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Preface to ”Computational Approaches: Drug
Discovery and Design in Medicinal Chemistry and
Bioinformatics”

To date, computational approaches have been recognized as a key component in drug design

and discovery workflows. Developed to help researchers save time and reduce costs, several

computational tools have been developed and implemented in the last twenty years. At present, they

are routinely used to identify a therapeutic target, understand ligand–protein and protein–protein

interactions, and identify orthosteric and allosteric binding sites, but their primary use remains the

identification of hits through ligand-based and structure-based virtual screening and the optimization

of lead compounds, followed by the estimation of the binding free energy. The repurposing of an old

drug for the treatment of new diseases, helped by in silico tools, has also gained a prominent role in

virtual screening campaigns.

Moreover, the availability and the decreasing cost of hardware and software, together with

the development of several web servers on which to upload and download computational data,

have contributed to the success of computer-assisted drug design. These improved, accurate, and

reliable methods should help to add new and more potent molecules to the group of approved drugs.

Nevertheless, the ease of access of computational tools in drug design (software, databases, libraries,

and web servers) should not encourage users with little or almost no knowledge of the underlying

physical basis of the methods used, who could compromise the interpretation of the results. The

role of the computational (medicinal) chemist should be recognized and included in all research

groups. These considerations led us to promote a volume collecting original contributions regarding

all aspects of the computational approaches, such as docking, induced-fit docking, molecular

dynamics simulations, free energy calculations, and reverse modeling. We also include ligand-based

approaches, such as molecular similarity fingerprints, shape methods, pharmacophore modeling,

and QSAR. Drug design and the development process strive to predict the metabolic fate of a

drug candidate to establish a relationship between the pharmacodynamics and pharmacokinetics

and highlight the potential toxicity of the drug candidate. Even though the use of computational

approaches is often combined, we tried to identify which of these play a central role in each

manuscript.

In this Special Issue, the use of molecular dynamics simulations, both unbiased and biased,

cover a major part of the contributions. The non-covalent inhibition of the immunoproteasome

was investigated in-depth through MD binding and binding pose metadynamics. MD simulations

provided insight into the structural features of hTSPO (Translocator Protein) and the previously

unknown interplay between PK11195, a molecule routinely used in positron emission tomography

(PET) for the imaging of neuroinflammatory sites, and cholesterol. The interaction of certain endogen

substrates, drug substrates, and inhibitors with wild-type MRP4 (WT-MRP4) and its variants,

G187W and Y556C, were studied to determine differences in the intermolecular interactions and

affinity related to SNPs using several approaches, but particularly all-atom, coarse-grained, and

umbrella sampling molecular dynamics simulations (AA-MDS and CG-MDS, respectively). Natural

sodium–glucose co-transporter 2 (SGLT2) inhibitors were selected to explore their potential against

an emerging uropathogenic bacterial therapeutic target, i.e., FimH, which plays a critical role in

the colonization of uropathogenic bacteria on the urinary tract surface, and molecular dynamics

xi



simulations were carried out to study the potential interactions. Doxorubicin encapsulation in

carbon nanotubes with haeckelite or Stone–Wales defects as drug carriers were investigated using

a molecular dynamics approach. The combined use of different approaches has been reported in

a series of papers associated with the virtual screening of libraries. Almeelebia and co. screened

224,205 natural compounds from the ZINC database against the catalytic site of the Mtb proteasome.

Pharmacophore-based virtual screening and molecular docking were carried out to identify potential

Src inhibitors starting from a total of 891 molecules. Finally, MD simulations identified two molecules

as potential lead compounds against Src kinase. An in silico study identified a methotrexate analog

as a potential inhibitor of drug-resistant human dihydrofolate reductase for cancer therapeutics. A

structure-based method for high-throughput virtual screening aimed to identify new dual-target

hit molecules for acetylcholinesterase, and the 7 nicotinic acetylcholine receptor was reported and

confirmed in vitro. A new complementary computational analysis called “dock binning” evaluates

antibody–antigen docking models to identify why and where they might compete in terms of possible

binding sites on the antigen. Interesting drug repurposing strategies have been reported. Hudson and

Samudrala presented a computational analysis of a novel drug opportunities (CANDO) platform

for shotgun multitarget repurposing. It implements several pipelines for the large-scale modeling

and simulation of interactions between comprehensive libraries of drugs/compounds and protein

structures. Qi and co. data-mined the crowd extracted expression of differential signatures (CREEDS)

database to evaluate the similarities between gene expression signature (GES) profiles from drugs and

their indicated diseases for GES-guided drug-repositioning approaches. In late 2019, the SARS-CoV-2

pandemic focused the attention of many researchers on not only vaccines but also new antiviral

drugs. These reasons boosted the use of computational approaches to explore large libraries of

natural compounds, already approved drugs, and in-house and commercial compounds. In this

Special Issue, Baig and co. studied the efficacy of the Mpro inhibitor PF-00835231 against Mpro

and its reported mutants in clinical trials. Several in silico approaches were used to investigate

and compare the efficacy of PF-00835231 and five drugs previously documented to inhibit Mpro.

Li and co. computationally investigated the MPD3 phytochemical database along with the pool of

reported natural antiviral compounds to be used against SARS-CoV-2. Pedretti and co., exploiting

the availability of resolved structures, designed a structure-based computational approach. The

innovative idea of their study was to exploit known inhibitors of SARS-CoV 3CL-Pro as a training set

to perform and validate multiple virtual screening campaigns. In the context of antiviral drugs, Regad

and co. investigated the emergence of HIV-2 resistance. They proposed a structural analysis of 31

drug-resistant mutants of HIV-2 protease (PR2), an important target against HIV-2 infection. A wide

series of contributions regarding the use of QSAR, machine learning, and deep learning has reported

interesting outcomes. A multiple-molecule drug design based on systems biology approaches and

a deep neural network to mitigate human skin aging was developed by Yeh and co. With the

proposed systems medicine design procedure, they not only shed light on the skin-aging molecular

progression mechanisms, but they also suggested two multiple-molecule drugs to mitigate human

skin aging. The construction of quantitative structure–activity relationship (QSAR) models was used

to predict the biological activities of the compounds obtained with virtual screening and identify new

selective chemical entities for the COX-2 enzyme. The three-dimensional QSAR model, employing

a common-features pharmacophore as an alignment rule, was built on 20 highly active/selective

HDAC1 inhibitors. The predictive power of the 3D QSAR model represents a useful filtering tool

for screening large chemical databases, finding novel derivatives with improved HDAC1 inhibitory

xii



activity. Different machine learning (ML) and deep learning (DL) algorithms using various integer

and binary-type fingerprints were evaluated to develop quantitative structure–activity relationship

(QSAR) models, which are important for hERG potassium channel blocker prediction.

Throughout this book, all the recent aspects of the computational approaches applied to several

research fields are reported. We express our deep gratitude to all the contributors to this Special Issue

for their commitment, hard work, and outstanding papers. We also thank all the reviewers involved

in the manuscript revisions for their unpaid contributions to improve any aspects of the submitted

works. Last but not least, we deeply thank Mrs. Jessie Zhang for her assistance during the period in

which we served as guest editors.

Marco Tutone, Anna Maria Almerico

Editors
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Abstract: The selective inhibition of immunoproteasome is a valuable strategy to treat autoimmune,
inflammatory diseases, and hematologic malignancies. Recently, a new series of amide derivatives
as non-covalent inhibitors of the β1i subunit with Ki values in the low/submicromolar ranges have
been identified. Here, we investigated the binding mechanism of the most potent and selective
inhibitor, N-benzyl-2-(2-oxopyridin-1(2H)-yl)propanamide (1), to elucidate the steps from the ligand
entrance into the binding pocket to the ligand-induced conformational changes. We carried out a
total of 400 ns of MD-binding analyses, followed by 200 ns of plain MD. The trajectories clustering
allowed identifying three representative poses evidencing new key interactions with Phe31 and
Lys33 together in a flipped orientation of a representative pose. Further, Binding Pose MetaDynamics
(BPMD) studies were performed to evaluate the binding stability, comparing 1 with four other
inhibitors of the β1i subunit: N-benzyl-2-(2-oxopyridin-1(2H)-yl)acetamide (2), N-cyclohexyl-3-
(2-oxopyridin-1(2H)-yl)propenamide (3), N-butyl-3-(2-oxopyridin-1(2H)-yl)propanamide (4), and
(S)-2-(2-oxopyridin-1(2H)-yl)-N,4-diphenylbutanamide (5). The obtained results in terms of free
binding energy were consistent with the experimental values of inhibition, confirming 1 as a lead
compound of this series. The adopted methods provided a full dynamic description of the binding
events, and the information obtained could be exploited for the rational design of new and more
active inhibitors.

Keywords: immunoproteasome; non-covalent inhibitors; molecular dynamics; MD binding; metady-
namics; induced-fit docking

1. Introduction

Protein turnover is essential for cellular function and homeostasis; in eukaryotic cells,
the ubiquitin-proteasome system (UPS) is the central non-lysosomal pathway devoted to
protein degradation. Whereas the lysosomal pathway mainly degrades membrane proteins
or extracellular proteins imported into the cell by endocytosis, UPS, present both in the
cytoplasm and nucleus, controls the degradation of damaged, incorrectly synthesized, or
no longer useful intracellular proteins. Proteins are firstly tagged with several ubiquitin
units; then, the polyubiquitinated proteins are rapidly hydrolyzed to small peptides by
the proteasome, whereas ubiquitin is released and recycled [1]. The 26S constitutive
proteasome consists of a barrel-shaped 20S catalytic core and two 19S regulatory caps. The
catalytic core is constituted of four packed rings, each composed of seven different subunits,
the two outer α, and the two inner β, respectively. The proteolytic activities reside in the
β1c, β2c, and β5c subunits that are responsible for caspase-like (C-L), trypsin-like (T-L),
and chymotrypsin-like (ChT-L) activities, respectively.
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Immunoproteasome is a specialized form of proteasome present in the vertebrates,
constitutively expressed in lymphocytes and monocytes and induced by cytokines, such
as IFN-α and TNF-α, in many other cell types. In immunoproteasomes, the constitutive
catalytic subunits (β1c, β2c, and β5c) are replaced by the corresponding immunosubunits:
β1i, β2i, and β5i. While β2i and β5i maintain the same type of activities as the β2c and β5c
subunits, β1i mainly performs a ChT-L activity, thus cleaving peptides after hydrophobic
amino acids [2]. High levels of immunoproteasomes have been found in a wide number
of inflammatory diseases, such as Crohn’s disease or inflammatory bowel disease, and
autoimmune diseases like rheumatoid arthritis or systemic lupus erythematosus [3]. Fur-
thermore, immunoproteasomes are overexpressed in hematologic malignancies, including
multiple myeloma or acute myeloid leukemia [4]. Therefore, the discovery of selective
immunoproteasome inhibitors is pivotal to bring new chances for the treatment of the
above-mentioned diseases. Exhaustive reports on selective covalent and non-covalent
immunoproteasome inhibitors have been recently published [5,6]. The main class of cova-
lent immunoproteasome inhibitors is that of peptide derivatives bearing an electrophile
warhead able to interact with the nucleophilic hydroxyl group of catalytic Thr1. Just to
give some examples, ONX-0914, a tripeptide α′,β′-epoxyketone, was the first β5i-selective
inhibitor identified; another α′,β′-epoxyketone, UK-101, and the peptidyl aldehyde IPSI-
001 showed a selective activity on the β1i subunit [5,6]. However, the covalent irreversible
inhibition of a human enzyme is not always desirable in medicinal chemistry, as it can be
responsible for potential toxicity due to off-target binding. Another drawback is that a
single mutation in the catalytic amino acid (i.e., Thr1) could cause a loss of activity and
acquired resistance. [7]. Non-covalent inhibition is therefore strongly desirable, because it
is free of these disadvantages. Lacking a reactive warhead, non-covalent inhibitors may
have an improved selectivity and less reactivity and instability and, therefore, may not
exhibit the side effects that occur in covalent inhibitor therapies (e.g., liver toxicity and
idiosyncratic adverse reactions) [8,9]. Furthermore, the enzyme–inhibitor complexes have
reduced lifetimes, and this promotes an extensive tissue distribution of the drug [10]. To
date, few non-covalent immunoproteasome inhibitors show selectivity towards the β1i
and/or β5i subunits. One of them is Argyrin B, a natural cyclic peptide that is a reversible,
noncompetitive inhibitor of β5i and β1i [8]. Other compounds are N,C-capped dipep-
tides, such as PKS2279 and PKS2252, in which the insertion of a β-amino acid markedly
reduces the inhibitory potency against constitutive proteasomes, yet maintain potent
inhibitory activity against immunoproteasomes [11]. Recently, some of us identified a
panel of selective non-covalent inhibitors of the β1i and/or β5i subunits, characterized
by a 2(1H)-pyridone scaffold linked to an amide function [12]. N-Benzyl-2-(2-oxopyridin-
1(2H)-yl)propanamide (1) proved to be the most potent and selective inhibitor, with a
Ki = 21 nM against the β1i subunit. Four other compounds of this series, N-benzyl-2-(2-
oxopyridin-1(2H)-yl)acetamide (2), N-cyclohexyl-3-(2-oxopyridin-1(2H)-yl)propanamide
(3), N-butyl-3-(2-oxopyridin-1(2H)-yl)propanamide (4), and (S)-2-(2-oxopyridin-1(2H)-
yl)-N,4-diphenylbutanamide (5), showed remarkable inhibitory activity towards the β1i
subunit (Figure 1). Derivatives 3–5 were also active against the β5i subunit, whereas none
of the compounds 1–5 proved to affect the constitutive catalytic subunits.
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Figure 1. Structures and Ki values of the selective β1i inhibitors 1–5.

The available experimental structures of immunoproteasomes provided the basis for
several computational investigations. In the recent past, most of these studies made use of
molecular docking methods. In particular, the binding mode of the non-covalent amide
derivatives 1 and 2 was investigated at this level [12], while, to the best of our knowledge,
the most accurate computational investigations were performed just on the β1i subunit
(Figure 2A,B) and the peptide α′,β′-epoxyketone UK101 (Figure 2C) using molecular
dynamics (MD) simulations. The observed selectivity of UK101 for the β1i subunit is
rationalized by the requirement for both a linear hydrocarbon chain at the N-terminus and
a bulky group at the C-terminus of the inhibitor [13]. In recent years, the constant update of
hardware capabilities allowed the development of enhanced MD methods able to provide
a full dynamical description of the target–ligand-binding events [14]. These methods are
usually employed given that the sampling issue is fundamental to describing these slow
processes while docking methods continue to be pivotal to screening large libraries, also
assisted by MD [15,16].

In this manuscript, we investigated the binding mechanism of the previously identified
most active non-covalent amide 1 in the β1i subunit. For this purpose, we employed
advanced molecular dynamics methods, such as MD binding (MDB) [17] and Binding Pose
MetaDynamics (BPMD) [18]. In particular, we used the MDB tools implemented in the
BiKi suite [19] to analyze the binding mechanism and gain insights into the ligand entrance
pathway. Then, plain MD was performed to study the stability and conformational space
into the immunoproteasome–ligand complex, thus allowing elucidation of the compound
dynamic behaviors within the binding cavity. Successively, a cluster analysis provided
representative poses that were used to evaluate the binding stability using the BPMD
protocol. To have a comparative point of view, we also carried out induced-fit docking
(IFD) and BPMD studies of the other four compounds (2–5) that showed high inhibitory

3



Molecules 2021, 26, 4046

activities towards the β1i subunit. The results obtained could provide further information
to develop the most selective and active immunoproteasome inhibitors.
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Figure 2. (A) 3D structure of the immunoproteasome, the two β1i subunits in red, (B) 3D structure of
the β1i subunit, and (C) the structure of inhibitors UK-101 and ONX-0914.

2. Results
2.1. MD-Binding (MDB) Analysis

We began the study using the crystal structure of the murine immunoproteasome
in complex with the inhibitor ONX-0914 (Figure 2C) bound to the β5i subunit (PDB
ID: 3UNF) [20]. Murine and human immunoproteasomes share a sequence identity of
more than 90%, and the few nonidentical residues were external to the active sites. In
the literature, a crystal structure of human immunoproteasome was recently released in
complex with a boronic acid derivative [21], but the docking of compound 1 was previously
studied on the β1i subunit structure derived from the PDB ID:3UNF that do not bind any
ligand. For these reasons, we used it as a starting point to carry out our simulations. To
gain insights into the ligand-binding mode, we employed the MDB method to predict
the path of ligand entrance into the cavity. This method has the advantage of describing
complex events without incurring prohibitive time and computational costs. It is based
on an adaptive, electrostatics-inspired bias and a campaign of trivially parallel short MD
simulations to identify a near-native binding pose from the sampled configurations. At a
reasonable computational cost, this method also provides accurate predictions when the
starting protein conformation is different from that of the crystal complex, a known hurdle
for traditional molecular docking [22]. The advanced proposed MDB protocol would
require the identification of the binding pocket with NanoShaper software [23], which
can identify the atoms facing the lumen pocket entrance in the protein target. According
to NanoShaper software, the attractive protein residues selected were Thr1, Val20, Ser21,
Phe31, Lys33, Leu45, Ser46, Gly47, Ser48, Ala49, Ala52, Ser129, and Ser168 (Figure 3).
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Figure 3. Identification of the binding cavity of the β1i subunit (solid blue) by NanoShaper software
with the residues involved in the binding pocket.

Compound 1 is positioned with a random orientation at a predetermined distance,
measured in terms of the thickness of the solvation shell around the ligand. From the
set, we started 20 replicas of 20 ns for each entrance starting from the apo structure, thus
collecting a total of 400 ns of MDB simulations.

The analysis of the results showed that the simulations overcome the energetic barrier
in an average time of 2 ns, reaching the binding site. The unavailability of crystallographic
structures for non-covalent ligand 1 did not allow the comparison of the conformations,
employing the RMSD of the bound ligand. For these reasons, the RMSD of the protein
backbone was used as a reference for any uncommon behaviors. All replicas showed a
protein backbone RMSD average <2 Å, decreasing when the ligand arrived at the binding
site (Supplementary Materials, Figures S1–S7). In most replicas, the ligand entered into the
active site in the following 8 ns of the simulations, and in the last 10 ns, its refinement at
the binding site was registered (Figure 4).

After the first 20 ns, the electrostatic bias was removed, and the sampling time was
increased starting from the final frames of each MDB replica to enhance the sampling
conformational changes and interactions of the ligand inside the binding site. For each
replica, 10 ns more of the simulation was carried out, collecting a total of 600 ns of MD
simulations. The plain MD simulations performed after the bias switch-off provided
the local refinement of the binding mode. Once the binding simulation campaign was
completed, the replicas ending without the ligand into the binding site were pruned out,
and the remaining replicas were analyzed. The major part of the simulations showed a high
stability, with the ligand strictly bound to the binding pocket, and in a few simulations,
the ligand rapidly drifted away. Twelve replicas maintained a high stability at the binding
site, as shown by averaged value of RMSD 1.5 Å of the complex (Supplementary Materials,
Figures S8–S10). Then, the 12 replica trajectories were clustered. Each trajectory was
recorded in 1000 frames, and these frames were clustered considering the RMSD of the
binding site backbone (12,000 frames total). Each replica returned three representative
clusters for a total of 36 MD representative poses. These last ones were further clustered
and took into consideration the conformations of the ligand into the binding site and the
most occurred interactions. In the end, it was possible to identify three final representative
poses (pose 1, pose 2, and pose 3).
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Figure 4. Time sequence of compound 1 approaching the active site of the β1i subunit studied by
MD binding. The figure is representative of the 20 replicas.

The poses obtained from the clustering analysis were characterized by the important
features observed during the simulations. In particular, in pose 1, two H-bonds were
formed between the oxygen of the amide group and Ser21 and between the hydrogen of
the amide group and Gly47 (Supplementary Information, Figure S11A). The binding of
the ligand was strengthened by several van der Waals contacts between the benzyl group
and the residues Val20, Phe31, Lys33, Gly47, Ala49, and Ala52. Val20, Ser21, Ser46, Gly47,
Ala49, and Ala52 interacted with the linker between the two rings.

The identified pose 2 showed a series of noteworthy interactions that have not been
previously identified. The benzyl group of pose 2 interacted by a pi-stacking interaction with
Phe31. This pose was stabilized by several van der Waals contacts. The 2-pyridone moiety
showed a series of contacts different from pose 1 (Lys33, Leu45, Ser46, Gly47, Ser48, Ala49,
Ala52, Ser129, and Ser168). Ser21, Phe31, Ser46, and Gly47 interacted with the ethylene
linker. It is worthy to note the absence of H-bonds in this pose (Supplementary Information,
Figure S11B).

Pose 3 was characterized by the same H-bonds network observed in pose 1, with Ser21
and Gly47 residues. The 2-pyridone moiety formed one cation-pi-stacking interaction with
the epsilon amino group of Lys33 (Supplementary Information, Figure S12A). As observed
for the other poses, van der Waals contacts strengthened the ligand binding in pose 3.
The benzyl group interacted with Ser21, Ala22, Leu45, and Ser46. The 2-pyridone moiety
showed contacts with several residues: Phe31, Lys33, Gly47, Ser48, Ala49, and andAla52.
The linker showed interactions with Thr1, Ser46, Gly47, and Ser168.

The major differences observed for these poses concerned the orientations of pose 1
and pose 3 related to their interactions with the residues of the binding site. In particular,
besides the same H-bonds, a flipped orientation of the 2-pyridone and the benzyl moieties
was observed. This evidence could reveal that the entrance mode of the ligand occurred
in different ways without affecting the binding capability during the MD runs. The
folded conformation assumed by the ligand in pose 2 seemed to represent an intermediate
conformation. Concerning previous studies [12], two pi-stacking interactions and van der
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Waals contacts between the rings and the residues Thr1, Val20, Phe31, Lys33, Leu45, Ser46,
and Ala52 were identified (Figure 5).
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Figure 5. 3D and 2D-binding modes of compound 1: pose 1 (A,B), pose 2 (C,D), and pose 3 (E,F) after
the MDB simulations and after IFD (G,H) into the β1i active site of murine immunoproteasome (PDB
ID: 3UNF). In the 3D figures, the H-bonds are represented in yellow dashes, the cation-pi-stacking
interactions in green dashes, and the pi-pi stacking in blue dashes.
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2.2. Induced Fit Docking (IFD)

To add more information concerning the previous docking studies and compare the
results obtained by the MDB, we used the more accurate protocol induced-fit docking
(IFD) [24]. IFD predicts the ligand-binding modes and concomitant structural changes
in the receptor. It confers flexibility to the protein side chains, allowing the ligand to
adjust and optimize the binding interactions within the active site. IFD was carried out for
compound 1 and for the other four compounds 2–5 that showed encouraging inhibitory
activity on β1i. In the previous studies, classical docking was performed for compound 2,
while computational studies have not been performed yet for compounds 3–5.

The best IFD pose of 1 reported the same two interactions observed after the MD
simulation: the H-bonds between the residues Gly47 and Ser21 of the protein and NH
amide and the carbonyl group of the molecule (Figure 5G,H). Besides, other hydrogen
bonds were found. In particular, the carbonyl of 2-pyridone moiety formed an H-bond
network with Ala49 and Ala50. Concerning the other MDB poses, this was a peculiar
difference of the IFD pose that was not observed in the docking study. These residues,
together with Ser48, stabilized the ligand binding by van der Waals contacts, such as
observed in the previous docking study. Other van der Waals contacts were formed
between the benzyl group and Val20, Phe31, Lys33, Leu45, Gly47, and Ala52. Finally, the
ethylene linker between the rings interacted with Thr1, Val20, Ser21, Gly47, and Ala49. It is
interesting to note that the pi-stacking interactions observed in pose 2 between the benzyl
group and Phe31 and the cation-pi-stacking interaction in pose 3 between the 2-pyridone
and Lys33 were not evidenced in the IFD pose but only as van der Waals contacts (Figure 5).

The other four analogs of amide 1 were characterized by structural variations at the
N-substituent and the methylene/ethylene linker between the 2-pyridone scaffold and the
amide function. Compound 2 showed a methylene linker between the 2-pyridone scaffold
and the amide function, and the experimental activity was recorded with a Ki value of
2.23 µM on the β1i subunit. The best IFD pose for 2 showed three H-bonds: Ser21 with
the carbonyl of amide and Gly47 with the NH amide and the carbonyl of 2-pyridone. The
benzyl moiety of the molecule formed a cation-pi-stacking interaction with Lys33, as also
evidenced for 1 in pose 3 (Figure 6A,B).

The cyclohexyl derivative 3 (Ki = 2.92 µM) formed four H-bonds. The residue Thr1
made two H-bonds with the carbonyl of amide and the carbonyl of 2-pyridone. Gly47
formed two H-bonds with NH amide and carbonyl of 2-pyridone (Figure 6C,D). The
interactions of the best IFD pose of n-butyl derivative 4 (Ki = 3.09 µM) were characterized
by two H-bonds between the carbonyl and NH of the amide of the molecule with Ser21
and Gly47, respectively. The 2-pyridone moiety formed pi-pi stacking with the Phe31
(Figure 6E,F). The last compound, (S)-2-(2-oxopyridin-1(2H)-yl)-N,4-diphenylbutanamide
(5) (Ki = 5.9 µM), showed two H-bonds, one between Ser21 and carbonyl of amide and
the other between Ala49 and carbonyl of 2-pyridone (Figure 6G,H). Additionally, for these
molecules, the recurrent interactions were between the residues Ser21, Gly47, and the
amide group, but it underlined the pi-stacking interactions with Phe31 and Lys33, which
could constitute clear evidence of the key role of these residues in the inhibition pattern.
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2.3. Binding Pose MetaDynamics Analysis

Binding Pose MetaDynamics (BPMD) is an automated, enhanced sampling, metadynamics-
based protocol, in which the ligand is forced to move around its binding pose. The possible
higher mobility of the ligand under a biasing potential is a mark of the binding mode
instability. This method showed the ability to reliably discriminate between the ligand-
binding pose retrieved by MDB and a plausible alternative generated with IFD studies [22].

We decided to use BPMD to evaluate the affinity of the three representative poses
obtained from MDB and the pose of IFD into the binding site for compounds 1 and 2–5.
The results were defined in terms of the pose stability based on the PoseScore, which is the
RMSD of the ligand related to the starting coordinates of the heavy atoms of the ligand.
Moreover, to evaluate the results, another metric is used, such as the PersScore, which is a
clue of the H-bond formed between the ligand and the target during the simulations. The
linear combination of these two scores provides a third score, the CompScore, which is
calculated with Equation (1):

CompScore = PoseScore − 5 × PersScore (1)

Lower values of the CompScore indicate more stable complexes.
During the metadynamics simulations, pose 1 reached a steady PoseScore = 1.397,

considered stable, while the PersScore showed that the hydrogen bonds identified at the
start of the metadynamics run were kept for 60% of the averaged time (Figure 7A). In
particular, the H-bond between the NH amide group of the ligand and Gly47 was kept
for 88% of the simulation time, while the H-bond between the carbonyl of the ligand and
Ser21 for 36% (Figure 7B). The CompScore value was -1.694. Due to the absence of H-bonds
recorded, pose 2 with recorded pi stacking and van der Waals interactions showed the
same value for the PoseScore and CompScore, 3.129 (Figure 7C), while, for pose 3, the
scores were PoseScore = 3.349, PersScore = 0.223, and CompScore = 2.235, respectively
(Figure 7E). As for pose 1, pose 3 kept the H-bond between NH amide and Gly47 as 26%
and 18% between carbonyl and Ser21 (Figure 7F).

The PoseScore for the pose of amide 1 obtained by the IFD was 4.576, and the PersS-
core showed that the hydrogen bonds identified at the start of the MetaDynamics run were
kept for 13% of the averaged time. The value of the CompScore was 3.917 (Figure 7G).
It is interesting to point out that, of the four H-bonds detected by IFD, the two interac-
tions between the amide group and Ser21 and Gly47 were maintained—in particular, the
interaction between NH amide and Gly47 for 43% and 9% between carbonyl and Ser21
(Figure 7H).

The RMSD values and the percentage of the H-bonds retrieved from BPMD studies
for the amide 1 in the three MDB poses and in the IFD pose showed that pose 1 could
be considered more stable. Pose 1, pose 3, and the IFD pose adopted the same plain
conformation and H-bonds between Ser21, Gly47, and the amide group. The differences
were in the additional interactions between Ala49, Ala50, and the carbonyl of 2-pyridone,
which led to a rotation of 2-pyridone, causing the ring to be specular in the IFD pose and
showed a high value of RMSD (4.02 Å).

The BPMD analysis was also carried out for compounds 2–5 to evaluate their binding
stability with respect to the most active compound of the series, 1. The results of the BPMD
calculations are reported in Figure 8. As can be evidenced from the plots, all showed
PoseScore values higher than the averaged PoseScore for 1. The hydrogen bonds identified
at the start of the MetaDynamics run were maintained for 10-30% of the averaged time
(Figure 8B,D,F,H) The CompScore values for compounds 2–5 were 4.750, 4.276, 5.979,
and 1.728, respectively. Moreover, MM-GBSA-binding free energy calculations for all the
complexes were performed. The plot of the calculated ∆G binding vs. the Ki values is
reported in Figure 9, and it shows an R2 = 0.8071 (compound 1 ∆G = −52.912 Kcal/mol,
compound 2 ∆G = −41.684 Kcal/mol, compound 3 ∆G = −41.355 Kcal/mol, compound 4
∆G = −36.701 Kcal/mol, and compound 5 ∆G = −35.340 Kcal/mol).
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      Figure 7. Plots of the RMSD estimate averaged over all 10 trials vs. the simulation time for the

BindingPoseMetaDynamics runs: pose 1 (A), pose 2 (C), pose 3 (E), and IFD pose (G). Persistence
Score Plots: pose 1 (B) pose 2 (D), pose 3 (F), and IFD pose (H). The blue dots represent the values of
the CV RMSD at different times (2 ns, 4 ns, 6 ns, 8 ns, and 10 ns) for each simulation trial. The blue
lines represent the mean CV RMSD values along the 10 × 10 ns of the simulation trials. The orange
and blue bars represent the fraction of H-bonds maintained during the simulation for each trial.
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Figure 8. Plots of the RMSD estimate averaged over all 10 trials vs. the simulation time for the
BindingPoseMetaDynamics runs: compound 2 (A), compound 3 (C), compound 4 (E), and compound
5 (G). Persistence Score plots of compounds 2 (B), compound 3 (D), compound 4 (F), and compound
5 (H). The blue dots represent the values of the CV RMSD at different times (2 ns, 4 ns, 6 ns, 8 ns,
and 10 ns) for each simulation trial. The blue lines represent the mean CV RMSD values along
the 10 × 10 ns of the simulation trials. The orange and blue bars represent the fraction of H-bonds
maintained during the simulation for each trial.
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Figure 9. The plot of the MM-GBSA ∆G binding vs. the Ki values of compounds 1–5. The binding
free energy is expressed in Kcal/mol, and the IC50 is expressed in µM.

3. Discussion

The inhibition of the human immunoproteasome is a hot topic of recent years in
medicinal chemistry due to its involvement in a wide range of diseases. Promising im-
munoproteasome inhibitors, both covalent and non-covalent, have been recently identified.
In covalent inhibitors, the presence of a reactive warhead may cause significant off-target
activities against other proteins, which may result in side effects (e.g., liver toxicity and
idiosyncratic adverse reactions) and reduced selectivity over time [8,9]. For these reasons,
the attention was focused on non-covalent immunoproteasome inhibitors. In this context,
a series of amide derivative β1i subunit inhibitors with Ki values in the low micromolar
or submicromolar range have been recently identified [12]. The use of computational
approaches could characterize the binding process of these inhibitors—in particular, the
use of advanced molecular dynamics approaches able to explore the dynamic features
of the protein/ligand complex could overcome the limitations of semiflexible molecular
docking methods in which the protein target is treated as a rigid body. Several advanced
methods have been proposed in the last years for computing association and dissocia-
tion mechanisms, and all of them were shown to be promising in the interpretation of
such mechanisms. With the aim to gain more insights into non-covalent inhibitors of the
immunoproteasome, we decided to exploit these enhanced sampling methods.

Here, we investigated the dynamic binding mechanism of compound 1, the most active
of a series of non-covalent amide derivatives. With the aim of collecting mechanistic insight
on the binding process, we performed the MDB protocol implemented in BiKi software
to simulate the events that elapsed among the ligand unbound and the ligand entrance
in the binding pocket. Successively, plain MD simulations were performed to extend the
sampling of the bound states. The clustering of the survived complexes trajectories allowed
identifying three representative poses (pose 1, pose 2, and pose 3) observed during the
simulation. The most important interactions for the inhibition pattern were, in pose 1, two
H-bonds between the amide group and Ser21 and Gly47 and, in pose 2, the benzyl group
interacting by pi-pi stacking with Phe31. The residues Ser21 and Gly47 of pose 3 formed
H-bonds with carbonyl and NH amide, and at the same time, the 2-pyridone moiety made
a cation-pi-stacking interaction with the epsilon amino group of Lys33. Moreover, pose 1
showed a different orientation of the 2-pyridone moiety with respect to the docking and
IFD studies. The 2-pyridone moiety was stabilized in the binding pocket by van der Waals
contacts, as observed in MDB, while, in docking and IFD studies, it was stabilized by

13



Molecules 2021, 26, 4046

H-bonds with Ala49 and Ala50 beyond van der Waals contacts. In pose 3, the peculiarity
is represented by the 2-pyridone moiety interacting with the pi-stacking interaction with
Lys33, which determined a flipped orientation with respect to pose 1. Finally, in pose 2,
a different folded conformation with respect to pose 1 and pose 3 was observed, with a
new pi-stacking interaction between the benzyl group and Phe31. The flipped orientations
obtained for pose 1 and pose 3 suggested a different entrance mode of the ligand into the
active site. Through the BPMD studies, it was possible to observe that both poses were
stable, but, according to the RMSD value, the conformation of pose 1 showed major stability
compared to pose 3 in the active site. Beyond the van der Waals contacts observed, the
conformation of pose 1 could be strengthened by the pi-stacking interactions shown in pose
2 and pose 3 to improve the potency and selectivity of the β1i subunit. To pursue the matter,
we also carried out IFD calculations for the other four amide derivatives 2–5 that showed
an appreciable inhibitory activity on β1i. These studies revealed that Phe31 and Lys33
residues could play a key role in the inhibition pattern, in addition to the already known
Ser21 and Gly47 ones, showing the importance not only of the hydrogen bonds but also of
the pi-stacking interactions for the stabilization of the binding of the inhibitors. Moreover,
the BPMD analysis confirmed the higher binding stability of inhibitor 1 with respect to the
inhibitors 2–5, as evidenced by in vitro tests. Compound 1 showed the best CompScore
(−1.694) with respect to the other compounds. The consistency of the computational
analysis with the experimental data was further confirmed by the MM-GBSA-binding free
energy calculations. These outputs were plotted against the experimental Ki values, and
the R2 = 0.8071 confirmed compound 1 as the best derivatives of this series.

4. Materials and Methods
4.1. System and Ligand Preparation

For the purposes of this study, we selected the catalytic subunit β1i (LMP2 and PSMB9)
extracted from the murine i20S in complex with the inhibitor ONX-0914 bound to the β5i
subunit (PDB ID: 3UNF) [20]. Both 20S subunits, murine and human, share a sequence
identity of more than 90%, and the few nonidentical residues are external to the active
sites. As reported in the literature, in the case of covalent cocrystallized inhibitors [25,26],
the reactive residue at the catalytic site was rebuilt after removing the covalent inhibitor
by breaking the covalent bond and filling in the open valence. In this case, the involved
residue was Thr1. The protein was prepared with the Protein Preparation Wizard [27]
included in the Maestro suite (Maestro, Schrödinger, LLC, 2021, New York, NY, USA):
adding bond orders and hydrogen atoms to the crystal structure using the OPLS2005
force field. Next, Prime [28] was used to fix missing residues or atoms in the protein and
to remove cocrystallized water molecules. The protonation states at pH 7.2 ± 0.2 of the
protein and the ligand were evaluated using Epik 3.1 [29]. The hydrogen bonds were
optimized through the reorientation of hydroxyl bonds, thiol groups, and amide groups.
In the end, the systems were minimized with the value of convergence of the RMSD of 0.3
Å. The ligands were drawn using Marvin Sketch 19.25 [30]. Amide 1 was parameterized
using the BiKi suite [19] at the AM1-BCC [22] level of theory. Partial charges were derived
using the RESP method [23] in Antechamber [24]. Compounds 2–5 were prepared using
Schrödinger LigPrep v. 2021-1 (LigPrep, Schrödinger, LLC, 2021, New York, NY, USA).
The force field adopted was OPLS2005, and Epik was selected as the ionization tool at pH
7.0 ± 2.0. Tautomers generation was flagged, and the maximum number of conformers
generated was set at 32.

4.2. MD-Binding Simulations

The MD-binding method [17] within the BiKi suite [19] (BiKi Technologies s.r.l., Gen-
ova, Italy) exploits an additive external force that is summed as the regular potential
energy of the system to enhance the probability of observing the binding event. The bias
is represented by external electrostatic-like forces acting between a subset of the residues
of the binding site and the ligand. The intensity of the bias is controlled by the adaptivity
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rules and gradually switches off as the ligand moves torward the subset of residues; after
the conjectured passing of the transition state has occurred, it slowly recovers the behavior
of classical unbiased MD [31].

The protocol for MD-binding consists of crucial steps: characterization of the bind-
ing pocket using NanoShaper [23] (BiKi Technologies s.r.l., Genova, Italy). NanoShaper
calculations provide a characterization of the binding pocket, which identifies the atoms
facing the pocket entrance in the protein structure. This information was then used by
BiKi software for the initial ligand positioning outside the binding cavity. Subsequently,
an additive external force was made to enhance the sampling of the binding event. Once
the ligand was positioned through the “Residue Placement” tool in BiKi, the system was
solvated in an orthorhombic box using the TIP3P water model [32]. A suitable number
of counterions were added to neutralize the overall system. Then, the whole system un-
derwent energy minimization by using the Amber99SB-ildn force field [33]. According to
the standard protocol [17], four different consecutive equilibration steps were performed:
(1) 100 ps in the NVT ensemble at 100 K with both the protein backbone and ligand re-
strained (1000 kJ/mol nm2), (2) 100 ps in the NVT ensemble at 200 K with both the protein
backbone and the ligand restrained, (3) 100 ps in the NVT ensemble at 300 K with the
free protein and the ligand restrained, and (4) 1000 ps in the NPT ensemble at 300 K with
the free protein and the ligand restrained. Electrostatic interactions were treated with the
cutoff method for short-range interactions and with the particle mesh Ewald method for
long-range interactions (rlist = 1.1 nm, cutoff distance = 1.1 nm, vdW distance = 1.1 nm,
and PME order = 4). The constant temperature conditions were provided using the velocity
rescale thermostat [34], which is a modification of Berendsen’s coupling algorithm [35].
The coordinate output from the last simulation was then used as the input to produce the
biased molecular dynamics. Finally, 20 replica production runs, 20-ns-long in the NVT
ensemble at 300 K, were performed for each complex using C = 0.1 (the fraction of the felt
force, here 10%), a smoothing window size of 1000 samples, and a maximal K(t) of 0.001
(maximal steering constant).

4.3. Plain MD Simulations

The plain MD simulations were carried out using Desmond 6.5 [36] using the OPLS2005
force field [37] (Desmond Molecular Dynamics System, D. E. Shaw Research, New York, NY,
USA). The complexes were solvated in orthorhombic boxes using the TIP3P water model.
Ions were added to neutralize the charges. The systems were minimized and equilibrated at
a temperature of 303.15 K and a pressure of 1.013 bar. The system was simulated as an NPT
ensemble; a Nose–Hover thermostat and Martyna–Tobia–Klein barostat were used. The
integration time step was chosen to be 2 fs. To keep the hydrogen–heavy atom bonds rigid,
the SHAKE algorithm was used. A 9 Å cutoff radius was set for the short-range Coulomb
interactions, and smooth particle mesh Ewald was used for the long-range interactions.
For each replica, we carried out 10-ns MD simulations for a total of 200 ns, with 1.2-ps
detection ranges for energy and 4.8 ps for the trajectory frames. The stability of the systems
was evaluated using the root mean square deviation (RMSD) of the aligned protein and
ligand coordinate set calculated against the initial frame. Visualization and analysis of the
MD trajectories were performed using the Desmond simulation analysis tools in Maestro.
The trajectories frames were clustered according to the hierarchical cluster linkage method.
The 1000 frames recorded in each simulation were clustered considering the binding site
conformations into 10 clusters based on the atomic RMSDs.

4.4. Binding Pose MetaDynamics (BPMD)

Binding pose MetaDynamics (BPMD) is an automated, enhanced sampling, metadynamics-
based protocol in which the ligand is forced to move around its binding pose. This method
showed the ability to reliably discriminate between the correct ligand binding pose and
plausible alternatives generated with docking or plain MD studies [18].
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According to the protocol, 10 independent metadynamics simulations of 10 ns were
performed using as a collective variable (CV) the measure of the root mean square deviation
(RMSD) of the ligand heavy atoms with respect to their starting positions. The alignment
before the RMSD calculations was done by selecting protein residues within 3 Å of the
ligand. The Cαs of these binding site residues were then aligned to those of the first frame
of the metadynamics trajectory before calculating the heavy atom RMSD to the ligand
conformation in the first frame. The hill height and width were set to 0.05 kcal/ mol (about
1/10 of the characteristic thermal energy of the system, kBT) and 0.02 Å, respectively. Before
the actual metadynamics run, the system was solvated in a box of SPC water molecules [38],
followed by several minimizations and restrained MD steps that allow the system to slowly
reach the desired temperature of 300 K, as well as releasing any bad contacts and/or strain
from the initial starting structure. The final snapshot of the short unbiased MD simulation
of 0.5 ns was then used as the reference for the following metadynamics production phase.
After the simulation, the stability of the ligand during the course was represented by three
scores: PoseScore, PersistenceScore (PersScore), and CompositeScore (CompScore). The
PoseScore is indicative of the average RMSD from the starting pose. A steep increase of this
value is a symptom that the ligand is not in a well-defined energy minimum and, probably,
it might not have been accurately modeled. PersScore is a measure of the hydrogen bond
persistence calculated in the last 2 ns of the simulation that have the same number of
hydrogen bonds as the input structure, averaged over all the 10 repeated simulations. It
covers a range between 0 and 1, where 0 indicates that either the starting ligand pose
did not have any interactions with the target or that the interactions were lost during the
simulations, while 1 indicates that the interactions between the staring ligand pose and the
last 2 ns of the simulations were retained. CompositeScore is the linear combination of the
PoseScore and PersScore; lower values equate to more stable complexes. Each complex,
previously obtained, was run, Country) on a single node with a 1 GPU card NVIDIA
GeForce RTX2070.

4.5. Induced-Fit Docking

The induced-fit protocol (IFD)—developed by Schrödinger [24]—is a method for
modeling the conformational changes induced by ligand binding. This protocol models
induced-fit docking of one or more ligands using the following steps, as also reported
in references [39–42]. The protocol starts with an initial docking of each ligand using a
softened potential (van der Waals radii scaling). Then, a side-chain prediction within a
given distance of any ligand pose (5 Å) is performed. Subsequently, a minimization of the
same set of residues and the ligand for each protein/ligand complex pose is performed.
After this stage, any receptor structure in each pose reflects an induced fit to the ligand
structure and conformation. Finally, the ligand is rigorously docked, using Glide XP (Glide,
Schrödinger, LLC, 2021, New York, NY, USA), into the induced-fit receptor structure.
IFD was performed using a standard protocol, and the OPLS2005 force field was chosen.
The receptor box was centered on the active site of β1i, according to the NanoShaper
calculations. During the initial docking procedure, the van der Waals scaling factor was
set at 0.5 for both the receptor and ligand. The Prime refinement step was set on the side
chains of residues within 5 Å of the ligand. For each ligand docked, a maximum of 20
poses was retained to then be redocked in XP mode.

4.6. MM-GBSA-Binding Free Energy Calculations

Prime/MM-GBSA was used for the estimation of ∆G binding. The MM-GBSA ap-
proach employs molecular mechanics, the generalized Born model, and the solvent ac-
cessibility method to elicit free energies from structural information, circumventing the
computational complexity of free energy simulations, wherein the net free energy is treated
as a sum of a comprehensive set of individual energy components, each with a physical
basis [25]. In our study, the VSGB solvation model was chosen using the OPLS2005 force
field with a minimized sampling method [28].
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5. Conclusions

In this study, we investigated the mechanism of non-covalent inhibition of the potent
and selective immunoproteasome inhibitor 1. For this purpose, we employed advanced
molecular dynamics methods such as MD binding (MDB) and Binding Pose MetaDynamics
(BPMD) and advanced docking methods such as induced-fit docking (IFD). MD binding
allowed analyzing the binding mechanisms and gained insights into the ligand entrance
pathway. Then, plain MD was performed to study the stability and conformational space
in the immunoproteasome–ligand complex, thus allowing elucidation of the compound
dynamic behavior within the binding cavity. These results were compared with the IFD
poses of the other four inhibitors, revealing new key residues in the binding pattern, and
confirmed the different binding stability of 1 with respect to the other compounds, 2–5.
The collected information and outcome could be useful in ameliorating the activity of
compound 1 and providing a dynamical point of view for the definition of the pharma-
cophoric features that could be exploited through dynamic pharmacophore modeling
approaches, such as the Common Hits Approach (CHA) [43] or MYSHAPE [44], for the
scaffold-hopping of new non-covalent inhibitors through a virtual screening campaign.

Supplementary Materials: The following supplementary materials are available online, Figures S1–S12.
Figure S1: MD-binding: Ligand RMSD calculated from the centroid of binding pocket and protein
backbone RMSD (20 ns) for Replica 1 (A,B) and Replica 2 (C,D). Figure S2. MD-binding: Ligand
RMSD calculated from the centroid of binding pocket and protein backbone RMSD (20 ns) for Replica
3 (A,B), Replica 4 (C,D), Replica 5 (E,F). Figure S3. MD-binding: Ligand RMSD calculated from the
centroid of binding pocket and protein backbone RMSD (20 ns) for Replica 6 (A,B), Replica 7 (C,D),
Replica 8 (E,F). Figure S4. MD-binding: Ligand RMSD calculated from the centroid of binding pocket
and protein backbone RMSD (20 ns) for Replica 9 (A,B), Replica 10 (C,D), Replica 11 (E,F). Figure S5.
MD-binding: Ligand RMSD calculated from the centroid of binding pocket and protein backbone
RMSD (20 ns) for Replica 12 (A,B), Replica 13 (C,D), Replica 14 (E,F). Figure S6. MD-binding: Ligand
RMSD calculated from the centroid of binding pocket and protein backbone RMSD (20 ns) for Replica
15 (A,B), Replica 16 (C,D), Replica 17 (E,F). Figure S7. MD-binding: Ligand RMSD calculated from the
centroid of binding pocket and protein backbone RMSD (20 ns) for Replica 18 (A,B), Replica 19 (C,D),
Replica 20 (E,F). Figure S8. Ligand and protein RMSD during MD-plain(10 ns). Replica 1 (A); Replica
2 (B); Replica 8 (C); Replica10 (D). Figure S9. Ligand and protein RMSD during MD-plain(10 ns).
Replica 11 (A); Replica 12 (B); Replica 13 (C); Replica 14 (D). Figure S10. Ligand and protein RMSD
during MD-plain(10 ns). Replica 15 (A); Replica 16 (B); Replica 17 (C); Replica 20 (D). Figure S11.
Ligand Interaction Diagram of pose1 (A) and pose2 (B). Purple arrows show H-bond interactions
and green line Pi-Pi stacking. Figure S12. Ligand Interaction Diagram of pose3 (A) and IFD pose (B).
Purple arrows show H-bond interactions and red line Pi-cation.
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Abstract: The translocator protein (TSPO) is a 18kDa transmembrane protein, ubiquitously present
in human mitochondria. It is overexpressed in tumor cells and at the sites of neuroinflammation,
thus representing an important biomarker, as well as a promising drug target. In mammalian TSPO,
there are cholesterol–binding motifs, as well as a binding cavity able to accommodate different
chemical compounds. Given the lack of structural information for the human protein, we built a
model of human (h) TSPO in the apo state and in complex with PK11195, a molecule routinely used in
positron emission tomography (PET) for imaging of neuroinflammatory sites. To better understand
the interactions of PK11195 and cholesterol with this pharmacologically relevant protein, we ran
molecular dynamics simulations of the apo and holo proteins embedded in a model membrane.
We found that: (i) PK11195 stabilizes hTSPO structural fold; (ii) PK11195 might enter in the binding
site through transmembrane helices I and II of hTSPO; (iii) PK11195 reduces the frequency of
cholesterol binding to the lower, N–terminal part of hTSPO in the inner membrane leaflet, while this
impact is less pronounced for the upper, C–terminal part in the outer membrane leaflet, where the
ligand binding site is located; (iv) very interestingly, cholesterol most frequently binds simultaneously

to the so-called CRAC and CARC regions in TM V in the free form (residues L150–X–Y152–X(3)–
R156 and R135–X(2)–Y138–X(2)–L141, respectively). However, when the protein is in complex with
PK11195, cholesterol binds equally frequently to the CRAC–resembling motif that we observed in
TM I (residues L17–X(2)–F20–X(3)–R24) and to CRAC in TM V. We expect that the CRAC–like motif
in TM I will be of interest in future experimental investigations. Thus, our MD simulations provide
insight into the structural features of hTSPO and the previously unknown interplay between PK11195
and cholesterol interactions with this pharmacologically relevant protein.

Keywords: hTSPO; PK11195; cholesterol; homology modeling; molecular dynamics (MD) simulation

1. Introduction

The translocator protein (TSPO) is a transmembrane protein (18kDa), evolutionary
conserved and expressed in different organisms, from bacteria to humans [1]. Its biological
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functions are conserved throughout the phylogenetic spectrum, like tetrapyrrole biosyn-
thesis and/or sterol metabolism [1,2]. Indeed, the bacterial TSPO homology in Rhodobacter
sphaeroides can be functionally replaced by rat TSPO [3], despite that these proteins share
only about 30% sequence identity. The human protein (hTSPO) is expressed in all tissues
and located in the outer mitochondrial membrane [4,5]. Its highest expression levels are
found in steroid-synthesizing cells of endocrine organs indicating that it may play an im-
portant role in steroid synthesis from cholesterol [6]. Mammalian TSPO binds cholesterol
with high affinity by the cholesterol recognition/interaction amino acid consensus (CRAC)
motif (residues 150–156) [7,8]. This motif is preceded by a short three amino acids sequence
L144–A145–F146 (LAF) that is highly conserved in mammalian TSPO. In the experiment
with the RsTSPO mutant, where the three amino acids (A136–T137–A138) preceding the
CRAC region were replaced by mammalian LAF sequence, it was shown that the LAF
motif greatly increased the binding affinity for cholesterol with respect to the original
bacterial sequence [9]. An additional binding prediction sequence for cholesterol was
found in TSPO—the inverse version of CRAC, the CARC motif (residues 135–141) [10].
While in the case of the nicotine acetylcholine receptor, functional studies clearly show that
a substitution of a specific amino acid in CARC slows the kinetics of cholesterol binding,
in the case of TSPO, it is not yet known whether CARC binds cholesterol as well [11]. In
addition, TSPO has been proposed to play an important role in other cellular processes like
porphyrin transport [12,13], mitochondrial respiration [4,14], and immunomodulation [15].

TSPO expression is highly upregulated in cancer and at the sites of neuroinflammation
processes in cerebral ischemia, Alzheimer’s, Parkinson’s, and Huntington’s diseases, and
multiple sclerosis (reviewed in [16]). In addition, a human single nucleotide polymor-
phism of TSPO (A147T) is associated with different psychiatric disorders, like bipolar
disorder, anxiety, and panic attacks [17–19], along with cancer. Thus, TSPO is an interesting
target for the development of diagnostic and therapeutic ligands [16,20]. TSPO is overex-
pressed in the outer mitochondrial membrane of activated microglia [21–23] and reactive
astrocytes [24]. Chronic activation of microglia leads to the release of neurotrophic and
proinflammatory factors that are neurotoxic and cause neuronal damage and neurodegen-
eration [25–27]. The microglial activation is imaged in human brain in vivo by positron
emission tomography (PET) of TSPO radiolabeled ligands. PK11195 (1-(2-chlorophenyl)-
N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide) is one of the most commonly
used, high affinity TSPO ligands for studying the diagnostics and treatment of brain
inflammation and of other inflammatory diseases [28].

Second- (PRB28, PBR06, DAA1106) and third- (ER176 and GE-180) generation lig-
ands have been developed (reviewed in [29,30]). PRB28, PBR06, and DAA1106 have
higher binding affinity for hTSPO than PK11195. They provide a better signal-to-typical
positron emission tomography (PET) noise ratio. ER176 and GE-180 are being developed
to overcome differences in binding affinities for the WT or the A147T mutant hTSPO. This
mutant emerges in 30% of Caucasians, 25% of Africans, 4% of Japanese, and 2% of Han
Chinese according to the Hapmap database (http://hapmap.ncbi.nlm.nih.gov (accessed
on 25 January 2020)). It binds PRB28 [31], PBR06 [32], and FEPPA [33]. This consequently
leads to the lower PET signal intensity and can provide misleading results (absence of
neuroinflammation) for the carrier of the A147T mutation.

TSPO folds into a bundle of five transmembrane (TM) helices and a short extramem-
brane helix placed in the cytoplasmic loop between helices TM I and TM II [34–36]. Bacterial
and mouse TSPO can exist as monomers, dimers, and other oligomers as shown by ex-
periments [34,35,37,38]. Different computational molecular modeling studies were carried
out to further shed light on the dimerization of mouse and bacterial TSPO and on how
ligands (small chemical compounds, porphyrin, cholesterol) interact with dimers or influ-
ence their stability [39–42]. In contrast, the oligomerization state of hTSPO has not been
established. An in vitro study showed that it can adopt dimeric or trimeric forms under
the inflammation conditions reproduced by high concentrations of reactive oxygen species
(ROSs) [43]. Different experimental TSPO structures have been solved to date, notably the
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NMR structure of mouse TSPO (MoTSPO, PDB ID: 2MGY [36]) and the X-ray structures of
Rhodobacter sphaeroides (RsTSPO, PDB ID: 4UC1 [35]) and Bacillus cereus (BcTSPO, PDB ID:
4RYI [34]) TSPOs.

The experimental structure of hTSPO has not yet been solved. Here, we built a
monomeric structural model of hTSPO, alone and in complex with PK11195 by homology
modeling and docking, and we ran molecular dynamics (MD) simulations of the protein in
a lipid environment. We analyzed in detail the interactions of PK11195 and cholesterol with
hTSPO and how PK11195 alters cholesterol interactions with this protein. Our structural
model and results can be a valuable source for future studies of hTSPO and its interactions
with cholesterol and/or other pharmacological ligands.

2. Results and Discussion
2.1. The hTSPO Structural Model

The sequence of the hTSPO was aligned with those of RsTSPO, BcTSPO, and MoTSPO
(the sequence identity is of 29%, 24%, and 81%, respectively; Figure 1). We decided to
use RsTSPO (PDB code: 4UC1 [35]) as a template in structural modeling of the human
translocator protein [44,45].

Indeed, the latter is currently the best template choice in comparative modeling of
mammalian TSPOs [40,41] for the following reasons: (i) the structural folds of the TSPOs
on passing from the bacterial to the mammalian proteins are conserved [34–36]; (ii) the
NMR MoTSPO structure is affected by the ionic detergents used for the purification during
the measurements [36]; as a result, the positions of highly conserved amino acids and of
the transmembrane helices are altered [40]; (iii) the RsTSPO crystal structure was resolved
at a relatively good resolution (1.8 Å).

Figure 1. Multiple sequence alignment of TSPO from different organisms: human TSPO (hTSPO), Mus musculus

(MoTSPO) [36], Rhodobacter sphaeroides (RsTSPO) [35], and Bacillus cereus (BcTSPO) [34]. For the last three proteins, ex-
perimental structural information is available. Semi-conserved positions with more than 50% consensus according to
ClustalO [46] are highlighted in cyan, while highly conserved positions with more than 90% consensus are shown in red.
The oligomerization motif G83XXXG87 is indicated by the orange stars and rectangle. The W95XPXF99 motif is depicted
with the blue stars and rectangle. The cholesterol-binding motif CRAC and its “mirror code” CARC are marked by dark
green and violet rectangles and stars, respectively. The CRAC-like motif in TM I is highlighted by the light green rectangle.
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We modeled the hTSPO based on the canonical hTSPO sequence reported in the
UniProtKB database, Entry P30536 [47,48] (https://www.uniprot.org/uniprot/P30536
(accessed on 1 February 2019)). The model contains five transmembrane helices (TMs)
arranged in the clockwise order TM I–TM II–TM V–TM IV–TM III. The four loops are
located either in the cytoplasm, LP I and LP III, or in the cytosol, LP II and LP IV, respectively
(Figure 2). LP I is composed of residues V26–H46 (Figure 1), and it was earlier suggested to
play a role as the gate of the hTSPO ligand binding pocket [49]. Almost half of the residues
composing LP I are fully conserved between hTSPO and RsTSPO (Figure 1), which has a
short α-helix in the middle of its loop. LP I in the MoTSPO structure is shorter (10 residues)
than in the bacterial TSPO structures (19 residues), and it lacks this α-helix.

Figure 2. Top and side view of the structural model of the hTSPO monomer (orange cartoon representation) aligned
with the RsTSPO template (black tube representation). Four important functional regions are highlighted: cholesterol
recognition/interaction amino acid consensus region (CRAC, in green color) and reverse region of the CRAC (CARC, in
purple color), both involved in cholesterol binding, the G83XXXG87 motif (blue color) relevant for monomer–monomer
interactions, and the W95XPXF99 motif (shown in red color) important for ligands binding. The figure was prepared with
the VMD program [50].

Different structurally and/or functionally important motifs are conserved among
RsTSPO and hTSPO:
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(i) An important feature of the mammalian TSPO is its capability of binding cholesterol
molecules [7]. Two motifs are involved in cholesterol binding: the cholesterol recogni-
tion/interaction amino acid consensus motif (CRAC) represented as L150–X–Y152–X(3)–
R156 (Figure 1, dark green rectangle) [7] and the reverse region of CRAC (named CARC)
described as R135–X(2)–Y138–X(2)–L141 (Figure 1, purple rectangle) [7,10]. One helical
turn before CRAC, there is a short sequence L144–A145–F146 that enhances the binding
affinity of mammalian TSPO for cholesterol [9]. Even though cholesterol is absent in bacte-
rial membranes, the CRAC motif is conserved in RsTSPO (Figure 1, dark green rectangle).
This is most probably in order to accommodate hopanoids, which have a structure and
function similar to that of cholesterol in higher organisms [51].

In order to interact with cholesterol, side chains of the key CRAC, CARC, and LAF
residues need to face the membrane. In our model, CRAC Y152 and R156 side chains are
membrane exposed, while L150 is oriented towards the ligand binding cavity in the center
of the TSPO (Figure 2). Different mutagenesis studies showed the importance of Y152
and of R156 for cholesterol binding. If one of these two residues is mutated to serine or
leucine, respectively, the binding of cholesterol is abolished [7,8]. CARC, in contrast to
CRAC, is not conserved in RsTSPO (Figure 1, purple box). However, in our hTSPO model,
all key residues from this motif, R135, Y138, and L141, are membrane exposed and can
interact with cholesterol (Figure 2). Among the LAF residues, L144 is facing the interior of
the protein in our model, while A145 and F146 are membrane exposed and available for
cholesterol binding.

(ii) The G83XXXG87 motif from hTSPO (Figure 1, orange rectangle) coincides with the
A75XXXA79 motif in RsTSPO. These motifs represent widespread helix–helix interactions
across different membrane proteins [52–56]. Both motifs are located in the third TM domain
(TM III) of the respective proteins and represent a binding interface for TSPO monomer–
monomer interactions. The G83 and G87 residues are exposed to the membrane in our
hTSPO model and can interact with the second monomer (Figure 2).

(iii) The W95XPXF99 motif is fully conserved among human, mouse, and RsTSPO,
while the BcTSPO sequence differs significantly in this region (Figure 1, blue rectangle).
This motif is conserved also in other prokaryotic and eukaryotic TSPO sequences [40,57],
and it was suggested to play a role in oligomerization processes [49], as well as in ligand
binding [34,58]. In the MoTSPO experimental structure, W95 points into the binding cavity
and F99 is oriented toward the membrane, whereas in the RsTSPO structure, both residues
point into the binding pocket. In the BcTSPO–PK11195 complex, residues F90 and Q94,
which correspond to W95 and F99 in mammalian TSPO, respectively, interact with PK11195.
This is also the case for our hTSPO model (Figure 2).

2.2. PK11195 Interactions with the hTSPO Model

We docked PK11195 to our hTSPO model. Two 3D structures of the TSPO in com-
plex with PK11195 exist, the NMR structure of MoTSPO [36] and the X-ray structure of
BcTSPO [34]. The ligand binding cavity has the same location in both proteins, but PK11195
adopts different binding poses. In our studies, we used the hTSPO–PK11195 complex where
the ligand binding pose was similar to the one observed in the BcTSPO, since currently,
there are no experimental structures available for the RsTSPO–PK11195 complex, which is
a template of our model. Other docking poses differed from the one used as the starting
configuration for the MD simulations (Figure S1), showing a small degree of convergence.
Indeed, these poses are already cluster representatives, since AutodockVina [59], used here,
does the clustering automatically.

However, many residues crucial for PK11195 binding in the BcTSPO crystal struc-
ture are fully conserved in RsTSPO, like Y32(31), P42(41), W51(50), N87(84), W138(135),
A142(139), and L145(142) (numbering is for BcTSPO and in parentheses for RsTSPO)
(Figure 1). Furthermore, the main structural differences between Bc and the RsTSPOs
appear at the monomer–monomer interface in the dimer structure and not in the ligand
binding pocket [49].
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The binding cavity in our model is lined with residues belonging to four TM domains
and to LP I: G18, C19, V21, G22, F25 (in TM I), Y34, H43 (in LP I), H46, L49, G50, W53 (in
TM II), N92, W95, P96, F99, F100 (in TM III), W143, T147, L150 (in TM V). The residues L49,
W53, W95, W143, A147, and L150 are involved in the binding of PK11195 in both the Mo and
BcTSPOs experimental structures [34,36]. Beside these residues, others bind PK11195 in Mo
and BcTSPO, but they are specific to each structure. One third of the binding residues in our
model are fully conserved among mammalian [60] and other prokaryotic and eukaryotic
species [57], like Y34, W53, N92, W143, L150, and A/T147 (Figure 1, for more complete
alignments see [57,60]). It was shown that either threonine or alanine at position 147 has no
impact on PK11195 binding to the TSPO since it binds to both polymorphs with the same
binding affinity, in contrast to other radioligands, which bind with significantly smaller
binding affinity to the protein with threonine [31,60,61].

Next, we ran a 1 µs long MD simulation and analyzed the interactions between our
hTSPO model and the PK11195 ligand. Additional MD simulation replicas of 450 ns were
later run for holo and apo hTSPOs (two for each protein), and the results are reported in the
Supplementary Materials. During the MD simulation, at around 450 ns, we observed quite
sudden movement of the PK11195 chlorophenyl-N-isoquinoline part towards different
binding pose, while the alkyl part of PK11195 remained at its initial position. The rings
horizontally slide in a way that the chlorophenyl ring, which initially faces TM I, is placed
between TM I and TM II, closer to the latter helix (Figure 3a, center, and Figure S2). This
movement indicates that the initial binding pose may not be optimal and/or that the TSPO
binding pocket possesses certain plasticity allowing for different binding poses of the
ligand. Interestingly, the pose of PK11195 after 450 ns was similar to one docking position
(Figure S1, pose 5; the RMSD between the two poses is 1.8 Å). We compared the binding
pose that PK11195 adopts during the first 450 ns (Figure 3b) with the one it takes up after
the movement (Figure 3c). We observed that residues binding constantly PK11195 during
the whole length of the MD run are: G22, F25 (in TM I), Y34, H43 (in LP I), L49, W53 (in
TM II), W95, P96 (in TM III), and T147, L150 (in TM V). Residues Y34, W53, W95, A/T147,
and L150 are well conserved among TSPOs from different species, while G22, F25, and L49
are semi-conserved [57]; this indicates their importance for the structure and/or function
of the protein.

The F25 side chain is initially facing towards the membrane, later it moves inside the
binding pocket, establishing the π-stacking and hydrophobic interactions with F100, Y34,
and PK11195. In the MoTSPO (PDB code: 2MGY [36]) and BcTSPO (PDB code: 4RYI [34])
structures, this residue points out of the binding site in the same orientation as it does in
our model at the beginning of the MD simulation.

In our model, Y34 forms hydrophobic interactions with PK11195 throughout the
MD simulation. This residue is fully conserved among TSPOs from different species,
from mammalians to bacteria [57]. However, in the crystal structure of BcTSPO–PK11195,
this residue binds PK11195, while in the MoTSPO–PK11195 complex, it faces the cytosol.
Despite this ambiguity in the TSPO–PK11195 experimental structures, our result is in very
good agreement with mutational studies showing that mutations Y34F, Y34F/F100A, and
Y34F/F99A cause a large decrease in the binding affinity for PK11195 with respect to the
WT TSPO [58]. These results indicate that the aromatic phenyl rings are crucial at this place
for PK11195 binding.

A stable hydrogen bond (H-bond) is formed between the W53 indole amino group
and the carbonyl-oxygen atom of PK11195. The H-bond between W53 and PK11195 was
observed also in the BcTSPO–PK11195 crystal structure [34], but not in the MoTSPO–
PK11195 NMR structure, which lacks any H-bond interaction [36]. Another H-bond
observed in the BcTSPO–PK11195 structure was formed between W143 and the PK11195
ligand [34]. In our model, this H-bond is formed occasionally during the first 450 ns;
after this time, W143 constantly interacts with PK11195 through VdW interactions.
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Figure 3. PK11195 binding interactions with the hTSPO model. (a) Top: Open access to the binding pocket between TM I
and TM II of the hTSPO structural model that persists throughout the MD simulation. We do not observe other openings,
nor the change in the LP I conformation. Center: PK11195 moves in the binding site of the hTSPO model from its initial state
observed in the first 450 ns (red color) to the new pose (blue color, 450–1000 ns). The image of every hundredth frame is
shown smoothed with a five frame window. Bottom: Chemical formula of PK11195. (b,c) 3D and 2D representations of the
PK11195 binding pocket during the first 450 ns (top) and after the ligand movement, from 450 ns till the end of the MD
run (bottom). 3D plots show PK11195 (yellow and orange balls and sticksrepresentation for 0–450 ns and for 450–1000 ns,
respectively) and the residues binding it for more than 90% of the simulation time; the backbone and hydrogen atoms were
omitted for clarity reasons. F100 was kept in (c), despite that it does not bind PK11195 anymore, to show the change in its
side chain conformation. The most constant interactions, formed for more than 75% of the simulation time between PK11195
and the hTSPO model, are shown in the 2D plots obtained by the Discovery tool [62]. Legend: green circles—hydrogen
bonds, light green circles—VdW interactions, light pink circles—π-alkyl, and dark pink circles—π-π interactions.

PK11195 is additionally bound through VdW, hydrophobic, or stacking interactions by
H43, L49, P96, W95, T147, and L150. Some of these residues interact with PK11195 also in
the BcTSPO structure (F90, S91, A142, and L145, respectively) and in the MoTSPO structure.

In addition to all the above described residues, F100 and L112 steadily bind PK11195
during the first 450 ns. At this time, the ligand moves to a new binding pose, and these
two interactions are lost; however, the interactions with V26 and F99 are established
(Figure 3b,c). Interestingly, the F100 side chain flips out of the binding pocket at around
720 ns (Figure 3c). This residue is oriented towards the binding site in BcTSPO, as it is in our
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model at the beginning of the MD simulations, while in MoTSPO, it is facing the membrane
like in our model at the end of the MD run. According to our results, we suggest that F100
spontaneously changes its position from inward to outward of the binding pocket and that
the experimental structures captured it in one of these two different conformations.

The spontaneous change that we observe in the orientation of the F100 side chain may
indicate that it is involved in placing the ligand inside the binding pocket, but not crucial
for its binding, and that this role is left to F99 and Y34, as suggested by [58]. Deeper studies
will of course need to be done to explore in detail the exact role of these three residues.

Different hypothesis were made in the literature about the possible binding pathways
for PK11195: one suggested that the ligand enters the binding pocket from the cytosol and
that LP I plays a role of the gate [49,63]; the second one proposes binding between the
crevices in TM helices [34,63,64].

In the present work, we observed the opening between TM I and TM II of our hTSPO–
PK11195 model, which during the whole simulation time gave direct access to the binding
pocket through the membrane (Figure 3a). Furthermore, PK11195 adopts a position where
its Cl-phenyl ring is placed in this crevice, enveloped by C19, G22, F25, and V26 from TM I
and by H46, L49, and W53 from TM II. In contrast, in the apo hTSPO model, the TM I and
TM II helices maintain the closed position, without any openings, during the full length of
the MD simulation (Figure S3).

Furthermore, we noted that LP I is stabilized through a patch of interactions: cation-
π interactions formed between K39 (LP I) and Y34 (LP I) and the stacking interactions
between Y34, F25 (TM I), F99, F100 (TM III), and PK11195. These interactions prevent—
within the time scale of our simulation—LP I from moving in a way to open the access to
the binding site from the top of the protein and therefore from the cytosol. This result is
consistent with the previous study [64]. However, we cannot exclude that on a longer time
scale, LP I is able to perform larger movements, as was proposed by [63].

2.3. PK11195 Stabilizes hTSPO Structural Fold

The apo and holo hTSPO structural models were embedded into the membrane and
evaluated by a 1 µs long MD simulation. We evaluated and compared the structural
stability of the apo and holo hTSPOs by calculating the root mean squared deviations
(RMSD) of backbone atoms, the root mean squared fluctuations (RMSF) of Cα atoms
(Figure 4), and the helices’ flexibility (Figure 5).

The RMSD of apo hTSPO fluctuates more than that of the holo protein (Figure 4a);
however, both systems reach a plateau at around 400 ns. The RMSD fluctuations in the
apo protein (from 400 ns on) are principally due to the bending of the TM I helix and
due to the flexibility of the loops LP I, II, and III. In contrast, the RMSD of the hTSPO–
PK11195 complex is lower than for the apo protein and becomes steady from around
400 ns on, indicating that PK11195 stabilizes the hTSPO structural model. The higher
structural stability of the holo protein can be observed as well from the principal component
analysis (PCA) (Figure 6). These results are in line with experimental data for MoTSPO,
where the interactions with its cognate ligand PK11195 stabilize its structural fold [36,65].
Similar observations were obtained for RsTSPO, which also showed an important flexibility,
especially around the ligand binding site [35,66]. It was shown that the quality of RsTSPO
crystals was significantly improved by adding cholesterol and PK11195 to the crystallization
medium [35], suggesting that PK11195 can have a positive impact also on the RsTSPO and
not only on MoTSPO structural stability.

The RMSD values of backbone atoms for each transmembrane helix (Figure 4c,d)
clearly show that PK11195 increases the stability of TM I and TM II, while TM IV and
TM V are stable regardless of the absence/presence of the ligand. In both—apo and
holo—proteins TM I is the most flexible helix and TM IV the most stable one.
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Figure 4. (a) Evolution of the root mean squared deviation (RMSD) values of the apo (violet graph)
and holo (green graph) hTSPOs during the 1 µs long MD simulation. RMSD values were calculated
for the backbone atoms of residues W5 to N158, excluding the N– and C–termini and H atoms. (b)
Root mean squared fluctuations (RMSF) of the Cα atoms in the apo (violet graph) and holo (green
graph) hTSPOs. RMSF values were calculated for equilibrated proteins (in the MD simulation range
of 400 ns–1 µs). (c,d) RMSD values for each of the five transmembrane helices (TM I–TM V) in the
apo (hTSPO) and holo (hTSPO–PK11195) proteins, respectively.
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Figure 5. Analysis of the flexibility of each TM domain (TM I–TM V) in hTSPO–PK11195 and
hTSPO structural models by means of Bendix [67]. y-axis: residue index number corresponding to
the residues composing individual TM domain; x-axis: simulation time. The color scale indicates
changes in helix angle/bending during the MD simulations, from blue: <6◦ to red: >24◦.
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Figure 6. The principal component analysis of the (a) hTSPO and (b) hTSPO–PK11195 models
showing the flexible parts of the protein. The image of every hundredth frame is shown, spanning
from the beginning (red color) to the end (blue color) of the MD simulation.
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The RMSD for TM I in the apo system has two plateau levels indicating a conforma-
tional change. Indeed, there is a kink in the α-helix due to the P15 residue (Figure 5, TM
I in hTSPO). Helix kinks are a common feature of long α-helices, which are frequent in
transmembrane proteins, and proline residues are strongly associated with the helix being
kinked [68,69]. TM I becomes straight at around 350 ns. The alteration between the kinked
and straight form of TM I is the reason for the RMSD change and also for the higher RMSD
values with respect to the other helices in our model (Figure 4c). TM III (P96–P97) and TM
V (P139) are also slightly kinked. However, TM V in the holo protein is very stable most
probably owing it to the presence of PK11195, though its binding site is distant from P139.

The root mean squared fluctuations (RMSF) of Cα atoms were calculated in the range
of 400 ns to 1000 ns, when both systems reach equilibration. The RMSF for both systems
are very similar, but one can note important peaks at residues A35, E70, and F100 in the
apo model (Figure 4b). These regions correspond to the first three loops fluctuating more
in the apo than in the holo protein.

In the hTSPO–PK11195 complex, LP I with the small α-helix (residues G28 to G36)
in the middle of it is stable during the whole MD simulation time. A crucial role in its
high stability is played by a patch of interactions (described in details in the previous
section) that hinders the free movement of LP I and contributes to the α-helix retaining
its conformation. In contrast, LP I in the apo model varies in length (between F25–P45
and S23–P45), and the small α-helix is rarely formed. Due to its random coil structure and
the absence of PK11195, LP I is more flexible than in the holo protein. LP II in the holo
model is stable during the MD simulation, while in the apo protein, one helix turn at the
C–terminus of TM II unfolds (data not shown), extending the length of LP II (W68–A78),
which consequently fluctuates more than in the holo protein. Here, again, PK11195 seems
to play an important role in the stability of TM II (Figure 4c,d).

LP III in the holo protein consists of residues G102–L109, and despite its length, it is
more stable than in the apo protein where it is composed of residues F99–N104 (Figure 6).
We observed that in both proteins, the parallel cation-π interactions are formed between
R103 (LP III) and W33 (LP I α-helix) for more than 75% of the simulation time. Hydrophobic
interaction between W33 and F100 (TM III) further stabilize the previous interaction in the
holo protein (existent for 90% of the simulation time), but much less in the apo protein
(existent for 40% of the simulation time). In addition, in the holo protein, F100 binds with
Y34 (LP I) for 730 ns and for about 450 ns also with PK11195. This cascade stabilizes LP
I, LP III, and the whole upper, C–terminal part of the holo hTSPO, namely the part in the
outer membrane leaflet, where the ligand binding site is present. In the apo protein, this
same cascade is not stabilized by PK11195, and indeed, LP III fluctuates more (Figure 6).

Finally, LP IV and LP V remain stable without changes in both models during all
MD simulations, in line with our results that TM IV and TM V are the most stable helices
regardless of the ligand’s presence, and their termini do not unfold, as seen for some other
helices described above (Figure 4c,d).

Taken together, the PK11195 ligand appears to reduce the fluctuations of the loops
and to stabilize the overall structural fold of the TSPO protein.

2.4. Cholesterol Interactions with hTSPO

Our analyses show that the apo hTSPO model binds 1.5 times more cholesterol
molecules than the holo one. This result is in good agreement with other studies pos-
tulating that PK11195 reduces the cholesterol binding to the TSPO [7].

We analyzed the average simulation time during which cholesterol interacts with
each of the five TM helices (Table 1). In the holo protein, cholesterol interacts most often
with TM I (47% of the simulation time) and TM V (48% of the simulation time), while
in the apo protein, it interacts for 100% of the time with TM V and much less with other
helices. Among other helices, TM II stands out, binding cholesterol for about 50% of the
simulation time.
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Table 1. The percentage (%) of the simulation time during which the individual transmembrane
helices (TM I–TM V) bind the cholesterol molecule(s). The total simulation time is 1 µs.

TM I TM II TM III TM IV TM V

Apo system 32 51 23 27 100

Holo system 47 26 19 15 48

Next we calculated the average number of cholesterol molecules bound to a single TM
domain per frame (i.e., per ns). The holo TM I binds on average slightly more cholesterol
than TM I in the apo protein, while for TM II, the result is inverted (Figure 7a). TM III and
TM IV bind on average the same amount of cholesterol per frame, but holo TM V binds less
than one cholesterol per frame, while apo TM V binds on average 1.5 cholesterol molecules
per frame during the full length of the simulation time (Figure 7a). Indeed, the high affinity
cholesterol binding motifs, CRAC and CARC, are located in TM V (Figures 1 and 2).

Figure 7. (a) The average number of cholesterol molecules (Naverage CHL) binding to the individual
helix (TM I–TM V) in the apo (violet line) and holo (green line) hTSPOs at each frame of the 1 µs MD
trajectory. (b) The total number of all cholesterol molecules (Tot No of CHL) binding either to the
CRAC-like motif in TM I or to the CRAC and/or CARC in TM V during our 1 µs long MD simulation
of apo hTSPO (violet) and holo hTSPO (green).
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We analyzed why TM I of the holo protein binds cholesterol more frequently than
other helices and why it binds more cholesterol than TM I in the apo protein (Figure 7b). We
found that TM I has a CRAC–resembling motif, namely L17–X(2)–F20–X(3)–R24 (Figure 1),
that attracts cholesterol. This motif is located in the upper, C–terminal part of the TSPO,
in the outer membrane leaflet, next to the PK11195 binding site. We suggest that cholesterol
binds more often to this motif in the holo than in the apo protein due to the higher stability
of the TM I helix in the former protein (Figure 4c,d). The higher stability of holo TM I (i.e.,
it is less kinked than apo TM I (Figure 5, TM I) allows for the more optimal orientation of
cholesterol binding residues L17, F20, and R24 and of cholesterol molecules with respect to
the apo protein.

For TM II, the frequency of cholesterol binding is inverted: it interacts more often with
the apo than with the holo protein. Cholesterol binds to both proteins only in the first half of
the simulation time. Two cholesterols interact with apo TM II, one in the upper, C–terminal
part (binding to residues P45–W47–V48–P51–V52) and one in the lower, N–terminal part
of the protein (binding to residues T55-A59–Y62–L66). Cholesterol interacts almost twice
more frequently with the lower part of the helix that is in the inner membrane leaflet than
with the upper part of the helix that is in the outer membrane leaflet. In the holo protein
instead, cholesterol binds exclusively to the upper part of TM II. Since apo TM II binds
more cholesterol than holo, it is clear that cholesterol has higher binding affinity for the
lower part of this helix (i.e., it rather binds to the N–terminal part of the hTSPO that is in
the inner membrane leaflet than to its C–terminal part). We suggest that PK11195 reduces
the frequency of cholesterol binding to the lower, N–terminal part of the hTSPO and in this
particular case to TM II.

TM III and TM IV bind cholesterol equally frequently in both systems.
Finally, we determined the frequency of cholesterol binding to TM V, precisely to

the CRAC (L150–X–Y152–X(3)–R156) and CARC (R135–X(2)–Y138–X(2)–L141) motifs. We
defined how many cholesterol molecules bind individually to CRAC or CARC, as well
as the frequency of cholesterol binding to both regions simultaneously (Figure 7b). For
individual binding, we counted cases where only one motif at a time is occupied by
cholesterol. For simultaneous binding, we counted only the cases when both motifs are
occupied at the same time and with two different cholesterol molecules. Cases where one
cholesterol molecule is bridging the two regions were excluded. Our results show that in
the holo protein, cholesterol binds most often to CRAC and much less often to the CARC
motif. Interestingly, the presence of PK11195 almost abolishes the simultaneous binding of
cholesterol to both motifs.

In the apo protein, cholesterol binds more often to CRAC than to CARC. The number
of cholesterol binding to these motifs is lower than in the holo protein, owing to the fact
that cholesterol in the apo protein preferentially binds to both motifs at the same time.

Taken together, the apo protein binds more cholesterol molecules than the holo protein.
In the apo protein indeed, cholesterol binds with about 50% frequency to TM II and with
100% frequency to the CRAC and CARC regions in TM V. In TM II, cholesterol binds
more readily to the lower part of the helix, so to the N–terminal part of hTSPO present in
the inner membrane leaflet. Very interestingly, in the apo protein, cholesterol binds most
frequently to CRAC and CARC simultaneously (Figure 8, right panel), while in the holo
protein, simultaneous binding to these motifs is almost abolished. Indeed, cholesterol in
the holo protein binds mostly to the newly described motif in TM I and to the CRAC motif
in TM V (Figure 8, left panel). Both motifs are present in the upper, C–terminal part of
the hTSPO, next to the PK11195 binding site and in the outer membrane leaflet. In our
study, the binding of cholesterol to the lower, N–terminal part of the holo hTSPO model is
rarely observed.
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Figure 8. Cholesterol molecules bind most frequently to CRAC and CRAC–like regions (green surface representation) that
are in the vicinity of the PK11195 binding site (orange surface representation) in the hTSPO–PK11195 system and to CRAC,
LAF(blue surface representation), and CARC (purple surface representation) motifs in the hTSPO system. Corresponding
residues from each region that interact with cholesterol (color coded, respectively) are represented within ellipses.

3. Materials and Methods
3.1. Building the 3D Structural Model of hTSPO

We used the sequence reported in the UniProtKB [47,48] database with the ID: P30536.
It contains 169 amino acids, spanning from M1 to E169. This sequence was aligned with
those of: Mus musculus TSPO (MoTSPO; UniProt ID: P50637), Rhodobacter sphaeroides TSPO
(RsTSPO; UniProt ID: Q9RFC8), and Bacillus cereus TSPO (BcTSPO; UniProt ID: Q81BL7),
using the Multalin [70] and ClustalO [46] web-servers. 3D structural models of the hTSPO
were built based on the RsTSPO template (PDB ID: 4UC1 [35]). Twenty models of hTSPO
were generated using the MODELLER program, Version 9.19 [71]. All models were ana-
lyzed according to the Discrete Optimized Protein Energy (DOPE) score using the built-in
script of the MODELLER package [71,72]. In addition, the local structural quality of the
hTSPO models in the biological membrane were examined using the QMEANBranescoring
function [73] from the Swiss-model server [74–78]. All models were visually inspected and
compared to the template and to the available mutagenesis data. The model corresponding
best to the available experimental data, having the lowest DOPE score according to the
MODELLER program [71,72] and the appropriate local structural quality as defined by the
QMEANBrane tool [73], was chosen for docking and molecular dynamics (MD) simula-
tion [79,80] studies. We checked that the orientation and tilt angles of the helices—once the
model is inserted in a membrane—were appropriate. These parameters were computed
by the Positioning the Proteins in Membranes (PPM) server [81] for the model and the
RsTSPO template and compared between them (Table 2).
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Table 2. Comparison of the hydrophobic thickness and protein tilt angles for the RsTSPO template
and the hTSPO structural model. All values were obtained from the Positioning the Proteins in
Membranes (PPM) server [81].

Model/Template Hydrophobic Thickness ∆G Transfer Tilt Angle
(Å) (kcal/mol) (◦)

hTSPO 30.4 ± 4.1 −23.9 10.0 ± 1.0
RsTSPO 30.2 ± 1.6 −40.8 7.0 ± 3.0

3.2. Docking of the PK11195 Ligand

We docked the PK11195 ligand (N-[(2R)-butan-2-yl]-1-(2-chlorophenyl)-N-
methylisoquinoline-3-carboxamide) to the hTSPO structural model. The initial 3D structure
of PK11195 was obtained from the PubChem database (https://pubchem.ncbi.nlm.nih.
gov/compound/1345 (accessed on 1 February 2019)). Molecular docking was performed
using the UCSF Chimera program [82] and AutoDock Vina package [59]. Protein and
ligand input files were prepared by AutoDockTools. The ligand had fully flexible torsion of
freedom, while the receptor side chains were kept rigid. Non-polar hydrogen atoms of the
protein and the ligand were merged. The center of the grid was placed at X = −14.451 Å,
Y = 25.618 Å, and Z = 25.297 Å. The grid dimensions were 76 × 72 × 66 Å, and the spacing
between the grid points was set to 0.375 Å. The exhaustiveness parameter of the global
search was set to 8 (default). Ten ligand binding modes were generated in search for a
ligand pose with the lowest binding affinity.

We selected the model where the ligand had the lowest, i.e., the most negative docking
binding affinity score, and it interacted with the two conserved residues W53 and W95 [57]
shown to be important for binding [34].

3.3. Molecular Dynamics Simulations

The apo (hTSPO) and holo (hTSPO–PK11195 complex) models were then inserted into
the lipid bilayer composed of phosphatidylcholine (POPC)—phosphatidylethanolamine
(POPE)—cholesterol (CHL) with the ratio of 3:3:1 for POPC:POPE:CHL, respectively. The
choice of the membrane composition was made based on the experimental studies of
the mitochondrial membrane and the protein–lipid monolayers [83,84]. The membrane
thickness was 3.04 nm and was built by the Mem-Builder web-server [85,86]. The hTSPO
models were placed and properly oriented at the center of the membrane box by the
Lambada and InflateGRO2 tools [87] (the tilt angle of all TM helices is 10◦). Principally,
these values correspond to those of the RsTSPO template (Table 2).

The apo and holo models of hTSPO inserted in the POPC–POPE–CHL membrane
were solvated with 12,758 water molecules enclosed in a solvation box with dimensions of
10.5 nm × 10.5 nm × 11.0 nm. 161 sodium (Na+) and 166 chloride (Cl−) ions were added
to neutralize the system net charge and to reproduce the physiologic electronic strength of
0.15M. The MD simulations were run using the GROMACS 2018.6 package [88,89] and ap-
plying the SLIPIDSforce field [90] for the membrane, the AMBER99SB-ILDNforce field [91]
for the hTSPO model and ions, and the TIP3P [92] force field for water. The force field
parameters of PK11195 were prepared using the General Amber force field (GAFF) [93,94],
introducing the RESPatomic charges and electrostatic potential (ESP) as calculated based
on the B3LYP/6-31G* basis set using the Gaussian09 package [95]. The topology file of
the PK11195 ligand was converted to GROMACS format using the ACPYPE tool [96]. The
geometry of the hTSPO models was optimized by steepest descent minimization performed
for 50,000 steps with a maximum force constant value of 1000 kJ/mol/nm. After the geo-
metrical optimization, the systems underwent NPTequilibration for 10 ns with a time step
of 2 fs. The systems were maintained at the reference pressure of 1 bar by coupling to the
Parrinello–Rahman barostat [97,98] with uniform scaling of x-y box vectors and indepen-
dent scaling for the z-axis (i.e., perpendicular to the membrane). The systems were coupled
to the Nose–Hoover thermostat [99–101] to maintain the temperature at 310 K. A 1.2 nm
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cut-off was set for the short-range non-bonded interaction. The LINCSalgorithm [102]
was chosen to constrain all bonds involving hydrogen atoms. The holo and apo structural
models of hTSPO were then simulated for 1 µs to detect the stable structure of hTSPO in
the mitochondrial membrane. MD simulation parameters were the same as in the NPT
equilibration run; only the thermostat was changed to the V-rescale thermostat [101].

3.4. Analysis

The root mean squared deviation (RMSD) for the entire hTSPO model and for the
individual helices was calculated for the backbone atoms omitting the hydrogen atoms. The
RMSD for the entire protein was calculated for the sequence from W5 to N158, excluding
the N– and C–termini and the hydrogen atoms.

The root mean squared fluctuation (RMSF) was calculated for the Cα atoms of each
hTSPO residue. They were calculated for equilibrated proteins, that is in the MD simulation
range 400 ns–1 µs. For these calculations, the g_rms and g_rmsf tools from the GROMACS
package were used [88,89].

Helices flexibility analyses was done by the Bendix plugin [67] in the VMD pro-
gram [50]. To define the color code, we saved the values of the angle changes along each
helix during the MD simulation time. The average values ranged from 0◦ to 24◦; therefore,
we divided the color code into 5 parts with the corresponding 6 angle values’ extents. The
highest change in the helical angle was observed for the TM I helix in the apo hTSPO
model, i.e., 51◦. The color code is described as blue: <6◦, cyan: 6–12◦, green: 12–18◦, yellow:
18–24◦, and red: >24◦.

The principal component analysis (PCA) was performed on the apo and holo hTSPO
including residues W5 to N158. The C– and N–termini, as well as hydrogen atoms were
ignored. We used the g_covar and g_anaeig tools in the GROMACS package [88,89].

The analysis of PK11195 interactions with the hTSPO model (Figure 3) was carried
out by home-made TCLand AWKscripts. To define a binding site of the ligand, we searched
for all residues that were within 4.5 Å of any PK11195 heavy atom. We defined residues
that bind PK11195 ligand for more than 90% of the simulation time as constant or principal
binders. All of them form hydrophobic or stacking interactions with the ligand. For
W53 that is H-bonding the carbonyl oxygen of PK11195, we calculated the frequency of
H-bond formation using the distance criteria of 3.5 Å. The residues binding the PK11195
ligand for more than 90% of the simulation time are shown in the VMD representation
in Figure 3. Residues that interact with the PK11195 for at least 75% were determined as
frequent binders. All residues binding PK11195 for at least 75% are shown in the 2D plots
in Figure 3. The subfigures in Figure 3 were made using the Visual Molecular Dynamics
(VMD) [50] and Discovery Studio Visualizer [62] programs.

The cholesterol analysis was done by in-house written TCL and AWK scripts. The
cholesterol was counted as bound to the hTSPO model, to the defined TM helix, or to
different motifs (CRAC-like in TM I, CRAC/CARC in TM V) if it was found within 5 Å
from any residue belonging to the analyzed region, respectively. Only contacts between
heavy atoms were taken into account.

The total number of cholesterols bound to the apo and holo hTSPO systems throughout
the 1 µs were counted and expressed as the ratio of the cholesterol molecules interacting
with each system.

The data in Table 1 were obtained by counting all frames where the cholesterol interacts
with the transmembrane helix in question. The percentage of the simulation time was
calculated as the number of frames divided by the total number of frames (1000).

To obtain the average number of cholesterol molecules that bind the individual helix at
each frame (as reported in Figure 7a), we counted the total number of cholesterol molecules
interacting with the individual TM helix, and we divided this number by the total number
of frames (1000).
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For Figure 7b, we just counted the total number of cholesterol molecules that bind
only to the CRAC–like motif in TM I, only to CRAC/CARC in TM V, or to both motifs
(CRAC+CARC in TM V) at the same time.

4. Conclusions

The interplay between PK11195 and cholesterol interactions with hTSPO were studied
by MD simulations of a homology model of the protein based on RsTSPO. The ligand in-
creases the stability of the protein in terms of RMSD, PCA, and Bendix analyses. During the
MD simulation, PK11195 slides to a new position, in which its CL-phenyl ring initially fac-
ing TM I is placed between TM I and TM II, closer to the latter helix (Figures 3 and S2).The
two helices detach from one other, while they stay close to each other in the apo protein. The
ligand forms mostly hydrophobic and stacking interactions with the protein. Its carbonyl
oxygen forms an H-bond with the W53 side chain. Two and three cholesterol molecules
per ns bind, on average, to the holo and apo hTSPO, respectively. Hence, the presence of the
ligand reduces the frequency of cholesterol binding to the protein. In the apo protein, the
cholesterol molecules bind most of the time simultaneously to two well-known cholesterol
binding motifs, CRAC and CARC in TM V. In the holo protein instead, cholesterol interacts
with the CRAC–like motif in TM I and with the CRAC motif in TM V. Cholesterol binds
much more rarely to the lower, N–terminal part of the holo hTSPO, that is in the inner
membrane leaflet. Thus, PK11195 reduces cholesterol binding to this latter region, but it
favors cholesterol interactions with the upper, C–terminal part of the protein in the outer
membrane leaflet. Further studies are required to understand more in detail why this is
the case.

Supplementary Materials: The following data are available online: Table S1: Experimentally defined
dissociation constants (Kd) of the PK11195 molecule for different TSPOs. Figure S1: 3D and 2D
representations of the PK11195 binding poses obtained by docking. Figure S2: MD snapshots
showing the PK11195 ligand in its binding pocket at 0 ns, 250 ns, 500 ns, 750 ns and 1000 ns. Figure S3:
Apo hTSPO does not exhibit an open access channel to the ligand binding pocket (located between
the TM I and TM II helices in the holo protein). Figure S4: The number of cholesterol molecules
binding to each helix of the apo and holo hTSPO proteins, averaged over our three MD simulations.
Figure S5: The number of cholesterol molecules binding to apo and holo hTSPO averaged over our
MD trajectories. Figure S6: Ligands motion in the binding site in our three MD simulations. Figure S7:
Open access channels to the ligand binding pocket in our three MD trajectories.
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Abbreviations
The following abbreviations are used in this manuscript:

TSPO translocator protein
TM transmembrane helix
LP loop
PK11195 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide

molecule
hTSPO the human TSPO
hTSPO-PK11195 the hTSPO-PK11195 complex
POPC phosphatidylcholine lipid
POPE phosphatidylethanolamine lipid
CHL cholesterol
RMSD root mean squared deviation
RMSF root mean squared fluctuation
VMD Visual Molecular Dynamics
MD molecular dynamics
CRAC cholesterol recognition/interaction amino acid consensus motif

(L150–X–Y152–X(3)–R156)
CARC reverse region of CRAC (R135–X(2)–Y138–X(2)–L141)
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Abstract: Multidrug resistance protein-4 (MRP4) belongs to the ABC transporter superfamily and
promotes the transport of xenobiotics including drugs. A non-synonymous single nucleotide poly-
morphisms (nsSNPs) in the ABCC4 gene can promote changes in the structure and function of MRP4.
In this work, the interaction of certain endogen substrates, drug substrates, and inhibitors with wild
type-MRP4 (WT-MRP4) and its variants G187W and Y556C were studied to determine differences
in the intermolecular interactions and affinity related to SNPs using protein threading modeling,
molecular docking, all-atom, coarse grained, and umbrella sampling molecular dynamics simulations
(AA-MDS and CG-MDS, respectively). The results showed that the three MRP4 structures had
significantly different conformations at given sites, leading to differences in the docking scores (DS)
and binding sites of three different groups of molecules. Folic acid (FA) had the highest variation in
DS on G187W concerning WT-MRP4. WT-MRP4, G187W, Y556C, and FA had different conformations
through 25 ns AA-MD. Umbrella sampling simulations indicated that the Y556C-FA complex was
the most stable one with or without ATP. In Y556C, the cyclic adenosine monophosphate (cAMP) and
ceefourin-1 binding sites are located out of the entrance of the inner cavity, which suggests that both
cAMP and ceefourin-1 may not be transported. The binding site for cAMP and ceefourin-1 is quite
similar and the affinity (binding energy) of ceefourin-1 to WT-MRP4, G187W, and Y556C is greater
than the affinity of cAMP, which may suggest that ceefourin-1 works as a competitive inhibitor. In
conclusion, the nsSNPs G187W and Y556C lead to changes in protein conformation, which modifies
the ligand binding site, DS, and binding energy.

Keywords: MRP4; SNPs; variants; protein threading modeling; molecular docking; molecular
dynamics; binding site

1. Introduction

The transport of xenobiotics out of the cell across membranes is a mechanism used
by cells to detoxify. This mechanism is mediated by ATP-binding cassette (ABC) trans-
porters [1]. Multidrug resistance protein-4 (MRP4) is a member of the ABCC subfamily
and mediates the transport of xenobiotics such as cardiovascular, antiviral, and anticancer
drugs. The substrates for MRP4 are mainly glucuronide conjugates and organic anions [2].
MRP4 can modify drug pharmacokinetics and contributes to the manifestation of side
effects or multidrug resistance. In addition, the tumor energy metabolism is related to
multidrug resistance due to the high production of ATP to enhance the activity of MRP4

45



Molecules 2021, 26, 1051

and other ABC transporters [3]. An increase in MRP4 activity or expression leads to a
decrease in drug efficacy. In another instance, a decrease in MRP4 activity or expression
could enhance toxicity due to drug accumulation. Since MRP4 is expressed in the kidneys,
liver, erythrocytes, lymphocytes, adrenal glands, platelets, brain, and pancreas in humans,
it can modify cellular exposure to drugs. In addition, the toxicity produced by MRP4 will
depend on the type of drug or endogen substrate [4]. The MRP4 dysregulation has been
reported in several pathological disorders, especially in cancer [5]; thus, MRP4 represents
an attractive therapeutic target. The design of pharmacological agents with the ability to
selectively modulate the activity of this ABC transporter or modify its affinity of a given
substrate represents a challenge in chemical biology and drug design [6,7].

MRP4 consists of 1325 amino acids and is the shortest member of the ABCC subfam-
ily [8]. The basic MRP4 core structure is comprised of transmembrane domains (TMDs)
and intracellular nucleotide binding domains (NBDs). The domain arrangement for MRP4
is TMD-NBD-TMD-NBD [9]. Each TMD consists of six transmembrane helixes (TMHs)
that determine the ligand specificity and allow ligand binding. In addition, NDBs bind
and hydrolyze ATP to trigger substrate transport [10]. MRP4 is codified by the ABCC4 gen,
located on chromosome 13q32.1 [11]. Alternative splicing leads to four isoforms, of which
isoform 1 has been the most studied [1]. MRP4 is a highly polymorphic gene [12]; however,
limited data are available on the function of MRP4 variants. Recent studies have been
focused on the relationship between ABCC4 nsSNPs and drug disposition. In most cases,
nsNSPs have little or no effect on the protein structure or function, but sometimes nsSNPs
promotes non-functional or highly functional proteins [13]. The nsSNPs that occur in
protein coding regions always alter the encoded amino acid, and the effect on the structure
or function of the protein depends on the mutated site [14].

Nada-Abla and coworkers in 2008 reported that the MRP4 variants G187W and
G487E show a significantly reduced function of azidothymidine and adefovir transport
compared to wild-type MRP4 (WT-MRP4). G187W is a non-synonymous ABCC4 variant
and the mutation is located at the cytosolic loop 1 in the TMD (Figure 1); it has undergone
the greatest structural change in terms of composition, polarity, and molecular volume.
G187W also has a 50% reduction in function, and this could be clinically relevant [15].
On the other hand, Y556C is another non-synonymous ABCC4 variant and is located at
NBD1 (Figure 1). Mayukh-Banerjee and coworkers in 2016 reported that the Y556C variant
exhibited a 1.8-fold increase in dimethylarsinic acid effectiveness relative to WT-MRP4.
Experiments on MRP4 transfection into the HEK cell line showed that the Y556C variant
had 50% less expression than WT-MRP4. Both G487E and Y556C had appropriate cellular
membrane localization [16].
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Banerjee at al., 2016) [16].

The crystallographic structure of MRP4 is not available; thus, a protein threading
model can be built based on the homology of the template and the construction of loops.
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Protein threading by I-TASSER relies in the identification of structural templates from
the Protein Data Bank (PDB) using a local meta-threading server, a method for template-
based protein structure prediction. Three-dimensional models are generated for a given
sequence by collecting high-scoring structural templates from locally installed threading
programs [17,18]. After model building, it can be refined by molecular mechanics calcula-
tions, such as energy minimization and molecular dynamics simulations. Protein threading
models are considered working tools that can be used to generate hypotheses related to
protein structure, protein function, and protein–ligand interactions. The molecular docking
of drug molecules into their binding sites allows us to identify relevant amino acids for
ligand–protein interactions in order to select such amino acids for further site-directed
mutagenesis studies [9]. In the present study, three different MRP4 structures (WT and its
variants, G187W and Y556C) were built through protein threading to study, by molecular
docking, the interactions between endogen substrates, drug substrates, and inhibitors, with
MRP4-WT, G187W, and Y556C, allowed to observe changes in the pattern of intermolecular
interactions, adapted from Russel and coworkers in 2008, where they report the IC50 of
several molecules, in vitro, over the MRP4 protein [8], and to calculate the binding energy
(∆G) between FA and cAMP and MRP4 structures.

2. Results and Discussion
2.1. WT-MRP4, G187W, and Y556C Model Building and CG-MD Simulations

MRP4 plays a critical role in the distribution of different xenobiotics and endogen
substrates, which can lead to different effects in the organism. Differences in the MRP4
activity depend, among other factors, on the expression or mutational changes of the
ABCC4 gene, leading to significantly higher or lower transport activity [4]. The WT-
MRP4 and its variants Y556C and G187W were built by protein threading in the I-TASSER
server [19]. Protein threading and homology modeling are based on the principle that
similar primary sequences will lead to similar 3D protein structures. According to the
BLAST server, the template structure MRP1 from Bos taurus and human MRP4 had a 36.56%
identity sequence similarity. When the primary sequence of a protein has 30% of identity
as referred to a template (crystallographic structure), the protein threading and homology
models are considered functional because the root mean standard deviation (RMSD) of the
positions of their atoms is 2.0 Å or less with regard to the template structure [20–22].

The best model by the I-TASSER of each MRP4 structure was selected for further
analysis with coarse-grained molecular dynamics simulations (CG-MDS) of 1 µs. Figure 2
shows the three MRP4 models and the most representative structures (cluster 1) obtained
in I-TASSER and by CG-MDS at timesteps 630.40 ns for WT-MRP4, 564.90 ns for G187W,
and 674.90 ns for Y556C. The conformations of WT-MRP4 and variants were in an “inward-
facing conformation” [23], while, in CG-MDS, the three MRP4 structures were in a closed
state. All the loops that connect the alpha helixes of the three MRP4 structures have
different conformations and distributions over the protein.

In this work, RMSD values higher than 2.0 Å were considered significant, hence the
protein conformations were considered different. Figure 3 shows the different MRP4 sites
studied and each region is illustrated with a different color, where the green color represents
WT-MRP4; those sites are the nucleotide-binding domains (NBD), the transmembrane
domains (TMD), and the residues relevant to substrate interaction (r85-236 and r715-866).

The WT-MRP4, G187W, and Y556C conformations during the first 100 ns of CG-
MDS changed significantly, according to the RMSD values (Figure 4a), which indicates
a large movement of the protein to further stabilization from 250 to 1000 ns. The RMSD
of WT-MRP4 was higher than those of its variants, considering the complete structure.
In addition, different regions of the MRP4 structure were studied focusing on the ligand
binding sites, nsSNPs, and ATP pocket binding. Figure 4b shows the RMSD values for
TMDs of the WT-MRP4 and its variants. According to the RMSD plot, the changes in the
TMDs’ conformations are quite similar among the three MRP4 structures.
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Figure 4. plot for the complete WT-MRP4 structures and their variants (A) and the TMDs (B)
throughout 1000 ns of MDS.

In contrast to the complete structure, the TMDs do not obtain stabilization according
to the RMSD values, which increase and decrease over 1000 ns. Moreover, the RMSD
values for G187W remain increasing from 750 to 1000 ns, and such behavior could be due
to the mutation is in the cytosolic loop 1 that connects the transmembrane helix (TMH)
1 and TMH2. The NBD1 conformation in WT-MRP4 remained unstable and the RMSD
values kept increasing throughout the 1000 ns of CG-MDS, while the NBD1 conformation
in G187W and Y556C was stable with an RMSD value around 6.0 Å (Figure 5). The RMSD
values for NBD2 of the WT-MRP4 and its variants were similar even though there was no
stabilization through the simulation. In addition, the RMSD values of G187W and Y556C
tended to increase while the RMSD values of WT-MRP4 tended to decrease at the end of
the simulation.
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of MDS.

According to the RMSD plot in Figure 6, the conformation in residues (r) 85 to 236
(r85-236 site corresponding to TMH1-TMH4) of WT-MRP4 remained stable from 250 to 1000 ns
while in G187W it stabilized at the last 250 ns. r85-236 site in Y556C did not stabilize
throughout the 1000 ns. In the same Figure 6, the RMSD plot indicates that the conforma-
tion in the r715-866 site (TMH7-TMH10) in WT-MRP4 and Y556C kept constant, with a
tendency toward increasing motion in Y556C and decreasing motion in WT-MRP4. Be-
sides this, the conformation in r715-866 site in G187W did not stabilize and the RMSD
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values suggest high motion throughout the 1000 ns of simulation. In the case of ATP
sites 1 and 2 (Figure 7), the conformation remained unstable, suggesting that it is a site
with high motion, with exception of ATP site 2 of WT-MRP4, which kept stable through
the simulation. Regarding the three different MRP4 structures, alignments on the NBDs,
TMDs, and TMH1-TMH4 and TMH7-TMH10 sites were performed to determine differ-
ences among the structures. In all the alignments (Supplementary Material S1), it was
observed that all the sites studied presented significant structural differences, according to
the RMSD values, comparing WT-MRP4 vs. its variants and G187W vs. Y566C. Moreover,
the TMHs are responsible for the specificity for the substrate, and the r-85-236 and r715-866
sites in WT-MRP4 were significantly different with respect to G187W and Y556C, which
could lead to differences in the ligand affinity, the ligand binding site, and the motion of
the protein [23,24].

Molecules 2021, 26, x FOR PEER REVIEW 6 of 22 
 

 

According to the RMSD plot in Figure 6, the conformation in residues (r) 85 to 236 
(r85-236 site corresponding to TMH1-TMH4) of WT-MRP4 remained stable from 250 to 
1000 ns while in G187W it stabilized at the last 250 ns. r85-236 site in Y556C did not stabi-
lize throughout the 1000 ns. In the same Figure 6, the RMSD plot indicates that the con-
formation in the r715-866 site (TMH7-TMH10) in WT-MRP4 and Y556C kept constant, 
with a tendency toward increasing motion in Y556C and decreasing motion in WT-MRP4. 
Besides this, the conformation in r715-866 site in G187W did not stabilize and the RMSD 
values suggest high motion throughout the 1000 ns of simulation. In the case of ATP sites 
1 and 2 (Figure 7), the conformation remained unstable, suggesting that it is a site with 
high motion, with exception of ATP site 2 of WT-MRP4, which kept stable through the 
simulation. Regarding the three different MRP4 structures, alignments on the NBDs, 
TMDs, and TMH1-TMH4 and TMH7-TMH10 sites were performed to determine differ-
ences among the structures. In all the alignments (Supplementary Material S1), it was ob-
served that all the sites studied presented significant structural differences, according to 
the RMSD values, comparing WT-MRP4 vs. its variants and G187W vs. Y566C. Moreover, 
the TMHs are responsible for the specificity for the substrate, and the r-85-236 and r715-
866 sites in WT-MRP4 were significantly different with respect to G187W and Y556C, 
which could lead to differences in the ligand affinity, the ligand binding site, and the mo-
tion of the protein [23,24]. 

 
Figure 6. RMSD plot for r85-236 and r715-866 of WT-MRP4 and its variants. r86-236 represents 
TMH1-TMH4 and r715-866 represents TMH7-TMH10. 

 
Figure 7. RMSD plot for ATP binding site 1 (ATP site 1) and ATP binding site 2 (ATP site 2) of WT-
MRP4 and its variants. 

2.2. Molecular Docking in MRP4 and Variants 
By using cluster 1 from CG-MDS for each structure of MRP4, molecular docking was 

performed to explore the effect of the MRP4 variants on the affinity of three different 
groups of molecules, previously reported as substrates or inhibitors in vitro. Table 1 pre-
sents the docking score (DS), expressed as kcal/mol, related to the interaction between 

Figure 6. RMSD plot for r85-236 and r715-866 of WT-MRP4 and its variants. r86-236 represents
TMH1-TMH4 and r715-866 represents TMH7-TMH10.

Molecules 2021, 26, x FOR PEER REVIEW 6 of 22 
 

 

According to the RMSD plot in Figure 6, the conformation in residues (r) 85 to 236 
(r85-236 site corresponding to TMH1-TMH4) of WT-MRP4 remained stable from 250 to 
1000 ns while in G187W it stabilized at the last 250 ns. r85-236 site in Y556C did not stabi-
lize throughout the 1000 ns. In the same Figure 6, the RMSD plot indicates that the con-
formation in the r715-866 site (TMH7-TMH10) in WT-MRP4 and Y556C kept constant, 
with a tendency toward increasing motion in Y556C and decreasing motion in WT-MRP4. 
Besides this, the conformation in r715-866 site in G187W did not stabilize and the RMSD 
values suggest high motion throughout the 1000 ns of simulation. In the case of ATP sites 
1 and 2 (Figure 7), the conformation remained unstable, suggesting that it is a site with 
high motion, with exception of ATP site 2 of WT-MRP4, which kept stable through the 
simulation. Regarding the three different MRP4 structures, alignments on the NBDs, 
TMDs, and TMH1-TMH4 and TMH7-TMH10 sites were performed to determine differ-
ences among the structures. In all the alignments (Supplementary Material S1), it was ob-
served that all the sites studied presented significant structural differences, according to 
the RMSD values, comparing WT-MRP4 vs. its variants and G187W vs. Y566C. Moreover, 
the TMHs are responsible for the specificity for the substrate, and the r-85-236 and r715-
866 sites in WT-MRP4 were significantly different with respect to G187W and Y556C, 
which could lead to differences in the ligand affinity, the ligand binding site, and the mo-
tion of the protein [23,24]. 

 
Figure 6. RMSD plot for r85-236 and r715-866 of WT-MRP4 and its variants. r86-236 represents 
TMH1-TMH4 and r715-866 represents TMH7-TMH10. 

 
Figure 7. RMSD plot for ATP binding site 1 (ATP site 1) and ATP binding site 2 (ATP site 2) of WT-
MRP4 and its variants. 

2.2. Molecular Docking in MRP4 and Variants 
By using cluster 1 from CG-MDS for each structure of MRP4, molecular docking was 

performed to explore the effect of the MRP4 variants on the affinity of three different 
groups of molecules, previously reported as substrates or inhibitors in vitro. Table 1 pre-
sents the docking score (DS), expressed as kcal/mol, related to the interaction between 

Figure 7. RMSD plot for ATP binding site 1 (ATP site 1) and ATP binding site 2 (ATP site 2) of
WT-MRP4 and its variants.

2.2. Molecular Docking in MRP4 and Variants

By using cluster 1 from CG-MDS for each structure of MRP4, molecular docking was
performed to explore the effect of the MRP4 variants on the affinity of three different groups
of molecules, previously reported as substrates or inhibitors in vitro. Table 1 presents the
docking score (DS), expressed as kcal/mol, related to the interaction between endogenous
substrates and WT-MRP4, Y556C, and G187W. In this work, significant differences between
docking poses were considered when a difference greater than 1 kcal/mol in DS was
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present. According to the DS, most endogen substrates significantly changed their DS in
G187W and Y556C with respect to WT-MRP4. The Y556C mutation is located at NBD1
and leads to a different conformation with respect to WT-MRP4, which causes the most
substantial change in the ligand binding site of all the molecules studied, even more than
those molecules with significant changes in DS compared to WT-MRP4.

Table 1. Endogen substrate DS (kcal/mol) in the WT-MRP4 and MRP4 variants.

Endogen Substrate WT-MRP4 G187W Y556C

cAMP −5.88 −6.35 −5.82
Cholic acid −10.55 −7.2 * −8.51 *
Folic acid −8.56 −1.51 * −2.39 *

Glycolic acid −7.35 −9.09 * −5.42 *
Leukotriene B4 −8.19 −7.82 −6.07 *

PGE1 −8.21 −7.31 −7.48
PGE2 −7.36 −7.31 −7.00

Prasterone sulphate −10.65 −9.24 * −9.57 *
Taurocholic acid −4.61 −9.9 * −6.07 *

Uric acid −4.77 −5.13 −5.06
cAMP: cyclic adenosine monophosphate. * Represents more than 1 kcal/mol of difference in the DS compared
with WT.

Since cAMP is considered to be the main molecule transported by MRP4 [25], it was
used as a control to compare the effect of nsSNPs and ATP binding. The cAMP DS was
not considered significantly different in WT-MRP4 with respect to Y556C and G187W.
Cholic acid DS was significantly different, with more than 3 kcal/mol when comparing
WT-MRP4 with respect to G187W, while cholic acid DS in WT-MRP4 with respect to Y556C
was significantly different at over 2 kcal/mol. The taurocholic acid DS was significantly
different, with more than 4 kcal/mol when comparing WT-MRP4 with respect to G187W.
Folic acid (FA) was the molecule with the highest variation in DS when comparing WT-
MRP4 to G187W and Y556C, with 7.05 and 6.17 kcal/mol differences.

Table 2 presents the DSs of drug substrates. Cefazoline and olmesartan DSs were
significantly different in WT-MRP4 with respect to G187W, while cefazoline, furosemide,
leucovorin, methotrexate, tenofovir, and topotecan DSs were significantly different in
WT-MRP4 with respect to Y556C. According to DS, most drug substrates could present
more affinity for Y556C than for WT-MRP4.

Table 2. Drug substrate DS (kcal/mol) in the WT-MRP4 and MRP4 variants.

Drug Substrate WT-MRP4 G187W Y556C

6-Mercaptopurine −4.34 −5.06 −4.81
Adefovir −3.54 −2.88 −4.42

Cefazoline −8.71 −5.65 * −10.12 *
Cefotaxime −7.04 −6.08 −6.88
Ceftizoxime −7.02 −7.16 −6.59
Furosemide −5.77 −5.52 −7.00 *

Hydrochlorothiazide −6.70 −6.39 −6.73
Leucovorin −6.46 −6.60 −3.78 *

Methotrexate −6.98 −7.22 −3.76 *
Olmesartan −7.30 −8.75 * −7.4
Tenofovir −2.76 −3.15 −4.58 *
Topotecan −6.09 −6.39 −8.26 *

* Represents more than 1 kcal/mol difference in the DS compared against WT.

The DS of inhibitors is presented in Table 3. Glafenine DS was significantly different
in WT-MRP4 with respect to both G187W and Y556C. Ceefourin-1, indomethacin, and
sildenafil DSs were significantly different in WT-MRP4 with respect to G187W, while
losartan DS was significantly different between WT-MRP4 and Y556C. Endogen substrates
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were the group of molecules with more variation in the DS, and thus such mutations
on the ABCC4 gene could lead to changes in cell metabolism related to changes in the
distribution of endogen substrates across cell membranes. Several mutational studies on
MRP1 have demonstrated that amino acids in several TMDs are involved in substrate
binding and nsSNPs can modify the ligand binding site or the affinity of ligands in a
selective manner [11]. Yet, the DS values are not totally related to function. Regarding drug
substrates and inhibitors, a small number of molecules changed their DS significantly to
G187W and Y556C as related to WT-MRP4, which could modify the pattern of transport
of cefazoline, ceftizoxime, olmesartan, topotecan, and ceefourin-1, which could, possibly,
mean that they act as substrates or inhibitors depending on the MRP4 variant.

Table 3. Drug inhibitor DS (kcal/mol) in the WT-MRP4 and MRP4 variants.

Inhibitors WT-MRP4 G187W Y556C

ABSF –5.41 –5.85 –5.97
Artesunate –6.02 –5.42 –6.59
Ceefourin1 –7.52 –6.19 * –7.22
Celecoxib –7.57 –8.16 –7.98

Dipyridamole –3.86 –4.78 –4.23
Glafenine –8.27 –5.48 * –6.32 *

Indomethacin –8.42 –7.07 * –8.43
Losartan –8.82 –8.91 –6.55 *
MK-571 –8.86 –9.65 –8.87

Parthenolide –7.88 –6.92 –7.67
Prazosin –6.71 –6.98 –7.25

Probenecid –6.59 –5.89 –6.34
Quercetin –6.16 –6.2 –6.63
Sildenafil –7.67 –8.43 * –8.25
Sulindac –8.41 –7.82 –8.41

Tyrphostin –7.74 –7.32 –8.11
* Represents more than 1 kcal/mol difference in the DS compared against WT.

2.3. Differences in the Interaction Pattern in MRP4 Structures

Ligand interaction diagrams (LIDs) represent the pattern of intermolecular interac-
tions of molecules with MRP4 amino acids. Those molecules with a >2 kcal/mol difference
in the three different MRP4 structures appear in LIDs in Supplementary Material S2–S5
and the LIDs for FA appear in Figures 8–10. The interaction sites in the three different
MRP4 structures were different, mainly in Y556C, for all the molecules exhibited in the
LIDs. Cholic acid interacts mainly with hydrophobic residues on WT-MRP4 and Y556C,
while on G187W it interacts with hydrophobic and polar residues. H-bonds are only
exerted through hydrophobic residues, except on Y556C, where arginine exerts an H-bond
with cholic acid. In addition, cholic acid interacts with positively charged amino acids
in the three MRP4 structures, lysine on G187W and WT-MRP4, and arginine on Y556C
(Supplementary Material S2). The taurocholic acid binding site was different in WT-MRP4
with respect to G187W and was totally different with respect to Y556C. The intermolecular
interactions in Y556C and G187W were H-bonds, polar, hydrophobic, interactions with
positively and negatively charged amino acids, while interactions in WT-MRP4 were hy-
drophobic and polar but did not interact with negatively charged amino acids and did
not exert H-bonds (Supplementary Material S3). The cefazoline binding site was quite
different on the three different MRP4 structures. Hydrophobic and polar residues on WT-
MRP4, Y556C, and G187W interact with cefazoline, but only on G187W do H-bonds with
arginine occur. WT-MRP4 and Y556C interact with cefazoline through negatively charged
amino acids (glutamate), while the G187W interacts through positively charged amino
acids (arginine) (Supplementary Material S4). Ceefourin-1 interacts with hydrophobic,
polar, negative, and positively charged residues on WT-MRP4 and Y556C, even though
the binding site is different in each MRP4 structure, which leads to only one difference;
ceefourin-1 interacts via H-bonds in Y556C. Additionally, ceefourin-1 interacts in G187W

52



Molecules 2021, 26, 1051

with hydrophobic, polar, and positively charged residues, and via H-bonds and π-π stack-
ing (Supplementary Material S5). The Y556C mutation led to a substantial change in the
binding site of most of the molecules analyzed, while G187W mutation did not substan-
tially change the binding site with respect to WT-MRP4. Although the molecule’s binding
site was different among the MRP4, the pattern of intermolecular interactions could be
similar to that observed in the LIDs. The molecules presented in the LIDs had a substantial
modification to their binding site and intermolecular interactions in Y556C, which could be
related to changes in the transport-rate, IC50, entrance to the inner cavity, and effect on the
Y556C conformational movement.

Molecules 2021, 26, x FOR PEER REVIEW 10 of 22 
 

 

S6–S23). As mentioned above, FA did not change its conformation significantly in WT-
MRP4 from 0 to 25 ns, while in G187W the conformation was significantly different at 20 
and 25 ns, as the carboxyl group was responsible for the FA conformational changes and 
multiple intermolecular interactions, such as H-bonds, π-π, and π-cation. FA in G187W 
did not change its binding site throughout all the AA-MD simulation, but it kept moving 
throughout 25 ns to obtain a DS greater than that of the most stable conformation at 8 ns 
(Supplementary Material S12–S17). The G187W mutation is located at cytosolic loop 1, 
close to the entrance of the inner cavity [26], and leads to changes in the MRP4 confor-
mation which could block or interfere with ligand binding or the entrance to its binding 
site. Notwithstanding this, it is not possible to determine with this study whether there is 
a relevant effect on the FA transport by G187W. Figure 9 shows the FA LID in G187W at 
T0 and 8.0 ns in AA-MDS. The FA binding site was slightly different, with intermolecular 
interactions by an H-bond and π-cation at T0, while at 8.0 no intermolecular interactions 
were observed, but the pocket binding was composed of hydrophobic amino acids in both 
time steps. 

 
Figure 8. FA binding interaction diagram in WT-MRP4 at T0 (A) and 16.20 ns (B) in AA-MDS. The 
nomenclature for the intermolecular interactions is shown in the bottom of the figure. 

 
Figure 9. FA binding diagram interactions on G187W at T0 (A) and at 8.0 ns (B) in AA-MDS. 

Figure 10 shows the FA LID in Y556C at T0 and 15.00 ns in AA-MDS. In this case, the 
FA binding site was the same, but the intermolecular interactions by H-bonds at 15.00 ns 
were higher than at T0, which seems to confer to FA a stronger binding over time. Y556C 
promoted the greatest change in the FA binding site with respect to WT-MRP4 and 
G187W, but throughout the 25 ns in AA-MDS the binding site did not change. On the 

Figure 8. FA binding interaction diagram in WT-MRP4 at T0 (A) and 16.20 ns (B) in AA-MDS. The
nomenclature for the intermolecular interactions is shown in the bottom of the figure.

Molecules 2021, 26, x FOR PEER REVIEW 10 of 22 
 

 

S6–S23). As mentioned above, FA did not change its conformation significantly in WT-
MRP4 from 0 to 25 ns, while in G187W the conformation was significantly different at 20 
and 25 ns, as the carboxyl group was responsible for the FA conformational changes and 
multiple intermolecular interactions, such as H-bonds, π-π, and π-cation. FA in G187W 
did not change its binding site throughout all the AA-MD simulation, but it kept moving 
throughout 25 ns to obtain a DS greater than that of the most stable conformation at 8 ns 
(Supplementary Material S12–S17). The G187W mutation is located at cytosolic loop 1, 
close to the entrance of the inner cavity [26], and leads to changes in the MRP4 confor-
mation which could block or interfere with ligand binding or the entrance to its binding 
site. Notwithstanding this, it is not possible to determine with this study whether there is 
a relevant effect on the FA transport by G187W. Figure 9 shows the FA LID in G187W at 
T0 and 8.0 ns in AA-MDS. The FA binding site was slightly different, with intermolecular 
interactions by an H-bond and π-cation at T0, while at 8.0 no intermolecular interactions 
were observed, but the pocket binding was composed of hydrophobic amino acids in both 
time steps. 

 
Figure 8. FA binding interaction diagram in WT-MRP4 at T0 (A) and 16.20 ns (B) in AA-MDS. The 
nomenclature for the intermolecular interactions is shown in the bottom of the figure. 

 
Figure 9. FA binding diagram interactions on G187W at T0 (A) and at 8.0 ns (B) in AA-MDS. 

Figure 10 shows the FA LID in Y556C at T0 and 15.00 ns in AA-MDS. In this case, the 
FA binding site was the same, but the intermolecular interactions by H-bonds at 15.00 ns 
were higher than at T0, which seems to confer to FA a stronger binding over time. Y556C 
promoted the greatest change in the FA binding site with respect to WT-MRP4 and 
G187W, but throughout the 25 ns in AA-MDS the binding site did not change. On the 

Figure 9. FA binding diagram interactions on G187W at T0 (A) and at 8.0 ns (B) in AA-MDS.

Molecules 2021, 26, x FOR PEER REVIEW 11 of 22 
 

 

contrary, the pattern of intermolecular interactions as well as the FA conformation was 
different across the AA-MDS (Supplementary Material S18–S23). 

 
Figure 10. FA binding interaction diagrams in Y556C at T0 (A) and 15.0 ns (B) in AA-MDS. 

The AA-MDS studies were conducted in cAMP as a substrate control to determine if 
the nsSNPs affect the pattern of intermolecular interactions in the same manner as FA. 
First, AA-MDS were performed on the wild type and variants for MRP4-cAMP complex 
to obtain the C1 conformations. Further, ATP and Mg2+ were added into the MRP4 struc-
tures to obtain a more complete system, and further AA-MDS were performed to deter-
mine a new C1. This procedure was applied in the MRP4-FA complexes as well. Both C1 
conformations before ATP and after ATP were used for umbrella sampling studies to ob-
tain the free binding energy (ΔG) of each ligand. Since two ATP molecules bind to MRP4, 
we referred to them as ATP1 and ATP2 for the NBD1 and NBD2, respectively. In all the 
MRP4-FA and MRP4-cAMP complexes with ATP bonds, the binding site and the ligand 
conformation were slightly different concerning the MRP4-FA and MRP4-cAMP com-
plexes without ATP. The presence or the absence of ATP modifies the pattern of intermo-
lecular interactions as well. The H-bonds, π-π stacking, and π-cation interactions are pre-
sent together or individually in all the complexes, except in G187W-FA without ATP. 
Given the fact that the ATP influences the ligand conformation, it modifies the intermo-
lecular interactions as well. Figures 11 and 12 show the ATP binding site in NBD1 and 
NBD2 from the WT-MRP4, G187W, and Y556C structures. 

 
Figure 11. Representation of the ATP binding site 1 in the complete MRP4 structure and an ampli-
fication of such site. Color pink in the complete MRP4 structure represents the ATP site 1. Color red 

Figure 10. FA binding interaction diagrams in Y556C at T0 (A) and 15.0 ns (B) in AA-MDS.

53



Molecules 2021, 26, 1051

Table 4 shows the most important residues required for the interactions of endogen
substrates, drug substrates, and inhibitors in each MRP4 structure. It is worth noting
that in the inhibitor group, only Lys 329 and Arg 951 appear in both endogen and drug
substrates, suggesting that such residues may play an important role in the binding site. In
the endogen and drug substrate groups, at least two residues are repeated—Arg 946 and
Lys 702.

Table 4. Residues considered as important for ligand–MRP4 interactions.

WT-MRP4 G187W Y556C

Endogen substrates
Glu 1002, Lys 702, Thr 839,
Lys 106, Lys 329, Glu 374,

Gln 251, Phe 698

Arg 946, Arg 998. Gly 991,
Lys 702, Arg 946

Arg 951, Trp 947, Glu 7,
Gln 6, Val4

Drug substrates
Arg 946, Arg 998, Lys 702,
arg 946, Thr 994, arg 312,

Lys 329, Phe 698

Ser 945, Lys 329, Leu 987,
Arg 946, Arg 951,
Arg 312, Ser 306

Arg 946, Asp 15, Phe 329,
Lys 32, Phe 939

Inhibitors
Phe 993, Pro 867, Arg 951,

Arg 362, Thr 366,
Gln 251, Leu 247

Phe 325, Lys 329, Thr 364,
Glu 102, Glu 103, Trp 995

Phe 993, Pro 867,
Arg 951, Trp 947

2.4. All-Atom Molecular Dinaymics (AA-MD) Simulations and Umbrella Sampling Studies

FA was the molecule with the highest DS variation in G187W and Y556C related
to WT-MRP4 in molecular docking studies, considering that ATP was not bound; hence,
to study the effect of the presence of ATP and the mutations, changes in the pattern of
intermolecular interactions and affinity to MRP4 structures, 25 ns AA-MDS, and 10 ns of
Umbrella sampling simulations were carried out on the MRP4-FA complexes and compared
with cAMP as a control molecule. The C1 in AA-MDS was at 16.2 ns in WT-MRP4, 8.0 ns
in G187W, and 15.0 ns in Y556C. Figure 8 shows the FA LID in WT-MRP4 at T0 and
16.2 ns. In this simulation, the differences in the FA binding site and the pattern of
intermolecular interaction can be observed according to the WT-MRP4 conformation at
a given time. The FA binding site was the same at T0 and 16.2 ns, suggesting that the
protein can be in an inward-facing conformation for 25 ns or even more. Moreover, the
pattern of intermolecular interactions between FA and WT-MRP4 is quite similar, consisting
of H-bonds; π-π stacking; and interactions with polar, hydrophobic, and negatively and
positively charged residues. The differences in the pattern of intermolecular interactions
rely on the H-bonds, with 4 H-bonds at T0 with Phe698 and Leu835, Glu1002 and Thr839.
Meanwhile, at 16.2 ns the interactions were mainly hydrophobic (π-π stacking) and there
was one H-bond with Glu1002. Therefore, it seems that FA from 0 to 16.2 ns interacts with
MRP4 to achieve its optimal bonding only. A longer simulation will help to determine all the
FA binding sites across the WT-MRP4. Besides this, the AA-MDS studies were performed
on each MRP4-FA complex to determine differences in the patterns of interactions and
conformations in frames from 0 to 25 ns every 5 ns referred to T0 (Supplementary Material
S6–S23). As mentioned above, FA did not change its conformation significantly in WT-
MRP4 from 0 to 25 ns, while in G187W the conformation was significantly different at
20 and 25 ns, as the carboxyl group was responsible for the FA conformational changes and
multiple intermolecular interactions, such as H-bonds, π-π, and π-cation. FA in G187W
did not change its binding site throughout all the AA-MD simulation, but it kept moving
throughout 25 ns to obtain a DS greater than that of the most stable conformation at 8 ns
(Supplementary Material S12–S17). The G187W mutation is located at cytosolic loop 1, close
to the entrance of the inner cavity [26], and leads to changes in the MRP4 conformation
which could block or interfere with ligand binding or the entrance to its binding site.
Notwithstanding this, it is not possible to determine with this study whether there is a
relevant effect on the FA transport by G187W. Figure 9 shows the FA LID in G187W at T0
and 8.0 ns in AA-MDS. The FA binding site was slightly different, with intermolecular
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interactions by an H-bond and π-cation at T0, while at 8.0 no intermolecular interactions
were observed, but the pocket binding was composed of hydrophobic amino acids in both
time steps.

Figure 10 shows the FA LID in Y556C at T0 and 15.00 ns in AA-MDS. In this case, the
FA binding site was the same, but the intermolecular interactions by H-bonds at 15.00 ns
were higher than at T0, which seems to confer to FA a stronger binding over time. Y556C
promoted the greatest change in the FA binding site with respect to WT-MRP4 and G187W,
but throughout the 25 ns in AA-MDS the binding site did not change. On the contrary, the
pattern of intermolecular interactions as well as the FA conformation was different across
the AA-MDS (Supplementary Material S18–S23).

The AA-MDS studies were conducted in cAMP as a substrate control to determine if
the nsSNPs affect the pattern of intermolecular interactions in the same manner as FA. First,
AA-MDS were performed on the wild type and variants for MRP4-cAMP complex to obtain
the C1 conformations. Further, ATP and Mg2+ were added into the MRP4 structures to
obtain a more complete system, and further AA-MDS were performed to determine a new
C1. This procedure was applied in the MRP4-FA complexes as well. Both C1 conformations
before ATP and after ATP were used for umbrella sampling studies to obtain the free
binding energy (∆G) of each ligand. Since two ATP molecules bind to MRP4, we referred
to them as ATP1 and ATP2 for the NBD1 and NBD2, respectively. In all the MRP4-FA and
MRP4-cAMP complexes with ATP bonds, the binding site and the ligand conformation
were slightly different concerning the MRP4-FA and MRP4-cAMP complexes without ATP.
The presence or the absence of ATP modifies the pattern of intermolecular interactions
as well. The H-bonds, π-π stacking, and π-cation interactions are present together or
individually in all the complexes, except in G187W-FA without ATP. Given the fact that
the ATP influences the ligand conformation, it modifies the intermolecular interactions as
well. Figures 11 and 12 show the ATP binding site in NBD1 and NBD2 from the WT-MRP4,
G187W, and Y556C structures.
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Figure 11. Representation of the ATP binding site 1 in the complete MRP4 structure and an amplifica-
tion of such site. Color pink in the complete MRP4 structure represents the ATP site 1. Color red and
represent the residues interacting with ATP, and rainbow colors represent ATP. The yellow dotted
lines indicate polar interactions.
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Figures 13–15 show the FA binding sites in WT-MRP4, G187W, and Y556C, respectively.
All the afore mentioned figures contain the full MRP4 structure and a close-up of the ligand
binding site. As observed in Figures 13 and 14, the FA binding site is almost the same and it
is surrounded by the TMH1-TMH3; meanwhile, Figure 15 shows that the FA binding site in
Y556C is surrounded by TMH2-TMH7 deep in the inner cavity. This finding is interesting,
due to the fact that the Y556C mutation could promote the greater affinity of FA for the
Y556C variant by switching into a “high affinity inward-facing orientation”, making the
binding of FA easier [27]. Nevertheless, this does not mean that the FA can be transported
properly, since MRP4 has an altered conformation within the NBD2, which blocks the ATP
hydrolysis but not ATP binding. However, MRP4 can function with the energy provided by
one ATP hydrolysis, but the Y556C mutation could interfere with such ATP hydrolysis [28].

Figure 16 shows that the cAMP binding site in Y556C is quite different compared to
WT-MRP4 and G187W. The cAMP is located out of the normal binding site out of the TMDs
and it may not be transported at a proper rate or efficacy. It seems that Y556C is in the
“low-affinity outward-facing orientation”, where the main characteristic in this stage is that
the affinity of the transported entity switches from high affinity (low chemical potential of
the substrate) to low affinity (high chemical potential). Such change in affinity is due to the
gate to the inside is closed, and the gate to the outside of the membrane is opened [23]. The
global effect will depend on the cell type. Focusing on leukemia cells, could be harmful
to them, because the intracellular cAMP levels would be increased and thus, leading to
apoptosis [25]. On the other hand, the cAMP binding site in Y556C could represent the
initial interaction only and further re-location such as the WT-MTP4. Longer AA-MDS are
required to test this hypothesis.

To contrast the effect of nsSNPs in MRP4, AA-MDS and umbrella sampling studies
were performed in ceefourin-1, which is possesses a high selectivity over MRP4 inhibition.
It has been suggested that ceefourin-1 may act as a competitive inhibitor in MRP4 [7], which
is consistent to the AA-MDS where the binding site for cAMP and ceefourin-1 is similar
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in WT-MRP4, G187W and Y556C with ATP in the complex (Figures 17–19). Interestingly,
ceefourin-1 binds at the same abnormal binding site as cAMP in Y556C-ATP. Moreover,
Y556C seems to be in the same “low-affinity outward-facing orientation” where the low
affinity (high chemical potential) of the ligand leads to switch in the binding site [23]. As
mentioned before, such abnormal binding site could be the initial binding site but longer
AA-MDS is required to demonstrate it.
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Figure 13. FA binding site in WT-MRP4 and amplification of such site. Rainbow colors in both the
complete MRP4 structure and amplification of the binding site represent the FA structure while the
yellow spheres and stick represent the ATP. The yellow dotted lines indicate polar interactions. The
LID of WT-MRP4-FA is presented at the bottom.
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The cAMP and ceefourin-1 abnormal binding site in Y556C was one of the most
remarkable findings in this work and showed the importance of studying the global effect
of Y556C in different cell lines.

Umbrella sampling simulations were performed to determine the theoretical affin-
ity, expressed as the free energy of binding (∆G), of an event related to protein–ligand
interactions along a reaction coordinate. Table 5 shows the ∆G obtained by Umbrella
sampling through 10 ns of simulation on each complex. According to Umbrella sampling
results, the Y556C-FA complex is the most stable with or without ATP bound to MRP4.
Interestingly, ∆G for WT-FA and Y556C-FA complexes were lower in those MRP4 without
ATP. In addition, ∆Gs for G187W-cAMP and Y556C-cAMP complexes were higher without
ATP, suggesting that the ATP bound is required for both FA and cAMP binding stabiliza-
tion. ∆G for WT-MRP4-cAMP with or without ATP was the same. This represents an
interesting finding because in WT-MRP4, the binding of ATP may promote the stabilization
and conformational changes on MRP4 protein to promote an adequate interaction with
FA to be properly transported out of the cell. Regarding the information provided by the
LIDs, it is not possible to link the intermolecular interactions to ∆G because of the lack of a
pattern in all the complexes. The intermolecular interactions do not define the increase or
decrease of ∆G in this case. To confirm these observations, experimentally testing the FA
efflux on cells expressing equal levels of WT-MRP4, G187W, and Y556C, as well as MRP4
inhibition by ceefourin-1 to measure the transport rate would afford further information of
the differences among mutants and wild-type MRP4, experiments that are currently being
carried out and will be reported in future articles.

The ∆G for the WT-MRP4-ATP1 complex was lower than that for FA and cAMP,
which is reasonable considering its role in MRP4 functioning and needs to be bound
to NBDs for longer time than ligands. In the case of ATP1/2 complexes with MRP4
variants, the most remarkable finding was that the Y556C-ATP1 complex was the least
stable, theoretically demonstrated through the Umbrella sampling results, and it may be
related to the mutation in the NBD1. The mechanism for the MRP4 function requires the
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transmission of the molecular motion from the NBDs to the TMDs. At this point, the
ATP-binding can be considered as the power stroke in which the chemical potential of
the transported entity changed, and ATP hydrolysis leads to the formation of an extra
negative charge, thus opening the closed nucleotide sandwich structure and the opening
of the nucleotide sandwich structure facilitates Pi release and ADP dissociation, which
in turn allows the TMDs and access gates to reset to the high-affinity orientation on the
original side of the membrane to continue the transport cycle [23,29]. If the Y556C mutation
promotes a decreased affinity of ATP1 for its binding site and, in turn, a blockade of ATP1
hydrolysis, the Y556C variant activity could be diminished or truncated, also considering
that WT-MTP4 and its variants lack the ability to hydrolyze ATP2 in NBD2; thus, the lack
of Y556C efficacy in the transport substrates. Additionally, ATP2 had the highest affinity
for Y556C, and it would be interesting to test if high affinity could reestablish the ATP2
hydrolysis in NBD2.

Table 5. Binding free energies (∆Gs) obtained by umbrella sampling.

∆G (kcal/mol)
Ligand WT-MRP4 G187W Y556C

FA –25.340 –23.288 –46.4898
FA-ATP −16.490 −23.429 −38.9452
FA-ATP1 −46.010 −29.343 −18.7461
FA-ATP2 −37.226 −18.690 −61.100

cAMP −17.700 −31.014 −12.5676
cAMP-ATP −17.721 −39.300 −31.560

cAMP-ATP1 −43.966 −33.690 −49.7395
cAMP-ATP2 −23.860 −47.230 −38.5368
Ceefourin-1 −25.9938 −33.8589 −18.8326

Ceefourin-1-ATP −22.9107 −19.7664 −22.5503
Ceefourin-1-ATP1 −40.9182 −43.1199 −43.1179
Ceefourin-1-ATP2 −37.2706 −52.9313 −53.6592

FA-ATP, cAMP-ATP, and ceefourin-1-ATP: the ∆G is referred to FA, cAMP or ceefourin-1 in complex with ATP.
FA-ATP1, FA-ATP2, cAMP-ATP1, cAMP-ATP2, ceefourin-1-ATP1, and ceefourin-1-ATP2: ∆G calculation is
focused on ATP1 or ATP2

The abnormal cAMP and ceefourin-1 binding in Y556C (Figures 16 and 19) is consistent
with the ∆G for Y556C-cAMP and Y556-ceefourin-1, which had the lowest affinity with
respect to the complexes with WT-MRP4 and G187W, and it indicates a low affinity at
that binding site, suggesting two possibilities: (a) it is an initial cAMP or ceefourin-1
binding site to further binding at the inner cavity, or (b) possible deficiency in cAMP and
ceefourin-1 transport. The latter is the most feasible due to cAMP interacts to G187W and
WT-MRP4 in its normal binding site, but Y556C seems to be in the “low affinity outward-
facing orientation” as mentioned before. To predict the effect of nsSNPs on the efficacy of
chemotherapeutics, it is important to determine in a further study, the relation between
∆G in silico and the transport rate in vitro of several substrates. This suggests that ∆Gs
higher than that for the WT-cAMP-ATP complex may be related to a low rate of cAMP
transport. The ∆Gs for ceefourin-1 in all the complexes with MRP4 and its variants had the
best affinity compared to those complexes of cAMP, supporting the idea that ceefourin-1
may act as a competitive inhibitor at least with cAMP. However, the presence of ATP
in WT-MRP4 and its variants promotes a better affinity to cAMP than ceefourin-1 in the
complexes with G187W and Y556C. A competitive assay in vitro is required to determine
if ceefourin-1 had the best affinity to WT-MRP4 and its variants. The Figures 20 and 21
represent the LIDs for FA and cAMP, respectively. In both figures, the intermolecular
interactions of ligands with the absence of ATP are presented in the upper panel while the
intermolecular interactions of ligands with the presence of ATP are shown in the bottom
panel. The FA binding site is almost the same with or without ATP, but the number and
the type of intermolecular interactions is different. It seems that ATP promotes a greater
number of H-bonds between FA and all WT-MRP4 and its variants. Regarding the cAMP
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binding site, the ATP binding did not modify it; thus, the effect of ATP seems to be related
with changes in the intermolecular interactions and affinity that, according to Umbrella
sampling results, the ATP decreases the ∆G in the G187W-cAMP-ATP and Y556C-cAMP-
ATP complexes. Figure 22 presents the LIDs for ceefourin-1. The binding site is different in
all the complexes; interestingly, such a binding site does not change in the presence of ATP.
The main difference induced for ATP is the intermolecular interaction pattern, which led to
great amount of π-π stacking and H-bonds.
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Figure 20. LIDs for FA with the different MRP4 structures with or without ATP. (A) WT-MRP4-FA
complex. (B) G187W-FA complex. (C) Y556C-FA complex. (D) WT-MRP4-FA-ATP complex. (E)
G187W-FA-ATP complex. (F) Y556C-FA-ATP complex.
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Figure 21. LIDs for cAMP with the different MRP4 structures with or without ATP. (A) WT-MRP4-
cAMP complex. (B) G187W-cAMP complex. (C) Y556C-cAMP complex. (D) WT-MRP4-cAMP-ATP
complex. (E) G187W-cAMP-ATP complex. (F) Y556C-cAMP-ATP complex.
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The MRP4 variants may predispose the population to a given disease regarding the
site of the MRP4 that was affected by the mutation and the change in the affinity of a given
substrate. The clinical implications of MRP4 variants have been studied over the past years
and it is crucial to describe the relation of the MRP4 variants with diseases [30].

3. Materials and Methods
3.1. Protein Threading for WT-MRP4 and Its Variants G187W and Y556C

Structure prediction by protein threading for MRP4 was performed using its primary
sequence (code: O15439) from the UniProt database [31,32]. MRP4 mutant models were
made by the substitution of amino acids, G187W, or Y556C into the WT-MRP4 primary
sequence. Each primary sequence was uploaded into the I-TASSER [17,18] server for the
calculations of the models. The crystallography of MRP1 (PDBD code: 5UJ9) from Bos
taurus was used as a template in all cases [33,34].

3.2. Coarse-Grained Molecular Dynamics (CG-MD) Simulations

All the systems (WT, G187W, and Y556C) for the simulations were built in the Martini
Maker module [35] from CHARMM-GUI [36,37] using the Martini2.2p force field and
adding a phosphatidylcholine (POPC) lipid bilayer membrane in an isothermal-isobaric
ensemble (NPT) at 310.15 K. The simulations of 1 µs CG-MD were carried out in the
Gromacs 2018.7 program [38,39], after of the minimizations and equilibrium protocols
suggested by CHARM-GUI server. The module “cluster” of Gromacs 2018.7 was used to
find the relevant conformations of the simulation using the “gromos” algorithm and the
backbone for alignment. The most representative structure of the largest conformation
cluster of the three simulations was converted into all atoms in the Martini Maker/All-
Atom converter from CHARMM-GUI for the following calculations.

63



Molecules 2021, 26, 1051

All the CG-MD simulations were performed in the ADA cluster of the National
Laboratory of Advanced Scientific Visualization at Campus Juriquilla of the National
Autonomous University of Mexico (LAVIS-UNAM).

3.3. Molecular Docking on WT-MRP4, G187W and Y556C

The 3D structures of the selected ligand groups, substrate drugs, endogenous sub-
strates, and inhibitors were obtained from the PubChem public database [40]. Molecular
docking was performed with AutoDock 4.2.6 optimized for graphical-processing units
using a total of 50 runs and 25,000,000 evaluations; a grid box of 22.5 × 22.5 × 22.5 Å3

centering on the relevant amino acids reported by Ravna 2008 and 2009, El-Sheink 2008, and
Chen 2018 [9,41–43]; in a Lamarckian genetic algorithm and Solis-Wets local search [44].

3.4. All-Atom Molecular Dynamics (AA-MD) Simulations

For molecular dynamic studies with FA as a ligand, the protein–ligand complexes
WT-MRP4-FA, G187W-FA, or Y556C-FA, obtained from the molecular docking, were used,
and AA-MD simulations were performed in Desmond 3.6 as an application of the Maestro
software [45,46] as graphical interface. The AA-MDS systems were built using the System
Setup module with an OPLS force-field (Optimized Potentials for Liquid Simulations),
adding a POPC lipid membrane and simple point charge (SPC) water model in an NPT
assembly at 310.15 K. Once the system was built, the standard relaxation protocol for
system relaxation with increasing temperatures and decreasing restraints was used and an
MD production simulation of 25 ns (100 frames) was performed in the Molecular Dynamics
module. Clustering was performed in the Desmond Trajectory Clustering module to
obtain the most representative conformation of the largest cluster (cluster1, C1). Trajectory
analyses were performed in the Simulation Event Analysis module in Maestro.

3.5. Umbrella Sampling

Using the C1 of the 25 ns AA-MD trajectory, the system was built under the previously
mentioned conditions. Once the system was obtained and relaxed using the AA-MD relax-
ation protocol, a 10 ns (100 frames) MD simulation was performed in the Metadynamics
module of Desmond using the protein and ligand center-of-mass distance as the collective
variable, with 0.3 kcal/mol height and 0.1 kcal/mol width as the Gaussian parameters
for the umbrella protocol, on an NPT ensemble at 310.15 K and 1.01325 bar. Finally, the
analysis was performed in the Metadynamics Analysis module of Desmond.

3.6. Manipulation of the Complexes and Figures

All the protein figures and alignments presented in this work were made in PyMOL
software (The PyMOL Molecular Graphics System, Version 1.2r3pre, Schrödinger) [47]. The
manipulation of the WT-MRP4, G187W, and Y556C structures was performed in Maestro
(Schrödinger Release 2019-3: Maestro, Schrödinger, LLC, New York, NY, USA) [48].

4. Conclusions

To obtain the 3D structure of MRP4 and its variants, which are not resolved by NMR
or X-ray, protein threading was performed in this study and relaxing the structures was
performed by CG-MDS to carry out the molecular docking, while MDS and umbrella
sampling studies were performed to yield relevant information regarding the residues
involved in the binding of the studied molecules groups and changes in the ∆G of FA and
cAMP in the presence or the absence of ATP, which also allowed us to observe the relevance
of the mutations in the binding and movement of MRP4 and its variants. According to
our results, the nsSNPs G187W and Y556C led to changes in the ligand binding site, DS,
and binding energy (∆G). In addition, the ATP binding to MRP4 significantly modifies the
intermolecular interactions (at least, for FA and cAMP) and the binding energy compared
to the complexes where ATP was not bound to MRP4. The effect of the abnormal binding
site of cAMP in Y556C is consistent with the highly selective MRP4 inhibitor ceefourin-1,
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which makes it interesting to study such mutations in vitro. The affinity of ceefourin-1 for
WT-MRP4 and its variants is higher than the affinity of cAMP. Cofactors such as ATP and
Mg2+ should be included in the in silico analyses related to MRP4. It is well known that non-
synonymous mutations usually affect the protein function or activity and its conformation,
but this is the first report that suggests that most endogen substrates change their affinity
and binding site in G187W and Y556C, which could modify the cell metabolism. We will
report in further works the measure of substrate efflux and the relation between G187W or
Y556C expression, location, and cell viability to determine the overall effect of the nsSNPs
G187W and Y556C in vitro.
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Abstract: The Food and Drug Administration (FDA) approved a new class of anti-diabetic medication
(a sodium–glucose co-transporter 2 (SGLT2) inhibitor) in 2013. However, SGLT2 inhibitor drugs are
under evaluation due to their associative side effects, such as urinary tract and genital infection, urinary
discomfort, diabetic ketosis, and kidney problems. Even clinicians have difficulty in recommending it
to diabetic patients due to the increased probability of urinary tract infection. In our study, we selected
natural SGLT2 inhibitors, namely acerogenin B, formononetin, (−)-kurarinone, (+)-pteryxin, and
quinidine, to explore their potential against an emerging uropathogenic bacterial therapeutic target,
i.e., FimH. FimH plays a critical role in the colonization of uropathogenic bacteria on the urinary tract
surface. Thus, FimH antagonists show promising effects against uropathogenic bacterial strains via
their targeting of FimH’s adherence mechanism with less chance of resistance. The molecular docking
results showed that, among natural SGLT2 inhibitors, formononetin, (+)-pteryxin, and quinidine
have a strong interaction with FimH proteins, with binding energy (∆G) and inhibition constant (ki)
values of −5.65 kcal/mol and 71.95 µM, −5.50 kcal/mol and 92.97 µM, and −5.70 kcal/mol and
66.40 µM, respectively. These interactions were better than those of the positive control heptyl α-D-
mannopyranoside and far better than those of the SGLT2 inhibitor drug canagliflozin. Furthermore,
a 50 ns molecular dynamics simulation was conducted to optimize the interaction, and the resulting
complexes were found to be stable. Physicochemical property assessments predicted little toxicity
and good drug-likeness properties for these three compounds. Therefore, formononetin, (+)-pteryxin,
and quinidine can be proposed as promising SGLT2 inhibitors drugs, with add-on FimH inhibition
potential that might reduce the probability of uropathogenic side effects.
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1. Introduction

Globally, diabetes mellitus is one of the most prevalent metabolic diseases and is
estimated to increase to 552 million cases by 2030 [1]. Diabetes has been considered to
enhance vulnerability to infectious diseases and has also been linked with an enhanced
risk of death from infectious illness in some [2,3], but not all [4], investigations.

Sodium–glucose cotransporter-2 (SGLT2) inhibitors are a novel group of drugs used
to treat patients with type 2 diabetes mellitus (T2DM). These drugs exert their effects by
preventing glucose reabsorption at the proximal renal tubule and enhancing the excretion
of urinary glucose [5]. Owing to the elevated urine glucose levels, SGLT2 inhibitors
enhance the risk of urinary tract infections (UTIs) [6]. In addition, pharmacologically-
induced urine glucose levels with SGLT2 inhibitors in diabetic patients might further
sustain bacterial growth [7]. By themselves, SGLT2 inhibitors can possibly enhance the
risk of UTIs and susceptibility to genital infections when used to manage patients [8].
SGLT2 inhibitors might cause serious UTIs, as the FDA warned in December 2015 [9].
Empagliflozin and canagliflozin are the preferred drugs suggested for T2DM patients with
established cardiovascular disease [10,11]. The United States-based public safety advisory
reported 19 cases of fatal renal or blood infection from March 2013 to October 2014. The
origin of these cases was traced to a UTI induced by SGLT2 inhibitor intake [9].

Bacterial pili are proteinaceous projections extending from the bacterial cell surface
and are used for attachment and cell motility [12]. Gram-negative bacteria use Type 1 pili
to adhere to the host tissue and, therefore, Type 1 pili have been established as an important
virulence factor in UTIs. Type 1 pili are made up of repeated subunits of FimA protein.
These subunits are arranged to form a helical wound cylinder that composes a thick pilus
rod. The distal flexible tip of the pilus rod is comprised of a single copy of proteins—FimF
and FimG—while the tip adhesin bears FimH. The distinct binding of FimH (terminal
adhesin) to mannosylated host glycoproteins mediates the adhesion of bacterial pathogens
to the host tissue. UTI pathogenesis is caused by the FimH and, therefore, is a promising
curative target [13].

Acerogenin B is a cyclic diarylheptanoid obtained from the bark of Acer nikoense, and
it has been found to inhibit both SGLT1 and SGLT2 [14]. Kurarinone and formononetin are
flavonoids isolated from the dried root of Sophora flavescens. Kurarinone has demonstrated
inhibitory activity against both SGLT1 and SGLT2; however, formononetin was reported
to inhibit only SGLT2 and not SGLT1 [15]. Quinidine is isolated from the bark of the
cinchona tree and (+)-pteryxin is extracted from the plant Peucedanum spp. Recently,
both of these natural compounds have been found to inhibit both SGLT1 and SGLT2 [16].
Heptyl α-D-mannopyranoside is a FimH antagonist [17] and, in this study, it was used as a
reference compound.

In the present study, we explored natural SGLT2 inhibitors (acerogenin B, kurarinone,
formononetin, quinidine, and (+)-pteryxin) that might have less severe uropathogenic side
effects than does the approved SGLT2 inhibitor canagliflozin, also known as gliflozins. We
speculated that formononetin, (+)-pteryxin, and quinidine would be promising SGLT2
inhibitors with less severe uropathogenic side effects.

2. Methodology
2.1. SGLT2 Inhibitors and Target Protein Structure Retrieval

The 3-dimensional structure of FimH was taken from the protein data bank (PDB ID:
4AV5), while the 3-dimensional structure of SGLT2 was made by employing the SWISS-
MODEL Workspace after retrieving its amino acid sequence from Uniprot (P31639). The
PDB structure 2XQ2 was used as a template and the generated model was validated
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using various in silico tools, viz., SAVES v6.0 and VADAR (Volume, Area, Dihedral Angle
Reporter). The PDB structure of the compounds canagliflozin (CID: 24812758), acerogenin
B (CID: 10913542), formononetin (CID: 5280378), (−)-kurarinone (CID: 10812923), (+)-
pteryxin (CID: 511787), quinidine (CID: 441074), and the FimH antagonist heptyl α-D-
mannopyranoside (CID: 11300413) were retrieved from the PubChem database.

2.2. Physicochemical Properties and Toxicity Potential Prediction

The physicochemical properties and toxicity potential of SGLT2 inhibitors and FimH
antagonists were calculated by applying the Orisis Datawarrior property explorer tool
(http://www.openmolecules.org/datawarrior/download.html). At first, molecular weight,
the number of rotatable bonds, the number of hydrogen bond acceptors and donors, cLogP
value, topological polar surface area (TPSA), and the Lipinski’s rule violation [18] were
estimated to check physicochemical parameters. Later, the method outlined by Zhao
et al. [19] was applied to calculate percentage of absorption; here, the following formula
was used: absorption % = 109 − (0.345 × TPSA). Toxicity was also predicted for SGLT2
inhibitors and FimH antagonists by using toxicity features such as irritability, reproductive
effects, tumorigenicity, and mutagenicity. Orisis Datawarrior property explorer tool toxicity
predictions are based on comparative analysis of our tested compounds with the pre-
estimated set of known structural molecules.

2.3. Molecular Docking

The ligands were docked to the SGLT2 and FimH proteins using “AutoDock 4.2” by
following the protocol described by Rizvi et al. [20]. To minimize the energy usage of the
ligand molecules, a Merck molecular force field (MMFF94) was employed. The ligand
atoms were added with Gasteiger partial charges. Docking calculations were done on the
target proteins. Essential hydrogen atoms, Kollman united atom type charges and solvation
parameters were added by using AutoDock tools. Consequently, the binding pocket was
added with conserved water molecules to mimic the in vivo environment. An auto grid
program was used to generate the affinity (grid) maps sized at 60 × 60 × 60◦, the aim of
which was to target the grid coordinates in the catalytic site of the target protein (SGLT2
and FimH). The x, y, and z coordinate values for the FimH protein targeting the catalytic
site were taken as 3.305, −16.68, and −13.57, respectively. Docking simulations were done
using the Lamarckian genetic algorithm and the Solis and Wets local search method. The
initial position, orientation, and torsions of the ligands were set randomly. Each docking
experiment was derived from 100 different runs that were set to terminate after a maximum
of 2,500,000 energy evaluations. The population size was set to 150. The Discovery Studio
Visualizer 2.5 (Accelrys, San Diego, CA, USA) was used to generate the final figures.

2.4. LIGPLOT+ ANALYSIS

After the completion of all docking experiments, the best combination of ligand–FimH
and ligand–SGLT2 was selected and analyzed using LIGPLOT+ Version v.2.1 (EMBL-EBI,
Cambridgeshire, UK). The hydrogen and hydrophobic interactions between the important
amino acid residues of FimH/SGLT2 with each ligand were analyzed by LIGPLOT. For
each interaction, the 3-D structures generated were converted into 2-D figures by applying
the LIGPLOT algorithm.

2.5. Molecular Dynamics Simulation

System building: GROMACS 4.6.7 packages [21,22] were used to prepare the system
and perform molecular dynamics (MD) simulations using the gromos53a6 force field [23].
The protein solute was solvated by explicit SPC216 water [24] in a dodecahedral box with
a margin of 10 Å between the solute and the box walls. Systems were brought to neutrality
by the addition of sodium counter ions.

Simulation detail: A 10 Å cut-off distance was taken under the particle-mesh Ewald
method [25] to calculate long-range electrostatic interactions, and a 10 Å cut-off distance
was also considered to evaluate van der Waals interactions. The LINCS algorithm of fourth-
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order expansion was used to constrain bond lengths [26]. The steepest descent algorithm
was applied to optimize the removal of steric clashes between atoms for 10,000 steps. The
system was equilibrated for 1 ns with position restraints on all heavy atoms. Berendsen
weak coupling schemes were used to maintain the system at 300 K and 1 atom, using
separate baths for the system. Initial velocities were generated randomly using a Maxwell–
Boltzmann distribution corresponding to 300 K. Finally, the production run was performed
for 20 ns. Furthermore, xmgrace (http://plasma-gate.weizmann.ac.il) was used for prepar-
ing graphs. Ligand topology preparation was implemented by using the PRODRG server,
using the option specifying no chirality, full charge, and no energy minimization [27].

Trajectory analysis: The g_rms tool of the GROMACS package was used to calculate
the root-mean-square deviation (RMSD) of each trajectory. The covariance matrix and
eigenvectors of the trajectories were calculated through g_covar and g_anaeig programs.

3. Results and Discussion
3.1. Physicochemical Properties and Molecular Docking

Many varieties of plant-based natural compounds have been reported, which have
significant anti-diabetic effects. In streptozotocin-stimulated diabetic mice, bakuchiol
(a polyphenol compound) decreases glucose levels and enhances serum insulin levels [28].
Caffeine (an alkaloid) lowers glucose, induces insulin secretion in vitro, and improves
glucose absorption in skeletal muscle [29]. Vanillic acid isolated from Fagara tessmannii
Engl. (Family: Rutaceae) exhibits α-glucosidase inhibitory actions in vitro [30]. Christinin-
A is a triterpenoidal saponin glycoside that exhibits an anti-hyperglycemic effect in both
type 1 and type 2 diabetic rats [31].

Molecular docking has an important role in drug discovery, assisting in digging out the
active or lead compounds from a library of natural compounds [32]. It is one of the most
widely used virtual screening tools, particularly when the three-dimensional structure of
the target protein is available. Docking enables the prediction of both ligand–target binding
affinity and the structure of the protein–ligand complex, which are useful for optimizing the
lead [33,34].

Prior to the molecular docking study, we checked the physicochemical properties and
toxicity potential of SGLT2 inhibitors and FimH antagonists (Tables 1 and 2). The selected
SGLT2 inhibitors were known drug canagliflozin and natural SGLT2 inhibitors, namely,
acerogenin B, formononetin, (−)-kurarinone, (+)-pteryxin, and quinidine, while heptyl α-D-
mannopyranoside was selected as an FimH antagonist. During physicochemical property
assessment, we found that out of all the compounds tested, (−)-kurarinone showed one
violation of the Lipinski rule [18], i.e., a cLogP value (Logarithm of compound partition
coefficient between n-octanol) higher than 5 (Table 1). On the other hand, all the tested
compounds showed no toxicity except (+)-pteryxin. (+)-pteryxin was predicted to have a
high irritant effect with no mutagenic, tumorigenic, or reproductive toxicity (Table 2).

Table 1. Physicochemical properties of natural sodium–glucose co-transporter 2 (SGLT2) inhibitors and control compounds.

S.No. Compound Name

Physiochemical Parameters

% of
Absorption

**

Topological
Polar Surface

Area (Å)2

Molecular
Weight

cLogP
***

Hydrogen
Bond

Donors

Hydrogen
Bond

Acceptors

Number of
Rotatable

Bonds

Lipinski’s
Violation

Rule - - <500 ≤5 <5 <10 ≤10 ≤1

1. Acerogenin B 91.85 49.69 298.38 4.50 2 3 0 0

2. Formononetin 89.76 55.76 268.26 2.24 1 4 2 0

3. (−)-kurarinone 75.80 96.22 438.51 6.11 3 6 7 1

4. (+)-pteryxin 78.59 88.13 386.39 3.34 0 7 5 0

5. Quinidine 93.27 45.59 324.42 2.61 1 4 4 0

6. Canagliflozin * 68.15 118.39 444.52 3.27 4 5 5 0

7. Heptyl α-D-mannopyranoside * 74.71 99.38 278.34 0.485 4 6 8 0

* Control drugs/compounds; ** Percentage of Absorption (% of Absorption) was calculated by the following equation: % of Absorption =
109 − (0.345 × Topological Polar Surface Area); *** Logarithm of the compound partition coefficient between n-octanol and water.
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Table 2. Toxicity potential of natural SGLT2 inhibitors and control compounds.

S.No. Compound Name
Toxicity Risks

Mutagenic Tumorigenic Reproductive Effect Irritant

1. Acerogenin B None None None None
2. Formononetin None None None None
3. (−)-kurarinone None None None None
4. (+)-pteryxin None None None High
5. Quinidine None None None None
6. Canagliflozin * None None None None
7. Heptyl α-D-mannopyranoside * None None None None

* Control drugs/compounds.

The predicted model of SGLT2 revealed that 81.25 percent of the residues had an
average 3D-1D score of ≥0.2, resulting in a “pass” in SAVES v6.0.0 by the VERIFY3D
tool. In addition, the Ramachandran plot (showing 93% of the residues in the allowed
region), fractional accessible surface area, stereo/packing quality index, fractional residue
volume, and 3-D profile quality index (produced by the VADAR 1.8 server) showed that
the predicted 3-D model was within an appropriate range (Figure 1).

Figure 1. Cont.
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Figure 1. Cont.
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Figure 1. Validation of the predicted 3-D structure of SGLT2.

The inhibition of SGLT2 has been considered a novel pharmacotherapy for T2DM
treatment [35]. Accordingly, molecular docking studies have revealed that the natural
SGLT2 inhibitors formononetin, (+)-pteryxin, and quinidine were efficiently bound with
SGLT2. Formononetin was found to interact with the F98, E99, A102, L149, K152, T153,
V286, S287, Y290, W291, I456, Q457, and S460 binding pocket residues of SGLT2 (Figure 2a);
while the S74, G79, H80, K154, I155, V157, D158, S161, S393, I397, and I456 residues of
SGLT2 were observed to bind with (+)-pteryxin (Figure 2b). Furthermore, quinidine was
found to interact with the S74, N75, H80, L84, F98, E99, V286, S287, Y290, W291, F453, I456,
and Q457 residues of SGLT2 (Figure 2c). Consistent with this, the amino acid residues
H80, F98, T153, K154, V157, D158, V290, I397, F453, I456, Q457, and S460 were shown to be
important for the inhibition of SGLT2 [36]. Amino acid residues H80, V286, Y290, W291,
and I456 are the main hydrophobic residues of SGLT2, interacting with the dock inhibitors
formononetin, (+)-pteryxin and quinidine (Figure 3a–c). This concurs with a previous
report wherein the amino acid residues H80, Y290, and I456 of SGLT2 have also been
reported have a hydrophobic interaction with the inhibitor [36,37]. The binding energy (BE)
for the catalytic domain interactions of formononetin–SGLT2, (+)-pteryxin–SGLT2, and
quinidine–SGLT2 were found to be −7.63 kcal/mol, −9.01 kcal/mol, and −8.77 kcal/mol,
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respectively, while their inhibition constants (Ki) were 2.57 µM, 0.245 µM, and 0.371 µM,
respectively (Table 3).

Figure 2. The amino acid residue of SGLT2 interacting with formononetin (a), (+)-pteryxin (b), quinidine (c), and
canagliflozin (d). The ligands (formononetin, (+)-pteryxin, quinidine, and canagliflozin) are represented as green stick forms
and hydrogen bonds are indicated as green dashed lines.

Table 3. The docking results of the molecular interactions of SGLT2 and FimH with natural SGLT2 inhibitors and control
compounds.

Compounds
SGLT2 FimH

Binding Energy
(kcal/mol)

Inhibition Constant
(µM)

Binding Energy
(kcal/mol)

Inhibition Constant
(µM)

Canagliflozin * −7.23 5.04 −3.56 2450
Acerogenin B −6.30 24.25 −4.40 598.52
Formononetin −7.63 2.57 −5.65 71.95
(−)-kurarinone −7.23 5.03 −3.93 1310

(+)-pteryxin −9.01 0.248 −5.50 92.97
Quinidine −8.77 0.371 −5.70 66.40

Heptyl α-D-mannopyranoside ** - - −4.46 109.49

* Control compound for SGLT2; ** Control compound for FimH.

The FDA approved canagliflozin, an SGLT2 inhibitor, for use in T2DM treatment in
2013 [38]. In the present study, canagliflozin was used as a positive control against SGLT2.
Canagliflozin was observed to bound with G79, H80, Y150, K154, D158, W289, Y290, D294,
S393, I397, S460, and I456 residues of SGLT2 (Figures 2d and 3d). Interestingly, these amino
acids of SGLT2 have also been found to interact with SGLT2 inhibitors (formononetin,
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(+)-pteryxin, and quinidine). I456 was one of the most reactive common hydrophobic
residues of SGLT2, interacting with formononetin, (+)-pteryxin, and quinidine, as well
as canagliflozin (Figure 3a–d). The Y290 residue of SGLT2 was found to make H-bonds
with quinidine, while the same residue was observed to hydrophobically interact with
formononetin and canagliflozin (Figure 3a,c,d). In addition, G79, H80, and I397 were the
common hydrophobic interacting residues of SGLT2 with (+)-pteryxin and canagliflozin
(Figure 3b,d).

Figure 3. Ligplot analysis of formononetin (a), (+)-pteryxin (b), quinidine (c), and canagliflozin (d) in terms of their
interaction with SGLT2. The amino acid residues forming hydrophobic interactions are shown as red arcs while the
hydrogen bonds are shown as green dashed lines with indicated bond lengths.

The function of human SGLT1 protein is dramatically affected by amino acid at
position 457. It has been shown that residue 457 (i.e., Q457) in human SGLT1 directly
interacts with sugar for its reabsorption [39,40]. The amino acid sequences of SGLT1 and
SGLT2 revealed that both of these proteins have glutamine at the residue 457 position,
and glucose–galactose malabsorption occurs due to mutation in the glutamine residue
(Q457) [41]. Consistent with this, in the present study, formononetin and quinidine were
observed to interact with the Q457 residue that is suggested to impair SGLT2 function.

Since the discovery of the first natural SGLT2 inhibitor (i.e., phlorizin), several other
synthetic glucoside analogs have been developed [42]. Tofogliflozin is a selective SGLT2 in-
hibitor that enhances urinary glucose excretion in a dose-dependent manner [43]. Luseoglifl-
ozin is an orally active second-generation SGLT2 inhibitor that has protective effects on
pancreatic beta-cell mass and function [44]. Furthermore, efforts have been made to find new
active natural ingredients from S. Flavescents [15], alkaloids from A. macrophylla [45], and
Schisandrae Chinensis Fructus for the development of SGLT2 inhibition [46]. A 4-O-methyl
derivative of sergliflozin-A has been reported to exhibit SGLT2 inhibition activity [47].
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SGLT2 inhibitors are some of the most promising anti-diabetic agents introduced into
clinical practice over the last decade. The therapeutic benefits of SGLT2 inhibitors include
weight loss, a reduction in blood pressure, and an enhancement in high-density lipoprotein
level [48,49]. However, the SGLT2 inhibitors dapagliflozin, canagliflozin, and empagliflozin
have been found to cause UTIs and genital infections in diabetic patients [50–52]. Addition-
ally, the FDA has issued warnings about the possible UTI-inducing side effects of SGLT2
inhibitors in December 2015 [9].

UTIs pose a severe medical issue worldwide, with more than 85% of UTIs caused by
uropathogenic Escherichia coli [53]. FimH is a bacterial adhesin that facilitates the coloniza-
tion of uropathogenic E. coli on the cell surface of the human and murine bladder and leads
to the formation of biofilm [54]. Therefore, this adhesin has been considered a virulence
factor and a promising therapeutic target for the treatment of UTIs [55]. Interestingly,
the docking results indicate that the SGLT2 inhibitors formononetin, (+)-pteryxin, and
quinidine show strong binding with FimH. FimH was found to interact with formononetin
through 11 amino acid residues, namely F1, N46, D47, Y48, I52, D54, Q133, N135, Y137,
N138, and D140 (Figure 4a), while (+)-pteryxin was found to interact with 6 amino acid
residues, namely Y48, T51, I52, Y137, N138, and D140 (Figure 4b). Similarly, 10 amino acid
residues, namely the F1, I13, Y48, I52, D54, Q133, N135, Y137, N138, and D140 residues of
FimH, were found to interact with quinidine (Figure 4c). The BE for formononetin–FimH,
(+)-pteryxin–FimH, and quinidine–FimH interactions were found to be −5.65 kcal/mol,
−5.50 kcal/mol, and −5.70 kcal/mol, respectively. The corresponding estimated inhibi-
tion constants (Ki) for the above-mentioned complexes were determined to be 71.95 µM,
92.97 µM, and 66.40 µM, respectively (Table 3).

Figure 4. The amino acid residue of FimH’s interaction with formononetin (a), (+)-pteryxin (b), quinidine (c), and heptyl
α-D-mannopyranoside (d). The ligands (formononetin, (+)-pteryxin, quinidine, and heptyl α-D-mannopyranoside) are
represented as green stick forms and hydrogen bonds are represented as green dashed lines.
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The FimH protein has two domains, the C-terminal pilin domain and the N-terminal
lectin domain. The FimH lectin domain has a mannose-binding pocket (N46, D47, D54,
Q133, N135, N138, and D140), in which sugar contributes to the formation of various
hydrogen bonds with FimH. Hydrophobic regions are present in the surrounding region
of the mannose-binding pocket and consist of hydrophobic support (F1, I13, and F142),
the tyrosine gate (Y48, I52, and Y137), and the residue T51 [56]. Consistent with this,
in the present study, the D47, D54, and N138 of the FimH protein were involved in
hydrogen binding with formononetin (Figure 5a), while Y48, I52, Y137, and D140 were the
common hydrophobic amino acid residues interacting with formononetin, (+)-pteryxin
and quinidine (Figure 5a–c).

Figure 5. Ligplot analysis of the interactions of formononetin (a), (+)-pteryxin (b), quinidine (c), and heptyl α-D-
mannopyranoside (d) with SGLT2. The amino acid residues forming hydrophobic interactions are shown as red arcs
while the hydrogen bonds are shown as green dashed lines with indicated bond lengths.

In the present study, heptyl α-D-mannopyranoside (a FimH antagonist) was used as a
positive control against the FimH protein. Molecular docking analysis revealed that amino
acid residues, namely the F1, I13, Y48, T51, Q133, N135, N138, D140, and I52 residues
of the FimH protein, have a vital role in binding with heptyl α-D-mannopyranoside
(Figures 4d and 5d). The main FimH binding pocket amino acid residues are F1, N46, D47,
D54, E133, N135, D140, and F142, and mutation in these individual main residues leads to
them affecting FimH function and reducing its virulence [57,58]. Interestingly, we found
that these amino acid residues of FimH were also determined to interact with natural
SGLT2 inhibitors (formononetin, (+)-pteryxin, and quinidine).

O- and C-linked alpha-D-mannosides with hydrophobic and aryl substituents are
effective FimH antagonists. The substitution of biphenyl derivatives may provide ad-
ditional advantages for the FimH antagonist molecule. The addition of 1,10-biphenyl
pharmacophore and various aglycone atoms enhanced the alpha-D-mannose derivatives’
suitability as FimH inhibitors [59,60]. Further, glycomimetics based on mannose scaffolding
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has also been synthesized and widely studied for their aptitude as FimH antagonists [61,62].
Besides synthetic compounds, natural substances, like cranberry and its derivatives (such
as myricetin, proanthocyanidin (PAC)-standardized cranberry extract, and polyphenol
metabolites extracted from PAC), have anti-adhesive effects on uropathogenic E. coli [63].

In docking experiments, it is usually crucial to look for a ligand that can bind efficiently
with the receptor, using Gibbs free energy as a parameter of better binding [64,65]. The
strength of an interaction between a ligand and a receptor is measured in terms of the free
energy of binding. The lowest BE is the output of the efficient binding of the drug/ligand
to the active site of the receptor [66]. A higher (negative) BE is a sign of efficient interaction
between the ligand and the receptor [67]. Accordingly, in the present study, formononetin,
(+)-pteryxin, and quinidine exhibited strong interaction with the FimH protein, with a high
BE relative to that of the positive control heptyl α-D-mannopyranoside, suggesting that
these compounds could be promising SGLT2 inhibitors with less severe uropathogenic
side effects.

Diabetic ketoacidosis and its associated events have been reported at a low frequency
in T2DM patients treated with canagliflozin [68]. Interestingly, in the present study, the BE
of canagliflozin with FimH relative to the other SGLT2 inhibitor indicates that canagliflozin
has less potency in inhibiting the FimH protein, thereby having a high susceptibility to
causing diabetic ketosis and UTIs.

3.2. Root Mean Square Deviation

Root mean square deviation (RMSD) is the most significant dynamic to explore in
terms of conformational changes by means of stability in the structure and dynamic
behavior of the receptor [69]. The complexes of formononetin, quinidine, and (+)-pteryxin
with FimH obtained in molecular docking that interacted the best were further probed
by MD simulation. The binding of ligands to their receptor protein can result in large
conformational deviations in the resulting complex, specifically at the binding site. In this
study, values of RMSD were increased at the beginning, with respect to the native structure
of the RMSD. Figure 6A reports the RMSD of the backbone atoms of FimH protein as they
interacted with each ligand molecule, where formononetin–FimH, quinidine–FimH and
(+)-pteryxin–FimH interactions are represented with a black, red, and green color code,
respectively. RMSD changes in all systems were initiated at the same point (~0.125 nm);
however, in the formononetin–FimH complex, the conformational changes took place
throughout the stabilization process. The change in the RMSD values in the formononetin–
FimH complex indicated a small fluctuation until ~30 ns, and, afterwards, RMSD was
found to be stable, remaining at around 0.35 nm in value. Due to the initial ups and downs
in the RMSD values of the formononetin–FimH complex, the topologies of the structures
were observed to significantly change during simulation. The observed initial RMSD
change predicted the large conformational changes in regions near the binding pocket.
Although the simulation lasted for 50 ns, the discrepancy from the initial structure within
the first 30 ns was sufficient to point out the protein structures that were substantially
denatured at binding sites and adjacent areas. While the RMSD values of the quinidine–
FimH complex showed little turbulence until ~20 ns, the values reached a plateau later on.
The value observed was greater than 0.3 nm initially; however, after 35 ns it went steady at
0.37 nm. In general, overall RMSD values fluctuated within 0.5 nm ± 0.05 nm throughout
the simulation.

Like the above complexes, RMSD values showed frequent conformational changes
and binding residue incorporation during the simulation analysis of the pteryxin–FimH
complex. Conformational changes were observed at a functional domain near the binding
site of the complex, and a considerable movement of the pteryxin ligand was also predicted
at that site. Moreover, the RMSDs of all three ligand candidates were calculated to evaluate
the behavior of the ligands within the binding site of the protein. Figure 6B shows the
plot representation of RMSD for each ligand. Ligands (formononetin and quinidine) have
generally shown high stability within the close contact residues of protein, whereas, in the
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case of pteryxin, this ligand demonstrated several fluctuations within the binding site. Due
to the movement of the pteryxin ligand, an initial sudden elevation (~0.13 nm) followed
by fluctuations until 0.15 ns was observed during the simulation. Although the RMSDs
maintained a plateau later on, an average value of 0.21 nm was calculated throughout the
simulation. Moreover, the difference in RMSDs due to the movement of pteryxin from the
initial to the final frame at the binding site was observed as 0.15 nm, which revealed that
pteryxin shows considerably weaker binding with interacting amino acid residues during
the simulation. On the other hand, it was observed that formononetin and quinidine stably
interacted during simulation, and the pattern of contact between the binding residues
and both ligands (formononetin and quinidine) predicted regulation of the activity of the
FimH protein.

Figure 6. Representation of an RMSD plot of each complex in terms of their relationship between RMSD values and
simulation time, shown in three different color codes. Panel (A) shows an RMSD plot of the backbone atoms of FimH
protein receptor interacting with three ligand candidates, while panel (B) represents the RMSD plots of ligand candidates
during simulation, which are color coded black (Formononetin), red (Quinidine), and green (Pteryxin). FimH protein
complexes with Formononetin and Quinidine possessed high stability during simulation, while the third complex with
Pteryxin demonstrated comparatively less stability.

Consequently, the RMSDs of the formononetin–FimH and quinidine–FimH complexes
were found to have comparatively more stable trajectories than the (+)–pteryxin–FimH
complex during simulation analysis (Figure 6).

3.3. Principle Component Analysis

To identify the overall patterns of motion in the complexes during simulation, we uti-
lized principal components analysis (PCA) for the three complexes. The covariance matrices
of the simulations were calculated to produce the eigenvectors, and then a screening of
the trajectories was performed around each of the diverse eigenvectors. Furthermore, the
dominant motions during a four-vector RMSD for each complex were observed (Figure 7).
A large portion of the overall variations in the receptor protein can be explained by a few
reduced amplitude eigenvectors with large eigenvalues. The analysis illustrated that the
fourth eigenvector accounts for the depletion of the RMSD value, although the rest of the
three vectors showed elevation at the initial time of the simulation. It was shown that after
~8 ns the RMSD values reached a plateau and maintained their value until the end of the
simulation (Figure 7).

To know the movement of the backbone atoms of the receptor protein, 100 frames of
the first principal component were collectively loaded into VMD, which show the motility
of the residues (Figure 8), although there might be differences between each complex
with respect to the motions sampled. The width of the band is proportional to amplitude;
a narrow band signifies those segments that hardly moved, while wide bands signify the
sections most affected by the transitions. The middle domain of the protein showed less
movement than the adjacent domains that predicted the stability of the middle domain.
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The rest of the protein exhibited comparatively wider bands, which might be due to an
increase in functionality.

Figure 7. Each panel (A–C) reports the calculation of projection of particular trajectory on eigenvectors for each three
complexes. The RMSDs for every four eigenvectors are depicted as four subplots in each panel. Plot shows the projections
of each vector are fitted to the structure in the eigenvector.

Figure 8. The motion of the backbone atoms of the protein receptor during simulation of the trajectory
as calculated by principal component analysis. The width of the bands is proportional to amplitude.

It is worth mentioning that the binding energy values and MD simulations obtained
can only demonstrate the binding efficacy and stability of inhibitors with the target protein.
Further benchwork experiments are required to optimize these compounds (formononetin,
(+)-pteryxin, and quinidine) as promising SGLT2 inhibitors with add-on FimH inhibition
potential that might reduce the probability of uropathogenic side effects.

4. Conclusions

SGLT2 inhibitors are a newer class of drugs that have enormous anti-diabetic potential.
Unfortunately, the side effects, specifically those that contribute to the development of UTIs,
have impeded their success rate. Several clinicians, as well as diabetic patients, are still in a
dilemma over the use of this class of anti-diabetic medication. In contrast, FimH is blooming
as a potential alternative target for UTI treatment, and FimH inhibitors are currently under
development. These inhibitors act against the uropathogenic bacterial strains adherence
to the mucosal surface of the urinary tract, resulting in a lower chance of encountering
resistance. In the present study, we docked natural SGLT2 inhibitors with FimH target
proteins to predict their FimH interaction potential. To the best of our knowledge, this
is the first time that SGLT2 inhibitors have been explored in terms of their use against
FimH. Our findings suggest that among all SGLT2 inhibitors examined, formononetin,
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(+)-pteryxin, and quinidine exhibited strong interactions with the FimH protein with high
binding energy, in comparison to the positive control heptyl α-D-mannopyranoside. On the
other hand, the FDA-approved SGLT2 inhibitor canagliflozin indicated lower interaction
with FimH. Thus, we hypothesize that if explored further, natural SGLT2 inhibitors might
reduce the probability of UTIs when used against FimH. The authors anticipate researchers
to duly use the findings of this study to design more versatile and potent dual inhibitors
against SGLT2 and FimH to cope with the uropathogenic side effects of SGLT2 inhibitor
class anti-diabetic medications.
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Abstract: Doxorubicin (DOX), a recognized anticancer drug, forms stable associations with carbon
nanotubes (CNTs). CNTs when properly functionalized have the ability to anchor directly in cancer-
ous tumors where the release of the drug occurs thanks to the tumor slightly acidic pH. Herein, we
study the armchair and zigzag CNTs with Stone–Wales (SW) defects to rank their ability to encapsu-
late DOX by determining the DOX-CNT binding free energies using the MM/PBSA and MM/GBSA
methods implemented in AMBER16. We investigate also the chiral CNTs with haeckelite defects.
Each haeckelite defect consists of a pair of square and octagonal rings. The armchair and zigzag CNT
with SW defects and chiral nanotubes with haeckelite defects predict DOX-CNT interactions that
depend on the length of the nanotube, the number of present defects and nitrogen doping. Chiral
nanotubes having two haeckelite defects reveal a clear dependence on the nitrogen content with
DOX-CNT interaction forces decreasing in the order 0N > 4N > 8N. These results contribute to a
further understanding of drug-nanotube interactions and to the design of new drug delivery systems
based on CNTs.

Keywords: carbon nanotubes; Stone–Wales defects; haeckelite defects; doxorubicin encapsulation;
drug delivery system; binding free energies; noncovalent interactions; molecular dynamics

1. Introduction

Doxorubicin (DOX), an antineoplasic drug, approved for medical use by the FDA [1,2],
has been used for more than 40 years to combat various types of cancers despite the
cardiological risks associated with its use. Researchers at the Mayo Clinic [3] have reviewed
its mechanism of action and, mainly thanks to the work of Denard et al. and Zhang
et al. [4,5], have proposed two alternatives that explain its function. In one of them, DOX
would stabilize a complex formed by double-stranded DNA and topoisomerase, which
later it would cut both strands of DNA. The alternative is the production of a larger
quantity of ceramides which would produce the translocation of a CREB3L-1 protein from
the endoplasmic reticulum to the Golgii apparatus. There, some proteases would break the
CREB3L-1 protein in such a way that its N-terminal fragment would be translocated to the
nucleus where it would direct the DNA transduction, to finally express p21 proteins, which
would be those that inhibit tumor growth. Other mechanisms of action of DOX reviewed
by Ferreira et al. consider the intercalation of DOX in nuclear DNA and mitochondrial
DNA, inhibition of topoisomerase-IIß, and epigenetic factors that involve methylation and
deacetylation reactions [6].

In order to increase drug bioavailability and avoid its adverse effects, several types
of drug carriers have been used, among which carbon nanotubes (CNTs) have shown
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to form stable associations with DOX [7]. However, CNTs also exhibit some toxicity
problems [8–11]. Fortunately, CNTs can be functionalized with fragments to increase their
water solubility, which prevents them from being deposited as agglomerates in the body.
Under certain conditions of concentration and purity CNTs are non-toxic [12]. Additionally,
the functionalization of the CNTs facilitates the anchoring of the nanotubes right in the
tumor to be attacked. The physicochemical and conductive properties of CNTs give them a
versatility of applications in various fields such as electronics, photonics, catalysts, drug
carriers, biotechnology, bone tissue engineering and others [13–15].

In the current work we are interested in the ability of CNTs to adsorb drugs and
transport them to the target site. It is important to determine the structural parameters
that facilitate the DOX-CNT association and to allow the development of strong DOX-CNT
intermolecular interaction forces, which help to inhibit the drug from being released before
reaching its target. Once there, the acidic pH of the tumor environment causes the release
of the drug. Indeed, several studies show experimentally that DOX release is favored at
pH of 5 or less [16–19], which is also demonstrated at a theoretical level [20].

Another technologically important characteristic of CNTs is their chirality which sig-
nificantly modify their conductive properties. For example, armchair (n, n) nanotubes
are conductive while zigzag (n, 0) and chiral (n, m) nanotubes are semiconductors ex-
cept when the value of the difference (n − m) is a multiple of 3, since nanotubes become
conductive [21–24]. The diameter of the nanotube has also been shown to be an impor-
tant structural point since, depending on the diameter, the degree of curvature of the
nanotube can be controlled, which seems to be a decisive factor in the stability of the
DOX-CNT associations.

As can be deduced, the chirality and the diameter of the nanotubes are properties
that determine their behavior and also the presence of structural defects which can change
the chirality [25]. The carbon rings of the nanotube that differ from the hexagons are
called defects, and depending on their ordering and distribution in the nanotube they
confer different properties. For example, the five- and seven-membered rings, when
distributed around the perimeter of the nanotube, constitute defects called bumpy. If they
are distributed axially in the nanotube they are called zipper defects [26]. Other four-
membered rings, along with eight-membered rings, are called haeckelite defects [22,27].
These defects are formed by the addition of two carbon atoms or ad-dimers. However, there
are other defects that are formed by rearrangement of their bonds, such as the Stone–Wales
defects formed by a pair of rings of five and eight members [28].

The presence of some of these defects has significant technological importance. For
example, zigzag nanotubes in the presence of ad-dimers can induce plastic transformations
in a material that would otherwise be brittle [29]. Chiral nanotubes stand out, which in
the presence of bumpy defects considerably increase their conductivity over armchair and
zigzag nanotubes according to DFT studies considering dispersion-corrected B3LYP-D3
functional [30]. Zigzag nanotubes that contain bumpy defects show greater conductive
ability and capacity to be reduced [30]; nitrogen doping increases the conductive ability
of armchair nanotubes [30]. In addition, armchair nanotubes with bumpy defects notably
increase their ability to adsorb hydrogen with very convenient hydrogen adsorption energy
values, for their use in the management of clean energy [30].

CNTs form stable associations with doxorubicin [7]. Various theoretical and molecular
dynamics studies predict a high capacity of CNTs as carriers [20,31–36] and several molec-
ular dynamics studies of functionalized DOX-CNT systems with various organic groups
have contributed to the study of DOX loading and release [37–43]. Although there are
several works on the adsorption of DOX in CNT, there are no studies that report on the op-
timal structure that a nanotube should have to behave as a DOX nanocarrier. The situation
is complicated because there are also no experimental data available on the formation and
characterization of DOX-CNT complexes and the determination of their DOX-CNT binding
energies. For non-functionalized nanotubes, Wang and Xu [20], systematically studied
the adsorption and encapsulation of DOX in armchair nanotubes of different diameters,
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using the theoretical methods PM6-DH2 and M06-2X in the ONIOM scheme and found
that the diameter of the nanotube at which the best DOX encapsulation occurred was 14
Å and corresponded to (10,10) armchair nanotubes. This same behavior was confirmed
through a study of molecular dynamics for armchair, zigzag and chiral nanotubes, finding
that the strongest DOX-CNT interactions were produced for 14 Å in diameter nanotubes,
regardless of chirality [32]. A different situation occurs in the presence of defects in the
nanotube. In the case of bumpy defects, a dependence on chirality is observed, since
armchair nanotubes with bumpy defects present weaker DOX-CNT interactions than arm-
chair nanotubes without defects. In contrast, bumpy defects in chiral nanotubes favor the
DOX-CNT interaction [32].

Several methods of synthesis of CNTs have been reviewed [44]. However, there is
a lack of comparative systematic experimental antecedents on this issue, which makes it
possible to pose as a valid hypothesis for a theoretical study that the presence of defects in
the nanotube, the type and number of defects and their position, also modify the DOX-CNT
association properties, along with the chirality and size of the nanotube.

The previous antecedents also lead us to investigate if there is a general trend for
some type of nanotube, for example, with chirality or type of defect that accounts for the
degree of DOX-CNT association. Our research questions include: (i) how does structural
or nitrogen doping defects affect the ability of CNTs as drug carriers, in this case, DOX. (ii)
Is the effect produced by the defects the same, regardless of the chirality and the size of the
nanotube? (iii) Is there any type of defect that has better characteristics than the others?
(iv) How does it affect the number of defects present?

In this work DOX-CNT binding energies are determined for chiral nanotubes with
haeckelite defects (with rings of 4 and 8 carbon atoms) and for armchair and zigzag
nanotubes with Stone–Wales defects (SW), by means of the MM/PBSA and MM/GBSA
methods implemented in the AMBER program of molecular dynamics.

2. Results

Below are the results obtained by molecular dynamics (MD) simulation for DOX
encapsulation systems in chiral CNTs with haeckelite (Hk) defects and also in armchair
and zigzag CNTs with Stone–Wales (SW) defects. The Hk defects consist of a pair of rings
of 4 and 8 members each, while the SW defects are made up of a pair of rings of 5 and 7
members each, as shown in Figure 1.

Å
Figure 1. Representation of carbon nanotube structural defects and their C–C bond distances in Å.
(a) haeckelite defect; (b) Stone–Wales defect.

2.1. Chiral Nanotubes with Hk Defects

Chiral nanotubes Ch(13,08) with one Hk defect (named Hk1) and two Hk defects
(named Hk2) having 0N, 4N and 8N were studied considering different initial positions of
the DOX: in the region of the defect (D), in the regular region of the nanotube (R) (there
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are no defects in that area) with the DOX NH2 group pointing towards the center of the
nanotube (v1 orientation) or to the inverse direction (v2 orientation) as shown in Figure 2
for Hk2 chiral nanotubes. Other additional DOX orientations refer to Hk1 nanotubes:
when the DOX NH2 group is oriented in a direction proximal to the defect (p) or is in the
direction opposite to the defect (o) as shown in Figure 3.

Å

Figure 2. DOX orientation when encapsulated in a chiral nanotube having two haeckelite defects.
(a) v1 orientation; (b) v2 orientation. Lateral views.

π

Å

Figure 3. The encapsulated DOX orientations into a chiral nanotube having one haeckelite de-
fect. (a) Hk1-DoxDIn.v1p; the DOX NH2 group is oriented in a direction proximal to the defect;
(b) Hk1-DoxDIn.v1o; the DOX NH2 group is oriented in an opposite direction. Lateral and frontal
views shown.

2.1.1. Chiral Nanotubes with HK1 Defects

For chiral nanotubes with Hk1 defects (Hk1 chiral nanotubes), the results predict a
similar behavior for both undoped, 0N, and nitrogen doped nanotubes having 4N and
8N. In all three cases, the DOX-CNT interaction is favored when the DOX is located in the
defect area with the NH2 group pointing towards the center of the nanotube (v1 orientation)
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in the proximal direction close to the defect as shown in Table 1 (runs 2, 10 and 18 for
0N, 4N and 8N, respectively) with Poisson–Boltzman (PB) binding energies of −102, −99
and −102 kcal/mol, respectively. Coherently, most of these systems exhibit equilibrium
distances with values between 3.2 and 3.6 Å evidencing stronger DOX-CNT interactions
which are favored by the orientation of the DOX that facilitates the NH-π interaction. In
Figure 4 the initial conformation of the Ch(13,08)8N-Hk1-DoxDIn.v1p complex is shown
together with the final conformations after 2 ns of MD simulation and after 100 ns. It is
observed that DOX does not move towards the regular part of the nanotube but interacts
with the defect and as a result, in that area, there is a significant deformation of the nanotube.
These results obtained for chiral nanotubes show the same behavior as was reported for
armchair nanotubes with more favorable DOX-CNT interactions for systems in which
DOX is located in the defect region and when it is oriented with its nitrogen atom directed
towards the center of the nanotube. However, armchair nanotubes having one haeckelite
defect exhibit DOX-CNT binding energies that are more exothermic suggesting stronger
DOX-CNT interactions [33].

Table 1. DOX-CNT Poisson–Boltzman (PB) and generalized bond (GB) binding energies (in kcal/mol)
for the nitrogen doped and undoped chiral nanotubes (34 Å length) having one haeckelite defect,
Hk1, considering encapsulated system. dp-NT are the distances from the DOX anthraquinonic plane
to the nanotube wall; dN-NT is the distance from the DOX nitrogen atom to the nanotube wall. All
distances are expressed in Å.

Run Type 1 PB GB dp-NT dN-NT

1 Ch(13,08)0N-HK1-DoxDIn.v1o −78 −77 3.7 3.7
2 Ch(13,08)0N-HK1-DoxDIn.v1p −102 −104 3.6 3.5
3 Ch(13,08)0N-HK1-DoxDIn.v2o −79 −80 3.6 3.9
4 Ch(13,08)0N-HK1-DoxDIn.v2p −85 −87 3.8 3.6
5 Ch(13,08)0N-HK1-DoxRIn.v1o −78 −77 3.4 3.1
6 Ch(13,08)0N-HK1-DoxRIn.v1p −80 −80 3.4 3.6
7 Ch(13,08)0N-HK1-DoxRIn.v2o −79 −78 3.8 4.9
8 Ch(13,08)0N-HK1-DoxRIn.v2p −80 −80 3.5 3.2
9 Ch(13,08)4N-HK1-DoxDIn.v1o −77 −76 3.5 3.4

10 Ch(13,08)4N-HK1-DoxDIn.v1p −99 −102 3.4 3.3
11 Ch(13,08)4N-HK1-DoxDIn.v2o −78 −80 3.8 3.9
12 Ch(13,08)4N-HK1-DoxDIn.v2p −79 −80 3.4 3.0
13 Ch(13,08)4N-HK1-DoxRIn.v1o −77 −77 3.6 4.0
14 Ch(13,08)4N-HK1-DoxRIn.v1p −79 −81 3.6 3.5
15 Ch(13,08)4N-HK1-DoxRIn.v2o −78 −79 4.2 4.6
16 Ch(13,08)4N-HK1-DoxRIn.v2p −79 −80 3.5 3.2
17 Ch(13,08)8N-HK1-DoxDIn.v1o −78 −79 3.6 3.5
18 Ch(13,08)8N-HK1-DoxDIn.v1p −102 −104 3.4 3.2
19 Ch(13,08)8N-HK1-DoxDIn.v2o −78 −79 3.8 3.6
20 Ch(13,08)8N-HK1-DoxDIn.v2p −78 −79 3.4 3.4
21 Ch(13,08)8N-HK1-DoxRIn.v1o −79 −80 3.4 3.4
22 Ch(13,08)8N-HK1-DoxRIn.v1p −81 −81 3.6 3.4
23 Ch(13,08)8N-HK1-DoxRIn.v2o −73 −76 3.5 3.2
24 Ch(13,08)8N-HK1-DoxRIn.v2p −81 −82 3.5 3.1

1 DoxD means DOX position is in the defect zone; DoxR is for the DOX in the regular part of the nanotube; v1
means the nitrogen atom of the DOX is oriented towards the center of the tube; v2 indicates the inverse orientation;
v1p indicates that the DOX nitrogen atom is located in a proximal space regarding the defect meanwhile v1o is
used to indicate that the DOX nitrogen atom is located in an opposite space regarding the defect as shown in
Figure 3.

DOX-CNT systems, doped with 4N and containing Hk1 defect exhibit quite similar
DOX-CNT PB binding energy values between −79 and −77 kcal/mol, probably accounting
for an electronic distribution that interacts with the drug in a similar way regardless of DOX
position and orientation. This could be due to the arrangement of nitrogen atoms which
are part of two pyrimidine rings placed opposite each other on the walls of the nanotube.
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Figure 4. Representation of encapsulated DOX-CNT complex for nitrogen-doped chiral nanotube
with one haeckelite defect, Ch(13,08)8N-Hk1-DoxDIn.v1p, at different simulation times. (a) 0 ns;
(b) 2 ns; (c) 100 ns. Two laterals and one frontal view are shown.

2.1.2. Chiral Nanotubes with Hk2 Defects

Carbon nanotube diameter effect. The nitrogen doped and undoped Hk2 chiral (13,08)
CNTs of 14 Å diameter and 19 Å length showed better DOX-CNT PB and GB binding
energies than the corresponding Hk2 chiral (13,10) CNTs of 16 Å diameter (calculated with
RESP charges for DOX) as shown in Figure 5. This was an expected result considering
PM6-DH2 and M06-2X theoretical calculations in the scheme of ONIOM for the DOX
encapsulation in armchair CNTs without defects [20], and also molecular dynamics studies
on armchair, zigzag and chiral nanotubes with reported values of 14 Å as an optimal
value of the nanotube diameter for encapsulating the DOX [32]. A diameter of 14 Å
allows the proper curvature of the nanotube for the formation of different attractive and
complementary non-covalent interactions between the nanotube and the DOX that stabilize
the entire system which is also fulfilled in this case of nanotubes containing two haeckelite
defects in their structure.

Hk2 chiral nanotubes of diameter 14 Å exhibit less favorable DOX-CNT PB binding
energies for nitrogen doped nanotubes in the order 0N > 4N > 8N with values of −101,
−97 and −74 kcal/mol, respectively (see Figure 5), which predicts stronger DOX-CNT
interactions for undoped Hk2 chiral (13,08) nanotubes. These values were calculated using
RESP charges for DOX. RESP (restrained electrostatic potential) approach to derive partial
charges has been reported as having a lower average error than MM3 and CHARMm in a
study considering 55 molecules [45]. Mean SD for the PB binding energy values between
2.6 and 3.2 kcal/mol and between 2.6 and 3.1 kcal/mol for the GB binding energy values
were observed, being in all cases less than 4.2%.
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Figure 5. DOX-CNT binding energies for nitrogen-doped and undoped chiral nanotubes of 19 Å
length with different diameter, having Hk2 defects and calculated with RESP charges for DOX. (a) PB
binding energies; (b) GB binding energies. Blue is for 14 Å diameter and red is for 16 Å diameter.

Carbon nanotube length and DOX pose effects. Longer Hk2 chiral nanotubes (34 Å
length) exhibit more exothermic DOX-CNT PB binding energy values than Hk2 chiral
nanotubes of 19 Å length, for both nitrogen doped and undoped nanotubes. For the
undoped nanotubes (0N) and those doped with 4N, a clear preference of the DOX for the
nanotube defect zone is shown with DOX-CNT PB binding energy values of −109 and
−104 kcal/mol, respectively (runs 1 and 5, Table 2). When the DOX is in the regular zone of
the nanotube, no significant differences are observed between the v1 or v2 orientations of
the DOX. However, in cases where the DOX is initially located in the defect zone, stronger
interactions are predicted for v1 DOX orientation for both undoped and 4N doped systems
as shown in Table 2 (runs 1 vs. 2 and 5 vs. 6).
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Table 2. Poisson–Boltzman (PB) and generalized bond (GB) binding energies (in kcal/mol) for the
nitrogen doped and undoped chiral nanotubes (34 Å length) having two haeckelite defects, Hk2,
considering encapsulated system. dp-NT are the distances from the DOX anthraquinonic plane to the
nanotube wall; dN-NT is the distance from the DOX nitrogen atom to the nanotube wall. All distances
are expressed in Å.

Run Type 1 PB GB dp-NT dN-NT

1 Ch(13,08)0N-HK2-DoxDin.v1 −109 −112 3.4 3.4
2 Ch(13,08)0N-HK2-DoxDin.v2 −82 −83 3.7 3.4
3 Ch(13,08)0N-HK2-DoxRin.v1 −80 −79 3.3 3.4
4 Ch(13,08)0N-HK2-DoxRin.v2 −79 −79 3.2 4.8
5 Ch(13,08)4N-HK2-DoxDin.v1 −104 −108 3.5 4.3
6 Ch(13,08)4N-HK2-DoxDin.v2 −82 −83 3.8 3.5
7 Ch(13,08)4N-HK2-DoxRin.v1 −79 −78 4.1 3.4
8 Ch(13,08)4N-HK2-DoxRin.v2 −80 −80 3.3 3.5
9 Ch(13,08)8N-HK2-DoxDin.v1 −80 −78 3.4 3.3

10 Ch(13,08)8N-HK2-DoxDin.v2 −87 −89 3.6 3.2
11 Ch(13,08)8N-HK2-DoxRin.v1 −80 −80 3.6 3.3
12 Ch(13,08)8N-HK2-DoxRin.v2 −80 −79 3.8 3.7

1 DoxD means DOX position is in the defect zone; DoxR is for the DOX in the regular part of the nanotube; v1
means the nitrogen atom of the DOX is pointing towards the center of the tube; v2 indicates the inverse orientation.

The best system for DOX encapsulation in Hk2 chiral nanotubes is therefore Ch(13,08)0N-
HK2-DoxDIn.v1 (run 1, Table 2) with the DOX in the defect region and v1 orientation
(with the nitrogen pointing towards the center of the nanotube). In this conformation,
the formation of the non-covalent DOX-CNT interactions is facilitated, which are mainly
constituted by π–π stacking interactions complemented by NH-π, CH-π, C=O-π and van
der Waals interactions [20,31,46]. Figure 6 shows the non-covalent interactions for the most
favorable case with the DOX in the area of the nanotube defect (a large green surface is
observed) and as a comparison, the same nanotube with the DOX encapsulated in the
regular area (less green regions and more red regions are observed), with PB DOX-CNT
binding energy values of −109 and −80 kcal/mol, respectively (runs 1 and 3, Table 2). A
program specially developed for the visualization of non-covalent interactions (NCI) was
used [47].

Under similar MD simulation conditions but considering RESP charges for DOX, Hk2
chiral (13,08) nanotubes (−101 kcal/mol, Figure 5) predict stronger DOX-CNT interactions
than reported Hk2 armchair (10,10) nanotube (−83.4 kcal/mol) with the encapsulated DOX
located in the defect zone in v1 orientation [33]. Hk2 chiral nanotubes predict stronger
DOX-CNT interactions than reported Hk2 zigzag (18,0) nanotubes which exhibit values of
DOX-CNT PB binding energies of −78.7 kcal/mol for undoped nanotubes [33]. The three
types of CNTs in comparison have diameters of 14 Å. In this way, in terms of chirality and
according to the indicated results, Hk2 nanotubes exhibit the following order of ability
to encapsulate the DOX: chiral > armchair > zigzag, despite chiral nanotubes are shorter
than zigzag and armchair nanotubes (19 vs. 34 Å length). The enhanced ability of chiral
nanotubes with respect to other nanotubes to encapsulate DOX was reported also for
perfect CNTs through MD simulation studies considering RESP charges for DOX [32].
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Figure 6. Representation of non-covalent interactions (NCI) for DOX encapsulation inside chiral
carbon nanotubes having two haeckelite defects. (a) DOX D position; (b) DOX R position. Cutplot
0.01 0.1. Blue surfaces indicate strong interactions; green means weak interactions; red means
repulsion [47]. Different comparative lateral and frontal views shown.

2.2. Nanotubes with Stone–Wales Defects

The encapsulation of the DOX was studied in armchair and zigzag nanotubes that
have one and two Stone–Wales defects (SW1 and SW2, respectively) as shown in Figure 7.

Figure 7. Representation of carbon nanotubes having one and two Stone–Wales defects. (a) SW1
armchair; (b) SW2 armchair; (c) SW1 zigzag; (d) SW2 zigzag. Side and front views shown.

2.2.1. SW1 and SW2 Armchair Nanotubes

Armchair (10,10) nanotubes of 20 Å and 34 Å in length having Stone–Wales defects
were studied, which showed different behaviors in DOX encapsulation. The shorter
nanotubes (20 Å length) exhibit a significant stronger interaction with the DOX in two
situations: (i) when they are of the SW2 type (with two defects, doped and undoped)
in comparison with SW1 nanotubes and (ii) when they are doped with 4N (SW1 and
SW2) as is clearly depicted in Figure 8a. Nitrogen doped SW1 and SW2 armchair (10,10)
nanotubes of 20 Å length predict stronger interactions with the DOX than corresponding
longer SW1 and SW2 nanotubes of 34 Å in length as shown in Figure 8 particularly for 4N
doped nanotubes.
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Figure 8. DOX-CNT PB binding energies for nitrogen-doped and undoped armchair (10,10) nan-
otubes of different length having one and two Stone–Wales defects. (a) 20 Å length; (b) 34 Å length.

In contrast, longer SW1 armchair nanotubes predict somewhat stronger interactions
than longer SW2 armchair nanotubes the difference being more significant for the un-
doped SW1 and SW2 nanotubes with PB DOX-CNT binding energy values of −105 and
−80 kcal/mol for, respectively, with DOX v1 orientation, and for DOX v2 orientation −92
vs. −81 kcal/mol, respectively, as shown in Figure 8b.

The most exothermic PB DOX-CNT binding energy with a value of −110 kcal/mol
correspond to the shorter 4N-doped SW2 armchair nanotube which predicts the stronger
DOX-CNT interactions. In the shorter SW2 armchair nanotubes the DOX is symmetrically
located and can interact with both of the two defects which favors DOX-CNT interactions.
Meanwhile for shorter SW1 armchair nanotubes the DOX interacts with just one defect
only. In contrast, the less exothermic PB DOX-CNT binding energies correspond to longer
SW1 and SW2 armchair nanotubes with values between −92 and −80 kcal/mol. The only
exception is the longer SW1 armchair nanotube where the DOX is in the v1 orientation
showing a PB binding energy of −105 kcal/mol. Figure S1 (Supplementary Materials)
clearly shows the differences in relative DOX-CNT binding energies. For short nanotubes
(20 Å long), SW2 exhibits more exothermic DOX-CNT binding energies than SW1, with 4N
doping predicting the strongest DOX-CNT interactions. Within the long nanotubes (34 Å
long) the most exothermic DOX-CNT binding energies correspond to the undoped SW1
nanotubes with v1 orientation. In Figure 9 its initial structure is shown and also at 2 ns
and 74 ns of simulation where a probable double π–π interaction of the DOX with the two
opposite walls of the nanotube is appreciated which generates a significant deformation
of the nanotube in addition to its NH-π interaction with the DOX amino group that helps
stabilize the system. In the longer nanotubes, the DOX interacts with the regular part of
the nanotube also. Apparently the interactions DOX-Stone–Wales defects are stronger than
the interactions DOX-regular CNTs.
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π π

π

Figure 9. Representation of encapsulated DOX-CNT complex for undoped armchair nanotube with
one Stone–Wales defect, A(10,10)0N-SW1-DoxDIn.v1 at different molecular dynamics simulation
times. (a) 0 ns; (b) 2 ns; (c) 74 ns. Two lateral and frontal views shown.

2.2.2. SW1 and SW2 Zigzag Nanotubes

Zigzag (18,0) nanotubes of 20 Å in length and 14 Å diameter having one and two Stone–
Wales defects were studied. In Figure 10 the PB and GB DOX-CNT binding energies are
shown for undoped nanotubes and for nanotubes doped with 4 and 8 nitrogen atoms.
It is observed that both types of binding energies show the same tendency (as was also
observed in Figure 5 for chiral nanotubes) and that undoped zigzag nanotubes predict
stronger DOX-CNT interactions than doped ones, both with one or two SW defects.

Zigzag nanotubes having one SW defect (SW1) exhibit stronger DOX-CNT inter-
actions than those having two SW defects (SW2). This behavior is more significant for
nanotubes doped with 4 nitrogen atoms. Structurally, the presence of 4N means that
there are two pyrimidine rings in the nanotube. Zigzag nanotubes with a SW1 defect
doped with 8 nitrogen atoms (have four pyrimidine rings in the nanotube) show weaker
DOX-CNT interactions than in the case of nanotubes doped with 4N. Undoped SW1 and
SW2 nanotubes show similar DOX-CNT PB binding energies of −102 and −100 kcal/mol,
respectively. Apparently DOX accommodates better in a space with SW defects but free
from the influence of the nitrogen electron cloud. No great difference is observed between
the DOX-CNT binding energies obtained for undoped SW1 and SW2 nanotubes and those
for SW1 nanotubes doped with 4N with a PB binding energy of −101 kcal/mol; but for
4N-doped SW2 nanotubes, the DOX-CNT PB binding energy decreases significantly to
−78 kcal/mol (probably DOX is prevented from accommodating in a narrower space). The
same effect is observed when SW1 zigzag nanotubes doped with 4N are compared with
those doped with 8N (−101 kcal/mol vs. −82 kcal/mol). Mean SD for the PB binding
energy values ranged between 2.7 and 4.0 kcal/mol and between 2.9 and 4.1 kcal/mol for
the PB and GB binding energy values, respectively, being in all cases less than 4%. Figure S2
(Supplementary Materials) clearly shows the DOX-CNT relative binding energies with
respect to the non-doped nanotubes. SW1 nanotubes have more exothermic DOX-CNT
binding energies than SW2. Furthermore, the non-doped SW1 nanotubes exhibit DOX-CNT
binding energy values not very distant from the 4N-doped nanotubes, being the 8N-doped
nanotubes the ones with the least favorable binding energies.
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Figure 10. Representation of the PB and GB DOX-CNT binding energies for nitrogen-doped and
undoped zigzag (18,0) nanotubes having one and two Stone–Wales defects. (a) PB binding energy;
(b) GB binding energy.

The equilibrium distances dp-NT between the DOX anthraquinonic planar part and
the nanotube wall ranged between 3.3 and 3.7 Å and the equilibrium distances d′

p-NT
between the same DOX planar part and the nanotube wall in the opposite direction it
ranged between 3.8 and 3.9 Å for cases having DOX-CNT PB binding energy between −100
and −102 kcal/mol. On the other hand, for cases with PB binding energy between −78 and
−82 kcal/mol, the distances d′

p-NT ranged between 7.6 and 8.2 Å. So, for binding energies
that predict strongest DOX-CNT interactions, a deformation of the nanotube is observed,
which can also be seen in Figures 4 and 9 for chiral and armchair nanotubes, respectively,
probably due principally to a double π−π stacking between the DOX anthraquinonic planar
rings and both of the opposite CNT walls, and DOX-CNT van der Waals interactions. The
equilibrium dN-NT distances between the DOX nitrogen atom and the nanotube inner wall
exhibit values between 3.3 and 4.0 Å regardless of the value of the binding energies.

3. Discussion

It is interesting to find out how the structural parameters of nanotubes affect the
relative DOX-CNT binding energies which could allow us to infer about the DOX-CNT
interactions for nanotubes of different types. The aim is to predict nanotube structures
that can develop more exothermic binding energies; that is, that produce more favorable
DOX-CNT interactions, without fear that the desorption of the drug be difficult since the

98



Molecules 2021, 26, 1586

acidic pH existing in the tumor environment facilitates protonation and release of the drug,
which has been verified in different systems [14–17,38].

In the present work, it was found that a diameter of 14 Å favors the DOX-CNT
interaction for Hk2 chiral nanotubes, in agreement with works reported for other defect-
free nanotubes [20,32]. Furthermore, it was found that the strength of the DOX-CNT
interaction decreases as the number of doping nitrogen atoms increases (0N > 4N > 8N).
This relative trend was found both for long Hk2 chiral nanotubes (33 Å length) using
Mulliken charges for DOX, as well as for short Hk2 chiral nanotubes (19 Å length) using
RESP charges for DOX. However, using similar simulation conditions, Hk1 and Hk2
armchair and zigzag nanotubes (33 Å length) showed that nitrogen-doped systems had
more favorable binding energies than non-doped ones [33]. Chirality shows to be an
important parameter that controls the effect of the presence of nitrogen in the nanotube,
modifying the distribution of electron density and therefore the DOX-CNT interactions in
such a way that the presence of nitrogen in the chiral nanotubes destabilizes the association
DOX-CNT unlike of what happens in armchair and zigzag nanotubes.

The initial poses of the DOX in the CNT proved to be important, finding better interac-
tions for chiral nanotubes when the DOX is located in the defect part, oriented in such a way
that its nitrogen atom points towards the center of the nanotube and is close to the defect.
Apparently, this conformation favors π–π, van der Waals interactions and also electrostatic
interactions of the NH-π, OH-π, C=O-π type as was observed in Figure 6. These DOX-CNT
interactions in the cases of more electronegative binding energies translate into a significant
deformation of the nanotube, as observed in Figures 4 and 9 with PB binding energies of
−102 and −105 kcal/mol, for chiral and armchair nanotubes, respectively, which could be
explained by the π–π interaction of the flat anthraquinonic system of the DOX with both
opposite walls of the nanotube. The deformation of the nanotube has been observed in
other MD simulation works [32,33], and also in works carried out using the PM6-DH2 and
M06-2X methods [20].

On the other hand, the short SW2 armchair nanotubes (20 Å length) showed better
DOX-CNT binding energies than the long SW2 armchair nanotubes (34 Å length). Although
the short SW2 armchair nanotubes showed more exothermic DOX-CNT binding energies
than the respective short SW1 armchair nanotubes, this trend did not hold for the long
armchair nanotubes.

In contrast, the short SW1 zigzag nanotubes showed more exothermic DOX-CNT
binding energies than the short SW2 zigzag nanotubes. For the SW1 and SW2 zigzag
nanotubes it was found that the strength of the DOX-CNT interactions decreased in the
presence of nitrogen in the order 0N > 4N > 8N, in a similar way to that shown by the Hk2
chiral nanotubes. Nitrogen-doped SW1 armchair and zigzag nanotubes showed stronger
DOX-CNT interactions than the respective Hk2 chiral nanotubes.

There is a lack of experimental studies on the determination of DOX-CNT binding
energies. Only one estimation is known in an aqueous system, of about 11.5 kcal/mol
for DOX-CNT complexes 100 nm long and 2 to 3 nm in diameter [19]. However, the
formation of stable DOX-CNT conjugates has been determined experimentally, verified by
atomic force microscopy (AFM) and scanning tunneling microscopy (STM) images, using
single-walled CNTs (SWCNTs) with diameter 1–1.5 nm and a few hundred nanometers
long, purchased from ILJIN Co., Inc., Korea. [7]. In none of these cases is the chirality of
the nanotube or the presence of defects specified.

It is not easy to confront theoretical studies that depend on a variety of factors, such
as, in the field of molecular dynamics, the assignment of the type of atom involved in the
consideration of the bonded and non-bonded parameters, or the definition of dihedrals
and other interpretations of the description of the force field used [48].

The method used in the present work is very useful to obtain the DOX-CNT bonding
energy values since it is comparatively fast and reproducible. Its calculation is based on
the MM/PBSA and MM/GBSA approaches starting from the equilibrium energy values
obtained through molecular dynamics simulation. Although the calculation does not
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consider the translational entropy (huge computational cost), it has been shown that it does
provide adequate values of the relative binding energies, which have been experimentally
validated in biological systems [49,50] and it has recently been reported that when the
MM/PBSA and MM/GBSA are used together with empirical corrections, they allow better
experimental correlations [51].

DOX-CNT binding energies for the encapsulation of DOX on the walls of armchair
nanotubes without defects at the PM6-DH2 level, in aqueous solution, showed values
between −51.6 and −53.7 kcal/mol as a function of diameter [20].

As a reference, the nitrosamine adsorption free energy on open-ended Stone–Wales
defective (5,5) armchair nanotube calculated by DFT methods at the B3LYP/6-31G(d)
level of theory showed a value of −137.14 kcal/mol [52]. DOX-CNT binding free energy
values obtained by the MM/PBSA and MM/GBSA methods for (10,10) armchair nanotubes
without defects were −43 kcal/mol for DOX adsorption and fluctuated between −109 and
−90 kcal/mol for DOX encapsulation [32]. For (10,10) armchair nanotubes with bumpy
defects they ranged between −96 and −83 kcal/mol. (10,10) armchair nanotubes with
haeckelite defects ranged from −104 to −80 kcal/mol depending on the number of defects
and the presence of nitrogen [33].

Interestingly, although the DOX-CNT binding free energy values previously reported
by us using the current methodology [32], are far from the values calculated by Wang and
Xu [20] by means of PM6-DH2 and M06-2X methods, in both works, after a systematic
study, it was found that the best nanotube diameter for encapsulate the DOX is 14 Å. This
fact, together with the deformation of the nanotube observed with both methods means
that the behavior and ability ranking of the nanotubes to associate with DOX coincides in
both works, so it could be considered as an indirect validation of the use of the MM/PBSA
and MM/GBSA methods to predict the DOX-CNT binding free energies for different
nanotube structures.

The binding energy calculations are very useful to study molecular interactions, com-
plex stability, getting information necessary for drug design, carrier design, inhibitor
design, etc. The methods that allow obtaining the most accurate values are expensive in
computational time and resources. Semi-empirical methods have been found to allow a
good level of accuracy when compared to experimental measurements, and to be rela-
tively fast and of low computational cost. The prediction of binding energies through the
MM/PBSA approach increases in efficiency and accuracy when using the partial charges of
the ligand determined by semi-empirical methods. A study with 50 protein-ligand systems
revealed an excellent performance of the PM7 and AM1 systems, comparable to B3LYP
which requires a huge computational cost, reaching the conclusion that the semi-empirical
methods AM1 or PM7 provide partial charges of the proteins that help to improve the
prediction of binding energies through methods such as solvated interaction energy (SIE)
and MM/PBSA in a highly efficient and accurate way [53]. These results validate in some
way the use of AM1 in this work.

To summarize, the structural parameters that dominate the behavior of defective
nanotubes related to DOX encapsulation are interdependent and in order of importance,
from what is observed in this work, the following can be mentioned: chirality, diameter and
length of the nanotube; presence of nitrogen atoms as dopants; number of defects present
and type of defects. Additionally, the initial pose of the DOX in the nanotube also affects
the intermolecular attractive forces. We have found that the initial pose of DOX affects the
DOX-CNT binding energies and we have been able to clarify that DOX-CNT interactions
are favored when the DOX amino group points towards the center of the nanotube with an
orientation close to the defects. It would be interesting in a next stage to do a simulation
that considers different conformations of DOX.

As future work, we are doing research on chiral nanotubes with Stone–Wales defects.
However, based on the known simulation studies, which are not directly comparable, we
believe a global systematic approach is needed. This new comparable approach should
consider the best values reported for each system (and also some of the values found as
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unfavorable, for comparison) to perform the new simulations. To have a valid ranking of
CNTs activity, as drug carriers, with or without defects, at least two conditions should be
considered for the new simulations: (i) comparable structural parameters (for example,
same diameter, length and number of defects, including nitrogen); and (ii) comparable
simulation conditions (same version of the package of programs, same force field, type of
charges, type of solvation, among others). Due to the complexity and the high number
of variables, we believe that the use of Artificial Intelligence tools will be very useful to
improve the study of the design of new drug carriers and also for other related applica-
tions. Anyway, refinement of the results for the best systems found could be done using
simulation methods and conditions that guarantee greater accuracy.

4. Simulation Methods

The nanotubes were prepared as single-walled open nanotubes finished in hydro-
gen with the help of HyperTube [54] and Hyperchem [55] and optimized to the Austin
Model One (AM1) level. Chiral CNTs with one and two haeckelite defects (Hk1 and Hk2,
respectively) and also armchair and zigzag CNTs with one and two Stone–Wales defects
(SW1 and SW2, respectively) were prepared as shown in Figure 7. Molecular dynamics
simulations were performed with AMBER16 [56,57]. A program made at home was use
for the preparation of the necessary files and instructions to run the MD program [32].
The combined GAFF and ff99SB force fields were used. The DOX was optimized at the
level of HF/6-31G* for some specific cases, just to get the restrained electrostatic potential
(RESP) partial charges by using the antechamber AMBER program [45,58]. For the rest of
the structures the AM1-Mulliken charges were used. All the DOX-CNT complexes were
neutral systems, solvated in an explicit solvent, in a 10 Å octahedron water box using bondi
radii under periodic boundary conditions. TIP3P was used as water model.

Simulations were run after some steps of minimization (1000 stages) and heating (from
0 to 300 K), both at constant volume, density balance (50 ps) and equilibrium (500 ps) both
of them at constant pressure. Then, the production step consisting of six independent short
stages (250 ps each) at constant pressure was carried out. This procedure of using several
independent short simulations instead of a single long simulation has being recognized as
efficient and accurate [50,59]. In effect, as it is shown in Figure 4, a simulation performed
for 100 ns (using several short simulation) revealed similar energy and geometry results
than the simulation procedure with short stages as it was indicated above. The drug-
nanotube binding free energies were determined through the MM/PBSA and MM/GBSA
methods implemented in AMBER [56]. These methods were applied on an ensemble of
200 uncorrelated snapshots collected from the equilibrated molecular dynamics simulation
for calculating the Gibbs free energy difference of the solvated bound (GCNT-DOX) and
unbound states of the drug (GDOX) and nanotube (GCNT) molecules Equation (1).

∆G = GCNT-DOX − GCNT − GDOX (1)

Each of these terms were obtained according to Equation (2):

G = EvdW + Ebond + Eel + Epol + Enp − TS (2)

where EvdW (van der Waals), Ebond (bond, angle, dihedral) and Eel (electrostatic) are the
standard molecular mechanics (MM) energy terms; Epol (polar term) is calculated by solving
the Poisson–Boltzmann (PB) or the generalized born (GB) equation; Enp (non-polar term)
is estimated from a linear relation with the solvent accessible surface area (SA); T is the
absolute temperature and S is the entropy term (estimated through a normal-mode analysis
of the vibrational frequencies). The fact that the binding free energies are calculated
without considering the translational entropy must be borne in mind when interpreting the
results. To obtain a good ranking of nanotube ability for encapsulating DOX based on the
DOX-CNT binding energy values this is a convenient method in terms of computational
resources, but not for obtaining absolute DOX-CNT binding energy values.
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5. Conclusions

The DOX-CNT binding energies calculated in this work allow us to establish interest-
ing trends such as:

• When using RESP charges, DOX encapsulation inside Hk2 nanotubes of 14 Å diam-
eter, predicts that the DOX-CNT attractive forces decrease in the following order of
nanotube chirality: chiral > armchair > zigzag in agreement with that reported in a
MD study under similar conditions, for defect-free nanotubes.

• Hk2 chiral nanotubes (short and long) favor DOX-CNT interactions which decrease in
the presence of nitrogen as a dopant in the order 0N > 4N > 8N.

• Short armchair nanotubes promote more favorable DOX-CNT interactions if they are
SW2; but long armchair nanotubes favor the DOX-CNT interactions if they are SW1.
When the DOX is located close to the defect, a better interaction occurs than when it is
located in the defect-free zone of the nanotube. The interaction is also improved if the
DOX nitrogen atom is close to the defect.

• Short SW1 zigzag nanotubes favor DOX-CNT interactions which decrease in the
presence of nitrogen as a dopant in the order 0N > 4N > 8N, like the Hk2 chiral nan-
otubes. SW1 zigzag nanotubes exhibit more exothermic DOX-CNT binding energies
than SW2 zigzag nanotubes. In both cases, the undoped SW defective zigzag nan-
otubes are predicted to exhibit stronger DOX-CNT interactions than corresponding
nitrogen-doped nanotubes.

Supplementary Materials: The following are available online, Figure S1: DOX-CNT PB relative
binding energies for nitrogen-doped and undoped (10,10) armchair nanotubes of different length
having one and two Stone–Wales defects. (a) 20 Å length; reference: 4N doped SW2 nanotube with
−110 kcal/mol PB DOX-CNT binding energy; (b) 34 Å length; reference: 0N SW1 nanotube with
−105 kcal/mol PB DOX-CNT binding energy. Figure S2: Representation of the PB and GB DOX-CNT
relative binding energies for nitrogen-doped and undoped (18,0) zigzag nanotubes having one and
two Stone–Wales defects. (a) PB binding energy. Reference: 0N SW1 nanotube with −102 kcal/mol PB
DOX-CNT binding energy; (b) GB binding energy. Reference: 0N SW1 nanotube with −107 kcal/mol
GB DOX-CNT binding energy.
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Abstract: Mycobacterium tuberculosis (Mtb) is a deadly tuberculosis (TB)-causing pathogen. The
proteasome is vital to the survival of Mtb and is therefore validated as a potential target for anti-
TB therapy. Mtb resistance to existing antibacterial agents has enhanced drastically, becoming a
worldwide health issue. Therefore, new potential therapeutic agents need to be developed that can
overcome the complications of TB. With this purpose, in the present study, 224,205 natural compounds
from the ZINC database have been screened against the catalytic site of Mtb proteasome by the
computational approach. The best scoring hits, ZINC3875469, ZINC4076131, and ZINC1883067,
demonstrated robust interaction with Mtb proteasome with binding energy values of −7.19, −7.95,
and −7.21 kcal/mol for the monomer (K-chain) and −8.05, −9.10, and −7.07 kcal/mol for the dimer
(both K and L chains) of the beta subunit, which is relatively higher than that of reference compound
HT1171 (−5.83 kcal/mol (monomer) and −5.97 kcal/mol (dimer)). In-depth molecular docking of
top-scoring compounds with Mtb proteasome reveals that amino acid residues Thr1, Arg19, Ser20,
Thr21, Gln22, Gly23, Asn24, Lys33, Gly47, Asp124, Ala126, Trp129, and Ala180 are crucial in binding.
Furthermore, a molecular dynamics study showed steady-state interaction of hit compounds with
Mtb proteasome. Computational prediction of physicochemical property assessment showed that
these hits are non-toxic and possess good drug-likeness properties. This study proposed that these
compounds could be utilized as potential inhibitors of Mtb proteasome to combat TB infection.
However, there is a need for further bench work experiments for their validation as inhibitors of
Mtb proteasome.

Keywords: Mycobacterium tuberculosis; tuberculosis; proteasome; natural compounds
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1. Introduction

Mycobacterium tuberculosis (Mtb) is a deadly tuberculosis (TB)-causing pathogen. TB is
a communicable disease that ranks in the world’s top 10 causes of death. Besides, it is the
leading cause of single infectious agent fatality (higher than HIV/AIDS), and approximately
10 million people fell ill with TB in 2019 [1]. A person with a weakened immune system is
highly susceptible to TB infection; thus, their involvement with HIV is the major cause of
fatality for these patients [2]. Mtb resistance to existing antibacterial agents has enhanced
drastically as well as multidrug-resistant and extensively drug-resistant Mtb strains. These
strains are becoming a worldwide health issue [3,4] and are involved in the host immune
system’s resistance to nitric oxide stress.

Proteasomes are multi-subunit proteolytic complexes that have a vital role in various
cellular functions. Proteasome inhibition has appeared as a prevailing approach for the
management of various infectious diseases [5]. Mtb proteasome is vital for the bacterium
pathogenesis; hence, it is regarded as an attractive target for the development of new agents
that may inhibit Mtb. The Mtb mutans lacking the proteasome (proteasome subunits
silencing) are viable in vitro, but the infection cannot be maintained in the TB mouse
model [6,7]. Hence, it seems that Mtb proteasomes are vital for their propagation in
mammalian hosts and are involved in the host immune system’s resistance to nitric oxide
stress [8].

The proteasome is a heap-shaped protein made up of four rings of heptamers. Its
length and width are 150 and 115 Å, respectively [9,10]. Inner beta rings are formed by
seven identical prcB subunits, and outer alpha rings are formed by seven identical prcA
subunits, which give a path to inner beta rings with active sites when they are open. As
a result, it provides the overall organization of α7β7β7α7. The active site of the bacterial
proteasome is identical to that of the archaeal and eukaryotic proteasomes and is found
primarily in β subunits [9,11].

In the literature, several effective Mtb proteasome inhibitors have been documented.
Among them, HT1171, GL5, MLN273, and fellutamide-B are the most potent Mtb protea-
some inhibitors [9,12,13]. The Mtb proteasome was revealed to be inhibited by 15 psoralens
from a library of 92 analogs, and compounds 8, 11, 13, and 15 exhibited potent inhibition in
a fluorescence-based enzymatic assay [14]. Several plant-derived natural products were
discovered to inhibit Mtb proteasome with IC50 values ranging from 25 to 120 M using
the chymotrypsin substrate Suc-LLVY-AMC [15]. Various bortezomib analogs have been
developed, with the phenol- and halogen-substituted analogs being more specific for the
Mtb proteasome than the human proteasome [16].

Drug development requires the identification of some potential hits from a huge
library of chemical components. Screening such a huge compounds library using wet-
lab assays can be a difficult task. Protein-ligand docking is a powerful tool in drug
development because it aids in the identification of active or lead compounds from a
library of compounds [17,18]. This method is also capable of accurately identifying inhibitor
binding modes to the target proteins [17,19]. Computational screening before laboratory
testing is a successful approach in decreasing the number of candidate inhibitors for
benchwork-based screening [20–22]. The present study aimed to identify new possible
hits from the natural compounds databases using in silico, state-of-the-art techniques that
could serve as Mtb proteasome inhibitors to combat TB infection.

2. Methodology
2.1. Protein Structure Preparation

Mtb proteasome 3D structure (PDB ID: 5TRG) was retrieved from the protein data
bank and prepared in monomer form by Discovery Studio (DS) 2020. Since the Mtb
proteasome core particle has 14 chains in the beta subunit, all of which have the same
active sites, the present study focused on chain K as a monomer, and the K and L chains as
a dimer.

106



Molecules 2021, 26, 2326

2.2. Database Collection and Refinement

Natural compounds were accessed from the ZINC database (https://zinc.docking.org
accessed on 29 January 2021), limiting the outcomes by choosing “natural products” as
a subset, resulting in a total of 224,205 compounds and was then downloaded in SDF
format. Furthermore, these compounds were processed for minimization and preparation
for screening using the “ligand preparation” tool in DS 2020.

2.3. Receptor-Based Virtual Screening

In order to identify possible leads, the prepared librarian was screened against the
Mtb proteasome active site using AutoDock vina (version 1.1.2). Then, the top-scored hits
were further processed for in-depth molecular docking studies.

2.4. Molecular Docking

Lead hits were docked with Mtb proteasome (monomer; K-chain) by Autodock4.2 to
determine the ligand–protein interaction and their binding affinities [23]. All input files
were prepared using AutoDock Tools, adding polar hydrogen in protein, and assigning the
charges with the Kollman charges method. The grid center points X, Y, and Z were kept as
36.731, −11.255, and 43.313, respectively. Grid points were fixed as 60 × 60 × 60 Å with
the spacing of 0.375 Å. Additionally, these hits were also docked with the dimer form (K
and L chains) of the beta subunit of the Mtb proteasome, keeping the grid center points X,
Y, and Z as 41.22, 0.60, and 32.31, respectively. All docking calculation parameters were
kept as a default value. The highest negative binding energy (BE) value was ranked as the
most promising binding pose.

2.5. LIGPLOT+ Analysis

The H-bond and hydrophobic interactions between “hit compounds–Mtb proteasome”
complexes were determined by the LIGPLOT+ Version v.2.1. The 3-D structures of the
“compound–Mtb proteasome” interaction produced were transformed into 2-D figures
using the LIGPLOT algorithm.

2.6. Drug-Likeness

Top-scoring molecules (ZINC3875469, ZINC4076131, and ZINC1883067) were further
used to estimate drug-likeness, toxicity, and pharmacokinetic properties using the pkCSM
and SwissADME tools [24]. SMILE IDs of the molecules retrieved from the ZINC database
were entered into the pkCSM tool to evaluate drug-likeness [25].

2.7. Molecular Dynamics (MD) Simulations

To study the dynamic behavior of the protein–ligand complex in simulated phys-
iological conditions, MD simulations were performed using Gromacs Ver. 2020.4. The
protein–ligand complexes were solvated in a 10 × 10 × 10 Å orthorhombic periodic box
built with TIP3P water molecules. By adding a sufficient number of 9 Na counterions, the
entire system was neutralized. This solvated system was energy-minimized and position-
restrained with CHARMM 36 as a force-field [26]. Further, 20 ns of MD run was carried out
at 1 atm pressure and 300 K temperature implementing NPT ensemble with a recording
interval of 100 ps. This resulted in a total of 1000 reading frames. In the end, various
parameters of MD simulation study such as ligand binding site analysis, root-mean-square
deviation (RMSD), root-mean-square fluctuation (RMSF), radius of gyration, Mindistance,
H-bond analysis, etc., were analyzed for the stability, compactness, structural variations,
and protein–ligand interactions in the solvated system.
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3. Results and Discussion
3.1. Virtual Screening, Molecular Docking, and LIGPLOT

Mtb is the only known bacterial pathogen that has proteasome activity [6]. The
increase in drug-resistant TB is a major public health concern and requires the development
of new agents that can evade the resistance and effectively control TB. With this purpose,
we conducted the computational screening of 224,205 natural compounds from the ZINC
database targeting the Mtb proteasome. Among them, the selected hits ZINC3875469,
ZINC4076131, and ZINC1883067 showed strong binding with the Mtb proteasome. Two-
dimensional structures of hit compounds are shown in Figure 1. ZINC3875469 interacted
with proteasome through 10 amino acid residues: Thr1, Ser20, Thr21, Gln22, Gly23, Ala46,
Gly47, Thr48, Gly140, and Ser141 (Figure 2a); while Thr1, Arg19, Ser20, Asn24, Thr21,
Gln22, Gly23, Asn24, Lys33, Gly47, Ala49, and Ala180 residues of the proteasome were
observed to bind with ZINC4076131 (Figure 2b). In a similar way, ZINC1883067 was found
to interact with Thr1, Arg19, Ser20, Thr21, Lys33, Ala46, Gly47, Gly140, Ser141, and Ala180
residues of the proteasome (Figure 2c).

–

 

Figure 1. 2D structures of hit compounds.

The active site pocket residues of Mtb proteasome were determined as Ser20, Thr21,
Gln22, Val31, Ile45, Ala46, Thr48, Ala49, Val53, Asp124, Asp128, and Asp130 [27]. Interest-
ingly, ZINC3875469, ZINC4076131, and ZINC1883067 were also found to bind with these
residues of Mtb proteasome. In a study, small molecules were reported to interact with
Thr1, Arg19, Ser20, Thr21, Gln22, Lys33, Gly47, Ala49, Gly140, and Ser141 residues of Mtb
proteasome [27]. Consistent with this, in the present study, the selected hits were observed
to bind with the similar residues of Mtb proteasome.

Oxathiazol-2-one compounds altered the Mtb proteasome by interacting with the Thr1
residues of the core complex beta-subunit. Consequently, Thr1 is cyclocarbonylated, which
greatly alters the active site environment and causes an alternative protein conformation in
which the substrate-binding pocket is disrupted. As a result, Mtb proteasome substrates
were unable to obtain access to the proteasome, causing toxic proteins and peptides to accu-
mulate within mycobacterial cells. Notably, the oxathiazol-2-one compounds were thought
to have no effect on the substrate-binding pocket of human proteasomal beta-subunits. It
was proposed that this was due to the fact that the residues involved in preserving the
altered conformation were largely non-conserved and thus not susceptible to cyclocar-
bonylation inactivation. This provided highly selective inhibition of Mtb proteasomes
while leaving host proteasomal activity unaffected [13]. Interestingly, in this study, the
selected hits ZINC3875469, ZINC4076131, and ZINC1883067 were found to interact with
Thr1 residues of the Mtb proteasome.
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Figure 2. Interacting residues of Mtb proteasome (monomer; K-chain) with ZINC3875469 (a), ZINC4076131 (b),
ZINC1883067 (c), and HT1171 (d).

We also performed the molecular docking of selected hits with the dimer model (K
and L chains) of the Mtb proteasome to determine possible interactions with the adjacent
chain (L-chain). Asp124 of the adjacent chain of the Mtb proteasome has been reported as
an important residue for inhibitor interaction [28]. Interestingly, in addition to interacting
with K-chain residues, ZINC3875469 and ZINC4076131 interacted with several other Mtb
proteasome L-chain residues including the Asp124 (Figure 3a,c). Despite the fact that
ZINC1883067 did not interact with the Asp124 residue of the L- chain, it did interact with
several other residues of both chains of the Mtb proteasome (Figure 3b).

The BE values for hits ZINC3875469, ZINC4076131, and ZINC1883067 with the Mtb
proteasome were found to be −7.19, −7.95, and −7.21 kcal/mol, respectively, for the
monomer, and −8.05, −9.10, and −7.07 kcal/mol, respectively, for the dimer (Table 1).

HT1171 is a well-characterized inhibitor of the Mtb proteasome [13], which was used
as the control compound in this study. HT1171 has been reported to bind with Thr1, Thr21,
Arg19, Ser20, Val31, and Ala49 residues of Mtb proteasome [27]. Interestingly, Thr1, Ser20,
and Thr21 are the common interacting residues of the Mtb proteasome with HT1171 and
the selected hit compounds in this study (Figure 2a–d). BE of HT1171 against the Mtb
proteasome was noted as −5.83 kcal/mol for the monomer and -5.97 kcal/mol for the
dimer (Table 1).
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found to be −7.19, −7.95, and −7.21 kcal/mol, respectively
and −8.05, −9.10, and −7.07 kcal/mol

–
Mtb proteasome was noted as −5.83 kcal/m

−7.19 −8.05
−7.95 −9.10
−7.21 −7.07

Figure 3. Interacting residues of Mtb proteasome (dimer; K and L chains) with ZINC3875469 (a),
ZINC1883067 (b), and ZINC4076131 (c).

Table 1. Binding energy of hit compounds with Mtb proteasome (monomer and dimer).

Compound Binding Energy (kcal/mol) Inhibition Constant (µM)

Monomer Dimer Monomer Dimer

ZINC3875469 −7.19 −8.05 28.9 26.54
ZINC4076131 −7.95 −9.10 43.24 0.213
ZINC1883067 −7.21 −7.07 27.92 23.96

HT1171 * −5.83 −5.97 45.36 47.01
* Positive control for Mtb proteasome.

The hydrophobic interaction and H-bond help to elucidate the potency of inhibitors
to the target protein and contribute an important role in “inhibitor–protein” complex sta-
bility [29,30]. The Mtb proteasome residues involved in H-bond (Table 2) and hydrophobic
interaction with selected compounds are shown in Figure 4.

Table 2. H-bond interactions between compounds and the Mtb proteasome (monomer; K-chain).

S.No. Target Compound H-Bond H-Bond Length (Å)

1.

Mtb proteasome

ZINC1883067

THR1:HN3-UNK0:O8 2.78
THR1:HG1-UNK0:O14 2.68
THR21:HN-UNK0:O15 3.06
SER141:HN-UNK0:O8 2.83

2. ZINC4076131
THR1:HT3-UNK0:O2 3.17
ALA49:HN-UNK0:O8 2.95

3. ZINC3875469
THR21:HN-UNK0:O13 2.15
GLY47:HN-UNK0:O3 2.49

4. HT1171 GLY23:HN-UNK0:O6 2.71
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Figure 4. H-bond (green dashed line) and hydrophobic interacting (red arc) residues of the Mtb proteasome (monomer;
K-chain) with ZINC3875469 (a), ZINC4076131 (b), ZINC1883067 (c), and HT1171 (d).

In the docking study, more negative BE corresponded to the strong binding of hits to
the target protein. Furthermore, it is a fact that weaker binding will ultimately have a rapid
dissociation rate [31]. Accordingly, in this study, the hits (ZINC3875469, ZINC4076131,
and ZINC1883067) exhibited lower BE (strong binding) with the Mtb proteasome than
the control compound (HT1171), suggesting that these compounds could be utilized as an
inhibitor of the Mtb proteasome to combat TB. The results of the pkCSM and SwissADME
tool show that top-scored compounds (ZINC3875469, ZINC4076131, and ZINC1883067)
retained an acceptable range of ADMET and drug-likeness (Lipinski) (Table 3).
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Table 3. Pharmacokinetic properties of top-scoring ligands.

Property Model Name
Predicted Value

Unit
ZINC1883067 ZINC4076131 ZINC3875469

Absorption

Water solubility −3.67 −5.213 −4.624 log mol/L

Caco2 permeability −0.275 1.432 1.569 log Papp in 10–6 cm/s

Intestinal absorption (human) 81.583 97.413 96.726 % Absorbed

Skin Permeability −2.786 −2.629 −2.985 log Kp

Distribution

VDss (human) −0.44 0.315 0.397 log L/kg

Fraction unbound (human) 0.173 0.118 0.105 Fu

BBB permeability −1.036 0.099 0.2 log BB

CNS permeability −2.744 −1.483 −2.42 log PS

Metabolism

CYP2D6 substrate No No No

Yes/No

CYP3A4 substrate No Yes Yes

inhibitor

CYP1A2 Yes Yes No

CYP2C19 No Yes No

CYP2C9 No Yes No

CYP2D6 No No No

CYP3A4 No No No

Excretion
Total Clearance 0.587 0.742 0.636 log mL/min/kg

Renal OCT2 substrate No No Yes
Yes/No

Toxicity

AMES toxicity Yes No No

Max. tolerated dose (human) −0.58 0.547 −0.423 log mg/kg/day

hERG I inhibitor No No No Yes/No

Oral Rat Acute Toxicity (LD50) 2.321 2.347 1.837 mol/kg

Oral Rat Chronic Toxicity (LOAEL) 1.35 1.913 1.708 log mg/kg_bw/day

Hepatotoxicity No No No
Yes/No

Skin Sensitisation Yes No No

T. pyriformis toxicity 0.804 0.569 1.054
(log µg/L)

Minnow toxicity 0.644 −2.307 0.712

Druglikeness Lipinski Yes Yes Yes (Yes/No)

3.2. MD Simulation

MD simulations of the protein–ligand complex were performed using Gromacs 2020.4
on the Linux platform. MD simulation provides information about the receptor–ligand
complex with time, so we performed the MD simulation for 20 ns on the three complexes
(hit compounds). After the simulation, we analyzed the trajectory files for RMSD, RMSF,
protein–ligand interactions, etc.

3.2.1. RMSD

The RMSD value determines the mean deviation of the complex at a specific time. It
is an indicator that defines the average change in an atom’s displacement in the specific
molecular conformation of the reference conformation. In trajectory analysis, the complex
RMSD was found within the range of 0.25 Å. The initial RMSD value of the complex was
0.1 Å. The backbone atoms were monitored, and the stability, compactness, structural
fluctuations, and protein–ligand interactions in a solvated system were examined. RMSD
of the backbone was also noted to 0.2 Å (Figure 5). RMSD was found to be constant at 0.2 Å
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after 10 ns. The low RMSD value suggests that complexes are more stable. Moreover, it
was noted that among the three complexes, complex ZINC3875469 had the lowest RMSD
values. On the other hand, complex ZINC3873067 had a comparatively larger RMSD value.
This suggests that complex ZINC3875469 has more stability.

−

–
–

–

atom’s displacement in the specific 

–

 

–

–

Figure 5. RMSD of protein and ligand after the initial RMSD values were stabilized. The RMSD graph
for the backbone is shown in black color (complex ZINC1883067), red color (complex ZINC3875469),
and green color (complex ZINC4076131).

3.2.2. RMSF

The RMSF is useful for characterizing local protein mobility in the protein–ligand
complex, which is calculated throughout the simulation. It relates to the root-mean-square
displacement of each frame conformation residue relative to the average conformation
used to determine the flexibility of a protein region. In an RMSF plot, the peak shows
the protein area fluctuates more throughout the simulation, while the lower RMSF values
reflect the less conformational transition. The atomic profile fluctuations were found to be
almost similar in all three complexes. The analysis revealed that the RMSF plot (Figure 6)
displayed minimal fluctuations in the protein structures for complex ZINC3875469. The
protein–ligand complex displayed lower flexibility, and the RMSF plot revealed variations
in certain regions of protein residues. It is suggested that the ligand binding site remained
approximately rigid throughout the simulation.

–

Figure 6. RMSF protein backbone and ligand complex is shown in black color (complex
ZINC1883067), red color (complex ZINC3875469), and green color (for complex ZINC4076131).
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3.2.3. Radius of Gyration (Rg)

Rg is used to assess a characterization parameter that evaluates changes in protein
structures. For the measurement of the transition in Rg of the protein backbone atoms,
the gmx gyrate software was used. Figure 7 shows that the Rg values of complexes
ZINC1883067, ZINC3875469, and ZINC4076131 did not change significantly throughout
the simulation and continued to fluctuate at 1.73 and 1.69 nm, respectively, indicating that
the ligand had little influence on protein structures. It was observed that the Rg value
of complex ZINC3875469 was lower and had little fluctuation comparatively throughout
the 20 ns of simulation. This suggests that the ligand–protein interaction in complex
ZINC3875469 is very high, which makes its structure more compact.

–

Figure 7. Plot for Rg of backbone atoms of the proteins in the presence of ligands. Black color
(complex ZINC1883067), red color (complex ZINC3875469), and green color (complex ZINC4076131).

3.2.4. Minimum Distance

The minimum distance between protein and ligand is given in Figure 8. The average
value was found to be 1.5 nm. Interestingly, complex ZINC3875469 had the comparatively
lowest minimum distance of 0.25 nm during the entire simulation, indicating more com-
pactness and stability of complex ZINC3875469. This suggests that complex ZINC3875469
is more stable than other complexes comparatively.

 

–

Figure 8. Plot showing minimum distance for complexes. Black color (complex ZINC1883067), red
color (complex ZINC3875469), and green color (complex ZINC4076131).

114



Molecules 2021, 26, 2326

3.2.5. Number of Hydrogen Bonds (H-Bond Number)

The number of H-bonds was measured to find out the robustness of the complex using
a cut-off value 0.35 nm. It was noticed that complexes ZINC1883067 and ZINC3875469
had the most H-bonds, but the complex ZINC3875469 H-bonds were more stable over the
entire simulation and thus play a significant role in stabilizing protein–ligand interactions
(Figure 9).

–

 
Figure 9. Plot showing number of hydrogen bonds for complexes. Black color (complex
ZINC1883067), red color (complex ZINC3875469), and green color (complex ZINC4076131).

It should be noted that the BE values and MD simulations obtained can only show the
binding effectiveness and stability of inhibitors with the target protein. However, further
bench work studies are required to validate these hits (ZINC3875469, ZINC4076131, and
ZINC1883067) as Mtb proteasome inhibitors.

4. Conclusions

In summary, natural compounds from the ZINC database were screened against the
Mtb proteasome. The top hit compounds (ZINC3875469, ZINC4076131, and ZINC1883067)
demonstrated robust binding with the monomer as well as dimer Mtb proteasome. Molec-
ular docking of these selected hits with the Mtb proteasome dimer model revealed that,
in addition to interacting with K-chain residues, they also interacted with many other
residues of the L-chain. These results open the way for further experimental confirmation
in the quest for a novel Mtb proteasome inhibitor to combat TB.
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Abstract: Src plays a crucial role in many signaling pathways and contributes to a variety
of cancers. Therefore, Src has long been considered an attractive drug target in oncology.
However, the development of Src inhibitors with selectivity and novelty has been challenging.
In the present study, pharmacophore-based virtual screening and molecular docking were carried out
to identify potential Src inhibitors. A total of 891 molecules were obtained after pharmacophore-based
virtual screening, and 10 molecules with high docking scores and strong interactions were selected
as potential active molecules for further study. Absorption, distribution, metabolism, elimination
and toxicity (ADMET) property evaluation was used to ascertain the drug-like properties of the
obtained molecules. The proposed inhibitor–protein complexes were further subjected to molecular
dynamics (MD) simulations involving root-mean-square deviation and root-mean-square fluctuation
to explore the binding mode stability inside active pockets. Finally, two molecules (ZINC3214460
and ZINC1380384) were obtained as potential lead compounds against Src kinase. All these analyses
provide a reference for the further development of novel Src inhibitors.

Keywords: Src inhibitors; pharmacophore model; virtual screening; molecular docking;
molecular dynamics simulations

1. Introduction

The Src family kinases (SFKs) are a family of non-receptor tyrosine kinases, which are involved in
a wide variety of essential functions to sustain cellular homeostasis, where they regulate cell cycle
progression, motility, proliferation, differentiation and survival, among other cellular processes [1].
As a prototypical member of the SFKs, Src contains Yes, Fyn, Lyn, Lck, Hck, Fgr, Yrk, Frk and Blk
kinases [2]. Src consists of four homology domains (SH1, SH2, SH3 and SH4) and a unique domain
(Figure 1). The SH1 domain (also called the catalytic domain) is composed of two subdomains
(generally termed N-terminal and C-terminal lobes) separated by a cleft. The N-terminal lobe contains
the highly conserved hinge region that is implicated in the interaction with the ATP-adenine ring
and to which most of the Src inhibitors anchor through hydrogen bonding. The C-terminal lobe is
larger, comprises an activation loop that contains a tyrosine residue that can be autophosphorylated
(Tyr419 in human c-Src) and is the positive regulatory site responsible for maximizing kinase activity.
The phosphorylation of this residue stabilizes the kinases in an active conformation accessible to ATP
and substrates. On the contrary, when another tyrosine residue located in the C-terminal lobe tail
(Tyr530 in human c-Src) is phosphorylated, a closed conformation is induced [3]. The SH2 and SH3
domains regulate the Src catalytic activity through both intramolecular and protein–protein interactions.
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The SH4 domain is a 15-amino acid sequence whose myristoylation allows the binding of Src members
to the inner surface of the plasma membrane. The unique domain is included in the N-terminal
segment of the proteins, together with SH4, and is composed of 50–70 residues. Unlike the SH domains,
it displays the greatest divergence among the SFKs and thus probably contributes to the differentiation
of their biological functions [4]. Src is a central signaling hub that can be activated by many factors,
including immune-response receptors, integrins and other adhesion receptors, receptor protein tyrosine
kinases, G protein-coupled receptors and cytokine receptors [5]. In normal cells, Src is only transiently
activated during the multiple cellular events in which it is involved. Conversely, Src is overexpressed
and/or hyperactivated in a large variety of solid tumors and is probably a strong promoting factor for
the development of metastatic cancer phenotypes [6]. Src is responsible for many human cancers such
as lung [7], neuronal [8], ovarian [9], esophageal [10] and gastric cancers [11], as well as melanoma [12]
and Kaposi’s sarcoma [13]. Due to its involvement in many cellular processes related to cancer
development, Src has long been considered a potential drug target in oncology.

–

–

and Kaposi’s sarcoma

–

Figure 1. The crystal structure of the Src kinase and schematic domain structure.

The Src inhibitors developed to date are generally categorized into three major classes: (1) tyrosine
kinase activity inhibitors (ATP-competitive inhibitors); (2) protein–protein interaction inhibitors
(SH2, SH3 or substrate-binding domain); (3) enzyme destabilizers that provide a correlation between
Src and its united molecular chaperone, i.e., heat shock protein 90 (Hsp90) [14,15]. The search for
small molecules with an inhibitory activity toward Src kinases constitutes a growing field of study.
Several compounds have entered clinical trials, with two compounds ultimately approved by the
FDA: dasatinib, approved in 2006, and bosutinib, approved in 2012 [16]. However, dasatinib is
known to inhibit over 40 kinases, while bosutinib inhibits over 45 kinases, making it impossible
to use these compounds as selective mechanistic probes for Src-dependent pharmacology [17,18].
Furthermore, most Src inhibitors reported share similar scaffolds such as pyrazolo [3,4-d] pyrimidine,
quinoline and quinazoline (Figure 2). To this end, it is meaningful to find more effective and selective
Src inhibitors with new chemical scaffolds.

In this work, we report an integrated screening method containing pharmacophore-based virtual
screening; molecular docking; absorption, distribution, metabolism, elimination and toxicity (ADMET)
prediction; and molecular dynamics (MD) simulations to find novel Src inhibitors.
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Figure 2. Chemical structures of previously reported Src inhibitors.

2. Results and Discussion

2.1. Preparation of Chemical Database

Prior to performing the virtual screening, the database needed to undergo several filtering and
preparation steps to reduce the enormous number of compounds [19]. All the selected ligands were
downloaded from the ZINC database (https://zinc.docking.org/) using filters such as “in-stock” and
“drug-like”, and the selection of ligands was performed based on Lipinski’s rule of five (molecular
weight limit of 300 to 600 Da, hydrogen-bond acceptor limit of 10, hydrogen-bond donor limit of 5,
rotatable-bond limit of 7, and log P limit of 5). To produce a more refined and precise set of chemical
data, some built-in functions such as the “partial charges” and “energy minimize” tools of the Molecular
Operating Environment software (MOE, Version 2015.10) were applied on the data set. The resulting
database comprised 1,033,419 molecules with lowest energy in 3D format.

2.2. Generation and Validation of Pharmacophore Model

The protein–ligand complex serves as the starting template for this modeling, wherein intermolecular
interactions are perceived as feature points for subsequent virtual screening. Most often, a single
protein–ligand complex is used as the template to align and score the database molecules, from which
the best-fitted molecules are prioritized as potential hits [20]. Based on the crystal structure of Src
kinase selected (PDB ID: 3F3V), five key pharmacophore features were generated, including one
hydrogen-bond donor (Don), two hydrogen-bond acceptors (Acc), one hydrophobic and aromatic
center (Hyd/Aro) and one aromatic center (Aro). As shown in Figure 3, the pharmacophore model
was designed in consideration of the binding poses of the original ligand (RL45, yellow sticks).
Three hydrogen-bond features were present for the ligand–protein complex: the hydrogen-bond
donor (F1, purple sphere) of RL45 interacted with Glu310; the hydrogen-bond acceptors (F2 and F3,
cyan sphere) of RL45 interacted with Asp404 and Met341, respectively. One hydrophobic and aromatic
center (F4, yellow sphere) and one aromatic center (F5, orange sphere) were also present for the ligand.

For the validation of generated pharmacophore model, a test database was built including 18 Src
reported inhibitors and 18 collected decoy molecules, which can be seen in the Supplementary Materials.
The test database was then subjected to screening against the pharmacophore model to validate its
precision. As a result, we obtained 14 active molecules as hits, and none of the inactive molecules was
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mapped to the pharmacophore model. The results from the test database revealed the precision of the
generated pharmacophore model.

 

–

–

4′ −9. and −

bonding energy components contributed −4.6 kcal/mol to the binding. 

−

Figure 3. Pharmacophore features generated by Molecular Operating Environment (MOE).

2.3. Pharmacophore-Based Virtual Screening

The pharmacophore-model-based screening of databases has been considered as an important
tool for computer-aided drug discovery techniques and provides information about geometric and
electronic features that are involved in interaction with receptors [21]. In this part, the chemical database
comprised 1,033,419 molecules with lowest energy in 3D format and was generated by applying various
filters. We utilized the protein–ligand complex reported for Src for pharmacophore model generation
and performed virtual screening of the prepared database to find out the best matches against the
model. As a result, 891 molecules were obtained as hits on the basis of pharmacophore features.

2.4. Molecular Docking

The hits obtained from the pharmacophore-based virtual screening were subjected to molecular
docking studies; the top 10 molecules with the highest docking scores were selected for the study of
binding modes (Table 1). Among these 10 molecules, ZINC23247639 and ZINC10479320 have been
reported as broad-spectrum kinase inhibitors that interacted with the highly conserved ATP-binding
sites of many human protein kinases [22–24]; thus, we filtered them out in this investigation. As we
know, hydrogen bonds established between receptor and ligand play a major role in the functionality
and stability of the complex. Hence, we observed the dominant hydrogen-bond interactions between
the groups of the other eight hit molecules and the residues of the active site, and then, ZINC3214460
and ZINC1380384 caught our attention.

Using the default GBVI/WSA dG as a docking function in the MOE software, ZINC3214460
and ZINC1380384′s docking scores were calculated as −9.6287 and −8.9096 kcal/mol, respectively.
The binding interactions of ZINC3214460 and ZINC1380384 were illustrated by the PyMOL [25]
software (Figure 4). As we can see, some key amino acid residues were involved in hydrogen-bonding
interactions with ZINC3214460; a carbonyl group accepted an H-bond from the Asp404, and an N
atom of the isoxazole formed an H-bond with Met341. The H-bond distances were 2.87 and 3.19 Å,
respectively, and hydrogen-bonding energy components contributed −4.6 kcal/mol to the binding.
Correspondingly, ZINC1380384 formed three H-bond interactions with the kinase. The amide fragment
formed two H-bonds with Asp404 and Glu310, respectively, and an N atom of the benzimidazole
accepted an H-bond from a Met341 residue. The hydrogen-bonding energy components contributed
−6.9 kcal/mol to the binding. On the basis of good binding energies and their pattern of binding
interaction with active pocket, two selected molecules showed strong interaction with the key amino
acid residues of Src kinase. Furthermore, these two molecules have not been reported as kinase
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inhibitors or related with cancer yet, so our attention is focused on ZINC3214460 and ZINC1380384,
which were further subjected to ADMET prediction and molecular dynamics simulations.

Table 1. The structures and docking results of molecules.

ZINC ID Structure
Src Docking Score

(kcal/mol)

ZINC3214460

 

−

−

−

−

−

−

−9.6287

ZINC61925676

−

 

−

−

−

−

−

−9.1879

ZINC58158745

−

−

 

−

−

−

−

−9.1320

ZINC12075400

−

−

−

 

−

−

−

−8.9992

ZINC1380384

−

−

−

−

 

−

−

−8.9096

ZINC12853028

−

−

−

−

 

−

 

−−8.7889
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Table 1. Cont.

ZINC ID Structure
Src Docking Score

(kcal/mol)

ZINC23247639

 

−

−

−

−

−8.7219

ZINC949873

−

 

−

−

−

−8.5887

ZINC36389462

−

−

 

−

−

−8.5816

ZINC10479320

−

−

−

 

−−8.5090

−

−

−

−

 

Figure 4. Binding interactions of two hit molecules with active pocket of Src kinase. The hit molecules
ZINC3214460 (A) and ZINC1380384 (B) are displayed in yellow sticks, and catalytic residues are
displayed in green sticks. Hydrogen bonds are shown as red dashes.
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2.5. ADMET Prediction

The lead compounds in drug development were found to have favorable absorption, distribution,
metabolism, elimination and toxicity (ADMET) properties [26]. Pharmacokinetic properties predict
the drug-likeness of ligand molecules. Therefore, the ADMET properties of molecules are essential
for the development of an effective druggable molecule. In this section, ADMET characteristics such
as buffer solubility, blood–brain barrier penetration (BBB), Caco-2 permeability, human intestinal
absorption (HIA), plasma protein binding (PPB), cytochrome P450 2D6 (CYP2D6) modulation and
hERG inhibition were studied for ZINC3214460, ZINC1380384, dasatinib and bosutinib. The results
are summarized in Table 2. Solubility and human intestinal absorption are two key factors that affect
oral bioavailability. We found that ZINC3214460 and ZINC1380384 show extremely high values of
solubility. Low blood–brain barrier permeability was found, which served in reducing the side effects
and toxicity to the brain, and the values of all the compounds are less than 1 (C.brain/C.blood < 1),
suggesting that they are inactive in the CNS (central nervous system). Caco-2 permeability was used to
evaluate the suitability of compounds for oral dosing, and the proposed compounds have slightly worse
human intestinal permeability than two drugs approved by the FDA. In addition, the comparable
intestinal absorption (HIA) for dasatinib and bosutinib indicated that two proposed compounds
possess good bioavailability. The high plasma-protein binding of ZINC3214460 means a long half-life
and stable efficacy, which could maintain a durable potency and adequate stability of the compound.
The inhibition of CYP2D6 by a drug constitutes the majority of cases of drug–drug interaction. It was
found that none of the compounds may inhibit CYP2D6. The cardiotoxicity may be related with the
high risk of hERG inhibition, as shown in Table 2; ZINC3214460 has a low risk of inhibiting hERG,
meaning that it has little chance of causing cardiac problems. However, according to the high-risk level
of hERG inhibition, the potential cardiotoxicity of ZINC1380384 should be considered in the future.
More ADMET prediction data for these two proposed molecules can be found in the Supplementary
Materials (Figures S1 and S2).

Table 2. The absorption, distribution, metabolism, elimination and toxicity (ADMET) prediction for
the investigated compounds.

Compound
Buffer

Solubility 1 BBB 2 Caco-2 3 HIA 4 PPB 5 CYP2D6
Inhibition

hERG
Inhibition

ZINC3214460 81.69 0.01036 18.87 97.41 100 None Low risk
ZINC1380384 3735.39 0.4491 26.62 92.11 34.90 None High risk

Dasatinib 0.3113 0.03504 32.01 93.59 70.29 None Medium risk
Bosutinib 5.500 0.06055 50.35 97.23 85.07 None Medium risk
1 Buffer solubility: water solubility in buffer system (SK atomic types, mg/L), 2 BBB: blood–brain barrier penetration
(C.brain/C.blood), 3 Caco-2: in vitro Caco-2 cell permeability (nm/sec), 4 HIA: human intestinal absorption (%),
5 PPB: plasma protein binding (%).

2.6. Molecular Dynamics Simulations

MD simulations were conducted to check the stability of the complexes predicted by molecular
docking. After 50 ns MD simulations, the root-mean-square deviation (RMSD) of the backbone
of Src kinase and the ligands at 300 K was plotted against time (ns). As can be seen in Figure 5,
the RMSDs of 3F3V-ZINC3214460 and 3F3V-ZINC1380384 were discovered to be relatively stable
at about 0.27 and 0.22 nm, respectively. There were some fluctuations in the beginning, and then,
the complexes gradually tended to equilibrium until the time reached 25 ns of simulation. The RMSD
values of RL45 and ZINC1380384 in the binding site of Src are similar; however, the 3F3V-ZINC3214460
complex has a larger RMSD value at around 0.30 nm. The root-mean-square fluctuation (RMSF) is an
important parameter that yields data about the structural adaptability of every residue in the system.
The RMSF values for all the residues in the 3F3V-ZINC3214460 and 3F3V-ZINC1380384 complexes
were calculated (Figure 6). In general, the Src inhibitors are settled to the highly conserved region of
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the protein (Glu339, Asp348 and Asp404 in the affinity pocket and Glu310 and Leu317 in the hinge
region) through hydrogen bonds, van der Waals forces and hydrophobic interaction, etc. We found
that the RMSF fluctuation values of the conserved amino acids (e.g., Glu310, Leu317 and Glu339) in
3F3V-ZINC3214460 and 3F3V-ZINC1380384 were lower than those in 3F3V-RL45, reflecting that the
two proposed molecules could form stronger interactions with these conserved residues. The proteins
showed distinct behavior with a varied magnitude of fluctuations at the loop region (e.g., Ser522 and
Tyr527), which could be used to discover more selective inhibitors of Src. Based on the above analysis,
we can conclude that these two selected molecules matched very well with the Src binding pocket,
suggesting reasonable binding modes.

 

–

–

Figure 5. The root-mean-square deviation (RMSD) trajectories of 3F3V–inhibitor complexes during
50 ns simulations.

–

 

–
Figure 6. The root-mean-square fluctuation (RMSF) maps of 3F3V–inhibitor complexes during simulations.
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3. Materials and Methods

3.1. Generation and Validation of Pharmacophore Model

In this study, a protein–ligand complex-based pharmacophore model was generated by using
the pharmacophore query editor protocol of MOE. Binding interactions induce significant chemical
features, which were taken into account for the creation of the pharmacophore model [27]. To generate
a pharmacophore model with good quality, MOE utilizes an in-built set of pharmacophore features
including hydrogen-bond donor (Don), hydrogen-bond acceptor (Acc), aromatic center (Aro), Pi ring
center (PiR), aromatic ring or Pi ring normal (PiN), hydrophobic atom (HydA), anionic atom (Ani),
cationic atom (Cat) and so on. We summarized all the binding interactions of Src complexes in the
DFG-out state from the RCSB Protein Data Bank (PDB, https://www.rcsb.org/), and several common
features (e.g., hydrophobic interactions, hydrogen bonding modes and catalytic residues) were utilized
for generating the model. Finally, the crystal structure of Src kinase in complex with a substrate-based
inhibitor, 1-(4-((6-aminoquinazolin-4-yl) amino) phenyl)-3-(3-(tert-butyl)-1-(m-tolyl)-1H-pyrazol-5-yl)
urea (RL45) (PDB ID: 3F3V; resolution, 2.6 Å), was chosen for the creation of a complex-based
pharmacophore system. The inhibitor RL45 had strong interaction with key amino acid residues of Src
kinase (i.e., Asp404, Glu310 and Met341) and was further used as a reference in molecular docking
(Figure 7). The binding interactions of RL45 with the active pocket of Src are illustrated by the PyMOL
software (2.3.2).

The generated pharmacophore model was validated via a test database including 18 Src reported
inhibitors and 18 collected decoy molecules. The molecules of Src inhibitors were downloaded from
DrugBank (https://www.drugbank.ca/). The decoy molecules refer to those compounds with reported
activities not related to Src, whereas their physical properties, including molecular weight, number of
hydrogen-bond donors and acceptor, number of rotatable bonds, and Log P were similar to those of
known Src inhibitors. The test database can be seen in the Supplementary Materials.

–

Figure 7. Binding interaction of RL45 with active pocket of Src kinase. The ligand RL45 is displayed
in yellow sticks, and catalytic residues are displayed in green sticks. Hydrogen bonds are shown as
red dashes.
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3.2. Pharmacophore-Based Virtual Screening

In Computer-Aided Drug Designing (CADD), virtual screening is one of the time-saving
methods for the discovery of novel, potent and drug-like compounds [28]. Pharmacophore models
have the advantage that they can be used not only to identify novel active compounds in
virtual screening but also for anti-target modeling to avoid side-effects resulting from off-target
activity [29]. Especially, when structural information about the target protein or the ligand’s active
conformation is available, pharmacophore-based models are superior to docking and quantitative
structure–activity relationship (QSAR) methods [30]. Based on the pharmacophore model generated
above, virtual screening was conducted by a pharmacophore search protocol in MOE with an
EHT scheme. MOE’s pharmacophore search is used to apply a query to a database of molecular
conformations and report those conformations as hits that satisfy the pharmacophore features. The hit
molecules were preferred and kept in a separate database for the further evaluation of interactions.

3.3. Molecular Docking

The crystal structure of Src kinase was obtained from the RCSB Protein Data Bank (PDB ID: 3F3V;
resolution, 2.6 Å). The protein was prepared for docking using the quickprep tool of MOE, including
correcting structural issues, protonating the structure, deleting unbound water molecules and
minimizing the structure to a specified gradient, to make the pocket available for the docking
of new molecules. The original ligand (RL45) was used to define the binding site of the Src active
pocket. For the docking parameters, we set the force field to MMFF94x and used the triangle matcher
placement algorithm [31], which returned thirty poses; we also used the Rigid Receptor refinement
method, which returned five poses. The London dG method was applied to score the poses in both
steps [32]. By studying the top-scored docking poses, only the molecular poses for which the binding
modes satisfied the pharmacophore features were retained. Each molecule with the highest docking
score was regarded as a docking result for further analysis.

3.4. ADMET Prediction

Owing to poor pharmacokinetic parameters, many drugs have not passed through clinical
trial stages [33]. Thus, it is necessary to predict the pharmacokinetics and toxicity of newly
obtained molecules, which were selected from the docking results for further analysis. In this
section, the Pre-ADMET server application (https://preadmet.bmdrc.kr) was used. The Pre-ADMET
approach is based on different classes of molecular parameters that are considered for generating
quantitative structure properties [34].

3.5. Molecular Dynamics Simulations

Based on the docking results, the best-posed complex was subjected to MD simulation studies using
the Groningen Machine for Chemicals Simulations (GROMACS) 5.0 package [35] with a CHARMM36
force field [36] under periodic boundary conditions for molecules. Ligand topology files were generated
using the CHARMM General Force Field [37]. The charge of the system was neutralized by the addition
of the ions. The energy was minimized using a steepest-gradient method to remove any close contacts.
The particle mesh Ewald (PME) method was employed for energy calculation and for electrostatic
and Van der Waals interactions. The systems were equilibrated in the NVT ensemble for 50,000 steps,
followed by equilibration in the NPT ensemble for an additional 50,000 steps. Finally, 50 ns molecular
dynamics simulations were performed at 300 K with a 2.0 fs time step, and coordinates were saved
every picosecond for analysis [38,39].

4. Conclusions

In this study, in order to find novel Src inhibitors, an integrated screening method was employed;
through pharmacophore-based virtual screening and molecular docking, the top 10 molecules with

128



Molecules 2020, 25, 4094

good binding scores were selected for the study of binding modes. ADMET prediction and molecular
dynamics simulations were used to predict the pharmacokinetic properties and stabilities of proposed
ligand–protein complexes. Finally, two molecules (ZINC3214460 and ZINC1380384) were selected
with excellent properties and stable binding modes. In addition, ZINC1380384, possessing a novel
benzo [d] imidazole scaffold, was valuable for further optimization and provides a reference for the
development of novel potent Src inhibitors.

Supplementary Materials: Figure S1: The ADMET prediction for ZINC3214460; Figure S2: The ADMET prediction
for ZINC1380384.
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Abstract: Drug resistance is a core issue in cancer chemotherapy. A known folate antagonist,
methotrexate (MTX) inhibits human dihydrofolate reductase (hDHFR), the enzyme responsible for the
catalysis of 7,8-dihydrofolate reduction to 5,6,7,8-tetrahydrofolate, in biosynthesis and cell proliferation.
Structural change in the DHFR enzyme is a significant cause of resistance and the subsequent loss of
MTX. In the current study, wild type hDHFR and double mutant (engineered variant) F31R/Q35E (PDB
ID: 3EIG) were subject to computational study. Structure-based pharmacophore modeling was carried
out for wild type (WT) and mutant (MT) (variant F31R/Q35E) hDHFR structures by generating ten
models for each. Two pharmacophore models, WT-pharma and MT-pharma, were selected for further
computations, and showed excellent ROC curve quality. Additionally, the selected pharmacophore
models were validated by the Guner-Henry decoy test method, which yielded high goodness of fit for
WT-hDHFR and MT-hDHFR. Using a SMILES string of MTX in ZINC15 with the selections of ‘clean’,
in vitro and in vivo options, 32 MTX-analogs were obtained. Eight analogs were filtered out due to
their drug-like properties by applying absorption, distribution, metabolism, excretion, and toxicity
(ADMET) assessment tests and Lipinski’s Rule of five. WT-pharma and MT-pharma were further
employed as a 3D query in virtual screening with drug-like MTX analogs. Subsequently, seven
screening hits along with a reference compound (MTX) were subjected to molecular docking in the
active site of WT- and MT-hDHFR. Through a clustering analysis and examination of protein-ligand
interactions, one compound was found with a ChemPLP fitness score greater than that of MTX
(reference compound). Finally, a simulation of molecular dynamics (MD) identified an MTX analog
which exhibited strong affinity for WT- and MT-hDHFR, with stable RMSD, hydrogen bonds (H-bonds)
in the binding site and the lowest MM/PBSA binding free energy. In conclusion, we report on an
MTX analog which is capable of inhibiting hDHFR in wild type form, as well as in cases where the
enzyme acquires resistance to drugs during chemotherapy treatment.

Keywords: methotrexate; drug resistance; human dihydrofolate reductase; pharmacophore modeling;
virtual screening; molecular docking; molecular dynamics simulation.
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1. Introduction

A major complication in cancer treatment with chemotherapy is the development of resistance
to previously effective drugs. Clinically, two main types of drug resistance exist: intrinsic resistance,
which is not associated with drug exposure, but rather, with an innate ability of tumor cells; and acquired
resistance, which occurs after exposure to the drug [1]. Various mechanisms like increased rates of
drug efflux, alterations in drug metabolism, variations in drug targets, increased target expression,
activation of survival pathways, increased expression of anti-apoptotic proteins and mutation of drug
targets are involved in acquiring resistance to chemotherapeutic agents [2].

Human dihydrofolate reductase (hDHFR) catalyzes the reduction of 7,8-dihydrofolate (DHF)
to 5,6,7,8-tetrahydrofolate in a nicotinamide adenine dinucleotide phosphate (NADPH) dependent
manner. Tetrahydrofolate is an essential cofactor in several metabolic pathways like purine and
thymidylate biosynthesis, playing a vital role in cell division and proliferation [3]. Due to the
significance of its crucial role in nucleoside biosynthesis, hDHFR has widely been studied and exploited
as a drug target [4,5].

Methotrexate (MTX) (C20H22N8O5) is an antimetabolite, an analogue of folic acid and a derivative
of aminopterin antiproliferative drugs that inhibits dihydrofolate reductase [6]. The drug primarily
penetrates intracellular targets through an active carrier transport mechanism which is shared by
reduced folates and facilitated by the reduced folate carrier (RFC) [7]. This process is carried
out by the enzyme folylpolyglutamate synthetase (FPGS) through the accumulation of glutamate
residues [8,9]. MTX and polyglutamylated conformations of MTX are tightly bound inhibitors of
hDHFR and hinder pyrimidine, and hence thymidylate biosynthesis [10–12]. Decreased MTX affinity
has been detected in cell lines exposed to increased dosage causing mutations in hDHFR [13–18].
Mutations in dihydrofolate reductase variants with amino acid substitutions at residues Phe31 [19],
Arg70 [20], Leu22 [21,22], Val115 [23] and Phe34 [24] existing in folate binding site have been detected
in MTX-resistant cancer cell lines.

MTX-resistant point mutant hDHFR crystal structures have provided an understanding of the
details of decreased binding of MTX or other antifolates [25–30]. Volpato et al. reported a combinatorial
MTX-resistant hDHFR variant F31R/Q35E which exhibited >650-fold decreased binding to MTX to
reveal the structural details of MTX resistance in the F31R/Q35E variant, and obtained the crystal
structure of this variant bound with MTX at 1.7 Å resolution (PDB ID: 3EIG) [31]. This highly
MTX-resistant variant is an effective selectable marker for several mammalian cell types, along with
murine hematopoietic stem cells [32]. Since mutations triggering MTX resistance have not been studied
in mammals, and MTX is an approved drug for human treatment, engineered resistant DHFRs provide
highly capable ex vivo or in vivo selective markers for human [33].

In recent decades, advances in computational techniques have led to an acceleration of drug
discovery [34]. For example, cheminformatics allows us to understand and characterize the molecular
properties and chemical activities of specific compounds and produce huge libraries of small
molecules to screen against particular therapeutic processes [35]. After candidate identification,
other cheminformatics techniques can be utilized to generate libraries of compounds which are
structurally and chemically similar to the identified “hits” in order to improve stability, toxicity and
kinetics. Additionally, bioinformatics methodologies can be applied to study the therapeutic activity
of candidate drugs predicting interactions between drugs and proteins, to analyze the impact on
biological pathways and functions and to determine genomic variants that may vary drug response [36].
Accordingly, several approaches have been developed to reduce the research expense and risk of failure
for drug discovery, among which computer-aided drug design (CADD) is one of the most effective [37].

Since drug resistance is hinders chemotherapy, there is an urgent need to discover the drugs that
inhibit hDHFR in wild type as well as in mutant form, i.e., after acquiring resistance to MTX. Singh et al.
developed a small peptide as an anticancer drug targeting hDHFR which was supposed to be effective
in MTX-resistant hDHFR because of a larger drug–protein interaction area [38]. Despite the larger
interaction area of the peptide, it was specifically designed to inhibit only wild type hDHFR. We carried
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out a computational study to identify a candidate molecule capable of inhibiting wild type along
with mutant hDHFR. Structure-based pharmacophore modeling was performed exploiting hDHFR
wild type and drug-resistant F31R/Q35E variant structures in complex with methotrexate to allocate
important chemical features of protein-ligand interactions. Pharmacophore models, WT-pharma and
MT-Pharma, with four features comprising key residues were selected from ten models generated for
each structure. The selected pharmacophore models exhibited the highest area under the receiver
operating characteristics (ROC) curve, verifying the sensitivity of the models to retrieve active
compounds. WT- and MT- pharma were further subjected to validation by the Guner-Henry decoy
test method.

ZINC was initially developed as an open-access database and toolset to support access to
compounds for virtual screening. The upgraded version ZINC15 makes it possible to carry out
similarity searches and to explore the analogs of a given structure or part of a structure according
to the input line employed [39]. The MTX structure in the SMILES (Simplified Molecular-Input
Line-Entry System) format was used in ZINC15 to retrieve MTX-analog structures. The obtained
analogs were filtered through ADMET and Lipinski’s Rule of five to categorize drug-like compounds.
The validated pharmacophores WT-pharma and MT-pharma were then used as 3D-query to screen
against drug-like MTX-analogs. The analogs mapped with WT- and MT-pharma were carried out
for molecular docking where two compounds were found with a higher docking score than the
reference (MTX). Further, molecular dynamics simulation confirmed one compound with a stronger
affinity for WT and MT hDHFR yielding stable RMSD and strong molecular interactions with catalytic
active site residues. Additionally, binding free energy calculation through MM/PBSA (Molecular
Mechanics/Poisson-Boltzmann Surface Area) demonstrated robust binding affinity of Hit molecules
with WT and MT hDHFR. Accordingly, in this study, we predicted an analog compound of MTX as
a potential inhibitor for wild type and drug-resistant hDHFR for cancer therapeutics.

2. Results

2.1. Generation of Structures Based Pharmacophore Models

Crystal structures of wild type and F31R/Q35E variant of hDHFR in complex with methotrexate
downloaded from the protein data bank were carried out for structure-based pharmacophore modeling.
A total of 10 pharmacophore models for each structure, were generated while producing a ROC curve
with each model. All the pharmacophores were attributed in terms of the total number of features,
types of features, and selectivity score and ROC curve quality (Table 1). All ten models for wild
type and for mutant structures yielded the same selectivity score with the difference in location of
pharmacophoric features.

Table 1. Receptor-ligand based pharmacophores characteristics details.

Sr. No.
Number of

Features

WT hDHFR Phrmacophore Details MT hDHFR Phrmacophore Details

Features Set
Selectivity

Score
ROC Curve

Quality
Features Set

Selectivity
Score

ROC Curve
Quality

Pharmacophore_1 4 HBD, HBD, HYP, NI 11.090 0.832 HBD, HBD, NI, NI 12.455 0.944
Pharmacophore_2 4 HBD, HBD, NI, RA 11.090 0.924 HBA, HBD, NI, NI 12.455 0.929
Pharmacophore_3 4 HBD, HBD, HYP, NI 11.090 0.886 HBA, HBD, NI, NI 12.455 0.913
Pharmacophore_4 4 HBD, HBD, NI, RA 11.090 0.951 HBD, NI, NI, RA 12.455 0.985
Pharmacophore_5 4 HBD, HBD, NI, RA 11.090 0.903 HBD, NI, NI, RA 12.455 0.968
Pharmacophore_6 4 HBA, HBD, HBD, NI 11.090 0.941 HBD, HYP, NI, NI 12.455 0.946
Pharmacophore_7 4 HBA, HBD, NI, RA 11.090 0.937 HBD, HYP, NI, NI 12.455 0.955
Pharmacophore_8 4 HBD, HYP, NI, RA 11.090 0.822 HBD, NI, NI, RA 12.455 0.958
Pharmacophore_9 4 HBD, HYP, NI, RA 11.090 0.907 HBD, NI, NI, RA 12.455 0.962
Pharmacophore_10 4 HBA, HBD, NI, RA 11.090 0.989 HBD, HYP, NI, NI 12.455 0.933

The pharmacophore models comprising of features including key residues Glu30, Asn64, Arg70, and Val115
were selected so-called WT-pharma and Mt-pharma for wild type and mutant structures respectively.
WT-pharma consisting of four pharmacophoric features included one hydrogen bond acceptor (HBA), one hydrogen
bond donor (HDB), one negative ionizable (NI) and one ring aromatic (RA). MT-pharma comprised of features one
hydrogen bond donor (HDB), two negative ionizable (NI) and one ring aromatic (RA) (Figure 1).
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Figure 1. Structure-based pharmacophore generation. (A) Residues of wild type hDHFR active site
complementing pharmacophoric features are shown as a thin stick. Bound inhibitor (MTX) is shown as
a light blue colored thick stick model. HBA, HBD, RA, and NI are colored as green, magenta, orange and
blue respectively. (B) Residues of mutant hDHFR active site complementing pharmacophoric features
are shown as a thin stick. Bound inhibitor (MTX) is shown as a pink-colored thick stick model. HBA,
HBD, RA, and NI are colored as green, magenta, orange and blue respectively. (C) Interfeature distance
illustration of WT-pharma (D) Interfeature distance illustration of MT-pharma.

2.2. Pharmacophore Models Validation

Selected pharmacophore models termed as WT-pharma and MT-pharma were assessed for
their sensitivity to retrieve the active compounds by receiver operating characteristics (ROC) curve.
ROC curves were plotted with the generation of pharmacophore models by utilizing the option
Validation that is available in the receptor-ligand Phamacophore module in DS for structure-based
pharmacophore modeling. For this purpose, sets of 46 active and 24 inactive molecules were employed
to testify model efficacy by creating the ROC curve. Higher the area under the ROC curve interpreted
higher sensitivity of the model. For WT-pharma ROC displayed 0.989 and for MT-pharma 0.985 curve
quality indicating 98.9% and 98.5% area under the curve illustrated as highly sensitive pharmacophore
models to identify active molecules (Figure 2).

 

 

Figure 2. Receiver Operating Characteristics curves for validation of selected pharmacophore models
between true positive and false-positive rates. (A) ROC curve shown in the red line for the WT-pharma
model with 0.989 curve quality depicts 98.9% area under the curve. (B) ROC curve shown in the red
line for the MT-pharma model with 0.985 curve quality depicts 98.5% area under the curve.
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Additionally, Decoy set validation was implemented using a Ligand Pharmacophore Mapping module
in DS. The accuracy of WT-pharma and Mt-pharma was evaluated by four factors i.e., false positive,
false negative, enrichment factor (EF), and goodness of fit (GF). EF and GF were computed by applying
the data of various parameters given in Table 2. Other properties of WT-pharma and MT-pharma
including a percentage of the number of active yields (%Y), percent ratio of actives in the hit list (%A),
false negatives, and false positives were also measured (Table 2).

Table 2. Decoy set validation for WT & MT hDHFR structure-based pharmacophore models.
WT-pharma and MT-pharma obtained the highest goodness of fit score suggesting the suitability of the
models for virtual screening.

Parameters
Values

(WT hDHFR)
Values

(MT hDHFR)

Total no. of molecules in the database (D) 90 90
Total no. of actives in the database (A) 20 20

Total no. of hit molecules from the database (Ht) 25 17
Total no. of active molecules in hit list (Ha) 19 17
Percentage Yield of actives [(Ha/Ht) × 100] 76% 100%
Percentage Ratio of actives [(Ha/A) × 100] 95% 85%
Enrichment Factor [EF = (Ha/Ht)/(A/D)] 3.4 4.5

False negatives (A − Ha) 1 13
False positive (Ht − Ha) 6 0

Goodness of fit score
[GF = (Ha/4HtA)(3A + Ht) × [{1 − (Ht − Ha)/(D − A)}]] 0.93 0.96

2.3. Obtaining Methotrexate Analog Structures

For the generation of structures analogous to methotrexate (MTX), we exploited MTX structure
using SMILES format in ZINC15 for similarity search. Consequently, 32 compounds were retrieved
(Table S1. These compounds were downloaded in SDF format to visualize in DS and to carry out for
further computations.

2.4. Drug-Likeness of MTX-analogs and Virtual Screening with Pharmacophore Models

The compounds downloaded were subjected to ADMET and Lipinski’s Rule of five assessment
tests to filter out drug-like MTX analogs. The ADMET assessment test gauged the pharmacokinetic
features of the compounds obtained from ZINC15. In the ADMET assessment test, compounds were
estimated for noninhibition to CYP2D6 and nonhepatotoxicity. The pharmacokinetic properties of
blood brain barrier (BBB), optimal solubility, and good intestinal absorption were evaluated by setting
their values to 3, 3, and 0, respectively. Lipinski’s rule of five assessment was carried out after
ADMET evaluation. Through Lipinski’s rule of five filtration, compounds with AlogP value less than
5, number of HBD <5, number of HBA <10, molecular weight <500 Da, and fewer than 10 rotatable
bonds were determined [40,41]. Accordingly, 8 compounds were found obeying drug-like properties.
The drug-like MTX-analogs were carried out for virtual screening against WT-pharma and MT-pharma.
All 8 compounds were aligned with WT-pharma but one compound was not in agreement with
MT-pharma. Subsequently, 7 MTX-analogs were recognized as screening Hits for further computations.

2.5. Molecular Docking of Screening Hits in Active Site of hDHFR

To explore the binding mode of 7 drug-like compounds retrieved from virtual screening against
WT-pharma and MT-pharma, molecular docking simulations were carried out using GOLD v 5.2.2.
The 3D structure of wild type and F31R/Q35E variant of hDHFR in complex with inhibitor MTX were
taken from protein data bank (PDB ID: 1U72 and 3EIG respectively). Both the structures have a high
resolution of 1.9 Å for wild type and 1.7 Å for the F31R/Q35E variant. The co-crystal bound inhibitor
(MTX) was docked in the active site of wild type hDHFR in order to optimize the docking protocol.
The docked pose of MTX showed a low RMSD value of 0.58 Å with the crystallographic pose of
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MTX in the active site of the wild type hDHFR as shown in Figure S1 of supplementary material.
The WT- and MT-pharma retrieved drug-like (candidate) compounds were docked by implementing
the same optimized protocol. Docking results showed that ChemPLP fitness scores and ASP fitness
scores of MTX as a reference compound were 99.23 and 56.65 for wild type hDHFR while 88.98 and
49.84 for mutant hDHFR, respectively. These docking scores were considered as cut-off values for wild
type and mutant hDHFR docking results analysis. The candidate compounds for wild type hDHFR
were selected based on ChemPLP and ASP fitness scores greater than 99.23 and 56.65 respectively.
For mutant hDHFR, compounds yielding ChemPLP and ASP fitness scores higher than 88.98 and
49.84 were selected (Table 3).

Table 3. Comparison of ChemPLP and ASP dock scores of MTX (reference inhibitor) and Hit compound
in the active sites of WT and MT hDHFR.

System ChemPLP Score ASP Score

WT hDHFR +MTX 99.23 56.65
WT hDHFR + Hit 103.74 57.70

MT hDHFR +MTX 88.98 49.84
MT hDHFR + Hit 91.07 47.59

Additionally, the compounds were investigated about ligand conformations effectively showing
essential interactions in the active site of hDHFR. Finally, one compound which contained
pharmacophoric features of wild type and mutant hDHFR structures and fulfilled the above-mentioned
criteria of docking scores was selected as docking Hit. The pharmacophore mapping of Hit compound
(ID: ZINC000013508844) with WT-pharma and MT-pharma models are shown (Figure 3).

 

 
Figure 3. Hit compound (MTX-analog) mapping with pharmacophore models. (A) Hit compound
represented in dark blue colored thick stick model mapping with WT-pharma. (B) Hit compound
represented in magenta-colored thick stick model mapping with MT-pharma.

2.6. Molecular Dynamic Simulations for Structures Stability Evaluation

MD simulations were executed to estimate the binding stability of Hit compound after docking
in the active site of wild type and mutant hDHFR. Four MD simulation systems were employed as one
for each complex i.e., for hit compound and reference compound (MTX) in complex with wild type
and mutant hDHFR structures, respectively. The initial details of each system subjected to simulation
are given in Table 4.

Table 4. The specifications of four systems used for molecular dynamics simulations.

System No. of TIP3P Water Molecules No. of Na+ Ions System Size (nm)

WT hDHFR +MTX a 7726 1 7.11 × 7.11 × 5.03
WT hDHFR + Hit 7646 1 7.11 × 7.11 × 5.03

MT hDHFR +MTX 8258 2 7.11 × 7.11 × 5.03
MT hDHFR + Hit 8181 1 7.11 × 7.11 × 5.03

MTX a: the reference inhibitor.
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Root mean square deviation (RMSD) was measured of the protein-ligand complex for each
simulation system to assess ligand binding with hDHFR. In the results of 50 ns simulation, protein-ligand
RMSD of reference compound (MTX) in complex with wild type hDHFR was recorded at an average
of 0.21 nm throughout the simulation (Figure 4A). The average RMSD of MTX with mutant hDHFR
was observed 0.21 nm up to 38.9 ns but afterward it significantly increased to an average of 0.62 nm
indicating loss of MTX binding with MT-hDHFR. Accordingly, the representative structure of each
system was taken from the last 8 ns (30–38 ns) before the loss of MTX binding with MT-hDHFR. The Hit
compound obtained from docking results showed stable RMSD in complex with WT- and MT- hDHFR.
The average root means square deviation values of Hit compound in complex with WT-hDHFR
and MT-hDHFR were observed at an average of 0.21 nm and 0.22 nm respectively, throughout the
simulation depicting that both the systems were well converged (Figure 4A). Additionally, per residue
RMSF (root mean square fluctuation) calculated for each complex which was noted about 0.3 nm
for all residues except for the MTX which showed RMSF about 2.3 nm in complex with MT-hDHFR
(Figure 4B).
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Figure 4. RMSD analysis of the reference (MTX) and hit compound (MTX-analog). (A) RMSD of
the protein-ligand complex of wild type and mutant hDHFR revealed their stability throughout the
simulation, with no abnormal behavior in all systems except for MTX in complex with MT hDHFR.
(B) RMSF per residue plot for all the systems portrayed their residues RMSD is stable except for MT
hDHFR ligand (MTX) which showed a high fluctuation level. (C) The number of intermolecular
hydrogen bonds between protein and ligand during 50 ns MD simulations. Light blue and pink colors
represent MTX in wild type and mutant hDHFR, respectively, while dark blue and magenta represent
the Hit compound in wild type and mutant hDHFR, respectively.
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The superimposition of representative structures demonstrated that the binding pattern and
conformational alignment of Hit in the active site of hDHFR was similar to that of MTX (Figure 5).

 

 

π

Figure 5. The binding patterns of the reference inhibitor (MTX) and hit compound in the active
site of wild type and mutant hDHFR. Compounds are displayed by their representative structures
superimposed (left) and enlarged (right). The protein is shown in white color. (A) Light blue and
dark blue colors represent MTX and Hit compound in wild type hDHFR. (B) Pink and magenta colors
represent MTX and Hit compound respectively in mutant hDHFR.

The substrate-binding site of hDHFR is mainly comprised of Ile7, Glu30, Phe31, Gln35, Ser59,
Pro61, Asn64, Arg70 and Val115 [42]. Our results suggested that the reference compound (MTX) could
bind with substrate binding residues of WT-hDHFR but lost its binding with MT-hDHFR, in agreement
with Volpato et al. [32]. In contrast with MTX, the Hit compound exhibited strong binding with the
active site of both WT- and MT-hDHFR. The MTX formed H-bonds with Ile7, Glu30, and Val115, Phe31,
Asn64 and Arg70, as well as one carbon–hydrogen with Pro61 of WT-hDHFR (Figure 6A, Table 5).
Furthermore, MTX established π-interactions with Ile7, Ala9, Leu22, Phe34 and Ile60 and showed van
der Waals contacts with Val8, Asp21, Phe31, Arg32, Tyr33, Gln35, Thr56, Ser59, Leu67, Lys68, Tyr121
and Thr136 (Table 5).

 

 

Figure 6. Molecular interactions analyses. The reference inhibitor MTX and Hit compound interacted
with essential residues in the active site of hDHFR. MTX in WT hDHFR (A), Hit in WT hDHFR
(B), MTX in MT hDHFR (C) and Hit in MT hDHFR (D) are depicted as light blue, dark blue, pink,
and magenta-colored stick representation. The H-bond forming residues of hDHFR are displayed
as a brown stick model. H-bonding and bond distances are represented as green dashed lines and
measured in angstrom (Å), respectively.
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Table 5. Molecular interactions between the ligands (MTX and hit compound) and the active site
residues of WT and MT hDHFR.

Compound
Hydrogen Bond Residues

(<3Å)
van der Waals

Residues
Carbon Hydrogen Bond

Residues
π-Interaction

Residues

MTX
(with WT hDHFR)

Ile7, Glu30, Asn64, Arg70(2),
Gln35, Val115

Val8, Asp21, Phe31, Arg32, Tyr33„ Thr56,
Ser59, Leu67, Lys68, Tyr121, Thr136 Pro61 Ile7, Ala9, Leu22,

Phe34, Ile60
Hit

(with WT hDHFR)
Ile7, Glu30, Gln35, Ser59,
Asn64(2), Arg70, Val115

Val8, Asp21, Phe31, Tyr33, Phe34, Thr56,
Leu67, Thr136 Pro61, Lys68 Ile7, Ala9, Leu22,

Ile60
MTX

(with MT hDHFR)
Ile7, Glu30, Arg31, Asn64,

Lys68, Val115, Tyr121
Asp21, Phe34, Tyr33, Glu35, Thr56, Pro61,

Arg70, Phe134, Thr136 Val8, Leu67, Ser59, Lys68 Ile7, Ala9, Leu22,
Arg31, Ile60

Hit
(with MT hDHFR)

Ile7, Glu30, Arg31 (2), Ser59,
Asn64, Arg70, Val115, Tyr121

Val8, Asp21, Arg28, Arg32, Phe34, Glu35,
Thr56, Pro61,Leu67, Thr136 Ser59 Ile7, Ala9, Leu22,

Arg31, Ile60

In the representative structure of MT-hDHFR which was obtained before the disruption of MTX
binding, molecular interactions were observed to analyze the difference of MTX binding with wild
type hDHFR, leading us to speculate about the segment of resistance to MTX in mutant hDHFR.
Accordingly, MTX was shown to form H-bond interactions with Ile7, Glu30, Arg31, Asn64, Lys68,
Val115, Tyr121 and van der Waals interaction with Asp21, Phe34, Tyr33, Glu35, Thr56, Pro61, Arg70,
Phe134 and Thr136 (Figure 6C, Table 5). Our findings also indicate that MTX formed carbon–hydrogen
bonds with Val8, Leu67, Ser59, Lys68 and π-interactions with Asp21, Phe34, Tyr33, Glu35, Thr56, Pro61,
Arg70, Phe134 and Thr136. The Hit compound in complex with WT-hDHFR formed H-bonds with
Ile7, Glu30, Gln35, Asn64 (2), Arg70 and Val115, as well as carbon–hydrogen bonds with Pro61 and
Lys68 (Figure 6B, Table 5). Additionally, Hit showed van der Waals interactions with the hydrophobic
pocket residues of WT-hDHFR such as Val8, Asp21, Phe31, Tyr33, Phe34, Thr56, Ser59, Leu67 and
Thr136, as well as π-interactions with Ile7, Ala9, Leu22 and Ile60 (Table 5). In the case of MT-hDHFR,
the Hit compound established H-bonds with Ile7, Glu30, Arg31, Ser59, Asn64, Arg70, Val115 and
Tyr121 (Figure 6D, Table 5). The Hit compound showed hydrophobic van der Waals interactions with
Val8, Asp21, Arg28, Arg32, Phe34, Glu35, Thr56, Pro61, Leu67 and Thr136 residues of the WT-hDHFR
while π-interactions were formed with Ile7, Ala9, Leu22, Arg31 and Ile60. The residue Ser59 also
exhibited carbon–hydrogen bonds with C11 atoms in addition to conventional H-bonds with O13
atoms in Hit molecules. The conventional H-bond was formed only by Hit in the MT-hDHFR binding
site. Throughout the simulation period, the total number of intermolecular H-bonds of WT- and MT-
hDHFR in complex with MTX and Hit were calculated. Our results showed that the Hit compound
formed an average number of H-bonds with WT- and MT-hDHFR comparable to that of MTX (reference)
in WT-hDHFR. Since MTX has a very weak binding with MT-hDHFR, it could not maintain average
number of H-bonds after 38.9 ns (Figure 4C), which enhanced the results obtained from the RMSD
plots. Our results suggest that Hit (MTX analog) is capable of binding tightly with wild type, as well
as MTX-resistant, F31R/Q35E hDHFR variants.

2.7. Binding Free Energy Calculations for MTX and Hit Compound

MM/PBSA binding free energies were calculated for MTX and Hit in complex with WT- and
MT-hDHFR. The free energies of MTX and Hit in complex with WT-hDHFR were observed as
−646.76 kJ/mol and −642.12 kJ/mol, whereas MT-hDHFR MTX could yield only −49 kJ/mol, while the
Hit compound attained −571.38 kJ/mol. The binding free energy evaluations underscore our findings
that the Hit molecule is tightly bound with WT- and MT-hDHFR, displaying comparable free energy of
MTX in complex with WT-hDHFR. The decomposition analysis of the binding free energy indicated
that electrostatic and van der Waals forces are significant characteristics in hDHFR inhibition (Figure 7,
Table 6).
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Figure 7. Binding free energy analyses. (A) Graphical representation of MM/PBSA estimated binding
free energy of wild type and mutant hDHFR in complex with MTX (reference) and Hit compound
throughout the simulation time. The reference compound is depicted as light blue and dark blue for
wild type and mutant hDHFR, respectively. The Hit compound is shown in pink and magenta colors
for wild type and mutant hDHFR, respectively. (B) The binding free energy decomposition analysis of
the final hits in the active site of hDHFR infers that the Hit compound was comparably strongly bound
with WT and MT hDHFR, while MTX lost its binding with the mutant structure.

Table 6. Decomposition of binding free energy.

Complex
Van der Waals

Energy (kJ/mol)
Electrostatic

Energy (kJ/mol)
Polar Solvation
Energy (kJ/mol)

SASA b Energy
(kJ/mol)

Binding Energy
(kJ/mol)

WT hDHFR + aMTX −184.057 −1023.945 489.982 −22.594 −646.767
WT hDHFR + Hit −210.358 −1007.98 499.622 −22.622 −642.123

MT hDHFR +MTX −116.884 −217.191 212.294 −18.862 −49.299
MT hDHFR + Hit −207.152 −923.188 483.648 −23.977 −571.381

a MTX: methotrexate as reference inhibitor. SASA b: Solvent accessible surface area.

Altogether, our results verified that the newly identified MTX-analog favorably adapted the active
site of wild type and double mutant hDHFR and acquired polar and nonpolar interactions with the
catalytic active residues.

The structure of the Hit compound, which was modified by adding a carbon-oxygen group
(C11-C12-O13) with a p-ABA moiety, is illustrated in its 2D structure in Figure 8.
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Figure 8. (A) 2D structure of MTX (B) 2D structure of Hit compound (MTX analog, ZINC ID:
ZINC000013508844).

3. Discussion

Chemotherapeutics are very effective in the treatment of cancers, but drug resistance is often
a limiting factor. Acquired resistance is the type of drug resistance that can develop through various
adaptive responses such as mutations, increased expression of the therapeutic target and activation of
alternative compensatory signaling pathways arising over the course of the treatment of tumors [43]
Human dihydrofolate reductase (hDHFR) is an enzyme that is responsible for the catalysis of the
reduction of 7,8-dihydrofolate (DHF) to 5,6,7,8-tetrahydrofolate, which is crucial for DNA synthesis
and cell proliferation [44]. Therefore, hDHFR has been widely used as a target for cancer therapeutics
for several decades [45]. Methotrexate is a well-known inhibitor that displays a high affinity with
hDHFR, but mutation in the active site of hDHFR results in the loss of MTX binding [31].

The present study aimed to identify an analog of methotrexate that was capable of binding
tightly, and hence inhibiting, wild type and doubly mutant hDHFR (F31R/Q/35E) by employing
several computational methods including structure-based pharmacophore modeling, virtual screening,
molecular docking and molecular dynamics simulations studies [46]. Structure-based pharmacophore
models of crystal structures of wild type (PDB ID: 1U72) and variant (PDB ID: 3EIG) hDHFR in complex
with methotrexate were obtained, with four features in each model. The best pharmacophore models of
each the structure were selected by analyzing the inclusion of key residues in pharmacophoric features
and sensitivity of the models to retrieve true positive compounds depicted by the highest area under the
ROC curve. The selected pharmacophore models, termed as WT-pharma and MT-pharma for wild type
and mutant hDHFR structures, respectively, were rationally assessed for the inclusion of conserved
hydrogen bond residue Glu30 and other key residues, such as Asn64, Arg70 and Val115 [44,47]. Further,
with each pharmacophore model, the ROC curve was formed between the number of false positive
(FP) and true positive (TP) compounds retrieved by that model from the datasets of 46 active and
24 inactive compounds. Higher AUC values in the ROC curves infer greater sensitivity of WT-pharma
and MT-Pharma in retrieving actives, and specificity for ignoring inactives [48,49]. Using ZINC15,
Mayorga et al. found a high number of compounds when they utilized a small fragment of the original
structure [50]. In our study, to explore analogs of MTX, we used the full structure of MTX and selected
‘in vitro’, ‘in vivo ‘and ‘clean’ options in the section of ‘subsets’, which resulted in the generation of only
32 analogous compounds (Table S1. An ADMET assessment test and Lipinski’s Rule of five scrutinized
the downloaded compounds from ZINC15 for their drug-like properties, and found eight compounds
satisfying the required criteria to qualify as lead compounds [51,52]. The validated pharmacophore
models of wild type and mutant structures of hDHFR were applied as 3D query for virtual screening
with the drug like compounds capable of binding with wild type and mutant hDHFR as well [53].
A molecular docking study was employed to inspect the most suitable and consistent binding mode of
the molecules in the binding sites of receptor proteins. Consequently, the best binding modes obtained
from docking based on scoring functions and key interactions with the active site residues of wild
type and mutant hDHFR were used in MD simulations to assess their stability [54]. The RMSD plots
inferred that the Hit compound showed similar modes of interaction in wild type and mutant hDHFR
active sites as MTX in the active site of wild type hDHFR. Specifically, the average RMSD profiles
(<0.25 nm) obtained for protein-ligand complexes of Hit with wild type and mutant hDHFR exhibited
that the systems were uniform and compact, as the stability of the system can be inferred by an RMSD
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value of less than 0.3 nm [40,41]. The RMSD plot for MTX in complex with mutant hDHFR showed
abrupt fluctuation after 38.9 ns, which indicated the loss of MTX binding with the active site of hDHFR.
Furthermore, a high RMSF value (2.34 nm) of MTX (residue187) indicated a loss of ligand binding with
only mutant hDHFR protein. Our results showed that Hit compound established stable H-bonds with
the active site residues of wild type and mutant hDHFR. Similar to the molecular interactions of MTX
(reference compound), most H-bonds were formed by pterin moiety and α-glutamate moiety with
hDHFR active site residues, while p-aminobenzoic acid (p-ABA) moiety formed mainly hydrophobic
interactions [31]. The conserved hydrogen bond with OE1 atom of catalytic residue Glu30 was formed
with the pterin moiety of Hit molecule [42,55]. The additional oxygen atom in the structure of Hit
compound formed a hydrogen bond with Ser59 in both wild type and mutant hDHFR, while Ser59
belonged to the coenzyme NADPH binding site [56]. It was speculated that the hydrogen bond between
Ser59 and the modified p-ABA moiety of Hit compound contributed to the strong binding of the Hit
compound with the mutant structure of hDHFR. Furthermore, the conserved hydrogen bonds formed
by an α-carboxylate group of MTX with the side chains of Arg70 and Gln35 while p-aminobenzoyl keto
group with Asn64 were also observed in Hit compound’s interactions with wild type hDHFR [26].

In the mutant structure, due to the substitution of Glu35, a hydrogen bond was not formed
because of unfavorable close electrostatic contact of two negative charges between Glu35 side chain and
glutamate moiety of MTX and Hit compound. In contrast, Arg31, which was substituted at the position
of Phe31, was observed to form hydrogen bonds through the guanidinium group with an α-glutamate
moiety of MTX. Hit compound displayed a double hydrogen bond with Arg31; double hydrogen
bonds are considered to be crucial for strong binding in protein-ligand interactions [57]. Furthermore,
the hydrogen bond of the Arg70 side-chain with an α-carboxylate group of MTX was lost in Mt hDHFR,
while Lys68 was formed a hydrogen bond with the α-carboxylate group. On the other hand, the
Hit compound retained the H-bond of the Arg70 side chain with the α-carboxylate group, as it did
in the wild type. Moreover, the only hydrogen bond formed by a p-ABA group of MTX with Asn64
in wild type hDHFR was also shifted to a H-bond with an α-carboxylate group of MTX in mutant
hDHFR. While the p-ABA group of Hit compound formed a hydrogen bond with Asn64, as in the wild
type, an additional H-bond was formed between Ser59 and modified oxygen atom added to p-ABA
group. Accordingly, a comparative analysis of protein-ligand interactions of MTX and Hit compound
suggested that Hit (MTX-analog) may be capable of retaining its strong binding with WT and MT
hDHFR. Additionally, the binding free energy evaluations performed by the MM/PBSA method also
inferred that the complexes of WT and MT hDHFR with Hit compound were comparably stable,
like MTX in WT hDHFR; meanwhile, the binding free energy profile noticeably depicts the loss of MTX
binding in MT hDHFR.

4. Materials and Methods

4.1. Structure Based Pharmacophore Modeling

Ligand binding features were assessed by the structures of wild type (PDB ID: 1U72) and
drug-resistant (PDB ID: 3EIG) human DHFR in complex with methotrexate taken from protein
data bank [26,31]. Pharmacophore models were generated using the Receptor-ligand Pharmacophore

Generation module in Discovery Studio (DS) v.4.5 (Dassault System, BIOVIA Corp, San Diego, CA, USA).
FAST (Features from Accelerated Segment Test) algorithm was applied for Conformation Generation,
while the Fitting Method was set to Flexible. The Validation option was set to True, for which a set of
46 active and 24 inactive compounds, downloaded from BindingDB (https://www.bindingdb.org/bind/
index.jsp) were exploited to generate a ROC curve for each pharmacophore model.

4.2. Decoy Test Validation

The ability of pharmacophore to identify hDHFR inhibitors was assessed by the Guner−Henry
method (Decoy test method) [44]. A test set was prepared by collecting hDHFR inhibitors whose
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experimental activities (IC50 values) were measured by the same biological assays. The test set
was composed of active and inactive molecules of hDHFR. The selected pharmacophore models of
wild type and mutant structures were employed as a 3D query to obtain the best-fitted molecules
from the test set. Screening of the test set was executed by the Ligand Pharmacophore Mapping
protocol embedded in DS. Accordingly, several parameters, like Guner−Henry (GH) score, enrichment
factor (EF), the percentage ratio of actives (%A), percentage yield of actives (%Y), false negative and
false-positive, were calculated, which determined the efficacy of WT-pharma and MT-pharma

EF = (Ha/Ht)/(A/D)
GF = (Ha/4HtA) (3A + Ht) × [{1 − (Ht − Ha)/(D − A)}]

(1)

where D is the total molecules in the data set, A specifies the total number of active compounds in the
data set, Ht indicates the total number of Hits retrieved and Ha refers to the number of actives present
in the retrieved Hits.

4.3. Methotrexate Analogs Generation

Methotrexate structure was subjected to a similarity search in ZINC15 using SMILES string of
MTX. For the generation of clean analogs, in vivo and in vitro options were selected in the available
range of Subsets to Check. Subsequently, the structures were downloaded in the SDF (Spatial Data
File) format, generated by the webserver, to carry out for further computations in DS.

4.4. Drug-Likeness Prediction and Virtual Screening

The molecules retrieved from ZINC15 were tested through ADMET and Lipinski’s Rule of five
embedded assessment techniques in DS to identify drug-like compounds. Subsequently, the compounds
exhibiting such properties were carried out for virtual screening with WT-pharma and MT-pharma.
The compounds which fitted with both pharmacophores were considered as screening compounds in
our molecular docking study.

4.5. Molecular Docking Simulation

A docking study was employed through the Genetic Optimization of Ligand Docking (GOLD)
package v5.2.2 (The Cambridge Crystallographic Data Centre, Cambridge, United Kingdom).
GOLD software provides full flexibility of ligands and limited flexibility of protein; hence, it delivers
more reliable results in computational biology the crystal structures of wild type (PDB ID: 1U72)
and variant (PDB ID: 3EIG) hDHFR in complex with Methotrexate were taken from protein data
bank. The wild type and variant structures of hDHFR were prepared for docking by eliminating
water molecules in DS. Chemistry at Harvard macromolecular mechanisms (CHARMm) force field
was applied to add hydrogen atoms to the structures of hDHFR. The binding sites of wild type and
mutant hDHFR were identified within the radius of 9Å of bound inhibitor (MTX) using the Define

and Edit Binding Site module, planted in DS. During docking, MTX-analogs retrieved from virtual
screening along with methotrexate as reference were treated as ligand molecules. The ChemPLP
(Piecewise Linear Potential) score and ASP (Astex Statistical Potential) score were used as the default
scoring and rescoring functions, respectively. The ChemPLP is the default scoring function in GOLD
software which is empirically optimized for pose prediction. It is implemented to establish the steric
complementarity between protein and ligand, distance- and angle-dependent hydrogen and metal
bonding terms as well as the heavy atoms clash- and torsional potential. The ASP scoring function
measures the atom−atom potential and has similar precision to Chemscore and Goldscore fitness
functions [58,59]. During docking, GA (genetic algorithm) was run to produce 100 poses for each
drug-like molecule. The bound ligand (MTX) was employed as a reference compound throughout the
analyses. Cluster analysis was performed to scrutinize hit compounds exhibiting a higher dock score
than cut off (dock score of reference molecule).
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4.6. Molecular Dynamics (MD) Simulation

Molecular dynamics simulations were performed using CHARMm36 all-atom force field [60]
in Groningen Machine for Chemical Simulation (GROMACS) v5.0.6 package [61]. For every
protein-ligand complex, an independent simulation system was generated. The topology and
coordinates files for MTX and docking hits were generated using SwissParam [62]. Transferable
intermolecular potential with three points (TIP3P) water model in a cubic box was used for solvation
of each system. Solvent molecules were substituted with sodium ions (Na+) to nullify the total charge
of simulation systems. The energies of the systems were minimized by applying steepest decent
algorithwhere the maximum force was kept less than 10 kJ/mol I order to avoid any bad contacts
likely to be occurred in the production run. Initially, the systems were equilibrated in two steps.
First, the number of particles at constant volume and temperature (NVT) equilibration was carried out
for 100 ps at 300 K. The temperature of the system was kept constant using V-rescale thermostat [63].
In second phase, 100 ps equilibration was performed with number of particles at constant pressure of
1 bar (NPT) and temperature 300 K [64]. Accordingly following the protocol mentioned earlier, all the
systems were carried out for production run. In short, bond lengths of heavy atoms were sustained
using Linear Constraint Solver (LINCS) algorithm [65]. Particle Mesh Ewald (PME) method was
employed to calculate the long-range electrostatic interactions [66]. Short-range interactions length
was kept to 12 Å. All simulations were performed with the periodic boundary conditions to make
infinite systems. Time interval was kept of 10 ps to save coordinates data. Finally, result’s visualization
and analysis were performed using GROMACS and DS.

4.7. Binding Free Energy Calculations

The binding free energy was calculated by employing the Molecular Mechanics/Poisson-Boltzmann
Surface Area (MM/PBSA) method [67]. Following the MM/PBSA protocol to compute free energies
of the protein-ligand complex, equidistant snapshots of the hDHFR-ligand complex were extracted.
The binding free energy of the protein-ligand complex is stated as:

∆Gbinding = Gcomplex − (Gprotein + Gligand) (2)

where Gcomplex denotes the sum of the free energy of the complex, and Gprotein and Gligand specify the
free energies of portion and ligand in their unbound states.

Free energy can be defined as:

GX = EMM + Gsolvation (3)

where X can be a protein, a ligand, or their complex. EMM signifies the average molecular mechanics
potential energy in vacuum, while Gsolvation indicates the free energy of solvation.

Accordingly, molecular mechanics potential energy in vacuum can be calculated by implementing
the equation:

EMM = Ebonded + Enonbonded = Ebonded + (Evdw + Eelec) (4)

Ebonded denotes the bonded interactions, while Enonbonded terms the nonbonded interactions. The
value of ∆Ebonded is generally treated as zero.

The combined energetic terms of electrostatic (Gpolar) and apolar (Gnonpolar) give the solvation
free energy which is measured as:

Gsolvation = Gpolar + Gnonpolar (5)
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Here Poisson-Boltzmann (PB) equation is implemented to compute Gpolar, while the Gnonpolar is
calculated from the solvent-accessible surface area (SASA) as:

Gnonpolar = γSASA + b (6)

where,γ represents the coefficient of solvent surface tension, while b is its fitting parameter, whose values
are 0.02267 kJ/mol/Å2 and 3.849 kJ/mol, respectively.

5. Conclusions

In the current study, structure-based pharmacophore modeling, virtual screening, molecular
docking and molecular dynamics simulation methods were utilized to identify a potential inhibitor that
was capable of strong binding with wild type as well as drug-resistant (mutant) hDHFR. Structure-based
pharmacophore models for WT and MT hDHFR in complex with MTX were generated and validated
by the decoy test and ROC curve. Methotrexate analogs were generated by exploiting the MTX
structure in ZINC15, and carried out for ADMET and Lipinski’s Rule of five assessment tests to
evaluate drug-likeness of compounds obtained from ZINC. The drug-like compounds were used
in virtual screening with validated WT and MT pharmacophore models as a 3D query to identify
potential hits of wild type and mutant hDHFR. The compounds obtained from virtual screening
were docked in the active site sites of WT and MT hDHFR. Subsequently, through docking results
analysis, one compound was found to have a higher dock score than the reference compound (MTX),
displaying essential molecular interactions with key residues of the hDHFR active site. Furthermore,
MD simulation and binding free energy calculations for the Hit compound and MTX in complex with
WT and MT hDHFR were also used to evaluate the stability of the Hit compound with WT and MT
hDHFR. Taken together, our findings indicate MTX analog (ZINC000013508844) to be a potential
inhibitor of wild type hDHFR and drug-resistant F31R/Q35E variant of hDHFR. In future work, we will
try to synthesize the Hit compound to verify our findings through bioassay by collaborating with
an experimental lab. These findings can also be extended to assess other drug resistant hDHFR variants
for cancer therapeutics.

Supplementary Materials: Available online. Table S1 2D structures and ZINC IDs of Methotrexate analogs,
Figure S1: Superimposition of X-ray structure pose and docked pose of MTX.
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Abstract: Despite extensive efforts in the development of drugs for complex neurodegenerative
diseases, treatment often remains challenging or ineffective, and hence new treatment strategies
are necessary. One approach is the design of multi-target drugs, which can potentially address
the complex nature of disorders such as Alzheimer’s disease. We report a method for high
throughput virtual screening aimed at identifying new dual target hit molecules. One of the identified
hits, N,N-dimethyl-1-(4-(3-methyl-[1,2,4]triazolo[4,3-a]pyrimidin-6-yl)phenyl)ethan-1-amine (Ýmir-2),
has dual-activity as an acetylcholinesterase (AChE) inhibitor and as an α7 nicotinic acetylcholine
receptor (α7 nAChR) agonist. Using computational chemistry methods, parallel and independent
screening of a virtual compound library consisting of 3,848,234 drug-like and commercially available
molecules from the ZINC15 database, resulted in an intersecting set of 57 compounds, that potentially
possess activity at both of the two protein targets. Based on ligand efficiency as well as scaffold
and molecular diversity, 16 of these compounds were purchased for in vitro validation by Ellman’s
method and two-electrode voltage-clamp electrophysiology. Ýmir-2 was shown to exhibit the desired
activity profile (AChE IC50 = 2.58 ± 0.96 µM; α7 nAChR activation = 7.0 ± 0.9% at 200 µM) making
it the first reported compound with this particular profile and providing further evidence of the
feasibility of in silico methods for the identification of novel multi-target hit molecules.

Keywords: high-throughput virtual screening; dual-target lead discovery; neurodegenerative disorders;
Alzheimer’s disease; dual mode of action; multi-modal; nicotinic acetylcholine receptor;
acetylcholinesterase; molecular docking

1. Introduction

The development of treatments for neurodegenerative disorders such as Alzheimer’s disease
(AD), the most prevalent type of dementia, is a pressing matter due to the incurable, progressive,
and debilitating nature of the disease [1]. The situation is further aggravated by the ageing of
populations worldwide and reflected by the estimated triplication of the AD-affected from 50 million
in 2018 to 152 million in 2050 [2]. Neuropathologically, AD is characterized by its accompanying
lesions, most notably but not exclusively by amyloid plaques, neurofibrillary tangles, and neuronal
and synaptic loss [3,4], that lead to a variety of neurochemical changes, prominently in the cholinergic
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system [5]. Taken together, these alterations are the cause of cognitive symptoms such as memory loss,
language impairment, visuospatial dysfunction, and executive functioning issues [6] which are often
accompanied by other behavioral and psychological symptoms (BPSD) [7,8].

Despite extensive research efforts to understand AD, its causes and the underlying disease
mechanisms remain poorly understood. This renders the search for effective drugs difficult.
AD treatments have yet to succeed in slowing down disease progression and AD medications
currently approved in the US are palliative in nature but nevertheless continue to provide the biggest
benefits for patients [9]. The drugs fall into two categories, acetylcholinesterase (AChE) inhibitors
(galantamine (1), donepezil (2), rivastigmine (3); Figure 1) that raise synaptic acetylcholine (ACh) levels
and memantine (4), an NMDA receptor antagonist that regulates glutamatergic activity [10,11].

 

Figure 1. Structures of currently FDA-approved drugs for the treatment of AD, galantamine (1),
donepezil (2), rivastigmine (3) and memantine (4). Donepezil and memantine are also approved as a
combination therapy.

Investigations into the effects of administering memantine in conjunction with AChE inhibitors
started about two decades ago [12,13] and led to the approval of Namzaric, which is a combination
therapy relying on fixed doses of donepezil and memantine [14]. Other combination therapies are
also of interest, e.g., drugs with pro-cognitive effects combined with anti-inflammatory drugs [15].
In fact, treatments that target more than one disease mechanism have become an emergent therapeutic
strategy, especially for the treatment of complex, multifactorial diseases [16]. Besides addressing their
intricate nature, the combination of two molecules with different activities in one drug formulation can
result in drug synergism, as well as prevent unwanted compensatory mechanisms and drug tolerance,
for instance [17].

An alternative to combination therapies is multi-modal compounds [18,19]. These compounds
have essentially the same advantages as drug combinations but have, analogously to single
molecule therapies, an easier therapeutic regimen, fewer drug-drug interactions and no differences
in pharmacological properties to be considered [17,19]. However, the search for multi-target ligands
also poses new challenges [20]. This conundrum is commonly tackled by the synthesis of bivalent
hybrid ligands [21], but computational approaches can also be used to screen for novel ligands, i.e.,
by exploiting pharmacophore models underlying a set of known reference ligands or models of the
corresponding binding sites [22]. Virtual screening (VS) methods allow for the screening of large
compound databases against these models within a reasonable timeframe at comparably low cost.
A prerequisite is the availability of enough data of adequate quality in order to construct predictive
models. With the number of published X-ray structures, ligand datasets, and the ever-increasing
size of screening compound databases, these strategies are becoming increasingly more feasible [23].
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Nevertheless, VS for multi-target-directed ligands is not as commonly used as might be expected due
to the complexity of the task and a lack of established protocols [23].

In previous work, we embarked on the search for AChE inhibitors that concurrently increase
receptor activation at pro-cognitive nicotinic acetylcholine receptors (nAChRs) in a subtype-specific
manner [24]. In addition to the already established benefits of increasing synaptic ACh levels by
AChE inhibitors, the activity profile would thus extend to direct modulation of the cholinergic system.
Since the dosage of AChE inhibitors is often limited due to adverse effects, boosting the activity of
a pro-cognitive receptor such as the α7 nAChR [25] could increase the overall treatment efficiency.
Importantly, we established the feasibility of VS for the identification of compounds targeting AChE as
well as the α7 nAChR [24]. Top-scoring VS hits obtained from one target were subsequently screened
against the second target, which allowed for the identification of dual-activity compounds, however,
the disadvantage of this approach was introduction of bias towards the first target screened and that
none of these screening hits showed agonistic activity at the α7. Therefore, in the present study, the size
of the screening database was increased ~45 fold by shifting the focus from natural products and their
derivatives to drug-like molecules. Furthermore, the entirety of the screening database was screened
against both targets individually. Donepezil and a recently published α7 nAChR agonist were selected
as reference compounds and structure-based, parallel and independent VS was performed. Here,
we present the new protocol along with in silico and in vitro results, which show that it is feasible to
identify multi-target compounds with the desired activity profile.

2. Results

Our goal was to find new compounds with dual activity: (i) inhibitors at the AChE and (ii) agonists
of the α7 nAChR as illustrated in Figure 2. The approach taken was to screen a pre-filtered compound
database against an AChE X-ray structure and an α7 nAChR homology model in parallel using
identical parameters. The intersecting set between the two independently obtained sets of VS hits was
considered to contain potential bimodal compounds as illustrated by the Venn diagram in Figure 2.
A subset of these compounds were selected for in vitro testing at human α7 nAChR expressed in
Xenopus laevis oocytes by two-electrode voltage-clamp electrophysiology and at the human recombinant
AChE using Ellman’s colorimetric method [26] to validate the in silico predictions.

α

α

α

α

α
α

α

Figure 2. Workflow of the parallel HTVS, hit selection and in vitro evaluation. Two protein targets
were selected for in silico studies and protein models suitable for docking prepared. The same
database of compounds was then individually screened against each model using identical parameters.
After post-processing, common compounds from the two independent screening hit lists were used to
identify compounds destined for in vitro testing.

2.1. Protein Structures and Homology Modeling

Based on structure-activity considerations for AChE inhibitors and α7 nAChR agonists,
an X-ray structure of AChE co-crystallized with donepezil (2) determined to a resolution of
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2.35 Å (PDB 4EY7) was selected for the high-throughput virtual screening (HTVS) [27]. Since the
structure of α7 nAChR has not been determined to date, a homology model was constructed
using an (α4)2(β2)3 nAChR structure with a resolution of 3.94 Å (PDB 5KXI) [28] as primary
template augmented with an additional α4 subunit to facilitate modelling of an α7 homopentamer.
In addition, an acetylcholine binding protein (AChBP) from Lymnaea stagnalis co-crystallized
with N4,N4-bis[(pyridin-2-yl)methyl]-6-(thiophen-3-yl)pyrimidine-2,4-diamine (Compound 44;
α7-pEC50 = 6.3) from a recently published ligand series (PDB 5J5F) [29] served to define and bias
the binding site. This structure was chosen because donepezil is an extended, linear structure like
Compound 44 (5), as illustrated in Figure 3. We hypothesized that including the AChBP structure with
its co-crystallized ligand as an additional template in the model building process would result in an α7
nAChR model, in which the binding pocket would be opened up in a way that would facilitate the
docking of extended molecules resembling donepezil in size and shape, thus enhancing the probability
of identifying dual active molecules.

α

α
α β

α α

α

α

 

α

Φ Ψ

α

Figure 3. (A) Superposition of reference ligands in their bioactive, co-crystallized conformations.
AChE inhibitor Donepezil from PDB 4EY7 is shown in blue and α7 nAChR agonist Compound 44 from
PDB 5J5F in green. Atoms of the rings shown in bold in Panel B were used for superimposition of the
ligands. (B) Chemical structures of Donepezil and Compound 44.

We selected the homology model with the lowest Discrete Optimized Protein Energy (DOPE)
score [30] and inspected its Φ, Ψ angle distributions (Figure 4). A small fraction of the modelled amino
acid residues occupies energetically unfavorable regions of the plot. Since all these residues are in
non-conserved loop regions of the protein distant from the binding site, the model was deemed suitable
for docking. Both the α7 nAChR model and AChE structure were validated by docking the respective
reference ligands (RMSD Compound 44 = 0.87 Å, Donepezil = 0.62 Å).
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α
Figure 4. Detailed Ramachandran diagram of chains A and B of the α7 nAChR homology model by
residue type. (A) The general case of non-glycine, non-proline and non-pre-proline residues is depicted.
The special cases having either significantly less (B; Glycine) or more conformational restraints (C,D;
Proline and preproline). The contours of Glycine are twofold symmetrized based on the dataset from
Lovell et al. [31].

2.2. Screening Database

To optimize the chances of success for the VS, we considered the importance of various factors
that concern compounds making up the screening database. The ZINC15 database [32], which is freely
available and suited for VS, provides compound annotations, such as different degrees of commercial
availability and the ability to download specific subsets of the database based thereon, and was chosen
as starting point. In a first step, a subset of 7,679,852 compounds was downloaded from ZINC15
(Figure 5) that corresponds to compounds which are “anodyne” (lowest reactivity), “in-stock” (highest
commercial availability), have molecular weights (MWs) between 250 and 500 Da and a logP within
the range of −1 to 5. This puts an emphasis on drug-likeliness and on the ability to verify the results
in the laboratory. In addition to the property filters built into ZINC15, another set of property and
structure filters was applied. The property filters were based on Lipinski’s rule of five [33] with the
intention of enhancing the drug-likeliness of the compounds while the structural filters were more
focused on reducing the probability of identifying reactive, assay-interfering or otherwise problematic
ligands as exemplified by REOS (rapid elimination of swill) [34] or PAINS (pan-assay interference
compounds) [35] filters. Roughly half of the initial set was discarded during this extensive filtering
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process. To finalize the screening database, the remaining 3,848,234 compounds were prepared for
docking resulting in 5,213,053 entities. At this stage, the total charge per molecule was limited to 0
and 1 predicated on the knowledge that nicotinic receptor ligands in most instances contain a basic
nitrogen atom crucial for binding.

Figure 5. Schematic overview depicting the number of molecules during database preparation, starting
from the compound database ZINC15 (bucket) through various filtering stages (funnel) to the final
database used for VS (flask). States refers to the number of different entities for which 3D coordinates
were generated and includes protonation states and tautomers.
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2.3. Virtual Screening

The database was docked against both protein targets in parallel using the glide-based
Schrodinger virtual screening workflow and identical parameters. Following three rounds of docking
exercises, the number of compounds was narrowed down to approximately 15,000 for each target.
After post-processing, the compounds below the 0.5 quantile of the normalized ligand efficiencies
were considered reasonable VS hits for each target and the intersect between the two VS screening
results was then investigated in more detail (Figure 6). The median set of the putative ligands consisted
of 4734 and 3824 compounds for AChE and α7 nAChR, respectively, with 57 compounds shared
between the two sets. The docking poses and the structural diversity of these compounds were then
analyzed in order to select 15 compounds for in vitro testing. Notably, all compounds contained a basic
nitrogen and at least one aromatic ring. Several hits were analogous structures, hence compounds were
prioritized for in vitro testing based on the ligand efficiency values from docking and the observed
molecular interactions in the docked ligand poses such as hydrogen bonding to TRP-149 of the α7
nAChR, while also ensuring that no close derivatives were present in the final set.

α

α

 

α

α

Figure 6. Venn diagram of AChE and α7 nAChR screening hits in the 0.5 quantile of normalized ligand
efficiencies. (B) Scatterplot of normalized, strain-corrected ligand efficiencies. Compounds which are
in the 0.5 quantile are colored blue and tested compounds are labeled as indicated Table 1 and shown
in magenta.

2.4. AChE and nAChR α7 Activity Testing

The selected compounds (6–21, Table 1) were screened for AChE inhibitory activity at 200 µM
by employing Ellman’s colorimetric analysis [26]. For five poorly soluble compounds, the methanol
supernatants were tested. Ellman’s colorimetric analysis is based on the breakdown of acetylthiocholine
(ATCI) by AChE to thiocholine and acetic acid. Ellman’s reagent in turn reacts with the thiol group
of thiocholine resulting in a yellow color indicating the extent of enzymatic activity. Of the eleven
compounds soluble in MeOH, ten were shown to inhibit AChE significantly at 200 µM varying
from 66.6–100% while one compound (17), showed low inhibition (22.9 ± 1.1%, Table 1), which is in
agreement with it having the lowest docking score for AChE of all the compounds tested. The five
poorly soluble compounds also exhibited significant inhibitory activities between 45.9 and 100%.
Overall, fourteen compounds inhibited AChE enzymatic activity more than 60%, eleven more than
80% and eight more than 90%. Compounds that inhibited AChE more than 80% in the initial screening
at 200 µM had IC50 values in the low micromolar range between 1.10 and 33.47 µM, which is two to
three orders of magnitude lower than donepezil, the reference ligand, which showed an IC50 value of
0.06. µM. The IC50 of compounds 6 and 15, the least potent AChE inhibitors, were determined to be
58.47 and 114.70 µM.
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Table 1. Docking and in vitro results for tested compounds (6–21). For AChE, compounds were initially screened at 200 µM followed by IC50 measurements for
soluble compounds with ≥ 80% inhibition. For α7 nAChR agonism, activities were measured at 200 µM concentrations. For determination of modulation of ACh
responses at the α7 nAChR, 100 µM compound was co-applied with 30 µM ACh. Measured data represent the mean ± S.E.M of at least three AChE replicates and
independent oocyte experiments.

Compd. ID Structure

AChE
G-Score a

Norm. LE b

%Inhibition c,d

IC50 (µM)(pIC50 ± SEM)

α7 nAChR
G-Score a

Norm. LE b

%Activation c

%Inhibition c

Compd. ID Structure

AChE
G-Score a

Norm. LE b

%Inhibition c,d

IC50 (µM)
(pIC50 ± SEM)

α7 nAChR
G-Score a

Norm. LE b

%Activation c

%Inhibition c

6

 

–12.30
–2.11

76.1 ± 0.9%
IC50 = 58.47
(4.23 ± 0.02)

–13.85
–1.71

0.4 ± 0.4%
47.2 ± 3%

14

 

–13.04
–1.06
100%

IC50 = 1.10
(5.96 ± 0.02)

–15.56
–1.09

0.3 ± 0.3%
60.0 ± 1%

Ýmir-2 (7)f

 

–14.90
–2.63

98.4 ± 0.9%
IC50 = 2.58

(5.59 ± 0.02)

–11.50
–0.65

7.0 ± 0.9%
-

Ýmir-10 (15)
 

–11.79
–1.18

66.6 ± 1.7%
IC50 = 114.70
(3.94 ± 0.02)

–13.13
–0.94

2.3 ± 0.4%
-

8

 

–12.34
–1.19

100%d

-

–16.35
–1.60

0.3 ± 0.3%
59.0 ± 5%

16

 

–11.81
–0.50

100%d

-
-

–16.16
–1.08

1.0 ± 0.0%
90.7 ± 1%

9

 

–11.91
–1.23

45.9 ± 3.8%d

-
-

–15.40
–1.54

1.0 ± 0.6%
66.7 ± 4%

17

 

–10.22
–0.59

22.9 ± 1.1%
-
-

–13.35
–1.00

-
-

10

 

–12.11
–1.10

90.8 ± 0.2%
IC50 = 11.28
(4.95 ± 0.02)

–15.93
–1.50

0.3 ± 0.3%
85.0 ± 2%

18

 

–12.92
–0.86

91.6 ± 2.2%
IC50 = 17.88
4.75 ± 0.02

–14.49
–0.71

0.7 ± 0.3%
68.7 ± 1%
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Table 1. Cont.

11

 

–12.32
–1.18

100%d

-
-

–15.16
–1.30

0.7 ± 0.3%
73.3 ± 6%

Ýmir-14 (19)

 

–12.48
–0.88
100%

IC50 = 1.32
(5.88 ± 0.01)

–13.13
–0.52

0.7 ± 0.3%
96.0 ± 1%

12

 

–12.75
–1.14

63.7 ± 4.4%d

-
-

–15.61
–1.25

0.3 ± 0.3%
81.7 ± 1%

20f

 

–13.45
–0.87

86.0 ± 0.1%
IC50 = 33.47
(4.48 ± 0.02)

–13.71
–0.42

0.3 ± 0.3%
94.3 ± 1%

13

 

–13.20
–1.12

82.5 ± 1.1%
IC50 = 30.24
(4.52 ± 0.02)

–15.60
–1.10

0.7 ± 0.7%
68.0 ± 2%

Ýmir-16 (21)

 

–12.48
–0.71

87.7 ± 0.6%
IC50 = 7.76

(5.10 ± 0.02)

–13.27
–0.44

0.3 ± 0.3%
97.3 ± 1%

a Glide G-score (kcal/mol); b Normalized ligand efficiency as defined in Formula 1; c “-“ indicates “value not determined”; d % inhibition of supernatant (MeOH); e galantamine pIC50 =

6.64 ± 0.02%, donepezil pIC50 = 7.22 ± 0.02; f tested as racemic mixture.
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Subsequently, all compounds except compound 17 were assessed at the α7 nAChR expressed
in Xenopus oocytes using two-electrode voltage-clamp electrophysiology. Compounds were tested
for direct activation of the α7 nAChR in a 0.2–200 µM concentration range. Compounds displaying
less than 1% direct activation were further evaluated at 100 µM for their ability to alter currents
evoked by 30 µM ACh. Compound 7 (Ýmir-2) and 15 (Ýmir-10) exhibited activation of α7 nAChR with
7.0 ± 0.9% and 2.3 ± 0.4% at 200 µM, respectively (Figure 7). Attempts to establish their potency were
unsuccessful due to limited solubility. However, application of 2, 20, and 200 µM, as evident from
Figure 7, established a concentration dependent effect. The remaining thirteen compounds exhibited
less than 1% agonism indicating that they were either inefficient at mediating receptor activation or
inactive at the tested concentrations. When tested as antagonists for their ability to inhibit ACh-evoked
currents, all compounds showed inhibition in a range of 47.2–97.3% at 100 µM, with compounds 19
(Ýmir-14) and 21 (Ýmir-16) displaying almost full inhibition of 96% and 97%, respectively, at 100 µM
(Figure 8).

α

α

α

α

−

Figure 7. Evaluation of compounds as agonists. Representative current traces for ACh, Ýmir-2 (7) (A)
and Ýmir-10 (15) (B) at α7 nAChRs expressed in Xenopus oocytes. Cells were subjected to two-electrode
voltage-clamp electrophysiology experiments where the oocyte membrane potential was clamped
at −60 mV. The representative traces were baseline subtracted. Bars above the traces represent the
application periods and the respective test solution concentrations are indicated above them. Note that
the majority of the washing periods (3 min) between each trace are omitted in the figure.
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α

−

Figure 8. Evaluation of compounds as antagonists. Representative current traces for ACh and 10 and
100 µM Ýmir-14 (19) (A) and Ýmir-16 (21) (B) co-applied with 30 µM ACh at α7 nAChRs expressed in
Xenopus oocytes. Cells were subjected to two-electrode voltage-clamp electrophysiology experiments
where the oocyte membrane potential was clamped at −60 mV. The representative traces were baseline
subtracted. Bars above the traces represent the application periods and the respective test solution
concentrations are indicated above them. Note that the majority of the washing periods (3 min) between
each trace is omitted in the figure.

3. Discussion

We embarked on the search for bimodal compounds with the help of computational methods.
In accordance with the hypothesis from our previous study [24], we searched for hit molecules that
target α7 nAChR as agonists and AChE as inhibitors. A drug based on this new activity profile could
provide a new strategy for treating AD by the dual modulation of cholinergic signaling.

Despite the requirements of VS for high quality models of binding sites and screening databases,
it has proven useful for the identification of new ligands for single targets and many methodological
improvements have been made over the past decades [36,37]. Adding a second biological target adds
another significant constraint to the problem, which is often addressed by pre-filtering or pre-screening
the compound database based on one target before testing the second target [23].

In the current study, we conducted a VS without pre-screening our ligand database and docked
the entire dataset to both targets. AChE and α7 nAChR are structurally and functionally distinct
proteins but both evolved to accommodate ACh in their respective binding pockets. Sharing the same
endogenous ligand and hence pharmacophoric elements should increase the probability of finding a

163



Molecules 2020, 25, 2872

molecule that fits both pockets. In addition, we constrained the search to ligands that are extended and
linear based on two reference ligands.

We successfully employed this HTVS approach and identified two compounds (Ýmir-2, Ýmir-10)
that showed AChE inhibition and activation of the α7 nAChR, confirming the feasibility of VS for the
search of bimodal compounds at these targets as reported previously [24]. We observed a remarkably
high hit rate for AChE inhibitors, where all but one (17) of the tested compounds showed activity at
200 µM. Moreover, 10 out of the 11 compounds soluble in MeOH showed significant inhibition of the
enzymatic activity of AChE, as did all the compounds where only the supernatants were tested due to
low solubility, indicating that these compounds also interact with the active site of AChE. However,
further analysis to determine IC50 values could not be performed for these compounds.

The hit rate at the α7 nAChR was likewise high, with 2/15 compounds displaying direct agonism.
Ýmir-2 (7) and Ýmir-10 (15) showed partial activation of 7.0% and 2.3%, respectively, at 200 µM. Due to
solubility issues, the maximal receptor activation could not be determined. The remaining compounds
exhibited α7 nAChR antagonism, in a range between 47.2% and 97.3% at 100 µM when co-applied with
30 µM ACh. Two compounds, Ýmir-14 (19) and Ýmir-16 (21) inhibited the response of ACh almost
fully and in a concentration dependent manner (Figure 8). This, and the fact that the agonist-based VS
project yielded compounds that are structurally similar to each other as well as to known α7 nAChR
agonists, suggests that the investigated compounds interact with the binding pocket where they likely
act as antagonists although weak partial agonism cannot be ruled out. Hence, as all compounds but
one displayed some activity at the nAChR, and as the difference between an antagonist and agonist is
often subtle, the VS in terms of binding to the α7 nAChR orthosteric binding site could be considered as
high as 14/15. However, it cannot be excluded that receptor inhibition for some compounds is mediated
by a different mechanism such as direct blockage of the ion channel pore. Further experiments would
be required to elucidate the exact mechanism of inhibitory interaction.

All 57 compounds identified in both screenings were extended, linear molecules. Other common
properties such as the presence of a basic nitrogen at one end of the molecule and an aromatic moiety
at the other were also observed. As the set included derivatives of the same compound but also
compounds that differed only in their basic amine (e.g., piperidine and pyrrolidine) we identified
these two regions as the main source of variability in the set of putative bimodal compounds. The low
diversity of the intersecting set is likely a consequence of the protocol and the constraints applied during
docking, but the structural patterns are also in accordance with known nicotinic ligands indicating that
this is a general feature of nAChR ligands. The docked poses of Ýmir-2 (7) and Ýmir-10 (15) display
characteristic interactions of AChE inhibitors and nicotinic receptor ligands around the basic amine, i.e.,
the positively charged amines are coordinated in the aromatic cage of the α7 nAChR and the anionic
site of AChE (Figure 9). The lack of hydrogen bonds and strong hydrophobic interactions distal to the
basic amines in the α7 nAChR suggests that the activity of these ligands could be further improved in
this region. It is also noteworthy that the basic amine of Ýmir-2 (7) does not display the hydrogen
bond to the backbone carbonyl of TRP-149 which is often considered crucial [38] and observed in
multiple co-crystallized complexes between ligands and nicotinic receptors as well as acetylcholine
binding proteins.
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Figure 9. Interactions of Ýmir-2 (7) (magenta) and Ýmir-10 (15) (blue) in AChE (A,B) and α7 nAChR
(D,E) and superposition of docking poses to reference ligands donepezil (C) and Compound 44 (5) (F).
Hydrogen-bonding and is indicated by yellow, dotted lines, cation-π interactions by green, dotted lines
and π–π interactions by blue dotted lines.

4. Materials and Methods

4.1. Materials

Plant origin galantamine hydrobromide analytical standard was purchased from PhytoLab
GmbH & Co. KG (Vestenbergsgreuth, Germany). Screened compounds (6–16, 18, 20 and 21) were
purchased from Molport (Riga, Latvia), compound 17 from Asinex (Winston Salem, NC, USA) and
19 from AsisChem (Waltham, MA, USA). Restriction enzymes were from New England Bio Labs
Inc. (Ipswich, MA, USA) and DNA and RNA purification kits were from QIAGEN N.V. (Venlo,
The Netherlands). mMessage mMachine T7 transcription kit was from ThermoFisher Scientific
(Waltham, MA, USA). Human recombinant acetylcholinesterase (C1682), acetylcholine chloride,
acetylthiocholine iodide, 5,5-dithiobis-(2-nitro-benzoic acid), bovine serum albumin, kanamycin,
theophylline, tricaine, collagenase, HEPES, Trizma, salts and other chemicals not mentioned specifically
were purchased from Sigma-Aldrich Co. LLC (St. Louis, MO, USA) and were of analytical grade.

4.2. Protein Models

4.2.1. nAChR α7 Homology Model

The amino acid sequence of the human α7 nAChR was obtained from the UniProt
protein knowledgebase (entry P36544 [39]) and aligned to the sequences of the α4- and
β2-subunits of PDB 5KXI [28] (α- and β-subunits or chains A and B respectively) and
5J5F [29] (chain A) with the T-Coffee Expresso structural alignment tool [40]. Residues used
to build the homology model were then manually selected ensuring that the binding site was
mainly built on the 5J5F template, an AChBP structure in complex with Compound 44 (5)
(N4,N4-bis[(pyridin-2-yl)methyl]-6-(thiophen-3-yl)pyrimidine-2,4-diamine), whereas the tertiary and
quaternary structure was largely modelled after 5KXI (Figure 10). Since the α7 receptor consists of
α-subunits only, a single α-subunit from the (α4)2(β2)3 template was also provided separately as
template where there is a β-subunits in the 5KXI complex. The α7 nAChR homology models were built
with Modeller (Version 9.16, Automodel class, Salilab, UCSF, San Francisco, CA, USA) [41]. Protein
secondary structures as well as the pentameral symmetry were supplied as constraints to Modeller.
Out of 100 generated models, the model with the highest scoring DOPE potential [30] was selected for
further studies.
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Figure 10. Sequence alignment of the templates used in the homology model ofα7 nAChR. The sequence
of one α- and one β-subunit of the (α4)2(β2)3 receptor co-crystallized with nicotine (PDB 5KXI) and
of an AChBP co-crystallized with Compound 44 (5) were aligned using T-Coffee and modified for
homology model building. Residues used as templates in homology modelling are shown in bold
and conserved amino acids highlighted green. The overall sequence identity between the α7 nAChR
and the (α4)2(β2)3 nAChR subunits used as primary templates are 45% (62% sequence similarity) and
37% (57% sequence similarity), respectively. The sequence identity between α7 nAChR and AChBP is
28% (46% sequence similarity) overall and 39% (64% sequence similarity) for the part that was used
as template.

The resulting receptor model was then prepared with the Schrodinger Protein preparation
wizard [42] (hydrogens added and H-bonds optimized, protonation according to pH 7.4, restrained
minimization (RMSD 0.3 Å)). The quality of the selected model was assessed based on a Ramachandran
plot drawn in R [43] using the data published by Lovell et al. [31]. Subsequently, the protein-ligand
complex was refined with Schrodinger Prime [44] for the ligand its surrounding protein residues within
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5 Å using Monte Carlo sampling [45], VSGB solvation model [46], OPLS3 force field [47], and otherwise
default parameters.

4.2.2. AChE Model

The protein structure of AChE (PDB 4EY7 [27]) was downloaded from the Protein Data Bank [48]
and all waters, ions, and small molecules except for donepezil removed. It was then prepared with the
Schrodinger Protein preparation wizard [42] as described above for the α7 nAChR model.

4.3. Screening Library

The ZINC15 database [32] was downloaded in smiles format after application of the following
filters: MW 250–500; logP −1–5; in-stock; anodyne. The smiles strings were then converted to canonical
smiles and duplicates removed using OpenBabel 2.4.0 [49]. REOS [34] and PAINS [35] structure filters
were applied using Schrodinger utilities. A set of additional filters were defined and applied to remove
“flavonoid-like” structures, restricting the amount and position of halogen atoms and limiting the
number of oxygen and nitrogen atoms to 6 and 1–8, respectively. Finally, physicochemical properties
were calculated using Schrodinger software (Release 2018-1, Schrödinger, LLC, New York, NY, USA)
and filtered using a custom perl script (HBD 5; HBA 10; PSA ≤ 120, RB ≤ 7).

4.4. Virtual Screening

With respect to VS, 14 Å3 Glide Receptor Grids [50,51] were centered around donepezil and
Compound 44 in the AChE and α7 nAChR protein models respectively and generated with the
receptor scaling factor set to 0.9, the partial charge cut off to 0.3 and three positional restraints along
the reference ligands in each of the binding sites. For the α7 nAChR, the areas concerned were in
the hydrophobic pocket as well as the area corresponding to the position of the thiophen moiety
of the N4,N4-bis[(pyridin-2-yl)methyl]-6-(thiophen-3-yl)pyrimidine-2,4-diamine ligand in the 5J5F
structure and for AChE they were set at the anionic site as well as the hydrophobic gorge occupied
by the indanone moiety of donepezil. These positional restraints were applied after each round of
docking, thereby ensuring that only ligand poses occupying crucial areas in the binding site were
considered without artificially enriching them. To perform the Ligand Docking, the Virtual Screening
Workflow available in the Schrodinger suite based on Glide docking [50,51] was used. Ligands were
prepared with OPLS_2005 forcefield [52] at pH 7.4 and a maximum of 8 different stereoisomers per
ligand generated. Only neutral and mono charged states were kept (See Section 4.3 also). For docking,
the ligand scaling factor set to 0.85 and the partial charge cut-off to 0.2. Moreover, 300,000 compounds
were kept after the initial HTVS, 30,000 after the SP (Standard Precision), and none were removed after
the XP (extra precision) docking stage. Docking scores were strain corrected with the help of the Strain
Rescore script (OPLS3 [47], aqueous solvation model, Energy Offset 0 kcal/mol and default cartesian
constraint settings). Subsequently, the dataset was further processed in R [43], where glide docking
scores were used to calculate ligand efficiencies as

Ligand efficiency = (Glide docking score − strain penalty) × (NHeavy atoms) −1 (1)

and the values obtained normalized. Afterwards, compounds with positive docking scores as well as
compounds with strain energy larger than 4 kcal/mol were removed from the dataset. The intersecting
set of both obtained lists of docking hits was then considered to contain the putative bimodal
compounds. Subsequently, compounds in the lower 0.5 quantile of both normalized ligand efficiencies
were excluded. From the resulting list, compounds were selected based on diversity, docking pose,
and commercial availability.
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4.5. AChE Activity Testing

In vitro AChE inhibitory activity was studied using the colorimetric method of Ellman [26]
using human recombinant AChE enzyme. To a 96-well microplate, test solutions were applied
along with 1 mg/mL bovine serum albumin, 0.5 mM 5,5-dithiobis-(2-nitro-benzoic acid), and 0.5 mM
acetylthiocholine iodide. The reaction was initiated by addition of 0.20 units/mL AChE enzyme and
followed by colorimetric detection at 405 nm. Experiments were conducted in triplicate. All compounds
were dissolved in methanol (maximum 2% methanol at assay conditions that did not affect the enzyme
activity) and screened at 200 µM with galantamine as a positive control.

Compounds that fully solubilized in MeOH and exhibited more than 70% inhibition of ACh
degradation were further analyzed and their IC50 values determined using between five and
eight concentrations.

4.6. nAChR α7 Activity Testing

4.6.1. Molecular Biology

Human α7 nAChR receptor subunits were cloned and inserted into expression vectors as described
previously [53]. Plasmid cDNAs were linearized using a downstream Not I restriction site and purified.
cRNA was prepared and capped from the linearized cDNA using the mMessage mMachine T7
transcription kit according to the manufactures protocol. Purified cRNA was aliquoted and stored at a
concentration of 0.5 µg·µL−1 at −80 ◦C until further use.

4.6.2. Expression of α7 nAChR in Xenopus laevis Oocytes

Xenopus laevis oocytes were obtained as described previously [54], briefly, ovary lobes were
removed by surgical incision, sliced into small pieces and defolliculated by collagenase treatment.
The protocol for this specific study was approved by the Animal Ethics Committee of the University
of Sydney (Protocol number: 2013/5915) and carried out according to these guidelines. Stage V and
VI oocytes were injected with a total of ~25 ng of cRNA encoding human α7 nAChR with RIC3
(in 5:1 ratio), a protein enhancing the expression of the receptor. Injected oocytes were incubated for
3–5 days at 18 ◦C in a saline solution (96 mM NaCl, 2 mM KCl, 1 mM MgCl2, 1.8 mM CaCl2, 5 mM
HEPES (hemisodium, pH 7.4)) supplemented with 2.5 mM sodium pyruvate, 0.5 mM theophylline,
and 50 µM gentamycin.

4.6.3. Oocyte Electrophysiology

Electrophysiological recordings from Xenopus laevis oocytes were performed using the
two-electrode voltage-clamp technique as described previously [54,55]. Briefly, oocytes were placed
in a custom-built recording chamber and continuously perfused with a saline solution. The saline
solution contained 96 mM NaCl, 2 mM KCl, 1 mM MgCl2, 1.8 mM CaCl2, 5 mM HEPES (hemisodium,
pH 7.4). Pipettes were backfilled with 3 M KCl and open-pipette resistances ranged from 0.3 to 1.5 MΩ

when submerged in the saline solution. Oocytes were voltage clamped at a holding potential of
−60 mV using an Axon Geneclamp 500B amplifier (Molecular Devices, LLC, San Jose, CA, USA).
Rapid solution exchange in the oocyte vicinity (order of a few seconds) was ensured by application
through a 1.5 mm diameter capillary tube placed approximately 2 mm from the oocyte as described
previously [54]. The solution flow rate through the capillary was 2.0 mL/min. Experiments were
performed as follows: nAChR currents were initially evoked with three AChcontrol applications (~EC20,
30 µM), a maximum efficacious concentration of AChmax (EC100, 3 mM) followed by three additional
AChcontrol applications. Thereafter, test compounds in increasing concentration were applied (25 s),
the maximal tested concentration was 200 µM. A wash period of at least 2 min was kept between
each application. After the agonist test, new ACh controls were applied (AChmax followed by three
additional AChcontrol applications) and compounds that displayed <1% activation were tested for
their ability to modulate the effect of ACh. In these experiments, 10 and 100 µM concentration of
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a test compound was co-applied with 30 µM ACh. Peak current amplitudes were normalized with
respect to the amplitude of current elicited by 3 mM or 30 µM ACh for the agonist and antagonist test,
respectively. All experiments were conducted at least in triplicate.

ACh was initially dissolved in milliQ water as 10 mM stock solution. Screened compounds were
dissolved as a 50 mM stock solution in DMSO, except for Ýmir-2 and compound 12 which were kept
as 10 mM stock solutions. The maximal DMSO concentration in the final dilution did not exceed 2%.
This DMSO concentration did not evoke any current from the receptors. Compound dilutions were
prepared in a saline solution on the day of the experiment.

4.7. Data Analysis

Data analysis was performed as reported previously [24]. Electrophysiological data were analyzed
using pClamp 10.2 (Molecular Devices, LLC, San Jose, CA, USA). During analysis, traces were baseline
subtracted and responses to individual applications quantified as peak-current amplitudes. Statistical
calculations were performed using GraphPad Prism 7 (GraphPad Software, GraphPad, San Diego,
CA, USA). Activation of the α7 nAChR was calculated as a percentage of Emax response to ACh.
For evaluation of the inhibitory activity, the percentage of remaining peak-current amplitudes relative
to that of the AChcontrol (EC20) application was calculated. AChE inhibition data were analyzed using
GraphPad Prism 7. Absorption readings from the AChE inhibition assay were plotted versus time
and linear regression was performed. From the obtained slopes the percentages of inhibition were
calculated normalized to the control (Galantamine) and IC50 values were determined from non-linear
regression analysis. Data were fitted with the slope set to 1 and remaining current amplitude at
infinitely high compound concentrations set to 0.

5. Conclusions

It was confirmed that HTVS approaches can be applied in the search for novel bimodal drug hits
active at AChE and α7 nAChR with good hit rates. Ýmir-2 and Ýmir-10 represent novel compounds
with a dual activity profile, i.e., inhibition of AChE and activation of the α7 nAChR, reported for
the first time. The successful identification of two bimodal compounds is an encouraging outcome
for VS for AD drug hits. Derivatives of Ýmir-2 could be developed into compounds with improved
physicochemical properties and activity profiles of clinical interest.
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Abstract: Vaccines and immunotherapies depend on the ability of antibodies to sensitively and
specifically recognize particular antigens and specific epitopes on those antigens. As such, detailed
characterization of antibody–antigen binding provides important information to guide development.
Due to the time and expense required, high-resolution structural characterization techniques are
typically used sparingly and late in a development process. Here, we show that antibody–antigen
binding can be characterized early in a process for whole panels of antibodies by combining
experimental and computational analyses of competition between monoclonal antibodies for binding
to an antigen. Experimental “epitope binning” of monoclonal antibodies uses high-throughput
surface plasmon resonance to reveal which antibodies compete, while a new complementary
computational analysis that we call “dock binning” evaluates antibody–antigen docking models
to identify why and where they might compete, in terms of possible binding sites on the antigen.
Experimental and computational characterization of the identified antigenic hotspots then enables
the refinement of the competitors and their associated epitope binding regions on the antigen.
While not performed at atomic resolution, this approach allows for the group-level identification
of functionally related monoclonal antibodies (i.e., communities) and identification of their general
binding regions on the antigen. By leveraging extensive epitope characterization data that can be
readily generated both experimentally and computationally, researchers can gain broad insights into
the basis for antibody–antigen recognition in wide-ranging vaccine and immunotherapy discovery
and development programs.

Keywords: epitope binning; epitope mapping; epitope prediction; antibody:antigen interactions;
protein docking; glycoprotein D (gD); herpes simplex virus fusion proteins

1. Introduction

The utility of antibodies (Abs) for treatment of disease has been recognized for over a century
and the clinical realization of this vision in a host of broad therapeutic indications has begun to
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come to fruition [1,2]. The efficacy of an Ab, whether from vaccination or as a therapeutic, is
functionally determined by the specific epitope that it recognizes on its cognate antigen (Ag). Thus,
even Abs targeting the same Ag have demonstrated variable efficacy depending on their epitope
specificities [3,4]. Recent advances in Ab engineering have enabled researchers to generate large panels
of Abs with broad epitope coverage allowing for the selection of Ab–Ag pairings with improved
safety and efficacy [5–8]. Abs have demonstrated differential effects in both vaccines and therapies
depending on their epitopes [9–11]. Moreover, combination immunotherapies with diverse epitopes
have demonstrated synergistic efficacy and have reduced the ability of cancer and infectious disease to
develop resistance [12,13]. Furthermore, the use of immune repertoire B cell sequencing is supporting
expanded clinical applications not only in immunotherapy, but also in the development of vaccines
for emergent infectious diseases, both viral and bacterial [14]. The specificity of Abs in vaccine
applications reveals various levels of protection depending on which epitopes are targeted by the
immune response [12,13,15–19].

1.1. Understanding the Structures of Epitope:Paratope Interactions Guides the Design of Superior
Immunotherapies and Vaccines

One of the areas for improvement in Ab engineering is the characterization of the binding interactions
between an Ab and its specific Ag, as defined by the epitope–paratope interface [5,20–22]. Due to
practical limitations, structural data is only available for a relatively small number of epitope–paratope
interactions [23,24], since commonly used analytical techniques for obtaining these data, such as X-ray
crystallography, NMR spectroscopy, cryo-electron microscopy, and H-D exchange mass spectrometry,
are highly resource-intensive and often require artisan skillsets [25–28]. As such, these techniques are
feasible only for late-stage lead molecules where they provide confirmation data rather than early-stage
predictive tools that influence candidate selection [5]. These limitations highlight the realization
that a more sophisticated strategy is required to characterize a panel of antibodies either to screen
immunotherapies or to characterize immune repertoires from natural or vaccinated responses [23].
The localization of these interactions would provide information to help understand biochemical
mechanisms of action, which is at the core of advancing the discovery and development of new
immunotherapeutics and vaccines [20,29,30].

1.2. High-Throughput Epitope Characterization Assays Provide Valuable Epitopic Information

Epitope characterization has made significant progress in recent years as the throughput of
biosensors has improved [5,31]. Foremost amongst emerging techniques for high-throughput epitope
characterization is epitope binning, as it merges the speed and functional-site identification capabilities
demanded by the biopharmaceutical industry [3–5,32]. Epitope binning is a competitive immunoassay
where Abs are tested in a pairwise manner for their simultaneous binding to their specific Ag, thereby
generating a blocking profile for each Ab showing how it blocks or does not block the others in the
panel [32–35]. Abs with similar blocking profiles can be clustered together into a “bin”, or represented
as a “community” in a network plot that illustrates the blocking relationships among the Abs. In an
oversimplified generalization, Abs in the same community are assumed to recognize the same epitope
region and generally block the binding of others in the community. Advances in throughput offered by
emerging array-based, label-free methods are allowing epitope binning to be performed early in drug
discovery [32–35]. This approach can enable the pipeline to be populated with Abs that are diverse
epitopically and, consequently, functionally. A key limitation of epitope binning remains its inability
to provide insights into the locations of the epitopes on the target [3–5,32].

1.3. Integrating High-Throughput Experiment and Computation Enables Characterization of Ab-Specific
Epitopes

An emerging approach for localizing Ab recognition and characterizing Ab-specific epitopes
involves coupling experimental data and computational modeling [9,36]. Purely computational
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approaches to epitope prediction are quick and inexpensive but are not yet of sufficient accuracy to
be relied upon on their own [36–40]. However, the incorporation of even limited experimental data
can help close the gap. For example, the EpiScope approach first constructs a homology model of an
Ab based on its sequence, then computationally docks that model onto a structure or high-quality
homology model of the Ag, and finally, designs focused mutagenesis experiments to test the docking
models [9]. While it is generally not clear from computational scoring alone which docking model is
the most accurate, it was shown in both retrospective and prospective studies that a small number
(generally 3–5) of binding assays for computationally designed Ag variants can reliably enable the
various docking models to be confirmed or rejected and thereby identify the general epitope region [9].
Complementarily, experimental data can be used to focus docking and energy minimization to better
define binding mode or epitope [41]. In general, combined computational–experimental approaches
balance cost and accuracy in characterizing epitope sites.

Here, we take this general idea and scale it up from individual Abs to sets of Abs, presenting
a new integrated experimental-computational approach (Figure 1) to characterize epitopes for an
entire panel of Abs against an Ag by combining experimental binning with “dock binning,” a new
computational counterpart based on analysis of docking models for all the Abs. With the application to
a model system, glycoprotein D from herpes simplex virus, we show that this combination of powerful
experimental and computational methods can help rapidly identify antigenic regions and localize
Ab-specific epitopes. The approach promises to enable better understanding of Ab–Ag interactions at
a larger scale, and ultimately improve to the design of vaccines and therapeutics.

 

 

Figure 1. Schematic overview of our method for localizing Ab-specific epitopes by integrated
experimental and computational analysis of binding competition. (Step 1) Experimental binning
identifies communities of Abs that compete with each other for Ag binding. This grouping allows
subsequent analyses to be focused on one or a few representatives from each community, reducing the
effort required. (Step 2) For each representative Ab, a homology model of its Fv structure is constructed
from its sequence, and Ab:Ag docking models are generated from the Ab model and the Ag structure or
homology model. (Step 3) The docking models are computationally clustered, with this dock binning
process analogous to experimental epitope binning in identifying patterns of competition. Since the
competition is in terms of structural models of Ab:Ag binding, the identified communities correspond
to general antigenic regions, and thereby map out potential binding regions on the Ag, summarized
across the whole Ab panel as an antigenic heatmap. (Step 4) Experimental data is collected to probe the
hypothesized epitope regions, e.g., using site-directed mutagenesis, chimeragenesis, peptide binding,
or selection of alternative natural variants, in order to alter a putative epitope and evaluate effects
on experimental competition or binding. (Step 5) The experimental data is used to focus docking,
redefining bins, better characterizing competition, and better localizing epitope binding regions. This
ultimately results in an antigenic heatmap localizing putative binding regions of the different Abs
(illustrated by colored patches on the Ag surface).

2. Results

We demonstrate the power of combined experimental and computational binning in application to
an important target with a wealth of data available for our use: herpes simplex virus (HSV) glycoprotein
D (gD). GD is a fusion protein found in HSV that has served as the standard by which all other HSV-2
vaccines are evaluated for safety and efficacy [42]. GD subunit vaccines have conferred some measure
of protection against viral challenge [42–44], but gD subunit vaccines fail to prevent infection or latent
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infection [45]. GD serves as a particularly good target for demonstration of our approach due to the
availability of a large panel of available Abs as well as variant Ag constructs that may be leveraged for
subsequent analyses. The following sections decribe our process (Figure 1) to characterize the epitopes
of a set of anti-gD Abs.

2.1. Experimental Binning Identified Four Communities of Anti-gD Abs

Step #1 of the workflow (following the schematic in Figure 1) is to perform experimental
epitope binning on a panel of Abs, identifying communities of cross-competing Abs and selecting
representatives from each community for further investigation. Figure 2 further overviews the general
workflow for such epitope binning experiments. In previous studies, this general approach was applied
specifically to gD. In particular, high-throughput SPRi technology in a classical sandwich assay format
was used to assess competition between pairs of Abs, from a panel of 46 Abs, against four soluble Ag
variants, gD from type 1 HSV truncated to the first 285 or 306 residues, and that from type 2 HSV
likewise truncated to 285 or 306 residues [46–48]. Subsequent analyses presented here are all based on
the 285 residue truncation of gD2.

 

 

Figure 2. Schematic overview of experimental epitope binning, identifying cross-competition between
Abs for binding an Ag. Sensorgrams are assessed for blocking, inferring whether or not two Abs
block each other from binding in a competition assay and thus are assumed to bind the same epitopic
region on the Ag. The blocking data is collected in a heatmap that indicates whether or not each Ab
pair blocks (red blocked, green sandwiched). The heatmap is processed with hierarchal clustering
algorithms based on similarity in blocking profiles, thereby generating a dendrogram. Finally, cutting
the dendrogram separates Abs into clusters represented in a community network, which has nodes for
the Abs and edges indicating which pairs block each other.

The studies showed that the Abs covered much of the surface of gD [4], with numerous Abs
in each distinct community of cross-blocking Abs [46–48]. Six “sentinel” Abs, namely DL11, MC23,
MC2, MC5, MC14, and 1D3, were selected as representatives (generally the most highly connected
within each community) [49,50]. Of particular note, there exists a crystal structure of an additional
Ab, E317 (PDB ID 3W9E) [51]. Thus, even though E317 is in the same community as the previously
selected DL11, we included it here to serve as a structural “control”. These seven Abs represent the
communities in serving as the subjects of the following computational and experimental analyses.

2.2. Computational Epitope Prediction Characterized the Putative Epitope Binding Regions

With the representative Abs selected, Step #2 (Figure 1) is to construct Ab homology models and
dock them to the structure/model of the Ag. Ab homology modeling is generally very high quality
(<1–2 Å level RMSD to native) for everything except the heavy chain CDR 3, which is more variable
(more typically 3–6 Å, though it can be better) [52,53]. For the gD study, we used representative
state-of-the-art methods, within Schrodinger BioLuminate (BioLuminate, Schrödinger, LLC, New York,
NY, USA, 2020.) to perform this modeling, but note that many alternative approaches are available
and may yield somewhat different Ab and Ab:Ag models. A homology model was constructed for
each of the seven Abs; for control purposes, E317 was homology modeled on a different scaffold
from its crystal structure (RMSD 1.43 Å). The crystal structure of the Ag gD2 was taken from PDB id
2C36 [54–56], with missing residues homology modeled. Docking models were then generated for
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each Ab model against the gD2 model using the Piper algorithm within Schrodinger BioLuminate.
This yielded roughly thirty representative low-energy docking models per Ab [57].

As is common [9], the docking models were spread over much of the gD2 surface. In general, the
quality of Ab:Ag complex models produced by docking has steadily improved [58], e.g., for 95% of the
cases in one benchmark, a near-native model was within the top 30 models [40]. Thus, while we could
not be confident in the accuracy of any particular model, we could hypothesize that, in aggregate, they
included the antigenic sites, setting up the next stage in our analysis.

2.3. Dock Binning Grouped Models and Identified Broadly Antigenic Regions

In order to identify the “hottest” putative antigenic sites on the protein, worth experimentally
probing across the Ab panel, Step #3 (Figure 1) performs dock binning and constructs an antigenic
heatmap. In analogy to experimental binning, this step first characterizes competition among Abs for
sites on the Ag, here according to the docking models. At this point in the analysis, since there are many
(roughly 30 in our gD results) docking models for each Ab, and they may be widely dispersed over
the Ag, competition between a pair of docking models from different Abs does not necessarily imply
that the Abs themselves compete. However, it does imply that it would be informative to evaluate
the binding of those Abs against the Ag sites for which the docking models compete (e.g., mutate
such a site and experimentally assess changes in binding/competition). Such a test would provide,
with a single experiment, information regarding both Abs’ binding sites. More generally, the more
evidence there is for interaction with an Ag residue (the “hotter” that residue), the more generally and
experimentally informative it should be to probe that residue for binding across the entire Ab panel.
This insight is the basis for performing dock binning and constructing an associated antigenic heatmap.

The dock binning workflow (schematically illustrated in Figure 3) is relatively straightforward,
mostly following that of experimental epitope binning (see again Figure 2). Now the competition
heatmap is based on overlap in docking models, rather than experimental competition. A variety
of different methods are possible for assessing this overlap; the results presented here are based on
one that we call the “common interaction metric”, which considers two Ab docks that contact the
same residue(s) to be competing. This score drives the clustering of the docks based on their patterns
of competition. Here, the hierarchical clustering method from experimental epitope binning was
used [34,35]. A community network map is then generated from the dendrogram.

 

 

Figure 3. Schematic overview of “dock binning”, computational analysis of cross-competition of
docking models of Abs against an Ag. Homology models of the Abs are computationally docked
against a crystal structure or homology model of the Ag. Docking models are evaluated for “competition”
and the extent of competition represented in a heatmap. The competition profiles are subsequently
used to cluster docking models, with a community network representing the models (nodes), their
competition (edges), and the identified clusters (groups of nodes). In contrast to experimental binning,
dock binning is based on structural analysis and thus provides insights into where on the Ag the
Abs might be interacting. The antigenic heatmap highlights the most popular Ag residues across the
docking models; these are thus most generally informative for subsequent experimentally probing.

Figures 4 and 5 illustrate the results from applying this process general process to the Ab:gD2
docking models. Figure 4 shows the docking model clusters generated for the seven Abs against
gD2 and Figure 5 their community relationships. Note that docks from each Ab are found across
all communities.
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Figure 4. Binned docking models for Abs vs. gD2. Clusters of docking models are arranged in a table
format, with each column a different cluster and each row a different perspective. Face #1 is the nectin
binding face. Faces #2–4 are rotated by 90, 180, and 270 degrees around the y-axis. The rightmost
column is an antigenic heat map (see also Figure 6) where residues are colored by community and
shaded so that residues with more Ab interactions are colored more darkly.

 

Figure 5. Community map of docking models for Abs vs. gD2. Nodes represent docking models,
with different symbols for the different Abs. Edges indicates structural competition between pairs of
docking models. Colors and background shading indicate community membership according to the
partitioning of a dendrogram. The shape of each marker indicates the antibody in the dock (i.e. each
shape is a single antibody).
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The last step in dock binning, where it can produce insights beyond those that possible with
experimental binning alone, leverages the intuition introduced above: analyze the dock bins to
identify common putative antigenic sites which may then be subjected to experimental probing. Here
computationally identified noncovalent Ab–Ag interactions (hydrogen, electrostatic, pi, and van der
Waals) were aggregated across all docks for all Abs to determine a score for each Ag residue in terms
of its total number of interactions. Figure 6 (also the last column of Figure 4) shows the resulting
“antigenic heatmap,” with residues of the protein structure colored according to the dock binning
community (Figures 4 and 5) and with darkness proportional to the aggregated scores. This antigenic
heatmap highlights the “hot” antigenic residues whose experimental probing is likely to be most
informative and can enable the efficient localization of epitopes of the whole Ab panel.

 

Figure 6. Antigenic heat map for Abs vs. gD2. Each residue is colored according to the Ab community
(Figure 5) with which it has the most interactions and shaded so that residues with more interactions
are colored more darkly. Face #1 is the nectin binding face. Faces #2–4 are rotated by 90, 180, and 270
degrees around the y-axis.

2.4. Dock Binning Enabled Selection of Experimental Assays to Evaluate Antigenic Regions

At this point in the process (Step #4), critical Ag residues according to the antigenic heatmap
are probed for Ab recognition (e.g., via point mutagenesis followed by a binding assay, to assess if
a mutation away from native disrupts binding). In this study, we were fortunate that there already
exists a wealth of existing data available regarding Ab–gD2 binding. We cross-referenced the “hot”
residues from the antigenic heatmap against the available data (including Ab:gD2 variant binding,
peptide binding, and known “monoclonal Ab resistant”, or MAR, mutations), considering the sentinel
Abs as well as others in their communities (Supplementary Figure S1) [46,48]. Figure 7 highlights the
residues from the antigenic heatmap for which such binding data was available [59,60]. We consider
these as the experimental evaluation of the hot residues from the antigenic heatmap. We note that, in
other settings, mutations (individual or combination) could be computationally designed to evaluate
the disruption of binding while preserving antigenic stability [9,61]. Thus, while we used a large
number of experimental measurements in this study, we expect that a much smaller number of tests
would suffice in practice, e.g., 3–5 variants sufficed to localize individual Ab epitopes in previous
computationally directed studies [9].
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Figure 7. Experimentally probed residues. Residues with associated experimental binding data
are labeled; bracketed numbers in the legend indicate primary references in the bibliography. The
surface is colored by associated Abs (Supplementary Figure S1), rather than dock binning community.
The residues that were also highlighted by dock binning are underlined; this data serves as probes of
those particular predicted antigenic hotspots.

2.5. Experimental Data Allowed Re-Docking to Focus Ab:Ag Models Based on Experimental Binding Data,
thereby Localizing Each Ab’s Epitope Region

Finally (Step #5 from Figure 1), the experimental data is used to focus docking of each Ab against
the Ag. Here, the experimental data (Figure 7/Supplementary Figure S1) was used to focus docking
toward (with “affinity”) residues confirmed to be important for an Ab’s binding and away from (with
“repulsion”) those determined not to be. For example, DL11 was docked with an affinity towards
the residues 213 and 218 and with repulsion away from the residues associated with Abs from other
communities, since these Abs were determined from the initial experimental binning not to compete
with DL11, and thus it is assumed the epitopes don’t overlap.

The focused docks are then subjected to dock binning and antigenic heatmap construction as
described for Step #3. Figures 8–10 show the focused-docking results for the anti-gD Abs. In contrast
to the initial unconstrained docking, docking models for an Ab are now more concentrated, focused
on the experimentally important residues for the Ab. Consequently, the communities are now fairly
homogeneous for each Ab, and the localization of each Ab on gD can be fairly well inferred from an
associated hot region in the antigenic heatmap. For example, when compared to the crystal structure
for our “structural control Ab” E317, 10 antigenic heatmap residues agree with those in the crystal
structure, while 12 extend further out and four are missed (Supplementary Table S1).
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Figure 8. Binned experimentally-focused docking models for Abs vs. gD2. The same representation as
Figure 4, but based on docking models that were focused according to experimental data.

 

Figure 9. Community map of experimentally-focused docking models for Abs vs. gD2. The same
representation as Figure 5, but based on docking models that were focused according to experimental
data. Note the relative homogeneity of Abs (different symbols) within each community, contrasting
with Figure 5. The shape of each marker indicates the antibody in the dock (i.e., each shape is a single
antibody).
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Figure 10. Antigenic heat map for Abs vs. gD based on eperimentally-focused docking models.
The same representation as Figure 6, but based on docking models that were focused according to
experimental data. The resulting hot spots can be interpreted as likely epitope regions of the associated
antibody/-ies in the bin. Relative.

While there is no ground truth for the actual epitopes of the Abs other than E317, the agreement
between the antigenic heatmap residues and those previously identified by various experiments
(Figure 7/Supplementary Figure S1) was quantified in terms of both centroid distances and common
residues (table in the middle of Figure 10). Many of the distances are quite small, indicating that
the dock binning region was centered in the same general region as the experimentally identified
residues used to focus it. However, some of the regions have fairly few experimentally identified
residues (e.g., red and blue communities), and the docking models typically expanded to cover a
significantly larger region capturing more Ab–Ag surface complementarity. The quantification of
agreement between residues in the antigenic heatmap and those experimentally used to focus the
docking further illustrates that while docking largely stays in the focused region as intended, it does
include some additional residues and omit some others. The disparity could indicate, for example,
either that the dock binning missed some important residues contributing to recognition or that the
experiments overestimated the importance of some residues. Likewise, either that dock binning
found some additional residues that had not been discovered by previous experiments or that it was
somewhat off-target. Such differences can then be the subject of further experimental investigation.

3. Discussion

3.1. The Integration of Experimental and Computational Binning Provides Important Epitope Information That
Can Inform Discovery

Here, we demonstrate the utility of combining computational modeling and high-throughput
experimental data to characterize epitopes early in discovery and thereby enable more effective drug
and vaccine development. Epitope binning can facilitate the identification of functional epitopes
and is thus increasingly used as a primary or early second screen [5]. However, while experimental
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epitope binning can inform competition among Abs for an epitope, it cannot localize the epitope on the
Ag [5]. In contrast, while computational methods can identify potential epitopes, they are currently
limited in their accuracy [40]. Even in this study, we were confronted with a wide range of seemingly
equally reasonable docking models, leading us to consider: (1) how to identify the most accurate
dock, (2) how to identify highly immunogenic sites on the target, and (3) how to group the docks
into epitope regions in order to compare with experimental binning experiments. We determined
that identifying the most accurate dock (question 1) was not realistic based on the current accuracy of
the computational methods. However, we realized that docks could help us identify putative highly
antigenic sites (question 2). Furthermore, this information would be the next logical step in assessing
experimental binning communities and would limit the possibilities to consider when attempting
to map communities onto their epitopes (question 3). Thus, this combination of computational and
experimental binning (Figure 1) can leverage the advantages of each method, complementarily, in
order to localize Ab epitopes across an entire panel.

The initial dock binning step provides not only putative antigenically hot regions but also
important information toward the generation of mutants that can be used in epitope mapping and
cross-antigen binning to test hypotheses regarding Ab–Ag binding and thereby localize epitopes. Dock
binning identifies communities of related Ab docking models, while the antigenic heatmap summarizes
possible epitope binding regions on the Ag surface. These two analyses together provide elegant,
biologically-centered visualizations characterizing potential binding patterns for an entire Ab panel.
Taking the epitope binding regions as hypothesized regions that are generally antigenic allows the
design of targeted experiments to evaluate them. The underlying intuition for these experiments is that
if an Ab truly recognizes a particular epitope, then a mutation to substantially “re-surface” that epitope
should disrupt Ab binding, and thus evaluation of changes to binding can allow us to confirm or reject
the epitope for the Ab. By testing a set of variants based on the epitope binding regions, we can thereby
simultaneously test all the various hypotheses spanning the Ab panel and potential epitopes.

The results that can be obtained from the dock binning approach are limited by how well the
Ab models and the Ab:Ag docking models reflect reality, along with how effectively the selected
mutational variants can reveal that reality. We used representative computational approaches here,
and overall observed reasonable agreement between the results from our approach and the one
available ground truth crystal structure. While the previous purely experimental studies reflect an
extensive amount of effort, they also may not fully reflect reality to the same extent as a crystal
structure does. Thus, we are limited in our ability to characterize general trends regarding how
well docking-based approaches perform and why, and what their particular weaknesses may be.
From some previous gD studies, however, we do know that two of the Abs (MC2 and MC5) recognize
epitopes that are at least partially obscured until receptor binding allosterically drives a conformational
change [46,59]. We thus hypothesize that the epitope region identified for MC2, and presumably that
for all members of the community it represents, is not particularly accurate. In general, epitopes, as
well as paratopes, in conformationally dynamic or poorly modeled regions may present challenges for
this model-driven approach.

3.2. While Binning Is Still Limited, Further Computational Advances Will Improve Its Accuracy and
Informativeness

Significant limitations still exist with the prediction of protein-protein interactions, in particular
with Ab-Ag epitope identification. Numerous opportunities exist to improve the process and better
support vaccine and drug candidate screening. We here summarize some interesting avenues for
computational development, following along the path of our workflow (Figure 1):

1. Experimental epitope binning. The fundamental question here is how to cluster the Abs into
communities. and new and emerging techniques from network/community analysis, especially
in genomics [62–64], may prove beneficial. These metrics can be used to identify communities
that require further refinement and/or changes to the clustering. Furthermore, the clustering need
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not be discrete, i.e., the partition into communities can be overlapping, and this information can
potentially be leveraged throughout the rest of the process. Such analysis could be particularly
important in cases of partial or aberrant competition. While the “sentinel” antibodies used here
were selected as most representative of clear-cut communities, future approaches could include
algorithmic selection of representatives based on properties of the communities (e.g., ensuring
adequate coverage of ambiguous clusters) and of the individual antibodies (e.g., based on
sequence and structural analysis, favorability for development, etc.).

2. Ab modeling and Ab–Ag docking. We used representative high-quality Ab modeling and Ab–Ag
docking methods, but others could be employed; given sufficient data points for different targets,
the impacts of these choices could be quantitatively assessed. The complete set of thousands
of docking models, instead of cluster representatives, could be considered, thereby potentially
leveraging redundancy in weighting region importance. As discussed above regarding gD,
accounting for protein flexibility (both Ag and Ab) may change the models substantially in
some cases. Docking scores/ranks could be taken into account in order to determine the most
important regions. In addition to physically-based docking methods, additional data-driven
epitope prediction methods could be used to identify putative antigenic regions [65–67].

3. Dock binning. The same issues with clustering for experimental binning hold here and the same
potential solutions can be explored. Machine learning methods could be incorporated in order to
train models to integrate the upstream predictions and experimental data, e.g., in a consensus or
weighted fashion. New data-driven models that directly seek to predict competition/bins (instead
of general-purpose epitope prediction) could be developed.

4. Experimental epitope probing. As presented, mutations are selected to assess the predicted
antigenic hot spots and deconvolve which hot spots are associated with which Abs. While
this has been done before based simply on maximizing binding disruption according to the
models [9,61], more refined metrics and optimization techniques could be developed, e.g., using an
information-theoretic approach to maximize what is learned about the communities and hotspots
for a given experimental “budget” (e.g., maximum-relevance, minimum-redundancy) [68].

5. Revised dock bins and antigenic hotspots. We employed the approach of docking with
affinity/repulsion in order to focus docking according to the experimental data. Docking models
could be subsequently refined (e.g., via energy minimization and conformational sampling) and
scored not only for physical modeling, but also for the consistency of the experimental data with
the predicted effects of the mutations [69].

4. Materials and Methods

All reagents were previously described [46,49,50,70,71].

4.1. Antibodies

Monoclonal Abs (mAbs) were used throughout. The monoclonal antibodies have been created
by the Cohen/Eisenberg group at the University of Pennsylvania. The following anti-gD mAbs were
previously published: 1D3 [49,72–74]; DL6, DL11, DL15 [51,71,74–78]; E317 [51]; MC1, MC2, MC4,
MC5, MC8, MC9, MC10, MC14, MC15, MC23 [71,79]; A18 [80]; AP7, LP2 [81]; HD1, HD2, HD3, H162,
H170, H193 [82,83]; 11S, 12S, 45S, 77S, 97S, 106S, 108S, 110S [73,84]; BD78, BD80 [71,85]; and the human
mAb VID [86–88], DL15, A18, HD3, H162, H193, 77S, 97S, 106S, 108S and 3D5, 4E3E, 4G4D, and
11B3AG [46,70].

Sentinel Abs were selected based on past studies as most representative of their respective
communities. Sentinel Abs were sequenced (Genscript, Piscataway, NJ, U.S.) from mAb clone for
computational studies.
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4.2. Proteins

Proteins were previously described [70]. Again, these constructs existed before this study and
were generated by the Cohen/Eisenberg group. HSV type-1 and type-2 gD, truncated to 285 or 306
residues, were harvested from Sf9 cells infected with baculovirus. Protein was then purified using a
DL6 immunosorbent column [70,71,89]. Additional proteins used in this study include: C-terminal
truncations 250t, 260t, 275t, and 316t [50,54,70]; deletion mutant ∆(222–224) [50]; point mutants Y38A,
V231W, and W294A [54,90,91]; and insertion mutants ins34, ins126, and ins243 [46,77].

4.3. Epitope Binning

Binning experiments were previously described [3,46]. Briefly, a 48-spot microarray of
amine-coupled Abs on a CMD200M sensor prism (Xantec GmbH, Kevelaer, Germany) was printed
using Continuous Flow Microspotter (CFM, Carterra, Salt Lake City, UT, U.S.). The array was loaded
into the MX96 SPR instrument (Ibis). Data were processed using software from Ibis and Carterra as
described previously [3,46].

4.4. Protein Modeling and Docking Prediction

The crystal structure of gD2 (285 truncation) was taken from PDB id 2C36 [54–56] and Schrodinger
BioLuminate was used to homology model the unstructured regions for missing residues including
257–267. Homology models of the Ab Fvs were also constructed using Schrodinger BioLuminate. For
E317, the homology modeling was prevented from using the available crystal structure (PDB id 3W9D);
instead, the model was based on the anti-HIV neutralizing Ab 4E10 (PDB id 4M62) as the framework
template, yielding a model RMSD value of 1.43 Å to the crystal structure.

Docking models were generated for each Ab model against the gD2 model using the Piper
algorithm within Schrodinger BioLuminate [57]. This generated 15–30 different docking models for
each sentinel Ab. We note that this method performs rigid docking, not accounting for potential Ab
and Ag flexibility.

4.5. Dock Binning

Dock binning takes as input a set of Abs and a set of docking models for each Ab against the same
Ag. It assesses docking models for the extent to which they structurally overlap or “compete”, and
then clusters them based on their profiles of competition against each other in a manner analogous
to experimental epitope binning. Finally, it constructs an antigenic heatmap on the Ag surface,
highlighting Ag residues according to the frequency with which they contact Ab residues in the
docking models comprising a cluster. We now detail these steps.

4.5.1. Competition

Competition between a pair of docking models was assessed with three different scores [21] based
on residue-level distances and biophysical interactions across the Ab–Ag interface:

Common interaction metric: the number of Ab–Ag atomic interactions such that one Ag atom has
a common interaction with an Ab atom on each Ab. This was computed based on the Interaction Table
in BioLuminate, which includes hydrogen bonds, salt bridges, pi stacking, disulfide bonds, and van
der Waal interactions.

Cα metric: the number of Cα residues in one Ab within a fixed distance (here 10 Å) from those in
the other.

Centroid metric: the distance between the heavy-atom centroids of the two Abs.
Results shown were based on the common interaction metric; results from the other metrics

differed only minimally in terms of clustering results.
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4.5.2. Clustering

Competition scores were collected into a symmetric matrix, with each row and column representing
a docking model and each cell containing the score for the associated pair of models. In this matrix,
the row/column for a docking model collects its competition score against each docking model; we
call this its “competition score profile”. A docking model heatmap was generated based on this
matrix (schematically illustrated in Figure 3, with binary scores). The models were hierarchically
clustered based on their competition score profiles, here using NBclust. The resulting dendrogram was
partitioned to define clusters, also known as communities [92–94]. Carterra Epitope Binning software
was used for dendrogram and community plot generation [46].

4.5.3. Antigenic Heatmap

The notion of an antigenic heatmap was developed here to visually represent where the different
docking model communities were located on the Ag, i.e., with which Ag residues the Abs in a
community interacted the most. Each Ag residue was assigned to the docking model community for
which the associated docking models had the most interactions according to the interaction tables
generated by BioLuminate (see “common interaction metric” above). The “hotness” of the Ag residue
was computed as the number of such interactions, normalized by the size of the community, and the
heatmap shade was set accordingly.

In order to compare an antigenic heatmap “footprint” with an experimental epitope region,
corresponding sets of residues were identified—those Ag residues comprising a community in the
antigenic heatmap and those from the experimental epitope. The centroid of each set of residues was
computed and the centroid distances measured, both using Schrodinger PyMOL. In addition, the sets
of residues were directly compared for membership to identify how many residues were in common.

Supplementary Materials: The following are available online. Figure S1: Sequenced mAbs and associated
experimental data. Table S1: Agreement between epitope residues targeted by our control antibody, E317,
according to the crystal structure vs. those identified from our dock binning based approach.
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Abstract: Drug repurposing, the practice of utilizing existing drugs for novel clinical indications, has
tremendous potential for improving human health outcomes and increasing therapeutic development
efficiency. The goal of multi-disease multitarget drug repurposing, also known as shotgun drug
repurposing, is to develop platforms that assess the therapeutic potential of each existing drug for
every clinical indication. Our Computational Analysis of Novel Drug Opportunities (CANDO) plat-
form for shotgun multitarget repurposing implements several pipelines for the large-scale modeling
and simulation of interactions between comprehensive libraries of drugs/compounds and protein
structures. In these pipelines, each drug is described by an interaction signature that is compared to
all other signatures that are subsequently sorted and ranked based on similarity. Pipelines within
the platform are benchmarked based on their ability to recover known drugs for all indications in
our library, and predictions are generated based on the hypothesis that (novel) drugs with similar
signatures may be repurposed for the same indication(s). The drug-protein interactions used to
create the drug-proteome signatures may be determined by any screening or docking method, but
the primary approach used thus far has been BANDOCK, our in-house bioanalytical or similarity
docking protocol. In this study, we calculated drug-proteome interaction signatures using the pub-
licly available molecular docking method Autodock Vina and created hybrid decision tree pipelines
that combined our original bio- and chem-informatic approach with the goal of assessing and bench-
marking their drug repurposing capabilities and performance. The hybrid decision tree pipeline
outperformed the two docking-based pipelines from which it was synthesized, yielding an average
indication accuracy of 13.3% at the top10 cutoff (the most stringent), relative to 10.9% and 7.1% for its
constituent pipelines, and a random control accuracy of 2.2%. We demonstrate that docking-based
virtual screening pipelines have unique performance characteristics and that the CANDO shotgun
repurposing paradigm is not dependent on a specific docking method. Our results also provide
further evidence that multiple CANDO pipelines can be synthesized to enhance drug repurposing
predictive capability relative to their constituent pipelines. Overall, this study indicates that pipelines
consisting of varied docking-based signature generation methods can capture unique and useful
signals for accurate comparison of drug-proteome interaction signatures, leading to improvements in
the benchmarking and predictive performance of the CANDO shotgun drug repurposing platform.

Keywords: drug repurposing; virtual screening; multiscale; multitargeting; polypharmacology; compu-
tational biology; drug repositioning; structural bioinformatics; molecular docking; proteomic signature

1. Introduction
1.1. Drug Repurposing

Pharmacological innovation reduces human mortality rates and provides substantial
improvements to the quality of life [1]. Therapeutic compounds that have been discovered,
lab tested preclinically, and evaluated for risks and efficacy in clinical trials are approved
by regulatory bodies such as the United States FDA for specific indications [2]. Potential
failures impose high opportunity costs, and the realities of market forces and investment
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distort the types of ailments for which treatments are pursued [3–5]. The rate of novel drug
discovery has been slowing as costs have been increasing, illustrating the need for more
efficient paradigms [6].

Drug discovery traditionally relies on screening a compound or set of compounds
against a biological target, typically a protein for a specific indication. Generally, these
approaches incorporate high-throughput in vitro compound screens [7] and/or cell-based
assays [8] of candidates drawn from wet laboratory studies or computational screens
of virtual representations of compounds and biological targets [9–11]. If promising in
vitro leads are found, they undergo in vivo testing, eventually leading to approval for
clinical use if they continue to demonstrate relative efficacy and safety [2]. Traditional drug
discovery methods tend to be focused on a single target and indication [11,12]. However,
drugs and other human-ingested compounds interact promiscuously with many proteins
in the body [13,14]. These off-target interactions are responsible for side effects and the
fact that one drug may be useful for treating multiple indications [15–19]. Single-target
approaches may miss promising leads and potentially beneficial off-target side effects,
while drugs that have already been discovered and vetted for safety may be used in novel
treatment contexts.

Drug repurposing is the practice of finding new uses for existing drugs, taking ad-
vantage of prior safety, efficacy, and pharmacological knowledge and data [15]. Drug
repurposing has the potential to arbitrarily increase the utility of the FDA-approved drug
library [17,20,21], particularly via innovations such as multitarget drug repurposing [22,23].
Drug repurposing has yielded new uses for multiple drugs [15,17] and has demonstrated
potential for the treatment of viral [24,25], bacterial [26], and complex indications such as
cancer [17].

1.2. Computational Drug Repurposing Using Molecular Docking

Computational models that improve drug discovery and repurposing leverage rapidly
increasing computer processing power and vast collections of preclinical (in vitro, in vivo)
and clinical data [22]. Although there are a variety of computational approaches, the
most relevant ones to this study are structure-based. Structure-based approaches focus
on modeling/simulating the effects the three-dimensional (3D) structure of a compound
may have on one or more macromolecules, typically protein structures [27]. Structure
representations are based on data obtained from X-ray diffraction, NMR spectroscopy,
cryogenic electron microscopy, and biochemical and biophysical simulation studies. These
models may incorporate other features such as predicted protein-compound binding sites,
simulations of the surrounding chemical environments, and the functional characteristics
of protein structures.

Molecular docking models the three-dimensional (3D) interaction between small
molecule compounds and macromolecular protein structures [28–32]. Typically, these
simulations algorithmically calculate the optimal position and orientation of a compound
structure that interacts with (or binds to) a particular region of a protein structure and its cor-
responding interaction strength, using physics-based [33] or knowledge-based [34,35] force
fields or scoring functions. The characteristics of a correctly modeled compound-protein
structure provide researchers insight into the biological implications of the interaction: for
example, a researcher may infer that a signaling pathway may be interrupted if a partic-
ular protein were to be inhibited by the compound based on the strength of its binding
energy [36]. Molecular docking is also useful when researching large sets of compounds
and proteins [37]. By comparing the relative differences in interactions between protein-
compound pairs, the researcher can rank and organize pairs according to the strength of
their interaction score and/or their similarity to identify patterns that are apparent only
when examining large sets with many possible combinations, which is difficult and expen-
sive to do in in vitro or in vivo experiments [22,38]. Molecular docking techniques have
varying performance advantages and limitations [39,40]; however, provided that docking
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approaches are used wisely in concert with other experimental techniques, they have the
potential to be useful for drug repurposing, particularly in a large-scale context [38].

1.3. Shotgun Multitarget Multi-disease Drug Repurposing Using the CANDO Platform

The Computational Analysis of Novel Drug Opportunities (CANDO) platform was de-
veloped to mitigate endemic problems in drug discovery and enable multitarget approaches
to drug repurposing [22,38,41–45]. The CANDO platform is designed to provide insights
about the holistic behavior of compounds interacting within complex biological systems,
including how a compound behaves relative to other compounds, and is an extensible
standardized framework for building and combining drug repurposing, discovery, and
design simulation pipelines. The similarity of drug-protein interaction behavior between a
small molecule drug/compound and its macromolecular environment is hypothesized to
indicate the similarity of drug therapeutic function [22]. In traditional structure-based and
ligand-based drug discovery, therapeutic similarity inferences are often based on molecular
target similarity and compound similarity [46]. CANDO extends the similarity assumption
principle to include holistic multiscale interaction similarity, that characterizes compounds
by the nature of their interaction with entire proteomes and (eventually) interactomes
[22,38]. Extending the interaction similarity frontier enables CANDO to account for the
promiscuous nature of compound interaction within biological systems and character-
ize previously unconsidered therapeutic functions of existing approved drugs. CANDO
pipelines are evaluated by a benchmarking protocol that examines the relative ranking of
every drug for every indication with two or more approved drugs. Analyzing the relative
ranking of approved drugs for each indication enables the evaluation of the effectiveness of
the platform for recovering known information, comparing relative pipeline performance
for particular indications, calculating the accuracy and precision for ranking approved
drugs, and determining which components of the platform need improvement.

In this study, we set out to extend the CANDO platform with an additional molecular
docking pipeline using the popular software AutoDock Vina [30] to determine whether the
prior CANDO performance was dependent on a specific molecular docking protocol, how
different molecular docking protocols affect CANDO’s performance, and whether hybridiz-
ing molecular docking pipelines yields improved performance, as we have previously
observed combining structure- and ligand-based CANDO pipelines [43].

2. Results
2.1. Benchmarking Performance of the Different Pipelines

The performance of two new primary pipelines and a hybrid one in the CANDO
platform was investigated and compared to those previously created, including a random
control (see Figure 1 and Methods). The first is the Vina pipeline that uses the eponymous
molecular docking program to screen the CANDO v1.5 3733 drug/compound library
against a 134-protein subset of the full proteome library (Vina-134). Multiple binding sites
for each protein were predicted and targeted for docking, and the strongest interaction
scores were used to construct the drug-proteome signatures.

The second pipeline used was the default CANDO v1.5 pipeline restricted to the same
134 protein subset (v1.5-134). We generated a hybrid decision tree pipeline drawn from
a combination of the Vina-134 and the v1.5-134 pipelines. For comparison, we examined
the performance of these pipelines with respect to a random control and the v1.5 pipeline
implemented with the full CANDO proteome library consisting of 46,784 protein structures
(v1.5-full).

Figure 2 illustrates the relative performance of these different pipelines. At the top10
threshold, the hybrid decision tree yielded 13.3% accuracy, v1.5-134 10.9%, and Vina-134
7.11%. The v1.5-134 and v1.5-full pipelines outperformed the Vina pipeline, but the latter
was able to substantially contribute to the superior performance of the hybrid pipeline.
Notably, the hybrid decision tree pipeline outperformed the v1.5-full pipeline with a top10
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accuracy of 12.8% with two orders of magnitude difference in the number of proteins used
in the implementation of the pipeline (134 vs. 46,784).

Figure 1. CANDO shotgun drug repurposing platform and pipeline overview. On the left side of the figure is a flow
diagram, which indicates the general protocol for implementing a CANDO drug-proteome pipeline. To the right of the
flow diagram, each pipeline relevant to this investigation is displayed along with implementation details for each phase of
the CANDO protocol. Data curation: The drug-proteome pipelines utilize libraries of protein structure and drug structure
representations. Interaction scoring protocol: These pipelines use bioinformatic, cheminformatic, and molecular docking
methods to predict the scores between each protein and drug interaction. The set of protein interaction scores for each drug
is considered its interaction signature. Each interaction signature can be compared with one another by assessing the root
mean squared deviation of their interaction signatures. Drug comparison protocol: Every drug signature is compared with
every other drug signature. After every comparison is made, each drug has a list containing the ordered set of every other
drug, from most similar signature to least similar signature. Benchmarking protocol: The CANDO benchmarking procedure
assesses, for every drug, how many other drugs with the same indication association are found within certain ranking
cutoffs. An indication-specific accuracy score is produced by averaging the recovery rate of co-associated drugs for every
drug associated with the particular indication for particular ranking cutoffs. The overall pipeline average indication accuracy
is the mean of all the individual ones for a particular cutoff. Three pipelines were generated during this investigation:
v1.5 (implemented with a subset of the CANDO proteome library), AutoDock Vina (using the same proteome sublibrary),
and a hybrid decision tree pipeline derived from the former two pipelines. Each of the subset pipelines utilized a small
sublibrary (134 proteins) of the original CANDO v1 and v1.5 pipelines. Although the pipelines used different signature
generation approaches (BANDOCK bioanalytical or similarity docking and AutoDock Vina molecular docking), their
signatures underwent the same similarity assessment and benchmarking protocol. However, there is room for variation via
the use of alternate docking, similarity assessment, and benchmarking approaches.
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Figure 2. Benchmarking performance of CANDO pipelines used in this study. Three docking-derived
pipelines implemented in CANDO: v1.5-full, using the interaction scores generated by the default
CANDO v1.5 bioanalytical or similarity docking protocol (BANDOCK) for the full (46,784) proteome
library, v1.5-134, using the same interaction scoring protocol for a 134 protein sublibrary, and Vina-
134, based on interaction scores generated using AutoDock Vina for the 134 protein sublibrary are
compared with (d) a hybrid decision tree pipeline derived from combining Pipelines (b) and (c),
as well as (a) the random control reference pipeline calculated numerically from a hypergeometric
distribution [43]. The pipelines were assessed by three CANDO platform benchmarking metrics:
average indication accuracy (%), pairwise accuracy (%), and coverage (%). Performance cutoffs
are denoted by colored bars from most to least stringent: top10 (dark purple), top25 (light purple),
top37/top1% (dark pink), top50 (light)pink, top100 (dark blue), top5% (light blue), top10% (dark
green), and top50% (light green) for 1439 indications with at least two approved drugs using a
leave-one-out benchmarking protocol (see the Methods Section). White dots denote the highest
overall accuracy at each threshold. The hybrid decision tree pipeline, which incorporates the highest
indication accuracies from the Vina-134 and v1.5-134 pipelines, performed the best at all cutoffs (white
dots). Black dots denote high performance in individual pipelines, which was obtained using the two
v1.5 pipelines, one based on the 134 proteome sublibrary and the other on the full proteome library.
v1.5-134 yielded the highest top50 percent average indication accuracy (85.3%), top100 coverage
(52.742%), top5% coverage (64.382%), and top50% coverage (96.064%). Individually, the Vina-134
pipeline significantly outperformed the random control and yielded a significant fraction of the
performance of the v1.5 pipelines. The hybrid decision tree pipeline performed the best, indicating
that diversity in pipeline simulation implementation can be leveraged to increase drug repurposing
performance. 197
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2.2. Divergence in Indication Accuracy at Various Thresholds

Figure 3 illustrates the similarity and divergence of indication accuracy performance
at various thresholds: i.e., instances where the Vina-134 pipeline outperforms the v1.5-
134 pipeline, instances where the v1.5-134 pipeline outperforms the Vina-134 pipeline,
instances where each pipeline yields the same indication accuracy, and instances where
each pipeline yields zero percent accuracy. At the top10 threshold, the Vina-134 pipeline had
191 indications (about 13% of all indications) that outperformed the v1.5 pipeline, which
had 363 indications outperform Vina-134 (about 25% of all indications). There were 885
equivalently performing indications (with 828 of them at zero percent accuracy) at the top10
cutoff. Overall, the divergence in relative performance increased as the thresholds became
less stringent (the CANDO pipeline outperformance share began to decline slightly after
the top5% threshold). v1.5 had a higher number of indications in which it outperformed
Vina-134. After the top50 cutoff, the proportion of equivalent indication accuracies that
were both zero relative to the total equivalent indication accuracies began to decline rapidly.

Figure 3. Comparing and contrasting indication accuracies for two CANDO platform pipelines
at different cutoffs. Each Venn diagram represents the set of indication accuracies (1439 total) for
the Vina-134 and v1.5-134 pipelines at different cutoffs (top10, top25, top37, top50, top100, top5%,
top10%, and top50%). Indications that scored higher for the Vina pipeline are in yellow. Indications
that scored higher for the v1.5 pipeline are in purple. Indications that scored the same for each
pipeline are in gray. The number of indications where both pipelines yield 0% accuracy are provided
in parentheses and the total number of equal indication accuracies provided below. At the top10
cutoff, the Vina-134 pipeline yields higher accuracies for 191 indications and the v1.5 pipeline for
363 indications, and each pipeline yields the same accuracy for 885 indications. Although the Vina-
134 pipeline produces a substantial number of indication accuracies that are higher or equivalent
to v1.5 indication accuracies, the v1.5 pipeline outperforms the Vina-134 pipeline at every cutoff
except for top50%. Nonetheless, the orthogonality in the above diagrams indicates that individual
pipelines can be synergistically combined into a hybrid pipeline that yields considerable performance
improvements.
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2.3. Net Differences in Indication Accuracy

Figure 4 elucidates the net differences in top10 accuracies between two pipelines (and
the proportion of approved drugs recovered per indication in the top10) for 700 indications.
With some notable exceptions, the v1.5-134 pipeline outperformed the Vina-134 pipeline in
frequency and magnitude. On a per indication basis, as the total number of approved drugs
decreased, the Vina-134 pipeline had a higher number of the outperforming indications in
terms of frequency and magnitude.

Figure 4. Comparison of 700 indication accuracies for two CANDO platform pipelines at the top10
cutoff. The top10 indication accuracies for 700 indications produced by the Vina-134 and v1.5-134
pipelines are shown in the left panel, with the the v1.5-134 pipeline per indication accuracies in
purple on the left side and the Vina-134 pipeline accuracies in black on the right. The net difference
in pipeline accuracy for the same indication is shown in the center panel, using the same percentage
scale as the left. The number of drugs recovered by the best performing pipeline (in blue on the left
side) and the total number of drugs approved per indication (in black on the right side) are shown in
the right panel. The number of approved drugs for all three panels ranges from 158 drugs at the top
to two drugs at the bottom. Generally, the v1.5-134 pipeline outperforms the Vina-134 pipeline, both
by the number of indications and net difference in accuracy per indication.
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2.4. Relative Pipeline Indication Accuracy

The pipelines differed at average indication accuracy thresholds and on a per in-
dication basis. In some cases, a pipeline that performed worse overall may do better
for a specific indication. Figures 3–5 illustrate the overall divergence, the magnitude of
divergence, and the threshold frequency distributions. On a per-indication basis, there
was divergence in the relative indication accuracy at various cutoffs, both in terms of
net difference in accuracy, recovery at a particular threshold, and the frequency of a
particular indication being recovered at a particular interval. The divergence between
the per-indication performance of each pipeline elucidated by Figures 2–4 suggests that
each pipeline should be used in conjunction with one another for maximum indication
inclusivity and accuracy.

Figure 5. Frequency comparison of indication accuracies for two CANDO platform pipelines at
different cutoffs. Shown are four histograms denoting the frequency with which indications fall
within particular accuracy ranges (Vina-134 pipeline accuracies are in light yellow and v1.5 accuracies
in black). The similarity of each distribution is assessed by the p-value using the Kolmogorov–
Smirnoff test (p-values less than 0.05 are considered to be significant). The v1.5 pipeline outperforms
Vina-134 overall, but the p-values indicate that the accuracy distributions are different for the two
pipelines, indicating the utility of combining pipelines to produce synergistic performance.
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2.5. Comparison of the Pipeline Distribution of Per Indication Accuracies

Figure 5 illustrates the distribution of indication accuracies by counting the frequency
of each indication that falls within a certain accuracy range. The dissimilarity of pipeline
distributions at each cutoff was assessed by applying the Kolmogorov–Smirnoff test. The
v1.5 pipeline outperformed Vina-134 overall (which yielded a higher frequency of indica-
tions exceeding 50% accuracy).

2.6. Indication Accuracy Distribution

Figure 6 examines the distribution of indications to illustrate their relative performance
within each pipeline. Pipelines can also be compared with symmetrical accuracy distribu-
tion charts, where individual pipeline accuracy is denoted along the x and y axes. Each
point can represent a particular indication (e.g., one of the 1439 indications in the CANDO
platform), a defined indication class (e.g., all 39 indications with the string “neoplasm”), or
some other way of denoting indications (e.g., indications that occupy a particular branch
of the Medical Subjects Heading (MeSH) classification [47] or those that are ontologically
similar [48]). When pipelines reach accuracy consensus (or near consensus) for a particular
indication (or indication grouping), the point falls on or close to the 45 degree symmetry
line. These figures suggest that different pipelines had varying success in benchmarking
performance on a per-indication basis. More rigorous clustering analysis, indication classi-
fication, and indication definition will yield deeper insight into the relative strengths of
each pipeline.

2.7. Distribution of Individual Drug-Indication Pair Rankings

Supplementary Figure S1 plots every drug-indication pair and its corresponding rank
within each pipeline. These suggest that there is some substantial ranking consensus
between each pipeline, as well as substantial divergence. The distribution was plotted
at linear and logarithmic scales to illustrate the density of approved drug-indication pair
ranking consensus and divergence. There is a high density of drug-indication pairs that
have relatively high ranking in each pipeline. There is also a high density of drug-indication
pairs that have a significantly higher ranking in the v1.5-134 pipeline than the Vina-134
pipeline. As with pipeline per-indication accuracy divergence, further investigation into
drug-indication pair divergence may help improve the performance of individual and
hybrid pipelines, particularly in cases where one pipeline ranked a drug-indication pair
substantially higher than the other one (e.g., top100 in one and bottom 50% in the other).
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Figure 6. Comparison of the indication accuracies at various cutoffs and for a defined indication
class for two CANDO platform pipelines. The top panel denotes a symmetrical accuracy chart. Each
axis measures the indication accuracy for each pipeline, and indications are plotted according to
their corresponding accuracies (different cutoffs are distributed in alternate colors). Points that land
on the 45 degree red line are indications where the pipelines reached consensus; points that fall
closer to a particular axis achieved a relatively higher score with the corresponding pipeline. The
bottom panel isolates indications for the defined class “neoplasm” comprising 39 indications with the
corresponding string. The asymmetrical distribution of the accuracy plot suggests pipeline accuracy
differentiation, i.e., different pipelines have differing performance strengths and weaknesses, on a
per-indication and indication class level.
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3. Discussion
3.1. Multiple Large-Scale Virtual Screening Pipelines

In this investigation, we hypothesized that distinct docking methods would yield
distinct drug-proteome interaction signatures due to differing simulation implementation,
and correspondingly differing performance for shotgun drug repurposing: BANDOCK,
the default bioanalytical or similarity docking in CANDO is a knowledge-based tem-
plate/comparative modeling protocol [22,38,41,44,45], and AutoDock is a more traditional
molecular docking approach with physics-based force fields [30]. Including other molecu-
lar docking pipelines beyond the default pipeline implemented in the platform enabled
us to evaluate whether or not CANDO as a platform was specifically dependent on the
drug-proteome signature generation methodology implemented in the default pipeline.

Our results demonstrated that the CANDO platform was not dependent on a single
pipeline implementation, and that combining different virtual screening pipelines can yield
better performance relative to using the individual ones. On a platform level, the drug-
proteome signature ranking and indication recovery paradigm was viable using more than
one means of signature generation. On a pipeline level, the pipelines (the two large-scale
virtual screening pipelines and the combined decision tree pipeline) each demonstrated
varying degrees of performance and instances of unique signal capture.

The Vina-134 pipeline implemented in this study was viable in that it performed
substantially better than the random control and performed at a significant fraction of the
performance of the original default pipeline that utilized a bigger protein set. However,
small protein libraries have been shown to perform relatively well, and some subsets
of protein libraries performed better than others [44]. As previously demonstrated [43],
hybrid pipelines can draw from the strengths of each constituent pipeline. As is the case
here, the absolute performance of the Vina-134 pipeline was not the best, yet it substantially
contributed to the higher performing hybrid pipeline.

3.2. Limitations and Future Work

Although some pipelines yielded superior signal over others in specific circumstances,
precisely identifying why this occurred warrants further investigation. On a per-indication
basis, it is possible to identify the superior performance of one pipeline over another
(Figures 3 and 4), but the MeSH indication classes were not precisely defined or had vary-
ing levels of specificity to one another. This issue will be addressed in the future through
the use of more precisely defined indication mapping, for instance by using a realism-
based ontology [48,49]. We are also using mathematical, statistical, and machine learning
techniques to rigorously evaluate and enhance CANDO’s pipeline performance, as well as
to identify clusters of drug-indication pair rankings when comparing different pipelines
and methods [43,50], to yield insight into the ability of each pipeline to accurately recover
known per-indication association information and make useful predictions for downstream
prospective preclinical and clinical validation [42,51].

4. Materials and Methods
4.1. CANDO Platform and Pipeline Implementation

Figure 1 provides an overview of the CANDO platform and the particular pipeline
implementations relevant to this study. The platform uses drug/compound and protein
structure libraries curated from public sources and implements protocols for drug- and
compound-proteome interaction signature generation, signature similarity calculation and
sorting, assessing whether known drugs are ranked highly for the correct indications for
single or hybrid pipelines (benchmarking), and generating novel putative drug candidates
for specific indications (prediction). CANDO’s drug ranking pipelines have utility in
many repurposing research contexts. For example, these pipelines can be used for lead
generation for subsequent in vitro/in vivo testing and eventual off-label clinical use by
physicians. By assessing the top ranking subset of drugs, a researcher or clinician can
efficiently infer promising experimental or clinical drug candidates based on drugs ranked
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relatively to FDA-approved drug treatments and prior experimental evidence. For many
clinical indications, CANDO pipelines are able to identify and highly rank FDA-approved
drug treatments along with drugs that are FDA approved for other indications. Researchers
can also infer associations between clinical indication classes, diseases, and biological path-
ways through the examination of indication-indication association networks connected by
highly ranked drugs they have in common or other features of their respective compound-
proteome signature. As illustrative examples of the broad uses of CANDO, Supplementary
Figure S2 and Supplementary Table S1 describe the indication-indication associations for a
selection of MeSH neoplasm indications based on shared drugs ranked in the top10 in the
Vina pipeline.

4.1.1. Drug/Compound, Protein Structure, and Indication Library Curation

The default CANDO pipelines were implemented using bio-/chem-informatic dock-
ing protocols, where interactions were predicted from curated drug and protein libraries.
The specific implementations and evolution of the libraries were reported extensively
in several publications [22,38,41,44,45]. Briefly, the initial versions of CANDO (v1 and
v1.5) incorporated 46,784 proteins and 2030 indication associations for 1439 drugs (out of
3733 compounds in total). Much of the data were drawn from the Protein Data Bank [52],
the Food and Drug Administration, PubChem [53], the Comparative Toxicogenomics
Database [54], DrugBank [55], protein structure modeling [56], and other sources.

The pipelines used in this study relied on curated sublibraries of the structures of
3733 drugs/compounds and 134 proteins and 13,746 drug-indication mappings, obtained
from the same sources as above. We used the sublibraries to rapidly evaluate the utility of
multiple molecular docking pipelines.

4.1.2. Drug- and Compound-Proteome Interaction Signature Generation

A CANDO virtual screening pipeline simulates the interactions between all of its pro-
teins and drugs/compounds, usually 3D structures, and is not dependent on any particular
approach to accomplish this. These simulations generate proteomic similarity signatures
(the vector of drug-protein interaction scores). The default CANDO platform pipelines
generate drug-proteome interaction signatures using bioinformatic and cheminformatic
docking protocols also described elsewhere extensively [22,38,41,44,45]. These signatures
were compared for similarity and ranked. CANDO pipeline Version 1.5 [45] is a refinement
of the original default pipeline [22,38,41,44] that uses near identical libraries, but improved
interaction scoring [45]. We extended the drug- and compound-proteome interaction
signature protocols to include the calculated binding energies generated by the program
AutoDock Vina [30], as well as created hybrid pipelines combining molecular docking with
bioanalytical/similarity docking (further details below).

4.1.3. Drug- and Compound-Proteome Signature Similarity Calculation and Sorting

Broadly, the CANDO platform works by sorting every drug/compound relative to
every other one based on their similarity and then uses known drug-indication associations
to assess performance (Figure 2). Various pipelines implemented in CANDO generate
drug-proteome interaction signatures for similarity sorting [22,38,43–45]. Underlying this
platform is the core assumption that the similarity of drug interaction behavior across a
proteome may be used to infer similarity in therapeutic function. The similarity between
each drug and every other drug/compound is calculated using the root mean squared
deviation of the individual interaction scores across a pair of drug-proteome interaction
signatures [38].

Combined drug-proteome interaction signatures form an interaction matrix, with
drugs along one axis and proteins on the other. These signatures are compared with one
another and then ranked on a per-drug basis, and the quality of the resulting ranking is
evaluated using the leave-one-out benchmarking protocol described below.
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4.2. Benchmarking CANDO Platform Pipelines

Our benchmarking protocol calculates the performance for every indication with at
least two approved drugs (1439 out of 3733 total) at various cutoffs, considering only the
the top10 (abbreviated as “top10”), top25, top37 or 1%, top50, top100, top5%, top10%, and
top50% of similarly ranked drugs. For each indication, the accuracy was derived from
calculating how many known drugs mapped to that indication were “recovered” and
highly ranked at various cutoffs.

We utilized three metrics to benchmark pipeline performance: average indication
accuracy, pairwise accuracy, and coverage [22,38,41,44,45], all assessed at the different
cutoffs. The average (mean) indication accuracy (%) is the average of all individual
indication accuracies. The individual indication accuracy metric was calculated using the
formula c/d × 100, where c is a count of the number of times at least one approved drug for
the indication was recovered within a particular cutoff and d is the total number of drugs
approved for that indication. The other two benchmarking metrics were pairwise accuracy
(weighted average of indication accuracies using the total number of approved drugs per
indication) and coverage (number of indications that have an accuracy greater than zero).

4.3. New and Hybrid Pipelines

The pipelines examined in this study were derived from similarity ranking and
benchmarking drug-proteome interaction signatures generated by large-scale bioinformatic
and molecular docking. The CANDO platform is not limited to using docking-based
virtual screening pipelines and has the potential to incorporate many different approaches
to pipeline implementation and data sets (for example, ligand centric approaches have
proven quite effective [43]).

4.3.1. Virtual Screening Pipeline Using Autodock Vina

We used a small sublibrary (134 proteins) of the full CANDO proteome library to create
the new molecular docking virtual screening pipeline due to computational constraints
and also because we previously have shown that appropriately selected sublibraries of a
similar size from the full library yield similar or better benchmarking performance [44].
We used the popular software AutoDock Vina Version 1.1.2 [30] for molecular docking of
each protein structure against 3733 drugs/compounds from the CANDO v1.5 libraries. As
with BANDOCK, we used COFACTOR [57] to predict binding sites, for binding search
space size optimization [58], and used the strongest interaction score (lowest calculated
binding energy) for each simulation from multiple sites. The best interaction score values
for a drug-protein pair were used to generate the drug-proteome signatures.

4.3.2. Decision Tree Pipeline

Prior CANDO platform investigations have demonstrated that multiple pipelines
can be combined into a hybrid decision tree to maximize indication accuracy by drawing
from pipelines that produce the best performance on a per-indication basis [43]. We used a
similar approach in this investigation, using the pipeline that had the highest performance
at the top10 cutoff.

4.4. Controls

We also compared the benchmarking performance of the pipelines to values obtained
using a hypergeometric distribution that estimates the numerical probability of making
a correct prediction by chance. This is one of the random control reference benchmarks
used in the CANDO platform, the implementation of which was covered in detail in prior
publications [43,45]. Benchmarking performance was also compared to the default pipeline
implementations in CANDO Version 1 and Version 1.5 using the complete libraries.

205



Molecules 2021, 26, 2581

5. Conclusions

Our results indicated that the utilization of multiple diverse docking-based virtual
screening approaches in drug repurposing contexts such as the CANDO platform improves
benchmarking performance. The Vina-134 pipeline performance indicated that the CANDO
platform hypothesis of drug behavior similarity is not limited to the original bionalytical
or similarity docking protocol BANDOCK for interaction signature generation. The hybrid
decision tree pipeline performance provided further evidence that multiple signature
generation pipelines may be combined to yield improved performance. Ongoing and
future platform enhancement will incorporate multiple signature generation protocols and
pipeline synthesis using AI/machine learning approaches to optimize performance. These
improvements in turn will lead to greater predictive power and higher confidence in novel
drug candidates generated for specific indications, which will be verified via prospective
preclinical and clinical studies.

Supplementary Materials: The following are available online at http://compbio.org/data/mc_
cando_multiscale_optimization/ accessed on 24 April 2021, Supplementary Figure S1: Plot of every
drug-indication pair and their corresponding rank within each pipeline. Supplementary Figure S2:
Indication-indication associations between MeSH neoplasm-associated classes based on the number
of compounds predicted in the top10 cutoff by the Vina pipeline. Supplementary Table S1: Raw
indication-indication association counts.
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Abstract: A gene expression signature (GES) is a group of genes that shows a unique expression
profile as a result of perturbations by drugs, genetic modification or diseases on the transcriptional
machinery. The comparisons between GES profiles have been used to investigate the relationships
between drugs, their targets and diseases with quite a few successful cases reported. Especially in
the study of GES-guided drugs–disease associations, researchers believe that if a GES induced by
a drug is opposite to a GES induced by a disease, the drug may have potential as a treatment of
that disease. In this study, we data-mined the crowd extracted expression of differential signatures
(CREEDS) database to evaluate the similarity between GES profiles from drugs and their indicated
diseases. Our study aims to explore the application domains of GES-guided drug–disease associations
through the analysis of the similarity of GES profiles on known pairs of drug–disease associations,
thereby identifying subgroups of drugs/diseases that are suitable for GES-guided drug repositioning
approaches. Our results supported our hypothesis that the GES-guided drug–disease association
method is better suited for some subgroups or pathways such as drugs and diseases associated
with the immune system, diseases of the nervous system, non-chemotherapy drugs or the mTOR
signaling pathway.

Keywords: gene expression signature; drug repositioning approaches; RNA expression regulation

1. Introduction

A gene expression signature (GES) is a set of comprehensive gene expression profiles that can
reveal the difference between stimulated and normal cell states [1]. Current applications of GES
analysis are fruitful in cancer-related areas for disease genotype classification and outcome predictions.
For example, Ramaswamy, S. et al. created a GES database for diagnosing and categorizing the tumour
type with an accuracy rate of 78% [2]. Wright, G. et al. developed a Bayesian rule-based algorithm
to classify diffuse large B cell lymphoma into two subgroups which have a significant difference in
the five-year survival rate [3]. Although the GES method is more commonly used in diagnosing
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cancer [2–5] and predicting the outcome of certain medical interventions [6,7], some successful cases of
application on drug development have also reported [8–10].

Generally, there are two major strategies for applying GES analysis on drug development:
drug–drug-based and drug–disease-based. The drug–drug-based method determines the mechanistic
actions of drugs by comparing the similarity between the GES induced by a drug of interest to those
of drugs with known mechanisms. If two different drugs have similar GES profiles, then they are
considered to have “functional similarity”, meaning they work in a similar manner. In contrast,
the drug–disease-based method compares the similarity between the GES of a drug to that of a disease
in order to determine its potential as a new therapeutic agent. If the GES profile of the drug is opposite
to opposite to the expression pattern of the disease, then the drug is considered to have a therapeutic
effect for the disease. However, if they have similar patterns, then this drug may exacerbate the disease.
Studies aimed at drug repurposing or repositioning based on GES analysis usually use one or both of
these strategies [8–10]. In addition, there are studies trying to combine the GES method with other
methods, such as machine learning, to increase the accuracy of compound indication prediction [11].
However, as those kinds of GES-guided drug repurposing studies usually just reported the successful
predicted cases, therefore, the true accuracy of these methods needs to be assessed.

Due to the different and complex mechanisms of disease processes, the idea of an “inverse
pattern of a GES between drugs and diseases for therapeutic effect” may not hold, or at least may
not be suitable for all categories of drugs and diseases. In other words, a GES may be useful for
certain diseases, but not for others. To our knowledge, the application domains of GES-guided
drug–disease associations have not been reported. Herein, we conducted a study to validate the power
of the GES-guided drug repositioning method and to further explore which specific subgroups of
drug–disease pairs are more suitable for this method. Moreover, the most significant subgroup was
selected as a case report of detailingwhich genes and/or pathways were more sensitive to the GES-guided
drug repositioning method.

2. Results

2.1. GES Profiles Enrollment and Drug–Disease Pairs

After removing signatures from non-human assays and signatures of non-FDA (the U.S. Food
and Drug Administration)-approved drugs, we found that GSE10432, GSE7036, GSE6264, GSE38713,
GSE31773, GSE11393, GSE8157, GSE13887 and GSE11223 were signatures of both drugs and diseases
from the same assays. We kept their disease labels except the CREEDS (crowd extracted expression
of differential signatures [12]) ID of dz:297 because this case had information mis-specified (wrong
disease information with its original experiment). Two GES profiles from mouse (drug:3288 and dz:724)
were mis-specified as human and were also excluded from analysis. The relationship between these
Gene Expression Omnibus (GEO) series (GSE) and CREEDS IDs is shown in Table 1. The proportion of
data that meets the inclusion criteria is shown in Figure 1.
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Table 1. The Gene Expression Omnibus (GEO) series with crowd extracted expression of differential
signatures (CREEDS) IDs excluded.

GEO Series CREEDS IDs Excluded CREEDS IDs

GSE10432 drug:2772, dz:297 dz:297
GSE7036 drug:3292, dz:181 drug:3292
GSE6264 drug:3064, dz:582 drug:3064

GSE38713 drug:3289, drug:3194, drug:3195, dz:810 drug:3289, drug:3194, drug:3195
GSE31773 drug:2485, dz:712, dz:713, dz:714, dz:715 drug:2485
GSE11393 drug:3401, drug:3196, dz:773, dz:267 drug:3401, drug:3196
GSE8157 drug:2796, dz:880 drug:2796

GSE13887 drug:3181, dz:450 drug:3181,

GSE11223
drug:3294, drug:3287, dz:590, dz:591,
dz:593, dz:589, dz:588, dz:587, dz:586,

dz:585
drug:3294, drug:3287

GSE7762 drug:3288 drug:3288
GSE3248 dz:724 dz:724

14.33%(244) Drug Signatures Included in the Final Analysis
13.51%(230) Disease Signatures Included in the Final Analysis
24.96%(425) Drug Signatures Extracted from Non-Human Assays
16.03%(273) Disease Signatures Extracted from Non-Human Assays
0.12%(2)        Signatures with Information Mis-Specificed
0.76%(13)      Signatures from Same Assays but Labelled as Both 

11.33%(193) Drug Signatures Because of Indication Not Found
18.97%(323) Disease Signatures Because of Indication Not Found

Figure 1. The proportion of data sourced from the crowd extracted expression of differential signatures
(CREEDS) database. Numbers of gene signatures are shown in parentheses. “Drug and Disease
Signatures Included in the Final Analysis”: The proportion of drug or disease gene signatures enrolled
in the final analysis. “Drug and Disease Signatures Extracted from Non-Human Assays”: The proportion
of drug or disease gene signatures extracted from non-human assays. “Signatures with Information
Mis-Specified”: The proportion of gene signatures with information errors. “Signatures from Same
Assays but Labelled as Both”: The proportion of gene signatures excluded because of both drug and
disease sourcing from the same assay. “Drug and Disease Signatures Because of Indication Not Found”:
The proportion of gene signatures excluded because no FDA-labelled indication of a relationship was
found for the drug or disease (including drugs not approved by FDA).

When the inclusion criteria were applied, and the signatures with no indication relationship
were excluded, 230 manual disease signatures and 244 manual drug perturbation signatures from 71
unique diseases and 56 unique drugs, respectively, were enrolled in the final analysis. The average
signed Jaccard indexes [12] (SJI) of 3976 unique drug–disease pairs were calculated. Among them,
there were 167 pairs with a drug–disease indication from the drug labels. The remaining 3809 unique
drug–disease pairs were used as the control group.

2.2. Subgroups Distribution

Among the 56 unique drugs analysed, 32 unique protein targets with 22 categories of Anatomical
Therapeutic Chemical (ATC) classification were assigned. Thirteen drugs are classified as chemotherapy
drugs, and 44 drugs are not (Methotrexate is both a chemotherapy and a non-chemotherapy drug
due to its different main therapeutic targets when against different diseases). For transcription factor
(TF) level, 12 drugs are labelled as “directly”, 39 drugs are labelled as “not-directly” and 5 drugs
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were labelled as “non-Human” (see section 4.4. subgroup classification for the detailed meanings of
labels). Further, 71 diseases are divided into 11 ICD-11 (International Classification of Diseases 11th
Revision) categories. In total, 70 subgroups belonging to five categories were assigned (Figure 2,
detailed information in Table S1 and Table S2).

Disease classification

49.10%  NEO
15.57%  DMSCT
9.58%  DS
5.99%  CIPD
5.99%  DIS
3.59%  ENMD
2.99%  DBBO
2.99%  DRS
2.40%  DNS
1.20%  DDS
0.60%  DCS

a

Target

28.74%  GLUR
7.78%  DNAtopo
7.78%  TYRK
5.99%  DNAclak
4.79%  CYC
3.59%  DNAlig
3.59%  TOPOI
2.99%  INTR
2.99%  MICROT
2.99%  NUCS
2.99%  TNF
25.75%  Others

b

TF level

58.68%  not-directly
35.93%  directly
5.39%  non-Human

c

Chemotherapy

71.86%  NO
28.14%  YES

d

Figure 2. The subgroups proportion of unique 167 indicated drug–disease pairs of different categories.
(a) Disease classification. NEO: neoplasms, DMSCT: diseases of the musculoskeletal system or
connective tissue, DS: diseases of the skin, CIPD: certain infectious or parasitic diseases, DIS: diseases of
the immune system, ENMD: endocrine, nutritional or metabolic diseases, DBBO: diseases of the blood
or blood-forming organs, DRS: diseases of the respiratory system, DNS: diseases of the nervous
system, DDS: diseases of the digestive system, DCS: diseases of the circulatory system. (b) Drug
target. GLUR: glucocorticoid receptor, DNAtopo: DNA/topoisomerase-human, TYRK: tyrosine
kinase, DNAclak: DNA cross-linking/alkylation, CYC: cyclooxygenase, DNAlig: DNA/ligase, TOPOI:
topoisomerase-non-human, INTR: interferon receptor, MICROT: microtubules, NUCS: nucleotide
synthesis, TNF: tumor necrosis factor. (c) TF (transcription factor) level. “Directly”: drugs with TFs as
its main therapeutic targets. “Not-directly” indicates drugs with main therapeutic targets which are
human DNA structures or human proteins but not TFs. “Non-Human” represent drugs interacting
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with protein or structures of non-human (for example, from virus or bacterial) as main therapeutic
targets. (d) Chemotherapy. “YES” or “NO” indicates the drug is a chemotherapy drug or not.
(e) ATC classification. CORTI: corticosteroids for systemic use, plain, OAA: other antineoplastic
agents, CYTOANTIB: cytotoxic antibiotics and related substances, ANTIME: antimetabolites, IMMSUP:
immunosuppressants, NSAAP: anti-inflammatory and antirheumatic products, non-steroids, HAARA:
hormone antagonists and related agents, QUINA: quinolone antibacterial, IMMSTI: immunostimulants,
PAAAONP: plant alkaloids and other natural products, ALKA: alkylating agents.

2.3. Overall Score of GES Similarity of Drug-Indicted Disease Pairs Against Random Drug–Disease Pairs

We observed significantly lower SJI similarity scores of drug–disease indication pairs than those
of random drug–disease pairs (p-value of two-side t-test [13] equals to 0.02324). The average similarity
score of indicated pairs is −0.00386 with a standard deviation of 0.01794 and that of random control
pairs is −0.00072 with a standard deviation of 0.01750, indicating that the GES method can reflect
the therapeutic effects of the drugs (The distributions of SJI in both the indication group and the control
group are shown in Figure 3).

−
−

Figure 3. The distribution of signed Jaccard index in the indication group and the control group.

2.4. Subgroup Scores of GES Similarity of Drug-Indicated Disease Pairs Against Random Drug–Disease Pairs

We compared drugs from five different categories of subgroups: (1) disease classifications; (2)
drug target; (3) TF level; (4) chemotherapy; and (5) ATC classification. The results are shown in
Figure 4, detail information is listed in Table S3 and Table S4. Subgroups with important or significant
(q-value according to false discover rate (FDR) lower than 0.05) results according to least squares mean
partitions F tests of a generalized linear model (GLM) [14] are listed in Table 2.
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Table 2. Subgroups of generalized linear model (GLM) least squares mean partitions F tests results.

Classification Category Subgroups
Average SJI of

Indicated Pairs ± SD
N

Average SJI of
Control Pairs ± SD

N Q value

Disease classification

Diseases of the blood or
blood-forming organs −0.02368 ± 0.03746 6 0.00075 ± 0.02470 138 0.01322

Diseases of the nervous
system −0.03264 ± 0.03648 4 −0.00054 ± 0.01528 92 0.00704

Drug target classification Interferon receptor −0.02314 ± 0.03866 5 0.00916 ± 0.02849 115 0.00110

Kinase mTOR −0.05846 ±———- 1 0.00353 ± 0.01580 23 0.01755

Chemotherapy
classification

Chemotherapy drugs 0.00048 ± 0.00894 47 −0.00022 ± 0.01221 1049 0.99509

Non-chemotherapy drugs −0.00556 ± 0.02026 120 −0.00086 ± 0.01872 2760 0.03937

ATC classification
Immunostimulants −0.02314 ± 0.03866 5 0.00916 ± 0.02849 115 0.00110

Other dermatological
preparations −0.05846 ±———- 1 −0.00353 ± 0.01580 23 0.01755

Transcription factor level
Directly −0.00433 ± 0.02310 60 0.00070 ± 0.01671 1378 0.22309

Not-directly −0.00344 ± 0.01443 98 −0.00116 ± 0.01785 2224 0.99509

Non-Human −0.00533±0.01574 9 −0.00057 ± 0.01627 207 0.79080

Important subgroups or subgroups with false discover rate (FDR) q-value lower than 0.05 from GLM least squares mean partitions F tests for signed Jaccard index differences between
drug-indicted disease pairs and random drug–disease pairs. “———-” indicates that subgroups only have one unique drug–disease pair sample with no standard deviation.
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Figure 4. The average signed Jaccard index score of unique indicated drug–disease pairs split by
different categories of subgroups. ** indicates FDR Q < 0.01, * indicates FDR Q < 0.05. (a) ATC
classification. ADRI: adrenergics, inhalants, AAPS: anti-acne preparations for systemic use, EIBGLD:
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blood glucose-lowering drugs, excluding insulins, DAA: direct acting antivirals, ESTR: estrogens, INS:
insulins and analogues, LMA: lipid modifying agents, plain, ODP: other dermatological preparations,
TET: tetracyclines, VITAD: vitamins A and D, including combinations of the two. CORTI, OAA,
CYTOANTIB, ANTIME, IMMSUP, NSAAP, HAARA, QUINA, IMMSTI, PAAAONP, ALKA, see
Figure 1 legend. (b) Chemotherapy. “YES” or “NO” indicates the drug is a chemotherapy drug
or not. (c) Disease classification. See Figure 1 for abbreviations. (d) Target. 16S: 16S ribosomal
RNA, ACRT: aminoimidazole caboxamide ribonucleotide transformylase, AMPAPK: AMP-activated
protein kinase, ADGR: androgen receptor, BETAR: beta adrenergic receptor, CD20: CD20 antigen, CYP:
cytochromes P450, DAAD: delta-aminolevulinic acid dehydratase, DNMT: DNA/methyltransferase,
DNApo: DNA/polymerase, ESR: estrogen receptor, HMG-CoAR: HMG-CoA reductase, I5MD:
inosine-5’-monophosphate dehydrogenase, INSR: insulin receptor, mTOR: kinase mTOR, PPAR:
peroxisome proliferator-activated receptors, PSB: proteasome subunit beta, RAR: retinoic acid receptor,
B-raf: serine/threonine-protein kinase B-raf, THYS: thymidylate synthase, D3: vitamin D3 receptor;
GLUR, DNAtopo, TYRK, DNAclak, CYC, DNAlig, TOPOI, INTR, MICROT, NUCS, TNF see Figure 1
legend. (e) TF (transcription factor) level. “Directly”: drugs with TFs as their main therapeutic targets.
“Not-directly” indicates drugs with main therapeutic targets which are human DNA structures or
human proteins but not TFs. “Non-Human” represents drugs interacting with non-human proteins or
structures (for example, from viruses or bacteria) as main therapeutic targets.

2.5. Gene and Pathway Analysis on an Example Drug–Disease GES Pair

Interferon receptor (with the same drug–disease pair content as the immunostimulants subgroup),
the subgroup with the lowest q-value, was chosen as a case report for the pathway analysis. The top 5%
(93/1898) genes with a relatively reversed expression probability according to the relatively expression
probability of a gene’s (GI-R%, an indicator of the relative possibility difference of gene expression
between the indicated group and the random control group, see below 4.5) scores are shown in Table 3.
The top 10 significant biological pathways identified by the ingenuity pathway analysis are shown in
Table 4.

Table 3. Top 5% genes with relatively expression probability (GI-R%).

Gene GI-R% Gene GI-R% Gene GI-R% Gene GI-R%

MX1 −46.87% FTL −25.22% USP18 −19.56% DUSP6 −16.90%
IFIT3 −41.45% RPL24 −25.18% CERS2 −19.38% TPT1 −16.66%

NME1 −40.50% ERP29 −23.86% RPLP0 −19.36% RSAD2 −16.59%
RPL3 −39.19% RSL24D1 −23.86% KLRB1 −19.28% ADAR −16.48%
RPS5 −37.61% PTMA −23.65% ADM −19.23% DDX58 −16.44%
RPL6 −36.57% HLA-DRA −22.88% PLSCR1 −19.23% APOBEC3A −16.40%

MT1HL1 −35.52% IFIT1 −22.22% RPLP0P6 −19.14% PPIB −16.17%
MT2A −34.80% MX2 −22.22% RPS3A −19.07% RGS2 −16.09%
RPSA −33.55% LDHB −22.12% TRIM22 −19.00% IRF7 −16.08%
TGFBI −33.47% DYNLT1 −21.90% DDX21 −18.66% PSMA6 −16.00%
MT1X −32.30% ALDH1A1 −21.64% GCH1 −18.64% RPL9 −15.94%

HERC5 −32.15% HSPA1A −21.53% GAPDH −18.55% OAS1 −15.91%
FAU −31.82% SLC25A5 −21.53% OAS3 −18.48% RPL31 −15.74%
PLS3 −29.66% IFIT2 −21.38% RPS25 −18.40% PTTG1IP −15.74%

HLA-A −29.15% RPS4X −21.28% NDUFB11 −18.40% BIRC2 −15.74%
RPL22 −28.88% EIF3E −20.88% SNHG6 −18.15% MYD88 −15.67%

FBL −28.52% HMGN2 −20.88% PSAT1 −18.06% RPS14P3 −15.64%
RPS8 −27.57% FTH1P5 −20.80% IER2 −18.02% FTH1 −15.62%
ISG15 −26.91% YWHAZ −20.72% UXT −17.65% C4orf46 −15.45%

EEF1B2 −26.88% PFDN5 −20.57% PARP12 −17.58% PPT1 −15.42%
PHB2 −26.48% TMA7 −20.20% MAFB −17.40% YBX1 −15.33%
MT1H −26.29% CCT7 −20.12% LYZ −17.25%
RPL8 −26.11% OASL −19.89% NARS −17.15%
ATF4 −25.36% SNHG5 −19.64% AKR1B1 −17.02%
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Table 4. Top 10 significant biological pathways according to high relatively expression probability genes.

Ingenuity Canonical Pathways -log(p-value) Ratio Genes Overlapped with Datasets

EIF2 Signaling 16.50 8.02%
(17/212)

ATF4, EIF3E, FAU, RPL22, RPL24, RPL3,
RPL31, RPL6, RPL8, RPL9, RPLP0,
RPS25, RPS3A, RPS4X, RPS5, RPS8,

RPSA

Activation of IRF by Cytosolic
Pattern Recognition Receptors 6.60 9.84%

(6/61) ADAR, DDX58, IFIT2, IRF7, ISG15, PPIB

Regulation of eIF4 and p70S6K
Signaling 6.48 5.23%

(8/153)
EIF3E, FAU, RPS25, RPS3A, RPS4X,

RPS5, RPS8, RPSA

Interferon Signaling 6.34 13.90%
(5/36) IFIT1, IFIT3, ISG15, MX1, OAS1

mTOR Signaling 5.57 3.96%
(8/202)

EIF3E, FAU, RPS25, RPS3A, RPS4X,
RPS5, RPS8, RPSA

NRF2-mediated Oxidative Stress
Response 3.80 3.23%

(6/186) ATF4, CCT7, ERP29, FTH1, FTL, PPIB

Role of Pattern Recognition
Receptors in Recognition of

Bacteria and Viruses
3.39 3.47%

(5/144) DDX58, IRF7, MYD88, OAS1, OAS3

Neuroinflammation Signaling
Pathway 2.78 2.06%

(6/291)
ATF4, BIRC2, HLA-A, HLA-DRA, IRF7,

MYD88

SPINK1 General Cancer Pathway 2.63 4.92%
(3/61) MT1H, MT1X, MT2A

Systemic Lupus Erythematosus in
B Cell Signaling Pathway 2.23 1.89%

(5/265) IFIT2, IFIT3, IRF7, ISG15, MYD88

These 10 pathways are reported to be involved with interferon regulation [15–27]. within
inflammatory and immune responses (see Table 5).

Table 5. Top 10 pathways and their function labels.

Ingenuity Canonical Pathways Function Reference

EIF2 Signaling Immune Responses [28]

Activation of IRF by Cytosolic Pattern Recognition Receptors Regulate Interferon [17]

Regulation of eIF4 and p70S6K Signaling Inflammatory [18,29]

Interferon Signaling Immune Responses [30,31]

mTOR Signaling Immune Responses [19]

NRF2-mediated Oxidative Stress Response Antioxidant Response [21]

Role of Pattern Recognition Receptors in Recognition of
Bacteria and Viruses Regulate Interferon [22]

Neuroinflammation Signaling Pathway Inflammatory [23]

SPINK1 General Cancer Pathway Cancer Diagnose [32]

Systemic Lupus Erythematosus in B Cell Signaling Pathway Inflammatory [33]

3. Discussion

It is well-recognized that genes with similar gene expression patterns have a similar function [34].
From the overall score, we can see that FDA-approved drugs listed in the CREEDS database and
their indicated diseases generally have inverse GES patterns compared with the random controls.
However, the absolute difference between the indicated group and random control group is not
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very obvious. For example, in a recent study [35], a significant relationship was found between
drug–disease GES similarity and drug therapeutic effect using Cmap [36], with a relatively low overall
area under curve (AUC) of 0.57, indicating a real, albeit weak, inverse relationship. The treatment
effectors of the drugs identified in this study likely work via the interaction of the genes’ protein
products, with only a moderate correlation between gene expression and levels of the corresponding
protein(s) [37]. Thus, an association study between drugs/diseases and gene expression/pharmaceutical
effect is necessary. Also, other mechanisms, for instance, microRNA-based therapeutics, might directly
orchestrate the activation/deactivation of the gene expression. However, due to the limitation of
available sources, we were unable to investigate other mechanisms of action. Besides, the drugs’
TF-levels were not a significant factor that reflect the indication relationship (although drugs directly
interacting with TF perform slightly better with q-value of 0.22309 vs. q-value of 0.99509). In our
analyses, some subgroups of drugs–diseases pairs with indication associations have positive similarity
scores (which means that the drug may exacerbate the disease according to the assumption of gene
expression signature similarity) or a score higher than random drug–disease pairs, but these findings
were not statistically significant. On the other hand, 7 of 70 subgroups had a significantly lower
similarity score when a drug–disease association is indicated.

This study may provide some hints to other future studies utilizing the GES method strategies of
comparing drug–disease GES similarity for drug repositioning. That is, certain types of drugs may
have a stronger ability to reverse the GES of the diseases they treat, and the disease type may also
influence this ability. As such, in specific kinds of subgroups, the drug–disease pairs with higher
similarities of reversed GES patterns may have greater therapeutic relationships, which means that
focusing on certain kinds of diseases or drugs can increase the true positive rate of the GES-guided drug
repositioning method For example, over half (4/7) of the significant subgroups (immunostimulants,
interferon receptor, other dermatological preparations, and diseases of the blood or blood-forming
organs) are related to diseases associated with the immune system (the disease includes in “other
dermatological preparations” atopic dermatitis). This indicates that a drug with drug–disease pairs
associated with the immune system tends to have lower similarity scores when compared with
the diseases it indicated than random diseases. This means in a GES-guided drug repositioning
analysis, an immune-associated drug is more likely to have a potential therapeutic effect on diseases
that have a higher inverse similarity with it.

Chemotherapy drugs may not be as good as non-chemotherapy drugs for the GES-guided drug
repositioning method (q-values: 0.99509 vs. 0.03937). Unarguably, the high diversity of chemotherapy
responses to heterogenetic tumor tissues or even histologically similar tumors has been a challenging
problem for a long time [37,38]. The failure of controlling the process of programmed cell death in
tissue, one of the major causes of tumors, can be rectified or even overturned by activating/deactivating
different pathways under various conditions [39]. This may be the reason that chemotherapy drugs
are not good for the GES-guided repositioning approach. On the other hand, non-chemotherapy drugs
show a significant result as they interact with cancer cells through more specific mechanisms, such as
hormone regulation or mono-target therapy.

For the biological pathway analysis of the interferon receptor subgroup, we found that the genes
involved in pathways directly regulated by drugs have the lowest GI-R% scores. It is reasonable
that GES-guided drug repositioning methods are more sensitive to drugs directly targeting pathways
related to diseases. Furthermore, the significance of mTOR signaling is in accordance with the result
in which the subgroup kinase mTOR had a significant indicated-random drug–disease pairs’ SJI
difference. This result confirmed the high sensitivity of the GES-guided drug repositioning method to
this pathway on the other side.

There are some limitations in this study. First, the tissues used for testing the drug effects may
not match with the body parts/organs affected by the diseases.. Second, some bias may be caused
by the limited number of the CREEDS bio-assay collection which may not have the ability to fully
present the pattern of all kinds of drugs and diseases. Additionally, it is important to differentiate
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the types of “treatment effect”. Some drugs may cure a particular disease while others may just provide
symptomatic relief thereby resulting in different patterns of GES for the same disease. Also, some
indicated subgroups (“kinase mTOR”, and “other dermatological preparations”) have too few unique
drug–disease pairs (n = 1), which may weaken the analyses’ power.

In this study, we systematically analyzed the similarity of gene expression profiles from known
drug–disease associations, and we found that indicated pairs have a greater inverse similarity score.
We found seven subgroups in which their drugs or diseases may have a greater reversed GES pattern
when there is a clear therapeutic effect. These findings suggest that a GES-guided drug repositioning
method should be used based on the drug or disease type differences. For example, drugs or diseases
associated with the immune system, diseases of the nervous system or non-chemotherapy drugs may be
a better choice for drug repositioning. Moreover, our biological pathway enrichment analysis showed
that some pathways may be more sensitive to this method, such as the mTOR signaling pathway.

4. Materials and Methods

4.1. Gene Signature Data Collection and Filtering

In this study, all gene signature information was collected from a well-calibrated GES repository,
the crowd extracted expression of differential signatures (CREEDS) [12] database. The CREEDS database
is maintained by the Ma’ayan Lab of Icahn School of Medicine at Mount Sinai. CREEDS utilized
GEO2Enrichr [40] to extract GES profiles from the National Center for Biotechnology Information
(NCBI) Gene Expression Omnibus (GEO) and applied a characteristic direction (CD) model [41] to
identify differentially expressed genes. This database V1.0 includes 10,797 single-gene perturbations,
2258 disease signatures and 5516 drug perturbation gene signatures. Among these signatures, 2176
manual single-gene perturbations, 828 manual disease signatures and 875 manual drug perturbation
signatures were considered to be more accurate compared with the automatically generated GES by
the machine learning method. The CREEDS database allows users to compare the similarity between
the user-specified GES and the GESs processed and stored in the CREEDS.

We first selected the CREEDS manual GES profiles if the assays were from human tissues and/or
human cell linesand if the drugs had FDA approval.

Each GES profile includes a list of up- and down-regulated genes. The SJI [12] (see below),
a measurement for the similarity between two GES profiles from the paired drug–disease, was
calculated. When a drug or a disease had multiple GES profiles, we calculated the SJIs of all the possible
combinations, and an overall score for each unique drug–disease pair was calculated from the average
of all scores from pairs sharing the same drug–disease combination. All the disease signatures and
drug perturbation signatures were requested through the application program interface (API) provided
by CREEDS. GES profiles were removed if they labelled for both a drug treatment and for a disease,
because this may cause biased similarity. Under the criteria that (a) the GES profiles must come from
assays of human cells/tissues, and (b) drugs must be approved by FDA, the remaining signatures were
paired within drugs and diseases according to the indication associations. Signatures without any
indicated drug–disease relationship were also excluded from further analysis. For example, cocaine
was removed because its indication, local anesthesia, was not in the data of disease signatures and
could not be paired. The overall data process is shown in Figure 5.
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Figure 5. The flow chart of drug and disease gene signature data inclusion process. Numbers of
gene signatures left in each step are shown in parentheses: (Number of drug signatures/Number of
disease signatures) 1.1. and 1.2. All manual gene signatures retrieved from the CREEDS database.
2. Remove all signatures with assays not labelled as human. 3. Remove all drug signatures not from
FDA-approved drugs. 4. Remove signatures with information errors or signatures labelled as both
for a drug treatment and for a disease. 5. Remaining drug signatures were paired with each disease
signature. 6. Remove signatures with no FDA-labelled indication relationships of drug or disease.
7. Indicated group and control group were divided according to the indication relationship from
the FDA drug label. 8. Calculate the signed Jaccard index for each remaining drug–disease pair.

4.2. Similarity Calculation

In our analysis, SJI, which is based on the Jaccard similarity coefficient [42], was used to compute
the similarity between GES profiles from a drug and a disease. The Jaccard similarity coefficient
is a statistic used to gauge the similarity between different sample sets. It is defined as the size of
the intersection divided by the size of the union of two sample sets. It is calculated as follows:

Jaccard Similarity Coe f f icient(G1, G2) =
SAME
ALL

where G1 and G2 stand for two lists of differential expressed gene sets, “SAME” represents the number
of same genes between two given gene sets, and “ALL” stands for all the unique genes that appeared
in the two gene sets.

SJI, which combines the Jaccard similarity coefficient with the gene regulation direction is
calculated as follows:
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where J means Jaccard similarity coefficient, and Gup and Gdown are up- or down-regulated genes in
the given gene set G, respectively. The index ranges from +1 to −1, where +1 and −1 indicate a same
pattern and inverse pattern of two gene sets, respectively. Zero indicates that the two sets have no
associations, or the same part is cancelled out by the inverse part. The reason to use an unranked score
calculation method (SJI) is to keep in accordance with the same scoring method used in the CREEDS
database. The CREEDS API (application programming interface) offers the function to calculate the SJI
automatically. However, we found the API could not calculate the SJI correctly when two GES profiles
are highly overlapped., therefore, all the SJIs in this study were re-calculated.

4.3. Drug-Related Information Collection

In our analysis, the source of drug-related information is listed as follows:
1. Drug target information was collected from DrugBank [43,44] Release Version 5.1.4 [45]

(https://www.drugbank.ca/releases/latest#external-links). Only the targets with the main therapeutic
effect in the mechanism of action section were included;

2. The human TF list was collected from the paper published by Samuel A. Lambert et al. [46];
3. ATC classifications on level 3 were collected from the WHO official website (https://www.

whocc.no/atc_ddd_index/);
4. The drug indication was from section “indications and usage” of FDA label on FDA website

(https://labels.fda.gov/);
5. (Drug-indicated) Disease classification was assigned to each disease based on the International

Classification of Diseases 11th Revision (ICD-11), level 1.

4.4. Subgroup Classification

In our analysis, we assessed the following factors that might influence the power of the GES-guided
drug repositioning method:

1. Disease classifications: A subgroup was assigned to a disease in a drug–disease pair according to
the ICD-11-level 1 code of the disease;

2. Drug target subfamilies: Subgroups were divided by the main therapeutic target of each drug. To
avoid group splits being too small, some same subfamilies of targets are grouped as one, such as
“Beta-1 adrenergic receptor”, “Beta-2 adrenergic receptor” and “Beta-3 adrenergic receptor” are
grouped in the same subgroup “Beta adrenergic receptors”;

3. The relationship between the drug’s main therapeutic targets and human transcription factors:
A TF level was assigned according to the relationship between the drugs’ main therapeutic targets
and human TF. Drugs with main therapeutic targets that can directly interact with at least one
TF were labelled as “directly”. Drugs with main therapeutic targets which are human DNA
structures or human proteins but not TFs were labelled as “not-directly”. Drugs interacting with
non-human proteins or structures (for example, from viruses or bacteria) as main therapeutic
targets were labelled as “non-Human”;

4. The drug is a chemotherapy drug or not: Drugs with main therapeutic targets as
“DNA cross-linking/alkylation”, “DNA/ligase”, “DNA/methyltransferase”, “DNA/polymerase”,
“DNA/topoisomerase-human”, “micro-tubules”, “nucleotide synthesis” or “Thymidylate
synthase” were defined as chemotherapy drugs

5. The drug’s ATC classification: Subgroups were divided according to the Anatomical Therapeutic
Chemical classification system, level 3. Drugs with multiple classifications caused by different
administration routes were unified to systematic use.

4.5. Statistical Analysis and Pathway Analysis

The random control group was generated by calculating the average SJI of all possible drug–disease
pairs without indicated associations to imitate a GES-guided drug repositioning screening. A t-test [13]
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was applied to quantify the mean differences of the SJI between drug-indicated disease pairs and
random controls.

For subgroup analysis, GLM [14] least squares mean partitions F tests function was applied to
estimate the mean difference between the indicated and control group since the data was unbalanced
with multiple factors. A significant result of a certain subgroup indicated that the average SJI of this
subgroup was significant between two indication levels (Yes/No). False discovery rate (FDR) q-value
of the Benjamini–Hochberg procedure [47] was controlled to 0.05 to avoid an inflated experiment-wise
type I error rate caused by multiple comparisons among all subgroups.

Data processing and statistical analysis (student t-tests, GLM, FDR calculation) were conducted
using R studio 3.6.1 [48] and SAS software version 9.4. Copyright © 2019 SAS Institute Inc. Cary,
NC, USA.

Differentially reversed expression genes (top 5% negative score according to the relatively reverse
percentage) from the most significant subgroup will be chosen as examples to conduct biological
pathway enrichment analysis.

The relatively reverse percentage is calculated as

Relatively expression probability o f a gene
(

GI−R%
)

= DI%−DR%

where DI% and DR% stand for the percentage of the gene which is differentially expressed in all assays
of indicated/random drug–diseases pairs. It is calculated as

D% =
NS−NR

Total assays pairs

where NS and NR represent the number of times a gene showed a same or reverse regulation direction
between assays of drugs and diseases among all drug–disease assays pairs.

The GI-R% ranges from 100% to -100%. A higher positive score indicates that this gene is more
likely to be expressed in the same direction in indicated drug–disease assays compared with random
drug–disease assays. Likewise, a lower negative score indicates that this gene has a higher probability to
express reversely between indicated drug–disease assays compared with random drug–disease assays.

Biological pathway enrichment analysis was conducted by ingenuity pathway analysis (IPA,
QIAGEN Inc., https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis).
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Abstract: The COVID-19 outbreak continues to spread worldwide at a rapid rate. Currently, the ab-
sence of any effective antiviral treatment is the major concern for the global population. The reports
of the occurrence of various point mutations within the important therapeutic target protein of SARS-
CoV-2 has elevated the problem. The SARS-CoV-2 main protease (Mpro) is a major therapeutic target
for new antiviral designs. In this study, the efficacy of PF-00835231 was investigated (a Mpro inhibitor
under clinical trials) against the Mpro and their reported mutants. Various in silico approaches were
used to investigate and compare the efficacy of PF-00835231 and five drugs previously documented
to inhibit the Mpro. Our study shows that PF-00835231 is not only effective against the wild type but
demonstrates a high affinity against the studied mutants as well.

Keywords: SARS-CoV-2; main protease; mutants; inhibitors; PF-00835231

1. Introduction

SARS-CoV-2, the etiological agent of COVID-19, is a pandemic responsible for claiming
over a million human lives [1]. More than a thousand drugs are currently in the COVID-
19 treatment pipeline; most of which are in the discovery stage and many of these are
existing treatments for other conditions currently being evaluated for SARS-CoV-2 [2].
The latest statistics available from ClinicalTrials.gov, a directory of clinical trials funded by
the US National Library of Medicine, reveal that 4371 studies are registered worldwide
and are growing day by day. Twenty-five trials, including using the most common drug,
Hydroxychloroquine, were discontinued [3]. To date only two studies are found in the
category of ‘Approved for marketing’, which are expanded access to convalescent plasma
and the drug molecule Remdesivir [4,5]. As an urgent consequence of the novelty of
SARS-CoV-2 infections and the lack of appropriate drugs, a wide range of techniques
and methods are being used to tackle the emerging worldwide COVID-19 pandemic.
To date, the therapies suggested are mainly the repurposing of existing drugs chosen for
the similarity of their initial indication such as antivirals/antiretrovirals or for the similarity
of their mode of action [6,7].

Pp1a and pp1ab polyproteins are formed by SARS-CoV-2 and are processed by two vi-
rally encoded cysteine proteases; the main protease (Mpro) and the papain-like protease [8].
In the viral replication process, it is apparent that the action of the Mpro is vital as it pro-
cesses the p1a/p1ab polyprotein virus proteolytically at more than 10 junctions to produce
a set of non-structural proteins (NSPs) essential for virus replication and transcription
including RdRp, helicase and the Mpro itself [9]. Of all recognized forms of coronaviruses,
the Mpro is the most explored target for drug development because it has almost the same
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mechanism and active site as MERS-CoV (Middle East Respiratory Syndrome Coronavirus)
and SARS-CoV [10,11].

Despite the lower mutation rate of the virus, studies have revealed more than 12,000
SARS-CoV-2 genome mutations. Many mutations would not impact the capacity of the
virus to transmit or trigger illness because they do not alter the structure of a protein
and certain mutations that change proteins are often more likely to damage the virus
than to strengthen it [12]. A few vaccines have recently been approved and more than
50 are in different phases of trials. Structural protein mutations that are attacked by the
host immune system can impede vaccine efficacy and non-structural protein mutations
can develop strains that are resistant to antivirals. Different strains of the virus that are
more transmittable than the wild type SARS-CoV-2 have recently been identified in South
Africa. In the United Kingdom and several other nations including Europe and Brazil,
the extensive spreading of coronavirus variants has placed the world on alert and sparked
a new lockdown [13,14]. It picks up minor changes to the genetic code every time the SARS-
CoV-2 moves from person to person but researchers are beginning to find variations of how
the virus mutates. A major research investment is being made towards the development of
new therapeutics or repurposing old drugs as weapons against COVID-19.

Pfizer has started clinical trials (phase I) with a small molecule PF-07304814 that
targets the Mpro of SARS-CoV-2 [15]. It may prove to be the first antiviral drug to target
this protein (Mpro) to combat COVID-19. PF-07304814 comprises a phosphate group that
renders the compound soluble and cleaves the active antiviral PF-00835231 by alkaline
phosphatase enzymes in the tissue [15].

Here in this study, we evaluate the binding efficacy of six known inhibitors of the
Mpro (Figure 1). The binding efficacy of these inhibitors was measured against the WT and
the mutant Mpro (Figure 2). Five drugs (bedaquiline, boceprevir, efonidipine, manidipine
and lercanidipine) have been earlier reported to inhibit Mpro activity to below 40 µM [11].
The sixth inhibitor, PF-00835231, is a powerful inhibitor of the SARS-CoV-2 Mpro with
sufficient medicinal properties to merit further research as an intravenous COVID-19
therapy [16]. During the 2002–2003 SARS epidemic, PF-00835231 was first discovered by
Pfizer chemists to target the SARS-CoV Mpro [16]. Infections petered out, however, and the
compound was put on hold along with a collection of other possible coronavirus antivirals.
In addition to demonstrating action against two strains of SARS-CoV-2, PF-00835231 was
able to kill other coronaviruses in cells as well [15]. PF-00835231 is the active form of
PF-07304814 currently being tested (phase 1) in patients with a SARS-CoV-2 infection and
mild to moderate symptoms [3,15].

This study involves a state of the art computational evaluation to assess the compara-
tive efficacy of PF-00835231 and other reported inhibitors against the wild type and four
reported Mpro mutants. We hypothesize here that PF-00835231 might be less competitive
against various SARS-CoV-2 virus mutants; even the results of experimental and clinical
studies are still to offer clearer results.
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Figure 1. Structure of all of the compounds investigated in this study. (a) PF-00835231; (b) Boceprevir; (c) Manidipine;
(d) Efonidipine; (e) Lercanidipine; (f) Bedaquiline.

Figure 2. The selected mutant investigated in this study.

2. Result and Discussion

In this study, a comparative analysis of the efficacy of PF-00835231 and five drugs pre-
viously documented to inhibit the Mpro (bedaquiline, boceprevir, efonidipine, manidipine
and lercanidipine) was performed with the wild type and four reported Mpro mutants
(Mutant 1 (Y54C), Mutant 2 (N142S), Mutant 3 (T190I) and Mutant 4 (A191V)).
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It was found that in all of the modeled structures, no residues lay in the disallowed
region, confirming the significant quality of the structures (Supplementary Figure S1).
An ERRAT analysis of all of the structures was also investigated [17]. It was found that the
overall structural quality of the modeled structure was very good. A VERIFY_3D [18,19]
analysis was also performed and it was found that in all of the modelled structures
more than 94% of the residues had an average 3D–1D score > 0.2, proving the great
compatibility between the primary sequence to the tertiary structure. Before conducting
the molecular docking experiments, the validation of the molecular docking protocol was
performed. Different crystal structures of the inhibitor bound SARS-CoV-2 Mpro were
retrieved. The binding orientation of the redocked poses was found to be similar to the
crystal confirmation of the inhibitor (Supplementary Figure S2 and Table S1). Most of the
redocked poses of the inhibitors were found to share a root mean square deviation (RMSD)
less than 1 Å (for small molecule inhibitors) than its crystal counterpart (Supplementary
Figure S2 and Table S1).

In order to determine the predictive binding effectiveness of small molecules with
receptors, a molecular docking evaluation is usually carried out [20]. Six compounds
(PF-00835231, bedaquiline, boceprevir, efonidipine, manidipine and lercanidipine) were
minimized and prepared for screening within the active site of the Mpro (WT) and modeled
Mpro mutants. In terms of the PLP fitness score using GOLD tools, the binding efficacy
score of all six selected compounds was calculated.

PF-00835231 was found to be the most effective against the WT Mpro (PLP Fitness
score 83.13 (Table 1). This compound was found to be very effective against other selected
mutants as well (Tables 2–5). Compared with other selected compounds, PF-00835231
was found to be the most effective inhibitor against Y54C and A191V (Tables 2 and 5)
(Figure 3) whereas efonidipine was found to be most effective against N142S and T190I
(Tables 3 and 4) (Figure 4). Figures 3 and 4 show the binding of PF-00835231 and efonidip-
ine against the Mpro and the selected mutants. The study also highlighted the important
residues playing a crucial role in accommodating the selected compounds within the active
site of the Mpro and the mutants. It was also found that the large number of active site
residues of the Mpro (WT and mutant) were actively participating in the positioning of all
of the molecules. Tables 1–5 represent the details of the interacting residues (amino acid)
of the Mpro and mutants interacting with all of the selected molecules. L141, S144, H164,
E166, Q189 and Q192 were found to be very prominently involved in making hydrogen
bonds with all of the selected compounds (Tables 1–5) (Figures 3 and 4). The crucial role
of these residues has been discussed earlier as well [21–23]. Other residues found to be
playing an important role in the binding were T25, T26, L27, H41, M49, C145, M165, L167,
P168, D187 and R188 (Tables 1–5) (Figures 3 and 4 and Supplementary Figures S3–S7).
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Figure 3. Complex of PF-00835231 within the active site of (a) WT; (b) Y54C.

Figure 4. Complex of Efonidipine within the active site of (a) N142S; (b) T190I.
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Table 1. The binding details of all compounds against the WT Mpro.

Protein Inhibitor Score
Residues

Hydrogen Bond Pi Interactions

WT

PF-00835231 83.13 G143, C145, H164, E166, Q189 H41, P168

Manidipine 72.93 F140, N142, E166 H41, L141, M165

Boceprevir 67.42 N142, E166, Q189 H41, M49, C145

Lercanidipine 69.73 Q189, Q192 C145, M165, L167, P168

Efonidipine 71.23 H41, C145, M165, P168, A191

Bedaquiline 66.92 N142 H41

Table 2. The binding details of all compounds against the Mutant 1 (Y54C) Mpro.

Protein Inhibitor Score
Residues

Hydrogen Bond Pi Interactions

Mutant 1 (Y54C)

PF-00835231 73.17 L141, G143, S144, C145, E166, Q189 M49, P168

Manidipine 66.68 T26, S46 C145, M165

Boceprevir 65.96 T26, G143, C145, E166, Q189 H41, M49, H163, M165

Lercanidipine 65.28 T26, G143, C145 L27, H41, M165

Efonidipine 68.23 L141, G143, S144, Q189 L27, C145, H163, P168, H172

Bedaquiline 63.27 H164 L27, H41, M49, C145

Table 3. The binding details of all compounds against the Mutant 2 (N142S) Mpro.

Protein Inhibitor Score
Residues

Hydrogen Bond Pi Interaction

Mutant 2 N142S

PF-00835231 76.53 L141, S142, G143, E166, Q189 S144, C145, L167, P168

Manidipine 68.64 F140, E166 L141, M165

Boceprevir 65.33 Q189 C44, M49, C145, H163, M165

Lercanidipine 69.05 L27, M49, C145, H163

Efonidipine 87.05 S142, C145 L27, M49, M165, L167

Bedaquiline 68.83 H164 H41, M49, C145, M165

Table 4. The binding details of all compounds against the Mutant 3 (T190I) Mpro.

Protein Inhibitor Score
Residues

Hydrogen Bond Pi Interactions

Mutant 3 T190I

PF-00835231 70.66 E166, D187, Q189 C44, M49, C145, H163, M165

Manidipine 63.42 F140, N142 M49, L141, M165

Boceprevir 60.36 N142 C44, T45, M165

Lercanidipine 66.96 T26 L27, H41, C44, M49, C145, M165

Efonidipine 72.25 F140, E166 L141, H163, M165, H172

Bedaquiline 67.87 E166 H41, C145
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Table 5. The binding details of all compounds against the Mutant 4 (A191V) Mpro.

Protein Inhibitor Score
Residues

Hydrogen Bond Pi Interaction

Mutant 4 A191V

PF-00835231 73.61 L141, G143, S144, C145, Q189 M165, P168, H172, V191

Manidipine 65.95 T25, S46, N142 M165

Boceprevir 62.08 S46, Q189 C44, M49, M165

Lercanidipine 67.93 C44, S46, N142 H41, M49, C145, M165

Efonidipine 71.01 F140 L141, H163, M165, P168

Bedaquiline 59.99 N142 H41, C145, M165

Recent studies have shown that all of the compounds (bedaquiline, boceprevir, efoni-
dipine, manidipine and lercanidipine) specified in this study carry the potential to inhibit
the Mpro with IC50 values below 40 µM [11]. The binding affinity for PF-00835231 has
been reported to be in the nano molar range [15]. Our in depth in silico analysis also found
PF-00835231 to be carrying a high affinity against the Mpro (WT) compared with other
selected compounds. We also hypothesized that these compounds, including PF-00835231,
might prove to be effective against the mutants as well. Boceprevir, which is a protease
inhibitor and was originally used to treat hepatitis, has been well studied to carry an
inhibitory potential against the Mpro [24–26]. This compound was found to carry a very
low affinity against the T190I whilst being the most active against the WT. The high binding
affinity of this compound against the Mpro (WT) has been reported in several studies [25].
This compound was found to be moderately effective against the WT and the selected
mutants. Likewise, other compounds considered in this study showed a moderate affinity
against all of the selected mutants. Manidipine [27], which is a calcium channel blocker
and is an approved antihypertensive drug, was found to be very effective against the WT.
Several studies have reported the potential of manidipine against SARS-CoV-2 [11,28,29].
This compound showed moderate activity against other selected mutants. Lercanidip-
ine [30], another calcium channel blocker and an approved antihypertensive drug, was
also found to show moderate activity against all of the selected targets and was most active
against the WT and N142S. Bedaquiline [31], another compound considered in this study,
is an approved drug for the treatment of active tuberculosis. This compound was found to
be moderately active against all of the selected proteins with a maximum binding affinity
against N142S and a least binding affinity against A191V.

Considering the high efficacy of PF-00835231 and Efonidipine against all of the selected
proteins, we further studied the structure dynamics of WT and the Mpro mutants in
complex with these two inhibitors (Figure 5). Root mean square deviation (RMSD) is a very
significant parameter to explore the protein dynamics in terms of conformational changes
within the protein structure. The backbone RMSD plot revealed that in the presence of
PF-00835231, the structures of the WT, Y54C and T190I mutants were stable throughout
the 100 ns simulation while the structures of N142S and A191V indicated fluctuations after
50 ns (Figure 5a). The backbone of WT and N142S was found to be stable in the Efonidipine
bound structure (Figure 5b) while other mutants, namely Y54C, A191V and T190I, showed
fluctuations in the backbone. Our overall investigation found that Efonidipine caused
fewer structural variations in the backbone of WT and N142S while PF-00835231 caused
fewer structural variations in the WT, Y54C and T190I mutants. This suggested that
the association of PF-00835231 within the active site of the Mpro and its mutant was
comparatively more stable. Further, the ligand RMSD plot was also analyzed and it
was observed that PF-07304814 was more stable with WT, Y54C and N142S throughout
the simulation time period compared with Efonidipine (Figure 5c,d). These analyses
further provide a strong support that the PF-07304814 bound complexes were very stable.
The Hbond analysis also showed that the PF-00835231 bound complexes comparatively
made more hydrogen bonds than the Efonidipine bound complexes (Figure 5e,f). This
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finding well supports the theory that the stability of PF-07304814 within the active site of
the Mpro (WT) and its mutants may be because of the greater number of Hbonds providing
the stability to PF-07304814. The overall outcome of this study showed that PF-07304814
could be a very potent inhibitor against the Mpro and its other reported mutants.

Figure 5. Molecular dynamics results of the PF-07304814 and Efonidipine bound complexes of the WT Mpro (black),
Y54C (yellow), N142S (green), T190I (blue) and A1901V (red). The backbone RMSD of the Mpro (WT) and mutants in
complex with (a) PF-07304814; (b) Efonidipine. The ligand RMSD of (c) PF-07304814 and (d) Efonidipine during the 100 ns.
The intermolecular hydrogen bond formations of the (e) PF-07304814 and (f) Efonidipine bound complex.

3. Materials and Methods
3.1. Protein Structure Preparation

Here in this study, the crystal structure of the SARS-CoV-2 (COVID-19) Mpro in
complex with inhibitor UAW248 was retrieved from the RCSB protein databank (pdb id:
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6xbi) [32,33]. The crystal bound inhibitor and other heteroatoms were removed. The struc-
ture of the mutants was prepared using the molecular modeling technique. The amino acid
sequence of all of the selected mutants (Y54C, N142S, T190I and A191V) were retrieved
from the NCBI protein database (GenBank: QJD23268.1, QJC19621.1, QJA16866.1 and
QIZ14843.1) [34]. To model the structure of the mutants, the 6xbi was taken as a template.
The structures were modelled using the modeler 9.23 [35]. All of the modeled structures
were validated using various in silico tools [36,37]. The structure of all of the Mpro mutants
was modeled and validated as well. The Ramachandran plot was computed for all of the
modeled structures using the PROCHECK module of SAVES [38]. All of the structures
were subjected to energy minimization using the steepest descent method for 1000 steps.

3.2. Ligand Structure Preparation

The 3D structure of bedaquiline (CID: 5388906), boceprevir (CID: 10324367), efoni-
dipine (CID: 119171), lercanidipine (CID: 65866), manidipine (CID: 4008) and PF-00835231
(CID: 11561899) were retrieved from the PubChem structure database [39]. All of the
compounds were energy minimized using the conjugate gradient method for 1000 steps in
UCSF Chimera [40].

3.3. Redocking: Co-Crystallized Ligand Pose Validation Study

Several crystal structures of the inhibitor bound SARS-CoV-2 Mpro were retrieved
from the RCSB protein databank. The inhibitors were separated and were subjected to
a redock within the structure of the Mpro using CCDC GOLD [41]. The docked confir-
mation of the inhibitors within the active site of the Mpro was compared with the crystal
orientations.

3.4. Virtual Screening

All of the selected compounds were subjected to docking within the active site of WT
and selected Mpro mutants using Gold 2.2 (CCDC, Cambridge, UK) [41]. The selection was
made based on their PLP fitness score. The complexes were visualized using PyMol [42]
and a discovery studio visualizer.

3.5. Molecular Dynamics Simulation

The selected complexes were subjected to a molecular dynamics simulation to investi-
gate the stability of these molecules (in complex with WT and mutant Mpro). The molec-
ular dynamics simulation was performed with GROMACS [43,44]. The complexes of
PF-00835231 and efonidipine complexed with the Mpro (WT) and mutants prepared us-
ing the molecular docking were considered as a starting point for MD study. Here we
used a GROMACS 2020.4 package with a Charmm36 force field to perform the MD sim-
ulation [45]. GROMACS is a widely used tool for performing MD simulation studies
and its utilization in protein-ligand simulation has been reported in a large number of
studies [46,47]. The parameter files for all the ligands were generated using SwissParam
(https://www.swissparam.ch/, accessed on 15 January 2021), which is an online tool
for generating parameters for the Charmm force field. The complexes were solvated
within the dodecahedron box of an explicit TIP3P water model with a 0.1 nm margin
between the box walls and solute. Na+ or Cl− counterions were added to neutralize the
system charge [48,49]. The particle mesh Ewald method (cutoff distance of 0.1 nm) was
employed for calculating the long-range electrostatic interactions [50]. The Lennard-Jones
6–12 potential was used for evaluating the van der Waals interactions; for this calculation,
the cutoff distance was set to 0.1 nm. The LINCS algorithm was used to constrain the
bond lengths while setting the time step to 0.002 pico second [51,52]. Further energy
minimization was performed using the steepest descent method for 10,000 steps in order
to remove the steric clashes between atoms. The whole system was further subjected for
equilibration for 1 nano second (ns). To maintain the system at 300 K and 1 atm, Berendsen
weak coupling systems were utilized [53,54]. A Maxwell Boltzmann distribution was used
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for randomly generating the initial velocities. The final 100 ns production run was per-
formed at 300 K in an NPT ensemble. Furthermore, xmgrace was used to generated graphs
(http://plasmagate.weizmann.ac.il, accessed on 15 January 2021); PyMol and VMD were
used for further graphical inspections and analysis.

4. Conclusions

In conclusion, this study predicted that PF-00835231, which is already being tested
to target the SARS-CoV-2 Mpro, may also be potent against the specified Mpro mutants.
Notably, PF-00835231 and five other reported antivirals were investigated for comparative
inhibitory efficacy in terms of binding potency against WT and the Mpro mutants. PF-
00835231 was found to be the most efficient inhibitor of the Y54C and A191V Mpro mutants
with a fitness score of 73.17 and 73.61, respectively, relative to the other listed drugs. Based
on our research, it is early to determine but hopefully this potential drug PF-00835231
would most certainly be highly effective against the mutant Mpro and could prove to be a
sharp weapon in the fight against the COVID-19 pandemic.

Supplementary Materials: The following are available online: Figure S1: Validation of the modeled
structures of mutants (a) Y54C (b) N142S (c) T190I (d) A191V, Figure S2: The superimposed structure
of crystal pose (blue) of inhibitor and redocked pose of (a) X47 (green) (pdb id: 6wco), (b) X77 (yellow)
(pdb id: 6w63), and (c) ADRAFINIL (red) (pdb id: 7ans) within the binding site of Mpro, Figure
S3: Complex of (a) PF-00835231 (b) Boceprevir (c) Manidipine (d) Efonidipine (e) Lercanidipine (f)
Bedaquiline within the active site of WT, Figure S4: Complex of all (a) PF-00835231 (b) Boceprevir (c)
Manidipine (d) Efonidipine (e) Lercanidipine (f) Bedaquiline within the active site of Y54C, Figure S5:
Complex of all (a) PF-00835231 (b) Boceprevir (c) Manidipine (d) Efonidipine (e) Lercanidipine (f)
Bedaquiline within the active site of N142S, Figure S6: Complex of all (a) PF-00835231 (b) Boceprevir
(c) Manidipine (d) Efonidipine (e) Lercanidipine (f) Bedaquiline within the active site of T190I, Table
S1: The inhibitor bound crystal structure of SARS-CoV-2 Mpro considered for the validation of
docking protocol.

Author Contributions: Conceptualization, J.-J.D., M.H.B. and I.A.; methodology, T.S., M.H.B., M.A.;
software, J.-J.D., M.H.B.; writing—original draft, J.-J.D., M.H.B., I.A. and M.M.A., M.A.; formal
analysis, J.-J.D., M.H.B.; investigation, T.S., I.A., M.M.A.; supervision, J.-J.D. All authors have read
and agreed to the published version of the manuscript.

Funding: The authors are thankful to the Institute of Research and Consulting Studies at King Khalid
University for supporting this research through grant number 26-14-S-2020 and the National Research
Foundation of Korea, grant: [NRF-2018R1C1B6009531].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is available within the article.

Acknowledgments: The authors are thankful to the National Research Foundation of Korea and the
Institute of Research and Consulting Studies at King Khalid University for supporting this research.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples of the compounds are not available from the authors.

References
1. Hu, B.; Guo, H.; Zhou, P.; Shi, Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021, 19, 141–154.

[CrossRef] [PubMed]
2. Robinson, J. Everything you need to know about the COVID-19 therapy trials. Pharm. J. 2021. [CrossRef]
3. Clinicaltrials. gov. Available online: https://www.clinicaltrials.gov/ (accessed on 15 January 2021).
4. Rubin, D.; Chan-Tack, K.; Farley, J.; Sherwat, A. FDA Approval of Remdesivir—A Step in the Right Direction. N. Engl. J. Med.

2020, 383, 2598–2600. [CrossRef]
5. Pau, A.K.; Aberg, J.; Baker, J.; Belperio, P.S.; Coopersmith, C.; Crew, P.; Grund, B.; Gulick, R.M.; Harrison, C.; Kim, A.; et al.

Convalescent Plasma for the Treatment of COVID-19: Perspectives of the National Institutes of Health COVID-19 Treatment
Guidelines Panel. Ann. Intern. Med. 2021, 174, 93–95. [CrossRef]

236



Molecules 2021, 26, 1678

6. Artigas, L.; Coma, M.; Matos-Filipe, P.; Aguirre-Plans, J.; Farrés, J.; Valls, R.; Fernandez-Fuentes, N.; De La Haba-Rodriguez, J.;
Olvera, A.; Barbera, J.; et al. In-silico drug repurposing study predicts the combination of pirfenidone and melatonin as a
promising candidate therapy to reduce SARS-CoV-2 infection progression and respiratory distress caused by cytokine storm.
PLoS ONE 2020, 15, e0240149. [CrossRef]

7. Riva, L.; Yuan, S.; Yin, X.; Martin-Sancho, L.; Matsunaga, N.; Pache, L.; Burgstaller-Muehlbacher, S.; De Jesus, P.D.; Teriete, P.;
Hull, M.V.; et al. Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Nature 2020, 586, 113–119.
[CrossRef] [PubMed]

8. Krichel, B.; Falke, S.; Hilgenfeld, R.; Redecke, L.; Uetrecht, C. Processing of the SARS-CoV pp1a/ab nsp7–10 region. Biochem. J.

2020, 477, 1009–1019. [CrossRef]
9. Vlachakis, D.; Papakonstantinou, E.; Mitsis, T.; Pierouli, K.; Diakou, I.; Chrousos, G.; Bacopoulou, F. Molecular mechanisms of the

novel coronavirus SARS-CoV-2 and potential anti-COVID19 pharmacological targets since the outbreak of the pandemic. Food

Chem. Toxicol. 2020, 146, 111805. [CrossRef] [PubMed]
10. Xue, X.; Yu, H.; Yang, H.; Xue, F.; Wu, Z.; Shen, W.; Li, J.; Zhou, Z.; Ding, Y.; Zhao, Q.; et al. Structures of Two Coronavirus Main

Proteases: Implications for Substrate Binding and Antiviral Drug Design. J. Virol. 2007, 82, 2515–2527. [CrossRef] [PubMed]
11. Ghahremanpour, M.M.; Tirado-Rives, J.; Deshmukh, M.; Ippolito, J.A.; Zhang, C.-H.; De Vaca, I.C.; Liosi, M.-E.; Anderson, K.S.;

Jorgensen, W.L. Identification of 14 Known Drugs as Inhibitors of the Main Protease of SARS-CoV-2. ACS Med. Chem. Lett. 2020,
11, 2526–2533. [CrossRef]

12. Callaway, E. The coronavirus is mutating—Does it matter? Nat. Cell Biol. 2020, 585, 174–177. [CrossRef]
13. Analytica, O. New COVID-19 Variants Could Prolong Pandemic: Expert Briefings. 2021. Available online: https://www.emerald.

com/insight/content/doi/10.1108/OXAN-ES259153/full/html (accessed on 15 January 2021).
14. Law, S.; Leung, A.W.; Xu, C. COVID-19 mutation in the United Kingdom. Microbes Infect. Dis. 2021. [CrossRef]
15. Boras, B.; Jones, R.M.; Anson, B.J.; Arenson, D.; Aschenbrenner, L.; Bakowski, M.A.; Beutler, N.; Binder, J.; Chen, E.; Eng, H.; et al.

Discovery of a Novel Inhibitor of Coronavirus 3CL Protease as a Clinical Candidate for the Potential Treatment of COVID-19.
BioRxiv 2020. [CrossRef]

16. Hoffman, R.L.; Kania, R.S.; Brothers, M.A.; Davies, J.F.; Ferre, R.A.; Gajiwala, K.S.; He, M.; Hogan, R.J.; Kozminski, K.; Li, L.Y.;
et al. Discovery of Ketone-Based Covalent Inhibitors of Coronavirus 3CL Proteases for the Potential Therapeutic Treatment of
COVID-19. J. Med. Chem. 2020, 63, 12725–12747. [CrossRef]

17. Colovos, C.; Yeates, T.O. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci. 1993, 2,
1511–1519. [CrossRef]

18. Bowie, J.U.; Luthy, R.; Eisenberg, D. A method to identify protein sequences that fold into a known three-dimensional structure.
Science 1991, 253, 164–170. [CrossRef]

19. Lüthy, R.; Bowie, J.U.; Eisenberg, D. Assessment of protein models with three-dimensional profiles. Nature 1992, 356, 83–85.
[CrossRef]

20. Seeliger, D.; De Groot, B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Mol. Des.

2010, 24, 417–422. [CrossRef] [PubMed]
21. Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; et al. Structure of Mpro from SARS-CoV-2

and discovery of its inhibitors. Nature 2020, 582, 289–293. [CrossRef] [PubMed]
22. Bello, M.; Martínez-Muñoz, A.; Balbuena-Rebolledo, I. Identification of saquinavir as a potent inhibitor of dimeric SARS-CoV2

main protease through MM/GBSA. J. Mol. Model. 2020, 26, 340. [CrossRef] [PubMed]
23. Tejera, E.; Munteanu, C.; López-Cortés, A.; Cabrera-Andrade, A.; Pérez-Castillo, Y. Drugs Repurposing Using QSAR, Docking

and Molecular Dynamics for Possible Inhibitors of the SARS-CoV-2 Mpro Protease. Molecules 2020, 25, 5172. [CrossRef]
24. Oerlemans, R.; Ruiz-Moreno, A.J.; Cong, Y.; Kumar, N.D.; Velasco-Velazquez, M.A.; Neochoritis, C.G.; Smith, J.; Reggiori, F.;

Groves, M.R.; Dömling, A. Repurposing the HCV NS3–4A protease drug boceprevir as COVID-19 therapeutics. RSC Med. Chem.

2020. [CrossRef]
25. Ma, C.; Sacco, M.D.; Hurst, B.; Townsend, J.A.; Hu, Y.; Szeto, T.; Zhang, X.; Tarbet, B.; Marty, M.T.; Chen, Y.; et al. Boceprevir,

GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. Cell Res. 2020, 30,
678–692. [CrossRef]

26. Fu, L.; Ye, F.; Feng, Y.; Yu, F.; Wang, Q.; Wu, Y.; Zhao, C.; Sun, H.; Huang, B.; Niu, P.; et al. Both Boceprevir and GC376 efficaciously
inhibit SARS-CoV-2 by targeting its main protease. Nat. Commun. 2020, 11, 1–8. [CrossRef] [PubMed]

27. Ogihara, T.; Nakagawa, M.; Ishikawa, H.; Mikami, H.; Takeda, K.; Nonaka, H.; Nagano, M.; Sasaki, S.; Kagoshima, T.; Higashimori,
K. Effect of manidipine, a novel calcium channel blocker, on quality of life in hypertensive patients. Blood Press. Suppl. 1992, 3,
135–139.

28. De Wilde, A.H.; Jochmans, D.; Posthuma, C.C.; Zevenhoven-Dobbe, J.C.; Van Nieuwkoop, S.; Bestebroer, T.M.; van den Hoogen,
B.G.; Neyts, J.; Snijder, E.J. Screening of an FDA-Approved Compound Library Identifies Four Small-Molecule Inhibitors of
Middle East Respiratory Syndrome Coronavirus Replication in Cell Culture. Antimicrob. Agents Chemother. 2014, 58, 4875–4884.
[CrossRef] [PubMed]

29. Maffucci, I.; Contini, A. In Silico Drug Repurposing for SARS-CoV-2 Main Proteinase and Spike Proteins. J. Proteome Res. 2020, 19,
4637–4648. [CrossRef] [PubMed]

30. McClellan, K.J.; Jarvis, B. Lercanidipine: A review of its use in hypertension. Drugs 2000, 60, 1123–1140. [CrossRef]

237



Molecules 2021, 26, 1678

31. Mahajan, R. Bedaquiline: First FDA-approved tuberculosis drug in 40 years. Int. J. Appl. Basic Med. Res. 2013, 3, 1–2. [CrossRef]
32. Rose, P.W.; Bi, C.; Bluhm, W.F.; Christie, C.H.; Dimitropoulos, D.; Dutta, S.; Green, R.K.; Goodsell, D.S.; Prlić, A.; Quesada, M.;
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Abstract: SARS-CoV-2 caused the current COVID-19 pandemic and there is an urgent need to explore
effective therapeutics that can inhibit enzymes that are imperative in virus reproduction. To this
end, we computationally investigated the MPD3 phytochemical database along with the pool of
reported natural antiviral compounds with potential to be used as anti-SARS-CoV-2. The docking
results demonstrated glycyrrhizin followed by azadirachtanin, mycophenolic acid, kushenol-w and
6-azauridine, as potential candidates. Glycyrrhizin depicted very stable binding mode to the active
pocket of the Mpro (binding energy, −8.7 kcal/mol), PLpro (binding energy, −7.9 kcal/mol), and
Nucleocapsid (binding energy, −7.9 kcal/mol) enzymes. This compound showed binding with
several key residues that are critical to natural substrate binding and functionality to all the receptors.
To test docking prediction, the compound with each receptor was subjected to molecular dynamics
simulation to characterize the molecule stability and decipher its possible mechanism of binding.
Each complex concludes that the receptor dynamics are stable (Mpro (mean RMSD, 0.93 Å), PLpro
(mean RMSD, 0.96 Å), and Nucleocapsid (mean RMSD, 3.48 Å)). Moreover, binding free energy
analyses such as MMGB/PBSA and WaterSwap were run over selected trajectory snapshots to affirm
intermolecular affinity in the complexes. Glycyrrhizin was rescored to form strong affinity complexes
with the virus enzymes: Mpro (MMGBSA, −24.42 kcal/mol and MMPBSA, −10.80 kcal/mol),
PLpro (MMGBSA, −48.69 kcal/mol and MMPBSA, −38.17 kcal/mol) and Nucleocapsid (MMGBSA,
−30.05 kcal/mol and MMPBSA, −25.95 kcal/mol), were dominated mainly by vigorous van der
Waals energy. Further affirmation was achieved by WaterSwap absolute binding free energy that
concluded all the complexes in good equilibrium and stability (Mpro (mean, −22.44 kcal/mol), PLpro
(mean, −25.46 kcal/mol), and Nucleocapsid (mean, −23.30 kcal/mol)). These promising findings
substantially advance our understanding of how natural compounds could be shaped to counter
SARS-CoV-2 infection.

Keywords: SARS-CoV-2; COVID-19; multiprotein inhibiting natural compounds; virtual screening;
MD simulation

1. Introduction

Coronaviruses (CoVs) cause infection of the upper respiratory tract in higher mam-
mals and humans [1], and several outbreaks have been associated in the recent past with
CoVs reported first time in the year 2002 as SARS, in 2012 as MERS, and in late 2019 as
COVID-19 [2–5]. The recent pandemic of COVID-19 is caused by a relatively new strain

239



Molecules 2021, 26, 674

named SARS-CoV-2 [6–8]. The virus origin is thought to be zoonotic, with potential of
transmissibility between person-to-person, resulting in an exponential rise in the number
of confirmed cases worldwide [9,10]. Through December 2020, more than 220 countries
reported the virus, with more than 64 million individuals infected, and thousands are still
getting infected each day. Approximately, the virus has a mortality rate between 5% to
10% [11,12]. Additionally, due to mandatory lockdowns, isolation, and quarantines, mil-
lions of lives have been disturbed. The pandemic also badly affected global health, society,
and the economy, and these sectors are facing significant challenges [13]. Three vaccines
(by Pfizer, Moderna, and AstraZeneca) are authorized by WHO for emergency use and are
available to very limited populations. No specific anti-SARS-CoV-2 drugs are currently rec-
ommended for SARS-CoV-2 treatment, making the situation difficult to handle. Supportive
therapeutics and preventative measures are being taken and are productive in managing
the virus [14,15]. Various efforts to target critical proteins of SARS-CoV-2 pathogenesis,
including Spike receptor-binding domain (RBD) [16–18], main protease (Mpro) [19], Nucle-
ocapsid N terminal domain (NTD) [20], RNA-dependent RNA polymerase (RdRp) [21],
papainlike protease (PLpro) [22], 2′-O-RiboseMethyltransferase [23], viral ion channel
(E protein) [24], and angiotensin-converting-enzyme 2 receptor (ACE2) [25], are on the
way. Targeting multiple pathogenesis specific proteins within a close network of inter-
action or dependent functionality would effectively propose effective drugs against the
SARS-CoV-2 [26].

SARS-COV-2 Spike protein is key to the host cell infection pathway as it mediates
ACE2 recognition, attachment, and fusion to the host cell [16]. The RBD of S1 subunit of
the Spike trimer binds explicitly to the ACE2 receptor [27]. This RBD region is an attractive
target for therapeutics as it contains conserved residues that are essential in binding to
ACE2 [27]. The Mpro of coronaviruses has been studied thoroughly for drug making
purposes. These are papainlike proteases involved in processing replicase enzymes [28]. It
has 11 cleavage sites in 790 kD-long replicase lab polypeptide, demonstrating its prominent
role in proteolytic processing [19,29]. High structural similarity and sequence identity
are seen in Mpro from SARS-CoV-2 to that of the SARS-CoV Mpro. It comprises two
catalytic domains: chymotrypsin and picornavirus 3C protease like domain. Each contains
β-barrel that are six in number and are antiparallelly containing active diad H41 and
C145 [30]. These proteases have emerged as essential drug targets as they have a crucial
role in replication. Furthermore, inhibitors of Mpro are found to be significantly less
cytotoxic as the protein share less similarity with human proteases [31]. Preliminary studies
have suggested that HIV protease inhibitors, lopinavir/ritonavir, could be potentially
used against SARS-CoV-2 [32]. Additionally, HIV protease inhibitor, Darunavir, and HCV
protease inhibitor, Danoprevir, are under clinical studies and in vivo trials for the treatment
of SARS-CoV-2 infection [33]. The PLpro enzyme is vital in processing the polypeptide to
produce a functional replicase complex and aids in viral spreading [22]. PLpro also plays a
role in evading host antiviral immune responses by cleaving proteinaceous modification on
the host protein after the post-translation phase [34]. Thus, targeting this enzyme is useful
in highlighting therapeutic strategies that can suppress the virus infection and prompt
antiviral immunity. The N protein is significant in viral RNA replication and its packing
into new virions, making this protein a good candidate for newer drug identification that
is specific and biological active [20].

In silico screening of drugs using different computer-aided drug designing appli-
cations greatly accelerate the rational drug design process. Ultimately, this saves time,
and extra cost goes into the experimentation of leads that fail in the drug discovery pro-
cess [35–40]. In this investigation, we performed a blind docking approach, followed by
molecular dynamics (MD) simulation coupled with binding free energy techniques that
dissect the structural dynamics and energy basis of molecular recognition [41,42]. The
MPD3 phytochemical database [43] along with a pool of natural antiviral compounds were
used against multiple SARS-CoV-2 protein targets to understand their binding mechanism
and put forward a hypothesis on how to further optimize these structures to enhance selec-
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tivity and maximize anti-SARS-CoV-2 biological potency [44–47]. A schematic summary of
the methodology used in this work is provided in Figure 1. The study results might have
potential applications in designing new leads against SARS-CoV-2, which can target its
multiple proteins as depicted in this study.

 

 
Figure 1. Schematic presentation of the methodology used in this current study.

2. Results and Discussion
2.1. Molecular Docking

Molecular docking is a modeling approach investigating how the receptors and ligands
fit together and how the enzymes interact with the ligands [48–52]. Docking calculations
were performed in triplicate, and the compound conformations were ranked according to
the binding energy in kcal/mol. We used remdesivir as control in docking. The compounds
ranked consistently on top with the each receptor and showed a stronger binding score
compared to remdesivir were selected for the downward analysis. A general overview of
the binding energy of the compounds against the receptors used is presented in Figure 2.
The top compound complex with each receptor was generated and subjected first to visual
inspections to decipher atomic level interaction and determine the binding conformation.
The docking analysis demonstrated glycyrrhizin followed by azadirachtanin, mycophenolic
acid, kushenol-w, and 6-azauridine as the best binders among the ~5000 compounds used
in this study. The 2D structures of these compounds are presented in Figure 3. Glycyrrhizin
also showed stable interactions with the hotspot residues of SARS-CoV-2 spike protein
receptor binding domain (RBD) in our previous study [53]. Glycyrrhizin-docked complex
of each SARS-CoV-2 protein can be explained separately.
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Figure 2. AutoDock binding affinity score of the compounds to the SARS-CoV-2 enzymes.

 

Figure 3. Two-dimensional presentation of high affinity binders to the SARS-CoV-2 proteins.

2.1.1. Mpro–Glycyrrhizin Complex

The Mpro of SARS-CoV-2 is a crucial enzyme and attractive drug target because of
its central role in virus transcription and replication [54]. The docking study reported
glycyrrhizin again as the best binder among the compounds used to the substrate-binding
site of the Mpro (Figure 4). As seen in the binding with other receptors, the compound
(2S,3S,4S,5R,6R)-6-(((2S,3R,4S,5S,6S)-6-carboxy-2,4,5-trihydroxytetrahydro-2H-pyran-3-
yl)oxy)-3,4,5-trihydroxytetrahydro-2H-pyran-2-carboxylic acid was revealed to contribute
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in significant hydrogen bonding and other weak interaction at the active pocket of
Mpro. At the binding cavity, the compound engages Asn238 through multiple hydrogen
interactions, as well as Asp289. The rest of the compound structure makes a network
of hydrophobic interactions mainly dominated by van der Waals contacts. To elucidate
further the binding specificity and affinity of the glycyrrhizin for the active pocket
residues of Mpro, the interaction profile was compared and contrasted with that for the
reported cocrystallized N3 inhibitor [55]. Very low similarity in the binding interaction
profile between the compounds was noticed; however, because of the difference in the
compound structure, size, and preferred binding site, the pocket residues in contact with
glycyrrhizin are close to the N3. This difference in the binding interaction points to the
different glycyrrhizin-binding mechanism, where the active moiety favors binding with
the P5 binding pocket that is absent in the case of the Mpro–N3 complex. The residues,
particularly Asp197 and Thr198, flanked the active site, and any molecule involved in
binding with these residues interfere with the natural substrate-binding, thus affecting
the enzyme functionality [56]. Additionally, the bulk of the glycyrrhizin structure favors
interactions with Domain II and Domain III of the Mpro, in addition to flanking residues of
the substrate-binding pocket, thus possibly affecting the dimerization of Domain I and
Domain II and rendering the enzyme noncatalytic [57]. Similarly, Zhang et al. reported
Mpro complex with an α-ketoamide inhibitor. The cocrystalized lead identified binds to
the same substrate binding site reported in this study [28]. Morever, calpain inhibitors and
GC-376 analogs are also confirmed to accommodate in the same functional pocket [58].
Beside these, many in silico studies have demonstrated the binding affinity of drug
molecules to this active side of Mpro [33,59–61].

 

α

 

 

Figure 4. Binding pose of glycyrrhizin (in yellow stick) at the substrate binding pocket of Mpro (in the green surface). A 2D
illustration of the glycyrrhizin chemical interactions at the docked site is also provided.

2.1.2. PLpro–Glycyrrhizin Complex

The PLpro enzyme of SARS-CoV-2 is implicated in viral polyproteins processing
that generate a replicase complex and assist in virus spreading. The enzyme also plays a
fundamental role in cleaving post-translational proteinaceous modifications present on the
host protein as a mechanism to avoid antiviral host immune responses [22]. The docked
complex between PLpro and glycyrrhizin highlighted the compound binding at the central
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palm catalytic cavity (Figure 5). Good binding of the compound-rich electronegative
oxygen in the (2S,3S,4S,5R,6R)-6-(((2S,3R,4S,5S,6S)-6-carboxy-2,4,5-trihydroxytetrahydro-
2H-pyran-3-yl)oxy)-3,4,5-trihydroxytetrahydro-2H-pyran-2-carboxylic acid at the docked
site is the output of several strong hydrogen bond interactions: Gln174, Asp179, and Asn128.
Besides these residues, the compounds moiety also formed van der Waals interaction,
critical from a stability perspective. The remainder of the compound structure produced
van der Waals contacts at this central cavity. The preferred binding of glycyrrhizin is
at the central palm, sandwiching the finger and thumb domains, adjacent to the active
substrate-binding pocket, which makes a strong bond with many vital catalytic residues. In
contrast to the cocrystallized peptide inhibitor VIR251, which has a different conformation
and binds to a different substrate cavity site, the glycyrrhizin-binding site is close to the
VIR251 site [62]. In terms of interacting binding residues, the glycyrrhizin correlates more
with the GRL0617 inhibitor of SAR-CoV-2 PLpro [63]. Further, the effect of conformational
change of the BL2 loop upon glycyrrhizin binding is important to evaluate in future studies
to disclose the glycyrrhizin recognition mechanism.

 

 

Figure 5. Binding pose of glycyrrhizin (in yellow stick) at the junction binding pocket of PLpro (in blue surface). A 2D
illustration of the glycyrrhizin chemical interactions at the docked site is also provided.

In literature, many inhibitors of coronaviruses PLpro are documented that include zinc
conjugate inhibitors, naphthalene, and thiopurine derivatives, and natural products [64].
These molecules are known to interact with the active site residues reported in this study.
Tanshinones are reported to show inhibition of deubiquitinase and proteolytic activitiy of
SARS-CoV PLpro [65]; 8-(Trifluoromethyl)-9H-purin-6-amine is a reversible noncovalent
inhibitor, whereas N-Ethylmaleimide (NEM) modifies SARS-CoV PLpro Cys [63]. More-
over, 6-mercaptopurine (6MP) and 6-thioguanine (6TG) are slow and competitive inhibitors
that form hydrogen bonds with catalytic residues of the SAR-CoV PLpro [66]. Several in
silico studies also demonstrated a range of compounds that interfere with the functional
site of SARS-CoV-2 PLpro [67–70].

2.1.3. Nucleocapsid–Glycyrrhizin Complex

The SARS-CoV-2 N protein is an RNA binding protein and offers several functions
of viral transcription and replication [20]. It particularly plays a pivotal role in helical
ribonucleoprotein packing during RNA genome packing, regulating RNA replication, and
modulating infected cell metabolism. Blocking of this protein could lead to blocking viral
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replication, and thus an attractive target for drug development. The compound glycyrrhizin
was found to prefer docking at the loop region 1 at the junction between the β-sheet core
and β-hairpin (Figure 6). The molecule is aligned perfectly along the cavity volume
where its (2S,3S,4S,5R,6R)-6-(((2S,3R,4S,5S,6S)-6-carboxy-2,4,5-trihydroxytetrahydro-2H-
pyran-3-yl)oxy)-3,4,5-trihydroxytetrahydro-2H-pyran-2-carboxylic acid part is connected
to the β3 and β4 sheets of the β-hairpin. Here, this chemical moiety is involved in hy-
drogen bonding with Thr92, Arg94, and Arg89, and van der Waals contact with Arg90
and Ala91. The (2S,4aS,6aS,6bR,8aS,12aS,12bR,14bR)-2,4a,6a,6b,9,9,12a-heptamethyl-13-
oxo-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-2-carboxylic acid
region of the compound produced hydrogen bonding with residues (Tyr110 and Arg150)
and van der Waal contacts with residues (Asn49,Thr50, Als51, Phe54, Thr55, Tyr112,
Pro118, Pro152, and Ala157) of β1, β2, β4, β5, β6, and β7 of the β-sheet core of the pro-
tein. Bhowmik et al. reported strong binding of Rutin, Doxycycline, Caffeic acid, Ferulic
acid, Simeprevir, and Grazoprevir with several functional residues of the SARS-CoV-2
nucleocapsid protein reported in this study [71].

 

β
β

β β β

β β β β β β β

 

Figure 6. Binding pose of glycyrrhizin (in yellow stick) at the junction binding pocket of PLpro (in deep sky blue surface). A
2D illustration of the glycyrrhizin chemical interactions at the docked site is also provided.

2.2. MD Simulation Analysis

In computer-aided drug design, MD simulations are essential in providing detailed
biomolecule dynamical structural information and surface wealth of protein–ligand in-
teractions, energetic data that are foremost to understanding the structural–functionality
relationship of target protein principle in ligand recognition/interactions [37,72,73]. This
set of information has tremendous applications in guiding novel drug design, thereby
making MD simulation a successful tool in the modern drug discovery framework.

2.2.1. Root-Mean-Square Deviation (RMSD) Analysis

MD simulation of 50 ns was performed for each receptor with bound glycyrrhizin
to elucidate the compound binding stability and extract receptors/compound structural
information that is key in the binding that may be altered to iMprove binding conformation
and, ultimately, compound affinity for the target biomolecules. First, RMSD of receptors in
each complex was estimated as carbon alpha deviations by superimposing 50,000 snapshots
over the initial reference structure versus time (Figure 7A). RMSDs of all three complexes
were found: Mpro (maximum, 3.14 Å; mean, 1.97 Å), PLpro (maximum, 2.59 Å; mean,
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1.64 Å), and Nucleocapsid (maximum, 2.34 Å; mean, 1.32 Å). All of the receptors are
relatively stable in terms of 3D structure, and no flexibility in secondary structures was
noticed. As a consequence, glycyrrhizin binding pose was not altered, thus reflecting
strong and stable complex formation.

 

Figure 7. Statistical parameters calculated based on simulation trajectories. Receptor RMSD plots (A), glycyrrhizin RMSD
plots (B), receptor RMSF (C), and receptor Rg (D).

2.2.2. Glycyrrhizin Conformation Stability

In addition, the MD simulation trajectories were examined to disclose informa-
tion about the glycyrrhizin conformation stability with the receptors (Figure 7B). The
glycyrrhizin RMSD with the receptors is Mpro (maximum, 2.56 Å; mean, 0.93 Å), PL-
pro (maximum, 2.14 Å; mean, 0.96 Å), and Nucleocapsid (maximum, 4.20 Å; mean,
3.48 Å). The molecules disclosed high stable, except for some deviations in the gly-
cyrrhizin binding mode with the Nucleocapsid protein; therefore, the end MD simu-
lation snapshot over the initial was superimposed to understand the compound dynam-
ics. The (2S,3S,4S,5R,6R)-6-(((2S,3R,4S,5S,6S)-6-carboxy-2,4,5-trihydroxytetrahydro-2H-
pyran-3-yl)oxy)-3,4,5-trihydroxytetrahydro-2H-pyran-2-carboxylic acid fragment of the
glycyrrhizin is flexible in an attempt to establish a more stable conformation. This moiety
left its original site of interaction and moved more towards the β-core sheet for binding
(Figure 8).
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β

Figure 8. Binding mode dynamics of glycyrrhizin in the MD simulation at the initial time (in tan stick) versus at the end
time (in plum stick).

2.2.3. Root-Mean-Square Fluctuation (RMSF) Analysis

The residual flexibility and stability of the receptors in the presence of glycyrrhizin
were further elucidated (Figure 7C). Mean RMSF for Mpro is 1.4 Å, PLpro is 1.57 Å, and
Nucleocapsid is 1.9 Å. These values suggest good agreement on intermolecular stability.

2.2.4. Radius of Gyration (Rg) Analysis

Additionally, Rg analysis was performed to evaluate protein compactness and struc-
tural equilibrium over the simulation time (Figure 7D). The Rg of the systems follows:
Mpro–glycyrrhizin (45.62 Å and 42.28 Å), PLpro–glycyrrhizin (50.29 Å and 46.23 Å), and
Nucleocapsid–glycyrrhizin (35.71 Å and 30.70 Å). All three systems are quite stable and
remain compact.

2.3. MMGB/PBSA Analysis

To get a deeper insight into the compounds binding potential with the SARS-CoV-
2 enzymes used, binding free energies were estimated using MMGBSA and MMPBSA
techniques. Additionally, per residue decomposition assay was accomplished to highlight
residues that contribute majorly to the compound’s stability at the docked position and,
ultimately, to the strong intermolecular interactions. To this objective, 100 frames were
picked at time intervals of 50 ps from the simulation trajectories, discarding the water
molecules and counterions. Detailed binding energies of the complexes are listed in Table 1
All of the binding interactions are energetically favorable, resulting in the formation of
stable complexes. In all of the complexes, gas-phase energy dominates the system energy
with significant contribution from van der Waals compared to electrostatic energy’s minor
role. The polar solvation energy is illustrated to play a nonfavorable part in binding,
whereas the nonpolar energy seems to be vital in complex equilibration. The MMGBSA
net binding-energy-ranked stability of the complexes follows: PLpro–glycyrrhizin > Spike–
glycyrrhizin > Nucleocapsid–glycyrrhizin > Mpro–glycyrrhizin. The MMPBSA ranking
follows: PLpro–glycyrrhizin > Spike–glycyrrhizin > Mpro–glycyrrhizin > N–glycyrrhizin.
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Table 1. Binding free energy components of SARS-CoV-2 enzyme complexes with glycyrrhizin. The energy values are
provided in units of kcal/mol.

Method Energy Component Mpro–Glycyrrhizin PLpro–Glycyrrhizin Nucleocapsid–Glycyrrhizin

MMGBSA

Van der Waals Energy −36.50 −61.10 −37.97

Electrostatic Energy −13.92 −8.53 8.75

Polar Solvation Energy 30.19 26.79 3.15

Nonpolar Solvation Energy −4.19 −5.85 −3.97

Gas Phase Energy −50.42 −69.63 −29.22

Solvation Energy 25.99 20.93 −0.82

Total Binding Energy −24.42 −48.69 −30.05

MMPBSA

Van der Waals Energy −36.50 −61.10 −37.97

Electrostatic Energy −13.92 −8.53 8.75

Polar Solvation Energy 42.56 35.77 6.65

Nonpolar Solvation Energy −2.94 −4.31 −3.38

Gas Phase Energy −50.42 −69.63 −29.22

Solvation Energy 39.62 31.46 3.27

Total Binding Energy −10.80 −38.17 −25.95

2.4. Per-Residue Decomposition

The atomic-level contribution of each residue from the enzymes to the compound
binding was elucidated further. Those with an average binding energy of <1 kcal/mol
were categorized as hotspot residues because of their significant overall complex stability
contribution [74,75]. In the case of Mpro–glycyrrhizin interaction, Asn238 and Asp289 are
vital in holding the compound at the docked site. Phe69, Asn128, Gln174, and Asp179
residues are critical in bridging PLpro enzyme with glycyrrhizin compound. The primary
hotspot residues in Nucleocapsid–glycyrrhizin complex are Thr92, Arg94, Tyr110, and
Arg150. It was further noticed that the van der Waals energy, as noted earlier, dominates
the overall binding interaction energy. Hotspot residues of each receptor that are in direct
contact and key in the stabilization of glycyrrhizin are presented in Table 2.

2.5. WaterSwap Binding Energy

WaterSwap uses an explicit solvation system that considers interaction details of
protein–water, protein–water–ligand, and ligand–water. Such information is not provided
in the MMGB/PBSA; therefore, it is not reliable for predicting the role of water molecules in
biomolecule–ligand interactions [76]. Specifically, this holds great importance in an instance
where the ligand is bridged to the receptor through water molecules. The WaterSwap
method has been successfully applied to various biological systems and proved critical
in determining absolute binding free energy. For each complex, the WaterSwap energies
converged significantly after running 1000 frames. All the values also concluded good
stability of intermolecular docked conformation. WaterSwap energies for each complex are
shown in Table 3.

248



Molecules 2021, 26, 674

Table 2. Hotspot residues identified that played a significant role in interaction with the glycyrrhizin.

Complex Residues MMGBSA MMPBSA

Mpro–Glycyrrhizin

Lys137 −1.74 −1.51

Asp197 −1.76 −0.45

Thr198 −1.50 −1.76

Thr199 −1.18 −2.84

Tyr237 −1.46 −1.89

Asn238 −2.98 −3.45

Tyr239 −1.54 −1.48

Leu271 −1.24 −1.69

Leu272 −1.65 −3.48

Gln273 −1.14 −1.24

Asn274 −1.56 −1.42

Met276 –1.73 −1.98

Ser284 −1.89 −1.51

Leu286 −1.98 −1.47

Leu287 −1.48 −2.84

Glu288 −1.44 −1.84

Asp289 −3.74 −3.54

Glu290 −1.88 −5.45

PLpro–Glycyrrhizin

Phe69 −2.54 −3.54

His73 −2.11 −2.45

Thr74 −1.82 −1.45

Asp76 −1.99 −1.68

Phe79 −1.47 −1.46

Arg82 −1.82 −1.12

Asn128 –4.41 −1.39

Tyr154 −1.61 −1.48

Asn156 −1.61 −5.24

Phe173 −1.11 −1.58

Gln174 −5.48 −3.61

His175 −1.94 −1.48

Ala176 −1.69 −1.12

Asn177 −1.81 −1.62

Leu178 −1.64 −1.11

Asp179 −2.47 −1.83

Val202 −1.43 −1.19

Nucleocapsid–Glycyrrhizin

Asn49 −1.99 −2.54

Thr50 −1.81 −1.42

Ala51 −1.25 −2.45

Phe54 −1.66 −3.15

Thr55 −1.65 −1.12

Arg89 −2.74 −1.84

Thr92 −2.45 −3.65

Arg94 −4.66 −2.48

Tyr112 −1.45 −1.24

Tyr110 −3.74 −3.51

Pro118 −1.89 −1.48

Arg150 −2.78 −3.58
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Table 3. WaterSwap absolute binding energy estimation for all four complexes.

Algorithm Mpro–Glycyrrhizin PLpro–Glycyrrhizin Nucleocapsid–Glycyrrhizin

Bennett’s −22.39 −25.84 −22.34

Free energy perturbation −22.48 −25.94 −23.83

Thermodynamic integration −22.47 −24.61 −23.45

Mean −22.44 −25.46 −23.30

3. Materials and Methods
3.1. Target Proteins Preparation

The anti-SARS-CoV-2 targets (Mpro PDB code: 7BQY, PLpro PDB code: 6XAA, and
Nucleocapsid PDB code: 6M3M) were retrieved and prepared using the AMBER18 pro-
gram [77]. Ff14SB force field [78] was used for amino acid parameterization. To add
complementary hydrogen atoms missed by the crystallography, the tleap module of Am-
berTools18 was employed. Energy minimization of the targeted proteins was done first for
1000 steepest descent steps, and then by 500 conjugate gradient steps, allowing the step
size to be 0.02 Å. Charge addition was done through the Gasteiger method.

3.2. Compound Preparation

The MPD3 phytochemical database (https://www.bioinformation.info/), in addition
to reported natural antiviral compounds, were used in this study to filter molecules that
show best binding affinity to the selected SARS-CoV-2 multiple targets. The library con-
taining ~5000 natural compounds was imported to PyRx 0.8 software [79], where they
were minimized for optimal energy and followed by conversion to pdbqt format for use in
virtual screening against the mentioned targets.

3.3. Structure-Based Virtual Screening

Virtual screening of the compounds against of the targets used was done using the
AutoDock Vina in PyRx [80] on Windows 10-supported Dell system (processor: Intel(R)
Core(TM) i7-8550U CPU @ 1.80 GHz with a 64-bit operating system, ×64-based processor,
a memory of 8.00 GB). First, the docking protocol was validated by docking cocrystallized
ligands to the protein keeping the docking parameters default except for the sphere around
the binding site, which was set to 15 Å. Validation was also done by comparing the best-
ranked compounds conformation relative to the crystallized ligand by root-mean-square
deviation (RMSD) [81]. Docking of the compound to the targets was accomplished by using
the same set of parameters described for the validation procedure and run in triplicates to
absolute consistency of the results. The docked solutions were clustered, considering an
RMSD value of 1 Å. The binding mode of compounds with the lowest binding energy in
kcal/mol was refined in MD simulations.

3.4. MD Simulations

MD simulations of the docked solutions were performed using AMBER18 [77]. Each
top complex was explicitly solvated with water molecules, and then to get a neutral system,
counter ions were added. Afterward, using the TIP3P solvent model, a water box of
thickness 12 Å was created to surround the complex [82]. Simulation of the complex
was done through periodic boundary conditions where electrostatic interactions were
modeled with the particle–mesh Ewald procedure [74]. In the process, a threshold value
of 8 Å was defined for nonbounded interactions. Water molecules were minimized for
500 cycles, followed by complete system minimization for 1000 rounds. Then, each system
temperature was gradually scaled to 300 K. Equilibration of the systems was achieved
under the NPT ensemble for 100 ps. This involves equilibration of both counter ions
and water molecules while considering restraint on solutes in the first phase for 50 ps;
subsequent protein side chains were relaxed. MD simulation of 50 ns was performed
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at 300 K and 1 atm for two fs under the NPT ensemble. Hydrogen and covalent bonds
were constrained using the SHAKE algorithm [83], whereas system temperature was
controlled through Langevin dynamics [84]. The initial structure was used as a reference,
and CPPTRAJ [85] of AMBER was run to generate a root-mean-square deviation (RMSD)
plot to check the system MD simulation convergence [81]. Ligand structural flexibilities
were calculated by ligand RMSD. Furthermore, hydrogen bond analysis was performed
to investigate hydrogen bonds formed between the compounds and amino acids present
within the docked site vicinity.

3.5. MMGB/PBSA Analysis

The binding free energy (∆G binding) of the complexes was estimated using the
AMBER18 MM/PBSA method [42,86]. One hundred snapshots were considered from
simulation trajectories at a regular time interval to calculate the free energy difference.

∆Gbinding = Gcomplex − (Gprotein + Gligand)

∆G = ∆Ggas + ∆Gsolv − T∆S

∆Ggas = ∆ele + ∆Gvdw

∆Gsolv = ∆GGB + ∆GSA

∆GSA = γ × SASA × b

In these equations, Gcomplex is delta free energy of the complex, Gprotein is delta free
energy of the protein, and Gligand is delta free energy of the ligand; ∆Ggas represents
gas-phase energy and can be split into delta electrostatic (∆Eele), and delta van der Waals
(∆Evdw) energy; and the ∆Gsolv term stands for solvation free energy, which comprises
polar (∆GGB) and nonpolar (∆GSA) energy. In the ∆GGB, the εw value is set to 80, and εp is
selected as 1.0. Linear combinations of the pairwise overlap method are used to estimate
the solvent-accessible surface area (SASA).

3.6. WaterSwap Analysis

WaterSwap [76,87] was additionally done over the last 10 ns of MD simulation for
a total of default 1000 iterations, keeping the sample size of Monte Carlo simulation to
1.6 × 109. The absolute binding energy of each complex was estimated using three useful
algorithms: thermodynamics integration, free energy perturbation, and Bennett’s. The
energy value <1 kcal/mol represents a good convergence of the system [75].

4. Conclusions

In this study, we found glycyrrhizin as the most significant natural compound that
can act as a double-edged sword and inhibit multiple proteins of SARS-CoV-2. This
compound has a high binding affinity for all of the SARS-CoV-2 receptors used in this
study and had a stable binding mode in the MD simulation time. The compound revealed
important interactions with all receptors, and thus requires further consideration in future
anti-SARS-CoV-2 therapeutic studies. Glycyrrhizin has been previously documented to
have therapeutic applications against SARS-CoV, chronic hepatitis C, and HIV-1 [88]. The
molecule is clinically useful and had few toxic reactions. One way to overcome toxicity is
by allowing low concentration of the drug in the cells (<100 µg/mL) [89]. Glycyrrhizin has
been reported to inhibit viral penetration and effective both during the viral infection and
postinfection [90]. It was previously demonstrated that the glycyrrhizin binds with good
affinity to the human ACE2 and interacts with Asp30, Gln288, Arg393, and Arg559 residues,
hence also underlines its potential to target the SARS-CoV-2 Spike protein RBD attachment
to the human ACE2 receptor [90]. It also was shown that glycyrrhizin can be employed
in synergism along with other plant-based molecules to treat SARS-CoVs [91]. From a
pharmacological perspective, the glycyrrhizin prevents the production of intracellular
reactive oxygen species, activates interferon production, downregulates proinflammatory
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cytokines, lowers airway exudate production, and inhibits thrombin [45,92]. The compound
was also computationally characterized previously to bind with good affinity to SARS-CoV-
2 main protease [93]. Therefore, additional structural modification to lower the side effects
and enhance the clinical efficacy of this compound is of high interest to treat SARS-related
infections.
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Abstract: The 3CL-Protease appears to be a very promising medicinal target to develop anti-SARS-
CoV-2 agents. The availability of resolved structures allows structure-based computational ap-
proaches to be carried out even though the lack of known inhibitors prevents a proper validation
of the performed simulations. The innovative idea of the study is to exploit known inhibitors of
SARS-CoV 3CL-Pro as a training set to perform and validate multiple virtual screening campaigns.
Docking simulations using four different programs (Fred, Glide, LiGen, and PLANTS) were per-
formed investigating the role of both multiple binding modes (by binding space) and multiple
isomers/states (by developing the corresponding isomeric space). The computed docking scores
were used to develop consensus models, which allow an in-depth comparison of the resulting
performances. On average, the reached performances revealed the different sensitivity to isomeric
differences and multiple binding modes between the four docking engines. In detail, Glide and
LiGen are the tools that best benefit from isomeric and binding space, respectively, while Fred is the
most insensitive program. The obtained results emphasize the fruitful role of combining various
docking tools to optimize the predictive performances. Taken together, the performed simulations
allowed the rational development of highly performing virtual screening workflows, which could be
further optimized by considering different 3CL-Pro structures and, more importantly, by including
true SARS-CoV-2 3CL-Pro inhibitors (as learning set) when available.

Keywords: SARS-CoV-2; 3CL-Pro; antivirals; virtual screening; docking simulations; drug repurpos-
ing; consensus models; binding space; isomeric space

1. Introduction

Coronaviruses (CoVs, subfamily Coronavirinae, and family Coronaviridae) are en-
veloped viruses consisting of a single positive-strand RNA that can infect humans where
they may cause respiratory, gastro-intestinal, and neurological disorders. A recently
identified new coronavirus appeared in Wuhan, China [1], at the end of 2019 to cause
a world-wide pandemic crisis in the present times [2]. This is mainly responsible for a
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pneumonia-like illness that shows severe threats and often requires patient hospitalization
with a global lethality equal to 2.1% (data updated to 16 January 2021). By considering the
caused illness and its similarity with the SARS coronavirus (SARS-CoV, genome equal to
82%), the virus was called SARS-CoV-2 (severe acute respiratory syndrome-coronavirus-2),
while the induced disease was termed Covid-19 [3].

The SARS-CoV-2 genome [4] encodes for structural proteins that are required for
viral entry (such as the Spike glycoprotein); non-structural proteins, which comprise
enzymes endowed with protease, methyltransferase, helicase, and polymerase activities;
and accessory proteins [5], the role of which should be yet fully clarified [6,7]. The non-
structural proteins as well as the proteins required for the viral interaction with the host cells
represent potential drug targets [8]. In detail, the SARS-CoV-2 replicase gene encodes for
two overlapping polyprotein structures (i.e., ppa1a and ppa1ab), which are cleaved in the
functional proteins required for viral replication and transcription by a 33.8 kDa protease
called MPro or 3-chymotrypsin like protein, 3CL-Pro [9]. Interestingly, 3CL-Pro itself is
comprised within the ppa1a and ppa1ab polyproteins, and indeed, the first enzymatic step
involves the autolytic cleavage to liberate 3CL-Pro. This protease is active as a homodimer
and shows a peculiar specificity, which differs from the close proteases of the host cells,
since it shows a unique substrate preference for glutamine at the P1 site [10].

Such a substrate specificity combined with its key role in the viral life cycle renders
such a protein an attractive target to develop anti-SARS-CoV-2 drugs. Thus, a relevant
number of publications focused on the identification of potential SARS-CoV-2 3CL-Pro
inhibitors appeared in the literature during the last few months [11]. Several studies
comprised structure-based virtual screening (VS) campaigns especially targeted for drug
repurposing. For example, Gimeno et al. [12] reported a consensus repurposing study
which combines three docking programs (Glide, FRED, and AutoDock/Vina). Only the
ligands showing favorable and equivalent binding modes in all three programs were
considered as actives. Elmezayen et al. combined docking calculations with molecular
dynamics (MD) simulations to better investigate the stability of the retrieved hits by
evaluating the corresponding free energy using the MM-PBSA method [13]. Again, Meyer-
Almes described a method in which molecular docking, ∆G energy calculation, and analysis
of the protein ligand interaction fingerprints (PLIF) are combined to increase the predictive
performances [14]. Other studies involved computational protocols based on a single
docking tool and extended the virtual screenings also to drug-like molecules included
within the ZINC database [15] as well as to databases of natural compounds [16]. However,
and due to the lack of known SARS-CoV-2 3CL-Pro inhibitors, all the reported VS strategies
cannot be optimized and validated a priori, and thus the reliability of the retrieved hits has
to be corroborated by combining different computational approaches.

The novelty of the present study is that the known SARS-CoV 3CL-Pro inhibitors
can be added to the screened databases and used as a training set of active molecules to
evaluate the performances of the applied computational strategies. Although the efficacy
of the here simulated SARS-CoV 3CL-Pro inhibitors was not experimentally confirmed
against SARS-CoV-2 3CL-Pro, such a choice is justified by the very high conservation
degree between the two proteases (SARS-CoV and SARS-CoV-2 3CL-Pro differ only for 12
residues out of 306), which is suggestive of a very similar binding mode within the two
enzymatic pockets, as also confirmed by a recent computational analysis [17].

The employment of the known SARS-CoV 3CL-Pro inhibitors as active molecules
in the here reported simulations is also confirmed by the recently resolved structures
of SARS-CoV-2 3CL-Pro enzyme in complex with known SARS-CoV 3CL-Pro inhibitors,
which show ligand arrangements superimposable to those already seen within SARS-CoV
3CL-Pro. A compelling example is offered by the SARS-CoV-2 3CL-Pro structure bound to
the potent TG-0205221 inhibitor (PDB Id: 7C8T), which is completely comparable with the
corresponding SARS-CoV 3CL-Pro complex (PDB Id: 2GX4, see below). On one hand, such
a resolved structure indirectly confirms the potential activity on SARS-CoV-2 3CL-Pro of
the most active known inhibitors of SARS-CoV 3CL-Pro. On the other hand, this structure
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emphasizes the possibility to employ known SARS-CoV 3CL-Pro inhibitors to guide the
design and/or selection of promising hits for SARS-CoV-2 3CL-Pro enzyme.

Hence, the study involves extended docking simulations based on a purposely col-
lected database in which a set of 478 molecules active against SARS-CoV 3CL-Pro with a
pIC50 values greater than 5.0 were dispersed within a database of about 13,000 safe in man
molecules. In this way, the performed simulations can be exploited to design, optimize,
and validate targeted VS protocols by comparing and combining different docking tools
(i.e., Glide, LiGen, Plants, and Fred) and different post-docking analyses. Moreover, the
best performing approaches can also be used to identify potential hits against SARS-CoV-2
3CL-Pro.

Furthermore, the analysis of the performed VS campaigns involves the combination of
the already proposed binding space with the here developed isomeric space. The concept
of binding space was recently proposed by some of us to account for the multiple binding
modes a ligand can assume within the binding pocket by simultaneously considering more
than one pose for each ligand [18]. Similar to property space [19], the binding space can be
defined by parameters that encode for both the average and the spread of the scores values,
the latter being described by ranges or standard deviations. Previous studies involving both
correlative analyses and VS campaigns revealed that the binding space concept can elicit
significant improvements in the predictive power compared to the best score values [20].

In this study, the same rationale inspiring the definition of the binding space was
applied to define the corresponding isomeric space. In detail, the ligands existing in differ-
ent tautomers, stereoisomers, or protonation forms are simulated by docking all possible
states, and the resulting docking scores are utilized for calculating the corresponding
space parameters (i.e., score averages and ranges). As detailed under Methods, the study
investigates both the binding and isomeric spaces by considering four possible combina-
tions: (1) without including the parameters of both the binding and isomeric spaces but
considering only the best scores for each compound (namely, the canonical conditions);
(2) by including the parameters of the sole binding space to confirm the encouraging results
already pursued in previous studies; (3) by including the parameters of the sole isomeric
space to assess its specific relevance; and (4) by variously combining the parameters of
both spaces to investigate their synergistic role. All so-computed score parameters were
then utilized to develop consensus models by using the enrichment factor optimization
(EFO) approach [21], which generates linear combinations of the considered descriptors
and proved particularly efficient in previous VS benchmarking studies [22,23].

2. Results
2.1. Simulated Dataset

Docking simulations involved a database of 13,535 unique molecules including
478 known SARS-CoV inhibitors with pIC50 > 5, taken from literature, which were dis-
persed within a dataset of 13,057 safe in man compounds. Among the 478 known SARS-CoV
inhibitors, 193 compounds are endowed with a pIC50 > 6. These two inhibition thresholds
(i.e., pIC50 > 5 and pIC50 > 6) allow the definition of two different (despite partly over-
lapped) sets of active molecules, and the generation of all analyzed consensus models was
repeated by considering the two resulting training sets of SARS-CoV inhibitors. Further-
more, 4515 molecules (i.e., a third of the complete database) required the generation of
14,013 multiple states/isomers with an average of 3.1 isomers per molecule. In this way,
the screened database overall included 23,054 ligands.

Due to the different docking protocols and the criteria by which the generated poses
were considered as acceptable by each docking tool (as discussed under Methods), the num-
ber of docked molecules varies among the docking simulations as summarized in Table 1.
In detail, Table 1 shows that the number of simulated molecules by the four tested programs
decreases with the following trend: PLANTS > LiGen > Fred > Glide. The number of
docked active molecules parallels the same trend except for Glide, which considers a higher
number of active molecules while simulating a lower number of ligands (compared to Fred).

259



Molecules 2021, 26, 797

The same trend is exhibited by the number of molecules simulated by considering multiple
states by the four docking engines.

Table 1. General characteristics of the databases simulated by each docking program and relative
generated poses.

Tool
Docked

Molecules
pIC50 > 6 pIC50 > 5

Molecules
with

Multiple
States

Monitored
Poses

Full Database 13,535 193 478 4548 —

Glide 11,583 164 415 3470 174,071

Fred 11,731 138 411 3379 183,653

Ligen 12,791 190 472 3907 128,133

Plants 13,460 193 478 4475 224,670

Common 10,110 114 353 — a — a

a The number of both molecules existing in multiple states and generated poses varies among the docking
programs.

When considering the number of monitored poses, it should be noted that PLANTS,
Fred, and Glide generated 10 poses per ligand, while LiGen provided 10 poses per unique
molecule. This implies that for molecules existing in multiple states, LiGen selected the 10
best poses regardless of the involved isomers. Hence, the number of analyzed poses for
LiGen is significantly lower than that of the other docking engines.

Despite the described differences, a common dataset composed of those molecules
that are simulated by all the utilized docking tools can be extracted. This comprises
10110 ligands (about 75% of the full database) and includes 353 active compounds (i.e., with
pIC50 > 5). Such a common database will be used to develop mixed consensus models
by combining the docking results from different tools and to compare the best ranked
molecules by the four docking tools.

2.2. Results by PLANTS

Table 2 compiles the best enrichment factors in the top 1% (EF 1%) based on the
PLANTS simulations as well as the resulting enhancements (as percentage values) induced
by the inclusion of the explored space descriptors and by the generation of linear consensus
equations. In all reported analyses (Tables 2–5), the consensus models are developed by
linearly combining from two to five docking scores using the EFO algorithm (as detailed
under Methods). As mentioned above, the analyses are repeated by considering the
two sets of active molecules as collected considering two different inhibition thresholds
(i.e., pIC50 > 5 and pIC50 > 6).

A preliminary consideration, which affects all these analyses, concerns the unavoid-
ably biased comparison between binding and isomeric spaces. Indeed, the former involves
all the screened molecules for which different poses were generated, while the latter affects
only those molecules existing in multiple states, which represent about 1/3 of the entire
dataset (see above). Specifically, the PLANTS simulations involved 31 compounds existing
in multiple states out of 193 for the actives with pIC50 > 6 and 136 out of 478 for the
molecules with pIC50 > 5.

Thus, one may understand the different effects exerted by the inclusion of the isomeric
space parameters for the two considered pIC50 thresholds. Indeed, the number of examined
isomers with pIC50 > 5 is high enough and the isomeric space affords an appreciable
enhancing effect, which is greater than that exerted by the binding space. In contrast,
the limited number of compounds existing in multiple states with pIC50 > 6 reduces
the enhancing effect exerted by the isomeric space. The inclusion of the binding space
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parameters induces significant improvements, especially with pIC50 > 6, where it is more
effective than the isomeric space, especially when considering the best obtained models.

Table 2. Best EF1% values reached by the various consensus models developed using the PLANTS results plus the relative
average values and the corresponding performance enhancements in percentage values. As described under Methods, the
consensus equations were generated by linearly combining from two to five docking scores. The EF1% values referring to
one variable correspond to the performances reached by single scoring functions.

Number of
Variables

Without
Spaces

Isomeric Space Binding Space
Both Spaces

Merged
Both Spaces

Joint
Mean

pIC50 > 5

1 7.1 9.0 (27%) a 9.0 (27%) a) 10.1 (41%) a 9.0 (27%) a 8.9

2 10.3 10.3 (0%) 10.3 (0%) 11.3 (10%) 10.3 (0%) 10.5 (18%) b

3 10.3 11.8 (14%) 10.3 (0%) 11.3 (10%) 11.3 (15%) 11.1 (24%) b

4 10.7 11.8 (10%) 10.7 (0%) 12.2 (14%) 11.6 (10%) 11.4 (28%) b

5 10.7 11.8 (10%) 11.6 (8%) 13.0 (22%) 12.0 (12%) 11.8 (33%) b

Mean 9.8 10.9 (11%) 10.4 (5%) 11.6 (18%) 11.0 (12%) 10.7 (20%) b

pIC50 > 6

1 9.4 10.9 (16%) 9.4 (0%) 9.4 (0%) 10.9 (16%) 10.0

2 13.4 14.1 (5%) 13.4 (0%) 14.6 (8%) 14.1 (5%) 13.8 (38%)

3 13.4 15.1 (12%) 13.4 (0%) 15.6 (16%) 16.7 (24%) 14.8 (48%)

4 14.1 15.1 (7%) 18.2 (29%) 17.2 (21%) 18.2 (29%) 16.6 (66%)

5 14.1 15.1 (7%) 18.2 (29%) 18.2 (29%) 18.2 (29%) 16.8 (68%)

Mean 12.9 14.6 (9%) 15.3 (13%) 15.9 (16%) 16.0 (20%) 14.4 (43%)
a Here and in the following rows, the performance enhancements are computed in respect to the first column reporting the EF1% values
obtained without including space parameters to assess the beneficial role of the inclusion of these parameters and their combinations.
The same holds for pIC50 > 6 and Tables 4, 6, and 8. b In the last column, the enhancements are computed with respect to the average
value obtained by the single scoring functions to evaluate the average effect of the consensus models. The same holds for pIC50 > 6 and
Tables 4, 6, and 8.

Table 3. Best EF1% values reached by the various consensus models developed using the LiGen results plus the relative
average values and the corresponding performance enhancements in percentage values. As described under Methods, the
consensus equations were generated by linearly combining from two to five docking scores. The EF1% values referring to
one variable correspond to the performances of single scoring functions.

Number of
Variables

Without
Spaces

Isomeric Space Binding Space
Both Spaces

Merged
Both Spaces

Joint
Mean

pIC50 > 5

1 11.3 11.3 (0%) 11.3 (0%) 11.3 (0%) 11.3 (0%) 11.3

2 11.3 12.8 (13%) 12.4 (9%) 11.3 (0%) 12.8 (9%) 12.0 (7%)

3 13.9 13.9 (0%) 14.5 (5%) 13.9 (0%) 14.5 (7%) 14.1 (25%)

4 14.5 14.5 (0%) 16.2 (12%) 14.9 (3 %) 16.2 (12%) 15.3 (34%)

5 14.5 15.1 (4%) 16.2 (12%) 15.6 (7%) 16.2 (12%) 15.5 (36%)

Mean 13.1 13.5 (3%) 14.1 (8%) 13.4 (2%) 14.2 (8%) 13.8 (20%)

5 no PH a

Distances
9.4 9.4 9.4 9.4 11.11 9.7

5 only PH
Distances a 14.5 15.1 13.0 8.5 15.6 13.3

261



Molecules 2021, 26, 797

Table 3. Cont.

Number of
Variables

Without
Spaces

Isomeric Space Binding Space
Both Spaces

Merged
Both Spaces

Joint
Mean

pIC50 > 6

1 12.7 12.7 (0%) 12.7 (0%) 12.7 (0%) 12.7 (0%) 12.7

2 13.2 13.2 (0%) 14.8 (12%) 14.3 (8%) 14.8 (12%) 13.8 (8%)

3 13.2 13.8 (4%) 21.2 (60%) 21.2 (60%) 21.2 (60%) 16.6 (31%)

4 13.2 13.8 (4%) 24.9 (88%) 25.4 (92%) 24.9 (88%) 18.2 (43%)

5 13.8 13.8 (0%) 25.9 (89%) 25.4 (84%) 25.9 (89%) 18.5 (46%)

Mean 13.2 13.4 (2%) 19.9 (50%) 19.8 (49%) 19.9 (50%) 16.0 (26%)

5 no PH
Distances a 10.6 11.6 12.2 21.3 20.1 15.2

5 only PH
Distances a 9.0 11.1 10.6 12.2 11.1 10.8

a In both analyses, the last two rows report the performances reached by the consensus equations generated by combining five variables
and excluding the pharmacophoric distances (“five no PH distances”) or considering only these parameters (“five only PH distances”).

Table 4. Best EF1% values reached by the various consensus models developed using the Fred results plus the relative
average values and the corresponding performance enhancements in percentage values. As described under Methods, the
consensus equations were generated by linearly combining from two to five docking scores. The EF1% values referring to
one variable correspond to the performances of single scoring functions.

Number of
Variables

Without
Spaces

Isomeric Space Binding Space
Both Spaces

Merged
Both Space

Joint
Mean

pIC50 > 5

1 13.7 14.9 (9%) 15.1 (11%) 16.6 (21%) 15.1 (11%) 15.1

2 14.9 15.1 (2%) 16.3 (10%) 16.6 (11%) 17.1 (15%) 16.0 (6%)

3 16.1 16.3 (1%) 16.6 (3%) 17.3 (8%) 17.6 (9%) 16.8 (11%)

4 16.1 16.3 (1%) 16.6 (3%) 17.3 (8%) 17.6 (9%) 16.8 (11%)

5 16.1 16.3 (1%) 16.6 (5%) 17.3 (8%) 17.6 (9%) 16.8 (11%)

Mean 15.4 15.8 (3%) 16.3 (6%) 17.0 (11%) 17.0 (11%) 16.3 (8%)

pIC50 > 6

1 24.7 24.7 (0%) 24.7 (0%) 24.7 (0%) 24.7 (0%) 24.7

2 25.4 25.4 (0%) 25.4 (0%) 25.4 (0%) 25.4 (0%) 25.4 (3%)

3 25.4 25.4 (0%) 25.4 (0%) 26.9 (6%) 27.6 (9%) 26.2 (6%)

4 25.4 25.4 (0%) 26.9 (6%) 26.9 (6%) 27.6 (9%) 26.4 (7%)

5 25.4 25.4 (0%) 27.6 (9%) 27.6 (9%) 27.6 (9%) 26.7 (8%)

Mean 25.3 25.3 (0%) 26.0 (3%) 26.3 (4%) 26.6 (5%) 25.9 (5%)
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Table 5. Best EF1% values reached by the various consensus models developed using the Glide results plus the relative
average values and the corresponding performance enhancements in percentage values. As described under Methods, the
consensus equations were generated by linearly combining from two to five docking scores. The EF1% values referring to
one variable correspond to the performances reached by single scoring functions.

Number of
Variables

Without
Spaces

Isomeric Space Binding Space
Both Spaces

Merged
Both Spaces

Joint
Mean

pIC50 > 5

1 12.9 13.8 (8%) 13.1 (2%) 12.9 (0%) 13.8 (8%) 13.3

2 13.8 15.3 (11%) 14.3 (4%) 14.3 (4%) 16.5 (19%) 14.9 (12%)

3 14.3 16.0 (12%) 16.0 (12%) 16.3 (14%) 16.5 (15%) 15.8 (19%)

4 14.3 16.8 (17%) 16.3 (14%) 16.3 (14%) 17.2 (20%) 16.2 (22%)

5 14.3 16.8 (17%) 16.3 (14%) 16.3 (14%) 17.5 (22%) 16.2 (22%)

Mean 13.9 15.7 (13%) 15.2 (9%) 15.2 (9%) 16.3 (17%) 15.3 (15%)

pIC50 > 6

1 19.7 22.7 (16%) 20.3 (3%) 19.7 (0%) 22.7 (16%) 21

2 22.1 25.8 (17%) 24.0 (8%) 23.3 (6%) 25.8 (17%) 24.2 (15%)

3 22.7 27.6 (22%) 25.8 (14%) 25.2 (11%) 28.3 (24%) 25.9 (23%)

4 24.0 27.6 (15%) 27.0 (13%) 25.8 (8%) 28.3 (18%) 26.5 (26%)

5 24.0 27.6 (15%) 27.0 (13%) 25.8 (8%) 28.3 (18%) 26.5 (26%)

Mean 22.5 26.3 (17%) 24.8 (10%) 24.0 (8%) 26.7 (19%) 24.8 (18%)

Regardless of the adopted strategy, the combination of the two monitored spaces
appears to be productive only with pIC50 > 5, where it affords average improvements
greater than those reached by the individual spaces. In contrast, the space combination
exerts very modest effects with pIC50 > 6, since the resulting best models do not exceed the
performances reached by the sole binding space. Overall, PLANTS affords encouraging
performances that benefit from both the inclusion of the space descriptors and the genera-
tion of consensus linear equations. The latter induces an average improvement of around
39% with the best improvements around 70%.

While avoiding the systematic analysis of the generated consensus equations, at-
tention will be here focused on the occurrence of the various scores in all generated
models. The interested reader can find all computed consensus equations with the
resulting performances for all docking programs and all performed analyses at http:
//www.exscalate4cov.network/. Table S1 reports the occurrence of the diverse scores
in the 20 best consensus models generated by the EFO algorithm in all the 10 analyses
included in Table 2 (for a total of 200 equations). In detail, Table S1 reveals the remarkable
role played by the XScore [24] and PLANTS [25] scoring functions (the latter here com-
prising also the primary scores). Table S1 also evidences the interesting role played by the
scores encoding for non-polar interactions as exemplified by molecular lipophilic potential
(MLP) [26] and the VEGA-based scores [27], which here correspond to the Lennard–Jones
interaction energies as computed by using the CHARMM and CVFF force fields. Con-
cerning the type of score values (in the models including the space descriptors), the best
values play a prevailing role, while spread and mean values have a lesser and rather
similar incidence.

2.3. Results by LiGen

As described under Methods, the analyses based on the LiGen simulations involved
the primary scores, the scoring functions derived by rescoring analyses, and 30 phar-
macophoric distances (PH) as generated by the LiGen software. Table 3 reports the per-
formances reached by the LiGen results as well as the performance enhancements due
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to both the inclusion of the space parameters and the generation of consensus models
(as percentage values).

The first key observation concerns the very limited role played by the isomeric space
for both pIC50 thresholds. Such a result cannot be ascribed to a too low number of active
molecules existing in multiple states, since they roughly correspond to those already con-
sidered by PLANTS (i.e., 132 out of 472 with pIC50 > 5 and 29 out of 190 with pIC50 > 6).
Instead, this finding can be explained by considering that limiting the analysis to 10 poses
per unique molecule does not allow an extensive exploration of the isomeric space. More-
over, the scoring functions and the search algorithm implemented by LiGen might be not
so sensitive to the isomeric differences among the simulated ligands. When considering
the overall satisfactory performances reached by LiGen (see below), the poor results of the
isomeric space can be positively evaluated, since they suggest that this docking program
can conveniently perform VS campaigns without requiring excessive isomeric expansions
of the screened databases with a beneficial reduction of computational time and complexity.

In contrast, the inclusion of the binding space descriptors markedly improves the
EF1% values with an enhancement effect, which is particularly evident with pIC50 > 6,
where the binding space leads to almost doubled EF1% values. When considering that the
LiGen program produced the lowest number of poses, the remarkable results yielded by the
binding space parameters emphasize that this reduction is yet able to extract the significant
poses, thus minimizing redundant results and reducing the computational costs. Based on
the different effects induced by the two analyzed spaces, one may understand why their
combinations are unproductive since they yield EF1% values, which are comparable with
those obtained by the sole binding space.

The LiGen results seem to particularly benefit from the linear combination of diverse
scoring functions: this effect is noticeable in all the experiments, as confirmed by the
average increases around 30%, but is particularly remarkable with pIC50 > 6, where the
consensus models lead to the doubling of the corresponding EF1% value. Taken together,
LiGen provides satisfactory performances, reaching EF1% values around 25 for pIC50 > 6
and with the inclusion of the binding space descriptors.

Since the LiGen analyses also comprise the pharmacophoric distances, a specific ex-
periment was performed to investigate their specific role. In detail, the analysis involved
the generation of two additional five-variable consensus equations for each pIC50 thresh-
old. The first model was based on the pharmacophoric distances only and the second on
all computed scoring functions except for the pharmacophoric distances. The resulting
EF1% values (see Table 3) highlight an overall synergistic effect between pharmacophoric
distances and scoring functions. Nevertheless, Table 3 reveals different behaviors depend-
ing on the considered inhibition threshold. The pharmacophoric distances play indeed a
prevailing role with pIC50 > 5, while the score values assume a more marked role with
pIC50 > 6.

Table S2 compiles the incidence of the various docking scores in all the generated
consensus equations and reveals the prevailing role played by the pharmacophoric dis-
tances as computed by LiGen. Apart from these distances, only PLANTS scores show a
significant relevance, while the scores encoding for specific interactions exhibit negligible
roles. As seen above, the best values confirm their prevailing role, but here the spread
values reveal an incidence that is almost double compared to the score means.

2.4. Results by Fred

Table 4 compiles the EF1% values and the corresponding enhancements as derived by
the Fred docking results. The first key consideration is that the single scoring functions
provide satisfactory results even without space parameters and consensus combinations
as seen with pIC50 > 6. The notable performances elicited by simple docking scores
can explain why the inclusion of the descriptors for both explored spaces exerts only
limited effects. Similar to what was seen for LiGen, the isomeric space also plays here an
almost negligible role, while the binding space parameters yield modest improvements
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by increasing the corresponding EF1% values of about 10% in the best consensus models.
This result can be explained by considering that the beneficial effects of such post-docking
procedures (such as rescoring, the inclusion of binding and isomeric spaces, and consensus
approaches) depend on the room for improvement that the simple docking simulations
show, and they inevitably decrease when the standard docking results already reveal
notable predictive powers.

The docking simulations by Fred involved several active molecules existing in multiple
states roughly comparable to those simulated by Plants and LiGen (despite the lowest
number of total simulated isomers: i.e., 118 out of 411 with pIC50 > 5 and 27 out of 138
with pIC50 > 6). Hence, the modest relevance of the isomeric space suggests that this
docking program does not require significant isomeric expansion of the screened databases
to perform reliable VS campaigns. Similarly, the modest effect also exerted by the binding
space suggests that the poses generated by Fred show a limited variability and tend to be
focused around the best (and reasonably reliable) pose. In this way, the score averages
roughly correspond to the best values, and the score spreads lose most of their relevance.
As discussed above for the LiGen results, these insensitivities can be seen as positive
features, which allow docking simulations to be performed without significant isomeric
expansions of the screened datasets and reducing the number of poses computed per ligand
thus minimizing the computational costs. Despite the modest effects exerted by the single
spaces alone, their combinations yield encouraging results, especially with pIC50 > 5.

Table S3 shows the relative incidence of the computed scoring functions, as seen in
all the consensus models generated by Fred. The key observation is that here PLANTS
and XScore functions show an almost exclusive role, which minimizes the relevance of
all other docking scores. While considering the unsatisfactory results afforded by space
parameters and consensus strategies (see above), these results indicate that at least the
rescoring calculations played a key role in enhancing the predictive power of the Fred
simulations. About the type of score values, the best scores represent the most abundant
values, while the mean values play a more relevant role here than the score ranges.

2.5. Results by Glide

Table 5 compiles the EF1% values (and the corresponding enhancements) as de-
rived by using Glide. Despite the lowest number of active compounds simulated in
multiple states (i.e., 105 out of 415 with pIC50 > 5 and 24 out of 164 with pIC50 > 6),
Table 5 shows the markedly beneficial effect exerted by the isomeric space with both pIC50
thresholds. Although the binding space also elicits encouraging EF1% improvements for
both thresholds, the isomeric space affords better results in terms of both reached EF1% val-
ues and relative performance enhancements. As already evidenced by previous studies [28],
these results suggest that the search algorithms and the scoring functions implemented by
Glide are strongly dependent on isomeric differences and invite the exhaustive expansion
of the screened databases by considering as many as reasonable isomers/states, even when
the number of simulated molecules existing in multiple states is relatively low.

While in the previous analyses the space combinations provided limited enhance-
ments without significant differences between the two applied strategies; here, the joint
combination of the two spaces yields remarkable performance enhancements compared
to the single spaces with both pIC50 thresholds. In contrast, the merging combination
approach appears to be constantly unproductive. These results suggest that the Glide-
based docking scores are able to properly account for both multiple states (by isomeric
space) and multiple binding modes (by binding space). Such a sensitivity implies that the
two explored spaces encode for different information, and thus their descriptors can be
synergistically combined, but cannot be fused into a unique space, the descriptors of which
would detrimentally confuse the specific roles of the two spaces (as seen with the merg-
ing combination). Taken globally, the Glide simulations provide satisfactory predictive
performances, which are, on average, comparable with those offered by LiGen with best
EF1% values ranging between 25 and 30. As discussed above, the obtained performances
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markedly benefit from both explored spaces (and their joint combination) as well as from
the development of consensus linear equations as assessed by an overall improvement of
about 20% (with best results around 25%).

Table S4 reports the incidence of the various scoring functions in all the equations
developed by using the Glide results and emphasizes the relevant role played by the
23 different primary Glide scores [29]. Notably, they appear to be particularly abundant in
those experiments, which afforded the best performances. The equations seem to benefit
from the inclusion of scoring functions encoding for non-polar interactions. Indeed, the
VEGA-based scores, which here correspond to the CHARMM- and CVFF-based Lennard–
Jones interaction energies, and the MLP values show an overall incidence of about 20%.
Concerning the score types, the best values represent about 50%, and mean and spread
values are equally abundant.

2.6. Overall Comparison

Although the differences in the protocols adopted and in the successfully docked
molecules by the four tested docking programs prevent a precise comparison of the reached
performances, an overall assessment of the previously discussed performances is here
reported to compare the specific relevance of the computed space parameters. To do this,
Figure 1 compares the reached AUC values as derived from the ROC curves corresponding
to the best developed consensus models in all performed docking experiments and for
both inhibition thresholds.

Figure 1. Comparison of the AUC values from the ROC curves for the best performing
models generated by the four utilized docking programs in the five tested conditions with
(A) pIC50 > 5 and (B) pIC50 > 6.
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The analysis of the reported AUC values reveals results in substantial agreement with
those previously discussed for EF1% values and allows for some considerations, which
can be summarized as follows. The two explored spaces induce similar overall enhanc-
ing effects with the isomeric space, which appears to be more relevant for analyses with
pIC50 > 5, reasonably due to the higher number of involved molecules existing in multiple
states. The combinations of the two space parameters provide comparable performances,
and rarely do they surpass those reached by the individual spaces. The LiGen program is
that best benefitting from the inclusion of space parameters, while Fred is the most insensi-
tive tool. When considering the best AUC values, Figure 1 reveals that the performances
of the four docking programs are overall comparable for the screening campaigns with
pIC50 > 5, while PLANTS yield lower AUC values with pIC50 > 6 compared to the other
three pieces of software, which in turn afford rather similar performances.

Comparative analyses were also performed by calculating the corresponding consen-
sus models using the common database. The obtained results (Figure S1 and Table S5,
Supplementary Materials) are in clear agreement with those previously discussed. The
only difference involves the more limited enhancing role played by the isomeric space,
which is ascribable to the reduced number of considered compounds existing in multiple
states. The best consensus models developed using the common database will be used to
compare the resulting rankings from the four tested docking programs (see below).

Figure 2 focuses on the enhancing role played by the development of the consensus
models by showing the progressive effect exerted when including from two to five variables
(in respect to the single scores). As already seen, the best improvements are reached by
PLANTS and LiGen, while Glide and especially Fred show more limited effects. The bene-
ficial role on the LiGen results might be also ascribed to the fact that their analyses involve
the largest number of computed score values due to the inclusion of 30 pharmacophoric
distances. However, a relation between performances and the number of variables cannot
be evidenced for the other three docking programs.

Figure 2. Average EF1% enhancements (in percentage values) due to the generation of the consensus models when including
two (V2), three (V3), four (V4), or five (V5) variables plus overall averages. The reported values are computed by averaging
the EF1% enhancements for both inhibition thresholds.

When considering the progressive contribution when including from two to five
variables in the consensus models, Figure 2 shows that the largest improvements are
observed when shifting from one to two (around 14%) and from two to three variables
(around 10%), while the inclusion of additional variables induces more limited EF1%
increases (6% and 2% for four and five variables, respectively). On one hand, these results
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justify the choice made here of avoiding the calculation of consensus models with more
than five variables. On the other hand, Figure 2 suggests that a simpler and faster analysis
might be focused on consensus equations, including at most three variables that represent
an optimal balance between performances, reliability, and computational costs.

To conclude this general analysis, Table S6 compiles the occurrence of the various
scores as obtained by all the computed consensus models and reveals the major role played
by the primary scores. Notably, primary scores also include the LiGen pharmacophoric
distances, which alone represent more than 50% of all primary score values. Table S6
highlights the overall relevant role of both PLANTS and XScore scoring functions and con-
sequently emphasizes the crucial role of rescoring procedures for enhancing the predictive
power of all performed VS campaigns. The scores encoding for specific interactions play
a minor role, even though Table S5 underlines the appreciable effect played by scoring
functions encoding for non-polar interactions as seen by summing the relevance of both
MLP and VEGA-based scores. Concerning score types, Table S5 confirms that best values
represent about half of all included values and spread and mean scores show a more
limited and similar incidence (around 25%).

Even though the analysis of the computed poses goes beyond the primary objective of
the study, which was designed to evaluate the effects of the monitored space parameters
in enhancing the performances of the performed VS campaigns, Figure 3 compares the
best computed poses for a close TG-0205221 analogue included in the screened database
with the recently resolved SARS-CoV-2 3CL-Pro complex [30]. While considering that the
performed VS campaigns cannot simulate the formation of the covalent bond between
Cys145 and the bound ligand, as seen in the reference structure (Figure 3A), the computed
poses are in encouraging agreement with that of TG-0205221. Indeed, in all four shown
structures, the 2-oxopyrrolidin ring approaches Asn142, the leucine side chain, which
replaces the cyclohexyl alanine of TG-0205221 contacts His41, and the benzoyloxy moiety
approaches Pro168 and Gln192. The four complexes slightly differ for the arrangement of
the electrophilic warhead, even though it appears to be always close enough to Cys145 to
yield the Michael adduct.

 

Figure 3. Comparison of the resolved complex of TG-0205221 with the SARS-CoV-2 3CL Pro enzyme (A) with the best poses
as computed for its close analogue by PLANTS (B), LiGen (C), Fred (D), and Glide (E).
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2.7. Mixed Consensus Models

The analyses on the common database was primarily carried out to develop mixed
consensus equations by linearly combining scores coming from different docking simu-
lations. For simplicity’s sake and considering the observed differences among the four
docking runs even for the common database, the development of the mixed models was
focused on the docking scores as such avoiding the space parameters.

Table 6 reports the best EF1% values as obtained by generating consensus equations
that linearly combine scores of pairs of docking engines and the corresponding performance
improvements (in percentage values). Overall, the reported EF1% values reveal interesting
synergistic effects that affect most of the tested combinations with only four out of 12 cases
showing no enhancement. On average, the synergistic enhancements are rather similar
for both inhibition thresholds (i.e., 12% for pIC50 > 5 and 19% for pIC50 > 6). The best
results are afforded by the combination of Glide plus Fred, which yield for both pIC50
thresholds EF1% better than those of the single docking program, while the best synergistic
enhancement is seen when combining LiGen and PLANTS scores with pIC50 > 6 (40%).

Table 6. Best EF1% values as obtained by combining the simple score values (without space pa-
rameters) of two or three different docking programs and the corresponding synergistic effect
(as enhancements in percentage values). For easy comparison and concerning the results for pairs
of docking tools, the diagonal cells reports the best EF1 value obtained by the single docking tool
(in italics).

Program PLANTS LiGen Fred Glide

Results for Pairs of Programs

pIC50 > 5

PLANTS 10.7 15.3 (6%) 16.1 (0%) 16.2 (13%)

LiGen 14.5 16.1 (0%) 16.7 (15%)

Fred 16.1 18.1 (12%)

Glide 14.3

pIC50 > 6

PLANTS 14.1 19.8 (40%) 28.1 (11%) 24.0 (0%)

LiGen 13.8 27.7 (9%) 24.0 (0%)

Fred 25.4 29.0 (16%)

Glide 24

Results for triplet of programs

Fred Glide
PLANTS

LiGen Glide
PLANTS

LiGen Glide
Fred

LiGen Fred
PLANTS

pIC50 > 5 18.1 (12%) 17.1 (18%) 18.7 (16%) 16.4 (2%)

pIC50 > 6 29.9 (18%) 24 (0%) 27.2 (7%) 28.1 (11%)

Given these encouraging results, the next analysis involved the combination of triplets
of programs. Table 6 also includes the EF1% values reached by these analyses and reveals
an appreciable synergistic effect for these combinations with only one case being ineffec-
tive and most cases with an EF1% increase greater than 10%. Notably, these consensus
models allow reaching EF1% around 20 for pIC50 > 5 and very close to 30 for pIC50 > 6.
Unfortunately, the full combination of the scores coming from all tested docking programs
did not yield further improvements (results not shown).

2.8. Analysis of the Best Rankings

The last section of this study analyzes the rankings obtained by applying the best
consensus models for pIC50 > 6 using the common database (see Table S7). The first part
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of the analysis investigates how the frequency of the molecules shared at the same time by
two, three, or four rankings varies when browsing the first half of the ranking positions
(Figure S1 and Table S7, from 1 to 5000). Figure S1A shows the computed trends and
reveals that the frequency of common molecules found in three rankings increases with a
linear trend, while the frequencies of molecules included in all the four rankings or only in
two rankings show symmetric and parabolic trends. The former grows when increasing
the number of monitored ranking positions, and the latter symmetrically decreases.

Figure S1B illustrates the parabolic trends as computed by considering specific pairs
of rankings. This allows a graphical evaluation of the increasing overlapping between
the results of two docking programs. Figure S1B reveals that the highest frequency of
shared compounds is provided by combining the LiGen and Fred rankings, while the
other five pairs of programs yield rather similar profiles with the pairs LiGen–Plants and
Plants–Fred showing the lowest frequencies of shared molecules. While being detectable
even within the best top 100 ranking positions, the differences between the frequencies
become appreciable when considering at least the first 500 ranking positions. Hence, the
following analyses will focus on the molecules included in the top 500 ranking positions.

The first analysis of the top 500 molecules of each ranking deals with their physic-
ochemical profiling. Table 7 reports the corresponding averages values and standard
deviations for some key geometrical and physicochemical descriptors and allows for some
relevant considerations. Firstly, limited differences are seen for the average values of the
number of rotors and H-bonding groups, while molecular size (as encoded by M.W. and
SAS averages) and polarity (as parameterized by PSA and log P averages) reveal a more
marked variability. In detail, Table 7 shows that Glide and PLANTS select the bulkiest
and the smallest set of ligands, respectively, while Fred and LiGen unravel intermediate
averages. Additionally, there is an expected relation between size and lipophilicity for
PLANTS, LiGen, and Fred, while Glide selects the ligands with a peculiar profile, since
they comprise the bulkiest and the most polar molecules. Finally, concerning the property
variability, Table 7 reports modest differences among the four monitored sets of ligands
and for all computed descriptors, even though the Glide set shows, on average, the highest
standard deviations, thus suggesting a conceivable relation between molecular size and
property variability.

Table 7. Average values plus standard deviations for some key geometrical and physicochemical
properties as computed by considering the Top 500 molecules of each ranking.

Tool Rotors HB_Tot M.W. PSA SAS Log P

Plants 9.6 ± 3.8 9.6 ± 2.2 510.9 ±
98.2

131.6 ±
45.2

541.8 ±
111.3 2.3 ± 2.7

LiGen 10.2 ± 4.2 9.2 ± 2.9 554.2 ±
95.6

120.8 ±
54.3

593.0 ±
98.3 3.6 ± 2.2

Fred 9.9 ± 4.4 9.2 ± 2.9 545.0 ±
97.8

120.3 ±
56.4

579.9 ±
104.6 2.9 ± 2.4

Glide 10.9 ± 4.2 11.1 ± 3.1 566.0 ±
103.1

148.3 ±
58.9

590.6 ±
109.4 2.2 ± 2.9

The next analysis on the top 500 ligands concerned the overlapping between the four
sets of selected ligands. Figure 4 shows the resulting Venn diagram with the corresponding
frequency values. As seen in Figure S1B, Figure 4 confirms that the pairs Fred–LiGen and, to
a minor extent, Glide–PLANTS show the highest frequencies of common molecules, while
the pairs PLANTS–LiGen as well as PLANTS–Fred show the lowest degree of overlapping.
Accordingly, the two triplets including Ligen and Fred (LiGen–Glide–Fred and PLANTS–
LiGen–Fred) show the highest overlapping degree, while PLANTS–LiGen–Glide reveals
the lowest number of shared ligands. Consequently, LiGen and Fred show the lowest
numbers of unshared molecules, while PLANTS has the highest number of unique ligands,
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which roughly correspond to one half of the analyzed set. Finally, the molecules common
to all the analyzed sets are 62, and this is a remarkable result, since they represent about
12.5% of the monitored ranking positions.

 

≅

Figure 4. Venn diagram representing the overlapping degree between the Top 500 molecules as derived by applying the
best equations developed for each docking software. A table detailing the resulting frequencies is also included (the color
code for the four docking tools is the same adopted in Figure 1).

A similar diagram was also obtained when analyzing the common scaffolds, as
detected within the screened Top 500 molecules (Figure S2). The scaffold frequencies are in
excellent agreement with the ligand frequencies seen in Figure 4 (r2 = 0.97) and the total
number of considered ligand frequencies (i.e., 1284) is slightly higher than that of scaffolds
(i.e., 828). This means that each detected scaffold is shared on average by ∼=1.5 ligands.
Stated differently, these findings emphasize that the selected Top 500 molecules do not
include congeneric series, and the chemical spaces covered by the top-ranked molecules of
each docking software are rather similar (as also suggested by Table 7) with PLANTS and
Glide showing the highest number of unshared scaffolds.

Finally, Table S8 compiles the common molecules shared by at least three rankings. In
detail, the so collected common molecules are 194 (62 and 132 molecules shared by four
and three rankings, respectively), among which 92 belong to the set of active compounds
(with pIC50 > 5, i.e., 47%). This finding affords a further validation of the overall predictive
power of the reported VS strategies, especially considering that the inhibition activity
of several SARS-CoV 3CL-Pro inhibitors against the SARS-CoV-2 3CL-Pro enzyme was
experimentally confirmed (as discussed above for TG-0205221 analogues. Among the
other 102 molecules, there are 37 compounds that are known inhibitors of SARS-CoV
3CL-Pro but with pIC50 < 5, and 17 known inhibitors of the main proteases of other viruses
(such as norovirus and HIV), and these compounds represent a further confirmation of the
efficacy of the performed VS campaigns, since some of the retrieved hits (rupintrivir [31],
saquinavir [32], and lopinavir [33]) were experimentally confirmed as promising inhibitors
of SARS-CoV-2 3CL-Pro. Finally, among the other common molecules, cobicistat [34] and
galloyl analogues [35] were identified as SARS-CoV-2 3CL-Pro inhibitors.

3. Methods
3.1. Library and Protein Structure Preparation

Virtual screening studies were performed on a repurposing library, containing a
unique list of 13,057 drugs. They comprise the set of safe in man drugs, commercialized or
under active development in clinical phases and retrieved from the Integrity database, plus
the Fraunhofer’s BROAD Repurposing Library provided by Fraunhofer IME. The screened
database also includes a set of 478 molecules, in particular preclinical compounds, identi-
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fied as “CoV Inhibitors”, which were considered as the active training set in the reported
optimization/validation analyses. Hence, the screened dataset overall included 13,535
unique molecules and the set of presumably active compounds was composed of 478 in-
hibitors with pIC50 > 5 of which 193 molecules show a pIC50 > 6.

Even though the database was collected by selecting safe in man molecules so that
the obtained results could be used also for repurposing purposes, Figure S4 compares
some representative physicochemical properties of active and inactive, which show rather
similar distributions. To better assess the reliability of the screened database and to
appreciate the role of docking simulations, a ligand-based VS campaign involving about
100 structural and physicochemical descriptors was performed. The best EF1% values as
obtained by the consensus models with five variables are very low (EF1% = 5.5 and 3.7
with pIC50 > 5 and pIC50 > 6, respectively). On one hand, these poor results confirm that
the simulated database does not show significant differences between active and inactive
ligands, which can bias the here presented docking results. On the other hand, the very
modest performances reached by the ligand descriptors further emphasize the relevance of
the here described structure-based VS workflows.

The reported docking simulations were performed by applying procedures as homo-
geneous as possible to render the obtained results as comparable as possible. Nevertheless,
minor differences remain concerning the preparation of the 3D structures of both protein
and ligands, primarily due to specific requirements of the docking software. Thus, the
common procedures applied to prepare the input structures are here described, while
the specific tasks required by each software will be reported in the following sections.
All compounds were converted to 3D structures and prepared by using Schrödinger’s
LigPrep tool. This process generated multiple states for stereoisomers, tautomers, ring
conformations (one stable ring conformer by default), and protonation states. In particular,
another Schrödinger package, Epik, was used to assign tautomers and protonation states
that would be dominant at a selected pH range (pH = 7 ± 1) [36]. Ambiguous chiral centers
were enumerated, allowing a maximum of 32 isomers to be produced from each input
structure. Then, energy minimization was performed with the OPLS3 force [37]. In this way,
4515 compounds were characterized by multiple states (with an average of 3.1 states per
compound), and a total of 23,654 ligands were generated. Docking simulations involved
the monomer A of the first resolved SARS-CoV-2 3CL-Pro structure (PDB Id: 6LU7) in
a covalent complex with the N3 inhibitor [9]. The protein structure preparation and the
binding site characterization were performed as previously described [38]. Briefly, the
protein structure was prepared by removing water solvents, crystallization additives, and
the covalently bound N3 ligand. The hydrogen atoms were added by using the VEGA
program [27] to remain compatible with physiological pH. The protein structure was then
minimized using Namd2 [39] and by keeping the backbone atoms fixed to preserve the
resolved folding.

3.2. PLANTS Simulations

Concerning PLANTS simulations, ligand conformations and atomic charges were
further optimized by semi-empirical PM7 method as implemented by MOPAC [40]. Dock-
ing simulations were performed by PLANTS, which is based on ant colony optimization
(ACO). [40] Docking search was focused within an 8 Å radius sphere around the co-
crystallized N3 inhibitor and, for each compound, 10 poses were generated and ranked
by the ChemPLP scoring function with the speed equal to 1. PLANTS and MOPAC cal-
culations were carried out by exploiting Warpengine, an in house developed system for
distributed computing [41]. For the post-docking analyses, all generated poses having the
ChemPLP score > 0 were discarded, and this induced the loss of 75 inactive compounds
(as seen in Table 1).
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3.3. LiGen Simulations

The geometrical docking procedure implemented in LiGen™, proprietary software
developed by Dompé, was used for the reported docking simulations [42]. In detail, the
docking search was focused within a 5.0 Å radius sphere around the co-crystallized ligand.
The available void volume of the resulting pocket was defined by determining the free
points within a 3D grid, which encompass the entire binding site. The free points are used
by the docking procedures as well as to define the pharmacophore schemes. Specifically,
the docking engine follows a specific workflow during which three docking scores are
computed: first, the Pacman Score (PS) estimates a geometric fitting by evaluating the inter-
action between a ligand pose and the pocket, based on shape and volume complementarity.
Then, the Chemical Score (CS), which encodes for the ligand binding interaction energy,
is calculated by an in-house developed scoring function [43]. The last step involves a rigid
body minimization of the docked ligand within the binding site, at the end of which a third
score called the optimized chemical score (Csopt) is evaluated. All poses that do not fulfill
geometric fitting or thresholds values of user-defined specific parameters are discarded,
and this induced the loss of 744 compounds (among which were only six active molecules,
as seen in Table 1).

With regard to pharmacophore analysis, the program implements three different
probe atoms, based on the Tripos Force Field, to explore the binding pocket: (1) a posi-
tively charged sp3 nitrogen atom (ammonium cation), describing a hydrogen bond donor;
(2) a negatively charged sp2 oxygen atom (as in a carboxyl group), representing a hydrogen
bond acceptor; and (3) an sp3 carbon atom (methane), encoding for a hydrophobic group.
The representative atom types can be modified, even though this selection produced the
best outcomes in previous benchmarking analyses. For each free grid point, the binding
energies between the probes and the protein atoms are evaluated by using an in house ex-
tended scoring function based on the work of Wang [39]. Every grid point will be identified
as donor, acceptor, or hydrophobic according to which probe yields the best score.

The software then filters all the grid points to extract the key interaction sites in three
steps. Firstly, the program averages the scores of all the grid points for each probe and
selected those points having a score lower than the average. Based on these favorable grid
points, LiGenPocket finds the pharmacophoric features. They are identified by clustering
the neighbors’ grid points, which are here defined as grid points with the same definition
(donor, acceptor, or hydrophobic), falling at a distance less than 2.0 Å from a given point.
The score averages of all points belonging to the so identified clusters are computed for
each type of grid points, and those points, which show a score value lower than the average
of their cluster, are discarded.

Secondly, the clusters of neighbor grid points that survive to the previous filtering
process constitute the pharmacophoric features of the binding site. The geometric center of
each cluster is thus defined as a pharmacophoric point. Lastly and for each pharmacophore
element, the minimum distances between a ligand’s atom and the closest compatible
pharmacophoric point are calculated for each ligand. Each atom of the ligand is defined by
a classification that parallels that of the used probes: four atom types are indeed considered
and defined by a letter code (A, D, AD, and H are Acceptor, Donor, Acceptor and Donor,
and Hydrophobic, respectively).

3.4. FRED Simulations

Ligand conformers were generated using OpenEye OMEGA [44]. Conformers with in-
ternal clashes and duplicates were discarded by the software, and the remaining ones were
clustered based on of the root mean square deviation (RMSD). For this virtual screening, a
maximum of 200 conformers per compound, clustered with an RMSD of 0.5 Å, was used.
If the number of conformers generated exceeds the specified maximum, only the ones with
the lowest energies are retained. For 1780 molecules, the generation of the rotamers was not
possible due to stereochemistry issues and/or for the presence of large macrocycles, and
they were removed from the library. The resulting library consisted of 11,755 molecules.
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The target protein was processed using UCSF Chimera (v1.14). AMBER ff14SB was used to
assign parameters to the standard residues, whereas the Antechamber module was used for
the nonstandard residues. The charges for the nonstandard residues were calculated using
the AM1-BCC method. The structure was minimized with 100 steps of gradient descent and
10 steps of conjugate descent, using the MMTK module. Rigid docking was then performed
using OpenEye FRED [45] included in the OEDocking 3.4.0.2 suite (OpenEye Scientific
Software, Santa Fe, NM. http://www.eyesopen.com). Each docked pose is scored using
the Gaussian Shape scoring function. Finally, top scoring poses are converted into density
fields to form the final shape potential field. The highest values in this field represent
points where molecules can have a high number of contacts, without clashing into the
protein structure. In its exhaustive search, FRED translates and rotates the structure of
each conformer within the negative image of the active site and scores each pose. FRED
first step has a default translational and rotational resolution of 1.0 and 1.5 Å, respectively.
The 100 best scoring poses are then optimized with translational and rotational single
steps of 0.5 and 0.75 Å, respectively, exploring all the 729 (six degrees of freedom with
three positions = 36) nearby poses. The best scoring pose is retained and assigned to the
compound. The binding poses were evaluated by using the Chemgauss4 scoring function
implemented in OpenEye FRED [28]. For 24 molecules, the docking algorithm was unable
to find a suitable binding pose, and these molecules were thus discarded from the analysis.

3.5. Glide Simulations

To perform docking experiments with Glide, the protein was preprocessed by the
Protein Preparation Wizard from the Schrodinger Suite version 2019-4 with the default
parameters [28]. The protonation states of each side chain were generated using Epik for
pH = 7 ± 2 [36]. Protein minimization was performed using the OPLS3 force field [37]. All
water molecules were removed. Glide software [29] was used for the docking calculations.
Internal receptor grid boxes of 10 Å × 10 Å × 10 Å were defined and centered on the
ligand atom position. The size of the outer binding box was determined by the ligand size
(27 × 27 × 27 Å). A standard precision (SP) Glide docking was carried out, generating
20 poses per docked molecule. H-Bond constraints with D166, H163, and H164 were
applied. Docking results were analyzed by Glide Docking score in the version 5.0 [46].
Here, Glide score was used to extract the best binding pose for each ligand. This is an
empirical scoring function able to reproduce the trends of the binding affinity and is defined
by the following equation:

GScore = a.vdW + b.Coul + Lipo + Hbond + Metal + Rewards + RotB + Site

where: vdW = van der Waals interaction energy; Coul = Coulomb interaction energy;
Lipo = Lipophilic-contact plus phobic-attractive term; HBond = Hydrogen-bonding term;
Metal = Metal-binding term (usually a reward); Rewards = Various reward or penalty terms;
RotB = Penalty for freezing rotatable bonds; Site = Polar interactions in the active site, and
the coefficients of vdW and Coul are: a = 0.050, b = 0.150 for Glide 5.0 (the contribution
from the Coulomb term is capped at −4 kcal/mol).

3.6. Rescoring Calculations

All the poses generated by the four docking programs were rescored by ReScore+ [47].
The computed scoring functions comprise (a) the various components of PLANTS [25]
and XScore [24] scoring functions; (b) a set of scores computed by the VEGA suite, which
encodes for polar and non-polar interaction energies [27]; (c) the MLP interactions scores
for hydrophobic contacts [26]; (d) the recently proposed Contacts scores [18], which are
simply based on several surrounding residues, and (e) the APBS score for evaluating ionic
interactions [48]. Both the primary scores and the values from rescoring calculations were
utilized to calculate binding and isomeric spaces as well as their combinations by applying
a joining and a merging strategy (see below). For each considered scoring function, each
explored space is defined by the following values: (1) the best scores including both the
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lowest and the highest values (notice that the best value is not the lowest one for all scores);
(2) the average score value; and (3) the score range and the standard deviation to encode
for the spread of score values. For each ligand, all the generated poses were utilized to
calculate the corresponding space parameters without exceptions.

In detail, the binding space was computed by averaging the computed scores for the
poses of a given molecule/isomer. For molecules existing in multiple states, the space
parameters corresponding to the isomer with the best primary score were considered.
Similarly, the isomeric space was calculated by averaging the computed scores of the
pose with the best primary score for all the isomers (clearly only for molecules existing in
multiple states). In the so-called merged combination, the space parameters were calculated
by averaging together the computed scores of all poses and all isomers. In the so-called
joint combination, the consensus equations were developed by simultaneously considering
the space parameters as computed for both binding and isomeric spaces. The descriptors
for the binding and isomeric spaces were computed by using ad-hoc scripts of the VEGA
suite of programs [27].

3.7. Consensus Analyses

The consensus analyses involved the primary scores and the scoring functions as com-
puted by rescoring procedures. Notably, the analysis of the LiGen results also comprised
the pharmacophoric distances as computed by this tool. The consensus analyses were
performed by the EFO approach, which generates linear combinations of score values by
exhaustively combining all possible variables and by optimizing a quality function based
on both the early recognition (as encoded by the corresponding EF 1% values) and the
entire ranking (as encoded by an asymmetry index applied to the distribution of the active
molecules) [33].

By considering the high number of here analyzed descriptors along with the already
included exhaustive search method, an incremental search algorithm was also implemented.
In particular, given n descriptors in the input dataset, the equations with k variables are built
by considering only the top ranked m equations with k − 1 variables (m is a user-defined
parameter and is set by default equal to 30) and by combining them with the n descriptors
avoiding repetitions. Therefore, the models to be evaluated are m (n − k + 1) instead of the
number of all possible combinations without repetitions, which are equal to n!/k! (n − k)!.
A benchmark analysis by comparing the consensus models as generated by incremental and
by exhaustive searches revealed that the former involves a performance decrease of about
10 % as assessed by the relative EF1% values when generating the three variable equations
for the simplest case without space parameters (data not shown). Such a performance
loss is seen as acceptable by considering that the incremental search algorithm allows
the analysis of very extended datasets of descriptors and the development of consensus
models including more than three variables. Furthermore, the reduced performances of
the incremental algorithm equally affected all the here performed comparative analyses.
This new search approach was implemented into a standalone and highly optimized
version of EFO, which does not require the full installation of the VEGA program and can
be freely downloaded at www.vegazz.net. In detail, 20 consensus models were generated
for each analysis by combining all input variables without preliminary filtering processes
and by always using the incremental search approach. The consensus equations were
developed by including from one to five variables. The predictive power of the resulting
equations was assessed by subdividing the dataset into training (70%) and test sets (30%)
and repeating this task 10 times to minimize the randomness.

4. Conclusions

The study describes and compares a set of VS campaigns performed by using four
different docking tools to repurpose an extended set of safe in man molecules as potential
inhibitors of the SARS-CoV2 3CL-Pro enzyme. To assess the predictive performances of the
here proposed docking strategies and due to the lack of known inhibitors for the considered
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enzyme, the peculiar idea of the study is the exploitation of a training set composed of ∼=500
compounds that were reported as effective inhibitors (i.e., pIC50 > 5) of the SARS-CoV
3CL-Pro enzyme, a choice justified by the very high conservation degree between these
two viral proteases.

All docking simulations were carried out by generating more than one pose per
ligand and explicitly considering all possible isomers/states for those molecules existing
in multiple states. In this way and after a rescoring analysis of all computed poses, the
obtained results were utilized to calculate the descriptors of the resulting binding and
isomeric space. The so-calculated score values for each utilized docking program were
finally employed to develop consensus models by linearly combining them using the
EFO approach.

Taken together, the obtained results allow for some concluding considerations, which
can be summarized as follows:

(a) Apart from Fred, the performances of all other docking programs benefit from the
inclusion of the binding space parameters as witnessed by an overall EF1% increase
average equal to 18% with pIC50 > 6.

(b) The inclusion of the isomeric space parameters reveals, on average, a poorer beneficial
effect and plays a clear role only with pIC50 > 5, a finding explainable considering
the low number of actives existing in multiple states with pIC50 > 6.

(c) The merging combination of the two explored spaces is substantially ineffective, while
the joint combination provides relevant enhancing effects, especially when analyzing
the PLANTS and Glide results.

(d) The beneficial effects of the inclusion of space parameters markedly vary among the
utilized docking engines; specifically, PLANTS and Glide appear to benefit from both
spaces, the LiGen performances are positively affected only by the binding space,
while Fred appears to be substantially insensitive to both spaces.

(e) Even though the primary scores play a relevant role in almost all generated predictive
models, the rescoring procedures reveal a remarkably beneficial impact by increas-
ing the performances of all used programs regardless of their sensitivity to space
parameters.

(f) The enhancing effect of linearly combining diverse score values in the consensus
models also varies among the docking programs with PLANTS and Fred showing
the largest and the poorest overall effect, respectively.

(g) Although the primary objective of the study was to assess the role played by various
post-docking procedures and the retrieved hits were not experimentally tested, it
should be noted that the best ranked compounds include an encouraging number
of heterogeneous molecules, the SARS-CoV-2 3CL-Pro inhibition activity of which
was recently reported (see Table S8). This represents an indirect confirmation of the
reliability of the reported simulations.

Since the SARS-CoV2 3CL-Pro is functionally active as a homodimer and many X-
ray structures were recently resolved, the encouraging results here reported invite to
repeat similar docking protocols by simultaneously considering both the monomers of
different representative resolved structures to evaluate the enhancing effects exerted by
binding and isomeric spaces for the resulting ensemble simulations. Not to mention that
the same strategies could be also applied to explore representative frames coming from
MD simulations.

Even though the employment of the known SARS-CoV 3CL-Pro inhibitors was justi-
fied by the very high conservation degree between these two enzymes, there is no doubt
that the developed predictive models could be enhanced by utilizing true SARS-CoV 3CL-
Pro inhibitors. One may figure out that the here described simulations could be exploited in
a near future to develop increasingly performing predictive models as novel true inhibitors
are identified.

To conclude, the here reported VS campaigns emphasize the generally beneficial
effects of the applied post-docking procedures, even though their specific roles significantly
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vary among the utilized pieces of software. These observed differences can be ascribed to
the different implemented algorithms for docking search and scoring calculations, but they
can also be due to the intrinsic geometrical and physicochemical features of the SARS-CoV-
2 3CL-Pro binding pocket. This last consideration emphasizes that a robust assessment
of the role of binding and isomeric spaces could require extensive benchmarking studies
involving wide sets of diverse target proteins.

Supplementary Materials: The following are available online: Figure S1 Best EF1% values as ob-
tained by the four tested docking programs using the common databases with pIC50 > 5 (S1A) and
pIC50 > 6 (S1B); Figure S2 Trends of the frequency of the molecules shared at the same time by
two, three or four rankings (S2A) or by specific pairs of ranking (S2B) when browsing the first half
of the ranking positions (from 1 to 5000); Figure S3 Venn diagram showing the frequencies of the
scaffolds detected within the Top500 molecules of the four computed rankings; Figure S4 Distribution
of some selected physicochemical properties for the simulated molecules; Table S1 Occurrence of
the various score values as observed in all the consensus models generated by using the PLANTS
docking results; Table S2 Occurrence of the various score values as observed in all the consensus
models generated by using the LiGen docking results; Table S3 Occurrence of the various score
values as observed in all the consensus models generated by using the Fred docking results; Table S4
Occurrence of the various score values as observed in all the consensus models generated by using
the Glide docking results; Table S5 Enrichment factors as obtained by analyzing the common dataset;
Table S6 Occurrence of the various score values as observed in all the consensus models generated
by all docking program; Table S7 Rankings as derived by using the best consensus models for the
four utilized docking programs; Table S8 Common molecules as found within the top 500 positions
of at least three rankings. All the generated consensus models for all performed analyses with the
corresponding score values are available at http://www.exscalate4cov.network.
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Abbreviations

3CL-Pro 3-chymostrypsin like Protease
ACO ant colony optimization
AM1-BCC Austin Model 1 (AM1) with bond charge correction (BCC)
APBS Adaptive Poisson-Boltzmann Solver
CHARMM Chemistry at Harvard Macromolecular Mechanics
CoV Coronavirus, subfamily Coronavirinae and family Coronaviridae
Covid Coronavirus Disease
CS Chemical Score
CSopt Optimized Chemical Score
CVFF consistent-valence force field
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EF Enrichment Factors
EFO Enrichment Factor Optimization
IC50 half maximal inhibitory concentration
MD molecular dynamics
MERS Middle-Est Respiratory Syndrome
MLP Molecular Lipophilic Potential
MM-PBSA molecular mechanics-Poisson–Boltzmann surface area
OPLS Optimized Potentials for Liquid Simulations
PH Pharmacophoric
PLIF protein ligand interaction fingerprints
PLP Piecewise Linear Potential
PM7 Parametric method 7
PS Pacman Score
SARS Severe Acute Respiratory Syndrome
SP standard precision
VS virtual screening

References
1. Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from

Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [CrossRef]
2. Wang, C.; Horby, P.W.; Hayden, F.G.; Gao, G.F. A novel coronavirus outbreak of global health concern. Lancet 2020, 395, 470–473.

[CrossRef]
3. Li, J.; Huang, D.Q.; Zou, B.; Yang, H.; Hui, W.Z.; Rui, F.; Yee, N.T.S.; Liu, C.; Nerurkar, S.N.; Kai, J.C.Y.; et al. Epidemiology of

COVID-19: A systematic review and meta-analysis of clinical characteristics; risk factors; and outcomes. J. Med. Virol. 2020.
online ahead of print. [CrossRef]

4. Khailany, R.A.; Safdar, M.; Ozaslan, M. Genomic characterization of a novel SARS-CoV-2. Gene Rep. 2020, 19, 100682. [CrossRef]
[PubMed]

5. Michel, C.J.; Mayer, C.; Poch, O.; Thompson, J.D. Characterization of accessory genes in coronavirus genomes. Virol. J. 2020,
17, 131. [CrossRef] [PubMed]

6. Chellapandi, P.; Saranya, S. Genomics insights of SARS-CoV-2 (COVID-19) into target-based drug discovery. Med. Chem. Res.

2020, 29, 1777–1791. [CrossRef]
7. Ashour, H.M.; Elkhatib, W.F.; Rahman, M.M.; Elshabrawy, H.A. Insights into the Recent 2019 Novel Coronavirus (SARS-CoV-2)

in Light of Past Human Coronavirus Outbreaks. Pathogens 2020, 9, 186. [CrossRef] [PubMed]
8. Shyr, Z.A.; Gorshkov, K.; Chen, C.Z.; Zheng, W. Drug discovery strategies for SARS-CoV-2. J. Pharmacol. Exp. Ther. 2020, 375,

127–138. [CrossRef]
9. Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; et al. Structure of mpro from COVID-19

virus and discovery of its inhibitors. Nature 2020, 582, 289–293. [CrossRef]
10. Chuck, C.P.; Chow, H.F.; Wan, D.C.; Wong, K.B. Profiling of substrate specificities of 3C-like proteases from group 1, 2a, 2b, and 3

coronaviruses. PLoS ONE 2011, 6, e27228. [CrossRef]
11. Li, Q.; Kang, C. Progress in Developing Inhibitors of SARS-CoV-2 3C-Like Protease. Microorganisms 2020, 8, 1250. [CrossRef]
12. Gimeno, A.; Mestres-Truyol, J.; Ojeda-Montes, M.J.; Macip, G.; Saldivar-Espinoza, B.; Cereto-Massagué, A.; Pujadas, G.; Garcia-

Vallvé, S. Prediction of Novel Inhibitors of the Main Protease (M-pro) of SARS-CoV-2 through Consensus Docking and Drug
Reposition. Int. J. Mol. Sci. 2020, 21, 3793. [CrossRef] [PubMed]
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Abstract: The use of antiretroviral drugs is accompanied by the emergence of HIV-2 resistances. Thus,
it is important to elucidate the mechanisms of resistance to antiretroviral drugs. Here, we propose a
structural analysis of 31 drug-resistant mutants of HIV-2 protease (PR2) that is an important target
against HIV-2 infection. First, we modeled the structures of each mutant. We then located structural
shifts putatively induced by mutations. Finally, we compared wild-type and mutant inhibitor-binding
pockets and interfaces to explore the impacts of these induced structural deformations on these two
regions. Our results showed that one mutation could induce large structural rearrangements in
side-chain and backbone atoms of mutated residue, in its vicinity or further. Structural deformations
observed in side-chain atoms are frequent and of greater magnitude, that confirms that to fight drug
resistance, interactions with backbone atoms should be favored. We showed that these observed
structural deformations modify the conformation, volume, and hydrophobicity of the binding pocket
and the composition and size of the PR2 interface. These results suggest that resistance mutations
could alter ligand binding by modifying pocket properties and PR2 stability by impacting its interface.
Our results reinforce the understanding of the effects of mutations that occurred in PR2 and the
different mechanisms of PR2 resistance.

Keywords: drug-resistance mutations; HIV-2 protease; structural characterization; induced structural
deformations

1. Introduction

The human immunodeficiency virus (HIV) affects humans and causes the acquired
immunodeficiency syndrome (AIDS). The treatment against HIV-1 infection corresponds
to the same molecules that target four HIV proteins: the fusion protein, protease (PR),
integrase, and reverse transcriptase. The same molecules are used to fight HIV-2 infection
but HIV-2 is naturally resistant to most of these inhibitors [1–9]. Thus, it is important to
develop new molecules that inhibit the HIV-2 replication, particularly against the HIV-2
protease (PR2).

PR is a homodimer that plays a major role in the virus maturation process: it hy-
drolyzes the viral polyproteins Gag and Gag-Pol, causing the development of immature
virions. There are currently nine protease inhibitors (PIs) clinically recommended for
treating HIV-1 infection [10]. These drugs bind to the PR catalytic site in the interface of
the two monomers. This binding induces structural changes in the entire PR2, particularly
in the flap region allowing the closing of binding pocket [10–12]. PR2 is naturally resistant
to most of these PIs and only three of them are recommended for the treatment of HIV-2
infection: darunavir (DRV), saquinavir (SQV), and lopinavir (LPV) [1,10]. The natural
resistance of PR2 is explained by amino-acid changes between PR1 and PR2 that induce
structural changes in the entire structure [13]. Some of these structural changes, located in
the binding pocket, modify properties and conformation of the PI-binding pocket and the
internal interactions between PR2 and PIs [3,5,14–20]. Other structural changes, occurring
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in the elbow and flap regions, alter the transition between the open and closed forms
involved in ligand binding [13,21,22].

In addition to its natural resistance, many acquired resistance mutations appear in
PR2. The identification of these mutations have been performed using genome sequencing
studies of HIV-2 virus extracted from infected patients [2,4–6,8,23–28]. For example, it has
been shown that the V47A, I50V, I54M, I82F, I84V, and L90M mutations lead to several PIs
resistance [2,4,5,7,8]. Phenotypic susceptibility assays were used to confirm the resistance
of some mutants [2,4,5,8,26,29]. For example, genotypic and phenotypic analyses showed
that the I82F mutation causes resistance to indinavir (IDV) [26]. Furthermore, this mutation
has been identified as causing hypersusceptibility to both DRV and SQV using phenotypic
assays [2]. In addition, combinations of several mutations confer high resistance to several
PIs [2,4,5,7,8,30]. For example, the I54M and I82F mutations induce resistance to all PIs
and the V62A/L99F mutant is resistant to nelfinavir, IDV, and LPV [26]. Few studies have
focused on the structural analysis of the impacts of drug-resistance mutations reported
in PR2 because no tridimensional (3D) structure of PR2 mutant have been solved. These
structural studies could help to understand the atomistic mechanism of resistance muta-
tions. In our previous work, we performed the first structural analysis of the impact of
30 drug-resistant mutants of PR2 based on modeled structures. More precisely, we explored
the consequences of drug-resistance mutations on PR2 structural asymmetry, an important
property for ligand-binding and the target deformation [31]. Our findings suggested three
possible resistance mechanisms of PR2: (i) mutations that induce structural changes in
the binding pocket that could directly alter PI-binding, (ii) mutations that could impact
the properties and conformation of the binding pocket by inducing structural changes in
residues outside of the binding pocket but involved in interaction with pocket residues,
and (iii) mutations that could modify the PR2 interface and its stability through structural
changes in interface residues. These results have been based on PR2 backbone analysis.
However, a better characterization of the structural impacts of drug-resistance mutations on
PR2 structure including side-chain atoms could help in a better understanding of different
proposed mechanisms.

In this study, we structurally analyzed a set of 31 drug-resistant mutants of PR2
that was updated relative to [31]. The 3D structure of each mutant was modeled and its
structure was compared to the wild-type PR2 to locate structural rearrangements induced
by drug-resistance mutations at backbone and side-chain atoms. The study reported that
drug-resistance mutations could impact the flexbility of PR2 and the closing binding pocket,
conformation and properties of PI-pocket and the composition and size of the PR2 interface.

2. Results

We studied the impact of 22 drug-resistance mutations on PR2 structure. These
mutations appeared alone or in combination with others (two or three mutations

per mutant) resulting in a set of 31 mutants, Figure 1A. First, mutant structures
were modeled using FoldX software [32] and an energetic minimization step using the
crystallographic structure of the wild-type PR2 (PDB code: 3EBZ [33]). Five 3D structures
were built for each mutant to consider the different possible rotamers per amino acids
as illustrated by Figure A1. This mutagenesis process resulted in a set of 155 mutant
structures. The crystallographic structure of the wild-type PR2 (PDB code: 3EBZ [33]) was
also energetically minimized with the protocol used for mutant structures. In the following,
the minimized wild-type structure was referred as the wild-type structure and its structure
was compared to the minimized mutant structures.
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Figure 1. Description of the 31 drug-resistant mutants studied in this analysis. (A) Table listing the
31 drug-resistant mutants studied in this analysis. Single mutants are colored in magenta, double
mutants in green and triple mutants in blue. (B) Location on PR2 structure of the 22 drug-resistance
mutations included in the 31 mutant set. PR2 is represented in cartoon mode and colored according to
the 13 regions defined in [34,35]. Mutations are represented in stick mode. (C) Amino acid sequence
of PR2 presenting the limit of the 13 PR2 regions. All the mutated residues are colored in red in
the sequence.

2.1. Identification of Atom Shifts in the Mutant-Structure Set

We first explored the structural deformations induced by mutations by locating shifted
atoms in mutant structures relative to the wild-type structure. The shift of an atom was
quantified by distWT−mutant, i.e., the distance between its positions in the wild-type and
mutant structures. Figure A2 presents the distribution of distWT−mutant of all atoms in
the mutant structures set, except hydrogen atoms. These distances varied from 0.05 to
0.05, with 95% of atoms exhibited a distWT−mutant smaller than 0.14 Å. These distances
were summarized per structures by computing the RMSD between the wild-type and
mutant structures (Figure A2). As expected, mutant structures exhibited close conforma-
tion than the wild-type, resulting in an average RMSD of 0.12 ± 0.09 Å. Only one mutant
structure (one structure of the K7R mutant) exhibited a RMSD higher than 0.5 Å. Like in
Liu et al., 2008 [36], we considered that a shift was significant if it had a magnitude higher
than 0.3 Å because of uncertainties in the X-ray and mutant structures. Thus, to iden-
tify atom shifts induced by mutations, we retained the 2136 atoms with a distWT−mutant

higher than 0.3 Å in at least three structures of a given mutant. These selected atoms were
denoted as “mutant-conserved shifted atoms” (MCS atoms) and the distribution of their
distWT−mutant is provided by Figure 2A. Most MCS atoms (70%) exhibited a shift of moder-
ate magnitude (<1 Å). However, 17% of MCS atoms are of large magnitude (>2 Å), such as
atom shifts detected in residue K69_A (Lysine 69 in chain A) in the L99F mutant that is illus-
trated in Figure 2B. Figure 2C presents another type of atom shift that corresponds to a flip
of a ring of residue 3_B (residue 3 in chain B) in the five structures of the V62A/L99F mutant.
This rearrangement type does not induce structural deformation and thus it does not seem
to be linked to PI resistance.
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Figure 2. (A) Distribution of distWT−mutant distances for MCS atoms extracted from the set
of 155 mutant structures. Magenta lines corresponds to the cutoffs used to define a weak
shift (0.3 Å < distWT−mutant < 1 Å), moderate shifts (1 Å ≤ distWT−mutant < 2 Å), and large shifts
(distWT−mutant > 2 Å). (B,C) Illustration of atom shifts in the L99F (A) and V62A/L99F (B) mutants.
(B) Superimposition of the five structures of the L99F mutant and the wild-type structure. Wild-type
structure is colored in orange and represented in line and cartoon modes. The five structure of the
mutant are represented in line mode and colored in magenta, cyan, blue, green, and pink. The L99F
mutated residue is represented in stick mode. (C) Illustration of structural shift occuring at residue
3_B in the V62A/L99F mutant. The wild-type structure is represented in cartoon and line modes and
colored according to its two chains: chain A is colored in purple and chain B is colored in marien
blue. The mutant V62A/L99F structure is represented in lines and colored in green. The mutated
residue 99_A and shifted residue 3_A are represented in stick mode. The arrow represents the
distWT−mutant of the CE atom of residue 3_B computed between the wild-type and the first structure
of mutant V62A/L99F. CE2V62A/L99F and CE2WT correspond to atom CE of residue 3 of chain B in
the V62A/L99F and wild-type structures and are represented in sphere mode.

As expected, side-chain atoms were overrepresented in the MCS atom set (Pear-
son’s Chi-squared Test p-value = 3 × 10−28) and they had larger distWT−mutant value than
backbone atoms (Student’s t-test p-value of 6 × 10−95). This means that drug-resistance
mutations have more impacts on side-chain atoms than on backbone atoms. From the
2136 MCS atoms, 543 (=25%) are atoms of mutated residues. The shift of these atoms,
named direct shifts, was a direct consequence of mutations. In contrast, 1593 (=75%)
MCS atoms corresponded to indirect shifts, i.e., they occurred in non mutated residues,
and their shifts resulted either from the intrinsic flexibility of atoms or from indirect impacts
induced by the mutation through contacts between these atoms and mutated residues.
Direct shifts had larger magnitude than indirect shifts, i.e., they exhibited an average
higher distWT−mutant distances than indirect shifts (Student’s t-test p-value = 3 × 10−13).
To distinguish structural shifts resulting from mutation from those induced by flexibility,
we detected MCS atoms in non minimized structures, i.e., mutant structures corresponded
to the output of FoldX software. From this set of non-minimized structures, we located 883
MCS atoms, with 646 that were also detected as MCS atoms in the minimized structures set.
This means that the shift of these MCS atoms observed in minimized structures (30% of
MCS atoms) were the consequence of the mutation. As expected, these shifts, observed in
minimized structures, occurred only on side-chain atoms and in or close to the mutated
residue because FoldX software optimizes the configuration of only side chains in the vicin-
ity of the mutated residue. The remained detected shifts were explained by the mutation
and intrinsic flexibility of atoms.

Figure 3A shows that the entire PR2 structure was sampled by MCS atoms. A total
of eight regions had few MCS atoms, i.e., less than 50 MCS atoms were detected in the

284



Molecules 2021, 26, 611

155 mutant structures (Figure 3). In contrast, some regions exhibited many MCS atoms,
such as the cantilever and flap regions of the two chains and the α-helix region of chain
B, with more than 150 MCS atoms. In addition, an assymetry between the two chains in
terms of number of MCS atoms was observed. Indeed, chain B contained more MCS atoms
than chain A (p-value of the Pearson’s Chi-square test is of 5 × 10−24). For example, the
Nter, fulcrum, elbow, and R3 regions of chain A present few structural shifts, while they
exhibited lots of deformations in chain B. Thus, even though mutations occurred in the two
chains, they did not impact in the same way the two monomers.
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Figure 3. (A) Number of MCS atoms per mutant counted in the two PR2 chains. Each PR2 chain was divided in 13 regions
according to [13]. Numbers in brackets indicate the size of each region in terms of amino acids. (B) Number of MCS atoms
(grey) and MCS atoms with large magnitude (distWT−mutant ≥ 2, cyan) per mutants. Mutants were sorted according to their
number of MCS atoms.
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Figure 3B presents the number of MCS atoms per mutants. On average, a mutant
contained a moderate number of MCS atoms (16.26 ± 26.09). The I82M mutant was
particular because it had no MCS atoms, revealing that the I82M mutation induced few
structural changes in PR2 structure. In contrast, the K7R mutant was the mutant with
the most MCS atoms (147 MCS located in 53 different residues as illustrated in Figure 4.
A total of 14 mutants had less than 10 MCS atoms, indicating that these mutations induced
few impacts on PR2 structure (Figure 1A). Except the I54L/L90M, all these mutants were
single mutants. Although these mutants exhibited few deformations, 57% of them had
shifts with a large magnitude (distWT−mutant ≥ 2). For example, the D30N mutant induced
5 MCS atoms with one exhibiting large shift of 2.9 Å, while the L90M mutant caused
four small shifts at residues 90_A/B and 97_B with a magnitude varying from 0.35 to
0.48 Å (Figures 3B and A3). In contrast, 17 mutants had many MCS atoms and all of these
shifts had of large magnitude (Figure 3B). From these mutants, seven were single mutants,
revealing that only one mutation could cause large deformations, such as those observed
for the K7R and L99F mutants (Figures 4 and A3).

few many

in only mutated residues

➜ direct shifts

in only non mutated residues

➜ indirect shifts

E37D K7R

I50V I82F L99F

Mutants with MCS atoms

Mutants exhibiting structural rearrangements

in mutated and non mutated residues

➜ direct + indirect shifts

Figure 4. Location of the MCS atoms found in some mutants. PR2 is colored in cyan and represented in putty mode. The
putty radius is relative to deformations induced by mutations: the higher the radius, the stronger the mutation-induced
rearrangement. Mutated residues are colored in blue.

According to the location of MCS atoms, we differentiated three types of mutations
(Figure 4). The first mutations corresponded to four mutations that induced structural
rearrangements only in the mutated residues, i.e., having only direct impacts. For exam-
ple, the I50V mutation caused structural changes in two atoms of residue 50 of the two
chains, a residue involved in the binding pocket, the dimer interface and the flap region
(Figure 4). The second type of mutations grouped five mutations impacting residues in
their vicinity or further in structure, i.e., inducing indirect structural changes, such as
the I82F mutations (Figure 1). Indeed, the I82F mutation induced many atoms rearrange-
ments in five non mutated residues (8_A, 8_B, 21_B, 27_B, 49_B) with some of them of
large magnitude. In this mutant structure, residue 8_A is located in the vicinity of mu-
tated residue 82_A (located at less than 5.5 Å), while residues 27_B and 49_B that are
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located at more than 6 Å of the mutated residue 82_A (Figure A8). The last type of mu-
tations corresponded to mutations that induced both direct and indirect rearrangements
(Figures 1 and 4). This mutation type grouped most of mutations. Figure 4 showed that
the L99F mutation produced large shitfs in the mutated residues and also in its neighbor
residues 68 and 69.

The location of MCS atoms (Figure A3) in mutant structures highlighted structural
rearrangments located in important regions for PR2: in the elbow and flap regions that are
implied in the PR2 deformations induced by ligand binding, in its pocket binding and in
its interface. In the following, we explored the impacts of the studied resistance mutation
in the PI-binding pocket and PR2 interface.

2.2. Impact of Mutations on the Properties of PI-Binding Pocket

From the 31 mutants, 15 had at least one mutation in the binding pocket
(Figures 1A and A4). Except the I82M mutant, all these mutants presented MCS atoms in
the pocket in the mutated or non mutated residue. Surprisingly, structural rearrangements
in the binding pocket were also observed in five mutants without pocket mutations (K7R,
I54L, V62A, I54L/L90M, I54M/L90M, Figure 1). A total of 36% of pocket atoms were
deformed in at least one mutant, with an overrepresentation of side-chain atoms (Pearson’s
Chi-squared Test p-value = 1 × 10−3), see Figure A4.

To explore impacts of these mutations on the conformation and properties of the
PI-binding pocket, PI-binding pockets were extracted from the 156 structures (1 wild-type
and the 155 mutant structures). These 156 pockets were then classified according to their
structural similarity quantified by pairwise RMSD (Figures A5 and 5). In addition, their
volume, sphericity, and hydrophobicity values were compared to those of the wild-type
pocket (Figure 6). First, the five structures of a given mutant were not always bundled
in the classification or presented some variability in terms of descriptor values. This
highlighted a structural diversity of the five structures of mutants. This is explained by the
minimization effects and the fact that several rotamers were possible for some amino acids
during the mutagenesis process as illustrated by Figure A1 for the K45R mutation. Except
structures of the I82M, I54M, L90M, I54M/L99F, and I54M/V71A/L90M mutants, most
structures of mutants without MCS in pocket were close to the wild-type pocket in the
hierarchical classification and presented similar descriptor values than the wild-type pocket
(Figures 5 and 6). Pocket of mutants with the K7R, I54M, I54L, I82F, and I84V mutations
were the farthest to the wild-type pocket in the classification, meaning these mutations
had the most impact on the pocket structure (Figure 5). Figure 6 showed that the K7R
and I82F mutations also strongly modified pocket properties, like the K45R, V47A, G48V,
I82M/F, and L90M mutations. More precisely, the V47A, I82F, and I82M mutations strongly
decreased the pocket hydrophobicity. The I50V, I50L, V62A, and I84V mutations also
caused a reduction of pocket hydrophobicity but with a weaker magnitude. The I50L and
I82F mutations were also responsible of an increase of the pocket volume, in contrast to
the I82M and I84V mutations that caused a reduction of the pocket volume. The G48V
and I54M mutations increased the hydrophobicity of the pocket that was accompanied
with a modification of the pocket size: the G48V mutation led to a reduction of the pocket
volume in contrast to the I54M. An increase of pocket volume was also observed in the
K7R, I54L, and L90M mutants with different magnitudes and a decrease of the pocket
volume in the D30N and V47A mutants. The volume modification of the pocket of the K7R
and D30N mutants was accompanied with an increase of the sphericity of the pocket. The
K45R mutant was distinct because its five structure presented large diversity in terms of
descriptor values Figure 6. Two of these pockets were bigger and less hydrophobic than
the wild-type pocket while the three others were smaller, more hydrophobic and more
spheric than the wild-type pocket.
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Figure 5. Hierarchical classification of wild-type and mutant pockets according to their conforma-
tional similarity quantified by pairwise RMSD computing using all pocket atoms. The table provides
the description of each mutant structure in terms of mutations. Mutant structures are ranked accord-
ing to their apparition in the classification. Single mutants are colored in magenta, double mutants in
green and triple mutants in blue. The orange column locate the wild-type pocket. Mutations colored
in purple correspond to mutations located in the binding pocket and mutant colored in red contain a
MCS atom located in the binding pocket.

Hydrophobicity

Volume

Sphericity

mutants

mutants

mutants

Figure 6. Hydrophobicity, volume, and sphericity of pockets extracted from each mutant structure.
Red mutants correspond to mutants exhibiting at least one mutation in the binding. Each point
corresponds to a mutant structure. For some mutants, less than five points appear meaning that
several mutant structures exhibit same values for a given descriptor.

Figure A4 presents the MCS atoms occurring in the binding pocket in each mutant.
We noted that some mutations induce structural rearrangements in residues important
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for the PI binding. For example, the K7R, I50L/V and I54L mutations caused struc-
tural deformations in residues 25, 27, 30 that establish hydrogen bonds with PIs [18,33].
The D30N, K7R, I82F, I84V mutations led to atomic displacements in residues involved in
van der Waals interactions with PI, such as in residues 23B, 27A, 28A, 30A, 49B, 48B, 82A
and 84A.

Thus, the K7R, K45R, V47A, G48V, I50V/L, I54M, V62A, I82M/F, I84V, and L90M
mutations could impact ligand binding by modifying pocket properties or the network of
interactions with PIs.

2.3. Impact on Interface

From the 31 drug-resistant mutants, 13 had at least one mutation in the PR2 interface
(Figure 1A). Except the I50L and I54M mutants, all these mutants contained MCS atoms
in their interface. Five mutants without mutation in the interface presented structural
deformations in their interface. To analyze the impact of these mutations on the PR2
interface, interfaces of the wild-type and mutant structures were extracted and compared in
terms of amino acid composition and their size. To do so, a hierarchical classification of the
156 interfaces was computed according to their similarity in terms of interface composition
(Figure 7). In addition, the Solvent Accessible Surface Area (SASA) value, measuring the
interface size, of the two parts of the interface was computed for each mutant structure using
NACCESS software [37] (Figure 8). Figure 7 showed that most structures without MCS
atoms in interface were close to the wild-type interface in the classification, revealing that
these mutations led weak changes in the PR2 interface. This was confirmed by the fact
that these interfaces had similar size than the wild-type interface (Figure 8). Three mutants
(I50L, I54M and I84V/L90M) without MCS atom in interface exhibited different interface
composition relative to the wild-type. These differences in terms of interface composition
led to an increase of the size of chain A interface in the I50L and I84V/L90M mutants.
The G48V mutation was responsible of the presence in the interface of the two side-chain
atoms of residue 48_A and the absence in the interface of one atom of residue 95_B and
99_B relative to the wild-type interface (Figure A6), resulting that the chain A interface
of the mutant was larger and this of chain B was smaller than the wild-type interface
(Figure 7). These differences in terms of interface observed in the I50L, I54M, and G48V
mutants were explained by supplementary atoms in their interface induced by the mutation
(Figure A6).
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Figure 7. Classifications of the 156 structures according to their similitude of their interface. The table provides the
description of each mutant structure in terms of mutations. Mutant structures are ranked according to their apparition in
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Figure 8. SASA values for interface of chain A (a) and chain B (b) for each mutant. Red mutants
correspond to mutants having at least one mutation in PR2 interface.

From mutants having MCS atoms in the interface, the I50V, V62A, and I82F mutants
corresponded to mutants inducing the less modifications in the PR2 interface (Figures 7 and 8).
This was expected for the V62A mutant because only one MCS atom was observed in its
interface. It was more surprising for the I50V and I82F mutants because large deformations
were detected in interface-residues 50 and 8 of chains A and B, respectively. In contrast,
the K7R, I54L, L90M, and L99F mutations alone or in combination with others contained
many MCS atoms in the interface that strongly modified its composition and its size.
The K7R, L90M, and L99F mutations caused an increase of the size of the two parts of PR2
interface, and the mutation I54L induced a weak increase of the size of the interface of
chain B.

2.4. Impact of Combining Several Mutations Relative to Single Mutant

Figure 3 showed that most multiple mutants contained many MCS atoms with large
magnitude, i.e., with distWT−mutant distance higher than 2 Å. However, combining several
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mutations did not significantly increase the average number of MCS atoms per mutant
(Student’s t-test p-value = 0.59, Figure 3B). Comparison of MCS atoms in the single and
multiple mutants showed that several multiple mutants exhibited specific MCS atoms
relative to the corresponding single mutants. For example, we highlighted a displacement
in atoms of residue 50_B in the I54L and I54L/L90M mutants but the shift was larger
in the double (distWT−mutant for CD_50_B and CG1_50_B atoms >2.5 Å) than in single
mutants (distWT−mutant for CD_50_B and CG1_50_B atoms was of 0.69 and 0.62 Å in the
I54L mutant). Combining several mutations could induce apparition or loss of MCS atoms
relative to the corresponding mutants. For example, the combination of the I54M and
I82F mutations caused structural shifts in pocket residues 50_A, 81_A/B, and 82_A/B,
while no shift at these residues were observed in the I54M and I82F mutants (Figure A4).
In contrast, the I82F mutant contained a large shift at residue 8_B, a residue involved in
the PR2 interface and pocket, those were not found in the I54M/I82F mutants (Figure A4).
These structural changes in the double mutant relative to the I82F mutant induced a weak
decrease of the interface size and an increase of the pocket volume (Figure 6).

2.5. Impact of Using Different Structure Modeling Software

In this section, we explored the impact of using another structure-modeling software
in the detection of structural rearrangements induced by mutations. To do so, we mod-
eled the structure of the 31 mutants using the webserver Robetta, see Appendix G. These
mutant structures were denoted as mutantRobetta. For a better clarity of this section, the
mutant structures built using our initial protocol (based on FoldX software and an energetic
minimization step) were denoted as mutantFoldX+Mini. First, we compared mutant struc-
tures generated with the wild-type structure (crystallographic structure), Figure A7A,B.
We noted that the protocol based on FoldX software plus a minimization step led to a set of
structures exhibiting a larger diversity than Robetta webserver. Then, the two mutant sets
were compared by computing RMSD between mutantRobetta structures and the five struc-
tures of mutantFoldX+Mini, denoted as RMSDWT∗−mutantRobetta

. The two modeling protocols
led to different structures with an average RMSD of 0.46 ± 0.04 between mutantRobetta and
mutantFoldX+Mini structures (Figure A7C). We then compared the number of MCS atoms
oberved in each structure of the two mutant sets, see Appendix G.3. Figure 9 presents the
number of MCS atoms detected in each mutant. We noted that mutantRobetta structures
exhibited substantially more MCS atoms than mutantFoldX−mini structures. This was ex-
plained by two reasons. First, the determination of the MCS atoms in mutantFoldX−mini

structures was based on the comparison of the mutant structures and the minimized wild-
type structures, while MCS atoms in mutantRobetta structures were detected by comparing
mutant structures with the non minimized wild-type structure. The second reason was
that an atom was detected as a MCS atom in the mutantFoldX−mini if it had a distWT−mutant

larger than 0.3 Å in at least three structures of the mutant. Figure 9 presents the number
of atoms detected as MCS in both mutant sets. From the 504 MCS atoms per mutants
detected in the mutantFoldX+mini set, 78 % were detected as MCS atoms in the mutantRobetta

set. Although, the protocol based on FoldX software minimized the detection of structural
rearrangements, the extracted structural deformations using this protocol was mainly
found by a protocol based on another modeling software.
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Figure 9. Number of MCS atoms in the mutantRobetta set, in the mutantFoldX+mini set, and observed
both in the two mutant sets.

3. Discussion

In this paper, we proposed a quantification and location of structural deformations
at backbone and side-chain atoms of PR2 occurred in an update set of 31 drug-resistant
mutants based on their modeled structures. We detected a set of atoms presenting a shift
in at least one mutant structure relative to the wild-type structure. To identify structural
rearrangements resulted from the mutation, we then retained only MCS atoms, i.e., atoms
with a distance between its position in the mutant and wild-type structure higher than
0.3 Å in at least three of structures of a given mutant. The distance cutoff was set up to
0.3 Å to select only significant shifts and considering uncertainties in the X-ray structure,
like in Liu et al. [36]. This step allowed us to detect on average 16.26 ± 26.09 MCS atoms per
mutants. However, these two cutoffs could led to an under-estimation of detected structural
shifts. This could explain the fact that no MCS atom was detected in the I82M mutant,
while the binding pocket extracted from this mutant was smaller and less hydrophobic than
the wild-type pocket. Indeed, using a distance cutoff of 0.1 Å, we counted 96 ± 107 MCS
atoms per mutants and 17 MCS atoms in the I82M mutant.

The analysis of MCS atoms showed that they occurred in side-chain and backbone atoms
in the mutated residues, in its vicinity or further in the structure. We noted that structural
rearrangements in side-chain was more frequent and with larger magnitude than those
observed in backbone atoms. Thus, drug-resistance mutations induced more deformations in
side-chains than in backbone atoms. These results suggest that to combat against HIV drug
resistance, it would be interesting to develop inhibitors that establish hydrogen interactions
with backbone atoms. Favor backbone interactions between PI and PR is a strategy used for
the design of DRV to avoid the detrimental effects of resistance mutations [38,39].

Our results showed that the studied drug-resistance mutations impacted all PR2
regions. However, even though mutations occurred in the two PR2 chains, we noted
an assymetry in the impact of mutations in the two chains. This assymetric behavior of
mutations is linked to the fact that PR2 is a structural asymmetric protein, i.e., its two
chains exhibit different conformations in unbound and bound forms [11,12,35,40–43]. This
structural asymmetry of PR2 could result from crystal packing, ligand binding, and intrinsic
flexibility of PR2 [11], and may be involved in the structural changes of PR2, particularly
upon ligand recognition and binding [11,12,41,42]. Our results are in agreement with
previous findings that have showed that drug-resistance mutations could modify PR2
structural asymmetry [31]. Thus, as PR2 is an asymmetric protein, resistance mutations do
not always have the same impact on the two chains.
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The location onto PR2 structure of MCS atoms highlighted structural deformations
that could be linked to resistance mechanisms. First, we observed, in 19 mutant structures,
structural deformations in binding pocket residues as reported in Laville et al., 2020 [31].
Most of these mutations were located in the binding pocket, except the K7R, I54M and
L90M mutations. Our findings revealed that the S43T, V47A, K45R, G48V, I82F, and I82M
strongly modified pocket hydrophobicity. The two first decreased the hydrophobicity,
while the four last increased it. The I50V, I50L, V62A, and I84V mutations induced also
a modification of the pocket hydrophobicity but with a very weak magnitude. The K7R,
I50L, I54M, I54L, I82F, and L90M mutations increased the pocket volume, while the D30N,
V47A, G48V, I82M, and I84V mutations had the opposite effect. By comparing PR1 and
PR2 binding pocket, we have previously observed that amino-acid changes occurring
in pocket residues 31, 32, 46, 47, 76, and 82 increased the hydrophobicity of the binding
pocket [19]. Chen et al. (2014) reported that these mutations have also an impact on the
volume of the binding pocket [22]. In addition, the K7R, D30N, I50L/V, I54L, I82F, and
I84V mutations seemed to have direct impact on the PI binding by causing structural
rearrangements in pocket residues that establish hydrogen and van der Waals interactions
with PIs. Secondly, our finding reported that mutations K7R, E37D, S43T, K45R, V47A,
G48V, I50V, I50L, I54M, I54L, and V62A, occurring alone or in combination with others,
induced directly or indirectly structural changes in the elbow and flap regions. These
two regions are known to be important in the opening and closing mechanisms of the
binding pocket during ligand binding [10]. Thus, these mutations could impact PI binding
by modifying the flexibility and movement of the flap region upon PI binding. Thirdly,
we reported that the K7R, I50L, I54L, G48V, L90M, and L99F mutations caused structural
displacements that impacted the composition and size of the PR2 interface. This suggested
that these mutations may alter the stability of PR2.

Several drug-resistant mutations were structurally studied in PR1 by comparing crys-
tallographic structures of the wild-type and mutants in bound and unbound forms. These
studies showed that drug-resistance mutations alter the conformation of flap residues
and flap dynamics, modifying binding pocket properties and the interaction network
with PI, and the PR2 stability. For example, it has been shown that some resistance mu-
tations, such as the M46L, G48V, I50V, and I54V/M mutations, alter the conformation
of flap residues and flap dynamics in PR1 [36,44–48]. The impact of resistance muta-
tions on flap conformation had also observed in several multi-drug resistant mutants
such as the PR20 (including 20 mutations), Flap+ (with L10I, G48V, I54V, and V82A
mutations), and MDR-769 (with nine mutations) mutants having more opened flap re-
gion relative to the wild-type PR1 [49–52]. In addition, Shen et al., (2015) suggested
that the E35D, M36I, and S37D mutations in the multi-drug resistant PRS17 mutant in-
duce an increase of the flexibility of the flap region [53]. The impact of the amino-acid
changes at residues 30, 50, 82, 84, and 90 on the pocket volume have been also observed in
PR1 [48,49,52,54–57]. For example, the V82A and I84V mutations lead to an expansion
of the active-site cavity [52,54], while the V82F and L90M mutations cause a volume re-
duction in the binding cavity [48,49,54,57]. The direct impact of mutations occurred in
residues 30, 50, 82, and 84 on the network of PR-PI interactions were previously observed in
PR1 [51,57–62]. The impact of the L90M mutation on the PR2 stability was previously
observed in PR1 using urea denaturation experiment [63,64] or using sedimentation equi-
librium analysis [65]. However, we noted several disagreements between findings obtained
in PR1 and PR2. For example, Liu et al., (2008) observed structural deformations around
the tip of the flap and 80 s loop (residues 78–82) in PR1 mutants G48V, I50V, I54V/M
complexed with SVQ and DRV [36]. Our analysis of PR2 mutants detected displacements
of atoms located around the flap tip in the I50V, I54M, and G48V mutants and in residue 53
in the G48V mutant. However, structural deformations in the 80 s loop is only found in the
I54M mutant with a weak shift in backbone atom 79_B_0 (distWT−mutant of 0.44 Å). An im-
portant structural rearrangement of the main-chain of residue 25 in the PR1 mutant L90M
linking to the L90M resistance was observed in several studies [49,57]. Our result did not

293



Molecules 2021, 26, 611

highlight structural deformations at atoms of residue 25 in the L90M mutant of PR2; atoms
of residue 25A/B exhibit an average distWT−mutant of 0.07 ± 0.02 Å. In addition, we noted
that the I84V and L90M mutations have not the same effect on the binding pocket in PR1
and PR2. Indeed, our findings showed that, in PR2, the I84V led to a reduction of pocket
volume and the L90M mutation induced an augmentation of the pocket size in contrast in
PR1 [48,49,52,54,57]. These disagreements in terms of impacts of drug-resistance muta-
tions in PR1 and PR2 could be explained by the methodological differences of the two
approaches. Indeed, our study was based on modeled structures, while PR1 studies used
crystallographic structures. However, another reason that could explained these disagree-
ments is the structural differences between PR1 and PR2 structures [13,18,19,40,42] leading
to different PI-resistance profiles: PR2 is naturally resistant to six of the nine FDA (Food and
Drug Administration)-approved PIs available for HIV-1 therapy[1,3,4]. More particularly,
our previous work showed that the α-helix region (87–95), containing residue 90, presents
different conformations in PR1 and PR2 and these structural differences could be partially
explained by amino acid substitutions observed between the two PRs [13]. In addition,
we previously showed that two PRs exhibit pockets with different properties: PR2 pockets
are smaller and more hydrophobic than PR1 pockets [19,22]. These observation suggested
that a same mutation could have different impacts on PR1 and PR2 structures.

In this study, we explored the impact of drug-resistance mutations on PR2 structure.
To do so, we modeled 3D structures of mutant using as template the PR2 complexed
with DRV (PDB code: 3EBZ [33]). However, it has been shown that drug-resistance
mutations exhibit different sensitivities to the nine FDA-approved drugs [2,4,8,10,26].
For example, the I54M mutation lead to moderate resistance for indinavir, nelfinavir, tri-
panavir, DRV, and LPV, a high resistance for amprenavir, and is susceptible to
SQV [26]. Thus, it would be interesting to consider different PIs and to cross information
about the complete resistance profile of each mutant and the detected structural deforma-
tions. However, reliable resistance profile for PIs are difficult to collect for all mutants as few
studies are available [3,4,26,29] and some of these studies have led to opposing results [10].

4. Materials and Methods
4.1. Data

In this study, we started from the list of the 30 drug-resistant mutants of PR2 studied
in our previous study [31]. This mutant list was updated and a list of 31 drug-resistant
mutants of PR2 was selected. This mutant set contains 22 different mutations (Figure 1) and
there are 20 single mutants (with one mutation), 8 double mutants (with two mutations),
and 3 triple mutants (with three mutations). These mutations sample the entire PR2 (Figure 1).

4.2. Structure Modeling

We modeled the 3D structure of each mutant using the protocol used in Laville et al.,
2020 [31] based on FoldX suite [32] and Gromacs software [66]. This two-step protocol
was applied to the wild-type crystallographic structure of the PR2 complexed with DRV
(PDB code: 3EBZ [33]). First, the DRV ligand, metal atoms, and water molecules were
removed from the crystallographic structure of PR2. Then, the RepairPDB command of
the FoldX suite [32] was applied to the PR2 structure to reduce its energy. The in silico
mutagenesis was then performed using the BuildModel command of the FoldX suite based
on a side-chain rotamer library [32]. This step was performed five times to consider the
several rotamers available for each amino acid [32] and generated five structures per
mutant. An energetic minimization was then applied to the five modeled structures of a
mutant using the protocol developed in our previous study [31]. We applied PROPKA
software [67] to monoprotonate the oxygen atom OD2 of Aspartate 25 in chain B. Then, the
system was solvated in a truncated octahedron box of explicit solvent (TIP3P water model)
with a 12.0 Å buffer in each dimension and its charge was neutralized using chloride
ions. The minimization of the system was performed using a two-step protocol using the
force field AMBER ff99SB in GROMACS [66] by applying a steepest descent algorithm
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combined with a conjugate gradient algorithm. A first step energy minimization allowed
relaxing water molecules and counterions using a position harmonic restraining force of
100 kcal·mol−1Å−2 on the heavy atoms of the protein. Then, restraints on protein atoms
were removed using a second energy minimization step. The protocol used the particle
mesh Ewald (PME) method to treat the long-range electrostatic interactions [68] and a
cutoff distances of 10.0 Å for the long-range electrostatic and van der Waals interactions.
This protocol was applied to the 31 mutants generating 155 mutant structures (5 structures
per mutant). The minimization protocol was also applied to the wild-type structure and
the minimized wild-type structure was named wild-type structure.

4.3. Identification of Shifted Atoms Induced by Mutations.

First, all shifted atoms in each mutant structure were extracted by comparing the
position of atoms in the wild-type and mutant structures. To do so, we applied the
method used in Perrier et al., 2019 [69]. Each mutant structure was superimposed onto
the wild-type structure (the minimized wild-type structure) using PyMOL software [70].
Superimposition was based on all atoms. Hydrogen atoms were removed. Euclidean
distances between the position of each atom in the mutant and wild-type structure were
computed. These distances were denoted as distWT−mutant. Higher a distWT−mutant value
of an atom is, more the atom is shifted in the mutated structure relative to the wild-type
structure. According to the modelization protocol, detected atom shifts resulted from
the mutagenesis and minimization. To retain only significant structural rearrangements
induced by resistance mutation, only atoms with a distWT−mutant value higher than 0.3 Å
were retained like in Liu et al., 2008 [36]. This distance cutoff of 0.3Å allowed selecting only
significant structural displacements and removing uncertainties in the X-ray and mutant
structures [36]. In addition, for each mutant, only shifted atoms observed in three of the five
structures of the mutant were retained. These shifted atoms were named mutant-conserved
shifted and noted MCS atoms.

4.4. Comparison of Wild-Type and Mutant Pockets

4.4.1. Pocket Estimation

From the 156 structures, we extracted the binding pocket. To consider the fact that the
different known PI are structurally diverse and that resistance mutations induce resistance
to one or several PI, we used the “common-ligand” approach to estimate pockets [11] that
consisted to define the binding pocket as all atoms of PR2 capable to bind all co-crystallized
ligands. To do so, a virtual ligand was built by superimposed all co-crystallized ligands
extracted from a set of PRs. This virtual ligand was then placed in the query structure and
its pocket was estimated as atoms located at least 4.5 Å of the virtual ligand. This protocol
was applied on the 156 wild-type and mutant structures using the virtual ligand built from
the PR set used in Triki et al., 2018 [11]. The pocket extracted from the wild-type structure
was denoted as wild-type and those extracted from mutant structures were denoted as
mutant pockets.

4.4.2. Comparison of the Conformation of Wild-Type and Mutant Pockets

To compare the conformation of the 156 pockets, we computed the root mean
square deviation (RMSD) between each pocket pair (156× 156). The calculation of RMSD
was performed using PyMOL software [70] based on all pocket atoms. From these
RMSD values, we computed a hierarchical classification of the pockets using the Ward
method aggregation.

4.4.3. Comparison of the Properties of Wild-Type and Mutant Pockets

Each pocket was characterized by two geometrical descriptors (VOLUME_HULL and PSI),
and one physicochemical descriptor (hydrophobicity_kyte) [71]. The VOLUME_HULL de-
scriptor provides an estimation of the volume of a pocket. PSI measures the sphericity of a
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pocket. These two descriptors were computed using PCI software [72]. hydrophobicity_kyte
descriptor quantifies the hydrophobicity of a pocket.

4.5. Interface Comparison

4.5.1. Interface Extraction

The PPIC (Protein-Protein Interface Computation) program [73,74] was used to deter-
mine atoms involved in the interface of a structure. This program is parameter-free. It takes
in input the 3D structure of a complex with two molecules (molecules or macromolecules)
A and B. It defines the interface between the two molecules in two parts: interface of A
and interface of B. Each interface part corresponds to the non-redundant set of all nearest
neighbor atoms in one molecule of the atoms of other molecules. The extraction of neigh-
bor atoms is performed using a simpler method of the Voronoï tessellation method [75].
Contrary to the Voronoï tessellation method, PPIC approach does not generate neighbors
at long distances in the interface.

We used PPIC program to extract interface from the wild-type structure, denoted as
wild-type interface, and the interface from the mutant structures, denoted as
mutant interface.

4.5.2. Comparison of the Interface Composition

We compared the composition of the 156 interfaces by computed the Hamming
distance, noted Dinter f ace between each interface pairs (Equation (1)).

Dinter f ace(I1, I2) = NI1 + NI2 − 2 × NI12 (1)

with I1 and I2 the interfaces extracted from two structures, NI1 and NI2 the number of
atoms of the interfaces I1 and I2, respectively, and NI12 the number of common atoms of
the two interfaces I1 and I2.

Higher Dinter f ace(I1, I2) is, more dissimilar the two interfaces I1 and I2 are. To fa-
cilitate the interpretation of these distances, each Dinter f ace(I1, I2) value was normalized
by the maximum number of atoms in the two interfaces (NI1 + NI2) using Equation (2),
resulting in the computation of the Dinter f ace(I1, I2)norm value for each interface pair.

Dinter f ace(I1, I2)norm =
Dinter f ace(I1, I2)

NI1 + NI2
. (2)

The Dinter f ace(I1, I2)norm is ranking from 0 to 1, with a Dinter f ace(I1, I2)norm equal to 0
means that the composition of the two interfaces I1 and I2 is identical.

Using the Dinter f ace(I1, I2)norm values of each interface pairs, we computed a hierar-
chical classification of the 156 structures allowing to group structures according to their
similarity in terms of interface composition. This classification was computed using the
Ward method aggregation.

4.5.3. Comparison of the SASA of Interface

The SASA of the interface of each structure was determined using NACCESS soft-
ware [37]. First the two monomers of each structure were separated. Then, the accessible
surface area of all atoms of the 312 monomers was computed using NACCESS software [37].
The SASA values of the two parts of the interface (chains A and B) of a structure were
obtained by computed the sum of the SASA of each atom detected as involved in the
interface. The SASA value reflects the size of a interface.

5. Conclusions

In this study, we explored the impact of drug-resistance mutations reported in PR2.
We first compared the modeled structure of 31 mutants with the wild-type PR2 structure to
locate structural rearrangements induced by mutations. Secondly, we studied the impact
of these deformations on the conformation and properties of the binding pocket and
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on the interface. Our findings showed that one mutation could induce large structural
deformations located in the mutated residue, in its vicinity or far in the structure. These
structural deformations occur in both side-chain and backbone atoms, with on average
more impact in the former. However, we revealed that resistance mutations do not always
have the same behavior in the two monomers of PR2, which is link the structural asymmetry
of this target.

The analysis of the location of structural rearrangements induced by resistance muta-
tions provided clues to better understand resistance mechanisms. First, some mutations
have a direct or indirect impacts on PI-binding. The K7R, V47A, G48V, I50L/V, I54L/M,
V62A, I82F/M, I82M, I84V, and L90M induce structural rearrangements in the binding
pocket that modify its conformation, volume and/or hydrophobicity. These changes in
the binding pocket could have a negative effect on PI binding. In addition, some of these
mutations (K7R, D30N, I50L/V, I54L, I82F, and I84V) have a direct impact on PI binding by
causing structural displacements of residues establishing interactions with PI. Resistance
mutations have also an impact on conformation of the elbow and flap regions, regions
involving in the transition of the open and closed conformations of the PR2 upon ligand
binding. Indeed, we reported that the K7R, E37D, S43T, K45R, V47A, G48V, I50V, I50L,
I54M, I54L, and V62A led atom shifts in the elbow and flap regions that could modify
the flexibility and movement of the flap region important in the binding-pocket closing.
Thirdly, the K7R, G48V, I50L, I54L, L90M, and L99F mutations induce structural rear-
rangements in the PR2 interface that modify its composition and size that may alter the
stability of PR2. Finally, we highlighted several residues that were never deformed in
mutant structures.

In conclusion, this study explored the impact of a large number of PR2 resistance
mutations on PR2 structure, particularly on its pocket binding and interface. Our results
showed that some structural rearrangements induced by resistance mutations are located in
important regions of PR2: the elbow and flap regions inducing in the PR2 deformation upon
ligand binding, in the PI-binding pocket and in the interface of the two monomers. Some of
these deformations modify the properties of binding pocket and the composition and size of
the PR2 interface. These results suggest that the studied resistance mutations could alter PI
binding by modifying the properties and flexibility of the pocket or the interaction between
PR2 and PI and/or alter PR2 stability. Our results reinforce the resistance mechanisms
proposed in our previous study [31] and lead to a better understanding of the effects of
mutations that occurred in PR2 and the different mechanisms of PR2 resistance.
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Abbreviations
The following abbreviations are used in this manuscript:

PR Protease
PR2 HIV-2 Protease
PI Protease inhibitor
MCS atoms Mutant-Conserved Shifted atoms
RMSD Root Mean Square Deviation
DRV Darunavir
LPV Lopinavir
SQV Saquinavir
IDV Indinavir
3D Three-dimensional
SASA Solvent Accessible Surface Area
PPIC Protein-Protein Interface Computation

Appendix A

  

A) Before minimization B) After minimization

Figure A1. Illustration of the different rotamers for the arginine in position 45. Superimposition of
the five structures of the K45R mutant before (A) and after the minimization process (B). Mutant
structures are presented in line and cartoon mode. Residues R45 are presented in sticks.

Appendix B
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Figure A2. (A) Distribution of distWT−mutant distances for each atom (hydrogen atoms were removed)
in the set of 155 mutant structures. Red line corresponds the distance cutoff (0.3 Å) used to define an
atom as shifted atom. (B) Distribution of RMSD (in Å) computed between wild-type and mutant
structures. RMSD were computed using all atoms.
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Appendix C

Single mutants

Double mutants

Triple mutants

Figure A3. Location of the MCS atoms found in each mutant. PR2 is colored in cyan and represented
in putty mode. The putty radius is relative to the deformation induced by mutations: the higher the
radius, the stronger the mutation-induced rearrangement. Mutated residues are colored in blue.
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Appendix D
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Figure A4. MCS atoms in the pocket. Mutants colored in purple present at least a mutation located
in the binding pocket.

Appendix E

A) B)

Figure A5. Comparison between pockets. (A) Distribution of RMSD computed between all pocket
pairs. (B) Distribution of RMSD computed between the wild-type and mutant pockets.
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Appendix F
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Figure A6. Number of mutant structure where a given atom is involved in the interface. Mutants
colored in green present at least a mutation involved in the interface.

Appendix G

In this section, mutant structures built using our initial protocol (based on FoldX
software and an energetic minimization step) were denoted as mutantFoldX+Mini. The WT∗

abbreviation described the crystallographic structure of PR2 complexed to the DRV that
corresponded to the wild-type structure that was not minimized.

Appendix G.1. Protocol to Model Mutant Structures Using Robetta Software

Robetta webserver (https://robetta.bakerlab.org/) is a protein structure prediction
service based on the RosettaCM method [76]. RosettaCM is a comparative modeling
method that assembles structures using integrated torsion space-based and Cartesian
space template fragment recombination, loop closure by iterative fragment assembly and
Cartesian space minimization, and high-resolution refinement [76].

As in our initial modeling protocol, we used the PDB structure 3EBZ (PR2 com-
plexed with DRV) as template. First, the DRV ligand, metal ions and water molecules
were removed from the structure. Using this template, the structure of the 31 drug-
resistant mutants was built using Robetta webserver with the “CM” option. Other pa-
rameters were set to defaults. This step resulted in a set of 31 mutant structures, named
mutantRobetta. The RMSD (based on all atoms) between the wild-type and mutantRobetta

structures were computed using PyMoL software [70]. These RMSD values were refeered
as RMSDWT∗−mutantRobetta

.
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Figure A7. Comparison between mutantFoldX+Mini and mutantRobetta structures. (A) RMSD com-
puted between the wild-type structure (not minimized, WT∗ structure) and mutantFoldX+Mini struc-
ture. (B) RMSD computed between the wild-type structure (not minimized, WT∗ structure) and
mutantRobetta structure. (C) RMSD computed between each mutantRobetta structure and the five
structure of mutantFoldX+Mini.

Appendix G.2. Structural Comparison between the MutantFoldX+Mini and

MutantRobetta Structures

First, we compared the two sets of PR2 mutants. For each mutant, its mutantRobetta

structure was superimposed onto the five mutantFoldX+Mini mutants and the RMSD based
on all atoms was computed using PyMoL software [70]. These RMSD were denoted as
RMSDFoldX+Mini−Robetta.

Appendix G.3. Detection of Structural Rearrangements in the Set of MutantRobetta Structures

First, each mutantRobetta structure were superimposed onto the 3EBZ (PDB code) struc-
ture using PyMoL software [70]. Superimposition was based on all atoms. Euclidean distances
between the position of each atom in the mutant and 3EBZ structure were computed. These
distances were denoted as distWT∗−mutantRobetta

. An atom was considered as a MCS atom in a
mutantRobetta structure if it had a distWT∗−mutantRobetta

value higher than 0.3 Å.
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Appendix H

  

Phe82_A

Phe82_B

Arg8_B
Arg8_A

GLY49_B

GLY27_B

5
.2

7.
3

6.0

Figure A8. Location of residues exhibiting structural shifts in the I82F mutant. Chains A and B are
presented in cartoon mode and colored in orange and blue, respectively. Mutated residues (82) are
colored in magenta and presented in stick mode. Residues having shifted atoms are colored in blue
and presented in stick mode.
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Abstract: Human skin aging is affected by various biological signaling pathways, microenvironment
factors and epigenetic regulations. With the increasing demand for cosmetics and pharmaceuticals to
prevent or reverse skin aging year by year, designing multiple-molecule drugs for mitigating skin
aging is indispensable. In this study, we developed strategies for systems medicine design based on
systems biology methods and deep neural networks. We constructed the candidate genomewide
genetic and epigenetic network (GWGEN) via big database mining. After doing systems modeling
and applying system identification, system order detection and principle network projection methods
with real time-profile microarray data, we could obtain core signaling pathways and identify essential
biomarkers based on the skin aging molecular progression mechanisms. Afterwards, we trained a
deep neural network of drug–target interaction in advance and applied it to predict the potential
candidate drugs based on our identified biomarkers. To narrow down the candidate drugs, we
designed two filters considering drug regulation ability and drug sensitivity. With the proposed sys-
tems medicine design procedure, we not only shed the light on the skin aging molecular progression
mechanisms but also suggested two multiple-molecule drugs for mitigating human skin aging from
young adulthood to middle age and middle age to old age, respectively.

Keywords: skin aging; oxidative stress; aging progression mechanism; genome-wide genetic and
epigenetic network (GWGEN); systems medicine design; multiple-molecule drug

1. Introduction

Being the largest organ of the human body, the skin shows aging with biological age.
Many people, especially female, like to spend money on cosmetics and pharmaceuticals
regularly for preventing or reversing skin aging. Thus, changes in human skin caused by
aging are important issues for both the pharmaceutical and cosmetic sectors worldwide [1].
Additionally, increasing life expectancy in developed countries reveals advancing age as
the primary risk factor for numerous diseases [2]. Elder people tend to have dryness,
itch, dyspigmentation, wrinkles, as well as benign and malignant tumors on skin. Under
these worse conditions, they would feel sleep deprivation leading to having weakened
immunity and getting infection. Hence, keeping our skin health promotes healthy aging [3].
Furthermore, identifying interventions, which are able to ameliorate skin aging progression,
to delay, prevent or lessen age-related diseases is worth studying.

Human skin provides a primary protective barrier, routinely shielding us from al-
lergens, microbes, and other environmental assaults, including solar ultraviolet (UV)
irradiation, heat, infection, water loss, and injury. Skin aging is a complex process leading
to the decrement of cutaneous functions and structures with time. Impaired epidermal bar-
rier function, decline in resistance to infections and regenerative potential, and impairment
of mechanical properties like loss of extensibility and elasticity are the essential biomarkers
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of human skin ageing [4]. In general, skin aging can be regarded as two different processes.
The first one is intrinsic aging, which is caused by biological age. The second one is extrinsic
aging, which arises from solar UV exposure. The extrinsic factors contain the exposure
under UV radiation and pollution, and poor nutrition resulting in alterations of DNA, RNA
and protein in skin cells. The clinical manifestation of intrinsic aging is characterized by
age spots, laxity, wrinkles, sagging, dryness, itchy, and the lower type I and III fibrillar
collagens leading to dermal atrophy [5].

MicroRNAs (miRNAs) are a group of small noncoding RNAs, owning the post-
transcriptional regulation ability to control gene expression negatively. Meanwhile, they
are found to involve in many biological processes, such as epidermal development, pro-
liferation, differentiation [6–8], inflammatory responses, immune regulation and wound
healing in human skin [9,10]. Although we know that miRNAs might be a key player
in the age-associated change, studies about age-related miRNAs in human skin remain
limited [11]. As for long noncoding RNAs (lncRNAs), they are another type of noncoding
RNA with >200 nucleotides. One review paper has summarized age-related lncRNAs
and elucidated their roles in different aging process [12]. Since lncRNAs have versatile
functions including gene regulation, chromatin structure modulation, genomic imprinting,
cell growth and differentiation, and embryonic development, the dysregulated expression
of lncRNAs may cause age-related diseases and disorders [13]. Recently, lncRNAs are
regarded as potential targets for antiaging therapies [14]. Moreover, the well-known epige-
netic modifications are DNA methylation and histone post-transcriptional modifications,
including methylation, acetylation, ubiquitination, and phosphorylation. The accumulation
of epigenetic alternations may not only contribute to skin aging but also promote malignant
transformation [15,16]. H19, an epigenetic regulatory RNA, has been demonstrated to
positively affect cell growth and proliferation and delay senescence [17]. With epigenetic
silencing on LMNA, which is one of progeroid genes, we could observe a corresponding
malignant transformation [18].

For the purpose of investigating skin aging process, researchers tried to identify the
influence of microenvironment and epigenetic change on skin aging and put focus on some
specific proteins, such as members of the collagen family, or cellular functions. However,
the definitions of young skin and older skin are not fixed, that is, there is no definition of
age range for young people and old people, respectively. Therefore, most studies compared
young and old people with great differences in the research of skin aging progression.
Although these studies proposed plenty of credible skin aging-associated theories and
experimental results, the genomewide molecular progression mechanism of skin aging
was unknown since the restriction of experimental methods and the attention to specific
proteins and cellular functions. Moreover, although pharmacological interventions may
prove to ameliorate the effect of aging on humans, the prohibitive expansion of treating
healthy individuals in clinical trials over a long duration becomes a crucial difficulty in
developing new drugs. On the contrary, repurposing drugs, which have been already
approved for specific diseases, or those have been passed their safety tests but failed against
their original indication, is more feasible than targeting aging itself with new drugs [19–21].

In recent years, pharmaceutical scientists put a lot of efforts into novel drug devel-
opment based on the knowledge of existing drugs [22,23]. By performing in vitro search
for drug discovery, researchers could identify interaction between drugs and targets (e.g.,
genes). However, due to the high cost and time consuming work, we could not conduct
in vitro research most of the time. Instead, virtual screening in silico, selecting possible
candidates first and verifying them in wet laboratory offer alternatives to us [24]. In gen-
eral, docking simulation and machine learning method are considered to be two main
approaches for in silico prediction of drug–target interaction [25]. For docking simulation,
the process would be limited if the 3D structure of the protein is unknown [26]. To deal
with this issue, chemogenomic methods, namely feature-based methods, transform drugs
and targets into sets of descriptors (e.g., feature vector) allowing machine learning models
to make prediction of drug–target interactions [27]. Chen at al. reviewed machine learning
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methods and databases that used chemogenomic approaches for drug–target interaction
prediction [28]. Except for traditional machine learning methods, the deep neural network
has been employed in drug–target interaction prediction as well, such as deep belief neural
networks [29], convolutional neural network [30], and multilayer perceptron [31,32].

In this study, we define different age intervals for each stage of skin aging. We
build the candidate genome-wide genetic and epigenetic network (GWGEN) containing
a candidate protein–protein interaction network (PPIN) and a candidate gene regulatory
network (GRN) by big database mining. Moreover, it can be represented by a binary
matrix. Assisted with microarray data of human skin, the false positives from the candidate
GWGEN are pruned away by the system identification method and system order detection
scheme. By doing so, we obtain real GWGENs of young-adult, middle-aged, and elderly
skin aging as shown in Figures S1–S3, respectively. However, real GWGENs are still
complex. Therefore, we further extract core GWGENs from real GWGWNs by the principal
network projection (PNP) method. Based on the rank of projection values, we could
obtain the core signaling pathways in respect of KEGG pathways to investigate skin aging
molecular progression mechanisms for each stage of skin aging. To identify essential
biomarkers in core signaling pathways, we refer to GenAge [33], which contains genes
involved in human aging progression, and the Connectivity Map (CMap) [34] dataset to
find overlap nodes being drug targets. To explore the potential candidate drugs toward
our identified biomarkers, we trained a deep neural network of drug–target interactions in
advance. By applying it, we could predict potential candidate drugs, which holds higher
interaction probability to the identified biomarker. Afterwards, we designed two filters
considering drug regulation ability and drug sensitivity to narrow down the candidate
drugs. Consequently, we propose two potential multiple-molecule drugs i.e., niridazole,
liothyronine, decitabine, pinacidil, and allantoin for mitigating skin aging from young
adulthood to middle age; allantoin, diclofenac, mepyramine, resveratrol, and azathioprine
for mitigating skin aging from middle age to old age.

2. Results

For the purpose of analyzing molecular progression mechanisms in human skin
aging, extracting core signaling pathways from each core GWGEN becomes an essential
issue. We defined three skin aging stages, including young-adult, middle-aged, and
elderly human skin as shown in Figure 1. The research flowchart in Figure 2 shows how
to construct the candidate GWGEN, real GWGENs, and core GWGENs so as to extract
core singling pathways and investigate molecular progression mechanisms of human
skin aging. By big database mining, the candidate GWGEN containing candidate PPIN
and candidate GRN was constructed. With the help of the corresponding young-adult,
middle-aged, and elderly skin microarray data, we applied system identification and
system order detection methods to the candidate GWGEN for obtaining real GWGENs
shown in Figures S1–S3 (Supplementary Materials), respectively. The Table 1 shows
the number of nodes (e.g., proteins, TFs, miRNAs, and lncRNAs) as well as the edges
standing for the interaction or regulation between two nodes for the candidate GWGEN
and real GWGENs. According to Table 1, compared the nodes in candidate GWGEN to
the nodes in real GWGENs, one could realize that the number of nodes diminish a lot in
real GWGENs, reflecting that the false positives were removed successfully by the system
order detection scheme. Since the real GWGENs were still too complicated to investigate
molecular progression mechanisms of human skin aging, we applied principal network
projection (PNP) method and selected the top-ranked 4000 nodes with significant projection
values that could reflect 85% of the real GWGENs in three stages of skin aging to obtain
core GWGENs (Figure 3a–c), respectively. In addition, for the genes in core GWGENs,
we used the Database for Annotation, Visualization and Integrated Discovery (DAVID)
Bioinformatics Resources version 6.8 to perform enrichment analyses for each stage of
skin aging as shown in Tables S1–S3, respectively. Moreover, for investigating molecular
progression mechanisms of skin aging conveniently, we denoted differential core signaling
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pathways for young adult to middle-aged and middle-aged to elderly skin aging in respect
of KEGG pathways, respectively. Based on skin aging molecular progression mechanisms,
we identified essential biomarkers as drug targets for young-adult to middle-aged and
middle-aged to elderly skin aging, respectively. Exploring candidate drugs toward our
identified biomarkers, we trained a deep neural network of drug–target interaction in
advance. We applied the trained model to predict the candidate drugs holding higher
interaction probability with identified biomarkers. In order to narrow down the candidate
drugs, we design two filters considering drug regulation ability and drug sensitivity. The
more details will be discussed in the following sections.

 

Figure 1. Skin aging stages. The figure denotes age intervals for each stage of skin. The young-adult, middle-aged, and
elderly stage of skin are defined as 19 to 45 years old, 43 to 65 years old, and 64 to 86 years old, respectively.

Table 1. The table of the total number of nodes and edges in candidate GWGENs and identified real
GWGENs for each stage of skin aging.

Candidate
GWGEN

Young-adult
GWGEN

Middle-aged
GWGEN

Elderly
GWGEN

TFs 1851 464 491 383

TF—protein 429,829 11,715 10,888 10,234

TF—receptor 66,042 1824 1738 1639

TF—TF 27,892 513 468 223

TF—lncRNAs 1600 494 457 473

TF—miRNA 348 84 76 91

lncRNAs 666 593 522 582

lncRNAs—protein 19,520 1944 1902 2286

lncRNAs—TF 1443 88 90 84

lncRNAs—receptor 3018 293 288 366

miRNAs 126 111 99 107

miRNA—protein 45,613 4175 3997 4884

miRNA—receptor 6891 593 707 745

miRNA—TF 3028 782 680 849

Receptors 2388 2372 2366 2387

Proteins 15,347 13,195 13,219 13,213

PPIs 3,185,763 172,558 146,594 97,766

Total nodes 20,378 16,735 16,697 16,672

Total edges 3,790,987 195,063 167,885 119,640
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Figure 2. Reseasrch flowchart of systems medicine design for human skin aging. Flowchart of using
systems biology methods to construct the candidate GWGEN, real GWGENs, core GWGENs, and core
signaling pathways to find skin aging progression mechanisms for identifying essential biomarkers.
After obtaining the essential biomarkers, we applied trained a deep neural network of drug–target
interactions to predict the potential candidate drugs holding higher probability. To narrow down
the candidate drugs, we considered drug regulation ability by querying the CMap dataset and drug
sensitivity by referring to the sensitivity dataset from DepMap portal. Consequently, we proposed
two multiple-molecule drugs to mitigate the skin aging from young-adult to middle-aged and
middle-aged to elderly-stage.
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Figure 3. The core genomewide genetic and epigenetic networks (GWGEN). (a–c). (a) The core GWGEN of young-adult
skin. The purple lines denote protein–protein interactions (PPIs). The green lines indicate transcriptional regulations by
TFs and lncRNAs. The black lines represent post-transcriptional regulations by miNRAs. The total number of receptors,
proteins, lncRNAs, TFs and miRNAs are 556, 3166, 136, 134 and 8, respectively. (b) The core GWGEN of middle-aged skin.
The PPIs are in purple. The regulations from TFs and lncRNAs are in green. The black lines stand for the post-transcriptional
regulations by miRNAs. The total number of receptors, proteins, lncRNAs, TFs and miRNAs are 499, 3190, 105, 117 and
10, respectively. (c) The core GWGEN of elderly-stage skin. The PPIs are shown in purple lines; regulations by TFs and
lncRNAs are denoted in green; regulations from miRNAs are in black. The total number of receptors, proteins, lncRNAs,
TFs and miRNAs are 546, 3220, 126, 102 and 6, respectively.

2.1. Differential Core Signaling Pathways from Young-Adult to Middle-Aged Skin Aging

The differential core signaling pathways from young-adult to middle-aged human skin
were selected and analyzed as shown in Figure 4. According to our results, in core signaling
pathways of young-adult skin aging only, receptor ESR1 receives microenvironment factor
FASN to activate the TF SIRT6 through signaling transduction proteins PRR4 and LMNA.
The TF SIRT6 could not only downregulate target gene RBBP8, which was modified by
deacetylation, but also activate TF PARP1 to upregulate target gene XRCC1 to promote
cell proliferation and DNA repair in young-adult skin aging only. The receptor ESR1 also
regulates TF JUN through signaling transduction proteins GOT1 and CHEK2 to regulate
target gene BRCA2 and KPNA2. TF JUN not only activates the target gene BRCA2, which
was modified by phosphorylation, to promote DNA repair, but also downregulates the
target gene KPNA2 to promote cell proliferation, DNA repair and cell cycle in young-adult
skin aging only.
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Figure 4. The core signaling pathways from young-adult to middle-aged skin aging. The green dot lines denote the signaling
pathways in young-adult skin; the green dash lines represent the signaling pathways in middle-aged skin; the green solid
lines indicate the signaling pathways in both stage; the green lines with arrow heads are upregulation (positive regulation);
the green lines with circular heads are downregulation (negative regulation); the black solid lines with arrow heads mean
activating cellular function; the black solid lines with circular heads mean inhibiting cellular function; the selected red
target gene nodes indicate a higher gene expression in middle-aged skin compared with young-adult skin; the selected
green target gene nodes indicate a lower gene expression in middle-aged skin compared with young-adult skin; the blue
background shows young-adult skin; the brown background shows the overlap between young-adult and middle-aged
skin; the skin color background shows middle-aged skin.

Next, in the core signaling pathways of both young-adult and middle-aged skin
aging in Figure 4, the microenvironment factor FASLG was received by receptor FAS
to activate TF E2F7 via signaling transduction proteins DAXX, MAP3K5 and AIFM1 to
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downregulate target gene APAF1 to promote apoptosis and cell-cycle arrest. In the next
pathway, the receptor CXCR2 receive microenvironment factor CXCL1 to regulate TF E2F7,
TF JUN, TF FOXM1 and miRNA MIR26B. First, the TF JUN was activated through signaling
transduction proteins CENPJ and CDKN1A to activate TF FOXM1. As TF FOXM1, which
was modified by phosphorylation, was activated, the target gene CAT was upregulated to
inhibit ROS accumulation in both young-adult and middle-aged skin aging. The miRNA
MIR26B was activated via signaling transduction proteins CENPJ, CDKN1A and AKT1 to
inhibit target gene KPNA2 so as to promote cell proliferation. It is noted that, protein AKT1
was modified by phosphorylation. The TF E2F7 was also regulated by protein AIFM1 to
downregulate target gene APAF1 in both young-adult and middle-aged skin aging.

In the core signaling pathways of middle-aged skin aging only, the TF FOXM1 was also
activated through signaling transduction proteins CENPJ, CDKN1A, CDK4 and DCDC2
when receptor CXCR2 received microenvironment factor CXCL1 in middle-aged skin
aging only as shown in Figure 4. With the activation of FOXM1, the target gene CCNB1
was upregulated to promote cell-cycle arrest and inhibit ROS accumulation. For the
next pathway in middle-aged skin aging only, the microenvironment factor IGF1 was
received by receptor IGF1R to regulate TF FOXO3 via signaling transduction proteins
HMGCS2, ARRB1, PDK1 and AKT1. Additionally, the protein AKT1 and TF FOXO3 were
modified by phosphorylation. The TF FOXO3 downregulates not only target gene SENS3 to
promote DNA damage, apoptosis, and ROS accumulation, but also target gene GADD45A
to promote DNA damage, apoptosis, and ROS accumulation and inhibit cell-cycle arrest in
middle-aged skin aging only.

In summary, when the young-adult skin aging turned into middle-aged skin aging,
DNA repair ability decreases and cell cycle starts to be arrested. Thereby, ROS accumula-
tion increases and further promotes DNA damage and apoptosis in skin cells. Addition-
ally, these molecular progression mechanisms from young-adult to middle-aged might
potentially accelerate skin aging process in elderly skin aging. According to the core
signaling analyses results and considering the overlap nodes between the GenAge and
CMap datasets, we identified AIFM1, CAT, IGF1R, and LMNA as essential biomarkers for
preventing skin aging from young adulthood to middle-age.

2.2. Differential Core Signaling Pathways from Middle-Aged to Elderly Skin Aging

The molecular progression mechanism based on differential core pathways from
middle-aged skin to elderly skin aging is represented in Figure 5. In core pathways of
middle-aged skin aging only, the TNF receptor superfamily member 1 alpha TNFRSF1A
received microenvironment factor TNF to activate TF GATA2 through transduction pro-
teins GABPA and STAT1 to upregulate target gene MMP9 so as to inhibit collagen stability
and skin homeostasis in middle-aged skin aging only. Note that STAT1 was modified
by phosphorylation. In the next pathway, the microenvironment factor NGF was ac-
cepted by neurotrophic receptor tyrosine kinase1 NTRK1 and then transmitted the signal
through transduction proteins EME1, HSPB1, NEDD9 and CPNE2 to activate TF ETS1.
TF ETS1 could downregulate target gene ERRFI1, which was modified by hypermethy-
lation, through activating miRNA MIR573 to promote homeostasis in middle-aged skin
aging only.

Next, we focus on the core pathways of both middle-aged and elderly skin aging. In
the first pathway, the receptor NTRK1 receives the microenvironment factor NGF and then
transmits the signal through transduction proteins KPNA2, KAT5, CST2 and HRAS to
activate TF GATA2. The protein KAT5 was modified by phosphorylation. After GATA2
was activated, target gene BCL2 was upregulated to inhibit cell-cycle arrest and apoptosis
in both middle-aged and elderly skin aging. For the second pathway, the receptor KIT
could interact with the microenvironment factor KITLG to trigger TF AR through signaling
transduction proteins FAM83H, HSPB1, PAX3 and H2AFB2. TF AR downregulated not
only target gene TYR through triggering TF MITF to promote melanin synthesis, but
also target gene CDH1, which was modified by phosphorylation, to promote cell-cycle,
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apoptosis and DNA damage in both middle-aged and elderly skin aging. In the third
pathway, receptor LRP1 could receive the microenvironment factor CYR61 to trigger the TF
ETS1 via signaling transduction proteins RAMP1, MCM2, GEMIN4 and NOP56. In both
middle-aged and elderly skin aging, the TF ETS1 could negatively regulate target gene
COL17A1 to promote melanin synthesis and inhibit collagen stability and skin homeostasis.

 

Figure 5. The core signaling pathways are obtained by projecting core GWGENs to KEGG pathways to investigate the aging
progression mechanism from middle-aged to elderly skin aging. The green dotted lines denote the signaling pathways in
middle-aged skin; the green dashed lines represent the signaling pathways in elderly skin; the green solid lines indicate the
signaling pathways in both stages; the green lines with arrow heads are upregulation; the green lines with circle heads are
downregulation; the black solid lines with arrow heads mean activating cellular function; the black solid lines with circle
heads mean inhibiting cellular function; the selected red target gene nodes indicate a higher gene expression in elderly skin
compared with middle-aged skin; the selected green target gene nodes indicate a lower gene expression in elderly skin
compared with middle-aged skin; the blue background shows middle-aged skin; the brown background covers the overlap
between middle-aged and elderly skin; the skin color background shows elderly skin.
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In the core pathways of elderly skin aging only in Figure 5, CYR61/LRP1 could also
trigger TF NDUFS4 through signaling transduction proteins CPNE2, MYH9 and ERCC6.
The activated TF NDUFS4 might downregulate target gene CASP3 to inhibit apoptosis
and promote DNA damage. For another pathway, the microenvironment factor IL6 was
accepted by receptor IL6R to trigger TF YAP1 through signaling transduction proteins
RHOB and CDK20. In the elderly skin aging only, TF YAP1 activated target gene CDC5L
through inhibiting MIR126 to inhibit cell cycle and promote skin homeostasis and DNA
damage.

In summary, for skin aging molecular progression mechanisms from middle age to old
age, we found that the promotion of cell cycle process, the inhibition of apoptosis, and the
damage of DNA arose in elderly skin. Furthermore, skin homeostasis and collagen stability
were destroyed to cause lower immunity and epidermal thinning, that is, the increment of
wrinkles. According to core signaling analyses and considering the overlap nodes between
the GenAge and CMap datasets, we identified MMP9, IL6, BCL2, and CASP3 as essential
biomarkers for preventing skin aging from middle age to old age. Moreover, by extracting
differential core signaling pathways from young-adult to elderly skin aging, some cellular
dysfunctions including proliferation, DNA repair and damage, cell-cycle arrest, apoptosis,
ROS accumulation, collagen stability, skin homeostasis, and melanin synthesis are induced
in the skin aging process shown in Figure 6.

2.3. The Application of Deep Neural Network of Drug–Target Interaction Prediction and the
Design of Two Filters Considering Drug Regulation Ability and Drug Sensitivity

To explore the drug–target interaction toward our identified biomarkers, we trained
a deep neural network for drug–target interaction prediction. The design framework is
shown in Figure S4. The interaction dataset used for training are from BindingDB [35].
In total, there are 80,291 known drug–target interactions between 38,015 drugs and 7292 pro-
teins. The number of unknown drug–target interactions is 19,966,109, which is greater
than the known drug–target interactions. Considering the class imbalance problem, we
randomly chose the number of unknown interactions and made them the same size as
known interactions. We trained the model using 70% of data, including 10% of data as
the validation set. The remaining 30% of data was used as the testing set. To the data
preprocessing before training the model, we performed feature scaling by standardization.
Assisted with principal component analyses (PCA) for dimensionality reduction, we had
1000 out of 1359 features. For the architecture of deep neural network of drug–target inter-
action, we used Adam as an optimizer (learning rate = 0.003) with binary cross-entropy
loss. The input layer had 1000 neurons followed by 512, 256, 128, and 64 neurons of hidden
layers, respectively. The output layer has one neuron. Except for using sigmoid function
to the output layer, we set a nonlinear activation function ReLU for each hidden layer.
Moreover, the dropout 0.5, 0.4, 0.3, and 0.1 was applied to each hidden layer, respectively.
For the trained deep neural network of drug–target interaction prediction, the training
accuracy, validation accuracy, and testing accuracy were 95.469%, 93.230%, and 93.077%,
respectively. From the perspective of the deep neural network framework application,
we used it to predict the potential candidate drugs for our identified biomarkers. When
the score of candidate drug approaches one, it would be selected. In other words, the
higher the score, the higher probability of interacting between the candidate drug and the
identified biomarker.
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Figure 6. The overview of human skin aging molecular progression mechanisms from young-adult to middle-aged and
then elderly skin aging. This figure summarizes the genetic and epigenetic progression mechanisms of skin aging in
Figures 4 and 5. The upper horizontal part is the genetic and epigenetic progression mechanism from young-adult skin
to middle-aged skin; the middle part indicates the genetic and epigenetic progression mechanisms from middle-aged
skin to elderly skin; the red rectangle with orange background represents cellular functions; the yellow ellipse circles are
microenvironment factors; the red dash lines surround the pathways and biomarkers that appear in two consecutive stages
of skin; the black arrow lines represent the protein–protein interaction or transcriptional regulation; the black lines with
circle head represent inhibit or downregulation; the red arrow lines represent the genes to induce cellular function; the red
lines with circle head represent the genes to repress cellular function.
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In order to narrow down the candidate drugs predicted by the deep neural network
framework based on the identified biomarkers, we designed two filters considering drug
regulation ability and drug sensitivity. With the help of the CMap dataset, we could
know whether a gene was upregulated or downregulated after treating the small molecule
compound. The abnormal up or down gene expression could be found by comparing
the gene expression of identified biomarkers to the later skin stage. The goal for the first
filter is to select candidate drugs, which could reverse the abnormal gene expression.
Afterwards, we used the drug sensitivity dataset (PRISM Repurposing Primary Screen) to
consider drug sensitivity. The second filter aims to find the drugs with around zero values
implying that they would not influence the cell line too much since we are not going to kill
or proliferate cells toward the skin corresponding cell line. Consequently, we proposed
niridazole, liothyroninr, decitabine, pinacidil, and allantoin as a multiple-molecule drug
for mitigating skin aging from young adulthood to middle age; and allantoin, diclofenac,
mepyramime, resveratrol, and azathioprine as multiple-molecule drug for mitigating skin
aging from middle age to old age. The drug targets with their corresponding drugs are
shown in Tables S4 and S5.

3. Discussion
3.1. Investigating Skin Aging Molecular Progression Mechanisms by Differential Core Signaling
Pathways from Young-Adult to Middle-Aged Human Skin Aging

In the first core pathway of young-adult skin aging only as shown in Figure 4, mi-
croenvironment factor fatty acid synthase FASN can promote cell proliferation, DNA repair,
and cell-cycle arrest and interact with receptor ESR1 via crucial signaling transduction
proteins PRR4, LMNA, GOT1, and CHEK2 to regulate TFs SIRT6, PARP1, and JUN. The
signaling protein LMNA, which is an endogenous activator of TF SIRT6, could promote
SIRT6-mediated downstream functions upon DNA damage. Moreover, protein LMNA
could directly bind and activate TF SIRT6 toward histone deacetylation [36]. The TF SIRT6,
which could control the longevity and regulation of DNA repair, could promote DNA re-
pair and cell proliferation through the downregulation of the target gene RBBP8, which was
mediated by deacetylation [37]. TF SIRT6 could also promote DNA repair under oxidative
stress by activating TF PARP1 to upregulate target gene XRCC1 [38]. TF PARP1 serves as a
genomic caretaker by participating in several molecular mechanisms such as DNA repair
and cell-cycle regulation. Therefore, PARP1 was considered as a longevity assurance and
aging-promoting factor [39]. The target gene XRCC1 upregulated by PARP1 was required
for the viable and efficient repair for DNA single-strand breaks [40]. The TF JUN was
also activated by the signaling transduction proteins GOT1 and CHEK2. The signaling
transduction protein CHEK2 initiated by oxidative stress could regulate target gene BRCA2
and KPNA2 through interacting with TF JUN. In human cell, the serine kinase CHEK2
could induce the appropriate cellular response such as cell cycle checkpoint activation and
DNA repair depending on the extent of damage, the cell type, and other factor. CHEK2
could participate in DNA repair by phosphorylating the target gene BRCA2 through TF
JUN [41]. The karyopherin alpha2 KPNA2 expression had been reported to be induced in
various proliferative skin disorders such as psoriasis and squamous cell carcinoma [42].
When the target gene KPNA2 was downregulated by TF JUN, cell proliferation, cell cycle
and DNA repair induced by CHEK2 were indirectly promoted.

In the core pathways of both young-adult and middle-aged skin aging, the microen-
vironment factor FASLG binds receptor FAS to regulate TF E2F7 through signaling trans-
duction proteins DAXX, MAP3K5 and AIFM1. Responding to ROS, the microenvironment
factor FASLG was activated, then binding to death receptor FAS to promote apoptosis path-
way [43]. Signaling transduction protein MAP3K5 known as apoptosis signal-regulating
kinase 1 (ASK1) could respond to oxidative stress and be activated [44]. Target gene APAF1
is the core of the apoptosome, was activated by TF E2F7 to trigger the mitochondrial
apoptotic pathway. Furthermore, target gene APAF1 was also involved in the maintenance
of genomic stability by the cell-cycle arrest response elicited upon DNA damage and pro-
moted apoptosis [45]. For other pathways in both young-adult and middle-aged skin aging,
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microenvironment factor CXCL1 bound the G-protein coupled receptor CXCR2 to activate
signaling transduction protein CDKN1A through protein CENPJ. Protein CDKN1A known
as CIP1, was a potent cyclin-dependent kinase inhibitor to regulate TFs E2F7, JUN, FOXM1,
and miRNA MIR26B. First, protein CDKN1A transmits signal to AIFM1 so as to activate
TF E2F7 to enhance apoptosis and cell-cycle arrest. TF JUN was also activated by protein
CDNK1A to regulate FOXM1. Then TF FOXM1 upregulated target gene CAT, which
was known as ROS detoxification enzyme and could defend the ROS accumulation [46].
After miRNA MIR26B inhibited the target gene KPNA2, the cell proliferation could be
promoted [47].

In core pathways of middle-aged skin aging only, microenvironment factor CXCL1
also could regulate TF FOXM1 through signaling transduction proteins CENNPJ, CDKN1A,
CDK4, and DCDC2 to trigger target gene CCNB1 as shown in Figure 4. Cyclin depen-
dent kinase 4 CDK4, which was modified by phosphorylation, is a positive regulator of
cell cycle entry and can stabilize and activate FOXM1, thereby promote cell cycle and
suppress the levels of reactive oxygen species [48]. TF FOXM1 also had been reported
to be essential for proper cell cycle progression via activating cell cycle gene CCNB1 for
propelling specific cell cycle phase and inhibition ROS accumulation [49]. For another
pathway, the microenvironment factor IGF1 was received by receptor IGF1R to activate
FOXO3 via signaling transduction proteins HMGCS2, ARRB1, PDK1 and AKT1. The
protein AKT1, which was modified by phosphorylation, could activate TF FOXO3. Protein
phosphoinositide-dependent kinase PDK1 was one of the upstream kinases that activate
AKT1. After AKT1, which is a key regulator of the PI3K/AKT1 signaling cascade con-
trolling cell growth and survival, was activated and modified by phosphorylation, TF
FOXO3 would be activated [50]. Moreover, it had been reported that the enhanced ROS
production might further activate the signal of PI3K/AKT pathway, thus establishing a
self-perpetuating cycle leading to further aging [51]. TF FOXO3, which was modified by
phosphorylation, could downregulate target genes SESN3 and GADD45A [52]. TF FOXO3
could decline ROS rescue pathway through downregulating the peroxiredoxin gene SESN3,
which is responsible for the biphasic ROS accumulation. Therefore, FOXO3-induced ROS
was increased and then accelerated for apoptosis and DNA damage [53]. Furthermore,
phosphorylated FOXO3 also inhibited proapoptotic activity such as cell-cycle arrest by
downregulating GADD45A [54]. The cause of the pleiotropic action of GADD45 members, a
decreased inducibility, might lead to far-reaching consequences such as DNA damage accu-
mulation and disorder of cellular homeostasis and could eventually contribute to the aging
process [55]. Therefore, we suggest that the downregulation of GADD45A also promotes
ROS accumulation through cell-cycle arrest and the inhibition of proapoptotic activity.

3.2. Investigating Skin Aging Molecular Progression Mechanisms by Differential Core Signaling
Pathways from Middle-Aged to Elderly Human Skin Aging

According to the core pathways of middle-aged skin aging only in Figure 5, the ligand
TNF can inhibit collagen stability and skin homeostasis through receptor TNFRSF1A by
transmitting the signal through significant signaling transduction proteins GABPA and
STAT1 to TF GATA2. The proinflammatory cytokine tumor necrosis factor-alpha (TNF-A)
inhibits collagen synthesis and enhances collagen degradation via increasing the production
of target gene MMP9. It also increases the risk of cutaneous infections in the elderly by
reducing skin immunity [56]. The activation of STAT1 is modified by phosphorylation.
STAT1 has also been indicated as a potential target in the treatment of psoriasis, which
is a chronic skin diseases [57]. TF GATA2 could upregulate target gene MMP9 to digest
collagen type IV, which is an important component of the basement membrane in skin [58].

For the next pathway, ligand NGF can promote skin homeostasis through receptor
NTRK1 to transmit the significant signal via signaling transduction proteins EME1, HSPB1,
NEDD9, and CPNE2 to upregulate TF ETS1. In human skin, proliferating keratinocytes
release NGF in an increasing amount. Receptor NTRK1, known as tyrosine kinase receptor
(TrkA) is the high-affinity receptor for NGF. At the skin level, NTRK1 could mediate NGF-
induced keratinocyte proliferation [59]. Note that protein NEDD9 could be modified by
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phosphorylation in human skin [60]. TF ETS1, which was regulated through the signaling
pathway activated by ligand NGF, has been identified to be associate with skin aging [60].
The expression levels of MIR-573 were found to be lower in melanoma tissues and cell lines
when compared to normal skin tissue. Moreover, MIR-573 reduction was demonstrated to
be essential in melanoma initiation and progression [61]. Target gene ERRFI1, which was
modified by hypermethylation, is required for proper epidermal homeostasis [62,63].

Focusing on core pathways in both middle-aged and elderly skin aging in Figure 5,
the ligand NGF inhibits apoptosis and promotes cell-cycle arrest when received by receptor
NTRK1 to activate TF GATA2 via signaling transduction proteins KPNA2, KAT5, CST2, and
HRAS. Protein KAT5, which was modified by phosphorylation, has been presumed to serve
as a potential biomarker for melanoma therapeutic target [64]. NGF can not only rescue
human epidermal keratinocytes from spontaneous and UVB-induced apoptosis via NTRK1,
but also protect keratinocytes from cell death via target gene BCL2 family of apoptosis
inhibitors [59]. Antiapoptotic function of target gene BCL2 is regulated by phosphorylation.
In addition, target gene BCL2 could not only regulate cell cycle progression, but also act
as an antioxidant that may regulate intracellular ROS. Expression of target gene BCL2
has been observed to increase upon the induction of a senescence-like growth arrest or
apoptosis by oxidative stress [65,66].

In the next core pathway of both middle-aged and elderly skin aging, the ligand KITLG
promotes melanin synthesis, DNA damage, and inhibits cell-cycle arrest by modulating
TFs AR and MITF via signaling transduction proteins FAM83H, HSPB1, PAX3, ATF5,
and H2AFB2. The tyrosine kinase receptor KIT, its ligand KITLG, and TF MITF have
been reported to play an important role of initiating and regulating signaling systems
and transcription factors of melanin production. TF MITF also regulates melanocyte
pigmentation by inducing target gene TYR [67]. Moreover, a previous study supposed
that PAX3 and SOX10 could act together to induce the expression of MITF [68]. Target
gene CDH1, which is downregulated by TF AR, has been reported to be regulated by
phosphorylation [69]. It has been reported that cells lacking target gene CDH1 have a
shortened G1 phase, accumulate DNA damage, and undergo apoptosis [70].

In the final core pathways of both middle-aged and elderly skin aging, the ligand
CYR61 could modify skin homeostasis and melanin synthesis through receptor LRP1 to
transmit signal by signaling transduction proteins RAMP1, MCM2, GEMIN4 and NOP56
for upregulating TF ETS1. Responding to oxidative stress, CYR61 was elevated in the
dermis of chronologically aged human skin, promoting aberrant collagen homeostasis
by downregulating collagen members, the major structural protein in skin, to promote
collagen degradation [71,72]. The loss of target gene COL17A1 and MCM2 expression in
advanced aged skin has been found to eventually cause epidermal thinning [73].

Focusing on the first core pathway of elderly skin aging only in Figure 5, through the
signaling transduction starting from the ligand CYR61, TF NDUFS4 can promote apoptosis
and DNA damage through signaling transduction proteins CPNE2, MYH9 and ERRC6.
The ligand CYR61 interacting with receptor LRP1 has also been indicated to contribute
to CCN1-induced ROS accumulation and CCN1/TNFA-induced apoptosis [74]. With
the downregulating target gene CASP3 by TF NDUFS4, senescence fibroblast can resist
apoptosis death [75].

In the final core pathway of elderly skin aging only, the ligand IL6 could be accepted by
receptor IL6R and then the significant signal is transmitted through signaling transduction
proteins RHOB and CDK20 to activate TF YAP1. Proinflammatory cytokine IL6 has been
suggested to be a biomarker of health status in the elderly [76]. TF YAP1 has been identified
to play a physiological role in skin homeostasis, which can promote cell proliferation in
the basal layer [77]. Knockdown of target gene CDC5L induces mitotic arrest and DNA
damage [78].
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3.3. The Genetic and Epigenetic Molecular Progression Mechanisms from Young-Adult to Elderly
Human Skin Aging

The overview of overall skin aging molecular progression mechanisms is shown in
Figure 6. Microenvironments trigger corresponding ligand signals to initiate some cellular
dysfunctions affecting skin aging progression. Thus, core signaling pathways with the
genetic and epigenetic modifications play a significant role in cellular dysfunctions of
signaling transductions for each stage of skin aging.

In Figure 6, the core pathways of young-adult skin aging only, ligand FASN (ox-
idative stress) binds to receptor ESR1 to mediate two pathways. Responding to DNA
damage signal to cause of oxidative stress, LMNA directly binds and activates TF SIRT6
toward histone deacetylation [36]. Activated SIRT6 promotes DNA repair cell-cycle and
proliferation through the downregulating gene RBBP8, which was modified by deacetyla-
tion [37]. In addition, TF SIRT6 also promotes DNA repair and cell cycle under oxidative
stress by activating TF PARP1 to upregulate target gene XRCC1 [38]. Transduction protein
CHEK2 also responds to oxidative stress from ligand FASN to activate TF JUN. TF JUN
promotes DNA repair through phosphorylating target gene BRCA2 [41]. Moreover, TF
JUN could downregulate target gene KPNA2 to promote cell proliferation, cell cycle and
DNA repair [42].

In the core pathways of both young-adult and middle-aged skin aging, ligand CXCL1
(oxidative stress) binds to receptor CXCR2 to trigger protein CDKN1A. Activated protein
CDKN1A not only upregulates target gene CAT to defend ROS accumulation through
TF JUN and FOXM1, but also inhibits target gene KPNA2 to promote cell proliferation
by activating MIR26B [46,47]. Next, responding to ROS induced from DNA damage, the
ligand FASLG interacts with FAS to initiate apoptosis pathway. Signaling transduction
protein MAP3K5, activated by oxidative stress, triggers TF E2F7 to downregulate target
gene APAF1 and thereby involve in the maintenance of cell-cycle arrest upon DNA damage
and promoting apoptosis [43–45]. Hence, in order to fight to the excessive accumulation
of ROS upon decreasing the ability of DNA repair from young adulthood to middle-age,
functions of apoptosis and cell-cycle arrest are raised.

In the core pathways of middle-aged skin aging only, the ligand CXCL1 (oxidative
response) interacts with receptor CXCR2 and also activates signaling transduction protein
CDK4. Phosphorylation of CDK4 positively regulates cell cycle entry and can stabilize
and activate FOXM1 to upregulate target gene CCNB1 to promote cell cycle phase and
suppress the level of ROS [48,49]. Moreover, the ligand IGF1 (oxidative response) is
received by receptor IGF1R to activate PI3K/AKT signaling pathway. Transduction protein
AKT1 can activate TF FOXO3 through the modification by phosphorylation. Furthermore,
TF FOXO3, which is modified by phosphorylation, downregulates genes SESN3 and
GADD45A. With the silence of target gene SESN3, ROS rescue pathway is declined, thus
accelerating apoptosis with the increment of FOXO3-induced ROS. In addition, TF FOXO3
downregulates target gene GADD45A to promote ROS accumulation through cell-cycle
arrest. The ligand TNF (proinflammatory cytokine) can inhibit collagen stability and skin
homeostasis through activating TNFRSF1A and initiate the corresponding pathway. TF
GATA2 was activated by phosphorylated transduction protein STAT1 to upregulate target
gene MMP9. Increased gene MMP9 can inhibit collagen synthesis and enhance collagen
degradation. The ligand NGF (proliferating keratinocytes) interacts with receptor NTRK1
to activate TF ETS1, which was identified to be associative with skin aging [59,60]. MIR573
is activated by TF ETS1 and then negatively regulates gene ERRFI1. Downregulated
gene ERRFI1, which was modified by hypermethylation, can maintain proper epidermal
homeostasis [62,63].

In the core pathways of both middle-aged and elderly skin aging, the ligand NGF/NTRK1
(signal of positive regulation of Ras signaling pathway) activates TF GATA2 so as to
regulate gene BCL2 to protect keratinocytes from cell death [59]. Target gene BCL2 not
only triggers antiapoptotic function through the modification by phosphorylation, but also
regulates cell cycle progression to act as an antioxidant of intracellular ROS [65,66]. The
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ligand KITLG interacts with receptor KIT to promote melanin synthesis, DNA damage, and
inhibits cell-cycle arrest by activating TF MITF through signaling transduction. TF MITF
regulates melanocyte pigmentation by inducing gene TYR [67]. Due to the downregulation
of gene CDH1, which is modified by phosphorylation, by TF AR, G1 phase is shortened to
accumulate DNA damage and undergo apoptosis [69,70]. Next, the ligand CYR61 (oxida-
tive stress) is received by receptor LRP1 to downregulate collagen members and promote
collagen degradation [71,72]. After TF ETS1 is activated by signaling transduction, target
gene COL17A1 can be downregulated to destroy the balance between collagen stability and
skin homeostasis and eventually cause epidermal thinning [73].

In the core pathways of elderly skin aging only, the ligand CYR61 (oxidative stress)
interacts with receptor LRP1 so as to contribute to the CCN1-induced ROS accumulation.
When target gene CASP3 is downregulated by TF NDUFS4, senescence fibroblast could
resist apoptosis death [74,75]. Moreover, since the ligand IL6 interacts with receptor IL6R
to activate TF YAP1, which could promote cell proliferation in basal layer, it has been
identified to play a physiological role in skin homeostasis [77]. Note that IL6 has been
suggested as a biomarker of elderly health status [76]. After TF YAP1 downregulating target
gene CDC5L through activating MIR126, functions of mitotic arrest and DNA damage were
activated [78].

3.4. Two Multiple-Molecule Drugs Based on Identified Biomarkers to Mitigate Human Skin Aging

For mitigating the skin aging from young adulthood to middle age, we proposed
a multiple-molecule drug including niridazole, liothyronine, decitabine, pinacidil, and
allantoin. The drug targets were AIFM1, CAT, IGF1R, and LMNA as shown in Table 2.
The black dot in Table 2 represents the proposed small molecules target to which identi-
fied biomarker (drug target). For instance, the niridazole has more potential to target to
AIFM1 and CAT. Niridazole, an antiparasitic drug, could suppress delayed dermal hyper-
sensitivity [79]. Studies have shown that combined therapy with liothyronine improved
the treatment of hypothyroidism [80,81]. Decitabine, a DNA methyltransferase, induced
changes in gene expression and cellular behavior associated with a regenerative response.
Furthermore, wounds treated by decitabine were able to participate in regeneration [82].
Pinacidil is an effective antihypertensive drug for the treatment of mild to moderate essen-
tial hypertension [83]. In the meanwhile, according to the findings of one study, pinacidil
may be utilized to prevent from UV-induced skin aging [84]. It is noted that allantoin,
which is found in plants like chamomile, wheat sprouts, sugar beet, and comfrey, has been
widely used in anti-aging serum [85,86]. Allantoin is also a well-known anti-irritating and
hydrating agent as well as a peeling agent for skin [87,88].

Table 2. Drug targets and multiple-molecule drugs for preventing skin aging from young adulthood
to middle-age.

Drug
Target

AIFM1 CAT IGF1R LMNA

niridazole • • •

liothyronine •

decitabine •

pinacidil •

allantoin •

•: Proposed small molecules target to the identified biomarkers (drug targets).

For mitigating the skin aging from middle-aged to elderly, we proposed a multiple-
molecule drug consisting of allantoin, diclofenac, mepyramine, resveratrol, and azathio-
prine. The drug targets were MMP9, IL6, BCL2, and CASP3 as shown in Table 3. In Table 3,
the black dot shows the drug target to each specific small molecule. For example, the drug
target for allantoin are MMP9 and IL6. Diclofenac is a nonsteroidal anti-inflammatory drug.
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It has been used to treat actinic keratoses developing in fair-skinned individuals with a
history of overexposure to ultraviolet light [89]. To mepyramine, it works by preventing the
action of histamine, which is a compound produced by the body when getting venom from
insect bites [90]. Moreover, one study mentioned the stimulation from histamine would
upregulate matrix metalloproteinase 9 (MMP9), which is also our proposed drug target
for mepyramine [91]. Resveratrol is abundant in grape skin and seeds [92]. Responding
to infection, stress, injury, bacteria or fungal infections, and UV-irradiation, it a popular
ingredient in skincare products [93]. In the field of dermatology, azathioprine is an effec-
tive immunosuppressant that is extremely valuable in treating pemphigoid, generalized
eczematous disorders, and actinic dermatitis [94]. Taken together, most of the proposed
small-molecule compounds are approved by the U.S. Food and Drug Administration (FDA).
Drug repurposing for identifying new uses of old drugs with the proposed systems biology
approaches might provide the alternative way to find the effective drugs for mitigating
skin aging.

Table 3. Drug targets and multiple-molecule drugs for preventing skin aging from middle age to
old age.

Drug
Target

MMP9 IL6 BCL2 CASP3

allantoin • •

diclofenac •

mepyramine • •

resveratrol • •

azathioprine • •

•: Proposed small molecules target to the identified biomarkers (drug targets).

3.5. The Limitations and Advantages to the Proposed Systems Medicine Design Procedure for
Human Skin Aging

Gene expression has been widely used to infer other molecular type measures, such
as proteomics, copy number variation, and mutation. In this study, we used human skin
microarray data processed with cubic spline interpolation to help us construct GWGENs
by system identification method via solving constrained linear least-squares estimation
problem. After that, we computed Akaike’s information criterion (AIC) for each gene
to prune false positives. Increasing samples through data interpolation and computing
AIC for detecting real systems order, we conquered the overfitting issue. Even though
we applied AIC and performed the data interpolation for increasing sample size in each
skin aging stage, it is noted that the estimated real GWGENs are near-optimum solutions
but not unique solutions. Furthermore, we include basal level in protein, gene, miRNA,
and lncRNA systems modeling. These terms imply the unknown interaction or epigenetic
modification, and mutation. If we found a basal level change, which was higher than a
threshold, we inferred the corresponding node was influenced by epigenetic modification
or mutation. These findings have to be verified by a literature survey. Based on the
progression molecular mechanisms in each skin aging stage, we could identify essential
biomarkers. For exploring the drug–target interaction to our identified biomarkers, we
trained a deep neural network of drug–target interaction in advance. In the drug–target
data which we used to train the prediction model, if pairs have not been mentioned as
known interactions in the BindingDB, we would assign them in the group of negative
samples, meaning no interaction. However, the negative samples in our study do not mean
without interaction. They might just be lack of experimental evidence or record nowadays.
Although the proposed system medicine design procedure exists the aforementioned
limitations, it still provides another viewpoint to shed the light on the human skin aging
progression based on system level. Moreover, drug repurposing strategy, giving new uses
for old drugs, has been used in this study. Most of the suggested small molecules are
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approved by the FDA, which could shorten the time of clinical trials. Integrating systems
biology approaches, deep learning framework and the design of two filters, we not only
transferred biological knowledge into engineering interpretation but also applied them to
drug discovery efficiently.

4. Materials and Methods
4.1. Overview of Systems Medicine Design Procedure of Human Skin Aging

In order to further understand skin aging molecular mechanisms from young adult-
hood to old age, we proposed a research flowchart as shown in Figure 2. At first, we collect
several regulation and interaction databases including DIP [95], IntAct [96], BioGRID [97],
BIND [98], MINT [99], HTRIdb [100], ITFP [101], Transfac [102], CircuitDB2 [103], and
TargetScan [104] to construct the candidate GWGEN, which is composed of candidate
protein-protein interaction network (PPIN) and candidate gene regulatory network (GRN).
Moreover, the candidate GWGEN is a Boolean matrix. If two nodes have interaction, we
would give one; if two nodes do not have interaction, we would give zero in it. With
three-stage preprocessed microarray data, we then identify real GWGENs by system iden-
tification method and system order detection scheme. Since real GWGENs are still too
complicated to investigate the skin aging progression mechanisms, we apply principal
network projection (PNP) method to extract core GWGENs from real GWGENs based on
the projection values. Subsequently, we denote the core signaling pathways in the style
of KEGG pathways. According to the core signaling pathways, we investigate skin aging
molecular mechanisms and identify essential biomarkers for young adulthood to middle
age and middle age to old age, respectively. After that, we used the trained deep neural
network of drug-target interaction to predict potential candidate drugs, which hold higher
probability to have interactions with identified biomarkers. To narrow down the candidate
drugs, we design two filters considering drug regulation ability and drug sensitivity by
CMap [34] and PRISM Repurposing dataset [105]. Consequently, we propose two multiple-
molecule drugs for slowing down human skin aging from young adulthood to middle age
and from middle age to old age, respectively.

4.2. Data Preprocessing of Human Skin Microarray Data

We obtained human skin microarray data from GSE18876 containing the gene ex-
pression level of male skin. It included 50 ages in the range from 19 to 86 years old with
29,226 probes. One study has shown that OR52N2, SIRT6, CPT1B, TUBAL3, COL1A1
and MATN4 were significantly regulated with age. Furthermore, it also indicated that
gene expressions of OR52N2, SIRT6 and CPT1B increased with age and gene expressions
of TUBAL3, COL1A1 and MATN4 decreased with age [106]. Therefore, we sketched the
changes of gene expression levels of these typical genes. Based on this line graph and
gene expression trend in aforementioned study, we defined young-adult, middle-aged and
elderly skin as 19 to 45 years old, 43 to 65 years old and 64 to 86 years old, respectively.
That is, the averages of gene expressions of OR52N2, SIRT6 and CPT1B increased and the
averages of gene expressions of TUBAL3, COL1A1 and MATN4 decreased from young
adult stage to middle age, and then to old age in human male skin. In the estimation
problem, one would easily face overfitting issue when the sample size is small and the
feature size is big [107]. Hence, in this study, firstly, we increased the sample size to 500 for
each skin aging stage by performing cubic spline data interpolation via splin, a MATLAB
function [108–110]. Secondly, we utilized system order detection scheme by computing
the AIC value to prune the false positives in the candidate GWGEN for finding the real
GWGENs of the human skin aging systems. The more details would be discussed in the
Section 4.5.

4.3. Dynamic Systems Modeling for the Candidate GWGEN

The candidate GWGWN consisting of PPIN and GRN. It is noted that GRN also
includes miRNA regulation network and lncRNA regulation network. In the following
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contents, we would take PPIN and GRN as an example, and the rest of them could be
found in Supplementary Materials. The PPIs of human-protein i in the candidate PPIN can
be described as a dynamic equation shown as below:

pi(t + 1) = pi(t) +
Ii

∑
j=1

αP
ij pi(t)pj(t)− σP

i pi(t) + λP
i gi(t) + βP

i + ǫP
i (t)

, for i = 1, . . . , I, −σP
i ≤ 0 and λP

i ≥ 0.
(1)

where pi(t), pj(t), and gi(t) indicate the expression levels of the ith protein, the jth protein,
and the ith gene at time t, respectively; αij denotes the interactive abilities between the ith
protein with the jth protein in human skin cells; σP

i represents the degradation rate of the
ith protein; λP

i indicates the translation effect from the corresponding mRNA to the ith
protein; The basal level βP

i signifies the regulations from other unknown regulators to the
ith protein; Ii denotes the number of human proteins interacting with the ith protein in the
candidate GWGENs; ǫP

i (t) signifies the noise of the ith protein owing to model uncertainty
or measurement noise at time t.

The k gene in the candidate GRN can be represented as a dynamic equation in the
following:

gk(t + 1) = gk(t) +
Ik

∑
i=1

aG
ki pi(t)−

Rk

∑
r=1

bG
krgk(t)mr(t) +

Lk

∑
ℓ=1

cG
kℓoℓ(t)− µG

k gk(t)

+δG
k + ωG

k (t) for k = 1, 2, . . . , K, −bG
kr ≤ 0 and − µG

k ≤ 0
(2)

where gk(t), pi(t), mr(t), and oℓ(t) indicate the expression level of the kth gene, the ith tran-
scription factor(TF), the rth miRNA and the ℓth lncRNA at time t, respectively; aG

ki, −bG
kr, and

cG
kℓ represent the regulatory abilities of the ith TF, the repression ability of the rth miRNA,

and the regulatory ability of the ℓth lncRNA on the kth gene, respectively; −µG
k signifies

the degradation rate of the gene expression of the kth gene; The basal level δG
k denotes the

regulations from other unknown regulators to the kth gene such as phosphorylation; ωG
k (t)

signifies the noise of the kth gene owing to model uncertainty or measurement noise at
time t; Ik, Rk, and Lk mean the total number of TFs, miRNAs, and lncRNAs in the candidate
GRN, respectively. Note that the biological regulatory mechanisms in skin cell in (2) involve
TF transcription regulations by ∑

Ik
i=1 aG

ki pi(t), miRNA repressions by −∑
Rk
r=1 bG

krgk(t)mr(t),
lncRNA regulation by ∑

Lk
ℓ=1 cG

kℓoℓ(t), the mRNA degradation by −µG
k gk(t), the basal level

by δG
k , and the noise by ωG

k (t). In this study, the effect of post-translational modification on
skin aging is considered by the basal level term δG

k .

4.4. Systems Identification Approach in the Candidate GWGEN via Microarray Data

After systems modeling by Equations (1)–(4), we then perform the systems identifi-
cation by solving the parameter estimation problems. The PPIN in Equation (1) can be
rewritten in the following linear regression form:

pi(t + 1) =
[

p1(t)pi(t) · · · pIi
(t)pi(t) gi(t) pi(t) 1

]





















αP
i1
...

αP
iIi

λP
i

1 − σP
i

βP
i





















+ ǫP
i (t)

= ψP
i (t)θ

P
i + ǫP

i (t) f or i = 1, 2, . . . , I.

(3)

where ψP
i (t), represents the regression vector that can be obtained from the microarray

data and θP
i denotes the unknown parameter vector to be estimated for the ith protein

in PPIN.
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Furthermore, the Equation (3) of the ith protein can be augmented for Yi time points
shown as below:











pi(t2)
pi(t3)

...
pi(tYi+1)











=











ψP
i (t1)

ψP
i (t2)

...
ψP

i (tYi
)











θP
i +











ǫP
i (t1)

ǫP
i (t2)

...
ǫP

i (tYi
)











, f or i = 1, 2, . . . , I, (4)

which can also be simplified by

Pi = ΨP
i θP

i + EP
i , f or i = 1, 2, . . . , I (5)

where

Pi =











pi(t2)
pi(t3)

...
pi(tYi+1)











, ΨP
i =











ψP
i (t1)

ψP
i (t2)

...
ψP

i (tYi
)











, EP
i =











ǫP
i (t1)

ǫP
i (t2)

...
ǫP

i (tYi
)











.

Therefore, the interaction parameters in the vector θP
i can be estimated by solving the

following constrained least-squares estimation problem:

θ̂P
i = min

θP
i

1
2
‖ΨP

i θP
i − Pi‖

2
2, subject to APθP

i ≤ bP, (6)

where

AP =

[

0 · · · 0 −1 0 0
0 · · · 0 0 1 0

]

∈ R
2×(Ik+3), bP =

[

0
1

]

.

To estimate the interaction parameters in (1) by solving the parameter estimation
problem in (6), we use an optimization toolbox function lsqlin in MATLAB. Simultaneously,
we ensure the protein translation rate λP

i and the protein degradation rate −σP
i to always

be non-negative and non-positive value, respectively; that is, λP
i ≥ 0 and −σP

i ≤ 0.
Similarly, we rewrite the dynamic equation of GRN in the Equation (2) as the following

linear regression form:

gk(t + 1) = [p1(t) · · · pIk
(t) gk(t)m1(t) · · · gk(t)mRk

(t) o1(t) · · · oLk
(t) g(t) 1 ]

















































aG
k1
...

aG
kIk

−bG
k1

...
−bG

kRk

cG
k1
...

cG
kLk

1 − µG
k

δG
k

















































+ωG
k (t) = ψG

k (t)θ
G
k + ωG

k (t), f or k = 1, 2, . . . , K

(7)
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where ψG
k (t), represents the regression vector that can be obtained from the microarray

data and θG
k signifies the unknown parameter vector estimated for the kth gene in the GRN.

Moreover, Equation (7) can be augmented for Yk time points in the following form:











gk(t2)
gk(t3)

...
gk(tYk+1)











=











ψG
k (t1)

ψG
k (t2)

...
ψG

k (tYk
)











θG
k +











ωG
k (t1)

ωG
k (t2)

...
ωG

k (tYk
)











, for k = 1, 2, . . . , K (8)

Next, we simplify the Equation (8) as below:

Gk = ΨG
k θG

k + ΩG
k , for k = 1, 2, . . . , K (9)

where

Gk =











gk(t2)
gk(t3)

...
gk(tYk+1)











, ΨG
k =











ψG
k (t1)

ψG
k (t2)

...
ψG

k (tYk
)











, ΩG
k =











ωG
k (t1)

ωG
k (t2)

...
ωG

k (tYk
)











.

Hence, the regulatory parameters in the vector θG
k can be estimated by solving the

following constrained least-squares estimation problem:

θ̂G
k = min

θG
k

1
2
‖ΨG

k θG
k − Gk‖

2
2, subject to AGθG

k ≤ bG (10)

where

AG =















0 0 · · · 0 1 0 · · · 0 0 0 · · · 0 0 0
0 0 · · · 0 0 1 · · · 0 0 0 · · · 0 0 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

...
0 0 · · · 0 0 0 · · · 1 0 0 · · · 0 0 0
0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 0















∈ R
(Rk+1)×(Ik+Rk+Lk+2)

, bG =







0
...
1






.

By applying the function lsqlin in MATLAB optimization toolbox to solve the param-
eter estimation problem in Equation (10), we can estimate the regulatory parameters for
GRN equation in Equation (2). Furthermore, we ensure that the miRNA repression rate
−bG

kr to be a nonpositive value and the gene degradation rate −µG
k to be a nonpositive

value for k = 1, 2, . . . K and r = 1, 2, . . . Rk.

4.5. Pruning False Positives in Candidate GWGENs to Obtain Real GWGENs by System Order
Detection Scheme

Due to the collected data, which we used for constructing the candidate GWGEN,
come from different databases, the various experimental conditions and noises might result
in getting many false-positive interactions and regulations after doing system identification.
Thus, we have to apply system order detection scheme by computing AIC to detect the real
system order of PPI model in Equation (1) and GRN model in Equation (2). According to
Akaike’s theory, the most accurate model has the smallest AIC value [111]. In other words,
when the value of AIC achieves the minimum, the detected system order approaches to
the real system order.
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For PPI model in Equation (5), the AIC value of the ith protein can be defined in the
following equation:

AICP
i (Ki) = log

{

1
Ti

[

Pi − ΨP
i θ̂P

i

]T[

Pi − ΨP
i θ̂P

i

]

}

+
2Ki

Ti
(11)

where θ̂P
i denotes the estimated interactive parameters of the ith protein from the solutions

of the parameter estimation problem in Equation (6), and the covariance of estimated
residual error is (ςP

i )
2
= 1

Ti

[

Pi − ΨP
i θ̂P

i

]T[
Pi − ΨP

i θ̂P
i

]

. In order to find out the real system
order K∗

i of the ith protein in the PPI model so that AICP
i (K

∗
i ), in Equation (11) can achieve

the minimum value, we trade off the system order and the estimated residual error. By
aforementioned system order detection method, PPIs with insignificant interaction abilities,
which are out of K∗

i , could be regarded as false positives and be pruned away.
For the GRN model in Equation (9), AIC value of the kth gene can be defined as the

following equation:

AICG
k (Ik, Rk, Lk) = log

{

1
Tk

[

Gk − ΨG
k θ̂G

k

]T[

Gk − ΨG
k θ̂G

k

]

}

+
(2Ik + Rk + Lk)

Tk
(12)

where θ̂G
k denotes the estimated regulatory parameters of the kth gene from the solutions

of the parameter estimation problem in Equation (10), and the covariance of estimated
residual error is (ςG

k )
2
= 1

Tk

[

Gk − ΨG
k θ̂G

k

]T[
Gk − ΨG

k θ̂G
k

]

. In order to find out the real system
order I∗k , R∗

k , and O∗
k of the kth gene in GRN so that AICG

k (I∗k, R∗
k, L∗

k), in (12) can achieve
the minimum value, we trade off the system order and to estimate residual error. In this
way, to kth gene, the gene regulations with insignificant regulatory abilities, which are
out of I∗k , R∗

k , and O∗
k , can be treated as false-positives and be pruned away from the

candidate GRN. It is noted that we apply the same system order detection scheme on
the miRNA model and the lncRNA model, which could be found in the Section S1.3 of
Supplementary Materials.

After performing system identification and system order detection scheme, which
pruned away the insignificant interactions and regulations in the candidate GWGEN, we
eventually obtained the real GWGENs for three stage of human skin aging. However, it
is still quite difficult to investigate the progression mechanisms of skin aging from these
real GWGENs due to their high complexity. Here, we introduce the principal network
projection (PNP) method to extract the core networks from the real GWGENs as core
GWGENs to solve this issue. The details are described in the following section.

4.6. Extracting Core Networks from Real GWGENs by the Principal Network Projection Method

The PNP method is a network structure projection approach based on the principal
singular values so as to reduce network dimension via deleting insignificant structures. In
order to use the PNP method to extract the core networks from the real GWGENs, we have
to construct a network matrix H consisting all of the estimated interactions and regulations
in the real GWGEN (with the ith row denoting the interactions or regulations on the ith
node, i.e., protein, gene, miRNA or lncRNA of real GWGEN) in the following formation:
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H =

























































α̂11 · · · α̂1I 0 · · · 0 0 · · · 0
... α̂ij

...
... 0

...
... 0

...
α̂I1 · · · α̂I I 0 · · · 0 0 · · · 0
âG
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KI −b̂G

K1 · · · −b̂G
KR ĉG
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âL
11 · · · âL
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Z1 · · · ĉL
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∈ R
(I+K+R+Z)×(I+R+Z) (13)

where α̂ij denotes the interactive abilities of the ith protein with the jth protein in the PPIN
which could be obtained from θ̂P

i by solving parameter estimation problem in Equation (6)
and pruning the false positives by AIC in Equation (11); âG

ki, b̂G
kr, and ĉG

kz represent transcrip-
tional regulative abilities from the ith TFs, the rth miRNAs and the zth lncRNAs onto the kth
protein-coding genes, respectively, which could be obtained from θ̂G

k by solving parameter
estimation problem in Equation (10) and pruning the false positives by AIC in (12); âM

ri , b̂M
rr ,

and ĉM
rz indicate the transcriptional regulative abilities from the ith TFs, the rth miRNAs

and the zth lncRNAs onto the rth miRNA’s gene, respectively, which could be acquired
from θ̂M

r by solving parameter estimation problem in Equation (S6) and pruning the false
positives by AIC in Equation (S11); âL

zi, b̂L
zr, and ĉL

zz indicate the transcriptional regulative
abilities from the ith TFs, the rth miRNAs and the zth lncRNAs onto the zth lncRNA’s gene,
respectively, which could be acquired from θ̂L

z by solving parameter estimation problem in
Equation (S10) and pruning the false positives by AIC in Equation (S12). It is noted that if
interactions or regulations do not exist in the candidate GWGEN via big data mining or
already have been pruned by AIC, the corresponding components in matrix H are padded
with zero.

As the H have been constructed, we thereby extract the core GWGEN from the real
GWGEN by the PNP method shown as below. At first, the combined network matrix H
can be a factorization of the following singular value decomposition (SVD) form as below:

H = U × D × VT (14)

where U ∈ R
(I+K+R+Z)×(I+R+Z), V ∈ R

(I+R+Z)×(I+R+Z), and D = diag(d1, · · · , dI+R+Z).
D is composed of I + R + Z singular values of H and d1 ≥ d2 ≥ · · · ≥ dI+R+Z. The eigen
expression fraction Eh is defined in the following energy normalization:

Eh =
d2

h
I+R+Z

∑
h=1

d2
h

(15)

Then, we find out the minimum γ such that
γ

∑
h=1

Eh ≥ 0.85. That is, top γ singular

vectors of matrix H contain 85% core network structure of the real GWGEN from the energy
point of view. Additionally, we define the projections of H to the top γ singular vectors of
V as

NR(w, s) = hw,: × vT
:,s for w = 1, 2, . . . , I∗ + R∗ + Z∗ and s = 1, 2, . . . , γ (16)
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where hw:, and vT
:,s denote the wth row of H and the sth column of V, respectively. Sub-

sequently, for the top γ right-singular vectors, we define the 2-norm projection value of
proteins, genes, lncRNAs, and miRNAs (i.e., the nodes) in the real GWGEN as below:

DR(w) =

[

γ

∑
s=1

[NR(w, s)]2
]1/2

for w = 1, 2, . . . , I∗ + R∗ + Z∗ and s = 1, 2, . . . , γ (17)

If the projection value, DR(w), approaches to zero for the wth node, it means that
the wth node is almost independent to the principal network structure. That is, the larger
the projection value is, the greater the contribution of the corresponding node to the core
network is. By doing so, we can extract the core GWGEN by collecting nodes with large
projection values from the real GWGENs and denote them in the KEGG pathway style to
investigate the progression mechanisms of human skin aging.

4.7. Data Preprocessing for Training Deep Neural Network of Drug–Target Interaction in Advance

The drug–target interaction dataset comes from BindingDB [35]. The descriptors
of drugs and targets are transformed by PyBioMed [112]. We install this package and
import PyMolecule module and PyProtein module to transform drugs and targets into
their descriptors under python 2.7 environment. The PyMolecule module in PyBioMed is
responsible to compute the commonly used structural and physicochemical descriptors
to be drug features. The drug features include constitutional and geometrical descriptors.
Furthermore, the PyProtein module in PyBioMed is responsible for calculating the widely
used descriptors, including structural and physicochemical properties of proteins and
peptides from amino acid sequences, to be target features. Subseqently, concatenating the
drug descriptor and the target descriptor, we describe properties of a drug and its target
by a feature vector shown in (18). Moreover, the total number of drug features and target
features are 363 and 996, respectively.

vdrug−target = [D, T] = [d1, d2, . . . , dI , t1, t2, . . . , tJ ] (18)

where vdrug−target indicates a feature vector of a drug-target pair; D denotes the feature
vector of the drug; di indicates the ith drug feature; T represents the feature vector of the
target; tj is the jth target feature; I is the total number of drug features; J is the total number
of target features. We conduct the same transformation for all the drug-target pairs to
obtain their drug-target feature vectors.

Supplementary Materials: The following are available online, Figure S1: The real genome-wide
genetic and epigenetic network (GWGEN) of young-stage skin, Figure S2: The real genome-wide
genetic and epigenetic network (GWGEN) of middle-stage skin, Figure S3: The real genome-wide
genetic and epigenetic network (GWGEN) of elder-stage skin, Figure S4: Deep neural network of
drug-target interaction framework, Table S1: The pathway enrichment analysis of proteins through
applying the DAVID in the core GWGEN of young-stage skin, Table S2: The pathway enrichment
analysis of proteins through applying the DAVID in the core GWGEN of middle-stage skin, Table S3:
The pathway enrichment analysis of proteins through applying the DAVID in the core GWGEN of
elder-stage skin, Table S4: Drug targets with their corresponding small-molecule compounds, Table
S5: Drug targets with their corresponding small-molecule compounds.
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Abstract: Non-steroidal anti-inflammatory drugs are inhibitors of cyclooxygenase-2 (COX-2) that
were developed in order to avoid the side effects of non-selective inhibitors of COX-1. Thus, the present
study aims to identify new selective chemical entities for the COX-2 enzyme via molecular modeling
approaches. The best pharmacophore model was used to identify compounds within the ZINC
database. The molecular properties were determined and selected with Pearson’s correlation for the
construction of quantitative structure–activity relationship (QSAR) models to predict the biological
activities of the compounds obtained with virtual screening. The pharmacokinetic/toxicological
profiles of the compounds were determined, as well as the binding modes through molecular docking
compared to commercial compounds (rofecoxib and celecoxib). The QSAR analysis showed a fit
with R = 0.9617, R2 = 0.9250, standard error of estimate (SEE) = 0.2238, and F = 46.2739, with the
tetra-parametric regression model. After the analysis, only three promising inhibitors were selected,
Z-964, Z-627, and Z-814, with their predicted pIC50 (−log IC50) values, Z-814 = 7.9484, Z-627 = 9.3458,
and Z-964 = 9.5272. All candidates inhibitors complied with Lipinski’s rule of five, which predicts a
good oral availability and can be used in in vitro and in vivo tests in the zebrafish model in order to
confirm the obtained in silico data.

Keywords: in silico; COX-2 inhibitors; molecular modeling

1. Introduction

Inflammatory processes stand out for their pathophysiological aspect, as they are caused by
pathogenic microorganisms, such as viruses, bacteria, fungi, and parasites that invade host cells to
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reproduce, resulting in a complex and heterogeneous group of diseases that cause morbidity and
mortality to those affected by them. At the same time, the need for specific attention to protect the
integrity of human organisms from harmful or exogenous agents is emphasized [1].

Inflammatory mediation is regulated by the action of neutrophils, mast cells, eosinophils,
macrophages, dendritic cells, and epithelial cells. It is a complex process involving vasodilation,
chemotaxis, and increased permeability. Sensors called Toll-like receptors (TLR) recognize the products
of pathogens, such as endotoxins and bacterial DNA that are located in the plasma membrane and in
the endosomes, and they are capable of detecting intra and extracellular microorganisms [2].

When an injury occurs, platelets release complement proteins, where mast cells degranulate
releasing histamine (vasodilation) and serotonin (cell permeability and diapedesis), where neutrophils
are activated and migrate to the site of action induced by chemokines. Neutrophils phagocytose
pathogenic organisms releasing mediators and attracting macrophages, increasing the release of
pro-inflammatory mediators (prostaglandins and leukotrienes) and cytokines (interleukin 1 (IL-1),
interleukin 6 (IL-6) and tumor necrosis factor (TNFα)). When cells are activated, the arachidonic acid
(AA) of the cell membrane is converted by enzymes for the synthesis of prostaglandins and leukotrienes.

In one of the stages of the inflammatory process, prostaglandins, also called eicosanoids,
are synthesized by triggering various stimuli that activate cell membrane receptors, when coupled
with a regulatory protein that results in the activation of phospholipase A2 or with an increase in
the concentration of Ca+2. This type of enzyme hydrolyzes membrane phospholipids, consequently
releasing the cascade of arachidonic acid, which is a substrate for the synthesis of physiopatological
and inductive prostaglandins; see Figure 1 below [3].

 

α

 

Figure 1. Cascade of arachidonic acid.

Prostaglandins-endoperoxide synthase (PTGS) are known as cyclooxygenases responsible for the
synthesis of prostaglandins that are percussive biologically active molecules. Figure 1 shows that the
conversion of AA into signaling molecules takes place in 2 moments. (i) The enzyme cyclooxygenase-1
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(COX-1, PTGS1) catalyzes the addition of two free oxygen atoms to form the 1,2-dioxane bridge and a
functional group to form prostaglandin G2 (endoperoxide (PGG2)). (ii) COX-2 (PTGS2) reduces the
peroxide functional group to a secondary alcohol, forming prostaglandin H2 (PGH2). PGG2 and PGH2
are unstable, but they are precursors for the formation of other prostaglandins (PGE2, PGD2, PGF2),
prostacyclin (PGl2), and thromboxane A2 (TXA2), which are commonly called eicosanoids.

Currently, it is known that two genes express two distinct, but similar, isoforms of COX.
These enzymes catalyze the biosynthesis of prostaglandins and thromboxanes by reducing arachidonic
acid; they are called COX-1 and COX-2, with similar general protein structures that essentially catalyze
the same reaction. COX-1 is an enzyme considered to be constitutive; it is part of the homeostatic
maintenance of various processes of the human organism, and it is present in most tissues, including
stomach, kidney, and coronary arteries [4].

On the other hand, the COX-2 enzyme is considered inductive; that is, it expresses the inflammatory
process in cells. The understanding of the COX inhibition process has allowed and still allows the
development of new perspectives in relation to the therapeutic targets and the synthetic drugs
produced, so that they are as selective and smooth as possible, corroborating their adverse effects [4,5].
Widely prescribed non-steroidal anti-inflammatory drugs (NSAIDs) are a class of drugs used to treat
pain, fever, and inflammation. Since 1893, when acetylsalicylic acid was produced, NSAIDs have
become the most accepted and prescribed drugs. However, it was not until 1971 that John Vane clarified
the mechanism of action of these drugs: They inhibit cyclooxygenase (COX), preventing consequently
the synthesis of prostaglandins [6].

Non-selective or traditional NSAIDs inhibit both isoforms (1 and 2), but COX-1 inhibition is the
main cause of increased gastrointestinal bleeding or ulcer formation, abdominal pain, and dyspepsia,
including indomethacin, naproxen, and ibuprofen. On the other hand, COX-2 inhibition, inducing
pro-inflammatory processes, plays a role in pain relief with reduced gastrointestinal effects, which is
usually expressed by the coxib class, among them rofecoxib, celecoxib, valdecoxib, and lumiracoxib [7].

The knowledge of the structures of COX-1 and COX-2 and their active sites constitute the
fundamental basis for the development of more specific inhibitors for COX-2 and for the elaboration of
studies of the structure–activity relationship of these products. During enzymatic activity, arachidonic
acid binds to an Arg120 and to a Ser530. An electron transfers Tyr385 to an oxidized heme, which is also
bound within the enzyme, initiating the reaction cyclooxygenase. Several studies have attempted
to elucidate how and where non-steroidal anti-inflammatory drugs act on cyclooxygenase to block
prostaglandin synthesis. Within the hydrophobic channel of COX, an amino acid difference at position
523 (isoleucine in COX-1 and valine in COX-2) can be of critical importance in the selectivity of several
drugs [8].

One of the main drugs used, with a selective effect to inhibit the pro-inflammatory effect of COX-2,
was rofecoxib, which would have the potential for treatment without side effects such as ulcers and
gastrointestinal problems. Studies by Bombardier et al. 2000 [5] reported that when compared to a
500 mg dose of naproxen per day for the same period, the incidence of efficacy was equivalent, but the
administration of rofecoxib had less side effects such as bleeding gastric and duodenal ulcers. However,
it was observed that the toxicological effect of rofecoxib, with a daily 50 mg dose for 9 consecutive
months, doubled the acute myocardial infarction and strokes [8].

At the current stage of knowledge, in which the binding sites for specific inhibitors in COX-2
have already been described, and the three-dimensional protein structure of the enzyme is clearly
established, the use of modern molecular modeling techniques should be able to triate new compounds
of high affinity and specificity, but probably without the presence of the sulfonamide and sulfone
groups of the second-generation compounds seen previously, thus representing the birth of a third
generation of specific COX-2 inhibitors [9].

The process from a biological target project to a new drug discovery can take an average of
10 years or more, and the computational chemistry comes with an excellent direction in the rational
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planning of drugs, with already countless cases of success involving or using computer simulations
citing as an example the main factors: losartan, atorvastatin, and celecoxib.

Mathematical analyses accompany in silico studies in order to enable the reduction of costs and
time to obtain positive results, observing the molecular structures and their possible affinities with the
therapeutic target, using the quantitative structure–activity relationship (QSAR). This method aims to
build parametric models for predicting inhibitory activity (IC50) correlated with dependent variables
such as physical–chemical, biological, and toxicological properties [10].

In these analyses, reduction filters are applied to the models used to predict inhibitory activity,
correlating the molecule structures with their activity and toxicological potential, and comparing
them with a positive control. In 2016, Brick et al. [10] applied the QSAR analysis to identify new
antimalarial inhibitors from 1H-Imidazol-2-IL-Pyrimidine-4,6-Diamines, with reducing filters to
eliminate descriptors that did not show correlation or information relevant to the process of statistical
and toxicological analysis, beginning the screening with 107 compounds from the ZINC database and
ending with four more promising compounds.

In this context, one of the main types of studies in progress by the scientific community is the in silico
and in vivo studies of inhibitors for the inflammatory processes to search for new selective molecules.
In parallel, the QSAR study (quantitative structure–activity relationships) uses multiparametric models
that interrelate biological activity with the physical–chemical properties of selected molecules in order
to predict their inhibitory capacity against the inflammatory mechanism [10]. Therefore, the objective
of this work is the virtual screening of analogs of rofecoxib (Vioox®), based on pharmacophore and
QSAR analysis, understanding approaches and molecular modeling techniques through free software
that is easily accessible by the scientific community, in parallel with the prediction of pharmacokinetic
properties and toxicity that show the possible effectiveness of the selected structures, according to the
methodological scheme presented in Figure 2 (see more details in the Materials and Methods section).

 

 

Figure 2. General scheme summarizing of the methodological steps.
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2. Results and Discussion

2.1. Molecular Optimization and QSAR Analysis

The structure of rofecoxib was selected as a pivot given its potential to mitigate the gastrointestinal
effects compared to other selective drugs. Although this drug has the unwanted effect of acute
myocardial infarction, the objective is to detect essential pharmacophore characteristics through virtual
screening so that the selected promising structures have the same effectiveness. On the other hand,
this is one of the only structures that presents the complexed structure in the Protein Data Bank (PDB)
(5KIR, https://www.rcsb.org/) for the Homo sapiens organism, bringing the results of an ideality in front
of the human organism.

The 32 molecules (Rofecoxib as a pivot) for the analysis were selected in the BindingDB database
(https://www.bindingdb.org/bind/index.jsp) obeying an increasing order of IC50, with specific activity
related to COX-2 and the Homo sapiens organism, in addition to not repeating inhibitory activity
values, which could impact false-positive results through a straight line adjustment facilitated by of
statistical analysis.

The molecular optimization values are shown in Table S1. The overlapping process was carried
out by selecting molecules with the lowest energy value (PM3), since the optimization of molecular
structures aims to bring the real structure closer to the energy minimum conformation, and with the
observed experimental data, the optimization time quantification aims to elucidate the computational
cost, as it is an expensive and time-consuming process [11].

Later, they were submitted to the PharmaGist software (https://bioinfo3d.cs.tau.ac.il/PharmaGist)
for the extraction of physicochemical properties and construction of structure–activity relationship
models (QSAR). The characteristics were analyzed with the aid of the Statistica® software, where the
most relevant ones were used to predict the inhibitory activity as a function of the pIC50 value to
decrease statistical inconsistencies. This software is capable of predicting the relationship between
the inhibitor structure and its inhibitory activity, with a Pearson correlation cut-off of 0.4, obtaining
a training set with n = 20 structures (methodology adopted by Santos, Cruz and Santos) [12–14].
Table 1 shows the selected descriptors. The atoms (ATM) characteristic presented the best correlation
among all descriptors, with a value of 0.7651, allowing inferring that the number of atoms significantly
interferes in the pIC50 responses of the selected molecules. However, it must be noted that the selected
regression model is tetra-parametric, so the prediction analysis must take into account the contribution
of each descriptor in the process of prediction of the inhibitory activity value, as is the case of aromatic
characteristics (ARO) with a p value of 0.7358 and acceptors (ACC) with a p value of 0.6399, which also
contributes to the prediction of the inhibitory activity.

This result can also be accompanied by the analysis of hierarchical cluster analysis (HCA)
(Figure S1) performed with the aid of the Minitab® Trial software, allowing observation of the similarity
between the physical–chemical characteristics and the inhibitory activity of the respective molecules,
corroborating with the data obtained by Pearson’s correlation. The characteristics of ATM and ARO
show greater proximity to the predicted pIC50. The descriptor ACC is inversely proportional to the
predicted pIC50 value, which indicates that the presence of hydrophilic groups capable of establishing
hydrogen-bonding interactions can increase the inhibitory potential of the selected structures.

The ATM characteristic may not be essential when analyzed individually; however, we observed
that the greater the number of atoms present in a structure, the greater its volume and topological
polar surface area (TPSA), which are both characteristics that are essential for good oral absorption
of the medication in the body, consequently obeying the Lipinski rule. On the other hand, it is not
the only relevant characteristic for the prediction of the values of inhibitory activity and must be
corroborated with the other characteristics provided by the statistical analysis [15]. Figure S2 represents
the PCA analysis for the selected molecules. It correlates its characteristics with the inhibitory activity;
the compounds with the lowest activity are in red, and those with the best activity are in blue.
Molecule 11 is displaced from the others because it presents values of hydrogen donors equal to
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3, which is different from the others in the selected training group that present values of 0 and 1,
showing statistically a decrease in the pIC50 values of the structures.

Table 1. Properties of the screened training molecules obtained from the PharmaGist server.

Inhibitor
Characteristics

ATM a ARO b DONN c ACC d pIC50 IC50 (nM)

1 * 36 2 0 4 7.9208 12.00
2 45 4 1 2 10.0457 0.09
3 48 4 1 2 9.7695 0.17
4 50 2 1 3 9.6989 0.20
5 45 4 1 2 9.5528 0.28
6 42 4 1 2 9.4436 0.36
7 42 4 1 2 9.4317 0.37
8 42 4 1 2 9.2218 0.60
9 42 4 1 2 9.0969 0.80
10 42 3 1 3 9.0000 1.00
11 37 2 3 5 8.7447 1.80
12 44 3 1 5 8.4317 3.70
13 40 3 1 3 8.3979 4.00
14 42 3 0 4 8.3767 4.20
15 29 2 1 2 8.3000 5.00
16 41 3 1 4 8.2518 5.60
17 40 1 0 4 8.2218 6.00
18 36 1 0 4 8.0969 8.00
19 36 1 0 4 7.7212 19.00
20 33 2 0 3 7.6777 21.00

ATM 1.0000 0.5659 0.2027 −0.2280 0.7651 −

ARO 1.0000 0.3559 −0.6492 0.7358 −

DONN 1.0000 −0.0423 0.4743 −

ACC 1.0000 −0.6399 −

* Pivotal molecule. [a] Atoms; [b] Aromatics; [c] Donors; [d] Acceptors.

In addition, the values of the number of atoms provide a better forecast: molecule 11 (37 atoms)
shows one of the lowest values for ATM, as well as 15, 18, 19, and 20. It is observed that for the most
active molecules, the ATM characteristics are relevant to the value of inhibitory activity, shifting them
to the most active side. All the most active structures have four aromatic groups, except for molecule
4 which has only 2; however, its inhibitory activity is accentuated by the number of atoms in its
structure (50).

In parallel, it must be understood that the predicted activity depends on the correlation between
the four selected characteristics and their relative weight, and that the objective of the preliminary QSAR
analysis is to investigate the most relevant characteristics among the data presented in the sampling of
the structures already reported with inhibitory activity that are selective for COX-2. Figure S3 shows
the analysis of HCA for the selected inhibitors. The HCA analysis gathers in hierarchical groups by
similarity; the most active are represented in blue, and the least active ones are in red. It is observed that
the data from the cluster followed the data obtained previously via QSAR and principal component
analysis (PCA) analyses.

The tree-like dendrogram is seeking the structural similarities and the response to the inhibitory
activity. It is noticed that 2 to 9 have four aromatic groups, with the exception of 4, which has only two,
but its activity is enhanced by the number of atoms of the structure. Figure 3 shows the structure of the
eight most active molecules. The common group observed in these inhibitors is pyrrole, in addition to
the methylsulfone group, with the exception of 4. The presence of the methylsulfone group resembles
the structure of rofecoxib and differs from the structures of the other coxibs (celecoxib and etoricoxibe),
which have a sulfonamide functional group that is responsible for their toxicological characteristics.
Pyrrole gives the appropriate lipophilic character to the molecule, which can help the molecule enter
the COX-2 active channel [16].
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Figure 3. The most active molecules.

Table 2 shows the regression data of the descriptors used to verify the best model for predicting
the inhibitory activity. A combination has been used to evaluate the statistical parameters and select
the parametric prediction equation according to the best fit. It is observed that the physical-chemical
parameters ATM, ACC, and ARO are significant for the final calculated pIC50 values. The best statistical
parameters were obtained for the parametric tri and tetra models with R2 values of 0.9599 and 0.9617,
and variance ratios of 62.6373 and 46.2719, respectively. It is emphasized that the greater the number
of equated scores, the greater the quality of the predictor model, although the values are statistically
close [10].

Table 2. Parametric models and regression analysis values (R: Correlation coefficient; R2: Correlation
to square coefficient; RA

2: Correlation coefficient to adjusted square. SEE: Standard estimated error;
F: Variance ratio).

Mono Parametric

Eq. Descriptors used R R2 RA
2 SEE F

1 ATM 0.7651 0.5854 0.5623 0.4804 25.4183
2 ARO 0.7358 0.5414 0.5159 0.5053 21.2522
3 ACC 0.6399 0.4095 0.3767 0.5733 12.4871
4 DONN 0.4743 0.2249 0.1819 0.6569 5.2251

Bi Parametric

Eq. Descriptors used R R2 RA
2 SEE F

1 ATM + ACC 0.9022 0.8140 0.7921 0.3311 37.2030
2 ARO + ATM 0.8487 0.7203 0.6874 0.4060 21.8906
3 ATM + DONN 0.8316 0.6916 0.6554 0.4263 19.0684
4 ACC + DONN 0.7809 0.6099 0.5640 0.4795 13.2914
5 ARO + DONN 0.7701 0.5930 0.5452 0.4898 12.3893
6 ARO + ACC 0.7661 0.5869 0.5383 0.4934 12.0789

Tri Parametric

Eq. Descriptors used R R2 RA
2 SEE F

1 ATM + ACC + DONN 0.9599 0.9215 0.9068 0.2217 62.6376
2 ARO + ATM + ACC 0.9053 0.8197 0.7859 0.3360 24.2481
3 ARO + ACC + DONN 0.8207 0.6736 0.6125 0.4521 11.0113

Tetra Parametric

Eq. Descriptors used R R2 RA
2 SEE F

1 ATM + ACC + DONN + ARO 0.9617 0.9250 0.9050 0.2238 46.2719
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Note that the parametric tetra prediction values were better adjusted with a correlation R = 0.9617
and standard error of estimate (SEE) = 0.2238, with a notable predictive capacity. Such alignment can be
compared with the residual values found during the validation step of the equation, with ∆4 differences
close to 0.2, which demonstrates the ability to predict the values of inhibitory activity. Table 3 analyzes
the predicted models for the molecules, allowing inference of the difference (∆ = residual) between
the pIC50 values found in an experimental way and the statistical prediction values for a defined
parametric model and the equation was determined considering the highest statistical correlation.

Table 3. pIC50 values calculated using the prediction equations.

Molecule pIC50
Mono Bi Tri Tetra

Eq. (1) ∆1 Eq. (2) ∆2 Eq. (3) ∆3 Eq. (4) ∆4

1 * 7.9208 8.2562 −0.3354 8.0305 −0.1097 7.7961 0.1247 7.7670 0.1538
2 10.0457 9.2561 0.7896 9.5495 0.4962 9.5773 0.4684 9.5693 0.4764
3 9.7695 9.5894 0.1801 9.8339 −0.0644 9.832 −0.0625 9.8414 −0.0719
4 9.6989 9.8116 −0.1127 9.6906 0.0083 9.6680 0.0309 9.7855 −0.0866
5 9.5528 9.2561 0.2967 9.5495 0.0033 9.5773 −0.0245 9.5693 −0.0165
6 9.4436 8.9228 0.5208 9.2651 0.1785 9.3226 0.1210 9.2972 0.1464
7 9.4317 8.9228 0.5089 9.2651 0.1666 9.3226 0.1091 9.2972 0.1345
8 9.2218 8.9228 0.2990 9.2651 −0.0433 9.3226 −0.1008 9.2972 −0.0754
9 9.0969 8.9228 0.1741 9.2651 −0.1682 9.3226 −0.2257 9.2972 −0.2003
10 9.0000 8.9228 0.0772 8.9322 0.0678 8.9888 0.0112 8.9925 0.0075
11 8.7447 8.3673 0.3774 7.7924 0.9523 8.5957 0.1490 8.6154 0.1293
12 8.4317 9.1450 −0.7133 8.4560 −0.0243 8.4910 −0.0593 8.4297 0.0020
13 8.3979 8.7006 −0.3027 8.7426 −0.3447 8.8190 −0.4211 8.8111 −0.4132
14 8.3767 8.9228 −0.5461 8.5993 −0.2226 8.3055 0.0712 8.2438 0.1329
15 8.3000 7.4785 0.8215 8.0327 0.2673 8.2189 0.0811 8.2529 0.0471
16 8.2518 8.8117 −0.5599 8.5045 −0.2527 8.5701 −0.3183 8.5297 −0.2779
17 8.2218 8.7006 −0.4788 8.4097 −0.1879 8.1357 0.0861 8.1972 0.0246
18 8.0969 8.2562 −0.1593 8.0305 0.0664 7.7961 0.3008 7.8344 0.2625
19 7.7212 8.2562 −0.5350 8.0305 −0.3093 7.7961 −0.0749 7.8344 −0.1132
20 7.6777 7.9229 −0.2452 8.0790 −0.4013 7.8752 −0.1975 7.8670 −0.1893

21 [a] 9.3010 9.0339 0.2671 9.0270 0.2740 8.7242 0.5768 8.7066 0.5944
22 [a] 8.8508 8.9228 −0.0720 9.2651 −0.4143 9.3226 −0.4718 9.2972 −0.4464
23 [a] 8.8239 9.3672 −0.5433 9.6443 −0.8204 9.3127 −0.4888 9.3508 −0.5269
24 [a] 8.6990 8.8117 −0.1127 8.8374 −0.1384 9.2534 −0.5544 9.2110 −0.5120
25 [a] 8.4815 9.0339 −0.5524 9.3599 −0.8784 9.0580 −0.5765 9.0787 −0.5972

Prediction Equations

Mono pIC50 = 4.2566 + (0.1111 × ATM)
Bi pIC50 = 5.9493 + (0.0948 ×ATM) + (−0.3329 × ACC)
Tri pIC50 = 6.0749 + (0.0849 × ATM) + (−0.3338 × ACC) + (0.3495 × DONN)

Tetra pIC50 = 6.1250 + (0.0907 × ATM) + (−0.3721 × ACC) + (0.3766 × DONN) + (−0.0674 × ARO)

* Pivotal molecule; [a] internal validation.

The best results in question were for 10 (∆4 = 0.0075) and 12 (∆4 = 0.0020) inhibitors, although 2
(∆4 = 0.4764), 16 (∆4 = −0.2779), and 18 (∆4 = −0.2625) present residues greater than 0.2 in relation to
the experimental data obtained. The margin of error (SEE = 0.2238) allows us to infer that the two
may be within the desired perspective of residue, mainly, less than 1. The internal validation set
demonstrated the detection of anomalous samples, which were excluded from the test set because
they reduced the statistical correlation of the applied parametric method, with residues greater than
0.4, increasing the estimated error and deviating the correlation of the predicted values with the
experimental data, which is justified by its exclusion from the test set initially. However, the reinclusion
of these aims to determine the predictive capacity of the model, and results with residuals less than 1
are significant.
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Figure 4 shows the projection of the data obtained in relation to the linear regression obtained,
with a line adjustment of R2 = 0.9617 of the tetra-parametric model, showing a good relationship
between the experimental and predicted values.
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Figure 4. Linear correlation graph of the tetra-parametric model.

Table 4 shows the predicted values for the external validation set, applying the equations according
to Table 4. For the validation test, a set between 20% and 30% of the total of the original set were
used in the predictive model in order to prove its robustness [10]. It is observed that the values have
good predictive quality for the molecules selected as an external set, with greater proximity for 26, 27,
and 30, with residues close to 0.1. This shows that the model has a significant correlation between the
descriptors used.

Table 4. External validation set.

Molecule pIC50
Mono Bi Tri Tetra

Eq. (1) ∆1 Eq. (2) ∆2 Eq. (3) ∆3 Eq. (4) ∆4

26 9.7447 9.3672 0.3775 9.3114 0.4333 9.6779 0.0668 9.6645 0.0802
27 9.2676 8.8117 0.4559 8.8374 0.4302 9.2534 0.0142 9.2110 0.0566
28 8.8508 8.9228 −0.0720 9.2651 −0.4143 9.3226 −0.4718 9.2972 −0.4464
29 8.6198 9.7005 −1.0807 8.2642 0.3556 8.2479 0.3719 8.1390 0.4808
30 8.2757 8.3673 −0.0916 8.1253 0.1504 8.2305 0.0452 8.1669 0.1088
31 8.1549 7.8118 0.3431 8.3171 −0.1622 8.4736 −0.3187 8.5250 −0.3701

Celecoxib 9.2839 8.7006 0.5833 8.4097 0.8742 8.4852 0.7987 8.4390 0.8449

2.2. Virtual Screening and Analysis of Pharmacokinetic and Toxicological Properties

After selecting the best inhibitors, these were used on the Protox II and Molinspiration servers to
select the reduction filters; the compounds were directed to the ZincPharmer database through the
Pharmit web server (http://pharmit.csb.pitt.edu/search.html) shown in Table S2, with the maximum
and minimum values being selected in order to limit the promising structures to those within the
pre-applied characteristics through the QSAR analysis, with a maximum limit of 2000 structures to be
selected. The filters are applied on the online server, as well as the pharmacophore coordinates (below)
elucidated for possible data reproduction and comparison with statistical analysis.
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The pharmacophore structure obtained through the PharmaGist server is demonstrated, aligning
the similarities of the twenty selected molecules (Table 5). It is observed that the characteristics of the
pharmacophore follow the data obtained through statistical analysis, presenting two aromatic groups,
two hydrophilic groups, and hydrogen receptors. Such pharmacophore characteristics are essential
when compared to the central process molecule, which has two ARO groups and four ACC groups,
allowing the tracking of molecules with physical and chemical characteristics closer to rofecoxib.

Table 5. Pharmacophore characteristics.
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Pharmacophore
Characteristics

Coordinates

x y z Radius

Hydrogen Acceptor (HA1) 15.30 −10.69 −1.79 0.50
Hydrogen Acceptor (HA2) 17.52 −11.00 −2.88 0.50

Aromatic (ARO1) 17.28 −7.30 −1.54 1.10
Aromatic (ARO2) 21.57 −4.64 −1.16 1.10

On the other hand, in studies by Chakraborty, Sengupta, and Roy (2004) [17], linear multiple
regression (RML) analyses were used to deduce statistically acceptable equations. The variation
ratios were 0.675 for COX-1 and 0.842 for COX-2, observing three important pharmacophores groups:
methyl sulfonyl portion, central phenyl ring, and terminal phenyl ring. These are relevant when
compared to their affinity with the lipophilic channel present in the active sites of the enzymes,
corroborating with the data obtained in the present study.

After the application of the reduction and selection filters of the 2000 compounds, they were
submitted to similarity to Tanimoto to find out which ones are closer to the characteristics of the pivot
molecule used in the process (Rofecoxib). The fifty eight (58) molecules were obtained with a Tanimoto
index greater than 0.35 (see Table 6), which is a value that is considered reasonable for the application
of toxicological and pharmacological prediction studies in silico, with three promising molecules being
selected during these tests as reported below, subsequently applying the molecular coupling and
molecular dynamics tests [18].

Table 6. Similarity studies of molecules using the Tanimoto Index.

Zinc
Tanimoto Index (Ti)

>0.25 >0.30 >0.35

Top Hits 1451 491 58

Table 7 shows the best results of the toxicological tests applied to the three inhibitors selected
through the Tanimoto index and tests performed through the online server PreADMET (https:
//preadmet.bmdrc.kr/adme/) in order to screen those who present better absorption, distribution,
and metabolism values besides limiting the possibilities of mutagenicity through toxicological tests.
It is observed that molecules showed high LD50 values, with the exception of Z-627, but it presents
good values for the absorption and distribution tests, contributing to its selection in the molecular
docking tests. Carcinogenicity tests for rats and mice demonstrate a possibility of mutation for all the
selected inhibitors; however, when compared to the control compound, it also observed this important
side effect, and accordingly, it did not prevent the selection of these molecules. At the same time,
the Ames test was used as a cut-off parameter between the most promising and those that would be
excluded from the subsequent steps, where those that showed a positive result were eliminated from
the process. This test assesses the possibility of mutagenicity of chemical compounds in media with a
low histidine concentration, which allows the strains of Salmonella typhimurium to change and return to
a prototypical state, which directly influences the carcinogenic response.

344



Molecules 2020, 25, 4183

Table 7. Toxicological data of selected inhibitors.

Molecule
Toxicity

LD50 (mg/kg) [a] Toxicity Class [a] Ames_test Carcino-Mouse Carcino-Rat

Rofecoxib 4500 V Mutagen Negative Negative
Celecoxib 1400 IV Mutagen Negative Negative

Z-814 2000 IV Non-mutagen Negative Negative
Z-627 61 III Non-mutagen Negative Negative
Z-964 5000 V Non-mutagen Negative Negative
[a] Protox (http://tox.charite.de/protox_II) Class I: fatal if swallowed (LD50 ≤ 5); Class II: fatal if swallowed (5 < LD50
≤ 50); Class III: toxic if swallowed (50 < LD50 ≤ 300); Class IV: harmful if swallowed (300 < LD50 ≤ 2000); Class V:
may be harmful if swallowed (2000 < LD50 ≤ 5000); Class VI: non-toxic (LD50 > 5000).

The pharmacokinetic data for distribution are shown in Table 8. The plasma protein binding
values (PPB) refer to the degree of binding of the inhibitors with the proteins present in the blood and
Cbrain/Cblood represents the permeability of the blood–brain barrier. Compounds with Cbrain/Cblood

values less than 1 do not have activity on the central nervous system (CNS).

Table 8. Distribution data of selected inhibitors.

Inhibitor
Distribution

Cbrain/CBlood
[a] PPB (%) [b]

Rofecoxib 0.0137 94.8036
Celecoxib 0.0272 91.0772

Z-814 0.9553 95.5607
Z-627 0.0344 85.3783
Z-964 0.4328 100.0000

[a] Permeability of the blood–brain barrier; [b] Plasma protein binding.

It is observed that Z-964 shows 100% of binding with the plasma proteins, inferring the possibility
of its bioaccumulation and a consequent increase in its half-life within the organism, since the unbound
portion is metabolized, consequently is excreted, and the bound part is slowly released in order to
maintain the balance of the medium. In parallel, Z-627 showed an 85% binding, indicating that 15% of
the fraction will not be bound, which increases the efficiency of diffusion and penetration into the cell
membranes [19]. All selected compounds have no activity on the central nervous system, as they show
values below one. In silico values for absorption are shown in Table 9.

Table 9. Absorption data for selected inhibitors.

Inhibitor
Absorption

PCaco-2 (nm/sec) [a] HIA (%) [b] PMDCK (nm/sec) [c] P-gp inhibition [d]

Rofecoxib 2.7294 98.2248 11.2740 Non
Celecoxib 0.4994 96.6870 45.0486 Inhibitor

Z-814 12.4185 98.6322 28.3061 Inhibitor
Z-627 0.6460 94.4692 1.4352 Non
Z-964 42.9100 95.5974 0.0517 Inhibitor

[a] Cell permeability; [b] Human intestinal absorption; [c] Cell permeability Maden Darby Canine Kidney; [d] in vitro
P-glycoprotein inhibition.

The selected drug candidates showed high values for intestinal absorption (HIA> 94%), being one
of the most important absorption, distribution, metabolism and excretion (ADME) properties [20].
The drug molecules are transported from the gastro-enteric tract to the blood circle and permeate the
gastro-enteric membrane by various mechanisms, and among them, the activity of the P-glycoprotein
must be taken into account. This P-glycoprotein is a common transporter in the intestinal penetration
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of drugs, inferring in the hypothesis that the inhibitors Z-964 and Z-814, because they present an
in vitro inhibition of P-gp, decrease the efflux process through the passive permeability of the inhibitors,
which is mediated by this protein. However, they have considerable absorption values when compared
with those of the other molecules screened in this study.

The PMDKC permeability value is significant for the Z-814 inhibitor (28.3061 nm/sec), being higher
than for the control compound. Values greater than two indicate a significant medication efflux.
The compound Z-964 showed a low permeability MDCK (0.0517 nm/sec) and Z-627 approached the ideal
(1.4352 nm/sec) [21,22]. In parallel, the Caco-2 permeability assay measures the flow rate of a compound
through Caco-2 cell monolayers to predict the in vitro drug absorption, where values greater than two
present drug efflux. Inhibitors Z-814 (PCaco-2 = 12.4185 nm/sec) and Z-964 (PCaco-2 = 42.9100 nm/sec)
have higher values than rofecoxib (PCaco-2 = 2.7291 nm/sec), with the Z-627 inhibitor (PCaco-2 =
0.6460 nm/sec) having a lower value; however, it is not a P-gp inhibitor, which can significantly interfere
with intestinal absorption [22,23].

Table 10 demonstrates the predicted data for the biological activity of the selected inhibitors and
compares the results against the selected controls rofecoxib and celecoxib, which were obtained from
the PASS server (http://www.pharmaexpert.ru/passonline/). Celecoxib is used in everyday clinical
practice, being part of the set of external validation and molecular docking of this research. The three
selected inhibitors showed Pa > Pi values, indicating the possibility of activity in relation to the
reported biological activities, mainly in terms of anti-inflammatory responses. Z-627 has the best
values for anti-arthritic (Pa = 0.985) and anti-inflammatory (Pa = 0.852) activities higher than controls
(Z-627 = 0.852, rofecoxib = 0.828, celecoxib = 0.663).

Table 10. Prediction of biological activity of selected inhibitors.

Inhibitor Pa [a] Pi [b] Biological Activity Pa [a] Pi [b] Adverse Effects

Rofecoxib

0.951 0.004 Antiarthritic 0.831 0.006 Extrapyramidal effect
0.855 0.004 Non-Steroidal Anti-Inflammatory 0.640 0.006 Ulcer, peptic
0.828 0.005 Anti-Inflammatory 0.531 0.040 Ulceration
0.726 0.002 Cyclooxygenase-2 Inhibitor 0.385 0.024 Carcinogenic, group 1

Celecoxib

0.940 0.001 Cyclooxygenase Inhibitor 0.671 0.016 Pseudoporphyria
0.936 0.001 Cyclooxygenase-2 Inhibitor 0.569 0.013 Ulcer, peptic
0.809 0.007 Antiarthritic 0.498 0.024 Ulceration
0.663 0.021 Anti-Inflammatory 0.385 0.134 Acidosis

Z-627

0.985 0.003 Antiarthritic 0.489 0.088 Extrapyramidal effect
0.983 0.003 Antiosteoporotic 0.352 0.102 Visual acuity impairment
0.852 0.005 Anti-Inflammatory 0.349 0.130 Fasciculation
0.414 0.004 Cyclooxygenase Inhibitor 0.291 0.187 Interstitial nephritis
0.192 0.016 Cyclooxygenase-2 Inhibitor 0.239 0.189 Ulcer, peptic

Z-814

0.821 0.006 Antiarthritic 0.761 0.015 Extrapyramidal effect
0.569 0.024 Analgesic 0.747 0.037 Neutrophilic dermatoses
0.527 0.049 Anti-Inflammatory 0.627 0.051 Hypercholesterolemic
0.109 0.077 Cyclooxygenase Inhibitor 0.539 0.032 Adrenal contex hypoplasia
0.084 0.065 Cyclooxygenase-2 Inhibitor 0.441 0.041 Ulcer

Z-964

0.689 0.007 Analgesic, Non-Opioid 0.428 0.106 Extrapyramidal effect
0.688 0.018 Antiarthritic 0.383 0.083 Visual acuity impairment
0.642 0.015 Analgesic 0.347 0.198 Nephrotic syndrome
0.497 0.058 Anti-Inflammatory 0.313 0.166 Interstitial nephritis
0.190 0.016 Cyclooxygenase-2 Inhibitor 0.309 0.207 Nephritis

[a] Pa = Possibility of activity; [b] Pi = Possibility of inactivity.

All the candidate inhibitors have the possibility of activity against COX-2, although it is below
the value of the reference compounds. Nonetheless, it serves as a reference for possible activities
that they may present during the in vivo tests to be performed. In addition, a prediction of adverse
effects that they may have on the organisms was performed, verifying that all of them present a
propensity of activity similar to the other selected control compounds (celecoxib and rofecoxib) in
the case of extrapyramidal effects. However, they have a lower propensity for the emergence of
gastrointestinal problems, such as ulcers, which is the main focus in the development of new selective
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anti-inflammatory drugs, and the Z-964 structure did not present the possibility of presenting such an
adverse effect. Table 11 shows the physical–chemical data of the selected inhibitors.

Table 11. Cardiotoxic effects of selected molecules.

Inhibitor Pa [a] Pi [b] Adverse Effect [c] hERG [d]

Rofecoxib
0.561 0.031 Cardiac Failure

Medium Risk0.547 0.036 Myocardial Infarction
0.345 0.305 Hepatotoxicity

Celecoxib
0.528 0.043 Cardiac Failure

Medium Risk0.494 0.044 Myocardial Infarction

Z-814
0.557 0.034 Myocardial Infarction

Low Risk0.464 0.074 Cardiac Failure

Z-627
0.516 0.041 Myocardial Infarction

Medium Risk0.479 0.066 Cardiac Failure
0.710 0.096 Hepatotoxicity

Z-964
0.503 0.054 Cardiac Failure High Risk
0.462 0.051 Myocardial infarction

[a] Pa = Possibility of activity; [b] Pi = Possibility of inactivity; [c] Metatox web; [d] PreADMET.

Knowing the possibility that the structures present adverse cardiotoxic risks, the results were
compared with the molecule still marketed in celecoxib, now considering its performance. However, it is
observed that it presents risks of myocardial infarction and heart failure, which are analyzed through the
Metatox (http://way2drug.com/mg2/gen_meta_all.php) and the hERG study (Human ether-a-go-go),
through the PreADMET server, which refers to the blocking of the potassium channel, and that may
cause cardiac collateral damage; see Table 11 below.

In view of the foregoing, this fact still did not allow its withdrawal from the market, as follow-up
and adequate dosage reduce side effects and toxicological risks, which is a valid narrative for every
drug currently sold; therefore, its cost–benefit must be evaluated. For now, it is seen that the molecules
present a risk similar to or below the molecule withdrawn from the market (rofecoxb) and that which is
still on the market (celecoxib), which does not preclude the possibility of being evaluated as candidates
for specific COX-2 inhibitors. It is observed that the structures Z-814 and Z-627 present low and medium
hERG risk, respectively, being better or equal to the molecules already commercialized, which makes
their application as candidates for inhibitors of cyclooxygenase-2 possible. The Z-964 structure remains
in the study due to the good results of bioavailability, in order to evaluate its experimental response in
another study, as well as the others.

All candidate inhibitors present physical and chemical data within the acceptable range, showing no
violation (Nv) or violating Lipinski’s rule of five. This rule says that drugs with good oral bioavailability
must obey four physicochemical parameters: molecular weight (MW) ≤ 500 g/mol, octanol/water
partition coefficient (log P) ≤ 5, the number of hydrogen-bond donor groups (nHD) ≤ 5, and the
number of hydrogen-bond acceptor groups (nHA) ≤ 10, see Table 12.

Table 12. Physicochemical data of the selected inhibitors.

Inhibitor
Properties

Milog P [a] TPSA [b] MW [c] nHA [d] nHD [e] Nv [f] Nrotb [g] Volume

Rofecoxib 0.71 60.45 314.36 4 0 0 3 264.79
Celecoxib 3.61 77.99 381.38 5 2 0 4 298.65

Z-814 3.35 68.28 408.39 4 0 0 6 299.11
Z-627 1.38 75.27 330.41 5 2 0 4 286.58
Z-964 2.03 58.20 384.47 4 2 0 7 316.16

[a] Partition coefficient; [b] Topological Polar Surface Area; [c] Molecular Weight; [d] Number of Hydrogen Acceptors;
[e] Number of Hydrogen Donors; [f] Number of violations; [g] Number of Rot bonds.
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Table 12 shows that they have good absorption or permeability [24]. The pIC50 values (nM) were
predicted for the selected molecules, see Table 13, according to the equations of Table 4, demonstrating
acceptable values. The three selected inhibitors with Tanimoto index are shown in Figure 5.

Table 13. Predicted pIC50 values of the selected inhibitors and controls.

Inhibitor
Molecular Properties

Parametric QSAR Models
(pIC50 = −logIC50)

ATM [a] ARO [b] DONN [c] ACC [d] Mono Bi Tri Tetra

Rofecoxib 36 2 0 4 8.2562 8.0305 7.7961 7.7670
Celecoxib 40 3 1 4 8.7006 8.4097 8.4852 8.4390

Z-814 38 2 0 4 8.4784 8.2201 7.9659 7.9484
Z-627 41 2 2 3 8.8117 8.8374 9.2534 9.3458
Z-964 43 2 2 3 9.0339 9.0270 9.4232 9.5272

[a] Atoms; [b] Aromatics; [c] Donors; [d] Acceptors.

 

−

 

Figure 5. Selected inhibitors with Tanimoto index. (A) Z-814; (B) Z-964; (C) Z-627.

2.3. Molecular Docking

Figure 6 shows the poses calculated in relation to the deposited PDB complexes, with the deviation
of the mean square root (RMSD) calculated at 0.91 Å for rofecoxib (RCX; 5KIR PDB code), 0.63 Å
for celecoxib (CEL; 3LN1 PDB code) and 0.71 Å for indomethacin (IMS; 2YOE PDB code). Such a
methodology provides alignment values for a maximum of 2 Å for the study of molecular docking,
and accordingly, it validates the protocols used [25,26].

 

−

 
Figure 6. Overlapping poses of the crystallographic complexes (in green) with calculated poses (in red):
(a) rofecoxib (RCX) for Homo sapiens (PDB 5KIR), (b) celecoxib (CEL) for Mus musculus (PDB 3LN1)
and (c) indomethacin (IMS) Ovis aries (PDB 2OYE).

Figure 7 shows the interactions of the selected inhibitors with the control RCX in Homo sapiens.
It is known that COX-1 and COX-2 have practically identical tertiary structures; however, the main
difference between both is the replacement of Ile434, His513, and Val434 residues in COX-1 by Val434,
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Arg513, and Val523 in COX-2, respectively. This allows an increase of approximately 25% of the active site
that consists of a more accessible pocket with Arg513 as a fundamental bonding site [16,27]. Figure 7a
shows the main interactions of rofecoxib, within the pocket that provides a selective inhibition.

 

β

 

Figure 7. Interactions of the inhibitors (a) rofecoxib, (b) Z-627, (c) Z-964, and (d) Z-814 with the active
site of the structure of the Vioxx bound to the Homo sapiens cyclooxygenase-2 (COX-2, PDB 5KIR).

It is observed that the selected molecules Z-814, Z-964, and Z-627 present a similarity of interactions
with the amino acids of the hydrophobic region of the β leaf, Ser530, and Val523 for the former, and Ser530,
Phe518, Val523, and Leu358 for the latter (Figure 7 and Table S3). The lipophilic channel of the enzyme
is also constrained by the presence of Tyr355 and Arg513 on the enzyme surface, with the additional
hydrogen-bond interaction between the Ala527 and Val523 phenolic group and the oxygen sulfone
atoms of the structures.

On the other hand, in COX-2, there are some interactions that allow greater accessibility in the
lipophilic channel in this isoform than in COX-1, which can be observed, indicating a greater ease of
interaction with the active site of COX-2 via Phe518. This effect can also be translated by the negative
Gibbs free energy required for the interaction to occur (Figure S6). The inhibitors selected may have an
equivalent affinity in relation to the selected control compounds. The interaction with Ser353 in Z-814
demonstrates the possibility of a binding activity associated with low IC50 values [28–30].

In Figure 8 and Table S4, it is possible to verify the interactions of the selected inhibitors with
the reference drug (CEL) against Mus musculus. Hydrophobic interactions are observed with Val509,
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Phe504, Gly512, Ser339, and Leu338, and hydrogen-bond interactions are observed with Gln178, Phe504,
and Ser339 for CEL. In parallel, we can observe the interactions for the selected inhibitors, where Z-627
shows interactions with the hydrophobic residues Ser339 and Val509 as well as the control, and in
addition, it presents a hydrogen-bond with Ala513, showing selectivity [31,32].

 

β

 

Figure 8. Interactions of inhibitors (a) celecoxib, (b) Z-627, (c) Z-964, and (d) Z-814 with the active site
of the Mus musculus COX-2 (PDB 3LN1).

On the other hand, the molecule Z-964 shows greater interactions with Ala513, Ser339, and Val509 in
the lipophilic region present in the β-leaf of the enzyme and the hydrophilic residue Leu338, which links
to the sulfonic group of both inhibitors (sulfonamide for CEL and methylsulfone for Z-964). The Z-814
molecule showed a lower affinity than the others, but it showed relative selectivity when it comes to
the amino acid residues that are part of the interactions (Ser339, Val509, and Phe504 (fluorine)) in the
hydrophilic region of the molecule, which allows for interactivity in parallel with the CEL molecule.
Furthermore, the data corroborate the QSAR analyses carried out when dealing with the connections
with hydrogen acceptors, which are mainly influenced by the electronegativity of the selected structures.
These interactions have already been observed in other studies, corroborating with the affinity data
shown in Figure S5, in which Z-967 shows an energy of 10.00 kcal/mol and Z-964 shows an energy of
9.50 kcal/mol. These data are considered the most important ones [30,31].
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Docking studies corroborate the preliminary QSAR results, as they consider that the presence of
aromatic groups can influence the inhibitory activity of such molecules; nevertheless, chemical changes
are necessary in order to decrease in the cytotoxic effect of the inhibitors when compared with the
reference drugs, such as the replacement of the sulfonamide by a methylsulfone group (rofecoxib
analogs) [28]. The QSAR analysis demonstrates a structure–activity relationship, as is the case with the
characteristics ARO, ACC, and DONN, being closely linked with the possibilities of their interaction
with the active enzyme site. Lipophilicity deals with an intrinsic relationship of the possibility of
permeation and good oral availability, which was previously reported with obedience to the rule of
five by Lipinski (logP ≤ 5) interacting with the side pocket of the enzyme [30,31].

The three structures were subjected to molecular coupling tests (Figure 9) to assess the
possibility of being selective for COX-1 as well, which would determine the possibility of the
appearance of undesirable adverse effects, such as gastrointestinal problems. They demonstrate
a lower affinity possibility to the COX-2 enzyme as previously reported, with low bond energies
(Z-627 = −8.40 Kcal/mol, Z-964=−8.60 Kcal/mol, and Z-814=−6.80 Kcal/mol) compared to the selected
control compounds and the indomethacin molecule (−10.70 Kcal/mol) deposited in the crystallographic
structure of the PDB. The energy ratios (COX-2/COX-1 and COX-1/COX-2, as shown in Figure 10) were
evaluated following an adaptation of the methodology adopted by Araújo and collaborators (2005) [7]
that verified the influence of the most prescribed anti-inflammatory drugs of COX-2 on COX-1.

 

≤

−
− −

−

Figure 9. Interactions of the inhibitors (a) indomethacin, (b) Z-627, (c) Z-964, and (d) Z-814 with the
active site of the structure of the indomethacin complex to the Ovis aries COX-1 (PDB 2OYE).
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Figure 10. Binding affinity ratio of the selected structures.

It is observed that the activity ratio on COX-1 is lower when compared to COX-2, suggesting
that the structures will not be highly selective for isoform 1, emphasizing that all the NSAIDs already
prescribed have a small selectivity for this, which decreases the possibility of side effects [7]. On the
other hand, the perspective of the advent of adverse effects can be compared in parallel with the
prediction of biological PASS activity (Table 10), indicating a probability of few gastrointestinal effects.
Furthermore, it is noted that selectivity in relation to COX-2 is given by the substitution of valine for an
isoleucine in COX-1 in position 523, which in this case interacts with the phenolic ring of the selected
structures. In addition, most inhibitors selective for COX-2 suggest not having free carboxylate groups,
which contributes to this low affinity to isoform 1, and the high affinity is expressed by the interaction
as the amino acid residue Arg120 [33].

In this case, the Z-627 structure presents this interaction relationship with the Arg120 residue in the
pyrroline portion of the structure, showing a possible structural rigidity and suggesting a possibility of
structural modification in order to further limit the relationship estimate. However, the addition of the
methylene group in the residue from Ile523 indicates that interactions are restricted in access to the
COX-1 side pocket, directly impacting the time-dependent competitive inhibition process in relation to
COX-2 [34,35].

2.4. Structure–Activity Relationship of the Most Promising Molecules

The selected compounds (Figure 5) show a similar structure to that of the pivotal compound,
having in their structures the methylsulfone group, showing no cytotoxic effect in relation to the
sulfonamide group (Z-627 and Z-964). Small substituents are the best, because they influence the
volume of the molecule and possible van der Waals interactions with COX-2, which is a fact observed
in docking studies. The introduction of fluorinated groups may show more significant activity.

According to Hayashi et al. 2012 [36], substituted analogs by acceptable hydrogen-bond groups
potentiate the inhibitor activity. On the other hand, substitutions in the isoindoline nucleus can
contribute to the inhibitor–enzyme stabilization, further demonstrating the fundamental role that the
electrostatic and dipole–dipole interactions can play [37,38].

At the same time, the endocyclic nitrogen atoms included in five- or six-membered cycles
such as pyrrole, pyridine, and pyrimidine, among others, may produce an increase in selectivity.
The five-amino group in the isoindoline ring may favor the inhibitory activity of Z-627 and, moreover,
possible hydrogen-bond interactions through the methylsulfone group. The inhibition mechanism
depends on the prostaglandin biosynthesis by means of arachidonic acid (AA), estimating that AA
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fits into the channel cavity surrounded by amino acid residues with aromatic, aliphatic, and phenolic
groups that establish several interactions.

Therefore, competitive or selective inhibitors bind to Val523 in COX-2, interfering with the
arachidonic acid cascade and preventing the peroxidase action, as well as the formation of
prostaglandins or thromboxanes (pro-inflammatory eicosanoids). In parallel with the studies carried
out by Hayashi et al. 2012 [36], the best inhibitors Z-627 and Z-814 have two hydrogen-bond donors,
as well as low values of TPSA and MW. For the three selected inhibitors we proposed theoretical
synthetic routes—Supplementary Materials Figures S9–S11.

2.5. Molecular Dynamics Results and Affinity Energy

The studies of molecular dynamics simulations were carried out to understand more deeply the
modes of interaction of the selected compounds with the target proteins. The results obtained through
molecular dynamics simulations have served as support for the detailed evaluation of conformations
over time observed in drug–receptor complexes [39–41]. Thus, understanding that the dynamics
and changes in the movement of a protein are closely related to its biological function allows us to
understand that the observation of these phenomena is extremely important. In this way, we carried
out the investigation of the protein structure during the 100 ns of molecular dynamics simulations
using the methods of root mean square deviations (RMSD) and root mean square fluctuations (RMSF).
To plot the RMSD of the ligands, all the heavy atoms of the molecules were used, while to plot the
RMSD and RMSF of the protein backbone, the Cα carbon atoms were used. In Figure 11, the graphs of
the compounds that were bound to COX-2 of Homo sapiens are plotted, while in Figure 12, the RMSD
plot of the complexes established with COX-2 of Mus musculus is displayed.

 

α

 

Figure 11. Root mean square deviations (RMSD) plot of complexes established with Homo sapiens

COX-2. The protein backbone plot is colored black, but the ligand plots are colored in different ways.
(A) RMSDs of the COX-2-rofecoxib system, (B) RMSDs of the COX-2-Z627 system, and (C) RMSDs of
the COX-2-Z814 system.
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Figure 12. RMSD plot of complexes established with Mus musculus COX-2. The protein backbone plot
is colored black, but the ligand plots are colored in different ways. (A) RMSDs of the COX-2-celecoxib
system, (B) RMSDs of the COX-2-Z627 system, and (C) RMSDs of the COX-2-Z814 system.

Along the trajectories of MD simulations, COX-2 showed differences in the RMSDs of the
complexes. The maximum Plator rising by the backbone RMSD was 3 Å, which was visualized in
the COX-2-Z814 system, and the smallest fluctuation was observed in the COX-2-rofecoxib system.
Despite the fluctuations displayed, this did not impair the interaction with the complexed ligands. It is
important to note that the RMSD of the ligands showed low fluctuations and had a low RMSD value;
this means that the ligands did not undergo drastic conformational changes after settling at the protein
binding site.

Similar phenomena were observed for the complexes established between Mus musculus COX-2
and ligands. The backbone RMSD Plator was approximately 3 Å, and the ligands also remained in
equilibrium throughout the 100 ns simulations, as observed in the RMSD graphs with small fluctuations.

The evaluations of the regions of the protein that obtained the greatest fluctuations along the
trajectories of molecular dynamics were performed using the RMSF plot (see Figure 13). In general,
the RMSF graphs showed a similar profile, even in the regions that suffered the greatest fluctuations.
The greatest fluctuations were observed in the N-terminal portion of the protein.

This region is exposed to the solvent, being formed by alpha helices and beta leaves that are
connected by long loop regions. Structurally, loops are the most flexible regions of the protein, so a
region that exhibits many loops has a tendency to be flexible, as was observed in the RMSF plots
displayed. Although this region is close to the active site of the ligands, its flexibility did not compromise
the binding of the compounds, since all the ligands showed energy of favorable affinity with the protein,
according to the molecular mechanics/generalized born surface area (MM-GBSA) results obtained.
In addition, the fluctuation of this region did not affect the conformational stability of the ligand along
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the trajectory of molecular dynamics, as the RMSD graphics of the ligands demonstrated that they
remained stable along the trajectories without showing drastic changes in the RMSD plot.
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Figure 13. Root mean square fluctuations (RMSF) plot of the backbone of the proteins that established
complexes with the compounds obtained by virtual screening. (A) RMSF for the COX-2 Homo sapiens;

(B) RMSF for the COX-2 Mus musculus. (C) The region of the protein that has undergone the greatest
fluctuations is highlighted in red.

In addition to structural analysis of the protein and ligands using RMSD and RMSF, we also
evaluated whether the compounds are capable of interacting favorably with molecular targets. For this,
we use the MM-GBSA method. The results obtained are summarized in Table 14.

Table 14. Affinity energy of COX-2 ligands systems.

Organism Ligand ∆Gbind (Kcal/mol)

Homo sapiens
Rofecoxib −48.15

Z814 −45.51
Z627 −42.76

Mus musculus

Celecoxib −47.78
Z627 −41.63
Z964 −44.27

All ligands have been shown to be able to interact favorably with COX-2. The selected compounds
showed great affinity with COX-2 when we compared their values of affinity energy with the
value obtained for the positive control of protein in the human body and Mus musculus. In the
system established with human COX-2, compounds Z-814 (∆Gbind = −48.15 Kcal/mol) and Z-627
(∆Gbind = −45.51 Kcal/mol) showed binding affinity values similar to that obtained for rofecoxib
(∆Gbind = −42.76 Kcal/mol), which was the positive control.

Rofecoxib interacted through hydrogen bonds with the Arg513 and His90 residues, with an affinity
energy of −2.14 and −1.82 Kcal/mol. Ligand Z–814 established hydrogen bonds with His90 and Tyr385

with energy values of −1.53 and −1.48 Kcal/mol, while Z–627 remained interacting with Phe518 and
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Ile517 with affinity values of −1.87 and −1.92 Kcal/mol. With the Mus musculus protein, the selected
ligands, Z–627 (∆Gbind = −41.63 Kcal/mol) and Z–964 (∆Gbind = −44.27 Kcal/mol), also showed
affinity values close to celecoxib (∆Gbind = −47.78 Kcal/mol), which was used as a positive control.
Celecoxib interacted with Phe504 and Ser339 through hydrogen bonds with affinity values of −1.42 and
−1.95 Kcal/mol. Ligand Z–627 interacted with Arg499 with an affinity of −1.81 Kcal/mol, while Z–964
interacted with Phe504 with an affinity value of −1.68 Kcal/mol. The affinity energy values obtained
with the MM-GBSA method, for the compounds selected by QSAR, were promising. This demonstrates
that the selected substances can be considered as promising COX-2 inhibitors.

3. Materials and Methods

3.1. Selection of COX-2 Inhibitors

The molecule considered pivotal in the process was 4- (4-methylsulfonylphenyl)-3-
phenyl-5H-furan-2-one (rofecoxib), which is known commercially as Vioxx®. It was taken from
the BindingDB database (The Binding Database, https://www.bindingdb.org/bind/index.jsp) alongside
twenty-four more molecules (Supplementary Material, Figure S7) to study the anti-inflammatory
activity against COX-2 according to the literature data, following an increasing criterion of inhibitory
activity, or IC50 (Table 15). The molecules were aligned using the Discovery Studio® v. 4.0 program [42]
for input on PharmaGist Web Server15 (http://bioinfo3d.cs.tau.ac.il/pharma/index.html) [43].

Table 15. Molecules selected in ascending order of IC50.

Inhibitor Molecule (PDB Code) IC50 (nM) pIC50 References

1 *
Rofecoxib

(BDBM22369) 12.000 7.9208 [44]

2 BDBM50272105 0.090 10.0457 [45]
3 BDBM50272097 0.170 9.7695 [45]
4 BDBM50365267 0.200 9.6989 [4]
5 BDBM50272130 0.280 9.5528 [45]
6 BDBM50272111 0.360 9.4436 [45]
7 BDBM50272124 0.370 9.4317 [45]
8 BDBM50272106 0.600 9.2218 [45]
9 BDBM50272092 0.800 9.0969 [45]

10 BDBM50049011 1.000 9.0000 [46]
11 BDBM50189988 1.800 8.7447 [47]
12 BDBM50057618 3.700 8.4317 [48]
13 BDBM50151689 4.000 8.3979 [17]
14 BDBM50103310 4.200 8.3767 [49]
15 BDBM13066 5.000 8.3000 [50]
16 BDBM50297680 5.600 8.2518 [51]
17 BDBM50026234 6.000 8.2218 [52]
18 BDBM50332773 8.000 8.0969 [52]
19 BDBM50332765 19.000 7.7212 [52]
20 BDBM50336012 21.000 7.6777 [53]

21 a BDBM50029613 0.500 9.3010 [54]
22 a BDBM50272113 1.410 8.8508 [45]
23 a BDBM50049030 1.500 8.8239 [46]
24 a BDBM50272109 2.000 8.6990 [45]
25 a BDBM50049013 3.300 8.4815 [46]
26 b BDBM50272128 0.180 9.7447 [45]
27 b BDBM50272090 0.540 9.2676 [45]
28 b BDBM50272113 1.410 8.8508 [45]
29 b BDBM50373566 2.400 8.6198 [55]
30 b BDBM50057606 5.300 8.2757 [48]
31 b BDBM50207446 7.000 8.1549 [56]

Celecoxib b BDBM11639 0.520 8.4390 [45]

* Pivot; a Internal validation; b External validation.
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3.2. Optimization of Molecular Structures and Determination of Pharmacophore Characteristics

The selected inhibitors were pre-optimized by means of Molecular Mechanics (MM+), followed by
calculations of Austin Model 1 (AM1) and PM3 in the Hyper Chem 7® program (Table 2), with the
lowest energy value used as a parameter of choosing the best model to carry out the construction of
the pharmacophore hypothesis. Subsequently, the input was made to the PharmaGist Web Server 15 to
determine the following characteristics: atoms (ATM), spatial characteristics (SF), characteristics (F),
aromatic (ARO), hydrophobic (HYD), acceptor (ACC), and donor of hydrogen (DONN). The initial
set presented 25 molecules, which were aligned according to the similarity with the selected pivot
molecule, allowing the generation of pharmacophore models with the aid of the Discovery Studio® v.
4.0 program, following the methodology developed by us [10,12,14,57–59].

3.3. QSAR and PCA/HCA Studies

The inhibitory activity values were transformed into pIC50 (−log (IC50)) in order to reduce the
inconsistencies of the data obtained in an experimental way and homogenize the dataset, following the
adopted methodological proposal [10,57,59]. In parallel, the importance of each pharmacophore
descriptor was attributed—atoms (ATM), spatial characteristics (SF), characteristics (F), aromatic (ARO),
hydrophobic (HYD), acceptor (ACC) and hydrogen donor (DONN); these were used for prediction in
order to assess notoriety regarding the response to the pIC50 value through the Pearson correlation (p),
using the software Statistica 7.0® and Minitab 19®, adapting the methodology adopted by Santos et al.
2015 and Ferreira et al. 2019 [12,59]. Pearson’s coefficient (Equation (1)) measures the degree of linearity
between two variables, assuming a value between +1 and −1. If one variable tends to increase while
the others decrease, the value is negative. On the other hand, if both increase, the coefficient is positive.
Moreover, x is the sample mean for the first variable; sx is the standard deviation for the first sample;
y is the sample mean for the second variable; sy is the standard deviation for the second sample; and n
is the column length.

ρ =

∑n
i=1(xi − x)(yi − y)

(n− 1)sxsy
(1)

The best pharmacophore descriptors were obtained considering the statistical quality relations of
multiple linear regression (MLR), such as correlation coefficient (R), correlation coefficient squared
(R2), explained variance (adjusted R2), standard error of estimate (SEE), and variance ratio (F),
and they were transformed into parametric models for predicting the inhibitory activity at pIC50 values.
The combinations were obtained using four parameters indicated by Pearson’s correlation without
repetition [12,59], according to Equation (2), where C = number of combinations, p =model type (p , 0
and p = 4), and n = number of variables (n = 4).

Cp, n =
n!

p!(n− p)!
(2)

For the prediction of the best model, in the internal validation stage, the random correlations
between the descriptors and the inhibitory activity were measured to normalize the data obtained,
applying the technique of detecting anomalous samples (outliers), in order to obtain a homogeneous set.
This subset is considered as internal validation, for analysis of the prediction capacity of the selected
model, comparing the data obtained during the two validations (internal and external; Figure S8).
Principal component analysis (PCA) together with hierarchical cluster analysis (HCA) were applied in
order to verify whether the model obtained corresponds to the degree of similarity, using Pearson’s
squared distance as a measurement parameter in the latter [60,61]. For the respective analyzes,
Minitab v. 19® trial version was used.
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3.4. Virtual Screening and Selection of Inhibitor Compounds

After selecting the best model via QSAR analysis, the selected molecules were superimposed
to form a pharmacophore model. After inputing the pharmacophore, the search was performed
within the ZINC database, selecting the 2000 most similar molecules, using the partition coefficient
(log P), surface area (TPSA), number of atoms (Natoms), Molar Mass (MW), hydrogen acceptors (nHA),
hydrogen donors (nHD), number of violations (Nv), number of revolutions (Nrotb), and volume,
which were values as filters determined via Protox II servers (http://tox.charite.de/protox_II/) and
molinspiration (https://www.molinspiration.com/cgi-bin/properties). The RMSD (Equation (3)) value
was used as a reference parameter, which is the measure of the average distance between the atoms of
the overlapping inhibitors, given in Angstroms, representing the quantitative similarity relationship
between them. The lower the RMSD value, the better the model is compared to the target structure. δ2

i
is

the distance between atom i of any reference structure or the average position of N equivalent atoms.

RMSD =

√

√

√

1
N

N
∑

i=1

δ2
i (3)

Then, the Tanimoto test was performed via the BindingDB server. The similarity was determined
according to the chemotype of the compounds screened with the pivotal molecule of the selection
process to reduce and optimize the selection of compounds for determining pharmacokinetic and
toxicological characteristics, using a cut-off index of 0.3, applying Equation (4) below [22].

J =
M11

M01 + M10 + M11
(4)

where M11—total number of attributes where A and B have a value of 1; M01—total attributes where A
is 0 and B is 1; M10—total attributes where A is 1 and B is 0; M11—total attributes where A and B have
a value of 0.

3.5. Prediction of Toxicological and Pharmacokinetic Properties

Pharmacokinetic and toxicological studies were applied to inhibitors extracted from Pharmit via the
ZincPharmer server. PreADMET v. 2.0 (https://preadmet.bmdrc.kr/) was used, which is an application
based on a database on the web that is used for the prediction of ADME data (Absorption, Distribution,
Metabolism, Excretion) with the following being selected: blood–brain barrier (BBB) penetration,
in vitro permeability in Caco2 cells, human intestinal absorption (HIA), in vitro permeability of MDKC
cells, in vitro P-glycoprotein inhibition, plasma protein binding (PPB), and Toxicological for Ames_Test,
Carcinogenicity for Rats and Mice. The LD50 values were determined via Protox II servers (http://tox.
charite.de/protox_II/) as well as toxicity class.

3.6. Prediction of Biological Activity of Selected Inhibitors

Activity predictions were made using the online PASS server (http://www.pharmaexpert.ru/
passonline), which allows you to predict the biological effects of compounds based on their formula
using multilevel atom neighbors (VMA) descriptors, suggesting that the inhibitor’s activity is expressed
in terms of its chemical structure. Molecules with activities reported for anti-inflammatory and
cyclooxygenase inhibitor effects were selected [25,61].

3.7. Molecular Docking

For this step, only the molecules with the best pharmacokinetic, toxicological, and biological
parameters were selected for the study of molecular docking, in order to evaluate the interactions
with selected inhibitors and the respective targets through the measurement of free energy interaction
with amino acid residues and binding affinity. The crystallographic poses were extracted from the
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web serve Protein Data Bank (PDB; https://www.rcsb.org/) for Homo sapiens with COX-2 complexed
with the inhibitor rofecoxib having the code PDB 5KIR with a resolution of 2.697 Å, Mus musculus

with COX-2 complexed with celecoxib having the PDB code 3LN1 with 2.40 Å resolution, and Ovis

aries with COX-1 complexed with indomethacin having the PDB code 2OYE with 2.85 Å resolution;
all structures were elucidated through X-Ray diffraction analyses.

Docking Study with AutoDock 4.2/Vina 1.1.2 via Graphical Interface PyRx (Version 0.8.30)

The selected inhibitors and proteins were prepared with the aid of Discovery Studio® 4.0 software,
and the evaluation of the complexes with the ligand was evaluated using the AutoDock 4.2/Vina
1.1.2 software and the PyRx graphical interface version 0.8.30 (https://pyrx.sourceforge.io), with the
standard exhaustiveness parameter of the software being the best conformation obtained through the
analysis of the RMSD value. The validation protocol was based on the determination of the x, y, and z
coordinates according to the average region of the active site; these values are observed in Table 16.
The energy function score was used to evaluate the free binding energy (∆G) of the interaction of the
receptors with the ligands [25].

Table 16. Protocol data used in the validation of molecular docking.

Enzyme Resolution Inhibitor Coordinates of the Grid Center Grid Size (Points)

COX-2 (PDB code: 5KIR)
Homo sapiens

2.400 Å Rofecoxib
X = 23.214
Y = 41.353
Z = 3.517

36 x
26 y
28 z

COX-2 (PDB code: 3LN1)
Mus musculus

2.697 Å Celecoxib
X = 30.486

Y = −22.364
Z = -15.725

36 x
26 y
24 z

COX-1 (PDB code:
2OYE) Ovis aries

2.850 Å Indomethacin (R)
X = 251.492
Y = 109.817
Z = −40.751

36 x
36 y
24 z

The calculation of binding affinity (∆G) was also performed in order to compare the actual data
obtained and the values predicted in silico, which was the same methodology adopted by Santos et al.,
2020 [14], according to Equation (5).

∆G = −RT ln Ki (5)

where R (gas constant) is 1.987.10−3 kcal·mol−1·K−1, the temperature is 310 K for rofecoxib/celecoxib,
and Ki is 310.10−9 M for rofecoxib and 340.10−9 M for celecoxib [28,32,52].

3.8. Molecular Dynamics Protocol

The initial structure for the system was obtained from molecular docking methods. The restrained
electrostatic potential (RESP) protocol with the HF/6-31G* basis sets was applied to obtain the partial
atomic charges of the atoms of each ligand [62–65]. The parameters of the ligand were constructed
with the Antechamber module [66] using General Amber Force Field (GAFF) [67].

The amino acid protonation state was characterized using the PDB2PQR server [68]. The systems
were built with the tLEaP module of the Amber 16 package [69–71]. The force field used to describe the
protein in all simulations was ff14SB [72]. The protein–ligand system was solvated in an octahedron
periodic box containing water molecules in the TIP3P model [73]. The partial charges were neutralized
by adding counter-ions.

Energy minimization occurred in four stages. First, the water molecules and ions were optimized
using 2000 cycles of the steepest descent and 3000 cycles of conjugate gradient. Then, the position of
receptor-ligand hydrogen atoms was optimized using 4000 steps of the steepest descent algorithm
and 3000 steps of the conjugate gradient. At the third stage, hydrogen atoms, water molecules,
and ions were further optimized using 2500 steps of the steepest descent algorithm and 3500 steps of
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the conjugate gradient. Finally, all atoms were minimized using 3000 steps of the steepest descent
algorithm and three steps of the conjugate gradient.

Molecular dynamics simulations were performed at a constant volume by heating the systems up
to 298 K. This heating was performed in five steps for a duration of 1 ns. After 100 ns, production runs
were performed for each system.

The Particle Mesh Ewald method [74] was used for the calculation of the electrostatic interactions,
and the bonds involving hydrogen atoms were restricted with the SHAKE algorithm—Restriction
algorithm used to ensure that the distance between points of mass is maintained [75]. The temperature
control was performed with the Langevin thermostat [76] within a collision frequency of 2 ps−1.

3.8.1. Affinity Energy Calculations

To estimate the binding affinity (∆Gbind), we used the molecular mechanics/generalized born
surface area (MM-GBSA) methods [77–80]. The ∆Gbind was calculated according to the following
equations:

∆Gbind = ∆Gcomplex − ∆Greceptor − ∆Gligand (6)

∆Gbind = ∆H − T∆S ≈ ∆EMM + ∆Gsolv − T∆S (7)

∆EMM = ∆Einternal + ∆Eele + ∆EvdW (8)

∆Gsolv = ∆GGB + ∆GNP. (9)

The free energy of bonding (∆Gbind) is the summation of the interaction energy of the gas phase
among the protein–ligand (∆EMM), desolvation free energy (∆Gsolv), and system entropy (−T∆S).
∆EMM is the result of the sum of internal energy (∆Einternal, sum of the energies of connection, angles
and dihedral) electrostatic contributions (∆Eele), and the van der Waals term (∆EvdW). ∆Gsolv is
the sum of the polar (∆GGB) and non-polar (∆GNP) contributions. ∆GSA was determined from the
solvent accessible surface area (SASA) estimated by the linear combination of pairwise overlaps
(LCPO) algorithm.

3.8.2. Per-Residue Free Energy Decomposition Analysis

Per-residue free energy decomposition was decomposed using the approach of MM/GBSA
according to the following equation [14,81,82]:

∆GMM-GBSA = ∆EvdW + ∆Eelec + ∆Epol + ∆Enp. (10)

4. Conclusions

After the pharmacophore-based virtual screening, the QSAR analysis demonstrated a good
line fit with R2 = 0.96 and an equation with four main prediction parameters for pIC50, ATM,
ARO, ACC, and DON, where the ARO, ACC, and DON report the relationship with the three new
and promising compounds selected and the pivot structure (rofecoxib). The development of the
predetermined multiple linear regression model predetermined the pIC50 values for the selected
compounds Z-814 = 7.9484, Z-627 = 9.3458, and Z-964 = 9.5272. In database searches to evaluate
possible applications that may have already been carried out, these substances are not used in specific
biological activities (https://scifinder.cas.org/ and https://zinc.docking.org/).

The analyzes of toxicological prediction and bioavailability confirm the possibility of significant
activity of the structures with a reduction of possible undesirable effects, of which Z-627 was considered
the most promising in view of all the tests applied via ADME analysis, without consequences for
the CNS; this was corroborated with the main compounds selected. All selected compounds have
the methyl sulfone group, unlike coxibs, which have the sulfonamide group. These three molecules
do not present toxicological risks; they comply with the Lipinski rule of five, which provides for
good oral availability, and PASS provides for a specific activity with a high probability of showing
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promising anti-inflammatory activity, in addition to dim side effects in relation to the compound’s
selected controls. Molecular coupling tests demonstrate strong energy affinity with isoform 2 and low
activity with isoform 1 through relationship analysis, which induces a possibility of minor side effects.
Finally, zebrafish larvae should be analyzed to assess anti-inflammatory activity in the treatment of
inflammatory disorders to confirm in silico results.
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Abstract: Histone deacetylases (HDACs) are a class of epigenetic modulators overexpressed in
numerous types of cancers. Consequently, HDAC inhibitors (HDACIs) have emerged as promising
antineoplastic agents. Unfortunately, the most developed HDACIs suffer from poor selectivity towards
a specific isoform, limiting their clinical applicability. Among the isoforms, HDAC1 represents a
crucial target for designing selective HDACIs, being aberrantly expressed in several malignancies.
Accordingly, the development of a predictive in silico tool employing a large set of HDACIs
(aminophenylbenzamide derivatives) is herein presented for the first time. Software Phase was
used to derive a 3D-QSAR model, employing as alignment rule a common-features pharmacophore
built on 20 highly active/selective HDAC1 inhibitors. The 3D-QSAR model was generated using 370
benzamide-based HDACIs, which yielded an excellent correlation coefficient value (R2 = 0.958) and a
satisfactory predictive power (Q2 = 0.822; Q2

F3 = 0.894). The model was validated (r2
ext_ts = 0.794)

using an external test set (113 compounds not used for generating the model), and by employing a
decoys set and the receiver-operating characteristic (ROC) curve analysis, evaluating the Güner–Henry
score (GH) and the enrichment factor (EF). The results confirmed a satisfactory predictive power
of the 3D-QSAR model. This latter represents a useful filtering tool for screening large chemical
databases, finding novel derivatives with improved HDAC1 inhibitory activity.

Keywords: 3D-QSAR; pharmacophore modeling; ligand-based model; HDACs; isoform-selective
histone deacetylase inhibitors; aminophenylbenzamide

1. Introduction

Epigenetic defects in gene expression are well known in the onset and progression of cancer.
In this context, pharmacological targeting of proteins of the cellular epigenetic machinery has provided
opportunities for anti-cancer drug design [1,2]. Among epigenetic enzymes, histone deacetylases
(HDACs) hold a fundamental role in regulating gene expression through histone post-translational
modifications [3–5].

HDACs catalyze the removal of acetyl groups from the acetylated ε-amino termini of lysine residues
located at the tails of the nucleosomal histones core. Histone deacetylation process leads to condensed
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chromatin structure which concomitantly restricts the accessibility of related transcriptional factors
to their target genes, thereby suppressing gene expression including tumor suppressor genes [6–8].
The abnormal regulation of this process culminates with the high expression level of HDACs. This event
has been observed in the development of several human cancers. Consequently, effective inhibition of
HDACs has recently gained importance as a valid therapeutic strategy to reverse aberrant epigenetic
changes associated with cancer [9–11]. HDAC inhibitors (HDACIs) induce histone hyperacetylation
and subsequent transcriptional re-activation of suppressed genes which are correlated with a variety
of effects on tumor cells including apoptosis, differentiation, cell cycle arrest, inhibition of proliferation
and cytostasis [12,13].

The HDAC family comprises 18 isoforms in mammalian cells which are categorized into four main
classes (class I-IV) based on their structural and functional characteristics. HDACs belonging to class I
(HDAC1–3 and 8), II (HDACs 4–7, 9 and 10) and IV (HDAC11) are all zinc-dependent metalloenzymes,
while class III HDACs, also known as the sirtuins (SIRT1-7), requires NAD+ as a cofactor for their
catalytic function [6,14].

Extensive efforts over recent decades have led to the identification of four chemically diverse
classes of HDACIs as potent antineoplastic agents including, hydroxamates, benzamides, cyclic
peptides, and short-chain fatty acids [3]. The main breakthrough in developing these inhibitors was
achieved by the US FDA approval of Vorinostat [15], Belinostat [16], Panobinostat (hydroxamate-based
inhibitors) [17], Romidepsin (a cyclic peptide) [18] and Chidamide (a benzamide-based inhibitor) [19]
for the treatment of lymphoma and myeloma. Moreover, several HDACIs such as Mocetinostat [20],
Entinostat [21], Tacedinaline [22], Givinostat [23], and Abexinostat [24] are currently in clinical trials
for treating various types of cancers. The structures of several approved and clinical HDACIs are
shown in Figure 1.
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Figure 1. HDACIs approved by FDA and/or in clinical trials.

Despite these successes, the most known HDACIs target multiple HDAC isoforms and this poor
selectivity represents a major drawback which limits their broad clinical utility [25,26]. Isoform-selective
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HDACIs would offer superior therapeutic advantages due to limited off-target and undesirable effects,
improved clinical efficacy and better tolerability [27,28]. Moreover, isoform-selective inhibitors would
provide chemical tools to delineate the precise roles of individual HDAC isoforms in human diseases,
including rare disorders [29]. Therefore, in recent years, identification of highly potent inhibitors with
strict selectivity towards a specific isoform have caught more attention in the development of novel
HDACIs for the epigenetic therapy [30–33]. In this context, due to the pivotal role of HDAC1 in the
angiogenesis, proliferation, and survival of mammalian carcinoma cells, this isoform is particularly
being sought as a preferred target for successful design of selective HDACIs [34–38].

A wide range of hydroxamic acid derivatives are known to be potent pan-inhibitors of several
HDAC isoforms [39,40]. Accordingly, in recent years, there has been considerable interest in developing
non-hydroxamate HDACIs with satisfactory selectivity towards a specific isoform. In this context,
aminophenylbenzamide derivatives represent an important class of non-hydroxamate HDACIs owing
to their potent HDAC inhibition along with desirable pharmacokinetic profile and excellent selectivity
for HDAC class I enzyme. Furthermore, inhibitors containing an ortho-aminobenzamide typically
exhibit relatively greater levels of selectivity for class I HDACs, particularly HDAC1 [35,41]. In addition,
hydroxamic-derived inhibitors often suffer from some serious pharmacokinetic issues including
poor metabolic stability, rapid clearance, undesirable oral absorption, and short half-life in plasma,
whereas benzamides-based inhibitors show better metabolic stability and oral bioavailability [42–45].
For these solid reasons, renewed efforts are being directed towards the further exploration of innovative
aminophenylbenzamide chemotypes as privileged and valuable scaffolds to develop isoform-selective
HDACIs [46–48].

Recently, in silico techniques, including ligand-based methods such as pharmacophore modeling
and three-dimensional quantitative structural activity relationship (3D-QSAR), have efficiently
contributed to guide the discovery of novel bioactive molecules, with reduced costs in terms of
money and time [49–51]. In fact, QSAR methods provide relationships between physicochemical
properties of a series of compounds and their biological activities to obtain a reliable statistical model
for predicting the activities of new chemical entities. The fundamental principle of the technique is that
the change in structural properties determines modifications in biological activities of the compounds.
In the classical QSAR approaches, affinities of ligands to their binding sites, inhibition constants,
rate constants, and other biological data have been correlated with molecular properties including
lipophilicity, polarizability, electronic and steric properties (Hansch analysis) or with structural features
(Free-Wilson analysis). However, classical QSAR approach has only a limited utility for designing new
molecules due to the lack of consideration of the 3D structure of the selected compounds. Accordingly,
3D-QSAR has emerged as a natural extension to the classical Hansch and Free-Wilson approaches,
which exploits the three-dimensional properties of the ligands to predict their biological activities
employing robust chemometric techniques such as partial least squares (PLS). The success of these
methods can be attributed to several factors including identification of important features for the
activity, rationalization of activity trends in molecules under study, prediction of the specific activity for
a selected target or undesirable effects of new compounds. On the other hand, ligand-based methods
have been used in virtual screening campaigns of chemical databases to find novel hits with improved
potency and can be combined with other computational and experimental workflows to discover new
potential drugs [52–57].

Until now, only limited number of 3D-QSAR studies for hydroxamate set of HDACIs have been
reported [58–64]. However, to the best of our knowledge, no previous attempt has been made to seek the
structural and chemical features of aminophenylbenzamide governing their HDAC inhibitory activities
employing 3D-QSAR methodology along with a large set of compounds. Given the aforementioned
therapeutic significance of this class of inhibitors, we developed and validated a 3D-QSAR model using
a comprehensive set of previously reported benzamide derivatives as selective HDAC1 inhibitors.
From this perspective, the software Phase, implemented in Maestro, was employed to explore a
common-features pharmacophore hypothesis based on highly active ligands. This hypothesis was

369



Molecules 2020, 25, 1952

then used as an alignment rule to derive a predictive 3D-QSAR model [65]. Such an in silico tool could
aid not only in forecasting the HDAC1 inhibitory activity of newly designed chemical entities, but
also offer a robust foundation for designing new selective HDACIs with increased binding affinities
to HDAC1. Accordingly, the developed model could have a relevant implication in drug discovery
campaign for searching isoform-selective HDACIs.

2. Results and Discussion

The application of 3D-QSAR methodology in the design of HDACIs has received little attention
to date and only a few instances of field-based QSAR models (comparative molecular field analysis
(CoMFA) and comparative similarity indices analysis (CoMSIA) methods) have been reported for
hydroxamate-based inhibitors [58–64]. However, this approach has not been carried out for a large
set of benzamide-based derivatives behaving as HDACIs. On the other hand, we have recently
developed a series of predictive 3D-QSAR models for different purposes including the identification or
rational design of new chemical entities for different targets [53,55], and the prediction of undesirable
effects of novel molecules such as potential hERG K+ channel related cardiotoxicity [57]. In all these
cases, Phase was used to develop a computational tool using a pharmacophore-based alignment that
links the information of pivotal functional groups of the ligands with their biological activity [65].
The fruitful results of the above-mentioned molecular modeling studies as well as therapeutic
significance of benzamide chemotypes as valuable isoform-selective HDACIs inspired us to derive a
pharmacophore-based 3D-QSAR model to be used as a screening filtering tool able to quantitatively
predict the HDAC1 inhibitory activity of newly designed ligands.

2.1. Data Set Preparation

A comprehensive data set of 370 diverse HDACIs based on benzamide scaffold with functional
biological activity expressed as IC50 (see the Supplementary Materials for further details) with a range
of HDAC1 inhibitory activities spanning five orders of magnitude (from 6.0 nM of compound 17 to 50
µM of compound 132, Table S1) were selected from literature for developing a predictive 3D-QSAR
model. Subsequently, an extensive conformational search for each ligand was performed employing
MacroModel software (see experimental section for further details). Conformational analysis is crucial
to enhance both the quality of the alignment for the molecules used to generate the 3D-QSAR model
and the reliability of the in silico tool [53–57]. After the exhaustive conformational analysis of the
selected ligands (Table S1), the generation of the 3D-QSAR model was started.

2.2. Pharmacophore Modeling and 3D-QSAR Model Generation

As a first step to develop the 3D-QSAR model, 20 most active compounds with IC50 values≤ 10 nM
included in the data set (ligands 1–20, Figure 2, Table S1) were considered to find out common
pharmacophore hypotheses that were subsequently scored and ranked by the software Phase.
This means that the highly active compounds possess common features that are responsible for
the activity exploited by a 3D pharmacophore hypothesis. Therefore, a pharmacophore hypothesis
provides a rational picture of primary chemical features of ligands responsible for HDAC1 inhibitory
activity and therefore can be used as a reliable alignment rule for the 3D-QSAR model development.
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Figure 2. Chemical structure of highly active compounds against HDAC1 (IC50 comprised between
0.004 µM and 0.01 µM) used for generating a common-features pharmacophore.

To have optimal combination of sites or features shared by the most active ligands, the minimum
and maximum number of site points were set on 5. This means that we selected 5 as maximum
features to include in the pharmacophore models. Among the 26 common pharmacophore hypotheses
generated by the software Phase, only those models which showed superior alignment with the active
compounds were identified by calculating the survival score. The survival scoring function of Phase
module identifies the best candidate hypothesis from the generated models and offers an overall
ranking of all the hypotheses. The scoring algorithm includes contributions from the alignment of site
points and vectors, volume overlap, selectivity, number of ligands matched, relative conformational
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energy, and activity. To identify pharmacophore models with more active and less inactive features,
all models were mapped to inactive compounds and scored. If inactives score well, the hypothesis could
be invalid because it does not discriminate between actives and inactives. Therefore, adjusted survival
score was calculated by subtracting the inactive score from the survival score of these pharmacophores.

After the scoring, the model ADDRR, herein referred to ADDRR hypothesis, with the maximum
adjusted survival score (3.769) and lowest relative conformational energy, was selected as the top-ranked
hypothesis among the generated 3D model hypotheses. The different scoring parameters for the
selected hypothesis (ADDRR) were provided in Table 1. The 3D spatial arrangement of all features
with inter-feature distance constraints of ADDRR are presented in Figure 3. As shown in this
figure, the hypothesis was characterized by the five main features: one hydrogen-bond acceptor (A),
two hydrogen-bond donors (D), and two aromatic rings (R).

Table 1. The different scoring parameters for the best pharmacophore hypothesis, matching all 20 highly
active compounds used.

HYPO ID Survival Survival—Inactive Site Vector Volume Selectivity Matches Energy Activity Inactive

ADDRR 3.769 1.841 0.97 0.999 0.798 1.578 20 0.006 2.097 1.928

 

 

Figure 3. (A) Superposition of highly active compound 13 and ADDRR hypothesis. (B) ADDRR
hypothesis and its inter-feature distances. Features are as follows: H-bond acceptor = A, red vector;
H-bond donor = D, blue vectors; aromatic feature = R, orange ring (pictures were generated by means
of Maestro software).

Figure 3A depicts one of the most active ligands in the set (compound 13, Table S1), mapped onto
the ADDRR pharmacophore. As depicted in the mentioned figure, compound 13 thoroughly fits all
features of the pharmacophore model, underlining the previous findings on structural components
required for interacting with the HDAC1 binding site [66–68]. As illustrated in Figure 3, the carbonyl
oxygen of the benzamide group served as a hydrogen-bond acceptor (HBA) feature, while two
hydrogen-bond donor (HBD) features were mapped to the protons of the 2-aminophenyl NH2 and
amide NH. Furthermore, out of two aromatic features, one was mapped to the phenyl ring of the
2-aminophenyl. The other aromatic feature was mapped to the pyridine ring of the nicotinamide
moiety. This hypothesis was well corroborated by accepted common pharmacophore model for
HDACIs comprising the zinc binding group (ZBG), a linker and a cap group as established by
computational and biophysical studies reported for HDAC1 inhibitors [66–70]. Based on the current
study, the aniline groups of the benzamide-based inhibitors are served as ZBG, coordinating the
catalytic zinc ion in the HDAC1 active site. Moreover, it is well known that H-bonds formation
with key residues of HDAC1 active site are commonly found for the ZBG of this class of HDAC1
inhibitors. In particular, in addition to the zinc ion coordination, protons of the 2-aminophenyl NH2

group could also establish hydrogen bonds with His140 and His141, while the carbonyl oxygen of
the benzamide portion could also form another hydrogen binding interaction with hydroxyl group of
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Tyr303. It has been reported that NH of amide could offer the appropriate HBD vector to address the
Gly149 through H-bond formation. The presence of two aromatic features capable of participating in
π-π stacking interactions with hydrophobic residues Phe150, Tyr204, Phe205, and Tyr303, represents
another important requisite for further stabilization of ligand binding. These residues were located in
a long and narrow hydrophobic tube-like channel and thus interaction with them allow tubular access
of ligand into active site [66,67,69,70]. Accordingly, the above-mentioned ADDRR hypothesis imparts
the key features of ligand for providing the relevant interactions with the HDAC1 active site.

The ADDRR pharmacophore hypothesis was then employed as alignment rule to derive the
3D-QSAR model. In this step, the compounds were randomly divided into training (70%) and test
sets (30%) taking into account that the response range was well-covered in both sets (Table S1).
This choice was made to warrant the inclusion of the positive information originating from 70% of the
compounds enclosed in the training set (corresponding to 259 compounds), for the development of
the computational tool. Moreover, the compounds kept in the test set (30%, 111 compounds) ensures
an appropriate assessment of the predictive power of the generated model through an exhaustive
internal validation. The atom-based version of Phase’s 3D-QSAR workflow was preferred to the
pharmacophore-based one. Such a choice allowed us to take into account contributions associated
with all the important structural features other than pharmacophore for HDAC1 inhibitory activity
such as the steric clashes. To enhance the model accuracy and evade overfitting phenomenon, models
containing one up to seven factors were generated for the studied data set. Statistical parameters for
each model are provided in Table 2. Model featuring seven factors was preferred and selected because
it better performed in comparison with other models. The reliability of the selected model is justified
by the fact that all statistical parameters were in acceptable range. In this regard, the correlation and
cross-validated correlation coefficients (R2 = 0.958 and Q2 = 0.822, respectively) of the selected model
along with the Pearson R-value (R-Pearson = 0.915) were extremely satisfactory, indicating a close
correspondence between estimated and experimental IC50 values. Moreover, the high Fisher ratio
(F = 822.1) suggested a statistically significant regression model, which was further supported by the
small value of the variance ratio (P = 4.377 × 10−169), an indication of a high degree of confidence.
Finally, the small values of the standard deviation and the root-mean-square error (SD: 0.178 and RMSE:
0.281, respectively) also provided indication about the robustness of the developed computational
model. Moreover, the Q2

F3 value clearly indicates that the 3D-QSAR model with seven factors is robust.

Table 2. 3D-QSAR statistical parameters of the seven Latent Variables (LVs) Phase-derived sets
of models.

LVs R 2a SD b F c P d RMSE e Q 2f Q2
F3

g R-Pearson h

1 0.3408 0.6978 132.9 4.699 × 10−22 0.5199 0.3886 0.635 0.6747
2 0.6273 0.5257 215.5 1.344 × 10−55 0.3979 0.6420 0.791 0.8282
3 0.7620 0.4209 272.2 3.629 × 10−79 0.3615 0.7045 0.823 0.8579
4 0.8775 0.3025 455.0 1.704 × 10−144 0.3514 0.7207 0.833 0.8690
5 0.9159 0.2512 551.0 9.327 × 10−134 0.2971 0.8004 0.881 0.9003
6 0.9433 0.2067 698.6 6.590 × 10−134 0.2865 0.8143 0.890 0.9100
7 0.9582 0.1778 822.1 4.377 × 10−169 0.2808 0.8217 0.894 0.9152
aR2: value of r2 of the regression. bSD: standard deviation of the regression. cF: variance ratio. dP: significance
level of variance ratio. eRMSE: root-mean-square error in the test set predictions. fQ2: value of Q2 for the predicted
activities. gQ2

F3: value of Q2
F3

: for the predicted activities calculated as reported in Materials and Methods section.
hR-Pearson: correlation between the predicted and observed selectivity index values for the test set.

A scatter plot of experimental versus predicted activities was generated to assess the results
(Figure 4). Based on this plot, the IC50 values were reliably predicted for both training and test set
molecules (Table S1). This plot along with the aforementioned statistical features clearly imply the
significance of the approach and indicate a QSAR model with a robust predictive power.
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Figure 4. Scatter plot for the predicted (Phase-predicted activity) and the observed (experimental
activity) pIC50 values (µM) as calculated by the 3D-QSAR model applied to the training set (blue) and
test set (cyan) compounds.

Three-dimensional aspects obtained from the QSAR model were visualized using 3D plots of the
crucial volume elements occupied by ligands. Such plots allow the visual analysis of important features
of ligand structures along with their contributions to the biological activity. The 3D plot representation
of the whole model, superimposed to the highly (3, 10, and 13), moderate (22, 213, and 239), and less
active derivatives (218, 279, and 299), is depicted in Figure 5. In this illustration, the blue and red cubes
indicate the positive and negative coefficients, respectively. In fact, blue cubes refer to ligand regions
in which the specific feature is important for better activity, whereas the red cubes are indicative of
a particular structural feature or functional group which is not essential for the activity or is likely
to decrease the activity. Cubes with small positive and negative coefficients, which therefore did not
greatly affect the activity, were filtered out by setting a 1.50 × 10−2 coefficient threshold. Remarkably,
compounds 10 and 13 (Figure 5A,B, respectively) as well as other highly active ligands, mainly lodge
in the blue regions, while the less active compounds such as 218 and 299 (Figure 5G,I, respectively)
largely resides on the red regions. Moreover, regarding some compounds with moderate activity and
generally all compounds with limited activity, we also observed a significant inability to match all the
pharmacophore features, according to the decrease of inhibitory potencies.
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Figure 5. (A–C) Superposition of highly active compounds 3, 10, and 13, respectively with the 3D-QSAR
model. (D–F) Superposition of moderate active compounds 22 (Mocetinostat), 213, and 239, respectively
with the 3D-QSAR model. (G–I) Superposition of less active compounds 218, 279, and 299, respectively
with the 3D-QSAR model. The picture was generated by means of Maestro software (Schrödinger, LLC,
New York, NY, USA, 2015).

2.3. In Silico 3D-QSAR Model Validation

2.3.1. Validation Using External Test Set

After the generation of the 3D-QSAR model, a preliminary in silico validation was performed using
an external test set selected from the literature that have not been used for generating the computational
model. This set was composed of 113 compounds with different inhibitory activities against HDAC1
(ranging from 5.8 nM to 1140 nM; Table S2 in the Supplementary Materials). As reported in Table S2,
our model was satisfactorily efficient in estimating the HDAC1 inhibitory activity of compounds
included in the external test set. In the scatter plot depicted in Figure 6, the experimental and predicted
pIC50 values of these compounds are also displayed, offering a reasonable correlation coefficient
(r2

ext_ts = 0.794). This result provided further confirmation that the correlation shown by the model is
not accidental.

 

Figure 6. Scatter plot for the predicted (Phase-predicted activity) and observed (experimental activity)
pIC50 values (µM) as calculated by the 3D-QSAR model with 7 factors applied to the external test set.
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2.3.2. Validation Using Decoy Set and Receiver-Operating Characteristic (ROC) Curve Approach

For a further validation and to assess the performance of the developed 3D-QSAR model, we
employed a validation method based on generation of decoys set. This procedure is usually employed
to evaluate the capability of in silico tools such as 3D-QSAR models to discriminate between active
or inactive molecules [71–75]. Starting from highly active compounds (ligands 1–20 in Table S1),
86 additional compounds with good activity against HDAC1 (cutoff IC50 < 35 nM; Tables S1 and S2)
were selected from the training, test and external validation sets for a total of 106 compounds (Table S3)
from which decoys were generated. For this set of active ligands, DUD-E server generated 5764 decoys.
After an appropriate minimization and conformational search of decoys, we have combined them
with the active molecules (referred as A in Figure 7A) for a total of 5870 compounds (referred as D
in Figure 7A) that were then subjected to a virtual screening using the developed 3D-QSAR model.
Interestingly, the results of this evaluation supported the validity of the proposed model. Analysis
of the database screening results (Figure 7A) indicated a trend in which inactive compounds fail to
completely satisfy all the pharmacophore features, thus making their predicted activity very poor
or absent. In contrast, the 3D-QSAR model was reasonably efficient in the estimation of HDAC1
inhibitory activity of active compounds.

 

Figure 7. (A) EF and GH scores obtained by the application of 3D-QSAR model in a database screening;
and (B) receiver-operating characteristic (ROC) curve generated from database screening.

According to the screening results (Figure 7A), the top 30 ranked compounds were considered to
be hits (Ht). This cutoff value could represent a suitable number of molecules (about 1% of database) to
be purchased after a virtual screening campaign. Remarkably, among Ht, 26 (Ha) compounds belonged
to the set of 106 known HDAC1 inhibitors. Furthermore, this qualitative analysis was well supported
by the calculation of some statistical parameters such as EF and GH score (see Materials and Methods
section for calculation details). In this regard, the calculated EF was 48.33, which implies that it could
be about 48.33 times more probable to select active compounds from the hit list compared with random
selection from the complete database. The estimated GH score value of 0.71, larger than 0.5, indicates
a great reliability of the model (Figure 7A). This suggests that the developed computational model
can serve as efficient tool in virtual screening studies to find out novel chemical entities behaving as
selective HDAC1 inhibitors.

The applicability of the proposed 3D-QSAR model was further evaluated by means of the
receiver-operating characteristic (ROC) curve. The ROC curve approach is a well-recognized metric
used as an objective way to assess the balance between model sensitivity (capability to discover
true positives) and specificity (capability to avoid false positives) [55,57,76,77]. For this purpose,
5870 compounds employed in the previous validation step, were ranked according to their predicted
activity values as estimated by the 3D-QSAR model. The output of the ROC curve provided a score for
appraising the overall performance of the model. In particular, the closer the ROC score is to 1.0, the
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better is the model at discriminating active from inactive compounds. ROC curve analysis of our in
silico model yielded a satisfactory Area Under the Curve (AUC) score of 0.94 (Figure 7B), providing
additional evidence about the predictivity of the developed 3D-QSAR model.

3. Materials and Methods

3.1. Hardware and Software Specifications

All computational tasks in this study were carried out using molecular modeling package from
Schrödinger suite 2015 (Schrödinger, Inc., LLC, New York, NY, USA) installed on an Intel(R) Xeon(R)
CPU E5-2620 v2 @ 3.30 GHz, 64 GB RAM with 12 processors, and a 2GB graphics card of NVIDIA
Quadro K2200 running Ubuntu 10.04 LTS (long-term support) as operating system. Access to the
Schrödinger modules as well as the capability to organize and analyze data was provided by Maestro
as a portal interface of Schrödinger [78].

3.2. Ligands and Data Set Preparation

A comprehensive set of HDAC1 inhibitors characterized by the 2-aminophenylbenzamide scaffold
with known IC50 values that vary over a wide range was collected from the literature [66,67,79–92] and
the bindingDB database [93]. The selection criterion for the compounds to be included in the set was
that their HDAC1 inhibition was evaluated using the same fluorescent assay based on the fluorogenic
substrate Fluor-de-Lys. This inclusion criterion allowed us to obtain a homogeneous set of compounds
regarding their biological evaluation. This step is crucial to develop a predictive model since the data
selection is pivotal for adding the correct information to a software for developing computational models.
The 3D structures of all ligands were built using the builder panel in the Maestro. For the molecules
possessing known stereochemistry, the absolute configuration was specified during the drawing of the
compounds. All structures were treated by LigPrep module of Schrödinger suite 2015 [94] in order to
generate the most probable ionization state at the cellular pH value (7.4 ± 0.2) as reported by us [95–97].
Moreover, the OPLS-AA_2005 force field was used for optimization, which produces the lowest energy
conformer of the ligand [98]. The prepared ligands were then submitted to MacroModel software [99]
in order to obtain an exhaustive conformational analysis using the OPLS-AA_2005 as force field.
The solvent effects are simulated employing the analytical Generalized-Born/Surface-Area (GB/SA)
model [100], and no cutoff for non-bonded interactions was selected. Molecular energy minimizations
were performed using Polak–Ribiere conjugate gradient (PRCG) method with 2000 maximum iterations
and 0.001 gradient convergence threshold. The conformational searches were carried out by employing
MCMM (Monte Carlo Multiple Minimum) torsional sampling method. Automatic setup with 21 kJ/mol
(5.02 kcal/mol) in the energy window for saving structure and a 0.5 Å cutoff distance for redundant
conformers was used.

3.3. 3D-QSAR Model Generation

The software package Phase 4.2 [101], implemented in Maestro suite, was used to
generate pharmacophore hypotheses and 3D-QSAR models for HDAC1 inhibitors based on
2-aminophenylbenzamide scaffold. Given a set of molecules with high affinity for a particular protein
target, this software uses fine-grained conformational sampling and a range of scoring techniques to
identify a common-features pharmacophore hypothesis, which conveys 3D structural characteristics
that are critical for the activity. Pharmacophore feature sites for the molecules were specified by
a set of features well-defined in Phase as hydrogen-bond acceptor (A), hydrogen-bond donor (D),
hydrophobic group (H), negatively charged group (N), positively charged group (P) and aromatic ring
(R). No user-defined feature was employed for the present study. The ligands prepared as reported
in the previous step, were imported into the “develop common pharmacophore hypotheses” panel
of Phase with their respective biological activity values. Twenty active compounds (Figure 2 and in
Table S1 in the Supplementary Materials) possessing highly inhibitory potency against HDAC1 were
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selected for generating the pharmacophore hypotheses. Common-features pharmacophore hypotheses
were identified, scored, and ranked by means of conformational analysis and tree-based partitioning
techniques. In the score hypotheses step, common pharmacophores are examined, and a scoring
procedure is applied to identify the pharmacophore from each surviving n-dimensional box that yields
the best alignment of the active set ligands. This pharmacophore provides the means to explain how
the active molecules bind to the receptor.

The best ranked pharmacophore model obtained by Phase (ADDRR, shown in Figure 3A
superimposed to aminophenylnicotinamide analogue 13), consisted of five features: one hydrogen-bond
acceptor (A), two hydrogen-bond donors (D), and two aromatic functions (R). The inter-feature distances
(Figure 3B) were measured by using the site measurements tool implemented in the software Phase.
This pharmacophore was used as alignment rule for further 3D-QSAR analysis. All the molecules used
for the QSAR studies (Table S1) were aligned to the selected pharmacophore hypothesis. In the present
study, we set a pIC50 threshold for the selection of active and inactive ligands. These pIC50 values were
also used as the dependent variable in the 3D-QSAR calculations. In particular, compounds that showed
an IC50 comprised between 5 and 50 µM were considered to be inactive ligands. Moderate inhibitors
were considered compounds with IC50 between 10 nM and 5 µM, while compounds possessing an
IC50 ≤ 10 nM were assigned as potent inhibitors of HDAC1 and consequently as actives during
3D-QSAR model generation. Remarkably, to avoid possible faults arising from the inclusion in the set
of molecules with uncertain activity, only molecules with experimentally definite inhibitory activity
have been selected to develop the in silico model. Atom-based QSAR models were developed for
ADDRR hypothesis using 259 compounds in the training set (370 compounds were randomly divided
70% in the training and 30% in the test set) and a grid spacing of 0.5 Å. QSAR models were generated
by means of PLS method. An internal validation was achieved employing leave-n-out (LnO) technique
as specified in Phase user manual (Phase, version 4.2, User Manual, Schrödinger press, LLC, New York,
NY, 2015). As reported by Todeschini et al. the internal validation results generally expressed in terms
of Q2 metrics should be amended introducing Q2

F3 metrics for the internal validation of the QSAR
models [102]. For this purpose, we calculated these metrics (Table 2) employing the formula reported
below (Equation (1)).

Q2
F3 = 1−

∑nOUT

i = 1 (yi − ŷi/i)
2/nOUT

∑nTR

i = 1

(

yi − yTR

)2
/nTR

(1)

where yi is the experimental response of the ith object, ŷi/i is the predicted response when the ith
object is not in the training set, nTR and nOUT are the number of training and prediction objects,
respectively, and ȳTR is the average value of the training set experimental responses. Moreover, to avoid
overfitting/underfitting phenomena, we considered 7 factors that is an appropriate for the number of
selected compounds. In fact, although there is no limit on the maximum number of factors, but as a
general rule, we stopped adding factors when the standard deviation of regression is approximately
equal to the experimental error (calculated as median error among the selected compounds).

3.4. In Silico 3D-QSAR Model Validation

After the generation of the 3D-QSAR model, a preliminary in silico validation was performed using
a large external test set of compounds (113 molecules) selected from the literature [83,84,89,103–106]
(Table S2 in the Supplementary Materials) that have not been used for generating and cross validating
the model. These compounds were prepared by using Maestro, LigPrep, and MacroModel, adopting
the same procedure for preparing the molecules used to derive the model. Moreover, to further assess
that the chosen model with 7 factors better performs with respect to the other Phase-derived models,
we applied the validation method employing the external test set to all the generated QSAR models
(Table 2). This workflow established that the model with 7 factors is the best performing model of
the series in predicting the activity of the external test set with a correlation coefficient r2

ext_ts = 0.794
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(Figure 6) (LVs 1, r2
ext_ts = 0.421; LVs 2, r2

ext_ts = 0.698; LVs 3, r2
ext_ts = 0.657; LVs 4, r2

ext_ts = 0.712;
LVs 5, r2

ext_ts = 0.735; LVs 6, r2
ext_ts = 0.787; Figures S1–S6, respectively).

Further validation of the model was done by enrichment study using decoy test [107]. For this
purpose, the Enhanced (DUD-E) web server [108] was employed to generate a set of useful decoys
generated from a collection of 106 active compounds from three sources: 1) active compounds used to
develop the pharmacophore model, 2) other compounds with good activity against HDAC1 used in
3D-QSAR studies and 3) the most active compounds of the external test set. This collection consisted
of 106 active compounds with IC50 ≤ 35 nM (Table S3). For this set of active ligands, the DUD-E server
provided 5764 inactive ligands (redundant structures in the output files were deleted) from a subset of
the ZINC database filtered using the Lipinski’s rules for drug-likeness, for a total of 5870 compounds
(5764 inactives plus 106 actives). Each of these inactive decoys was selected to bear a resemblance
to the physicochemical properties of the reference ligand but differ from it in terms of 2D structure
(e.g., large difference of Tanimoto coefficient between decoys and active molecules). Although largely
used, the approach based on decoys sets presents some limitations (i.e., the decoy sets often span a
small, synthetically feasible subset of molecular space and are restricted in physicochemical similarity
compared with actives). After the generation, the decoys sets were downloaded as 126 smiles files
and imported into Maestro and submitted to LigPrep application to properly convert smiles into
3D structures as well as for removing potential erroneous structures. Subsequently, to perform a
minimization and a conformational search of the obtained structures MacroModel program was
employed (same parameters for ligands preparation were applied). A single file containing conformers
of active molecules and decoys was created and submitted to Phase software for predicting the
inhibitory activity of database against HDAC1 using the developed 3D-QSAR model and employing
“search for matches” option. After decoys generation and activity evaluation, the Güner–Henry score,
i.e., goodness of hit list (GH) and enrichment factor (EF) values were estimated by Equations (2)
and (3), respectively.

EF =
Ha/Ht

(A/D)
(2)

GH =

{

Ha ∗ (3A + Ht)

4HtA

}

∗

[

1−
(Ht−Ha)

(D−A)

]

(3)

where Ht represents the total number of compounds in the hit list found by virtual screening, Ha is the
total actives found by virtual screening considering the top 30-ranked position (positions comprise
within the cutoff value). The total number of compounds (Ht) might represent the number of molecules
to purchase after a virtual screening protocol and almost the 1% of the considered database (D).
A represents the total of the active derivatives enclosed in the database, and D stands for the total
number of molecules existing in the set. The range of GH score varies from 0 to 1. The GH score 0
means a null model, while the GH score 1 denotes generation of an ideal model. Moreover, the % yield
of actives (% YA) and % ratio of actives (% RA) were evaluated by Equations (4) and (5), respectively.

%YA =
[(

Ha

Ht

)

∗ 100
]

(4)

%RA =
[(

Ha

A

)

∗ 100
]

(5)

Moreover, to assess the predictive power of the 3D-QSAR model, a ROC was employed through
an Enrichment Calculator (enrichment.py) script [55–57,76]. The mentioned script calculates the
enrichment metrics, including area under the receiver-operating characteristic curve (AUC), from
virtual screening by means of the output structure file and a list of known active molecules. The output of
the screening protocol, using active molecules and decoys, consisted of a list of molecules ranked by the
predicted activity from the top-predicted molecules as estimated by the 3D-QSAR model. These ranking
data along with a list file of active molecules were submitted to the enrichment.py application.
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4. Conclusions

The present study describes the generation of a ligand-based pharmacophore model (ADDRR)
for a subset of 20 highly active aminophenylbenzamide derivatives reported as selective HDAC1
inhibitors by employing the software Phase implemented in the Schrödinger molecular modeling suite.
With the aid of pharmacophore-based alignment rule, a meaningful 3D-QSAR model was derived and
validated employing of the QSAR models a large set of benzamide-based HDAC1 inhibitors (training
set, test set, and an external test set for a total of 483 molecules) by using PLS analysis. The main
objective of this approach was to develop an in-house computational tool for the prediction of HDAC1
inhibitory activity during the design of innovative aminophenylbenzamide chemotypes as privileged
therapeutic scaffold in the isoform-selective HDACIs research. The validation outcomes confirmed
that the proposed 3D-QSAR model is endowed with satisfactory predictive power taking into account
favorable structural requirements responsible for HDAC1 inhibitory activity. This aspect has been
computationally investigated since the selectivity is implicit in the template molecules; however
prospective validation is needed to exploit the performance of the model. In fact, the developed
3D-QSAR model can be used for rationally designing novel and selective HDACIs. Moreover, based
on the computational investigation, the developed model possesses a rationale for virtual screening
campaign, with huge potential in isoform-selective HDACIs drug discovery, and it can effectively
provide a set of guidelines for the design and optimization of novel derivatives with greater activity
towards HDAC1.

Supplementary Materials: The following are available online, Table S1: Experimental (Observed column) and
predicted (Predicted column) activity pIC50 for compounds used for developing the 3D-QSAR model., Table S2:
Experimental (Observed column) and predicted (Predicted column) activity pIC50 for compounds included in the
external test set, Table S3: Active compounds used for generating a decoys set, Figures S1–S6: Scatter plots for all
the model generated by Phase.
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Abstract: Human ether-a-go-go-related gene (hERG) potassium channel blockage by small molecules
may cause severe cardiac side effects. Thus, it is crucial to screen compounds for activity on the hERG
channels early in the drug discovery process. In this study, we collected 5299 hERG inhibitors with
diverse chemical structures from a number of sources. Based on this dataset, we evaluated different
machine learning (ML) and deep learning (DL) algorithms using various integer and binary type
fingerprints. A training set of 3991 compounds was used to develop quantitative structure–activity
relationship (QSAR) models. The performance of the developed models was evaluated using a test set
of 998 compounds. Models were further validated using external set 1 (263 compounds) and external
set 2 (47 compounds). Overall, models with integer type fingerprints showed better performance than
models with no fingerprints, converted binary type fingerprints or original binary type fingerprints.
Comparison of ML and DL algorithms revealed that integer type fingerprints are suitable for ML,
whereas binary type fingerprints are suitable for DL. The outcomes of this study indicate that the
rational selection of fingerprints is important for hERG blocker prediction.

Keywords: hERG toxicity; drug discovery; fingerprints; machine learning; deep learning

1. Introduction

The human ether-a-go-go related gene (hERG) or KCNH2 gene encodes a voltage-gated potassium
channel known as the hERG channel. This channel plays a key role in cardiac action potential
repolarization. Reduced function of hERG causes potential action prolongation and increases the risk
for potentially fatal ventricular arrhythmia, torsades de pointes. Therefore, preclinical hERG testing
is essential in the drug discovery process to avoid cardiac toxicity [1]. Recently, many drugs such as
astemizole, terfenadine, cisapride, thioridazine, grepafloxacin and sertindole were withdrawn from the
market due to undesired cardiotoxicity effects [2,3]. Nowadays, the US Food and Drug Administration
(FDA) demands in vitro hERG assay of lead compounds prior to clinical trials [4]. The side effects of
unexpected hERG channel binding by drug candidates are a major challenge in the drug discovery
process [5]. The development of an accurate prediction model for hERG channel blockers is crucial in
the early stages of drug discovery and development.

Although the electron microscopy structure of the membrane protein hERG is known [6], its X-ray
crystal structure is not available. Thus, structure-based hERG blocker prediction is challenging.
However, a few structure-based hERG blocker predictions were attempted with homology modeling
using structures of the related potassium ion channels as templates [7]. Several researchers have
applied a ligand-based drug design approach to identify hERG blockers. They used various machine
learning (ML) algorithms such as naïve Bayes (NB) [8], support vector machine (SVM) [9], random
forest (RF) [10] and k-NN [11]. Sun et al. reported an NB model with a receiver operating characteristic
(ROC) value of 0.87 on the basis of 1979 compounds [12]. Jia et al. applied SVM methods and
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atom-type descriptors without fingerprints on 1043 compounds to develop a model with accuracy of
0.94 [9]. Yap et al. developed a model with accuracy of 0.97 based on 310 compounds using similar
methodology [13]. Marchese Robinson et al. built an RF model with Matthews correlation coefficient
(MCC) of 0.83 using a dataset of 368 compounds. They used the extended-connectivity fingerprint
(ECFP_4) for developing the model [14]. Kim et al. developed a model with accuracy of 0.96 using
the RF algorithm on a dataset of 293 compounds [15]. Chavan et al. reported a k-NN model with
accuracy of 0.55 on the basis of 1967 compounds [11]. The deep learning (DL) approach with artificial
neural networks (ANN) has also been used to predict hERG blockers [16,17]. Cai et al. applied DL to
7889 compounds and obtained accuracy of 0.93 and an area under the receiver operating characteristic
curve (AUC) value of 0.97 for the best model [17]. Zhang et al. applied DL to 1871 compounds and
developed a model with accuracy of 0.78 [18]. Several research papers have reported the application
of ML or DL techniques on hERG blockers. However, smaller datasets were used in the previous
publications as compared to the recent papers utilizing the DL approach. Datasets for hERG blockers
have grown in recent years.

Fingerprints used in the former ligand-based drug design studies on hERG as well as other targets
were mostly binary types representing 0 or 1 [19–22]. Fingerprints describe chemical substructures as
numerical category data. The number of a binary type fingerprint is usually restricted to 1024 bits [23].
The integer type fingerprints describe chemical structures in more detail with various substructures.
They produce a large number of category data types useful for ML. Although integer type fingerprints
indicate diversity of chemical substructures, they are limited to commercial software such as the
Pipeline Pilot (PP) module of Discovery Studio (DS) software (BIOVIA, San Diego, CA, USA) [24].
In the present study, we calculated integer as well as binary type fingerprints for a dataset of hERG
blockers. Integer type fingerprints were computed using PP and they included extended-connectivity
fingerprints (ECFP_2, ECFP_4 and ECFP_6) and functional-class fingerprints (FCFP_2, FCFP_4 and
FCFP_6). Binary type chemistry development kit (CDK) fingerprints (standard, extended and graph)
were computed using the R package. We used both types of fingerprints for ML and DL. Our results
show that rational selection of fingerprints is important for hERG blocker prediction. We have discussed
the advantages and disadvantages of integer and binary type fingerprints in ML and DL.

2. Results

2.1. Dataset Splitting

As discussed in the methodology section, a dataset consisting of hERG blockers was divided
into the training and test sets in the ratio 4:1. The training and test sets consisted of 3991 and 998
compounds, respectively. Principle component analysis (PCA) was performed to verify the diversity
of the chemical space of the dataset. PCA analysis with eight common descriptors, including partition
coefficient (AlogP), molecular weight (MW), hydrogen-bond donor (HBD), hydrogen-bond acceptor
(HBA), rotatable bond number (RBN), number of rings (Num Rings), number of aromatic rings (Num
Arom Rings) and molecular fractional polar surface area (MFPSA), showed high chemical diversity of
the compounds within the training and test sets (Figure 1). Generally, PCA descriptors are indirect
numeric type representations of chemical structures. However, fingerprints representing chemical
substructures are not numeric type. They are Boolean type indicating existence or nonexistence (1 or 0)
of a unique fingerprint. Therefore, additional integer and binary type fingerprints were computed
to validate the division of the dataset. As shown in Figure 2, integer type PP fingerprints (ECFP_6
and FCFP_6) and binary type CDK fingerprints (standard and extended) showed similar fingerprint
frequency for the training and test sets. Binary type CDK fingerprints displayed relatively lower
fingerprint frequency than integer type PP fingerprints. This is due to the limited size of the binary
type CDK fingerprints (1024 bits). PCA analysis and fingerprint frequency calculations validate the
appropriate splitting of the dataset into training and test sets.
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Figure 1. Principle component analysis (PCA) for the training and test sets of hERG blockers.
Independent variables included partition coefficient (AlogP), molecular weight (MW), hydrogen-bond
donor (HBD), hydrogen-bond acceptor (HBA), rotatable bond number (RBN), number of rings (Num
Rings), number of aromatic rings (Num Arom Rings) and molecular fractional polar surface area
(MFPSA). Blue and yellow spheres indicate training and test sets, respectively.

 

 

Figure 2. Fingerprint frequency of the training and test sets of hERG blockers. X-axis denotes fingerprint
identifier whereas Y-axis denotes the fingerprint frequency. Representative integer type PP fingerprints:
(A) ECFP_6 and (B) FCFP_6. Representative binary type chemistry development kit (CDK) fingerprints:
(C) standard and (D) extended. For validating the appropriate split of the dataset into training and
test sets, the top 20 of PP integer fingerprint identifiers were selected as representatives depending
on the inclusion order. Furthermore, the top 20 of CDK binary fingerprint identifiers were chosen as
representatives depending on the binary sequence (1024 bits). Fingerprint frequency was calculated
as the observed number of unique fingerprint identifiers/the total number of chemical data (training
set = 3991 and test set = 998).

2.2. Model Building and Evaluation

The training set comprising 3991 compounds was used to build the models and the test set
consisting of 998 compounds was used to evaluate the performance of the developed models. Different
integer and binary type fingerprints were utilized for model building (Figure 3 and Supplementary
materials Tables S1 and S2). All control models which lacked fingerprints and included only descriptors
(AlogP, MW, HBD, HBA, RBN, Num Rings, Num Arom Rings and MFPSA) as features showed
average predictive accuracy (Q) of 0.77 (ML = 0.79 and DL = 0.75) and an average area under the
receiver operating characteristic curve (AUC) value of 0.82 (ML = 0.82 and DL = 0.81). The addition of
fingerprints in the features improved the performance of the models. All models including integer
type PP fingerprints (ECFP_2, FCFP_2, ECFP_4, FCFP_4, ECFP_6 and FCFP_6) displayed average Q
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and AUC values of 0.87 (ML = 0.86 and DL = 0.88) and 0.92 (ML = 0.91 and DL = 0.93), respectively.
Integer type fingerprints were converted to binary type using the “Convert Fingerprint” module of PP.
The conversion of integer type to binary type fingerprints decreased the performance of the models. All
models including converted binary type PP fingerprints demonstrated average Q and AUC values of
0.77 (ML = 0.75 and DL = 0.81) and 0.81 (ML = 0.77 and DL = 0.84), respectively. The open-source based
CDK fingerprints (standard, extended and graph) are originally binary type and cannot be converted
to integer type. Models with original binary type CDK fingerprints showed a comparatively higher
performance than converted binary type PP fingerprints. All models, including binary type CDK
fingerprints, exhibited average Q and AUC values of 0.86 (ML = 0.83 and DL = 0.89) and 0.90 (ML = 0.87
and DL = 0.93), respectively. Integer type PP fingerprints exhibited a higher performance than original
binary type CDK fingerprints for ML. However, integer type PP fingerprints demonstrated a slightly
lower performance than original binary type CDK fingerprints for DL. Compared to integer type PP
fingerprints and original binary type CDK fingerprints, converted binary type PP fingerprints showed
lower performance for both ML and DL. Comparison of different algorithms revealed that the RF
algorithm produced better models than others. Models derived using the RF algorithm exhibited
average Q and AUC values of 0.90 and 0.95, respectively, for both integer type PP fingerprints as
well as original binary type CDK fingerprints. Furthermore, the RF algorithm produced the best
model with FCFP_2 integer type PP fingerprint. This model showed Q and AUC values of 0.91 and
0.95, respectively.

 

Figure 3. Models built using integer and binary type fingerprints for hERG blockers. X-axis denotes
fingerprint types whereas Y-axis denotes the performance. Control lacking fingerprint only include
descriptors, I: integer type PP fingerprints, CB: converted binary type PP fingerprints, OB: original
binary type CDK fingerprints, NB: naïve Bayes, SVM: support vector machine (L: linear, P: polynomial,
R: radial), RF: random forest, ANN: artificial neural network (layer size 100, 200, and 400) for deep
learning. (A,B) Accuracy value for the models using machine learnings (A) and deep learning (B).
(C,D) AUC value for machine learnings (C) and deep learning (D).

2.3. External Validation

Two external sets were used for further validation of the models. As discussed in the methodology
section, external set 1 (Ex-1) from ChEMBL database and external set 2 (Ex-2) from recent publications [25–29]
consisted of 263 and 47 hERG blockers, respectively. Model predictions for Ex-1 and Ex-2 using integer
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and binary type fingerprints are summarized in Figure 4 and Tables S3–S6 (Supplementary materials),
respectively. The control models exhibited an average Q value of 0.79 (ML = 0.80 and DL = 0.78) for Ex-1.
The Ex-1 showed average Q values of 0.87 (ML = 0.86 and DL = 0.88), 0.80 (ML = 0.77 and DL = 0.82) and
0.86 (ML = 0.83 and DL = 0.88) for integer type PP fingerprints, converted binary type PP fingerprints
and original binary type CDK fingerprints, respectively. Ex-1 displayed higher predictive accuracy for
both integer type PP fingerprints and original binary type CDK fingerprints than for the control models.
However, integer type PP fingerprints produced comparatively higher predictive accuracy than original
binary type CDK fingerprints. Converted binary type PP fingerprints showed predictive accuracy similar
to the control models. Integer type PP fingerprints exhibited higher predictive accuracy than original
binary type CDK fingerprints for ML. However, integer type PP fingerprints exhibited predictive accuracy
similar to the original binary type CDK fingerprints for DL. Control models exhibited an average Q value
of 0.76 (ML = 0.79 and DL = 0.73) for Ex-2. The Ex-2 showed average Q values of 0.80 (ML = 0.80 and
DL = 0.80), 0.71 (ML = 0.71 and DL = 0.70) and 0.70 (ML = 0.72 and DL = 0.68) for integer type PP
fingerprints, converted binary type PP fingerprints and original binary type CDK fingerprints, respectively.
Compared to the control models, Ex-2 displayed higher predictive accuracy for integer type PP fingerprints
while it showed lower predictive accuracy for original binary type CDK fingerprints and converted binary
type PP fingerprints. Integer type PP fingerprints exhibited higher predictive accuracy for both ML and
DL as compared to the original binary type CDK fingerprints and converted binary type PP fingerprints.

 

Figure 4. Model prediction to external sets. X-axis denotes fingerprint types whereas Y-axis denotes
the performance for accuracy. Control lacking fingerprint include only descriptors, I: integer type PP
fingerprints, CB: converted binary type PP fingerprints, OB: original binary type CDK fingerprints,
NB: naïve Bayes, SVM: support vector machine (L: linear, P: polynomial, R: radial), RF: random forest,
ANN: artificial neural network (layer size 100, 200, and 400) for deep learning. (A,B) Ex-1 prediction
for machine learnings (A) and deep learning (B). (C,D) Ex-2 prediction for machine learnings (C) and
deep learning (D).

In accordance with the model-building results, converted binary type PP fingerprints reduced the
predictive accuracy of the models. Original binary type CDK fingerprints exhibited comparatively
higher predictive accuracy than converted binary type PP fingerprints for Ex-1. However, Ex-2
displayed slightly lower predictive accuracy for original binary type CDK fingerprints as compared
to converted binary type PP fingerprints. This might be due to the small data size of the Ex-2
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(47 compounds). Further parameters for external validation of the developed models are provided in
Tables S3–S6 (Supplementary materials). These included true positive (TP), true negative (TN), false
positive (FP), and false negative (FN). It can be seen in the supplementary tables that TN predictions
were higher than FN. This might be because compounds in the whole dataset as well as the external sets
were intended to develop as inhibitors for other drug targets but they also inhibited hERG, to produce
toxicity. During model building, the RF algorithm displayed the same average Q value of 0.90 for both
integer type PP fingerprints as well as original binary type CDK fingerprints. However, the RF model
predictions for Ex-1 and Ex-2 using integer type PP fingerprints were found to be better than original
binary type CDK fingerprints. The RF models with integer type PP fingerprints showed average Q
values of 0.89 and 0.79 for Ex-1 and Ex-2, respectively. The RF models with original binary type CDK
fingerprints exhibited average Q values of 0.88 and 0.74 for Ex-1 and Ex-2, respectively. The best model
that was obtained using the RF algorithm and FCFP_2 integer type PP fingerprint showed Q values of
0.90 and 0.81 for Ex-1 and Ex-2, respectively.

3. Discussion

The unwanted blockage of the hERG channel by drug candidates could lead to fatal cardiotoxicity.
Thus, it is essential to screen compounds for activity on hERG channels early in the drug discovery
process to decrease the risk of a drug candidate failing in preclinical safety studies. Due to the
unavailability of the crystal structure of the hERG channel, researchers mainly use the ligand-based
drug design approach to identify hERG blockers. Several ML and DL approaches have been applied.
However, fingerprints used in the majority of the previous studies were mostly binary type [30,31].
These fingerprints are limited in size and generally restricted to 1024 bits. The integer type fingerprints
describe chemical structures in more detail, but they are limited to commercial software. Fingerprints of
the integer type have not been explored much for the prediction of hERG blockers or for the prediction
of other drug target inhibitors. In this study, we computed both integer and binary type fingerprints
for a dataset of hERG blockers and evaluated various ML (NB, SVM, RF and Bagging) and DL (ANN)
algorithms. A training set of 3991 compounds was used to develop QSAR models. The performance of
the developed models was evaluated using a test set of 998 compounds. Models were further validated
using two external sets (Ex-1: 263 compounds and Ex-2: 47 compounds).

The overall results showed that addition of fingerprints to the descriptors improved the
performance of the models. Models with integer type PP fingerprints displayed slightly better
performance than models with binary type CDK fingerprints. Conversion of integer type PP fingerprints
to binary type PP fingerprints reduced the performance of the models. Except for small-sized Ex-2,
models with binary type CDK fingerprints showed better performance than converted binary type PP
fingerprints. Comparison of different algorithms revealed that models built by RF outperformed those
built by other algorithms. This is in agreement with a previous study that reported high performance
of the RF models [17]. The RF algorithm demonstrated a similar performance for both integer type
PP fingerprints as well as original binary type CDK fingerprints during model building. However,
the RF models with integer type PP fingerprints showed comparatively better predictions for both
the external sets than the RF models with original binary type CDK fingerprints. The best model
was obtained using the RF algorithm and FCFP_2 integer type PP fingerprint. Comparison of ML
and DL algorithms revealed that ML models with integer type PP fingerprints demonstrated better
performance and predictions than ML models with binary type CDK fingerprints. On the other hand,
DL models performed slightly better with binary type CDK fingerprints as compared to DL models
with integer type PP fingerprints. However, DL models exhibited similar predictions for both integer
type PP fingerprints and binary type CDK fingerprints for Ex-1. In the case of small-sized Ex-2, ML
and DL models showed better predictions with integer type PP fingerprints as compared to ML and
DL models with binary type CDK fingerprints.

The outcomes of the study suggested that integer type fingerprints improved the performance
and predictive ability of QSAR models. Although integer type fingerprints could be applied to both
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ML and DL, these fingerprints did not improve the predictive accuracy of DL models significantly.
Moreover, they required long computation time due to the large number of features. Numerous
fingerprint identifiers caused memory problems in some ANN packages such as “nnet”. Due to
memory problems, integer type fingerprints needed to be converted to binary type for DL. Our results
demonstrated that conversion of fingerprints from integer to binary type reduced the performance
and the predictive ability of the models in both ML and DL. Compared to integer type fingerprints,
original binary type fingerprints produced DL models with slightly better performance. Furthermore,
the predictive ability of DL models with binary type fingerprints was comparable to DL models with
integer type fingerprints. Accordingly, binary type fingerprints are recommended for DL. Binary
type fingerprints were suitable for both ML and DL due to their limited size. However, binary type
fingerprints produced ML models with comparatively lower performance and predictive ability than
ML models with integer type fingerprints. Consequently, integer type fingerprints are recommended
for ML. In conclusion, rational selection of fingerprints is important for hERG blocker prediction.

4. Materials and Methods

4.1. Dataset

A dataset consisting of 5252 compounds with hERG inhibition values (IC50 and Ki) was obtained
from the ChEMBL database [32]. The reported Ki values were converted into IC50 values. In accordance
with previous studies, compounds with IC50 ≤ 1 µM and IC50 > 10 µM were classified as active and
inactive compounds, respectively [15,16]. Active and inactive compounds were defined as 1 and 0,
respectively. Prior to splitting the dataset into training and test sets, 263 compounds (5% of the dataset)
were extracted by random selection as Ex-1 using DS 2019 software (BIOVIA, San Diego, CA, USA).
The remaining dataset with 4989 compounds was randomly partitioned into training and test sets in
the ratio 4:1. The training and test sets consisted of 3991 and 998 compounds, respectively. In addition
to the ChEMBL dataset, 47 hERG blockers reported in recent research papers were collected as Ex-2
from recent publications [25–29]. Active and inactive compounds for the external set 2 (Ex-2) were
defined in the same way as discussed for the ChEMBL dataset (Table 1). The training set was used for
the model building whereas the test and external sets (Ex-1 and Ex-2) were used for model evaluation.

Table 1. Dataset used in the present study.

Source Set Compounds
Active

Compounds
Inactive

Compounds

ChEMBL database
(Total compounds: 5252)

Training set 3991 1201 2790
Test set 998 278 720
Ext-1 263 67 196

Recent research papers
(Total compounds: 47) Ext-2 47 18 29

4.2. Fingerprint Calculation

The PP integer type fingerprints were computed using the “molecular fingerprint” module of PP.
The “atom abstraction” option was set to atom type and functional class for calculating ECFP and FCFP
fingerprints, respectively. The “maximum distance” option was set to 2, 4 and 6 for generating different
types of ECFP and FCFP fingerprints (ECFP_2, FCFP_2, ECFP_4, FCFP_4, ECFP_6 and FCFP_6).
Integer type fingerprints were converted to binary type fingerprints using the “Convert Fingerprint”
module of PP. CDK binary type fingerprints (standard, extended and graph) were computed with
“rcdk” package [33] of R (version 3.5.2, R Core Team, Vienna, Austria) [34]. The “get.fingerprint”
function was used for the calculation of the fingerprints. The fingerprint frequency was determined
for validating the appropriate split of the dataset into training and test sets. Fingerprint frequency was
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calculated as the observed number of unique fingerprint identifiers/the total number of chemical data
(training set = 3991 and test set = 998).

4.3. Model Building

In this study, we evaluated one DL algorithm: ANN, and four ML algorithms: NB, SVM, RF
and bagging. DS 2019 software was used for NB and bagging because it supports only these two
algorithms. R package was employed for NB, SVM, RF, ANN. NB is available in both R and DS
packages. NB-DS computes only integer type fingerprints but it is possible to calculate both integer as
well as binary type fingerprints using NB-R. We utilized both the packages to evaluate NB. The “create
Bayesian model” protocol of DS was used for NB-DS. The laplacian value was set to the default value
of 1. The “create recursive partitioning model” protocol of DS was employed for decision-tree based
bagging such as RF. The number of trees was set to 100. The “e1071” package [35] of R was utilized
for NB and SVM. NB models were created using the “naïveBayes” function. The Laplace parameter
was set to 1. SVM models were developed using the “svm” function. The linear, polynomial and
radial methods were implemented for SVM. While implementing, linear, polynomial and radial kernel
functions were selected. The “randomForest” package [36] of R was used for a decision-tree based
RF. The number of trees was set to 100. The “h2o” package [37] of R was utilized for ANN with three
hidden layers. The “Rectifier activation” function was employed, and the number of iterations was set
to 20. The layer size parameter was set to 100, 200, and 400 for three hidden layers. Descriptors were
calculated using DS. These included AlogP, MW, HBD, HBA, RBN, Num Rings, Num Arom Rings and
MFPSA. Except for the control models, all developed models included fingerprints. Control models
comprised only descriptors.

4.4. Model Evaluation

Model performance was evaluated in terms of predictive accuracy (Q), the area under the receiver
operating characteristic curve (AUC), true positive (TP), true negative (TN), false positive (FP) and
false negative (FN). The “calculate molecular property” protocol of DS 2019 software and “predict”
function of R package were used for the model evaluation.

Supplementary Materials: The following are available online. Table S1. Models built using integer type
fingerprints. Table S2. Models built using binary type fingerprints. Table S3. Model prediction for external set 1
using integer type fingerprints. Table S4. Model prediction for external set 1 using binary type fingerprints. Table
S5. Model prediction for external set 2 using integer type fingerprints. Table S6. Model prediction for external
set 2 using binary type fingerprints. The supplementary excel data for the compound list and detailed model
prediction data used in this research for hERG blocker prediction.
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