013, and 2019 were low, at around 5.77–6.91 km3/m.

5. Discussion
5.1. Driving Forces

Based on the water balance equation, including ground runoff (R), lake surface precip-
itation (P), lake surface evaporation (E), and water exchange (W), the driving forces of lake
storage changes (∆V) were analyzed. The monthly contributions of these factors are listed
in Table 1.
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Table 1. Contributions of the factors to lake storage changes.

Month R (km3) P (km3) E (km3) W (km3) ∆V (km3)

June 21.03 1.40 1.25 18.49 2.69
July 11.21 0.91 1.70 12.66 −2.25

August 10.60 0.72 1.59 12.04 −2.30
September 5.98 0.39 1.29 10.63 −5.56
Wet season 48.82 3.43 5.84 53.83 −7.42

November 6.94 0.44 0.65 8.35 −1.61
December 4.12 0.26 0.47 3.50 0.42

January 5.19 0.38 0.41 3.90 1.26
February 6.68 0.49 0.47 −2.63 9.33

Dry season 22.93 1.57 2.00 13.11 9.39

In the wet seasons, the monthly ground runoff was around 5.98–21.03 km3/m, with a
mean value of 12.21 km3/m. The maximum value was 21.03 km3/m in June. In the dry
seasons, the monthly ground runoff was between 4.12 km3/m and 6.94 km3/m, with a
mean value of 5.73 km3/m. The average total ground runoff had values of 48.82 km3 and
22.93 km3 in the wet and dry seasons, respectively.

The total lake surface evaporation in the wet seasons was 5.84 km3/yr, which is about
2.92 times that in the dry seasons. The evaporation reached a maximum of 1.70 km3/m in
July. The monthly mean value of evaporation in the wet seasons was 1.46 km3/m, and that
in the dry seasons was 0.50 km3/m.

The monthly precipitation on the lake surface was 0.86 km3/m, with a maximum of
1.40 km3/m in June. The monthly mean values of lake surface precipitation in the wet and
dry seasons were 0.86 km3/m and 0.39 km3/m, respectively

The lake evaporations were higher than the precipitations on the lake surface in both
the wet and dry seasons, and they occupied 11.96% and 8.72% of the supply from the
ground runoff in the wet and dry seasons, respectively.

The ground runoff and precipitation on the lake surface gradually decreased as the
rainfall usually reduced from around 500 mm in June to less than 100 mm in September
in the watershed. As the lake evaporation remained stable in the wet seasons, the water
flowing to Yangtze River decreased from 18.49 km3 in June to 10.63 km3 in September. In
the wet seasons, the overall contributions of runoff, precipitation, and evaporation were
less than the volume supplying Yangtze River. Therefore, the lake storages presented a
decrease, at a rate of −7.42 km3/yr.

It is worth mentioning that as the rainfall decreased to around 10–15 mm in September
in the years 2001 and 2019, the ground runoff had relatively low values of 1.69 km3 and
1.85 km3, respectively. Therefore, the monthly ground runoff in September was lower than
that in February and November.

In the dry seasons, the three factors, ground runoff, precipitation on the lake surface,
and lake evaporation, occupied 50%, 50%, and 34.25% of those in the wet seasons, respec-
tively. The average volume of water supplying Yangtze River was 13.11 km3, occupying
58.27% of the whole input of the lake. Therefore, Poyang lake showed an increase, at a rate
of 9.39 km3/yr.

The monthly basin precipitation and lake storage changes showed a similar pattern
on annual and seasonal scales as shown in Figure 12a. On average, the monthly basin
precipitation and lake volume were correlated in the research period, although several
discrepancies existed in some detailed changes. In 2002, 2010, 2012, and 2020, the rainfall
was higher than in the other years, and the corresponding lake storages also increased.
However, during 2006–2007, the precipitation and lake volume in Poyang showed opposite
performances. Poyang Lake was at the local minimum in 2006, whereas the precipitation
appeared to be normal. The lake storage had a low value in 2006 and got better in 2007,
while the precipitation in 2006 was higher than that in 2007. The precipitation in the
basin increased in 2019, while the corresponding storage had no obvious changes. These
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discrepancies may be because the precipitation needs to convert to ground runoff in order
to feed the lake, and there may be a delay of the effect from rainfall. Moreover, besides the
basin precipitation, the constant discharge flowing into Yangtze River also had an effect on
the lake storage changes. The temperatures of the three nearby stations presented stable
states and had no relation with the lake storage changes (Figure 12b), indicating that the
lake evaporation induced by temperature was not the main driving factor. On the whole,
basin precipitation was the most important driving force.
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5.2. Accuracy Assessment

Two 30 m interpretation results based on Landsat images in the years of 2009 and
2016 were collected to check the accuracy of the inundation results of this research. The
interpretation results showed a higher accuracy (96%) [39].

To ensure that the lake states were consistent, the MODIS results on the nearest dates to
the 30 m Landsat results were selected. The two pairs of water boundaries were presented
in Figure 13. Evaluations were carried out spatially, and the outcome showed that the
omission errors were 11.56% and 2.56%, and the commission errors were 10.94% and 5.47%
for the MODIS results in the years 2009 and 2016, respectively. The inundation area of the
lakes was higher in the 30 m results. The area differences were 9.31% and 12.76% for the
selected inundation results in the wet and dry seasons, respectively. The boundaries of
some small tributaries were not correctly depicted in the MODIS images due to its coarse
resolution. Nevertheless, the overall accuracy of the MODIS results was greater than 85%,
and they indicated that the results were convincible to study lake inundation changes.

Hukou station is located at the intersection of Poyang Lake and Yangtze River. The
gauged monthly average flow velocities at Hukou station were available during 2000–2008
and 2013–2014. The fluctuations of the exchanged water coincided with the dynamics
of the flow velocity at Hukou station, as shown in Figure 14. The observed velocities
were all greater than zero, and the simultaneous water exchanges were all positive values,
indicating the water flowing into Yangtze River. The high velocities usually matched large
exchanges, and the low velocities corresponded to a small water flow at Hukou station.
The flow velocities tended to be high in the wet seasons and had low values in the dry
seasons. The maximum was 12,600 m3/s, occurring in June 2006, when the exchange also
reached the peak of the adjacent years. The minimum velocity was 895 m3/s in February
2004. In addition, June and July usually had higher velocities than August and September,
and this phenomenon was consistent with the results of this study, which found that the
water exchange in June was higher than in other months. The 25 pairs of velocity and
volume data occurred in the same months had the R2 value of 0.72. Therefore, a similar
pattern between the fluctuations of the flow rate and water exchange changes showed the
credibility of this research.
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6. Conclusions

In this research, gauged observations, altimeter database, and MODIS images were
combined to depict the changes of several hydrologic variables. The water extents were
delineated with a high accuracy when evaluated using the 30 m interpretation results. The
surface extents of Poyang Lake expressed great dynamics and seasonality. The five hydro-
logic stations around Poyang Lake showed disagreement in most of the years, suggesting
that the lake was not flat, and the water was flowing. The lake surface inclined from south
to north, with an angle of around 0′ ′–16′ ′, and it was usually greater than 10′ ′ in the winter
seasons. According to the appearance of the water flowing into Yangtze River, it can be
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concluded that, in the wet seasons, water all flowed from south to north, and there was
a chance of only 5.26% in the dry seasons that it flowed backward. Precipitation was the
main source of the ground runoff flowing into the lake. Thus, rainfall can be regarded as
the primary influencing factor of Poyang Lake. However, there were some discrepancies
between precipitation and water storage changes, as the state of Poyang Lake was also
affected by the water quantity of Yangtze River.

There were several uncertainties in this research. The bathymetry of Poyang Lake
during 2000–2020 was assumed to be unchanged when calculating the storage changes.
Though several dredging activities have been reported in the past, they mainly occurred in
the tributaries of Poyang Lake. Therefore, the changes in the lake bottom topography can
be ignored, considering its large span. The ground runoff of the five tributaries flowing
into Poyang Lake was estimated according to the relation between the basin precipitations
and gauged discharges. It was inevitable that there were some errors in this estimation.
However, the similar pattern and high correlation between the observed Hukou flow
velocities and water exchanges proved the practicability of this method. In the respective of
lake volume changes, the Formula (1) which treated the lake as a conical frustum definitely
caused uncertainties. Though the real bathymetry of Poyang Lake has been surveyed by
sonar devices, the bathymetry map was not available due to restrictions on data sharing.
Considering the formula has been widely applied in some researches [22,41–43] and the
accuracy assessment on water exchanges, the studied results can reveal the volume changes
of Poyang Lake to a certain extent.

This paper analyzed the driving factors in the water balance equation. The effect
of human activities was not determined. As for human actions, 9603 dams have been
built on the five feeding rivers, compounding around 27.9 billion m3 water until 2001 [50],
and this may affect the natural flowability of water in the basin. The TGD resulted in a
decrease of the water inflow to the downstream Yangtze River and caused more water to
flow from Poyang Lake to the Yangtze River, especially during late autumn and winter [5].
Some researchers have pointed out that lake precipitation decreased and the evaporation
increased during the post-TGD periods, compared with those during the pre-TGD peri-
ods [51]. In addition, the construction of dikes for fish ponds may affect the variation of
the local flow [52].

On the whole, this research compared variations of Poyang Lake between the wet and
dry seasons, quantified contribution factors of volume changes, and derived exchanges
between the lake and Yangtze River. The results can serve as important information to
better understand the water cycle of the watershed, and the studied datasets may also be
used in hydrologic modeling and wetland studies.

Author Contributions: Writing—original draft, F.S.; supervision, C.L. and B.H.; validation, R.M. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (grant No.
42001353), the Scientific Program of Guangzhou University (grant Nos. YG2020019 and SJ201911), the
Open Research Fund Program of Guangdong Key Laboratory of Ocean Remote Sensing (South China
Sea Institute of Oceanology Chinese Academy of Sciences) (grant No. 2017B030301005-LORS2006),
the Project of Science and Technology Development of Guangdong Academy of Sciences (grant No.
2020GDASYL-20200102013) and the Scientific Program of Guangzhou Bureau of Education (grant
No.1201430672).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. These include
MODIS images from https://reverb.echo.nasa.gov/reverb/, meteorological Data from http://cdc.
cma.gov.cn/, and DAHITI database from https://dahiti.dgfi.tum.de/en/ (accessed on 5 March 2021).

131



Remote Sens. 2021, 13, 985

Acknowledgments: We sincerely appreciate all valuable comments and suggestions from three
anonymous reviewers.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Wang, S.; Dou, H. China Lake Catalogue; Science Press: Beijing, China, 1998.
2. Gao, J.H.; Jia, J.; Kettner, A.J.; Xing, F.; Wang, Y.P.; Xu, X.N.; Yang, Y.; Zou, X.Q.; Gao, S.; Qi, S.; et al. Changes in water and

sediment exchange between the Changjiang River and Poyang Lake under natural and anthropogenic conditions. China Sci. Total
Environ. 2014, 481, 542–553. [CrossRef]

3. Ye, X.; Li, Y.; Li, X.; Zhang, Q. Factors influencing water level changes in China’s largest freshwater lake, Poyang Lake, in the past
50 years. Water Int. 2014, 39, 983–999. [CrossRef]

4. Zhang, D.; Liao, Q.; Zhang, L.; Wang, D.; Luo, L.; Chen, Y.; Zhong, J.; Liu, J. Occurrence and spatial distributions of microcystins
in Poyang Lake, the largest freshwater lake in China. Ecotoxicology 2014, 24, 19–28. [CrossRef]

5. Guo, H.; Hu, Q.; Zhang, Q.; Feng, S. Effects of the Three Gorges Dam on Yangtze River flow and river interaction with Poyang
Lake, China: 2003–2008. J. Hydrol. 2012, 416–417, 19–27. [CrossRef]

6. Dai, Z.; Liu, J.T. Impacts of large dams on downstream fluvial sedimentation: An example of the Three Gorges Dam (TGD) on the
Changjiang (Yangtze River). J. Hydrol. 2013, 480, 10–18. [CrossRef]

7. Feng, L.; Hu, C.; Chen, X.; Zhao, X. Dramatic Inundation Changes of China’s Two Largest Freshwater Lakes Linked to the Three
Gorges Dam. Env. Sci. Technol. 2013, 47, 9628–9634. [CrossRef]

8. Dai, Z.; Liu, J.T.; Chen, J. Detection of the Three Gorges Dam influence on the Changjiang (Yangtze River) submerged delta. Sci.
Rep. 2014, 4, 6600. [CrossRef] [PubMed]

9. Feng, L.; Hu, C.; Chen, X.; Cai, X.; Tian, L.; Gan, W. Assessment of inundation changes of Poyang Lake using MODIS observations
between 2000 and 2010. Remote Sens. Environ. 2012, 121, 80–92. [CrossRef]

10. Cai, X.; Feng, L.; Hou, X.; Chen, X. Remote Sensing of the Water Storage Dynamics of Large Lakes and Reservoirs in the Yangtze
River Basin from 2000 to 2014. Sci. Rep. 2016, 6, 36405. [CrossRef] [PubMed]

11. Han, X.; Chen, X.; Feng, L. Four decades of winter wetland changes in Poyang Lake based on Landsat observations between 1973
and 2013. Remote Sens. Environ. 2015, 156, 426–437. [CrossRef]

12. Smith, L.C. Satellite remote sensing of river inundation area, stage and processes: A review. Hydrol. Process. 1997, 11,
1427–1439. [CrossRef]

13. Cazenave, A.; Milly, P.C.D.; Douville, H.; Benveniste, J.; Kosuth, P.; Lettenmaier, D.P. Space techniques used to measure change in
terrestrial waters. Eos Trans. Am. Geophys. Union 2004, 85, 59–60.

14. Alsdorf, D.E.; Rodríguez, E.; Lettenmaier, D.P. Measuring surface water from space. Rev. Geophys. 2007, 45, RG2002. [CrossRef]
15. Birkett, C.M. The contribution of TOPEX/POSEIDON to the global monitoring of climatically sensitive lakes. J. Geophys. Res.

Ocean. 1995, 100, 25179–25204. [CrossRef]
16. Birkett, C.M.; Mertes, L.A.K.; Dunne, T.; Costa, M.H.; Jasinski, M.J. Surface water dynamics in the Amazon Basin: Application of

satellite radar altimetry. J. Geophys. Res. 2002, 107, D20. [CrossRef]
17. Schwatke, C.; Dettmering, D.; Bosch, W.; Seitz, F. DAHITI-an innovative approach for estimating water level time series over

inland waters using multi-mission satellite altimetry. Hydrol. Earth Syst. Sci. 2015, 19, 4345–4364. [CrossRef]
18. Birkett, C.M.; Reynolds, C.; Beckley, B.; Doorn, B. From research to operations: The USDA global reservoir and lake monitor. In

Coastal Altimetry; Vignudelli, S., Kostianoy, A., Cipollini, P., Benveniste, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2011;
pp. 19–50.

19. Berry, P.A.M.; Wheeler, J.L. JASON2-ENVISAT Exploitation—Development of Algorithms for the Exploitation of JASON2-
ENVISAT Altimetry for the Generation of a River and Lake Product. In Product Handbook v3.5; De Montfort University: Leicester,
UK, 2009.

20. Crétaux, J.F.; Jelinski, W.; Calmant, S.; Kouraev, A.; Vuglinski, V.; Berge-Nguyen, M.; Gennero, M.-C.; Nino, F.; Abarca Del Rio, R.;
Cazenave, A.; et al. A lake database to monitor in the Near Real Time water level and storage variations from remote sensing
data. Adv. Space Res. 2011, 4, 1497–1507.

21. Hwang, C.; Peng, M.; Ning, J.; Luo, J.; Sui, C. Lake level variations in China from TOPEX/Poseidon altimetry: Data quality
assessment and links to precipitation and ENSO. Geophys. J. Int. 2005, 161, 1–11. [CrossRef]

22. Zheng, J.; Ke, C.; Shao, Z.; Li, F. Monitoring changes in the water volume of Hulun Lake by integrating satellite altimetry data
and Landsat images between 1992 and 2010. J. Appl. Remote Sens. 2016, 10, 16029. [CrossRef]

23. Wang, X.; Gong, P.; Zhao, Y.; Xu, Y.; Cheng, X.; Niu, Z.; Luo, Z.; Huang, H.; Sun, F.; Li, X. Water-level changes in China’s large
lakes determined from ICESat/GLAS data. Remote Sens. Environ. 2013, 132, 131–144. [CrossRef]

24. Chipman, J.W.; Lillesand, T.M. Satellite-based assessment of the dynamics of new lakes in southern Egypt. Int. J. Remote Sens.
2007, 28, 4365–4379. [CrossRef]

25. Sun, F.D.; Zhao, Y.Y.; Gong, P.; Ma, R.H.; Dai, Y.J. Monitoring dynamic changes of global land cover types: Fluctuations of major
lakes in China every 8 days 2000–2010. Chin. Sci. Bull. 2014, 59, 171–189. [CrossRef]

132



Remote Sens. 2021, 13, 985

26. Prigent, C.; Papa, F.; Aires, F.; Rossow, W.B.; Matthews, E. Global inundation dynamics inferred from multiple satellite observa-
tions, 1993–2000. J. Geophys. Res. 2007, 112, D12107. [CrossRef]

27. Papa, F.; Prigent, C.; Aires, F.; Jimenez, C.; Rossow, W.B.; Matthews, E. Interannual variability of surface water extent at the global
scale, 1993–2004. J. Geophys. Res. 2010, 115. [CrossRef]

28. Peng, D.Z.; Guo, S.L.; Liu, P.; Liu, T. Reservoir storage curve estimation based on remote sensing data. J. Hydrol. Eng. 2006, 11,
165–172. [CrossRef]

29. Davis, P.A. Review of Results and Recommendations from the GCMRC 2000–2003 Remote-Sensing Initiative for Monitoring Environmental
Resources Within the Colorado River Ecosystem; U.S. Geological Survey: Reston, VA, USA, 2004; p. 1206.

30. Frappart, F.; Seylerb, F.; Martinezc, J.M.; Leónb, J.G.; Cazenavea, A. Floodplain water storage in the Negro River basin estimated
from microwave remote sensing of inundation area and water levels. Remote Sens. Environ. 2005, 99, 387–399. [CrossRef]

31. Song, C.; Huang, B.; Ke, L. Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission
satellite data. Remote Sens. Environ. 2013, 135, 25–35. [CrossRef]

32. Crétaux, J.F.; Kouraev, A.K.; Papa, F.; Bergé-Nguyen, M.; Cazenave, A.; Aladin, N.V.; Plotnikov, I.S. Water balance of the Big Aral
Sea from satellite remote sensing and in situ observations. Great Lakes Res. 2005, 31, 520–534. [CrossRef]

33. Mei, X.; Dai, Z.; Du, J.; Chen, J. Linkage between Three Gorges Dam impacts and the dramatic recessions in China’s largest
freshwater lake, Poyang Lake. Sci. Rep. 2015, 5, 18197. [CrossRef]

34. Zheng, Y. Prediction of the Distribution of C3 and C4 Plant Species from a GIS-Based Model: A Case Study in Poyang Lake,
China. Master’s Thesis, ITC, Enschede, The Netherlands, 2009.

35. Harris, J.; Zhuang, H. An Ecosystem Approach to Resolving Conflicts among Ecological and Economic Priorities for Poyang Lake Wetlands;
International Crane Foundation/IUCN: Gland, Switzerland, 2010.

36. Fan, Y.J.; Yu, X.X.; Zhang, H.X.; Song, M.H. Comparison between Kriging interpolation and Inverse Weighting Tension for
precipitation data analysis: Taking Lijing river basin as a study case. J. China Hydrol. 2014, 34, 61–66. (In Chinese)

37. Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements-FAO
Irrigation and Drainage Paper; FAO: Rome, Italy, 1998.

38. Gao, Y.Q.; Wang, Y.W.; Hu, C.; Wang, W.; Liu, S. Variability of evaporation from Lake Taihu in 2012 and evaluation of a range of
evaporation models. Clim. Environ. Res. 2016, 21, 393–404. (In Chinese)

39. Sun, F.D.; Ma, R. Hydrologic changes of Poyang Lake based on radar altimeter and optical sensor. J. Geogr. Sci. 2020, 75, 544–557.
40. Sun, F.D.; Ma, R. Hydrologic changes of Aral Sea: A reveal by the combination of radar altimeter data and optical images. Ann.

Gis 2019, 25, 247–261. [CrossRef]
41. Sun, F.D.; Ma, R.; He, B.; Zhao, X.; Zeng, Y.; Zhang, S.; Tang, S. Changing Patterns of Lakes on The Southern Tibetan Plateau

Based on Multi-Source Satellite Data. Remote Sens. 2020, 12, 3450. [CrossRef]
42. Liu, Y.; Yue, H. Estimating the fluctuation of Lake Hulun, China, during 1975–2015 from satellite altimetry data. Environ. Monit.

Assess. 2017, 189, 630. [CrossRef] [PubMed]
43. Zhang, G.; Chen, W.; Xie, H. Tibetan Plateau’s lake level and volume changes from NASA’s ICESat/ICESat-2 and Landsat

Missions. Geophys. Res. Lett. 2019, 46, 13107–13118. [CrossRef]
44. Wan, X.; Xu, X. Analysis of supply and demand balance o of water resources around Poyang Lake. Yangtze River 2010, 41, 43–47.
45. Feng, L.; Hu, C.; Chen, X.; Li, R. Satellite observations make it possible to estimate Poyang lake’s water budget. Environ. Res. Lett.

2011, 6, 44023. [CrossRef]
46. Liu, Y.; Wu, G.; Zhao, X. Recent declines in China’s largest freshwater lake: Trend or regime shift? Env. Res. Lett. 2013, 8,

14010. [CrossRef]
47. Lai, X.; Shankman, D.; Huber, C.; Yesou, H.; Huang, Q.; Jiang, J. Sand mining and increasing Poyang Lake’s discharge ability: A

reassessment of causes for lake decline in China. J. Hydrol. 2014, 519, 1698–1706. [CrossRef]
48. Zhang, Q.; Ye, X.-C.; Werner, A.D.; Li, Y.-L.; Yao, J.; Li, X.-H.; Xu, C.-Y. An investigation of enhanced recessions in Poyang Lake:

Comparison of Yangtze River and local catchment impacts. J. Hydrol. 2014, 517, 425–434. [CrossRef]
49. Xinhua Net. China’s Largest Freshwater Lake Sees Record Water Rise. 12 July 2020. Available online: http://www.xinhuanet.

com/english/2020-07/12/c_139207311.htm (accessed on 16 July 2020).
50. Liu, J.; Zhang, Q.; Xu, C.; Zhang, Z. Characteristics of run off variation of Poyang Lake watershed in the past 50 years. Trop Geogr.

2009, 29, 213–218.
51. Zhang, Z.; Huang, Y.; Xu, C.Y.; Chen, X.; Moss, E.M.; Jin, Q.; Bailey, A.M. Analysis of Poyang Lake water balance and its indication

of river–lake interaction. SpringerPlus 2016, 5, 1555. [CrossRef] [PubMed]
52. de Leeuw, J.; Shankman, D.; Wu, G.; de Boer, W.F.; Burnham, J.; He, Q.; Yesou, H.; Xiao, J. Strategic assessment of the magnitude

and impacts of sand mining in Poyang Lake, China. Reg. Environ. Chang. 2010, 10, 95–102. [CrossRef]

133





remote sensing  

Article

Evaluating the Latest IMERG Products in a Subtropical Climate:
The Case of Paraná State, Brazil

Jéssica G. Nascimento 1,*, Daniel Althoff 2 , Helizani C. Bazame 1, Christopher M. U. Neale 3, Sergio N. Duarte 1,
Anderson L. Ruhoff 4 and Ivo Z. Gonçalves 1

����������
�������

Citation: G. Nascimento, J.;

Althoff, D.; C. Bazame, H.;

M. U. Neale, C.; N. Duarte, S.;

L. Ruhoff, A.; Z. Gonçalves, I.

Evaluating the Latest IMERG

Products in a Subtropical Climate:

The Case of Paraná State, Brazil.

Remote Sens. 2021, 13, 906. https://

doi.org/10.3390/rs13050906

Academic Editors: Magaly Koch

and Weili Duan

Received: 27 January 2021

Accepted: 23 February 2021

Published: 28 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Biosystems Engineering Department, College of Agriculture “Luiz de Queiroz”—University of São
Paulo (ESALQ/USP), Av. Pádua Dias, 11, Piracicaba 13418-900, Brazil; helizanicouto@usp.br (H.C.B.);
snduarte@usp.br (S.N.D.); zution@usp.br (I.Z.G.)

2 Agricultural Engineering Department, Federal University of Viçosa (UFV), Av. Peter Henry Rolfs, s.n.,
Viçosa 36570-900, Brazil; daniel.althoff@ufv.br

3 Daugherty Water for Food Global Institute, University of Nebraska, Nebraska Innovation Campus,
2021 Transformation Dr. Street, 3220, Lincoln, NE 68588, USA; cneale@nebraska.edu

4 Hydraulic Research Institute, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil;
anderson.ruhoff@ufrgs.br

* Correspondence: jessicagarcia@usp.br

Abstract: The lack of measurement of precipitation in large areas using fine-resolution data is a
limitation in water management, particularly in developing countries. However, Version 6 of the
Integrated Multi-satellitE Retrievals for GPM (IMERG) has provided a new source of precipitation
information with high spatial and temporal resolution. In this study, the performance of the GPM
products (Final run) in the state of Paraná, located in the southern region of Brazil, from June 2000 to
December 2018 was evaluated. The daily and monthly products of IMERG were compared to the
gauge data spatially distributed across the study area. Quantitative and qualitative metrics were
used to analyze the performance of IMERG products to detect precipitation events and anomalies.
In general, the products performed positively in the estimation of monthly rainfall events, both
in volume and spatial distribution, and demonstrated limited performance for daily events and
anomalies, mainly in mountainous regions (coast and southwest). This may be related to the
orographic rainfall in these regions, associating the intensity of the rain, and the topography. IMERG
products can be considered as a source of precipitation data, especially on a monthly scale. Product
calibrations are suggested for use on a daily scale and for time-series analysis.

Keywords: remote sensing in hydrology; precipitation; performance evaluation; GPM

1. Introduction

Precipitation plays a fundamental role in the hydrological cycle. It is considered the
main water source input in the soil water balance and runoff and is used as an input
in hydrological and climatological modeling. In the management of water resources,
knowledge of the volume and intensity of precipitation is essential for the prediction
of floods and droughts, the distribution of water for urban and industrial uses, and the
planning of irrigation in agriculture and hydraulic infrastructure.

Precipitation can be measured by gauges, sensors onboard satellites, and radars [1–3].
Precipitation gauges are fundamental instruments, and their observations are considered
as a reference in many studies [4]. However, to represent spatiotemporal variability of
intensity and type of occurrence of precipitation, a dense measuring network is necessary
with long-period information, which unfortunately is not the reality in many regions of
the world [5]. In South American countries, monitoring by gauges is limited in terms of
infrastructure, maintenance, density, and frequency of observations [6,7].

Regarding indirect methods, weather radars provide precipitation estimates with high
spatial and temporal resolution but have limited accuracy in mountainous regions and cold
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climates [5,8]. On the other hand, satellite estimates of precipitation provide vast spatial
and temporal coverage and are freely available. Over the last two decades, several satellite
precipitation products have been developed, such as Tropical Rainfall Measuring Mission
(TRMM) [9]; Climate Prediction Center Morphing Method (CMORPH) [10]; Global Satellite
Mapping of Precipitation (GSMaP) [11]; Climate Hazards Group Infrared Precipitation with
Stations (CHIRPS) [12]; and Multi-Source Weighted-Ensemble Precipitation (MSWEP) [13].

The TRMM Multi-satellite Precipitation Analysis (TMPA) algorithm combines pre-
cipitation estimates from satellite systems with data measured on the Earth’s surface, to
provide a calibrated final product and results in the “best” satellite estimate [14]. A succes-
sor to TRMM, the Global Precipitation Measurement (GPM) was launched in 2014, on a
joint mission between NASA (National Aeronautics and Space Administration) and JAXA
(Japan Aerospace Exploration Agency) and continues to offer products to this day. The
GPM constellation consists of the first Dual-frequency phased array Precipitation Radar
and a GPM Microwave Imager, which represent the most advanced versions compared to
the Precipitation Radar (PR) and the TRMM Microwave Imager (TMI), onboard the TRMM
satellite [15]. Relevant improvements in the GPM products include an increase in latitudi-
nal coverage (global coverage of 60◦ N/S) and the detection of heavy rain, light rain, and
snow [5,6]. In the era of GPM, the Integrated Multi-satellite Retrievals for GPM (IMERG)
algorithm operates, intending to calibrate, unite, and interpolate satellite precipitation
estimates with data from gauges [16].

Many studies have analyzed and compared the TRMM data to those obtained by
gauge stations [6,17–20], which allowed for advances in the application of remote sensing
in determining the volume and behavior of precipitation in several countries. Given that
precipitation represents the most important parameter of the hydrologic cycle, it can directly
affect physical, chemical, and biological processes. The spatial and temporal distribution
of the precipitation is key for the understanding of hydrologic responses in watersheds,
for example, runoff, streamflow, and flooding. Thus, the accuracy of precipitation data
is essential for the good performance of hydrological models and inconsistencies in its
estimates can negatively affect the hydrologic investigation.

Previous studies have reported some limitations of the IMERG products [21] related
to its low performance in estimating the precipitation over North China, where snowfall
events can affect the precipitation estimates from satellite products. The authors also
reported the lower accuracy of the satellite precipitation estimates in areas of high altitudes
or in arid and semiarid climates. Evaluating the IMERG precipitation compared to ground-
based data, [22] observed a tendency for restimating the precipitation using the sub-daily
products and overestimating the maximum rainfall in monthly variations over the Indian
subcontinent. In a seasonal analysis, [21,23] found that IMERG performed better in warm
and wet seasons. In a subtropical climate, [24] concluded that IMERG performed well
for detecting precipitation events with a limitation in representing the amount of rainfall
at sub-daily scales, while in tropical climates [25,26] demonstrated that it is essential to
calibrate the IMERG products to reduce random and systematic errors.

On the other hand, studies comparing the IMERG to different satellite products,
highlighted the better accuracy of IMERG in estimating precipitation. [27] found better
performance of IMERG in estimating precipitation on a global scale compared to TMPA
products. The better performance of IMERG’s products was also observed by [28] concern-
ing the TMPA in estimating precipitation in all regions of Brazil. Recently, [29] observed
better performance of IMERG-Late version 6 products compared to IMERG-Early, GSMaP-
NRT, GSMaP-MVK, TMPA-RT, and PERSIANN-CCS products on a global scale The better
performance of IMERG in relation to other remote sensing products, reported in previous
studies, supports the analysis of the performance of its products in different climates and
geographic scales.The quality of IMERG products was improved over time by increasing
the number of passive microwave samples [30]. The latest version of the IMERG algo-
rithm (version 6), made available to the public in October 2019, combines the reanalysis of
precipitation estimated by satellites between 2000–2014 by TMPA and in the subsequent
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period by GPM, resulting in 19 years of information so far. Its products have a spatial
resolution of 0.1◦ and a 30-min temporal resolution [31]. In this way, trend analysis and
analysis of extreme events could be carried out with greater accuracy. In addition, the
performance of climatological and hydrological models could be improved with greater
detail of recent precipitation information. Thus, studies evaluating the performance of
IMERG version 6 products are important and promising at regional scales. Brazil is a
country of continental dimensions, with different micro-climates and rainfall patterns
throughout its territory. Among its states, Paraná, located in the south of the country in the
Paraná River Basin region, is the most important socio-economically hydrologic region in
Brazil [32]. This basin has the largest hydroelectric infrastructure in the country, which is
responsible for approximately 44.6% of the electric energy production and transmission
system in Brazil [33]. Thus, the determination of precipitation in this region is essential for
forecasting with hydrological and climatological monitoring models. Also, it is important
for this region to detect anomalies related to excess or deficit of precipitation, which can
compromise the supply of energy and hydraulic structures.

Thus, the purpose of this study is to provide a comprehensive assessment of IMERG
(version 6) precipitation estimates over a subtropical region, specifically the objectives of
the study are (1) to evaluate the performance of IMERG’s daily and monthly products,
and (2) to evaluate IMERG’s performance in detecting monthly anomalies in Paraná
using observations from a dense network of precipitation gauges. This study is expected
to provide a reference for the use of IMERG products in monthly and daily temporal
resolutions and further contribute to improvements of the satellite precipitation algorithm.
The remainder of this article is organized into the following topics: Section 2 describes the
study area, the precipitation data sets used, the metrics used, and the detailed methodology;
Section 3 presents the main results and the discussion, and Section 4 reports the main
conclusions of the study.

2. Material and Methods
2.1. Study Region

The study area is the state of Paraná in the south region of Brazil (Figure 1). Paraná
occupies an area of 199,315 km2 and covers 399 municipalities [34]. According to the
Köppen classification, carried out by [35], the state is in the transition from tropical and
subtropical climates where the humid subtropical Cfa (hot summer) and Cfb (warm sum-
mer) predominate across 61.7% and 37.0% of the state, respectively. Because of its extensive
area, there is a great diversity in terms of climate, soil types, vegetation, and agricultural
use. The main biomes that constitute the state are the Atlantic Forest and the Cerrado.
The predominant crops are maize, soy, and sugar cane. Most of Paraná’s relief is found at
altitudes above 600 m (Figure 1), subdivided into four Morpho-sculptural Units [36].
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Precipitation in Paraná varies spatially, with an annual average between 1300–2200 mm.
Summer is the season with the highest rainfall in South America, including the subtropical
region [37,38]. The geographic mesoregions of Paraná, demarcated by the Brazilian Institute
of Geography and Statistics (IBGE) and shown in Figure 2, were considered for the regional
analysis of the performance of the IMERG products over the study area.
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2.2. Data
2.2.1. Observed Data: Ground Gauge

The precipitation data used were acquired from 511 gauges (Figure 1) of the National
Water Agency (ANA), through the Hidroweb Portal (http://www.snirh.gov.br/hidroweb/
serieshistoricas, accessed on 1 March 2020), which is available to the public after consistency
checks. The analysis of consistency of precipitation data is aimed at the identification
and correction of errors related to data collection, as well as filling gaps in the monthly
precipitation series. All available daily data were used for analysis on a daily scale, while,
for analysis on a monthly scale, monthly totals were excluded when there were more than
5% of daily failures in the corresponding month. The daily data were accumulated (totaled)
to produce the monthly information. The analyzed time series was from 1 June 2000 to 31
December 2018.

2.2.2. Satellite Data: IMERG

Precipitation data from remote sensing were acquired as daily and monthly tem-
poral resolution and 0.1◦ spatial resolution, from the satellite constellation of the GPM,
IMERG version 6 product, distributed by Goddard Earth Sciences Data and Informa-
tion Services Center Distributed Active Archive Center (GES DISC DAAC), available
online on http://mirador.gsfc.nasa.gov/com, accessed on 15 March 2020. The daily and
monthly products “Final Run” were used, and the time series analyzed was coincident
with that of the gauges (1 June 2000 to 31 December 2018). The IMERG algorithm operates
to intercalibrate, merge, and interpolate all satellite microwave precipitation estimates,
microwave-calibrated infrared estimates, gauge observations, and other data from po-
tential sensors from the TRMM and GPM eras [31]. The “Final Run” product includes
microwave-infrared estimates without gauge adjustment and the calibrated product based
on the Global Precipitation Climatology Centre monthly gauge analysis [30]. In general,
the “Final Run” products present bias correction and more accurate results than the other
products supplied in near real-time (Early and Late Run) [39].
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2.2.3. Performance Analyses

The IMERG products were compared to ground-based gauge using statistical indices.
For this, the IMERG data were sampled at the exact location of the gauge stations. The
performance of the IMERG products assessed using the coefficient of determination (R2),
the Kling-Gupta efficiency index (KGE), the error skewness (SK), the mean error (MBE),
the mean absolute error (MAE), and the root of the mean square error (RMSE). The data
qualitative assessment was performed using the categorical skills metrics: probability of
detection (POD), false alarm ratio (FAR), and critical success index (CSI). Such metrics
are used in several studies to assess the performance of satellite products [19,39–41]. The
equations for the metrics used are shown in Table 1. The rainfall threshold was considered
as amounts higher than 1 mm day−1, as used by [42].

Table 1. Summary of statistical indices used to evaluate the satellite precipitation products.

Index Unit Equation * Best Value

Determination coefficient (R2) - R2 =
{∑n

i=1(Pi−P)(Oi−O) } 2

∑n
i=1( Pi−P)

2
∑n

i=1(Oi−O)
2

1

Mean error (MBE) mm MBE = 1
n

n
∑

i=1
(Pi−Oi) 0

Mean absolute error (MAE) mm MAE = 1
n

n
∑

i=1
|Pi−Oi| 0

Root of the mean square error (RMSE) mm RMSE =

√
1
n

n
∑

i=1
(Pi−Oi)

2 0

Kling–Gupta Eficiency (KGE) - KGE = 1−
√
(r− 1)2 + (α− 1)2 + (β− 1)2 1

Coefficient of skewness (SK) - SK =
3 ( P–Mo)

σ
0

Probability of detection (POD) - POD = Hits
Hits+Misses 1

Critical success index (CSI) - CSI = Hits
Hits+FalseAlarm+Misses 1

False alarm ratio (FAR) - FAR = FalseAlarm
Hits+FalseAlarm 0

* where, Oi is the observed data of gauges of order i; Pi is the estimated order data (IMERG) of order i; r = rPearson, α is the ratio between
simulated variance and observed variance, and β is the ratio between simulated mean and observed mean; P is the average of the estimated
data (IMERG); O is the average of the observed data (gauges); Mo is the median error of satellite precipitation estimates; Hits are the days
when IMERG and the station recorded rain; FalseAlarm are the days when IMERG recorded rain, but the gauges did not; Misses are the
days when IMERG did not register rain, but the gauges did.

R2 measures how much of the variability of one variable can be explained by the other
variable. KGE is an objective index which assesses error in terms of correlation, variability,
and bias. MBE is a simple average of the error and informs if the estimate on average
over- or underestimate the observed data. MAE and RMSE are error metrics in the same
units as the observed variable and represent the average magnitude of the error. In this
case, RMSE penalizes large errors by squaring the differences between those observed
and those estimated. SK represents the distributions of errors. A positive [negative]
SK value indicates a median error is smaller [larger] than the mean error, i.e., there is a
higher frequency of errors smaller [larger] than the mean error. If the mean error (MBE)
is centered close to 0, a positive [negative] SK value can indicate a higher frequency of
underestimations [overestimations]. Errors were calculated by subtracting observed from
predicted values. POD indicates the fraction of rain events detected correctly with the total
number of events detected by satellite; FAR measures the fraction of occurrences of unreal
events among the total number of events detected by satellite; CSI denotes the proportion
of rain events correctly detected by satellite to the total number of observed events.

Additionally, the IMERG’s performance for estimating the precipitation was evaluated
using a confusion matrix, for the daily and monthly products. The columns in this matrix
shows the frequency distribution of IMERG precipitation amount within each ground
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gauge precipitation amount class. In the perfect scenario, the matrix should be antidiagonal
and present a value equal to 1 along the antidiagonal line and 0 for the all the other
elements [43].

2.2.4. Analysis of Anomalies

For the analysis of anomalies, the monthly values of the gauges and the monthly
products of IMERG were used. The investigation of the volume of precipitation for each
month concerning its average (2000–2018), was carried out by calculating the normalized
anomalies of precipitation with standard deviation (Equation (1)) [44].

XAnomaly=
(X i − X2000–2018)

σ2000–2018
(1)

where, Xi is the month of the year analyzed, X is the monthly average of the 2000–2018 series,
and σ is the monthly standard deviation of the time series. The mean (X) and standard
deviation (σ) were calculated using Equations (2) and (3), respectively.

σ =

√
∑n

i=1
(
X− X

)2

n
(2)

X =
∑n

i=1(X i)

n
(3)

Significant anomalies (95% confidence interval) were XAnomaly values ranging between
±1.96 as adopted by [45–47]. Thus, a XAnomaly > |1.96| gives us a 95% confidence to assume
the observations as an anomaly, i.e., different than the historical mean.

A schematic diagram is presented in Figure 3, with the data and performance for the
overall evaluation process of this study.
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Figure 3. Schematic diagram of the source, resolution, and period of the data and metrics used for
evaluation of the precipitation estimative by IMERG products.

3. Results
3.1. Temporal and Spatial Distribution of Precipitation

Figure 4 shows the average monthly precipitation (mm month−1) observed by gauges
and estimated by IMERG, between June 2000 and December 2018. The volume and spatial
distribution of observed and estimated precipitation were consistent over all months of the
year. The rainfall distribution density curve, which relates the precipitated volume to the
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observation frequency, had a similar distribution of the observed data from the gauges and
those estimated by IMERG.
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Figure 4. Average monthly rainfall observed during the study period for gauges and by IMERG, and
density curve of monthly observations.

The highest frequency of precipitation observations occurs between 125–200 mm month−1

from October to March which is the wet season and is spatially well distributed in Paraná
(Figure 4). In January and February, precipitation above 300 mm month−1 occurs in the
coastal area. In October, the same behavior is observed in the southwest of the state.
The IMERG data overestimated the high values of monthly precipitation recorded by the
gauges, presenting a higher frequency of the monthly precipitation peaks in the wet season
(Figure 4).

The dry season occurs between April and September, during which the precipitation
decreases from the south to the north across the state, towards the Tropic of Capricorn,
with a greater frequency observed between 0–125 mm month−1. In this period, the months
of July and August stand out as the driest months of the year, reaching a frequency of
observation close to 0 mm month−1.

3.2. Daily and Monthly Evaluation of IMERG Products

The relationship between IMERG daily and monthly precipitation and the data ob-
served by gauges are presented in Figure 5. For the daily values, it is observed that IMERG
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overestimates the values, with a low coefficient of determination (R2 = 0.19). At the monthly
scale, precipitation values are closer to those observed, with R2 of 0.73.
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Based on the general summaries of the metrics used in this study, presented in Figure 6,
IMERG showed better performance for estimating monthly precipitation, compared to the
daily product. The high KGE value (0.81) indicates a strong correlation between the monthly
products of IMERG and the precipitation gauge data, which shows its ability to quantify
monthly precipitation in the humid subtropical region. A lower accuracy is observed for
daily products (KGE = 0.43), indicating a lower correlation between satellite precipitation
data and pluviometers. This is due mainly to the high variability of precipitation over
small areas on a daily scale. Our findings indicate that both IMERG products (daily and
monthly) overestimate the observed precipitation, with a bias (MBE) of 0.19 and 5.98 mm,
in the daily and monthly products, respectively. Regarding the errors, IMERG presented
MAE of 5.64 and 35.90 mm and accuracy (RMSE) of 13.10 and 50.12 mm for daily and
monthly products, respectively.
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Regarding the ability to detect rain at the monthly resolution, IMERG had a nearly
perfect performance, with POD equal to 1, CSI of 0.99, and FAR of 0.01 (very close to ideal,
0). In a daily resolution, IMERG demonstrated a limited performance to detect rain events,
with CSI of 0.39, a detection probability of 64%, and the risk of false alarm of 50%.

To better understand the accuracy of the IMERG products in different ranges of
precipitation observations, a confusion matrix is shown in Figure 7. At the daily scale,
the IMERG generally underestimate rainfall events, as seen by a large number of rainfall
events greater than 1 mm) predicted in the range 0–1. This agrees with the positive SK
value at daily scale (Figure 6). Considering the positive values of the error metrics showed
in Figure 6 (MBE, MAE and RMSE), the positive errors of IMERG daily products could
offset its negative errors.
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Figure 7. Confusion matrix for different precipitation ranges at daily and monthly scales.

In contrast, monthly precipitation estimates of the IMERG generally overestimate
events as observed in gauge stations (negative SK in Figure 6). Only for months with
higher rainfall rates (>200 mm) the IMERG product underestimates observed data. The
underprediction at both daily and monthly scale can be attributed to the IMERG spatial
and temporal resolution. Heavy rainfall events usually occur in shorter time intervals and
small areas. Thus, sparse heavy rainfall events can be underestimated in the daily scale
and not be accounted for in the monthly scale, even though the “Final run” relies on the
calibration using monthly observations.

The spatial distribution of the metrics for the Paraná regions (Figure 2) at daily and
monthly scale are summarized in Table 2. Less accuracy was observed in the Southwest,
West, Central-West, and Metropolitan regions in daily and monthly products.

Table 2. Summary of error metrics on a daily and monthly scale of the satellite precipitation products
in Paraná regions. The metrics were calculated based on mean areal precipitation.

Region
RMSE MAE MBE RMSE MAE MBE

(mm day−1) (mm month−1)

Central-South 13.70 6.19 0.02 48.50 36.30 0.83
Central-West 13.40 5.79 0.14 51.20 37.80 4.44
Central-East 11.90 5.24 0.18 43.20 31.90 5.52
Metropolitan 13.10 5.99 0.44 56.90 41.80 13.20

Northwest 12.40 5.14 0.31 50.50 36.90 9.37
Central-North 12.20 5.17 0.14 44.40 32.10 4.25
Pioneer-North 11.30 4.66 0.26 46.90 33.40 7.75

West 14.30 6.12 0.08 55.40 39.50 2.38
Southeast 12.60 5.58 0.31 41.60 31.10 9.41
Southwest 14.80 6.50 0.17 48.20 35.80 5.54
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The spatial distribution of the error metrics for estimating daily and monthly rainfall
by IMERG, for each gauge in the state of Paraná, are shown in Figure 8. Corroborating
the results presented in Table 2, the MBE and MAE values are spatially well distributed in
the study area with close values to the averages shown in Figure 5, for daily and monthly
data. However, less accurate metrics were observed in the coastal areas (eastern part
of the state), where IMERG presents, greater disagreements in some stations. Since the
IMERG pixel covers an extensive area, large variability in precipitation is masked in areas
where orographic effects are prevalent. This is evident near the coastal region for the daily
monthly products and over the southwest region for daily products where there are abrupt
changes in elevation (Figure 1). The SK presented homogeneous spatial distribution in a
daily scale, and a greater number of negative values over the west region (ranging between
0 and −0.5), which suggest an overestimation of precipitation in this area. The KGE was
also homogeneous across Paraná, with values close to 0.43 for the daily and 0.81 for the
monthly products, as shown in Figure 8.
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The distribution of POD, CSI, and FAR (Figure 9) showed good performance of
IMERG’s products in detecting monthly rain events throughout Paraná, with values very
close to ideals in the entire area. The performance of IMERG’s products in estimating daily
rainfall also was homogeneous across the state area, with the worst performance on the
coast, in agreement with the statistical metrics.
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Figure 9. Spatial distribution of the qualitative metrics of IMERG performance on a daily and
monthly scale.

Concerning the daily and monthly RMSE, higher values are found in the southwest
and coastal areas of Parana, which correspond to areas with high volumes of rain in the
autumn and summer, respectively, and the highest volumes of annual rainfall in Paraná
(Figure 4). Thus, the precipitation estimates by IMERG performed better in the drier areas
of the state. This behavior is better confirmed by a seasonal assessment of the errors. In
Figure 10 the performance metrics for the monthly IMERG product grouped by seasons are
presented. For example, IMERG showed better metrics in the winter (JJA = June, July, and
August), which is the period with lowest rainfall rates. Likewise, the monthly predictions
during autumn (MAM = March, April, and May) and spring (SON = September, October,
and November) showed better scores than during summer (DJF = December, January,
and February).

The orographic effect of the coastal region is not captured in any of the seasons.
Only in winter (JJA) the errors were smaller because of the lower rainfall rates. Higher
RMSEs were already expected during the wet season, because of the higher magnitude in
rainfall rates. However, summer (DJF), also showed the highest positive bias, i.e., IMERG
overestimates rainfall observed in gauge stations. The SK presented an overall tendency
of median errors higher than the mean error (negative SK). This can be attributed to the
IMERG product generally overestimating monthly rainfall rates (Figure 7) and resulting in
negative SK, especially in seasons or regions with MBE closer to 0.

3.3. Rainfall Anomalies between 2000 and 2018

The spatial distribution of the performance of IMERG’s monthly resolution prod-
ucts in detecting anomalies observed by the gauges is shown in Figure 11. In general,
IMERG showed a limited performance for detecting anomalies across the state, consid-
ering +/−1.96 monthly standard deviation. The best performance was observed in the
south-central region of Paraná, with POD above 0.75, CSI above 0.50, and FAR below 0.50.
The worst performance occurred in the northeast region, the region with the lowest annual
rainfall, and in the coastal and southwest regions, which correspond to the regions with
the highest annual rainfall in the state (Figure 1), agreeing with the worst performance of
the daily and monthly product metrics (Figure 8).
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In the analysis of the boxplot of the metrics (POD, CSI, and FAR) used to assess the
performance of IMERG in detecting anomalies, a relative deviation from the mean and
extreme values of CSI and FAR were observed (Figure 11). Therefore, eight stations were
selected randomly, in different regions of the state, to detect anomalies by the gauges and
by IMERG, between the years 2000 and 2018, shown in Figure 12.

Positive anomalies were detected by IMERG monthly products and gauges stations in
all regions. In general, the gauges stations detected the anomalies with greater magnitude
compared to those estimated by remote sensing. On the other hand, only IMERG detected
negative anomalies, for example in the gauge stations 2349036, 2449040, and 2452062.
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4. Discussion
4.1. Temporal and Spatial Distribution of Precipitation

During the summer months, the Paraná State region typically receives a humidity
air mass that moves from the Amazon to the southwestern Atlantic region, defined as
the South Atlantic Convergence Zone (SACZ) [48], which is directly connected to the
South American monsoon system along a northwest–southeast axis. The precipitation
observed in the southwest region in October, on the other hand, is related to convective
and frontal complexes [32,49]. The definition of the summer as the wet season and the
spatial and temporal distribution in the study area presented here is corroborated by
previous studies [32,49–51], confirming the precipitation estimates by IMERG through
remote sensing approaches.

4.2. Daily and Monthly Evaluation of IMERG Products

Intensity and volume on a daily scale provide important information in hydrolog-
ical applications, such as frequency analysis, daily precipitation event detection, and
irrigation planning. The overestimation by IMERG daily products compared to ground
data was observed by [29] when evaluating IMERG, GSMaP, and PERSIANN products
over the whole globe (~26, 44, and 23% of bias, respectively). However, the authors ob-
served higher correlation for IMERG products (~0.6) compared to GSMaP and PERSIANN
(~0.5 and 0.4, respectively). Also, [28] related the overestimation of TMPA, IMERG-F,
and GSMaP over South Brazil, but a slightly lower values of RMSE and mean error
(0.86 and 0.09 mm day−1, respectively) for GSMaP compared to TMPA (1.31 and 0.99 mm
day−1, respectively) and IMERG (1.31 and 1.01 mm day−1, respectively). Regarding the
underestimation of light precipitation and overestimation of heavy precipitation by IMERG
presented in this study, [22] observed a tendency of IMERG daily products underestimate
the frequency of rainfall events (<1 mm day−1) and overestimate the frequency of intense
rainfall events (>10 mm day−1) across the Tibetan Plateau region. In this way, due to the
limited performance of the daily products, the use of this data requires attention by the
user and previous calibrations of the products at this temporal scale.
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Regarding the comparison of the precipitation estimate on a monthly and daily
scale, [18] also observed better performance of the monthly estimates of the precipita-
tion when analyzing the TRMM products in Brazil. According to the authors, the monthly
estimates are less affected by systematic errors than daily estimates. The IMERG products
are calibrated using monthly data of in-situ gauging stations of the Global Precipitation
Climatology Centre (GPCC) network [52], which can also explain the better performance
of products on a monthly basis as compared to the daily scale. The better performance
of the monthly precipitation product throughout Brazil also was confirmed by [20]. The
authors observed an average of CC of 0.93 and RMSE of 23.20 mm when comparing IMERG
version 5 in the state of Paraná. The better performance observed by [20], compared to
that found in this study, may be due to the methods used for interpolation of observed
capture data when assimilating them to the IMERG forecast fields. Typically, interpolation
methods do not capture a large spatial variability of rain and the estimation is complex
due to the spatial discontinuity [53]. The interpolation leads to the smoothing of high
and low peaks of precipitation in a region, improving the relationship between observed
and modeled values. With respect to the performance of IMERG for estimating seasonal
precipitation, [22] showed different performance of the estimative in dry and wet seasons
over sub-regions of Mainland China. The authors showed greater correlation of IMERG’s
products and ground gauges over the dry season for two sub-regions, as observed in this
study, and the opposite for the other six. Thus, the investigation of the performance of
satellites products in a regional scale is very relevant.

However, the IMERG overestimated the rainfall over regions of heavy rainfall as well
as moderate rainfall. In coastal areas, even the difference of a short distance between the
ocean and coastal mountains can induce failure of the satellite sensor to discriminate be-
tween the adjacent pixels of land and water, generating signal contamination and resulting
in poor performance in estimating precipitation [17]. The limitation of the precipitation es-
timates by satellites (Global Precipitation Climatology Project–GPCP) in orographic regions
was also observed in the Andes by [54]. According to the authors, the spatial resolution
(2.5◦) and dependence on passive microwaves and infrared precipitation recoveries used
by satellites may imply the worst performance of representing precipitation in locations
with orographic-type precipitation. Despite presenting higher spatial resolution (0.1◦),
IMERG products also showed less accuracy for estimating rainfall in orographic regions.

The estimative of the precipitation in the mountainous region tends to be underesti-
mated towards the ocean (east area), where orographic rains occur. On the opposite side,
after the sudden elevation change, it tends to overestimate the precipitation. Corroborating
these results, [55] also observed trends of underestimation of precipitation by the TRMM
(2A25 version 7) product in regions of orographic rainfall and overestimation in regions
of valleys or flat areas in the southeastern Appalachians. According to the authors, this
behavior occurs due to the spatial resolution and the correction of soil disorder made by
the satellite. Another possibility for underestimating precipitation in the coastal region is
that precipitation occurs while the top of the cloud is still relatively warm. Satellites are
unable to fully identify rain, as heat exceeds infrared thresholds and the lower amount of
ice in the air makes detection by passive microwave sensors difficult, and thus satellite
products detect only part of the precipitation [2,56,57].

In addition, in mountainous regions, precipitation is extremely variable and there are
changes in rainfall distribution over short distances [58], which can result in a represen-
tation of precipitation with less accuracy in these areas, since satellite products have the
limitation of estimating precipitation considering the pixel size, when compared to gauges
that measure the precipitation in-situ.

In the coastal area, the highest peak of precipitation occurs in the summer and is related
to the predominant role of the Atlantic Tropical Mass [59], which finds the mountain as a
physical barrier, culminating in orographic rains, with great volume over a short duration
interval. Such an event may not be fully captured by satellites, as observed by [60] on
the west coast of the United States, in the analysis of the precipitation of six satellite
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products (AFWA, TMPA–3B42, TMPA–3B42RT, CMORPH, PERSIANN, and NRL) and [33]
in China, with IMERG version 5 products. Despite notable improvements in version 6 of
IMERG’s algorithm over previous versions as detailed by [30,58] observed lower accuracy
of IMERG version 6 for estimating rainfall on the coastline of the Adriatic Sea in Europe,
due to complex orography terrain. Additionally, [61] related the limitation of estimating
precipitation in the Ebro River basin in Spain, in an area where the weather was dominated
by the advection of wet maritime air masses. Thus, the measurement of the precipitation
over coastal locations continues to be a challenge and deserves further research.

4.3. Rainfall Anomalies between 2000 and 2018

The northeastern area of the state is concentrated in the central part of the Paraná
River basin, close to the climate transition line (subtropical and tropical) that separates
several active climate systems in an area of greater atmospheric instability [32]. Thus, the
precipitation estimate by the satellite may present a greater limitation (overestimation or
underestimation) in this area due to atmospheric conditions.

As previously mentioned, high-intensity orographic rainfall occurs along the coast,
which is estimated with less accuracy by satellite-based algorithms, resulting in poor
performance in detecting anomalies. The southwestern region of Paraná has favorable
conditions for the formation of severe storms and hail, which occur very quickly [62–64].
In September and October, the highest amounts of hail formation are observed in days
per month [64], which exactly coincides with the period of greatest rainfall in the region
(Figure 3). Thus, as on the coast of Paraná, the sensitivity of IMERG in detecting anomalies
in this region may have lower performance compared to other regions.

According to [38], positive anomalies in rainfall can occur during the summer under
conditions of El Niño Southern Oscillation (ENSO) in the south of Brazil. Over the years
considered in this study, two El Niño events classified as “moderate,” between 2002–2003
and 2009–2010, and one classified as “strong,” between 2015–2016 (Golden Gate Weather
Services, 2020) occurred. During these periods, positive anomalies were detected by
IMERG, and gauges in all stations shown in Figure 12.

In the other years, IMERG and gauges detected some anomalies in all nine sta-
tions analyzed. However, only IMERG detected negative anomalies. [39] reported that
IMERG version 5 products tend to underestimate precipitation amounts for rainfall rates
40–75 mm day−1, but overestimate precipitation amounts for high rainfall rates
(>80 mm day−1). Thus, the anomalies detected in this study by the satellite could oc-
cur due to the under or overestimation of rain events. Thus, the use of IMERG products in
anomaly studies should consider their variable performance for this purpose, requiring
calibrations and prior data assessments.

5. Conclusions

In this study, the performance of IMERG version 6 products in estimating daily and
monthly precipitation were evaluated in comparison with the data observed by 511 gauges
distributed in the state of Paraná in Brazil. The results showed better metrics for monthly
precipitation. In summary, the main findings of this study were as follows:

i. The volume and spatial distribution of observed and estimated rainfall are consis-
tent across all months of the year in the monthly products of IMERG version 6, with
similar rainfall distribution density curves.

ii. IMERG version 6 has a good relationship between precipitation estimates and those
observed by gauges on the monthly time scale, with high correlation and accuracy,
and low errors in statistical metrics. However, a lower performance was observed
in estimating rainfall in regions with abrupt changes in topography along the coast,
related to the lower accuracy when estimating orographic affected rainfall.

iii. The monthly products of IMERG version 6 performed very close to perfect consid-
ering qualitative assessments for the detection of rainfall events in this time scale
throughout the study area.
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iv. The daily estimates of IMERG version 6 were limited in representing the rainfall
observed by the gauges, with little correlation between the data and low values
of rain event detection rates. Although the gauges are direct observations and
considered references, it is known there is great spatial variability in daily data,
which is the probable cause of the low performance.

v. The detection of anomalies by the monthly products of IMERG version 6 showed
limited performance over the years analyzed and the study area, probably due to
the topography and rainfall regime in the northeast, coast, and southeast.

Based on the results presented here, IMERG version 6 can be used as a source of
monthly precipitation data over the territory of Paraná. However, on a daily scale, prior
calibration of the product is recommended to ensure the positive performance of the
estimate on this time scale, especially for mountainous areas. Future improvements to
IMERG version 6 products may increase its accuracy and favor its application for the
detection of rain in coastal areas and anomalies. Also, studies that consider seasonal
analyses and other time scales (hourly and half-hourly), areas with complex topographies,
and the other products of IMERG version 6 (Early and Late Run) are recommended.
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Abstract: The desert-oasis ecotone, as a crucial natural barrier, maintains the stability of oasis
agricultural production and protects oasis habitat security. This paper investigates the dynamic
evolution of the desert-oasis ecotone in the Tarim River Basin and predicts the near-future land-
use change in the desert-oasis ecotone using the cellular automata–Markov (CA-Markov) model.
Results indicate that the overall area of the desert-oasis ecotone shows a shrinking trend (from
67,642 km2 in 1990 to 46,613 km2 in 2015) and the land-use change within the desert-oasis ecotone
is mainly manifested by the conversion of a large amount of forest and grass area into arable land.
The increasing demand for arable land for groundwater has led to a decline in the groundwater
level, which is an important reason for the habitat deterioration in the desert-oasis ecotone. The
rising temperature and drought have further exacerbated this trend. Assuming the current trend
in development without intervention, the CA-Markov model predicts that by 2030, there will be
an additional 1566 km2 of arable land and a reduction of 1151 km2 in forested area and grassland
within the desert-oasis ecotone, which will inevitably further weaken the ecological barrier role of
the desert-oasis ecotone and trigger a growing ecological crisis.

Keywords: Tarim River Basin; desert-oasis ecotone; land-use change; CA-Markov model

1. Introduction

The spatial interface between two or more ecological regions and their material, energy,
and structural and functional systems is called an ecotone or an ecological ecotone [1]. The
desert-oasis ecotone is distributed along the periphery of an oasis and is characterized
by a zone of desert vegetation that separates the extensive desert from the oasis [2]. The
ecotone records the interaction and mutual transformation between the desert and oasis
ecosystems [3] and serves as an ecological link connecting the two. A desert-oasis ecotone
is a unique ecosystem between a desert and an oasis, usually characterized by low diversity,
sparse cover, and dominance by perennial herbaceous grasses and semi-shrubs, such
as Phragmites australis, Tamarix ramosissima, Karelinia caspia, and Alhagi sparsifolia. The
ecotone can be used for ranching (of both livestock and wild animals); its vegetation
can also increase the roughness of the underlying ground surface, thereby hindering
the development of desertification and protecting the oasis from wind erosion and sand
deposition [4–7]. At the same time, the desert-oasis ecotone is the interface between
the oasis ecosystem and the desert ecosystem where energy, material, and information
exchange occurs [8], which is highly sensitive to external environmental and human
disturbances, affected easily by human activities, including the expansion of cultivated land
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and urbanization and precipitation [9]. A desert-oasis ecotone being a natural ecological
barrier that prevents the desert from expanding into the oasis, its analysis provides an
important indicator and an early warning of ecological changes. The desert-oasis ecotone
also plays a large role in the development of the oasis economy. Therefore, the ecotone
has been a topic of significant research in recent years. Previous research on this ecotone
primarily focuses on characterizing and classifying the vegetation diversity, microclimate,
and soil moisture, among other parameters in the ecotone and/or oasis [8,10–12]. The
comparison of these studies has partially revealed the causes of formation and the ecological
environment of ecotones in deserts and oases of different arid areas, thus providing the
empirical basis for the ecological protection of desert-oasis ecotones.

The observed changes and development of ecotones are closely related to the dynamic
evolution of the overall environment and climate of the region, as well as human influencing
factors. Maintaining the stability and development of oases requires a comprehensive
analysis of long-term trends and of the causes of the changes in the ecotone as well as
within the entire basin. However, such studies are generally lacking. Previous studies
have also shown that changes in the ecotone are closely related to changes in land-use
type, which provides research ideas for predicting future changes in the ecotone. Thus, the
future dynamic evolution of the ecotone can be inferred by predicting land-use changes.

There are many methods of simulating and predicting the evolution of land-use
patterns, such as system dynamics, CLUE-S, artificial neural network (ANN), and cellular
automata–Markov chain (CA-Markov) methods [13–16]. The system dynamics model
is based on cybernetics, information theory, and system theory to analyze the drivers
of land-use change. At present, the system dynamics simulation software STELLA has
not been fully combined with the spatial analysis function of GIS to implement land-use
change simulation and has not played its role as a powerful dynamics system. [17]. The
CLUE-S model has limitations, and the setting of some parameters in the model mainly
relies on expert knowledge, which will bring a high degree of subjectivity [13]. The ANN
simulation of land-use change requires long simulation times, and the method does not
provide the user with a specific evolution formula and contains large errors [18]. The
CA-Markov model not only retains the advantages of the Markov model for long-term
prediction but also integrates the ability of the cellular automata (CA) model to simulate
complex spatiotemporal system changes. Thus, the CA-Markov model can better simulate
land-use changes in time and space and has been widely used [19–21].

In the Tarim River Basin, artificial oasis [22] and desertification processes are increas-
ing [23]. As a result, the desert-oasis ecotone has rapidly decreased in size and ecological
concerns have become increasingly prominent. Meanwhile, the rapid advancement of
urbanization in the Tarim River Basin, as well as the continuous development of the social
economy, has led to significant changes in the pattern of land use, which have produced a
series of impacts on the ecological environment of the ecotone.

The main purposes of this study are (1) to analyze the spatial and temporal variability
and driving forces of the desert-oasis ecotone in the Tarim River Basin from 1990 to
2015, (2) to evaluate the applicability of the CA-Markov model, and (3) to further predict
the near-future land-use changes in the Tarim River Basin. This study will deepen our
knowledge of the evolution of the desert-oasis ecotone, which has important implications
for the protection of the ecological environment in the arid zone and the construction of an
ecological civilization in the Silk Road Economic Belt.

2. Study Area

The Tarim River Basin is an inland basin located far from the ocean in northwest China
(Figure 1). The area is characterized by a temperate arid continental climate with scarce
precipitation and strong evaporation. In the study area, the average annual precipitation is
about 53.14 mm, while the annual potential evaporation is much higher, about 2196 mm.
The average annual temperature is about 3.9 °C, which is typical of an inland arid climate.
The basin covers an area of 1.02 × 106 km2 and is the largest inland river basin in China
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(Figure 1). In response to the global climate change and increasing human activities, the
natural ecosystems in the basin are facing a series of crises and challenges. Its fragile
ecological environment possesses abundant natural resources [24]. The drainage network
in the basin consists of the main stream of the Tarim River and 144 drainage systems
associated with nine major tributary basins: the Yarkand River, the Aksu River, the Kaidu-
Kongque River, the Hotan River, the Kaxgar River, the Weigan River, the Dina River, the
Keriya River, and the Qarqan River. The tributaries to the main stream of the Tarim River
form a centripetal shape around the Tarim Basin [25]. The Tarim River is a dissipative inland
river whose runoff is mainly supplied by meltwater from glaciers and snow. The sources
of the Tarim River runoff include glacial melt water, accounting for 48.2%; precipitation in
the form of rain and snow, accounting for 27.4%; and river base flow, accounting for 24.4%
of the total [26,27]. The Tarim River Basin is a typical oasis agricultural production area in
China; the oasis area in the basin has been increasing, and arable land has increased during
the past 30 years. This has led to a shortage of water in the basin, which is mainly used for
agriculture. The demand for agricultural irrigation water is large and accounts for about
96% of the total water use in the Tarim River Basin [28].

Figure 1. Map of the study area showing the Tarim River Basin and its nine main tributary river
basins: the Kaidu-Kongque, Aksu, Weigan, Yarkand, Qarqan, Dina, Hotan, Kaxgar, and Keriya
river basins; (a) the elevation of this area ranges from 781 to 8538 m above sea level; the spatial and
temporal distribution of (b) temperature and (c) precipitation changes from 1990 to 2015. The black
triangles represent the meteorological stations. Blue and red represent the increase and decrease,
respectively, and the size of the triangle represents the magnitude of the change.

3. Materials and Methods
3.1. Materials

To analyze the dynamic evolution of the Tarim River Basin and its ecotone, and the
factors controlling the observed changes, this article mainly uses remote sensing, land use,
and meteorological data collected between 1990 and 2015. The analyzed historical trends
in such parameters as the area of land-use transfer were subsequently used to extrapolate
and predict the potential future changes in the study area.

3.1.1. Remote Sensing Data

Landsat 5 Thematic Mapper (TM)/Landsat 7 Enhanced Thematic Mapper (ETM)
+/Landsat 8 Operational Land Imager (OIL) satellite imagery from 1990, 2000, and 2015
(a total of 78 pieces, Table S1) was used in this study. The acquisition time was from June
to September of each year. The cloud cover was less than 10%, and the pixel resolution of
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the data set was 30 m × 30 m. The ENVI 5.3 software was used to perform radiometric
calibration, atmospheric correction, and Normalized Difference Vegetation Index (NDVI)
extraction calculations on the remote sensing images.

3.1.2. LUCC Data

The land-use data set for the Tarim River Basin was obtained from the existing remote
sensing monitoring data set of land use in China. It was provided by the Data Center
for Resources and Environmental Sciences, Chinese Academy of Sciences (http://www.
resdc.cn). In this paper, we used three periods of Chinese land-use data (30 m × 30 m),
collected in 1990, 2000, and 2015. The database offers the most comprehensive coverage of
China’s land use/land cover and has been used in a number of published studies [29,30].
The land-use types were classified into six categories: arable land, forest, grassland, water,
built-up land, and unused land (Table S2).

3.1.3. Meteorological Data

Monthly scale meteorological information on temperature, precipitation, wind speed,
humidity, and pressure from 1990 to 2015 for 26 meteorological stations in the Tarim River
Basin were used to describe the recent changes in climatic conditions. The meteorological
data were obtained from the China Meteorological Science Data Sharing Service Network,
which have good continuity and has been tested for consistency. Station selection required
the following: (1) the station was a national ground meteorological station, and (2) missing
data accounted for less than 1% of the total data.

3.1.4. Groundwater Data

We selected groundwater-level data from the Yarkand, Kaxgar, and Weigan river
basins. Three groundwater monitoring wells were selected for each basin. Groundwater
data for the Yarkand River Basin (2004–2010) were obtained from the Kaxgar Hydrological
Bureau, and the groundwater data for the Weigan River Basin (2000–2012) and the Kaxgar
River Basin (2004–2010) were obtained from groundwater monitoring wells deployed by
the Xinjiang Institute of Ecology and Geography of the Chinese Academy of Sciences for
multi-year actual measurements.

3.2. Methods
3.2.1. NDVI Calculation

Vegetation indices are often used for vegetation analysis [31–33] and are typically
formed by combining certain bands of image spectral data that possess vegetation-sensitive
properties. Widely used vegetation indices include simple vegetation indices, ratio vegeta-
tion indices, NDVI, and transformed normalized vegetation indices [33,34]. The NDVI was
used as the analysis index. It was calculated as follows:

NDVI = (NIR − R)/(NIR + R) (1)

where NIR is the TM near-infrared band value and R is the TM visible-red band value. The
range of the image element values was -1 ≤ NDVI ≤ 1. Negative values indicate that the
ground cover consists of clouds, water, snow, etc.; 0 indicates the occurrence of rock or bare
soil; positive values indicate that there is vegetation cover, and the values increase with
increasing coverage.

ENVI 5.3 was used to perform radiometric calibration, atmospheric correction, and
mosaic and other processing of the Landsat images. The NDVI calculation tools were used
to calculate and output images from the three selected years separately. The calculation
results were then loaded into ArcGIS10.6, which was used to eliminate outliers. The GIS
raster calculator was used to extract the desert-oasis ecotone.

Sun et al. (2020) indicated that when the NDVI is between 0.05 and 0.35, the scope of
the delineated ecotone can match the actual scope of the ecotone to a greater extent [35].
On this basis, we also combined visual interpretation and field verification to exclude
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the artificial protection forest and arable land in this range, and with this criterion, the
desert-oasis ecotones of the Tarim River Basin in 1990, 2000, and 2015 were obtained.

3.2.2. Land-Use Transfer Matrix

This research quantitatively studied the conversion between land-use types in different
years. ArcGIS and MATLAB were used to process the land-use TIFF data from the study
area and to calculate the land-use transfer matrix from 1990 to 2015.

The land-use transition matrix was derived from system analysis and was used to
quantitatively describe the mutual feedback relationship between the system state and
the state transition. Put differently, the matrix describes the change in conditions of the
system from time T to time T + 1 [36]. At present, it is widely used to describe the
internal characteristics of the transfer structure and transfer direction of land-use/land-
cover changes in basins. This method can not only describe the structural characteristics of
the land-use area within a period of time but also effectively describes the transfer area
and transfer direction of various land-use types at the beginning and the end of the period,
as follows:

Sij =




S11 · · · S1n
...

. . .
...

Sn1 · · · Snn


 (2)

where S is the area; i and j (i, j = 1,2..., n) are the land-use type before and after transfer,
respectively; Sij is the area where land use changes from type i to type j; and n is the
number of land-use types before and after the transfer.

3.2.3. The Standardized Precipitation Evapotranspiration Index

The Standardized Precipitation Evapotranspiration Index (SPEI) is widely used in
global and regional drought detection and characterization [37–40]. This study used
monthly site data and the Penman–Monteith formula to calculate differences in potential
evapotranspiration, which were needed to calculate the SPEI. Specifics of the calculation
can be found in Allen et al. [2].

A positive SPEI value indicates a relatively wet condition, whereas a negative SPEI
value indicates a dry state. An SPEI value between -0.5 and 0.5 indicates normal condition.
In this study, SPEIs at 3-month, 6-month, 9-month, and 12-month timescales were used for
analysis. The ranges of SPEI values were divided into five classes according to the national
meteorological drought scale (Table S3).

3.2.4. The CA-Markov Model

The CA-Markov model was used herein to simulate and predict future land use in
the Tarim River Basin. The Markov model is a method for predicting the probability
of occurrence at a specified time based on the Markov chain process theory. It is often
used for the prediction of geographic events with no after-effect characteristics [41,42].
The evolution of land use has the nature of the Markov process. In fact, land-use type
corresponds to the “possible state” of the Markov process, and the area or ratio of the
conversion between land-use types can be represented as a state transition probability
matrix [43]. The model is expressed as follows:

S(t+1) = Pij × St (3)

Pij =




P11 · · · P1n
...

. . .
...

Pn1 · · · Pnn


 (4)

[0 ≤ Pij < 1 and
n

∑
j=1

Pij = 1(i.j = 1, 2 · · · n)] (5)
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In Equation (3), S(t+1) is the system state at t + 1 and Pij is the state transition proba-
bility matrix.

The cellular automata (CA) model is a lattice dynamics model with discrete time and
space states. It focuses on the interaction of different temporal and spatial characteristic
cells and has powerful spatial calculation and simulation capabilities [44,45]. In terms
of land-use prediction, the Markov model focuses on the prediction of the amount of
land-use change but it cannot spatially express the spatial distribution of the various types
of land-use changes. The cellular automata model can express the spatiotemporal dynamic
evolution of complex spatial systems, thereby making up for the deficiency in the Markov
model [46].

This study applied the CA-Markov model in the Idrisi 17.0 software to land-use data
collected in 1990, 2000, and 2015. The first step in the approach used the 2000 data as
the starting year and predicted the land use in 2015. The land-use predictions were then
compared with the actual land use in 2015 to verify the reliability of the CA-Markov model
simulation. Once verified, the spatial patterns in land use in 2030 were predicted using
2015 as the starting year (Figure 2). The images involved in the processing of the Idrisi
software are portrayed as raster data, and the land raster size used in this analysis was
30 × 30 m. The spatial data processing was completed using ArcGIS software.

Figure 2. Flow chart showing primary steps in the simulation process.

3.2.5. The Kappa Index

The Kappa index is often used to interpret remote sensing accuracy and to evaluate
the similarity of two spatial maps. The Kappa index was used in this study to verify the
accuracy of the CA-Markov model for simulating the evolution of land use in each tributary
basin [47]. The index is calculated as follows:

kappa =
Po − Pc

Pp − Pc
(6)

Po =
n1

n
, Pc =

1
N

(7)
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where Po is the proportion of the raster that is correctly simulated, Pc is the desired proportion
of correctly simulated raster grid cells, Pp is the proportion of correctly simulated grids for an
ideal classification, n is the total number of grids, n1 is the number of grids that are correctly
simulated, and N is the number of land-use types (N = 6 in this study). The degree of
consistency is weak when the Kappa index is less than 0.2 and significant when the Kappa
index is greater than 0.8. A higher Kappa index means a better model simulation. (The
detailed relationship between the Kappa index and consistency is shown in Table S4.)

4. Results
4.1. Desert-Oasis Ecotone and Land-Use Changes in the Tarim River Basin
4.1.1. Desert-Oasis Ecotone Changes in the Tarim River Basin

Figure 3 shows the changes in the extent of the desert-oasis ecotone in the Tarim
River Basin and its various sub-basins in 1990, 2000, and 2015. The desert-oasis ecotone of
the Tarim River Basin declined during this period, decreasing from 67,642 km2 in 1990 to
46,613 km2 in 2015. At the same time, the area of the desert in the study area expanded,
with the proportion of desert area increasing from 59.88% in 1990 to 63.36% in 2015.

Figure 3. The areal extent of the ecotone in 1990, 2000, and 2015 in each basin. The lower maps show
changes in the local ecotone in (1) the Weigan River Basin, (2) the Keriya River Basin, and (3) the
main stream of the Tarim River.

At the sub-basin scale, the area of the ecotone of each sub-basin also decreased by
different degrees, among which the three basins with the most significant area reduction
were the Kaidu-Kongque, Weigan and Keriya river basins; the areas of reduction were
2223 km2, 1704 km2, and 5090 km2, respectively (Table S5). While the ecotone decreased in
size, the vegetation coverage also significantly decreased, as shown by a drop in the NDVI
from 0.142 to 0.127. This indicates a deterioration in the desert-oasis ecotone in terms of
area and quality between 1990 and 2015.

4.1.2. Land-Use Changes in the Tarim River Basin

The shrinkage of the desert-oasis ecotone in the Tarim River Basin is closely related to the
strong land-use changes in the basin in recent decades. Table 1 further describes the area and
proportion of each land-use type in the Tarim River Basin in 1990, 2000, and 2015. Overall,
from 1990 to 2015, the area of arable land, water bodies, industrial land, and unused land
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increased. In contrast, the area of grassland decreased, whereas the area of forest land did not
significantly change. Unused land was the dominant land-use type in this area (accounting for
about 53%), increasing by 1419 km2 in the preceding two decades. Grassland also represented
a dominant land-use type in the area. Grasslands decreased from 35.97% in 1990 to 34.60%
in 2015; the areal decrease was 8911 km2. These land-use patterns reflect the intensity and
nature of human activities; in fact, the expansion of arable land far exceeds the increase in the
area of industrial land. Overall, the arable land area expanded drastically from 1990 to 2015,
increasing by 7125 km2, while the area of industrial land increased by only 66 km2. The area
of water bodies increased from 1990 to 2000 and then slightly decreased from 2000 to 2015.
Over the entire period, the area of water bodies increased by 283 km2. Forest land, which
occupies a relatively small proportion of the total, exhibited insignificant changes in the area;
its relative proportion was stable, at about 1.90%.

Table 1. Areas and proportions of land-use types in the study area in 1990, 2000, and 2015.

Type
1990 2000 2015

Area
(km2)

Ratio
(%)

Area
(km2)

Ratio
(%)

Area
(km2)

Ratio
(%)

Arable land 24,522.41 3.79 26,725.11 4.13 31,647.51 4.89
Forest land 12,055.43 1.86 12,688.41 1.96 12,062.48 1.87
Grassland 232,629.10 35.97 226,322.97 35.00 223,717.63 34.60

Water 34,774.43 5.38 35,508.45 5.49 35,057.50 5.42
Industrial land 1563.65 0.24 1497.20 0.23 1630.12 0.25
Unused land 341,124.92 52.75 343,917.04 53.18 342,543.93 52.97

Figure 4 shows the spatial distribution of the interconversion between different land
uses in the Tarim River Basin during the period 1990–2015. The increase in arable land in
1990–2015 was mainly in the periphery of the original arable land and oasis and extended to
the unused land. The increase in the area of arable land was mainly at the expense of grass
land, unused land, and forest land. The increase in unused land was mainly distributed
near the location of arable land and original grassland, and its areal expansion mainly
came from the degradation of some arable land, forest land, and grassland. The increase
in water bodies was mainly distributed in the foothills of the southern edge of the Tarim
Basin, such as in the upstream areas of the Hotan and Yarkand river basins, and it was
mainly derived from the transformation of grassland (Table S6).

4.2. Driving Force Analysis

Changes in the desert-oasis ecotone of the Tarim River Basin are inextricably linked to
natural and anthropogenic factors. Therefore, this study investigated the intrinsic causes
and drivers of the changes in the desert-oasis ecotone by changes in climatic parameters
and anthropogenic activities.

4.2.1. Meteorological Factors

A total of 26 meteorological stations in the Tarim River Basin were selected, and
temporal trends in mean annual temperature and annual precipitation were analyzed. Of
the total stations, 22 stations exhibited an increase in temperature and 18 stations exhibited
an increase in precipitation (Figure 1). Changes in dry and wet conditions were analyzed
by calculating the SPEI for different time scales of drought in the Tarim River Basin from
1990 to 2015. At the 3-month, 6-month, 9-month, and 12-month time scales, average SPEI
values exhibited a decrease, indicating enhanced aridification in the study area (Figure 5).
Moderate droughts occurred in 2006 and 2008. Since 2000, the frequency and severity of
droughts have become stronger, suggesting that droughts are an important reason for the
accelerated decline in the ecotone after 2000. The results of the analysis also demonstrate
that multi-scale SPEI can effectively show the degree of drought and drought duration in
the Tarim Basin. SPEI of different scales show different degrees of interannual oscillations
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and interannual variability, but the overall direction of change was the same; the study
area became more arid after 1990.

Figure 4. Land-use transfer map of the Tarim River Basin from 1990 to 2015. The lower maps show
the local changes in (1) the Weigan River Basin, (2) the Keriya River Basin, and (3) the main stream of
the Tarim River.

Figure 5. Time series of the 3-, 6-, 9-, and 12-month SPEI values in Tarim River Basin from 1990 to 2015.
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4.2.2. Human Factors: Groundwater Changes

Within the Tarim River Basin, where precipitation is extremely low, groundwater is
an important source of irrigation water. With the increase in arable land in the basin, the
exploitation of groundwater has also increased. For example, groundwater monitoring
data collected in the Yarkand, Kaxgar, and Weigan river basins show that groundwater
levels have decreased during the 21st century (Figure 6). The most significant decline has
been in the Weigan River Basin, where declines in groundwater levels of up to 2.48 m,
4.93 m, and 3.97 m have been observed. The expansion of oasis cultivation and irrigation
in the basin has presumably caused a significant decrease in groundwater levels, which is
a key hydrological element for the survival of natural vegetation and directly affects the
growth and maintenance of natural vegetation in the desert-oasis ecotone.

Figure 6. Changes in the groundwater table in (a) the Kaxgar River Basin, (b) the Yarkand River
Basin, and (c) the Weigan River Basin. The dots represent the observation points of the groundwater
level, and the fold lines represent the change in the trend of the groundwater level. The color of the
fold line is consistent with the color of the observation point of the groundwater level.

4.3. Simulation and Prediction of Land Use in the Ecotone and Its Basin in 2030
4.3.1. Accuracy Verification

Since the shrinkage of the ecotone is closely related to land-use type changes, we also
predicted future land-use changes based on the CA-Markov model in order to understand
the future changes of the transition zone. To simulate future land-use changes in the basin,
we first validated the accuracy of the 2015 land-use data. Since the desert-oasis ecotone of
the Tarim River Basin is included in the whole Tarim River Basin area, we directly validated
the accuracy of the simulation of the entire basin. The land-use structure of the study area
was simulated and predicted based on the CA-Markov model. Land-use maps in 1990
and 2000 were defined as input data to simulate land use in 2015. Effectiveness of the
simulation was assessed using spatial raster contrast in which the land-use type in specific
spatial locations was compared to the actual 2015 land-use map.

Figure 7 shows that the simulation error, as determined by inconsistent land-use
locations, was 3.62% of the total number of raster cells. Most inconsistencies appeared
adjacent to water bodies and forest land. A total of 96.38% of the regions were consistent
with the actual map in 2015. The Kappa index of the simulation result was 0.9551, also
indicating the high reliability of the result and the CA-Markov model in predicting land-use
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types. The Kappa index of each sub-basin in the Tarim River Basin exceeded 0.80, which
meets the accuracy requirement of the Kappa index.

Figure 7. Comparisons of measured (a) and simulated (b) land-use maps of the Tarim River Basin in
2015, along with verification of forecast accuracy; (c) The simulation error between 1990 and 2015; (d)
the Kappa index for each river basin.

The quantitative accuracy of the area of each land type in the simulation was also
evaluated by comparing it with the actual area in 2015 (Table 2). The prediction error in
2015 was expressed as the absolute value of the error between the predicted and actual
values of each land-use type area. Except for forest land and water bodies, where the error
was 6% and 8.56%, respectively, the error in predicting the land-use types was within 5%.
The error associated with industrial land and unused land was less than 1%, indicating
that the simulation method had a high precision and credibility. Therefore, the CA-Markov
model was able to effectively simulate the land-use changes in the study area and can be
used to simulate future land use.

Table 2. Comparison between simulated and actual land use within the study area in 2015.

Type
Predicted

Area
(km2)

Ratio
(%)

Actual Area
(km2)

Ratio
(%)

Quantitative
Accuracy
Error (%)

Arable land 33,073.94 5.04 31,647.51 4.89 4.51
Forest land 12,786.20 1.27 12,062.48 1.87 6.00
Grassland 216,813.78 33.36 223,717.63 34.60 3.09

Water 38,060.14 6.14 35,057.50 5.42 8.56
Industrial land 1638.14 0.26 1630.12 0.25 0.49
Unused land 344,293.60 53.93 342,543.93 52.97 0.51

4.3.2. Forecast of Changes in the Desert-Oasis Ecotone in the Tarim River Basin

Figure 8 predicts the spatial distribution of land-use change in the Tarim River Basin in
2030 using the CA-Markov model. The prediction suggests that past land-use trends in the
Tarim River Basin will continue in 2030 (Table S7). The land type with the greatest change
will be arable land, whose area will increase from 31,647 km2 in 2015 to 34,909 km2 in 2030,
an increase of 10.31%. The land-use type exhibiting the largest decrease will be grassland (it
will decrease by 12,497 km2 compared to 2015), while forest land area, industrial land, water
bodies, and unused land will exhibit a small increase. Future projections and simulations
of land types within the Tarim River desert-oasis ecotone can infer its ecological status
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and development trends. This study simulated and predicted land-use changes within the
ecotone by 2030, using the 2015 ecotone extent as the boundary. Land-use changes within
the ecotone show a similar trend to the entire area. The simulation found that the arable
land area in the ecotone will increase significantly, from 1033 km2 in 2015 to 2599 km2

in 2030, while the areas of forest and grassland will decrease by 318 km2 and 833 km2,
respectively. As the area of natural vegetation decreases and the arable land increases
within the ecotone, the quality of the future ecotone habitats will further deteriorate.

Figure 8. Land-use in Tarim River Basin in 2030.

5. Discussion
5.1. Criteria for the Classification of the Desert-Oasis Ecotone

There are different approaches to the current delineation of the desert-oasis ecotone.
Most scholars define the ecotone as a zone of limited width along the edge of the oasis [48],
while others extend the ecotone to the entire foothills or define it as terrain without a clear
spatial location [49]. In this study, we found that the usual criteria for delineating the
desert-oasis ecotone do not work well in the Tarim River Basin, which consists of a large
area composed of many watersheds. As a result, the ecotone is not uniformly distributed.
Therefore, the NDVI contour data calculated from the TM images (30 m resolution) were
used here, in conjunction with the remote sensing images of land-use/land-cover change
in 1990, 2000, and 2015. The land-use type corresponding to the NDVI values in the range
between 0.05 and 1 were interpreted to be forest and grassland, whereas the land-use type
corresponding to NDVI values between 0.35 and 0.95 were mostly artificial oases organized
in neat patterns of blocks and strips. Thus, NDVI values in the range between 0.05 and
0.35 were selected as the desert-oasis ecotone in the Tarim Basin. The results were verified
by using ENVI and ACRGIS to interpret, classify, and digitize the images from the three
analyzed years, and the results were verified by fieldwork.

5.2. Combined Effect of Climate Change and Human Activities on the Desert-Oasis Ecotone

Analysis of temperature and precipitation in the study area shows that both parame-
ters have increased since 1990 (Figure 1) but the increase in temperature has been much
greater than the increase in precipitation. By calculating the SPEI values of the basin for
different time scales, we found that there has been an increase in drought conditions in the
study area since 2005, especially during the years of 2005, 2006, and 2008, when droughts
reaching the moderate level occurred year-round. The increase in droughts, and external
climatic changes in general, may be an important reason for the accelerated decrease in
the area of the ecotone after 2000. Runoff (flow) in the Tarim River Basin is primarily
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generated in high mountain areas where glaciers and snowmelt recharge dominate. The
input from these water sources is very sensitive to global climate change. The increased
hydrological volatility and water resource uncertainty caused by climate change may lead
to more prominent conflicts between water supply and demand in the oasis economy and
desert ecosystem in the basin [50].

Because of the expansion of arable land, agricultural water consumption remains
high. Agricultural water has long been the main form of water in this area. The proportion
of agricultural water is too large, and the water structure is seriously imbalanced. The
proportion of agricultural water in the basin has long been as high as about 95%, which
is much higher than the Chinese average (65%) and the world average (70%). At present,
the development of water resources in the Tarim River Basin has greatly exceeded the
carrying capacity of regional water resources [28]. For example, the groundwater level in
the Kaxgar River Basin dropped by nearly 1 m between 2004 and 2010 and the water crisis
has become more prominent [25]. Groundwater overexploitation has led to the degradation
of desert vegetation and damage to ecosystems [51]. For instance, the 321 km river cutoff
in the downstream reach of the Tarim River has caused shrinkage and even disappearance
of oases [52,53]. The reduction in ecological water has also led to a decrease in surface
vegetation cover, NDVI, and the area of the desert-oasis ecotone.

5.3. Applicability of the Land-Use Change Model and Future Work

Human influence on land use reflects not only natural factors but also economic
and social factors. Therefore, predicting land-use changes is extremely important for
promoting natural, economic, and sustainable development and protecting ecological
balance. Relevant data show that the irrigated area of the Tarim River Basin has increased
by 67% in the last 30 years [53] and the future expansion of cultivated land area will
decrease ecological space and ecological water, leading to a shrinkage in the desert-oasis
ecotone and a decline in its function as an ecological barrier. Therefore, it is necessary to
perform quantitative prediction and analysis of future land-use and pattern changes in
the Tarim River Basin. The CA-Markov model is widely used in urban land-use pattern
simulation and in the assessment of watershed land-use change; however, the model has
rarely been applied in arid areas, especially in areas with complex geographical features
combining desert-oasis characteristics. This study experimentally applied and optimized
the CA-Markov model using relevant, scientifically selected factors, and improved the
simulation accuracy to obtain reliable prediction results. As a case study, it provides a good
example and basis for the prediction of land-use change in arid areas.

The model also has a few shortcomings related to the quantification of some factors.
For example, the influence of road distance, water body distance, and various administra-
tive policies were not considered and the analysis of the social, geographical, economic,
and resource environment that affects land-use changes was not fully characterized. There-
fore, to improve model accuracy, future research should consider the influence of natural
and human factors on the change in the geospatial system. In addition, future research
can attempt to establish a model of land-use/land-cover change under the joint action of
several different influencing factors and different decision makers by adding weighting
elements.

6. Conclusions

This paper investigated the dynamic evolution of the desert-oasis ecotone in the Tarim
River Basin and predicted the near-future land-use change in the desert-oasis ecotone using
the CA-Markov model. The main findings of this paper are as follows:

With the decrease in the NDVI (from 0.142 in 1990 to 0.127 in 2015) of the desert-oasis
ecotone, the area of the ecotone also shrank from 67,642 km2 in 1990 to 46,613 km2 in 2015.
In the context of global climate change, the temperature showed a significant increase
compared with precipitation, which led to an obvious increase in aridity in the study area.
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Meanwhile, the increase in arable land area led to a decrease in the groundwater table. The
above factors have led to the shrinkage of the desert-oasis ecotone in the Tarim River Basin.

The CA-Markov model was verified to have good applicability in this study area,
which was used to predict and simulate the future land dynamics of the study basin.
Assuming the present development trend continues without intervention, the arable land
area in the ecotone will increase from 1033 km2 in 2015 to 2599 km2 in 2030 and the
woodland area and grassland area will decrease from 318 km2 to 833 km2, respectively.
The main land-use types in the Tarim River Basin in 2030 will be arable land, unused land,
and grassland.

In light of the above conclusions, it is necessary to establish reasonable management
countermeasures for land-use planning in Tarim River Basin development to achieve
sustainable development and protect the ecology of the basin.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-429
2/13/4/647/s1: Table S1: The detailed information on Landsat images used in this study; Table S2:
Land cover classification system; Table S3: SPEI categories; Table S4: Kappa index and consistency
relationship; Table S5: Changes in the ecotone area of each basin in 1990, 2000, and 2015; Table S6:
Transfer matrix of land-use area between 1990 and 2015 in the Tarim River Basin; and Table S7: Area
of land-use types in the study area in 1990, 2000, 2015, and 2030.
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Abstract: Tianjin is the largest open city along the coastline in Northern China, which has several
important wetland ecosystems. However, no systematic study has assessed the water body changes
over the past few decades for Tianjin, not to mention their response to human activities and climate
change. Here, based on the water change tracking (WCT) algorithm, we proposed an improved
water change tracking (IWCT) algorithm, which could remove built-up shade noise (account for
0.4%~6.0% of the final water area) and correct omitted water pixels (account for 1.1%~5.1% of the
final water area) by taking the time-series data into consideration. The seasonal water product of
the Global Surface Water Data (GSWD) was used to provide a comparison with the IWCT results.
Significant changes in water bodies of the selected area in Tianjin were revealed from the time-series
water maps. The permanent water area of Tianjin decreased 282.5 km2 from 1984 to 2019. Each time
after the dried-up period, due to government policies, the land reclamation happened in Tuanbo
Birds Nature Reserve (TBNR), and, finally, 12.6 km2 of the lake has been reclaimed. Meanwhile,
488.6 km2 of land has been reclaimed from the sea along the coastal zone in the past 16 years at a
speed of 28.74 km2 yr−1 in the Binhai New Area (BHNA). The method developed in this study could
be extended to other sensors which have similar band settings with Landsat; the products acquired
in this study could provide fundamental reference for the wetland management in Tianjin.

Keywords: inland water; IWCT; Tianjin; Landsat data

1. Introduction

Inland water systems often provide critical ecosystem functions, i.e., water and food
provision, local climate regulation, conservation of biological diversity [1–3]. However,
due to intensive human activities (e.g., land reclamation and water conservancy projects),
the area of inland water decreased sharply in China [4,5]. Thus, accurate monitoring the
long-term changes of inland water bodies is important to both scientific community for
water research and local governments for water-resource planning and management [6–11].

Remote sensing has become one of the most efficient methods in water area monitor-
ing with synoptic and repeated observations. Various methods have been developed to
discriminate and map water using multi-spectral, hyperspectral and radar images [12–14].
The most simple and popular method was basis on threshold segmentation by using a
single band, or a ratio of two bands of data (e.g., Normalized Difference Vegetation Index
(NDVI), Normalized Difference Water Index (NDWI) [15] and the Modified Normalized
Difference Water Index (MNDWI) [16,17]). However, as the spectral characteristics of lakes
vary temporally and spatially, the single threshold may not be suitable for large areas and
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long time-interval due to varied band configurations and illumination conditions [14]. The
supervised classification, decision tree and machine learning algorithms were also used to
classify the water body [18,19], while they need training data from different regions and
different seasons to serve as prior knowledge or auxiliary data.

The daily global water map data set from 2001 to 2016 was generated based on 500-m
resolution time-series daily MODIS (Moderate Resolution Imaging Spectroradiometer)
reflectance data [20,21]. The MODIS 250-m resolution data collected between 2000 and
2010 were used by Feng et al. [13] to document the temporal inundation changes of Poyang
Lake with Floating Algae Index (FAI) and a gradient method. Han and Niu [21] constructed
a new Global Surface Water Extent Dataset (GSWED) covering 2000–2018 with a temporal
resolution of 8 days and a spatial resolution of 250 m based on MODIS data and Google
Earth Engine (GEE) cloud computing platform. Although, the 250-m and 500-m resolution
MODIS data can be used to effectively analyze the long-term water body changes in
large areas, the results obtained from the MODIS images may misinterpret the small-scale
inland water bodies due to a mixing pixels problem [22]. The publicly accessible Landsat
archive makes the historical water body mapping feasible at 30-m level [23]. Based on
classification tree models and top of atmosphere (TOA) reflectance of 3.4 million Landsat
scenes, Pickens et al. [19] generated the global water maps and assessed the accuracy using
sub-pixel analysis based on samples from 5-m resolution RapidEye imagery. Hou, et al. [24]
delineated the lake boundaries using a thresholding method based on Landsat-derived
NDWI to track reclamation-induced changes in the Yangtze Plain lakes. The Function
of mask (FMASK) was developed to detect cloud, cloud shadow, water and snow for
time-series Landsat images [25,26]. With Landsat time-series, the global inland water
dynamic was documented by different methods (multiple indices and thresholds, the expert
system based on a procedural sequential decision tree, etc.) [19,27,28]. The multi-source
remote sensing data were also used for small-coverage inland water detection [29–32].
These methods need a large number of auxiliary data and thus cannot be fully automated
employed to extract long-term water areas.

Recently, a water change tracking (WCT) algorithm based on Minimum Normalized
Water Score (MNWS) for accurate inland water mapping was proposed and has been
proven to be a promising method for Landsat images to extract water bodies automatically.
Compared with FMASK and G1WBM methods, the WCT algorithm seems to be more
robust for inland water extraction. However, while the WCT algorithm has been validated
on large lakes, non-urban areas and wetland water extraction in China, its ability for
small lakes and urban-dominated area water extraction has not been discussed. When this
method was applied to extract water bodies in urban-dominant area in Tianjin, lots of very
bright water pixels were omitted and the algorithm performed poorly in urban areas with
high buildings. Hence, given the availability of the time-series Landsat images and lack of
systematic assessment of the Tianjin water bodies, this study has two objectives:

(1) Improve the existing WCT algorithm to extract the water bodies in Tianjin using
Landsat images;

(2) Document water changes in Tianjin over 1984–2019 and understand their linkage
with human activities and climate changes.

The IWCT can remove the built-up shades and correct the omitted pixels using the
time-series remote sensing data. Furthermore, the IWCT will be fully validated in the
urban dominated areas.

2. Materials and Methods
2.1. Study Area

Tianjin, located at the downstream of Haihe river Basin (116◦42′7.5”–118◦3′37.6”E and
38◦33′23”–40◦15′7.5”N, Figure 1), is the largest open city along the coastline in northern
China. Influenced by temperate monsoon climate, Tianjin has two seasons: dry season
(September to June) and wet season (July to August), and more than 60% of annual precipi-
tation occurs in the wet season [33]. The wetland resources in Tianjin serve as the main
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resting places for migratory birds from East Asia to Australia. To conserve the rare and
endangered migratory birds, the government has constructed several nature reserves: Bei-
dagang Wetland Nature Reserve (BWNR), Dahuangpu Wetland Nature Reserve (DWNR),
Ancient Coast and Wetland National Nature Reserve (ACWNNR) and Tuanbo Birds Na-
ture Reserve (TBNR). The other major water bodies of Tianjin distributed in the Yuqiao
Reservoir (YR) which is the important source of drinking water for Tianjin, and Binhai
New Area (BHNA).
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Figure 1. The location of study area. The true-color image is the Landsat-8 OLI image collected on
12 September 2017 and 26 October 2018. The boundaries of the four nature reserves (Beidagang
Wetland Nature Reserve (BWNR), Dahuangpu Wetland Nature Reserve (DWNR), Ancient Coast and
Wetland National Nature Reserve (ACWNNR), Tuanbo Birds Nature Reserve (TBNR)), Binhai New
Area (BHNA) and Yuqiao Reservoir (YR) of Tianjin are delineated with red lines and yellow lines.
Note that the two red boundaries near BWNR all belong to BWNR.

2.2. Dataset

Landsat surface reflectance data, including Landsat 8 Operational Land Imager (OLI),
Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Landsat 5 Thematic Mapper (TM)
and Landsat 4 Thematic Mapper (TM) with 30-m resolution were downloaded from the
U.S. Geological Survey (USGS) (http://glovis.usgs.gov/) and used to map Tianjin water
bodies and their spaito-temporal changes. The entire study region is covered by four
Landsat footprints (path 122 row 032, path 122 row 033, path 123 row 032 and path 123 row
033). After excluding images with significant cloud covers based on visual inspection,
1087 Landsat images between 1984 and 2019 were kept. The temporal distribution of the
data is shown in the bubble chart (Figure 2). The size of the bubbles represents the valid
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observation area after removing the “bad pixels” (snow, ice or cloud covered areas in the
satellite images), and arranges from small (the smallest valid observation area, 500 km2)
gradually to large (the largest valid observation area, 13,000 km2).
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Figure 2. Scene acquisition dates for the Landsat images from 1985 to 2019. The size of the bubbles
indicates useful observation areas which masked the “bad pixels” for the whole study area. The size
of bubbles represents the valid data areas changed from 500 (the smallest size) to 13,000 km2 (the
largest size).

The high-resolution images on Google Earth could be used as ground truth for the
water classification. Two high-resolution images (acquisition on 21 November 2005 and
27 May 2018) that 1 day ahead and on the same day with the objective Landsat images
(20051122123LE07 and 20180527122LE07) were used to discriminate the water and non-
water pixels. The seasonality dataset of Global Surface Water-Data (GSWD) for Tianjin
was downloaded from the website (https://global-surface-water.appspot.com/) [3]. The
Seasonality map provides the intra-annual changes of water surface in the period of
October 2014 to October 2015 and shows the number of months water was present. The
images were used to select ground truth water samples to validate the Landsat extract
water maps. The Shuttle Radar Topography Mission (SRTM) DEM data of Tianjin were
downloaded from USGS. The urban boundary was downloaded from the website (http:
//data.ess.tsinghua.edu.cn/) [34]. The GaoFen (GF)-2 PMS data were downloaded from
China Centre for Resources Satellite Data and Application (http://www.cresda.com/CN/).
Precipitation and temperature data were obtained from the three meteorological stations
(Baodi, Tianjin and Tanggu, shown in Figure 1) through China Meteorological Data Service
Center (CMDC) (http://data.cma.cn/en).

Furthermore, the boundary of YR used in this study was calculated based on the
largest inundation of YR during the whole study period. The boundary of four na-
ture reserves and BHNA was obtained from Tianjin Institute of Surveying and Mapping
(http://tjch.com.cn/).

2.3. Method

The WCT algorithm is designed to automatically extract multi-temporal water maps
for large area. The processing steps could be summarized as follows:

1. Collection of Reliable Water Samples (RWS): The RWS was extracted by the criteria
that MNDWI was larger than 0.3 and the minimum reflectance of the red, green, and
near infrared bands (MGRN) lower than 0.15 [27,35].

2. Water sample clustering for the Reliable Water Samples: The k-means clustering
method was applied to the visible bands of the RWS to cluster the water bodies into
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eight classes. The spectral statistical parameters (the mean and standard deviation
values) for each band of each cluster were calculated.

3. Calculation of the Minimum Normalized Water Score (MNWS): The Normalized
Water Score (NWS) were calculated for all the images and the MNWS was calculated
by the Equations (1) and (2).

NWSi =

√√√√ 1
m

m

∑
j=1

((
xj − xi,j

)

σi,j

)2

, (1)

MNWS = minn
i=1{NWSi}, (2)

xi,j and σi,j is the mean and standard deviation of cluster i and band j,m is the number
of the band, n is the number of the cluster.

4. Extraction of Water Body: The water body extracted by the criteria that the MNWS < 2.5.

When applied the WCT algorithm to the study region for the Landsat time-series
images of 1984–2019, we found that the WCT algorithm has some defects. The defects of
the WCT could be summarized as follows:

(1) Water pixels with very high reflectance may be misclassified as background. The
k-means clustering method was applied to the RWS to divide water bodies into
different clusters according to the local environment. The WCT is highly dependent
on the RWS selected from the images. The water pixels in the sun glint and in shallow
areas affected by sand bottoms may be observed as high reflectance data. The water
samples of these regions always did not meet the criteria of RWS and would be
misclassified to non-water pixels.

(2) Urban building shadows may be misclassified as water. The built-up shade noise
account for 0.4%~6.0% of the final water areas from June to December/next January.
The spectral characteristics of the materials under the shadows were not represented
and the shadows share similar spectral characters with water. If the shadows in the
images were not masked, they may be misinterpreted as water.

(3) The time-series data were used to detect the changes of the water in the WCT algo-
rithm, rather than extracting water. The omitted water pixels account for 1.1%~5.1%
of the final water areas.

Based on the WCT algorithm, we proposed an improved water change tracking
(IWCT) algorithm to overcome the defects of the WCT. The flow chart (Figure 3) shows the
details of the data processing steps. The practical processing steps show as follows:

1. The WCT algorithm: Implied the WCT algorithm described in the Section 2.3 to the
Landsat (TM/ETM+ and OLI) images to extract preliminary water body map [12].

2. “Bad pixel” mask: When the water pixel is covered by snow, cloud or ice, the spectral
characteristic of the pixel changes greatly. The automatic cloud detection methods
may be not suitable in this study because of their limits, such as 1© The ground objects
with high reflectance may be misclassified as clouds; 2© It is hard to determine the
boundary of optically thin clouds and their shadows; 3©Water may be misclassified
to cloud shadows. In this study, visual interpretation method was used to remove bad
pixels. Red-Green-Blue “true-color” composite images were generated using three
bands (Red Band: 655, Green Band: 536, Blue Band: 480 nm) from the Landsat data.
The regions where the RGB images showed “bad pixels” were manually delineated
using the region of interest (ROI) Tool. The pixels within the ROI will be set as
non-valid observations and discarded.

3. Shadow mask: The spectral characteristics of the terrain and building shadows are
similar to water and are always misinterpreted as water in the original algorithms. The
water bodies and terrain shadows could be separated using the DEM data with the
criteria that if the slopes of the pixels are greater than 5◦ [27]. In the urban-dominated
areas, the shadows of high buildings will affect the water extraction accuracy. Building
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shadows is seasonally dependent, and will be related to the changes in the solar angle.
When the sun is directly over the Tropic of Cancer on 21 June of the year, the sun
has highest elevation angle in the northern hemisphere. Considering the geographic
coordinates of Tianjin area, the images collected in June–July were less affected by
the urban shade, and thus can be used to distinguish urban shades in the urban areas
delineated by the urban boundary and water bodies for the rest data of the year.

4. Omitted water pixels correction: Using only one index combination often leads
to omission errors for those water pixels with high reflectance. With the repeat
monitoring, the remote sensing not only provides spatial information, it also provides
the temporal coverage of water bodies. Thus, the time-series water classification
results and Landsat reflectance data were used to correct the water pixels which
were omitted in the WCT algorithm. Images in the same month within a four-year
window (i.e., two years before and later) were selected, if the data were classified as
water within four years, and the data meet the criteria (MNDWI > 0 or NDWI > 0 or
NDVI < 0 and NDVI < 0.3) it will set as omitted water.

5. Water frequency and water area mapping: For each pixel, the water frequency map
is calculated as the ratio of the number of pixels detected as water and the number
of valid observations within one year. To quantify the water area changes of Tianjin
during the last three decades, the water areas of the six typical regions (ACWNNR,
BWNR, DWNR, TBNR, BHNA and YR) were calculated for all the cloud-free Landsat
images of these specific regions. Pixels with water frequency equals 1 were classified
as permanent water.

Remote Sens. 2021, 13, x FOR PEER REVIEW 6 of 19 
 

 

delineated using the region of interest (ROI) Tool. The pixels within the ROI will be 
set as non-valid observations and discarded. 

3. Shadow mask: The spectral characteristics of the terrain and building shadows are 
similar to water and are always misinterpreted as water in the original algorithms. 
The water bodies and terrain shadows could be separated using the DEM data with 
the criteria that if the slopes of the pixels are greater than 5° [27]. In the urban-domi-
nated areas, the shadows of high buildings will affect the water extraction accuracy. 
Building shadows is seasonally dependent, and will be related to the changes in the 
solar angle. When the sun is directly over the Tropic of Cancer on 21 June of the year, 
the sun has highest elevation angle in the northern hemisphere. Considering the ge-
ographic coordinates of Tianjin area, the images collected in June–July were less af-
fected by the urban shade, and thus can be used to distinguish urban shades in the 
urban areas delineated by the urban boundary and water bodies for the rest data of 
the year. 

4. Omitted water pixels correction: Using only one index combination often leads to 
omission errors for those water pixels with high reflectance. With the repeat moni-
toring, the remote sensing not only provides spatial information, it also provides the 
temporal coverage of water bodies. Thus, the time-series water classification results 
and Landsat reflectance data were used to correct the water pixels which were omit-
ted in the WCT algorithm. Images in the same month within a four-year window (i.e., 
two years before and later) were selected, if the data were classified as water within 
four years, and the data meet the criteria (MNDWI > 0 or NDWI > 0 or NDVI < 0 and 
NDVI < 0.3) it will set as omitted water. 

5. Water frequency and water area mapping: For each pixel, the water frequency map 
is calculated as the ratio of the number of pixels detected as water and the number of 
valid observations within one year. To quantify the water area changes of Tianjin 
during the last three decades, the water areas of the six typical regions (ACWNNR, 
BWNR, DWNR, TBNR, BHNA and YR) were calculated for all the cloud-free Landsat 
images of these specific regions. Pixels with water frequency equals 1 were classified 
as permanent water. 

Landsat Surface 
Reflectance 

Data(TM, ETM+ 
and OLI)

 Omitted water pixels 
correction

Final water image Water-frequency 
image

Shadow mask

WCT algorithm 
extracted water area 

‘Bad 
pixel’mask

 
Figure 3. The flow chart of the Landsat-based water extraction method improved water change 
tracking (IWCT) algorithm developed in this study. 

Figure 3. The flow chart of the Landsat-based water extraction method improved water change
tracking (IWCT) algorithm developed in this study.

2.4. Accuracy Assessment

The omission and commission errors at pixel scale were used to evaluate the perfor-
mance of the IWCT. For the selected two Landsat images, 2000 random points for water
and non-water pixels in the IWCT images were generated within the overlapped region
between Google earth high-resolution images and Landsat data (20051122123LE07 and
20180527122LE07). The points were visually classified as water/non-water on the Google
Earth high-resolution image, and were used for validation of the result.

As both of the seasonal GSWD products and IWCT-based water map were calculated
with the entire archive of the Landsat images and have the same spatial resolution, the
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GSWD product can be used to assess the accuracy of IWCT-based results. The seasonality
map of the water surfaces for a single year (2014–2015) was available on the website,
and was chosen to make a comparison with the data calculated in this study. If all the
pixels in the valid observations are water pixels, the data will be marked as permanent
water in the GSWD. As the water frequency was calculated based on the ratio between
the number of pixels detected as water and the number of valid observations, the pixels
with water frequency equal to 1 would be treated as permanent water for IWCT. The
permanent water in the GSWD and the permanent water in IWCT were calculated based
on the same principle. The permanent water data of the two images were resampled to the
same resolution as 3 km × 3 km, and then the correlation analysis was conducted for all
the points in the data. To test the applicability of proposed algorithm, it was applied to a
FLAASH atmospheric corrected GF-2 PMS image. The extraction result based on 3.9-m
resolution GF-2 PMS was then compared with Landsat result.

3. Results

The water bodies were extracted using the IWCT method excluding the bad pixels and
shadows. The omitted water pixels were corrected using the time-series Landsat images
and primary water results. To assess the accuracy of IWCT product, the commission
and omission errors of the WCT and IWCT were estimated using the same validation
samples. The results show that the IWCT method was much better than the WCT by
providing lower commission errors and omission errors (Table 1). The IWCT presented
lower commission and omission errors for 20051122123LE07 and 20180527122LE07 images
than WCT algorithm (commission error: 0.8–5.1% for IWCT versus 0.8–9.5% for WCT,
omission error: 0.9–3.2% for IWCT versus 2.4–4.3% for WCT). Scatterplots of permanent
water area from IWCT, corresponding to 3 km × 3 km resolution, were made against
GSWD. The result indicated that the two data have extremely high consistency with a
determination coefficient (R2) of 0.97 and RMSE of 0.46 (p < 0.05) (Figure 4).

Table 1. Classification accuracy of the WCT and IWCT.

WCT IWCT

Image Commission Error Omission Error Commission Error Omission Error

20051122123LE07 9.5% 4.3% 5.1% 3.2%

20180527122LE07 0.8% 2.4% 0.8% 0.9%
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Figure 4. Validation of the IWCT-based water map using existed water bodies image from GSWD
seasonality product. The two red circled points showed great differences, and the corresponding
water area will be discussed in the Discussion section below.

Figure 5 shows the dynamic water body maps of Tianjin between 1984 and 2019. Each
map was generated using the Landsat time-series images in the corresponding year. The
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water bodies with higher frequencies are presented in dark blue and seasonal water with
lower frequencies are shown in lighter blue. The spatial distributions of the water bodies
were clearly demonstrated within each panel, and the long-term water frequency changes
were also revealed across each panel. In general, the water bodies with high frequencies
located mainly in the BHNA, YR and TBNR. The water frequencies are more variable in the
ACWNNR, BWNR and DWNR in different years. The water landscape shows the trend of
fragmentation from 1984 to 2019. The water area of TBNR shows significant variability in
different years, with a larger area of water has been reclaimed in after 2002. In addition,
land has been reclaimed from sea along the coastal zone after 2003 in the BHNA.

Remote Sens. 2021, 13, x FOR PEER REVIEW 3 of 19 
 

 

 

 

Figure 5. Annual water frequency map of Tianjin during 1984–2019. 

To present the details of the water changes in Tianjin, six typical regions were se-
lected from Tianjin to show the long-term changes of water area. Figure 6 plots the esti-
mated areas of water and permanent water bodies between 1984 and 2019, Figure 6a–g 
represent the results of ACWNNR, BWNR, DWNR, TBNR, BHNA, YR and Tianjin, re-
spectively. All the cloud-free images in the corresponding area were considered when 
calculating the long-term changes. The coverages of the water area showed a seasonal and 
annual fluctuation trend during 1984–2019 for the ACWNNR, BWNR and DWNR (Figure 
6a–c). The water area within TBNR showed a remarkable seasonal and annual fluctuation 
from 1984 to 2019, which almost dried up in the periods (1992–1994, 1999–2004, and 2008–
2011) and remained at a fluctuated level (46.2~54.6km2) after 2012 (Figure 6d). Specifically, 
the water area showed a fluctuation trend in the period (1984–2003) and a significant 
shrinking trend (−28.7 km2 yr−1, p < 0.05) after 2003 for the BHNA (Figure 6e). The water 
area of YR had a significant seasonal variation (Figure 6f). The permanent water area (in-
cluding permanent shallow marine water and inland water) of Tianjin decreased 282.5 
km2 from 1984 to 2019. 

Figure 5. Annual water frequency map of Tianjin during 1984–2019.

To present the details of the water changes in Tianjin, six typical regions were selected
from Tianjin to show the long-term changes of water area. Figure 6 plots the estimated
areas of water and permanent water bodies between 1984 and 2019, Figure 6a–g represent
the results of ACWNNR, BWNR, DWNR, TBNR, BHNA, YR and Tianjin, respectively.
All the cloud-free images in the corresponding area were considered when calculating
the long-term changes. The coverages of the water area showed a seasonal and annual
fluctuation trend during 1984–2019 for the ACWNNR, BWNR and DWNR (Figure 6a–c).
The water area within TBNR showed a remarkable seasonal and annual fluctuation from
1984 to 2019, which almost dried up in the periods (1992–1994, 1999–2004, and 2008–2011)
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and remained at a fluctuated level (46.2~54.6 km2) after 2012 (Figure 6d). Specifically, the
water area showed a fluctuation trend in the period (1984–2003) and a significant shrinking
trend (−28.7 km2 yr−1, p < 0.05) after 2003 for the BHNA (Figure 6e). The water area of
YR had a significant seasonal variation (Figure 6f). The permanent water area (including
permanent shallow marine water and inland water) of Tianjin decreased 282.5 km2 from
1984 to 2019.
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Figure 6. Long-term water area (blue dots) and permanent water area (red dots) changes for
ACWNNR (a), BWNR (b), DWNR (c), TBNR (d), BHNA (e), YR (f) and Tianjin (g) during 1984–2019.
The permanent water refers to pixels which were water for the duration of a calendar year. Note that
the vertical dashed red lines represent the year when large area of land reclamation activities begins.
The horizontal dashed red line in (d) represents mean largest water area before and after 2009. The
oblique dashed red line in (e) represents the regression line for the water area after 2003.
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4. Discussion
4.1. Driving Forces

To test whether the area of water bodies was driven by precipitation, the relationship
between water area in each selected study area and local precipitation from the nearest
meteorological station was examined. Correlation analysis showed a statistically significant
correlation between the total precipitation of three months before the image acquisition
dates and water area during July to September for four out of six sites, with the determi-
nation coefficients (R2) of 0.25 (N = 35, p < 0.01) for the BWNR, 0.07 (N = 71, p < 0.05) for
DWNR, 0.16 (N = 72, p < 0.01) for TBNR and 0.29 (N = 61, p < 0.01) for YR, which are
statistically significant. Specifically, the water area of the BHNA and precipitation showed
a statistically significant correlation (R2 = 0.71, p < 0.01) if the result in 1984 (red circled
points) was not considered due to very low sea level in 1984. Note that the red data points
in the TBNR and BHNA were collected after the land reclamation activities happened
in the local study area, were not taken into consideration when making the correlation
analysis (Figure 7). The precipitation appears to negatively correlate with the water area in
ACWNNR (R2 = 0.04, p > 0.05) and DWNR (R2 = 0.07, p < 0.05). After checking the land use
map, we found that the main vegetation types are dry land crop and paddy field crop for
ACWNNR and DWNR, respectively (http://www.dsac.cn/DataProduct/Detail/20081103).
The water bodies could be affected by the surface vegetation types. Thus, the changes in
local precipitation might be partially associated to water area changes in July to September
for parts of study regions.

The long-term change of water area or water quality could be taken as the indicators
characterizing the ecosystem change. With historical surface water changing trends and
ancillary data, we can document the impact of the human activities and climate change
on the ecosystem. The water bodies of TBNR was considerably fluctuated in different
years and remained at a low coverage level during the periods (1992–1994, 1999–2004,
2008–2011) (Figures 6d and 8d,h,l) cloud be linked to important government policies. The
reservoir was built in 1978, the storage capacity of the reservoir was 0.98 hundred million
m3. The running out of water happened in 1992 is due to a project which increased the
storage capacity of the reservoir (Figure 8c). The dike of the reservoir faced some safety
problem after operation for a long time, the reservoir was repaired and carefully maintained
after 2008 (http://www.docin.com/p-525234617.html); thus, the water ran out after 2008
(Figure 8k). Each time after the running out of water period, parts of the water area were
reclaimed (Figure 8e,i,m) and finally 12.6 km2 lake has been reclaimed. The decreasing
of the water area after 2003 in the BHNA was attributed to the sea reclamation activities
(Figure 9) [36]. Figure 9 showed the coastal line of the Tianjin in 2004, 2009, 2014 and 2019,
indicating the land expanded towards sea, with an average trend of 28.7 km2 yr−1 from
2004 to 2019. The decrease of permanent water area in Tianjin was obtained in accordance
with the decrease of permanent water area in BHNA. The permanent shallow marine
waters gradually reduced due to sea reclamation activities in the BHNA after 2004. The
permanent inland water areas fluctuated in different years. The decrease of permanent
water area (including permanent shallow marine water and inland water) in Tianjin was
due to sea reclamation activities.
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Figure 9. Sea reclamation in Tianjin coastal area for 2004, 2009, 2014 and 2019. The coastal line
spatially extended towards the sea.

Additionally, changes in other meteorological factors (i.e., temperature) might influ-
ence the evapotranspiration of water and thus the water coverage, no significant relation-
ship was found between the temperature and water area over the six study regions.

4.2. Validity of the Results and Future Applications

Long-term changes of water in Tianjin were clearly revealed and quantified via Land-
sat observation. However, are these Landsat derived water areas valid?
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IWCT method achieved much better performance than the WCT by providing lower
commission errors and omission errors. The correlation analysis between the maximum
water frequency maps from IWCT result (a) and GSWD result shows the two results are
highly consistent except for several points (Figure 4). The red circled points located in the
YR (Figure 10) show great difference were analyzed. There is a big difference for the water
map between IWCT result (Figure 10a) and GSWD result (Figure 10b) for the two points
(Figure 4). After inspecting all the water classification results and the corresponding RGB
images from October 2014 to October 2015, we found that the IWCT-based water frequency
map is more reliable. Although lots of cloud mask algorithms had been developed before,
the algorithms still have issues that cannot be ignored for the time-series images and
will induce uncertainties to the final water map [26]. After a more robust cloud mask
algorithm was developed in the further, the algorithm will be used to automatically extract
water map.
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Figure 10. The maximum water frequency maps of YR for IWCT result (a) and GSWD result (b). The
rest images are the Table 2014. to October 2015.

Several points classified as omitted water were used to carry out the sensitivity analysis
in this study. We kept the criteria (MNDWI > 0 or NDWI > 0 or NDVI < 0) stable, and
then changed the NDVI values from 0 to 0.5. The sensitivity analysis results can reflect the
impact of different NDVI criteria on the omitted water detection. Results show that the
classification error rate decreases with the increasing NDVI values, but increases as the
NDVI > 0.3. The reason is that when NDVI > 0.3, the vegetation will be more probably
misclassified as omitted water (Figure 11). Overall, the criteria (NDVI < 0.3) give satisfied
results in the sensitivity analysis section.
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Figure 11. The classification error rate with different values for the omitted water.

The Chinese government has launched a series of high-resolution (GF) mapping
satellites in the last seven years. The sensors onboard have similar spectral bands with
the Landsat images and higher resolutions. We applied the proposed algorithm to 3.9-m
resolution GF-2 PMS data which were collected on 29 May 2019 and on the same day as
the OLI image. The water bodies for the two images were upscaled to 0.015◦ latitude and
0.007◦ longitude, respectively (Figure 12). A comparison showed that the water bodies
extracted from GF-2 is consistent with the OLI-based result. The result shows that the
algorithm can be used for GF-2 image water extraction and the high-resolution GF-2 image
could be used to extract more small area of water (narrow rivers, small lakes).
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body area for each 0.007◦ longitude (d).
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5. Conclusions

In this study, we developed the IWCT method which could remove built-up shade
noise and correct omitted water pixels by taking the time-series data into consideration.
The algorithm shows better performance in the urban dominated areas. With the IWCT
algorithm, we documented the time-series water body changes of Tianjin using observa-
tions during 1984–2019. The annual water frequency map shows significantly decreasing
trends after the land reclaimed activities. In addition, 488.6 km2 of land has been reclaimed
from the sea along the coastal zone in the last 16 years at the speed of 28.74 km2 yr−1 in the
BHNA. Overall, the change of water bodies in July to September could be partly attributed
to precipitation except for the dry land crop and paddy field crop dominated areas, and
the decrease of the water coverage appears to be a result of human activities.

IWCT method achieved much better performance than the WCT by providing lower
commission and omission errors. However, this study still has some limitations. Although
the urban boundary has been used to correct the IWCT algorithm in urban-dominated areas,
parts of the urban shades (account for 2.9% of the randomly selected water pixels in the
validation) were still misclassified as water. In the summer, the shadow of the skyscraper
was misclassified as water. Very dark surface (the ground covered by coal, account for 0.1%
of the randomly selected water pixels in the validation) will be misclassified as water. A
more robust urban shade detection model is needed in the further research to remove the
urban shades. The inclusion of manual clouds removal in the algorithm seriously limits
its automatic application in large-scale dynamic inland water mapping. After developing
a more robust cloud mask algorithm, the algorithm will be used to automatically extract
water map. As several high-resolution sensors share similar bands with Landsat data,
the method developed in this study can be extended to other sensors to study the long-
term changes of even smaller water bodies in response to human activities and climate
variability.
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Abstract: Cropland evapotranspiration (ET) is the major source of water consumption in agricultural
systems. The precise management of agricultural ET helps optimize water resource usage in arid
and semiarid regions and requires field-scale ET data support. Due to the combined limitations of
satellite sensors and ET mechanisms, the current high-resolution ET models need further refinement
to meet the demands of field-scale ET management. In this research, we proposed a new field-scale
ET estimation method by developing an allocation factor to quantify field-level ET variations and
allocate coarse ET to the field scale. By regarding the agricultural field as the object of the ET parcel,
the allocation factor is calculated with combined high-resolution remote sensing indexes indicating
the field-level ET variations under different crop growth and land-surface water conditions. The
allocation ET results are validated at two ground observation stations and show improved accuracy
compared with that of the original coarse data. This allocated ET model provides reasonable spatial
results of field-level ET and is adequate for precise agricultural ET management. This allocation
method provides new insight into calculating field-level ET from coarse ET datasets and meets
the demands of wide application for controlling regional water consumption, supporting the ET
management theory in addressing the impacts of water scarcity on social and economic developments.

Keywords: agricultural water management; crop water consumption; remote sensing model; evapo-
transpiration allocation

1. Introduction

Land evapotranspiration (ET) is a major component of terrestrial water cycling and
groundwater consumption [1]. For basin-scale water balance, the major component of basin
water output is ET, followed by surface runoff and infiltration. It is estimated that nearly
70% of the total land precipitation and inflow is returned to the air by terrestrial ET. From
an agricultural water management perspective, ET is an important indicator of cropland
water consumption and water resource investment [2]. In arid and semiarid regions, social
and economic development is limited by the amount of available fresh water [3], and water
quotas for agricultural irrigation systems need judicious management, where the balance
between irrigation water supply and necessary crop water demand is optimally controlled
to maintain normal production [4]. The accurate and timely acquisition of crop ET is
critical for reflecting the status of cropland water and determining irrigation strategies [5].
Moreover, views on water management have shifted from the conventional focus on
increasing water income and cutting expenditures to the current focus on controlling water
consumption. The applications of ET-based water management and a water consumption-
oriented water rights allocation system have been demonstrated to be effective in the
Turpan Basin, China, which has raised the demand for high-accuracy and low-cost farm-
level ET monitoring methods [6,7].
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With its broad spatial coverage and high temporal resolution, remote sensing (RS)
technology provides a feasible approach to frequently monitor regional ET at low costs
and with high efficiency [8]. Accurate surface vegetation cover, albedo, and temperature
data provide a solid foundation for the simulation of ET-related physical and physiological
processes [9]. Many RS-based ET models have been developed and applied at global and
regional scales depending on multiple theories, including the ETWatch model based on the
parametrized surface energy balance theory [10], the MOD16 series product based on the
global MODIS satellite data and meteorological data [11], the GLEAM product based on
the water balance theory [12], and the PML ET product focused on the plant water carbon
stomata mechanism [13]. These RS-based ET products provide regional and global ET
results at daily or eight-day intervals with moderate spatial resolutions, usually at 500-m to
one-km scales. Such ET data have been adopted for studying regional ecological impacts
on water resources [14–16], modeling land-surface processes [17], analyzing water cycling,
and evaluating regional available water resources [16]. However, the spatial scales of
these moderate-resolution ET products are too coarse for agricultural water management,
especially within small irrigation districts that usually occupy tens to hundreds of square
meters, and detailed spatial information is omitted from km-level ET data. Ground-level
field ET measurement methods, such as lysimeters, sap flows, and eddy covariances
(ECs), are high in cost and require careful management [18]. The combination of precise
agricultural ET management and RS technology has developed a strong demand for ET
models that show detailed cropland water consumption at the field scale.

Due to the limitations of satellite sensors, high-resolution spatial data usually have
long temporal intervals, such as the Landsat series at 30-m resolution and 16-day intervals
and the Sentinel-2 data at 10–60-m resolutions and five-day intervals. For agricultural
ET monitoring and water consumption applications, the daily scale is ideal for timely
evaluations and adjustments of agricultural activities [8]. Considering the impacts of clouds
on optical RS data, the temporal gap could be 10 days or even longer. Such long temporal
intervals are not satisfactory in many RS-based ET models, and daily ET variations could
accumulate and lead to large errors in the monthly and crop ET estimates during growing
seasons. The current km-level RS-based ET models are widely applied and highly accurate,
and these models help address the limitations of field ET estimation and provide insights
into agricultural water applications. Restrained by the inability of high-resolution satellite
sensors to meet temporal requirements, the calculation of fine-resolution ET inevitably
relies on data downscaling methods that combine high- and low-resolution RS datasets.
The downscaling methods mainly focus on the pixel level of satellite images [19].

Most ET downscaling is conducted by downscaling the major parameters in the ET
calculation procedure and is combined with other available fine-resolution input data to
directly calculate high-resolution ET results. The DisALEXI model is an example of using
high-resolution surface temperature to produce a downscaled surface ET [20]. DisALEXI
has developed a framework of ET downscaling algorithm, which is to build up a link-
age of key parameters between coarse and high-resolution RS data, such as land surface
temperature (LST) and normalized difference vegetation index (NDVI) or other vege-
tation indexes [20–23]. The downscaling of LST has benefited from multiple research
developments on the downscaling of Landsat thermal bands combined with MODIS LST
data [24–26], such as the thermal sharpening (TSP), land surface temperature disaggrega-
tion (DLST), and temperature unmixing (TUM) methods [27,28]. LST downscaling methods
are abundantly developed using multiple spatial, temporal, and spectral resolution RS
data. However, the scale effects on the LST data and the unstable relationship of intermedi-
ate parameters with LST have limited the improvement of the input data accuracy and,
thus, limited the LST-based downscaling model [29]. Since crop transpiration processes
are accompanied by variability in crop photosynthetic processes [13] and can be moni-
tored with high-resolution optical satellite data, crop transpiration can be estimated with
stomatal behavior and biophysical conditions combined with meteorological data. The
surface resistance (rs) is an important factor in calculating daily ET and can be downscaled
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using one-km rs combined with 30-m satellite data and then input into the ET calculations.
The downscaling of rs provides fine-resolution information for the ET calculations and is
regarded as the basic approach to the spatial monitoring of ET for field-scale management.
Studies have shown that the rs-based ET downscaling approach requires the underlying
surfaces to be covered with some amount of plants, since its feasibility depends on the
biophysical activities of plants’ transpiration through the stomata. For sparsely vegetated
regions, the accuracy of the rs-based ET downscaling approach is limited [21]. Those
algorithms focus on the relationship of each coarse resolution (m3) pixel and fine resolution
(m1) pixels within it; the relationships of adjacent fine resolutions from different coarse
pixels are hardly considered, which could bring in some “edges”, as shown in Tan, Wu and
Yan’s [21] downscaling results.

Distinguished from pixel-level ET downscaling, the agricultural fields can be regarded
as objects that have homogeneous ET properties within each field and heterogeneous
properties between the fields. Studies on the ET mechanism and impact analysis of factors
on ET have revealed that ET is highly correlated with vegetation cover, soil moisture,
air temperature, and vapor pressure deficiency [14,15]. ET can vary among fields due
to differences in the soil moisture from irrigation, the transpiration abilities of different
crop breeds, fertilization, and growth conditions; thus, it is possible to use the differences
in soil water conditions and crop conditions as indicators of the ET differences between
fields. At different scales, ET impact factors can vary, and some of these factors can be
acquired from high-resolution RS data; this suggests possible approaches in which the field
ET within coarse ET pixels could be allocated by means of building relationships between
impact factors and ET at the field scale. Combining high-resolution RS data and moderate-
resolution actual ET products, field-scale actual ET can be calculated and applied for crop
water monitoring. We chose the ETWatch model as the moderate-resolution ET data, as
ETWatch is reliable for daily and monthly ET estimations across different climate types
and surface characteristics, especially in cropland regions. Its accuracy has been proven by
more than 50 research groups for water consumption structure and agricultural irrigation
management, including our research region, Haihe Basin and Heihe Basin [7,8,14,16,30].
For ET calculations at high resolution, ETWatch has also been used as input data in several
researches, including some downscaling methods [19,21].

To explore the appropriate methods of field ET monitoring and irrigation evaluation,
we discuss whether the field ET allocation method combining moderate-resolution ET
data and high-resolution satellite data is applicable. The model results are compared with
ground ET observations from two typical cropland stations in the North China Plain and
Northeast China, both of which are located in arid to semiarid regions. In this research,
a total of two years of Sentinel-2 optical data and coarse ET products from the ETWatch
model are combined with observations from two ground stations: Guantao from the Haihe
Basin, North China Plain and Daman from the Heihe Basin, Northwest China. In Section 2,
the data, proposed model, and other research methods are described in detail. Section 3
presents the model results and evaluation. Section 4 discusses the performance of the
model and its potential application in field-scale agricultural water management.

2. Materials and Methods
2.1. Method

Figure 1 shows the flowchart of the allocation method from 1 km ET data to agricul-
tural field scale. The crop growth conditions and field moistures are associated with the
crop transpiration capacity based on the stomatal behavior and soil water status, and both
influence the field ET. In our research, we neglected the possible transport of the horizontal
water vapor of adjacent fields; currently, horizonal vapor is analyzed on a large scale, such
as the global and continent levels [31]. Most of the current ET RS models have not taken
into account that the vapor amount moves horizontally, possibly due to the difficulty in
monitoring and estimating horizonal vapors at the regional level. Thus, we assumed that
the 1-km ET input data are accurate enough for allocation. One of our research regions,
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Daman, is located in the Zhangye Oasis, Heihe Basin. The oasis effect of the meteorological
parameter differences between an oasis and desert may affect the accuracy of allocation
results in heterogeneous regions [32]. To avoid the potential impact of the oasis effect, we
limited our research region to a cropland area close to the center of the oasis.

Figure 1. Flowchart of the evapotranspiration (ET) allocation method. The upper figure is the
calculation algorithm, and the below figure is the three steps of field ET allocation from 1-km pixel ET
to 10-m pixel ET. NDVI: normalized difference vegetation index and LSWI: land surface water index.

Based on the two classes of virtually unchanged and field-variant parameters that
influence the ET, the ET capacity of each field can be evaluated. Thus, we can assume that,
between adjacent fields within a coarse ET pixel, some allocation factors derived from the
field-variant parameters can be regarded as equivalent to the ET capacity of each field. The
relation above can be summarized using the following equation:

ETfield1 : ETfield2 : · · ·ETfieldi = AFf ield1 : AFf ield2 : · · · AFf ieldi
(1)

where ETfieldi represents the ET of the ith field (i = 1, 2, ··· n) within each coarse ET pixel,
and AFf ieldi

represents the allocation factor of the field i (i = 1, 2, ··· n) within each coarse
ET pixel. Additionally, the relationship between the ET of field i and the coarse ET pixel
can be expressed as follows:

ETfieldi

ETcoarse
=

AFf ieldi

AFcoarse
(2)

where AFcoarse represents the mean allocation factor of the coarse pixel. With Equation (2),
each field ET within the coarse ET pixel can be calculated based on the allocation factor,
which can also be regarded as the allocation of the coarse pixel-level ET (approximately
1-km level) to the farm-level (10 m level) ET. In the actual practice of field ET allocation,
the allocation factor should be calculated from high-resolution RS data that can show the
inner coarse-pixel farm-level spatial heterogeneity. The following section will introduce
how the allocation factor is derived.

Conventional ET direct calculation methods focus on the estimation of the latent heat
flux, including the Penman-Monteith (PM) equation [33] and the Priestley-Taylor equation
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(PT equation) [34–36]. Recently, several studies have revealed that the PT equation is
suitable for conditions with sufficient soil moisture, such as irrigated cropland. The PT
equation is independent from surface and aerodynamic resistances and is calculated with
meteorological data and the coefficient α. The PT equation has been developed primarily for
potential ET estimation; for actual ET applications, the α coefficient should be adjusted with
several constraint functions, such as surface wetness (w), temperature (t), and crop fraction
of absorbed photosynthesis active radiation (fapar) [36]. Here, we used the vegetation
cover fraction (FVC) to represent the fapar limit, as many studies have done [11,13]. We
used the RS-based land surface water index (LSWI) as the soil water constraint. The LSWI is
the normalization of the near-infrared (NIR) and shortwave-infrared (SWIR) bands [37–39].

The PT equation can be expressed as follows:

LE = f (lswi, f vc, t)α
∆

∆ + γ
(Rn − G) (3)

where α is the PT coefficient and is initially set to 1.26, ∆ and γ are the same as in the PM
equation, f (lswi) represents the surface wetness, and low surface moisture conditions limit
the ET volume, f (t) represents the temperature constraint, and the optimal temperature
of the crops is the optimal temperature for transpiration, f (fvc) represents the radiation
constraint, and a low FVC limits the net radiation for the ET process.

As we focused on the cropland, crop transpiration is the major component of ET.
We proposed an assumption that, at the field scale within coarse pixels (1-km level), the
daily environmental conditions (air temperature, relative humidity, wind speed, and
net radiation) are virtually unchanged, and the spatial differences in the meteorological
factors are compared with two automatic weather source (AWS) matrices. Based on this
assumption, some parts of the PT equation can be neglected at the field scale: ∆ and γ

are calculated from the relative humidity and air temperature, Rn is mostly concerned
with the solar shortwave radiation calculated from the sunshine duration and surface
longwave radiation derived from the surface emissivity and air temperature, and these
climatic parts can be neglected, since cropland fields are homogeneous in vegetation type
and the emissivity differences are small between fields. We neglected the Rn part of the
field allocation factor, and G can be regarded as a constant part of Rn [40], so G is also
neglected. By these terms, we deduced the calculation of the field allocation factors using
ET constraint functions.

We proposed our field allocation factor calculation equation is as follows:

AFf ieldi = 1 − max
(

min
(

FVCmax − FVC
FVCmax − FVCmin

, 1
)

, 0
)
·max

(
min

(
LSWImax − LSWI

LSWImax − LSWImin
, 1
)

, 0
)

(4)

FVC = FVCmax × max
(

min
(

NDVI − 0.1
0.9 − 0.1

, 1
)

, 0
)

(5)

LSWI =
bandnir − bandswir
bandnir + bandswir

(6)

where LSWImax indicates the high moisture condition, LSWImin indicates the dry condition,
and the FVCmax is set as 0.95. This method assumes that the pixel has no vegetation cover
with a NDVI < 0.1 and is fully covered with a NDVI > 0.9. bandnir is the near-infrared band
reflectance, and bandswir is the shortwave-infrared band (SWIR) reflectance. We used the
Sentienl-2 satellite SWIR band 11 (1613.7 nm) to calculate the LSWI, which is sensitive
to the surface water status; the Sentinel 2 band 11-based LSWI has recently been widely
applied with good performances for reflecting the surface moisture condition in agricultural
applications [41], such as crop intensity mapping [42], plantation dynamics [43], leaf area
index, and aboveground biomass estimation [44].

The field ET allocation from coarse ET pixels involves the allocation of a single pixel
between fields and the adjustment of fields that span pixels. Figure 2 shows the flowchart
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of the field ET allocation process. Based on Equation (2), the allocation is conducted with
the following procedures:

Step 1 is the allocation of fields at each coarse ET pixel. Field ET within the same
coarse ET pixel is allocated using the allocation factor:

ETfieldi = ET1km
AFf ieldi

AF1km
(7)

where ET1km is the coarse ET pixel value at the 1-km level, and AFf ieldi is the allocation
factor of field i. AF1km is the mean allocation factor of the area that corresponds to the 1-km
ET pixel calculated from high-resolution RS data.

Figure 2. Locations and land cover types of the research regions. The flux station locations are marked
on the maps, with photos of the flux footprints shown below. The flux observation footprints are
calculated using the flux footprint prediction model [45]. EC: eddy covariance and AWS: automatic
weather source.

Step 2 is the adjustment of fields that span pixels. Some large fields may cover different
coarse pixels, and each part of the field is calculated with a different allocated ET value
with different 1-km pixels. The final field ET result is adjusted and unified based on the
area and allocated ET value of every part of the field from different 1-km pixels using the
following equation:

ETfieldi =
∑ ETfieldi,pixelj A f ieldi pixelj

A f ieldi

(8)

where i indicates the field, and j indicates the covered 1-km pixel of field i. The ET amount
is accumulated from the allocated ET multiplied by the field area in pixel j. Then, the
summation is divided by the total field area to give the final field ET result.

For Step 3, the final ET data of the field can be derived using a transformation of
Equation (6), with the mean allocation factor of the field and the high-resolution allocation
factor, and the final ET data can be acquired:

ET10m = ETfield
AF10m
AFf ield

(9)
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2.2. Data
2.2.1. Research Region

The model was developed and tested at two cropland research stations: Guantao
Station (115.1274 E, 36.5150 N) located in the Haihe Basin, North China Plain and Daman
Station (100.3722 E, 38.8555 N) located in the Heihe Basin, Northwest China. The locations
and land cover types of the two stations are shown in Figure 2. Both stations are cultivated
with maize, and the climate types between the two sites are different. Guantao Station is
located in a temperate monsoon climate in the south with a winter wheat and summer
maize crop rotation, and the research region was chosen as the 10 km × 12 km cropland
region. The annual average precipitation of Guantao is 560 mm, and the average tempera-
ture is 13 ◦C. Daman Station is located in a temperate continental climate that is typical
of semiarid and semi-humid regions in the Heihe River Basin, Northwest China with a
10 km × 10 km cropland region. The annual average precipitation of Daman is 110 mm,
and the annual mean temperature is 7 ◦C; only April–October, with high temperatures,
is suitable for crop cultivation. The precipitation of both regions is not sufficient for crop
growth and requires additional irrigation.

2.2.2. Remote-Sensing Data

In this research, the coarse ET data were calculated by ETWatch. The input data
were mainly MOD09GA reflectance data, MOD11A1 surface temperature data [46], and
MCD43B1 BRDF data. All MODIS datasets were acquired from the NASA Land Pro-
cesses Distributed Active Archive Center (LP DAAC) (https://lpdaac.usgs.gov/) and then
processed for the research region at a 1-km spatial resolution after geometric correction,
radiance calibration, and atmospheric correction. Considering the impact of clouds on
the surface reflectance, we used the Savitzky-Golay filter method (S-G filter) to extend the
cloud-free days albedo to a daily scale at each pixel. The SG filter method has been widely
used in the temporal extension of the NDVI [47] and albedo [48] in many researches.

For the field-scale ET model, we used Sentinel 2 satellite data from the European
Commission’s Copernicus program [49]. The data were downloaded using the Google
Earth engine and were already processed with atmospheric correction and transformed
into bottom of air (BOA) reflectance data. The bands used were mainly the 10-m resolution
red band (red, 664.6 nm), near-infrared band (NIR, 832.8 nm), and shortwave-infrared band
(SWIR, 1613.7 nm), which are sensitive to vegetation and ground water dynamics. The
three bands were then applied in the NDVI and LSWI calculations.

The cropland distribution map in this research was extracted from the 30-m resolution
ChinaCover dataset developed by the Aerospace Information Research Institute, Chinese
Academy of Sciences [50]. The ChinaCover land use map divided the land cover into six
major classes: forest, grassland, cropland, built-up, waterbody, and bare land.

2.2.3. ETWatch Model Data

In this research, we used the ETWatch model as the coarse ET input. The ETWatch
model was developed by Wu [51]. The ETWatch model is based on the surface energy
balance theory that the energy for evapotranspiration, latent heat flux, is regarded as the
residual of the surface net radiation (Rn) which is the input energy from solar radiation,
sensible heat flux (H), which is a major output energy from the energy balance for heating
the air, soil heat flux (G0), which takes up a small proportion of the net radiation for heating
the soil. Thus, the calculation of ET is based on the precise estimation of the Rn, H, and G0.
Considering the cloud impact on satellite images to retrieve land surface characteristics,
temporal extension methods are needed to extend the ET results from cloud-free days to a
daily scale. The calculation processes of the ETWatch model involves several steps. First,
on cloud-free days, the instantaneous latent heat and sensible heat from a satellite pass
by moment are calculated with the surface energy balance theory and parametric models;
then, the instantaneous ratio of latent heat (LE) to sensible heat (H) is acquired. Second,
the instantaneous LE result is extended to a daily scale using the evaporation fraction,
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which assumes the ratio of LE to H remains little changed during the day, and the daily net
radiation is calculated using meteorological data and the sunshine duration data. Based on
the daily LE results, the rs on cloud-free days can be retrieved with an inverse form of the
Penman-Monteith (PM) equation. Third, the daily rs is extended from the cloud-free day rs
results by a time scale extension model developed from the Jarvis model [52]. Finally, the
daily ET is calculated based on the PM equation with the daily rs and daily net radiation.
After tens of years of development, ETWatch is robust when applied, and researchers
have developed many parametric models [53], such as the net radiation model, sunshine
duration model from stationary satellite data, sensible heat flux model [54], aerodynamic
roughness length model [55], and the rs time scale extension model. ETWatch has been
validated for various climates and land cover types, including the semi-humid semiarid
Haihe Basin [10], arid Loess Plateau area [14], Heihe Basin [54], and extremely arid Turpan
Basin, Xinjiang [7]. These applications have proven the quality of the ETWatch model and
shown that it is reliable for this research [8].

2.2.4. Crop Field Segmentation Map

In this research, we used the simple linear iterative clustering (SLIC) method for
cropland field detection [56]. The SLIC method is a common method applied in medical
image processing, RS segmentation, and computer object identification [57]. SLIC is
developed based on an iterative algorithm with the k-means clustering theory. The cluster
that best fits each pixel is chosen from the neighboring cluster cores instead of applying a
cluster calculation with all cores in the image. By this method, SLIC can conduct k-means
clustering at high speeds with low computing resources and can be applied in image
segmentation. In agricultural cropland fields, the image values within the field are quite
similar to each other and are divided by field boundaries, roads, and built-up human
facilities. The different growing conditions from different agricultural activities can be
seen with satellite NDVI. In this research, we used the temporal series NDVI files of maize
growing, peaking, and mature periods to perform cropland segmentation with the SLIC
method. Figure 3 shows the cropland segmentation results. The cropland segmentation is
further used in field-scale ET allocation as the basic cropland field.
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2.2.5. Site Observation Data

For model validation, ground observational EC data were gathered from two stations.
Daman observations were acquired from the National Tibetan Plateau Data Center (https:
//data.tpdc.ac.cn/en/) under the HiWATER eco-hydrological experiment with multiple
ground observation instruments [58–60]. Guantao observational data were collected from
our experimental site [5,10]. The equipment of each of the two EC stations included a 3D
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Sonic Anemometer and Infrared Gas Analyzer, and the data were processed under standard
approaches [8,61,62]. The EC stations were accompanied by automatic weather observation
instruments (AWSs), and the meteorological observations included air temperature, relative
humidity, wind velocity and direction, air pressure, precipitation, and four-component
radiation. Quality control of meteorological observational data was applied. The footprints
of the EC observations were calculated using the flux footprint prediction model [45]. For
analysis of the spatial heterogeneity of meteorological parameters and solar radiation, four
separate AWSs from the Guantao observation matrix and three separate AWSs from Daman
were chosen for observations of the air temperature, relative humidity, wind speed, and
net radiation. The locations of the AWSs are marked in Figure 2. The Guantao AWSs were
located at distances of 1 to 2 km, and the Daman AWSs were located at distances of 2–5 km,
which matched the coarse km-scale ET pixel and subpixel levels.

To evaluate the spatial heterogeneity at the field level of the major meteorological
parameters that impact the ET, we compared the growing season’s air temperature (Ta),
relative humidity (RH), wind speed (WS), and net radiation (Rn) using two site AWS
observation matrices. At the Daman site, the AWS was installed at 4 m high and the
radiometer at 4.5 m. At the Guantao site, the installment height of the AWS was 10 m,
and the radiometer was 15 m. The results showed that, during the main crop-growing
period (June–September), at a daily scale on average, the Guantao AWS observation matrix
differences in the Ta, RH, WS, and Rn were 0.07–0.26 ◦C, 0.5–2%, 0.4–1.0 m/s, and 6.6 W/m2,
respectively, and the Daman AWS observation matrix differences in the Ta, RH, WS, and Rn
were <0.3 ◦C, <3%, 0.4–1.0 m/s, and 10 W/m2, respectively. The relatively small differences
in the AWS observation matrix results indicated that the variations in the Ta, RH, WS, and
Rn were small at the subpixel 1–5 km level, which covered the scope of the fields in this
research and demonstrated that our neglect of the meteorological and radiation differences
in the PT equation was acceptable for deriving the ET allocation factors.

2.3. Model Evaluation

The accuracy assessment was based on three statistical indicators: correlation factor
(R), root mean square error (RMSE), and William’s index of differences (d). Detailed
calculation methods of the statistical indicators are shown below:

R =
∑n

i=1[(Yi − Y)(Xi − X)]√
∑n

i=1 (Yi − Y)2
√

∑n
i=1 (Xi − X)

2
(10)

RMSE =

√
1
n

n

∑
i=1

(Yi − Xi)
2 (11)

d = 1 − ∑n
i=1(Yi − Xi)

2

∑n
i=1
(∣∣Yi − X

∣∣+
∣∣Xi − X

∣∣)2 (12)

where Xi is the model result, Yi is the validation data, and X and Y represent the average
values of the model result and validation data, respectively.

3. Results
3.1. Field-Scale ET Allocation Factor

In this research, we developed an allocation factor that indicates the ET capacity
variations of different fields. Combining the coarse ET dataset (1 km), the field-scale ET
can be allocated at a high resolution (10 m). The effectiveness of the allocation factor
in representing the ET differences is essential, and we performed a correlation analysis
between the site ET observations and RS-based allocation factors in Daman and Guantao.
The correlation results are shown in Figure 4. We compared the eight-day average ET
observations and allocation factors. Based on the previous definition, the allocation factor
can be regarded as an indicator of long-term ET trends, and an eight-day average can
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decrease the daily variations for comparison. We found that the allocation factor has a
satisfactory correlation with the EC ET data. At the Daman and Guantao Stations, the
correlation coefficients of the allocation factors and site EC ET observations are greater than
0.77, indicating significant correlations (p < 0.01). As shown in Figure 4, the ET amount can
be reduced during rainy days, during which the RH is saturated and the vapor pressure
deficit (VPD) between the air and leaf surfaces is small, which slows the transpiration speed.
The allocation factor cannot reflect the differences in rainfall events. Considering that the
daily meteorological variations such as VPD and temperature strongly influence the ET
variations and are not considered when composing the allocation factors, the correlation
result is sufficient for field-level allocation. The daily site ET variations are presented with
the allocation factors in Figure 4a,c. Since daily ET is sensitive to daily meteorological
changes, the site ET is more variable than the allocation factor, which is smoothed between
days with the S-G filter method. Both at the daily scale and at eight-day intervals, the
allocation factor corresponds well with the ET variation and can be used for further field
ET modeling.

Figure 4. The correlation between the allocation factors and site ET observations. (a,c) The daily comparisons of the
proposed allocation factor and observed ground ET in Guantao and Daman; the ET observations are derived from the site
EC towers, and rainfall data are derived from the site rain gauge observations. (b,d) The correlations between the allocation
factor and site ET at 8-day intervals. The correlation factor R was greater than 0.77 at both sites and statistically significant
(p < 0.01).

3.2. Field ET Allocation Performances Based on the ETWatch Model

The accuracy of the field model ET was evaluated using the site ET observations from
the ground EC instruments. Detailed evaluation indicator values are exhibited in Table 1.
Figure 5 shows the model validation of the allocated field-scale ET results. Compared with
the site ET observations, the allocated ET is very accurate. At Daman and Guantao Stations,
the correlation coefficients R2 of the field model ET are higher (0.954 for Guantao and
0.941 for Daman) and the root mean square errors are lower (0.98 mm/day for Guantao and
1.59 mm/day for Daman) than those of the ETWatch performances (R2 0.949 for Guantao
and 0.890 for Daman and RMSE 0.946 mm/day for Guantao and 1.67 mm/day for Daman).
Figure 6 shows the temporal variations in the field model ET and site observations. The
field model ET is well-correlated with the site observations during the peak growing
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periods of maize (June–August) and can precisely exhibit the variations in daily ET in
the field. These model validation results show that the field-scale ET model allocated
from the ETWatch 1-km-level dataset has achieved high accuracy according to the site
observations and with the appropriate coarse ET data. Field-scale allocation can provide
improved accuracy and present ET distributions with more resemblances to the actual field
conditions than those of lower-resolution models, and the spatial distribution of the field
model ET is presented in Figures 7 and 8.

Table 1. Site evaluation of the field model evapotranspiration (ET) allocated from the ETWatch data.
R2: correlation coefficient, RMSE: root mean square error, and d: William’s index of differences.

Site
ETWatch Field Model ET

Adj. R2 RMSE d Adj. R2 RMSE d

Guantao 0.949 0.946 0.915 0.954 0.981 0.916

Daman 0.890 1.67 0.874 0.941 1.50 0.931

Figure 5. Model validation of the field model ET with the site observations. R2: correlation coefficient
and RMSE: root mean square error.

Figure 6. Temporal development of the field model ET at the two research stations. In each panel,
the red line indicates the field model ET, and the black line indicates the site observed ET from the
eddy covariance instruments.
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Figure 7. The spatial distribution of the ET allocation results in the Guantao research region.

Figure 8. The spatial distribution of the ET allocation results in the Daman research region.

The spatial distribution of the ET allocation is presented in Figure 7 for Guantao and
Figure 8 for Daman. Compared with the coarse ET data, the field-scale allocated ET has
more spatial details that can show the temporal development of the water consumption
results in each field. Since the coarse ET pixel is computed based on the comprehensive
characteristics of the 1-km2 region, the high- and low-ET areas are averaged in the coarse ET
results; however, the allocated ET data revealed the high- and low-ET regions and remain
consistent in the total ET amount between the coarse ET and allocated field ET. The concept
of water balance was initially adopted with the ET allocation approaches. At the monthly
level, the field model ET can show the spatiotemporal development of maize in each field
at the farm level and be used for agricultural water consumption management. ET is the
major water consumption pathway of irrigation systems, and precise ET monitoring is
essential in achieving water usage cuts, especially in arid, water-scarce regions. The field
ET map provides foundational data for water management.

3.3. Comparison with the Pixel-Level Downscaling Method

Figure 9 shows the spatial distribution map comparison between the original coarse
ET datasets and the allocated ET results. The spatial distribution of a pixel-level ET
downscaling approach based on surface resistance is also shown. The results show that
the spatial texture is improved, and more spatial ET information can be extracted from the
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allocated ET. Since the coarse ET pixel can be regarded as the average value of the inner
pixel regions, the differences in the field-level ET are erased, and the spatial information
of the coarse-resolution ET is limited. The allocated ET can finely capture the spatial
differences in ET capacities between fields under different irrigation and fertilization
strategies and other agricultural activities. Comparing different coarse ET data sources,
the allocated ET values are dependent on the original ET data, and the total regional ET
amounts of the original coarse ET and the allocated ET are equivalent based on the water
balance; thus, with sufficiently accurate coarse ET models, the accuracy of the allocated ET
results is guaranteed.

Figure 9. The spatial distribution comparison of monthly fine-resolution ET data with the surface resistance (rs)-based
downscaling ET method [21] in July. The 1-km ET data are calculated with the ETWatch model, and the field ET is derived
with the allocation method from this research. The downscaled ET is based on the surface resistance downscaling approach.

The downscaling methods are currently aimed at the pixel levels, for which the
process flow can be described as follows. The values of a chosen factor at each high-
resolution pixel within a coarse-pixel area are compared against the average value of the
coarse pixel. Each factor can be directly correlated with the ET. Despite the differences in
downscaling methods, with pixel-level calculations, the small differences between adjacent
coarse pixels can be magnified in the downscaling process and show differences similar
to “boundaries” in downscaled fine-resolution ET results, as shown in Figure 9. The ET
based on downscaled surface resistance shows apparent differences at the boundaries of
the coarse ET dataset. Since our allocation method is based on agricultural fields, the field
is regarded as the independent object of ET allocation. We consider the allocation between
the cropland fields and the ET within the fields; thus, our results are more reasonable
in spatial distributions, with the ET differences mainly located at the agricultural field
boundaries and in line with the actual situations.

4. Discussion
4.1. The ET Allocation Method Performance

In this research, we proposed a new method to calculate high-resolution ET from
coarse ET datasets that can better fit the agricultural field scale for applications in water
management. We viewed agricultural fields as the basic ET objects for ET allocation from
coarse resolutions to high resolutions and developed ET allocation factors by quantifying
the ET capacity based on the surface moisture and crop physiological parameters. Our
model was practical to apply, because it utilized the abundant ET datasets at the km-
resolution level. The model performance was evaluated using two cropland stations,
Guantao in the Haihe Basin and Daman of the Huailai Station, both of which are maize
cultivation research stations. The validation results were satisfactory, and the evaluation
indicators (R2, RMSE, and d) had better performances in the allocated field model ET than
in the original km-level ET (Table 1 and Figure 9).
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Based on the derivation of the PT equation, our field ET allocation model captured the
variations between fields in the main ET parameters, which reflected the crop’s capacity to
absorb solar radiation, represented by the FVC from the NDVI and ground water status
from the LSWI. These variation parameters were combined to form what we called the
field allocation factor in this research and acted as the driving parameter of the ET field
allocation model. The mechanism of the allocation model was that between different crop
fields; the ET capacity of the fields relied on the proposed variation parameters, which were
highly correlated with the ET and present large spatial diversity. The ET allocation model
acceptably neglected the meteorological conditions, which were uniformly distributed in
the homogeneous cropland fields at the coarse-km level. It can be seen in Figure 4 that the
proposed allocation factors had similar trends but smaller fluctuations than those of the
observed ET variations. One reason is that the NDVI and LSWI input data were processed
with the S-G filter method to acquire the daily-scale data, which applied a smoothing
effect to the five-day interval data. Another major reason was that NDVI and LSWI were
not sensitive to temporal variations, since they reflected the surface variables, such as
chlorophyll, crop growth conditions, and water contents; this is only the reason that the
S-G filter method is suitable for temporal extension. As the S-G filter method has been
commonly adopted in the temporal extension of remote sensing-based indexes, the errors
and residuals in the daily smoothed data were acceptable. Since the allocation is conducted
at the spatial level, the temporal variations in climate data do not participate in the ET
allocation processes and have small spatial effects at the field level. Thus, the temporal
differences in the variability between the allocation factor and actual ET have minor effects
on the allocation model. For the allocation factor, we used the NDVI and LSWI; during
the dense canopy period, such as the peak growth period of maize, the LSWI reflected
more of the water content in vegetation instead of the soil water content. At this period,
the crop transpiration takes the majority of the ET with high FVC and low radiation for
soil evaporation, FVC plays the major role of allocation, and the influence of the LSWI on
the ET allocation is limited.

4.2. Improvement to Pixel-Level ET Downscaling Methods

When applying ET methods to precise agricultural water management, the lack of
stable, accurate, high-resolution ET data has heavily restrained the attention on ET in water
management. Our method is different from previous ET downscaling methods, such as the
LST or vegetation index disaggregation, which usually concentrate on the spatial resolution
refinement of several ET model parameters and input them into the original ET models
for high-resolution ET calculations. Up to a point, this kind of ET downscaling approach
compensates for the absence of critical high-resolution input data in ET models, especially
in surface energy-related models. Restrained by the band characteristics and current sensor
technology, the daily temporal resolution of thermal infrared sensors is incompatible with a
10-m spatial resolution. Most of the LST downscaling methods combine MODIS daily 1-km
LST data with Landsat monthly 30-m LST data, and the large temporal gap between MODIS
and Landsat inevitably leads to errors in the spatial information and larger uncertainties in
the ET calculations, which limit their usefulness for product applications.

Another ET downscaling method is by directing the correlation of the ET with remote
sensing-based parameters such as the NDVI and LST and distributing the ET within coarse
pixels. This downscaling approach can be regarded as a pixel-oriented method, and the
downscaled results can be influenced by the coarse-pixel scale effect that the adjacent coarse
pixel brings into distinct edges, as shown in Figure 9. These models are validated with
high accuracy at the point level; however, the spatial distribution of the boundaries is not
similar to real cropland ET situations. Our model is distinguished from the pixel-oriented
downscaling method in that we regarded the agricultural field as the basic object of the
ET distribution units. Based on the water balance theory, the statistical results of coarse
ET and fine-resolution ET should remain equivalent, and ET can be allocated to each field.
The cropland field can avoid the impacts of coarse-pixel differences on the ET results, and
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the spatial texture has more resemblance to the actual field ET distribution than that of the
lower resolution models. After ET allocation among fields, the field ET is then downscaled
based on pixels within the field and is capable of reflecting more precise spatial information
of the inner field ET conditions. With the attributions of more mechanisms for ET variations
instead of linear correlations from downscaling methods, more emphasis on the essential
role of the field in km-level inner pixel ET allocation, and reasonable allocation approaches
between and within the fields, our field ET allocation model performs better than the
previous methods at estimating the ET with a refined resolution.

4.3. Future Application in Agricultural Water Management

At present, our model achieved satisfactory accuracy in the cropland. The calcula-
tion of the ETWatch one-km ET required spatially interpolated ground meteorological
parameters, which sustain an adequate accuracy at the km level while, at 10-m level, the
values may differ far from the real conditions under the influence of horizontal flow eddies.
We neglected the spatial differences of the meteorological parameters in relative homo-
geneous and plane underlaying surfaces such as croplands, as the ground observation
matrix showed that the meteorological parameters were little changed at the one-km level.
However, when applying the allocation method in rugged terrain, the differences of wind
speed, relative humidity, and air temperature should be concerned; the spatial diversity
of the meteorological parameters should be preliminarily analyzed before applying the
allocation model, as the meteorological condition homogeneity is the precondition of ap-
plying the allocation method. The movement of horizontal flow of the eddies carrying
vapors between fields is another potential impact factor on the accuracy of field-scale
ET. Wang and Dickinson’s [63] review on the Monin-Obukhov Similarity Theory (MOST)
showed that the MOST theory has potential in reflecting the turbulent fluxes at horizontally
homogeneous and stationary surface layers, which may shed light on solving horizontal
vapor estimations in future researches.

Modern water resource management requires advanced management theories to
harmonize the requirements of economic and social developments with limited water
resources. In agricultural water management, recent studies have added more emphasis to
the control of ET from cropland and irrigation systems. Fine-resolution ET that matches
the scale of cropland fields is needed to support policy decision-makers and set ET targets
for water consumption cuts. One potential application of the field-level ET model is in the
determination of water rights. The conventional determination of water rights involves
setting limits on farmers’ water withdrawal amounts, with no emphasis on how farmers use
the water or the return flows of irrigation water. However, these water rights management
methods neglect the water cycling mechanism where, with soil infiltration and ground
runoff, some of the withdrawn water can return to the regional water system, and ET is the
real water consumption that did not return to the local river or groundwater systems. Thus,
an ET-oriented water rights allocation system is more reasonable, and since different crops
have various ET amounts, the crop-planting structure should also be considered. In the
Turpan Basin, China, the local government has experimented with using ET to set farmers’
withdrawal amounts and has achieved considerable success in relieving the local water
use crisis by changing the crop-planting structure to low-ET crops and reducing the use
of high-ET irrigation methods [7,64]. These applications require accurate ET datasets that
match each farmer’s field, and our ET allocation model can provide the data foundation
for farm-level water management.

5. Conclusions

In this research, we proposed a method to calculate ET at the field scale by allocat-
ing coarse ETWatch ET data to fields based on the allocation factor derived from high-
resolution satellite data. The model achieved satisfactory accuracy compared with ground
observations from two maize-growing cropland stations and improvement in the spatial
representation and accuracy compared with coarse ET. The field model ET data are capable
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of field-scale water management in agricultural systems to precisely monitor the crop ET
status, providing insights into water management approaches based on ET and water
consumption. This allocation method can calculate field-scale ET with accuracy, stability,
and speed, the exact characteristics that meet the demands of a wide application based
on using ET data to control the regional water consumption, supporting ET management
theory in addressing the impacts of water scarcity on societal and economic developments.
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Abstract: The demand for accurate long-term precipitation data is increasing, especially in the
Lancang-Mekong River Basin (LMRB), where ground-based data are mostly unavailable and inacces-
sible in a timely manner. Remote sensing and reanalysis quantitative precipitation products provide
unprecedented observations to support water-related research, but these products are inevitably
subject to errors. In this study, we propose a novel error correction framework that combines products
from various institutions. The NASA Modern-Era Retrospective Analysis for Research and Applica-
tions (AgMERRA), the Asian Precipitation Highly-Resolved Observational Data Integration Towards
Evaluation of Water Resources (APHRODITE), the Climate Hazards group InfraRed Precipitation
with Stations (CHIRPS), the Multi-Source Weighted-Ensemble Precipitation Version 1.0 (MSWEP),
and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-
Climate Data Records (PERSIANN) were used. Ground-based precipitation data from 1998 to 2007
were used to select precipitation products for correction, and the remaining 1979–1997 and 2008–2014
observe data were used for validation. The resulting precipitation products MSWEP-QM derived
from quantile mapping (QM) and MSWEP-LS derived from linear scaling (LS) are evaluated by sta-
tistical indicators and hydrological simulation across the LMRB. Results show that the MSWEP-QM
and MSWEP-LS can better capture major annual precipitation centers, have excellent simulation
results, and reduce the mean BIAS and mean absolute BIAS at most gauges across the LMRB. The two
corrected products presented in this study constitute improved climatological precipitation data
sources, both time and space, outperforming the five raw gridded precipitation products. Among the
two corrected products, in terms of mean BIAS, MSWEP-LS was slightly better than MSWEP-QM
at grid-scale, point scale, and regional scale, and it also had better simulation results at all stations ex-
cept Strung Treng. During the validation period, the average absolute value BIAS of MSWEP-LS and
MSWEP-QM decreased by 3.51% and 3.4%, respectively. Therefore, we recommend that MSWEP-LS
be used for water-related scientific research in the LMRB.

Keywords: Lancang-Mekong river basin; MSWEP; AgMERRA; APHRODITE; CHIRPS; PERSIANN;
error correction

1. Introduction

Precipitation is a key element associated with terrestrial–atmospheric circulation.
Thus, it governs terrestrial renewable water resources that affect urban development,
ecological water storage, and agricultural irrigation [1,2]. On the other hand, precipitation
is a complex natural phenomenon affected by various natural and anthropogenic factors,
and its characteristics have significant variability both on a spatial and temporal scale.
Thus, it is essential to obtain more accurate precipitation with a higher temporal and spatial
resolution for various purposes, such as climate change research [3], analysis of temporal
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and spatial evolution of precipitation [4], and streamflow simulation [5]. For an extended
period until the launch of the Tropical Rainfall Measuring Mission satellite in 1997, gauge
observation was the only means to obtain actual precipitation values with a point scale.
However, traditional gauge observation is often limited by sparse gauge distribution and
poor spatial and temporal representation [6,7].

Benefitting from the development of remote sensing and computer technology in to-
day’s era, an increasing number of satellite-based precipitation products and reanalysis
precipitation products have been developed, which have provided unprecedented data
support for global and regional hydrometeorological research. To some extent, the devel-
opment of remote sensing has also made up for the shortcomings of insufficient spatial and
temporal gauge observation data, especially for areas without long series observations [8].
An increasing number of satellite-based and reanalysis precipitation products are now
available with an extended period, daily or sub-daily scale, such as the Tropical Rain-
fall Measuring Mission 3B42 (TMPA) [9], Multi-Source Weighted-Ensemble Precipitation
(MSWEP) [10], Precipitation Estimation from Remotely Sensed Information using Artificial
Neural Networks-Climate Data Record (PERSIANN-CDR) [11], and the Asian Precipitation
Highly-Resolved Observational Data Integration Towards Evaluation of Water Resources
(APHRODITE) [12]. Unfortunately, due to the fact of satellite sampling errors, indirect
measurement, and data fusion technology deviations, these products inevitably have spe-
cific errors compared with gauge observations [13,14]. Furthermore, as pointed out by
Worqlul et al. [15], error correction processes or data fusion technology based on gauge
observations should be conducted before using remote sensing precipitation for hydro-
logical simulations. Therefore, error correction of long-term satellite-based or reanalysis
precipitation products is vital before conducting hydrometeorological-related research.

Bias correction methods are often used to correct precipitation of global climate mod-
els (GCMs) and satellite-based or reanalysis estimates. An increasing number of bias
correction methodologies have proven to improve the accuracy of raw remotely sensed
effectively or reanalysis precipitation products [16–19]. In general, there are two com-
monly used correction mechanisms, one is global average correction, and the other is the
more widely used method, that is, a local correction method that considers the accuracy
of the temporal and spatial performance of precipitation estimation [20]. In the set of
local correction methods, the more commonly used methods include objective analysis
(OA) [21], optimal interpolation method (OI) [22], distribution fitting (DF) [20], geograph-
ically weighted regression (GWR) [23], linear scaling (LS) [24], and quantile mapping
(QM) [25]. Among the methods mentioned above, the LS and the QM methods are widely
used because they do not require the available time series of collected gauged observations
to be completely consistent with the remote sensed or reanalysis precipitation estimates.
Liu et al. [26] indicated that the linear regression model improves satellite precipitation
accuracy at both monthly and annual scales over China. Ghimire et al. [18] also concluded
that quantile mapping could significantly improve the hydrological simulation perfor-
mance. However, these bias correction methods often require precipitation observation
data of the same sequence length as remote sensing precipitation as a baseline. For regions
with insufficient data observed, such as the Lancang-Mekong River, these methods often
have certain limitations. Therefore, a new bias correction framework that requires a short
series of observational precipitation as a reference needs to be proposed and verified.

The Lancang-Mekong River Basin (LMRB) is located on the Indo-China Peninsula.
Its biodiversity and floodplains feed more than 60 million people. Its climate ranges from
the upper temperate plateau to the lower tropical monsoon climate, resulting in signifi-
cant spatial and temporal variability of precipitation within the basin [3,27]. Meanwhile,
the LMRB flows through six countries, making the collection and unified management of
gauge observation data challenging within the basin [7,28,29]. In the past decade, increas-
ing studies have focused on the evaluation and error correction of multiple satellite-based
and reanalysis precipitation products over the LMRB [3,6,7,28,30–33]. Among these studies,
Tang et al. [3] used statistical analysis and hydrological simulations to assess the accuracy
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of the AgMRRA, MSWEP, PERSIANN, and TMPA (Tropical Rainfall Measuring Mission
3B42 Version7) compared with gauge observations from 1998 to 2007 over the LMRB.
They concluded that the MSWEP and TMPA have good performance with a higher correla-
tion coefficient (CC = 0.86) and lower mean error (ME is –0.32 mm/day and –0.01 mm/day,
respectively) in terms of watershed average precipitation; for each gauge in different spaces,
the four products show different pros and cons. For example, PERSIANN has the relative
smallmean error (ME = 0.25 mm/day) but does not have a high correlation coefficient
(CC = 0.81); the MSWEP has the opposite performance in some stations, it has a high
correlation but with a higher mean error. Chen et al. [31] compared and evaluated TMPA,
PERSIANN, MERRA2 (Modern-Era Retrospective Analysis for Research and Applications),
ERA-Interim (European Centre for Medium-Range Weather Forecasts Interim Reanalysis),
and CFSR (Climate Forecast System Reanalysis) with APHRODITE, which was developed
based on gauge observations over the LMRB, and they found that both PERSIANN and
TMPA have high reliability. In terms of error correction of satellite-based precipitation
in LMRB, Chen et al. [33] used APHRODITE with 0.25 degree resolution as a reference and
then reconstructed the CMORPH (CPC MORPHing technique) with 0.05 degree resolu-
tion; finally, they obtained daily-scale precipitation with a 0.05 degree resolution over the
whole LMRB. However, the results of Lauri et al. [28], Tang et al. [13], and Chen et al. [33]
show that although the APHRODITE has a high correlation coefficient compared with
gauge observations, there is a severe underestimation of precipitation in the lower LMRB.
On the other hand, since APHRODITE only provides daily precipitation from 1951 to 2007,
this also significantly limits its application. According to our literature search, the current
research on precipitation bias correction in the LMRB is mainly focused on downscaling
remotely sensed precipitation at a larger spatial scale to higher-precision precipitation data
based on certain auxiliary data (such as terrain data, Normalized Difference Vegetation
Index (NDVI)). Li et al. [23] used the GWR method, taking the Lancang River Basin as the
study area, combined with the relationship between precipitation and NDVI, land surface
temperature (LST), and digital elevation model (DEM) to spatially downscale the Tropical
Rainfall Measuring Mission (TMPA) 3B43 Version 7 precipitation product (2001–2015) with
a resolution of 0.25◦ to 1 km. It was found that the downscaled TMPA precipitation had
a better performance than the original TMPA data. Zhang et al. [34] selected the LMRB
as the study area, used the random forest regression method, combined with the corre-
lation between precipitation and longitude, latitude, elevation, NDVI, etc., to downscale
the TMPA and PERSIANN products with a spatial resolution of 0.25◦ in 2001 (wet year),
2005 (normal year), and 2009 (dry year) to 1 km. They found that in terms of the mean
square error (RMSE) and the mean absolute error (MAE), the downscaled precipitation
performed better than the original products. In general, the current precipitation bias
correction in the LMRB is concentrated in the shorter available time series (limited by
the length of the available observation data series); however, for research related to cli-
mate change, it is necessary to provide meteorological data for at least 30 years according
to the recommendation of the World Meteorological Organization. At present, there is
currently relatively little literature focusing on improving the accuracy of these precipi-
tation products with long available time series in LMRB. To fill this research gap, in this
study, we proposed a novel correction frame to improve the accuracy of long-term daily
satellite-based precipitation, and we expect this frame can be used in other ungauged or
poorly gauged areas. This framework first evaluates the prediction accuracy of five sets
of precipitation products on whether rainfall event occurs or not, selects the precipitation
product with higher accuracy as the benchmark, then the mean error (ME) between each
grid point of the five sets of precipitation products and the observed precipitation after
interpolation is evaluated at monthly scale, the product with the smallest ME in each grid
is used as the “true” precipitation value, and then the error correction is performed on the
benchmark precipitation product. Therefore, this study focuses on improving long-term
daily satellite-based precipitation in LMRB, where there is a lack of sufficient gauge obser-
vations. This study’s primary objective is to use limited gauge precipitation observations
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to combine the advantages of five precipitation products (i.e., AgMERRA, APHRODITE,
CHIRPS, MSWEP, and PERSIANN) in both time and space. Additionally, the precipitation
data will be used to generate long-term daily precipitation data with high accuracy that
is suitable for the LMRB.

2. Study Area and Data Sets
2.1. Study Area

The Lancang-Mekong River (LMRB) originates from the northeast slope of the Tang-
gula Mountains on the Tibetan Plateau in China, with an approximate total catchment area
of 795,000 km2, with elevation ranges from –5 to 5580 m. It flows 4909 km in length through
six countries from north to south (i.e., China, Myanmar, Thailand, Lao PDR, Cambodia,
and Vietnam), and then empties into the South China Sea in Ho Chi Minh City, Vietnam.
The river is generally called Lancang River (LRB) in China, which is ~2140 km length
(~43.5% of the total length), has a catchment area of ~195,000 km2 (~24.5% of the total
catchment area), and flows through China’s Qinghai Province, Tibet Autonomous Region,
and Yunnan Province. After flowing out of China, it is called the Mekong River (MRB),
is ~2709 km in length (~56.5% of the total length), and has a catchment area of ~600,000 km2

(~75.5% of the total catchment area) (Figure 1).
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Figure 1. Location of the Lancang–Mekong− River in Asia and its topographical map. Distribution of 
rainfall gauge stations and six hydrological stations: from north to south, the hydrological stations are 
Yunjinghong, Chiang Saen, Luang Prabang, Mukdahan, Pakse, and Stung Treng). 
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[10], and PERSIANN [40] were used. The main reasons we chose these five precipitation 
products were as follows: (1) they all have the same spatial resolution (0.25 degree), which 
can avoid the additional errors caused by resampling; (2) they all provide more than 30 years 
of daily records to make them more representative for precipitation prediction; (3) according 
to the results of published research [3,13,28,33], these five products have different optimal 
performance across the LMRB; some have high correlation coefficients and a large mean error 
against gauge observations, while some have a small mean error but with low correlation 

Figure 1. Location of the Lancang-Mekong− River in Asia and its topographical map. Distribution
of rainfall gauge stations and six hydrological stations: from north to south, the hydrological stations
are Yunjinghong, Chiang Saen, Luang Prabang, Mukdahan, Pakse, and Stung Treng).
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The LMRB consists of seven different natural geographical areas with diverse topog-
raphy, drainage patterns, and landforms, of which the Tibet Plateau (TP), Three River Area
(TRA), and Lancang Basin (LB) form the Lancang River Basin in China. The other four areas
include the Northern Highlands (NHs), Khorat Plateau (KP), Tonle Sap Lake Basin (TSLB),
and Mekong Delta Basin (MDB) that make up the Mekong River Basin. The temperature
climate of the LRB and the tropical monsoon climate of the MRB together lead to extremely
uneven spatial and temporal distributions of precipitation in the LMRB, which also divide
the precipitation and streamflow processes into the wet season (from May to October) and
dry season (from November to April) [35]. The annual precipitation in the upper LRB can
be as little as 600 mm, while in some mountainous areas of the lower MRB, the annual
precipitation even exceeds 3000 mm [36,37].

2.2. Data
2.2.1. Precipitation Products

In this study, two reanalysis precipitation products include AgMERRA [38] and
APHRODITE [12], three satellite-based precipitation products, namely, CHIRPS [39],
MSWEP [10], and PERSIANN [40] were used. The main reasons we chose these five precipi-
tation products were as follows: (1) they all have the same spatial resolution (0.25 degree),
which can avoid the additional errors caused by resampling; (2) they all provide more than
30 years of daily records to make them more representative for precipitation prediction;
(3) according to the results of published research [3,13,28,33], these five products have differ-
ent optimal performance across the LMRB; some have high correlation coefficients and a large
mean error against gauge observations, while some have a small mean error but with low
correlation coefficients. This section will briefly introduce these five precipitation products,
and the necessary information for these five precipitation products is presented in Table 1.

Table 1. Characteristics of the precipitation products used in this study. CMA = China Meteorological
Administration; MRC = Mekong River Commission.

Precipitation Temporal
Resolution

Spatial
Resolution Date Date Sources

Gauge Daily Point 1979–2014 CMA and MRC

AgMERRA Daily 0.25◦ 1980–2010 https://data.giss.nasa.gov/
impacts/agmipcf/agmerra/

APHRODITE Daily 0.25◦ 1951–2007 http://www.chikyu.ac.jp/precip/
english/products.html

CHIRPS Daily 0.25◦ 1981–present https://chc.ucsb.edu/data/chirps

MSWEP Daily 0.25◦ 1979–2016 https://platform.princetonclimate.
com/PCA_Platform/index.html

PERSIANN Daily 0.25◦ 1983–present

https://climatedataguide.ucar.
edu/climate-data/persiann-cdr-

precipitation-estimation-remotely-
sensed-information-using-artificial

(AgMERRA: NASA Modern-Era Retrospective Analysis for Research and Applications, APHRODITE: Asian
Precipitation Highly-Resolved Observational Data Integration Towards Evaluation of Water Resources, CHIRPS:
Climate Hazards group InfraRed Precipitation with Stations, MSWEP: Multi-Source Weighted-Ensemble Pre-
cipitation, PERSIANN: Precipitation Estimation from Remotely Sensed Information using Artificial Neural
Networks-Climate Data Records).

The AgMERRA precipitation estimates were developed at the National Aeronautics
and Space Administration (NASA) as one meteorological element of the Agricultural Model
Inter-comparison and Improvement Project (AgMIP) to provide daily-scale, consistent time
series [41]. This product incorporates the MERRA-Land product, which has significantly
improve the spatial resolution of daily precipitation and the accuracy of extreme precipita-
tion compared with other climate forcing data sets. It provides daily precipitation with
a 0.25◦ (~25 km) horizontal resolution from 1980 to 2010 [42,43].
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The APHRODITE data sets are provided at a 0.25 resolution with the Asia coverage
(extends Himalayas, South, and Southeast Asia, and mountainous areas in Middle Asia)
and daily precipitation values from 1951 to 2007 [12,44]. The APHRODITE was developed
by the Japan Meteorological Agency (JMA) [13]. This product was developed based on
the daily precipitation data provided by dense surface rainfall stations (between 5000 and
12,000) in Asia. The results of published studies in the Lancang-Mekong River Basin show
that the APHRODITE has a high correlation coefficient, but the amount of precipitation
is underestimated in the lower Mekong Basin [28,33].

The CHIRPS product provides land-only daily precipitation with a high resolution
(0.05° × 0.05° and 0.25° × 0.25°) from 1980 to the present. This data set incorporates
monthly precipitation climatology from Climate Hazards Group Precipitation Climatol-
ogy (CHPClim) from Tropical Rainfall Measuring Mission’s 3B42 product (TRMM 3b42).
In addition, ground gauge precipitation observations from various sources from global and
regional meteorological systems amd atmospheric model precipitation fields from NOAA
(National Oceanic and Atmospheric Administration) [6,39] were added to the data set.

The MSWEP version 1.1 precipitation estimates provide daily time series from 1979 to
2015 with a 0.25 degree resolution developed by Beck et al. [10]. The monthly data set of CH-
PClim and gauge observations were used to calculate the long-term mean of MSWEP. Basin-
scale average precipitation inferred from streamflow observations at 13,762 stations across
the globe were used to remove the orographic effects and gauge under-catch. A weighted
average of seven satellite/reanalysis precipitation data sets was used to correct the tempo-
ral variability of MSWEP, which included CMORPH, GsMAP-MVK, CPC Unified, GPCC,
TMPA 3B42RT, ERA-Interim, and JRA-55 [3,10].

The PERSIANN is a multi-satellite-based precipitation data set that provides a near-
global (60◦S to 60◦N) daily precipitation estimate, with a 0.25-degree spatial resolution
from 1983 to near present [40,45]. The PERSIANN algorithm was used to develop the
daily precipitation estimate. The hourly precipitation data from the National Centers for
Environmental Prediction (NCEP) stage IV was used to train the artificial neural network.
Finally, the Global Precipitation Climatology Project’s (GPCP) monthly products were used
to adjust the daily estimate.

As baseline data, we collected daily precipitation data from 267 stations within or
around the LMRB. These stations are mainly run and maintained by the China Meteoro-
logical Administration and the Mekong River Commission. To access the precipitation
data provided by the China Meteorological Administration (CMA), we needed to regis-
ter an account first, and then apply to download the data set the data managed by the
downstream Mekong River Commission (MRC) can be downloaded on its official website
or one can refer to the supplementary data provided by Wang et al. [7]. It should be
noted that the most extended sequence of these observations is from 1979 to 2014; that is,
these gauges have different series lengths. Since the spatial resolution of the remote sensing
and reanalysis precipitation products collected in this study are all 0.25 degrees, for the
case where there are multiple gauges in a 0.25◦ × 0.25◦ grid, we use the arithmetic mean
of several gauges as the observed values within this grid. The available period of these
gauges is shown in Figure 2. As shown in Figure 2, the precipitation data provided by most
stations were from 1991 to 2007. Few stations provided recent observational precipitation
data, which is one of the reasons we implemented this study.

2.2.2. Auxiliary Data

The construction of the SWAT (Soil and Water Assessment Tool) model required
daily-scale meteorological forcing data (daily maximum and minimum temperatures,
daily relative humidity, daily wind speeds, and daily solar radiation). In addition, topo-
graphical data (digital elevation model), soil data, land-use data, and daily-scale discharge
data were required for calibration.

The NCEP-CFSR reanalysis data provided by NCEP (National Centers for Environ-
mental Prediction) were also used in this study for hydrological modeling. The NCEP-CFSR
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reanalysis data assimilated a 6 h grid point statistical interpolation system (GSI) using the
GEOS-5 (Goddard Earth Observing System) model and data assimilation system [46,47].
This reanalysis data had a 38 km spatial resolution. It has been applied to the Mekong
River Basin [3] and the Lancang River basin [13] with excellent simulation results (with
a Nash–Sutcliffe Efficiency coefficient (NSE) greater than 0.75).

Figure 2. Station numbers of available data from 1979 to 2014.

The Digital Elevation Model (DEM) database with a 90 m resolution used in this
study was downloaded from the NASA Shuttle Radar Topographical Mission (SRTM)
(http://srtm.csi.cgiar.org/). The soil database with a ~1 km resolution was collected from the
Food and Agriculture Organization (FAO) of the United Nations (http://www.fao.org/land-
water/databases-and-software/hwsd/en/), and it contained two soil layers. The land use
database was obtained from the Global Land Cover 2000 Project (GLC 2000), and it also had
a 1 km spatial resolution (https://ec.europa.eu/jrc/en/scientific-tool/global-land-cover).

The daily streamflow data of six hydrological stations on the Mekong mainstream were
collected from the Information Center of the Ministry of Water Resources of China (ICMWR)
and the Mekong River Commission (MRC) to calibrate the model with the available period
from 1998 to 2007. These hydrological data are subject to strict quality control by both
departments. The selected six stations were Yunjinghong (China), Chiang Saen (Thailand),
Luang Prabang (Laos), Mukdahan (Thailand), Pakse (Laos), and Stung Treng (Cambodia).
The basic information on the six hydrological stations is shown in Table 2.

Table 2. Basic information on the six hydrological stations used in this study.

Station Country Latitude
(Degree)

Longitude
(Degree)

Elevation
(Meter) Period

Yunjinghong China 100.78 22.03 592 1998–2007
Chiang Saen Myanmar 100.08 20.27 372 1998–2007

Luang
Prabang Laos 102.14 19.89 316 1998–2007

Mukdahan Thailand 104.74 16.54 133 1998–2007
Pake Laos 105.8 15.12 102 1998–2007

Stung Treng Cambodia 106.02 13.55 51 1998–2007

3. Methodology
3.1. Statistical Criteria of Performance Comparison

Before the error correction, we first compared the precipitation products (i.e., Ag-
MERRA, APHRODITE, CHIRPS, MSWEP, and PERSIANN) with the site-observed precipi-
tation pixel scale (point to pixel). An evaluation was conducted at a daily scale covering the
period from 1979 to 2014, following Zhu et al. [46], Gumindoga et al. [20], and Tang et al. [3]
who conducted a point-pixel evaluation in multiple basins worldwide. To qualitatively
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evaluate the performance of precipitation products with gauged precipitation observa-
tions, the following statistical indices were used: the correlation coefficient (CC), mean
error (ME), relative bias (BIAS), and the probability of precipitation detection (POD01).
These equations were calculated as shown in Equations (1)–(4).

CC =
∑n

i
(

Po,i − Po,i
)(

Ps,i − Ps,i
)

√
∑n

i
(

Po,i − Po,i
)2
√

∑n
i
(

Ps,i − Ps,i
)2

(1)

ME =
∑n

i (Ps,i − Po,i)

n
(2)

BIAS =
∑n

i Ps,i − ∑n
i Po,i

∑n
i Po,i

× 100% (3)

POD01 =
H00 + H11

n
(4)

where Po,i and
−
Po,i are the individual and averages observed precipitation provided

by ground gauges, respectively. Ps,i and
−
Ps,i are, respectively, the daily and averages

of precipitation products, and n is the total number of data series. The H00 represents
the number of days when no precipitation occurred both in the observation data and the
remote sensed or reanalysis precipitation product, while H11 represents the total number
of days when precipitation occurred both in the observation data and the remote sensed
or reanalysis precipitation product.

3.2. Framework of Precipitation Error Correction

In the proposed frame, the process of error correction for long-term satellite-based
precipitation over poorly gauged areas can be divided into three steps, and the flow chart
of this framework is shown in Figure 3. First, collect multiple sets of precipitation products
with a long available period. Then, select a set of precipitation products with a high
correlation coefficient and POD01 compared with gauged precipitation observation of
all ground stations. The second step compares the IDW-interpolated (Inverse Distance
Weighted) gauged precipitation observations with all precipitation products at each grid
point, select the smallest ME product as the benchmark, and corrects the precipitation
product selected the first step. The last step is to validate the corrected precipitation
products using the remaining gauge observations. The detailed steps for error correction
of daily precipitation are shown below:

(1) Select multiple sets of long-term daily-scale precipitation products with high resolution.
(2) Compare precipitation products with observed precipitation from all gauge stations,

and select a set of precipitation products with a higher correlation coefficient and
POD01 for correction.

(3) Select gauged precipitation data with a certain period (1998 to 2007 in this study)
containing more stations (Figure 4), and these gauges should have better spatial
representation. Then monthly grid-scale precipitation data with the same spatial
resolution as the precipitation products are obtained through IDW interpolation.

(4) Compare the IDW monthly scale precipitation data with monthly scale gauged pre-
cipitation. The precipitation product with the smallest ME at each grid point in each
month is obtained as the actual rainfall value for correction.

(5) The precipitation data obtained in the fourth step are used to correct the product
selected in the second step at each grid point every month. Then the daily-scale
rainfall products with higher accuracy are obtained.

(6) Statistical indicators and hydrological simulation are used to assess the accuracy of
the corrected precipitation product. In this study, the SWAT model was used for
streamflow simulation.
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Figure 3. Flow chart of precipitation error correction for this study (CC: correlation coefficient,
POD01: the probability of detection for precipitation and without precipitation, SWAT: Soil and Water
Assessment Tool, NP: new precipitation products, QM: quantile mapping, LS: linear scaling).

Figure 4. (a) The spatial distribution of precipitation stations with observation data from 1998 to 2007,
and the red point means that there were no missing observation data at this station. (b) The spatial
distribution of precipitation stations with observation data from 1979 to 1997 and 2008 to 2014.

In this study, two error correction techniques were used to remove the satellite-based
precipitation product’s bias. The first technique was nonparametric empirical quantile
mapping (QM) (Equation (5)) and the another was linear scaling (LS) (Equation (6)).
These two techniques were used because they are easy to implement and have been proven
to effectively correct daily-scale precipitation data [18,20,48]. It should be noted that
the corrections in this study were performed on a monthly scale, which means that we
needed to perform 12 corrections for each grid point. Following the study of Reiter
et al. [49], which evaluated the rainfall corrections at multiple time scales, they found that
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corrections at a monthly scale were most effective in removing daily-scale precipitation
bias. The calculation formulas for the two correction methods are shown below:

Praw = F−1
raw (Fcorr(Pcorr)) (5)

Pcorr = Praw × Scale Scale =
meanper

meanraw
(6)

where Pcorr, Praw, meanper and meanraw mean precipitation of corrected, precipitation
products selected in step 2, the mean value of precipitation product selected in step 4,
and the mean value of precipitation product selected in step 2, respectively. Fcorr is the
cumulative distribution function (CDF) of Pcorr, and F−1

raw is the inverse CDF (or quantile
function) corresponding to Praw.

3.3. Brief Description of the SWAT Model

The SWAT is a semi-distributed hydrological model developed by the the Agricultural
Research Service of the United States Department of Agriculture (USDA-ARS). It has
been widely applied in various watersheds associated with climate change assessment,
soil erosion, and non-point pollution [3,46,50,51]. The SWAT version 2012, coupled with the
ArcGIS interface, was used in this study to evaluate the precipitation products’ performance.
This model first divides the study area into several sub-basins based on the topography data
sets (i.e., DEM data, mask data). Each sub-basin was discretized into multiple hydrological
response units (HRUs), which are the most fundamental computational unit according to
the soil type, land use data, and slope data [50,52]. The water cycle calculated by the model
was simulated on each HRU. This production flow then converged to the corresponding
sub-basin. Finally, the total streamflow of the study area was calculated from the output of
each sub-basin. The calibration of the SWAT model was done using a separate software
named SWAT-CUP (SWAT Calibration and Uncertainty Program), which can be used
for calibration, validation, and uncertainty analysis of the model [52–54]. The SUFI-2
(Sequential Uncertainty Fitting Version 2) within the SWAT-CUP was used in this study to
calibrate the model [55].

In order to evaluate the performance of the model, the Nash–Sutcliffe Efficiency
coefficient (NSE) and relative bias (BIAS) (Equation (3)) were used [56]. The NSE calculation
formula is shown below:

NSE = 1 − ∑n
i
(
Qi

o − Qi
s
)2

∑n
i
(
Qi

o − Qo
)2 (7)

where Qi
o and Qi

s represent the observed and simulated streamflow, respectively. Qo means
the average of observed streamflow, and n is the total number of streamflow data.

4. Results
4.1. Evaluation of Five Precipitation Products with Gauged Observations

Spatial distributions and boxplots of the correlation coefficient for AgMERRA,
APHRODITE, CHIRPS, MSWEP, and PERSIANN compared with gauged observations
at a daily scale over the LMRB are shown in Figure 5. Overall, for the whole basin,
APHRODITE had the best linear correlation with the gauged observations compared with
the other four precipitation products (0.61 in the whole basin), followed by the MSWEP
(0.49) and AgMERRA (0.39). In contrast, the CHIRPS and PERSIANN had the smallest
CC (0.35). There were 204 gauges for APHRODITE with CCs more significant than 0.5,
while MSWEP, AgMERRA, PERSIANN, and CHIRPS had 107, 48, 10, and 9 gauges with
CC exceeding 0.5, the highest CCs for CHIRPS and PERSIANN products among all gauges
were 0.54 and 0.59, respectively. In terms of the spatial distribution, gauges in China
(i.e., within the Lancang River Basin) generally have higher CCs than those located in the
lower LMRB. This also indicates that these five sets of precipitation products included more
observation information from the gauges in the upper LRMB when they were developed.
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Figure 5. Correlation coefficient (CC) of five precipitation products against gauged observations at
the daily scale. The boxplot of the correlation coefficients for all stations are shown in the upper right
corner of the picture.

Figure 6 shows the POD01 of five precipitation products compared with gauged
observations on a daily scale. Consistent with the CC results, CHIRPS also had the smallest
POD01 coefficient than the other four products. From the boxplots’ results, we can see that
MSWEP was the best performing product with the highest POD01, which means that this
product can most accurately predict precipitation over the LMRB. From the perspective
of spatial distribution, MSWEP had the largest POD01 (higher than 0.9) in the entire
LMRB, and the performance of the APHRODITE product was slightly lower than MSWEP.
In contrast to the spatial performance of correlation coefficients, the POD01 of stations in
the upper LMRB were lower than those in the lower LMRB, which may be affected by the
complex terrain of the Qinghai–Tibet Plateau.

Figures 5 and 6 show that APHRODITE and MSWEP had higher CCs and POD01 over
the entire LMRB. At the same time, the prediction of precipitation occurrence was worse
than MSWEP. However, considering that APHRODITE only provides daily-scale data until
2007, and Lauri et al. [28] pointed out that although APHRDOTE had a high correlation
coefficient in the Mekong River Basin, there is still an underestimation of precipitation in
the downstream regions. Therefore, this study chose MSWEP as the corrected precipitation
product because it had a relatively high correlation coefficient compared with gauge
observations and can best predict precipitation occurrence.

Figure 7 shows the spatial distribution of five precipitation products compared with
IDW interpolation monthly with the smallest ME from 1998 to 2007. It can be seen from
Figure 7 that no particular product can perform well in all 12 months. In general, MSWEP
in the upper Qinghai–Tibet Plateau region had a better performance from January to March,
May, and June. The PERSIANN performed well in April and from June to November in the
middle region of the river basin. While in the downstream region, AGMERRA had a better
performance from March to September. For other months and regions, no one product
performed significantly better than other products. Table 3 presents the number of grids
for the five precipitation products with the smallest ME over the whole basin compared
with IDW-derived gauge observations at a monthly scale. We can see that from March
to September, which included the rainy season of the study area, APHRODITE had the
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fewest grids with the smallest ME. This also means that although APHRODITE had the
most massive CC compared to the other for products, its estimation of precipitation in the
whole basin was not accurate. Compared with the other four products, MSWEP had the
most grids with the smallest ME in February, from May to July, November, and December.
In other months, AgMERRA, APHRODITE, CHIRPS, and PERSIANN performed better in
September and October, January, April, and August, respectively.

Figure 6. Same as Figure 5 but for POD01.

Figure 7. Monthly minimum ME for five precipitation products against inverse distance weighted
(IDW)-derived gauge observation during 1998 to 2007.
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Table 3. The number of grid points over the whole basin that had the smallest ME compared with the IDW-interpolated
precipitation at a monthly scale.

Product Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

AgMERRA 241 205 202 200 229 268 220 252 313 * 292 * 194 177 #

APHRODITE 382 * 300 156 # 125 # 143 # 87 # 110 # 79 # 121 # 156 # 217 286
CHIRPS 150 172 288 * 281 * 222 196 282 209 307 258 172 # 203
MSWEP 239 322 * 288 274 364 * 307 * 283 * 287 192 235 313 * 295 *

PERSIANN 127 # 140 # 205 259 181 281 244 312 * 206 198 243 178

(Jan: January, Feb: February, Mar: March, Apr: April, Jun: June, Jul: July, Aug: August, Sep: September, Oct: October, Nov: November,
Dec: December. The maximum number are marked with “*” and the minimum number are marked with “#”).

4.2. Grid-Scale Evaluation of Corrected Precipitation with Gauge Observations from 1998 to 2007

Based on the results in Section 4.1 and the correction mechanism introduced in
Section 3.2, we selected daily-scale MSWEP from 1979 to 2014 as the product to be corrected
and used the QM and LS methods to correct the MSWEP grid by grid and month to month.
The corrected precipitation is called MSWEP-QM and MSWEP-LS, respectively.

Figure 8 shows the spatial distribution of annual average precipitation derived from
gauge observation, AgMERRA, APHRODITE, CHIRPS, MSWEP, PERSIANN, and two
corrected products (i.e., MSWEP-QM, MSWEP-LS) from 1998 to 2007. In general, the
corrected precipitation (MSWEP-QM and MSWEP-LS) can correctly represent the spa-
tial distribution of annual-scale precipitation in the entire LMRB compared with gauge
observations. The corrected products can better predict the precipitation centers of the
LMRB (including the Khorat Plateau in northeastern Thailand and The Northern Highlands
downstream), which is influenced by the Indian Ocean monsoon and southeast monsoon.
From the spatial distribution perspective, in the upper Qinghai–Tibet Plateau, all products
except PERSIANN performed well, while AgMERRA and APHRODITE underestimated
annual precipitation in the middle area. In the downstream area of the LMRB, CHIRPS,
MSWEP, and PERSIANN overestimated the precipitation compared to the gauge observa-
tions. For corrected precipitation, we can see that both MSWEP-QM and MSWEP-LS can
better remove the precipitation error on the multi-year average scale.

Figure 8. Spatial patterns of annual average precipitation derived from gauge observation, AgMERRA,
APHRODITE, CHIRPS, MSWEP, PERSIANN, MSWEP-QM, and MSWEP-LS from 1998 to 2007.

Figure 9 shows the scatterplots of annual precipitation comparisons for the whole
LMRB between AgMERRA, APHRODITE, CHIRPS, MSWEP, PERSIANN, MSWEP-QM,
MSWEP-LS, and gauges. As shown in Figure 9, annual MSWEP-QM and MSWEP-LS agree
well with gauge observations over the entire LMRB (CC = 0.97 and 0.98, respectively).
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Generally, for the five raw precipitation products before correction, APHRODITE underes-
timated the precipitation (with BIAS equals –19.01%) but had the highest CC (0.91). The CC
of CHIRPS and MSWEP were also very satisfying (0.85 and 0.87, respectively) but slightly
overestimated the precipitation (with BIAS equals 2.44% and 1.98%, respectively). The PER-
SIANN had the smallest CC, the phenomenon of overestimating the light precipitation and
underestimating the heavy one existed. It should be pointed out that the original five sets
of precipitation products all had a certain number of grid points that had a tendency to
underestimate (overestimate) the precipitation compared with gauge observations, while
the corrected precipitation products (MSWEP-QM and MSWEP-LS) effectively reduced
these anomalies point (Figure 9). In conclusion, the correction mechanism proposed in this
study can effectively remove the precipitation error at an annual scale, and MSWEP-QM
performed slightly better than MSWEP-LS.

Figure 9. Scatterplot of annual average precipitation of gauge observations against AgMERRA,
APHRODITE, CHIRPS, MSWEP, PERSIANN, MSWEP-QM, and MSWEP-LS from 1998 to 2007.
The diagonal line is black, and the best linear fit line is red which using the least squares method.

4.3. Point-Scale Evaluation of Corrected Precipitation with Gauge Observations from 1998 to 2007

In this section, we first compare the performance of two corrected precipitation prod-
ucts (i.e., MSWEP-QM and MSWEP-LS) with MSWEP on a daily scale from 1998 to 2007.
Then the accuracy of all precipitation products with gauge observations at basin scale is
conducted. Figure 10 illustrates the BIAS of (a) MSWEP, (b) MSWEP-QM, and (c) MSWEP-
LS. From these three sub-figures, in general, the two corrected precipitation can effectively
remove the BIAS at a daily scale in the entire LMRB. However, there is still relatively large
BIAS in high-altitude areas in the southeast of the basin and the Mekong Delta region;
this may be due to the short data sequence of the gauges in these two regions to some
errors in the IDW interpolation precipitation. By comparing the two corrected rainfall
products, we can see that MSWEP-LS performed slightly better than MSWEP-QM in the
upper Qinghai–Tibet Plateau and performed exceptionally well in other parts the river
basin. Among 246 evaluated gauges, MSWEP-LS and MSWEP-QM had 214 and 211 gauges
with BIAS between –20% and 20%, while MSWEP had 183 gauges. Figure 10d,e show
the changes in the BIAS of MSWEP-QM and MSWEP-LS compared to MSWEP products.
The MSWEP-QM and MSWEP-LS products had 165 and 171 gauges of BIAS, showing
a decreasing trend, respectively. For the remaining stations, the amount of BIAS change was
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also less than 10%. From the average BIAS of all gauges, the average BIAS of MSWEP-QM
and MSWEP-LS reached 0.17% and –0.5%, respectively, which significantly reduced the
average BIAS of MSWEP (2.48%). The average absolute BIAS of all gauges of MSWEP-QM
and MSWEP-LS also decreased from 16.57% to 11.21% and 10.69%. Generally, the corrected
precipitation products can perform better than MSWEP at most stations, and MSWEP-LS
performs slightly better than MSWEP-QM.

Figure 10. BIAS of MSWEP (a), MSWEP-QM (b), MSWEP-LS (c) compared with gauge observations
from 1998 to 2007 at daily scale; the second line shows the change in BIAS between MSWEP-QM (d),
MSWEP-LS (e), and MSWEP, in which blue points mean BIAS decreased, and red means the opposite.

Figure 11 shows scatterplots of precipitation estimate comparisons for the entire
LMRB at a daily scale between AgMERRA, APHRODITE, CHIRPS, MSWEP, PERSIANN,
MSWEP-QM, MSWEP-LS, and gauge observations from 1998 to 2007. Precipitation values
were calculated from the arithmetic mean of the precipitation at the grid points that
contain those stations, and gauge observations over the LMRB at a daily scale, respectively.
As shown in Figure 11, APHRODITE has the largest correlation coefficient than gauge
observations. However, it also has the most extensive BIAS (–15.5%), consistent with
the results shown in Figures 8 and 9. The PERSIANN had the smallest CC (0.79) and
R-Square (0.62), and relatively large BIAS (10.44%), which is also consistent with the results
in Figure 5 and Table 3, which means that there are a relatively large number of grids points
for accurate precipitation estimation. For corrected precipitation products, MSWEP-QM
had a smaller BIAS and almost equal CC and R-Square than MSWEP, and MSWEP-LS had
slightly larger CC and R-Square than MSWEP. However, the absolute value of its BIAS
increased slightly. The higher BIAS was probably caused by the cancelation of positive and
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negative values. Overall, the corrected precipitation products can slightly increase the CC
and reduce the BIAS at the whole river basin scale.

Figure 11. Scatterplots of precipitation comparisons for the entire Lancang-Mekong River Basin at
daily scale between AgMERRA, APHRODITE, CHIRPS, MSWEP, PERSIANN, MSWEP-QM, MSWEP-
LS, and gauge observations from 1998 to 2007. (The diagonal line is black, and the best linear fit line
is red which uses the least squares method).

4.4. Hydrological and Regional Evaluation of Corrected Precipitation from 1998 to 2007

Hydrological and regional evaluations are conducted in this section to evaluate the
performance of corrected precipitation products. We first used the gauge observations
from 1998 to 2007 to calibrate the SWAT model, and then the calibrated model was used to
assess the accuracy of all precipitation products. The regional evaluation was conducted in
seven zones which were divided into six hydrological stations (Figure 1), namely, Y (above
Yunjinghong station), YC (from Yunjinghong to Chiang Saen), CL (from Chiang Saen to
Luang Prabang), LM (from Luang Prabang to Mukdahan), MP (from Mukdahan to Pakse),
PS (from Pakse to Stung Treng). and SD (from Stung Treng to Mekong Delta).

Table 4 shows the SWAT model’s simulation results at six selected hydrological sta-
tions with all eight precipitation inputs (including gauge observations). The results indicate
that this model has good adaptability in the entire LMRB. For the five precipitation prod-
ucts, in general, the simulation results at the Yunjinghong station were the worst compared
to other stations. Even though the NSE coefficient of MSWEP product reached 0.8, it had
a relatively large BIAS (15.07%). For the other five stations, APHRODITE mostly under-
estimated the streamflow (except the Luang Prabang station), which was also consistent
with the results presented in Figures 8 and 11. The AgMERRA, CHIRPS, MSWEP, and
PERSIANN all had large negative BIAS at the Mukdahan station. Through Figure 8, we can
see that these four products all underestimated the precipitation. As for the corrected
precipitation products, we can see that the MSWEP-LS showed better performance than
the MSWEP product in five of the six stations, while MSWEP-QM had better simulation
results than MSWEP in just two stations. In summary, the corrected MSWEP-LS product
can better simulate the daily streamflow processes in the entire LMRB (with all NSE greater
than 0.8 and all BIAS lower than 11.4). To further explain the simulation results presented
in Table 4 and evaluate the corrected rainfall product’s accuracy, the regional evaluation
was conducted next.
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Table 4. Streamflow simulation results of six hydrological stations: NSE and BIAS (%).

Station
Gauge AgMERRA APHRODITE CHIRPS

NSE BIAS NSE BIAS NSE BIAS NSE BIAS

Yunjinghong 0.83 1.94 0.72 −10.66 0.52 −23.58 0.51 9.92
Chiang Saen 0.88 3.34 0.9 −2.8 0.87 −11.57 0.76 8.31

Luang Prabang 0.89 16.96 0.88 10.66 0.9 4.89 0.82 18.25
Mukdahan 0.93 6.61 0.87 −17.49 0.76 −27.73 0.80 −19.58

Pakse 0.97 7.79 0.95 −7.24 0.92 −14.47 0.95 −4.88
Stungtreng 0.98 −0.94 0.96 −2.67 0.96 −8.83 0.96 2.27

Station
MSWEP PERSIANN MSWEP-QM MSWEP-LS

NSE BIAS NSE BIAS NSE BIAS NSE BIAS

Yunjinghong 0.8 15.07 0.54 49.51 0.79 16.22 0.83 7.32
Chiang Saen 0.89 1.75 0.82 −3.33 0.88 3.35 0.89 −0.4

Luangprabang 0.89 12.5 0.86 8.9 0.88 16.99 0.89 11.4
Mukdahan 0.87 −17.6 0.86 −17.8 0.91 −11.81 0.9 −10.33

Pakse 0.95 −7.93 0.96 9.32 0.97 4.83 0.97 3.41
StungTreng 0.97 −2.8 0.96 −2.01 0.97 −6.2 0.96 −7.75

(Performance of corrected precipitation products which are better than MSWEP are shown in bold).

Table 5 shows the BIAS of five precipitation products (i.e., AgMERRA, APHRODITE,
CHIRPS, MSWEP, and PERSIANN) and two corrected precipitation products (MSWEP-
QM and MSWEP-LS) against gauge observations over seven sub-regions at a daily scale
from 1998 to 2007. Overall, the BIAS of the two corrected precipitation products is within
±9%, which means that the framework proposed in this study can effectively remove
the precipitation errors on a sub-regional scale. From a spatial perspective, the two cor-
rected products all have smaller BIAS in Y, YC, PS, and SD regions than the original five
precipitation products. In contrast, in the other two regions, the BIAS was slightly larger
than the MSWEP product. From the performance of different rainfall products and their
impact on hydrological simulation results, we can see that APHRODITE underestimates
the precipitation in all seven sub-regions. The underestimation of precipitation led to the
underestimated flow process of this product’s hydrological simulation results (Table 4).
The PERSAINN had a 20.99% precipitation error in the Y region, resulting in a larger BIAS
(49.51%) for its streamflow simulation. In general, the two corrected products showed
a smaller BIAS in the four sub-regions (Y, YC, PS, and SD) than the original five rainfall
products, while the BIAS in the other three sub-regions shows a small increase. This may be
related to the offset of the positive and negative BIAS values at different gauges. The results
in Figure 10 indicate that the corrected precipitation data decreased BIAS at most gauges.

Table 5. BIAS (%) of five precipitation products and two corrected precipitation products against
gauge observations over seven sub-regions at daily scale.

Region AgMERRA APHRODITE CHIRPS MSWEP PERSIANN MSWEP-QM MSWEP-LS

Y −2.10 −7.78 3.13 9.41 20.99 2.35 1.22
YC −5.20 −11.59 4.20 1.28 −8.32 0.88 −0.81
CL −1.57 −12.73 −2.61 −0.72 0.88 −0.96 −2.39
LM −11.49 −24.63 −9.79 −7.12 −3.39 −8.46 −8.91
MP −9.70 −24.50 −5.36 −4.24 5.73 −7.77 −8.18
PS −1.67 −14.45 12.20 7.49 5.29 −4.86 −5.12
SD 8.89 −20.16 13.31 10.14 42.16 −0.16 −1.88

(where Y, YC, CL, LM, MP, PS, and SD means region over Yunjinghong station, the region between Yunjinghong
station and Chiang Saen station, the region between Chiang Saen station and Luang Prabang station, the region
between Luang Prabang station and Mukdahan station, the region between Mukdahan station and Pakse station,
the region between Pakse station and Stung Treng station, the region between Stung Treng station and Mekong
Delta Region, respectively; product with the smallest BIAS in each region are shown in bold)
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4.5. Validation of Corrected Precipitation with Gauge Observations from 1979 to 1997 and
2008 to 2014

In the previous sections, we evaluated the corrected precipitation products at the point
scale and grid-scale from 1998 to 2007. This section evaluates the corrected precipitation
products on the remaining observations (i.e., from 1979 to 1997 and 2008 to 2014) to assess
the performance of the bias correction framework proposed in this study.

Figure 12a–c show the BIAS of MSWEP, MSWEP-QM, and MSWEP-LS compared with
gauge observation on a daily scale from 1979 to 1997 and 2008 to 2014. From these three
subfigures, we can see that the two sets of corrected precipitation products have smaller
BIAS compared to MSWEP in the upper Mekong River Basin. However, most stations
downstream still showed a tendency to underestimate precipitation. The cause of this
phenomenon may be that these sets of precipitation products only contained information
on the limited ground observation gauges in the downstream area during the generation
process. We further compared the BIAS changes at a daily scale between the MSWEP-
QM (d), MSWEP-LS (e), and MSWEP. The results showed that the corrected precipitation
products can effectively reduce BIAS at most stations, especially in the upstream and
middle reaches. However, BIAS in some high-altitude areas in the southeast of the basin
and some Mekong Delta stations showed a larger trend. The average absolute BIAS of
MSWEP was 21.4%, and the corrected MSWEP-QM and MSWEP-LS were 17.98% and
17.87%, which were reduced by 3.4% and 3.51%, respectively.

Figure 12. BIAS of MSWEP (a), MSWEP-QM (b), MSWEP-LS (c) compared with gauge observations
from 1979 to 1997 and 2008 to 2014 at daily scale; the second line shows the change in BIAS between
MSWEP-QM (d), MSWEP-LS (e), and MSWEP, in which the blue points mean BIAS decreased, and
red means the opposite.

5. Discussion
5.1. Performance of Different Precipitation Products

In this study, before error correction of the precipitation products, we first evaluated
five precipitation products (i.e., AgMERRA, APHRODITE, CHIRPS, MSWEP, and PER-
SIANN). Then, we compared them with gauge observations in the Lancang-Mekong River
Basin mainly from three aspects (correlation coefficient, probability of detection, and mean
error of each month). We found that APHRODITE had the largest correlation coefficient
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among the five products (followed by MSWEP, AgMERRA, PERSIANN, and CHIRPS)
in the LMRB (Figure 5), and this conclusion is consistent with the previous research re-
sults of the LMRB [28,33]. However, at the same time, we also found that APHRODITE
had severely underestimated precipitation (Figures 8 and 11), especially in the lower
LMRB. The underestimated precipitation also led to underestimating the hydrological
simulation of the runoff processes (Table 5), and this conclusion was rarely mentioned
in published studies. Although the development of the APHRODITE precipitation prod-
uct included 5000–12,000 verification stations in Asia, the monthly precipitation data in
this study area only included ground gauges in Thailand and the Lancang River area in
China [44]. This may be one of the reasons for its poor performance in the downstream
area of LMRB. On the other hand, Figure 6 in the original article published on the develop-
ment of the APHRODITE [44] compared the annual average precipitation of APHRODITE
and Global Precipitation Climatology Centre (GPCC) from 1961 to 2004, and the result
also indicates that the precipitation in the lower LMRB was underestimated. However,
due to the fact tjat surface observation data in the LMRB are scarce and difficult to collect,
the APHRODITE has always been selected as the actual precipitation values in many
published studies without considering its errors [28,31]. As these References [46,57] have
shown, any small precipitation error may be amplified by hydrological simulations and
affect the entire water resource allocation, sustainable development strategy formulation,
etc. For the accuracy of precipitation event detection (including precipitation equal to 0),
we can see that MSWEP had the best performance over the other four products, followed by
APHRODITE. This is because the MSWEP product uses a weighted average of seven rainfall
products (i.e., CPC Unified, GPCC, CMORPH, GSMaP-MVK, TMPA 3B42V7, ERA-Interim,
and JRA-55) during the development process [10]. It also uses the average precipitation and
streamflow of 13,762 watersheds worldwide to remove the impact of terrain on precipita-
tion. The AgMERRA mainly uses data sets of MERRA-Land and wet days of CRU to correct
the precipitation days [42,58]. Whereas CHIRPS uses the CHPclim model to integrate the
FAO and Global Historical Climate Network (GHCN) stations, remote sensing data TMPA
and CMORPH [59]. The PERSIANN mainly uses GPCP monthly average precipitation
to correct its product [40]. That means that the MSWEP incorporates more information
about precipitation products and ground stations, which may be an important reason for
its more accurate detection of rainfall events. We understand why MSWEP has the most
grids in more months (February, May, June, July, November, and December) to estimate
precipitation more accurately than the other four products (Table 3). However, as shown
in Figures 7 and 8, MSWEP still has large errors in some areas of the LMRB. Therefore,
in this study, we propose a bias correction mechanism based on various remote sensing
and reanalysis precipitation products, hoping to provide a set of long-range precipitation
products with high accuracy for the LMRB.

5.2. Applicability of the Error Correction Framework

The error correction framework proposed in this study using Quantile Mapping (QM)
and Linear Scaling (LS) both fit quite well with smaller ME and BIAS in most stations,
and it can also better spatially predict the precipitation in the entire LMRB (Figures 6 and 7).
Because we first select the precipitation product based on the CC and rainfall events es-
timates (POD01), and then further corrects the precipitation errors. Therefore, after cor-
rection, we use BIAS, which focuses on its estimation of quantity for the precipitation
assessment. From the corrected rainfall products’ evaluation results, MSWEP-LS is slightly
better than MSWEP-QM, mainly due to the two correction methods’ different internal
mechanisms. Because the QM method uses the cumulative precipitation distribution
function (CDF) to correct the selected product (MSWEP in this study) by one percentile.
However, in this study, we selected the precipitation product with the smallest ME at each
grid point in each month as the benchmark. There may be errors between the cumulative
distribution curve and those of station observations. The LS method only uses a scaling
factor to correct the precipitation. MSWEP has a higher correlation coefficient than the site-
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observed precipitation in the LMRB, which may be one reason why the MSWEP-LS method
performs slightly better than MSWEP-QM. Ghimire et al. [18] compared and analyzed
the effects of LS and QM methods on streamflow simulation after global climate models
(GCMs) precipitation product bias correction, and they found that the LS method showed
better performance than QM. As shown in Figure 9, the BIAS of MSWEP-QM was slightly
smaller than that of MSWEP-LS. However, the results shown in Figure 8 indicate that the
BIAS of MSWEP-LS had more stations showing a decreasing trend, which is probably
caused by the cancelation of positive and negative values [60]. We have not achieved
perfect results in LM (from Luang Prabang to Mukdahan) and MP (from Mukdahan to
Pakse) regions from the regional evaluation results. This setback is partly due to the shorter
available data length of the stations we collected in these two regions, which led to our
IDW interpolation results in these areas may be insufficient. In general, although this study
was conducted in the Lancang-Mekong River Basin, the proposed framework could also
be applicable in other areas, especially for those with limited gauge observations.

5.3. Limitations and Future Directions of This Study

Although the framework proposed in this study can effectively remove the BIAS
of precipitation on a daily scale over the entire LMRB (Figures 8, 10 and 12), there are
also limitations. In this study, the IDW interpolation method was used to obtain the
grid-scale (0.25◦) monthly precipitation with observed precipitation from 1998 to 2007.
However, there is no doubt that interpolation will bring some errors [33], especially in the
lower LMRB where the gauges have shorter data sequences available. In future research,
we should collect more ground radar and gauge observation data to reduce further the
errors caused by interpolation. Second, due to the difficulty of collecting the observation
data of LMRB and the available data series are always short, in this study, the product
with the smallest mean error was selected as the actual value at each grid point each
month, in other words, the accuracy of the remote sensed or reanalysis precipitation
product at a specific grid point has a greater contribution to the accuracy of the corrected
precipitation than the gauge observations. However, it is clear that each product inevitably
has specific errors compared to gauge observations [8,61], making it impossible for us to
remove the precipitation error using the available data we collected. Third, the correction
result is also related to the spatial distribution of the collected rainfall stations. From
the Figure 8, we can see that in the eastern mountainous area of the lower reaches of
the LMRB, the corrected precipitation products can better present the annual rainfall
distribution of the basin compared with the gauge observations, but in the lower reaches
of Cambodia, the observation data we collected by the ground rainfall stations in this area
is very limited, therefore, there may still be some uncertainty in the corrected precipitation
in this area (Figure 8). In the last aspect, our study used mean error as the unique indicator
to select the precipitation products as the actual value; as concluded by Wang et al. [62],
extreme precipitation is more meaningful for the prediction of water-related disasters and
the sustainable use of water resources in the watershed. Therefore, in the next research,
we should consider extreme precipitation indicators when selecting precipitation products.
However, as we have shown in our introduction and results, our proposed framework can
reduce the BIAS of MSWEP at most gauges. According to Figures 10–12, both the MSWEP-
QM and MSWEP-LS performed better than the raw precipitation products (i.e., AgMERRA,
APHRODITE, CHIRPS, MSWEP, and PERSIANN), of which MSWEP-LS performs better.
Therefore, we recommend that MSWEP-LS be used for related studies such as hydrological
simulation in the Lancang-Mekong River Basin.

6. Conclusions

In this study, we proposed and implemented a novel daily-scale precipitation bias cor-
rection framework based on multiple long-term remote sensing and reanalysis precipitation
products in Lancang-Mekong River Basin, which also can be used in other poorly gauged
areas. We first compared the five rainfall products (i.e., AgMERRA, APHRODITE, CHIRPS,

224



Remote Sens. 2021, 13, 312

MSWEP, and PERSIANN) with the observed precipitation. The resulting precipitation
products MSWEP-QM derived from quantile mapping and MSWEP-LS derived from linear
scaling were evaluated in calibration (from 1998 to 2007) and validation (1979 to 1997 and
2008 to 2014) periods. The main conclusions are summarized in the following points:

1. The APHRODITE showed the highest CC (0.61) with gauge observations at a daily
scale but greatly underestimated the precipitation (with BIAS equals –15.5%),
especially in the downstream areas. This means that we should carefully choose
APHRODITE as the actual value of the LMRB for related research. The average
probability of precipitation detection (POD01) estimated by MSWEP was 0.99, which
was the highest among the five raw precipitation products.

2. The monthly grid-scale evaluation results showed that most grids of MSWEP had the
smallest ME in February, from May to July, November, and December. The AgMERRA,
APHRODITE, CHIRPS, and PERSIANN had the most grids with the smallest ME in
September and October, January, April, and August, respectively. The variation of
five precipitation products’ performance over the entire LMRB was associated with
the data sources included in their respective development processes and the different
algorithms they adopt.

3. Grid-scale evaluation shows that two resulting precipitation products both can capture
the spatial variability of multi-year average precipitation across the entire LMRB in
the calibration period. The MSWEP-QM (0.97) and MSWEP-LS (0.98) have higher CC
than AgMRRA (0.86), APHRODITE (0.91), CHIRPS (0.86), MSWEP (0.87), PERSIANN
(0.76). The point-scale evaluation results indicate that the BIAS of MSWEP-QM (165
in 246), and MSWEP-LS (171 in 246) have more gauges showing a downward trend.

4. Hydrological and regional revaluation shows that MSWEP-LS and MSWEP-QM
achieved better simulation results in five regions (i.e., Y, YC, CL, LM, and MP regions)
compared to the two regions derived from MSWEP (LM and MP). The BIAS of
MSWEP-QM and MSWEP-LS in seven sub-regions all reach within ±9% on a daily
scale. They also had smaller BIAS in Y, YC, PS, and SA regions than the five raw
precipitation products.

5. Validation results indicated that the average absolute BIAS of MSWEP-QM and
MSWEP-LS reduced by 3.4% and 3.51%, respectively, compared to MSWEP. The BIAS
of MSWEP-QM and MSWEP-LS had 141 and 142 gauges showing a decreasing trend
than MSWEP.

In general, the novel precipitation bias-correction framework proposed in this study
is considered to provide a viable study for blending five selected precipitation products
in regions with limited gauge observations. We also recommend that the MSWEP-LS can
be used for further water-related research in LMRB.
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Abstract: Availability of precipitation data at high spatial and temporal resolution is crucial for the
understanding of precipitation behaviors that are determinant for environmental aspects such as
hydrology, ecology, and social aspects like agriculture, food security, or health issues. This study
evaluates the performance of 3B42-V7 satellite-based precipitation product on extreme precipitation
estimates in China, by using the Fuzzy C-Means algorithm and L-moment-based regional frequency
analysis method. The China Gauge-based Daily Precipitation Analysis (CGDPA) product is employed
to measure the estimation biases of 3B42-V7. Results show that: (1) for most regions of China,
the Generalized Extreme Value and Generalized Normal distributions are preferable for extreme
precipitation estimates; (2) the extreme precipitation estimations of 3B42-V7 for different return
periods have a high correlation with those of CGDPA, with biases within 25% for a majority of China
on extreme precipitation estimates.

Keywords: extreme precipitation; estimation; TMPA 3B42-V7; regional frequency analysis; China

1. Introduction

The knowledge and estimation of extreme precipitation are essential for many ap-
plications such as water resources management, flood forecasting, transportation, early
warning, and disaster mitigation [1–4]. Observing the physical quantity of Earth’s atmo-
sphere through satellites and using algorithms to combine multi-source remote sensing data
is an effective way of estimating precipitation [5–7]. This kind of quantitative precipitation
estimation product overcomes the shortcomings of gauge station-based observations such
as limited coverage, uneven distribution, and poor consistency. Among the satellite-based
precipitation estimation products, the Tropical rainfall measurement mission Multi-satellite
Precipitation Analysis (TMPA) 3B42-V7 has received much attention [8,9]. Many studies
have indicated that 3B42 has higher precision among similar products [10–12]. At present,
several studies have been carried out based on the precipitation data provided by TMPA
and have achieved reliable results. Due to the high quality and wide spatial coverage,
Jung et al. [13] obtained the global soil evaporation trend from 1998 to 2008. In terms of
runoff simulation, 3B42-V7 also performs well. Wang et al. [14] obtained a Nash–Sutcliffe
coefficient of 0.83 for daily runoff in the southern humid regions of China. Even under the
adverse condition of terrain and lacking data for calibration, the 3B42-V7 still has good
hydrological applicability [15]. The accurate recording of no rain and light rain events
also allows 3B42-V7 to be widely used in drought researches. Zhong et al. [16] compared
three kinds of satellite-based precipitation products, and showed that 3B42-V7 has the
best performance with the smallest deviation, and it can accurately capture the center
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and range of drought events. However, there are very few studies focusing on extreme
precipitation estimation using 3B42-V7. Motivated by this need, the purpose of this study
is to evaluate the accuracy of estimating precipitation extremes in different return periods
based on 3B42-V7.

The index flood method [17] is one of the procedures to estimate precipitation ex-
tremes. The main idea of this method is to assume that the flood distributions at each
location in a homogeneous region have the same coefficient of variation and skewness,
thereby estimating the quantile of any return period at any location within the region.
On this basis, Hosking and Wallis [18] used the L-moments method to improve the in-
dex flooding method, and proposed the L-moments-based regional frequency analysis
method. This method has been widely used in the frequency analysis of regional floods,
precipitation and drought [19–24]. However, using L-moments-based regional frequency
analysis to estimate precipitation extremes places higher demands on the representative-
ness, consistency, accuracy and sequence length of precipitation data. In regions with
complex terrains, such as gorge, the vertical variation of precipitation is obvious, and the
data representative of rain gauge stations tends to be poor. Limited by factors such as the
level of economic development, many countries and regions in the world have problems
such as sparse meteorological station network, poor data consistency, high error rate, and
short data accumulation, which brings difficulties for the development of infrastructure
and the study of extreme weather [25–28]. In this regard, the combination of the 3B42-V7
and L-moments method is a preferable way to explore extreme precipitation characteristics.

This study will take China as an example to explore the potential of 3B42-V7 in esti-
mating precipitation extremes by using the L-moments-based regional frequency analysis
method. The main objectives are to: (1) reveal extreme precipitation under different return
periods using the 3B42-V7 data and the L-moments method together with the Fuzzy C-
Means algorithm (FCM, a clustering algorithm), and (2) compare 3B42-V7 with the China
Gauge-based Daily Precipitation Analysis (CGDPA) product to evaluate the performance
of 3B42-V7 on extreme precipitation estimates. The study can provide a reference for the
application of 3B42-V7 in extreme precipitation characterization and estimation, which
potentially provides an alternative but effective way for estimating extreme precipita-
tion particularly for regions with poor station networks or lack of long-record, consistent
observed data.

2. Study Area and Data
2.1. Study Area

As shown in Figure 1, China is selected as the study area (73.375◦E~135.125◦E,
18.125◦N~49.875◦N). On one hand, China has relatively complete precipitation data, which
can provide reference data for the accuracy evaluation of 3B42-V7. On the other hand,
China has a variety of terrains (plateaus, mountains, canyons, plains, hills, etc.) and mul-
tiple climate zones (The boreal, the temperate, the warm temperate, the subtropical, the
tropical, and the highland climate) [29,30]. Elevation and rainfall intensity are the two
main factors affecting the accuracy of the 3B42-V7 product [31,32].
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Figure 1. The geography survey of the study area.

2.2. Data

3B42-V7 multi-satellite precipitation product can provide precipitation data covering
50◦N~50◦S with a spatial resolution of 0.25◦ × 0.25◦. It is the post-process product of
TMPA and is calibrated by the monthly meteorological data from the Global Precipita-
tion Climatology Centre. The calibration enhanced the accuracy of 3B42-V7 significantly
comparing with the near-real-time product (3B42RT) [11,33]. Compared with the previous
algorithm, the seventh version (V7) of the algorithm is considered to provide higher quality
precipitation data and has better hydrological utility [34,35]. The dataset is available for
download from https://pmm.nasa.gov/data-access/downloads/trmm.

In this study, CGDPA is used as a reference product. The raw precipitation data of
CGDPA were collected from 2419 meteorological stations in mainland China and inter-
polated into raster data with a resolution of 0.25◦ × 0.25◦ by the National Meteorological
Information Center using the climatology-based Optimal Interpolation method. The sta-
tions used in CGDPA are not used in 3B42-V7 and therefore CGDPA is regarded to be
independent of 3B42-V7 [36]. According to the study, the results obtained based on this
interpolation method can better reflect the influence of terrain on precipitation [37]. Ac-
cording to Shen and Xiong [38], CGDPA products have high accuracy and can capture
heavy rainfall events. Currently, this dataset is widely used in the accuracy assessment of
satellite precipitation products [36,39,40]. It can be downloaded from http://data.cma.cn.

The daily precipitation data of both CGDPA and 3B42-V7 were selected from 1st
January 1998 to 31st December 2017. From these data, we further extracted the annual
maximum consecutive 1-day, 3-day, and 5-day precipitation (RX1DAY, RX3DAY, and
RX5DAY, respectively) as the extreme precipitation indices. On one hand, these three
indices can reflect the characteristics of extremes. On the other hand, these are the concerns
of designers when applying such as designing infrastructure, strength designing and
checking. In addition, the 90 m resolution elevation data are used in this study, which
comes from the Shuttle Radar Topography Mission (SRTM) [41] that is in Geotiff format
and can be extracted by means of ArcGIS software.

3. Methodology
3.1. Fuzzy C-Means Algorithm

Given that the spatial distribution pattern of extreme precipitation is not solely related
to terrain or climate, it is not advisable to use traditional methods such as basin, climate
or administrative boundaries to divide homogeneous regions. Therefore, five factors are
considered, including latitude, longitude, elevation, and average annual rainfall, to divide
the homogeneous region in this study by using the FCM method. The FCM is a fuzzy
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clustering algorithm derived from the K-means method [42,43]. At present, several studies
have effectively applied it to regional frequency analysis [44,45]. This method allows
one data point to belong to multiple clusters, and each data point has a corresponding
membership degree to each cluster. The sum of all memberships of a data point is 1.
According to the principle of “the smallest square of the weighted error in the same
cluster”, each cluster center is iterated and adjusted until the center is not changed. Finally,
according to the value of the membership degree, which clusters the data point belongs to
is determined. The above principle can be expressed by the following formula
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N

∑
i=1

M

∑
.
j=1

um
ij ‖xi − c2

i ‖ (1)
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1
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k=1
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‖xi−Ck‖

) 2
m−1

(2)

cj =
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ij · xi

∑N
i=1 um

ij
(3)

where N is the group number of measured data, M is the sum of clusters, m is any real
number greater than 1, uij is the membership degree of xi in the cluster j, xi is the ith
n-dimensional measured data, cj is the n-dimension center of cluster j, ||*|| is any norm,
and k represents the iteration steps.

3.2. L-Moments-Based Region Frequency Analysis

Describing the characteristics of precipitation can be carried out by using the fre-
quency distribution curve, and a curve is described by several statistical parameters.
The L-moments is a method for estimating the parameters of the frequency distribution
curve [18,46,47]. Compared with the conventional methods, the L-moments method has
small estimation bias, good unbiasedness and robustness [48].

Ordering a n independent samples of variable X, which are arranged in ascending to
obtain {X1:n, X2:n, . . . , Xn:n}, and the subscript i and n represent the ith minimum number
in the sample of length n. The r-order L-moment (λr) is defined as follows:

λr =
1
r

r−1

∑
i=0

(−1)i
(

r− 1
i

)
E(Xr−i:r) (4)

E(Xr:n) =
n!

(r− 1)!(n− r)!

1∫

0

X[F(X)]r−1[1− F(X)]n−rdF(X) (5)

To better describe the statistical characteristics of the distribution curve, Hosking
proposed L-Moment ratios are used defined as follows:

τ2 = λ2/λ1 (6)

τr = λr/λ2, r = 3, 4 . . . (7)

where τ2 is the L-coefficients of variation (L-CV) reflecting the scale characteristics, τ3 is the
L-skewness of the reflecting skewness characteristics, and τ4 is the L-kurtosis reflecting the
kurtosis characteristics.

To perform L-moments-based regional frequency analysis, several steps are required,
including region division with the same precipitation characteristics, checking the discor-
dancy of data from the same region, region homogeneity test, and selection of appropriate
distributions and estimation of precipitation quantile. Among them, the division of regions
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can be initially obtained by the FCM algorithm. If the homogeneity test is not passed, the
corresponding region needs to be adjusted or subdivided.

In order to prevent outliers in the region that are obviously wrong or that differ greatly
from other sites, it is necessary to check the data discordancy. It is generally measured in
Di and is defined as follows:

Di =
N
3
(ui − u)T A−1(ui − u) (8)

u =
∑N

i=1 ui

N
(9)

A =
N

∑
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(ui − u)(ui − u)T (10)
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τ
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2 , τ

(i)
3 , τ

(i)
4

]T
(11)

where N represents the total number of sites in the same region, T represents the transpose
of a matrix, and τ

(i)
2 , τ

(i)
3 , τ

(i)
4 i, respectively. When the number of sites in the region is

greater than 15, Hosking and Wallis suggest treating Di > 3 as discordant [18].
In order to ensure that sites in the same region have the same precipitation frequency

distribution curve theoretically, it is necessary to use H for homogeneity testing. The
formula is as follows:
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, r = 3, 4, (14)

where ni is the length of the historical precipitation data from the site i; µv and σv are the
mean and standard deviation of the V values calculated from 1000 Monte Carlo simulations,
respectively. A region can be regarded as “acceptably homogeneous” if H < 1, “possibly
heterogeneous” if 1 < H < 2, and “definitely heterogeneous” if H > 2.

Six alternative distributions were selected for this study: Generalized Extreme Value
(GEV), Generalized Logistic (GLO), Generalized Normal (GNO), Generalized Pareto (GPA),
Pearson type III (PE3), and Wakeby (WAK). Using a goodness-of-fit measurement (Z) to
judge the feasibility of the hypothesized distribution:

Z =
τDist

4 − τR
4 + β4

σ4
(15)

where τDist
4 is the L-kurtosis of the candidate distribution function; β4 and σ4 are the

deviation and standard deviation of the regional average L-kurtosis (computed from
1000 Monte Carlo simulations and measured samples), respectively. When |Z| ≤ 1.64, it
indicates that the hypothesized distribution has a 90% confidence level, and the closer |Z|
is to 0, the hypothesized distribution is more suitable. When |Z| > 1.64, it recommends
selecting the more robust WAK distribution [18].

The precipitation extremes under different return periods can be calculated by the
following formula:

QTij = qTixij (16)

where xij is the average of the samples from site j in region i; qTi is the regional growth
curve, the value of which depends on the distribution function selected for region i and the
return period T.
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3.3. Evaluation Metrics

In order to quantitatively describe the difference between the precipitation extremes
estimating by different precipitation data, the correlation coefficient (R), root mean square
error (RMSE) and relative error (BIAS) are used (Li et al., 2020c):
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)2
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(17)
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√
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n

n
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2 (18)
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Y− X

X
(19)

where X is the reference sequence and Y is the sequence to be evaluated. The precipitation
extremes estimation results of 3B42-V7 and CGDPA are organized according to the same
extreme precipitation index and return period. R and RMSE are calculated using the orga-
nized sequence. Its purpose is to reflect the overall performance of 3B42-V7 (correlation and
error with CGDPA results). The spatial distribution of the error is obtained by calculating
the BIAS of each grid.

4. Results
4.1. Region Division

Using 3B42-V7 as the precipitation input, China was divided into 60 regions with
similar precipitation conditions based on the FCM algorithm. Since there may be a slight
error in the clustering result, it is possible that several grids inside the region belong to
another region. Therefore, manual inspections should also be carried out to properly adjust
the interior and boundaries of each region.

The division results are shown in Figure 2, from which it can be seen that each sub-
region is spatially continuous, without fleck or stripe. This somewhat implies that the
division is reasonable. Moreover, according to the climate zones over China, it is found
that many of the sub-region boundaries are along the boundaries between different climate
zones (Figure S1 in the Supplementary Material). A distinctive example can be seen for
the Middle Temperate zone in which the boundary coincides with the boundaries of some
sub-regions. Therefore, from the climatic viewpoint, the region division conducted by
FCM is meaningful and rational. When looking into RX1Day, RX3Day, and RX5Day,
it is found that they all showed similar results. The discordancy measurement results
show that the proportion of grids that fails the test in the same region is less than 5.44%. It
indicates that 3B42-V7 has good data quality assurance, and only a few grids are statistically
considered to be “obviously wrong or differ greatly from other sites “ in the same region.
The proportion in the east is generally low, while that in the west is higher. This may be
related to the fact that the terrain in western China is complex and the meteorological
station network is sparse. These two are the main factors affecting the quality of 3B42-V7.
Complex terrain affects the observation accuracy of satellites, and the sparse meteorological
station network implies the lacking of sufficient data for calibration. It should be noted
that for the next generation of multi-satellite precipitation products, GPM performs better
in complex terrain and is hopeful of providing higher quality precipitation products, but
the impact of a sparse station network on product calibration still exists. In any case, from
the current results, even under extremely unfavorable conditions, only a very few grids
in a region fail the test, which is quite satisfactory. The homogeneity measurement was
performed after removing all grids that failed (The proportion of the total grids is less than
3%). The results show that the regions obtained by FCM clustering and adjustment are
homogeneous regions, and most of them belong to “acceptably homogeneous”. This shows
that it is feasible to estimate the precipitation quantile using the same distribution curve
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in the same region according to the division result. See Table S1 in the Supplementary
Material for more details.
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3B42-V7.

Table S2 in the Supplementary Material lists the goodness-of-fit measurement results
for each region using six alternative distributions, as well as the recommended distribution.
The spatial distribution is shown in Figure 3. The results show that the type of selected
distribution for each region has a certain spatial continuity. Adjacent regions have a higher
probability of selecting the same distribution. Most regions can use a distribution curve
with only three parameters (GEV, GLO, GNO, and PE3). GEV and GNO distributions are
suitable for most regions in China, followed by PE3, and GPA is not suitable for China.
This conclusion is consistent with the results obtained by Wang et al. based on the rain
gauge dataset [14]. In RX1Day, GEV is suitable for the southwest, central and northeast,
GNO for northwest, and PE3 for the southeast. RX3Day is similar to RX5Day, GNO is more
applicable in the north and GEV is more suitable in the south.
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4.2. Estimation Accuracy

Before comparing extreme precipitation return levels between 3B42-V7 and CGDPA,
the steps of region division with FCM, discordancy measurement, homogeneity measure-
ment, and distribution selection on CGDPA are conducted again. This procedure is useful
to compare region division results between the two datasets. It is found that the region
division results based on CGDPA are similar to those displayed in Figure 2 with a slight
difference. The results based on the two products in different return periods (20, 50, 100
years) are shown in Figure 4 (RX1Day), Figure 5 (RX3Day), and Figure 6 (RX5Day). Since
CGDPA data have significant errors in western China, we only use the data east of 97.5◦E
for comparison. No reference data are available west of 97.5◦E to compare with the esti-
mation results of 3b42-v7. However, we can still judge whether the results of the western
region have reference value by observing the spatial distribution trend and a typical case of
the quantile estimation results based on 3B42-V7. The estimation results based on 3B42-V7
show that the precipitation extremes show a decreasing trend from southeast to northwest,
which is consistent with the actual spatial distribution of precipitation in China. In the
estimation results based on 3B42-V7, there is a region with significantly higher precipitation
than the surrounding area in the southwestern part of the Himalayas. It is consistent with
the fact that the southwest monsoon from the Indian Ocean is blocked by the Himalayas,
and a large amount of water vapor condenses into raindrops here. When the return pe-
riod becomes longer, the area with less precipitation in the northwest shrinks, while the
precipitation in the southeast increases significantly.

Compared with the estimation results based on CGDPA, both of them have a similar
spatial distribution pattern of precipitation extremes. In general, when the return period
is 20 years, the results of 3B42-V7 are almost the same as those of CGDPA. When using
different extreme precipitation indices, 3B42-V7 tends to overestimate the quantile of parts
of the southern coast. As the return period becomes longer, there are some differences in
the estimation results based on different precipitation inputs. The results of RX1Day show
that when the return period is 20 years, 3B42-V7 will overestimate the quantile of parts of
the northeast; when the return period is 50 years, the overestimated grids in the northeast
is decreased, but the southeast is overestimated; when the return period is 100 years, the
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results in the northeast are basically the same, and the areas that are mainly overestimated
are in the south and southeast. The results of RX3Day and RX5Day indicate that the
northeast is not overestimated, and both believe that the southeast has high precipitation
extremes. The only divergence is that 3B42-V7 believes that there is a large quantile in
the south. In summary, using 3B42-V7 as the precipitation input to estimate precipitation
extremes in most regions of China will lead to a similar conclusion with that of using
CGDPA, only a few regions are overestimated.
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Figure 6. Spatial distribution of RX5DAY estimated by 3B42-V7 and CGDPA under different return
periods.

The statistical evaluation results are shown in Table 1. In different return periods, 3B42-
V7 and CGDPA estimated RX1Day, RX3Day and RX5Day had high correlations (R > 0.85),
of which RX5Day had the strongest correlation. This again shows that the estimation
results of 3B42-V7 have a high spatial similarity with that of CGDPA. RMSE measures
the deviation between the 3B42-V7 estimate and the CGDPA estimate. As Table 1 shows,
RMSE increases slightly with the increase in the return period. It should be noted that
RMSE is a dimensioned index, so it is normal to increase with the total rainfall increase.
Figure 7 shows the spatial distribution of BIAS. In most areas, the value of BIAS is positive,
indicating that the results based on 3B42-V7 tend to overestimate precipitation extremes.
The error range of most areas is controlled within ±25%. The results of RX1Day show that
precipitation extremes are mainly grossly overestimated in three regions (BIAS >0.5), which
are northeast, south, and southwest of China. Among them, the gross overestimation in
northeastern China will be alleviated as the return period becomes longer. The results of
RX3Day show that the spatial extent of the gross overestimation of extreme precipitation
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in northeastern and southwestern China is significantly reduced compared with RX1Day.
The results of RX5Day indicate that there is only a small portion of the northeastern and
southwestern regions that are overestimated (BIAS ranges from 0.25 to 0.5). In summary,
using 3B42-V7 to estimate China’s precipitation extremes, good results can be achieved in
most areas with small errors. When using in southern China, it needs to pay attention to
the problem of gross overestimation. When using in the northeast and southwest, it needs
to judge the severity of the overestimation according to the selected extreme precipitation
index and the return period.

Table 1. Accuracy assessment results of extreme precipitation indicators under different return
periods.

Return
(year)

RX1DAY RX3DAY RX5DAY

R RMSE
(mm) R RMSE

(mm) R RMSE
(mm)

20 0.86 27.13 0.87 37.96 0.88 41.72
50 0.86 30.73 0.86 45.17 0.87 49.32
100 0.85 33.91 0.85 51.87 0.86 56.54
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Overall, the estimation of precipitation extremes based on 3B42-V7 can achieve similar
results with that based on gauge-based precipitation data. Certainly, it is better to combine,
if possible, with gauge-based data to further reduce the error for some regions where
3B42-V7 performs relatively poorly.

5. Discussion

In the precipitation quantile estimation results based on CGDPA, we found some
obvious errors in the west. Therefore, only the data east of 97.5◦E was used, so as not to
affect the final conclusion. This situation may be due to errors in the data recording process,
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and the sparse rain gauge network makes the impact of a single station larger. This is often
difficult to avoid, even if the quality of the data is strictly controlled. For example, for
the Historical Climatology Network from the National Climatic Data Center, although its
raw data have been checked and preprocessed, 38% of the stations have experienced at
least one serious error [49]. In comparison, the advantages of multi-satellite precipitation
products are more obvious. On one hand, precision sensors on satellites are less likely to
fail than rain gauges. On the other hand, even if one sensor fails, it is possible to minimize
the impact by using the data from other sources. This is good news for many developing
countries and underdeveloped regions.

In fact, using CGDPA for regional frequency analysis has encountered more problems
in practical operations than using 3B42-V7, such as the division of homogeneous regions.
In the case of only using longitude, latitude, elevation and annual average rainfall, the
FCM algorithm can be used to effectively cluster homogeneous regions based on 3B42-V7
precipitation data. Usually, only a few regional boundaries need to be fine-tuned to pass
the homogeneity measurement. However, clustering results based on CGDPA require
adjustments to most regions, and some regions need to be subdivided into two regions.
Adjustment work is time-consuming and may be an inevitable process if using measured
precipitation data. Because regional frequency analysis works on a “regional” scale, and
rain gauge station data are “point” scale data, errors will inevitably occur when interpo-
lation. The effects of these errors continue in subsequent clustering (due to the use of
annual average rainfall) and homogeneity measurement (extracting RX1Day, RX3Day, and
RX5Day from the data). Therefore, it is easy to see that the clustering result does not pass
the homogeneity test. Considering the convenience of operation, it is recommended to use
3B42-V7 for regional frequency analysis.

The results of this study were also compared with the results of Wang et al. [14].
Among them, the spatial distribution pattern of precipitation extremes is consistent, the
precipitation is basically at the same level, and no abnormal regions are observed. In
addition, since the TRMM satellite has only accumulated nearly 20 years of data from the
launch, the error is inevitable when using the 3B42-V7 for quantile estimation. However,
the dataset is indeed important for areas that lack data, and given the current results, it
tends to give an overestimated result, which is not a bad thing to ensure the security of
infrastructure design. Additionally, one may consider combining 3B42-V7 with gauge-
based precipitation data. In summary, it is possible to use 3B42-V7 providing rainstorm
design data for the data-deficient regions.

Extreme precipitation estimation based on 3B42-V7 provides the extreme precipitation
spatial distribution under different return periods, which is an important reference when
the governments or stakeholders make flood defenses and adaptations. In particular, as our
results show, the southeast coastal areas have higher return levels of extreme precipitation,
suggesting potential higher flood risk than inland. Additionally, in the southwestern part
of the Himalayas (around 25–30◦N, 95–100◦E), the estimation results based on 3B42-V7
point to potential high flood risk. Therefore, local agencies should pay more attention and
make more preparedness regarding flood-related disasters such as flash floods, landslides,
and debris flows.

6. Conclusions

In this study, the 3B42-V7 precipitation product was used in combination with the
L-moments-based regional frequency analysis to estimate extreme precipitation in China,
and the accuracy of the estimation based on 3B42-V7 was evaluated. The main conclusions
are summarized below:

The data quality of 3B42-V7 meets the requirements of the L-moments-based regional
frequency analysis method, and continuously, China can be divided into 60 homogeneous
regions based on the FCM algorithm. For most regions, the GEV and GNO distributions
are preferable, followed by PE3 and GLO. In terms of RX1DAY fitting, GEV is suitable for
southwest, central and northeast China, while GNO and PE3 are preferable for northwest
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China and southeast China, respectively. For RX3Day and RX5Day, GNO and GEV are
more applicable over north China and south China, respectively.

The estimation results of 3B42-V7 have a high correlation (R > 0.85) with those of
the CGDPA results, with similar spatial distribution patterns of precipitation extremes,
and the BIAS of 3B42-V7 is ~25% for most regions of China. In addition, 3B42-V7 tends
to overestimate in south China. Overall, however, using the L-moment-based regional
frequency analysis method and 3B42-V7, the estimation of extreme precipitation over
China is accurate, indicating that the 3B42-V7 product is a reliable way to achieve extreme
precipitation estimates.
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Abstract: Understanding the spatiotemporal characteristics of hydrological components and their
impacts on vegetation are critical for comprehending hydrological, climatological, and ecological
processes under environmental change and solving future water management challenges.
Innovative methods need to be developed in semiarid areas to analyze the special hydrological factors
in the water resource systems of these areas. Gravity Recovery and Climate Experiment (GRACE)
and Global Land Data Assimilation System (GLDAS) were applied with the normalized difference
vegetation index (NDVI) data in this paper to analyze spatiotemporal changes of hydrological factors
in the Xiliaohe River Basin (XRB). The results showed that precipitation (P), evapotranspiration
(ET) and temperature (T) had similar seasonal change patterns at rates of 0.05 cm/yr., 0.01 cm/yr.
and −0.05 ◦C/yr., respectively. Total water storage change (TWSC) was consistent with the change
trend of soil moisture change (SMC) and showed a fluctuating trend. Groundwater change (GWC)
showed a decreasing trend at a rate of −0.43 cm/yr. P and ET had a greater impact on GLDAS
data (R = 0.634, P < 0.05 and R = 0.686, P < 0.01, respectively) than on other factors. GWC was
more sensitive to changes in T (R = 0.570, P < 0.05). Furthermore, a lag period of 0 to 1 months
was observed for the effects of P and ET on TWSC and GLDAS. NDVI showed an upward trend
at a rate of 0.001 yr−1 between 2002 and 2014. A spatial distribution of NDVI was heterogeneous
in the study area. ET, GLDAS and GWC in growing season limited vegetation growth and were
more important than other factors in XRB. The results may contribute to an understanding of the
relationships between the hydrological cycle and climate change and provide scientific support for
local environmental management.

Keywords: semiarid area; hydrological variations; normalized difference vegetation index; total water
storage change; groundwater change

1. Introduction

Approximately 30% of continental land area is characterized as arid and semiarid [1]. Water cycle
conditions and vegetation ecosystems are fragile and sensitive in these areas [2], and increasing water
demand from all kinds of water users has seriously impacted vegetation ecosystems. Along with
climate change, this increase in demand has greatly changed hydrological factors and water balance
in semiarid areas [3,4]. The Xiliaohe River Basin (XRB) has experienced dramatic changes in its
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hydrological cycle and water balance [5–7]. Distribution and growth of vegetation have changed
observably in the area, which may be related to the important role of hydrological factors in a vegetation
ecological environment [8,9]. It is within this context that hydrological changes and their impact
on vegetation are among the key issues in semiarid areas, where water resources are scarce and the
ecological environment is fragile.

XRB is an agropastoral ecotone in a semiarid area that has experienced significant climate
change [10], with an average annual temperature (T) increase of 0.5–0.7 ◦C. At the same time,
the groundwater level in the study area decreased notably from 2 m to 6 m over the past 30 years
due to unrestrained development and water resource use [11]. Water cycle at the regional scale
has been directly affected by regional climate change and groundwater overexploitation, which had
impacts in local vegetation change and distribution [12]. Precipitation (P) at 46 meteorological stations
decreased from 1960–2012 in Inner Mongolia [13], and P in XRB showed a similar decreasing trend,
which led to decreased discharge from the four inbound rivers and a significant decrease in the
groundwater level from 1951 to 2007 [14]. Meanwhile, evapotranspiration (ET) (determined by the
Penman-Monteith method) varied significantly in both time and space in the area [15,16]. Relationships
between hydrological factors were analyzed based on the results at a few observation points [17,18] and
thus could not well represent the spatial heterogeneity because of the limited observation points. Some
conventional hydrological and climatic indicators have also been used to analyze the hydrological
variations and their impacts on the vegetation [13,19]. However, these results could not reveal the
balance of regional water resources and its impact on vegetation change, especially on a different
scale. Moreover, due to the limited number of observations at the regional scale and in remote areas,
data on certain hydrological and meteorological factors may not be available, such as the change in the
total water storage change (TWSC), soil moisture change (SMC), groundwater storage change (GWC),
etc. Thus, determining the hydrological, climatological and ecological processes may be difficult.
Now, this is possible using satellite techniques for monitoring land meteorological and hydrological
characteristics [11,20]. Since Gravity Recovery and Climate Experiment (GRACE) satellite launch
in March 2002, it has provided a unique way to monitor changes in the earth’s gravitational field,
especially terrestrial water reserve changes at a regional scale [21]. At present, many achievements
have been harvested in related fields, such as hydrological characteristics of TWSC, which were
estimated in many regional basins, e.g., China [22], Tarim River basin [23] and so on. Moreover,
GWC could also be detected on different spatial scales [24,25]. Zhong et al. [11] found that the GWS
showed a prolonged declining rate of −17.8 ± 0.1 mm/yr. during 1971–2015 in the North China
Plain, based on in situ groundwater-level measurements and satellite observations. Han et al. [26]
discussed the GWC dynamic at multi-timescales in Yunnan Province and the correlations with extreme
meteorological factors. Lv et al. [27] found that human factors were the main influencing factors of
regional hydrological characteristics, through analyzing the quantitative attribution of terrestrial water
storage (TWS) variation from hydroclimatic and anthropogenic factors. In addition, the accuracy of
GWC retrieved from the GRACE satellite data in a semiarid area was verified by a comparison with
in-situ data [11]. In these analyses, regional hydrological characteristics dynamics and their correlation
with meteorological factors are analyzed, thus ignoring the lag time between them. In contrast,
more attention to the correlations between regional hydrological characteristics and meteorological
factors at multiple-time scales were paid in this paper. Furthermore, in order to fully reveal the
impacts of hydrological variations on vegetation in semiarid areas, their evolution characteristics at
multiple-time scales and spatial scale were examined.

In summary, spatiotemporal changes of hydrological and meteorological factors, such as P, ET,
T, TWSC, SMC and GWC, etc., especially their impacts on vegetation in XRB, have rarely been
comprehensively discussed. This paper analyzed regional water balance and vegetation factors based
on data from multiple satellite observations. Comprehensive correlations among climatological,
hydrological, and vegetation factors in XRB were simultaneously analyzed using time-series data from
2002 to 2014 at the regional scale. The main objectives of this study are (1) to analyze spatiotemporal
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dynamic of hydrological factors and normalized difference vegetation index (NDVI) in agropastoral
ecotone of semiarid region based on multiple satellite data, (2) analyze response relationships
among regional hydrometeorological factors at multiple-time scales, and (3) evaluate the impacts of
hydrological variations on vegetation.

2. Materials and Methods

2.1. Study Area

Xiliaohe River Basin (XRB), Inner Mongolia Autonomous Region, northeast part of China,
lies between the latitude 42◦30′ to 45◦00′ N and longitude 120◦00′ to 123◦30′ E (Figure 1), which has
an area of 3.2 × 104 km2 and an average elevation of 800 m (400~1300 m). Three main rivers once
flowed through the study area: Xiliao River, Jiaolai River, and Xinkai River. However, the rivers’
discharge has been reduced and may even dry up either seasonally or perennially [28]. Moreover,
the increased water demand from irrigation in recent decades has led groundwater to become the
main total terrestrial water storage source supplied to meet agricultural, industrial, and domestic
water demand. The overexploitation and utilization of groundwater has caused various environmental
problems [29], e.g., regional groundwater table and pollution, land subsidence, and ecological
environment deterioration.
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In XRB, annual precipitation ranged from 350 mm to 450 mm, the annual average temperature
was 6.0◦C, and the pan evaporation (Φ 20 cm) was 1817 mm [30]. Approximately 80% of the total
precipitation occurs in summer (June to September). As a typical ecotone between Farming and Animal
Husbandry in semi-arid area, crops, trees and grassland constitute the main vegetation types [31].
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In order to better understand land distribution and vegetation types, the field survey in July of 2015
and August of 2016, were launched.

2.2. Data

2.2.1. Meteorological Data

There are seven meteorological stations in XRB (Figure 1). Monthly meteorological data, e.g.,
temperature (T) and precipitation(P) are provided by the National Climate Center of China (http:
//ncc.cma.gov.cn) for time series analysis. As most of these stations were built in the late 1950s,
only monthly data from 2002 to 2014 were used in this study to ensure that the lengths of the data
from multiple satellite data (GRACE) were consistent. Detailed meteorological stations’ information is
shown in Table 1.

Table 1. Meteorological stations’ information in XRB.

Meteorological Stations
(2002–2014) Code

Location
(Lat & Lon)

Data

P (cm) T (◦C)

X Y Max Min Avg Max Min Avg

Zhalute a 120.54 44.34 55.0 22.1 35.8 8.9 6.4 7.5
Kezuozhongqi b 123.17 44.08 55.6 18.7 34.3 8.0 6.4 7.4

Kailu c 121.17 43.36 49.6 21.3 31.9 8.5 6.0 7.3
Tongliao d 122.16 43.36 45.2 22.7 31.0 8.6 6.4 7.5
Naiman e 120.39 42.51 39.1 21.3 30.1 9.0 6.6 7.5

Kezuohouqi f 122.21 42..58 51.5 21.7 41.8 8.6 6.4 7.3
Kulun g 121.45 42.44 56.2 29.3 34.7 9.0 6.6 7.5

China’s annual average temperature and annual precipitation spatial interpolation data set
(1980–2015) was based on daily observation data of more than 2400 meteorological stations across the
country, and generated through sorting, calculation and spatial interpolation processing, which is
provided by Data Center of Resources and Environmental Sciences, Chinese Academy of Sciences
(http://www.resdc.cn) for analyzing spatial distribution and variation characteristics. The annual
average temperature and precipitation units were 0.1 degrees Celsius and 0.1 mm, respectively.
Interpolation of climatic factors such as temperature and precipitation use the Australian ANUSPLIN
interpolation software. ANUSPLIN is a tool that uses smoothing spline functions to analyze and
interpolate multivariate data, e.g., a method of approximating a curved surface using a function [32].
Mask extraction and resampling analysis of spatial interpolation data sets from 2002 to 2014 were
carried out by ArcGIS software, and then to extract annual precipitation and temperature average
values of the study area for analysis of spatial distribution and change trends.

2.2.2. Actual Evapotranspiration (ET)

Monthly MOD16A2 ET was used to analyze the change of hydrological factors. ET data from
2002 to 2014 were obtained from NASA/EOS (http://www.ntsg.umt.edu/) have a spatial resolution
of 1.0 km2. The improved ET model [33] was applied rather than the Penman-Monteith equation to
validate ET. The model has been widely used to calibrate the water cycle factors and their interactions
with environmental change [33,34], although differences were observed between measurements and
MOD16 data.

2.2.3. Terrestrial Water Storage

As a key variable in hydrological cycle, terrestrial water storage value was obtained from the
GRACE satellite and designed mainly to observe gravity field changes with time [35]. Monthly terrestrial
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water storage data (Unit: cm) from 2002 to 2014 was produced by the Jet Propulsion Laboratory (JPL)
with a spatial resolution of 0.5 degrees (https://grace.jpl.nasa.gov).

JPL data were the results computed from GRACE Level-1 data by mascon method [36]. In the
process of calculation, the parameters required in the model, e.g., C20 term, geocentric first-order
term value and post-ice rebound correction coefficien were calculated by relevant methods [37] and
models [38,39]. Furthermore, based on constraints, the area of the world is divided into 4551 spherical
caps with equal areas for calculation to reduce the measurement error. In order to improve spatial
resolution of the data, CLM 4.0 hydrological model and coastline resolution refinement (CRI) filtering
method are used to recover the signal of the solution from the mascon model and separate data from
the land and sea for producing spatial distribution grid with 0.5◦ resolution [40]. While previous
studies showed that GRACE satellite data still have some shortcomings, such as lower spatial and
temporal resolutions, these data are still widely used because they can simulate water resources,
including groundwater, for different land types [35].

2.2.4. Auxiliary Data from Global Land Data Assimilation System (GLDAS)

Due to the lack of continuous monitoring of hydrological data, GLDAS-NOAH data was
used to analyze hydrological factor data [41]. Soil moisture, snow water equivalent and total
canopy water storage data in this paper were selected from NOAH data products in GLDAS (https:
//giovanni.gsfc.nasa.gov and https://disc.gsfc.nasa.gov/). GLDAS-NOAH data time series was from
January 2002 to December 2014, with monthly temporal resolution and 0.25◦ spatial resolution. In order
to be consistent with GRACE satellite data for calculating groundwater change, ArcGIS software was
used to resample and transform its spatial scale to 0.5◦. The above data units are kg/m2, and unit for soil
moisture data was depth, and it was recorded at depths of 10 cm, 40 cm, 100 cm, and 200 cm, respectively.

2.2.5. Normalized Difference Vegetation index (NDVI)

Third-generation global inventory modeling and Mapping Research (GIMMS ndvi3g) NDVI
data set from NASA Goddard Space Center (https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/),
which was used in this paper. The changes in vegetation were modified by NDVI data, which had
spatial resolution of 0.083◦ in 15-day intervals from 2002 to 2014. The changing trend of vegetation
was analyzed through the seasonal data (winter: Dec, Jan-Feb; spring: Mar-May; summer: Jun-Aug;
autumn: Sep-Nov; and growing season: May-Oct).

2.3. Methods

2.3.1. Determination of Terrestrial Water Storage Change (TWSC)

Data of GRACE satellite’s monthly gravity model reflects the components related to the earth’s
static structure, which is the difference between the cell’s monthly water storage and the multi-year
average of the cell’s water storage [42,43]. Thus, the TWSC value was determined through JPL data for
a total of 153 months from April 2002 to December 2014 and subtract the average in the period between
2002 and 2010. The numerical value was used to reflect the TWSC, and the positive and negative signs
are used to reflect the direction of change, representing the accumulation or loss of TWSC, respectively.
However, during the commissioning and operation phase of the GRACE satellite, there were problems
such as sensor performance degradation and insufficient energy supply, which resulted in poor quality
of the observation data of the GRACE satellite during these two periods [44,45]. The data in thirteen
months were not available during the study period, June 2002, July 2002, June 2003, January 2011,
June 2011, May 2012, October 2012, March 2013, August 2013, September 2013, February 2014, July 2014
and December 2014. In this paper, in order to maintain the average seasonal cycle well, interpolation,
which was the average of the values for each cell from the months either side of the missing data,
was used to fill in missing data [46].
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2.3.2. Estimation of Groundwater Change (GWC)

Spatiotemporal changes of the GWC were obtained from the GRACE (TWSC) and GLDAS data
among, monthly data represented by the monthly average values [35]. The GWC had a significant
correlation coefficient with the in situ observed groundwater changes, which can be used to characterize
regional groundwater conditions [45]. The water balance equation was expressed as follows:

GWC = TWSC−GLDAS(SMC+SWEC+TCWSC) (1)

where GWC is groundwater storage change, TWSC is terrestrial water storage change, SMC is soil
moisture change, SWEC is snow water equivalent change, TCWSC is total canopy water storage change,
and GLDAS(SM+SWE+TCWS) is the sum of SMC, SWEC and TCWSC. The above data units are cm.

2.3.3. Analysis of NDVI

Maximum-Value Composite

Changes in vegetation was analyzed through the method of maximum-value composite [47].
Based on the pixel-by-pixel data of the NDVI image from January to December each year,
maximum value of a pixel was determined by the calculation, and the MVC image was then generated.

Analysis of Spatial Trend

The spatial trend of NDVI was analyzed through the unitary linear regression method, in which
time and effect factors were independent and dependent variables, respectively. Slope of the straight
line from linear regression was applied to illustrate the spatial trend of NDVI [48].

slope =
n×∑n

i=1 i× ai −
(∑n

i=1 i
)(∑n

i=1 ai
)

n×∑n
i=1 i2 −

(∑n
i=1 i

)2 (2)

where slope is the linear tendency index, ai is the annual NDVI in each grid, n = 13 is the number of
years, and i is the year, e.g., 2003 was the 1st year, 2004 was 2nd year, etc. Value of slope > 0 represents
increasing trend; and value of slope < 0 represents decreasing trend.

Analysis of Hurst Index

The hurst index is an effective method for quantitatively representing the long-range correlation
of time series, and it has been widely used in hydrology, economics, climatology, geology,
and geochemistry [49,50]. Its basic principle is to define the mean sequence for a time sequence
{NDVI(t)}, t = 1, 2, . . . , n:

NDVIτ =
1
τ

τ∑

t=1

NDVIτ τ = 1, 2, · · · , n (3)

X(t,τ) =
τ∑

t=1

(
NDVIt −NDVIτ

)
1 ≤ t ≤ τ (4)

Rτ = max
1≤t≤τ

X(t,τ) − min
1≤t≤τ

X(t,τ) τ = 1, 2, · · · , n (5)

Sτ =




1
τ

τ∑

t=1

(NDVIt −NDVIτ)
2




1
2

τ = 1, 2, · · · , n (6)

where τ is the number of elements, t is the time step the year, NDVIτ is the time series of NDVI, X(t, τ)
is the cumulative deviation, Rτ is the extreme deviation sequence, and Sτ is the standard deviation.
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Taking the ratio of R(τ) and S(τ), we arrive at the following:

log
(R

S

)

n
= H × log(n) (7)

The H value determines whether the NDVI sequence is completely random or persistent. There are
three indications according to the value of H index. Value of 0.5 < H < 1 indicates that NDVI time series
is a continuous sequence, i.e., the change in the future would maintain the same trend with the past
change trend, and the closer the H is to 1, the stronger the persistence. Value of H = 0.5 indicates that
time series is a random sequence and there would not be long-term correlation. Value of 0 < H < 0.5
indicates that future change trend would be opposite to the past change trend, and the closer the H is
to 0, the stronger the anti-persistence.

Analysis of Trend Test

The F test was used for the trend significance test. Significance test only represented the confidence
level of the changing trend, regardless of change speed. Statistic calculation formula is as follows:

F = U × n− 2
Q

(8)

where U is the error sum of the squares, Q is the regression sum of squares, and n is the number of
years. According to the test results, the trend was divided into five levels, i.e., extremely significant
decrease (slope < 0, P < 0.01), significant decrease (slope < 0, 0.01 < P < 0.05), non-significant change
(P > 0.05), significant increase (slope > 0, 0.01 < P < 0.05), and extremely significant increase (slope > 0,
P < 0.01).

3. Results

3.1. Changes of Hydrological Factors over Time

The observations in Figure 2 showed that hydrological factors changed annually. In general,
total annual precipitation (P) and evapotranspiration (ET) increased by 0.05 cm/yr. and 0.01 cm/yr.,
respectively, on average from 2002 to 2014. P showed a slightly greater rate of increase after 2008 than
before. During 2002 and 2014, mean annual temperature (T) decreased on average by −0.05 ◦C/yr.
Terrestrial water storage change (TWSC) increased from 2002 to 2005 and decreased significantly from
2006 to the beginning of 2012, which led to a value that was approximately 6 cm less than the mean of
the whole obtained TWSC series (Figure 2b). TWSC increased again after 2012 and reached a value
equivalent to the average of the whole series’ mean. Monthly soil moisture change (SMC), snow water
equivalent change (SWEC), total canopy water storage change (TCWSC) obtained from GLDAS,
fluctuated from 2002 to 2014 (Figure 2c). SMC in the study area had obvious seasonal variations and
ranged from −5.24~8.26 cm, and this parameter was sensitive to changes in regional water resources.
There were significant differences in the time series of SWEC, which generally reached a peak in
December. In the process of freezing and thawing in spring, the value decreased slowly until the end
of April. The maximum value of SWEC was 1.36 cm in December 2012. The TCWSC value reached
the maximum in July or August in summer and showed an upward trend in the study area, with a
range from −0.01 to 0.01 mm. Analysis of TWSC and auxiliary data-Global Land Data Assimilation
System (GLDAS = SMC + SWEC + TCWSC) showed that temporal patterns groundwater change
(GWC) could be described based on time series analysis (Figure 2d). GWC in the study time showed a
clear decreasing trend at rate of −0.43 cm/yr., and especially experienced a significant decrease from
2007 to 2012 at a rate of −0.99 cm/yr. Furthermore, TWSC lagged behind other factors at the time scale,
e.g., P, SMC and so on in Figure 2.
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with P, T and ET, indicating that there was an interaction between these factors. However, a lag effect 
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the minimum value in winter, indicating that the annual groundwater storage gradually decreased, 
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In addition to annual changes, hydrological factors changed seasonally as well in Figure 3.
P, ET and T values showed similar seasonal change patterns, with a high peak values occurring in
summer and a low peak value occurring in winter. TWSC and GLDAS increased from spring to
summer and then decreased from autumn to winter. A similar change trend was observed for TWSC
and GLDAS with P, T and ET, indicating that there was an interaction between these factors. However,
a lag effect was also observed, which required further quantitative analysis. The inter-annual trend of
GWC showed a continuous downward trend, gradually decreasing from the maximum value in spring
to the minimum value in winter, indicating that the annual groundwater storage gradually decreased,
especially in summer where this phenomenon was more obvious.
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Figure 3. Seasonal P, T, ET, TWSC, GLDAS(SWEC&SMC&TCWSC) and GWC from 2002–2014.

3.2. Spatial Distribution of Annual Hydrological Factors

3.2.1. Situ Observation of Hydrological Factors

The in-situ observations of hydrological factors between 2002 and 2014 showed that the mean
annual P increased from northwestern to southeastern areas, with an average value of 37.2 cm, while the
mean annual T decreased from southwestern to northeastern areas, with an average value of 7.5 ◦C
(Figure 4a,b). This result indicated that hydrological and meteorological factors in the study area have
significant spatial heterogeneity, while spatial distributions between P and T were different.
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Figure 4. Spatial distribution of P (a) and T (b) from 2002~2014 (Grid cell size: 1 km).

3.2.2. Hydrological Factors from Satellite Data

TWSC data observed from the satellite in the study area showed a decreasing trend from northeast
to southwest on the whole in Figure 5. The northern and central region were in a state of accumulation,
while the southern region was in a state of deficit with a relatively obvious decreasing trend (Figure 5a).
Based on GLDAS data, SMC, SWEC and TCWS showed equivalent water increases, as shown in
Figure 5b. Spatial distribution of GLDAS was similar to that of TWSC, indicating that there was an
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interaction between these parameters. The GWC value showed a slight surplus state in most area of
XRB, which ranged from −1.2 to 1.0 cm (Figure 5c).
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3.3. Spatiotemporal Variations of Normalized Difference Vegetation Index (NDVI)

3.3.1. Temporal Variation

Similar to other areas in northern China, NDVI had apparent seasonal variation, and showed
an upward trend during 2002 and 2014 in Figure 6. The NDVI increased from May to the most
vigorous growing season in July and August, and it then decreased to the minimum level in November
and remained almost unchanged until the following April, with a range of the NDVI of 0.16~0.19
(Figure 6a). In addition, NDVI showed a single peak change during the year in Figure 6a as well as
hydrological factors in the study area in Figure 2a, meaning that there were relationships between
them. Furthermore, the annual value of NDVI increased slightly at a rate of 0.001 yr−1 from 2002 to
2014 in Figure 6b. The analysis of the cumulative anomaly method showed that NDVI decreased from
2002 to 2009 and then increased again (Figure 6b). This change trend was also consistent with the
change trend of hydrological factors in the study area (Figure 2b,d), indicating that water factors in
semiarid areas, especially groundwater, may be the main factors affecting vegetation changes.
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Figure 6. Variations (a) and curve of accumulation (b) of NDVI with time.

3.3.2. Spatial Variations

Figure 7 showed that the spatial distribution of NDVI was heterogeneous in the area. NDVI value
was lower in the southwestern area, with a range of 0.0~0.33, than in the central belt from west to
east (Figure 7a). NDVI was greater along the rivers, which ranged from 0.63~1.00, than other parts,
which ranged from 0.0~0.63. Furthermore, the annual value of NDVI decreased over 63.2% of the
area at a rate of −0.008~0.0 a−1, while 36.8% of the area showed an increase in the NDVI at rate of
0~0.02 a−1 (Figure 7b). F test results suggested that significant variance area accounted for 89.3% of
the whole area and was mostly distributed in areas with a relatively lower NDVI value (Figure 7c).
Significant variance was not observed in cultivated areas along rivers. The Hurst index (0.06~0.97)
indicated that in 55.7% of the area, particularly in areas with a decreasing NDVI trend, the variance
trend was continuously maintained for a long time while the remaining 44.3% of the area would show
fluctuations (Figure 7d).
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3.4. Relationships between Hydrological Factors

The value of P was highly related to ET, with a correlation coefficient of 0.685 (P < 0.01). TWSC had
a significant correlation (R = 0.680, P < 0.05) with GWC, as compared to GLDAS in Table 2, indicating
that TWSC mainly consisted of GWC in the area. GLDAS had a significant and positive correlation
with P (R = 0.634, P < 0.05) and ET (R = 0.686, P < 0.01), meaning that a higher P rate corresponded to
more SMC. Significant positive correlation was observed between T and GWC (R = 0.680, P < 0.05),
which indicated that water demand of plants increased as T increased in XRB and groundwater was
the main source of water in semiarid area and changed significantly. In summary, there are complex
correlations among regional hydrological elements.

Table 2. Correlation between hydrological factors at annual scale.

P ET T TWSC GLDAS GWC

P 1 0.685 ** −0.470 0.472 0.634 * 0.065
ET 1 −0.245 0.387 0.686 ** −0.096
T 1 0.021 −0.481 0.570 *

TWSC 1 0.518 0.680 *
GLDAS 1 −0.193
GWC 1

**. Correlation is significant at the 0.01 level (2-tailed). *. Correlation is significant at the 0.05 level (2-tailed).

P is not the only one of the most important factors underlying the interactions among the
hydrological cycle but also the key variable in the water resources in semiarid areas. It accounted
for approximately 75% of total water resource recharge in normal years and approximately 57% of
recharge in dry years in study area [11]. A lag time of P infiltration is observed based on GLDAS
and GWC. Lag time is usually represented in hydrological forecasts based on P in the hydrological
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equilibrium [51]. Table 3 showed their relationships between TWSC, GLDAS and GWC and P and
ET, which were analyzed to determine lag times. The results showed that TWSC and GLDAS had
significant correlation (P < 0.05) with P at different lag periods, i.e., a one-month time lag occurred
(R = 0.312, P < 0.05). Moreover, these parameters were significantly and positively correlated with
the ET in the current month (R = 0.276, P < 0.05) and one month prior (R = 0.276, P < 0.05) but not
positively correlated (p > 0.01) with the ET two to three months later. This finding suggested that the P
and ET in the current month and one-month prior could significantly affect the TWSC and GLDAS.
Meanwhile, P and ET did not have correlation (P > 0.05) with GWC, which might be related to the
considerable depth of groundwater table due to overexploitation, long time period for infiltration to
recharge groundwater or lack of infiltration recharge of groundwater due to ET. As a result of this,
P and ET were increasingly less sensitive to GWC.

Table 3. Correlation between hydrological factors at monthly scale in a different lag period.

P ET

Lag0-M Lag1-M Lag2-M Lag3-M Lag0-M Lag1-M Lag2-M Lag3-M

TWSC 0.230 ** 0.312 ** 0.275 ** 0.195 * 0.276 ** 0.276 ** 0.131 0.025
GLDAS 0.324 ** 0.382 ** 0.281 ** 0.181 * 0.378 ** 0.331 ** 0.142 0.045
GWC 0.007 0.03 0.067 0.049 −0.012 0.005 0.011 −0.017

**. Correlation is significant at the 0.01 level (2-tailed). *. Correlation is significant at the 0.05 level (2-tailed).

3.5. Relationships between Hydrological Factors and NDVI

To obtain better understanding of relationships between hydrological factors and NDVI,
correlation analysis was carried out. As shown in Table 4, the results showed that ET and GLDAS were
significantly and positively correlated with NDVI (R = 0.747 and 0.704; P < 0.01) in the growing season
(May-Oct) of vegetation. Correlation coefficient between NDVI and GWC in the growing season was
significantly negatively correlated (R = −0.64, P < 0.05), indicating that groundwater represents an
important water source for vegetation growth in the XRB. T and TWSC had no effect on the growth
of vegetation in each season, and their correlation coefficients did not pass the significance test. In
summary, ET, GLDAS and GWC could be the major hydrological parameters that affect vegetation
dynamics in the growing season.

Table 4. Correlation between NDVI and hydrological factors in different seasons.

P ET T TWSC GLDAS GWC

NDVI

Spring −0.075 0.024 −0.226 0.151 0.226 −0.123
Summer 0.425 0.418 −0.073 −0.162 0.446 −0.357
Autumn −0.140 0.063 0.220 0.370 0.411 0.046
Winter −0.585 * 0.407 −0.250 −0.151 −0.484 0.074

Growing season 0.542 0.747 ** −0.242 0.154 0.704 ** −0.640 *

**. Correlation is significant at the 0.01 level (2-tailed). *. Correlation is significant at the 0.05 level (2-tailed).

4. Discussion

4.1. Dynamics of Hydroecological Elements in Semiarid Area

Water for agricultural irrigation relies heavily on groundwater due to shortages of surface
water in study area [47], and reports have indicated that more than 80% of the water use was from
groundwater [11]. Spatiotemporal variation and distribution characteristics of the hydrological factors
were determined by multiple satellite data, which have been widely used as effective approaches for
detecting the hydrological dynamics in ecotones in semiarid areas. Combined with the analysis results
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of climate change in the study area, spatial distribution of precipitation (P) and temperature (T) was
uneven, as shown in Figure 4 and presented a decreasing and increasing trend from the southeast to
the northwest, respectively. The results showed that, on the spatial scale, terrestrial water storage
change (TWSC) results based on JPL satellite data and auxiliary data-Global Land Data Assimilation
System (GLDAS = SMC + SWEC + TCWSC) values were also closely related to P and T. Application
of the multi-satellite data would represent an effective approach to monitoring and modeling the
dynamics of groundwater change (GWC). Our result confirms that the environment changes have
occurred in the semiarid area and that they can be related to dynamics of hydrogeological elements
were easily observable and measurable through satellite images. Through correlation analysis, there are
complex relationships among regional hydrological elements in Table 2. Furthermore, soil moisture
change (SMC) and snow water equivalent change (SWEC) obtained from the GLDAS data played
an important role in the hydrological cycle in the area. The SWEC not only affected the surface
runoff, groundwater recharge, and SMC in the spring [52–54], but also indicated the snow cover in
the winter and the accumulated air temperature in the spring (Figure 2). SMC could even directly
reflect the vegetation growth in growing season, and predict the GWC [55,56]. SMC was higher for
irrigated land than grassland in the vegetation growth season (Figure 5). In particular, SMC and GWC
directly affected the local hydrologic cycle, which could be used to optimize the management and
utilization of water resources and improve vegetation growth. However, compared to other areas [57],
the response between P and GWC was increasingly insensitive in the study area with a lag period of
one month. There are many reasons for this phenomenon, but anthropic factors [58], e.g., irrigation and
overexploitation of groundwater, have thickened the vadose zone of soil, and the relationship between
P and groundwater, which is is becoming more and more complex.

While the application of the satellite data can significantly improve the level of water resources
assessment in this area, there are still some deficiencies, such as time scale (monthly), spatial resolution
(0.5 degree) and data accuracy verification, which have a significant impact on the research results
of small and medium-sized watersheds, e.g., the correlation strength between them and other
environmental molecules is very poor, only the correlation can be considered. Therefore, how to
combine the limited water resources monitoring information with new methods, new technologies and
new achievements to carry out effective regional water resources management has become a practical
problem demand of relevant departments of water resource management.

4.2. Impacts of Hydrological Factors on Vegetation

Hydrological factors played a controlling role in terrestrial ecosystems [59,60]. Field survey in
July of 2015 and August of 2016 and normalized difference vegetation index (NDVI) value showed
that the northern part of the study was dominated by grassland with medium vegetation coverage,
the middle part was dominated by cultivated land with high vegetation coverage, and the southern
part was dominated by sandy land with low vegetation coverage. The results in the paper showed
that ET, GLDAS and GWC could be the major hydrological parameters that affect the vegetation
dynamics in the growing season. The northeastern XRB included grassland with some small rivers
with high terrain and vegetation coverage, and it was affected by snow melt water in the spring as
well as rainfall. As a result, GLDAS and TWSC showed a cumulative trend with higher values in
the northern piedmont plain than in other areas, indicating that the piedmont plain had basically
maintained its original ecology and was rarely affected by human activities. Change of GWC in the
central part of the study area, which is a flat, wide area of cultivated land, was relatively reduced as
shown in Figure 5c. Therefore, irrigation had a significant impact on regional SMC and even affected
regional water resource reserves [61], which indicated that the GWC might be affected by human
activities, such as the expansion of cultivated land area [62] and overexploitation and utilization of
groundwater [63]. TWSC in the southwest of the study area showed a decreasing trend (Figure 5a) [64].
Major land use types in the area consisted of typical steppe, meadow steppe, and cropland in Figure 1,
and vegetation growth in these areas was dependent on ET (R = 0.747, P < 0.05) and GLDAS (R = 0.704,
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P < 0.05) which was mainly consisted of SMC. However, in summer and the vegetation growing
season, P and NDVI were positively correlated, although the occurrence of this phenomenon is mainly
related to the serious desertification of the local surface and the inability of the soil to store water
correlation coefficient failed the significance test (Table 3) which indicated that lower P did not have
a significant effect on the vegetation in the semiarid area [65]. NDVI, as an intuitive indicator of
vegetation growth, plays a fundamental role in reflecting the characteristics of vegetation growth and
distribution. However, NDVI is hardly enough to explain vegetation changes, such as vegetation
height, density and so on. Furthermore, grassland will often give a stronger NDVI value than forest
but the effect on ET and GWC are very different. In future, more indexes related to water should be
used in the study of regional hydroecological processes.

5. Conclusions

Using multiple satellite data, the spatiotemporal changes of hydrological elements in semiarid
areas from 2002 to 2014 and their effects on vegetation were analyzed in this paper. The main
conclusions are as follows.

(1) Analysis of spatiotemporal characteristics of hydrological elements showed that the
hydrological process in the study area has changed significantly. Annual variations of precipitation (P),
evapotranspiration (ET) and temperature (T) were all in the form of a single peak, and the interannual
variation law was slightly different, with rates of 0.05 cm/yr., 0.01 cm/yr. and −0.05◦C/yr., respectively.
Terrestrial water storage change (TWSC) showed a fluctuating trend, with initial increase, then decrease,
and finally an increase, which was consistent with the change trend of soil moisture change (SMC).
Groundwater change (GWC) showed a decreasing trend at a rate of −0.17 cm/yr.

(2) Complex correlations occurred among regional hydrological elements. P and ET were
significantly correlated (R = 0.685, P < 0.01) and had a greater impact on the GLDAS (R = 0.634,
P < 0.05 and R = 0.686, P < 0.01) than on the TWSC and GWC. GWC is an important component of
the TWSC in the region (R = 0.680, P < 0.05), and it was more sensitive to the T response (R = 0.570,
P < 0.05). Furthermore, P would lead to greater TWSC and GLDAS values when P preceded the TWSC
by one month, whereas smaller changes would be observed when P preceded these parameters by
two months. The time lag of the GLDAS that was influenced by P was more obvious than that of the
TWSC. The TWSC and GLDAS were significantly and positively correlated with the ET in the current
month and one month prior and not positively correlated with the ET two to three months later. Due to
overexploitation, P and ET did not have any effect on the GWC.

(3) Normalized difference vegetation index (NDVI) had obvious seasonal variations and showed
an upward trend at a rate of 0.001 yr−1 during 2002 and 2014. Spatial distribution of NDVI was
heterogeneous in study area. NDVI decreased by 63.2% of the area at rate of −0.008~0.0 yr−1. The area
showing significant variance accounted for 89.3% of the whole area, and 55.7% of the area would
maintain the variance trend continuously for a long time, with these areas mainly showing decreasing
NDVI change trends. However, other 44.3% area would show fluctuations. Hydrological factors
play a controlling role on terrestrial ecosystems. In growing season, ET, GLDAS and GWC were the
parameters that limited vegetation growth, and they were more important than other factors in XRB.

Application of satellite data could significantly improve the water assessment capability in
semiarid areas and could be used for regional water resource and eco-environment management in
semiarid areas. Hydrological factors, such as TWSC, SM and GWC, spatiotemporal dynamic and their
correlations were successfully determined and analyzed in this study. Impacts of hydrological change
on NDVI were also identified based on the analysis. These results will help to understand regional
hydroecological processes, and also provide a scientific basis for local environmental management.
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Abstract: Gridded precipitation products are the de facto standard in hydrological studies, and the
evaluation of their accuracy and potential use is very important for reliable simulations. The objective
of this study was to investigate the applicability of gridded precipitation products in the Yellow
River Basin of China. Five gridded precipitation products, i.e., Multi-Source Weighted-Ensemble
Precipitation (MSWEP), CPC Morphing Technique (CMORPH), Global Satellite Mapping of
Precipitation (GSMaP), Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation
Analysis 3B42, and Precipitation Estimation from Remotely Sensed Information using Artificial
Neural Networks (PERSIANN), were evaluated against observations made during 2001−2014 at daily,
monthly, and annual scales. The results showed that MSWEP had a higher correlation and lower
percent bias and root mean square error, while CMORPH and GSMaP made overestimations compared
to the observations. All the datasets underestimated the frequency of dry days, and overestimated
the frequency and the intensity of wet days (0–5 mm/day). MSWEP and TRMM showed consistent
interannual variations and spatial patterns while CMORPH and GSMaP had larger discrepancies with
the observations. At the sub-basin scale, all the datasets performed poorly in the Beiluo River and
Qingjian River, whereas they were applicable in other sub-basins. Based on its superior performance,
MSWEP was identified as more suitable for hydrological applications.

Keywords: precipitation datasets; evaluation; spatial scale; temporal scale; climate; Yellow River Basin

1. Introduction

Precipitation is the main link in the hydrological cycle and one of the most important meteorological
input elements of hydrological models. Accurate precipitation input is the basic condition for obtaining
reliable land surface hydrological simulations [1]. Choosing precipitation data is more important than
choosing hydrological models [2]. The use of ground rainfall observation stations is the most direct
way to measure precipitation. However, rain gauge density in complex terrain is low and unevenly
distributed, thereby resulting in scarce or even a lack of observed precipitation, which cannot meet the
needs of hydrological simulations. Remote sensing products based on microwave (MW) and infrared
(IR) measurements have become a potential and valuable data source owing to their wide coverage and
high spatiotemporal resolution. Affected by sampling error, algorithm uncertainty [3–6], the number of
stations [7,8], and topographical factors [9,10], gridded precipitation data have errors when comparing
to gauge observations, and rigorous quality assessment is required before use.

In recent years, precipitation products have been evaluated at multi-regional, multi-temporal,
and multi-spatial scales; the results showed that there are large differences among precipitation
products. Beck and Vergopolan [11] evaluated 22 precipitation products at the global scale. Among the
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uncorrected datasets, the satellite and reanalysis-based Multi-Source Weighted-Ensemble Precipitation
(MSWEP)-ng (the full name of the abbreviation was listed in Table 1, the same below) showed the
greatest correlation with the observations, followed by the reanalysis data (ERA-Interim, JRA-55,
and NCEP CFSR), satellite-reanalysis data (CHIRP), passive MW-based data (CPC Morphing Technique
(CMORPH), Global Satellite Mapping of Precipitation (GSMaP_MVK), and Tropical Rainfall Measuring
Mission (TRMM) 3B42RT), and products based on IR imagery (GridSat, Precipitation Estimation from
Remotely Sensed Information using Artificial Neural Networks (PERSIANN), and PERSIANN-CCS).
Among the corrected datasets, the products that directly merge daily gauge observations perform
best (CPC Unified and MSWEP), followed by those that incorporate temporally coarser gauge data
(CHIRPS, GPCP-1DD, TRMM 3B42, and WFDEI-CRU) and products that indirectly incorporate gauge
data through other multi-source datasets (PERSIANN-CDR). In China, the spatial distribution of
daily mean precipitation of CMORPH and TRMM 3B42 shows good similarity with the ground
station data, and both can describe the diurnal variation in summer precipitation in most regions
of China [12]. CMORPH outperforms GSMaP_MVK and PERSIANN [13], and IMERG performs
better than TRMM 3B42, CMORPH_CRT, and PERSIANN_CDR [14]. The corrected GSMaP_Gauge
is superior to GSMaP_NRT and GSMaP_MVK [15]. In humid regions of China, TRMM 3B42 shows
the lowest error and deviation and the highest correlation coefficient (CC) at a monthly scale, but
its accuracy is lower at a daily scale compared with that of PERSIANN_CDR and NCEP-CFSR [16].
In the Qinghai-Tibet Plateau, IMERG is superior to TRMM 3B42V7 at multiple time scales, but with
discrepancies in the timing of the greatest precipitation intensity and overestimation of the maximum
rainfall intensity [17]. The error and deviation of TRMM 3B42 are lower than those of PERSIANN and
CMORPH [18,19]. In addition, TRMM 3B42 and CMORPH_BLD outperform CMORPH and TRMM
34B2RT in the Huifa River Basin [20]. IMERG is superior to TRMM 3B42 in detecting precipitation
events and precipitation in the Huai River Basin [21]. Compared with PERSIANN_CDR, CHIRPS
shows a lower bias (PBIAS) and error, and can describe the spatial pattern of precipitation at a monthly
and annual scale more accurately in Xinjiang Province [22].

Table 1. Full name of the abbreviation in the text.

Abbreviation Full Name

CFSR Climate Forecast System Reanalysis

CHIRP Climate Hazards group Infrared Precipitation

CHIRPS Climate Hazards group Infrared Precipitation with Stations

CMORPH Climate Prediction Center MORPHing technique

CMORPH_BLD CMORPH satellite-gauge blended product

CMORPH_CRT CMORPH bias corrected

CPC Climate Prediction Center

ERA-Interim European Centre for Medium-range Weather Forecasts ReAnalysis Interim

GPCP Global Precipitation Climatology Project

GPCP-1DD GPCP 1-Degree Daily

GridSat P derived from the Gridded Satellite

GSMaP_MVK Global Satellite Mapping of Precipitation (GSMaP) Moving Vector with Kalman (MVK)

GSMaP_NRT GSMaP Near Real Time

IMERG Integrated Multi-satellite Retrievals for Global Precipitation Measurement

JRA-55 Japanese 55-year ReAnalysis

MSWEP Multi-Source Weighted-Ensemble Precipitation

NCEP National Centers for Environmental Prediction

PERSIANN Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks

PERSIANN-CCS PERSIANN Cloud Classification System
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Table 1. Cont.

Abbreviation Full Name

PERSIANN-CDR PERSIANN Climate Data Record

TMPA TRMM Multi-satellite Precipitation Analysis

TRMM Tropical Rainfall Measuring Mission

WFDEI-CRU WATCH Forcing Data ERA-Interim Climatic Research Unit

The same type of precipitation product shows different performance in different regions and at
different temporal scales. MSWEP generally overestimates the precipitation in China but underestimates
it in North China. MSWEP overestimates light precipitation but underestimates the heavy precipitation
events. It shows the highest accuracy at a monthly scale and the lowest accuracy at a daily scale. There is
a significant difference in the annual trend of precipitation between MSWEP and the observations [23].
PERSIANN_CDR can capture the spatiotemporal characteristics of extreme precipitation events at
a daily scale in the southeast monsoon region of China [24]. It is also a reliable alternative dataset
in the Qinghai-Tibet Plateau, upper Yellow River (UYR) [25], and Xiang River Basin [16]. CMORPH
shows a large error in the southeast and poor time correlation of seasonal precipitation in the west and
northwest of China [14]. IMERG and TRMM 3B42V7 mostly show high correlation and low relative
error in the eastern river basins while showing low correlation and high relative error in the western
region of China [26]. The performance of precipitation products also varies seasonally. In China, satellite
precipitation and site-corrected products have poor ability to detect precipitation events in winter [12].
IMERG has a stronger ability for light and solid precipitation, and its accuracy for winter precipitation
is significantly higher than that of TRMM 3B42, but its accuracy in detecting heavy precipitation needs
to be strengthened [26].

The Yellow River Basin in China is characterized by a wide area, complex topography and
landforms, diverse climate types, and vegetation coverage. The rain gauges here are unevenly
distributed with low density, and have poorly representative and discontinuous data sequences, which
cannot meet the needs of hydrological simulations. Sometimes, there is only one to two or even no
stations in a target research basin, which often leads to great uncertainty in the input precipitation and
poor prediction of the rainfall–runoff model [27]. Gridded precipitation datasets have the potential to
improve the quality of precipitation and runoff prediction results. In the Yellow River Basin, it had been
reported that there is a good linear relationship between IMERG, TRMM 3B42V7, and ground-based
rain gauge data, but the annual precipitation is overestimated by 2.46% and 2.19%, respectively.
The CC is relatively high in the southern part of the basin, while the correlation is relatively low in the
Ordos Plateau and its north [28]. Seasonally, IMERG and TRMM 3B42 show higher reproducibility
in spring and autumn than in winter and summer. The precipitation is underestimated in July and
August but is overestimated to different degrees in other months. Among them, the relative error is
the largest in December, and the absolute deviation is the largest in September [28].

In summary, the accuracy of precipitation products varies with regions, seasons, and spatiotemporal
scales. However, studies in the Yellow River Basin are generally conducted at a large spatial scale, thereby
masking the error distribution of small-scale watersheds. In addition, it was common that only one or
two products were evaluated, which may result in lacking comprehensive cognition of other kinds of
products. The objective of this study was to evaluate of the applicability of multiple precipitation
datasets at multiple spatiotemporal scales in the Yellow River Basin in order to provide a reliable
source of precipitation data for hydrological simulation and water resources management.

2. Study Area and Methods

2.1. Study Area

The Yellow River Basin, which is located between 96–119◦E and 32–42◦N, has a drainage
area of 7,950,000 km2 [29]. The basin traverses the Qinghai-Tibet Plateau, Inner Mongolia Plateau,
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Loess Plateau, and Huanghuaihai Plain from the west to the east [30]. The Yellow River Basin belongs
to the continental monsoon climate and can be roughly divided into arid, semi-arid, semi-humid,
and humid climates [29]. The west is arid, while the east is humid. It is dry in winter with drought
in spring, and is rainy in summer and autumn [31]. Affected by the topography and atmospheric
circulation, the precipitation is unevenly distributed across the seasons, with large interannual and
regional variations. Nine provinces are involved in the Yellow River Basin: Qinghai, Sichuan, Gansu,
Ningxia, Inner Mongolia, Shaanxi, Shanxi, Henan and Shandong. The drainage area in Shandong
Province is long and narrow, and will not be discussed in this study. The basin was divided into
seven water systems to facilitate the evaluation at different regional and spatial scales, including the
UYR, Gansu–Ningxia water system (GN), Inner Mongolia water system (IM), Northern Shaanxi water
system (NSH), Wei River Basin (WR), Fen River Basin (FR), and Western Henan water system (WH).
Furthermore, the basin was divided into 24 sub-basins, including the Yellow River source region,
Wuding River, and Jing River. The geographical location, elevation, rain gauge distribution, water
system division, and sub-basin division of the Yellow River Basin are shown in Figure 1.
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Figure 1. Geographical location, elevation, rain gauge distribution, water system partition and
sub-basins of the Yellow River basin. UYR, GN, IM, NSH, WR, FR, and WH are the upper Yellow
River, Gansu–Ningxia water system, Inner Mongolia water system, Northern Shaanxi water system,
Wei River Basin, Fen River Basin, Western Henan water system, respectively. The No and the name of
the sub-basins: 1, Yellow River Source. 2, Huang River. 3, Tao River. 4, Zhuanglang River. 5, Tributary
1 in upper Yellow River. 6, Zuli River. 7, Qingshui River. 8, Kushui River. 9, Dusitu River. 10, Tributary
2 in upper Yellow River. 11, Dahei River. 12, Hun River. 13, Tuwei River, Kuye River, etc. 14, Wuding
River. 15, Qingjian River and Yanshui River. 16, Beiluo River. 17, Jing River. 18, Wei River. 19, Shichuan
River. 20, Fen River. 21, Qin River. 22, Tributary in middle Yellow River. 23, Yiluo River. 24, Ying River.
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2.2. Datasets

The gauge observed daily precipitation (OBS) was used to conduct the point to point evaluation.
The gridded dataset CN05.1 interpolated from OBS was used as a reference to evaluate the spatial
patterns of the precipitation products. Both OBS and CN05.1 were obtained from the National
Meteorological Information Center of China. CN05.1 was interpolated based on the daily precipitation
of 2416 rain gauges around China. The spatial resolution was 0.25◦ × 0.25◦ and the temporal resolution
was daily [32]. The interpolation of CN05.1 was realized by the “anomaly approach”. The climatology
was first interpolated by thin-plate smoothing splines and then a gridded daily anomaly derived from
angular distance weighting method was added to climatology to obtain the final dataset. New and
Lister [33] compared several kinds of interpolation methods and indicated that these two methods
performed better. Gridded precipitation such as CN05, EA05 and APHRO were all interpolated by
using these methods [34–36]. The climatology was first interpolated due to climatic factors, especially
precipitation, have great discontinuity in spatial distribution. The climatology is relatively continuous;
interpolating it first is beneficial to reduce errors caused by discontinuity. Specifically, thin-plate
smoothing splines is used to interpolate climatology by a software named ANUSPLIN. ANUSPLIN
was a interpolation package that was widely used to produce climatic elements with high resolution in
geography and ecology [37]. CN05.1 was interpolated using ANUSPLIN, taking longitude and latitude
as independent variable, and taking elevation as covariable. Then, the anomaly was derived from an
angular distance weighting method. The grid value was obtained on the consideration of the weight of
angle and distance between the gauge station and the grid.

Five precipitation products were evaluated, including CMORPH_blended, PERSIANN_CDR,
GSMaP_MVK, MSWEP V1.1 and TRMM 3B42 V7. Basic information about the products is shown in
Table 2. The coarsest temporal and spatial resolutions were daily and 0.25◦, and the highest resolutions
were 1 h and 0.1◦, respectively. To facilitate the point to point evaluation, all the products were
downscaled to the spatial location of rain gauge using the bilinear interpolation method. In this method,
four nearest grid values are used for calculating the value of a particular point. The weights are derived
from the spatial locations in a two-dimensional space. The closer the grid is to the point, the more
influence (weight) it will have. The algorithm obtains the pixel value by taking a weighted sum of
the pixel values of the four nearest neighbors surrounding the calculated location [38,39]. The raw
CMORPH, which was retrieved from MW and IR signals, is a pure satellite precipitation product with
a spatial resolution of 8 km and temporal resolution of 30 min [40]. CMORPH_blended is a dataset
incorporating raw CMORPH and 30,000 automatic meteorological stations around China, and the
spatial and temporal resolutions were 0.1◦ and 1 h, respectively [41].

Table 2. Brief introduction of precipitation datasets in this study.

Dataset Time Span Temporal
Resolution

Spatial
Resolution

Data Source
Full Name Abbreviation

CMORPH_blended CMORPH 1998–present Hourly 0.10◦ IR, SSM/I, TRMM, AMSU-B, AMSR-E,
Automatic weather station in China

PERSIANN_CDR PERSIANN 1983–2017 Daily 0.25◦ IR, TRMM 2A12, NCEP IV, GPCP

TMPA 3B42 V7 TRMM 1998–2016 3 hourly 0.25◦ IR, SSMIS, TMI, AMSU-B, MHS,
AMSR-E, GPCP

GSMaP_MVK GSMaP 2000–2014 Hourly 0.10◦ IR, TMI, AMSR-E, AMSR, SSMI

MSWEP V1.1 MSWEP 1979–2015 3 hourly 0.25◦
CPC Unified, GPCC, CMORPH,
GSMaP-MVK, TRMM 3B42RT,
ERA-Interim, JRA-55, CHPclim

CN05.1 CN05.1 1961–2015 Daily 0.25◦ Gauge

Websites for downloading the datasets. CMORPH_blended: http://data.cma.cn/data/cdcdetail/dataCode/SEVP_
CLI_CHN_MERGE_CMP_PRE_HOUR_GRID_0.10.html. PERSIANN_CDR: https://climatedataguide.ucar.edu/
climate-data/persiann-cdr-precipitation-estimation-remotely-sensed-information-using-artificial. TMPA 3B42 V7:
https://pmm.nasa.gov/data-access/downloads/trmm. GSMAP_MVK: https://sharaku.eorc.jaxa.jp/GSMAP/index.htm.
MSWEP V1.1: http://www.gloh2o.org. CN05.1: http://data.cma.cn/data/cdcdetail/dataCode/SEVP_CLI_CHN_PRE_
DAY_GRID_0.25.html.
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PERSIANN-CDR is generated from the PERSIANN algorithm using GridSat-B1 IR data and
adjusted using the GPCP monthly product. The dataset with spatial and temporal resolutions of 0.25◦
and daily, respectively, was used in this study [42].

TRMM 3B42 V7 was retrieved by MW and IR signals, and corrected by the gauge data. Passive
MW data were first corrected by TMI and PR, and then used to correct the IR data. After combining
the MW and IR data, the TRMM Multi-Satellite Precipitation Analysis (TMPA) 3B42 V7 was obtained
through the correction of global precipitation data (GPCP). The spatial and temporal resolutions were
0.25◦ and 3 h, respectively [43].

GSMaP_MVK predicted the precipitation rate from the MW data using the Kalman filtering
method, and then the rate was improved based on the relationship between the brightness temperature
data and the ground precipitation rate. The spatial and temporal resolutions were 0.1◦ and 1 h,
respectively [44].

MSWEP V1.1 blended multiple data sources, including gauge data, satellite data, and reanalysis
data. CHPclim was used as the average of long-term precipitation, and the deviation was corrected.
The long-term mean of MSWEP was based on Climate Hazards Group Precipitation Climatology
(CHPclim) dataset, which was bias corrected using catch-ratio equations and observation-based
estimates of long-term streamflow and potential evaporation. Then, the precipitation anomalies of the
gauges, satellites, and reanalysis data were combined using the weighted average method. Finally,
CHPclim was temporally downscaled through the precipitation anomaly. The spatial and temporal
resolutions were 0.25◦ and 3 h, respectively [45].

2.3. Methods

By comparing the downscaled precipitation products with observed precipitation, the indexes,
e.g., CC, PBIAS, and root mean square error (RMSE), were used to measure the quantitative accuracy
at an annual, monthly, and daily scale. The variables were significantly correlated when the CC was
higher than 0.7 [46], and the precision was acceptable when the PBIAS value ranged from −10% to
10% [47]. The frequency bias index (FBI), probability of detection (POD), false alarm ratio (FAR) and
threat score (TS) were used to evaluate the accuracy in detecting precipitation occurrence. In addition,
the annual distribution, interannual variation, and spatial pattern of precipitation were also used to
clarify the detection capability:

CC =

n∑
i=1

(Oi −O)(Pi − P)
√

n∑
i=1

(Oi −O)
2
√

n∑
i=1

(Pi − P)
2

, (1)

PBIAS =

n∑
i=1

(Pi −Oi)

n∑
i=1

Oi

× 100%, (2)

RMSE =

√√√√ n∑
i=1

(Pi −Oi)
2

n
, (3)

FBI =
a + b
a + c

, (4)

POD =
a

a + c
, (5)

FAR =
b

a + b
, (6)
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TS =
a

a + b + c
, (7)

where a is the number of hits, b is the number of false alarms, and c is the number of misses. Perfect
values were FBI = 1, POD = 1, TS = 1, and FAR = 0 [48–51].

3. Results

3.1. Annual Precipitation and Spatial Pattern

The applicability of the precipitation products was interpreted by the CC, RMSE, temporal
variation, and spatial pattern of precipitation at an annual scale.

The CCs between the five precipitation products and the observed annual precipitation ranged from
−0.61 to 0.99 (Figure 2a). MSWEP and TRMM showed the highest CCs and were significantly correlated
with the ground-based rain gauge data with mean values of 0.79 and 0.76, respectively. The CCs of
CMORPH and GSMaP were relatively lower, with the mean values of 0.29 and 0.33, respectively.Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 25 
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The RMSE ranged from 19 mm to 1915 mm (Figure 2b). CMORPH showed the highest RMSE
(109–1915 mm) with a mean of 761 mm, followed by GSMaP. The RMSEs of the other three products
were relatively lower and ranged from 19 mm to 731 mm. The mean RMSEs of MSWEP and TRMM
were the smallest and were similar with values of 88 mm and 89 mm, respectively, thereby indicating
that these two products performed better than other datasets, which was consistent with the CC results.

The temporal variation in annual precipitation (Figure 2c) indicated that the observed precipitation
showed an upward trend in fluctuation, and the mean ranged from 389 mm to 575 mm. The fluctuating
trends and the amount of precipitation estimated by MSWEP, PERSIANN and TRMM were similar
to the ground-based rain gauge data, with a range in precipitation between 418 mm and 620 mm.
CMORPH and GSMaP demonstrated the largest differences with the ground-based rain gauge data;
among them, the precipitation recorded by CMORPH from 2002 to 2007 was above 1380 mm, which was
not in line with the actual situation in the Yellow River Basin.

The five products and ground-based rain gauge data showed that the annual precipitation
decreased from southeast to northwest (Figure 3), which was consistent with the distribution of climatic
conditions in the Yellow River Basin. The contour map of precipitation in the literature showed that
the southern part of the Yellow River Basin received the largest amount of precipitation (approximately
700 mm), while the precipitation in the GN in the northwest was reduced to about 200 mm during 1951
to 2001 [52]. The maximum precipitation estimate of CMORPH in the WH was 1400 mm, and there was
a 1200 mm high precipitation center in the southern part of the UYR, which was greatly overestimated.
The precipitation obtained by GSMaP and PERSIANN in the WH was above 1000 mm, which also
overestimated the actual precipitation. The spatial patterns of MSWEP and TRMM were similar to
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those in the literature. In addition, the results based on the gauge data in the literature indicated that
the average annual precipitation in the Yellow River Basin was 483.7 mm [53], and the average annual
precipitation estimated by CMORPH, GSMaP, MSWEP, PERSIANN and TRMM was 853 ± 98 mm,
674 ± 91 mm, 483 ± 44 mm, 489 ± 51 mm, and 491 ± 50 mm, respectively. It could be seen that CMORPH
and GSMaP overestimated the precipitation to a larger extent, while the precipitation estimates of
MSWEP, PERSIANN and TRMM were close to the values in the literature.
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3.2. Monthly Precipitation and Annual Distribution

The CC, RMSE, PBIAS and their distribution during the year were used to interpret the
performances of the precipitation products at the monthly scale.

The CCs of the monthly precipitation between the products and the gauge ranged from −0.61 to
0.99 (Figure 4a). More than 97% of the sites from MSWEP, PERSIANN and TRMM were significantly
correlated with the ground-based rain gauge data. The CCs of CMORPH and GSMaP were 0.37–0.86
and 0.29–0.86, respectively, and 12.9% and 28.7% of the sites were significantly correlated, respectively.
MSWEP showed the largest mean CC (0.93), followed by PERSIANN (0.87) and TRMM (0.91),
while CMORPH (0.67) and GSMaP (0.63) showed the smallest mean CCs.
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CMORPH had the largest RMSE, followed by GSMaP; the ranges were 22.5–307 mm and 17–81 mm
and the means were 123 mm and 45.4 mm, respectively. Among the other three precipitation products,
MSWEP showed the smallest range and mean RMSE, which were 3.7–62 mm and 18 mm, respectively.
PERSIANN showed the largest mean RMSE, which was 23.6 mm (Figure 4b).

The ground-based rain gauge data showed that the monthly precipitation increased from January,
reached its peak in July, and then decreased (Figure 5a). The fluctuation trend and amount of
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precipitation estimated by MSWEP, PERSIANN and TRMM were close to the ground-based rain gauge
data, and the differences ranged from −2.3 mm to 10.5 mm. CMORPH underestimated the precipitation
slightly from January to April and from October to December, while it overestimated the precipitation
to a large extent from May to September. GSMaP overestimated the precipitation, except for in July and
August. The annual distributions of PBIAS, CC and RMSE from MSWEP, PERSIANN and TMPA 3B43
showed higher CCs, lower PBIASs and RMSEs. Their variations were relatively smooth and steady
without large fluctuation during the year. CMORPH and GSMaP showed lower CCs, higher PBIASs
and RMSEs, and a larger fluctuation range (Figure 5b–d).
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3.3. Daily Precipitation and Precipitation Events

At the daily scale, the assessment was conducted using the precipitation event and the amount
of precipitation. The precipitation events were measured by POD, FBI, FAR and TS. The amount of
precipitation was quantified by PBIAS, CC and RMSE.

Large differences in the POD among the five precipitation products were observed, as shown in
Figure 6a. MSWEP showed the highest POD values, which were all above 0.94 with a mean of 0.97.
The POD values of CMORPH, GSMaP and PERSIANN were similar, with a range of 0.6–0.9 and
mean of 0.74–0.78. TRMM showed the lowest POD with a range and mean of 0.44–0.85 and 0.64,
respectively. From the spatial distribution shown in Figure 7, the PODs of MSWEP at all sites were
clearly higher than those of the other four products. CMORPH and GSMaP had higher PODs in the
UYR, while PERSIANN showed higher PODs in the FR, WH and WR. TRMM performed relatively
poorly in the GN and IM.
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The FBI values of all five products were higher than 1, thereby indicating the overestimation of
precipitation occurrence, as shown in Figure 6b. The overestimation degrees of CMORPH, GSMaP
and TRMM were relatively lower with FBI values of 1.84, 1.89 and 1.87, respectively. MSWEP showed
the highest overestimation degree with a mean FBI value of 3.4. The spatial distribution of the FBI
(Figure 8) showed that CMORPH, GSMaP and TRMM had lower overestimation with FBI values
ranging from 1 to 2 in the UYR, NSH, FR, WR and WH. MSWEP showed higher overestimation in the
GN and IM with FBI values of up to 4 to 6.

Aa shown in Figure 6c, there were high false alarms and the FAR ranged from 0.37 to 0.85.
CMORPH showed the lowest FARs, followed by GSMaP, while MSWEP showed the highest false
alarms with mean FARs of 0.56, 0.6 and 0.7, respectively. The FARs of the majority sites were higher
than 0.5 (Figure 9). All five products demonstrated that the FARs were highest in the GN, which
ranged from 0.7 to 0.9. The FARs of MSWEP were clearly higher than those of the other four products
in the IM, NSH, FR and WH.

The TSs of all five precipitation products were lower than 0.52. CMORPH showed the highest
TS with a mean of 0.38, followed by GSMaP with a mean of 0.35. MSWEP, PERSIANN and TRMM
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showed similar TS, the means were all valued 0.3 (Figure 6d). The spatial distribution of TS showed that
CMORPH performed best, while TSs of MSWEP, PERSIANN and TRMM were lower than CMORPH
and GSMaP in almost all water system partitions. The TSs also differed in different water system
partition. All five precipitation products showed the highest TS in the UYR with the TSs ranged from
0.36 to 0.42, followed by the WR and the WH. The TSs in the GN and IM were the lowest, with the
ranges were 0.18–0.27 and 0.22–0.31, respectively (Figure 10).

At the daily scale, all five products were insignificantly correlated with the ground-based rain
gauge data (Figure 6e). MSWEP had the highest CCs between 0.34 and 0.68 with a mean of 0.55.
The CCs of GSMaP and PERSIANN were the smallest with mean values of 0.28 and 0.29, respectively.
As shown in Figure 6f, MSWEP had the smallest RMSE between 1.9 mm and 6.9 mm with a mean of
4 mm. The RMSEs of PERSIANN and TRMM were similar with mean values of 4.9 mm and 5.2 mm,
respectively. CMORPH showed the highest RMSE with a mean of 12.5 mm. MSWEP, PERSIANN
and TRMM had smaller and more similar PBIASs, with mean values of 34.9%, 31.3% and 38.5%,
respectively. CMORPH showed the largest PBIAS ranging from −48% to 2148% with a mean value of
137% (Figure 6g). From the distribution of PBIAS in Figure 11, CMORPH significantly overestimated
the daily precipitation at 80% of the stations, and the PBIAS at less than 1% of the stations was within the
acceptable range of ±10%. GSMaP overestimated the daily precipitation at 97% of the stations, but the
overestimation degree was less than that of CMORPH. MSWEP, PERSIANN and TRMM overestimated
the daily precipitation at 88% to 93% of the stations. The PBIAS of MSWEP was relatively smaller
with values at 65% of stations within the acceptable range, followed by TRMM and PERSIANN with
acceptable values at 56% and 45% of the stations, respectively.
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3.4. Frequency Curve of Precipitation

Figure 12a indicates that the precipitation frequency curves of the five products were very similar
when the precipitation was above 5 mm/d, and the difference was mainly at precipitation levels below
5 mm/d. All the products underestimated the frequency of dry days, with MSWEP underestimating the
frequency to the largest extent (51%), followed by PERSIANN (31%), while CMORPH, GSMaP,
and TRMM underestimated the frequency by 17–20%. At the precipitation level of 0–5 mm/d,
all the precipitation products overestimated the frequency of precipitation. The degree and rank
of overestimation were similar to those of the estimation of dry days.

The PBIAS at different precipitation levels (Figure 12b) showed that all the products overestimated
the precipitation at the level of 0–5 mm/d, of which the overestimation was the largest for GSMaP and
CMORPH, while it was the smallest for MSWEP. The products underestimated the precipitation above
100 mm/d, with the PBIAS ranging from −85% to −81%, except for CMORPH, which had an acceptable
PBIAS. At the level of 5–100 mm/d, all the products underestimated the precipitation, except for the
overestimation by CMORPH. The PBIAS increased with the increase in the precipitation level. GSMaP
showed the smallest PBIAS at the level of 5–10 mm/d, while CMORPH showed the smallest PBIAS at
the level of 10–200 mm/d.

All the precipitation products were insignificantly correlated with the ground-based rain gauge
data at each precipitation level, as shown in Figure 12c. There were negative CCs above the precipitation
level of 30 mm/d, thereby indicating a decrease in the correlation. The RMSE of the five products
showed a gradual increase with the increase in precipitation level. At each precipitation level, CMORPH
and MSWEP showed that largest and the smallest RMSE, respectively (Figure 12d).
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3.5. Applicability in Sub-Regions

In this section, the applicability of the five precipitation products in 24 sub-basins is discussed.
There was no gauge in the Kushui River, Zuli River, or Zhuanglang River, which were not analyzed here.

At the annual scale, Figure 13a,b shows that the CCs of MSWEP and TRMM were higher than
0.7 and were significant, except for in the Beiluo River and the Qingjian River Basin. The RMSEs of
these two sub-basins were between 200 mm and 1118 mm, which were higher than those of the other
sub-basins. The CCs of CMORPH and GSMaP were lower, while the RMSEs were higher than those of
other products.

At the monthly scale, the CCs of the products were higher than 0.7, except for CMORPH and
GSMaP. MSWEP showed a higher CC, but the CCs of the Beiluo River and Qingjian River were lower
than those of the other sub-basins. CMORPH showed the largest RMSE between 40 mm and 307 mm
followed by GSMaP with values between 22 mm and 64 mm; MSWEP showed the smallest RMSE with
values between 6.7 mm and 34 mm. The products showed the largest RMSE of 33–64 mm in the Beiluo
River and Qingjian River, except for CMORPH, as shown in Figure 13c,d.

At the daily scale, the CCs of the five precipitation products in all sub-regions were below 0.7
(Figure 13e). CMORPH showed the largest RMSE, followed by GSMaP and MSWEP with values
of 5.1–29 mm, 4.1–9.5 mm, and 2.5–6.3 mm, respectively. The RMSEs of the Ying River, Qin River,
and Yiluo River were greater than those of the other sub-basins (Figure 13f). Both CMORPH and
GSMaP overestimated the precipitation, with PBIAS values of 4.8–−772% and 18–−540%, respectively.
The PBIAS values of other products were slightly lower, with values between −23% and 400%.
The PBIAS values of MSWEP and TRMM were almost within an acceptable range, except for those in
the Beiluo River and Qingjian River (Figure 13g).
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5.1–29 mm, 4.1–9.5 mm, and 2.5–6.3 mm, respectively. The RMSEs of the Ying River, Qin River, and 
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overestimated the precipitation, with PBIAS values of 4.8–−772% and 18–−540%, respectively. The 
PBIAS values of other products were slightly lower, with values between −23% and 400%. The PBIAS 
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4.1. Differences of Data Sources and Algorithms Among Gridded Precipitation Products 

The analysis of different temporal and spatial scales showed that MSWEP performed best, 
followed by TRMM, while CMORPH and GSMaP had the lowest accuracy. 

The five types of data were all inferred from MW and IR data, but the data sources and 
algorithms varied widely. MSWEP combined site, satellite, and reanalysis data, and its data sources 
were the most diversified. The site density was used as the weight to correct the data, and the 
influence of terrain was taken into account; thus, the accuracy was higher than that of other satellite 
data [45]. TRMM combined IR and MW data, and was corrected by site data [43]; however, there 
were fewer data sources than those used by MSWEP. In the deriving process of PERSIANN, the 

Figure 13. (a) annual correlation coefficient and (b) root mean square error, (c) monthly correlation
coefficient and (d) root mean square error, (e) daily correlation coefficient, (f) root mean square error
and (g) PBIAS in sub-basins. CC is correlation coefficient, RMSE is root mean square error, PBIAS is
bias. (The black line in (a), (c) and (e) means the correlation coefficient is equal to 0.7, above which the
variables were significantly correlated. The upper black line in (g), means PBIAS is equal to 10% and
the lower black line means PBIAS is equal to −10%, between which the PBIAS is acceptable.).
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4. Discussion

4.1. Differences of Data Sources and Algorithms Among Gridded Precipitation Products

The analysis of different temporal and spatial scales showed that MSWEP performed best, followed
by TRMM, while CMORPH and GSMaP had the lowest accuracy.

The five types of data were all inferred from MW and IR data, but the data sources and algorithms
varied widely. MSWEP combined site, satellite, and reanalysis data, and its data sources were the
most diversified. The site density was used as the weight to correct the data, and the influence of
terrain was taken into account; thus, the accuracy was higher than that of other satellite data [45].
TRMM combined IR and MW data, and was corrected by site data [43]; however, there were fewer data
sources than those used by MSWEP. In the deriving process of PERSIANN, the hourly precipitation
data were trained first, and then the parameters were inserted into all the history records. Although the
GPCP monthly precipitation data were used for correction [54,55], passive MW s, which were valuable
for deriving precipitation, were not combined in the algorithms, and IR signals were mainly used.

The CMORPH precipitation product, which was developed by the CPC of NCEP, derived the
precipitation using a tracking method. The main data source was passive MW data, while IR data were
only used indirectly to derive the cloud field. Although IR data were less accurate, they could provide
useful information when passive MW s were not available. In addition, assuming that the rain intensity
was a constant was unreasonable in the forward and backward propagation of MW estimation [56],
which might have resulted in lower accuracy of the original CMORPH. On the basis of this product,
an hourly blended precipitation product was developed using probability density function matching
and the optimal interpolation method to combine the site data with the original grid data. The site
data used in this product were hourly precipitation data from an automatic meteorological station;
the measurements were stopped in winter and the precipitation was valued as 0, which might have
been the main reason for the low accuracy of the product.

Similar to the original CMORPH, GSMaP used the MORPHing technique to derive the cloud
motion vectors [40]. The difference was that GSMaP used the new Kalman filter to assimilate the IR
precipitation rate, which helped to reduce the total error of the Kalman filter method even though
the accuracy was lower than that derived from the passive MW data. On the other hand, GSMaP
did not adopt standardization like CMORPH in merging passive MW s [6]. Moreover, GSMaP was
not corrected by the gauge data, and a systematic error existed in the pure satellite product [57].
In summary, using multiple reliable data sources and correcting the data using gauge data could help
to improve the accuracy of the precipitation products.

4.2. Results Comparison with Previous Studies

This study showed that MSWEP overestimated the daily precipitation overall, which was
consistent with its performance over mainland China and Qinghai-Tibet Plateau [23,58]. MSWEP
overestimated the light precipitation, while underestimating the heavy precipitation in the Yellow
River Basin; this result was consistent with its performance over mainland China [23]. In addition, the
monthly and daily correlation coefficient in the Yellow River Basin was 0.93 and 0.55, respectively,
which was close to that of mainland China (0.94 and 0.57, respectively). It was reported that POD
and FAR of MSWEP in the Qinghai-Tibet Plateau was 0.65 and 0.5, respectively [58]. In this study,
POD was 0.97 and FAR was 0.7, which means that MSWEP showed better probability of detection
but higher false alarms in the Yellow River Basin than that in Qinghai-Tibet Plateau. The consistency
between daily precipitation of MSWEP and rain gauge observation was relatively low in mainland
China [23]. However, comparing with other four precipitation products, MSWEP performed best in
the Yellow River Basin with higher CC and POD, lower PBIAS and RMSE, although it showed higher
FBI and FAR.

Previous studies showed that the precision of TRMM increased with the increase of time scale [59].
In this study, however, TRMM performed best on monthly scale with the correlation coefficient was
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0.91, followed by annual scale with the correlation coefficient was 0.76, and daily scale with the
correlation coefficient was 0.33. This result was consistent with that of Lancang River Baisn [60]. It was
indicated by several studies that TRMM performed better in humid regions than in arid area [59,61],
but there was no obvious regional difference in the Yellow River Basin. The correlation coefficient on
daily scale reach up to 0.79, FAR was 0.14 over China [62], but the performance of TRMM in the Yellow
River Basin was lower than that in China, the correlation coefficient and FAR valued 0.33 and 0.64,
respectively. This study found that TRMM outperformed than CMORPH, PERSIANN and GSMaP,
which was consistent with that in Ganjiang River Basin and Circum-Bohai-Sea Region [63].

PERSIANN tended to underestimate the daily precipitation in Oujiang Basin and Circum-Bohai-Sea
Region [64], but it overestimated the precipitation with the PBIAS of 31.3% in this study. PEISIANN
underestimated the precipitation for all rainfall levels in Oujiang Basin [64]. However, it overestimated
the precipitation when the precipitation was below 5 mm/d and the situation was opposite when
the precipitation was above 5 mm/d in the Yellow River Basin. PERSIANN underestimated monthly
precipitation overall and underestimated the seasonal precipitation except winter in Circum-Bohai-Sea
Region [65]. In the Yellow River, the precipitation was overestimated overall, and the precipitation
was overestimated from October to April, while the precision in other months could be acceptable.
Previous study indicated that PERSIANN was more applicable for areas with less precipitation [66];
this study also found that there was a higher POD in wetter regions such as WR, WH and FR.

CMORPH could reflect spatial patterns of precipitation and capture the rainstorm in some
local areas such as Shaanxi Province and Circum-Bohai-Sea Region in China [65,67]. However,
majority studies indicated that CMORPH performed poorly in describing temporal variation and
spatial distribution of precipitation [68,69]. In this study, CMORPH also had difficulty in estimating
precipitation pattern, which demonstrated that the precipitation was seriously overestimated spatially
and temporally. It was reported that CMORPH had large biases in detecting heavy rain in Shaanxi
Province and Circum-Bohai-Sea Region [65,67], and underestimated the precipitation for all rainfall
levels in Oujiang Basin [64]. However, the PBIAS was positive for almost all rainfall levels, and was
the highest for the precipitation of 0–5 mm/d, but was relatively lower for the precipitation higher than
5 mm/d, indicating that CMORPH was prone to overestimate the precipitation and had more difficulty
in estimating light precipitation in the Yellow River Basin. From the perspective of precipitation
events, there was a large amount of false alarms and the maximum reach up to 0.9 in China. The false
alarms in southeast China were lower than that in northwest part [68]. This study also showed FARs
decreased from southeast to northwest in the Yellow River Basin, but they ranged from 0.37 to 0.82 and
were the lowest compared to other four precipitation products. The monthly and annual correlation
coefficient was 0.89 and 0.77 in Lancang River Basin [60], and the value was much lower in the Yellow
River Basin (0.67 and 0.29, respectively). Seasonally, CMORPH performed better in detecting summer
precipitation in five provinces of China and Tianshan region [66,70]; it also overestimated the summer
precipitation but underestimated winter precipitation in Tianshan region [70], the same was true for
the Yellow River Basin.

GSMaP performed differently in different regions. There was an obvious overestimation in
areas with less precipitation, but the situation is opposite in areas with more precipitation in Hunan
Province [71]. The contribution of false alarms and omissions to the overall bias was close to each
other and cancelled each other out, resulting in lower overall bias and better performance [71]. GSMaP
overestimated the summer precipitation in Sichuan, especially in mountainous area with complex
terrain [72], but generally underestimated precipitation in Poyang Lake Basin [73]. However, in the
Yellow River Basin of this study, precipitation from 95% of stations was overestimated, and precipitation
was overestimated except July and August, false alarms were four times more than omissions was
responsible for the overestimation for the whole basin. In addition, it was reported that monthly and
daily correlation coefficients in Poyang Lake Basin was 0.85 and 0.5 on average [73], but they were
much lower and valued 0.63 and 0.28 in the Yellow River Basin, respectively.
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4.3. Hydrological Application of the Gridded Precipitation Products

The gridded precipitation products were widely used in hydrology, especially in the aspect of
runoff simulation, flood prediction and drought monitoring.

TRMM showed better applicability than CMORPH in simulating runoff in Lancang River
Basin, Nu Basin, Ganges, Brahmaputra and Meghna Basins [60,74,75]. In humid regions of China,
TRMM 3B42 could better predict daily runoff, while PERSIANN was inclined to underestimate large
runoff. PERSIANN also tended to underestimate extreme precipitation and extreme runoff, while
overestimation and underestimation of extreme precipitation and runoff coexist for TRMM 3B42 [16].
Comparing with Global Precipitation Measurement (GPM) and IMERG, GSMaP showed the best
performance in simulating hourly runoff, the generated flood map also agreed with the published
information. It is capable to support rapid flood forecasting required for early warning of floods [76].

Using MSWEP and TRMM as the forcing data provided satisfactory results for conceptual HBV-96
model, while PERSIANN led to better prediction of flow peaks but overestimations of the hydrographs’
falling limbs in the Brahmaputra basin [77]. Fallah and Orth [78] found that the accuracy of precipitation
inputs had significant influence on simulated runoff, and MSWEP yield good performance in European
catchments. Patricia [79] calibrated the large-scale hydrological model PCRaster GLOBal Water Balance
(PCR-GLOBWB) using three global precipitation products (ERA-Interim, WFDEI and MSWEP) in the
Moroccan Oum er Rbia River basin. The result showed that precipitation input affected discharge
estimates more than calibrating model parameters. WFDEI led to the lowest model performances.
The highest discharge improvement was obtained when ERA-Interim and MSWEP were used in
combination. In India, TRMM, Global Data Assimilation System (GDAS), CHIRPS and MSWEP were
used as meteorological forcing in Noah 3.6 LSM for simulating soil moisture. The results showed
that the simulated soil moisture forced by GDAS and MSWEP consistently outperformed the other
simulation outputs [80]. MSWEP provided a greater potential for drought monitoring over western
China than CMORPH and TRMM. It was found that MSWEP based Standardized Precipitation Index
(SPI) could not only precisely reflect the occurrence and development of drought events, but also
reasonably describe important characteristics of typical drought events. Generally, MSWEP could be
used as an alternative data for drought monitoring over mainland China, particularly in eastern China,
but improvement was required in the arid and semi-arid regions of western China [81].

From above, various gridded precipitation products provided alternative data sources and
performed differently for hydrology. Overall, MSWEP showed a great potential applicability. However,
the limitation of this study was that the hydrological application was not investigated, which will be
our next steps.

5. Conclusions

Five precipitation products were evaluated at multiple temporal and spatial scales from 2001 to
2014 in the Yellow River Basin of China, and the conclusions were as follows:

(1) For precipitation events, MSWEP and TRMM showed the highest and lowest POD, respectively.
MSWEP and CMORPH had the highest and the lowest FARs, respectively. The difference in precipitation
frequency of the five precipitation products was mainly reflected at the precipitation level below
5 mm/d. All the products underestimated the frequency of dry days and overestimated the precipitation
frequency; however, they overestimated its amount at the precipitation level of 0–5 mm/d. MSWEP
showed the highest degree of overestimation of precipitation frequency but the smallest overestimation
of precipitation amount. The performance of CMORPH and GSMaP showed opposite trends.

(2) For precipitation, MSWEP was significantly correlated with the ground-based rain gauge data,
and showed the lowest RMSE and PBIAS at the monthly and annual scales. CMORPH and GSMaP
showed the lowest CCs and the highest RMSEs and PBIASs.

(3) The annual distribution patterns, interannual variations, and spatial patterns of averaged
annual precipitation of MSWEP and TRMM were similar to the observed values, while those of
CMORPH and GSMaP were significantly different from the ground-based rain gauge data.
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(4) At the sub-basin scale, MSWEP performed best. All five precipitation products performed
poorly in the Beiluo River and Qingjian River, and were more applicable in other sub-basins.
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Abstract: Rainfall erosivity (RE) is a significant indicator of erosion capacity. The application of
Tropical Rainfall Measuring Mission (TRMM) rainfall products to deal with RE estimation has not
received much attention. It is not clear which temporal resolution of TRMM data is most suitable.
This study quantified the RE in the Poyang Lake basin, China, based on TRMM 3B42 3-hourly, daily,
and 3B43 monthly rainfall data, and investigated their suitability for estimating RE. The results
showed that TRMM 3-hourly product had a significant systematic underestimation of monthly RE,
especially during the period of April–June for the large values. The TRMM 3B42 daily product seems
to have better performance with the relative bias of 3.0% in summer. At the annual scale, TRMM 3B42
daily and 3B43 monthly data had acceptable accuracy, with mean error of 1858 and −85 MJ·mm/ha·h
and relative bias of 18.3% and −0.85%, respectively. A spatial performance analysis showed that all
three TRMM products generally captured the overall spatial patterns of RE, while the TRMM 3B43
product was more suitable in depicting the spatial characteristics of annual RE. This study provides
valuable information for the application of TRMM products in mapping RE and risk assessment of
soil erosion.

Keywords: satellite-based rainfall product; TRMM; temporal resolution; rainfall erosivity

1. Introduction

Rainfall erosivity (RE) is a significant indicator of erosion capacity [1–3]. RE combines the
effects of rainfall amount, duration, and intensity [4,5] and measures the potential ability of rainfall
to erode soils [6,7]. Thus, RE is widely used in many models for the quantitative assessment of
soil erosion and soil loss [6,8], such as the world famous and widely used model, the Universal
Soil Loss Equation (USLE) [6] and its improved versions, RUSLE [9] and RUSLE2 [10], the Water
Erosion Prediction Project model (WEPP) [11], the Soil Erosion Model for Mediterranean regions
(SEMMED) [12], the European Soil Erosion Model (EUROSEM) [13], the Unit Stream Power-based
Erosion Deposition model (USPED) [14], and so on. Accurate RE is critical in risk assessment of soil
erosion and soil loss in the large-scale catchment, and it is also of great significance for agricultural
management and sustainable land use planning [15–17].

The RE is conventionally calculated by a storm’s kinetic energy and the maximum intensity of
rainfall during a short time period (at least 30 min) [6]. Since such detailed information is difficult to
obtain at standard meteorological stations [18], the traditional rainfall observations from rain gauges
(i.e., daily, monthly, or annual rainfall data) have often been used to estimate the RE [19–25]. On the
other hand, the rapid development of remote sensing technology improved the temporal and spatial
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resolutions and the accuracy of satellite-based rainfall products [26–28], which also greatly improved
their applicability [28]. Currently, several global and regional satellite-based rainfall products with
good temporal and spatial resolutions have been considered as a possible alternative to the traditional
rain gauge observations in present and foreseeable future [29], which are also accepted as promising
strategies for RE estimation.

The TRMM (Tropical Rainfall Measuring Mission) satellite was designed by America and Japan
to measure the tropical and sub-tropical rainfall [30], which was the first satellite mission dedicated
to increasing the understanding of distribution and variability of precipitation. TRMM carried
multiple rain sensors, including one active sensor (precipitation radar, PR) and two passive sensors
(the visible and infrared scanner, VIRS, and TRMM microwave imager, TMI) [31,32]. Multiple rainfall
products are available from those individual sensors at varying spatial resolutions. Moreover,
TRMM Multi-satellite Precipitation Analysis (TMPA) combined the data from TRMM-PR, VIRS, TMI
with passive microwave, infrared and visible measurements available from national and international
satellites, and could provide rainfall data series with the temporal resolution of 3-hourly and spatial
resolution of 0.25◦ × 0.25◦ at the coverage area of global 50◦ S to 50◦ N [28,29]. Numerous studies
have validated that TRMM products have acceptable accuracy [28,29,33–38], and good performance
has been achieved using TRMM rainfall data in many research fields, including hydrological
modeling [33,39–45], rainfall characteristics [35,46,47], weather processes [48,49], latent heat flux [50–52],
extreme precipitation [53,54], and drought/flood monitoring [55–60].

Recently, several studies also have attempted to use TRMM rainfall products, as complementary
rainfall data, for RE estimation and evaluated its performance. For example, the authors in [61]
presented a new method which merged the daily rain gauges observations with the TRMM 3B42 data
to estimate the RE across China, and their results indicated that a combination of TRMM and gauge
data provided the RE estimates with the best accuracy when compared with block kriging gauges and
TRMM alone. The research in [62] examined the suitability of TRMM precipitation data for mapping
RE in Africa and revealed that the spatial estimates of mean annual RE can be well characterized by
monthly satellite-based precipitation. Authors in [63] also developed a new method for calculating RE
using 3-hourly TRMM precipitation data. However, these previous attempts and preliminary studies
mainly focused on the estimation of RE using one product of TRMM rainfall and lacked a comparative
assessment of RE results based on TRMM data with different temporal resolutions. It is not clear which
temporal resolutions of TRMM rainfall products, i.e., 3-hourly, daily or monthly, is most suitable for
calculating RE. This situation has hampered the extensive application of TRMM rainfall products for
mapping RE, and also affected soil loss prediction and risk assessment of soil erosion to a certain extent.

Therefore, this study extends the previous studies and quantifies the seasonal distribution and
annual change of RE in Poyang Lake basin, China based on three TRMM rainfall products (TRMM
3B42 3-hourly, daily, and 3B43 monthly products) and rain gauges data, respectively. Subsequently, the
suitability of those TRMM rainfall products for RE estimation is assessed and evaluated by several
different evaluation indices of bias of RE. The outcomes of this study are expected to provide some
useful references for the further application of TRMM products in calculating and mapping RE, and it is
also valuable for the soil loss prediction, risk assessment of soil erosion, as well as land use management.

2. Materials and Methods

2.1. Study Area

In this study, the Poyang Lake basin was selected as the study area, which is located on the
south bank of the middle and lower reaches of the Yangtze River, China (28◦22′–29◦45′ N and
115◦47′–116◦45′ E) (Figure 1). The basin covers an area of 1.62 × 105 km2, and is one of the regions in
South China with the most serious soil erosion problems [64]. The lake mainly receives the inflow
of Ganjiang River, Fuhe River, Xiushui River, Xinjiang River, Raohe River, as well as runoff from the
alluvial plains around the lake, and flows into the Yangtze River. In which, the Ganjiang River is the
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largest tributary of Poyang Lake water system and contributes about 55% of the total discharge into the
lake [65]. The elevation of the basin vary from 30 m in the alluvial plains to more than 2200 m in the
mountain area. The Poyang Lake basin is characterized by subtropical humid climate, with an average
annual precipitation of 1626 mm and average temperature of 17.6 ◦C during 1960–2012. Generally,
precipitation is mainly concentrated in the rainy season (during April–June), and the streamflow in
rainy season accounts for more than 50% of total annual streamflow, but about only 13.7% during
from October to the following January [66]. The spatial distribution of precipitation in the basin is also
uneven, with the ratio of maximum to minimum ranging from 1.65 to 2.51. The highest annual rainfall
was observed at Wuyuan station (3036 mm) in 1998 and the lowest was at Hukou station (776 mm) in
1978. The land use in the basin is mainly woodland, accounting for 46%, followed by shrubland and
cropland, accounting for 25% and 24%, respectively (Figure 2). The area of grassland, town and open
water is generally small [67].
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2.2. Date

TRMM rainfall products used in this paper are the TRMM 3B42 3-hourly data, daily data and
the 3B43 monthly data, respectively, which were derived from the National Aeronautics and Space
Administration (NASA) Goddard Earth Sciences (GES) Data and Information Services Center (DISC)
(https://disc.gsfc.nasa.gov/datasets). The ranges of these data cover the time period from 1 January
1998 to 31 December 2012, and the spatial resolutions are all 0.25◦ × 0.25◦. According to statistics,
there are about 270 grids (0.25◦ × 0.25◦) in the study area. And for the comparison and evaluation
of RE results based on TRMM rainfall data with different temporal resolutions, the observed daily
rainfall data of 76 traditional ground-based rainfall stations in the basin covering the same period were
obtained from the National Meteorological Information Center, China (NMIC) (http://data.cma.cn).
The monthly gauged rainfall was also aggregated from these daily values. The spatial distribution of
these rainfall stations is shown in Figure 1.

2.3. Methods

2.3.1. Estimation of RE

Due to the difficult collection of kinetic energy and intensity of rainfall with a time resolution
of 30 min, several alternative methods using the routine meteorological records of rainfall have been
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proposed to calculate RE. In this study, three different quantitative models based on 3-hourly, daily,
and monthly rainfall were used to estimate monthly and annual RE, respectively.

The model based on the TRMM 3B42 3-hourly rainfall product was a model developed by
Zhu et al. [63], which improved the basic formula of RE and made it suitable for TRMM data.
TRMM products can be directly used as data sources for RE calculation. This improvement has been
applied in many areas in China, such as Daling River basin, Liaoning Province, and achieved good
performance. The model equation is [63]:

REk = 0.29[1− 0.72 exp(−0.082iavr)] · ∆V · I180 (1)

where REk is a event-based rainfall erosivity; iavr is 3-hour average rainfall intensity from TRMM 3B42
3-hourly product; ∆V is the rainfall and I180 is the maximum 180-min rainfall intensity.

The monthly RE was obtained by summing up all erosion events in a month:

REm =
m∑

k=1

REk (2)

The annual RE was the sum of monthly RE values in a year.
The model based on daily rainfall (TRMM 3B42 daily product and the daily gauged rainfall) used

in this study was improved and developed by Zhang et al. [68]. The model was validated and widely
applied in many regions in China [69,70] and was also recommended to calculate the soil loss in the
first general suvey of soil and water conservation in China [71]. The model equations are [68]:

REi = α
k∑

j=1

(
P j

)β
(3)

β = 0.8363 +
18.177

Pd12
+

24.455

Py12
(4)

α = 21.586β−7.1891 (5)

where REi is the RE value of half-month; Pj is the erosive rainfall, according to the analysis results of
observational data of China’s rainfall and surface runoff, a daily rainfall amount that exceeds 12 mm is
the standard for China’s erosive rainfall (Pj is the actual daily rainfall when rainfall ≥12 mm, otherwise,
Pj is 0) [72]; α and β are coefficients to reflect the rainfall characteristics; Pd12 and Py12 are average daily
and annual rainfall when daily rainfall ≥12 mm, respectively.

The monthly RE was obtained by summing up the REi in a month, and the annual RE was the
sum of monthly RE values in a year.

The model based on monthly rainfall (TRMM 3B43 product and the monthly gauged rainfall)
was the Modified Fourier Index (MFI) approach. Several studies have shown that RE and the rate of
erosion are strongly correlated with the MFI [19,73]. Therefore, the MFI has often been applied in the
estimation of annual RE and in the development of soil loss maps in regional-scale erosion models [74].
Additionally, the MFI-based model was also recommended to establish erosion risk areas by Food and
Agriculture Organization (FAO). Annual RE is estimated by the following equations [74]:

MFI =
12∑

i=1

r2
i

P
(6)

RE = 0.3598MFI1.9462 (7)
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where ri is the monthly rainfall; P is the average annual rainfall. The coefficients 0.3598 and 1.9462
were obtained from the study of Zhang and Fu [69], which was suitable for Jiangxi Province (Poyang
Lake basin), China.

In addition, the spatial distribution of RE from rain gauges data was interpolated by the inverse
distance weighted (IDW) technique with a power of 2.

2.3.2. Evaluating Index

To quantitatively evaluate the suitability of TRMM 3B42 3-hourly, daily and 3B43 products for
estimating RE, several evaluating indices, including the correlation coefficient (R), the mean error
(ME), the root mean squared error (RMSE), and the relative bias (BIAS), were selected to assess the
systematic bias of RE estimation compared with the results from the rain gauges data. The Equations
for R, ME, RMSE, and BIAS were as follow:

R =

n∑
i=1

(RETRMMi −RETRMM)(REgauge i −REgauge)

√
n∑

i=1
(RETRMMi −RETRMM)

2 ·
√

n∑
i=1

(REgauge i −REgauge)
2

(8)

ME =
1
n

n∑

i=1

(RETRMMi −REgauge i) (9)

RMSE =

√√
1
n

n∑

i=1

(RETRMMi −REgauge i)
2 (10)

BIAS =

n∑
i=1

(RETRMMi −REgauge i)

n∑
i=1

REgauge i

× 100% (11)

where RETRMM i is the value of RE obtained by TRMM products; REgauge i is the value of RE obtained
by rain gauges data; and RETRMM and REgauge are the average values of their respective series; n is the
total number of data.

In addition, the accuracy of annual RE based on TRMM rainfall products were further assessed
by four statistical indicators: (1) the frequency bias index (FBI), which indicates whether the TRMM
rainfall products underestimate (FBI < 1) or overestimate (FBI > 1) the RE values, (2) the false alarm
ratio (FAR), which measures the fraction of RE that is actually false alarms, (3) the probability of
detection (POD), which provides the proportion of RE that is correctly estimated, and (4) the equitable
threat score (ETS), which provides the fraction of RE that is correctly detected, adjusted for the number
of hits He that could be expected due purely to random chance [75–77]. Further information on
these indicators and their implications can be found in the studies of Li et al. [34], Koo et al. [77] and
Getirana et al. [78]. Their values were calculated using Equations (12)–(16), respectively:

FBI =
a + b
a + c

(12)

FAR =
b

a + b
(13)

POD =
a

a + c
(14)

ETS =
a−He

a + b + c−He
(15)
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He =
(a + b)(a + c)

N
(16)

where N is the total number of the rainfall series; a is the number of REs that are correctly estimated
by the TRMM rainfall products; b is the number of false signal (RE is detected by the TRMM rainfall
products but not presented in gauges data); and c represents the number of REs that are not detected
by the TRMM rainfall products.

Moreover, in order to quantify the ability of each dataset in predicting light and heavy RE, the FBI,
POD, FAR, and ETS were calculated at different RE thresholds of 2000, 4000, 6000, 8000, 10,000, 12,000
and 14,000 MJ·mm/ha·h, respectively.

3. Results

3.1. Evaluation of the Intra-Annual Distribution of RE

The comparison of monthly RE from the TRMM 3B42 3-hourly and daily products and the
gauges daily rainfall is summarized in Figure 3. The rain gauges RE showed a clear seasonal
variation. Specifically, the RE values during the period of April–June was the highest in the whole year,
especially in June, with the maximum value up to 5000 MJ·mm/ha·h and an average of 2324 MJ·mm/ha·h.
This period was also the main rainy season of the Poyang Lake Basin, the heavy rainfall or rainstorm
events usually occurred in this period, which may lead to a high risk of soil erosion. The lowest value
of RE mainly presented during December–January, with the average of less than 200 MJ·mm/ha·h.
Figure 3 also shows that TRMM 3-hourly product had a significant systematic underestimation of
monthly RE, especially during the period of April–June.
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The changes of R, ME, RMSE, and BIAS of monthly RE from the TRMM 3B42 3-hourly and daily
products are shown in Figure 4 and Table 1. The correlation coefficients had high variability in different
months, the R values of TRMM 3B42 3-hourly data ranged from 0.72 to 0.93, while that of TRMM
3B42 daily data ranged from 0.76 to 0.95 (Figure 4d). The high values of R indicated that the RE
estimates using TRMM rainfall products, regardless of 3-hourly or daily data, captured the change
characteristics of RE. However, large errors were found in the TRMM 3-hourly data, with the ME
ranging from −83 to −900 MJ·mm/ha·h, especially during the spring (−587 MJ·mm/ha·h) and summer
months (−707 MJ·mm/ha·h). Positive errors were mainly found in the TRMM daily data, with the ME
ranging between 233 and 308 MJ·mm/ha·h in spring and less than 109 MJ·mm/ha·h during second
half of the year. This temporal pattern of errors could be presented more clearly through the changes
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in the RMSE (Figure 4b), which was larger for the TRMM 3-hourly data than for the TRMM daily
data. In addition, the changes in the relative errors of the TRMM 3-hourly data were weak in different
months, with a BIAS of approximately −49%. The TRMM daily data performed better in summer, with
a BIAS of only 3.0%; however, these data performed worse in winter.Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 20 
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Figure 5 shows the distribution of monthly RE values in different categories and their proportion
to annual RE. The small RE category (0−500 MJ·mm/ha·h) had the largest frequency, occurring in 41%
of all months, and this category contributed to approximately 11% of the total annual RE in the rain
gauges data. The RE estimates from the TRMM 3-hourly data were much larger than that from the rain
gauges data. Its frequency was over 71% for the small RE category, and the corresponding contribution
rate was as high as 37% of the total annual RE. The statistics for the TRMM daily data were slightly
smaller than those from rainfall gauge data, regardless of frequency and contribution rate. The second
largest category was 500 < RE < 1000 MJ·mm/ha·h, with approximately 25% occurrence and 20.5% of
the contribution to the total annual RE in the rain gauges data. Although the frequency estimated by
the TRMM 3-hourly data was almost consistent with that of the gauge data, its contribution rate was
large, accounting for as much as 41.1% of the total annual RE. For the TRMM daily data, the frequency
and contribution were close to the results of the rain gauges data. It is found that both frequency and
contribution estimated by the TRMM daily data generally became equivalent to that from the rain
gauges data for middle and large RE categories (RE > 1000 MJ·mm/ha·h). However, both frequency
and contribution rates from the TRMM 3-hourly data were grossly underestimated, especially in the
categories of RE > 2000 MJ·mm/ha·h. Figure 5 indicates that the estimates of monthly RE using the
TRMM 3B42 daily product were closer to the results of the rain gauges data. The TRMM 3-hourly data
tended to overestimate the low values but underestimate the high values of monthly RE.
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Table 1. Seasonal changes in bias between Tropical Rainfall Measuring Mission products (TRMM) and
rain gauges data.

Index

Spring Summer Autumn Winter

TRMM
3h

TRMM
Daily

Gauge
Daily

TRMM
3h

TRMM
Daily

Gauge
Daily

TRMM
3h

TRMM
Daily

Gauge
Daily

TRMM
3h

TRMM
Daily

Gauge
Daily

Mean
(MJ·mm/ha·h) 619 1475 1206 741 1492 1448 173 502 409 179 526 312

ME
(MJ·mm/ha·h) −587 269 / −707 44 / −236 93 / −133 214 /

RMSE
(MJ·mm/ha·h) 616 317 / 734 170 / 277 106 / 171 258 /

BIAS (%) −48.6 22.3 / −48.8 3.0 / −57.7 22.7 / −42.6 68.5 /
R 0.84 0.91 / 0.92 0.91 / 0.92 0.97 / 0.81 0.84 /
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3.2. Evaluation of Interannual Variation in RE

Comparison of annual RE estimated by the 3-hourly, daily, and monthly rainfall data, respectively,
is presented in Figure 6. The annual RE derived from the daily gauge data showed a obvious interannual
variation, and the RE values ranged from 6893 MJ·mm/ha·h in 2007 to 14,637 MJ·mm/ha·h in 1998,
with the average of 10,134 MJ·mm/ha·h during 1998–2012. The RE estimates derived from TRMM
daily data showed a similar variability characteristic to the daily gauge data. However, the time
series calculated by the TRMM 3-hourly data was obviously low, which ranged between 2557 and
7040 MJ·mm/ha·h. In addition, the two RE series based on the MFI approach (derived from the
monthly gauge data and the TRMM 3B43 data, respectively) had roughly equivalent averages (9951
and 9866 MJ·mm/ha·h) and share similar interannual variation characteristics.
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temporal resolutions.

At the annual scale, the comparison of the ME, RMSE and BIAS of RE estimation from different
TRMM rainfall products and rain gauges data are shown in Table 2, and the scatter plots of the RE
estimates from TRMM rainfall products and the rain gauge data are shown in Figure 7. The TRMM
3-hourly data presented large errors for annual RE estimation, with an ME value of −5516 MJ·mm/ha·h,
RMSE value of 5686 MJ·mm/ha·h and BIAS value of −54.4%. Moreover, the low slope value (0.49)
of scatter fitting curve further revealed that the TRMM 3-hourly rainfall product significantly
underestimated the annual RE. Comparatively, the TRMM daily and 3B43 products performed
better for the annual RE estimation, with ME values of 1858 and −85 MJ·mm/ha·h, RMSE values of
2114 and 1336 MJ·mm/ha·h, and BIAS values of 18.3% and −0.85%, respectively (Table 2). Moreover,
the R2 values of the scatter fitting curve between the TRMM RE and rain gauge RE were as high as 0.86
and 0.92 for the TRMM daily and 3B43 data, respectively. Figure 7b also reveals that the TRMM 3B43
product tended to overestimate the low values but underestimate the high values of annual RE.

Table 2. Results of bias analysis for annual rainfall erosivity from the TRMM 3h, daily and 3B43
rainfall data.

TRMM 3h TRMM Daily Gauge Daily TRMM 3B43 Gauge Monthly

Mean
(MJ·mm/ha·h) 4618 11,992 10,134 9866 9951

ME
(MJ·mm/ha·h) −5516 1858 / −85 /

RMSE
(MJ·mm/ha·h) 5686 2114 / 1336 /

BIAS (%) −54.4 18.3 / −0.85 /
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Furthermore, the assessment of TRMM rainfall products for annual RE estimation was extended
to utilize the indicators of FBI, FAR, POD and ETS, which were analyzed at different RE thresholds
of 2000, 4000, 6000, 8000, 10,000, 12,000 and 14,000 MJ·mm/ha·h, respectively. As shown in Figure 8,
TRMM 3-hourly product tended to underestimate the annual RE, with the decreasing FBI values,
especially for heavy RE; however, there was a systematic overestimation of annual RE by the TRMM
daily data. The POD of the TRMM daily data kept changing around 1.0, which indicated a good
performance for RE detection; however, its FAR values increased from 0 to 0.46 as the RE threshold
increased, which meant that the proportion of miscalculated values increased. The TRMM 3-hourly data
performed poorly, with low POD and high FAR values, especially for heavy RE. Overall, the TRMM
3B43 product performed best in terms of estimating light and heavy RE among the three TRMM rainfall
datasets with the highest ETS scores.Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 20 
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3.3. Performance of Spatial Pattern of RE

The spatial patterns of the average annual RE estimated from TRMM 3-hourly, daily and 3B43
rainfall data are shown in Figure 9. As a reference case for comparative purposes, the spatial
distributions of RE from rain gauges data (both daily and monthly data), which were obtained by
a interpolation method of inverse distance weighting (IDW) with a power of 2, are also shown in
Figure 9. The distribution of annual gauge RE, both from daily and monthly gauge rainfall data,
in different areas was quite different. The high RE was mainly distributed in the northeast (with
annual RE over 12,000 MJ·mm/ha·h) and the low RE values in the southwest of the Poyang Lake
basin (approximately 6000–7000 MJ·mm/ha·h) (Figure 9a,d). Additionally, the annual RE from TRMM
3-hourly, daily and 3B43 rainfall products had good spatial consistency with that from the rain gauges
data, although the high RE values obtained from the TRMM 3-hourly data covered the wider area than
that from rain gauges data. This spatial consistency was further validated by the high coefficient of
determination (R2) (0.63 for TRMM 3-hourly data, 0.72 for TRMM daily data, and 0.71 for TRMM 3B43
data) between the satellite pixels and the rain gauges within the grids (Figure 10). However, the slope
values of the regression lines were 0.49 and 1.24, respectively, for TRMM 3-hourly and TRMM daily
estimates. These values indicated that TRMM 3-hourly rainfall product significantly underestimated
the annual RE, while TRMM daily rainfall product overestimated it. Comparatively, the TRMM 3B43
data performed best in terms of depicting the spatial characteristics of annual RE.Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 20 
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Figure 11 shows the spatial distributions of four evaluating indices values (R, ME, RMSE, and BIAS)
of annual RE estimation from TRMM rainfall products for every rain station. The statistical distributions
of stations in different categories of evaluation indices were summarized in Table 3. The annual RE
from the TRMM daily and 3B43 data correlated well with that from the rain gauges data, and their
R values exceeded 0.8 at 45 (59.2%) and 46 (60.5%) of the 76 stations, respectively. The number of
stations with R > 0.8 was only 20 (26.3%) for the TRMM 3-hourly data. However, all three TRMM
rainfall products reflected similar spatial patterns of R, i.e., the most stations with large R located in the
northeast of the Poyang Lake basin.

Table 3. Statistical distribution of bias of annual rainfall erosivity from TRMM 3h, daily and 3B43
rainfall data.

Index Categories TRMM 3h TRMM Daily TRMM 3B43

R
>0.8 20 (26.3%) 45 (59.2%) 46 (60.5%)

0.6–0.8 33 (43.4%) 28 (36.8%) 23 (30.3%)
<0.6 23 (30.3%) 3 (3.9%) 7 (9.2%)

ME
(MJ·mm/ha·h)

>3000 0 (0) 25 (32.9%) 0 (0)
0–3000 0 (0) 46 (60.5%) 35 (46.1%)
−3000–0 6 (7.9%) 5 (6.6%) 41 (53.9%)
<−3000 70 (92.1%) 0 (0) 0 (0)

RMSE
(MJ·mm/ha·h)

>5000 46 (60.5%) 6 (7.9%) 12 (15.8%)
2000–5000 30 (39.5%) 63 (82.9%) 50 (65.8%)

<2000 0 (0) 7 (9.2%) 14 (18.4%)

BIAS
(%)

>35.0 0 (0) 17 (22.4%) 2 (2.6%)
0–35.0 0 (0) 54 (71.1%) 33 (43.4%)
−35.0–0 5 (6.6%) 5 (6.6%) 41 (53.9%)
<−35.0 71 (93.4%) 0 (0) 0 (0)
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The ME values varied considerably in three TRMM data estimates. TRMM 3-hourly data showed
negative MEs in all examined pixels in the basin, with the ME falling into the class of −3000–0
MJ·mm/ha·h at 6 (7.9%) stations and <−3000 MJ·mm/ha·h at 70 (92.1%) stations. However, the ME
in the TRMM daily data showed positive errors at 71 (93.4%) of the 76 stations, 25 (32.9%) of which
were larger than 3000 MJ·mm/ha·h. Moreover, the stations with a large ME (both negative in the
TRMM 3-hourly and positive in the TRMM daily estimates) were primarily located in northern parts
of the basin. TRMM 3B43 generally presented a small error, with MEs ranging between −3000 and
3000 MJ·mm/ha·h, and the stations with positive MEs (35 stations and accounting for 46.1%) were
mainly located in middle and southern areas; furthermore, stations with negative MEs (41 stations
and accounting for 53.9%) were distributed in the northern parts of the basin. The RMSE of TRMM
3-hourly data for more than 60% of stations (46 stations) was greater than 5000 MJ·mm/ha·h, and 39.5%
of stations (30 stations) had RMSEs between 2000 and 5000 MJ·mm/ha·h. The number of stations with
RMSE > 5000 MJ·mm/ha·h greatly decreased to 6 (7.9%) and 12 (15.8%) in the TRMM daily and 3B43
estimates, respectively; moreover, 7 (9.2%) stations and 14 (18.4%) stations had RMSE values smaller
than 2000 MJ·mm/ha·h. As for the BIAS, its spatial distribution was almost the same as that of ME;
that is, all examined pixels had negative BIAS values in the TRMM 3-hourly estimates, and more than
93% of stations (71 stations) showed positive BIAS values in the TRMM daily estimates. TRMM 3B43
generally presented a small BIAS, and positive values (33 stations and accounting for 43.4%) were
mainly found in the middle and southern areas, while negative values (41 stations and accounting for
53.9%) were distributed in the north area of the basin.

4. Discussion

Previous results revealed that the largest monthly RE values were mainly concentrated in June,
followed by that in May, and the smallest RE typically presented in December. The intra-annual
distribution characteristics of RE corresponded to changes of precipitation in which more than 45%
of the annual rainfall was concentrated during April–June. Both the TRMM 3B42 3-hourly and
daily products depicted the intra-annual distribution characteristic correctly, i.e., greater than 70% of
RE occurred during summer and spring, and only approximately 10% was concentrated in winter.
However, the TRMM daily data performed better in summer, with a small BIAS (3.0%), and performed
worse in winter, with a BIAS of 68.5%. This result was mainly associated with the seasonality of
accuracy in TRMM rainfall products. Many researches have testified that the accuracy of TRMM rainfall
products was influenced by season, rain type and climatological factors [79–82]. For example, the study
of Han et al. [83] in urban areas revealed that TRMM precipitation had the higher accuracy during the
warm seasons and there was a good correlation between the increasing temperature and the increasing
accuracy of TRMM data. Wang et al. [45] noted that, compared with other satellite-based rainfall
estimates, the TRMM performed best during the wet season. Ward et al. [84] also pointed out that
TRMM 3B42 products may underestimated the rainfall in the dry season. For the TRMM 3-hourly data,
this study revealed that it had the significant underestimation of monthly RE values, especially both
the frequency and the contribution rates of high values of monthly RE were obviously underestimated.
This result was principally associated with the underestimating of TRMM 3-hourly estimates for larger
rainfall events, such as high-intensity storm events or heavy rainfall events [83]. On the other hand,
the estimated RE from the TRMM 3-hourly data was compared with the results derived from the
daily gauges data in this study. Differences in estimation methods of RE may inevitably resulted in
systematic bias, as has been mentioned in many previous studies [85,86].

At the annual scale, this study found that TRMM 3B43 data performed best in terms of estimating
annual RE, with the ME of −85 MJ·mm/ha·h, the RMSE of 1336 MJ·mm/ha·h, and the BIAS of
−0.85%. This result was consistent with many previous studies on the accuracy of TRMM products.
Dinku et al. [87] compared and evaluated the TRMM 3B43 data over Ethiopia with other satellite-based
rainfall products and revealed that the TRMM 3B43 had the highest accuracy with the small BIAS
(<10%) and RMSE (about 25%). Guo and Liu [88] pointed out that the accuracy of TRMM 3B43 was
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higher than that of TRMM 3B42 and 3B42RT in Poyang Lake basin. Fleming et al. [89] found that,
in Australia, the TRMM 3B43 data was highly correlated (with R of higher than 0.80) with gridded
rain gauges data during 1998–2007, especially the correlation was strongest in summer. Cao et al. [36]
reported that the TRMM 3B43 product performed best in the Yangtze River Delta of China, with the
BIAS values ranging between −10% and 10% and the R of 0.88 at an annual scale. The study by Semire
et al. [90] in Malaysia also received similar results.

Spatially, this study revealed that all three TRMM rainfall products generally captured the overall
spatial pattern of annual RE, which had good spatial consistency with results from rain gauges
data. However, TRMM 3-hourly data significantly underestimated the RE, while the TRMM daily
data overestimated the RE. The TRMM 3B43 data performed best in terms of depicting the spatial
characteristics of annual RE. The spatial biases may be related to the weak ability of the TRMM 3-hourly
and daily rainfall products to detect heavy or extreme precipitation, which occurred frequently in the
northern regions of the Poyang Lake basin [91–93].

5. Conclusions

This work quantified the RE in the Poyang Lake basin based on three TRMM rainfall products
and investigated their suitability for RE estimation compared with the results obtained from the
traditional gauges rainfall. The results showed that TRMM 3B42 3-hourly product had a significant
systematic underestimation of monthly RE, especially during the period of April–June for the large
values. The TRMM 3B42 daily product seem to have better performance, especially in the summer,
with a small BIAS (3.0%). At the annual scale, the TRMM 3-hourly data presented large errors in
estimating the annual RE, with an ME of −5516 MJ·mm/ha·h, an RMSE of 5686 MJ·mm/ha·h and a
BIAS of −54.4%. Comparatively, the TRMM 3B42 daily and 3B43 data had smaller errors, with the ME
values of 1858 and −85 MJ·mm/ha·h, the RMSE values of 2114 and 1336 MJ·mm/ha·h, and the BIAS
values of 18.3% and −0.85%, respectively. Moreover, the R2 values of the scatter fitting curve between
the TRMM RE and rain gauge RE were as high as 0.86 and 0.92 for the TRMM daily and 3B43 data,
respectively. A spatial performance analysis showed that the TRMM 3B42 3-hourly, daily and 3B43
rainfall products could correctly reflect the spatial patterns of the average annual RE, with spatial
correlation coefficients of 0.63 for TRMM 3-hourly, 0.72 for TRMM daily, and 0.71 for TRMM 3B43 data.
The slopes of the regression lines showed that TRMM 3-hourly product significantly underestimated
the annual RE but overestimated the annual RE when using the TRMM daily data.

Finally, it is also important to recognize that this study is only an attempt at evaluating the
suitability of TRMM products with different temporal resolution for RE estimation quantitatively.
The outcomes of this study help in enhancing the understanding of the accuracy of use TRMM
rainfall products to estimate RE. However, the study needs further deeper analyses and investigations;
the above preliminary conclusions are derived only based on the given period and the characteristics
of the region. Applying the conclusions drawn in this study to other regions should be considered
with caution.
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Abstract: More than 1100 lakes covering an area greater than 4500 km2 are located on the Tibetan
Plateau, and these lakes are important regulators of several large and famous rivers in Asia.
The determination of hydrological changes that have occurred in these lakes can reflect climate
change and supply scientific data to plateau environmental research. Data from high frequency
(moderate-resolution imaging spectro-radiometer) MODIS images, altimetry, and the Hydroweb
database collected during 2000–2015 were integrated in this study to delineate the detailed hydrological
changes of 15 lakes in three basins—Inner Basin, Indus Basin, and Brahmaputra Basin—on the southern
Tibetan Plateau. Seven of the 10 lakes in the Inner Basin presented increasing trends with various
intensities, and the increasing rates in the area of four lakes (Nam Co, Selin Co, Zhari-namco,
and Ngangze) were 1.62, 28.81, 2.27, and 3.70 km2/yr, respectively. The yearly increases in volume of
the four lakes were 3.6, 9.44, 6, and 2.36 km3, respectively. A water balance equation was established
for the four lakes based on lake volume changes to illustrate the contributions of precipitation,
ground runoff, evaporation, and other factors. The results revealed that surface runoff was the major
contributor to expansion, and lake surface evaporation was almost 2.76–3.86 times that of lake surface
precipitation. The two lakes in Indus Basin, Rakshastal and Mapam Yumco, presented a slight retreat.
As a representative of Brahmaputra Basin, Yamzho Yumco underwent a retreat of –3.49 km2/yr in area,
–0.39 m/yr in level, and –0.19 km3/yr in volume. Decreasing precipitation, increasing evaporation,
and the operation of a hydrological project were the main causes of its constant retreat.

Keywords: lake; Tibetan Plateau; hydrological changes; water balance

1. Introduction

Hydrologic changes in lakes reflect the comprehensive influences of climate, land-surface processes,
and human activities on the water cycle and ecosystem. As the world’s highest and largest plateau,
the Tibetan Plateau (TP) is located at 26◦00′N–39◦47′N, 73◦19′E–104◦47′E in Central and East Asia.
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The area of this plateau is approximately 2.5 million km2, with an average elevation of higher than
4500 m. The TP is known as the “Water tower of Asia”, and it is the source of several large rivers,
such as the Yellow River, Yangtze River, Ganges River, India River, Brahmaputra River, and so on,
providing domestic water supply for hundreds of millions of populations. On the TP, the number of
lakes greater than 1 km2 in size is nearly 1100, and the total area of these lakes is nearly 45,000 km2.
Due to the remoteness and harsh environment of the TP, the intensity of agricultural and industrial
activities is low. Therefore, the hydrologic changes of lakes on the plateau can be treated as a sensitive
indictor of climate change. Many researchers have studied the changes in lakes on the plateau.
The research has reported that lakes greater than 10 km2 in size on the plateau showed an increasing
trend during the last decade, and the total area increased from 37,111 to 40,015 km2, at a rate of
7.82% [1]. The water level of the two largest lakes in the central Tibet, Nam Co and Selin Co, has risen
by 4.37 m and 2.03 m, respectively, in the last decade [2]. The lake volume in the Inner Basin on the TP
increased at a rate of 7.72 Gt/yr during 2003–2009, mainly due to precipitation contribution and glacier
mass loss [3]. These research results were mostly based on remote sensing techniques as the gauged
observations on the plateau were very limited. There are only several hydrological stations in the large
Tibetan region, and these stations present a decentralized and punctate distribution. Satellite data play
an important role in delineating the hydrologic changes of these plateau lakes with high efficiency and
at a low cost [4,5].

Altimeter data have been widely used to continuously monitor water level changes [6,7].
Starting from the 1990s, there are 30 years of altimeter data covering the globe with a frequency
of 10–30 days. This includes Topex/Poseidon (T/P), Jason, ENVIromental SATellite (Envisat), Ice,
Cloud and Land Elevation Satellite (ICESat), and Geosat Follow on (GFO) data. T/P data collected
during 1992–2002 were applied to the six largest lakes in China [8]. Zheng et al. [9] used T/P and
Envisat data during 1992–2010 to monitor water level changes of Hulun Lake in northeast China and
found that the lake presented a decreasing trend. T/P data collected during 1992–1999 were applied on
rivers with a width of more than 1 km in the Amazon watershed [7]. ICESat data collected during
2003–2009 were employed on 56 lakes in China, showing different change patterns of lake surface
level [10]. At present, there are four kinds of water level databases for large rivers, lakes, and reservoirs
that are derived from altimeter data: the Database for Hydrological Time Series of Inland Waters
(DAHITI) [11], the Global Reservoir and Lake Monitor (GRLM) [12], the River Lake Hydrology product
(RLH) [13], and the Hydroweb [14].

Remotely sensed images are able to capture lake area fluctuations occurring over short
periods or decades. Multi-source remote sensing images were employed to delineate the monthly
spatial distribution of global land surface water bodies in 1993–2004 [15,16]. Feng et al. [17] used
moderate-resolution imaging spectro-radiometer (MODIS) images to monitor dynamic changes in
Poyang Lake in 2000–2010 and found that the area in the wet season was four times of that in the dry
season. Sun et al. [1] used MODIS images to study the inundation changes of more than 600 large
lakes in China in 2000–2010.

Some researches have combined altimeter data and satellite images to study volume changes of
inland water bodies. Water mass changes of the Negro River basin were revealed by synthetic aperture
radar (SAR), T/P and in situ water level observations [18]. ICESat data and Landsat images were used
in conjunction to construct area-level curves for 30 lakes on the TP to study their volume changes and
the result showed that there was an increase in water volume of 92.43 km3 for the 30 lakes from the
1970s to 2011 [19]. Cai et al. [20] constructed the area-volume models for 128 lakes and 108 reservoirs
in Yangtze River watershed according to gauged measurements and MODIS images, and found that
53.91% of lakes were shrinking, while the reservoirs were expanding. Sun et al. [21] used water level
data derived from altimeter data to construct the bottom topography of the Aral Sea and obtained
its water volume changes. Medina et al. [22] applied gauged water level measurements, and Envisat
and Advanced SAR images to estimate storage changes in Lake Izabal. In addition, Gravity Recovery
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and Climate Experiment (GRACE) data were applied to the temporal-spatial terrestrial water mass
changes [23].

At present, detailed changes in the level, area and storage of lakes on the southern TP have not
been clear. An illustration of seasonal and inter-annual hydrological changes of the main lakes on the
southern TP would be beneficial to improve the understanding of water cycles and the climate changes
occurring on the TP. As altimeter data are in the form of footprints and are obtained by recording
values along sparse ground tracks, the derivation of level fluctuations for lakes in the large southern
TP areas requires several kinds of altimeter data to be combined. In addition, high frequency remotely
sensed images are capable of capturing the dynamics of lakes in a short period of time. This paper used
the aforementioned altimeter data and MODIS images to illustrate the dynamics of 15 lakes greater
than 100 km2 in size on the southern TP, and the contributions of climate factors were discussed for the
lakes with obvious changes. The results may serve as important information for land-surface process
models and may be used in plateau researches.

2. Study Area

The environment of the TP is very harsh due to the high altitude. It has dry and thin air, strong solar
radiation, and low temperatures. The climate of the TP varies greatly from region to region because
of the complex terrain. The annual average temperature is 20 ◦C in the warm and humid southeast,
while it drops to below −6 ◦C in the cold and dry northwest. The annual precipitation ranges from 100
to 1300 mm, decreasing from southeast to northwest. The studied area is bordered to the east by the
Tanggula Mountains and to the south by the Himalayan range, and the Brahmaputra River is also
in this region. The elevation is higher than 4000 m and several large glaciers are distributed in the
surrounding high mountains.

The researched 15 lakes are located in three basins on the southern TP. Ten lakes including Selin
Co and Nam Co are located in the Inner Basin, which occupies 70% of the area of the TP. The Inner
Basin is located in the Qiangtang steppe and has a semi-arid climate. The average temperature of the
Inner Basin is about 0–2 ◦C, and the annual rainfall is 150–200 mm. Two lakes, Mapam Yumco and
Rakshastal, are in the Hindu Basin and the other three lakes, including Yamzho Yumco, are in the
Brahmaputra Basin. Nam Co, Selin Co, and Yamzho Yumco are known as the “Three holy lakes” on
the TP. All of the 15 lakes are greater than 100 km2 in size. Selin Co and Nam Co are the two largest
lakes; they are greater than 1800 km2 in size. Selin Co is a Tectonic lake, with an open lakeside and
dense water plants, and it is the main region for livestock. Selin Co has shown continuous expansion
and has been the largest lake on the TP since 2003 [1]. Nam Co is the highest lake in the world with an
elevation of around 4725 m. It is close to Tanggula Mountain and its southern shoreline is parallel to
the Tanggula ridge. The area of Zhari-namco is nearly 1000 km2 in size. Yamzho Yumco lies 10 km
south of the Brahmaputra River. Yamzho Yumco and several small lakes around it are considered to
be the largest group of lakes on the southern TP. The west two adjacent lakes, Mapam Yumco and
Rakshastal, are between two high mountains—the Gangdise Mountains (5500 m) and Namunani peak
(7728 m)—where mountain glaciers are widely distributed. Therefore, the water supply from melted
glaciers or snow is very rich for these two lakes. The spatial distribution of the 15 lakes is shown in
Figure 1, and characteristics of the lakes are listed in Table 1.
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Figure 1. Spatial distribution of the 15 studied lakes and watersheds, paths of Ice, Cloud, and Land 
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Figure 1. Spatial distribution of the 15 studied lakes and watersheds, paths of Ice, Cloud, and Land
Elevation Satellite (ICESat) and ENVIromental SATellite (Envisat) altimeter data and metrological
stations in the study area. Symbols near lake ID numbers indicate trends in the area. Up arrows indicate
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Table 1. Characteristics of the studied lakes on the southern Tibetan Plateau (TP).

Lake ID Name Longitude 1 (◦) Latitude 1 (◦) Area (km2) Level (m)

1 Mapam Yumco 81.42 30.75 401.47 4585.39
2 Ngangla-ringco 83.09 31.56 485.83 4715.03
3 Taro Co 84.12 31.13 473.50 4566.77
4 Zhari-namco 85.62 30.91 985.65 4612.48
5 Ngangze 87.15 31.03 437.03 4683.00
6 Gyaring Co 88.31 31.13 460.44 4648.23
7 Yamzho Yumco 90.65 28.88 506.84 4439.36
8 Rakshastal 81.25 30.66 247.24 4572.00
9 Puma Yumco 90.38 28.57 281.75 5017.28

10 Daggayai Co 85.72 29.85 101.36 5143.80
11 Shuru Co 86.41 30.27 200.64 4714.95
12 Pegu Co 85.60 28.90 264.95 4580.00
13 Nam Co 90.66 30.72 1971.81 4723.64
14 Selin Co 88.95 31.76 2192.24 4542.59
15 Tangra-yumco 86.60 31.06 817.60 4535.83
1 The pairs of longitude and latitude values indicate the geometric centers of the lakes.

3. Data and Methods

3.1. Data

3.1.1. MODIS Images

Long-term and high frequency MODIS images have been widely used to monitor dynamic
changes in land cover [1]. The level 3, 8-day composited product MOD09A, with 500 m resolution,
was downloaded from the Earth Observing System (https://reverb.echo.nasa.gov/reverb/). The product
was atmospheric corrected and consisted of 7 bands (0.648–2.130 µm). As the fifth band (centered
at 1.24 µm) contained stripe noises, it was excluded from the data processing. The data used in this
research started on the 49th day of the year 2000 (2000-049) and ended on the 361st day of the year
2015 (2015-361). It was worth mentioning that, in some images, lakes were covered by thick clouds or
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snow, or were frozen, especially in winter seasons. In these cases, lake boundaries were not easy to
distinguish. Therefore, these kinds of images were discarded from the following process. The largest
available number of images was 573, for Yamzho Yumco, while the smallest was 322, for Nam Co.
The detailed information about the start/end dates and the numbers of available series for each lake is
listed in Table 2.

Table 2. Detailed information about Area and Level series data for the studied lakes.

Lake ID

Area Level

Number of Series Time Range
Data Source 2

Number of Series Time Range
Hydroweb Envisat ICESat

1 369 2000/3/5–2015/12/17
√ √

53 2002/8/12–2010/10/3
2 406 2000/2/26–2015/12/17

√ √ √
107 2002/10/19–2015/12/7

3 501 2000/2/26–2015/12/17
√ √ √

55 2003/11/1–2015/12/27
4 500 2000/3/5–2015/12/17

√ √ √
256 2000/3/6–2015/12/23

5 411 2000/3/5–2015/12/17
√ √ √

308 2000/1/6–2015/12/23
6 465 2000/3/5–2015/12/17

√ √
12 2002/7/15–2011/12/18

7 573 2000/2/18–2015/12/17
√ √

45 2002/6/17–2010/7/5
8 366 2000/5/16–2015/12/17

√
3 2002/7/30–2003/4/1

9 395 2000/2/18–2015/12/17
√ √

20 2002/7/12–2012/3/20
10 369 2000/2/26–2015/12/17

√
14 2010/11/20–2012/3/13

11 445 2000/2/26–2015/12/17
√

3 2002/8/6–2003/11/17
12 499 2000/2/26–2015/12/17

√
4 2003/3/24–2008/12/2

13 322 2000/2/18–2015/12/17
√ √ √

158 2000/1/9–2015/12/8
14 453 2000/4/6–2015/12/17

√ √ √
251 2000/5/16–2015/12/30

15 410 2000/2/26–2015/12/17
√ √ √

133 2000/1/18–2015/12/17
2 √ indicates the lake was covered by some kind of water level data.

3.1.2. Altimeter Data

The applications of T/P and Jason series were very extensive due to their short revisiting periods
(10 days). However, the interval between the adjacent ground tracks of these altimeter data is very
large, around 1 km. Thus, less data were available for the 15 studied lakes and only Envisat and ICESat
were used in this research. Envisat carried a radar altimeter. The radar altimeter sent microwave
pulses and was able to carry on monitoring under various weather conditions. As a successor of the
European Remote Sensing satellites (ERS), Envisat was launched in March 2002 by the European Space
Agency (ESA). Envisat revisited the same cycle over 35 days, covering a latitude of ±81.5 degrees,
with a footprint of around 2–10 km in diameter. Envisat RA-2 Geographical Data Records (GDR)
were used in this research. ICESat sent laser pulses and was easily interfered by clouds. ICESat was
launched in January 2003 and stopped working in 2009. ICESat covered a latitude of ±86 degrees,
and the diameter of its ground footprint was only 70 m. The frequency of ICESat data was about
3–4 months. The product Global Land Surface Altimetry Data (GLA14) was downloaded from the
National Snow and Ice Data Center (NSIDC). Fourteen lakes were covered by Envisat data and 12 lakes
were covered by ICESat data, as Table 2 shows.

3.1.3. Hydroweb

Hydroweb is a database created by LEGOS/GOHS (Laboratoire d’Études en Géophysique
et Océanographie Spatiale/Equipe Geodesie, Oceanograhie et Hydrologie Spatiale), which combines
T/P, Jason-1, Jason-2, Envisat, and GFO altimetry data to present the water level of 150 large
global lakes/reservoirs [14]. The available period in the database is from the 1990s until the present.
Compared with gauged data, the derived accuracy of the water surface for lakes/reservoirs is 5–24 cm.
Seven of the studied lakes were included in this database, as shown in Table 2.

3.1.4. Meteorological Data

The daily gauged precipitation, evaporation, and temperature data of the southern TP during
the studied period were obtained from the China Meteorological Data Sharing Service System
(http://cdc.cma.gov.cn/). There are 19 metrological stations in the study area, and the spatial distributions
of them are shown in Figure 1. To match the hydrological results of this study, daily metrological
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data were accumulated into a monthly scale format. The monthly precipitation for the whole study
area was estimated by kriging interpolation of the measured data. In addition, Global Land Data
Assimilation System (GLDAS) data (https://ldas.gsfc.nasa.gov/gldas) collected monthly in 2000–2015
were downloaded to estimate the land evaporation in sub-basins.

3.2. Method

3.2.1. Inundation Extraction

Water indexes such as the normalized differenced water index (NDWI), modified NDWI (MNDWI),
and automated water extraction index (AWEI) were not suitable for use in this research, as their
key thresholds were easily influenced by imaging environments, such as aerosol interference and
viewing geometry [17]. The use of various suitable thresholds was not practical. Therefore, an accurate
water–land discriminating method was applied in this research. In the procedure, accurate and
automatic extraction of training data was firstly carried out for each image, and then the images were
classified by the support vector machine (SVM) classifier [24]. Finally, surface inundations of the 15 lakes
were extracted according to their spatial locations [21]. With respect to the training data selection,
six rules were constructed to select initial training data for six classes: water bodies, bare soil (including
urban area), vegetation, ice, snow, and clouds. Then, the initial training samples were refined based
on an iterative procedure integrating the k-means algorithm and the AWEI, whose threshold is more
stable and fluctuates in a smaller range than those of NDWI and MNDWI. As the threshold of AWEI
was suggested to be around −0.15 to 0.045 [25], the threshold of water clusters in the proposed method
was determined to be −0.1. Taking the initial water training samples as an example, in each iteration
process, the samples were divided into 10 clusters, and the AWEI of each cluster was computed. If the
AWEI of a cluster was greater than −0.1, then this cluster was considered to be a typical water training
set. If not, this cluster was continuously divided into 10 clusters by k-means, and the corresponding
AWEIs of newly created sub-clusters were calculated for the following assessment. Ten iterations
of this process were performed. When the iterations ended, if the AWEI of some sub-cluster was
still less than −0.1, it was removed from the water training sets. For other non-water training data,
the procedure was similar, except that the AWEI had to be less than −0.1 and the outliers were removed
from non-water training data at the end of the iterations. This automatic water extraction method
was used in high-frequency water surface delineations of the Aral Sea and Poyang Lake in 2000–2015.
The omission errors were 0.9%–1.5% and commission errors were 2.94%–4.23% [21].

3.2.2. Water Level

An altimeter assembled on a satellite sends a series of pulses and receives reflected signals.
Therefore, the distance between the satellite and water surface can be derived by counting the time
taken for the pulses to return. The altitude represents the orbit height of the satellite and the range
indicates the distance between altimeters and the water surface. The height of the water surface relative
to some referenced ellipsoid is equal to the altitude minus the range [26]. The influences of the solid
earth tide and pole tide need to be removed, as shown in Formula (1). In addition, the range needs to
include various environmental and geophysical corrections, as listed in Formula (2).

Sea Surface Height = Altitude − Corrected Range − Solid earth tide − Pole tide (1)

Corrected Range = Range + Wet troposphere correction + Dry troposphere

correction + Ionosphere correction
(2)

Envisat and ICESat data were processed based on the above formulas. It is worth mentioning that
the Ice-1 retracking algorithm was chosen to process the Envisat RA-2 product as it had higher accuracy
when deriving the range [9]. Dry and wet troposphere corrections were derived based on the European
Centre for Medium-Range Weather Forecasts (ECMWF) model, and the ionosphere correction was
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derived from the electron content from the Global Ionosphere Maps (GIM). The processing of the
ICESat GLA14 product was similar to that applied by Zhang et al. [2].

Altimeter data were in the form of footprints and the measured values were recorded along the
ground tracks of the altimeter. As lakes may undergo dynamics, footprints may fall on the lakeside
when a lake had a small extent as Figure 2 shows. To remove the contamination of land signals,
only footprints falling on the lake surface were filtered by the coastline on the same date. Therefore,
the high frequency lake boundaries created in Section 3.2.1 were applied as filters. Then, the 3-sigma
rule was applied to remove outliers from the filtered results, and the mean value of the remaining
results was calculated to represent the lake surface elevation on a particular day. Finally, the daily
results were cumulated to obtain the time series water level of each lake. The reference ellipsoid used
for the ICESat data was Topex/Poseidon, while Envisat used the World Geodetic System 84 (WGS84) as
a reference. Thus, ICESat data were converted to the WGS84 reference to maintain consistency.
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data was less than 10 for these four lakes, only Envisat results were used. Lakes Rakshastal and Shuru 
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Figure 2. ICEsat and Envisat ground tracks on Selin Co. The green circles cover some altimeter
footprints fell on the lakeside in 2000, while on the lake surface in 2015.

System differences existed between different altimeters in the orbit height, orbit inclination,
and revisit period. There were also some differences between Hydroweb outcomes and the two
derived altimetry results. Therefore, for lakes covered by two or three kinds of water level source,
it was necessary to transform the water level results into one base value to create a long-term series.
Correlations between different kinds of results were constructed to accomplish this goal.

A correlation was first constructed based on results obtained during overlapping periods.
The correlation of two kinds of water results was considered to be credible only when more than
10 pairs of data were present during overlapping periods and the R2 value of the correlation was
greater than 0.88. In this case, the altimeter results were converted to the base value of the results
with the longest time range to create a more intensive level series. If the R2 value was less than 0.88,
the level results with the longer time span were chosen for the next step of the analysis. The available
altimeter and Hydroweb data for the 15 lakes are presented in Table 2. Seven lakes with ID numbers
13, 14, 15, 2, 3, 4, and 5 were all covered by all the three sources. Lakes with ID numbers 1, 6, 7, and 9
were covered by both ICESat and Envisat data. As the number of overlapping records between Envisat
and ICESat data was less than 10 for these four lakes, only Envisat results were used. Lakes Rakshastal
and Shuru Co were only covered by Envisat series, and the levels of Daggayai Co and Pegu Cao were
only covered by ICESat data.

Figure 3 displays the three sources of lake level results for Selin Co, Nam Co and Tangra-yumco.
The ICESat results were usually 2 m higher than those from the other two datasets. Selin Co had more
ICESat- and Envisat-derived results, and the three sources of lake level data had consistent fluctuations.
The correlation between ICESat results and Hydroweb had an R2 value of 0.96. The R2 value for the
comparison between the Hydroweb and Envisat results was 0.92. For Selin Co, as the correlations
between altimeter data and Hydroweb were strong, altimeter results were converted to the Hydroweb
base to make the data dense. There were few available altimeter results for Nam Co and Tang-ro Yum
Co, and the R2 values between the altimeter results and Hydroweb were around 0.80–0.96, as shown in
Figure 3. As the threshold of R2 was defined as 0.88 in this research, for Nam Co, only the ICEsat lake
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level data were converted to the Hydroweb base due to the high R2 value of 0.96. For Tangra-yumco,
only the Envisat results were converted to the Hydroweb base due to the R2 value of 0.89. The water
level results of the other lakes were also determined based on correlations among the three datasets.

Figure 3. Comparisons among three different sources of lake level results collected in 2000–2015 for
Nam Co, Selin Co, and Tangra-yumco.

3.2.3. Lake Storage Changes

The variation in lake storage can be estimated according to the pairs of lake level and area data
when the lake is assumed to be a conical frustum [9,27,28]. In this research, the changes in lake storage
were derived from the changes in level and area, as shown in Formula (3).

∆V =
1
3
(H2 −H1) ×

(
A1 + A2 +

√
A1 ×A2

)
(3)

where ∆V means the changed lake storage from one state with level H1 and area A1 to another state
with level H2 and area A2.

It is worth mentioning that lakebeds on the southern TP have been less influenced by human
actions, such as dredging activities. Therefore, changes in the lake bottom topography can be ignored.
In the study of lake volume changes, the bottom topography under the smallest extent in 2000–2015
was assumed to be unchanged. In addition, for each lake, the area and level time series data were of
different lengths. The amount of water level data was less than that of inundation results, and hence
the length of storage time series depended on matched results between the water level and area series.

4. Results and Analysis

4.1. Fluctuation of the Water Surface

Water surface fluctuations of the studied 15 lakes showed different patterns of change: expansion,
retreat, and no obvious change. Usually, lakes in the same basin presented similar trends as presented
in Figure 1. Table 3 presents the information about inundation changes for the 15 lakes. Figure 4 shows
the dynamic changes of the five lakes with obvious changes. The first left column is the overlapped
results of the available series of lake surfaces, showing the inundated frequencies with the range from
1 to 580. The light yellow shows rarely inundated regions and dark blue indicates frequently inundated
regions. The second column presents changes in the bank during the research period. The third and
fourth columns display large views of some special changed regions of the lakes, and the curve plots
present the area changes in each lake that occurred in 2000–2015.
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In the Inner Basin, seven of the ten lakes underwent obvious expansions with various intensities.
Two lakes Ngangla-ringco and Daggayai Co showed no obvious changes, and Gyaring Co showed
a slight retreat with a rate of −0.16 km2/yr. Ngangze Co, Zhari-namco, Nam Co, and Selin Co had
increasing rates of greater than 1.60 km2/yr.

Nam Co had maximum and minimum areas of 2042.48 km2 and 1889.21 km2, which occurred
in October 2008 and July 2000, respectively. The lake gradually increased at a rate of 11.26 km2/yr
from 2000 to 2005 and presented no apparent variability in the following years (Figure 4a). The rate in
2000–2015 was 1.62 km2/yr. The lake is shaped from northeast to southwest, and its southeast bank is
restricted by ranges. Therefore, it enlarged towards the west and east (Figure 4a), especially in the
year 2005. December until the next July was the dry season, and the inundated area was usually the
smallest in July. Then, the area began to increase from August and reached its maximum in November.

Selin Co underwent significant expansion at a fast rate of 29.87 km2/yr in 2000–2010, and then the
expansion intensity dropped, causing the rate to decrease to 6.45 km2/yr in 2011–2015. The annual
average area increased by 456 km2, from 1863.92 km2 in 2000 to 2319.53 km2 in 2015. The minimum area
was 1805.71 km2 in June 2000 and the maximum area was 2377.99 km2 in November 2013. There was
no apparent seasonality for Selin Co as it underwent a continuous expansion throughout all studied
years, though this occurred in winter seasons. Boundary changes in Figure 4b show that Selin Co
expanded toward the north and southeast, where Selin Co has flat and open terrain and prosperous
grasslands for animal husbandry. Rapid expansion of this region occurred in 2006 and 2010.

Zhari-namco had a clear increasing trend of 2.27 km2/yr and its changing pattern showed stage
differences. Its largest area was 1019.84 km2 in February 2010 and its smallest area was 940.85 km2 in
April 2000. Zhari-namco presented an increasing pattern in 2000–2010 and the average annual area
increased from 955.83 km2 in 2000 to 997.07 km2 in 2010, with a rate of 4.01 km2/yr. Then, the lake
began retreating, with the mean area being around 990 km2 and the corresponding decreasing trend
being −1.77 km2/y in 2011–2015. The north and south regions of the lake are restricted by rift zones,
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leading to lake banks being parallel to several large ranges. Therefore, the expansion mainly appeared
in the west portion (Figure 4c). Zhari-namco showed apparent inter-month variability. The little
expansion usually occurred in April–July and then the lake began expanding, reaching its largest size
in October. From November to April, the inundated area gradually decreased.

Ngangze Co had an obvious expanding trend of 3.70 km2/yr. The maximum area was 470.75 km2

in March 2015, the minimum area was 385.05 km2 in April 2000, and the average area in the studied
period was 427.55 km2. Ngangze Co is located in an alluvial fan with alkaline land. Several large
feeding rivers flow into the western and southern parts of the lake. The lake showed great enlargements
toward the west, south and southeast (Figure 4d). Rapid expansion occurred in 2008–2011, causing the
area to enlarge to 18.467 km2. The intra-seasonal variability indicated that the smallest inundated area
occurred in April and then the area extent gradually increased and reached the largest size in October.
After that, the lake area remained stable and then began shrinking until the next February.

The other three lakes in the Inner Basin showed similar seasonal patterns during the studied
period. April–July was the dry season when the area tended to be small, while the lakes were in
better situations from September to the next March. Tangra-yumco showed an increasing pattern with
fluctuations, and had a slight changing trend of 0.61 km2/yr. The maximum area was 848.33 km2 in
March 2011, and the minimum area was 792.52 km2 in August 2001. Taro Co and Shuru Co had small
increasing trends, as shown in Table 1.

Three lakes in the Brahmaputra Basin showed similar seasonal characteristics, while they presented
big differences in their changing trends. Yanzho Yumco presented fluctuations and had an overall
contraction. In 2000–2005, Yamzho Yumco presented a fluctuating expansion, and the area increased
from 498.80 km2 to 539.81 km2, at a rate of 7.61 km2/yr. Then, its area decreased from 513.08
to 485.99 km2, at a rate of −3.42 km2/yr in 2006–2015. The total rate of the decreasing trend was
−3.27 km2/yr. The largest area was 587.09 km2 in October 2004 and the smallest was 402.49 km2 in
June 2015. As Yamzho Yumco is surrounded by mountains, its inundation extent was restricted by
terrain, resulting in complex shapes with several tributaries (Figure 4e). Yumzho Yumco endured
a retreat in all directions in 2015, and some of the tributaries dried up. In terms of seasonality,
Yamzho Yumco remained stable in January–April, when it tended to be in frozen state. It began
retreating from May and reached its minimum size in July. Then, it increased from August to October
and began decreasing again in November. In general, Pegu Co remained stable with a slight decreasing
trend. The maximum area of Pegu Co was 274.55 km2 in November 2005, and the minimum area
was 254.8 km2 in April 2009. The inundation extent after 2006 was less than that of the early years.
Smaller areas were usually present in July, and larger surface areas appeared in October. The small
lake Puma Yumco showed no apparent change and was almost stable with an area of around 280 km2

during the 16 years.
Two lakes in Indus Basin, Rakshastal and Puma Yumco endured slight retreats. Rakshastal had

an annual decreasing rate of −0.32 km2/a. The minimum area was 233.33 km2 in June 2008 and the
maximum inundation was 259.95 km2 in September 2000. The average area in 2010–2015 was about
5 km2 smaller than that of the period 2000–2010. The size of Puma Yumco fluctuated with no obvious
trend, and its area dropped by 23 km2 during the studied period. The seasonal performances of
Rakshastal and Puma Yumco were similar to that of Yamzho Yumco.

4.2. Lake Level and Volume

Figure 5 presents the lake level and volume changes of 12 lakes with a series of data collected
during the studied period. Three lakes—Rakshastal, Puma Yumco, and Daggayai Co—did not have
any matched records to create volume change curves. Seven lakes (lake IDs 13, 14, 15, 2, 3, 4, and 5)
were covered by three sources of water level data. Therefore, they had more level and volume records.
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Nam Co had 158 records of the lake level and 83 records of the lake volume. Nam Co presented a
rapid increase in 2000–2005 and then remained stable in the following years. The level rose by 2.5 m
and the volume increased from 1.03 to 6.13 km3 in 2000–2005, at respective rates of 0.16 m/yr and
0.31 km3/yr. Then, the lake remained stable, with the level and volume being around 4724.49 m and
5.71 km3 in 2006–2015. The inundated area showed no obvious seasonal patterns. The lake had low
volumes in April and July, with large variations, and it remained in a similar state in other months.

Selin Co had 251 level records and 129 volume records on the monthly scale. Selin Co gradually
rose by around 10 m in 2000–2015 with a change rate of 0.57 m/yr. The highest level, 4545.74 m,
occurred in April 2015 and the lowest level, 4535.37 m, occurred in May 2000. Storage of Selin Co
rose by 20.91 km3 during the studied period at a rate of 1.19 km3/yr. The seasonal pattern of Selin Co
showed no obvious fluctuations. The monthly water level and volume data had respective standard
deviations of around 2.00–2.69 m and 4.26–6.32 km3. From summer to autumn, the lake presented
great variations, while from winter to spring, it showed small differences.

Tangra-yumco had 133 level records and 101 volume records on the monthly scale. The level
and volume gradually increased with seasonal fluctuations from year to year with rates of 0.27 m/yr
and 0.21 km3/yr, respectively. The level rose from 4531.96 to 4537.57 m and the volume increased by
3.14 km during the research period. Monthly deviations of level and volume were around 1.17–1.64 m
and 0.76–1.55 km3, respectively.

Ngangla-ringco had 107 records of level and 72 records of volume from October 2002 to December
2015, and the data for 2005–2006 was missing. The lake level and storage showed great fluctuations,
with no clear changing trends. The average lake level in 2007–2015 was 4715.09 m, generally 20 cm
higher than that of the first few years. The change in volume in 2007–2015 was about 0.10 km3 greater
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than that in former years. The seasonal changing pattern of the water level was similar to the area
fluctuations. June usually had the lowest surface level and volume. The level rose in July–October,
and then remained in a stable state until the next March. Monthly standard deviations of level and
storage had respective values of 0.216 m and 0.08 km3.

Taro-co had 55 level records and 47 volume records from November 2003 to November 2015.
There were only 1–2 records for the years 2003–2009. Slight increasing trends of 0.092 m/yr and
0.045 km3/yr were indicated according to the records. The level gradually rose from 2002 to 2008,
with the highest level, 4567.43 m, occurring in November 2008. The corresponding increase in volume
was 0.93 km3. Then, the lake showed no obvious fluctuations in the following years. High levels
accompanied by small deviations usually occurred from July to October. Low levels with large standard
deviations occurred from March to June.

Zhari-namco presented a clear increasing trend in lake level with a rate of 0.10 m/yr. The level
increased in 2000–2007 with a great rate of 0.21 m/yr, from 4609.95 m in March 2000 to 4611.94 m in April
2007. The records for 2008 were missing and after 2009, the lake fluctuated at around 4612.31 m with
no obvious changing trend since then. The volume had a similar changing pattern to the water level,
rising by 2.21 km3 in the 16 year period, at a rate of 0.10 km3/yr. The high levels in August–October
had little variation and the low levels from December to the next March usually fluctuated severely.
Monthly deviations in the level and volume were around 0.23–0.85 m and 0.29–0.87 km3, respectively.

Ngangze had 308 lake level results and 113 volume results. The lake had apparent increasing
trends in level and volume with respective rates of 0.29 m/yr and 0.117 km3/yr. The level rose by
around 6 m and the value change increased by 1.89 km3 in the analyzed period. The highest level and
increase in volume were 4688.67 m and 2.33 km3, respectively, occurring in 2015. The lowest values
were 4682.81 m and 0 km3, and these occurred in 2000.

For lakes with IDs 1, 6, 7, and 9, only Envisat derived results were available for this study,
and Envisat data were missing for 2005–2006. Therefore, the lake level results of the three lakes were
only available for seven years. Mapam Yumco had 53 water level results, from August 2002 to October
2010, with about 6–10 records in each year. Mapam Yumco had a slight decreasing trend with a rate of
−0.09 m/yr for the lake level and −0.03 km3/yr for the volume. The annual average level and volume
after the year 2007 were about 0.20 m and 0.14 km3 lower than those of the first few years, as shown
in Figure 5. Mapam Yumco showed large fluctuations in different months, and from September to
December, it presented little deviation. Yumzho Yumco had 45 lake level records and 40 volume
records. Before 2005, the water level and volume fluctuated. The lake had a slight increase from
4440.34 m in June 2002 to 4442.11 m in August 2004. In 2007–2010, YumzhoYumco experienced a
constant retreat. The mean level and volume in the years after 2007 had respective values of 2.01 m
and 1.06 km3 lower than in the first few years. On the whole, the lake level dynamically dropped from
more than 4442 m to 4436.92 m at a rate of −0.39 m/yr. The volume change decreased from 1.64 km3 in
2002 to 0.30 km3 in 2010 at a rate of −0.19 km3/yr. Regarding seasonal patterns, lake levels in each
month were similar except in October when the lake was about 1.52 m higher in level and 0.85 km3

higher in volume than in other months.
Gyaring Co only had five lake level records available in two years—2002 and 2010—and it rose

from 4646.79 m in 2002 to 4648.36 m in 2010, with the volume increasing by 0.64 km3. Shuru Co
only had three level records derived from Envisat data, and the time span was from 2002 to 2003.
Fluctuations in the level were in agreement with the area variations. For Shuru Co, the increased
values were 0.31 m and 0.06 km3, respectively. Pegu Co was only covered by ICESat data, and only
four records of the lake level were available in the years 2003 and 2008. Level changes coincided with
the area. Pegu Co dropped from 4552.81 m in 2003 to 4552.34 m in 2008, with the volume decreasing
by 0.13 km3.
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5. Discussion

5.1. Accuracy Assessment

To check the accuracy of the lake surface results, six series of 30 m interpreted results of the
studied lakes based on Landsat images from the years 2000, 2005, 2010, 2013, 2014, and 2015 were
collected. The accuracy of the interpreted lake maps was 96% [29]. To ensure images were consistent
with acquisition dates, MODIS results from the nearest dates to the 30 m Landsat results were chosen.
Theoretically, for 15 lakes, 90 results could be selected in the six years for comparison. As there was
some mismatch between the acquisition dates of the Landsat and MODIS images, 75 pairs of data were
finally determined to assess the accuracy. Figure 6 shows that the correlation between MODIS results
and interpretation results was high with an R2 value of 0.99. The 30 m results were higher, as Landsat
images can clearly delineate the trivial transition of coastlines. Boundary differences between the two
sets of results for some respective lakes are shown in Figure 6. The area differences were between
2.83% and 3.56%, which meant the research results were convincing and can be used to study lake
inundation changes.
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Figure 6. Comparisons between 30 m interpretation products and the extracted results based on
MODIS images.

Water levels of more than 50 major lakes on the TP from 2000 to 2017 were presented in [30], and nine
studied lakes of this research were included. Long time series of the water levels of the nine common
lakes were respectively compared and the correlations were around 0.91–0.99. Usually, larger lakes
had higher correlation coefficients. Moreover, daily gauged water level observations of Zhari-namco
in 2010–2015 were obtained. The in situ data did not represent the real water level and only captured
level fluctuations relative to the mean value of each year, around 0.1–0.8 m as shown in Figure 7.
For Zhari-namco, the derived results and matched the in situ lake level fluctuations well. The lake
level results in this paper had a high degree of accuracy and were able to reflect lake dynamics.
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5.2. Driving Forces

Based on climate data and collected materials, driving forces were analyzed on four expanded
and one retreating lakes as their obvious changes.

The four expanded lakes—Nam Co, Selin Co, Zhari-namco, and Ngangze—were in small enclosed
sub-basins, as shown in Figure 1. As the interference from human actions can be ignored, the water
balance equation considering precipitation, ground runoff, evaporation, and other factors such as
glacier and snow meltwater was established for them. The equation is as follows:

At × P− E + R + W + Vt = Vt+1 (4)

where At is the area of the studied lake at time t, P is the corresponding precipitation, and thus
At × P is the equivalent volume of rainfall on the lake surface. E is the evaporation on the lake
surface. R is the accumulated ground runoff that is determined as precipitation minus evaporation
over land in the sub-basin. Regarding ground runoff, as there were several other lakes in each
sub-basin, the ground runoff allocated to a studied lake was determined according to the area ratios
among lakes in one sub-basin. The area ratios of the four expanded lakes—Nam Co, Selin Co,
Ngangze, and Zhari-namco—were 99.57%, 85.00%, 99.43%, and 85.70%, respectively. W is an overall
supplement that is made up of other components: glacier meltwater, snow water, permafrost, and some
groundwater outflow. When W is negative, it indicates that W is the outflow. Vt and Vt+1 represent the
lake storage at two moments. The net precipitation was defined as the precipitation minus evaporation
over the lake surface, and then with the allocated ground runoff in the sub-basin (At × P − E + R).
In most years, the net precipitation was usually less than 0 due to the strong land evaporation on the
southern TP. In addition, the infiltration of each lake was ignored.

Daily precipitation and evaporation measurements were transformed to the monthly frequency to
match the water level and volume changes data. Then, the monthly precipitation in the whole study
area was determined according to kriging interpolation of gauged observations on 19 nearby stations.
The land evaporation of each sub-basin in 2000–2015 was extracted from GLDAS, which was on the
monthly scale and had a resolution of 1◦. The evaporation of each lake was estimated from the nearest
in situ station according to the Penman–Monteith equation, which was illustrated in detail in [31].
Based on several variables and lake volume changes, the W of each lake was derived from the water
balance equation.

For the four sub-basins, the precipitation showed no obvious changing patterns and the land
evaporation increased with a slight trend during 2000–2015. The storages of the four lakes increased,
while the net precipitation decreased over the studied period in Figure 8. This implied that besides
precipitation supplements, the contribution of W increased. As Figure 8 shows, the annual average
lake volume of Nam Co experienced an expansion with a rate of 0.29 km3/yr. The volume rose rapidly,
increasing by 5.11 km3 in 2000–2005 and then was maintained at around 5.71 km3 after 2005. The land
evaporation in its basin increased at a rate of 0.04 km3/yr and the highest was 3.60 km3 in 2011.
The contribution of the yearly net precipitation was less than 0. It fluctuated and decreased from
−0.31 km3 in 2000 to −3.27 km3 in 2015 at a rate of −0.14 km3/yr. From the view of water balance,
the yearly supplement of W increased from 1.00 to 3.00 km3 during the study period, with a mean
value of 1.68 km3 in 2000–2015.
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Selin Co endured a rapid increase in the lake volume at a rate of 1.22 km3/yr. The net precipitation
gradually decreased with a slight fluctuation from 2.47 km3 in 2000 to −2.90 km3 in 2015. The land
evaporation in its basin increased at a rate of 0.07 km3/yr and the highest was 9.04 km3 in 2011.
The contribution of W fluctuated from −3.17 to 3.27 km3, with a mean value of 0.08 km3. The negative
value of W indicated that some outflow existed in the watershed.

The increased intensity of Zhari-namco was less than that of Selin Co. Zhari-namco had a slight
change of 0.14 km3/yr, and the volume rose by 2.19 km3 over the 16 year period. The net precipitation
fluctuated with average and variation values of 1.66 km3 and 0.72 km3, respectively. The highest net
precipitation was 0.97 km3 in 2002 and the lowest was −1.56 km3 in 2015. Negative net precipitation
indicated that evaporation induced outflow was more than precipitation induced inflow. As the lake
storage fluctuated, the supplement of W was around −0.50 to 1.68 km3, with a mean value of 0.42 km3.

Ngangze also expanded gradually and the volume increased by 1.89 km3 at a rate of 0.12 km3/yr.
The net precipitation presented a decreasing tendency with a slight fluctuation in the years 2007, 2008,
and 2014. The highest net precipitation was 0.56 km3 in 2008, and the average annual value was
−0.16 km3. As the average annual variation in the lake volume was 1.15 km3, the average yearly
contribution of W was 0.32 km3 during the study period.

Yearly quantitative supplements of several components for the four lakes are shown in Table 4.
The evaporated lake water was usually 2.5–3.5 times that of lake surface rainfall, and precipitation
induced runoff was the main cause for lake expansion. The low W of Selin Co implied that precipitation
supplied most in its expansion and some sources of outflow, such as groundwater flow existed to
counterbalance the feed.

Table 4. Yearly contribution of components to the water balance equation.

Lake Precipitation (km3) Runoff (km3) Evapotranspiration (km3) W (km3)

Nam Co 0.91 3.52 2.51 1.68
Selin Co 0.94 11.46 3.04 0.08

Zhari-namco 0.28 6.37 1.07 0.42
Ngangze 0.12 2.36 0.44 0.32

Yamzho Yumco is an inland lake, and its supplements are snow meltwater, spring water,
and precipitation induced surface runoff. Lake surface evaporation is usually greater than precipitation.
As there is a hydrological project in the basin, the water balance equation is not suitable for Yamzho
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Yumco. The analysis of the effects of climate variables on lake retreat, fluctuations of yearly precipitation,
lake surface evaporation, and temperature, in 2000–2015, derived from five nearby metrological stations,
are presented in Figure 9.
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The annual precipitation presented variations in 2000–2015. The mean value of the five stations
decreased at a rate of −7.56 mm/yr. The average precipitation in the years 2005, 2009, and 2015 was
less than 300 mm, lower than in adjacent years. The yearly lake surface evaporation was derived from
gauged variables using the Penman–Monteith equation, and the mean value was around 1143–1539
mm, showing a slight increasing trend of 14.26 mm/yr over the studied period (Figure 9b). Lake surface
evaporation was lower in 2011 than in the adjacent years. Temperature changes of the five stations
showed similar patterns with no obvious trends. The five temperature curves presented certain
gradients, and higher values occurred in the years 2009 and 2010. The average annual temperature of
the five stations was around 6.89–8.38 ◦C.

Yamzho Yumco had a decrease in annual average volume from 1.79 km3 in 2002 to 0.28 km3 in
2010. The value of evaporation minus precipitation on the lake surface increased from 0.16 km3 in
2000 to 0.48 km3 in 2015 at a rate of 0.01 km3/yr. The annual inflow to Yamzho Yumco was 0.95 km3,
which was nearly equal to the evaporation over the lake surface, and this was capable of allowing
the lake to maintain a stable state. However, a hydropower station was established in the year 1998
with yearly lake water consumption of 0.18 km3. The project broke the lake balance and became
a major contributor to lake retreat. Some research has pointed out that the water level increase
before 2005 was mainly caused by precipitation and surface runoff, though human activities had
a negative effect [32]. After 2005, fluctuations in precipitation, evaporation, and temperature were
not in agreement with lake dynamic changes, and climate factors were not able to fully explain the
cause of lake contraction. With increasing evaporation and aggravating influences of the hydropower
project, YamzhoYumco experienced a drastic retreat. In addition to metrological factors, glacier/snow
cover also contributed to lake volume variation. With an increasing temperature and the retreat
of glaciers, potential supplements of meltwater will decrease, and then the lake will be at a risk of
constant recession.

6. Conclusions

Several findings were obtained from the analysis of hydrological changes of 15 lakes on the southern
TP. Lakes in the Inner basin usually underwent expansion with rates from 0.17 to 29.87 km2/yr between
2000 and 2015, especially Selin Co, Nam Co, Ngangze, and Zhari-namco. For the four lakes, with the
aid of volume changes, contributions of the driving factors were derived based on the water balance
equation. The precipitations in sub-basins presented no clear changes, while the land evaporations
increased slightly. The negative effect of lake surface evaporation was almost 2.76–3.88 times that of
lake surface precipitation. Surface runoff was the main cause of lake expansion, while it decreased over
the studied period, and this implied that the contributions from other factors, such as snow/glacier
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meltwater, permafrost increased. Two lakes in the Indus Basin experienced retreats. Three lakes in the
Brahmaputra Basin showed different changing trends. Yamzho Yumco endured a considerable retreat,
and climate factors were not enough to explain this. Actually, the hydrological project has been a
major cause of lake level decline since 2005. With increasing evaporation, decreasing glacier meltwater,
and the constant effect of the hydropower station, the situation of Yamzho Yumco will get worse.

In this research, MODIS images were selected to document inundation changes as this instrument
scanned the earth two times a day. Some other high-resolution measurements were discarded as they
had low frequent observations, such as the widely applied Landsat images (30 m). Discarding the
scenes contaminated by clouds or snow, the available Landsat images were few, lowing the density
of lake storage data. The usable MODIS images can guarantee at least one measurement available
in a month. As our aim was to study lake hydrological changes on annual and monthly scales,
such frequency of observations was adequate. In addition, high frequency of lake area data derived
from MODIS images can match more lake level data.

Regarding driving forces, some researches have tried to analyze the impact of climate and land
cover change on lake fluctuations on the TP. However, only the correlation analysis was carried out
between independent variables and hydrologic traits. Hydrologic models such as Soil and Water
Assessment Tool (SWAT) and Variable Infiltration Capacity (VIC) [33,34] can simulate hydrological
processes of lakes or basins and illustrate the driving forces of lake dynamics, while sufficient measured
variables is a key prerequisite. Therefore, hydrological models are not practical on the TP due to the
insufficient gauged measurements. In contrast, the water balance equation applied in this research
can quantitatively derive contributions of precipitation, lake surface evaporation, land evaporation,
surface runoff, and other factors. The results have implications to assess the effect of climate change
and glacier retreat and it is possible to perform the same task in other enclosed basins.

In addition, three hydrological traits were presented with high levels of accuracy. Therefore,
the procedure employed in this paper can be expanded to other lakes without in situ observations.
The high frequency and long series of lake coastlines can be treated as contours of lake bathymetry.
The lake’s bottom topography can be derived based on these contours, especially for the lakes endured
large dynamics, such as Selin Co. On the whole, this research obtained changing details and quantified
potential contributors to lakes on the southern TP. The results can help us to better understand the
regional water cycle and climate change on the TP that have occurred in this century and also can be a
foundation for hydrologic modelling of the TP.
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Abstract: Small Unmanned Aerial Systems (sUAS) show promise in being able to collect high
resolution spatiotemporal data over small extents. Use of such remote sensing platforms also show
promise for quantifying uncertainty in more ubiquitous Earth Observation System (EOS) data, such as
evapotranspiration and consumptive use of water in agricultural systems. This study compares
measurements of evapotranspiration (ET) from a commercial vineyard in California using data
collected from sUAS and EOS sources for 10 events over a growing season using multiple ET
estimation methods. Results indicate that sUAS ET estimates that include non-canopy pixels are
generally lower on average than EOS methods by >0.5 mm day−1. sUAS ET estimates that mask out
non-canopy pixels are generally higher than EOS methods by <0.5 mm day−1. Masked sUAS ET
estimates are less variable than unmasked sUAS and EOS ET estimates. This study indicates that
limited deployment of sUAS can provide important estimates of uncertainty in EOS ET estimations
for larger areas and to also improve irrigation management at a local scale.

Keywords: evapotranspiration; variability; uncertainty; unmanned aerial system; sUAS;
multispectral; remote sensing; viticulture; water resources management; California

1. Introduction

Global environmental change and anthropogenic activity have long stressed Earth’s hydrological
cycle [1,2]. Evapotranspiration remains the least certain quantified component of the hydrological
cycle [3], with implications for not only water resources planning and management, but also for human
livelihoods and supporting ecosystems [4]. Globally, irrigated agriculture represents 70% of water
withdrawn from surface and ground water supplies but estimates of actual consumptive loss (the
largest component of the water balance in an agricultural region) through evapotranspiration (ET)
remain coarse [5]. New advances in satellite remote sensing of ET via Earth Observation Systems
(EOS) show promise in providing consistent and reliable quantitative estimates with global coverage
and reasonable repeat cycles. However, the spatiotemporal resolution of EOS platforms and sensors
may obscure finer spatial resolution phenomena or weather-related aberrations observed at finer time
scales. Small Unmanned Aerial Systems (sUAS) operated under the Federal Aviation Administration
(FAA) Part 107 licensing outfitted with optical sensors are increasingly used in vegetation remote
sensing [6] and precision agriculture applications [7]. More recently, however, comparative studies of
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EOS and sUAS observations of crop water stress have shown significant spatiotemporal uncertainty in
coarser EOS data [8,9].

1.1. Evapotranspiration in Water Management

Globally, freshwater withdrawals have increased five-fold over the past century [10].
While rain-fed agriculture is most widespread, representing approximately 78% of water use in
agriculture, irrigated agriculture is most prevalent in arid and semi-arid parts of the globe, such as
the Mediterranean biome that is characterized by cool, wet winters and dry, hot summers [11].
This region, extending beyond the Mediterranean basin to include portions of Australia, Chile,
South Africa, and California (USA) is also characterized by expansive urbanization and high intensity
agriculture [11]. The productivity of agriculture in such places, especially in California, is achieved
in part because of the ideal growing conditions, resulting in hundreds of different agricultural
commodities, but also because of expansive water development infrastructure built primarily to meet
irrigation demand [12]. California is the most agriculturally productive region in the USA [13], but also
one of the world’s most water stressed [14,15]. Like much of the Mediterranean biome, California
is characterized by pronounced wet and dry periods, both intra- and inter-annually. More recently,
however, extreme variation in precipitation has resulted in exceptionally wet events and prolonged dry
droughts [16,17]. Managing California’s water has thus become more challenging [18], and therefore a
better understanding agricultural consumptive water use (i.e., ET) is a critical need.

In a recent comprehensive study by Medellín-Azuara et al. [19], seven different ET calculation
methods involving remotely sensed data, satellite imagery and ground level meteorological stations
were evaluated for their performance in quantifying ET for the heavily cultivated Sacramento-San
Joaquin Delta region of California over a period of two growing seasons (2015–2016). While there was
general consensus between these seven methods, model results were only within 20% of the median
estimate for total consumptive use. This high level of uncertainty has implications not only for broad
water resources management decisions across California, but also limits local decision-making by
individual growers if they are unable to know how much water is needed when and where. Improving
reliability of coarse ET estimates, therefore, would improve water management decision-making
more broadly by balancing demand with supply [20] and also could accelerate adoption of irrigation
methods that leverage real-time information on crop water demand [21]. When coupled with localized
monitoring, such as with sUAS remote sensing of evapotranspiration, these technologies have the
potential to integrate other ecologically-friendly practices [22].

1.2. Remote Sensing of Evapotranspiration

Evapotranspiration has long been the focus of hydrological and agrometeorological studies [23,24].
Zhang et al. [25] reviewed the state of science in remote sensing of evapotranspiration (RSE), described
its use to estimate and map ET at regional to continental scales, and highlighted existing major RSE
estimation methods. Because so many studies and reviews have been conducted on ET measurements,
modeling and RSE methods of retrieval, they are not repeated here. Rather, we focus on the fact
that RSE from EOS provides relatively frequent, consistent, and spatially contiguous measurements
for global estimation, monitoring, and mapping of ET flux; however, due to the relatively coarse
granularity of such data at the field level, we explore how high spatiotemporal resolution data from
sUAS could quantify inherent variability in such estimates.

In almost all cases, RSE relies on energy balance methods. Most RSE methods focused on energy
balance are rooted in Surface Energy Balance Algorithm for Land (SEBAL) [26–28] an image-processing
model to quantify surface energy balance components, at both local and regional scales using empirical
relationships and physical parameterization. SEBAL requires digital imagery data collected by any
satellite sensor measuring visible, near-infrared, and thermal infrared radiation, and their derivative
products including surface temperature, normalized difference vegetation index (NDVI), and albedo.
SEBAL was a methodological precursor to METRIC (Mapping EvapoTranspiration at high Resolution
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with Internalized Calibration), developed by Allen et al. [29], which is now a standard remote sensing
estimation approach using Landsat 5, 7 and 8 EOS imagery (including thermal bands), local weather
station data, and calibrated from either nearby alfalfa or pasture, and bare soil land cover types.
Landsat-based METRIC, and other similar approaches are described in Irmak et al. [30].

More recently, a number of open-source methods have emerged as Google Earth Engine-based
collaborative [31]. One such method includes EEFlux, a version of the METRIC model as developed by
Morton et al. [31] employing algorithms by Irmak et al. [30]; EEFlux has been used because of expansive
access to EOS imagery and computational assets, including built-in calibration using reference ET
from the North America Land Data Assimilation System [32,33] and GridMET [34] for the contiguous
United States. In implementation, however, RSE methods such as these are explicitly reliant upon
thermal infrared sensors (λ = 10,500–12,510 nm) onboard EOS platforms, which largely prohibits
inclusion of field-deployed sUAS RSE methods of comparison because of the limited performance and
calibration difficulty experienced by small thermal infrared sensors [35,36]. Full-scale incorporation of
sUAS thermal-based RSE remains elusive to most practitioners due to the fact that transmissivity and
atmospheric radiance vary dramatically throughout the day [37] and that most sUAS data collection
missions can last several hours.

A more direct comparison of RSE between EOS and sUAS approaches, due in part to the
prevalence of low-cost commercial multispectral sensors for sUAS, would provide practitioners
a means by which to evaluate coarse EOS RSE estimates to finer resolution RSE estimates from local
collections. For cross-platform RSE comparison, without inclusion of thermal measurements, it is
necessary then to focus on methods that use photosynthetic productivity as a proxy for ET using
available spectral response in the 400–900 nm domain (Figure 1). This transfer function approach to
RSE is increasingly driven by studies of robust empirical relation between image-derived estimates
of vegetation greenness (i.e., NDVI) and ET [38], wherein cellular light energy in red wavelengths
is absorbed by chlorophylls and near-infrared light energy is reflected by plant lignin and cellulose.
It should be noted here that robust comparisons between EOS data products requires harmonization
techniques [39] not employed here. For the purposes of this study, we also explore the utility of
OpenET NDVI-ET and SSEBop estimates as described in more detail below.

Figure 1. Comparison of wavelength channel position and widths by sensor platform (RE = RedEdge;
L8 = Landsat 8; S2 = Sentinel 2), showing a typical percent reflectance spectral response signature for a
grapevine (black).
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1.3. Research Questions

Given the importance of ET in water management generally, and the potential uncertainty of EOS
ET estimation for large seemingly homogeneous cropping areas with temporal variance, we explored
several research questions to help parameterize the spatiotemporal uncertainty of EOS ET estimation
using sUAS RSE. Answers to these research questions can provide practitioners valuable qualifiers of
uncertainty as EOS ET estimates are now more routinely used in determining irrigation volumes and
scheduling. Through cross-platform comparisons, we asked:

1. Do EOS and sUAS ET estimates fundamentally differ over same period of time? In other words,
over the course of the growing season, does either the mean or variance of sUAS and EOS
ET estimates differ? While we expect that ET estimates to similarly track the growing season
(e.g., peak ET demand in mid-summer), it remains unknown if the variance in ET estimates
also track either the growing season or each other, sUAS compared to EOS. By using the fixed
temporal domain of the growing season and coincident measurements, we can compare upscaled
sUAS ET to EOS ET estimates to determine if temporal variance is uniformly distributed or varies
across time.

2. Do EOS and sUAS ET estimates fundamentally differ over the same study domain and same
period of time? While we expect that the mean ET should be comparable from pixel to pixel,
it remains unknown if the variance will differ in either within an EOS pixel or across the pixel
domain. By using the fixed spatial domain of the vineyard block and by comparing upscaled
sUAS ET to EOS ET estimates within and across pixels, we can retain the spatial variance of sUAS
to determine if sUAS spatial variance is greater than EOS pixel to pixel variance.

3. Do “mixed pixels” inherent in EOS data obscure important signals in ET estimation? Over the
course of a growing season, biomass and leaf area index can change, altering reflectance and
ultimately energy balance models. We evaluated the canopy fraction using high spatial resolution
sUAS imagery and vineyard canopy structure to determine if unobscured plant reflectance values
were better proxies for ET estimation.

2. Materials and Methods

We evaluated cross-platform data products and methods to estimate ET in a high-yield
commercial winegrape vineyard. We used small Unmanned Aerial Systems (sUAS) to
capture high-spatiotemporal, multispectral imagery to compare to well-established EOS Landsat
8 (https://landsat.gsfc.nasa.gov/landsat-8/) and Sentinel 2 (https://sentinel.esa.int/web/sentinel/
missions/sentinel-2) systems. We timed our sUAS field campaigns to coincide with EOS overpasses.
We used EOS imagery to calculate ET using both a reflectance based NDVI approach and the emerging
EEFlux approach. For EOS ET estimates, Sentinel 2 Bottom of Atmosphere reflectance imagery was
used for the OpenET NDVI model and Landsat 8 was used for EEFlux. sUAS imagery was calibrated,
stitched, and georeferenced to produce reflectance and structure-from-motion (SfM) surface model
products. The OpenET NDVI model approach [31] was used to generate high resolution sUAS-based
ET estimates from reflectance, and surface models were used to identify canopy and ground pixels to
mask soil in subsequent analysis. As single date LiDAR collection was used to validate SfM canopy
models. Each platform’s raster-based ET estimates were resampled to have consistent spatial origin,
extent, resolution and index to track coincident pixel value and change throughout the season and
across data source. We used a combination of Ardupilot Mission Planner (v.1.3.59), Pix4D Pix4DMapper
(v.4.3.3), Phoenix LiDAR Systems SpatialFuser (v.3.5.1) and CloudCompare (v.2.11 alpha) for sUAS
data collection and manipulation; ESA Snap Toolbox (v.6.0), OSGeo GDAL (v.2.3.2), Google Earth
Engine Python API (v.0.1.217), Python (v.3.6) and ESRI ArcMap (v.10.5.1) for EOS data manipulation;
and ESRI ArcGIS Pro (v.2.4) and R (v.3.5.3) for platform comparison and analysis.
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2.1. Study Site

The study site was a commercial vineyard located in Ripperdan, Madera County, California, USA
(Figure 2; 36◦50′24.39′ ′ N , 120◦12′43.29′ ′ W). The analysis evaluated a 31.23 hectare block, consisting
of Chardonnay vines (Vitis vinifera) and planted in 2009 on 1103P rootstock and double vertical canopy
trellising. Primary viticultural techniques included use of drip irrigation and annual cover-cropping
with oats (45%), barley (45%), and mustard (10%). Site soils consisted of Dinuba-El Peco alkaline fine
sandy loam for the majority of the vineyard block, and a Grangeville sandy loam distributed in what
appears to be remnant stream bed coursing through the northwest corner. Data were collected on
10 site visits for the period of May–September 2018. Across the growing season, the air temperature
ranged 5.2–40.1 ◦C, minimum to maximum daily measured hourly, and resulted in 2058 degree days.
For the calendar year 2018, the site received 733 mm of rainfall. Site observations and agronomic
records indicate uniformity of vine canopy growth, and hence soil exposure, for each date of site
visitation and across the growing season.

Figure 2. Site map of Ripperdan 760 Block in Madera County, California, USA.

2.2. Analytical Methods

2.2.1. Reference Evapotranspiration

Reference evapotranspiration describes the fraction of ET from a reference crop given measured
weather conditions. In the METRIC energy balance method, reference ET (ETref) is typically based
on the ratio of irrigated alfalfa, the reference crop, to ETo for grass. ETref was collected from Spatial
CIMIS [40], to obtain daily ETo for the study vineyard throughout the growing season. Spatial CIMIS
renders ETo at a 2-km spatial resolution by coupling daily solar radiation from NOAA GOES satellite
with the Heliosat-II method [41] and interpolating air temperature T, relative humidity RH, and wind
speed u2 from CIMIS stations. ETo is calculated using a modified ASCE–Penman Montieth equation
for clipped grass reference from [42] (Equation (1)):

ETo =
0.408∆(Rn − G) + γ 900

T+273 u2(es − ea)

∆ + γ(1 + 0.34u2)
(1)

where ETo is reference crop evapotranspiration (mm day−1, Rn is net radiation at the crop surface
(MJ m−2 day−1, G is soil heat flux density at the soil surface (MJ m−2 day−1, T is the daily mean air
temperature at 2 m (ms−1, u2 is wind speed at 2 m, the difference es–ea is the saturation vapor pressure
deficit (kPa), γ is the psychrometric constant (∼66 Pa K−1, and ∆ is the slope of the saturation vapor
pressure-temperature curve (kPa ◦C−1).
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2.2.2. Earth Engine Flux

Earth Engine Flux (EEFlux) is an implementation of METRIC [29] in Google Earth Engine for
Landsat or MODIS imagery with automatic calibration using groundlevel weather station data,
land-use data, and a digital elevation model that calculates the residual latent energy used to evaporate
water. EEFlux uses GridMET weather data to calculate daily ETref with the Standardized ASCE-PM
equation. EEFlux allows users to select a region of interest, range of dates, and satellite overpasses to
calculate ET using the METRIC surface energy balance method in a matter of minutes. We obtained
11 EEFlux Landsat 8 daily ET products from 16 April to 23 September for the 2018 growing season.

2.2.3. OpenET

OpenET (https://etdata.org/) is a collection of Google Earth Engine-based ET models. OpenET
is currently in beta with some features accessible on Github, including SSEBop and an NDVI-based
ET model. Both NDVI-ET and SSEBop models are run via Google’s Earth Engine Python API
(https://github.com/google/earthengine-api). While NDVI can be used as a proxy for photosynthetic
activity, it has also been shown to vary linearly with ETo. Daily OpenETaNDVI rasters were used to
produce a dimensionless ET fraction (ETf) raster by using a linear model adjusted for ETo. NDVI
was calculated using the Red and NIR bands from each platform (see Figure 1 and Equation (2))
(S2: Bands 4 (650–680 nm) and 8 (785–899 nm); sUAS: Red (663–673 nm) and NIR (820–860 nm)).
A slope coefficient of 1.25 and intercept of 0 were set to conform to OpenET NDVI-ET-Beta model
parameters [31]. Daily ET rasters were created for both models (NDVI-ET and SSEBop) and used for
model comparison. EOS imagery was processed through Earth Engine. sUAS imagery was processed
in ArcGIS Pro 2.4 following OpenET’s NDVI-ET method.

The linear transfer function for OpenETaNDVI is as follows:

OpenETaNDVI = 1.25(
σNIR − σRED

σNIR + σRED
)ETo (2)

where σNIR is reflectance in the near infrared band and σRED is reflectance in the red band (see Figure 1).
ETo was derived from from Spatial CIMIS, such that ETa is actual ET (mm day−1) and ETo is daily
reference ET from Spatial CIMIS (mm day−1).

2.3. Data Products

2.3.1. Satellite Imagery

Sentinel 2 imagery was collected from USGS EarthExplorer for each coinciding overpass with a
field survey and overpasses within 3 days of a Landsat overpass. Level 1C Top of Atmosphere products
were run through the Sen2Cor plugin (ESA, v.2.5.5) in SNAP Toolbox (ESA, v.6.0). Sen2Cor was used
to correct for any atmospheric effects and to produce Level 2A Bottom of Atmosphere reflectance
products. Corrected Sentinel data were transformed from JPEG2000 to GeoTiff format using GDAL,
and subsequently analyzed in ArcGIS and R for cross-platform comparisons. No attempt was made to
harmonize Landsat and Sentinel imagery vis-à-vis Claverie et al. [43] given the limited availability of
such data to grower practitioners.

2.3.2. sUAS Imagery and Ancillary Data

Data Acquisition Flights: All sUAS missions were planned with Ardupilot Mission Planner to
maintain a consistent flight pattern over the 10 acquisition dates between April and September 2018.
Each flight was operated under FAA Part 107 flight rules by a certified Remote Pilot. The early season
flights in April and May were completed using the Finwing Sabre; a foam fixed-wing sUAS, carrying a
Parrot Sequioa sensor. Subsequent flights were flown with a DJI S1000 multirotor sUAS carrying a
Micasense Red Edge-M sensor. Multirotor flights (DJI S1000) were flown in a simple grid pattern with
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transects in a north-south orientation (90 m Altitude, 80% Sidelap, 80% Frontlap, 9 m s−1 speed, 20 m
flightline spacing). Most dates required four flights to cover the entire vineyard block at the desired
altitude, front and side overlap. Additional flights were performed in case of sensor drop-outs or wind
reducing flight endurance. Flights were completed as close to solar noon to minimize shadows.
Canopy Volume: We used a voxel approach to calculate the volume of the canopy for each of the RSE
flight over the growing season. Canopy volume was calculated for each flight date with a densified
point cloud from Pix4D. The densified point cloud was then classified in CloudCompare using the
Cloth Simulation Filter [44]. Once ground and non-ground points were identified, a 25 cm Digital
Terrain Model (DTM) was made from using only ground points and a 25 cm Digital Surface Model
(DSM) was made from using all points to model the canopy as well as the bare soil elevation. The DTM
was subtracted from the DSM to produce a Canopy Height Model (CHM) for each applicable date.
The CHM was then multiplied by the area of each cell to calculate the canopy volume of the full field.
The CHM was also used to create an above ground canopy mask used to exclude bare soil and cover
crop in subsequent analyses.

Reflectance Imagery: Reflectance images from the Parrot Sequoia and Micasense Red Edge-M were
georeferenced and stitched through the photogrammetry software Pix4DMapper Pix4D, version 4.3.3,
2018-04-09). RTK GPS-surveyed Ground Control Points (GCPs) were used for each flight to ensure
accurate orthomosaic geolocation. Our sUAS ET model used orthomosaics of reflectance values
and DSMs produced for each flight date. Model results were upscaled to 10 m spatial resolution to
conform with Sentinel 2 pixel geometry. The upscaled outputs included mean, maximum, minimum,
and standard deviation of the finer sUAS pixel values within each Sentinel 2 pixel.

3. Results

3.1. Irrigation Delivery and Canopy Growth

Observed irrigation practices for the growing season resulted in a average of 5.26 mm day−1

across the growing season and 9.96 mm day−1 for irrigation days, but varied considerably across
the growing season. The longest period without irrigation extended for 19 days (13 May to 31 May),
compared to a maximum application of 28.07 mm on 8-May (Figure 3). In total, 264,338 m3 of water
was applied to the 31.23 ha vineyard block over the course of the growing season April–September.

Figure 3. Daily air temperature ◦C (right axis) for the 2018 growing season is shown for mid-day
(red line) as well as maxima-minima (gray band). Applied irrigation for each day in mm (left axis) is
shown as blue bars.
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3.2. Remote Sensing of Evapotranspiration

For this study, we focused on the comparative utility of EOS and sUAS ET estimates over a single
growing season (2018). We flew sUAS on ten dates April–September (Table 1), and calculated ET with
EOS imagery on 20 dates (Table 2). We observe the change in daily ET over the course of the growing
season (Figure 4), peaking in mid-July. During the early portion of the growing season April–June
there is a close tracking relationship between NDVI-ET and EEFlux estimates, rising from 1.4 mm
day−1 on 16 April to approximately 8 mm day−1 06 June. EOS observations diverge in July–September,
where EEFlux estimates peak 06 August at 8.26 mm day−1 and remain high while NDVI-ET values
drop after harvest. The effect of canopy masking on sUAS NDVI-ET estimates resulted in a mean
positive difference of 1.23 mm day−1 ET, presumably due to fewer mixed pixels. We observe the
smallest difference between masked and unmasked sUAS NDVI-ET on 19 September with a mean
difference of 0.49 mm day−1. The greatest deviation occurred on 16 July with a mean difference of
1.75 mm day−1. Masked sUAS NDVI-ET and EOS S2 NDVI-ET estimates were often the most similar
between all methods. During the season EOS ET ranged from a minimum pixel value of 0.93 mm
day−1 on 16 April to the maximum 9.74 mm day−1 on 21 June. The minimum observed EOS mean
daily ET of 1.45 mm day−1 occurred on 16 April using L8 EEFlux. The maximum observed EOS mean
daily ET of 8.14 mm day−1 occurred on 06 August (Table 2). sUAS NDVI-ET ranged from 0.49 mm
day−1 on 07 May to 8.79 mm day−1 on 16 July. Mean sUAS NDVI-ET was lowest on 19 September at
3.58 mm day−1 and greatest on 16 July at 8.04 mm day−1.

Table 1. Flight dates and platforms.

2018 Flight Dates sUAS Platform sUAS Sensor EOS

20 April Finwing Sabre Parrot Sequoia N/A
7 May Finwing Sabre Parrot Sequoia Sentinel 2
6 June DJI S1000 Micasense RedEdge-M Sentinel 2
21 June DJI S1000 Micasense RedEdge-M Sentinel 2
5 July DJI S1000 Micasense RedEdge-M Landsat 8
16 July DJI S1000 Micasense RedEdge-M Sentinel 2
26 July DJI S1000 Micasense RedEdge-M Sentinel 2
6 August DJI S1000 Micasense RedEdge-M Landsat 8
20 August DJI S1000 Micasense RedEdge-M Sentinel 2
19 September DJI S1000 Micasense RedEdge-M Sentinel 2

Figure 4. Daily Evapotranspiration (ET) in mm (x-axis) ridgeline density plot for each overpass date
(y-axis) comparing each method used. Landsat 8 EEFlux is colored red, Sentinel 2 NDVI-ET is shown
in orange, sUAS unmasked NDVI-ET is light blue, and sUAS masked NDVI-ET is green.
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Table 2. Summary of ET (mm) estimates from sUAS and EOS observation for 2018.

Date Method Mean Median Std Dev Var Min Max

16 April EOS L8 EEFlux 1.448 1.375 0.340 0.116 0.930 3.265

20 April sUAS Unmasked NDVI-ET 2.450 2.524 0.418 0.175 0.102 3.688

22 April EOS S2 NDVI-ET 3.258 3.339 0.427 0.182 1.227 4.765

2 May EOS L8 EEFlux 3.889 4.016 0.467 0.218 2.376 4.559

7 May sUAS Unmasked NDVI-ET 5.154 5.421 0.972 0.944 0.485 6.400
EOS S2 NDVI-ET 5.908 6.197 0.925 0.855 1.635 6.963

18 May EOS L8 EEFlux 6.017 6.194 0.582 0.338 4.030 6.654

27 May EOS S2 NDVI-ET 6.570 6.931 1.051 1.104 1.659 7.425

3 June EOS L8 EEFlux 7.581 7.805 0.719 0.516 4.946 8.398

6 June
sUAS Unmasked NDVI-ET 6.465 6.807 1.14 1.299 0.568 7.496
sUAS Masked NDVI-ET 7.308 7.533 0.809 0.654 0.523 7.824
EOS S2 NDVI-ET 7.567 7.966 1.070 1.145 2.58 8.465

19 June EOS L8 EEFlux 5.373 5.521 0.549 0.301 2.856 6.035

21 June
sUAS Unmasked NDVI-ET 6.192 6.493 1.062 1.127 1.171 7.803
sUAS Masked NDVI-ET 7.771 7.886 0.590 0.348 1.704 8.423
EOS S2 NDVI-ET 7.430 7.790 1.106 1.223 1.666 9.743

5 July
sUAS Unmasked NDVI-ET 5.743 6.025 0.983 0.966 1.143 6.829
sUAS Masked NDVI-ET 7.343 7.444 0.554 0.307 0.842 7.884
EOS L8 EEFlux 6.142 6.307 0.663 0.440 3.669 6.959

16 July
sUAS Unmasked NDVI-ET 6.291 6.608 1.105 1.220 1.134 7.801
sUAS Masked NDVI-ET 8.038 8.127 0.505 0.255 1.022 8.788
EOS S2 NDVI-ET 7.47 7.822 1.07 1.144 2.29 8.695

21 July EOS L8 EEFlux 6.787 6.917 0.682 0.465 4.488 7.783

26 July
sUAS Unmasked NDVI-ET 5.624 5.925 1.036 1.074 0.899 6.816
sUAS Masked NDVI-ET 6.821 7.035 0.871 0.758 0.809 7.562
EOS S2 NDVI-ET 5.941 6.183 0.734 0.539 2.364 6.817

6 August
sUAS Unmasked NDVI-ET 5.372 5.633 1.002 1.005 0.768 6.753
sUAS Masked NDVI-ET 6.609 6.76 0.694 0.482 0.872 7.326
EOS L8 EEFlux 8.135 8.264 0.675 0.455 5.597 9.18

20 August
sUAS Unmasked NDVI-ET 4.906 5.146 0.875 0.765 0.881 6.739
sUAS Masked NDVI-ET 6.08 6.191 0.584 0.342 0.83 7.297
EOS S2 NDVI-ET 5.931 6.151 0.797 0.635 2.049 8.094

22 August EOS L8 EEFlux 6.799 6.707 0.541 0.293 5.612 8.111

7 September EOS L8 EEFlux 7.043 7.231 0.728 0.530 4.496 8.328

19 September
sUAS Unmasked NDVI-ET 3.577 3.750 0.677 0.458 0.614 4.641
sUAS Masked NDVI-ET 4.066 4.198 0.613 0.376 0.733 4.968
EOS S2 NDVI-ET 4.088 4.239 0.665 0.443 1.082 5.636

23 September EOS L8 EEFlux 7.466 7.706 0.628 0.394 4.998 8.165

Large irrigation events occurred on 22–23 September with a cumulative applied water of
approximately 52 mm for those two days (Figure 3) coinciding with the high reported ET from
EEFlux on 23 September. On 19 September observations by sUAS and EOS are much lower than
observed on 23 September from EEFlux. On 19 September it had been eight days since last applied
water with a noon temperature of 24.7 ◦C. Similarly, 23 September had a noon temperature over
5◦greater at 30.5 ◦C.
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Seasonal Evapotranspiration

Mean ETa from Landsat 8 EEFlux peaks on 25 August at 7.41 mm day−1 (Figure 5). The other
RSE methods peak much earlier in the season: Sentinel 2 NDVI-ET peaks on 27 June at 7.74 mm day−1;
sUAS Masked NDVI-ET peaks on 7 July at 7.71 mm day−1; and sUAS Unmasked NDVI-ET peaks
lower than the other methods on 3 June at 6.32 mm day−1. Landsat 8 EEFlux and sUAS Unmasked
NDVI-ET follow a similar trend until the end of June where EEFlux values rise to above 7 mm day−1

and remain there for the remainder of the season. The cumulative ETa over the growing season
is shown in Figure 6. Cumulative ETa from EEFlux and sUAS Unmasked NDVI-ET are nearly the
same until mid-July when EEFlux quickly rises and overtakes all other methods for a season total
ETa of 313,634 m3 (Table 3). The unmasked sUAS ETa was within 5000 m3 of the volume of applied
irrigation and was 95 percent confident within a range of 50,000 m3. In contrast both EOS methods
had about double the range of confidence and the masked sUAS ETa was between with a range of
about 80,000 m3.

Figure 5. Seasonal Daily ETa in mm (y-axis) interpolated from loess model fit. Landsat 8 EEFlux is
colored purple, Sentinel 2 NDVI-ET is shown in green, sUAS masked NDVI-ET is blue, and sUAS
unmasked NDVI-ET is red.

Figure 6. Cumulative ETa in m3 (y-axis) interpolated from loess model fit. Landsat 8 EEFlux is colored
purple, Sentinel 2 NDVI-ET is shown in green, sUAS masked NDVI-ET is blue, and sUAS unmasked
NDVI-ET is red. Cumulative Applied Water from irrigation is shown in light blue columns.
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Table 3. Cumulative ET (103 m3) with 95% confidence interval bounds, and applied irrigation, for 2018
growing season.

Method Lower Bound Mean Upper Bound

sUAS Unmasked NDVI-ET 237.29 259.81 282.32
sUAS Masked NDVI-ET 267.64 308.13 348.62
EOS S2 NDVI-ET 249.61 303.21 356.81
EOS L8 EEFlux 266.83 313.63 360.44

Applied Irrigation 264.34

4. Discussion

4.1. Viticultural Considerations

The application of RSE in viticulture is important for several reasons. Viticulture, the cultivation
of wine and table grapes, is a global enterprise with increasing acreage globally [45]. It is increasingly
challenged by changing hydroclimates and atmospheric warming. Impacts of warming atmospheric
temperatures not only have the potential to affect ET in vineyards, but also impact fruit quality [46].
Observed air temperatures have increased markedly across major winegrowing regions globally [47],
and winegrape growers have started to adopt adaptation strategies aimed at minimizing the harshest
impacts of elevated temperature [48], namely dehydration and early ripening. One adaptation strategy
is to reduce canopy temperatures through evaporative cooling from overhead misting, which would
further increase total crop water use due to this additional application. Given water scarcity in many
winegrape growing regions, minimizing the water footprint of viticulture is a top priority for the
industry [49,50]. As such, grower-ready tools are necessary to better manage irrigation strategies.
While subscription services to provide guidance on daily crop water demand are increasingly available,
some growers may choose to use satellite or sUAS monitoring protocols as to control their own
data and/or perform custom, on-demand analysis. RSE of vineyards has been the focus of several
recent studies [51], in part due to the high commercial value of the crop and increasing sustainability
practices [52]. In this study, we examined the temporal distribution of an energy balance EOS satellite
based RSE approach to index-based RSE methods, including commercial-grade sUAS platforms
that growers may want to employ. Our results indicate that there is general agreement between
between EOS and sUAS NDVI-ET estimates and, moreover, that masking sUAS imagery to canopy
pixels reduced the variance of RSE values (Figure 6) and generally conformed to the amount of
applied water within the vineyard block (Figure 3). The processing of sUAS imagery is not trivial
(see Montazar et al. [53] for another example), and smaller grower operations may be challenged to
implement sUAS RSE on a routine basis.

4.2. RSE Considerations

The offset nature of EOS overpasses prevented a direct comparison between RSE products,
and daily ET estimates especially given external factors such as weather and irrigation. Across most of
the growing season we observe a similar trend between the EEFlux and NDVI-ET methods with low
ET early in the season, peaking around July, then dropping back down again after harvest. Late in the
season, however, EEFlux estimates remain consistent with early/mid summer values rather than a
decrease to coincide with leaf senescence. We expect that later in the season, EEFlux is overestimating
the actual ET due to recent irrigation applied on 22–23 September in conjunction with days 5 ◦C
greater than 19 September during the S2 overpass and sUAS flights (Figure 3). Masking sUAS imagery
yielded similar results to the EOS methods and appears to overestimate the actual amount of ET.
The unmasked sUAS imagery yielded a lower estimate that was very close to the amount of applied
water during the season.

As expected, soil masking increased the mean ET and decreased variance since isolating the grape
canopy removed ET influence from bare soil and cover crop in the image (Table 2). We also found that

341



Remote Sens. 2020, 12, 3251

the difference between masked and unmasked sUAS ET changes temporally with the largest difference
occurring during peak ET in mid-July and the smallest difference after harvest. Assuming the masked
sUAS ET is more representative of the real ETa, it implies that lower spatial resolution (i.e., mixed pixel)
EOS RSE values are underestimating during the period of peak ET, and moreoever the EEFlux values
are compromised during the end of season period that experience high air temperature, full field
saturation from irrigation, and vine senescence. These observations are consistent with other studies,
such as Gowda et al. [54] that showed high errors EOS RSE of post-harvest cotton, and more generally
the theoretical basis by Li et al. [55] showing high estimates of ETa under saturated soil conditions
and sensed high surface temperatures. We also observed large variations between the minimum and
maximum RSE values (Table 2), with the lowest values attributed to the unmasked sUAS and EEFlux
consistently had very high minimum values (2–3 mm day−1 higher than S2 NDVI-ET estimates).
The lack of variance in EEFlux estimates could have consequences for measures of centrality and
confidence for growing season totals (Table 3).

4.3. Land Use Considerations

This study focused on the use of commercial grade “off-the-shelf” approaches to sUAS RSE for
the purposes of improving irrigation regimes in vineyards. The study location in California’s San
Joaquin Valley has a number of concomitant land use stressors that require remediation. As new
RSE and similar technologies become more readily available and deployable, it is highly likely that
these technologies can be used to mitigate issues beyond water scarcity. Current over-reliance on
groundwater reserves for crop applied water has stressed California’s aquifers [56]. Furthermore,
other forms of agriculture have generated excess nitrogen throughout the region [57,58], which can
lead to myriad impacts on environmental [59] and agroeconomic systems [60], and ultimately human
well-being. Remedies in this region include enhancing viticulture in active recharge zones around
groundwater dependent communities [61], constructing distributed desalination systems for brackish
irrigation return water [62], incorporating wildlife friendly farming practices [63], and integrated
management of forests and watersheds for clean water supply [64]. Despite current challenges in
the operational deployment of sUAS [65] for environmental management, sUAS remote sensing can
provide critical data to inform such land use management decisions beyond better estimates of ET,
including biomass and carbon quantification for regenerative agriculture [66]. In this sense, strategic
land use planning and decision making in the agricultural sector would benefit from broader adoption
of sUAS technologies.

4.4. Study Limitations

A limitation of the NDVI-ET approach used here, aside from its comparative simplicity, is that it
relies on external sources for ETo. While there was a nearby weather station with a similar climate and
land use, the radiometer was unreliable so reference ET from a local site was unavailable. Therefore,
we relied on the Spatial CIMIS daily ETo product since the nearest CIMIS stations were over 30 km
away and were potentially unrepresentative of the ETo at the study site.

EOS ET estimation is limited by infrequent return times and low spatial resolution; which can be
improved through the use of sUAS. Seasonal ET estimates can be heavily biased by outlying overpass
dates where conditions may not represent the majority of days between the overpasses, like we
observed towards the end of the season with Landsat 8. We also see that EOS estimates overestimate
the actual ET for our study site. Using fine resolution sUAS imagery up-scaled to S2 resolution (10 m)
reduced the mean ETa value by an average 1.233 mm for the season which accounts for a substantial
volume for a large area. The EOS ET estimates are most similar to the sUAS ET when bare soil is
masked out, especially during the peak of the season when the canopy is fully grown and covers
most of the field area. It seems likely that the lower spatial resolution from EOS platforms leads to an
overestimation of ET for vineyards as the peak ET from the canopy gets generalized for the entire cell
area, which in reality contains areas with much less ET like we can observe with the sUAS imagery.
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Furthermore, future studies would benefit from harmonized EOS data reconciling differences in sensor
sensitivity and spectral band widths [39,43].

5. Conclusions

In this study, we evaluated whether EOS and sUAS ET estimates fundamentally differ over
same period of time. We showed that more traditional heat balance approaches to EOS RSE can be
compromised by field conditions, such as soil saturation and excessive air temperature, and lead to
overestimation of ET compared to other methods. Further, we showed that over the course of the
growing season, sUAS values largely follow seasonal patterns and track EOS RSE values, but that ET
variance is reduced by isolating canopy pixels. While EOS and sUAS ET estimates do not fundamentally
differ over the same study domain and same period of time, comparing upscaled sUAS ET to EOS
ET estimates within and across pixels, we showed that unmasked high resolution sUAS ET estimates
have the highest variance but that EOS EEFlux ET values have high variance too. These “mixed pixels”
inherent in EOS data obscure important signals in ET estimation through inclusion of soil fraction,
and given that vineyards change over the course of a growing season in terms of biomass and leaf
area index can change, caution should be used when evaluating ET whether using traditional energy
balance models or RSE proxies. These findings can provide growers with guidance on their own use of
new RSE products and sUAS platforms for calibration and verification.
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Abstract: In this study, a new approach for estimating volume variations of lakes and reservoirs using
water levels from satellite altimetry and surface areas from optical imagery is presented. Both input
data sets, namely water level time series and surface area time series, are provided by the Database
of Hydrological Time Series of Inland Waters (DAHITI), developed and maintained by the Deutsches
Geodätisches Forschungsinsitut der Technischen Universität München (DGFI-TUM). The approach is
divided into three parts. In the first part, a hypsometry model based on the new modified Strahler
approach is computed by combining water levels and surface areas. The hypsometry model describes
the dependency between water levels and surface areas of lakes and reservoirs. In the second
part, a bathymetry between minimum and maximum surface area is computed. For this purpose,
DAHITI land-water masks are stacked using water levels derived from the hypsometry model.
Finally, water levels and surface areas are intersected with the bathymetry to estimate a time series
of volume variations in relation to the minimum observed surface area. The results are validated
with volume time series derived from in-situ water levels in combination with bathymetric surveys.
In this study, 28 lakes and reservoirs located in Texas are investigated. The absolute volumes of the
investigated lakes and reservoirs vary between 0.062 km3 and 6.041 km3. The correlation coefficients
of the resulting volume variation time series with validation data vary between 0.80 and 0.99. Overall,
the relative errors with respect to volume variations vary between 2.8% and 14.9% with an average of
8.3% for all 28 investigated lakes and reservoirs. When comparing the resulting RMSE with absolute
volumes, the absolute errors vary between 1.5% and 6.4% with an average of 3.1%. This study shows
that volume variations can be calculated with a high accuracy which depends essentially on the
quality of the used water levels and surface areas. In addition, this study provides a hypsometry
model, high-resolution bathymetry and water level time series derived from surface areas based on
the hypsometry model. All data sets are publicly available on the Database of Hydrological Time
Series of Inland Waters.

Keywords: water levels; surface areas; volume variations; hypsometry; bathymetry; lakes; reservoirs;
remote sensing; DAHITI; modified strahler approach

1. Introduction

In the last years, discussions about global climate change have been increasing in the media and
society, especially in connection with originators of climate change. Numerous climate studies are
based on remote sensing data [1,2]. Since the 1970s, remote sensing has been providing valuable
data for monitoring the global water cycle and its changes. Compared to the global water storage,
only 0.013% [3] of the Earth‘s water is stored in lakes and reservoirs which are often affected by the
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impact of climate change. Since the 1980s, the number of reported flood events of inland waters has
increased by 38% from about 150 to more than 400 in 2008 [4]. Human influences on the terrestrial water
such as the construction of dams or agricultural irrigation has also increased in last decades. In the
worst case, the resulting water scarcity can lead to political crisis or wars [5]. Therefore, the impact
of climate change on the availability of fresh water for human consumption is immense. In future,
this will require sustainable water management by the countries [6]. Independent monitoring of
inland waters is therefore essential. However, since the 1980s, the number of publicly accessible in-situ
measurements has been steadily decreasing which is reflected in the data holding of the Global Runoff
Data Center [7]. Especially in remote areas and in developing countries, there is a lack of in-situ
measurements. Today, existing data gaps can be often filled by using remote sensing technology which
has already provided valuable information about changes on Earth.

Modeling and understanding of the terrestrial water cycle is of great importance for analyses of
climate change [8]. Hydrological models have been developed to gain more knowledge. Hydrological
models such as the WaterGAP Global Hydrology Model (WHGM) use storage changes of lakes
and reservoirs and river discharge to quantify the amount of water on Earth [9]. Data from the
Gravity Recovery and Climate Experiment (GRACE), which measures the total water storage, are often
used for calibration and data assimilation of hydrological models [10]. However, due to the spatial
resolution of about 300 km and the required separation of the signal into surface water, soil moisture,
and groundwater [11], GRACE cannot be used to derive volume changes of water bodies directly.
GRACE has already been used in several studies to correct leakage errors [12] or to compare them
with other geometrical approaches [13,14] to estimate volume changes of lakes.

Satellite altimetry was originally designed to monitor the sea surface and the existing sea level rise
since the 1990s. For more than two decades, satellite altimetry has also proven its worth for monitoring
water level changes of lakes, reservoirs and rivers [15–19]. Since satellite altimetry measures in nadir
direction, only the water body directly crossed by a satellite track can be investigated. To reach water
levels with an accuracy between several centimetres and several decimetres, the crossing track requires
a track length above water of about a few hundred meters.

Since the 1970s, optical imagery has been used to monitor changes on the Earth’s surface, such as
flooded regions [20] or wetlands [21]. The Landsat mission with the satellites of Landsat-4/-5/-7/-8
has been providing optical images with constant quality since 1982. The Sentinel-2 mission has been
providing high-resolution optical images for monitoring inland waters since 2015. In [22] an automated
approach was shown that combines both data sets to extract surface areas of lakes and reservoirs.

The estimation of volume changes requires the most accurate bathymetry and water levels.
The generation of both data sets can be done with different approaches which have already been
used in different studies. The most precise approach for estimating volume changes is to use ground
measurements. For this purpose, water levels from in-situ stations are combined with bathymetry
based on ship surveys. This approach is carried out by the Texas Water Development Board (TWDB,
https://www.waterdatafortexas.org) for about 120 lakes and reservoirs in Texas. The disadvantages
of this method are that the surveys are time-consuming, cost a lot of money and are not easily
applicable in remote areas. However, these data sets are very accurate and can therefore be used
to validate volume changes based on remote sensing approaches. Up to now, it is not possible
to measure the bathymetry of deeper lakes and reservoirs with the help of optical remote sensing
images, because the light is attenuated as it enters the water. Even if several studies have successfully
shown the potential for estimating bathymetry in shallow waters such as in coastal zones or shallow
lakes [23–25], this technique can currently not be used for operational lake volume computation. Other
studies estimated the lake bathymetry using the surrounding topographic slopes derived from a
digital elevation model (DEM) [26]. Classical approaches for estimating volume changes of lakes and
reservoirs are based on the combination of water levels from satellite altimetry and surface areas from
optical images. However, the data sources used and the coupling methods applied to estimate volume
changes differ considerably, which is shown in the following. Here, water levels from satellite altimetry
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(Global Reservoir and Lake Monitor, Hydroweb, ICESat, River Lake Hydrology) are combined with
surface areas derived from a few selected Landsat images by applying a polynomial function of degree
2 for the estimation of the hypsometric curve [27]. This approach was applied to three lakes with
volumes between 5.5 km3 and 35.5 km3 and yielded percentage errors between 4.62% and 13.08%.
In another study, water levels from satellite altimetry (Global Reservoir and Lake Monitor, Hydroweb,
River Lake Hydrology) and surface areas derived from MODIS are combined with a linear hypsometry
model [28]. The approach is applied on 34 globally distributed reservoirs with a volume between 3 km3

and 165 km3. Another approach is to use water levels obtained from IceSAT and corresponding surface
images from Landsat and MODIS of Lake Poopó. The resulting contour lines are then interpolated to
obtain a partial bathymetry [29]. In another study, the satellite altimetry of Hydroweb is combined
with selected images from Landsat and MODIS to estimate a hypsometric model [30]. This involves
adjusting polynomial functions of degree 1, 2 or 3, depending on the relationship. Finally, the time
series of the volume variations are calculated using a pyramidal approach. This approach showed
24 lakes and reservoirs with a surface area between 350 km2 and 82,200 km2. In a further study,
137 lakes and reservoirs are analyzed by combining water levels from DAHITI and monthly land water
masks from the JRC Global Surface Water (GSW) data set based on Landsat data. The volumes are
calculated for lakes that have a linear relationship between water level and surface areas. Therefore,
volume changes are estimated for consecutive changes of water level and surface area [31].

In this paper, a new approach to calculate time series of volume variations of small lakes and
reservoirs (≤6.0 km3, ≤782 km2) is presented. For this purpose, water levels from satellite altimetry
and high-resolution surface areas from optical imagery are combined to estimate a hypsometry model.
Then, the hypsometry model is used to reconstruct water levels from surface areas to compute a
bathymetry above the smallest available surface area. Afterwards, water levels and surface areas
are intersected with the bathymetry to calculate a time series of volume variation with respect to the
smallest surface area. Finally, all resulting time series of volume variation of 28 selected water bodies
are validated with in-situ storage changes. In contrast to existing similar approaches, the quality
and number of data sets used in this study differ. Since we are using more data of higher precision,
as well as an advanced combination approach, our approach yield better accuracies also for smaller
water bodies.

This paper is organized as follows. In Section 2, all the investigated 28 water bodies are introduced.
Section 3 describes the data used for processing and validation. Section 4 describes in detail the
methodology for combining water levels from satellite altimetry and surface areas from optical images
to estimate volume changes. In Section 5, the new approach for estimating volume variations is
presented in detail for three selected water bodies, followed by a validation and quality assessment of
all water bodies. Finally, a summary and discussion of the results as well as an outlook is given.

2. Water Bodies

For the demonstration and validation of the new approach, we have selected 28 lakes and
reservoirs in Texas, USA, which are shown in Figure 1. All selected study areas are well monitored by
the Texas Water Development Board (TWDB). The TWDB provides in-situ water levels, ship survey
data, bathymetry data, hypsometric curves, height-area-volume relationships, and detailed reports for
each selected water body. This information is essential for a reliable quality assessment of our results.

Table 1 gives an overview of the 28 water bodies and their characteristics. For each water body,
the minimum, maximum and variation of water level, surface area and volume are given based on
in-situ data.
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Lakes/Reservoirs

Figure 1. Map of 28 lakes and reservoirs located in Texas.

Table 1. List of water bodies and characteristics derived from available in-situ data.

Target Name (ID) Water Level [m] 1 Surface Area [km2] 1 Volume [km3] 1

Min. Max. Var. Min. Max. Var. Min. Max. Var.

Bardwell (10317) 126.70 134.32 7.62 10.37 13.00 2.63 0.038 0.062 0.024
Benbrook (10147) 206.09 218.42 12.33 9.10 14.71 5.61 0.000 0.116 0.116
Cedar Creek (13002) 95.77 98.54 2.77 102.22 132.93 30.71 0.000 0.877 0.877
Choke Canyon (13116) 58.41 68.11 9.70 42.80 102.17 59.37 0.006 0.956 0.950
Conroe (13132) 58.74 62.76 4.02 60.69 76.99 16.31 0.000 0.647 0.647
Grapevine (13061) 159.04 171.60 12.56 19.19 27.15 7.96 0.000 0.248 0.248
Granbury (13190) 207.72 211.21 3.49 18.70 34.52 15.82 0.089 0.175 0.086
Houston (8850) 11.08 15.93 4.86 33.18 45.66 12.47 0.103 0.198 0.095
Hubbard Creek (10272) 351.12 361.33 10.21 17.21 63.48 46.27 0.005 0.529 0.524
Jim Chapman (10505) 128.63 136.71 8.07 37.95 72.67 34.72 0.098 0.568 0.470
Kemp (13146) 341.07 350.42 9.35 15.76 62.15 46.39 0.002 0.485 0.483
Kickapoo (10279) 313.77 319.24 5.47 10.01 23.73 13.72 0.000 0.146 0.146
Lavon (13043) 144.74 153.79 9.05 45.24 87.48 42.24 0.171 0.530 0.359
Lewisville (11327) 154.55 163.61 9.06 62.81 109.97 47.16 0.345 1.326 0.981
Medina (13183) 296.39 326.59 30.20 2.46 26.79 24.33 0.009 0.371 0.363
Meredith (12977) 865.37 886.61 21.24 6.35 33.79 27.43 0.020 0.539 0.519
O.H.Ivie (10271) 457.97 473.21 15.25 n.a. n.a. n.a. 0.073 0.709 0.636
Palestine (13077) 103.17 106.58 3.41 72.74 105.56 32.82 0.000 0.639 0.639
Ray Roberts (10146) 187.58 196.43 8.86 70.52 115.93 45.41 0.490 1.449 0.958
Red Bluff (13158) 851.73 863.29 11.56 n.a. n.a. n.a. 0.013 0.180 0.167
Richland Chambers (8814) 92.55 96.62 4.08 133.31 175.32 42.00 0.845 1.497 0.652
Sam Rayburn (10246) 45.95 53.33 7.38 308.62 455.57 146.96 0.000 4.017 4.017
Stamford (10274) 426.54 434.64 8.10 3.98 28.12 24.14 0.000 0.107 0.107
Stillhouse Hollow (13157) 182.88 202.38 19.50 16.71 27.22 10.51 0.170 0.301 0.131
Tawakoni (8813) 129.52 134.59 5.07 104.39 151.05 46.66 0.000 1.371 1.391
Texoma (13141) 185.35 196.80 11.45 237.56 323.47 85.91 2.385 3.786 1.402
Toledo Bend (10247) 48.62 53.10 4.48 510.13 782.16 272.03 0.000 6.041 6.041
Whitney (13102) 157.49 171.09 13.60 53.05 93.76 40.71 0.000 2.433 2.433

1 Based on water levels, surface areas and volumes provided by TWDB.
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3. Data

In this study, water levels from satellite altimetry and surface areas from optical imagery are
used to calculate time series of volume variations for lakes and reservoirs. For validation and quality
assessment, we use water levels from in-situ stations, surface areas derived from bathymetric surveys
and volumes resulting from the combination of water levels and bathymetry. Figure 2 gives a
detailed overview of the data availability of the input data and validation data used for each of
the 28 water bodies.

Figure 2. Data availability of the used input data from DAHITI (water level, surface area) and validation
data from USGS/TWDB (water level, surface area, volume) for all water bodies.

3.1. In Situ Data

The availability of in-situ data is essential to assess the quality of our results. We deal with three
different types of data sets, but only for one of them, ground truth data is available. Firstly, water levels
from satellite altimetry are used which can be easily validated by using in-situ stations. However,
surface areas and volume variations cannot be validated in a suitable way without an accurate
bathymetry of the investigated lakes or reservoirs. Usually, bathymetry data are obtained by ship
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surveys measuring the lake bottom. In combination with in-situ water levels, surface areas and
absolute volumes can be derived in a good quality for validation.

The Texas Water Development Board (TWDB, http://www.twdb.texas.gov/) provides water
levels, surface areas and volumes for approximately 120 lakes and reservoirs in Texas which will be
used to validate this study. The water levels are derived from in-situ stations maintained primarily
in cooperation with the United States Geological Survey (USGS). In addition, the TWDB carries out
bathymetry surveys which are conducted at irregular intervals. The lake volumes are then calculated
using rating curves. However, since the bathymetry surveys refer to the water level on the day of
the survey, no directly measured surface areas and volumes are available above that level. These
values can only be estimated by extrapolating the calculated rating curve. This fact must be taken
into account when validating the resulting volume variations in this study. The surface area time
series and volume time series provided in the TWDB can also contain offsets between time periods
of the recalculated rating curves. Remaining offsets are corrected to obtain consistent time series
for validation. In addition, the TWDB provides reports for each water body containing detailed
information on the surveys and the calculated height-area-volume relationships. This is very helpful
in this study to understand and analyse inconsistencies in the time series used for validation.

We use the TWDB data holding to validate our results. Water level time series and surface
areas time series are used for the quality assessment of the inputs used. In addition, we use the
absolute volume time series to validate the resulting time series of volume variations. This is done
for 28 investigated lakes and reservoirs in Texas. Figure 2 shows the data availability of water levels
(light blue), surface areas (orange) and volumes (light green) provided by USGS/TWDB and used for
validation in this study.

3.2. Water Level Time Series from Satellite Altimetry

In 1992, Topex/Poseidon was launched as the first operational satellite for monitoring sea level.
Since then, several altimeter missions have been launched with improved equipment. In the last
few decades, satellite altimetry has also been used for hydrological application such as measuring
water levels of lakes, reservoirs, rivers and wetlands. Envisat was the first altimeter mission with the
potential to derive water level time series of smaller lakes and rivers with sufficient accuracy between
a few centimeters and a few decimeters. However, not all inland waters can be investigated, as the
altimeter satellites only measure in nadir direction.

DGFI-TUM developed an approach to derive water level time series for lakes, reservoirs, rivers
and wetlands. This method is based on a Kalman filtering approach and extended outlier detection [18].
In the first step, all measurements of different altimeter missions are homogenized by using identical
geophysical corrections and models. Additionally, a multi-mission cross-calibration is applied to
minimize range biases between different altimeter missions [32]. Then, outliers are rejected for each
crossing altimeter track by applying different thresholds (e.g., latitude, water level, height error, etc.).
Finally, the remaining water levels and their errors are combined in a sequential least square approach
to achieve one water level for each day.

Currently, DGFI-TUM‘s web portal DAHITI makes more than 2600 respective water level time
series freely available. In this study, we use 28 DAHITI inland water bodies. The water level time
series are based on the altimeter missions Topex/Poseidon, Jason-1/-2/-3, ERS-2, Envisat, SARAL,
Sentinel-3A/-3B, ICESat and CryoSat-2. Depending on the location of the water body and the orbit of
the altimeter mission, only a subset of missions can be used for processing, resulting in time series
with different time spans and numbers of points. Each point contains several altimeter measurements
which are combined in the Kalman filtering step of the DAHITI approach. The time sampling also
varies between 10 days (Topex/Poseidon, Jason-1/-2/-3) and 369 days (CryoSat-2). For the study
targets, the resulting Root Mean Square Errors (RMSE) compared to the in-situ station for the time
series used varies between 0.13 m and 0.78 m (average: 0.25 m). In this approach, the used water levels
from DAHITI can also be replaced by other data sources of water levels.
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3.3. Surface Area Time Series and Land-Water Masks from Optical Satellite Imagery

In 1972, Landsat-1 was launched as the first satellite in the Landsat series developed by NASA.
It was followed by Landsat-2 and Landsat-3 in 1975 and 1978, but Landsat-4 was the first satellite to
provide optical images with a spatial resolution of 30 m. It was followed by its successors Landsat-5
(1984), Landsat-6 (1993, launch failed), Landsat-7 (1999) and Landsat-8 (2013). All satellites are
equipped with a multi-spectral sensor and a thermal mapper. The European Space Agency (ESA)
developed and launched Sentinal-2A and Sentinal-2B in 2015 and 2017, respectively. Sentinal-2A/-2B
measures with similar bandwidth as Landsat, but the spatial resolution improved to 10 m and
20 m, respectively.

DGFI-TUM developed an approach for the automated extraction of consistent time-variable
water surfaces of lakes and reservoirs based on Landsat and Sentinel-2 [22]. Currently, DAHITI freely
provides about 60 surface area time series. The approach is based on a land-water classification using
five different water indices. The resulting land-water masks with data gaps caused by clouds, snow or
voids are stacked to calculate a long-term water probability mask using all available scenes since 1984.
Finally, the long-term water probability is used to fill the remaining data gaps in an iterative approach.
The temporal resolution varies between 16 days in the beginning, when only a single Landsat-4 mission
is available, and nowadays 2-3 days, when Landsat-7/-8 and Sentinel-2A/-2B take measurements.
Consistent and homogeneous surface area time series and corresponding land-water masks (as visible
in Figure 3) are used in this study. The advantage of optical imagery over satellite altimetry is the
swath measuring technique which has the potential to observe water bodies worldwide. For the test
sites, the validation of surface area time series with surface areas derived from in-situ water levels
in combination with bathymetry surveys leads to RMSE that vary between 0.13 km2 and 21.75 km2

(average: 2.74 km2). In this approach, the used surface areas from DAHITI can also be replaced by
other data sources of surface areas.

Figure 3. Three selected land-water masks of Ray Roberts Lake from 20 September 2000 (blue,
70.490 km2), 8 September 2013 (orange, 95.750 km2) and 27 December 2018 (green, 114.150 km2).

4. Methodology

This section describes in detail the new approach to estimate time series of volume variations.
A flowchart of the processing steps is shown in Figure 4. First, the input data are extracted from
DAHITI, which includes water levels, surface areas, and land-water masks. Based on water levels
and surface areas, a hypsometric curve is calculated which describes the relationship between both
parameters. The hypsometry curve is then used to reconstruct water levels for all surface areas.
Then, the bathymetry is calculated by stacking the land-water masks and associated water levels.
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Finally, the time series of volume variations is computed by using the calculated bathymetry and the
water levels from satellite altimetry and surface areas, respectively. The resulting data sets such as
hypsometry, water levels derived from surface areas and hypsometry, bathymetry and time series of
volume variations are transferred to the DAHITI web portal.

Database for Hydrological Time Series (DAHITI)
(https://dahiti.dgfi.tum.de)

Extraction of Input Data

Estimation of Hypsometric Curve

Estimation of Water Levels
from Surface Areas using Hypsometry

Estimation of Bathymetry

Estimation of Volume Variation Time Series

Land-Water Masks
(Optical Imagery)

Surface Areas
(Optical Imagery)

Water Levels
(Satellite Altimetry)

Hypsometric Curve

Water Levels
from Surface Areas

Bathymetry

Time Series of
Volume Variations

Figure 4. Flowchart of the applied processing steps (blue) and data sets (light red) used for estimating
time series of volume variations. Green arrows indicate input data and red arrows indicate output data
of the processing steps.

4.1. Extraction of Input Data

In the first step, the required input data are extracted from DAHITI (https://dahiti.dgfi.tum.de).
These include water levels from satellite altimetry, surface areas and land-water masks from optical
imagery. In the following steps, these three data sets are used to estimate time series of volume
variations for lakes and reservoirs.

4.2. Estimation of Hypsometric Curve

Each lake and reservoir has a fixed area-height relationship that depends on its bathymetry and
can be described by a hypsometric curve. In hydrological applications, hypsometric curves are used to
assign water levels and surface areas of inland water bodies. For this purpose, mathematical functions
are adapted to describe the relationship between water levels and surface areas. Due to the bathymetry
and the surrounding topography, the adjusted function must always be monotonically increasing. Former
studies used linear or polynomial functions to fit the hypsometric curve [27,28,30,31]. However, these
applied functions do not capture all variations of the area-height relationship caused by the bathymetry.

In 1952, Strahler developed a percentage hypsometric curve that relates the horizontal
cross-sectional area of a drainage basin to the relative elevation above basin mouth, allowing direct
comparisons between different basins [33]. In his study, hypsometric curves are used to analyze the
erosion of topography within basins. To fit the most natural hypsometry curves, a function with three
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variables (a,d,z) is used, which is shown in the Equation (1). In this function, x gives the normalized
basin area and y the normalized basin height.

y =

[
d − x

x
· a

d − a

]z
(1)

The original formula of Strahler (Equation (1)) is based on two constants a and d which fulfill
the condition d > a. The general form of the function is defined by the exponent z greater than
0. All functions intersect the points A and B. Between the intersection points A(a, 1) and B(d, 0),
the values on the y-axis are always limited between 0 and 1, while the values on the x-axis are limited
between a and d. Figure 5(left) shows examples of hypsometric curves based on the original Strahler
approach for different z and constant a (0.05) and d (1.00).

Figure 5. Original Strahler approach [33] (left) and modified Strahler approach based on water levels
and surface areas (right).

In general, it can be assumed that the bathymetry of lakes or reservoirs has similar characteristics
as a drainage basin. Therefore, we have modified the original Strahler approach shown in Equation (1)
to estimate hypsometic curves for lakes and reservoirs.

y =

[
(xmin − x)
(xmin − xip)

· (xmax − xip)

(xmax − x)

]z

· yscale + ymin (2)

The original Strahler approach can easily be used to analyze entire drainage basins where the
minima and maxima of area and height are known [33]. Then, input data is normalized to fulfill
Equation (1). However, in our study, the minima and maxima of water levels from satellite altimetry
and surface areas from optical imagery of a lake or reservoir are unknown. The main reason for this
is that the water body under investigation was never empty during the measurement period. Also
extreme events like floods or droughts can be missed due to the lower temporal resolution of both
data sets. This leads to an unknown bathymetry below lowest observed water level or the smallest
surface area. Therefore, only a section of the hypsometric curve is known for the estimation, which
requires a modification of the original Strahler approach.

In Equation (2), six parameters of the resulting hypsometry curve are adjusted. xmin defines the
minimum surface area and xmax the maximum surface area of the hypsometry curve. The minimum
water level is defined as ymin and the variations of water level is defined as yscale. The exponent
z describes the shape of the hypsometric curve. The intersection points A(xip, ymin + yscale) and
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B(xmin, ymin) can be expressed by five parameters of the modified Strahler approach. Between A and B,
the function is always monotonically increasing, which is directly related to the bathymetry. In general,
the surface areas can vary between 0 km2 if the lake is empty and the maximum surface area if the
lake is filled. However, water levels refer to a specific reference (e.g., sea level) that does not reflect the
bottom of the lake or reservoir. Since the depths of inland waters are not known, an assumption must
be applied for an as accurate as possible ymin. In [34], the area-volume-depth relationship of lakes was
investigated on the basis of the Hurst coefficients. In this study, we use the area-depth relationship to
define rough limits for the minimum water level ymin. In Figure 5(right), examples of hypsometric
curves based on the new modified Strahler approach are shown for different z and constant ymin, yscale,
xmin, xip and xmax.

Since water levels and surface areas are usually not captured on the same day, both data must be
linked in a suitable way. Within a few days, the water level or surface areas can change significantly
(e.g., flood events). In order to maximize the number of pairs and to minimize possible errors, only
water levels and surface areas whose difference between the two measured data is less than 10 days
are assigned. Finally, the resulting pairs are used to fit the function of the modified Strahler approach
in Equation (2). The hypsometric curve can be used to calculate water levels from surface areas or vice
versa. Detailed examples and discussion of hypsometric curves for selected inland water bodies are
shown in Section 5.1.

4.3. Estimation of Water Levels from Surface Areas using Hypsometry

Estimating lake bathymetry requires water levels for each surface area and land-water masks.
This information is necessary to estimate bathymetry between the smallest and largest surface area.
Therefore, we use the calculated hypsometric curve to derive the water levels of all observed surface
areas. Based on satellite altimetry, water level time series for larger lakes can be derived with an
accuracy of less than 10 cm beginning in 1992. For smaller lakes and reservoirs the accuracy normally
yields between 10 cm and 40 cm. The temporal resolution of the altimetry-derived time series is limited
to 10–35 days for smaller lakes with only one satellite overflight track. The water levels derived from
surface areas can also be used to densify the altimetry-based water level time series and extend them
to preceding years since 1984. Moreover, for smaller lakes and reservoirs, surface areas can be derived
more accurately than water levels due to the measurement technique. The advantage of using the
hypsometric curve to derive water levels from surface areas is that water level errors from altimetry are
minimized. However, additional errors due to extrapolation or time-dependent changes of bathymetry
may occur.

4.4. Estimation of Bathymetry

To estimate volume variations, the next step is to calculate a bathymetry of the lakes or reservoirs.
The calculation of the bathymetry can be done in different ways. Simple assumptions such as regular
or pyramidal shapes of the bathymetry can be used. This might be accurate enough for lakes with more
or less regular shapes, however, for reservoirs with large volume changes, this assumption may lead to
large errors in volume change estimation. Therefore, we estimate a bathymetry between the minimum
and maximum observed surface area based on all available high-resolution land-water masks and
corresponding water levels derived from the hypsometric curve. The resulting bathymetry finally
allows us to compute volume variations referring to the minimum observed surface area, since the
underlying bathymetry is unknown.

The schematic processing strategy for the bathymetry is shown in Figure 6. In the first step,
all land-water masks are stacked according to water levels which are derived from the hypsometric
curve in descending order. Then, each pixel column is analyzed separately to calculate the resulting
height of the bathymetry. Therefore, a median filter of size five is applied to each pixel column in the
direction of decreasing water levels. This is shown as an example for two pixels. In the first example
(green), all pixels in column are correctly classified. In the second example (blue), not all pixels in the
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column are correctly classified because there are several changes between land and water. Using the
median filter reduces the influence of corrupted land-water pixels on the final height. As long as the
result of the median filter is water, the current height is set for the pixel. If the result of the median
filter is land, the filtering is stopped for the current pixel column. Finally, this processing step leads to
a bathymetry between the minimum and maximum observed surface area with a spatial resolution of
10 m.

Figure 6. Processing strategy for the estimation of the bathymetry.

4.5. Estimation of Volume Variation Time Series

For the calculation of a time series of volume variations, bathymetry and water levels are required
to get information on water depth of different pixels. For that purpose, water levels from satellite
altimetry as well as water levels derived from surface areas and hypsometric curve are used. In the first
step, each water level is intersected with the bathymetry to calculate the volume below the water level
pixel by pixel. Finally, all pixel volumes of the current water level are accumulated to obtain a volume
above the minimum observed surface area. Since the volume below is unknown, only time series of
volume variations can be estimated. Additionally, surface area errors are converted into volume errors
by using the hypsometric curve and bathymetry. Detailed examples and discussion of bathymetry and
the resulting time series of volume variations are shown for selected inland water bodies in Section 5.1.

5. Results, Validation and Discussion

In this section, the estimated time series of volume variations are presented and validated. This is
performed in detail by three examples representing different reservoir sizes with input data of different
quality, namely: Ray Roberts Lake, Hubbard Creek Lake and Palestine Lake. Additionally, a general
quality assessment will be carried out for all 28 water bodies introduced in Section 2.

359



Remote Sens. 2020, 12, 1606

5.1. Selected Results

5.1.1. Ray Roberts, Lake

Ray Roberts Lake is a reservoir located in the North of Dallas, Texas. The dam construction started
in 1982 and was completed in 1987. In 1989, the reservoir was filled. Since then, the surface area has
varied between 70.49 km2 and 123.22 km2 [35].

Extraction of Input Data

Figure 7 shows the used input data separated into water levels (top) and surface areas (bottom).
The water level time series (blue) of Ray Roberts Lake shown the top plot contains 355 data points in
the period between 23 July 2008 and 25 February 2020 derived from the satellite altimeter missions of
Jason-2 and Jason-3. The water level time series varies between 189.89 m and 195.81 m. The temporal
resolution is about 10 days. For validation, the water levels of the gauging station (black) of Pilot
Point (ID: 08051100) at Ray Roberts Lake provided by the TWDB/USGS are used. It results in an
RMSE of 0.15 m and a correlation coefficient of 0.98 by using 355 contemporaneous points. An offset of
−0.11 m between both time series occurs (corrected in the Figure) which can be caused by different
vertical datums.

Figure 7. Used water level time series from satellite altimetry and surface area time series from optical
imagery for Ray Roberts Lake. Additionally, available validation data provided by TWDB and resulting
quality assessment are shown.

The surface area time series (green) derived from optical imagery of Ray Roberts Lake is shown in
the bottom plot of Figure 7. It contains 543 data points in the period between 10 June 1989 and 25 March
2019 which are derived from the optical imagery satellites Landsat-4/-5/-7/-8 and Sentinel-2A/-2B.
The surface areas vary between 70.49 km2 and 123.22 km2. For validation, the surface area time series
from TWDB is used. Therefore, water levels from the gauging station and bathymetry were combined.
The bathymetry was derived by a survey performed between 11 September 2008 and 15 October 2008
using a multi-frequency, sub-bottom profiling depth sounder [35]. Since the water level at the time of
the survey was only 192.79 m, no groud-truth bathymetry information is available above that height,
i.e., for surface areas larger than 115.92 km2 (dashed black line). That’s why the TWDB surface area
time series is missing above that value. The comparison of both time series results in an RMSE of
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1.48 km2 (about 1%) and a correlation of 0.98 by using 380 points. Additionally, an offset of 3.03 km2

occurs which may be caused by the DAHITI approach to classify the optical images.

Estimation of Hypsometric Curve

For estimating the hypsometric curve of Ray Roberts Lake 262 data points are used, for which
the time difference between water level and surface area is smaller than 10 days. In Figure 8, the area
of data (orange rectangle) indicates the range of all water levels and surface areas for Ray Roberts
Lake. It can be seen that the water levels from satellite altimetry do not cover the full range of surface
areas due to the shorter time series. This requires a good estimate of the hypsometric curve in order
to extrapolate the uncovered range of surface areas between 70.49 km2 and 88.36 km2. This example
already shows occurring small discrepancies for smaller extrapolated values of the hypsometric curve
compared to in-situ data which will be discussed in the next processing step.

Figure 8. Hypsometry curves of Ray Roberts Lake using modified Strahler approach (blue), linear
function (dashed red) and polynomial function (dashed green). Additionally, a hypsometric curve
(dashed black) from the TWDB is shown as comparison.

Based on the methodology described in Section 4.2, the hypsometric curve (blue) is estimated
following the modified Strahler approach. It shows a correlation coefficient of 0.93 and an RMSE of
0.26 m with respect to the 262 points of input data. For comparison, hypsometric curves based on
a linear function (dashed red) and a polynomial of degree two (dashed green) are computed and
shown in Figure 8. The resulting correlation coefficient and RMSE decreased slightly for the linear
(R2: 0.88, RMSE: 0.34 m) and polynomial (R2: 0.92, RMSE: 0.28 m) function. The linear hypsometric
curve agrees quite well with the used data points below 115 km2 where the relationship is almost
linear. However, the exponential increase of the hypsometric curve above 115 km2 cannot be captured
by a linear function. Otherwise, the polynomial function shows a good agreement for larger areas
but has an unrealistic behavior for small areas since the hypsometric curve has to be monotonically
increasing. Apparently, both approaches show their disadvantages when the functions are used for the
extrapolation of data. So far, this quality assessment can only describe the performance within the
range where data is available and not the capability for the extrapolation.

Additionally, the hypsometric curve (dashed black) provided by the TWDB from the survey
in autumn 2008 is shown for comparison. Since heights of the TWDB rating curve are referred to
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NGVD29, we apply an offset of −0.11 m derived from the validation of the water level time series with
in-situ data in order to achieve consistent heights for comparison. However, an offset with respect to
the used points still remains. Furthermore, the TWDB rating curve is limited to a water level height
of 192.79 m at which the bathymetric survey was carried out. A visual comparison with the other
three hypsometric curves coincidentally shows the best agreement with the linear function. The reason
is the lack of information for surface areas smaller than about 90 km2 for the estimation of a precise
hypsometric curve.

Estimation of Water Levels from Surface Areas Using Hypsometry

In the next step, corresponding water levels are estimated for each surface area by using the
hypsometric curve. Figure 9 shows the resulting water level time series based on the modified Strahler
hypsometric curve (blue). For comparison, water levels based on a linear (dashed red) and polynomial
(dashed green) hypsometric curve are shown. Additionally, water levels from satellite altimetry
(yellow) and its lower and upper boundaries called confidence range (dashed black) based on the
hypsometric curve are shown in Figure 9. For the purpose of quality assessment, all four time series are
validated with water levels from the in-situ station (orange). For that purpose, correlation coefficients
and RMSE values are estimated twice for each time series: for all water levels and only for water levels
within the confidence range, i.e., without extrapolating the hypsometric curve.

Figure 9. Comparison of derived water levels from surface areas using different hypsometric curves of
Ray Roberts Lake.

Based on the data range used for the computation of the hypsometry curve it can be assumed
that the quality of water levels within the confidence range is better than outside due to extrapolation
errors. This can be clearly seen in the validation results. The water level time series using the linear
hypsometric curve leads to a correlation coefficient of 0.94 and a RMSE of 0.27 m for all points. Within
the confidence range, the correlation coefficient decreases slightly to 0.92 while the RMSE is still 0.27 m.
For the year 2000, it can be clearly seen that the linear function reconstructs the lower water levels
very well. But this linear function has major problems when predicting water levels higher than about
193 m (e.g., 2007, 2015). In contrast, the polynomial function leads to a correlation of 0.93 and a RMSE
of 0.31 m for both data sets (points in the confidence range and all points) since all point are in the
confidence range. The best result can be achieved by using the modified Strahler approach where
the correlation coefficient is 0.96 and the RMSE is 0.24 m using all water levels and 0.22 m within the
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confidence range (same correlation). One can conclude that the hypsometry based on the modified
Strahler approach performs best. However, extreme events could not be captured by the hypsometric
curve because of missing input data. Nevertheless, the result shows that the derived water levels from
the hypsometric curve are suited to densify and extend water level time series with good estimates.

Estimation of Bathymetry

For the estimation of bathymetry, all surface areas and their corresponding water levels are
used. Based on the methodology introduced in Section 4.4, the bathymetry shown in Figure 10 is
computed between the minimum and maximum surface area. The resulting bathymetry covers
heights between 189.13 m and 194.96 m. Pixels with heights lower than 189.13 m could not be observed
and are therefore marked in gray. The minimum of the observed bathymetry will later be used as
reference point for the estimation of volume variations. The usage of 543 land-water masks results in a
high-resolution bathymetry which has a spatial resolution of 10 m and centimeter resolution in height.
The bathymetry clearly shows fine structures in the bays of Ray Roberts Lake.

Figure 10. Bathymetry of Ray Roberts Lake derived from land-water masks in combination with water
levels derived from the hypsometric model. Additionally, the used altimeter track is highlighted as
dotted line.

Estimation of Volume Variation Time Series

For the computation of the time series of volume variations, all heights derived from surface areas
and satellite altimetry are intersected with the estimated bathymetry. Additionally, volume errors are
estimated by considering the given errors of the used surface areas and water levels from altimetry.
Figure 11 shows the resulting volume variations time series (orange) based on 874 measurements
(518 from surface areas, 331 from water levels, 25 combined).
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Figure 11. Time series of volume variations of Ray Roberts Lake.

Since direct measuring of ground-truth volumes for lakes and reservoirs is not possible one has
to combine water levels from gauging stations and bathymetry for surveys in order to derive in-situ
volume for validation purposes. However, for most reservoirs more than one bathymetry survey is
available, and consequently, the resulting hypsometry and volumes can differ. This might lead to
inconsistencies such as offsets in the volume time series. For Ray Roberts Lake, the volume time series
used for validation is based on an older unknown hypsometry and newer hypsometry calculated
on 1 October 2008 by the TWDB. Figure 11 shows the first period going until 1 October 2008 (blue)
and the second period starting on 1 October 2008 (green). However, no offset exists for Ray Roberts
Lake between both periods after updating the hypsometry model. Furthermore, it has to be taken
into account that volumes above the maximum observed bathymetry in the survey are extrapolated
(dashed black). This means that those volumes can contain errors which result from the extrapolated
hypsometry curve.

The validation of the volume variations yields a RMSE of 0.025 km3 and a correlation coefficient
of 0.97 using 867 points. The relative error with respect to the volume variations from TWDB
is 7.2%. The differences in volume variations are in the range between −0.18 km3 and 0.14 km3

with zero average (867 points). The larger errors can be explained by the fact that lower water
levels (e.g., in 1993/94, 2000) are missing in the calculation step of the used hypsometric curve,
which causes a rather large uncertainty/error to an extrapolation. Larger differences for volumes
above the extrapolation limit (dashed black) are also visible (e.g., 2015).

5.1.2. Hubbard Creek, Lake

As second study case, Hubbard Creek Lake is presented. It was selected in order to demonstrate
the new approach for estimation volume variation having the best input data from satellite altimetry
and optical imagery. Hubbard Creek Lake is a freshwater reservoir located about 200 km West of
Dallas, Texas which was impounded in 1968 and finally filled in 1970 [36]. In the last four decades,
the surface area has varied between 14.74 km2 and 59.77 km2 and the water levels has varied between
351.34 m and 361.16 m.
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Extraction of Input Data

Figure 12 shows the time series of water levels and surface areas derived from satellite altimetry,
respectively optical imagery. The water level time series (blue) of Hubbard Creek Lake is based on the
altimeter missions of Jason-2 and Jason-3 covering the period between 27 July 2008 and 30 January
2020. The validation of 410 points from altimetry with in-situ data from the gauging station near
Breckenridge (ID:08086400) provided by USGS/TWDB results in an RMSE of 0.15 m and a correlation
coefficient of 1.00. The water level time series has a temporal resolution of about 10 days. An offset of
about 0.15 m occurs because of different vertical datums.

Figure 12. Used water level time series from satellite altimetry and surface area time series from optical
imagery for Hubbard Creek Lake. Additionally, available validation data provided by TWDB and
resulting quality assessment are shown.

The surface area time series (green) is based on 479 data points covering a period of almost
four decade between 13 November 1982 and 28 June 2019. It is derived from data measured by
Landsat-4/-5/-7/-8 and Sentinel-2A/-2B. For validation, surface area time series provided by TWDB
are used, which were derived from two bathymetry surveys on 1 February 1997 (dashed blue) and
1 January 2018 (dashed red). Due to the survey method itself, no surface areas can be provided for areas
larger than 60.39 km2 (1 February 1997–1 January 2018) and 63.48 km2 (since 1 January 2018) without
extrapolation. Comparisons of surface areas in both survey periods lead to offsets of −1.70 km2 and
−3.26 km2 which have to be considered. These offsets can be caused by long-term changes of the
bathymetry but also improvements in the measurement technique. Then, an overall validation using
479 surface areas from optical imagery with surface areas from survey shows an RMSE of 1.09 km2

and a correlation coefficient of 0.99.
Both water level time series from satellite altimetry and surface areas from optical imagery

are available in a high quality for Hubbard Creek Lake. Furthermore, both data sets cover the full
variations of the lake which is essential in order to compute an optimal hypsometric curve.

Estimation of Hypsometric Curve

For the estimation of the hypsometric curve, the water levels and surface areas introduced in
Figure 12 are used. For Hubbard Creek Lake, 279 data points with a time difference of less than
10 days between both measurements are available. All points covering the full area of data are shown
in Figure 13. Additionally, it shows the resulting hypsometric curves based on the modified Strahler
approach (blue), linear function (dashed red) and polynomial function (dashed green). The correlation
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coefficient for all functions is 0.99 but the resulting RMSE of 0.19 m is the best for the modified
Strahler approach. Additionally, the two hypsometric curves provided by TWDB (dashed black) are
shown for comparison which have similar shapes as the hypsometric curve of the modified Strahler
approach. Despite smaller offsets in the height, the agreement for extrapolated values below 14.74 km2,
respectively 351.38 m are very good. The hypsometric curves of the linear and polynomial functions
show their weaknesses for extrapolated values.

Figure 13. Hypsometry curves of Hubbard Creek Lake using modified Strahler approach (blue), linear
function (dashed red) and polynomial function (dashed green). Additionally, two hypsometric curves
(dashed black) from the TWDB are shown as comparison.

Estimation of Water Levels from Surface Areas using Hypsometry

All water levels derived from the hypsometric curves based on surface areas are shown in
Figure 14. For Hubbard Creek Lake, all three methods perform similarly well with correlation
coefficients of 0.99. However, the best RMSE of 0.21 m can be achieved using the modified Strahler
approach. The RMSE of 0.23 m using the polynomial function is only slightly higher. Using the linear
function results in an RMSE of only 0.27 m which can be also seen in Figure 14 for low (2014, 2015) and
high (1990–1993, 1997–1998) water levels. The data range of the used input data leads to a confidence
range which contains all computed water levels.

Estimation of Bathymetry

Figure 15 shows the resulting bathymetry of Hubbard Creek Lake calculated by using 636
land-water masks and their corresponding water levels. In 2015, the Hubbard Creek Lake was half
empty which enables us to estimate nearly the majority of the bathymetry except remaining lower
water levels (gray). The bathymetry varies between 351.71 m and 361.23 m. The absolute minimum
water level derived from the TWDB hypsometric curve is 351.71 m. The fine structures at the lake inlets
can be clearly seen in the bathymetry, but also the historic rivers and their valleys before Hubbard
Creek Lake was dammed.
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Figure 14. Comparison of derived water levels from surface areas using different hypsometric curves
of Hubbard Creek Lake

Figure 15. Bathymetry of Hubbard Creek Lake derived from land-water masks in combination with
water levels derived from the hypsometric model. Additionally, the used altimeter track is highlighted
as dotted line.

Estimation of Volume Variation Time Series

The combination of the observed bathymetry with water levels from satellite altimetry and water
levels derived from the hypsometric curve results in the time series of volume variations shown
in Figure 16. Additionally, volume errors resulting from satellite altimetry and optical imagery are
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provided. The volume variations are validated again with absolute volume time series provided by
USGS/TWDB. Since the volume time series relies on the three different hypsometric curves, we split
the time series into three phases. The first phase (green) is based on a hypsometric curve from 1 January
1962 by USGS. The second (blue) and third (red) phases rely on hypsometric curves calculated by the
TWDB on 1 February 1997 and 1 January 2018. However, for Hubbard Creek Lake only insignificant
offsets remain for the different three time periods which are not corrected.

Figure 16. Volume time series of Hubbard Creek Lake

For validating the time series of volume variations there are 1021 data points. They show a RMSE
of 0.008 km3 and a correlation coefficient of 0.99 for Hubbard Creek Lake. The volume variations reach
a maximum of 0.34 km3, and the errors with respect to the in-situ values vary between −0.04 km3

and −0.02 km3. When adding the constant volume below the lowest observed water level, which is
0.071 km3 derived from validation data, absolute volumes can be computed. The relative errors with
respect to the full volume is only 2.0%. The relative error with respect to the volume variations is 2.8%.
This example clearly shows the potential of the new approach when input data are evenly distributed
and of good quality.

5.1.3. Palestine, Lake

Palestine Lake is the third water body presented in detail which is located about 150 km southeast
of Dallas, Texas. Palestine Lake is a reservoir built in the 1960s impounding the Neches River [37].
It has an average surface area of 87.01 km2 and an average water level of 104.73 m. It shows only
smaller seasonal variations in the surface area (18.61 km2) and water level (1.27 m). Palestine Lake was
chosen to demonstrate and discuss the challenges when estimating volume variations based on less
optimal input data.

Extraction of Input Data

Figure 17 shows the used water levels (top) from satellite altimetry and surface areas (bottom)
from optical imagery of Palestine Lake. Palestine Lake is crossed by the two latest altimeter missions
Sentinel-3A and Sentinel-3B that have been launched on 16 February 2016, respectively 25 April 2018.
Thus, no information is available before 2016. Moreover, the repeat cycle of those satellites is 27 days,
and therefore, the temporal resolution of the water level time series is almost three times sparser than
for Ray Roberts Lake and Hubbard Creek Lake, where Jason data is available. The resulting water level
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time series covers only the time span between 14 March 2016 and 27 February 2019. The validation
with in-situ water levels measured by the gauging station near Frankston (ID: 08031400, USGS) shows
a RMSE of 0.13 m and a low correlation coefficient of 0.84 by using only 36 measurements. An offset
of −0.37 m between both time series occurs caused by different vertical datums. However, the water
levels (104.11 m–105.38 m) measured over the last three years can only capture 37% of the full range of
water level changes (103.17 m–106.58 m) shown in the in-situ time series (black) in Figure 17.

Figure 17. Used water level time series from satellite altimetry and surface area time series from optical
imagery for Palestine Lake. Additionally, available validation data provided by TWDB and resulting
quality assessment are shown.

The surface area time series (green) derived from optical imagery satellites Landsat-4/-5/-7/-8
and Sentinel-2A/-2B is shown in Figure 17. The surface area has varied between 73.77 km2 and
92.38 km2 since the 1980s. However, it can be clearly seen that the average seasonal variations is much
smaller, between 85 km2 and 90 km2 only. Similar variations can also be seen in the period where water
levels from satellite altimetry are available. For validation, the surface area time series from TWDB is
used. However, the surface area time series is based on two bathymetric surveys. The first ship survey
was performed in June 2003 [38]. The second bathymetric survey was undertaken in July/August 2012
using a multi-frequency, sub-bottom profiling depth sounder [37]. This results in an inconsistent jump
of 0.591 km3 on 1 August 2012 when the bathymetry respectively rating curve was changed. Since the
optical imagery provides a homogeneous surface area time series, we applied an offset of 0.591 km3 to
the in-situ surface areas between 13 May 1999 and 1 August 2012 to achieve a consistent time series for
validation. Additionally, for each rating curve an extrapolation limit is shown (dashed black). After
homogenizing the in-situ surface area time, an RMSE of 2.14 km2 and a correlation coefficient of 0.80
using 301 data points can be achieved. The offset between both time series is −3.145 km2.

Despite the long surface area time series, only data between February 2016 and April 2018 where
water levels from satellite altimetry are available can be used for the estimation of the hypsometric
curve that is shown in Figure 18.

Estimation of Hypsometric Curve

Only 32 data points are available for calculation having a time difference of less than 10 days
between the measurement of water level and surface area. The hypsometric curves based on the
modified Strahler approach, the linear function and the polynomial function are almost identical,
which is a significant indication of the linear dependence between water level and surface area in
the fitted range of data (orange rectangle). However, the correlation coefficient is only 0.64 which
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shows that the used input data is noisy. This can have a strong impact on the quality of resulting water
levels from surface areas in the next step. Especially, for the reconstruction of water levels based on
surface areas less than about 84 km2 a rapid decrease in quality is expected due to extrapolation issues.
Additionally, both hypsometic curves (dashed black) provided by TWDB are shown in Figure 18.
One can clearly see the discrepancies between both curves and with respect to the curves fitted to the
remote sensing data sets. The TWDB curves are already shifted by the datum offsets between altimetry
and in-situ heights, which improves the consistency but is not able to align all curves. Especially,
the different gradients are not impacted by shifts or offsets. The possible reasons for the different
hypsometric curves is unknown. It can be related to the input data but also to the validation data.
A significant change in bathymetry is also possible. A new bathymetry survey may help to clarify
this issue.

Figure 18. Hypsometry curves of Palestine Lake using modified Strahler approach (blue), linear
function (dashed red) and polynomial function (dashed green). Additionally, two hypsometric curves
(dashed black) from the TWDB are shown as comparison.

Estimation of Water Levels from Surface Areas using Hypsometry

The reconstructed water levels based on the three hypsometric curves are shown in Figure 19.
The performances of the three approaches within the confidence range (dashed black) are identical
with a good RMSE of 0.21 m, but a poor correlation coefficient of only 0.52. Considering all 344 surface
areas for the validation with in-situ water levels leads to an increase of the correlation coefficient from
0.52 to 0.81, respectively 0.82. However, the RMSE values decreased from 0.21 m to 0.25 m–0.27 m
which is twice as high as from satellite altimetry only (RMSE: 0.13 m). This result clearly shows the
problem if input data for hypsometric curves are noisy and not accurate enough. The extrapolation
is incorrect for lower water levels (e.g., 2006, 2011), but also within the confidence range, differences
between reconstructed water levels and in-situ are visible.

Estimation of Bathymetry

Figure 20 shows the resulting bathymetry of Palestine Lake based on 520 surface areas and
corresponding water levels. The bathymetry based on all land-water masks covers heights between
102.40 m and 105.19 m. This example clearly shows that the bathymetry can only be estimated reliably
for flatter areas in the North and West of Palestine lake. Everywhere else at the shores, the minimum
bathymetry (gray) is reached very fast which indicates steep lake shores. This clearly shows the
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lack of input data for lower water levels, respectively surface areas for a more accurate estimation of
the bathymetry.

Figure 19. Comparison of derived water levels from surface areas of three hypsometric curves
calculated for Palestine Lake.

Figure 20. Bathymetry of Palestine Lake derived from land-water masks in combination with water
levels derived from the hypsometric model. Additionally, the used altimeter tracks are highlighted as
dotted line.

Estimation of Volume Variation Time Series

Figure 21 shows the resulting time series of volume variations with errors estimates for Palestine
Lake. The time series shows volume variations up to 0.25 km3 over the last four decades. For validation,
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the volume time series provided by USGS/TWDB is used. It contains volumes which have been
calculated by using three different hypsometric curves. Additionally, the time series contains
extrapolated volumes above the extrapolation limit (dashed black) where no information about
the bathymetry is available because of the measurement technique itself. Therefore, the volume time
series used for the validation was split into three phases for which constant offsets are applied because
of the different hypsometric curves. The latest period since 1 August 2012 is used as reference for
which no offset is applied. For the period between 2 January 1999 and 1 August 2012, an offset of
−0.015 km3 is applied. For the volumes until 2 January 1999, an offset of −0.055 km3 is applied. It can
be clearly seen that the periods of applied offset do not match with the hypsometric curves from TWDB.
Furthermore, this discrepancy was cross-checked by taking water levels from in-situ data into account.

Figure 21. Volume time series of Palestine Lake.

The validation of the resulting time series of volume variations with absolute volumes from TWDB
yields an RMSE of 0.017 km3 and a correlation coefficient of 0.82 using 520 data points. The differences
between in-situ volume and volume changes vary between −0.06 km3 and 0.06 km3 considering an
offset of 0.264 km3. The relative error with respect to the volume variations is 13.0% which is quite
high due to the small fluctuations in the volume time series, except in the years 1996, 2005/2006 and
2011 when a volume decrease occurred. When looking at the errors with respect to the full volume,
a value of 3.3% is yielded. This accuracy is sufficient for most hydrologic applications. The example
of Palestine Lake shows that despite the small the RMSE (0.13 m) of used water levels from satellite,
the resulting quality of the volume variations is rather poor, indicating that the number of points and
their distribution between minimum and maximum water level has a strong influence on the quality
of the hysometry and resulting volume variations. Overall, this example shows that reliable time series
of volume variations can be estimated based on remote sensing data, even if the input data sets are of
minor quality with short periods of altimeter data.

5.2. Quality Assessment and Discussion

In this paper, 28 water bodies shown in Table 1 have been investigated in order to demonstrate
and validate the new approach introduced in Section 4 for estimating time series of volume variations
of lakes and reservoirs. After a detailed discussion of three selected reservoirs (Ray Roberts Lake,
Hubbard Creek Lake, Palestine Lake), a general quality assessment of all 28 water bodies is performed
in this Section.
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All water bodies are located in Texas where detailed validation data is provided by TWDB.
The water bodies have different characteristics regarding water level, surface area and volume. The lake
sizes cover a range between less than 2.4 km2 for Medina Lake and about 782 km2 for Toledo Bend
Lake. The long-term changes in water level vary between 2.77 m for Cedar Creek Lake and 30.20 m for
Medina Lake. The surface areas vary between 2.62 km2 for Bardwell Lake and 272.03 km2 for Texoma
Lake. Based on water levels and surface areas, the resulting volumes vary between 0.062 km3 for
Bardwell Lake and 6.041 km3 for Toledo Bend Lake.

Table 2 summarizes the detailed quality assessment of all 28 water bodies. In order to perform
a reliable quality assessment of our results, the time series of surface areas and volumes provided
by TWDB have to be homogenized in advance. For consistency, we correct offsets in in-situ data if
necessary which can be caused by changes in the applied hypsometry models. Since values from
surface areas, respectively volumes are mainly not available for higher water levels, an extrapolation of
the hypsometric curves and resulting values is performed by the TWDB. Therefore, extrapolated values
in the validation data are truncated if unreliable. The quality assessment is performed for the used
water levels and surface areas but also for the resulting hypsometry and volume variations. Therefore,
we estimate the RMSE for all data sets, Pearson correlation coefficients (water levels, surface areas,
volume variations) and Spearman correlation coefficient for the hypsometry. Additionally, a relative
error with respect to the variations is estimated:

ErrorRelative =
RMSE

P95(v)− P5(v)
∗ 100[%] (3)

To estimate the relative error in Equation (3), the RMSE is divided by the difference of the 95%
percentile and the 5% percentile of the values v. In this study, v are the resulting water levels, surface
areas and volume variations. In addition, an error with respect to the full volume is estimated based
on the absolute volumes provided by TWDB for validation. This allows us also to compute the water
volume below the lowest remote sensing observations (i.e., the offset of our volume change time series).

For quality assessment of the 28 water bodies, the water levels and surface areas used for the
volume estimation are analyzed first. For each water body the number of available water levels
from satellite altimetry and surface areas from optical imagery are given. The water levels from
satellite altimetry are validated with in-situ data provided by TWDB/USGS. The resulting correlations
coefficients vary between 0.81 and 1.00 (average: 0.94), whereas the RMSE values vary between 0.13 m
and 0.78 m (average: 0.25 m). The relative error for the water levels varies between 1.7% and 16.3%
(average: 7.2%). The quality assessment of the used surface areas as input data results in correlations
coefficients which vary between 0.80 and 1.00 (average: 0.95), whereas the RMSE values vary between
0.13 km2 and 21.75 km2 (average: 2.74 km2). The relative error for the surface areas varies between
2.2% and 23.5% (average: 9.2%).

The quality of the computed hypsometry model shown in Table 2 varies strongly depending on
the accuracy of used input data but mainly on the number of used pairs and their data distribution.
The correlation coefficients of the hypsometry compared to data used for fitting varies between 0.64
and 0.99 (average: 0.89). It can be clearly seen that there is no dependency between the correlation
coefficients derived from the used input data and the hypsometry model. The resulting RMSE values
vary between 0.15 m and 0.53 m (average: 0.32 m).

Finally, the resulting volume variations area validated with absolute volume time series provided
by TWDB. The correlation coefficients vary between 0.80 and 0.99 (average: 0.94) and the RMSE
between 0.002 km3 and 0.166 km3 (average: 0.025 km3). For comparison, the relative errors are
provided which vary between 2.8% and 14.9% (average: 8.3%). However, the relative errors depend
on the volumes variations, therefore we provide errors with respect to the full volume additionally.
These errors vary between 1.5% and 6.4% (average: 3.1%). For the sake of completeness, the missed
volumes below the lowest observation (volume offsets) are also given for the 28 investigated water
bodies.
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Even if the RMSE of most volume variation time series is very good, we can see a spread in the
quality of all target under investigation. In the following, the most important criteria defining this
quality will be investigated. The most important factor is the quality of the input data, which turned
out to be crucial for the estimation of volume changes. Figure 22(left) shows the impact of correlation
coefficients from water levels and surface areas on the resulting correlation coefficients of volume
variations. It can be clearly seen that higher correlation coefficients of the input data result in higher
correlation coefficients for the volume variations. For example, if both input data have a correlation
larger than 0.90, the resulting correlation is also larger. Since the areas are available over the entire
period, it is more important to have accurate water levels that, in the best case, cover the entire range
of surface areas. Figure 22(right) shows the effects of the relative errors of water levels and surface
areas on the resulting relative errors of volume variations. Here, too, the strong dependency is clearly
visible. The smaller the relative errors of the input data are, the smaller are the relative errors from the
volume variations. Overall it can be said that the quality of the input data, the correlation coefficients
and the relative errors allow us to assess the quality of the resulting volume variations.

(a) (b)

Figure 22. Impact assessment of the used input data (water levels, surface areas) on the resulting
quality of volume variations. The dependency of the correlation coefficients R2 and relative errors of
the three data sets are shown for all water bodies. (a) Quality assessment of correlation coefficients R2.
(b) Quality assessment of relative errors.

In further analyses, we will now examine the impact of the characteristics of the water bodies
on the resulting volume variations. Therefore, we compare the resulting relative errors of the volume
variations but also absolute volume errors with the maximum surface area, surface area variations,
water level variations and maximum volumes for the 28 water bodies (Figure 23). For none of the four
parameters a clear influence on the resulting errors can be seen. This proves that the quality of volume
estimates are generally independent of the lake’s characteristics. Errors less than 4% of the average
lake volume can be achieved regardless of the water body characteristics.
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(a) (b)

(c) (d)

Figure 23. Impact assessment of water body characteristics (maximum surface area, surface area
variation, water level variation, maximum absolute volume) on the resulting relative and absolute errors.
(a) Relative and absolute errors compared to the maximum surface areas. (b) Relative and absolute
errors compared to the surface area variations. (c) Relative and absolute errors compared to the water
level variations. (d) Relative and absolute errors compared to the maximum volumes.

6. Conclusions

The paper presents an improved approach for estimating time series of volume variations for
lakes and reservoirs by combining water levels from satellite altimetry and surface areas from optical
imagery. Both input data sets are derived from time series publicly available from the “Database for
Hydrological Time Series of Inland Waters” (DAHITI). In a first step, a hypsometry model based
on water levels and surface areas is calculated. For this purpose, a modified Strahler approach has
been developed, which is optimized for non-continuous data sets. The fitted hypsometric curve is
used to derive corresponding water levels for all surface areas. This results in a combined long-term
water level time series based on satellite altimetry and surface areas. In the next step, all land-water
masks and corresponding water levels are stacked in order to estimate a bathymetry between the
minimum and maximum observed surface area. Finally, the bathymetry is intersected with water levels
from satellite altimetry and surface areas in order to estimate volume variations with respect to the
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minimum observed surface area. The data holding of DAHITI has been extended by that new product.
Additionally, all side products, namely the hypsometry models, bathymetries and the reconstructed
long-term water level time series are available on DAHITI.

The performance of this new approach is assessed for 28 lakes and reservoirs located in Texas,
United States. The results are compared with volume time series which are derived from water levels
of in-situ stations and local bathymetric surveys. The average RMSE for all water bodies is 0.025 km3,
corresponding to 8.3% with respect to the variations and 3.1% with respect to the overall volume.
The validation shows that the quality of the resulting volume time series strongly depends on the
quality of the used input data. If correlation coefficients R2 of water levels and surface areas with
in-situ data are larger than 0.90, then the resulting correlation coefficients R2 of the volume variations
are almost always larger than 0.90. For the 28 investigated water bodies, the resulting correlation
coefficients R2 of the volume variations vary between 0.80 and 0.99.

It can be concluded that on the basis of precise water levels from satellite altimetry and precise
surface areas from optical imagery in combination with the modified Strahler approach for estimating
hypsometric curves, very accurate time series of volume variations can be achieved, also for smaller
water bodies (≤6.0 km3, ≤782 km2). The approach provides consistent long-term time series starting in
1984 without inconsistencies caused by changes in the vertical datum or recalculation of hypsometric
curves, as can be contained in in-situ data sets. Since the method is solely based on remote sensing
data, it can be easily applied on a global scale and to remote areas without human infrastructure.
In addition to the volume variation time series, this new approach provides further products such as
reconstructed water levels based on surface areas for periods since 1984, when altimetry data is not yet
available. Additionally, high-resolution bathymetry data sets between the minimum and maximum
observed water level are provided.

7. Data Availability

All presented volume variation time series, hypsometric curves, reconstructed water level time
series derived from surface areas and bathymetry data as well as results for many additional targets
are freely available in DAHITI at https://dahiti.dgfi.tum.de.
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Abstract: With the development of the wind power industry in China, accurate simulation of
near-surface wind plays an important role in wind-resource assessment. Numerical weather prediction
(NWP) models have been widely used to simulate the near-surface wind speed. By combining the
Weather Research and Forecast (WRF) model with the Three-dimensional variation (3DVar) data
assimilation system, our work applied satellite data assimilation to the wind resource assessment
tasks of coastal wind farms in Guangdong, China. We compared the simulation results with wind
speed observation data from seven wind observation towers in the Guangdong coastal area, and
the results showed that satellite data assimilation with the WRF model can significantly reduce the
root-mean-square error (RMSE) and improve the index of agreement (IA) and correlation coefficient
(R). In different months and at different height layers (10, 50, and 70 m), the Root-Mean-Square Error
(RMSE) can be reduced by a range of 0–0.8 m/s from 2.5–4 m/s of the original results, the IA can be
increased by a range of 0–0.2 from 0.5–0.8 of the original results, and the R can be increased by a range
of 0–0.3 from 0.2–0.7 of the original results. The results of the wind speed Weibull distribution show
that, after data assimilation was used, the WRF model was able to simulate the distribution of wind
speed more accurately. Based on the numerical simulation, our work proposes a combined wind
resource evaluation approach of numerical modeling and data assimilation, which will benefit the
wind power assessment of wind farms.

Keywords: data assimilation; WRF; WRFDA; 3DVar

1. Introduction

Energy from fossil fuels has played a major role in the development of modern human civilization,
but it also brings serious environmental problems and climate issues, such as atmospheric environmental
pollution and global warming. The development of renewable energy is one of the major ways to
solve environmental problems and achieve sustainable development; wind energy has been developed
rapidly as the main clean and renewable energy.

In 2018, China installed an additional wind power capacity of 21 GW and thus has total wind
power capacity of more than 200 GW [1]. Before the construction of wind farms, wind resources in
wind farm areas need to be evaluated, and the location selection of a wind farm is mainly based on the
results of the wind resource assessment. Therefore, wind speed simulation in the wind farm area is a
key issue in the development of wind power.
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After many years of development, wind speed simulation in wind resource assessment and
prediction now has two methods: the statistical method and numerical simulation. Costa et al. [2] made
a brief review about the development of the short-term wind speed forecast during 30 years of history,
highlighting that the main forecast method has changed from the statistical model into the numerical
model, and that the integration between both models has also begun to be used. Storm et al. [3] used
the Weather Research and Forecast (WRF) [4] model to simulate the LLJ (low-level jet), and the model
was able to capture some characteristics of LLJ, which indicates that WRF model can be used for
short-term wind energy simulation.

In order to improve the accuracy of the numerical weather model in wind speed simulation,
there are two approaches: (1) developing the physical parameterization scheme to improve the wind
simulation performance at near-surface levels and (2) applying the data assimilation to improve the
initial condition of the atmosphere. Some research studies evaluated the parameterization scheme
chosen and planetary boundary layer (PBL) development [5–8]. In addition to the selection and
improvement of the PBL scheme, data assimilation is also widely used to improve the wind simulation
results of the numerical model.

Liu et al. [9] combined the WRF model with a data assimilation system and a large eddy simulation
(LES) model, which increased wind energy simulation resolution to the level of LES. Zhang et al. [10]
used the WRF model and data assimilation to forecast near-surface wind speed. In this work, the
conventional observations and infrared satellite observations were used to improve the model output
wind speed by the 3DVar. The results showed that, with the improvements of the initial fields, the
assimilation of conventional observations and infrared satellite observations significantly improved
the wind forecast results. Ancell et al. [11] compared the effects of the ensemble Kalman filter and
3Dvar data assimilation on wind forecasting. The results showed that the EnKF assimilation effect
is better than the 3DVar assimilation for 24-h forecasting. Ulazia et al. [12] compared different data
assimilation schemes and found that the assimilation at an interval of six hours has a better effect on
the simulation of wind speed than at an interval of 12 h. The study also suggested applying data
assimilation techniques to mesoscale weather models in wind resource assessment. Che et al. [13]
developed a system to predict wind speed at turbine height. The Kalman filter algorithm was used to
assimilate the cabin wind data after quality control, and the wind speed prediction of the WRF model
was improved. The study also pointed out that data assimilation can effectively reduce random errors
and is more important in rare or extreme weather conditions. Ulazia et al. [14] used the WRF model
to estimate the offshore wind energy resources on the Iberian Mediterranean coast and the Balearic
Islands. The results of data assimilation and no data assimilation were compared. The results showed
that the bias of the wind speed simulation after the 3DVar data assimilation was significantly reduced.
Cheng et al. [15] improved short-term (0–3 h) wind energy forecasting by assimilating wind speed
observed in wind turbines into a numerical weather forecast system. The results showed that the
assimilation of wind speed can reduce the average absolute error of the wind speed forecast for 0–3 h
by 0.5–0.6 m/s.

As can be seen from related works, data assimilation can improve short-term wind speed
simulation results by changing the initial field and providing real-time updates during the model
run. An efficient way is dividing long-time simulation into multiple short-time simulations, using the
previous numerical weather prediction (NWP) output as the “first guess” field, and then applying data
assimilation to update the initial condition and to continue the next short-time run.

In this paper, we used the WRF (Weather Research and Forecast) model to make a one-year wind
speed simulation on the coastal wind farm area in Yangjiang, Guangdong. Furthermore, the 3DVar
data assimilation was used to assimilate the satellite radiation data. The observation data of seven wind
observation towers were used to measure the simulation results and to calculate the improvements of
data assimilation on near-surface wind speed simulation. The remainder of this paper is organized as
follows: Section 2 mainly introduces the experiment, the data, and the results of the measurement
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methods; Section 3 analyzes the results of the different tests; Section 4 discusses the results of this
article compared with other work; and Section 5 presents the main conclusions.

2. Materials and Methods

2.1. Wind Observation Data

In order to estimate the improvement of the satellite data assimilation to wind speed simulation,
wind speed observations from seven wind observation towers were used. These wind towers have
wind speed observations at different heights (10, 50, and 70 m) and measure the instantaneous wind
speed and direction every 10 min. The data of wind towers were provided by China Huaneng Group
Co., Ltd. (CHNG), and all wind towers are located in the wind farm of CHNG.

Table 1 shows the geographical locations and altitudes of the seven wind towers. These wind
towers are geographically close, and all of them are located near the coastal area in Yangjiang,
Guangdong Province. Table 2 is the wind-sensor type, model number, hardware, and software version
of wind towers. Figure 1 shows these towers’ locations in the inner domain of the model.

Table 1. Latitude, longitude, and terrain height of wind observation towers.

Tower Longitude (E) Latitude (N) Terrain Height (m)

Tower1 112.304 21.768 380
Tower2 112.309 21.827 285
Tower3 112.208 21.783 320
Tower4 111.985 22.144 540
Tower5 112.269 21.796 473
Tower6 112.076 22.110 758
Tower7 112.334 21.844 322

Table 2. Wind towers’ sensor type, model number, hardware version, and software version.

Tower Wind Sensor Model Hardware version Software Version Sampling Frequency Sensor Bias

Tower 1 NRG 4280 023-022-053 SDR 6.0.26 1 s ±2%
Tower 2 NRG 4280 023-022-053 SDR 6.0.26 1 s ±2%
Tower 3 NRG 4280 023-022-036 SDR 6.0.26 1 s ±2%
Tower 4 NRG 4280 023-022-036 SDR 6.0.26 1 s ±2%
Tower 5 NRG 4280 023-022-039 SDR 6.0.26 1 s ±2%
Tower 6 NRG 4280 023-022-039 SDR 6.0.26 1 s ±2%
Tower 7 NRG 4280 023-022-039 SDR 6.0.26 1 s ±2%

The observation time of the wind towers is the whole year of 2012. For the original data, quality
control (QC) was performed first; another wind resource assessment research study [16] used the
similar type of wind observations, so we used the same QC method as that study. The QC method was
as follows: (1) If the wind speed value does not change for more than 30 min, these data are regarded
as invalid data. (2) If there is a large difference between the observed wind speeds at different heights,
the data with small value at that time are also considered as invalid data. The comparison methods
were as follows: |V70 −V50| > 4.0m/s, |V70 −V10| > 8.0m/s, or |V50 −V10| > 8.0m/s, where V70, V50,
and V10 are the wind speed at 70, 50, and 10 m.

Table 3 shows the observation data numbers of each wind tower in the different months of 2012,
and Table 4 is the observation data amount after the quality control. Some towers have missing data in
autumn and winter. The data of Tower 5 at heights of 50 and 70 m are considered invalid because of
poor quality.
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Figure 1. Terrain height of inner domain and the distribution of the seven wind observation towers
(red dots). “T1” represents Tower 1, “T2” represents Tower 2, and so forth.

2.2. Numerical Model and Data Assimilation

We set three numerical simulation tests to measure the improvement of wind speed simulation
by applying satellite data assimilation. The first test (Test 1) only used cold-start initial conditions
from NCEP’s final analysis data to create a simulation of wind speed. The second test (Test 2) used
the analysis field generated by the data assimilation system as the initial conditions, and the model
field was updated four times by the data assimilation system during each simulation run. In order
to compare the improvement of satellite data assimilation with conventional observations data, we
set a third test (Test 3), which used the same data assimilation configurations of Test 2, except the
conventional surface and upper-air observation data as the data assimilation input.

The Model we used in our work was the WRF model (version 3.8.1), and its data-assimilation
system WRFDA [4] was used for satellite and conventional data assimilation. Figure 2 shows the three
nested domains of our simulation tests. The inner domain we used in our simulations was mainly
located in the coastal area of Yangjiang, Guangdong. Figure 1 shows the distribution of wind towers
(red dots) in the inner domain. The chosen of physical configuration considered the following schemes:
Morrison double-moment scheme [17] for microphysics; RRTMG [18] for longwave and shortwave
radiation; Noah [19] for land-surface scheme; Kain–Fritsch [20] for cumulus convention; and YSU [21]
for PBL. Table 5 shows the model configuration of simulations; since domain 03’s grid resolution was
less than 5 km, we did not need to set the cumulus convention scheme for domain 03. All of the
test cases (Test 1, Test 2, and Test 3) used the same WRF model configurations, including parameter
settings and model domains. The ETA values of the near-surface layers were 1.0000, 0.9960, 0.9920,
0.9900, 0.9851 . . . The average altitudes of near-surface layers in domain 03 were 16.31, 48.97, 73.52,
and 101.85 m.
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Table 5. Domain configuration and parameter settings of the Weather Research and Forecast
(WRF) model.

Domain 01 02 03

Grid number 80 × 80 88 × 88 88 × 88
Grid resolution 27 km 9 km 3 km
Vertical levels 51 51 51
Microphysics Morrison Morrison Morrison

Longwave radiation RRTMG RRTMG RRTMG
Shortwave radiation RRTMG RRTMG RRTMG

Land-surface Noah Noah Noah
Cumulus convention Kain–Fritsch Kain–Fritsch Not set

PBL YSU YSU YSU

The data used to generate the initial condition and boundary forcing of the model were Final
Operational Global Analysis Data (FNL) [22], which were provided by the National Centre for
Environmental Prediction (NCEP). The spatial resolution of FNL data was 1 degree (both in latitude
and longitude), and the temporal resolution was 6 h.

The background error covariance matrix used in 3DVar data assimilation was generated by the
NMC method [23]. To calculate the background error, a one-month simulation was made from 1 Jan.
2012 to 1 Feb. 2012. The simulation had the same model settings as Test 1, 2, and 3, and it contained a
12-h forecast and 24-h forecast results at both 00:00 and 12:00 UTC. Then, the 62 pairs of results from
the 31 days were used to calculate the background error covariance.

The NCEP GDAS Satellite Data [24] were used as the input data for satellite data assimilation.
The satellite data sensors included AMSUA, HIRS, MHS, and AIRS. Table 6 shows the types of platforms
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and sensors. In order to process the satellite data before data assimilation, the Community Radiative
Transfer Model (CRTM) was used as the radiative transfer model. The CRTM model can look up the
Cloud coefficient, Surface Emissivity coefficient, and Aerosol coefficient and eliminate the satellite
data bias caused by cloud, land, and aerosol. Table 7 shows the resolution of satellite data. Since
some sensors (MHS, HIRS, and AIRS) have higher resolutions than domain 01 (27 km), we applied
data-thinning to domain 01 in the data assimilation.

Table 6. Satellite data used for data assimilation. Contains several sensors (AMSUA, HIRS, and MHS,
AIRS) on EOS, METOP, and NOAA platforms.

Platform Satellite ID Sensor Observation Variables

EOS 2 AIRS Infrared Radiance
EOS 2 AMSUA Microwave Radiance

METOP 1 AMSUA Microwave Radiance
METOP 1 MHS Microwave Radiance
METOP 2 AMSUA Microwave Radiance
METOP 2 MHS Microwave Radiance
NOAA 15 AMSUA Microwave Radiance
NOAA 15 HIRS Infrared Radiance
NOAA 16 AMSUA Microwave Radiance
NOAA 16 HIRS Infrared Radiance
NOAA 17 HIRS Infrared Radiance
NOAA 18 AMSUA Microwave Radiance
NOAA 18 HIRS Infrared Radiance
NOAA 18 MHS Microwave Radiance
NOAA 19 AMSUA Microwave Radiance
NOAA 19 MHS Microwave Radiance

Table 7. Resolutions of satellite data.

Sensor Resolution

AMSUA ~50 km
MHS ~17 km
AIRS ~13.5 km
HIRS ~10 km

The conventional observations used in Test 3 includes NCEP ADP Global Surface Observational
Weather Data [25] and NCEP ADP Global Upper Air Observational Weather Data [26]. Most of the
conventional observations used in Test 3 are synoptic observations. Figure 3 shows the locations of
synoptic observation stations.

Figure 4 shows the method of the WRF run in the three tests. Because we needed to obtain values
of wind speed every 10 min instead of long-term variability, we started the model every day in 2012,
and each run of the model made just a one-day simulation. The reason for this was that long-time
running depends on boundary forcing, which can capture long-term variability, but it cannot accurately
simulate the results at every moment.

In Test 1, we started the WRF model at 18:00 UTC every day and took 6 h from 18:00 to 00:00 UTC
as the spin-up time. Then, from 00:00 to 00:00 UTC the next day, the model output the simulated wind
speed as the results of Test 1. Since the time interval of the observation data was 10 min, the time
interval of the wind speed output of the model was also set to 10 min.

In Test 2 and Test 3, we used the WPS (WRF preprocessing system) output of 18:00 UTC as the
first guess field, and then we assimilated the satellite observation data by using the 3DVar, and used
the 3DVar output as the initial field of the WRF model. From 18:00 UTC to 00:00 UTC, the model was
run as a spin up process. At 00:00 UTC (+1 day), 06:00 UTC (+1 day), 12:00 UTC (+1 day), and 18:00
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UTC (+1 day), the data assimilation system was run four times, each time using the WRF output as the
first guess field and the satellite data as the observation input.
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Figure 4. Model running process for Tests 1, 2, and 3. Test 1 (left) started the model at 18:00 UTC every
day, with 6 h spin up and 24 h model run. Tests 2 and 3 (right) started the model at 18:00 UTC every
day and assimilated satellite/conventional data at 18:00 UTC, 00:00 UTC (+1day), 06:00 UTC (+1day),
12:00 UTC (+1day), and 18:00 UTC (+1day).

Unlike the long-time cycling run of WRF-3Dvar, our model was cold-started daily based on FNL
data. In Tests 1, 2, and 3, we used FNL data to generate the initial field, to run the WRF model for 30 h,
and to begin the next day’s run. The only difference between Test 1 and Tests 2 and 3 was that Test 2 and
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Test 3 applied data assimilation five times in each WRF run. Another similar wind resource evaluation
work [27] explained that this way avoids model divergence and the accumulation of truncation errors,
and the WRF simulations used in that research were 2-day-restart runs. We also calculated the 3Dvar
mean absolute difference (MAD) of U and V in domain 03 in Test 2, as follows:

3Dvar MAD =
1
n

n∑

i=1

∣∣∣S3Dvar − S f g
∣∣∣ (1)

Here, n is the total grid number in domain 03; S3Dvar is the U or V wind speed after 3Dvar; and
S f g is the U or V wind speed of first guess field.

We calculated the MAD of U and V at 4 different 3Dvar times, in the simulation, including 00, 06,
12, and 18 UTC. The results of different height and different time MAD are shown in Figure 5; we can
find that the MAD is stable at 00, 06, 12, and 18, so there is virtually no difference between the typical
operational cycling run and our daily cold-start run.
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in Test 2.

After obtaining the model results, we first interpolated the three-dimensional wind field into
heights of 10, 50, and 70 m, using linear interpolation. Then, we interpolated the wind field into
the wind tower’s latitude and longitude, where the horizontal interpolation method was bilinear
interpolation. We used the results of the interpolation to compare with the observed wind speed.

2.3. Results Measurements

In order to evaluate the results of the different tests, the following evaluation indices were
calculated to evaluate the errors and correlations between model results and observation data.

2.3.1. Root-Mean-Square Error (RMSE)

The root-mean-square error (RMSE) is widely used in NWP to evaluate the error of wind speed
and other meteorological variables. Since the observation data has a 10-minute time resolution, we
used the 10-minute model output and calculated the RMSE of the 10-minute model wind speed output.

RMSE =

√√
1
n

n∑

i=1

(Mi −Oi)
2 (2)

Here, n is the number of wind speed observations in each month, Mi is the value of the model
result, and Oi is the observation value.
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2.3.2. Index of Agreement (IA)

Index of Agreement is a standardized measure of the degree of model prediction error [28–30]. It
can be calculated by the following:

IA = 1−
∑n

i=1(Mi −Oi)
2

∑n
i=1

(∣∣∣Mi −O
∣∣∣+

∣∣∣Oi −O
∣∣∣
)2 0 ≤ IA ≤ 1 (3)

where O is the average value of the total observation data.
The Index of Agreement varies between 0 and 1, where a value of IA close to 1 indicates

well-matched results, and 0 indicates no agreement at all.
The index of agreement can detect additive and proportional differences in the observed and

simulated means and variances [31]. We calculate the IA of the 10-minute model wind speed output to
investigate the agreement level of the model output to the wind speed observations.

2.3.3. Pearson Correlation Coefficient (R)

The Pearson Correlation Coefficient (R) is also widely used to evaluate the performance of
wind speed simulation of NWP. It reflects the correlation between wind speed simulation series and
observation series. If the model output has a high level of R, the error can be largely corrected by
postprocessing algorithms.

R =
Cov(M, O)

√
Var[M]Var[O]

(4)

Here, Cov(M, O) represents the covariance of the model results and observation wind speed, and
Var[M] and Var[O] represent the variance of the model results and observation wind speed. These
variables can be calculated as follows:

Cov(M, O) =
n∑

i=1

(
Mi −M

)(
Oi −O

)
(5)

Var[M] =
n∑

i=1

(
Mi −M

)2
(6)

Var[O] =
n∑

i=1

(
Oi −O

)2
(7)

In our tests, we calculate the R between the 10-minute model wind speed output and 10-minute
wind speed observations. The R results were also compared, to evaluate the simulation results and the
improvements of data assimilation.

2.3.4. Weibull Distribution of Wind Speed

In general, the distribution of near-surface wind speed can be fitted by Weibull distribution [32].
The probability density function of Weibull distribution is as follows:

f (x;λ, k) =
k
λ

( x
λ

)k−1
e−(

x
λ )

k
(8)

where x is the wind speed, k > 0 is the shape parameter, and λ > 0 is the scale parameter of the
Weibull distribution.

The Weibull distribution has been widely used in the wind resource assessment because, before the
wind farm construction, the wind speed distribution must be evaluated in order to calculate the amount
of electric power the wind farm can generate. The two parameters can be used to determine whether
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the distribution of wind speed simulation results is similar to the observations. If the parameters of
wind simulation results are close to the observation, the distribution of model result can reflect the true
wind distribution well, and the model results can be used in the wind resource assessment.

3. Results

3.1. The Wind Distribution Results

Figure 6 is the Weibull distribution of seven towers at 10, 50, and 70 m. Tower 5 was missing most
of its data at 50 m and all its data at 70 m. Therefore, the distribution of Tower 5 at 50 and 70 m was
not analyzed. Table 8 is the shape parameter and the scale parameter of each Weibull distribution in
Figure 6. In all of the subfigures of Figure 6, we can see that the wind speed distribution of the red
lines is generally smaller than the wind speed distribution of the green lines. This means that the wind
speed of Test 2 is smaller than the wind speed of Test 1. Compared to the peak position of wind speed
distribution and the peak value of the distribution, except in several cases (Tower 1 is 10 m; Tower 3 is
10 m; Tower 5 is 10 m; and Tower 6 is 10, 30, and 70 m), in most cases, the peak value of Test 2 is closer
to the observation than Test 1. Furthermore, for the peak value of wind speed distribution, we can also
find that, except in four cases (Tower 1 is 70 m, Tower 2 is 70 m, Tower 3 is 70 m, and Tower 6 is 70 m),
the peak values of Test 2 are closer to the observations than Test 1. Table 8 shows that the shape and
scale parameters of Test 1 are larger than those of Test 2 and Test 3; Test 1’s simulation performance is
worse than Test 2’s and Test 3’s, mainly due to the systematic higher simulation of the wind speed.

Table 8. Shape and scale parameters of the Weibull distributions.

K (Shape) Lambda (Scale)

Obs Test 1 Test 2 Test 3 Obs Test 1 Test 2 Test 3

Tower 1
10 m 1.99 2.45 2.20 2.35 5.39 4.61 4.62 4.62
50 m 2.20 2.56 2.27 2.45 6.47 6.63 6.02 6.38
70 m 2.25 2.50 2.24 2.39 6.71 7.15 6.41 6.89

Tower 2
10 m 1.53 2.31 2.04 2.24 5.10 4.54 4.18 4.44
50 m 1.75 2.51 2.12 2.43 5.95 6.41 5.64 6.18
70 m 1.77 2.52 2.12 2.42 6.37 6.97 6.05 6.76

Tower 3
10 m 2.02 2.36 2.08 2.27 6.74 4.83 4.62 4.76
50 m 1.51 2.76 2.31 2.62 8.27 7.91 7.40 7.75
70 m 1.84 2.50 2.13 2.16 6.83 7.10 6.16 6.94

Tower 4
10 m 1.81 3.06 2.03 2.71 5.66 4.72 4.89 4.78
50 m 1.79 3.18 2.08 2.88 6.10 6.92 6.10 6.68
70 m 2.23 3.16 2.08 2.81 6.38 7.50 6.40 7.19

Tower 5
10 m 2.41 2.48 2.08 2.28 6.86 4.50 4.40 4.44
50 m
70 m

Tower 6
10 m 2.43 2.64 2.17 2.48 7.40 5.51 5.23 5.41
50 m 2.45 2.71 2.16 2.49 7.44 7.21 6.63 6.99
70 m 2.40 2.66 2.05 2.45 7.56 7.92 7.28 7.70

Tower 7
10 m 1.27 2.44 2.16 2.34 4.11 4.53 4.34 4.47
50 m 1.54 2.65 2.23 2.51 6.48 6.46 5.90 6.25
70 m 1.75 3.31 2.36 3.02 7.69 7.40 6.68 7.18
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Figure 6. The Weibull distribution of seven towers at different heights. The blue lines are the observed 
wind speeds, the green lines are the results of Test 1 (no data assimilation), and the red lines are the 
results of Test 2 (data assimilation). 

Figure 6. The Weibull distribution of seven towers at different heights. The blue lines are the observed
wind speeds, the green lines are the results of Test 1 (no data assimilation), and the red lines are the
results of Test 2 (data assimilation).
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3.2. The RMSE, IA, and R Results

The Tables A1–A3 in Appendix A are the RMSE, IA, and R results of the three tests (Test 1, Test 2,
and Test 3) at heights of 10, 50, and 70 m. In order to analyze the distributions in different months, the
results of each wind tower were calculated separately in each month, from January to December. The
vacant positions in the tables mean that there were no valid wind speed observations in that month, so
indices were not calculated.

For the distributions of wind direction, we plot the wind rose in each month, using the wind
speed and wind direction of Test 2. The Figures A1–A4 in Appendix B are the wind rose at different
heights in the four seasons of spring, summer, autumn, and winter.

In the results of the correlation coefficients (R) in Tables A1 and A2, Test 1 had two records that
did not pass the significance test (10 m Tower 6 Jul. and 50 m Tower 5 Jan.). This is because (1) the
amount of data was too small (790 and 63) and (2) the correlation coefficient was too small. The other
correlation coefficients all passed the significance test, with more than 99% confidence.

After calculating the average value of the results for the different towers, we obtained the average
distribution of RMSE, IA, and R. Figure 7 shows the seven towers’ average results of RMSE, IA, and R
of Tests 1, 2, and 3, at 10, 50, and 70 m. As can be seen from Figure 7, the results of Test 2 and Test 3 are
better than that of Test 1 on all three indices. Both conventional and satellite data can improve wind
speed simulation. However, compared with Test 2, Test 3 has small improvements in RMSE, IA, and
R. Compared with the conventional data, satellite data have a wider geographical coverage, and the
improvement of wind speed simulation is more significant.
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3.3. Wind Speed Simulation Results Analysis

From Tables A1–A3, we can find that the RMSE of the model simulation results varied greatly in
different months. In some towers, the gap between the different months even reached 2 m/s (10 m
for Tower 2; 70 m for Tower 1) and, in most cases, there was at least a 0.5 m/s gap. Like RMSE, the R
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also changed greatly with the month. Furthermore, we also found that RMSE and R change a lot at
different heights in some cases (Tower 2 December; Tower 3 December).

Stensrud et al. [33] compared the MM4 [34] model output with the observation temperature
and found that there is systematic bias in the NWP model. In order to analyze the systematic bias,
we calculated the mean wind speed value of Test 1, Test 2, and observation data in each month, and we
obtained the wind speed anomalies by using the following equation:

vai = vi − v, i = 1, 2, 3 . . . (9)

where vai is the wind speed anomalies, and v is the mean values of wind speed in each month.
In order to analyze the wind speed simulation results in Test 1 and to find out the performance

of the WRF model on wind speed simulation, we calculated the RMSE, IA, and R by using the wind
speed and wind speed anomalies of Test 1 and observations. Figure 8 shows the results of the average
indices from seven towers. We also calculated the average value of the bias of mean speed of Test 1
and Test 2; the results are shown in Figure 9.
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Figure 8. Average results of root-mean-square error (RMSE), index of agreement (IA), and correlation
coefficient (R) in Test 1; “10 m”, “50 m”, “70 m” are the RMSE, IA, and R results of wind speed at 10, 50,
and 70 m, and the “anomalies” histograms are the results of RMSE, IA, and R, calculated using wind
speed anomalies.
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In Figure 8, we can find that, in the same month and at the same height, the IA is similar between
wind speed and wind speed anomalies, but sometimes the value of RMSE can be very different. As for
RMSE, the difference between wind speed and wind speed anomalies can be caused by systematic bias
of the model’s simulations. Therefore, when the model has systematic bias, the RMSE gap will become
larger. In some months with large RMSE values, the RMSE gap is always large, indicating that part of
the error is caused by systematic bias.

In Figure 8, the RMSE is less than 3 m/s in May, June, July, August, and September, of which the
lowest value is in August. Among the IA results, August still reaches the highest value, and the values
of April and May are lower than the rest of the months. The results of R are similar to those of IA,
having the highest value in August and the lowest values in April and May. From these distributions
of the indices, the simulation results in summer are generally the best, and the simulation results in
spring are the worst. From the Figure A1 in Appendix B, we can see that the main wind directions in
spring are east, south, and southeast, and the wind speed distribution is particularly dense in some
directions, namely from ocean to land. We can infer that the poor performance of the spring simulation
may be caused by the wind from the ocean. However, in summer (Figure A2), especially in July and
August, although there are winds in the ocean direction, the wind still distributes in many directions.

From the performance of RMSE, MAE, IA, and R in winter, we can see that, although the RMSE
and MAE values are large in winter, IA and R are also large. From the RMSEs of wind speed and wind
speed anomalies, we can find that the gap between them in winter is larger, when compared with
other months. Figure 9 also shows that, in winter, the bias of mean speed is larger. The results indicate
that the wind speed simulation has large systematic bias in winter, but since the IA and R are also
large in winter, the wind speed pattern can be simulated well. Additionally, as is seen in Figures 8
and 9, in some other months like March, April, June, July, and November, there also exists considerable
systematic bias.

The simulation results at different heights have a smaller change compared to seasonal changes.
In winter, the RMSE of 10 m is larger than the RMSE of 50 and 70 m, while it is smaller in other
seasons. The R and IA results also show that the 10 m simulation was performed better in winter.
From Appendix B, we can see that the wind speed distribution at different heights is basically the same,
and the wind speed of 10 m is only slightly smaller than that of 50 and 70 m.

3.4. Data Assimilation Results Analysis

From the 10 m results (Appendix A), we can see that almost all of the RMSE values in Test 2 are
less than Test 1, except in some cases (Tower 3 Mar., Tower 4 Feb., Tower 7 Mar., and Tower 7 Nov.).
Compared with Test 1, most of the decreases in the RMSE values of Test 2 vary from 0 to 0.5 m/s, and
in some cases, they can reach 1 m/s. For the 50 m results and the 70 m results, there are still some
cases where the RMSE values of Test 2 are larger than that of Test 1 (50 m Tower 3 Jan., 50 m Tower
3 Mar., 50 m Tower 4 Apr., 50 m Tower 7 Jan., 50 m Tower 7 Aug., 70 m Tower 4 Jan., 70 m Tower 7
Jan., and 70 m Tower 7 Feb.), but in most months, the RMSE values of Test 2 are significantly reduced
compared to those of Test 1. Especially in some cases (50 m Tower 2 Mar., 70 m Tower 1 Mar., 70 m
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Tower 1 Apr., 70 m Tower 2 Mar., and 70 m Tower 3 Mar.), Test 2 reduced the RMSE by more than
1 m/s. The significant reduction in RMSE indicates that the bias of wind speed simulation becomes
smaller after the data assimilation is used.

The Index of Agreement results of 10, 50, and 70 m (Tables A1–A3) show that, except in some
cases (10 m Tower 7 May, 10 m Tower 7 Jul., 10 m Tower 7 Nov., 50 m Tower 7 Jan., 50 m Tower 7
Feb., and 50 m Tower 7 Mar.), Test 2 has a larger value of IA than Test 1 in the rest of the cases. The
increments of IA vary from 0 to 0.2, which is a significant improvement of the wind speed simulation.

In the R results of 10, 50, and 70 m (Tables A1–A3), it can be found that some cases have a large
value difference between Test 1 and Test 2. The increase of R indicates that satellite data assimilation
significantly improved the correlation between simulation results and observations.

Compared with Test 1, we calculated the average reduced RMSE, increased IA and increased R of
Test 2; the results of wind speed and wind speed anomalies are shown in Figure 10.
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Figure 10. Difference between Test 2 and Test 1 results; “10 m”, “50 m”, and “70 m” are the reduced
root-mean-square error (RMSE), increased index of agreement (IA), and increased correlation coefficient
(R) results of wind speed at 10, 50, and 70 m. The “anomalies” histograms are the results of the reduced
RMSE, increased IA, and increased R calculated using wind speed anomalies in Test 1 and Test 2.
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The RMSE results in Figure 10 show that March, April, May, July, and October reduced larger
values of RMSE; and November, December, January, February, June reduced less RMSE. The results of
IA and R are roughly the same as those of RMSE. Data assimilation can significantly improve the wind
simulation results in March–May and July–October.

By comparing the results of wind speed and wind speed anomalies, we can find that the reduced
RMSE values have gaps between the two results, especially in March, April, and July, when the
reduced RMSE values of the anomalies results are smaller than the wind speed results. Moreover,
Figure 9 shows that Test 2 has less mean speed bias than Test 1. This means that, in these months, some
systematic bias was corrected by data assimilation.

From the Figures A1–A3 in Appendix B, we can find that during March–May and July–October,
the main wind directions were south, southeast, and east, while the main wind directions during
November–February were north, and the north wind during November–February had high speed
and was very stable. Wind in the north direction may be caused by the winter monsoon. The winter
monsoon is affected by large-scale circulation, and the effect of data assimilation may be limited.

From Figure 10, we can find that, in March–May and July–October, although the results in Test
1 differ greatly in different months, after data assimilation, the differences in Test 2 become smaller.
Figure 10 shows that, compared with Test 1, Test 2 improved a lot in March, April, May, and October.
Data assimilation can solve some of the bad cases of simulations in spring and autumn.

For the performance of data assimilation at different heights, we found that, compared with the
lower level (10 m), most cases at the higher levels (50 and 70 m) have larger RMSE reductions and
increments of IA and R. This result indicates that, through data assimilation, simulation results at
higher levels improved more than those at lower levels. It can be seen from Figure 4 that the wind
speed of 10 m is smaller than the wind speed of 50 and 70 m, so the error reduction is small. At the
same time, the wind speed of 10 m is affected by the terrain, and the data assimilation has a greater
effect on 50 and 70 m.

The incremental field can reflect the dynamic adjustments from data assimilation. To investigate
the incremental field between Test 1 and Test 2, the MAD was calculated as follows:

MAD =
1
n

n∑

i=1

|STest 2 − STest 1| (10)

where n is the total grid number in domain 03; STest 2 is the U or V wind speed of Test 2; and STest 1 is
the U or V wind speed of Test 1.

Figure 11 shows the vertical distribution of MAD between Test 1 and Test 2 in 00, 06, 12, and 18
UTC. We could find that, at each time, the MAD increased with the height and reached the maximum
value at around 200–300 m height, and then decreased with height. The assimilation of satellite data
has effects in the troposphere rather than just improving the near-surface layers. Moreover, the MAD
of V component of wind speed is larger than U component, especially in 12 and 18 UTC. In our study
case, the V component of wind speed is the direction of sea–land breeze, and it may be because that
satellite data assimilation improved the temperature and pressure field and affected the simulation of
sea–land breeze.
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4. Discussion

In previous research, the simulation of wind speeds in coastal wind farm areas were mainly
based on the direct simulation of WRF models with analysis data [27,35–41]. Since the parameters
chosen for WRF can greatly affect the wind simulation, many studies have focused on the selection and
improvement of the physical parameterization scheme of the WRF model [5,7,8]. However, another key
factor affecting the model results is the initial field and real-time update of the model fields generated
by the data assimilation system. Due to the uncertainty of wind speed changes near the surface,
data assimilation has not been widely used in wind speed simulation. Our work used satellite data
assimilation and improved the wind speed simulation results.

Wind resource assessment tasks require high quality of both wind speed distribution and time
series of wind speed. Our results show that the Weibull distribution of Test 2 is closer to the observation
than that of Test 1. Additionally, some statistical results were improved after data assimilation,
indicating that the time series of wind speed can also be more accurate.

Application of data assimilation technology for wind speed simulation is a new trend in recent
years. Our results show that data assimilation in different seasons has great differences in the
improvement of wind simulation and the differences depend on the wind condition, and both
systematic bias and random error can be corrected by satellite data assimilation.
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5. Conclusions

In this paper, a one-year wind speed simulation was performed in the wind farm area of Yangjiang.
Through the WRF-3DVar system, satellite data assimilation was applied to wind speed simulation in
wind resource assessments. The errors and correlations between wind speed and wind speed anomalies
in the two tests were compared through three indices—RMSE, IA, and R. Finally, we analyzed the
differences of each index in different seasons. The main conclusions are as follows.

The Weibull distribution of Test 2 is closer to the observation than Test 1, and after applying data
assimilation, the distribution of wind speed is more accurate.

According to the simulation results of the different seasons, it can be found that the wind simulation
in the coastal areas of Guangdong has the best performance in summer and the worst performance in
spring. This may be because the spring wind mainly comes from the ocean direction, and in winter
and spring, there exist more systematic bias of the WRF model.

Compared to the conventional observations, the satellite data have greater geographic coverage,
especially on the sea. The simulation results using satellite data assimilation can reduce the wind
speed error and have better agreement with the observation data. Except for winter, the value of
RMSE is greatly reduced in the other seasons. Comparing the wind speed and wind speed anomalies
results, it can be seen that both the systematic bias and the random error were corrected. The IA and R
between simulation results and observations are significantly improved in some months with very low
correlations (April and May).

Because conventional observations are mainly distributed in inland synoptic observation stations,
the performance of conventional data assimilation is less than the satellite data assimilation.

From the improvements of RMSE, IA, and R with data assimilation, it can be found that with the
data assimilation, the performance of wind speed is improved in the spring and autumn, while the
improvements are limited in winter. Data assimilation can significantly improve simulations during
periods of poor simulation performance. From the wind distribution of the model result, we can find
that the wind direction in winter was the same as the winter monsoon, and the systematic bias of the
model was large during winter.

The wind speed improvements of data assimilation at the lower level (10 m) were less significant
than that at the upper levels (50 and 70 m). This is because the wind near 10 m may be greatly affected
by the terrain.

The current methods for wind resource assessment mainly use numerical models to simulate
wind speed. Through this work, it can be found that data assimilation can be used to reduce simulation
errors (both systematic bias and random errors) and to improve the correlation between simulation
results and observations. Furthermore, the combined way of WRF-3Dvar can be applied in wind
resource assessment for wind farm location selection and other applications.
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Figure B1. Wind rose of the Test 2 results in the seven tower positions in spring (Mar., Apr., and May). 
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Figure B2. Wind rose of Test 2 results in the seven tower positions in summer (Jun., Jul., and Aug.). 
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Figure B3. Wind rose of Test 2 results in the seven tower positions in autumn (Sept., Oct., and Nov.). 
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Figure B4. Wind rose of Test 2 results in the seven tower positions in winter (Dec., Jan., and Feb.) 

References 

1. WWEA. Wind Power Capacity Worldwide Reaches 597 GW, 50,1 GW added in 2018. Available online: 
https://wwindea.org/blog/2019/02/25/wind-power-capacity-worldwide-reaches-600-gw-539-gw-added-in-
2018/ (accessed on 27 December 2019). 

2. Costa, A.; Crespo, A.; Navarro, J.; Lizcano, G.; Madsen, H.; Feitosa, E. A review on the young history of the 
wind power short-term prediction. Renew. Sustain. Energy Rev. 2008, 12, 1725–1744. 

3. Storm, B.; Dudhia, J.; Basu, S.; Swift, A.; Giammanco, I. Evaluation of the weather research and forecasting 
model on forecasting low-level jets: Implications for wind energy. Wind Energy Int. J. Prog. Appl. Wind Power 
Convers. Technol. 2009, 12, 81–90. 

4. Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A Description of 
the Advanced Research WRF Version 3. NCAR Technical Note-475+ STR. 2008. Available online: 
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.484.3656 (accessed on 11 December 2018). 

5. Hu, X.; Nielsen-Gammon, J.W.; Zhang, F. Evaluation of Three Planetary Boundary Layer Schemes in the 
WRF Model. J. Appl. Meteorol. Clim. 2010, 49, 1831–1844. 

6. Sušelj, K.; Sood, A. Improving the Mellor-Yamada-Janjić parameterization for wind conditions in the 
marine planetary boundary layer. Bound. Layer Meteorol. 2010, 136, 301–324. 

Figure A4. Wind rose of Test 2 results in the seven tower positions in winter (Dec., Jan., and Feb.)

404



Remote Sens. 2020, 12, 973

References

1. WWEA. Wind Power Capacity Worldwide Reaches 597 GW, 50,1 GW added in 2018. Available
online: https://wwindea.org/blog/2019/02/25/wind-power-capacity-worldwide-reaches-600-gw-539-gw-
added-in-2018/ (accessed on 27 December 2019).

2. Costa, A.; Crespo, A.; Navarro, J.; Lizcano, G.; Madsen, H.; Feitosa, E. A review on the young history of the
wind power short-term prediction. Renew. Sustain. Energy Rev. 2008, 12, 1725–1744. [CrossRef]

3. Storm, B.; Dudhia, J.; Basu, S.; Swift, A.; Giammanco, I. Evaluation of the weather research and forecasting
model on forecasting low-level jets: Implications for wind energy. Wind Energy Int. J. Prog. Appl. Wind Power
Convers. Technol. 2009, 12, 81–90. [CrossRef]

4. Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A Description
of the Advanced Research WRF Version 3. NCAR Technical Note-475+ STR. 2008. Available online:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.484.3656 (accessed on 11 December 2018).

5. Hu, X.; Nielsen-Gammon, J.W.; Zhang, F. Evaluation of Three Planetary Boundary Layer Schemes in the
WRF Model. J. Appl. Meteorol. Clim. 2010, 49, 1831–1844. [CrossRef]

6. Sušelj, K.; Sood, A. Improving the Mellor-Yamada-Janjić parameterization for wind conditions in the marine
planetary boundary layer. Bound. Layer Meteorol. 2010, 136, 301–324. [CrossRef]

7. Deppe, A.J.; Gallus, W.A., Jr.; Takle, E.S. A WRF ensemble for improved wind speed forecasts at turbine
height. Weather Forecast. 2013, 28, 212–228. [CrossRef]

8. Hu, X.M.; Klein, P.M.; Xue, M. Evaluation of the updated YSU planetary boundary layer scheme within WRF
for wind resource and air quality assessments. J. Geophys. Res. Atmos. 2013, 118, 10–490. [CrossRef]

9. Liu, Y.; Warner, T.; Liu, Y.; Vincent, C.; Wu, W.; Mahoney, B.; Swerdlin, S.; Parks, K.; Boehnert, J. Simultaneous
nested modeling from the synoptic scale to the LES scale for wind energy applications. J. Wind Eng.
Ind. Aerodyn. 2011, 99, 308–319. [CrossRef]

10. Zhang, F.; Yang, Y.; Wang, C. The Effects of Assimilating Conventional and ATOVS Data on Forecasted
Near-Surface Wind with WRF-3DVAR. Mon. Weather Rev. 2015, 143, 153–164. [CrossRef]

11. Ancell, B.C.; Kashawlic, E.; Schroeder, J.L. Evaluation of wind forecasts and observation impacts from
variational and ensemble data assimilation for wind energy applications. Mon. Weather Rev. 2015, 143,
3230–3245. [CrossRef]

12. Ulazia, A.; Saenz, J.; Ibarra-Berastegui, G. Sensitivity to the use of 3DVAR data assimilation in a mesoscale
model for estimating offshore wind energy potential. A case study of the Iberian northern coastline.
Appl. Energy 2016, 180, 617–627. [CrossRef]

13. Che, Y.; Xiao, F. An integrated wind-forecast system based on the weather research and forecasting model,
Kalman filter, and data assimilation with nacelle-wind observation. J. Renew. Sustain. Energy 2016, 8, 53308.
[CrossRef]

14. Ulazia, A.; Sáenz, J.; Ibarra-Berastegui, G.; González-Rojí, S.J.; Carreno-Madinabeitia, S. Using 3DVAR data
assimilation to measure offshore wind energy potential at different turbine heights in the West Mediterranean.
Appl. Energy 2017, 208, 1232–1245. [CrossRef]

15. Cheng, W.Y.; Liu, Y.; Bourgeois, A.J.; Wu, Y.; Haupt, S.E. Short-term wind forecast of a data
assimilation/weather forecasting system with wind turbine anemometer measurement assimilation. Renew.
Energy 2017, 107, 340–351. [CrossRef]

16. China Meteorological Administration Wind Energy Solar Energy Resource Center. Detailed investigation
and assessment of wind energy resources in China. Wind Energy 2011, 8, 26–30. (In Chinese)

17. Morrison, H.; Thompson, G.; Tatarskii, V. Impact of cloud microphysics on the development of trailing
stratiform precipitation in a simulated squall line: Comparison of one-and two-moment schemes.
Mon. Weather Rev. 2009, 137, 991–1007. [CrossRef]

18. Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by
long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmos.
2008, 113. [CrossRef]

19. Ek, M.B.; Mitchell, K.E.; Lin, Y.; Rogers, E.; Grunmann, P.; Koren, V.; Gayno, G.; Tarpley, J.D. Implementation
of Noah land surface model advances in the National Centers for Environmental Prediction operational
mesoscale Eta model. J. Geophys. Res. Atmos. 2003, 108, GCP12-1. [CrossRef]

405



Remote Sens. 2020, 12, 973

20. Kain, J.S. The Kain—Fritsch convective parameterization: An update. J. Appl. Meteorol. 2004, 43, 170–181.
[CrossRef]

21. Hong, S.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment
processes. Mon. Weather Rev. 2006, 134, 2318–2341. [CrossRef]

22. National Centers for Environmental Prediction; National Weather Service; NOAA; U.S Department
of Commerce. NCEP FNL Operational Model Global Tropospheric Analyses, Continuing from July
1999. Research Data Archive at the National Center for Atmospheric Research, Computational and
Information Systems Laboratory. 2000. Available online: https://rda.ucar.edu/datasets/ds083.2/ (accessed on
11 December 2018).

23. Parrish, D.F.; Derber, J.C. The National Meteorological Center’s spectral statistical-interpolation analysis
system. Mon. Weather Rev. 1992, 120, 1747–1763. [CrossRef]

24. National Centers for Environmental Prediction; National Weather Service; NOAA; U.S Department of
Commerce. NCEP GDAS Satellite Data 2004-Continuing. Research Data Archive at the National Center for
Atmospheric Research, Computational and Information Systems Laboratory, Boulder, Colo. (Updated daily).
2009. Available online: https://rda.ucar.edu/datasets/ds735.0/ (accessed on 11 December 2018).

25. National Centers for Environmental Prediction; National Weather Service; NOAA; U.S Department of
Commerce. Updated Daily. NCEP ADP Global Surface Observational Weather Data, October 1999-continuing.
Research Data Archive at the National Center for Atmospheric Research, Computational and Information
Systems Laboratory. 2004. Available online: https://data.ucar.edu/dataset/ncep-adp-global-surface-
observational-weather-data-october-1999-continuing (accessed on 2 March 2020).

26. National Centers for Environmental Prediction; National Weather Service; NOAA; U.S Department
of Commerce. Updated Daily. NCEP ADP Global Upper Air Observational Weather Data, October
1999-Continuing. Research Data Archive at the National Center for Atmospheric Research, Computational
and Information Systems Laboratory. 2004. Available online: https://data.ucar.edu/dataset/ncep-adp-global-
upper-air-observational-weather-data-october-1999-continuing (accessed on 2 March 2020).

27. Carvalho, D.; Rocha, A.; Gómez-Gesteira, M.; Santos, C. A sensitivity study of the WRF model in wind
simulation for an area of high wind energy. Environ. Model. Softw. 2012, 33, 23–34. [CrossRef]

28. Willmott, C.J. On the validation of models. Phys. Geogr. 1981, 2, 184–194. [CrossRef]
29. Willmott, C.J. On the evaluation of model performance in physical geography. In Spatial Statistics and Models;

Gaile, G.L., Willmott, C.J., Eds.; Springer: Dordrecht, The Netherlands, 1984; pp. 443–460.
30. Willmott, C.J.; Ackleson, S.G.; Davis, R.E.; Feddema, J.J.; Klink, K.M.; Legates, D.R.; O’Donnell, J.; Rowe, C.M.

Statistics for the evaluation and comparison of models. J. Geophys. Res. Ocean. 1985, 90, 8995–9005. [CrossRef]
31. Legates, D.R.; McCabe, G.J., Jr. Evaluating the use of “goodness-of-fit” measures in hydrologic and

hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [CrossRef]
32. Lun, I.Y.F.; Lam, J.C. A study of Weibull parameters using long-term wind observations. Renew. Energy 2000,

20, 145–153. [CrossRef]
33. Stensrud, D.J.; Skindlov, J.A. Gridpoint predictions of high temperature from a mesoscale model.

Weather Forecast. 1996, 11, 103–110. [CrossRef]
34. Anthes, R.A.; Warner, T.T. Development of hydrodynamic models suitable for air pollution and other

mesometerological studies. Mon. Weather Rev. 1978, 106, 1045–1078. [CrossRef]
35. Carvalho, D.; Rocha, A.; Gómez-Gesteira, M. Ocean surface wind simulation forced by different reanalyses:

Comparison with observed data along the Iberian Peninsula coast. Ocean Model. 2012, 56, 31–42. [CrossRef]
36. Carvalho, D.; Rocha, A.; Santos, C.S.; Pereira, R. Wind resource modelling in complex terrain using different

mesoscale–microscale coupling techniques. Appl. Energy 2013, 108, 493–504. [CrossRef]
37. Carvalho, D.; Rocha, A.; Gómez-Gesteira, M.; Silva Santos, C. WRF wind simulation and wind energy

production estimates forced by different reanalyses: Comparison with observed data for Portugal. Appl. Energy
2014, 117, 116–126. [CrossRef]

38. Carvalho, D.; Rocha, A.; Gómez-Gesteira, M.; Silva Santos, C. Offshore wind energy resource simulation
forced by different reanalyses: Comparison with observed data in the Iberian Peninsula. Appl. Energy 2014,
134, 57–64. [CrossRef]

39. Mattar, C.; Borvar, D. Offshore wind power simulation by using WRF in the central coast of Chile.
Renew. Energy 2016, 94, 22–31. [CrossRef]

406



Remote Sens. 2020, 12, 973

40. Giannaros, T.M.; Melas, D.; Ziomas, I. Performance evaluation of the Weather Research and Forecasting
(WRF) model for assessing wind resource in Greece. Renew. Energy 2017, 102, 190–198. [CrossRef]

41. Salvação, N.; Soares, C.G. Wind resource assessment offshore the Atlantic Iberian coast with the WRF model.
Energy 2018, 145, 276–287. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

407





remote sensing  

Article

Parameter Optimization for Uncertainty Reduction
and Simulation Improvement of
Hydrological Modeling

Jinyu Hui 1, Yiping Wu 1,* , Fubo Zhao 1 , Xiaohui Lei 2, Pengcheng Sun 1,
Shailesh Kumar Singh 3 , Weihong Liao 2, Linjing Qiu 1 and Jiguang Li 4

1 Department of Earth and Environmental Science, School of Human Settlements and Civil Engineering,
Xi’an Jiaotong University, Xi’an 710049, China; huijinyu@stu.xjtu.edu.cn (J.H.); zfubo789@xjtu.edu.cn (F.Z.);
sunpech@stu.xjtu.edu.cn (P.S.); qiulinjing@mail.xjtu.edu.cn (L.Q.)

2 China Institute of Water Resources and Hydropower Research, Beijing 100038, China; lxh@iwhr.com (X.L.);
liaowh@iwhr.com (W.L.)

3 National Institute of Water and Atmospheric Research, Christchurch 8144, New Zealand;
sk.singh@niwa.co.nz

4 Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University,
Qinzhou 535011, China; lijiguangljg@163.com

* Correspondence: rocky.ypwu@gmail.com or yipingwu@xjtu.edu.cn

Received: 9 November 2020; Accepted: 6 December 2020; Published: 11 December 2020
����������
�������

Abstract: Hydrological modeling has experienced rapid development and played a significant role
in water resource management in recent decades. However, modeling uncertainties, which are
propagated throughout model runs, may affect the credibility of simulation results and mislead
management decisions. Therefore, analyzing and reducing uncertainty is of significant importance
in providing greater confidence in hydrological simulations. To reduce and quantify parameter
uncertainty, in this study, we attempted to introduce additional remotely sensed data (such as
evapotranspiration (ET)) into a common parameter estimation procedure that uses observed
streamflow only. We undertook a case study of an application of the Soil Water Assessment Tool in
the Guijiang River Basin (GRB) in China. We also compared the effects of different combinations
of parameter estimation algorithms (e.g., Sequential Uncertainty Fitting version 2, particle swarm
optimization) on reduction in parameter uncertainty and improvement in modeling precision
improvement. The results indicated that combining Sequential Uncertainty Fitting version 2 (SUFI-2)
and particle swarm optimization (PSO) can substantially reduce the modeling uncertainty (reduction in
the R-factor from 0.9 to 0.1) in terms of the convergence of parameter ranges and the aggregation of
parameters, in addition to iterative optimization. Furthermore, the combined approaches ensured the
rationality of the parameters’ physical meanings and reduced the complexity of the model calibration
procedure. We also found the simulation accuracy of ET improved substantially after adding remotely
sensed ET data. The parameter ranges and optimal parameter sets obtained by multi-objective
calibration (using streamflow plus ET) were more reasonable and the Nash–Sutcliffe coefficient (NSE)
improved more rapidly using multiple objectives, indicating a more efficient parameter optimization
procedure. Overall, the selected combined approach with multiple objectives can help reduce
modeling uncertainty and attain a reliable hydrological simulation. The presented procedure can be
applied to any hydrological model.

Keywords: combined approach; multi-objective optimization; modeling uncertainty; model constraint;
SWAT
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1. Introduction

Improving the reliability of hydrological modeling simulation by reducing modeling uncertainty
to support water resource planning and management is an ongoing goal for the hydrological
community [1–3]. Due to the development of distributed hydrological models, hydrological research
has progressed significantly. However, the equifinality resulting from different parameter sets indicates
that there uncertainties remain in the modeling processes [4,5]. Such uncertainty may affect simulation
accuracy and even result in misleading assessments, compromising water resource management [6,7].
Controlling the range of parameters and adding additional constraints can help reduce such modeling
uncertainty [8–11]. Therefore, improving the accuracy and credibility of hydrological modeling by
constraining the parameters is of high potential interest in the hydrological community [12,13].

The source of uncertainty in hydrological models can be generally classified into three categories:
input and calibration data uncertainty (e.g., climate, underlying surface, and streamflow data),
structural uncertainty (e.g., process descriptions and equations), and parameter uncertainty [14–17].
Of these, parameter uncertainties are common but can be easily controlled to improve model
performance and credibility, which has been a major focus in the modeling uncertainty field [10,18–20].
Several approaches were also developed for parameter optimization and uncertainty analysis, of which
generalized likelihood uncertainty estimation (GLUE) [21], Sequential Uncertainty Fitting version
2 (SUFI-2) [22], and particle swarm optimization (PSO) [23] are the most popular. GLUE is easy
to use in model calibration but results in greater uncertainty [24,25]. The SUFI-2 method can more
efficiently provide satisfactory simulations, but requires additional iterations and manual adjustment
of parameter ranges after each iteration [18,26]. For example, Qiao [9] found the uncertainty indicator
(i.e., R-factor) decreased dramatically using the four-stage SUFI-2 method to narrow the range of
parameters. PSO can automatically process the parameter optimization and achieve rapid convergence
of parameters [25]. These studies are valuable in the understanding of modeling uncertainties and
associated analysis methods.

In most cases, it is difficult to obtain parameter values directly from field measurements and
thus parameter optimization with a target hydrological variable may be needed [11,27,28]. Generally,
streamflow observations are used for model calibration because they are readily available and linked
to various hydrological processes [3,4]. Model calibration with streamflow only may result in
acceptable streamflow simulation but incorrect representation of other processes, such as soil moisture,
evapotranspiration (ET), and groundwater recharge. Previous studies found that multi-objective
calibration is an effective means of improving simulations [20,29–31]. Compared to calibration with a
single streamflow gaging station, using multiple streamflow gaging stations can help reduce uncertainty
and improve simulation accuracy [32,33]. Zhang [34] calibrated Soil and Water Assessment Tool
(SWAT) with streamflow data from three gages using four different optimization methods (PSO, GLUE,
SUFI-2, and parameter solution). Chien [35] calibrated SWAT using SUFI-2 with multi-site streamflow
observations and found that different regions have unique buffering capabilities in response to climate
change. Additionally, for better simulation of the hydrological processes, other variables, such as ET,
soil moisture, and groundwater, can be added for model calibration [4,20,29,34]. Rajib [3] found the
simulation performance improved noticeably when calibrating with additional Moderate-resolution
Imaging Spectroradiometer (MODIS) ET data. Qiao [9] found that the SWAT model performance
can be significantly improved by introducing both groundwater storage and streamflow into the
calibration procedure. Researchers also considered that the predictability of hydrological models can
be significantly improved when jointly calibrating with streamflow and satellite-based ET data [3,27].
However, other reports have also indicated that calibration involving multiple variables may lead to
worse model performance in streamflow simulation compared to streamflow-only calibration [20].
Clearly, many studies have verified that multi-objective (i.e., using more than one observed variable)
calibration can be an efficient means to improve the performance of the model, particularly in the
examination of multiple processes rather than streamflow only. However, few studies have examined
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the impacts of multi-objective calibration on modeling uncertainty, which is the motivation of the
current study.

The overall goal of this study was to provide a feasible and efficient means for parameter
optimization, and reducing and quantifying uncertainty. Thus, we applied two common optimization
and uncertainty analysis approaches (SUFI-2 and PSO) and their combinations for model inversion.
Each approach and combination was applied with single-objective and multi-objective calibrations to
analyze the effect of different model constraints on modeling accuracy and uncertainty reduction.

2. Materials and Methods

2.1. Study Area

The Guijiang River is a tributary of the Xijiang River in the Pearl River Basin, located in southern
China, and originates in the north of Maoer Mountain and flows southeast through Guangxi province
with a length of 426 km. The drainage area of the Guijiang River Basin (GRB) (23◦–25◦ N, 110◦–111◦ E,
18,606 km2, Figure 1) is 19,288 km2. The GRB lies in the subtropical monsoon climate zone, with an
uneven characteristic distribution of precipitation concentrated mostly from April to June [36,37].
The annual precipitation ranges from 1600 to 1800 mm, and the annual mean temperature (T)
ranges from 18 ◦C in the upstream to 21 ◦C in the downstream [37]. Topographically, the altitude
decreases from the highest in the northwest to the lowest in the southeast. Land uses mainly include
forest (61%), cropland (19%), shrubland (9%), grass (7%), urban (3%), and water (1%). The main
soil types are Acrisols (60%), Luvisols (14%), Anthrosols (10%), Alisols (8%), and Cambisols (6%),
with other soil types accounting for less than 2% (Figure 1).
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2.2. Model Description

The SWAT model was developed by the Agricultural Research Service of the United States
Department of Agriculture (USDA-ARS) to predict impacts of climate and land use/management
changes on water, sediment, and agricultural chemical yields [1,38–40]. This physically based
distributed model has been widely applied for the estimation of watershed issues under climate change
and human activities at watershed scales. The main outputs of SWAT are streamflow, ET, soil water,
groundwater, sediment load, and nitrogen and phosphorus loads [41–44]. More details can be found
in the SWAT input/output documentation [45]. SWAT is considered to be one of the best tested models
in the field of hydrological simulation and has been widely used globally. In particular, the model is
open-source and can facilitate users’ modifications to meet their specific needs. Therefore, SWAT was
selected and modified technically, in this study, to adapt it for ET calibration, using SWAT Calibration
and Uncertainty Programs (SWAT-CUP). SWAT-CUP is an integrated program for sensitivity analysis,
calibration, validation, and uncertainty analysis of SWAT models.

2.3. Model Input and Setup

The SWAT model requires inputs on weather and topography data. A digital elevation model
(DEM) was obtained from NASA’s Shuttle Radar Topography Mission (SRTM V3.0) with 3 arc second
(~90 m) resolution [46]. The land use (2015) and soil type maps with 1 km resolution were obtained from
the Ecological and Environmental Science Data Center for West China (http://westdc.westgis.ac.cn).
Daily meteorological data of five weather stations (1951–2016) were obtained from the National
Meteorological Information Center (http://data.cma.cn), including precipitation (P), maximum and
minimum air temperature, relative humidity (RH), wind speed (WS), and sunshine duration (SD).
The solar radiation (SR) was calculated based on SD and latitude [41]. The Geographic Information
System (GIS) interface, ArcSWAT (version 2012), was used to delineate the watershed, resulting in
86 sub-basins and 2141 HRUs (Hydrologic Response Units).

2.4. Model Calibration/Validation and Uncertainty Analysis

SWAT-CUP was employed in this study for model calibration and uncertainty quantification.
We used two hydrological variables, namely, streamflow from two stations (Zhaoping and Jingnan as
shown in Figure 1) and ET of the entire GRB for model calibration and validation. Monthly streamflow
data at these two gaging stations were obtained from the local hydrological department, and the
remotely sensed ET (MOIDS16A2 ET) was provided by NASA Land Processes Distributed Active
Archive Center (LP DAAC, https://modis.gsfc.nasa.gov/data/dataprod/mod16.php), covering the
period from 2000 to 2014.

In this study, the SWAT model was examined with streamflow and MODIS ET using a 13 year
(1998–2010) record for calibration and another 5 year (2011–2015) period for validation (Figure 2).
The influences of initial conditions were minimized using a 5 year (1993–1997) warm-up period [40].
Based on a review of literature related to SWAT calibration and our own experience [20,43,46–51],
we selected seven important parameters for optimization (this step can be implemented using
parameter sensitivity analysis for a customized project), and their adjustment modes and initial ranges
are defined in Table 1. These seven parameters can affect the hydrologic responses of surface runoff

subsurface lateral flow and channel routing procedures in SWAT simulations. As stated in Table 1,
CN2, SOL_AWC, and SOL_K were adjusted using a relative adjustment approach (i.e., multiplying the
initial value by a coefficient (1+ a given value)) to maintain their spatial variation, with adjustment
ranges between −20% and 20% [20,33,52]. ALPHA_BF, CH_K2, ESCO, and SURLAG were replaced
by a new given value, with adjustment ranges based on prior knowledge of the GRB and a review
of existing publications [15,30,53]. Before the scenario design, we compared the results of 1000, 2000,
3000, and 5000 model runs and found that the results showed no significant difference after 2000 runs.
Hence, we used SUFI-2, PSO, and combined SUFI-2–PSO approaches for uncertainty quantification
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and reduction, with a total of 2000 model runs for each approach. Below is a brief introduction to
these approaches.Remote Sens. 2020, 12, x FOR PEER REVIEW 5 of 26 

 

 
Figure 2. Availability of the data (streamflow and evapotranspiration (ET)) used in this study. 

Table 1. Calibrated parameters of the SWAT model for the Guijiang River Basin. 

Parameter names Description Initial Range 
r_CN2.mgt SCS curve number at moisture condition II [−0.2, 0.2] 

v_ALPHA_BF.gw Base flow recession constant [0.001, 0.05] 
v_CH_K2.rte Effective hydraulic conductivity in main channel alluvium [0, 150] 

r_SOL_AWC.sol Available water capacity of the soil layer [−0.2, 0.2] 
r_SOL_K.sol Saturated hydraulic conductivity [−0.2, 0.2] 
v_ESCO.hru Soil evaporation compensation factor [0, 1] 

v_SURLAG.bsn Surface runoff lag time [0.1, 4] 
Note: “v_” means the existing parameter value is to be replaced by a given value, “r_” means an 
existing parameter value is multiplied by (1+ a given value). 

2.4.1. SUFI-2 

SUFI-2 is a Bayesian-based optimized algorithm [54] that quantifies the uncertainties using 
sequential and fitting processes. In the parameter identification process, a sensitivity matrix and 
Hessian matrix are calculated to update and narrow the parameter ranges. A short step-by-step 
description of SUFI-2 is as follows: 

Step 1: Define an objective function. We selected the commonly used Nash–Sutcliffe coefficient 
(NSE) [55] (Equation (A1)) as the objective function in this study. R2 (Equation (A2)) and percentage 
of bias (PBIAS) (Equation (A3)) were also used for evaluating model performance. 

Step 2: Set the initial ranges for the selected parameters which are to be calibrated (Table 1). 
Several sets of parameters are generated by Latin hypercube sampling (LHS) that are used for model 
simulations. Then, the NSE for each variable is calculated to assess the model performance. 

Step 3: Evaluate each sampling round by a series of measures [22]. The sensitivity matrix J, the 
Hessian matrix H, and the parameter covariance matrix C are calculated as: 𝐽 = ∆𝑔∆𝑏  𝑖 = 1, … , 𝐶ଶ, 𝑗 = 1, … , 𝑚 (1) 𝐻 = 𝐽்𝐽 (2) 𝐶 = 𝑆ଶ(𝐽்𝐽)ିଵ (3) 
where 𝑏  is the parameter vector and 𝑔  is the objective function, 𝐶ଶ  is the number of all 
combinations of the two simulations, m is the number of parameters,  𝑆ଶ  is the variance of the 
objective function values, i.e., NSEs, in this study. 

Figure 2. Availability of the data (streamflow and evapotranspiration (ET)) used in this study.

Table 1. Calibrated parameters of the SWAT model for the Guijiang River Basin.

Parameter names Description Initial Range

r_CN2.mgt SCS curve number at moisture condition II [−0.2, 0.2]
v_ALPHA_BF.gw Base flow recession constant [0.001, 0.05]

v_CH_K2.rte Effective hydraulic conductivity in main channel alluvium [0, 150]
r_SOL_AWC.sol Available water capacity of the soil layer [−0.2, 0.2]

r_SOL_K.sol Saturated hydraulic conductivity [−0.2, 0.2]
v_ESCO.hru Soil evaporation compensation factor [0, 1]

v_SURLAG.bsn Surface runoff lag time [0.1, 4]

Note: “v_” means the existing parameter value is to be replaced by a given value, “r_” means an existing parameter
value is multiplied by (1+ a given value).

2.4.1. SUFI-2

SUFI-2 is a Bayesian-based optimized algorithm [54] that quantifies the uncertainties using
sequential and fitting processes. In the parameter identification process, a sensitivity matrix and
Hessian matrix are calculated to update and narrow the parameter ranges. A short step-by-step
description of SUFI-2 is as follows:

Step 1: Define an objective function. We selected the commonly used Nash–Sutcliffe coefficient
(NSE) [55] (Equation (A1) in Appendix A.1) as the objective function in this study. R2 (Equation (A2)
in Appendix A.2) and percentage of bias (PBIAS) (Equation (A3) in Appendix A.3) were also used for
evaluating model performance.

Step 2: Set the initial ranges for the selected parameters which are to be calibrated (Table 1).
Several sets of parameters are generated by Latin hypercube sampling (LHS) that are used for model
simulations. Then, the NSE for each variable is calculated to assess the model performance.

Step 3: Evaluate each sampling round by a series of measures [22]. The sensitivity matrix J,
the Hessian matrix H, and the parameter covariance matrix C are calculated as:

Ji j =
∆gi

∆b j
i = 1, . . . , Cn

2 , j = 1, . . . , m (1)

413



Remote Sens. 2020, 12, 4069

H = JT J (2)

C = S2
g

(
JT J

)−1
(3)

where b is the parameter vector and g is the objective function, Cn
2 is the number of all combinations of

the two simulations, m is the number of parameters, S2
g is the variance of the objective function values,

i.e., NSEs, in this study.
Step 4: Quantify the uncertainty. The 95% prediction uncertainty (95PPU) [22], R-factor,

and P-factor are used to illustrate the fitting degree and uncertainty.
The average width of 95PPU is calculated as:

dQ =
1
K

K∑

l=1

(QU −QL) (4)

As in Equation (1), K is the number of observations. The subscripts “U” and “L” mean upper
(97.5th) and lower (2.5th) boundary of 95PPU, respectively.

R-factor is the relative width of 95PPU and P-factor is the percentage of observations bracketed by
the 95PPU [9,56]. These are calculated by the following equations:

R− f actor =
dQ

σQ
(5)

P− f actor =
kc

K
(6)

where σQ is the standard deviation of variable Q and kc is the number of values covered by 95PPU.
Step 5: Update the parameter ranges for further iteration.

2.4.2. PSO

PSO is a kind of self-adaptive random algorithm based on a group hunting strategy [57,58].
The particles are initially randomized in the given ranges followed by an iterative search for optima.
Two optima, pbest and gbest, are defined for the update of particles. Pbest is the best solution for a
particle, and gbest is the global optimum obtained by any particle in the population [59].

The PSO framework in SWAT-CUP is as follows:
Step 1: Initialize all particles. In SWAT-CUP, users define the number of simulations (particles)

S and iterations I. Then, S sets of parameter values are generated randomly.
Step 2: Calculate the fitness value NSE, which is also the objective function in SUFI-2, obtain pbest

and gbest, and compare them with previous values. If the present value is better, then reset the
best value.

Step 3: Calculate the velocity and position of each particle for the next iteration.
Step 4: Implement Step 2 using the updated particles for further iterations until the number of

iterations reaches I.

2.4.3. SUFI-2 and PSO Combination and Scenario Setting

SUFI-2 enables precise position of parameter ranges that are usually narrower than the last
iteration. However, the posterior parameter ranges need to be checked and manually adjusted by
users for the next iteration. SWAT-CUP can automatically provide a set of parameter ranges after one
iteration. Users can use the recommended ranges or adjust them to ensure their physical meaning for
the next iteration. PSO is an effective automatic global optimization method in which the optimization
efficiency decreases with the increase in simulation times. This means PSO can achieve a satisfactory
simulation with less calibration time. To improve optimization efficiency and decrease modeling
uncertainty, we combined SUFI-2 and PSO in different arrangements as listed in Table 2. The primary
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principle of the combination approach is to obtain posterior parameter ranges from SUFI-2, followed by
optimizing parameters using PSO. Approaches No.1, No.2, and No.6 (using SUFI-2 or PSO only)
were set as the reference to compare the effects of different combined approaches. Approaches No.3,
No.4, and No.5 were the different combinations of SUFI-2 and PSO algorithms.

Table 2. Scenario setting of different approaches.

Approach Number Approach Scenario Code Description

No.1 SUFI-2 2000
1-R Run SUFI-2 2000 times, calibrate with

streamflow only

1-RE Run SUFI-2 2000 times, calibrate with
streamflow and ET

No.2 PSO 2000
2-R Run PSO 2000 times, calibrate with

streamflow only

2-RE Run PSO 2000 times, calibrate with
streamflow and ET

No.3 SUFI-2 1000+PSO 1000
3-R Run SUFI-2 1000 times, then PSO 1000

times, calibrate with streamflow only

3-RE Run SUFI-2 1000 times, then PSO 1000
times, calibrate with streamflow and ET

No.4 SUFI-2 500*2+PSO 1000

4-R
Run SUFI-2 500 times for two rounds,
then PSO 1000 times, calibrate with

streamflow only

4-RE
Run SUFI-2 500 times for two rounds,
then PSO 1000 times, calibrate with

streamflow and ET

No.5 SUFI-2 500*3+PSO 500

5-R
Run SUFI-2 500 times for three rounds,

then PSO 500 times, calibrate with
streamflow only

5-RE
Run SUFI-2 500 times for three rounds,

then PSO 500 times, calibrate with
streamflow and ET

No.6 SUFI-2 500*4
6-R Run SUFI-2 500 times for four rounds,

calibrate with streamflow only

6-RE Run SUFI-2 500 times for four rounds,
calibrate with streamflow and ET

Note: “R” means calibration using streamflow data only, “RE’ means calibration using streamflow and ET
simultaneously, and the number of “*” represents the number of manual operations.

Each approach mentioned above was used for streamflow calibration only (R) and streamflow
plus ET calibration (RE), leading to twelve scenarios in total (scenario codes are listed in Table 2).

2.4.4. Evaluation Criteria

i. For sensitivity analysis, the parameter with the greatest absolute value of t-stat and smaller
p-value was regarded to be more sensitive. The t-stat measured the parameter sensitivity ranks,
and a greater absolute value indicated a more sensitive parameter. The p-value represented the
significance of sensitivity; p ≤ 0.05 means the parameters were significantly sensitive to the
model simulations, and there was no statistical significance when the p-value > 0.05.

ii. We used “*” to represent the operational complexity, and each “*” means manually adjusting
parameter ranges once (Table 4).

iii. The values of parameters should be in reasonable ranges to ensure the reasonability of
a parameter.

iv. NSE was set as the objective function to quantify the goodness of fit. Moreover, R2 and PBIAS
were used to describe the parallelism and deviation between simulations and observations.
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v. We set 0.8 as the threshold to determine behavioral (that is NSE ≥ 0.8) and non-behavioral
(NSE < 0.8) simulations [2,60]. A higher proportion of behavioral simulations (PBS) meant that
the parameter ranges were more reasonable.

vi. The width of 95PPU indicated modeling uncertainty, and a narrower band means
less uncertainty.

vii. R-factor is the relative width of 95PPU, and P-factor is the percentage of observation data points
bracketed by the 95PPU. The ideal situation is that R-factor is close to 0, and P-factor is close to
1 [52], indicating the lowest uncertainty and highest accuracy.

3. Results

3.1. Parameter Sensitivity

The sensitivity analysis results of seven selected parameters under different scenarios (see scenario
code in Table 2) are listed in Table 3, and the ranking (1 to 7) is based on the absolute value of the t-stat
for each approach. CH_K2 was the most sensitive parameter in this study with the largest t-stat for
most of the scenarios. SOL_AWC ranked last among the seven parameters in this sensitivity analysis.
In the initial iteration, all parameters showed relatively higher sensitivity index. As the iteration
increased, however, the parameter range narrowed and the sensitivity index declined. This showed
that the parameter sensitivity was dependent on the allowable range of a parameter, and could be
lower when it approached the optimal value.

Table 3. Ranks of parameter sensitivity in different approaches.

1-R 1-RE 2-R 2-RE

Rank t-Stat p-Value Rank t-Stat p-Value Rank t-Stat p-Value Rank t-Stat p-Value

CH_K2 1 −166.22 0.00 1 −93.63 0.00 1 −26.17 0.00 1 −38.32 0.00
CN2 2 61.50 0.00 2 26.27 0.00 2 16.43 0.00 2 17.93 0.00

ALPHA_BF 3 18.33 0.00 4 10.73 0.00 3 11.09 0.00 3 6.76 0.00
SOL_K 4 −3.24 0.00 5 −1.76 0.08 7 −0.93 0.35 5 −2.72 0.01
ESCO 5 2.89 0.00 3 −11.11 0.00 4 7.46 0.00 4 5.80 0.00

SURLAG 6 −1.29 0.20 6 −0.60 0.55 5 3.10 0.00 7 −0.65 0.52
SOL_AWC 7 −0.54 0.59 7 0.26 0.79 6 −1.09 0.28 6 −1.86 0.06

3-R 3-RE 4-R 4-RE

Rank t-Stat p-Value Rank t-Stat p-Value Rank t-Stat p-Value Rank t-Stat p-Value

CH_K2 1 −20.48 0.00 1 −23.74 0.00 2 −8.78 0.00 2 −22.35 0.00
CN2 3 10.32 0.00 3 9.05 0.00 4 3.27 0.00 3 11.74 0.00

ALPHA_BF 2 13.77 0.00 2 16.50 0.00 3 4.90 0.00 1 24.54 0.00
SOL_K 7 0.71 0.48 4 −3.78 0.00 7 0.81 0.42 7 0.49 0.62
ESCO 4 10.31 0.00 5 3.00 0.00 1 11.01 0.00 4 4.65 0.00

SURLAG 6 −1.61 0.11 7 −1.03 0.30 5 2.81 0.00 5 −1.62 0.11
SOL_AWC 5 1.99 0.05 6 −1.03 0.30 6 0.83 0.40 6 1.42 0.16

5-R 5-RE 6-R 6-RE

Rank t-Stat p-Value Rank t-Stat p-Value Rank t-Stat p-Value Rank t-Stat p-Value

CH_K2 7 −1.21 0.23 3 −3.90 0.00 1 −16.11 0.00 2 −9.79 0.00
CN2 3 −2.47 0.01 5 1.96 0.05 4 2.79 0.01 6 0.81 0.42

ALPHA_BF 2 4.72 0.00 1 17.81 0.00 2 5.70 0.00 3 4.32 0.00
SOL_K 5 2.09 0.04 4 −2.21 0.03 5 −1.51 0.13 4 −1.49 0.14
ESCO 1 10.14 0.00 2 −8.67 0.00 3 −2.87 0.00 1 −21.68 0.00

SURLAG 4 −2.26 0.02 6 −1.88 0.06 6 −0.90 0.37 7 −0.79 0.43
SOL_AWC 6 −1.69 0.09 7 −0.08 0.93 7 0.81 0.42 5 1.43 0.15

3.2. Model Performance

Model performance in simulating streamflow and ET was evaluated in this study. Table 4 shows
the model complexity of the calibration procedure, NSE, and uncertainty indexes of the six approaches
involved in our study. The impacts of different approaches on model efficiency were further evaluated
in terms of implementation complexity. There was an upward trend of calibration complexity
from No.1 to No.6 due to the manual parameter range adjustments after each SUFI-2 iteration.
NSE of single-objective (streamflow only) calibration (NSE = 0.86) was larger than that of bi-objective
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calibration (streamflow plus ET, NSE = 0.82), indicating the SWAT model showed different abilities for
the simulation of streamflow and ET.

Table 4. Complexity, model performance, and uncertainty of different scenarios.

Scenario Code Complexity NSE (Optimal) R-Factor P-Factor

1-R * 0.854 0.925 0.840
1-RE * 0.826 0.883 0.760
2-R * 0.857 0.335 0.705

2-RE * 0.828 0.300 0.633
3-R ** 0.862 0.270 0.630

3-RE ** 0.830 0.233 0.573
4-R *** 0.860 0.185 0.535

4-RE *** 0.829 0.177 0.503
5-R **** 0.859 0.085 0.375

5-RE **** 0.829 0.100 0.407
6-R **** 0.857 0.160 0.480

6-RE **** 0.827 0.197 0.517

Note: each “*” indicates manually adjusting the parameter ranges once.

Figures 3–5 graphically compare the simulated monthly streamflow and basin-average ET against
those observed from gaging stations and remote sensing technology during the 13 year (1998–2010)
calibration and 5 year (2011–2015) validation periods.

3.2.1. Streamflow

Figures 3 and 4 illustrate the optimal simulation of monthly streamflow at stations at Zhaoping
(July 2007–October 2011) and Jingnan (January 1998–October 2011, excluding December 2013–June 2007
due to data non-availability). Throughout the simulation period, the average monthly streamflows
at Zhaoping and Jingnan stations were 367.5 and 485.2 m3/s, respectively. Overall, the streamflow at
Zhaoping station (375.4–397.4 m3/s) was overestimated by 2% to 8%, whereas the streamflow at Jingnan
station (423.7–449.8 m3/s) was underestimated by 7% to 13%. Though values in winter (December to
February) at both stations showed better consistency with simulations than peaks. A large bias mostly
appeared in peak flows, among which the most dramatic overestimation and underestimation were
found in 2011 (about 500% overestimation) and 2013 (about 40% underestimation). Compared to
the calibrations, NSE and R2 decreased significantly in validations (see Figures 3 and 4) due to the
substantial overestimation of peak flow (in 2011) mentioned above.

Different approaches (i.e., No.1 to No.6 as listed in Table 2) had little impact on simulation
accuracy, with very close NSE values under the same calibration category (single-objective or bi-objective
calibration) (Figures 3 and 4). Similarly, additional constraints had a slight impact on NSE. At Zhaoping,
for example, the difference in NSE and R2 was approximately 0.01 to 0.03 between single-objective and
bio-objective calibrations, and was less than 0.01 at Jingnan station.

3.2.2. ET

In this study, monthly MODIS ET data was corrected using a simple water balance model
(i.e., ET = Precipitation — Water yield — 4Soil water storage [61]) before being used as an extra
constraint for model calibration. 4Soil was set as zero because the changes in soil storage are of smaller
magnitude as those of other components, and were thus considered negligible over a multi-annual
period. We found there was a substantial bias—20% higher during August to December—compared to
the amount derived from the long-term water balance, and thus we corrected ET data accordingly
before using it for model calibration. Similar to the results for streamflow, there was little difference in
the performance of ET simulation between different approaches (Figure 5). However, the additional
constraints improved the modeling accuracy (an increase of 0.1 in NSE). NSE of single-objective
(streamflow only) calibration was about 0.7 (the left column of Figure 5) and 0.8 for bi-objective
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(streamflow plus ET) calibration (the right column of Figure 5). In addition, there was no significant
bias during the simulation with all PBIAS values being less than 3% for single-objective calibration
and less than 8% for bi-objective calibration. The overestimation mostly occurred in June and July
for both single-objective and bi-objective calibration, whereas the differences for the latter were
slightly little lower than those of the former (i.e., single-objective calibration), indicating the additional
constraints of ET decreased the bias of ET’s peak value simulation and improved the simulation
accuracy in terms of ET without compromising streamflow simulation. Overall, model performance
in ET simulation (NSE < 0.8) was not as good as streamflow (NSE ≈ 0.85), but it is still satisfactory,
particularly considering the uncertainty of remotely sensed ET [62].

In addition, we analyzed the tendency of NSE and compared the proportion of behavioral
simulations (PBS) with the increase in simulation times (see Figure 6). With the exception of the random
distribution from 0.15 to 0.85 of No.1, NSE of other approaches (as listed in Table 4) exhibited an
obvious upward tendency because of the iteration and optimization throughout the simulations,
and finally stood at about 85%. In terms of PBS, we mark it at each step of different approaches on the
bottom of each plot with alternate background colors. Overall, PBS had a tendency similar to that
of NSE in all approaches. In approaches No.4 to No.6, PBS increased in each step, among which the
most significant increments occurred after the first two manual adjustments of the parameter ranges,
and the increase in the last step was relatively small in approaches No.5 and No.6. The PBS of R
(streamflow calibration only) decreased from 96.8% to 93.8% in the fourth step of approach No.5, and all
other PBS in approaches No.4 and No.5 reached 100%, suggesting 2000 model runs was enough for the
calibration. In addition, it is worth noting that the PBS of bi-objective calibration increased more rapidly
than that of single-objective calibration. Prior to the parameter optimization and range adjustment
(i.e., approach No.1 and the first step of approaches No.3 to No.6), PBS of R (about 16%) was about
twice that of RE (less than 8%), whereas the gap narrowed with the reduction of the parameter range,
and finally the latter became higher than the former. This indicated bi-objective calibration was more
efficient for accuracy improvement than single-objective calibration.

3.3. Modeling Uncertainty Analysis

Figures 3–5 provide a visual representation of the prediction uncertainty through the width
of 95PPU. The uncertainty band narrows from No.1 to No.6, indicating the combined approaches
had a positive influence on modeling uncertainty. In addition, from R-factor and P-factor listed
in Table 4, we found the uncertainty bands of No.1 were the widest (R-factor ≈ 0.9, P-factor ≈ 0.8)
among all approaches, followed by No.2, 3, 4, and 6, and the bands of No.5 were the narrowest
(R-factor ≈ 0.1, P-factor ≈ 0.4). This suggests approach No.5 (SUFI-2 500*3 + PSO 500) has the lowest
modeling uncertainty.

Scatter-box plots (Figure 7) show the distributions and tendencies of the seven parameters.
Clearly the parameter distributions were contingent on the running times. The parameter values using
approach No.1 were randomly distributed in the original ranges, while parameter values using No.2
to 6 were clustered with the running of the model. However, it is clear that the tendencies of CN2,
ESCO, and SURLAG were distinct between single-objective and bi-objective calibrations. Moreover,
parameters might be outside of the threshold set initially with the iterations.
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4. Discussion

4.1. Approaches for Model Calibration and Uncertainty Analysis

4.1.1. Effects on Simulations

We compared different combinations (the approaches listed in Table 2), which showed multifaceted
impacts, such as complexity of calibration procedure, performance, and uncertainty, on the modeling.
However, approaches with more SUFI-2 iterations were more complex to implement because of
the manual manipulation of the parameter range. In terms of NSE, all approaches performed well,
particularly during the calibration of streamflow at two sites. However, the different approaches had
little impact on NSE, for which the difference was less than 0.02 at the same gaging station. Similar results
were reported in previous studies [18,56]. In addition, Figure 6 shows NSE of scenarios 2–5-R (all used
PSO) were bi-modal at the end of the calibration cycle with values above and below NSE = 0.8. The PSO
method sets the particles randomly before the optimization begins, followed by iterations with pre-set
times. Thus, it is possible that some particles may result in relatively poor simulation even after several
rounds of iteration.

To evaluate the modeling uncertainty of different approaches, we present Figures 3–5 to show
the change in uncertainty, and also provide the quantitative evaluation using R- and P-factors in
Table 4. Approach No.1 used SUFI-2 with only 2000 model runs, and had the widest 95PPU due
to the random prior distribution of parameter sets generated by LHS [18,63], a stratified sampling
method. Approach No.2 showed relatively low uncertainty because PSO is an adaptive optimization
algorithm, in which particles aggregate gradually around the supposed optimum. Although manual
adjustment increased the complexity when combining SUFI-2 and PSO in approaches No.3 to 5,
it reduced the uncertainty because the ranges of parameters were narrower. Approach No.6 also
exhibited a substantial reduction of uncertainty because it iterated four times and reduced parameter
ranges (each time with 500 model runs).

4.1.2. Effects on Parameter Ranges

Parameter boundaries can be divided into two categories: empirical and compulsory boundaries.
The former was set according to previous experience, while the latter was considered to be the
maximum allowable range of a specific parameter in all cases. Thus, a parameter, which is beyond
the empirical boundary but still within the compulsory boundary, may be physically rational. In this
study, parameter may overflow (beyond the defined boundary) when using approaches No.2 to No.5
with the PSO algorithm (see Figure 7 and Table 5). This is because PSO is a statistical algorithm that
does not consider the physical meaning of the parameters [64], and the iteration of each step was
automatic without user’s manipulation. In particular, in scenario 2-RE (PSO 2000 with bi-objective),
SURLAG initially ranged from 0 to 4 (a compulsory boundary of zero), but a final value of −0.3
(the optimal value) was derived, which represents a typical parameter overflow using PSO. Therefore,
optimization without considering the rationality of parameter may lead to incorrect results.

In contrast to PSO, SUFI-2 can overcome the problem of boundary overflow because each iteration
allows users to change parameter ranges to ensure the physical suitability for the next iteration [52].
Nonetheless, parameter overflow can still occur. In approach No.6 (SUFI-2 500 × 4, see Figure 7),
for example, ALPHA_BF was set to be beyond the empirical upper boundary but within the compulsory
boundary in our manual adjustment to ensure better model performance. This indicates that updating
the parameter ranges can be flexible in the SUFI-2 algorithm.
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The above discussion, which focuses on effects of different approaches to simulation and parameter
ranges, suggests PSO was more efficient for parameter optimization and uncertainty reduction,
but SUFI-2 can ensure the rationality of parameter selection because it allows users to adjust and
control the parameter boundary. Therefore, this study provided a new method (a combined approach)
for efficient parameter optimization and uncertainty analysis, which can be valuable for other
study areas.

4.2. Single-Objective and Bi-Objective Model Calibration and Uncertainty Analysis

One parameter tended to be sensitive for some specific hydrological components, but showed
non-sensitivity for others [65]. Hence, introducing more objectives (hydrological components) to the
calibration can be used to consider the influences of more parameters that may not initially be sensitive,
and thus result in parameters that are more suitable [30,66].

In this study, we attempted to quantitatively analyze the consequences (e.g., parameter distribution)
of introducing an additional calibration objective (remotely-sensed ET). Simulation results showed
that some parameters (i.e., CN2, ESCO, and SURLAG) when using single-objective and bi-objective
calibration showed different trends with the iteration (see Figure 7). These parameters were all related
to water balance processes, including ESCO, which controls soil evaporative demand. There was a
substantial increase in ESCO when adding ET as an additional constraint (optimum value increased
from around 0.03 to 0.66). Clearly, the parameter value derived from the additional constraint of ET can
be more accurate or close to its true value, with NSE increasing from 0.7 to 0.78, but PBIAS increased
slightly using bi-objective calibration (see Figure 5). Moreover, CN2 controls the surface streamflow;
the decrease in CN2 (from 0.05 to 0.004) indicated the decrease in surface streamflow and increase in
infiltration potential [25]. The simulation results showed a decrease in surface streamflow (from 563.6
to 539.2 mm), and increases in subsurface lateral flow (from 102.1 to 116.8mm) and groundwater flow
(from 130.3 to 201.2 mm). However, because of the lack of observed soil moisture and groundwater
storage, such processes cannot be calibrated in this study, which could be a suitable subject for
future study.

As mentioned in the discussion of results in Section 3.2, the PBS growth rate of RE was much faster
than that of R via iteration. One explanation for this phenomenon is that the iteration can consider
more processes, leading to simultaneous optimization of more sensitive parameters and reducing the
amount of trial-and-error. This deserves further investigation.

Determining whether the value of a parameter can reflect real hydrological processes is a significant
challenge for researchers and practitioners to judge, particularly when a model is calibrated by a
single constraint (e.g., streamflow). Introducing more constraints (e.g., ET, soil water) into the model
calibration (i.e., multi-objective calibration) may compromise simulation performance of a specific
component (e.g., streamflow), but multiple variables can help constrain the model behavior and thus
improve its reliability and appropriateness. Therefore, we believe a reasonable representation and
simulation of hydrological processes is more significant than a so-called “accurate” simulation with a
high rating numeric value. Thus, we developed this study to investigate the effects of introducing
one more constraint (i.e., ET) on model performance and modeling uncertainty. Nevertheless,
we acknowledge that two variables can constrain a small portion of the complex hydrological
system, and the modeling uncertainties of other specific hydrological processes may still be high. It is
worth investigating the effects of involving more constraints in model calibration, and caution should
be used, particularly considering the limitations of the observations we adopted.

In addition, we acknowledge that there were also some limitations in this study: (i) NES was
the only objective function for parameter optimization, although it has been verified that different
optimal parameter sets may be obtained by different objective functions [19,67]. Investigation of the
potential effects of different objective functions on model calibration and uncertainty reduction can
be a suitable subject for future studies. (ii) The case study was implemented in the Guijiang River
Basin using SWAT, however, the combined approach recommended in this study deserves further
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evaluation in other regions and using other models in future. (iii) Significant bias and uncertainties in
ET simulation remained during high value periods, although the simulation accuracy of ET improved
by adding additional constraints. The over/underestimations that result from inaccurate observations
or unsuitable simulation could be an issue that deserves further investigation. (iv) The approach
we proposed in this study (i.e., combined optimization scheme and multi-objective calibration using
streamflow plus ET) could help improve modeling accuracy and reduce modeling uncertainty in the
simulation of the water cycle. The combined optimization scheme may be a good reference and help
in the calibration of similar models. However, using remotely sensed ET as an additional constraint
may not help in sediment and nutrient simulations considering the weak relationship between ET and
sediment/nutrient transport.

5. Conclusions

This study, for the first time, employed SUFI-2 and PSO in six different ways (i.e., single-
algorithm approaches and combined-algorithm approaches) for efficient parameter calibration,
using SWAT as an example. We also investigated the impacts of single-objective (streamflow only)
and bi-objective (streamflow plus remotely sensed ET) model calibration on uncertainty and simulation
accuracy. Our results showed that combined-algorithm approaches can well control the physical
rationality of a parameter, whereas manual involvement resulted in complex calibration procedures.
From the width of the 95PPU bands, we found that the combined-algorithm approaches can help reduce
uncertainty due to the reduction of parameter ranges and the aggregation of parameters. After several
rounds of reducing the parameter ranges, the effect of uncertainty was also reduced. Although little
difference in streamflow simulation accuracy exists between these two approaches, the latter approach
can substantially improve the simulation of ET, indicating that parameter ranges constrained by
an additional variable can help improve the accuracy of the whole hydrological cycle. In addition,
accuracy improvement was more efficient when there was an additional calibration objective.

In brief, the combined approaches identified in this study and the effect of an additional constraint
on model calibration and uncertainty reduction can be useful for the hydrological modeling community.
Nevertheless, considering the many processes involved in the hydrological cycle in the real world,
the effect of introducing additional variables (i.e., three or more objectives) on the improvement of
model performance and reduction of uncertainty deserves further investigation in future studies.
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Appendix A. Measurements for Model Performance Evaluation

Appendix A.1. NSE

The Nash–Sutcliffe coefficient (NSE) was chosen as the objective function in this study. A NSE
close to 1 indicated the model was of high accuracy.

NSE = 1−
∑K

1 (QO −QS)
2

∑K
1

(
QO −QO

)2 (A1)
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where Q is a hydrological variable, K is the number of observations, and the subscripts O and S indicate
observation and simulation, respectively.

Appendix A.2. R2

R2 was used as an additional metric to evaluate the model performance. It reveals the linear
relationship between the observations and model outputs [68].

R2 = 1−
(∑K

1

(
QO −QO

)(
QS −QS

))2

∑K
1

(
QO −QO

)2 ∑K
1

(
QS −QS

)2 (A2)

Appendix A.3. PBIAS

Percentage of bias (PBIAS) measures the differences between observations and model outputs.
A positive value indicates an underestimation, and a negative value indicates an overestimation [54].

PBIAS =
1
K




K∑

1

(QO −QS)

QO
× 100


 (A3)
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Abstract: Hydrological modeling has always been a challenge in the data-scarce watershed, espe-
cially in the areas with complex terrain conditions like the inland river basin in Central Asia. Taking
Bosten Lake Basin in Northwest China as an example, the accuracy and the hydrological applicability
of satellite-based precipitation datasets were evaluated. The gauge-adjusted version of six widely
used datasets was adopted; namely, Precipitation Estimation from Remotely Sensed Information
using Artificial Neural Networks–Climate Data Record (CDR), Climate Hazards Group Infrared
Precipitation with Stations (CHIRPS), Global Precipitation Measurement Ground Validation National
Oceanic and Atmospheric Administration Climate Prediction Center (NOAA CPC) Morphing Tech-
nique (CMORPH), Integrated Multi-Satellite Retrievals for GPM (GPM), Global Satellite Mapping
of Precipitation (GSMaP), the Tropical Rainfall Measuring Mission (TRMM) and Multi-satellite Pre-
cipitation Analysis (TMPA). Seven evaluation indexes were used to compare the station data and
satellite datasets, the soil and water assessment tool (SWAT) model, and four indexes were used to
evaluate the hydrological performance. The main results were as follows: 1) The GPM and CDR were
the best datasets for the daily scale and monthly scale rainfall accuracy evaluations, respectively. 2)
The performance of CDR and GPM was more stable than others at different locations in a watershed,
and all datasets tended to perform better in the humid regions. 3) All datasets tended to perform
better in the summer of a year, while the CDR and CHIRPS performed well in winter compare to
other datasets. 4) The raw data of CDR and CMORPH performed better than others in monthly
runoff simulations, especially CDR. 5) Integrating the hydrological performance of the uncorrected
and corrected data, all datasets have the potential to provide valuable input data in hydrological
modeling. This study is expected to provide a reference for the hydrological and meteorological
application of satellite precipitation datasets in Central Asia or even the whole temperate zone.

Keywords: satellite datasets; accuracy evaluation; hydrological applicability; SWAT; Bosten Lake Basin

1. Introduction

The importance of precipitation in the water cycle and energy sector has been repeat-
edly emphasized [1–3]. More specifically, the accurate observation of the precipitation
process is crucial for modeling the water cycle and forecasting extreme weather events at
local, regional, and even global scales [4,5]. However, the understanding of this critical
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process is limited due to the low coverage of survey stations [6,7]. In many parts of the
world, the density of the weather stations is very low or even nonexistent due to technical
difficulties or political factors [8,9]. Besides this, the data accessibility of the existing stations
is limited as a consequence of the conservative data sharing mechanism, and other reasons
such as short record history or deficient data quality, all of which hinder the application of
the observed data in hydro-meteorological research [10–12].

Fortunately, with the release of the satellite-based precipitation datasets, the gauge
observation can be well supplemented in the data-scarce regions, such as arid depopulated
zones and alpine areas [13,14]. The launch of the Tropical Rainfall Measuring Mission
(TRMM) satellite in 1997 made significant progress in tropical and subtropical satellite
precipitation estimation [15–17]. Since then, a growing number of high-precision and wide-
coverage satellite precipitation datasets have been released. TMPA (TRMM Multi-Satellite
Precipitation Analysis) and GPM (Global Precipitation Measurement) are the continuation
of TRMM [18,19]. PERSIANN (Precipitation Estimation from Remotely Sensed Information
using Artificial Neural Networks) and CHIRP (Climate Hazards Infrared Precipitation)
mainly rely on infrared remote sensing technology [20,21]. In addition, there are multi-
source datasets such as GSMaP (Global Satellite Mapping of Precipitation) and CMORPH
(Climate Prediction Center Morphing Technique) and many others [22,23]. In the field of
hydrological modeling, countless studies had proved the applicability of these satellite
datasets in many watersheds of the world [24–26]. Meanwhile, though, these datasets
inevitably showed their uncertainty in the application of different watersheds. In some
watershed, the streamflow simulation performance of satellite precipitation is even better
than the observed precipitation, e.g., Ziway Lake Basin in Ethiopia and the Adige river basin
in Italy [7,9], while performing worse in others, e.g., the Mekong river basin in Southeast
Asia and Xiangjiang River Basin in Southeast China [26,27]. As a result, the accuracy and
hydrological modeling adaptability evaluation of the satellite datasets in different regions
is critical for their application, which is also crucial for the dataset’s improvement. Central
Asia is one of the most data-scarce regions around the world due to its complex terrain
and underdeveloped economy [28]. For many years, most of the hydrological research
in this area has been carried based on limited gauge stations [29,30]. There have been a
large number of research cases that refer to the evaluation of satellite precipitation datasets
in this area, and Guo et al. reported that the gauge-adjusted versions of four datasets
performed better than their unadjusted version, and believed that the GSMaP performed
better than others in five Central Asia countries [31]. Gao et al. evaluated the CHIRPS
and PERSIANN-CDR in Xinjiang, China, and the results showed that the performance
of these two datasets was similar as a whole, but slightly different in the rainfall season
and snowfall season [32]. However, the studies on the datasets’ accuracy and hydrological
modeling adaptability are rare at the watershed scale, and the comparison of different
datasets is even less. Most of the existing limited research was on the application of a single
dataset, such as the application of the TMPA in two river basins, including the Hotan River
and Syr Darya River [33,34]. At present, several datasets including a new generation of
TMPA (GPM) have been applied in many tropical and subtropical basins around the world;
thus, evaluating and comparing various satellite precipitation datasets on a watershed
scale is meaningful for the hydrological research in Central Asia.

The Bosten Lake Basin is a typical arid inland river basin in Central Asia, where water
resources are mainly produced in the high-altitude mountainous areas and evaporate in
extremely arid plain areas. In this study, the Bosten Lake Basin was selected as the research
area, and six widely used satellite precipitation datasets were adopted for evaluation. The
time scale differentiation and the spatial heterogeneity of the datasets were evaluated by
multiple indexes, and a distributed hydrological model (soil and water assessment tool) was
used to evaluate the dataset’s adaptability in monthly hydrological simulation. For the first
time, the encrypted rain gauge station of the local meteorological department was used for
satellite datasets evaluation, and the hydrological applicability of the five satellite datasets
(only TMPA had already been reported) in the inland river basin of Central Asia has been
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proven. The main contents include the following: 1. Introduction of the study and the study
area (Sections 1 and 2.1); 2. Data (Sections 2.2 and 2.3); 3. Methods (Sections 2.4 and 2.5);
4. Results (Sections 3.1 and 3.2) and discussion (Sections 3.1 and 3.2) of the comparison
between datasets and observed data; 5. Results (Section 3.3) and discussion (Section 4.3) of
the applicability evaluation of the hydrological models; 6. Main conclusions (Section 5).
This case study is expected to be meaningful for the hydrological and meteorological
application of satellite precipitation datasets in Central Asia, or even the whole temperate
zone.

2. Data and Methods
2.1. Study Area

Lake Bosten is a freshwater lake on the northeastern rim of the Tarim Basin, and it
is also the largest inland freshwater lake in China. The whole basin is located between
latitude 41.25–43.21◦ N and longitude 82.56–88.20◦ E, with an area of 4.40 × 104 km2. The
main tributaries to the lake are the Kaidu River, Huangshui Ditch, and Qingshui River,
of which the Kaidu River accounts for more than 90% of its water inflow. The sources of
the Kaidu River are located on the Eren Habirga Mountain of the eastern Tian Shan from
where it flows through the Yulduz Basin and the Yanqi Basin into the Bosten Lake. The
basin has a large vertical drop with the highest elevation in the upper reaches of 4796 m
and the lowest elevation in the downstream of 1037 m.

The grassland and water areas (mostly glaciers) are the primary land-use types in
the upper reaches of the basin, accounting for about 61% and 21% of the total upstream
area, respectively. In the middle and lower reaches, except for the unused land, the main
land-use types are arable land and water area, accounting for about 25% and 15% of the
total area, respectively. Like other basins in the arid areas, the Bosten Lake Basin has a clear
distinction between dry and wet areas. The average annual precipitation and temperature
can reach 504.57 mm and −4.27 ◦C in a mountainous areas weather station, and the
corresponding values in a plain areas station were 67.16 mm and 9.64 ◦C, respectively. The
average annual actual evapotranspiration in the upstream mountain area is about 200 mm,
while in the plain area, it can reach 500 mm and 1000 mm in the arable land area and the
water area, respectively (Figure 1).
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2.2. Observed Data of Ground Stations

The meteorological data include the observation data of 74 rain gauge stations (RG)
and 6 national weather (NW) stations. The RG stations’ data were obtained from Xinjiang
Meteorological Service (http://xj.cma.gov.cn/) for the period from 2013 to 2019. The
NW stations’ data were obtained from China Meteorological Data Service Center (http:
//data.cma.cn/) for the period from the 1990s to 2019. The monthly streamflow data of the
Dashankou hydrological station were collected from the local watershed authority for the
period from 1998 to 2019.

Considering the available period of observed data and satellite datasets (Table 1), the
observed rainfall (both NW stations and RG stations) and precipitation (only NW stations)
were compared with the satellite dataset, and the study periods were set as 2013–2019 and
1998–2019, respectively.

Table 1. Summary of satellite precipitation datasets used in this study.

Dataset Version Short Name Release Date Resolution Period

PERSIANN-CDR_V1_R1 CDR 2014 0.25◦/1 d 1983–present
CHIRPS_2.0 CHIRPS 2015 0.25◦/1 d 1981–present

CMORPH_IFlOODS_V1.0 CMORPH 2013 0.25◦/1 d 1998–2019
GPM_IMERGF_V06 GPM 2019 0.10◦/1 d 2000–present

GSMaP_V6 GSMaP 2016 0.25◦/1 d 2000–present
TMPA_3B42_daily_V7 TMPA 2016 0.25◦/1 d 1998–2019

In this study, it is worth noting that spring refers to March, April and May, summer
refers to June, July and August, autumn refers to September, October and November, and
winter refers to December, January and February. In addition, the watershed is divided by
the elevation of 1100 m and 1500 m a.s.l., that is, the upper reaches are higher than 1500 m,
the middle reaches are from 1100 m to 1500 m, and the lower reaches are below 1100 m.
The division of the watershed is mainly based on the location of the river mountain pass
and the boundary of the agricultural irrigation area.

2.3. Satellite Precipitation Datasets

To avoid the influence of different spatial resolutions on the datasets comparison, the
dataset with a resolution of 0.25 degrees was selected from different datasets versions as
far as possible, and all datasets are the daily data of the gauge-adjusted version (Table 1).
To avoid redundancy, the short names in Table 1 were used to refer to each dataset. It is
worth noting that the periods in Table 1 refer to the available periods of each dataset, and
the periods used in this study are explained in detail in Section 2.2.

2.3.1. CDR

The Precipitation Estimation from Remotely Sensed Information using Artificial Neu-
ral Networks–Climate Data Record (CDR) is a dataset that relies heavily on infrared data,
and it was converted from a complex PERSIANN algorithm on GridSat-B1 infrared satellite
data. The CDR was adjusted using the Global Precipitation Climatology Project (GPCP)
monthly product version 2.2 (GPCPv2.2). The dataset was firstly released on 1 June 2014,
and was created at a spatial resolution of 0.25 degrees in the latitude band 60S–60N from
1983 to the near-present [35], and the dataset is available on the website of the Center for
Hydrometeorology and Remote Sensing (https://chrsdata.eng.uci.edu/), University of
California.

2.3.2. CHIRPS

The Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) dataset
builds on previous approaches to “smart” interpolation techniques and high-resolution
precipitation estimates from long periods of recording, based on infrared cold cloud
duration (CCD) observations. The dataset was first released in 2015, and was created at
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two spatial resolutions of 0.05 degrees and 0.25 degrees in the latitude band 50S–50N from
1981 to the present [36]. The dataset was obtained from the website of the Climate Hazards
Center (https://data.chc.ucsb.edu/products/CHIRPS-2.0/), University of California.

2.3.3. CMORPH

The CMORPH is a technique that uses precipitation estimates from low orbiter satellite
microwave observations to produce global precipitation analyses at high temporal and
spatial resolutions. The dataset version used in this study (CMORPH IFLOODS V1.0 CRT)
was released in 2013, which was created at two spatial resolutions of 0.07 degrees and
0.25 degrees in the latitude band 60S–60N from 1998 to the end of 2019 [37], and the dataset
was obtained from the file transfer protocol website of NOAA (ftp://ftp.cpc.ncep.noaa.
gov/precip/CMORPH_V1.0/).

2.3.4. GPM

The GPM was developed as a continuation and improvement of the TRMM mission,
and the Integrated Multi-satellite Retrievals for GPM (IMERG) is an algorithm of GPM
which aims to combine multiple types of satellite data including microwave satellite data
and infrared satellite data, station gauge data, and others. The latest version (GPM IMERG
Final Precipitation L3 V06) was released in March 2019. The temporal coverage is from June
2000 to August 2020, the spatial coverage is in the latitude from 90S to 90N, and the spatial
resolution is 0.10 degrees [38]. The dataset is available from the Data and Information
Services Center (DISC) of NASA (https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDF_
06/).

2.3.5. GSMaP

The GSMaP is an algorithm of GPM developed by the Japan Aerospace Exploration
Agency (JAXA). The main feature of the GSMaP algorithm is the utilization of various at-
tributes derived from the TRMM precipitation radar (TRMM PR) and GPM Dual-Frequency
Precipitation Radar Ku Band (GPM DPR Ku). It should be noted that the latest version of
the dataset (GSMaP_V7) has not been adopted due to its short time period (2017–present);
instead, the GSMaP_V6_Gauge version was adopted in this study [39]. This version was
released in April 2016, and was created at two spatial resolutions of 0.10 degrees and
0.25 degrees in the latitude band 60S–60N from March 2000 to the present. The dataset
was obtained from the transfer protocol website of the JAXA Earth Observation Research
Center (ftp://hokusai.eorc.jaxa.jp).

2.3.6. TMPA

The TMPA is the last dataset of the Tropical Rainfall Measuring Mission (TRMM), and
the main feature of the TMPA algorithm is the dense sampling of high-quality microwave
data with fill-ins using microwave-calibrated infrared estimates. The dataset version used
in this study (TMPA_3B42_daily_V7) was released on May 15, 2016, and was created at
a spatial resolution of 0.25 degrees by the DISC of NASA [40]. The temporal coverage is
from 1998 to December 30, 2019, the spatial coverage is in the latitude from 50S to 50N, and
the data source is the DISC of NASA (https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_
Daily_7/).

2.4. The SWAT Model

The soil and water assessment tool (SWAT) is a basin-scale distributed hydrological
model. Since the model was jointly developed by the USDA Agricultural Research Service
(USDA-ARS) and Texas A&M University in the 1990s [41], it has been applied in many
aspects, including the hydrological simulation and the environmental impact evaluation of
land-use, land management practices, and climate change. It has also been widely used in
the adaptability evaluation of satellite datasets in the hydrological model [9,25,42,43].
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The input data of the SWAT model consist of meteorological data and grid data,
including terrain data, land-use data, and soil data. The meteorological data are the NW
stations and the satellite precipitation datasets mentioned above in Sections 2.2 and 2.3.
The digital elevation model of the Shuttle Radar Topography Mission (SRTM DEM) with
a spatial resolution of 90 m was adopted as the terrain data, which can be obtained from
the USGS website (https://earthexplorer.usgs.gov/). The soil data are derived from the
Harmonized World Soil Database (HWSD), which was created by the Food and Agriculture
Organization of the United Nations (FAO) at a spatial resolution of 500 m. Since the land-
use types in the upper reaches are almost unchanged due to limited human activity, the
land-use data were obtained from the National Cryosphere Desert Data Center (NCDC,
http://www.ncdc.ac.cn/) in one single year of 2010, and the spatial resolution is 100 m.

The model setup includes the establishment, calibration, and validation of the model.
In the lower reaches of the Kaidu River, there are many diversion canals and drainage
ditches that lack observation data, and great human interference factors may affect the
comparison in the SWAT model between datasets, and thus the hydrological model is
limited to the upstream in this study. Besides this, only the data of three NW stations
upstream were used to establish the hydrological model for the following reasons: (1)
the lack of snowfall data in RG stations; (2) the significant climate difference between the
upper and lower reaches. The monthly hydrological data from 2002 to 2019 was used
to verify the simulated streamflow, and the calibration and validation periods were set
at 2002–2010 and 2011–2019, respectively. The SUFI-2 algorithm in SWAT-CUP software
was used to calibrate the model. After 2000 samplings, the result of the calibration period
reached “very good”, and the validation period was “satisfactory” according to a widely
used hydrological model guideline [44]; thus the model can be used to evaluate the satellite
datasets. The sensitive parameters obtained in the calibration of the watershed were sorted
by p-value in the supplementary material (Supplementary Material Table S1).

2.5. Evaluation Indexes and Correction Method
2.5.1. Evaluation Indexes of Datasets Accuracy

To evaluate the ability of each dataset in terms of precipitation estimate, 4 accuracy
evaluation indexes were adopted, including the correlation coefficient (CC, optimal value:
1), root mean square error (RMSE, optimal value: 0), mean Error (ME, optimal value: 0),
and percent bias (PBIAS, optimal value: 0%). Among them, CC was used to describe the
fitting degree between the observed data and satellite datasets, RMSE and ME were used to
describe the average difference and average error between the observed data and satellite
datasets, and PBIAS was used to reflect the percentage of error.

Three precipitation detection skill indexes were adopted, including probability of
detection (POD, optimal value: 1), false alarm ratio (FAR, optimal value: 0), and critical
success index (CSI, optimal value: 1). Among them, POD reflects the fraction of correctly
estimated times by satellite datasets and actual precipitation times, FAR reflects the fraction
of false estimation times and total precipitation times of the satellite datasets, and CSI
combines POD and FAR, which can reflect the comprehensive ability of precipitation
detection [9]. It should be noted that the above three indexes only judge the occurrence
or non-occurrence of precipitation, and have nothing to do with rainfall intensity. The
corresponding calculation formulas are given in Equations (1)–(7) [45].

CC =
∑n

i=1[(Gi − Gave)·(Si − Save)]√
∑n

i=1(Gi − Gave)
2·
√

∑n
i=1(Si − Save)

2
(1)

RMSE =

√
∑n

i=1(Si − Gi)
2

n
(2)

ME =
∑n

i=1(Si − Gi)

n
(3)
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PBIAS =
∑n

i=1(Si − Gi)

∑n
i=1 Gi

·100% (4)

POD =
H

H + M
(5)

FAR =
F

H + F
(6)

CSI =
H

H + F + M
(7)

where Gi and Gave are the observed precipitation and observed average precipitation of
the gauge stations, respectively. Si and Save are the estimated precipitation and average
estimated precipitation of the satellite datasets, respectively. H is the number of hits when
the observed value > 0 and estimated value > 0, F is the number of false alarms when the
observed value = 0 and the estimated value > 0, and M is the number of misses when the
observed value > 0 and the estimated value = 0.

2.5.2. Evaluation Indexes of Hydrological Model

To evaluate the performance of the SWAT model, four widely used indexes were
used, including Nash–Sutcliffe efficiency (NSE, optimal value: 1) [46], the coefficient of
determination (R2, optimal value: 1), percent bias (PBIAS′, distinguished from PBIAS
in Section 2.5.1, optimal value: 0%) and the ratio of mean square error to the standard
deviation of the observed data (RSR, optimal value: 0). Among them, NSE indicates the
fitting degree between the observed–simulated data point and the 1:1 line, R2 indicates the
degree of collinearity between the observed value and simulated value, and RSR is the
RMSE normalized by the standard deviation of the observed value. The corresponding
calculation formulas are given in Equations (8)–(11) [44].

NSE = 1− ∑n
i=1(SIMi −OBSi)

2

∑n
i=1(OBSi −OBSave)

2 (8)

R2 = 1− [∑n
i=1(OBSi −OBSave)·(SIMi − SIMave)]

2

∑n
i=1(OBSi −OBSave)

2·(SIMi − SIMave)
2 (9)

PBIAS′ = ∑n
i=1(SIMi −OBSi)

∑n
i=1 OBSi

·100% (10)

RSR =

√
∑n

i=1(OBSi − SIMi)
2

√
∑n

i=1(OBSi −OBSave)
2

(11)

where OBSi and OBSave are the observed streamflow and average observed streamflow of
the hydrological station, respectively. SIMi and SIMave are the simulated streamflow and
average simulated streamflow by the SWAT model, respectively.

2.5.3. Datasets Correction Method

To improve the performance of the satellite datasets, many complex algorithms (e.g.,
deep neural network model and dynamic clustered Bayesian averaging) have been devel-
oped for the dataset’s inter-calibration, merging, and interpolation [11,47]. However, to
avoid the possible impact of excessive correction parameters on the dataset comparison,
a relatively straightforward dataset correction method was proposed in this study. The
method was inspired by a terrain correction method of precipitation datasets [48]. The de-
viation degree between satellite precipitation and observed precipitation usually presents
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a linear distribution at different elevations [49], which can be utilized to enlarge or reduce
the satellite data. The corresponding equations are given in Equations (12)–(14).

P′s = µ·Ps = (aE + b)·Ps (12)

b =
∑n

i=1

[
(Ei − Eave)·

(
Ps,i
Po,i
− Ps,ave

Po.ave

)]

∑n
i=1

[
(Ei − Eave)

2
] (13)

a =
Ps,ave

Po.ave
− b·Eave (14)

where P′s , Ps, µ and E are the corrected satellite precipitation, raw satellite precipitation,
correction coefficient, and elevation, respectively. Ps,i, Po,i and Ei are the satellite precipita-
tion, observed precipitation, and elevation at the location of the ith station, respectively.
Ps,ave, Po.ave and Eave refer to average satellite precipitation, average observed precipitation,
and elevation at the locations of all stations.

3. Results
3.1. Comparison Between RG Station Data and Satellite Precipitation Datasets

Since the construction time of the in-situ RG station varies from 2010 to 2012, the
evaluation period is selected to be from April to October of each year from 2013 to 2019,
which is covered by all in-situ stations and satellite precipitation datasets. Eighty stations
with good data quality, including the NW station, were selected for the verification, and the
stations that failed to pass the quality control were removed. The quality control processes
included climatological limit checks, internal consistency checks, time consistency checks,
and missing data checks. Three stations were removed due to excessive missing data.
The grid data of satellite precipitation were extracted to points so as to be compared with
observed data.

3.1.1. Evaluation Indexes Performance

The results of the evaluation index calculation are presented by box diagrams and
table, whereby diagrams are used to show the distribution of 80 stations, and the table is
used to show the average value of 80 stations. On the daily scale (Figure 2 and the upper
half of Table 2), the GPM dataset had the best CC overall, with an average value of 0.52, and
the average CC rankings of six datasets were as follows: GPM > CMORPH > GSMaP > CDR
> TMPA > CHIRPS. GPM and CDR performed better than other datasets in terms of RMSE,
with an average value of 2.27 mm and 2.38 mm. The performance of all datasets in ME and
PBIAS was similar. CMORPH and TMPA overestimated the rainfall with an average ME of
1.08 mm and 0.47 mm, and an average PBIAS of 260.23% and 93.87%, respectively. GPM
underestimated the rainfall with an average ME of −0.38 mm and an average PBIAS of
−45.08%, while other datasets slightly overestimated by the average ME of 0.25 mm and
the PBIAS from 46.96% to 49.70%. Compared with other datasets, CMORPH and TMPA
had the most outliers. In terms of rainfall detection, the average PODs of CDR, CMORPH,
and GSMaP all exceeded 0.80, but they also had lots of false estimations. In general, GPM
exhibited a relatively better rainfall-detecting skill than others on a daily scale.

On the monthly scale (Figure 3 and the lower half of Table 2), the average CC of
each dataset was significantly improved, among which CDR and CHIRPS had the most
considerable improvement. Therefore, the ranking of average CC also changed to CDR >
CHIRPS > GPM > GSMaP > CMORPH > TMPA. In terms of RMSE, all the values were
magnified to different degrees, and the average monthly RMSE of all datasets was around
20 mm, except for the immense value of CMORPH and TMPA. For ME and PBIAS, the
monthly scale values were very similar to those on the day scale, CMORPH still highly
overestimated the rainfall, and GPM was the only underestimated dataset. At the same time,
the CDR was still the best dataset overall under these two indexes. The performance in
terms of rainfall detection skill was greatly improved over all datasets, almost all months
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with rainfall events were correctly estimated (average POD: 0.89 for TMPA, 0.99 for GPM,
and 1.00 for the other four datasets), the rate of false estimations was significantly reduced
(average FAR: 0.16 for CDR, 0.10 for TMPA, and 0.15 for the other four datasets), and the
overall rainfall detection skill of all datasets was acceptable (average CSI: all exceeding 0.80).
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Figure 2. The performance of daily data in different evaluation indexes. (The point represents the outlier. For the whiskers,
the upper and lower boundaries represent the maximum value and minimum value, respectively. For the boxes with color,
the top, middle and bottom black lines represent first quartile value, median value, and third quartile value, respectively.)
(a) Correlation coefficient, (b) root mean square error, (c) mean error, (d) percentage bias, (e) probability of detection, (f)
false alarm ratio, (g) critical success index.
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Table 2. Average evaluation indexes of all station points at both the daily and monthly scale.

Time Scale Satellite Data CC RMSE (mm) ME(mm) * PBIAS(%) * POD FAR CSI

Daily

CDR 0.32 2.38 0.04 (0.25) 29.92 (46.96) 0.87 0.74 0.25
CHIRPS 0.29 3.03 0.19 (0.25) 40.60 (49.35) 0.46 0.66 0.24

CMORPH 0.43 3.22 0.86 (1.08) 244.82 (260.23) 0.81 0.70 0.27
GPM 0.52 2.27 −0.38 (0.38) −43.28 (45.08) 0.77 0.61 0.34

GSMaP 0.40 2.56 0.11 (0.25) 39.87 (49.70) 0.87 0.67 0.32
TMPA 0.31 2.79 0.11 (0.47) 56.31 (93.87) 0.59 0.53 0.34

Monthly

CDR 0.69 17.81 1.15 (7.69) 30.98 (48.15) 1.00 0.16 0.84
CHIRPS 0.63 18.91 5.80 (7.77) 40.97 (49.80) 1.00 0.15 0.85

CMORPH 0.48 45.07 27.40 (33.60) 257.45 (271.97) 1.00 0.15 0.85
GPM 0.63 22.00 −11.47 (11.63) −43.26 (45.06) 0.99 0.15 0.85

GSMaP 0.59 19.58 3.46 (7.70) 41.47 (51.52) 1.00 0.15 0.85
TMPA 0.42 33.27 3.40 (14.18) 56.70 (94.24) 0.89 0.10 0.80

* To avoid the counteracting effect of positive and negative values, the average of absolute values are shown in brackets.
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3.1.2. Influence of Rainfall Intensity on the Evaluation Index

The rainfall distribution has significant regional heterogeneity in the Bosten Lake
Basin, and the annual rainfall of each station can vary from 67 mm to 505 mm. Based
on the considerations above, it is necessary to evaluate the dataset’s performance under
different RG stations sorted by rainfall intensity. In Figure 4, each point represents an
observed station. The x-axis indicates the average annual rainfall of the station, and the
color and y-axis indicate the performance of different datasets at different station locations
under different indexes. At the stations with a higher annual rainfall, the fitting degrees
of all satellite datasets with the observed data were greater (Figure 4a), and there was a
significant positive correlation (p-value < 0.01) between the annual rainfall and the CC,
among which CDR and GSMaP had the strongest correlation. Except for CMORPH, the
RMSE of other datasets increased with the increase in rainfall intensity (Figure 4b). The
performances of ME and PBIAS were similar, and all satellite datasets were more likely
to be underestimated at the stations with more rainfall (Figure 4c,d). As the results of
three rainfall detection indexes showed, in the areas with higher annual rainfall, both the
numbers of hits and misses had increased, while the number of false alarms decreased
noticeably. The PODs of CMORPH and GPM showed a decreasing trend, for the reason
that the misses increase more than the growth of the hits as the annual rainfall intensifies,
while the PODs of CHIRPS and TMPA showed a decreasing trend due to the opposite
situation (Figure 4e). Besides this, the FAR was negatively correlated (p-value <0.01 for all
datasets) with rainfall intensity (Figure 4f), and CSI was positively correlated (p-value <0.01
for all datasets) with rainfall intensity (Figure 4g). On the monthly scale, the relationship
between evaluation indexes and rainfall intensity is similar to that of the daily scale.
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3.1.3. Spatial Distribution of Datasets Performance

To further understand the performances of different datasets in different regions of
the basin, the daily data were selected for evaluation due to their more significant spatial
variability compared with monthly data, and the CC and ME were adopted as evaluation
indexes. In Figure 5, the larger the yellow circle is, the stronger the correlation between
the satellite datasets and the observed data is. As the results are shown, the CC of CDR
is not high (varies from 0.22 to 0.43), but its stability is the best in different regions of
the basin, which was consistent with the result in the box plot (Figure 2a). The CC level
of the CHIRPS dataset is the lowest in the whole basin (average 0.29), and the spatial
differentiation is considerable. The excellent performance points of CHIRPS are mainly
distributed in the upper high-altitude area and the valley area near the mountain pass of
the river (CC is about 0.30–0.55), while the worse points are mainly distributed in the lower
reaches of the basin, especially around the lake (CC below 0.25). CMORPH was the second
best dataset on CC (average 0.43), which has an even spatial distribution, and only a few
low values appear around the lake downstream. GPM was the best dataset in terms of
CC performance, both in terms of numerical value (average 0.52) and spatial distribution,
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and the CC of GPM could be maintained at a high level even in the downstream(about
0.40–0.50 around the lake). The CC performance of GSMaP (average 0.40) was similar to
that of CMORPH in the upstream, but in the middle and lower reaches, the CC of GSMaP
performed more weakly than CMORPH except for in the area around the lake. The TMPA
dataset has greatly uneven spatial distribution in terms of CC, and it performed well in the
upstream mountainous regions (the average CC is 0.54 when elevation is above 1500 m),
but not well in the lower reaches (the average CC is 0.28 when elevation is below 1100 m).
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Figure 5. Distribution of CC between satellite datasets and measured data at different stations in the basin.

Compared with CC, the regional characteristics in spatial distribution presented by
ME were more prominent. In Figure 6, the blue point means underestimation while the red
point means overestimation, and the darker the color, the stronger the underestimation
(overestimation). All datasets underestimated rainfall to varying degrees in the upstream,
while in the middle and lower reaches, all datasets overestimated rainfall to varying
degrees, except for GPM and TMPA (Figure 6). The ME of the CDR in the whole basin was
the smallest (average 0.02 mm), the underestimation in the upstream and overestimation
in the downstream by CDR were both slight except for a few points, and the ME values
were −0.28 mm and 0.14 mm for elevation above 1500 m and below 1500 m, respectively.
The ME of CHIRPS showed great uncertainty in the upstream area, which varied greatly
even between adjacent regions. The CHIRPS was the only dataset that overestimated
the upstream rainfall. Besides this, CHIRPS overestimated greatly in the middle reaches
from 1100 m to 1500 m above sea level (average 0.23 mm, the second largest in this region,
after CMORPH). For the CMORPH, its significant overestimation in the whole basin was
due to the enormous errors in the middle and lower reaches, especially around the lake
(ME reaches 3.19 mm when elevation is between 1045 m and 1060 m). However, like
other datasets, CMORPH still underestimated the rainfall by the ME of −0.37 mm in the
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upper reaches. The excessive underestimation in the upper reaches makes GPM the only
underestimated dataset for the whole basin (Figure 6 GPM, Figure 2c,d), but if we ignore
the upstream area, the performance of GPM in the middle and lower reaches is the best
in all datasets (−0.11 mm when elevation is lower than 1500 m). The ME distribution of
GSMaP was similar to that of CDR with the uniform spatial distribution and concentrated
numerical distribution, while the difference was that the GSMaP had more outliers (Figure 6
GSMaP and Figure 2c). The ME distribution of TMPA was similar to that of GPM, with
the same great underestimation in the upstream and the same good performance in the
midstream, except for the fact that TMPA overestimated rainfall at several points around
the lake (average 0.62 mm from 1045 m to 1060 m a.s.l.).
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3.2. Annual and Interannual Performance of Satellite Precipitation Datasets

The CC, ME, and CSI were selected to evaluate the performances of different datasets
in different months of the year, and the daily precipitation data of six NW stations were
adopted, for the reason that there are no observed data from November to March of the
next year at the RG stations. The same three indexes were also selected to evaluate the
multi-year performance of each dataset; similarly, the data of six NW stations were adopted
because of the short construction history (since 2010) of RG stations, and the evaluation
period was chosen as from 1998 to 2019, covering all datasets as much as possible.

3.2.1. Performance Variation in Different Months

The monthly distribution of CC (Figure 7a) showed that all datasets performed best
in summer (average 0.25 from June to August of all datasets), similarly poorly in spring
and autumn (average 0.13), and worst in winter (average 0.03). The CC performance of
CDR and CHIRPS was the most uniform among each month. In winter, CHIRPS and
CDR were the first and second best datasets, respectively (CDR was 0.07, CHIRPS was
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0.09, while all other datasets were less than 0.03). The performances of CMORPH and
GSMaP were similar, their CC value was close in each month, and their best two CC values
both appeared in July and August. GPM is the best-performing dataset from a year-round
perspective. Moreover, the GPM dataset clearly showed better fit degrees compared to
other datasets from March to October (CC average 0.28, while the highest of others was
0.18), and the TMPA was the worst dataset in terms of the performance of CC (the average
CC of TMPA was only 0.03 except in summer).
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In terms of the ME (Figure 7b), the GPM was still the only dataset that underestimated
precipitation throughout the year (average 0.40 mm), especially in the summer (average
1.04 mm). The two datasets with the most apparent overestimation were still CMORPH and
CHIRPS. Still, the magnitude of their overestimation was smaller compared with RG station
data (0.17 mm for CMORPH and 0.13 mm for CHIRPS). The CDR and GSMaP were the two
best datasets in terms of ME performance, and the precipitation was underestimated by
them at average values of−0.23 mm and−0.11 mm in summer, and overestimated by them
at average values of 0.07 mm and 0.19 mm in other seasons, respectively. On the contrary,
for TMPA, the precipitation was overestimated by 0.52 mm in summer and underestimated
by −0.07 mm in other seasons, respectively. The performances of each dataset in terms of
CSI were similar (Figure 7c); they all tended to hit more precipitation events from April
to September of the year, and among them, the CHIRPS dataset performed the worst in
summer and the best in winter of all datasets.

3.2.2. Trend of Datasets Performance Over the Years

In spite of the volatility, all the datasets showed an upward trend in terms of CC
(Figure 8a), with the ascending trend ranking of GPM > TMPA > GSMaP > CMORPH >
CHIRPS > CDR, and the corresponding linear rising rates were 0.10/10a (p-value = 0.01),
0.06/10a (p-value = 0.01), 0.06/10a (p-value = 0.05), 0.05/10a (p-value = 0.05), 0.04/10a
(p-value = 0.10) and 0.02/10a (p-value > 0.10). Among them, the CDR was still the most
stable dataset in the multi-year evaluation, and the CC values of CDR were all in the range
of 0.2 to 0.4, except in 2009. On the contrary, the CHIRPS was not stable; although its
overall trend was increasing, it had declined for five consecutive years from 2013 to 2018.
The CC of GPM reached 0.66 in 2017, which was the highest among all datasets in all years.
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Most of the datasets had a stable ME over the years (Figure 8b), among which
CDR had the smallest error in almost every year (within ±0.10 mm/d in 20 of 22 years).
CHIRPS showed a slight overestimation every year, with a maximum of 0.23 mm/d (2001),
while GPM showed a serious underestimation every year, ranging from −0.29 mm/d to
−0.52 mm/d. Except for the abnormally high value in 2002 and the unusually low values in
2010 and 2011, the GSMaP dataset slightly overestimated the precipitation in the remaining
16 years. In contrast, CMORPH and TMPA were not as stable as the other four datasets. The
CMORPH was the most overestimated dataset in every year from 2011, although the mean
error was not evident before. As for the TMPA, it changed from the most underestimated
dataset before 2000 to the most overestimated dataset from 2002 to 2010, and then dropped
to the same underestimation level as GPM after 2015. The performance of each dataset
changed little in terms of CSI over the years (Figure 8c), among which the CDR declinined
at the rate of 0.03/10a; GPM and TMPA increased at the rate of 0.04/10a. Furthermore, the
change rates of other datasets were less than 0.01/10a and did not pass the significance
test.

3.2.3. Multi-year Variation of Correlation Coefficient in Each Month

Given the apparent change in CC compared to other indexes, a more detailed multi-
year monthly change analysis was carried out on CC. The performances of all datasets
in each month since 1998 are shown by the heat map (Figure 9). Each grid in the graph
represents a month; the darker the color, the greater the correlation coefficient. The
CDR and CHIRPS showed homogeneity on CC multi-year performance, and they filled
every month except the no-precipitation months of November 1998 and December 2019
in the NW station (Figure 9 CDR, CHIRPS). In April and May, the CDR dataset showed a
significant linear upward trend, with the average rising rates of 0.10/10a and 0.09/10a on
CC, respectively, while in December, the CC decreased by 0.10/10a. Similarly, the CC of
CHIRPS had risen by 0.14/10a and 0.09/10a in May and June, respectively, and showed a
downward trend in January by −0.11/10a. Except for the months mentioned above, there
was no obvious trend in the other months of these two datasets.
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CMORPH and TMPA were the two worst-performing datasets in winter, especially
TMPA, which hit only one month with winter precipitation in 22 years (Figure 9. CMORPH,
TMPA). In May, June, and September, the CMORPH dataset showed an obvious upward
trend, with an average increase rate of 0.13/10a, 0.11/10a, and 0.14/10a in terms of CC,
respectively. The TMPA dataset showed an increasing trend in June, July, and September,
and the increasing rates were 0.11/10a, 0.12/10a, and 0.10/10a, respectively, and in other
months, neither the TMPA or the CMORPH showed an obvious upward or downward
trend.

The data of GPM and GSMaP both started after 2000 (Figure 9 GPM, GSMaP). Among
them, the GPM dataset had the most obvious rising trend in all datasets, and its rising
rates reached 0.13/10a, 0.22/10a, and 0.17/10a in April, May, and October, respectively.
Although the average increasing rate of the GSMaP in all months was 0.06/10a, ranking
second in all six datasets, its upward trend was significant only in June by 0.10/10a.

3.3. Performance in Hydrological Simulations

Considering the climate variation in different regions of the arid basin, the rainfall
station data cannot be used for the hydrological modeling of the whole year. Therefore, the
input meteorological data of the SWAT model are limited to the three NW stations in the
upper reaches. The calibration period and the validation period of the SWAT model are
2002–2010 and 2011–2019, respectively. The calibration of the SWAT model is based on the
NW station data, using the sequential uncertainty fitting algorithm and taking the optimal
Nash–Sutcliffe efficiency coefficient as the target. It should be noted that the model is not
re-calibrated when the input data changed into the satellite datasets, for the reason that
the inaccuracy of satellite data may lead to unrealistic parameter values for the basin [50].
Besides this, to reduce the influence of the initial variables of the model on the hydrological
simulation, the warm-up period from 2000 to 2001 was adopted for all datasets, including
the observation data.

3.3.1. Streamflow Simulation of Raw Satellite Datasets

The monthly runoff observation data of the Dashankou hydrological station near the
whole watershed outlet was used for calibration. After more than 2000 samplings in a
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reasonable range of 28 parameters, the model performed well in the calibration period
(NSE = 0.80, R2 = 0.81, PBIAS′ = −4.60%, RSR = 0.45). All the indexes declined in the
validation period, but they were still satisfactory on the whole (NSE = 0.63, R2 = 0.80,
PBIAS′ =−22.71%, RSR = 0.61). With all parameters unchanged, the satellite datasets
were input into the SWAT model, and the simulation results are shown in one figure
together with the average monthly precipitation. In Figure 10, the bars with different colors
represent the monthly average precipitation of each dataset in the whole basin, the grey
dotted line represents the monthly observed streamflow, and the solid line with different
colors represents the simulated monthly average streamflow of different datasets.
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As shown in Figure 10b,d the CDR and CMORPH raw dataset were the two best
datasets in the un-corrected streamflow simulation. Among them, the CMORPH overesti-
mated the runoff in the calibration period by −28.92%, which resulted in unsatisfactory
simulation results, and the performances of the CDR in the calibration period and the
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CMORPH in the validation period were all satisfactory. In particular, the performance of
the CDR even exceeded the observed data in the validation period with good performance
(NSE = 0.72, R2 = 0.79, PBIAS′ = −14.35%, RSR = 0.53).

As the only dataset which overestimated the precipitation in the upper reaches in
the spatial distribution evaluation (Figure 6 CHIRPS), the overestimation of CHIRPS in
the runoff simulation was also the most obvious in the hydrological simulation, with an
overall PBIAS′ of −125.98% (Figure 10c). The vast deviation makes the CHIRPS dataset
perform the worst in all indexes except R2 (calibration: NSE = −3.18, PBIAS′ = −108.99%,
RSR = 2.05, validation: NSE =−6.21, PBIAS′ =−144.10%, RSR = 2.69.), far away from being
satisfactory. On the contrary, the obvious streamflow overestimation of TMPA (Figure 10g,
overall PBAIS′: −27.76%) was not reflected in the spatial distribution (Figure 6 TMPA),
and this was caused by the temporal variation in the TMPA dataset (Figure 8b). Similarly,
the deviation makes the TMPA dataset perform the second worst in the calibration period
(NSE = −0.49, PBIAS′ = −46.12%, RSR = 1.22), although the low-level precipitation after
2015 compensated for the overestimation (PBIAS′ drop to −8.16%), other indicators still
performed poorly in the validation period of TMPA (NSE = -0.62, R2 = 0.12, RSR = 1.27),
and the overall performance was unsatisfactory.

On the contrary, the poor performance of the GPM and GSMaP dataset was mainly
due to their underestimation of runoff. As the dataset with the most severe underestimation
in the upstream, the underestimation of the GPM dataset was still severe in the runoff
simulation, and its total percent bias in all simulation years reached 46.84%. Besides this,
all other indexes were unsatisfactory (calibration: NSE = −0.12, RSR = 1.06, validation:
NSE = −0.67, RSR = 1.29). Other than that, the linear fitting degree between the simulation
results of GPM and the observed runoff was the lowest in all datasets (calibration: R2 = 0.39,
validation: R2 = 0.19). The annual average precipitation of the GSMaP was more than that
of the GPM (137 mm compared to 118 mm), but the low concentration of precipitation
led to high evaporation, which sets the GSMaP at the same underestimation level as
the GPM dataset (overall PBIAS′: 47.46%), and the model’s simulation results were also
unsatisfactory (calibration: NSE= −0.32, RSR = 1.15, validation: NSE = −0.06, RSR = 1.03).
However, the GSMaP dataset showed an excellent linear fit in the whole simulation process,
especially in the validation period (R2 = 0.77, ranking second only to the CDR).

3.3.2. Streamflow Simulation of Corrected Satellite Datasets

To increase the applicability of the satellite datasets, a relatively straightforward
method was proposed to correct all datasets. To adapt to the calibrated parameters of the
SWAT model, the correction was based on the NW station data, and the correction process
of each dataset was the same to ensure the comparability between corrected datasets. In
particular, the correction processes of the TMPA were divided into two periods due to its
apparent differentiation before and after 2015 (Figure 8b, Figure 10g). The corrected datasets
were directly inputted into the calibrated SWAT model, and the simulation performance
of each dataset was significantly improved except CDR and CMORPH (Table 3). The
hydrological simulation results and the corrected monthly precipitation of each dataset
were presented in Figure 11.

Table 3. Hydrological model performance under different input datasets.

Dataset
Raw Corrected

Calibration Validation Calibration Validation

OBS Very good Satisfactory Very good Satisfactory
CDR Satisfactory Good Unsatisfactory Satisfactory

CHIRPS Unsatisfactory Unsatisfactory Satisfactory Good
CMORPH Unsatisfactory Satisfactory Unsatisfactory Satisfactory

GPM Unsatisfactory Unsatisfactory Unsatisfactory Good
GSMaP Unsatisfactory Unsatisfactory Satisfactory Very good
TMPA Unsatisfactory Unsatisfactory Satisfactory Good
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The processes of dataset correction in this study were intended to enlarge or reduce
the original data directly. Therefore, the dataset with a large bias could be improved after
correction, while the dataset with small bias may not be promoted obviously (Figure 11b,d).
The deviation in the raw CDR dataset was the smallest of all in the hydrological simu-
lation (about 15%), and after correction, the deviation was further reduced (calibration:
PBIAS′= −5.69%, validation: PBIAS′= −6.65%). However, other model evaluation in-
dexes were negatively affected (calibration: NSE = 0.45, RSR = 0.74, R2 = 0.47, validation:
NSE = 0.57, RSR = 0.66, R2 = 0.59). The overall simulation percent bias of the CMORPH
raw dataset was the second smallest (Figure 10d, PBIAS′ = −17.59%). After correction,
the simulation result was slightly improved during the calibration period, and slightly
decreased during the validation period (Figure 11d), and the overall performance remained
unchanged (Table 3).

The two overestimated datasets were significantly improved (Figure 11c,g), and both
of them performed “satisfactory” in the calibration period and “good” in the validation
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period (Table 3). Among them, the improvement of CHIRPS was the largest in all datasets
(Overall index, NSE: −4.58 to 0.65, PBIAS′: −125.98% to 10.71%, RSR: 2.36 to 0.59, R2:
0.67 to 0.72). The TMPA dataset was also improved by the correction, especially in the
validation period, and the correction exactly filled in the data dislocation before and after
2015, and it is worth noting that the percent bias of TMPA was the smallest of all the
datasets (−0.72% in calibration and 1.91% in validation).

The two underestimated datasets also performed better than before (Figure 11e,f).
The improvement in the GPM dataset was mainly reflected in the validation period (NSE:
0.67, R2: 0.68, PBIAS′: 3.83%, RSR: 0.57), and although the simulation result was improved
to some extent in the calibration period, it was not accurate enough to be evaluated as
satisfactory (NSE: 0.43, R2: 0.46, PBIAS′: 6.25%, RSR: 0.76). The GSMaP become the
best-performing dataset of all after correction, ranking first in two indexes throughout
the whole period (NSE: 0.66, RSR: 0.59). Moreover, the comprehensive evaluation of the
GSMaP-driven model reached “very good” in the validation period (NSE: 0.76, R2: 0.80,
PBIAS′: 3.49%, RSR: 0.49), which had never occurred in any period of other satellite datasets
(Table 3).

4. Discussion
4.1. Outstanding Characteristics of Each Satellite Dataset

The performances of the datasets can vary in different time scales (Table 2), and the
CC and precipitation detection indexes, such as POD, FAR, and CSI, were significantly
improved with the time scale expansion. Among them, the CDR and CHIRPS had the
largest improvement, which was one of their many similar characteristics, such as their
excellent performance in winter and stable multi-year mean error. These similarities have
also appeared in other studies, possibly because both of them were mainly based on
infrared satellite data [6,32]. On a daily scale, GPM was the best dataset in terms of CC
in this study, while the best dataset became CDR on the monthly scale. Similar results
had also been found in other studies, and the GPM datasets, especially the GPM IMERG
final version, performed better on a daily scale than other datasets, but the CDR was more
relevant to the observed data on the monthly or annual scale [25,51]. The error-related
indexes, such as ME and RMSE, were amplified with the expansion of time scale. Still,
there was little change in their deviation degree from the observed data (PBIAS), and
some datasets remained almost unchanged (TMPA) or even smaller (GPM). Many studies
had shown that TMPA and GPM performed well in bias control when the time scale was
extended [9,51,52].

Contrary to the excellent winter performance of CDR and CHIRPS, mentioned above,
the CMORPH and TMPA performed poorly in winter (Figure 9), which was mainly due to
the limitation of the passive microwave window channels [6,53]. In addition to seasonal
differences, the performances of different datasets also vary significantly depending on
altitudes. The CDR and GPM datasets show their stability at different altitudes (Figure 5
GPM and Figure 6 CDR), which was critical for the application of satellite datasets at a
watershed scale, for the reason that a complete watershed often has a large vertical drop.
The underestimation of the GPM in Central Asia was reported in its early evaluation [54],
and the dataset was improved in the plain area since the IMERG initial version was
developed into the current IMERG Final v06, but its underestimation was still present
in the mountain area of the Tianshan Mountain [55]. Conversely, the overestimation
of the CMORPH mainly occurred in the plain area of the basin. The overestimation of
the CMORPH was common in arid regions; for example, it overestimated the rainfall
by an average RMSE of 3.76 mm/d in the Arabian Peninsula, while in Algeria it was
2.32 mm/d [56,57].

4.2. Similarity of the Satellite Datasets

The indexes of each dataset show noticeable zonal distribution on a basin scale,
i.e., the wetter the zone was, the more likely it was that the satellite datasets tended to
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underestimate, had a better fit degree, and hit more rainfall events (Figure 4a,d,g). A
similar performance had also been found in Indochina Peninsula and Pakistan [25,27,58].
Comparatively speaking, the influence of terrain factors was weaker; for instance, the
fitting degrees and the underestimation of the datasets in the low-altitude wet mountain
area were stronger than those in the high-altitude dry mountain area of the Hanjiang
River Basin [24]. On a global scale, it was clear that all datasets performed better in the
low-latitude regions, such as the Philippines and Ethiopia, or coastal areas of mid-latitudes,
such as Northeast China [9,43,51]. As a part of the arid land in Central Asia, this study area
was one of the worst-performing regions for satellite datasets, which was also supported
by some global or large regional studies [5,6].

All datasets performed poorly in winter, with the CC range from 0 to 0.15 and the
CSI range from 0 to 0.10. Even for those based on infrared remote sensing, winter was
still their worst-performing season of the year (Figure 7a,c and Figure 9.). The inaccurate
estimation of the datasets in winter was one of the reasons for their poor performance
in the temperate zone, which was also a challenge for the current satellite precipitation
retrievals [59]. Each dataset showed varying degrees of improvement in the multi-year
performance evaluation (Figure 8a), and some studies believe that the improvement of
precipitation datasets in the multi-year performance evaluation was due to technological
progress [60]. Nevertheless, the slight dataset improvement in this study cannot be simply
summed up by technological progress. For the passive microwave products, the reason
might be the increase in passive microwave samples [6]. For datasets that do not rely on
the passive microwave, such as CDR and CHIRPS, their improvement was more likely to
be caused by the slight increase in precipitation under climate change [61].

4.3. Similarities and Differences in the Datasets Hydrological Application

The raw data of CDR showed a strong ability in the monthly runoff simulation
(Figure 10a), which was consistent with its excellent performance in monthly rainfall and
winter precipitation estimations (Table 2 and Figure 9). Furthermore, the advantage of the
CDR in the monthly runoff simulation was mainly manifested in relatively high latitude
areas, such as the Illinois River Basin [62], but was not prominent in low latitude areas [9,25].
The dislocation of TMPA data around 2015 (Figure 10g) was likely to be affected by its new
generation product GPM, and 2015 is the first year after the release of the GPM [19]. In
the same study area, TMPA performed much better when the evaluation period changed
to 2000–2015 [63]. Compared with the complex and targeted correction methods for each
dataset, the method used in this study is simple and direct, so as to avoid introducing other
interference factors that may affect the comparison between datasets.

The performance of the corrected dataset in the validation period was better than that
in the calibration period (Figure 11), which was consistent with the dataset’s performance
in the multi-year evaluation (Figure 8a), and besides this, more warm-up years would lead
to better simulation results in the hydrological model [64], which was another reason for
the excellent performance in the validation period. Some studies suggest that the observed
stations play an irreplaceable role in the watershed-scale hydrological simulation [26,42].
On the other hand, integrating the performance of the uncorrected and corrected satellite
datasets into hydrological simulation, all datasets were “satisfactory” or better in this study
(Table 3), which means that the satellite precipitation datasets could be a favorable choice
for data-scarce basins [7,9,65].

4.4. Further Study

For some of the content, the distribution of observed stations may affect their compar-
ison with satellite precipitation datasets, which was also a common issue in the research
of datasets evaluation and hydrological modeling [7]. The meteorological stations tend
to be dense in plain areas and sparse in high-altitude mountainous areas. In this study,
there is only one station available for the hydrological modeling within the upstream basin
boundary, which may lead to the underestimation of the precipitation input compared with
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the actual value [66]. Consequently, the evenly distributed RG station could be used for
dataset correction and hydrological modeling in the follow-up study; thus the processing of
the winter input data will be a challenge, and a discussion of the rationality of the model’s
parameters is necessary.

5. Conclusions

This study evaluated the performances of six gauge-adjusted version satellite precipita-
tion datasets, including PERSIANN-CDR_V1_R1, CHIRPS_2.0, CMORPH_IFlOODS_V1.0,
GPM_IMERGF_V06, GSMaP_V6, and TMPA_3B42_daily_V7 at a watershed scale, regard-
ing a typical arid land watershed of Central Asia. The research work mainly includes the
evaluation of the datasets’ accuracy and the hydrological model’s applicability, and the
findings of this research can be summarized as follows:

1. The GPM was the best dataset in the daily scale rainfall evaluation. It had the
best correlation with observed data, minimum RMSE, slight underestimation, and
a reasonably good rainfall detection ability. The CHIRPS and CMORPH performed
relatively poorly on a daily scale. Among them, CHIRPS had the worst rainfall
detection skill, while CMORPH excessively overestimated the rainfall;

2. The CDR was the best dataset in the monthly scale rainfall evaluation, with excellent
agreement with observed data (ranked first in CC, RMSE, ME, and PBIAS) and a
pretty good rainfall detection ability. In contrast, the CMORPH performed deficiently
due to its remaining overestimation. Meanwhile, the TMPA had many unsatisfying
indexes (rank 6th in CC, rank 5th in RMSE and PBIAS) and performed ineffectively in
monthly rainfall estimation compared to others;

3. In wetter regions of the basin, all six datasets tended to perform better. The spatial
distribution of CDR and GPM was the most uniform, among which the CDR had the
smallest error value and error differentiation in different locations of the basin, and
the GPM performed well in correlation with gauge stations in the whole basin;

4. In the multi-year evaluation, the correlation between each dataset and the NW stations
was improving with time, especially during the rainy season (from April to October);
among them, the GPM had the largest increase. For the evaluation within the year,
the CDR and CHIRPS were the two best datasets in the winter performance, and all
datasets tended to perform better in the summer;

5. In the application of the hydrological model, the CDR-driven model had the most
outstanding performance out of the raw satellite datasets, and was even better than
the observed data-driven model in some years. In the rest of the other datasets, the
CHIRPS and TMPA overestimated the streamflow in their driven models. At the
same time, the GPM and GSMaP underestimated the streamflow in their driven
models, and the CMORPH was the only dataset that was close to being qualified as
“satisfactory”.

6. After a simple correction, those datasets with large deviations could get good results in
terms of hydrological modeling. Taking everything into account, satellite precipitation
datasets can serve as an alternative for the related hydrological research in data-scarce
areas.
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Abstract: Using the Global Land Surface Satellite (GLASS) leaf area index (LAI), the actual evapo-
transpiration (ETa) and available water resources in the Mekong River Basin were estimated with
the Remote Sensing-Based Vegetation Interface Processes Model (VIP-RS). The relative contributions
of climate variables and vegetation greening to ETa were estimated with numerical experiments.
The results show that the average ETa in the entire basin increased at a rate of 1.16 mm year−2 from
1980 to 2012 (36.7% of the area met the 95% significance level). Vegetation greening contributed
54.1% of the annual ETa trend, slightly higher than that of climate change. The contributions of air
temperature, precipitation and the LAI were positive, whereas contributions of solar radiation and
vapor pressure were negative. The effects of water supply and energy availability were equivalent on
the variation of ETa throughout most of the basin, except the upper reach and downstream Mekong
Delta. In the upper reach, climate warming played a critical role in the ETa variability, while the
warming effect was offset by reduced solar radiation in the Mekong Delta (an energy-limited region).
For the entire basin, the available water resources showed an increasing trend due to intensified
precipitation; however, in downstream areas, additional pressure on available water resources is ex-
erted due to cropland expansion with enhanced agricultural water consumption. The results provide
scientific basis for practices of integrated catchment management and water resources allocation.

Keywords: actual evapotranspiration; available water resources; climate change; vegetation greening;
VIP-RS model

1. Introduction

As a result of the impacts of global warming and human activities, the global water
cycle has been intensified, leading to changes in global precipitation [1], evapotranspiration
(ET) [2,3] and runoff [4]. More than half of the global absorbed solar radiation is used
for ET, which reintroduces approximately 60% of land surface precipitation back into
the atmosphere [5]. However, the mechanisms responsible for the variations in ET are
spatially heterogeneous; thus, investigating ET variations and their underlying mecha-
nisms can improve our ability to simulate land surface processes and predict future water
cycle alterations.

Terrestrial ET variations are impacted by changes in the atmospheric evaporative
demand (AED), water supply and physiological properties of vegetation. Observational
and experimental evidence has shown that climate factors, including precipitation, so-
lar radiation, temperature and wind speed, control both the AED and the water supply for
terrestrial ET. Research has found that in humid areas, long-term ET variations are driven
primarily by changes in incident solar radiation, whereas ET variations in arid areas are
controlled predominantly by the soil water supply, which is linked to precipitation [6].
In addition to climate factors, elevated atmospheric CO2 concentrations can also induce
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changes in ET by stimulating the photosynthetic rate, thereby increasing plant growth and
leaf areas, which accelerates the rate of ET [7]. Due to increasing CO2 fertilization, nitrogen
deposition, climate change and land-use change, the global leaf area index (LAI) increased
significantly by 8% during 1982–2011 [8], which had a significant impact on the intensifi-
cation of terrestrial ET. Numerical modeling has played an important role in simulating
terrestrial ET [9,10], and provides a possible solution for quantifying the contributions
of different environmental factors on ET [9]. For example, with a land surface model,
Shi et al. [10] and Mao et al. [11] pointed out that spatio-temporal variations in ET were
determined mainly by climate variables. However, when a remote-sensing ET model with
observation-based environmental drivers was applied, it was found that more than half of
the accelerated global terrestrial ET was caused by vegetation greening [9], which suggests
that the attribution of regional terrestrial ET trends without considering vegetation dy-
namics is improper. Considering the climate changes and vegetation greening on regional
ET and available water supply are still unclear, based on the remote sensed LAI data,
the contributions of climate control and vegetation greening to ETa can be quantified with
an ecological model.

The Mekong River Basin (MRB), which is rich in natural resources, spans large parts
of continental Southeast Asia. However, under the impacts of climate change and rapid
socioeconomic development over recent decades, the natural resources within the MRB
have faced increasing pressure. Since the 1950s, the MRB has been characterized by signifi-
cant increases in the temperature and spatial-temporal variation of precipitation [12,13].
The hydrological cycle has therefore intensified, resulting in changes in the rates and
patterns of ET and river flows [14,15]. Differences in flow variability were found between
the upper and lower MRB because floods mostly originate from rainfall and snowmelt in
the upper MRB [16], while the hydrology of the lower Mekong is controlled by the west-
ern North Pacific monsoon [17]. Moreover, a significant positive correlation was found
between discharge, precipitation and snow cover in the upper MRB, especially during the
dry season [18]. In contrast, in the lower MRB, changes in discharge are driven primarily
by the variation in the Asian summer monsoon [17]. In addition, rapid economic develop-
ment, population growth and widespread agricultural deforestation have created pressures
leading to competition for water [19]. Land-use changes, which manifest mainly as transfor-
mation into cropland, have increased the consumption of water through irrigation [20,21]
and affected the land surface roughness and albedo, thereby altering both the hydrologic
processes [22] and the energy balance at the surface [23,24]. Therefore, although the av-
erage variations in ET and runoff at the basin scale are relatively small, the changes in
these parameters in the highly irrigated areas of the lower MRB are significant due to
the expansion of cropland and additional irrigation [20,25].

According to the results of climate modeling, the monsoon patterns in the MRB will
change, resulting in significant increases in the average precipitation and temperature
over the basin [26]. However, it remains unclear how these climate changes and the over-
lapping effects of land-use change will alter the regional ET and available water supply.
In this study, the long-term actual ET (ETa) in the MRB was simulated by Remote Sensing-
Based Vegetation Interface Processes Model, and we aim to (1) explore the trends and
variability of ETa and the availability of water resources in recent decades and (2) quantify
the contributions of climate control and vegetation greening to ETa. This paper is orga-
nized as follows, Section 2 describes the datasets and attribution methods using VIP-RS
model, while Section 3 highlights the results for the ETa variation and identifies relative
contributions of climate variables and vegetation greening to ETa. Finally, Sections 4 and 5
delve into the discussions and conclusions of this work.

2. Materials and Methods
2.1. Study Region

As the longest river in Southeast Asia, the Mekong River (4800 km) passes through
six countries and boasts a drainage area of 805,604 km2. As a result of the Asian monsoon,
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the mean annual precipitation in the MRB shows significant spatiotemporal heterogeneity.
More than 90% of annual precipitation falls during the rainy season, which spans from
mid-May to early October. The highest annual rainfall occurs in the mountainous regions
of Laos, which receives mean annual precipitation of 3200 mm, whereas the lowest annual
rainfall reaches approximately 1000 mm in northeastern Thailand [27]. The land cover
types in the upper catchment are primarily tundra and grassland, whereas farther down-
stream, the natural vegetation is dominated by evergreen broadleaved forest; in the lower
catchment and Mekong Delta, cropland is the major land-use type (Figure 1).

Figure 1. (a) Location, (b) elevation, (c) land-use/cover type and (d) soil texture in the Mekong River
Basin (MRB) (WB: Water body, EBF: Evergreen broadleaf forest, MF: Mixed forest, SV: Savanna, GL:
Grassland, WL: Wetland, CL: Cropland, Urb: Urban and built-up, CL/NV: Cropland and natural
vegetation mosaic).

2.2. Data
2.2.1. Meteorological Data

Meteorological data, including temperature, surface air pressure, longwave radiation,
shortwave radiation, precipitation, relative humidity and wind speed, were collected on
a daily scale from 1980 to 2012. The meteorological data were provided by the Inter-
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Sectoral Impact Model Intercomparison Project (ISIMIP) [28,29], with a spatial resolution
of 0.5 × 0.5◦. The meteorological data used in this study were resampled to 5 × 5 km with
the bilinear resampling method. The air temperature, precipitation and wind speed data
were resampled at sea level, and then were corrected to the real elevation based on a digital
elevation model (DEM) with a 5 km resolution after bilinear resampling (Appendix A).

2.2.2. Land Surface Characterization Data

The land surface characterization data included topographic maps, land-use maps and
soil texture maps. DEM data were obtained from the GTOPO30 global DEM (https://lta.cr.
usgs.gov/GTOPO30) and resampled to a 5 km resolution with cubic Lagrange interpolation.
Land cover data (MOD12Q1) were downloaded from the Moderate Resolution Imaging
Spectroradiometer (MODIS) website (http://modis.gsfc.nasa.gov/data/) with a spatial
resolution of 500 m and a temporal resolution of one year. Land cover data from 2000 to
2012 were used in this study and were resampled to 5 × 5 km with the majority resampling
method [30]. The soil texture map was obtained from the Harmonized World Soil Database
v 1.2 provided by the Food and Agriculture Organization of the United Nations.

2.2.3. Remote Sensing Data

The remote sensing data included the Global Land Surface Satellite (GLASS) LAI
product, Global Land Evaporation Amsterdam Model (GLEAM) ET data and Gravity
Recovery and Climate Experiment (GRACE) data. Based on general regression neural
networks, the GLASS LAI product (http://glass-product.bnu.edu.cn/), which has a spatial
resolution of 0.05◦ and a temporal resolution of 8 days, was retrieved from MODIS and
Advanced Very-High-Resolution Radiometer (AVHRR) land surface data. Compared
with MODIS LAI and CYCLOPES LAI data, the GLASS LAI product is spatially more
complete and temporally more continuous [31]. Monthly actual ET data from GLEAM v3.2
(https://www.gleam.eu/), which have a spatial resolution of 0.25 × 0.25◦, were used to
validate the ETa results. Based on the function between the soil moisture stress and potential
evaporation calculated with the Priestley–Taylor equation, four evaporation components
can be obtained from GLEAM, namely, interception loss, bare soil evaporation, plant
transpiration and evaporation from water bodies and regions covered by ice and/or snow.
With the bilinear resampling method, the GLASS LAI data and actual ET data from GLEAM
from 2000 to 2012 were resampled to 5 × 5 km. In addition to the GLEAM ETa, monthly
ETa data calculated from the water balance equation were also used to validate the ETa
results at the basin scale:

ETa = P − R − ds
dt

(1)

where P and R are the precipitation and the runoff respectively, and ds/dt is the derivative
of the terrestrial water storage anomaly (TWSA) with respect to time.

The TWSA can be reflected by GRACE RL05 data, which can be retrieved from
the website of the Jet Propulsion Laboratory, California Institute of Technology (https://
grace.jpl.nasa.gov/data/get-data/monthly-mass-grids-land/). After removing the effects
of the atmosphere, oceans and tides, monthly level-2 GRACE RL05 data from 2003 to
2012 were used in this study. To restore signal losses arising from the sampling and post
processing of GRACE data, the data were recorrected with a scaling factor approach [32],
and the data gaps were filled using cubic Lagrange interpolation.

The runoff data were provided by the Global Runoff Data Centre (https://www.bafg.
de/GRDC/EN/02_srvcs/21_tmsrs/riverdischarge_node.html).

2.3. Method
2.3.1. Model Introduction

ETa was simulated by the Remote Sensing-Based Vegetation Interface Processes
(VIP-RS) model [33,34]. The total ETa is composed of evaporation due to canopy in-
terception (Ei), transpiration from vegetation (Ec) and soil evaporation (Es). Transpiration
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(Ec) is estimated based on potential transpiration (Ecp) and is limited by water conditions
(fw) and temperature (ft), as follows:

Ec = Ecp fw ft (2)

where fw is the stress function of the atmospheric water vapor pressure deficit calculated
using the algorithms proposed by Mu et al. [35] and ft is the stress function of the air
temperature calculated using the algorithms proposed by Zhang et al. [36]. Ecp is calculated
using the Penman-Monteith (PM) equation as follows:

Ecp =
1
λ

(
∆Rnc+ f cρcpD/ra

)
/
(

∆+γη f CO2

)
(3)

where Rnc is the net radiation absorbed by the canopy, ∆ represents the slope of the satu-
rated vapor pressure curve versus air temperature,γ, ρ, cp and D represent the psychro-
metric constant (hPa ◦C−1), air density (kg m−3), specific heat capacity of air (J kg−1 ◦C−1)
and vapor pressure deficit (hPa), respectively. Additionally, η is the ratio of the minimum
stomatal resistance of a natural functional plant type to that of a reference crop, λ is the la-
tent heat of the vaporization of water (J kg−1) and ra is the aerodynamic resistance between
the canopy and the reference height (s m−1). fc is the fractional vegetation cover, and fCO2
is the stress function of atmospheric CO2 [37]. These two factors are calculated as follows:

fCO2 =
1

(−0.001CO2 + 1.35)
(4)

fc = 1 −
(

VImax − VI
VImax − VImin

)β

(5)

VI = VImin +
fPAR (VI max − VImin)

fPARmax − f PARmin

(6)

fPAR = 1 − e[
LAI

LAImax ln(1 − f PARmax )] (7)

where CO2 is the atmospheric CO2 concentration (ppm), β is an empirical constant, being
0.6 to 1.2, taken here as 0.7 [38], and VImax and VImin represent the vegetation index values
under full vegetation cover and bare soil conditions, respectively (set to 0.95 and 0.01).
Additionally, fPARmax and fPARmax are the maximum and minimum fPAR corresponding to
VImax and VImin respectively, and are set to 0.95 and 0.001. LAImax is the maximum LAI dur-
ing the growing period (assumed to be 6.0) [39]; the LAI, which influences the partitioning
of energy between the soil and canopy, is retrieved from remote sensing data.

The evaporation due to canopy interception (Ei) equals the potential evaporation
from the wetted surface. Soil evaporation (Es) is the minimum value of surface potential
evaporation (Esp) and soil moisture exfiltration (Eex) [40]:

Es = min
(
Esp, Eex

)
(8)

Esp =
1
λ

(
∆(Rns − G) + (1 − f c)ρcpD/ras

)
/(∆ + γ) (9)

G = Rnc × [Γc + (1 − f c) × (Γs − Γc)] (10)

where Rns is the net radiation absorbed by the soil surface, G is the soil heat flux (MJ d−1) [41],
ras is the aerodynamic resistance between the reference height and the soil surface (s m−1),
Γc (set as 0.05) [42] and Γs (set as 0.315) [43] are the ratios of G to Rnc for full vegetation
canopy and bare soil, respectively.
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2.3.2. Model Implementation and Verification

Driven by the daily meteorological data (average, maximum and minimum air temper-
atures, atmospheric pressure, humidity, wind speed, precipitation, longwave downwelling
radiation and shortwave downwelling radiation), the daily ETa from 1980 to 2012 was
simulated by the VIP-RS model at a spatial resolution of 5 km. As the initial condition
of soil moisture was not available, the spatial pattern of soil moisture after one-year run
was used as the initial state [44], and daily ETa from 1981 to 2012 were used for the subse-
quent analysis. The tendency of annual ETa and its significances were explored based on
the Theil-Sen estimator and Mann–Kendall (M-K) test.

The simulated monthly ETa was consistent with the actual ET from GLEAM (Figure 2a)
and yielded an R2 value of 0.84. The mean bias and root mean square error (RMSE) between
the simulated and GLEAM ETa were 4.5 mm month−1 and 8.17 mm month−1, respectively.
At annual scale, the GRACE-derived ETa and simulated ETa showed acceptable consistency
with an R2 of 0.55. However, the GRACE-derived ETa was 25.72 mm year−1 lower than
the simulated ETa, indicating that the VIP-RS model slightly overestimated the yearly ETa
in the MRB.

Figure 2. Comparisons of the simulated ETa (actual evapotranspiration) with (a) the GLEAM ETa and (b) water balance-
derived ETa.

2.3.3. Attribution of ETa to Climate Change

The factor separation methodology [45] is a popular technique for evaluating the con-
tribution of each input factor to a chosen response variable. To quantitatively distinguish
the effects of climate change, carbon dioxide enhancement, vegetation greening and their
interactions on the ETa trend, thirty simulation experiments were designed based on the fac-
tor separation method. In each simulation experiment, one or more variables were varied
according to the observation records, while the other variables were varied according to
the control conditions [46]. The control simulation (f(con)) is driven by the mean climatol-
ogy, average atmospheric CO2 concentration and vegetation dynamics from 1982 to 1990.
The ETa result from the control simulation is the expected value under the average climate
and vegetation conditions of the 1980s. In the control simulation, the CO2 concentration
is the average CO2 value from 1982 to 1990. Except for precipitation, the climate drivers
and LAI in the control simulation are the multiyear means for individual days (expressed
as Julian days) from 1982 to 1990. To eliminate the impact of variation in rainfall patterns
on the resulting ETa, the precipitation in each year (1982–1990) is used in the control sim-
ulation, and the final ETa result from the control simulation is the average value of each
year. The thirty performed simulation experiments included one control simulation, seven
simulations (f(var1)), in which only one of the seven factors was varied each time, and
twenty-one simulations (f(var1_var2)), in which two of the seven factors were varied for
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each model run (Appendix B, Table A1). Simulation experiment f(var1) denotes the sim-
ulation driven by the variable var1, which was varied according to the ISIMIP records,
and the other variables were set to the control conditions. Similarly, simulation experiment
f(var1_var2) is the simulation driven by the variables var1 and var2, which were varied
according to the ISIMIP records, while the other variables were set to the control condi-
tions. The seven factors used in the simulation experiments are temperature, precipitation,
net radiation, vapor pressure, wind speed, LAI and atmospheric CO2 concentration.

The main effect of each factor on the ETa trend is the difference between the ETa result
from the simulation with only one variable factor and the result from the control simulation.
For example, the main effects of variable one (var1) and variable two (var2) on the ETa
trend are as follows:

E(var1) = f (var1) − f (con) (11)

E(var2) = f (var2) − f (con) (12)

The two-factor interactive effect of variables one (var1) and two (var2) is calculated
by subtracting the main effects of var1 and var2 from the combined effect of var1 plus var2.
For example, the two-factor interactive effect of var1 and var2 (E(var1_var2)) is expressed as:

E(var1_var2) = f (var1_var2) − f (con) − E(var1) − E(var2) (13)

where E(var1) and E(var2) are the effects of var1 and var2 on the ETa trend, respectively.
The land-use transfer matrix, which is used to analyze spatial-temporal changes

in land use, is built with land-use data (with a spatial resolution of 500 m) from 2000
and 2012. To assess the contributions of land-use changes to ETa, the control simula-
tion (f(land_con)) was driven by the land-use data from 2000. For certain land-use types,
simulation f(land_type1) was driven by one land-use type that was varied according to
the records from 2010, while the other land-use types remained unchanged according to
the year 2000. The effect of a change in a particular land-use type (land_type1) on the ETa
trend is the difference between f (land_type1) and f (land_con). Considering that ETa was
simulated at a 5 km resolution and that the land-use data have a spatial resolution of 500 m,
to assess the contributions of land-use changes to ETa, the ETa value in each sub-grid and
the contributions of different sub-grid-scale land-use types to the grid box average were
calculated (Equation (14)) to reduce the error in the ETa simulation:

ETa = ∑
i=1,9

(ET ai × Vi) (14)

where ETai is the ETa value in each sub-grid (5 km resolution) with land-use type i (Figure 1)
and Vi is the proportion of land-use type i in each sub-grid with a 5 km resolution. Vi is
obtained from land-use data with a spatial resolution of 500 m.

3. Results
3.1. Spatial-Temporal Variation of Actual ET

ETa is principally controlled by the AED (represented by ETp) and precipitation.
The annual ETa in the MRB showed remarkable spatial heterogeneity with an average
value of 896 ± 34 mm year−1 and increased gradually from north to south with a range of
300 to 2000 mm year−1. From 1982 to 2012, 70% of the study area showed an increasing
ETa trend with an average increase rate of 1.16 mm year−2.

In the upper basin, where the precipitation is less than 800 mm year−1 and the AED is
weak, the annual ETa is less than 400 mm year−1 (Figure 3). Due to rising temperatures,
glacial melting in the upper basin has accelerated, which has been accompanied by in-
creased precipitation, and the annual ETa has shown a significant increasing trend over
more than 13.7% of the study area (p < 0.01, Figure 4c).

In the central and lower reaches of the basin, the situation is relatively complex. In ever-
green broadleaf forest, which have abundant rainfall (annual precipitation > 1700 mm year−1),
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the spatial pattern of the average annual ETa is highly consistent with the average annual
ETp (Figure 3), whereas in cropland/natural vegetation mosaic areas, which have an aver-
age annual precipitation of less than 1200 mm year−1, approximately 75% of the rainfall
returns to the atmosphere through evaporation; as a result, the spatial pattern of ETa is
similar to that of precipitation. A significant positive temporal trend of ETa was found
in the Mekong Delta and the southeastern basin (Figure 4a), where precipitation and
LAI display increasing trends. Significant positive trends of ETa were found in 36.7%
of the MRB (p < 0.05), most of which corresponded to savanna and cropland with high
increasing rate of annual ETa (Figure 4c). The highest increasing rate was found in cropland
(2.53 mm year−2), followed by grassland (1.8 mm year−2), savanna (1.68 mm year−2) and
evergreen broadleaf forest (1.25 mm year−2) (Figure 4b). Approximately 16.7% of the area
of the MRB had significant negative ETa trends, and most of this area corresponded to
mixed forest (with an average decreasing rate of 1.15 mm year−2) and cropland/natural
vegetation mosaic, because solar radiation and precipitation both showed decreasing trends
in these regions (Appendix B, Figure A1).

Figure 3. Spatial patterns of annual average (a) actual evapotranspiration, (b) precipitation and (c)
potential evapotranspiration over Mekong River Basin for the period of 1981 to 2012.

Figure 4. (a) Spatial patterns of the temporal variations of average actual evapotranspiration,
(b) average change rate of actual evapotranspiration in different vegetation types, and (c) prob-
ability distribution function of significant levels in the actual evapotranspiration trend.
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The spatial pattern of annual available water resources (AWR, the difference between
precipitation and ETa) variation is highly consistent with that of precipitation, as shown in
Figure 5 and Appendix B, Figure A1. From 1981 to 2012, the annual AWR in approximately
23.6% of the grids throughout the MRB showed significant positive trends, whereas 6.4%
of the grids showed significantly negative trends. The grids with positive trends were
distributed mainly in the evergreen broadleaf forest of the central reach of the basin and the
savanna of the southeastern basin (Figure 5). For the entire basin, the average increasing
rate of AWR was about 0.32% year−1. The largest increasing rate was found in evergreen
broadleaf forest (approximately 0.88% year−1), followed by that in savanna (0.56% year−1),
cropland and natural vegetation mosaic (0.41% year−1) and grassland (0.23% year−1).
The grids with negative trends were distributed primarily in the mixed forest of the upper
basin and the cropland of the Mekong Delta. The precipitation decreased significantly in
the mixed forest, which resulted in a decrease in the AWR (Figure 5). Although the pre-
cipitation showed a minor increasing trend in the paddy fields of the Mekong Delta
(Appendix B, Figure A1), the ETa increased sharply (Figure 4), resulting in a significant
decrease in the AWR. This finding implies that additional water is needed for agricultural
development in the Mekong Delta. For the entire basin, the correlation coefficient between
the AWR anomaly and precipitation anomaly was 0.96, which is much higher than that
between the AWR anomaly and ETa anomaly (0.14) (Figure 6), demonstrating that water
consumption has a minor effect on the regional variation of AWR. Thus, the inter-annual
variation of AWR is affected mainly by the water supply (precipitation).

Figure 5. Spatial patterns of the temporal variation of annual average available water resources
(AWR) for the period of 1981 to 2012.
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Figure 6. Inter-annual variations of anomalies of (a) the actual ET (ETa) anomaly, potential ET (ETp)
anomaly and precipitation (P) anomaly, and (b) available water resources (AWR) anomaly from 1981
to 2012.

3.2. Attribution of Actual ET
3.2.1. Attribution of Actual ET Change to Climate Change and Vegetation Greening

The inter-annual variation of ETa was mainly influenced by changes in precipitation,
solar radiation, temperature, vapor pressure, atmospheric CO2 and the LAI (Figure 7).
Although increasing atmospheric CO2 concentrations reduced stomatal conductance,
which could have been responsible for the decreased ETa, the effect of CO2 fertilization
on ETa was very weak (0.0018% year−1), indicating that climate change and vegetation
greening were the dominant factors driving the terrestrial ETa variation.

From 1981 to 2012, except for net radiation, all the climate factors showed increas-
ing trends in the MRB. The air temperature showed a significant increasing trend in all
land-use types with an average increasing rate of 0.23 ◦C per decade. Accompanied by
precipitation increasing (Appendix B, Figure A1), a warming–wetting trend was found
throughout the MRB, which is beneficial to vegetation growth in most parts of the MRB.
Consequently, the LAI showed an increasing trend in all land-use types except mixed forest
(−0.17% year−1). The highest LAI increasing rate was found in farmland (1.42% year−1),
followed by grassland (0.96% year−1), savanna (0.68% year−1) and evergreen broadleaf
forest (0.49% year−1). Increases in precipitation, temperature and the LAI had positive
effects on the ETa trend that counteracted the negative effects caused by decreases in solar
radiation and increases in vapor pressure. For the entire basin, the relative contributions
of temperature, precipitation, solar radiation, vapor pressure and LAI to the ETa trend
were 43.7%, 21.8%, −16.8%, −2.8% and 54.1%, respectively (Figure 7). Precipitation was
the dominant driving factor affecting ETa in approximately 42% of the grids in the MRB,
and most of these grids were located in grassland, evergreen broadleaf forest and savanna
areas. The LAI had a significant positive effect on the ETa trend in the grassland of the up-
per basin, the savanna of the central basin and the cropland of the Mekong Delta. Solar
radiation and temperature were the dominant factors driving the ETa variation in approx-
imately 35% of the grids throughout the MRB, and most of these grids were located in
cropland, grassland and savanna (Figure 8).
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Figure 7. Contributions of changes in climate variables, the atmospheric CO2 concentration and
the leaf area index (LAI) to the ETa variation and their two-factor interactive effects (Net: total effect
of all the variables, C: atmospheric CO2 concentration, T: temperature, P: precipitation, R: radiation,
H: vapor pressure, W: wind speed, Sum_EF: sum of all the two-factor interactive effects of variables).

Figure 8. Spatial patterns of the relative contributions of the variation of (a) LAI, (b) temperature,
(c) precipitation, (d) radiation, (e) vapor pressure, (f) wind speed, (g) atmospheric CO2 concentration
variation to ETa and (h) probability distribution function of relative contributions of the main climatic
variables and LAI changes to ETa trends in Mekong River Basin.

Variations in actual ET are principally controlled by variations in the water sup-
ply and AED. McVicar [47] divided the environment into three types: energy-limited
areas (ETp/p < 0.76), “equitant” areas (0.76 < ETp/p < 1.35), and water-limited areas
(ETp/p > 1.35). In the grassland of the upper basin (ETp/p = 1.37), precipitation is the
dominant factor affecting the observed ETa variation, but increasing temperatures also play
an important role (Figure 9). Glacial meltwater is an important water source in the upper
basin. Temperature increasing not only improved the thermal conditions for vegetation
growth but also accelerated glacial melting, which may provide more water for vegetation
growth. The negative effect of ETa on runoff was offset by the positive effect of glacial
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meltwater in the Lancang River [48]. Therefore, although the grassland in the upper basin
is a water-limited region (precipitation and the LAI are the principal driving factors in
approximately 68% of grassland areas), the relative contribution of temperature varied
from 5% to about 25% in more than 65% of the grassland grids (Figure 9).

In the central and lower reaches of the basin, the positive effect of increasing tem-
perature on ETa was offset by the negative effect of reduced solar radiation, especially
in evergreen broadleaf forest (ETp/p = 0.68), mixed forest (ETp/p = 0.83) and savanna
(ETp/p = 0.76) (Figure 9). In more than 75% of grids of the abovementioned vegetation
types, the relative contributions of precipitation varied from 25% to about 70%, while the rel-
ative contribution of temperature and solar radiation varied from 5% to about 65% and
from −25% to about 5%, demonstrating that the water supply (precipitation) and energy
(temperature and solar radiation) have equivalent impacts on the ETa variation. Because
irrigation is a major source of water in cropland (ETp/p = 0.73) and cropland/natural
vegetation mosaic (ETp/p = 0.69), the relative contribution of precipitation to ETa variation
is weak (within a range of ±15% in more than 85% of the grids). Thus, temperature and
solar radiation are the principal driving factors in more than 80% of the grids, indicating
that cropland and cropland/natural vegetation mosaics are energy-limited regions.

Figure 9. Probability distribution function of relative contributions of climatic variables and LAI
changes to ETa trends in different vegetation types.

3.2.2. Contribution of Land-Use Changes to ETa

Since 2000, the MRB has been characterized by the expansion of cropland and crop-
land/natural vegetation mosaic. In the central basin, the increase in cropland was mainly
attributed to the conversion of cropland/natural vegetation mosaic, and the loss of crop-
land/natural vegetation mosaic was compensated by the conversion of savanna, which
resulted in a decrease in savanna (Table 1). In the Mekong Delta, the increase in cropland
benefited from the conversion of wetlands and water bodies. Another noticeable change
is that approximately 18.55% and 16.38% of mixed forest were converted into evergreen
broadleaf forest and savanna respectively, which resulted in a decrease in mixed forest.

For the entire basin, land-use change enhanced the increase of ETa by 0.014% year−1,
53.24% and 29.34% of which were attributed to the conversion of mixed forest and savanna
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respectively, into other land-use types (Figure 10). Compared with the effects of climate
change and vegetation greening on ETa variation (0.15% year−1), the relative contribution
of land-use change on ETa variation was only 9.3%, indicating that climate change and
vegetation greening are the principal factors affecting the regional ETa variation. However,
the expansion of cropland in the Mekong Delta enhanced the ETa increase by 15%, demon-
strating that land-use change notably affects the water balance in this region.

Table 1. Land-use transformation matrix (%).

WB EBF MF SV GL WL CL Urb CL/NV

WB 75.24 2.25 3.67 0.97 0.48 5.80 9.50 0.01 2.08
EBF 0.04 86.81 0.68 7.73 0.13 0.34 0.30 0.00 3.95
MF 0.27 18.55 55.67 16.38 3.30 0.81 1.27 0.00 3.76
SV 0.12 8.37 6.46 53.99 2.23 0.68 2.29 0.00 25.85
GL 0.19 0.16 1.53 2.30 88.25 1.28 2.14 0.00 4.14
WL 1.70 11.14 4.97 4.78 0.62 60.26 11.82 0.11 4.60
CL 0.10 1.18 1.30 2.75 3.45 3.84 54.67 0.00 32.71
Urb 0.06 0.00 0.00 0.00 0.00 0.66 0.00 99.28 0.00

CL/NV 0.08 5.42 0.94 6.85 1.52 0.70 13.41 0.00 71.07

WB: Water body, EBF: Evergreen broadleaf forest, MF: Mixed forest, SV: Savanna, WL: Wetland, GL: Grassland, CL: Cropland, Urb: Urban
and built-up, CL/NV: Cropland and natural vegetation mosaic.

Figure 10. Effects of land-use changes on the ETa trend (Net: total effect of all the land-use changes).

4. Discussion
4.1. Impact of Climate Change and Vegetation Greening on ETa

In the upper MRB, ETa is limited by the soil moisture supply. Although the increased
rate of precipitation in the upper basin is lower than that in the lower basin (Figure A1),
ETa is sensitive to small changes in precipitation in water-limited regions. In equitant
regions, such as evergreen broadleaf forest, the annual precipitation is larger than that
in water-limited regions. ETa is not totally limited by the soil moisture supply; thus,
the sensitivity and relative contribution of precipitation decline. Similarly, because soil
moisture in the cropland of the Mekong Delta is supplied by both precipitation and
irrigation (Figure 9), ETa is insensitive to variations in precipitation, while variations in air
temperature and solar radiation constitute the predominant driving forces for potential ET,
and hence ETa. Therefore, precipitation is responsible for the observed variation in ETa
over arid and semiarid regions, whereas air temperature and incident solar radiation are
more important over humid regions [6,49,50].

For the entire basin, vegetation greening provides a greater contribution (54.1%) to
the variation in ETa than climate change does. Under enhanced CO2 concentrations, leaf
stomatal conductance will decrease, and increasing atmospheric CO2 concentrations could
be responsible for decreases in ETa. Although the direct effect of CO2 fertilization on ETa
is weak (0.02 mm year−1 in MRB and 0.05 mm year−1 at the global scale) [4], it must be
noted that CO2 fertilization explains 70% of the global observed greening trend [51], and its
negative effect may be entirely compensated by increases in leaf area. From 1981 to 2011,
approximately 55% ± 25% of the observed global terrestrial ETa increase was caused by
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vegetation greening [52]. The same phenomenon was also found in MRB, increases in
the LAI are associated with the intensification of terrestrial ETa (Figure 7). Considering
that the greening of the Earth is projected to continue worldwide during the 21st century
in most Coupled Model Intercomparison Project Phase 5 (CMIP5) Earth system models
involved in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment
Report (AR5) [53], the water cycle will continue to be accelerated by greening-induced
variations in ETa.

4.2. Variation in Available Water Resources

As the Mekong River crosses several international boundaries, the water resources
of the downstream countries are strongly connected with those of the upstream countries.
The upper basin flows are affected mainly by snowmelt and precipitation [17], the negative
effect of ETa on runoff was offset by the positive effect of glacial meltwater in the upper
basin (Lancang River in China) [54]. Because the AWR are calculated herein as the dif-
ference between precipitation and ETa, which ignores the contribution from snowmelt,
the AWR in the upper basin were found to exhibit a minor increasing trend (Figure 5).
Although the AWR increased in the upper basin, the maximum flows at the Chiang Saen
gauging station, which is located in the upper MRB, showed a decreasing trend, and the de-
creasing rate of flow was accelerated due to the completion of dams in the upstream
region [55]. Other studies have further argued that climate change is not the main mecha-
nism responsible for the variation in AWR in the Mekong River; instead, the development
of dams on the Lancang River may be the major influencing factor, especially in the dry
season and upstream region [55,56]. Therefore, although the AWR increased in the upper
basin, the conditions of the actual water resources both upstream and downstream remain
somewhat unclear.

In the central basin and Mekong Delta, cropland expansion has placed great pressure
on the AWR; for example, a dramatic increase in ETa and a significant decrease in AWR were
found in the Mekong Delta and southeastern Thailand (Figures 4 and 5). In the Mekong
Delta, the regional population grew by nearly 45% from 1980 to 2000 [57]. Additionally,
rice cropping systems have undergone remarkable changes from single-cropping to double-
or triple-cropping systems [58]. Rapid population growth and agricultural development
have placed additional pressures on cropland and water for food production. In Lao,
Thailand, Cambodia and the central highlands of Vietnam, rain-fed rice is the primary
crop [25], and irrigation is intended mainly for rice during the rainy season due to its low
water requirements [59]. Due to changes in the climate and dam construction, changes
in seasonal flow patterns have strongly influenced land-use patterns [1]. Fortunately,
a significant increase in dry-season flows and a decrease in wet-season flows occurred
when the Xiaowan dam (constructed in 2010) and Nuozhadu dam (constructed in 2014)
were erected in the upper reaches of the Mekong River (Lancang River) [54]. Increased dry-
season flows may benefit agricultural irrigation downstream, and decreased wet-season
flows may benefit downstream flood and drought management.

5. Conclusions

The spatial-temporal patterns of ETa and AWR in the MRB were estimated from
1981 to 2012 using the VIP-RS model. The contributions of climate change and vegetation
greening to the ETa trends were quantitatively determined with 30 model experiments.
Due to vegetation greening and increasing temperature and precipitation, ETa showed
an increasing trend at a rate of 1.16 mm year−2 from 1981 to 2012. In most of the basin,
the water and energy had equivalent impacts on the ETa trends. Although the AED
increased, the AWR showed an increasing trend due to increasing precipitation. In the
paddy fields of the Mekong Delta region, the ETa increased significantly, resulting in
additional pressure on agricultural development. In the central basin where rain-fed rice is
planted, the AWR is decreasing following the reduced precipitation. Therefore, the MRB
may face water shortages in the dry season.
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Appendix A

The air temperature was corrected to sea level as follows:

Tsl = T + 22 +
0.68 × (DEM − 5000)

100
(DEM > 5000) (A1)

Tsl = T +
0.44 × DEM

100
(DEM ≤ 5000) (A2)

where Tsl (◦C) is the air temperature at sea level, and T (◦C) is the air temperature at real
elevation. If the precipitation is higher than 3 mm day−1, it was corrected to sea level
as follows. If the precipitation is lower than 3 mm day−1, it was directly resampled to
5 × 5 km with the bilinear resampling method.

Ps l = P − 0.055 × DEM
100

(P ≥ 3) (A3)

where Psl (mm day−1) is the precipitation at sea level, and P (mm/day) is the precipitation
at real elevation. The wind speed was corrected to the value at the 2 m level as follows:

Wsl = W × 4.87
log10(67.8 × DEM−5.42)

(A4)

where Wsl (m s−1) is the wind speed at 2 m, and W (m s−1) is the wind speed at real elevation.

Appendix B

Table A1. Summary of simulation experiments.

Treatment Description

f(con) Simulation with the 1982–1990 mean climatology, atmospheric CO2 concentration and vegetation dynamics
f(T) Temperature varies according to the ISIMIP records; other variables vary according to control conditions
f(P) Precipitation varies according to the ISIMIP records; other variables vary according to control conditions
f(H) Relative humidity varies according to the ISIMIP records; other variables vary according to control conditions

f(R) Longwave downwelling radiation and shortwave downwelling radiation vary according to the ISIMIP records;
other variables vary according to control conditions

f(W) Wind speed varies according to the ISIMIP records; other variables vary according to control conditions
f(LAI) The LAI varies according to the GLASS records; other variables vary according to control conditions

f(C) Atmospheric CO2 concentration varies according to the NOAA ESRL records; other variables vary according to
control conditions

f(C_T) CO2 concentration and temperatures vary; other variables vary according to control conditions
f(C_P) CO2 concentration and precipitation vary; other variables vary according to control conditions
f(C_H) CO2 concentration and relative humidity vary; other variables vary according to control conditions
f(C_R) CO2 concentration and radiation vary; other variables vary according to control conditions
f(C_W) CO2 concentration and wind speed vary; other variables vary according to control conditions
f(C_V) CO2 concentration and the LAI vary; other variables vary according to control conditions
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Table A1. Cont.

Treatment Description

f(LAI_T) LAI and temperatures vary; other variables vary according to control conditions
f(LAI_P) LAI and precipitation vary; other variables vary according to control conditions
f(LAI_H) LAI and temperatures vary; other variables vary according to control conditions
f(LAI_R) LAI and radiation vary; other variables vary according to control conditions
f(LAI_W) LAI and wind speed vary; other variables vary according to control conditions

f(T_P) Temperature and precipitation vary; other variables vary according to control conditions
f(T_H) Temperature and relative humidity vary; other variables vary according to control conditions
f(T_R) Temperature and radiation vary; other variables vary according to control conditions
f(T_W) Temperature and wind speed vary; other variables vary according to control conditions
f(P_H) Precipitation and relative humidity vary; other variables vary according to control conditions
f(P_R) Precipitation and radiation vary; other variables vary according to control conditions
f(P_W) Precipitation and wind speed vary; other variables vary according to control conditions
f(H_R) Relative humidity and radiation vary; other variables vary according to control conditions
f(H_W) Relative humidity and wind speed vary; other variables vary according to control conditions
f(R_W) Radiation and wind speed vary; other variables vary according to control conditions

f(all) All variables vary

Figure A1. Spatial patterns of the temporal variations of the annual (a) leaf area index (LAI), (b) precipitation, (c) temperature
and (d) radiation from 1981 to 1012.
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Abstract: Conventional calibration methods adopted in hydrological modelling are based on
streamflow data measured at certain river sections. However, streamflow measurements are usually
sparse and, in such instances, remote-sensing-based products may be used as an additional dataset(s)
in hydrological model calibration. This study compares two main calibration approaches: (a) single
variable calibration with streamflow and evapotranspiration separately, and (b) multi-variable
calibration with both variables together. Here, we used remote sensing-based evapotranspiration
data from Global Land Evaporation: the Amsterdam Model (GLEAM ET), and measured streamflow
at four stations to calibrate a Soil and Water Assessment Tool (SWAT) and evaluate the performances
for Chindwin Basin, Myanmar. Our results showed that when one variable (either streamflow or
evapotranspiration) is used for calibration, it led to good performance with respect to the calibration
variable but resulted in reduced performance in the other variable. In the multi-variable calibration
using both streamflow and evapotranspiration, reasonable results were obtained for both variables.
For example, at the basin outlet, the best NSEs (Nash-Sutcliffe Efficiencies) of streamflow and
evapotranspiration on monthly time series are, respectively, 0.98 and 0.59 in the calibration with
streamflow alone, and 0.69 and 0.73 in the calibration with evapotranspiration alone. Whereas,
in the multi-variable calibration, the NSEs at the basin outlet are 0.97 and 0.64 for streamflow
and evapotranspiration, respectively. The results suggest that the GLEAM ET data, together with
streamflow data, can be used for model calibration in the study region as the simulation results show
reasonable performance for streamflow with an NSE > 0.85. Results also show that many different sets
of parameter values (‘good parameter sets’) can produce results comparable to the best parameter set.

Keywords: Chindwin basin; evapotranspiration; hydrological modelling; multi-variable calibration;
remote sensing

1. Introduction

Hydrological models are widely used to understand catchment processes, and to predict their
behavior under different forcing conditions as these model predictions are useful for water resource
planning and management at the river basin scale. However, these predictions are jeopardized, when
limited spatial data and hydro-meteorological observations are available in a river basin [1]. Most of
the river basins in the world are ungauged or poorly gauged [2]. Research interest on hydrological
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simulations for ungauged or poorly gauged catchments has increased recently, due to the use of
distributed modelling, innovative scientific approaches used in model calibration and deriving model
inputs from earth observations to assess numerous water-related problems. As an example, an initiative
taken by the International Association for Hydrological Sciences (IAHS) on Prediction in Ungauged
Basin (PUB) was aimed in achieving reliable prediction in hydrological practice [2].

During the last few decades, developments in remote sensing earth observations have improved
data availability for hydrological modelling and water resources applications such as drought
monitoring [3,4], flood modelling and risk management [5,6], water level monitoring [7–9], and
glaciers and snow cover estimations [10,11]. Such data includes topographic, land cover, and
hydro-meteorological products with different spatial (1/3600◦ × 1/3600◦ to 1◦ × 1◦) and temporal
(three hourly to daily, monthly or annual) resolutions. Some of the widely used such global
data products include digital elevation models [12–14], land use [15–17], precipitation [18–22],
temperature [23,24], evapotranspiration [25–27], soil moisture [28,29], and water storages [13,30].
Advances in modelling techniques, model calibration methods and expansion of the availability of
spatial and hydro-meteorological data over the last few decades have enabled the development of more
detailed and holistic hydrological models [31]. Nevertheless, these models are only an approximate
representation of the real system, hence must be calibrated using some form of observed data.

Hydrological models are usually calibrated by iteratively adjusting the model parameters to
obtain a reasonable comparison between simulated and observed hydrographs at a few locations or
just at the outlet of the study catchment [32]. Streamflow measurements are point data, and calibrating
with only point data at the catchment outlet does not guarantee that spatially varying water balance
components such as evapotranspiration are simulated accurately. Another problem in hydrological
model calibration is that more than one set of parameter values may result equally good model
performance. This issue is commonly referred to as equifinality or non-uniqueness [33,34]. Fenicia et al.
(2007) [35] also recognized that model calibration with one variable may risk overfitting of parameter.
One way to overcome some of these calibration issues is to calibrate using multi-variables (e.g.,
streamflow, evapotranspiration, and snow cover), and at multi-sites (e.g., using streamflow data from
various streams (or sub-catchments)) within the catchment [36–39]. With the increase in the availability
of global datasets, the use of two or more variables in hydrological model calibration has received
considerable attention. For example, a number of studies have used remote-sensing (RS)–based
evapotranspiration (ET) [40–46], soil moisture [42,47–50], snow cover and glacier mass balance [51,52],
and satellite-based land surface temperature (LST) [53] for hydrological model calibration.

Among the aforementioned variables, RS-based ET can be used to constrain the hydrological
modelling parameters related to water balance [1,44,45]. Immerzeel and Droogers (2008) [40] used
evapotranspiration data derived from MODIS satellite images for calibration of Soil Water Assessment
Tool (SWAT) in data-scarce Krishna Basin in India. Their results indicate that spatially distributed ET
data at monthly temporal resolution provides a promising alternative to reduce equifinality resulted
from lumping the hydrological processes together by traditional calibration with limitedly available
streamflow gauge data. Rientjes et al. (2013) [43] used both streamflow and evapotranspiration to
calibrate the HBV (Hydrologiska Byråns Vattenbalansavdelning) model for Karkheh Basin in Iran.
Their results indicate that multivariable calibration enabled the reproduction of the catchment water
balance. However, the results also suggested that streamflow data is also required to identify model
simulation errors in gauged or ungauged systems. Using a distributed hydrology-soil-vegetation
model (DHSVM) in Jinhua basin in China, Pan et al. (2018) [54] also mentioned that streamflow was
simulated well in the single variable calibration, but not evapotranspiration, and that multivariables
calibration showed more reasonable estimation of both streamflow and evapotranspiration simulated.
Furthermore, in an application of GLEAM ET and ESA CCI (European Space Agency–Climate Change
Initiative) surface soil moisture data for calibration of PCR-GLOBWB (PCRaster GLOBal Water Balance)
in Oum er Rbia Basin in Morocco, López et al. (2017) [42] showed that multivariable calibration may
help to solve the problem of over-parameterization and equifinality. Ha et al. (2018) [55] used four
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global ET products (later merging them as one ET product) and leaf area index (LAI) to calibrate SWAT
model in ungauged the Day basin in Vietnam and showed reasonable estimation of water balance
components and crop coefficients. They suggested that the above method is feasible to calibrate soil,
vegetation and eco-hydrological parameters of SWAT, when the basin is ungauged and having complex
water distribution.

Despite the aforementioned studies employing RS based ET data, the potential of remote-sensing-
-based evapotranspiration data for hydrological model calibration has not been fully explored. This is
particularly the case in data poor regions (e.g., many river basins in South-east Asia), where any
alternative source of data may bring an added value. In this study, the potential of the RS-based ET data
is assessed for calibration in two ways. First, as single variable calibration, in which the hydrological
model is calibrated on streamflow and ET separately, but in each case the model performance is
analyzed on both variables. Second, as multivariable calibration in which both streamflow and ET are
used in calibration together. Moreover, in both cases, the aim of the calibration is not limited to find
the ‘best parameter set’, but also to identify a range of parameter sets, called hereafter ‘good parameter
sets’, that can result in model performances similar or comparable to that of the best parameter set.

2. Data and Methods

2.1. Study Area

The Chindwin basin, which is a major sub-basin of the Irrawaddy basin, was used in this study.
It is located in the north-western part of Myanmar, and has the drainage area of 110,926 km2 with
its 1100 km long main river. The elevation in the basin varies from about 3800 m above mean sea
level (MSL) in the northern forested mountainous region to about 100 m above MSL in the southern
part (Figure 1a). More than 80% of the Chindwin basin area is covered with forest. The rest of the
basin is primarily covered by cropland, sparsely vegetated or bare land, and water bodies. According
to the FAO soil map [56], Acrisols and Cambisols are the dominant soil types found in this river
basin (Figure 1b). The Chindwin basin experiences subtropical and tropical climates [57]. Based on
the available data from 2001 to 2010 from the meteorological stations (shown in Figure 1), the mean
annual rainfall in the basin varies from 3900 mm (Hkamti station in the northern part) to 770 mm
(Monywa station in the southern part), and the monthly average temperature varies from 17 ◦C to
40 ◦C (Figure 1c). The area average annual runoff is ~1200 mm at the basin outlet (Monywa Station).

2.2. Datasets Used

The geo-spatial data used in this study include: (1) 90 m resolution Digital Elevation Model (DEM)
from the Shuttle Radar Topography Mission (SRTM) digital topographic data [14], (2) 300 m resolution
land-use dataset in 2009 (GlobCover 2009) from the European Space Agency [15], and (3) 7 km
resolution soil data (FAO Soil) from the UN Food and Agriculture Organization [56]. The precipitation
data used in this study comprised spatially interpolated daily precipitation data from 2001 to 2010.
Other meteorological data (for the same period) used included: temperature (at Hkamti, Homalin,
Hakha, and Monywa), relative humidity, solar radiation, wind speed, and daily streamflow data
at four stations (Hkamti, Homalin, Kalewa, and Monywa). Model calibration was carried at the
aforementioned four stations (Figure 1a). More information on model forcing data can be found in
Sirisena et al. (2018) [58].
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Figure 1. Chindwin River Basin, Myanmar (a) location and topography, (b) land use (top) and soil
type (bottom), and (c) climate. Temperature data for Mawlaik and Kalewa are not available for the
same period.

The RS-based ET data were obtained from the Global Land Evaporation Amsterdam Model
(GLEAM) [26,59]. GLEAM version 3.0b (GLEAM_v3.0b) driven only by satellite-based data (radiation,
air temperature, precipitation, surface soil moisture, vegetation optical depth) spanning over 13 years
(2003–2015) at daily time scale with a spatial resolution of 0.25◦ × 0.25◦. Actual evapotranspiration
presented in GLEAM is estimated as the sum of different terrestrial evaporation components
such as transpiration, bare-soil evaporation, interception loss, open-water evaporation, and snow
sublimation [26]. The GLEAM ET data for the study area indicates that, the monthly average
evapotranspiration over the basin varies from 46 mm (minimum) in January to 121 mm (maximum) in
July (Figure 2a). The average annual evapotranspiration over the basin is 1009 mm with a standard
deviation of 24 mm. The annual evapotranspiration generally decreases from upstream to downstream
ranging from 1106 mm to 790 mm (Figure 2b), similar to the precipitation distribution in the basin
(Section 2.1). The highest evapotranspiration occurs in the Hkamti sub-basin (sub-basin 1), where most
of the land cover is forest. The most downstream of the basin is covered by residential areas, crop
lands and mining activities.
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Figure 2. (a) Inter-annual variability of GLEAM ET data over the Chindwin Basin for the period of
2003–2010, and (b) average annual evapotranspiration of each sub-basin.

2.3. Model Setup

The Soil and Water Assessment Tool (SWAT) was used to build a hydrological model of the
basin. SWAT requires topographic, land use, soil and weather data to run hydrological simulations.
The DEM data were used for stream network generation and basin delineation, which is needed to
set up a SWAT model. The land-use, soil data and slope classification derived from the DEM were
used for creating Hydrological Response Units (HRUs) within the delineated sub-basins. HRUs are the
primary computational units of SWAT, in which the simulations are governed by the soil water balance
equation [60,61].

Here the Chindwin Basin was subdivided into nine sub-basins (Figure 2b), and 202 HRUs.
The Hargreaves method [61], which requires only temperature data, was used to estimate potential
evapotranspiration. Surface runoff was estimated using the Soil Conservation Services–Curve Number
(SCS-CN) method, and channel routing was based on the variable storage method. SWAT simulations
were performed at a daily time step for the 2001–2010 period, with a warm-up period of one year to
allow the model to establish a stable initial state.

2.4. Model Calibration

Model calibration was carried out for streamflow and actual evapotranspiration on a monthly time
step using Sequential Uncertainty Fitting Algorithm (SUFI-2), which is a calibration and uncertainty
analysis tool available within the SWAT-CUP (SWAT-Calibration and Uncertainty Program) [62].
SUFI-2 has been widely used in hydrological modelling studies using SWAT [38,44,58,63–70].

Monthly time series of streamflow from four gauging stations and the GLEAM based
evapotranspiration from nine sub-basins were used for calibration. Based on the data availability,
calibration for streamflow was performed for 2002–2010, while calibration for evapotranspiration was
done for 2003–2010. Selection of model parameters for calibration was based on their sensitivity to
streamflow and evapotranspiration. The initial ranges of the selected 22 parameters for calibration
are presented in Table S1 in Supplementary Material. Model calibration was carried out in several
iterations, with each iteration consisting of 2000 simulations with parameter sets generated using
the Latin Hypercube Sampling technique [71]. To go from one iteration to the next, SUFI-2 suggests
new ranges for parameter values based on their performance in the current iteration. Occasionally,
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SUFI- 2 suggested parameter ranges needed to be adjusted when they were beyond the acceptable
parameter ranges of SWAT. The Modified Nash–Sutcliffe Efficiency (MNSE, Equation (1) [62]) was
used as an objective measure of model calibration performance or objective function. When there is
no significant improvement in the MNSE between two successive iterations (<0.02), the calibration
process is terminated.

MNSE = 1−
∑|Qo − Qs|∑∣∣∣Qo − Qo

∣∣∣
(1)

where, Qo and Qs are observed and simulated streamflow, respectively and Qo is mean observed
streamflow. Similarly, MNSE of ET is calculated based on ETGLEAM, ETs and ETGLEAM.

The four streamflow gauging stations (used for calibration) are in series, from upstream to
downstream: Hkamti, Homalin, Kalewa and Monywa (Figure 1a). The drainage area for these stations
are from sub-basin 1 for Hkamti (27,439 km2), 1 and 2 for Homalin (43,370 km2), 1 to 4 for Kalewa
(73,495 km2), and 1 to 9 for Monywa (110,926 km2) (Figure 2b). The calibration was carried out from
upstream to downstream by considering one station at a time. Once the calibration is completed for
one gauging station, the parameters of the sub-basins corresponding to the gauging station were fixed
to their best-fitted values, and the calibration for the next station downstream was undertaken.

Two calibration schemes were used in this study: single variable calibration and multivariable
calibration. In the single variable calibration, the model was calibrated for streamflow and
evapotranspiration separately. In multivariable calibration, the calibration was carried out for
streamflow and evapotranspiration together using a multivariable objective function. The multivariable
objective function, here referred to as overall MNSE, is defined as the weighted sum of the MNSEs
with respect to streamflow and evapotranspiration.

The multivariable calibration requires weights to be defined for each variable. Different approaches
have been tried in a number of previous studies to specify weights to the multivariable objective
function. For example, Abbaspour et al. (2007) and Rostamian et al. (2008) [72,73] applied weights
inversely proportional to the variance of the observed data used in calibration. Rientjes et al. (2013)
and Rode et al. (2007) [43,74] used the coefficient of variation, i.e., standard deviation divided by the
mean, instead of the variance. However, assigning equal weights is by far the most commonly adopted
approach (e.g., Franco and Bonumá 2017 and Rajib et al. 2016 [41,48]), probably due to the lack of
sufficient justification for other approaches. In this study, different weight combinations varying from
0 to 1 (with the sum of two weights equals to 1) with an interval of 0.05 were tested. When the weights
for streamflow are between 0.4 and 0.75 and for ET between 0.6 and 0.25 are used, we found reasonable
model performance for both streamflow and evapotranspiration. Therefore, here too equal weights
were adopted for both variables.

As said earlier, in this study, the calibration aim is not just to look for one ‘best parameter set’,
but also a range of ‘good parameter sets’ that can produce model results comparable to the best
parameter set. This is also one reason why we chose not to split the limited available dataset into
calibration and validation. The assumption here is that the parameter ranges defined by the ‘good
parameter sets’ found in the calibration also comprise of parameter sets that can produce similar level
of model performance in validation. This assumption can be considered reasonable as long as the
inter-annual variability in the validation period is not too different from that in the calibration period.
Thus we used all the eight years of data (2003–2010) for which both streamflow and ET are available for
calibration, because splitting eight years into calibration and validation would represent only a narrow
band of a long-term hydrological cycle in the catchment. However, when the model performance is
evaluated on two variables (streamflow and evapotranspiration) as in this study, the model result
on the second variable can also be viewed as model validation. Similar examples can be found in
several publications that utilized remote-sensing based ET data for hydrological model calibration,
e.g., [40,44,46,50,54]. To find the ‘good parameter set’, we adopted a method described by Finger et al.
(2011) [51], where 100 simulations with the highest model performance were used.
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Although, only MNSE was used in objective function, the performance of calibrated results were
also assessed with other commonly used efficiency criteria such as NSE (Nash–Sutcliffe Efficiency),
PBIAS (Percentage of BIAS), and R2 (coefficient of determination).

2.5. Estimation of Uncertainty in Model Parameters

Model input data, model structure, parameters, and calibration data are the main sources of model
prediction uncertainties associated with hydrological modelling [75,76]. In the SUFI-2 approach used in
this study, all sources of model prediction uncertainties are expressed by parameter uncertainty [62,71].
Various parameters such as CN2 (SCS Curve Number), GW_DELAY (Ground Water Delay time), ESCO
(Soil Evaporation Compensation factor), and EPCO (Plant uptake Compensation factor) (22 parameters
listed in Table S1) related to streamflow and evapotranspiration computations were used for model
calibration. Based on the global sensitivity analysis [62], the five most sensitive parameters with
respect to simulating for streamflow and evapotranspiration separately were selected to analyze the
uncertainty of parameters in each iteration.

SUFI-2 uses the Latin Hypercube Sampling technique (LHS), which generates possible sets of
parameter values from the given parameter ranges. To determine the extent of uncertainty associated
with each of the model parameter, the normalized uncertainty scoring method [48,77] was applied,
in which parameter values are normalized between 0 and 100 using Equation (2).

Pn =

[
Pb − Ll
Ul − Ll

]
× 100 (2)

where Pn is the normalized uncertainty score of a parameter of one simulation, Pb is the parameter
value of the same simulation, and Ul and Ll are upper and lower limits of the corresponding parameter,
respectively. The minimum and maximum of the normalized scores represent the uncertainty range
associated with that particular parameter. The broader the range of uncertainty scores, the higher the
parameter uncertainty.

3. Results

3.1. Changes of Model Performances with Different Iterations

3.1.1. Calibration with a Single Variable

Note that all the model performance analysis presented in this study are based on monthly time
series data. When adopting the single variable calibration approach, in general, model performance
with respect to a variable with which it is calibrated against (e.g., streamflow) improves while the
performance with respect to another variable (e.g., evapotranspiration) decreases (Figure 3). However,
here the calibration with streamflow alone resulted in a reasonable performance in both streamflow
and evapotranspiration on the monthly time series data. This is particularly true with respect to
R2. For example, in the fifth iteration of Hkamti station, the NSE of streamflow varies between 0.74
and 0.94, whereas, NSE of evapotranspiration varies between 0.30 and 0.55. At the same station
and same iteration, PBIAS of streamflow and evapotranspiration varies from −20.0% to −6.7%, and
−5.2% to −15.6%, respectively, while R2 varies between 0.82 and 0.95 for streamflow, and between
0.8 and 0.85 for evapotranspiration. In contrast, calibration with evapotranspiration alone shows
considerably low performance for streamflow. For the same example mentioned above, in the calibration
with evapotranspiration alone, the NSE of streamflow ranges between −0.51 and 0.19, and NSE of
evapotranspiration varies between 0.32 and 0.72. PBIAS values of streamflow and evapotranspiration
vary between −60% to −12.9%, and −15.6% to −5.2%, respectively, while R2 varies between 0 and 0.31
for streamflow, and 0.8 and 0.85 for evapotranspiration (under the same conditions considered above).
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Figure 3. Model performance of each iteration in single variable calibration (a) Nash–Sutcliffe
Efficiency (NSE), (b) percentage of bias (PBIAS), and (c) coefficient of determination (R2). ‘Q’ means
streamflow and ‘ET’ means evapotranspiration. Left and right columns respectively show the results
of calibration with streamflow alone and evapotranspiration alone for each efficiency indicator.
The names in the sub-plots refer to the streamflow gauging stations from up-stream to down-stream.
Each station refers to the different sub-basins: Hkamti—1, Homalin—1 and 2, Kalewa—1 to 4, and
Monywa—1 to 9. The indicators of evapotranspiration represent comparisons of area-weighted average
evapotranspiration of simulated and observed data.

However, when calibration is carried out at successive stations (starting at Hkamti, then Homalin,
Kalewa, and ending at Monywa), the variability of performance reduces considerably for both variables
(streamflow and evapotranspiration, Figure 3). This is not surprising because the upstream station
is already calibrated for streamflow and evapotranspiration separately. In successive iterations,
model simulations show approximately similar performance for both variables for calibration with
evapotranspiration alone, but always with better values for evapotranspiration than for streamflow.
However, in both calibration approaches, NSE is better for streamflow compared to evapotranspiration.
For example, in the fifth iteration of Homalin, the NSE of streamflow varies from 0.91 to 0.95, and
from 0.55 to 0.7 for single variable calibration with streamflow and evapotranspiration, respectively
(Figure 3a). For the same iteration at the same station, weighted NSE values of evapotranspiration
(from sub-basin 1 and 2) vary between 0.27 and 0.41, and between 0.67 and 0.72 in the two calibration
approaches (streamflow alone and evapotranspiration alone). In contrast, streamflow shows higher bias:
−15% to −11% and −28% to 21% for calibration with streamflow and evapotranspiration, respectively,
whereas the bias of evapotranspiration changes between −14% to −9%, and between −5% to 4%,
respectively (Figure 3b). However, R2 is greater than 0.77 for streamflow, and evapotranspiration in both
calibration approaches (Figure 3c), implying that both variables preserve the temporal characteristics
of observed data.

To assess the variation of the model performance belongs to best model simulation with respect
to number of iteration, we analyzed the NSE as a representative model performance indicator of
the best simulation in each iteration. In successive calibration iterations, an increase in the NSE of
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the calibration variable (either streamflow or evapotranspiration) is not always accompanied by a
decline in the performance of the other variable (Figure 4a). For example, in the calibration with
streamflow alone, the NSE of evapotranspiration increased when the NSE of streamflow also increased,
and subsequently decreased in next iteration(s) at all stations but Kalewa station (Figure 4a). Similar
results were also obtained in calibration with evapotranspiration alone (Figure 4b). This may be
because different parameter combinations also could simultaneously increase the performances of
both variables.Remote Sens. 2020, 12, x FOR PEER REVIEW  10  of  26 
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3.1.2. Calibration with Multiple-variables

In the multivariable calibration approach using streamflow and GLEAM ET, successive iterations
improve the performance of evapotranspiration predictions compared to that of streamflow at
all stations except the Hkamti station (Figure 5). For example, in the final iteration at Homalin,
Kalewa, and Monywa, NSE values of streamflow vary between 0.86 and 0.92, 0.92 and 0.96, and
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0.95 and 0.97, respectively. During the same simulation, the NSE values of evapotranspiration for
the same stations vary between 0.46 to 0.66, 0.53 to 0.63, and 0.63 to 0.67, respectively (Figure 5a).
In addition, PBIAS values of evapotranspiration vary between −6% and +7%, indicating under and
over-estimations of evapotranspiration in all three above mentioned stations. However, model results
always underestimated streamflow at all but the Monywa station (Figure 5b). With respect to R2,
model calibrations show good performances (>0.77) for both streamflow and evapotranspiration at
all the stations (Figure 5c). This behavior implies that simulated streamflow and evapotranspiration
adequately capture the temporal variability in the observed data. Compared to single variable
calibration, multivariable calibration also reduced biases in both streamflow and evapotranspiration.Remote Sens. 2020, 12, x FOR PEER REVIEW  12  of  26 
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In the best performed simulation in every successive iterations of multivariable calibration, the NSE
of streamflow shows an increase in most of the cases, whereas that of evapotranspiration shows a
reduction (Figure 4c). However, these decreases are small (e.g., from 0.62 to 0.61 at Kalewa station, and
from 0.68 to 0.64 at Monywa station). In multivariable calibration, NSEs of evapotranspiration reduce
at all but Kalewa station for every successive iteration (Figure 4c). Performance of streamflow does
not always increase with the reduction of evapotranspiration performances. For example, at Homalin
station, NSE of streamflow increases from 0.89 to 0.92 in the second iteration and reached 0.91 by the
third iteration. Thus, a clear pattern in the performance of individual variables is not identified.

3.2. Model Perfroamnce with ‘Best Parameter Set’

When considering the best performing simulation in the last iteration for both single variable
calibrations, results with streamflow alone show better performance in dry seasons (i.e., during
low flows) than in monsoon seasons (high flows) (Figure 6a). Notably, the flows at Hkamti and
Homalin are under estimated during high flow periods (June to August). This mismatch in high flows
may be due to the poor spatial representation of rainfall over sub-basins. Model calibration with
evapotranspiration alone under-estimates high flows and over-estimates the low flows at all stations
for the entire simulation period.

When the calibration with evapotranspiration alone is considered, GLEAM ET and simulated
ET show a well–matched seasonal variation of evapotranspiration in all the sub-basins (Figure 6b).
However, in terms of magnitude or bias, model estimated ET is lower than the GLEAM ET during
the dry period (December to February). In contrast, the model estimated ET is higher than GLEAM
ET in sub-basins 6, 8, and 9 during the monsoon period. The calibration with streamflow alone
under-estimates evapotranspiration in all sub-basins during the dry period, and over-estimates the
same during the monsoon period particularly in sub-basins 1, 6, 8, and 9. Overall, calibration with
streamflow alone appears to be capable of reproducing the observed evapotranspiration (in this case
the GLEAM ET) at an acceptable level.

In multivariable calibration, simulated streamflow shows similar results obtained from calibration
with streamflow alone (Figure 6a). However, high flows (during July to August) are less than
the same resulted in calibration with streamflow alone. High flows are further underestimated in
multivariable calibration. In contrast, simulated evapotranspiration at basin-level shows reasonably
good performance similar to results obtained from calibration only with evapotranspiration (Figure 6b).
Therefore, multivariable calibration shows reasonable estimations for both variables (i.e., streamflow
and evapotranspiration).

Model performances corresponding to the best simulation at each of the station are presented
in Table 1. Overall, in each performance indicator of streamflow, there is no significant difference
among four stations. Among all sub-basins, the least accurate performances of evapotranspiration
are for sub-basin 6, 8 and 9. These results imply that multivariable calibration is able to reproduce
the observed streamflows better than evapotranspiration. However, model simulations produced a
reasonably good estimation of evapotranspiration as well.
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Figure 6. Comparison of simulated and observed (a) streamflow and (b) evapotranspiration for the
best simulation of the last iteration for each single variable calibration approach for four stations and
nine sub-basins.

In general, the multivariable calibration with streamflow and GLEAM ET showed reasonably
good streamflow estimations (NSE > 0.85). However, understandably, that calibration does not result
in producing better streamflow performance than the results obtained from single variable calibration
with streamflow only (Figure 4c, Figure 6a and Table 1). On the other hand, this multivariable
calibration showed still sounds better for evapotranspiration as that from the single variable calibration
with evapotranspiration only and better than the single variable calibration with streamflow only
(Figure 6b).
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3.3. Model Perfroamnce with ‘Good Parameter Sets’

Figure 7 presents the selected five global parameters (CN2, GW_DELAY, ALPHA_BF (Base flow
Alpha Factor), SOL_AWC (Available Water Capacity in the Soil layer), and ESCO, details of parameters
are in Table S1 in Supplementary Materials) and corresponding model performance for the last iteration
of Hkamti station taking as an example station to discuss the variation of model performances with
‘good parameter set’.
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Figure 7. Box plots of selected global parameters of best 100 simulations for each calibration approach
(single variable: Q and ET separately and multivariable: Q + ET) at Hkamti station (top panel) and
the corresponding range of performance indicator values of streamflow (blue) and ET (red) (bottom
panel). In each plot, the boxes are limited to 25th and 75th percentiles of sample and thick line shows
the median value. Whiskers are extended to 1.5 times inter-quartile range to the top and bottom of
the boxes.

In single variable calibration, four parameters show high variability for calibration with
streamflow than with evapotranspiration, only ALPHA_BF shows high variability for calibration
with evapotranspiration. Among these five parameters, CN2, GW_DELAY and ALPHA_BF are more
sensitive to streamflow, whereas SOL_AWC and ESCO are more sensitive to evapotranspiration.
In contrast, model performances show low variability except for performances of streamflow under
calibration only with evapotranspiration (Figure 7). This implies that a range of parameter sets (100 sets
considered here) can produce similar model performances of streamflow and evapotranspiration when
those variables are calibrated separately. Therefore, these parameter ranges are very likely to show
a similar level of performance with a dataset not used in calibration (i.e., validation dataset), unless
inter/ intra-annual variability of the new dataset is considerably higher than calibration dataset.

In multivariable calibration, all the selected five global parameters show high variabilities (based on
100 ‘good parameter sets’ considered) compared to the variabilities associated with the single-variable
calibration (Figure 7). These best performed simulations have resulted from different combinations of
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calibration parameter sets (100 ‘good parameter sets’), in which parameter value vary within a high
range. Similar to single variable calibration, model performances (NSE, PBIAS, and R2) of streamflow
and evapotranspiration vary within a narrow range (Figure 7), implying ‘good parameter sets’ can
reproduce similar model results.

3.4. Parameter Sensitivity and Uncertainty

The most sensitive model parameters for streamflow and evapotranspiration were found to be
different. Figure 8 shows the five most sensitive model parameters of each variable (streamflow
and evapotranspiration) with respective MNSE values. GW_DELAY, RCHRG_DP (Deep aquifer
Percolation fraction), ALPHA_BF, SLSOIL (Slope length for lateral subsurface flow), and LAT_TIME
(Lateral flow travel time) are identified as the five most sensitive parameters for streamflow, whereas
same parameters for evapotranspiration are SOL_BD (Moist bulk density of soil layer), SOL_Z (Depth
from soil surface to bottom of layer), ESCO, EPCO, and SOL_AWC (refer Table S1 for definitions of
parameters). Variations of MNSE for evapotranspiration-based calibration was found to be less than
that for streamflow based calibration. In the multivariable calibration, weighted average MNSE values
show less variation than individual streamflow and evapotranspiration calibrations. A considerable
variation of parameter values are shown for ALPHA_BF and SOL_BD in evapotranspiration based
model calibration. Results also indicate that, except SLSOL (subsurface lateral flow) and SOL_Z (depth
of soil layer from surface), final parameter ranges in the last iteration of multivariable calibration are
within the ranges of single variable calibration. The above two parameters directly correspond to
changes in soil water balance.

Except for SLSOL, all the above identified sensitive parameters of streamflow are mostly related
to the base flow (or groundwater flow) SLSOL parameter is related to the subsurface lateral flow.
In model calibration with evapotranspiration alone, all the sensitive parameters are related to soil
properties except for EPCO, which is the plant uptake compensation factor [61]. Parameter values
resulting in a reasonable MNSE (> 0.5) are scattered within their initial ranges (for initial ranges, please
refer to Table S1 in Supplementary Material). This scattered parameter values indicate that there are
more than one combination of parameter values that can reproduce similar outputs.

For the multivariable calibration, each of the model parameter uncertainty range was examined in
terms of normalized uncertainty scores (Equation (2)) that range from 0 to 100 (Figure 9). Uncertainty
scores presented here were calculated from the last iteration of multivariable calibration. The analysis
shows that uncertainty scores vary greatly among different parameters and stations for the same
parameter. Parameters which are most sensitive to streamflow show higher uncertainty than the
parameters sensitive to evapotranspiration except for SOL_BD. However, among the five most sensitive
parameters for streamflow, SLSOIL and LAT_TIME show considerably less uncertainty at all the
stations. In contrast, only ESCO, one of the most five sensitive parameters for evapotranspiration, shows
considerably less uncertainty. Furthermore, uncertainty ranges for SOL_AWC are minimal at Homalin
and Kalewa stations, whereas their maximum variations are found at Hkamti and Monywa stations.
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Figure 8. Parameter values or absolute changes versus objective function MNSE for each iteration
with 2000 simulations for calibration with a single variable; blue dots represent calibration based on
streamflow, red dots represent calibration based on evapotranspiration, and black dots for multivariable
calibration. Y-axis is a MNSE value ranging from 0 to 1 and the X-axis represents the changes of
parameter value or absolute change of a corresponding parameter. ‘v_’ denotes replacement of
the existing parameter value (e.g., v_GW_DELAY.gw), ‘a_’ denotes adding a fix value to existing
value (e.g., a_SOL_BD.sol). The first five parameters correspond to streamflow and the last five
to evapotranspiration.
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Figure 9. Normalized uncertainty scores of selected parameters out of 22 parameters used. Each
box plot contains parameter values corresponding to 2000 simulations for the last iteration of
multivariable calibration.

4. Discussion

Results presented in this study are another application among a limited number of studies that
have used GLEAM ET data to support hydrological model calibration in the data-scarce Chindwin
River Basin in Myanmar. In general, under the three calibration approaches used, streamflow shows the
best and worst performance in calibration only with streamflow and evapotranspiration, respectively,
and vice versa in the calibration performance for evapotranspiration. Both variables show slightly
lower performance in multivariable calibration than the individual calibrations with streamflow and
evapotranspiration. In some of the sub-basins (e.g., sub-basins 2 to 4), simulated ET does not properly
represent the GLEAM-ET during dry seasons (Figure 6b) under all three calibration approaches.
In contrast, sub-basins 6, 8, and 9 overestimate ET during high flow periods (June to September) for the
calibrations with streamflow and multivariable calibration. These differences can be attributed to the
precipitation over the basins. Similar findings were obtained in a study on the Karkheh River Basin in
Iran by Rientjes et al. (2013) [43]. They found that streamflow and ET obtain good performances when
the variables are calibrated separately. However, for model calibration with both streamflow and ET,
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simulated ETs of most of the sub-basins show good agreement with SEBS-ET (satellite-based surface
energy balance system – actual evapotranspiration). Immerzeel and Droogers (2008) [40] also could
not find any improvement in streamflow simulation under the model calibration with satellite-based
evapotranspiration from time series of MODIS images of the Upper Bhima catchment in south India.
López et al. (2017) [42] also found that model calibration with GLEAM ET and soil moisture data
shows a reasonable streamflow estimation (with NSE values varying from 0.5 to 0.75). However, better
model performance was obtained when it was calibrated with in-situ streamflow data.

Tobin and Bennett (2017) [44] concluded that although there is no performance improvement in
streamflow simulation, GLEAM ET data can be used to constrain the evapotranspiration parameters in
the SWAT applications. They considered 16 major SWAT parameters, in which five are attributable to
evapotranspiration (ESCO, EPCO, CANMX (Maximum canopy storage), GW_REVAP (Groundwater
“revap” coefficient), and REVAPMN (Threshold water depth in shallow aquifer for “revap” or
percolation to occur), refer to Table S1 for details). Here, ESCO and CANMX were identified as the
most sensitive parameters for model calibration. Immerzeel and Droogers (2008) [40] found that
actual ET is more sensitive to the groundwater (GW_REVAP) and meteorological (monthly rainfall
increment—-RFINC) parameters than soil (SOL_AWC) and land-use parameters (maximum plant leaf
area index—-BLAI). In our analysis, SOL_BD, SOL_Z, ESCO, EPCO, and SOL_AWC are found to be the
most sensitive parameters for evapotranspiration. The analysis of ‘good parameter sets’ and resultant
model performances imply that many combinations of model parameters can reproduce the streamflow
and evapotranspiration comparable to same obtained from ‘the best parameter set’. Furthermore,
Winsemius et al. (2009) [1] suggested that satellite-based ET and soil moisture information are required
in hydrological model calibration to reduce parameter uncertainties and constrain model parameters
within physically realistic ranges.

Even though we discussed only the parameter uncertainty, there are other sources of uncertainty
in hydrological modelling, such as model input data, model structure, and observed data used for
calibration [75,76]. Precipitation, the primary input data used in this analysis was derived from
interpolated gauge data of six stations, which are not well distributed over the basin. Therefore,
we believe that precipitation data contributes to prediction uncertainty. In terms of observed streamflow
data, Harmel et al. (2009) [78] stated that the typical uncertainty in measured streamflow varies
by ±7 − 23%. Di Baldassarre and Montanari (2009) [79] stated that the average error of measured
streamflow data was 25.6% for the Po River, Italy. With respect to ET, the accuracy of remote
sensing-based products may vary significantly over the different regions due to climatic variability,
topography, and land cover [47]. For example, Trambauer et al. (2014) [3] have compared eight different
ET products over the African continent and summarized that some products show good consistency
among them in some areas and diverge in other areas of the continent. Another analysis by Tobin and
Bennett (2017) [44] showed that simulated ET matches with GLEAM-TMPA (GLEAM - Tropical Rainfall
Measurement (TRMM) Mission Multi-satellite Precipitation Analysis) better than GLEAM-CMORPH
(GLEAM - Climate Prediction Center MORPHing technique). Therefore, these RS-based ET products
may possess considerable biases. Thus, further information is required to analyze and discuss the
uncertainty in model outputs.

5. Conclusions

This study evaluated the use of measured streamflow and RS-based ET data to calibrate a
hydrological model of the Chindwin Basin, Myanmar. The model was developed with SWAT and two
calibration approaches were tested: single variable and multiple variable calibration, and identified
and discussed ‘good parameter sets’, which can produce similar or comparable results that obtained
from ‘the best parameter set’. RS-based ET data used in the model calibration were obtained from the
Global Land Evaporation: Amsterdam Model (GLEAM ET), and measured streamflow were obtained
at four gauging stations in the basin.
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In general, this study indicates that GLEAM ET data, together with streamflow data, offers good
potential for hydrological model calibration in the study region as the simulation results show a
good performance for streamflow (with an NSE > 0.85 on monthly time series), while maintaining
a reasonable performance for evapotranspiration (with an NSE > 0.61). Moreover, the results of
single variable calibration with GLEAM ET indicate that even in the absence of streamflow data (i.e.,
ungauged basin), the model would have produced streamflow NSE values of more than 0.69 for three
out of four stations with PBIAS varying between −2.6% and −23%. The only exception to the above
behavior was found at the Hkamti station with NSE of 0.16 and PBIAS of −22%. It is noted that the
Hkamti station is the uppermost station of the four and hence its calibration is independent of the
other three stations. In contrast, the other three stations (Homalin, Kalewa, and Monywa) are all
downstream of Hkamti and in series. Thus, their calibration results are influenced by the calibration
results of up-stream station(s).

Results also indicate that there can be many different sets of parameter values (‘good parameter
sets’) can produce similar results, which can be obtained from ‘the best parameter set’. The analysis of
calibration parameters suggests that the parameter sensitivity and their values change among different
calibration set-ups, and uncertainty ranges of parameters may vary among both different parameters
and stations.

This study provides valuable insights on hydrological modelling, in the context of using
remote-sensing based and multiple data sources for model calibration, which are particularly useful for
data poor basins. There is, however, room for further research on multivariable calibration in distributed
hydrological modelling with the use of globally available datasets such as evapotranspiration, snow
cover, and soil moisture data together with traditionally used streamflow data. Such a calibration
approach could lead to better representation of hydrological responses of particularly, ungauged basins,
as this approach would enable reasonable parameter estimation across the basin.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/22/3768/s1.
Table S1: Hydrological parameters used in model calibration.
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