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Preface to “Computational Approaches: Drug
Discovery and Design in Medicinal Chemistry and
Bioinformatics”

To date, computational approaches have been recognized as a key component in drug design
and discovery workflows. Developed to help researchers save time and reduce costs, several
computational tools have been developed and implemented in the last twenty years. At present, they
are routinely used to identify a therapeutic target, understand ligand—protein and protein—protein
interactions, and identify orthosteric and allosteric binding sites, but their primary use remains the
identification of hits through ligand-based and structure-based virtual screening and the optimization
of lead compounds, followed by the estimation of the binding free energy. The repurposing of an old
drug for the treatment of new diseases, helped by in silico tools, has also gained a prominent role in

virtual screening campaigns.

Moreover, the availability and the decreasing cost of hardware and software, together with
the development of several web servers on which to upload and download computational data,
have contributed to the success of computer-assisted drug design. These improved, accurate, and
reliable methods should help to add new and more potent molecules to the group of approved drugs.
Nevertheless, the ease of access of computational tools in drug design (software, databases, libraries,
and web servers) should not encourage users with little or almost no knowledge of the underlying
physical basis of the methods used, who could compromise the interpretation of the results. The
role of the computational (medicinal) chemist should be recognized and included in all research
groups. These considerations led us to promote a volume collecting original contributions regarding
all aspects of the computational approaches, such as docking, induced-fit docking, molecular
dynamics simulations, free energy calculations, and reverse modeling. We also include ligand-based
approaches, such as molecular similarity fingerprints, shape methods, pharmacophore modeling,
and QSAR. Drug design and the development process strive to predict the metabolic fate of a
drug candidate to establish a relationship between the pharmacodynamics and pharmacokinetics
and highlight the potential toxicity of the drug candidate. Even though the use of computational
approaches is often combined, we tried to identify which of these play a central role in each

manuscript.

In this Special Issue, the use of molecular dynamics simulations, both unbiased and biased,
cover a major part of the contributions. The non-covalent inhibition of the immunoproteasome
was investigated in-depth through MD binding and binding pose metadynamics. MD simulations
provided insight into the structural features of hTSPO (Translocator Protein) and the previously
unknown interplay between PK11195, a molecule routinely used in positron emission tomography
(PET) for the imaging of neuroinflammatory sites, and cholesterol. The interaction of certain endogen
substrates, drug substrates, and inhibitors with wild-type MRP4 (WT-MRP4) and its variants,
G187W and Y556C, were studied to determine differences in the intermolecular interactions and
affinity related to SNPs using several approaches, but particularly all-atom, coarse-grained, and
umbrella sampling molecular dynamics simulations (AA-MDS and CG-MDS, respectively). Natural
sodium—glucose co-transporter 2 (SGLT2) inhibitors were selected to explore their potential against
an emerging uropathogenic bacterial therapeutic target, i.e., FimH, which plays a critical role in

the colonization of uropathogenic bacteria on the urinary tract surface, and molecular dynamics

xi



simulations were carried out to study the potential interactions. Doxorubicin encapsulation in
carbon nanotubes with haeckelite or Stone-Wales defects as drug carriers were investigated using
a molecular dynamics approach. The combined use of different approaches has been reported in
a series of papers associated with the virtual screening of libraries. Almeelebia and co. screened
224,205 natural compounds from the ZINC database against the catalytic site of the Mtb proteasome.
Pharmacophore-based virtual screening and molecular docking were carried out to identify potential
Src inhibitors starting from a total of 891 molecules. Finally, MD simulations identified two molecules
as potential lead compounds against Src kinase. An in silico study identified a methotrexate analog
as a potential inhibitor of drug-resistant human dihydrofolate reductase for cancer therapeutics. A
structure-based method for high-throughput virtual screening aimed to identify new dual-target
hit molecules for acetylcholinesterase, and the 7 nicotinic acetylcholine receptor was reported and
confirmed in vitro. A new complementary computational analysis called “dock binning” evaluates
antibody-antigen docking models to identify why and where they might compete in terms of possible
binding sites on the antigen. Interesting drug repurposing strategies have been reported. Hudson and
Samudrala presented a computational analysis of a novel drug opportunities (CANDO) platform
for shotgun multitarget repurposing. It implements several pipelines for the large-scale modeling
and simulation of interactions between comprehensive libraries of drugs/compounds and protein
structures. Qi and co. data-mined the crowd extracted expression of differential signatures (CREEDS)
database to evaluate the similarities between gene expression signature (GES) profiles from drugs and
their indicated diseases for GES-guided drug-repositioning approaches. In late 2019, the SARS-CoV-2
pandemic focused the attention of many researchers on not only vaccines but also new antiviral
drugs. These reasons boosted the use of computational approaches to explore large libraries of
natural compounds, already approved drugs, and in-house and commercial compounds. In this
Special Issue, Baig and co. studied the efficacy of the Mpro inhibitor PF-00835231 against Mpro
and its reported mutants in clinical trials. Several in silico approaches were used to investigate
and compare the efficacy of PF-00835231 and five drugs previously documented to inhibit Mpro.
Li and co. computationally investigated the MPD3 phytochemical database along with the pool of
reported natural antiviral compounds to be used against SARS-CoV-2. Pedretti and co., exploiting
the availability of resolved structures, designed a structure-based computational approach. The
innovative idea of their study was to exploit known inhibitors of SARS-CoV 3CL-Pro as a training set
to perform and validate multiple virtual screening campaigns. In the context of antiviral drugs, Regad
and co. investigated the emergence of HIV-2 resistance. They proposed a structural analysis of 31
drug-resistant mutants of HIV-2 protease (PR2), an important target against HIV-2 infection. A wide
series of contributions regarding the use of QSAR, machine learning, and deep learning has reported
interesting outcomes. A multiple-molecule drug design based on systems biology approaches and
a deep neural network to mitigate human skin aging was developed by Yeh and co. With the
proposed systems medicine design procedure, they not only shed light on the skin-aging molecular
progression mechanisms, but they also suggested two multiple-molecule drugs to mitigate human
skin aging. The construction of quantitative structure-activity relationship (QSAR) models was used
to predict the biological activities of the compounds obtained with virtual screening and identify new
selective chemical entities for the COX-2 enzyme. The three-dimensional QSAR model, employing
a common-features pharmacophore as an alignment rule, was built on 20 highly active/selective
HDACI inhibitors. The predictive power of the 3D QSAR model represents a useful filtering tool

for screening large chemical databases, finding novel derivatives with improved HDACI inhibitory

xii



activity. Different machine learning (ML) and deep learning (DL) algorithms using various integer
and binary-type fingerprints were evaluated to develop quantitative structure-activity relationship
(QSAR) models, which are important for hRERG potassium channel blocker prediction.

Throughout this book, all the recent aspects of the computational approaches applied to several
research fields are reported. We express our deep gratitude to all the contributors to this Special Issue
for their commitment, hard work, and outstanding papers. We also thank all the reviewers involved
in the manuscript revisions for their unpaid contributions to improve any aspects of the submitted
works. Last but not least, we deeply thank Mrs. Jessie Zhang for her assistance during the period in

which we served as guest editors.

Marco Tutone, Anna Maria Almerico
Editors
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Abstract: The selective inhibition of immunoproteasome is a valuable strategy to treat autoimmune,
inflammatory diseases, and hematologic malignancies. Recently, a new series of amide derivatives
as non-covalent inhibitors of the 31i subunit with K; values in the low /submicromolar ranges have
been identified. Here, we investigated the binding mechanism of the most potent and selective
inhibitor, N-benzyl-2-(2-oxopyridin-1(2H)-yl)propanamide (1), to elucidate the steps from the ligand
entrance into the binding pocket to the ligand-induced conformational changes. We carried out a
total of 400 ns of MD-binding analyses, followed by 200 ns of plain MD. The trajectories clustering
allowed identifying three representative poses evidencing new key interactions with Phe31 and
Lys33 together in a flipped orientation of a representative pose. Further, Binding Pose MetaDynamics
(BPMD) studies were performed to evaluate the binding stability, comparing 1 with four other
inhibitors of the B1i subunit: N-benzyl-2-(2-oxopyridin-1(2H)-yl)acetamide (2), N-cyclohexyl-3-
(2-oxopyridin-1(2H)-yl)propenamide (3), N-butyl-3-(2-oxopyridin-1(2H)-yl)propanamide (4), and
(5)-2-(2-oxopyridin-1(2H)-yl)-N 4-diphenylbutanamide (5). The obtained results in terms of free
binding energy were consistent with the experimental values of inhibition, confirming 1 as a lead
compound of this series. The adopted methods provided a full dynamic description of the binding
events, and the information obtained could be exploited for the rational design of new and more
active inhibitors.

Keywords: immunoproteasome; non-covalent inhibitors; molecular dynamics; MD binding; metady-
namics; induced-fit docking

1. Introduction

Protein turnover is essential for cellular function and homeostasis; in eukaryotic cells,
the ubiquitin-proteasome system (UPS) is the central non-lysosomal pathway devoted to
protein degradation. Whereas the lysosomal pathway mainly degrades membrane proteins
or extracellular proteins imported into the cell by endocytosis, UPS, present both in the
cytoplasm and nucleus, controls the degradation of damaged, incorrectly synthesized, or
no longer useful intracellular proteins. Proteins are firstly tagged with several ubiquitin
units; then, the polyubiquitinated proteins are rapidly hydrolyzed to small peptides by
the proteasome, whereas ubiquitin is released and recycled [1]. The 26S constitutive
proteasome consists of a barrel-shaped 20S catalytic core and two 19S regulatory caps. The
catalytic core is constituted of four packed rings, each composed of seven different subunits,
the two outer «, and the two inner {3, respectively. The proteolytic activities reside in the
Blc, B2¢c, and B5c subunits that are responsible for caspase-like (C-L), trypsin-like (T-L),
and chymotrypsin-like (ChT-L) activities, respectively.
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Immunoproteasome is a specialized form of proteasome present in the vertebrates,
constitutively expressed in lymphocytes and monocytes and induced by cytokines, such
as IFN-« and TNF-c«, in many other cell types. In immunoproteasomes, the constitutive
catalytic subunits (31c, 32c, and (35c) are replaced by the corresponding immunosubunits:
1i, 32i, and 35i. While 32i and 35i maintain the same type of activities as the 32c and 35c
subunits, 31i mainly performs a ChT-L activity, thus cleaving peptides after hydrophobic
amino acids [2]. High levels of immunoproteasomes have been found in a wide number
of inflammatory diseases, such as Crohn’s disease or inflammatory bowel disease, and
autoimmune diseases like rheumatoid arthritis or systemic lupus erythematosus [3]. Fur-
thermore, immunoproteasomes are overexpressed in hematologic malignancies, including
multiple myeloma or acute myeloid leukemia [4]. Therefore, the discovery of selective
immunoproteasome inhibitors is pivotal to bring new chances for the treatment of the
above-mentioned diseases. Exhaustive reports on selective covalent and non-covalent
immunoproteasome inhibitors have been recently published [5,6]. The main class of cova-
lent immunoproteasome inhibitors is that of peptide derivatives bearing an electrophile
warhead able to interact with the nucleophilic hydroxyl group of catalytic Thrl. Just to
give some examples, ONX-0914, a tripeptide o, p’-epoxyketone, was the first p5i-selective
inhibitor identified; another o,3’-epoxyketone, UK-101, and the peptidyl aldehyde IPSI-
001 showed a selective activity on the 31i subunit [5,6]. However, the covalent irreversible
inhibition of a human enzyme is not always desirable in medicinal chemistry, as it can be
responsible for potential toxicity due to off-target binding. Another drawback is that a
single mutation in the catalytic amino acid (i.e., Thrl) could cause a loss of activity and
acquired resistance. [7]. Non-covalent inhibition is therefore strongly desirable, because it
is free of these disadvantages. Lacking a reactive warhead, non-covalent inhibitors may
have an improved selectivity and less reactivity and instability and, therefore, may not
exhibit the side effects that occur in covalent inhibitor therapies (e.g., liver toxicity and
idiosyncratic adverse reactions) [8,9]. Furthermore, the enzyme-inhibitor complexes have
reduced lifetimes, and this promotes an extensive tissue distribution of the drug [10]. To
date, few non-covalent immunoproteasome inhibitors show selectivity towards the 1i
and/or 35i subunits. One of them is Argyrin B, a natural cyclic peptide that is a reversible,
noncompetitive inhibitor of 35i and 31i [8]. Other compounds are N,C-capped dipep-
tides, such as PK52279 and PKS2252, in which the insertion of a 3-amino acid markedly
reduces the inhibitory potency against constitutive proteasomes, yet maintain potent
inhibitory activity against immunoproteasomes [11]. Recently, some of us identified a
panel of selective non-covalent inhibitors of the 31i and/or $5i subunits, characterized
by a 2(1H)-pyridone scaffold linked to an amide function [12]. N-Benzyl-2-(2-oxopyridin-
1(2H)-yl)propanamide (1) proved to be the most potent and selective inhibitor, with a
Ki = 21 nM against the 31i subunit. Four other compounds of this series, N-benzyl-2-(2-
oxopyridin-1(2H)-yl)acetamide (2), N-cyclohexyl-3-(2-oxopyridin-1(2H)-yl)propanamide
(3), N-butyl-3-(2-oxopyridin-1(2H)-yl)propanamide (4), and (S)-2-(2-oxopyridin-1(2H)-
yl)-N,4-diphenylbutanamide (5), showed remarkable inhibitory activity towards the 31i
subunit (Figure 1). Derivatives 3-5 were also active against the 35i subunit, whereas none
of the compounds 1-5 proved to affect the constitutive catalytic subunits.
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Figure 1. Structures and Kj values of the selective f1i inhibitors 1-5.

The available experimental structures of immunoproteasomes provided the basis for
several computational investigations. In the recent past, most of these studies made use of
molecular docking methods. In particular, the binding mode of the non-covalent amide
derivatives 1 and 2 was investigated at this level [12], while, to the best of our knowledge,
the most accurate computational investigations were performed just on the 31i subunit
(Figure 2A,B) and the peptide «/,f’-epoxyketone UK101 (Figure 2C) using molecular
dynamics (MD) simulations. The observed selectivity of UK101 for the 1i subunit is
rationalized by the requirement for both a linear hydrocarbon chain at the N-terminus and
a bulky group at the C-terminus of the inhibitor [13]. In recent years, the constant update of
hardware capabilities allowed the development of enhanced MD methods able to provide
a full dynamical description of the target-ligand-binding events [14]. These methods are
usually employed given that the sampling issue is fundamental to describing these slow
processes while docking methods continue to be pivotal to screening large libraries, also
assisted by MD [15,16].

In this manuscript, we investigated the binding mechanism of the previously identified
most active non-covalent amide 1 in the 31i subunit. For this purpose, we employed
advanced molecular dynamics methods, such as MD binding (MDB) [17] and Binding Pose
MetaDynamics (BPMD) [18]. In particular, we used the MDB tools implemented in the
BiKi suite [19] to analyze the binding mechanism and gain insights into the ligand entrance
pathway. Then, plain MD was performed to study the stability and conformational space
into the immunoproteasome-ligand complex, thus allowing elucidation of the compound
dynamic behaviors within the binding cavity. Successively, a cluster analysis provided
representative poses that were used to evaluate the binding stability using the BPMD
protocol. To have a comparative point of view, we also carried out induced-fit docking
(IFD) and BPMD studies of the other four compounds (2-5) that showed high inhibitory
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activities towards the 1i subunit. The results obtained could provide further information
to develop the most selective and active immunoproteasome inhibitors.

UK-101 ONX 0914

Figure 2. (A) 3D structure of the immunoproteasome, the two (31i subunits in red, (B) 3D structure of
the B1i subunit, and (C) the structure of inhibitors UK-101 and ONX-0914.

2. Results
2.1. MD-Binding (MDB) Analysis

We began the study using the crystal structure of the murine immunoproteasome
in complex with the inhibitor ONX-0914 (Figure 2C) bound to the 35i subunit (PDB
ID: 3UNF) [20]. Murine and human immunoproteasomes share a sequence identity of
more than 90%, and the few nonidentical residues were external to the active sites. In
the literature, a crystal structure of human immunoproteasome was recently released in
complex with a boronic acid derivative [21], but the docking of compound 1 was previously
studied on the B1i subunit structure derived from the PDB ID:3UNF that do not bind any
ligand. For these reasons, we used it as a starting point to carry out our simulations. To
gain insights into the ligand-binding mode, we employed the MDB method to predict
the path of ligand entrance into the cavity. This method has the advantage of describing
complex events without incurring prohibitive time and computational costs. It is based
on an adaptive, electrostatics-inspired bias and a campaign of trivially parallel short MD
simulations to identify a near-native binding pose from the sampled configurations. At a
reasonable computational cost, this method also provides accurate predictions when the
starting protein conformation is different from that of the crystal complex, a known hurdle
for traditional molecular docking [22]. The advanced proposed MDB protocol would
require the identification of the binding pocket with NanoShaper software [23], which
can identify the atoms facing the lumen pocket entrance in the protein target. According
to NanoShaper software, the attractive protein residues selected were Thrl, Val20, Ser21,
Phe31, Lys33, Leu45, Ser46, Gly47, Ser48, Ala49, Ala52, Ser129, and Ser168 (Figure 3).

4
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Figure 3. Identification of the binding cavity of the $1i subunit (solid blue) by NanoShaper software
with the residues involved in the binding pocket.

Compound 1 is positioned with a random orientation at a predetermined distance,
measured in terms of the thickness of the solvation shell around the ligand. From the
set, we started 20 replicas of 20 ns for each entrance starting from the apo structure, thus
collecting a total of 400 ns of MDB simulations.

The analysis of the results showed that the simulations overcome the energetic barrier
in an average time of 2 ns, reaching the binding site. The unavailability of crystallographic
structures for non-covalent ligand 1 did not allow the comparison of the conformations,
employing the RMSD of the bound ligand. For these reasons, the RMSD of the protein
backbone was used as a reference for any uncommon behaviors. All replicas showed a
protein backbone RMSD average <2 A, decreasing when the ligand arrived at the binding
site (Supplementary Materials, Figures S1-57). In most replicas, the ligand entered into the
active site in the following 8 ns of the simulations, and in the last 10 ns, its refinement at
the binding site was registered (Figure 4).

After the first 20 ns, the electrostatic bias was removed, and the sampling time was
increased starting from the final frames of each MDB replica to enhance the sampling
conformational changes and interactions of the ligand inside the binding site. For each
replica, 10 ns more of the simulation was carried out, collecting a total of 600 ns of MD
simulations. The plain MD simulations performed after the bias switch-off provided
the local refinement of the binding mode. Once the binding simulation campaign was
completed, the replicas ending without the ligand into the binding site were pruned out,
and the remaining replicas were analyzed. The major part of the simulations showed a high
stability, with the ligand strictly bound to the binding pocket, and in a few simulations,
the ligand rapidly drifted away. Twelve replicas maintained a high stability at the binding
site, as shown by averaged value of RMSD 1.5 A of the complex (Supplementary Materials,
Figures S8-510). Then, the 12 replica trajectories were clustered. Each trajectory was
recorded in 1000 frames, and these frames were clustered considering the RMSD of the
binding site backbone (12,000 frames total). Each replica returned three representative
clusters for a total of 36 MD representative poses. These last ones were further clustered
and took into consideration the conformations of the ligand into the binding site and the
most occurred interactions. In the end, it was possible to identify three final representative
poses (pose 1, pose 2, and pose 3).
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Figure 4. Time sequence of compound 1 approaching the active site of the $1i subunit studied by
MD binding. The figure is representative of the 20 replicas.

The poses obtained from the clustering analysis were characterized by the important
features observed during the simulations. In particular, in pose 1, two H-bonds were
formed between the oxygen of the amide group and Ser21 and between the hydrogen of
the amide group and Gly47 (Supplementary Information, Figure S11A). The binding of
the ligand was strengthened by several van der Waals contacts between the benzyl group
and the residues Val20, Phe31, Lys33, Gly47, Ala49, and Ala52. Val20, Ser21, Ser46, Gly47,
Ala49, and Ala52 interacted with the linker between the two rings.

The identified pose 2 showed a series of noteworthy interactions that have not been
previously identified. The benzyl group of pose 2 interacted by a pi-stacking interaction with
Phe31. This pose was stabilized by several van der Waals contacts. The 2-pyridone moiety
showed a series of contacts different from pose 1 (Lys33, Leu45, Ser46, Gly47, Ser48, Ala49,
Ala52, Ser129, and Ser168). Ser21, Phe31, Ser46, and Gly47 interacted with the ethylene
linker. It is worthy to note the absence of H-bonds in this pose (Supplementary Information,
Figure S11B).

Pose 3 was characterized by the same H-bonds network observed in pose 1, with Ser21
and Gly47 residues. The 2-pyridone moiety formed one cation-pi-stacking interaction with
the epsilon amino group of Lys33 (Supplementary Information, Figure S12A). As observed
for the other poses, van der Waals contacts strengthened the ligand binding in pose 3.
The benzyl group interacted with Ser21, Ala22, Leu45, and Ser46. The 2-pyridone moiety
showed contacts with several residues: Phe31, Lys33, Gly47, Ser48, Ala49, and andAla52.
The linker showed interactions with Thr1, Ser46, Gly47, and Ser168.

The major differences observed for these poses concerned the orientations of pose 1
and pose 3 related to their interactions with the residues of the binding site. In particular,
besides the same H-bonds, a flipped orientation of the 2-pyridone and the benzyl moieties
was observed. This evidence could reveal that the entrance mode of the ligand occurred
in different ways without affecting the binding capability during the MD runs. The
folded conformation assumed by the ligand in pose 2 seemed to represent an intermediate
conformation. Concerning previous studies [12], two pi-stacking interactions and van der
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Waals contacts between the rings and the residues Thr1, Val20, Phe31, Lys33, Leu45, Ser46,
and Ala52 were identified (Figure 5).
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Figure 5. 3D and 2D-binding modes of compound 1: pose 1 (A,B), pose 2 (C,D), and pose 3 (E,F) after
the MDB simulations and after IFD (G,H) into the 1i active site of murine immunoproteasome (PDB
ID: 3UNFE). In the 3D figures, the H-bonds are represented in yellow dashes, the cation-pi-stacking

interactions in green dashes, and the pi-pi stacking in blue dashes.
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2.2. Induced Fit Docking (IFD)

To add more information concerning the previous docking studies and compare the
results obtained by the MDB, we used the more accurate protocol induced-fit docking
(IFD) [24]. IFD predicts the ligand-binding modes and concomitant structural changes
in the receptor. It confers flexibility to the protein side chains, allowing the ligand to
adjust and optimize the binding interactions within the active site. IFD was carried out for
compound 1 and for the other four compounds 2-5 that showed encouraging inhibitory
activity on 31i. In the previous studies, classical docking was performed for compound 2,
while computational studies have not been performed yet for compounds 3-5.

The best IFD pose of 1 reported the same two interactions observed after the MD
simulation: the H-bonds between the residues Gly47 and Ser21 of the protein and NH
amide and the carbonyl group of the molecule (Figure 5G,H). Besides, other hydrogen
bonds were found. In particular, the carbonyl of 2-pyridone moiety formed an H-bond
network with Ala49 and Ala50. Concerning the other MDB poses, this was a peculiar
difference of the IFD pose that was not observed in the docking study. These residues,
together with Ser48, stabilized the ligand binding by van der Waals contacts, such as
observed in the previous docking study. Other van der Waals contacts were formed
between the benzyl group and Val20, Phe31, Lys33, Leu45, Gly47, and Ala52. Finally, the
ethylene linker between the rings interacted with Thrl, Val20, Ser21, Gly47, and Ala49. It is
interesting to note that the pi-stacking interactions observed in pose 2 between the benzyl
group and Phe31 and the cation-pi-stacking interaction in pose 3 between the 2-pyridone
and Lys33 were not evidenced in the IFD pose but only as van der Waals contacts (Figure 5).

The other four analogs of amide 1 were characterized by structural variations at the
N-substituent and the methylene/ethylene linker between the 2-pyridone scaffold and the
amide function. Compound 2 showed a methylene linker between the 2-pyridone scaffold
and the amide function, and the experimental activity was recorded with a Ki value of
2.23 uM on the p1i subunit. The best IFD pose for 2 showed three H-bonds: Ser21 with
the carbonyl of amide and Gly47 with the NH amide and the carbonyl of 2-pyridone. The
benzyl moiety of the molecule formed a cation-pi-stacking interaction with Lys33, as also
evidenced for 1 in pose 3 (Figure 6A,B).

The cyclohexyl derivative 3 (Ki = 2.92 uM) formed four H-bonds. The residue Thrl
made two H-bonds with the carbonyl of amide and the carbonyl of 2-pyridone. Gly47
formed two H-bonds with NH amide and carbonyl of 2-pyridone (Figure 6C,D). The
interactions of the best IFD pose of n-butyl derivative 4 (Ki = 3.09 uM) were characterized
by two H-bonds between the carbonyl and NH of the amide of the molecule with Ser21
and Gly47, respectively. The 2-pyridone moiety formed pi-pi stacking with the Phe31
(Figure 6E,F). The last compound, (5)-2-(2-oxopyridin-1(2H)-yl)-N 4-diphenylbutanamide
(5) (Ki = 5.9 uM), showed two H-bonds, one between Ser21 and carbonyl of amide and
the other between Ala49 and carbonyl of 2-pyridone (Figure 6G,H). Additionally, for these
molecules, the recurrent interactions were between the residues Ser21, Gly47, and the
amide group, but it underlined the pi-stacking interactions with Phe31 and Lys33, which
could constitute clear evidence of the key role of these residues in the inhibition pattern.
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Figure 6. 3D and 2D-binding modes of compound 2 (A,B), compound 3 (C,D), compound 4 (EF),
and compound 5 (G,H) into the 31i active site of murine immunoproteasome (PDB ID: 3UNF) after
the IFD study. In the 3D figures, the H-bonds are represented in yellow dashes, the cation-pi-stacking
interactions in green dashes, and the pi-pi stacking in blue dashes.
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2.3. Binding Pose MetaDynamics Analysis

Binding Pose MetaDynamics (BPMD) is an automated, enhanced sampling, metadynamics-
based protocol, in which the ligand is forced to move around its binding pose. The possible
higher mobility of the ligand under a biasing potential is a mark of the binding mode
instability. This method showed the ability to reliably discriminate between the ligand-
binding pose retrieved by MDB and a plausible alternative generated with IFD studies [22].

We decided to use BPMD to evaluate the affinity of the three representative poses
obtained from MDB and the pose of IFD into the binding site for compounds 1 and 2-5.
The results were defined in terms of the pose stability based on the PoseScore, which is the
RMSD of the ligand related to the starting coordinates of the heavy atoms of the ligand.
Moreover, to evaluate the results, another metric is used, such as the PersScore, which is a
clue of the H-bond formed between the ligand and the target during the simulations. The
linear combination of these two scores provides a third score, the CompScore, which is
calculated with Equation (1):

CompScore = PoseScore — 5 x PersScore D

Lower values of the CompScore indicate more stable complexes.

During the metadynamics simulations, pose 1 reached a steady PoseScore = 1.397,
considered stable, while the PersScore showed that the hydrogen bonds identified at the
start of the metadynamics run were kept for 60% of the averaged time (Figure 7A). In
particular, the H-bond between the NH amide group of the ligand and Gly47 was kept
for 88% of the simulation time, while the H-bond between the carbonyl of the ligand and
Ser21 for 36% (Figure 7B). The CompScore value was -1.694. Due to the absence of H-bonds
recorded, pose 2 with recorded pi stacking and van der Waals interactions showed the
same value for the PoseScore and CompScore, 3.129 (Figure 7C), while, for pose 3, the
scores were PoseScore = 3.349, PersScore = 0.223, and CompScore = 2.235, respectively
(Figure 7E). As for pose 1, pose 3 kept the H-bond between NH amide and Gly47 as 26%
and 18% between carbonyl and Ser21 (Figure 7F).

The PoseScore for the pose of amide 1 obtained by the IFD was 4.576, and the PersS-
core showed that the hydrogen bonds identified at the start of the MetaDynamics run were
kept for 13% of the averaged time. The value of the CompScore was 3.917 (Figure 7G).
It is interesting to point out that, of the four H-bonds detected by IFD, the two interac-
tions between the amide group and Ser21 and Gly47 were maintained—in particular, the
interaction between NH amide and Gly47 for 43% and 9% between carbonyl and Ser21
(Figure 7H).

The RMSD values and the percentage of the H-bonds retrieved from BPMD studies
for the amide 1 in the three MDB poses and in the IFD pose showed that pose 1 could
be considered more stable. Pose 1, pose 3, and the IFD pose adopted the same plain
conformation and H-bonds between Ser21, Gly47, and the amide group. The differences
were in the additional interactions between Ala49, Ala50, and the carbonyl of 2-pyridone,
which led to a rotation of 2-pyridone, causing the ring to be specular in the IFD pose and
showed a high value of RMSD (4.02 A).

The BPMD analysis was also carried out for compounds 2-5 to evaluate their binding
stability with respect to the most active compound of the series, 1. The results of the BPMD
calculations are reported in Figure 8. As can be evidenced from the plots, all showed
PoseScore values higher than the averaged PoseScore for 1. The hydrogen bonds identified
at the start of the MetaDynamics run were maintained for 10-30% of the averaged time
(Figure 8B,D,FH) The CompScore values for compounds 2-5 were 4.750, 4.276, 5.979,
and 1.728, respectively. Moreover, MM-GBSA-binding free energy calculations for all the
complexes were performed. The plot of the calculated AG binding vs. the Ki values is
reported in Figure 9, and it shows an R? = 0.8071 (compound 1 AG = —52.912 Kcal/mol,
compound 2 AG = —41.684 Kcal/mol, compound 3 AG = —41.355 Kcal/mol, compound 4
AG = —36.701 Kcal/mol, and compound 5 AG = —35.340 Kcal/mol).
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Figure 7. Plots of the RMSD estimate averaged over all 10 trials vs. the simulation time for the
BindingPoseMetaDynamics runs: pose 1 (A), pose 2 (C), pose 3 (E), and IFD pose (G). Persistence
Score Plots: pose 1 (B) pose 2 (D), pose 3 (F), and IFD pose (H). The blue dots represent the values of
the CV RMSD at different times (2 ns, 4 ns, 6 ns, 8 ns, and 10 ns) for each simulation trial. The blue
lines represent the mean CV RMSD values along the 10 x 10 ns of the simulation trials. The orange
and blue bars represent the fraction of H-bonds maintained during the simulation for each trial.
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Figure 8. Plots of the RMSD estimate averaged over all 10 trials vs. the simulation time for the
BindingPoseMetaDynamics runs: compound 2 (A), compound 3 (C), compound 4 (E), and compound
5 (G). Persistence Score plots of compounds 2 (B), compound 3 (D), compound 4 (F), and compound
5 (H). The blue dots represent the values of the CV RMSD at different times (2 ns, 4 ns, 6 ns, 8 ns,
and 10 ns) for each simulation trial. The blue lines represent the mean CV RMSD values along
the 10 x 10 ns of the simulation trials. The orange and blue bars represent the fraction of H-bonds
maintained during the simulation for each trial.
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Figure 9. The plot of the MM-GBSA AG binding vs. the Ki values of compounds 1-5. The binding
free energy is expressed in Kcal/mol, and the ICsg is expressed in puM.

3. Discussion

The inhibition of the human immunoproteasome is a hot topic of recent years in
medicinal chemistry due to its involvement in a wide range of diseases. Promising im-
munoproteasome inhibitors, both covalent and non-covalent, have been recently identified.
In covalent inhibitors, the presence of a reactive warhead may cause significant off-target
activities against other proteins, which may result in side effects (e.g., liver toxicity and
idiosyncratic adverse reactions) and reduced selectivity over time [8,9]. For these reasons,
the attention was focused on non-covalent immunoproteasome inhibitors. In this context,
a series of amide derivative 31i subunit inhibitors with K; values in the low micromolar
or submicromolar range have been recently identified [12]. The use of computational
approaches could characterize the binding process of these inhibitors—in particular, the
use of advanced molecular dynamics approaches able to explore the dynamic features
of the protein/ligand complex could overcome the limitations of semiflexible molecular
docking methods in which the protein target is treated as a rigid body. Several advanced
methods have been proposed in the last years for computing association and dissocia-
tion mechanisms, and all of them were shown to be promising in the interpretation of
such mechanisms. With the aim to gain more insights into non-covalent inhibitors of the
immunoproteasome, we decided to exploit these enhanced sampling methods.

Here, we investigated the dynamic binding mechanism of compound 1, the most active
of a series of non-covalent amide derivatives. With the aim of collecting mechanistic insight
on the binding process, we performed the MDB protocol implemented in BiKi software
to simulate the events that elapsed among the ligand unbound and the ligand entrance
in the binding pocket. Successively, plain MD simulations were performed to extend the
sampling of the bound states. The clustering of the survived complexes trajectories allowed
identifying three representative poses (pose 1, pose 2, and pose 3) observed during the
simulation. The most important interactions for the inhibition pattern were, in pose 1, two
H-bonds between the amide group and Ser21 and Gly47 and, in pose 2, the benzyl group
interacting by pi-pi stacking with Phe31. The residues Ser21 and Gly47 of pose 3 formed
H-bonds with carbonyl and NH amide, and at the same time, the 2-pyridone moiety made
a cation-pi-stacking interaction with the epsilon amino group of Lys33. Moreover, pose 1
showed a different orientation of the 2-pyridone moiety with respect to the docking and
IFD studies. The 2-pyridone moiety was stabilized in the binding pocket by van der Waals
contacts, as observed in MDB, while, in docking and IFD studies, it was stabilized by

13
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H-bonds with Ala49 and Ala50 beyond van der Waals contacts. In pose 3, the peculiarity
is represented by the 2-pyridone moiety interacting with the pi-stacking interaction with
Lys33, which determined a flipped orientation with respect to pose 1. Finally, in pose 2,
a different folded conformation with respect to pose 1 and pose 3 was observed, with a
new pi-stacking interaction between the benzyl group and Phe31. The flipped orientations
obtained for pose 1 and pose 3 suggested a different entrance mode of the ligand into the
active site. Through the BPMD studies, it was possible to observe that both poses were
stable, but, according to the RMSD value, the conformation of pose 1 showed major stability
compared to pose 3 in the active site. Beyond the van der Waals contacts observed, the
conformation of pose 1 could be strengthened by the pi-stacking interactions shown in pose
2 and pose 3 to improve the potency and selectivity of the $1i subunit. To pursue the matter,
we also carried out IFD calculations for the other four amide derivatives 2-5 that showed
an appreciable inhibitory activity on 31i. These studies revealed that Phe31 and Lys33
residues could play a key role in the inhibition pattern, in addition to the already known
Ser21 and Gly47 ones, showing the importance not only of the hydrogen bonds but also of
the pi-stacking interactions for the stabilization of the binding of the inhibitors. Moreover,
the BPMD analysis confirmed the higher binding stability of inhibitor 1 with respect to the
inhibitors 2-5, as evidenced by in vitro tests. Compound 1 showed the best CompScore
(—1.694) with respect to the other compounds. The consistency of the computational
analysis with the experimental data was further confirmed by the MM-GBSA-binding free
energy calculations. These outputs were plotted against the experimental Ki values, and
the R? = 0.8071 confirmed compound 1 as the best derivatives of this series.

4. Materials and Methods
4.1. System and Ligand Preparation

For the purposes of this study, we selected the catalytic subunit 31i (LMP2 and PSMB9)
extracted from the murine i20S in complex with the inhibitor ONX-0914 bound to the 35i
subunit (PDB ID: 3UNF) [20]. Both 20S subunits, murine and human, share a sequence
identity of more than 90%, and the few nonidentical residues are external to the active
sites. As reported in the literature, in the case of covalent cocrystallized inhibitors [25,26],
the reactive residue at the catalytic site was rebuilt after removing the covalent inhibitor
by breaking the covalent bond and filling in the open valence. In this case, the involved
residue was Thrl. The protein was prepared with the Protein Preparation Wizard [27]
included in the Maestro suite (Maestro, Schrodinger, LLC, 2021, New York, NY, USA):
adding bond orders and hydrogen atoms to the crystal structure using the OPLS2005
force field. Next, Prime [28] was used to fix missing residues or atoms in the protein and
to remove cocrystallized water molecules. The protonation states at pH 7.2 &= 0.2 of the
protein and the ligand were evaluated using Epik 3.1 [29]. The hydrogen bonds were
optimized through the reorientation of hydroxyl bonds, thiol groups, and amide groups.
In the end, the systems were minimized with the value of convergence of the RMSD of 0.3
A. The ligands were drawn using Marvin Sketch 19.25 [30]. Amide 1 was parameterized
using the BiKi suite [19] at the AM1-BCC [22] level of theory. Partial charges were derived
using the RESP method [23] in Antechamber [24]. Compounds 2-5 were prepared using
Schrodinger LigPrep v. 2021-1 (LigPrep, Schrodinger, LLC, 2021, New York, NY, USA).
The force field adopted was OPLS2005, and Epik was selected as the ionization tool at pH
7.0 £ 2.0. Tautomers generation was flagged, and the maximum number of conformers
generated was set at 32.

4.2. MD-Binding Simulations

The MD-binding method [17] within the BiKi suite [19] (BiKi Technologies s.r.l., Gen-
ova, Italy) exploits an additive external force that is summed as the regular potential
energy of the system to enhance the probability of observing the binding event. The bias
is represented by external electrostatic-like forces acting between a subset of the residues
of the binding site and the ligand. The intensity of the bias is controlled by the adaptivity
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rules and gradually switches off as the ligand moves torward the subset of residues; after
the conjectured passing of the transition state has occurred, it slowly recovers the behavior
of classical unbiased MD [31].

The protocol for MD-binding consists of crucial steps: characterization of the bind-
ing pocket using NanoShaper [23] (BiKi Technologies s.r.l.,, Genova, Italy). NanoShaper
calculations provide a characterization of the binding pocket, which identifies the atoms
facing the pocket entrance in the protein structure. This information was then used by
BiKi software for the initial ligand positioning outside the binding cavity. Subsequently,
an additive external force was made to enhance the sampling of the binding event. Once
the ligand was positioned through the “Residue Placement” tool in BiKi, the system was
solvated in an orthorhombic box using the TIP3P water model [32]. A suitable number
of counterions were added to neutralize the overall system. Then, the whole system un-
derwent energy minimization by using the Amber995SB-ildn force field [33]. According to
the standard protocol [17], four different consecutive equilibration steps were performed:
(1) 100 ps in the NVT ensemble at 100 K with both the protein backbone and ligand re-
strained (1000 kJ/mol nm?), (2) 100 ps in the NVT ensemble at 200 K with both the protein
backbone and the ligand restrained, (3) 100 ps in the NVT ensemble at 300 K with the
free protein and the ligand restrained, and (4) 1000 ps in the NPT ensemble at 300 K with
the free protein and the ligand restrained. Electrostatic interactions were treated with the
cutoff method for short-range interactions and with the particle mesh Ewald method for
long-range interactions (rlist = 1.1 nm, cutoff distance = 1.1 nm, vdW distance = 1.1 nm,
and PME order = 4). The constant temperature conditions were provided using the velocity
rescale thermostat [34], which is a modification of Berendsen’s coupling algorithm [35].
The coordinate output from the last simulation was then used as the input to produce the
biased molecular dynamics. Finally, 20 replica production runs, 20-ns-long in the NVT
ensemble at 300 K, were performed for each complex using C = 0.1 (the fraction of the felt
force, here 10%), a smoothing window size of 1000 samples, and a maximal K(t) of 0.001
(maximal steering constant).

4.3. Plain MD Simulations

The plain MD simulations were carried out using Desmond 6.5 [36] using the OPLS2005
force field [37] (Desmond Molecular Dynamics System, D. E. Shaw Research, New York, NY,
USA). The complexes were solvated in orthorhombic boxes using the TIP3P water model.
Ions were added to neutralize the charges. The systems were minimized and equilibrated at
a temperature of 303.15 K and a pressure of 1.013 bar. The system was simulated as an NPT
ensemble; a Nose-Hover thermostat and Martyna—Tobia—Klein barostat were used. The
integration time step was chosen to be 2 fs. To keep the hydrogen-heavy atom bonds rigid,
the SHAKE algorithm was used. A 9 A cutoff radius was set for the short-range Coulomb
interactions, and smooth particle mesh Ewald was used for the long-range interactions.
For each replica, we carried out 10-ns MD simulations for a total of 200 ns, with 1.2-ps
detection ranges for energy and 4.8 ps for the trajectory frames. The stability of the systems
was evaluated using the root mean square deviation (RMSD) of the aligned protein and
ligand coordinate set calculated against the initial frame. Visualization and analysis of the
MD trajectories were performed using the Desmond simulation analysis tools in Maestro.
The trajectories frames were clustered according to the hierarchical cluster linkage method.
The 1000 frames recorded in each simulation were clustered considering the binding site
conformations into 10 clusters based on the atomic RMSDs.

4.4. Binding Pose MetaDynamics (BPMD)

Binding pose MetaDynamics (BPMD) is an automated, enhanced sampling, metadynamics-
based protocol in which the ligand is forced to move around its binding pose. This method
showed the ability to reliably discriminate between the correct ligand binding pose and
plausible alternatives generated with docking or plain MD studies [18].
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According to the protocol, 10 independent metadynamics simulations of 10 ns were
performed using as a collective variable (CV) the measure of the root mean square deviation
(RMSD) of the ligand heavy atoms with respect to their starting positions. The alignment
before the RMSD calculations was done by selecting protein residues within 3 A of the
ligand. The Cas of these binding site residues were then aligned to those of the first frame
of the metadynamics trajectory before calculating the heavy atom RMSD to the ligand
conformation in the first frame. The hill height and width were set to 0.05 kcal/ mol (about
1/10 of the characteristic thermal energy of the system, kBT) and 0.02 A, respectively. Before
the actual metadynamics run, the system was solvated in a box of SPC water molecules [38],
followed by several minimizations and restrained MD steps that allow the system to slowly
reach the desired temperature of 300 K, as well as releasing any bad contacts and/or strain
from the initial starting structure. The final snapshot of the short unbiased MD simulation
of 0.5 ns was then used as the reference for the following metadynamics production phase.
After the simulation, the stability of the ligand during the course was represented by three
scores: PoseScore, PersistenceScore (PersScore), and CompositeScore (CompScore). The
PoseScore is indicative of the average RMSD from the starting pose. A steep increase of this
value is a symptom that the ligand is not in a well-defined energy minimum and, probably,
it might not have been accurately modeled. PersScore is a measure of the hydrogen bond
persistence calculated in the last 2 ns of the simulation that have the same number of
hydrogen bonds as the input structure, averaged over all the 10 repeated simulations. It
covers a range between 0 and 1, where 0 indicates that either the starting ligand pose
did not have any interactions with the target or that the interactions were lost during the
simulations, while 1 indicates that the interactions between the staring ligand pose and the
last 2 ns of the simulations were retained. CompositeScore is the linear combination of the
PoseScore and PersScore; lower values equate to more stable complexes. Each complex,
previously obtained, was run, Country) on a single node with a 1 GPU card NVIDIA
GeForce RTX2070.

4.5. Induced-Fit Docking

The induced-fit protocol (IFD)—developed by Schrodinger [24]—is a method for
modeling the conformational changes induced by ligand binding. This protocol models
induced-fit docking of one or more ligands using the following steps, as also reported
in references [39—42]. The protocol starts with an initial docking of each ligand using a
softened potential (van der Waals radii scaling). Then, a side-chain prediction within a
given distance of any ligand pose (5 A) is performed. Subsequently, a minimization of the
same set of residues and the ligand for each protein/ligand complex pose is performed.
After this stage, any receptor structure in each pose reflects an induced fit to the ligand
structure and conformation. Finally, the ligand is rigorously docked, using Glide XP (Glide,
Schrodinger, LLC, 2021, New York, NY, USA), into the induced-fit receptor structure.
IFD was performed using a standard protocol, and the OPLS2005 force field was chosen.
The receptor box was centered on the active site of 31i, according to the NanoShaper
calculations. During the initial docking procedure, the van der Waals scaling factor was
set at 0.5 for both the receptor and ligand. The Prime refinement step was set on the side
chains of residues within 5 A of the ligand. For each ligand docked, a maximum of 20
poses was retained to then be redocked in XP mode.

4.6. MM-GBSA-Binding Free Enerqy Calculations

Prime/MM-GBSA was used for the estimation of AG binding. The MM-GBSA ap-
proach employs molecular mechanics, the generalized Born model, and the solvent ac-
cessibility method to elicit free energies from structural information, circumventing the
computational complexity of free energy simulations, wherein the net free energy is treated
as a sum of a comprehensive set of individual energy components, each with a physical
basis [25]. In our study, the VSGB solvation model was chosen using the OPLS2005 force
field with a minimized sampling method [28].
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5. Conclusions

In this study, we investigated the mechanism of non-covalent inhibition of the potent
and selective immunoproteasome inhibitor 1. For this purpose, we employed advanced
molecular dynamics methods such as MD binding (MDB) and Binding Pose MetaDynamics
(BPMD) and advanced docking methods such as induced-fit docking (IFD). MD binding
allowed analyzing the binding mechanisms and gained insights into the ligand entrance
pathway. Then, plain MD was performed to study the stability and conformational space
in the immunoproteasome-ligand complex, thus allowing elucidation of the compound
dynamic behavior within the binding cavity. These results were compared with the IFD
poses of the other four inhibitors, revealing new key residues in the binding pattern, and
confirmed the different binding stability of 1 with respect to the other compounds, 2-5.
The collected information and outcome could be useful in ameliorating the activity of
compound 1 and providing a dynamical point of view for the definition of the pharma-
cophoric features that could be exploited through dynamic pharmacophore modeling
approaches, such as the Common Hits Approach (CHA) [43] or MYSHAPE [44], for the
scaffold-hopping of new non-covalent inhibitors through a virtual screening campaign.

Supplementary Materials: The following supplementary materials are available online, Figures S1-512.
Figure S1: MD-binding: Ligand RMSD calculated from the centroid of binding pocket and protein
backbone RMSD (20 ns) for Replica 1 (A,B) and Replica 2 (C,D). Figure S2. MD-binding: Ligand
RMSD calculated from the centroid of binding pocket and protein backbone RMSD (20 ns) for Replica
3 (A,B), Replica 4 (C,D), Replica 5 (E,F). Figure S3. MD-binding: Ligand RMSD calculated from the
centroid of binding pocket and protein backbone RMSD (20 ns) for Replica 6 (A,B), Replica 7 (C,D),
Replica 8 (E,F). Figure 54. MD-binding: Ligand RMSD calculated from the centroid of binding pocket
and protein backbone RMSD (20 ns) for Replica 9 (A,B), Replica 10 (C,D), Replica 11 (E,F). Figure S5.
MD-binding: Ligand RMSD calculated from the centroid of binding pocket and protein backbone
RMSD (20 ns) for Replica 12 (A,B), Replica 13 (C,D), Replica 14 (EF). Figure S6. MD-binding: Ligand
RMSD calculated from the centroid of binding pocket and protein backbone RMSD (20 ns) for Replica
15 (A,B), Replica 16 (C,D), Replica 17 (E,F). Figure S7. MD-binding: Ligand RMSD calculated from the
centroid of binding pocket and protein backbone RMSD (20 ns) for Replica 18 (A,B), Replica 19 (C,D),
Replica 20 (E,F). Figure S8. Ligand and protein RMSD during MD-plain(10 ns). Replica 1 (A); Replica
2 (B); Replica 8 (C); Replical0 (D). Figure S9. Ligand and protein RMSD during MD-plain(10 ns).
Replica 11 (A); Replica 12 (B); Replica 13 (C); Replica 14 (D). Figure S10. Ligand and protein RMSD
during MD-plain(10 ns). Replica 15 (A); Replica 16 (B); Replica 17 (C); Replica 20 (D). Figure S11.
Ligand Interaction Diagram of posel (A) and pose2 (B). Purple arrows show H-bond interactions
and green line Pi-Pi stacking. Figure S12. Ligand Interaction Diagram of pose3 (A) and IFD pose (B).
Purple arrows show H-bond interactions and red line Pi-cation.
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Abstract: The translocator protein (TSPO) is a 18kDa transmembrane protein, ubiquitously present
in human mitochondria. It is overexpressed in tumor cells and at the sites of neuroinflammation,
thus representing an important biomarker, as well as a promising drug target. In mammalian TSPO,
there are cholesterol-binding motifs, as well as a binding cavity able to accommodate different
chemical compounds. Given the lack of structural information for the human protein, we built a
model of human (1) TSPO in the apo state and in complex with PK11195, a molecule routinely used in
positron emission tomography (PET) for imaging of neuroinflammatory sites. To better understand
the interactions of PK11195 and cholesterol with this pharmacologically relevant protein, we ran
molecular dynamics simulations of the apo and holo proteins embedded in a model membrane.
We found that: (i) PK11195 stabilizes h'TSPO structural fold; (ii) PK11195 might enter in the binding
site through transmembrane helices I and II of hTSPO; (iii) PK11195 reduces the frequency of
cholesterol binding to the lower, N-terminal part of ”TSPO in the inner membrane leaflet, while this
impact is less pronounced for the upper, C—terminal part in the outer membrane leaflet, where the
ligand binding site is located; (iv) very interestingly, cholesterol most frequently binds simultaneously
to the so-called CRAC and CARC regions in TM V in the free form (residues L150-X-Y152-X(3)-
R156 and R135-X(2)-Y138-X(2)-L141, respectively). However, when the protein is in complex with
PK11195, cholesterol binds equally frequently to the CRAC-resembling motif that we observed in
TM I (residues L17-X(2)-F20-X(3)-R24) and to CRAC in TM V. We expect that the CRAC-like motif
in TM I will be of interest in future experimental investigations. Thus, our MD simulations provide
insight into the structural features of "'TSPO and the previously unknown interplay between PK11195
and cholesterol interactions with this pharmacologically relevant protein.

Keywords: h'TSPO; PK11195; cholesterol; homology modeling; molecular dynamics (MD) simulation

1. Introduction

The translocator protein (TSPO) is a transmembrane protein (18kDa), evolutionary
conserved and expressed in different organisms, from bacteria to humans [1]. Its biological
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functions are conserved throughout the phylogenetic spectrum, like tetrapyrrole biosyn-
thesis and/or sterol metabolism [1,2]. Indeed, the bacterial TSPO homology in Rhodobacter
sphaeroides can be functionally replaced by rat TSPO [3], despite that these proteins share
only about 30% sequence identity. The human protein (h'TSPO) is expressed in all tissues
and located in the outer mitochondrial membrane [4,5]. Its highest expression levels are
found in steroid-synthesizing cells of endocrine organs indicating that it may play an im-
portant role in steroid synthesis from cholesterol [6]. Mammalian TSPO binds cholesterol
with high affinity by the cholesterol recognition/interaction amino acid consensus (CRAC)
motif (residues 150-156) [7,8]. This motif is preceded by a short three amino acids sequence
L144-A145-F146 (LAF) that is highly conserved in mammalian TSPO. In the experiment
with the RsTSPO mutant, where the three amino acids (A136-T137-A138) preceding the
CRAC region were replaced by mammalian LAF sequence, it was shown that the LAF
motif greatly increased the binding affinity for cholesterol with respect to the original
bacterial sequence [9]. An additional binding prediction sequence for cholesterol was
found in TSPO—the inverse version of CRAC, the CARC motif (residues 135-141) [10].
While in the case of the nicotine acetylcholine receptor, functional studies clearly show that
a substitution of a specific amino acid in CARC slows the kinetics of cholesterol binding,
in the case of TSPOQ, it is not yet known whether CARC binds cholesterol as well [11]. In
addition, TSPO has been proposed to play an important role in other cellular processes like
porphyrin transport [12,13], mitochondrial respiration [4,14], and immunomodulation [15].

TSPO expression is highly upregulated in cancer and at the sites of neuroinflammation
processes in cerebral ischemia, Alzheimer’s, Parkinson’s, and Huntington’s diseases, and
multiple sclerosis (reviewed in [16]). In addition, a human single nucleotide polymor-
phism of TSPO (A147T) is associated with different psychiatric disorders, like bipolar
disorder, anxiety, and panic attacks [17-19], along with cancer. Thus, TSPO is an interesting
target for the development of diagnostic and therapeutic ligands [16,20]. TSPO is overex-
pressed in the outer mitochondrial membrane of activated microglia [21-23] and reactive
astrocytes [24]. Chronic activation of microglia leads to the release of neurotrophic and
proinflammatory factors that are neurotoxic and cause neuronal damage and neurodegen-
eration [25-27]. The microglial activation is imaged in human brain in vivo by positron
emission tomography (PET) of TSPO radiolabeled ligands. PK11195 (1-(2-chlorophenyl)-
N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide) is one of the most commonly
used, high affinity TSPO ligands for studying the diagnostics and treatment of brain
inflammation and of other inflammatory diseases [28].

Second- (PRB28, PBR06, DAA1106) and third- (ER176 and GE-180) generation lig-
ands have been developed (reviewed in [29,30]). PRB28, PBR06, and DAA1106 have
higher binding affinity for h"TSPO than PK11195. They provide a better signal-to-typical
positron emission tomography (PET) noise ratio. ER176 and GE-180 are being developed
to overcome differences in binding affinities for the WT or the A147T mutant #'TSPO. This
mutant emerges in 30% of Caucasians, 25% of Africans, 4% of Japanese, and 2% of Han
Chinese according to the Hapmap database (http:/ /hapmap.ncbinlm.nih.gov (accessed
on 25 January 2020)). It binds PRB28 [31], PBRO06 [32], and FEPPA [33]. This consequently
leads to the lower PET signal intensity and can provide misleading results (absence of
neuroinflammation) for the carrier of the A147T mutation.

TSPO folds into a bundle of five transmembrane (TM) helices and a short extramem-
brane helix placed in the cytoplasmic loop between helices TM I and TM II [34-36]. Bacterial
and mouse TSPO can exist as monomers, dimers, and other oligomers as shown by ex-
periments [34,35,37,38]. Different computational molecular modeling studies were carried
out to further shed light on the dimerization of mouse and bacterial TSPO and on how
ligands (small chemical compounds, porphyrin, cholesterol) interact with dimers or influ-
ence their stability [39-42]. In contrast, the oligomerization state of "'TSPO has not been
established. An in vitro study showed that it can adopt dimeric or trimeric forms under
the inflammation conditions reproduced by high concentrations of reactive oxygen species
(ROSs) [43]. Different experimental TSPO structures have been solved to date, notably the
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NMR structure of mouse TSPO (MoTSPO, PDB ID: 2MGY [36]) and the X-ray structures of
Rhodobacter sphaeroides (RsTSPO, PDB ID: 4UC1 [35]) and Bacillus cereus (BcTSPO, PDB ID:
4RYI [34]) TSPOs.

The experimental structure of h'TSPO has not yet been solved. Here, we built a
monomeric structural model of #/TSPO, alone and in complex with PK11195 by homology
modeling and docking, and we ran molecular dynamics (MD) simulations of the protein in
a lipid environment. We analyzed in detail the interactions of PK11195 and cholesterol with
hTSPO and how PK11195 alters cholesterol interactions with this protein. Our structural
model and results can be a valuable source for future studies of "TSPO and its interactions
with cholesterol and/or other pharmacological ligands.

2. Results and Discussion
2.1. The hTSPO Structural Model

The sequence of the h'TSPO was aligned with those of RsTSPO, BcTSPO, and MoTSPO
(the sequence identity is of 29%, 24%, and 81%, respectively; Figure 1). We decided to
use RsTSPO (PDB code: 4UC1 [35]) as a template in structural modeling of the human
translocator protein [44,45].

Indeed, the latter is currently the best template choice in comparative modeling of
mammalian TSPOs [40,41] for the following reasons: (i) the structural folds of the TSPOs
on passing from the bacterial to the mammalian proteins are conserved [34-36]; (ii) the
NMR MoTSPO structure is affected by the ionic detergents used for the purification during
the measurements [36]; as a result, the positions of highly conserved amino acids and of
the transmembrane helices are altered [40]; (iii) the RsTSPO crystal structure was resolved
at a relatively good resolution (1.8 A).

™ I ™ II
FTLAPSLGCF VGSRFVHGEG LRWYAGLQKP SWHPPHWVLG PVWGTLYSAM 60
LTLVPSLGGF MGAYFVRGEG LRWYASLQKP SWHPPRWTLA PIWGTLYSAM 60
FLAACGAPAT TGALLKPDE- --WYDNLNKP WWNPPRWVFP LAWTSLYFLM 57
FFLTYGLFYV SSVLFPIDR- -TWYDALEKP SWTPPGMTIG MIWAVLFGLI 58
™ III ™ IV
LGGFTEKAVV PLGLYTGQLA LNW GARQMGWALV DLLLVSGAAA 120
LGGFTEDAMV PLGLYTGQLA LNW GARQMGWALA DLLLVSGVAT 120
EG----- SGQ ALAFYAAQLA FNT GMKRMATALA VVMVMWLFVA 112
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FLWSAFATYL IN-- --------- 153

Figure 1. Multiple sequence alignment of TSPO from different organisms: human TSPO (hTSPO), Mus musculus
(MoTSPO) [36], Rhodobacter sphaeroides (RsTSPO) [35], and Bacillus cereus (BcTSPO) [34]. For the last three proteins, ex-
perimental structural information is available. Semi-conserved positions with more than 50% consensus according to

ClustalO [46] are highlighted in cyan, while highly conserved positions with more than 90% consensus are shown in red.
The oligomerization motif G83XXXG87 is indicated by the orange stars and rectangle. The W95XPXF99 motif is depicted
with the blue stars and rectangle. The cholesterol-binding motif CRAC and its “mirror code” CARC are marked by dark
green and violet rectangles and stars, respectively. The CRAC-like motif in TM I is highlighted by the light green rectangle.
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We modeled the h'TSPO based on the canonical "'TSPO sequence reported in the
UniProtKB database, Entry P30536 [47,48] (https://www.uniprot.org/uniprot/P30536
(accessed on 1 February 2019)). The model contains five transmembrane helices (TMs)
arranged in the clockwise order TM I-TM II-TM V-TM IV-TM III. The four loops are
located either in the cytoplasm, LP I and LP III, or in the cytosol, LP Il and LP IV, respectively
(Figure 2). LP I'is composed of residues V26-H46 (Figure 1), and it was earlier suggested to
play a role as the gate of the "'TSPO ligand binding pocket [49]. Almost half of the residues
composing LP I are fully conserved between h'TSPO and RsTSPO (Figure 1), which has a
short a-helix in the middle of its loop. LP I in the MoTSPO structure is shorter (10 residues)
than in the bacterial TSPO structures (19 residues), and it lacks this a-helix.

5%
G83XXXG87

Figure 2. Top and side view of the structural model of the "TSPO monomer (orange cartoon representation) aligned
with the RsTSPO template (black tube representation). Four important functional regions are highlighted: cholesterol
recognition/interaction amino acid consensus region (CRAC, in green color) and reverse region of the CRAC (CARC, in
purple color), both involved in cholesterol binding, the G83XXXG87 motif (blue color) relevant for monomer-monomer
interactions, and the W95XPXF99 motif (shown in red color) important for ligands binding. The figure was prepared with
the VMD program [50].

Different structurally and/or functionally important motifs are conserved among
RsTSPO and hTSPO:

24



Molecules 2021, 26, 1250

(i) An important feature of the mammalian TSPO is its capability of binding cholesterol
molecules [7]. Two motifs are involved in cholesterol binding: the cholesterol recogni-
tion/interaction amino acid consensus motif (CRAC) represented as L150-X-Y152-X(3)-
R156 (Figure 1, dark green rectangle) [7] and the reverse region of CRAC (named CARC)
described as R135-X(2)-Y138-X(2)-L141 (Figure 1, purple rectangle) [7,10]. One helical
turn before CRAC, there is a short sequence L144-A145-F146 that enhances the binding
affinity of mammalian TSPO for cholesterol [9]. Even though cholesterol is absent in bacte-
rial membranes, the CRAC motif is conserved in RsTSPO (Figure 1, dark green rectangle).
This is most probably in order to accommodate hopanoids, which have a structure and
function similar to that of cholesterol in higher organisms [51].

In order to interact with cholesterol, side chains of the key CRAC, CARC, and LAF
residues need to face the membrane. In our model, CRAC Y152 and R156 side chains are
membrane exposed, while L150 is oriented towards the ligand binding cavity in the center
of the TSPO (Figure 2). Different mutagenesis studies showed the importance of Y152
and of R156 for cholesterol binding. If one of these two residues is mutated to serine or
leucine, respectively, the binding of cholesterol is abolished [7,8]. CARC, in contrast to
CRAC, is not conserved in RsTSPO (Figure 1, purple box). However, in our "TSPO model,
all key residues from this motif, R135, Y138, and L141, are membrane exposed and can
interact with cholesterol (Figure 2). Among the LAF residues, L144 is facing the interior of
the protein in our model, while A145 and F146 are membrane exposed and available for
cholesterol binding.

(ii) The G83XXXG87 motif from KTSPO (Figure 1, orange rectangle) coincides with the
A75XXXA79 motif in RsTSPO. These motifs represent widespread helix-helix interactions
across different membrane proteins [52-56]. Both motifs are located in the third TM domain
(TM III) of the respective proteins and represent a binding interface for TSPO monomer—
monomer interactions. The G83 and G87 residues are exposed to the membrane in our
KHTSPO model and can interact with the second monomer (Figure 2).

(iii) The W95XPXF99 motif is fully conserved among human, mouse, and RsTSPO,
while the BcTSPO sequence differs significantly in this region (Figure 1, blue rectangle).
This motif is conserved also in other prokaryotic and eukaryotic TSPO sequences [40,57],
and it was suggested to play a role in oligomerization processes [49], as well as in ligand
binding [34,58]. In the MoTSPO experimental structure, W95 points into the binding cavity
and F99 is oriented toward the membrane, whereas in the RsTSPO structure, both residues
point into the binding pocket. In the BcTSPO-PK11195 complex, residues F90 and Q94,
which correspond to W95 and F99 in mammalian TSPO, respectively, interact with PK11195.
This is also the case for our "'TSPO model (Figure 2).

2.2. PK11195 Interactions with the hTSPO Model

We docked PK11195 to our "'TSPO model. Two 3D structures of the TSPO in com-
plex with PK11195 exist, the NMR structure of MoTSPO [36] and the X-ray structure of
BcTSPO [34]. The ligand binding cavity has the same location in both proteins, but PK11195
adopts different binding poses. In our studies, we used the "TSPO-PK11195 complex where
the ligand binding pose was similar to the one observed in the BcTSPO, since currently,
there are no experimental structures available for the RsTSPO-PK11195 complex, which is
a template of our model. Other docking poses differed from the one used as the starting
configuration for the MD simulations (Figure S1), showing a small degree of convergence.
Indeed, these poses are already cluster representatives, since AutodockVina [59], used here,
does the clustering automatically.

However, many residues crucial for PK11195 binding in the BcTSPO crystal struc-
ture are fully conserved in RsTSPO, like Y32(31), P42(41), W51(50), N87(84), W138(135),
A142(139), and L145(142) (numbering is for BcTSPO and in parentheses for RsTSPO)
(Figure 1). Furthermore, the main structural differences between Bc and the RsTSPOs
appear at the monomer—-monomer interface in the dimer structure and not in the ligand
binding pocket [49].
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The binding cavity in our model is lined with residues belonging to four TM domains
and to LP I: G18, C19, V21, G22, F25 (in TM I), Y34, H43 (in LP I), H46, L49, G50, W53 (in
TM II), N92, W95, P96, F99, F100 (in TM III), W143, T147, L150 (in TM V). The residues L49,
W53, W95, W143, A147, and L150 are involved in the binding of PK11195 in both the Mo and
BcTSPOs experimental structures [34,36]. Beside these residues, others bind PK11195 in Mo
and BcTSPO, but they are specific to each structure. One third of the binding residues in our
model are fully conserved among mammalian [60] and other prokaryotic and eukaryotic
species [57], like Y34, W53, N92, W143, L150, and A /T147 (Figure 1, for more complete
alignments see [57,60]). It was shown that either threonine or alanine at position 147 has no
impact on PK11195 binding to the TSPO since it binds to both polymorphs with the same
binding affinity, in contrast to other radioligands, which bind with significantly smaller
binding affinity to the protein with threonine [31,60,61].

Next, we ran a 1 us long MD simulation and analyzed the interactions between our
hTSPO model and the PK11195 ligand. Additional MD simulation replicas of 450 ns were
later run for holo and apo K'TSPOs (two for each protein), and the results are reported in the
Supplementary Materials. During the MD simulation, at around 450 ns, we observed quite
sudden movement of the PK11195 chlorophenyl-N-isoquinoline part towards different
binding pose, while the alkyl part of PK11195 remained at its initial position. The rings
horizontally slide in a way that the chlorophenyl ring, which initially faces TM I, is placed
between TM I and TM I, closer to the latter helix (Figure 3a, center, and Figure S2). This
movement indicates that the initial binding pose may not be optimal and/or that the TSPO
binding pocket possesses certain plasticity allowing for different binding poses of the
ligand. Interestingly, the pose of PK11195 after 450 ns was similar to one docking position
(Figure S1, pose 5; the RMSD between the two poses is 1.8 A). We compared the binding
pose that PK11195 adopts during the first 450 ns (Figure 3b) with the one it takes up after
the movement (Figure 3c). We observed that residues binding constantly PK11195 during
the whole length of the MD run are: G22, F25 (in TM I), Y34, H43 (in LP I), L49, W53 (in
TM II), W95, P96 (in TM 1III), and T147, L150 (in TM V). Residues Y34, W53, W95, A /T147,
and L150 are well conserved among TSPOs from different species, while G22, F25, and L49
are semi-conserved [57]; this indicates their importance for the structure and/or function
of the protein.

The F25 side chain is initially facing towards the membrane, later it moves inside the
binding pocket, establishing the rr-stacking and hydrophobic interactions with F100, Y34,
and PK11195. In the MoTSPO (PDB code: 2MGY [36]) and BcTSPO (PDB code: 4RYI [34])
structures, this residue points out of the binding site in the same orientation as it does in
our model at the beginning of the MD simulation.

In our model, Y34 forms hydrophobic interactions with PK11195 throughout the
MD simulation. This residue is fully conserved among TSPOs from different species,
from mammalians to bacteria [57]. However, in the crystal structure of BcTSPO-PK11195,
this residue binds PK11195, while in the MoTSPO-PK11195 complex, it faces the cytosol.
Despite this ambiguity in the TSPO-PK11195 experimental structures, our result is in very
good agreement with mutational studies showing that mutations Y34F, Y34F/F100A, and
Y34F/F99A cause a large decrease in the binding affinity for PK11195 with respect to the
WT TSPO [58]. These results indicate that the aromatic phenyl rings are crucial at this place
for PK11195 binding.

A stable hydrogen bond (H-bond) is formed between the W53 indole amino group
and the carbonyl-oxygen atom of PK11195. The H-bond between W53 and PK11195 was
observed also in the BcTSPO-PK11195 crystal structure [34], but not in the MoTSPO-
PK11195 NMR structure, which lacks any H-bond interaction [36]. Another H-bond
observed in the BcTSPO-PK11195 structure was formed between W143 and the PK11195
ligand [34]. In our model, this H-bond is formed occasionally during the first 450 ns;
after this time, W143 constantly interacts with PK11195 through VAW interactions.
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Figure 3. PK11195 binding interactions with the "TSPO model. (a) Top: Open access to the binding pocket between TM I
and TM II of the hTSPO structural model that persists throughout the MD simulation. We do not observe other openings,
nor the change in the LP I conformation. Center: PK11195 moves in the binding site of the "TSPO model from its initial state
observed in the first 450 ns (red color) to the new pose (blue color, 450-1000 ns). The image of every hundredth frame is
shown smoothed with a five frame window. Bottom: Chemical formula of PK11195. (b,c) 3D and 2D representations of the
PK11195 binding pocket during the first 450 ns (top) and after the ligand movement, from 450 ns till the end of the MD
run (bottom). 3D plots show PK11195 (yellow and orange balls and sticksrepresentation for 0—450 ns and for 450-1000 ns,
respectively) and the residues binding it for more than 90% of the simulation time; the backbone and hydrogen atoms were
omitted for clarity reasons. F100 was kept in (c), despite that it does not bind PK11195 anymore, to show the change in its
side chain conformation. The most constant interactions, formed for more than 75% of the simulation time between PK11195
and the "'TSPO model, are shown in the 2D plots obtained by the Discovery tool [62]. Legend: green circles—hydrogen
bonds, light green circles—VdW interactions, light pink circles—r-alkyl, and dark pink circles—7r-7t interactions.

PK11195 is additionally bound through VdW, hydrophobic, or stacking interactions by
H43, 149, P96, W95, T147, and L150. Some of these residues interact with PK11195 also in
the BcTSPO structure (F90, S91, A142, and L145, respectively) and in the MoTSPO structure.

In addition to all the above described residues, F100 and L112 steadily bind PK11195
during the first 450 ns. At this time, the ligand moves to a new binding pose, and these
two interactions are lost; however, the interactions with V26 and F99 are established
(Figure 3b,c). Interestingly, the F100 side chain flips out of the binding pocket at around
720 ns (Figure 3c). This residue is oriented towards the binding site in BcTSPO, as it is in our
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model at the beginning of the MD simulations, while in MoTSPO, it is facing the membrane
like in our model at the end of the MD run. According to our results, we suggest that F100
spontaneously changes its position from inward to outward of the binding pocket and that
the experimental structures captured it in one of these two different conformations.

The spontaneous change that we observe in the orientation of the F100 side chain may
indicate that it is involved in placing the ligand inside the binding pocket, but not crucial
for its binding, and that this role is left to F99 and Y34, as suggested by [58]. Deeper studies
will of course need to be done to explore in detail the exact role of these three residues.

Different hypothesis were made in the literature about the possible binding pathways
for PK11195: one suggested that the ligand enters the binding pocket from the cytosol and
that LP I plays a role of the gate [49,63]; the second one proposes binding between the
crevices in TM helices [34,63,64].

In the present work, we observed the opening between TM I and TM 1I of our K”TSPO-
PK11195 model, which during the whole simulation time gave direct access to the binding
pocket through the membrane (Figure 3a). Furthermore, PK11195 adopts a position where
its Cl-phenyl ring is placed in this crevice, enveloped by C19, G22, F25, and V26 from TM I
and by H46, L49, and W53 from TM II. In contrast, in the apo "'TSPO model, the TM I and
TM II helices maintain the closed position, without any openings, during the full length of
the MD simulation (Figure S3).

Furthermore, we noted that LP I is stabilized through a patch of interactions: cation-
7t interactions formed between K39 (LP I) and Y34 (LP I) and the stacking interactions
between Y34, F25 (TM 1), F99, F100 (TM I1I), and PK11195. These interactions prevent—
within the time scale of our simulation—LP I from moving in a way to open the access to
the binding site from the top of the protein and therefore from the cytosol. This result is
consistent with the previous study [64]. However, we cannot exclude that on a longer time
scale, LP I is able to perform larger movements, as was proposed by [63].

2.3. PK11195 Stabilizes hTSPO Structural Fold

The apo and holo hTSPO structural models were embedded into the membrane and
evaluated by a 1 ps long MD simulation. We evaluated and compared the structural
stability of the apo and holo h'TSPOs by calculating the root mean squared deviations
(RMSD) of backbone atoms, the root mean squared fluctuations (RMSF) of Ca atoms
(Figure 4), and the helices’ flexibility (Figure 5).

The RMSD of apo hTSPO fluctuates more than that of the holo protein (Figure 4a);
however, both systems reach a plateau at around 400 ns. The RMSD fluctuations in the
apo protein (from 400 ns on) are principally due to the bending of the TM I helix and
due to the flexibility of the loops LP I, II, and III. In contrast, the RMSD of the "'TSPO-
PK11195 complex is lower than for the apo protein and becomes steady from around
400 ns on, indicating that PK11195 stabilizes the h'TSPO structural model. The higher
structural stability of the holo protein can be observed as well from the principal component
analysis (PCA) (Figure 6). These results are in line with experimental data for MoTSPO,
where the interactions with its cognate ligand PK11195 stabilize its structural fold [36,65].
Similar observations were obtained for RsTSPO, which also showed an important flexibility,
especially around the ligand binding site [35,66]. It was shown that the quality of RsTSPO
crystals was significantly improved by adding cholesterol and PK11195 to the crystallization
medium [35], suggesting that PK11195 can have a positive impact also on the RsTSPO and
not only on MoTSPO structural stability.

The RMSD values of backbone atoms for each transmembrane helix (Figure 4c,d)
clearly show that PK11195 increases the stability of TM I and TM II, while TM IV and
TM V are stable regardless of the absence/presence of the ligand. In both—apo and
holo—proteins TM I is the most flexible helix and TM IV the most stable one.
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Figure 4. (a) Evolution of the root mean squared deviation (RMSD) values of the apo (violet graph)
and holo (green graph) hTSPOs during the 1 ps long MD simulation. RMSD values were calculated
for the backbone atoms of residues W5 to N158, excluding the N— and C—termini and H atoms. (b)
Root mean squared fluctuations (RMSF) of the Ca atoms in the apo (violet graph) and holo (green
graph) h'TSPOs. RMSF values were calculated for equilibrated proteins (in the MD simulation range
of 400 ns-1 ps). (c,d) RMSD values for each of the five transmembrane helices (TM I-TM V) in the
apo (hTSPO) and holo ('TSPO-PK11195) proteins, respectively.
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Figure 5. Analysis of the flexibility of each TM domain (TM I-TM V) in "TSPO-PK11195 and
hTSPO structural models by means of Bendix [67]. y-axis: residue index number corresponding to

0

the residues composing individual TM domain; x-axis: simulation time. The color scale indicates
changes in helix angle /bending during the MD simulations, from blue: <6° to red: >24°.
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(b)

Figure 6. The principal component analysis of the (a) "'TSPO and (b) h"TSPO-PK11195 models
showing the flexible parts of the protein. The image of every hundredth frame is shown, spanning
from the beginning (red color) to the end (blue color) of the MD simulation.
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The RMSD for TM 1 in the apo system has two plateau levels indicating a conforma-
tional change. Indeed, there is a kink in the a-helix due to the P15 residue (Figure 5, TM
I in KTSPO). Helix kinks are a common feature of long a-helices, which are frequent in
transmembrane proteins, and proline residues are strongly associated with the helix being
kinked [68,69]. TM I becomes straight at around 350 ns. The alteration between the kinked
and straight form of TM I is the reason for the RMSD change and also for the higher RMSD
values with respect to the other helices in our model (Figure 4c). TM III (P96-P97) and TM
V (P139) are also slightly kinked. However, TM V in the holo protein is very stable most
probably owing it to the presence of PK11195, though its binding site is distant from P139.

The root mean squared fluctuations (RMSF) of Ca atoms were calculated in the range
of 400 ns to 1000 ns, when both systems reach equilibration. The RMSF for both systems
are very similar, but one can note important peaks at residues A35, E70, and F100 in the
apo model (Figure 4b). These regions correspond to the first three loops fluctuating more
in the apo than in the holo protein.

In the "'TSPO-PK11195 complex, LP I with the small a-helix (residues G28 to G36)
in the middle of it is stable during the whole MD simulation time. A crucial role in its
high stability is played by a patch of interactions (described in details in the previous
section) that hinders the free movement of LP I and contributes to the a-helix retaining
its conformation. In contrast, LP I in the apo model varies in length (between F25-P45
and 523-P45), and the small a-helix is rarely formed. Due to its random coil structure and
the absence of PK11195, LP I is more flexible than in the holo protein. LP II in the holo
model is stable during the MD simulation, while in the apo protein, one helix turn at the
C—-terminus of TM II unfolds (data not shown), extending the length of LP II (W68-A78),
which consequently fluctuates more than in the holo protein. Here, again, PK11195 seems
to play an important role in the stability of TM II (Figure 4c,d).

LP III in the holo protein consists of residues G102-L109, and despite its length, it is
more stable than in the apo protein where it is composed of residues F99-N104 (Figure 6).
We observed that in both proteins, the parallel cation-7r interactions are formed between
R103 (LP IITI) and W33 (LP I a-helix) for more than 75% of the simulation time. Hydrophobic
interaction between W33 and F100 (TM 11I) further stabilize the previous interaction in the
holo protein (existent for 90% of the simulation time), but much less in the apo protein
(existent for 40% of the simulation time). In addition, in the holo protein, F100 binds with
Y34 (LP I) for 730 ns and for about 450 ns also with PK11195. This cascade stabilizes LP
I, LP III, and the whole upper, C—terminal part of the holo "'TSPO, namely the part in the
outer membrane leaflet, where the ligand binding site is present. In the apo protein, this
same cascade is not stabilized by PK11195, and indeed, LP III fluctuates more (Figure 6).

Finally, LP IV and LP V remain stable without changes in both models during all
MD simulations, in line with our results that TM IV and TM V are the most stable helices
regardless of the ligand’s presence, and their termini do not unfold, as seen for some other
helices described above (Figure 4c,d).

Taken together, the PK11195 ligand appears to reduce the fluctuations of the loops
and to stabilize the overall structural fold of the TSPO protein.

2.4. Cholesterol Interactions with hTSPO

Our analyses show that the apo h"TSPO model binds 1.5 times more cholesterol
molecules than the holo one. This result is in good agreement with other studies pos-
tulating that PK11195 reduces the cholesterol binding to the TSPO [7].

We analyzed the average simulation time during which cholesterol interacts with
each of the five TM helices (Table 1). In the holo protein, cholesterol interacts most often
with TM I (47% of the simulation time) and TM V (48% of the simulation time), while
in the apo protein, it interacts for 100% of the time with TM V and much less with other
helices. Among other helices, TM II stands out, binding cholesterol for about 50% of the
simulation time.
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Table 1. The percentage (%) of the simulation time during which the individual transmembrane
helices (TM I-TM V) bind the cholesterol molecule(s). The total simulation time is 1 ps.

™I TMII TMIII ™IV ™V
Apo system 32 51 23 27 100
Holo system 47 26 19 15 48

Next we calculated the average number of cholesterol molecules bound to a single TM
domain per frame (i.e., per ns). The holo TM I binds on average slightly more cholesterol
than TM I in the apo protein, while for TM II, the result is inverted (Figure 7a). TM Il and
TM IV bind on average the same amount of cholesterol per frame, but holo TM V binds less
than one cholesterol per frame, while apo TM V binds on average 1.5 cholesterol molecules
per frame during the full length of the simulation time (Figure 7a). Indeed, the high affinity
cholesterol binding motifs, CRAC and CARC, are located in TM V (Figures 1 and 2).

1.6

hTSPO —e— hTSPO-PK11195 ——

HL

| I M 1V vV
TMs

(a)

-l 400 hTSPO m==m ATSPO-PK11195 ===

CRAC-like CRAC CARC CRAC+CARC
Regions
(b)

Figure 7. (a) The average number of cholesterol molecules (Naverage CHL) binding to the individual
helix (TM I-TM V) in the apo (violet line) and holo (green line) "TSPOs at each frame of the 1 us MD
trajectory. (b) The total number of all cholesterol molecules (Tot No of CHL) binding either to the
CRAC:-like motif in TM I or to the CRAC and/or CARC in TM V during our 1 ps long MD simulation
of apo hTSPO (violet) and holo K'TSPO (green).
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We analyzed why TM I of the holo protein binds cholesterol more frequently than
other helices and why it binds more cholesterol than TM I in the apo protein (Figure 7b). We
found that TM I has a CRAC-resembling motif, namely L17-X(2)-F20-X(3)-R24 (Figure 1),
that attracts cholesterol. This motif is located in the upper, C—terminal part of the TSPO,
in the outer membrane leaflet, next to the PK11195 binding site. We suggest that cholesterol
binds more often to this motif in the holo than in the apo protein due to the higher stability
of the TM I helix in the former protein (Figure 4c,d). The higher stability of holo TM I (i.e.,
it is less kinked than apo TM I (Figure 5, TM I) allows for the more optimal orientation of
cholesterol binding residues L17, F20, and R24 and of cholesterol molecules with respect to
the apo protein.

For TM I, the frequency of cholesterol binding is inverted: it interacts more often with
the apo than with the holo protein. Cholesterol binds to both proteins only in the first half of
the simulation time. Two cholesterols interact with apo TM II, one in the upper, C—terminal
part (binding to residues P45-W47-V48-P51-V52) and one in the lower, N—terminal part
of the protein (binding to residues T55-A59-Y62-L66). Cholesterol interacts almost twice
more frequently with the lower part of the helix that is in the inner membrane leaflet than
with the upper part of the helix that is in the outer membrane leaflet. In the holo protein
instead, cholesterol binds exclusively to the upper part of TM II. Since apo TM II binds
more cholesterol than holo, it is clear that cholesterol has higher binding affinity for the
lower part of this helix (i.e., it rather binds to the N-terminal part of the ”'TSPO that is in
the inner membrane leaflet than to its C—terminal part). We suggest that PK11195 reduces
the frequency of cholesterol binding to the lower, N-terminal part of the "TSPO and in this
particular case to TM II.

TM III and TM IV bind cholesterol equally frequently in both systems.

Finally, we determined the frequency of cholesterol binding to TM V, precisely to
the CRAC (L150-X-Y152-X(3)-R156) and CARC (R135-X(2)-Y138-X(2)-L141) motifs. We
defined how many cholesterol molecules bind individually to CRAC or CARC, as well
as the frequency of cholesterol binding to both regions simultaneously (Figure 7b). For
individual binding, we counted cases where only one motif at a time is occupied by
cholesterol. For simultaneous binding, we counted only the cases when both motifs are
occupied at the same time and with two different cholesterol molecules. Cases where one
cholesterol molecule is bridging the two regions were excluded. Our results show that in
the holo protein, cholesterol binds most often to CRAC and much less often to the CARC
motif. Interestingly, the presence of PK11195 almost abolishes the simultaneous binding of
cholesterol to both motifs.

In the apo protein, cholesterol binds more often to CRAC than to CARC. The number
of cholesterol binding to these motifs is lower than in the holo protein, owing to the fact
that cholesterol in the apo protein preferentially binds to both motifs at the same time.

Taken together, the apo protein binds more cholesterol molecules than the holo protein.
In the apo protein indeed, cholesterol binds with about 50% frequency to TM II and with
100% frequency to the CRAC and CARC regions in TM V. In TM II, cholesterol binds
more readily to the lower part of the helix, so to the N-terminal part of "”TSPO present in
the inner membrane leaflet. Very interestingly, in the apo protein, cholesterol binds most
frequently to CRAC and CARC simultaneously (Figure 8, right panel), while in the holo
protein, simultaneous binding to these motifs is almost abolished. Indeed, cholesterol in
the holo protein binds mostly to the newly described motif in TM I and to the CRAC motif
in TM V (Figure 8, left panel). Both motifs are present in the upper, C—terminal part of
the h'TSPO, next to the PK11195 binding site and in the outer membrane leaflet. In our
study, the binding of cholesterol to the lower, N-terminal part of the holo "'TSPO model is
rarely observed.
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Figure 8. Cholesterol molecules bind most frequently to CRAC and CRAC-like regions (green surface representation) that
are in the vicinity of the PK11195 binding site (orange surface representation) in the "-TSPO-PK11195 system and to CRAC,
LAF(blue surface representation), and CARC (purple surface representation) motifs in the ”'TSPO system. Corresponding
residues from each region that interact with cholesterol (color coded, respectively) are represented within ellipses.

3. Materials and Methods
3.1. Building the 3D Structural Model of KFTSPO

We used the sequence reported in the UniProtKB [47,48] database with the ID: P30536.
It contains 169 amino acids, spanning from M1 to E169. This sequence was aligned with
those of: Mus musculus TSPO (MoTSPO; UniProt ID: P50637), Rhodobacter sphaeroides TSPO
(RsTSPO; UniProt ID: QIRFCS8), and Bacillus cereus TSPO (BcTSPO; UniProt ID: Q81BL?7),
using the Multalin [70] and ClustalO [46] web-servers. 3D structural models of the "'TSPO
were built based on the RsTSPO template (PDB ID: 4UC1 [35]). Twenty models of "TSPO
were generated using the MODELLER program, Version 9.19 [71]. All models were ana-
lyzed according to the Discrete Optimized Protein Energy (DOPE) score using the built-in
script of the MODELLER package [71,72]. In addition, the local structural quality of the
KHTSPO models in the biological membrane were examined using the QMEANBranescoring
function [73] from the Swiss-model server [74-78]. All models were visually inspected and
compared to the template and to the available mutagenesis data. The model corresponding
best to the available experimental data, having the lowest DOPE score according to the
MODELLER program [71,72] and the appropriate local structural quality as defined by the
QMEANBrane tool [73], was chosen for docking and molecular dynamics (MD) simula-
tion [79,80] studies. We checked that the orientation and tilt angles of the helices—once the
model is inserted in a membrane—were appropriate. These parameters were computed
by the Positioning the Proteins in Membranes (PPM) server [81] for the model and the
RsTSPO template and compared between them (Table 2).
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Table 2. Comparison of the hydrophobic thickness and protein tilt angles for the RsTSPO template
and the hTSPO structural model. All values were obtained from the Positioning the Proteins in
Membranes (PPM) server [81].

Model/Template Hydrophobic Thickness AG Transfer Tilt Angle

(A) (kcal/mol) (0)
hTSPO 304 +4.1 —-239 10.0 £ 1.0
RsTSPO 302+ 1.6 —40.8 7.0+ 3.0

3.2. Docking of the PK11195 Ligand

We docked the PK11195 Iligand (N-[(2R)-butan-2-yl]-1-(2-chlorophenyl)-N-
methylisoquinoline-3-carboxamide) to the h'TSPO structural model. The initial 3D structure
of PK11195 was obtained from the PubChem database (https://pubchem.ncbinlm.nih.
gov/compound /1345 (accessed on 1 February 2019)). Molecular docking was performed
using the UCSF Chimera program [82] and AutoDock Vina package [59]. Protein and
ligand input files were prepared by AutoDockTools. The ligand had fully flexible torsion of
freedom, while the receptor side chains were kept rigid. Non-polar hydrogen atoms of the
protein and the ligand were merged. The center of the grid was placed at X = —14.451 A,
Y =25.618 A, and Z = 25.297 A. The grid dimensions were 76 x 72 x 66 A, and the spacing
between the grid points was set to 0.375 A. The exhaustiveness parameter of the global
search was set to 8 (default). Ten ligand binding modes were generated in search for a
ligand pose with the lowest binding affinity.

We selected the model where the ligand had the lowest, i.e., the most negative docking
binding affinity score, and it interacted with the two conserved residues W53 and W95 [57]
shown to be important for binding [34].

3.3. Molecular Dynamics Simulations

The apo (HTSPO) and holo (F"TSPO-PK11195 complex) models were then inserted into
the lipid bilayer composed of phosphatidylcholine (POPC)—phosphatidylethanolamine
(POPE)—cholesterol (CHL) with the ratio of 3:3:1 for POPC:POPE:CHL, respectively. The
choice of the membrane composition was made based on the experimental studies of
the mitochondrial membrane and the protein-lipid monolayers [83,84]. The membrane
thickness was 3.04 nm and was built by the Mem-Builder web-server [85,86]. The h'TSPO
models were placed and properly oriented at the center of the membrane box by the
Lambada and InflateGRO2 tools [87] (the tilt angle of all TM helices is 10°). Principally,
these values correspond to those of the RsSTSPO template (Table 2).

The apo and holo models of h”TSPO inserted in the POPC-POPE-CHL membrane
were solvated with 12,758 water molecules enclosed in a solvation box with dimensions of
10.5nm x 10.5nm x 11.0 nm. 161 sodium (Na™*) and 166 chloride (CI~) ions were added
to neutralize the system net charge and to reproduce the physiologic electronic strength of
0.15M. The MD simulations were run using the GROMACS 2018.6 package [88,89] and ap-
plying the SLIPIDSforce field [90] for the membrane, the AMBER99SB-ILDNforce field [91]
for the h'TSPO model and ions, and the TIP3P [92] force field for water. The force field
parameters of PK11195 were prepared using the General Amber force field (GAFF) [93,94],
introducing the RESPatomic charges and electrostatic potential (ESP) as calculated based
on the B3LYP/6-31G* basis set using the Gaussian09 package [95]. The topology file of
the PK11195 ligand was converted to GROMACS format using the ACPYPE tool [96]. The
geometry of the "TSPO models was optimized by steepest descent minimization performed
for 50,000 steps with a maximum force constant value of 1000 k] /mol/nm. After the geo-
metrical optimization, the systems underwent NPTequilibration for 10 ns with a time step
of 2 fs. The systems were maintained at the reference pressure of 1 bar by coupling to the
Parrinello-Rahman barostat [97,98] with uniform scaling of x-y box vectors and indepen-
dent scaling for the z-axis (i.e., perpendicular to the membrane). The systems were coupled
to the Nose-Hoover thermostat [99-101] to maintain the temperature at 310 K. A 1.2 nm
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cut-off was set for the short-range non-bonded interaction. The LINCSalgorithm [102]
was chosen to constrain all bonds involving hydrogen atoms. The holo and apo structural
models of "TSPO were then simulated for 1 us to detect the stable structure of /”TSPO in
the mitochondrial membrane. MD simulation parameters were the same as in the NPT
equilibration run; only the thermostat was changed to the V-rescale thermostat [101].

3.4. Analysis

The root mean squared deviation (RMSD) for the entire "TSPO model and for the
individual helices was calculated for the backbone atoms omitting the hydrogen atoms. The
RMSD for the entire protein was calculated for the sequence from W5 to N158, excluding
the N- and C—termini and the hydrogen atoms.

The root mean squared fluctuation (RMSF) was calculated for the Ca atoms of each
HTSPO residue. They were calculated for equilibrated proteins, that is in the MD simulation
range 400 ns-1 ps. For these calculations, the g_rms and g_rmsf tools from the GROMACS
package were used [88,89].

Helices flexibility analyses was done by the Bendix plugin [67] in the VMD pro-
gram [50]. To define the color code, we saved the values of the angle changes along each
helix during the MD simulation time. The average values ranged from 0° to 24°; therefore,
we divided the color code into 5 parts with the corresponding 6 angle values’ extents. The
highest change in the helical angle was observed for the TM I helix in the apo h"TSPO
model, i.e., 51°. The color code is described as blue: <6°, cyan: 6-12°, green: 12-18°, yellow:
18-24°, and red: >24°.

The principal component analysis (PCA) was performed on the apo and holo #/TSPO
including residues W5 to N158. The C— and N-termini, as well as hydrogen atoms were
ignored. We used the g_covar and g_anaeig tools in the GROMACS package [88,89].

The analysis of PK11195 interactions with the ”'TSPO model (Figure 3) was carried
out by home-made TCLand AWKscripts. To define a binding site of the ligand, we searched
for all residues that were within 4.5 A of any PK11195 heavy atom. We defined residues
that bind PK11195 ligand for more than 90% of the simulation time as constant or principal
binders. All of them form hydrophobic or stacking interactions with the ligand. For
W53 that is H-bonding the carbonyl oxygen of PK11195, we calculated the frequency of
H-bond formation using the distance criteria of 3.5 A. The residues binding the PK11195
ligand for more than 90% of the simulation time are shown in the VMD representation
in Figure 3. Residues that interact with the PK11195 for at least 75% were determined as
frequent binders. All residues binding PK11195 for at least 75% are shown in the 2D plots
in Figure 3. The subfigures in Figure 3 were made using the Visual Molecular Dynamics
(VMD) [50] and Discovery Studio Visualizer [62] programs.

The cholesterol analysis was done by in-house written TCL and AWK scripts. The
cholesterol was counted as bound to the /"TSPO model, to the defined TM helix, or to
different motifs (CRAC-like in TM I, CRAC/CARC in TM V) if it was found within 5 A
from any residue belonging to the analyzed region, respectively. Only contacts between
heavy atoms were taken into account.

The total number of cholesterols bound to the apo and holo hTSPO systems throughout
the 1 us were counted and expressed as the ratio of the cholesterol molecules interacting
with each system.

The data in Table 1 were obtained by counting all frames where the cholesterol interacts
with the transmembrane helix in question. The percentage of the simulation time was
calculated as the number of frames divided by the total number of frames (1000).

To obtain the average number of cholesterol molecules that bind the individual helix at
each frame (as reported in Figure 7a), we counted the total number of cholesterol molecules
interacting with the individual TM helix, and we divided this number by the total number
of frames (1000).
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For Figure 7b, we just counted the total number of cholesterol molecules that bind
only to the CRAC-like motif in TM I, only to CRAC/CARC in TM V, or to both motifs
(CRAC+CARC in TM V) at the same time.

4. Conclusions

The interplay between PK11195 and cholesterol interactions with h'TSPO were studied
by MD simulations of a homology model of the protein based on RsTSPO. The ligand in-
creases the stability of the protein in terms of RMSD, PCA, and Bendix analyses. During the
MD simulation, PK11195 slides to a new position, in which its CL-phenyl ring initially fac-
ing TM I is placed between TM I and TM 1], closer to the latter helix (Figures 3 and S2).The
two helices detach from one other, while they stay close to each other in the apo protein. The
ligand forms mostly hydrophobic and stacking interactions with the protein. Its carbonyl
oxygen forms an H-bond with the W53 side chain. Two and three cholesterol molecules
per ns bind, on average, to the holo and apo h'TSPO, respectively. Hence, the presence of the
ligand reduces the frequency of cholesterol binding to the protein. In the apo protein, the
cholesterol molecules bind most of the time simultaneously to two well-known cholesterol
binding motifs, CRAC and CARC in TM V. In the holo protein instead, cholesterol interacts
with the CRAC-like motif in TM I and with the CRAC motif in TM V. Cholesterol binds
much more rarely to the lower, N-terminal part of the holo hTSPO, that is in the inner
membrane leaflet. Thus, PK11195 reduces cholesterol binding to this latter region, but it
favors cholesterol interactions with the upper, C—terminal part of the protein in the outer
membrane leaflet. Further studies are required to understand more in detail why this is
the case.

Supplementary Materials: The following data are available online: Table S1: Experimentally defined
dissociation constants (K;) of the PK11195 molecule for different TSPOs. Figure S1: 3D and 2D
representations of the PK11195 binding poses obtained by docking. Figure S2: MD snapshots
showing the PK11195 ligand in its binding pocket at 0 ns, 250 ns, 500 ns, 750 ns and 1000 ns. Figure S3:
Apo hTSPO does not exhibit an open access channel to the ligand binding pocket (located between
the TM I and TM 1II helices in the holo protein). Figure S4: The number of cholesterol molecules
binding to each helix of the apo and holo K'TSPO proteins, averaged over our three MD simulations.
Figure S5: The number of cholesterol molecules binding to apo and holo h"TSPO averaged over our
MD trajectories. Figure S6: Ligands motion in the binding site in our three MD simulations. Figure S7:
Open access channels to the ligand binding pocket in our three MD trajectories.
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Abbreviations

The following abbreviations are used in this manuscript:

TSPO translocator protein

™ transmembrane helix

LP loop

PK11195 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide
molecule

hTSPO the human TSPO

HhTSPO-PK11195  the h'TSPO-PK11195 complex

POPC phosphatidylcholine lipid

POPE phosphatidylethanolamine lipid

CHL cholesterol

RMSD root mean squared deviation

RMSF root mean squared fluctuation

VMD Visual Molecular Dynamics

MD molecular dynamics

CRAC cholesterol recognition/interaction amino acid consensus motif
(L150-X=Y152-X(3)-R156)

CARC reverse region of CRAC (R135-X(2)-Y138-X(2)-L141)
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Abstract: Multidrug resistance protein-4 (MRP4) belongs to the ABC transporter superfamily and
promotes the transport of xenobiotics including drugs. A non-synonymous single nucleotide poly-
morphisms (nsSNPs) in the ABCC4 gene can promote changes in the structure and function of MRP4.
In this work, the interaction of certain endogen substrates, drug substrates, and inhibitors with wild
type-MRP4 (WT-MRP4) and its variants G187W and Y556C were studied to determine differences
in the intermolecular interactions and affinity related to SNPs using protein threading modeling,
molecular docking, all-atom, coarse grained, and umbrella sampling molecular dynamics simulations
(AA-MDS and CG-MDS, respectively). The results showed that the three MRP4 structures had
significantly different conformations at given sites, leading to differences in the docking scores (DS)
and binding sites of three different groups of molecules. Folic acid (FA) had the highest variation in
DS on G187W concerning WT-MRP4. WI-MRP4, G187W, Y556C, and FA had different conformations
through 25 ns AA-MD. Umbrella sampling simulations indicated that the Y556C-FA complex was
the most stable one with or without ATP. In Y556C, the cyclic adenosine monophosphate (cAMP) and
ceefourin-1 binding sites are located out of the entrance of the inner cavity, which suggests that both
cAMP and ceefourin-1 may not be transported. The binding site for cAAMP and ceefourin-1 is quite
similar and the affinity (binding energy) of ceefourin-1 to WT-MRP4, G187W, and Y556C is greater
than the affinity of cAMP, which may suggest that ceefourin-1 works as a competitive inhibitor. In
conclusion, the nsSNPs G187W and Y556C lead to changes in protein conformation, which modifies
the ligand binding site, DS, and binding energy.

Keywords: MRP4; SNPs; variants; protein threading modeling; molecular docking; molecular
dynamics; binding site

1. Introduction

The transport of xenobiotics out of the cell across membranes is a mechanism used
by cells to detoxify. This mechanism is mediated by ATP-binding cassette (ABC) trans-
porters [1]. Multidrug resistance protein-4 (MRP4) is a member of the ABCC subfamily
and mediates the transport of xenobiotics such as cardiovascular, antiviral, and anticancer
drugs. The substrates for MRP4 are mainly glucuronide conjugates and organic anions [2].
MRP4 can modify drug pharmacokinetics and contributes to the manifestation of side
effects or multidrug resistance. In addition, the tumor energy metabolism is related to
multidrug resistance due to the high production of ATP to enhance the activity of MRP4
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and other ABC transporters [3]. An increase in MRP4 activity or expression leads to a
decrease in drug efficacy. In another instance, a decrease in MRP4 activity or expression
could enhance toxicity due to drug accumulation. Since MRP4 is expressed in the kidneys,
liver, erythrocytes, lymphocytes, adrenal glands, platelets, brain, and pancreas in humans,
it can modify cellular exposure to drugs. In addition, the toxicity produced by MRP4 will
depend on the type of drug or endogen substrate [4]. The MRP4 dysregulation has been
reported in several pathological disorders, especially in cancer [5]; thus, MRP4 represents
an attractive therapeutic target. The design of pharmacological agents with the ability to
selectively modulate the activity of this ABC transporter or modify its affinity of a given
substrate represents a challenge in chemical biology and drug design [6,7].

MRP4 consists of 1325 amino acids and is the shortest member of the ABCC subfam-
ily [8]. The basic MRP4 core structure is comprised of transmembrane domains (TMDs)
and intracellular nucleotide binding domains (NBDs). The domain arrangement for MRP4
is TMD-NBD-TMD-NBD [9]. Each TMD consists of six transmembrane helixes (TMHs)
that determine the ligand specificity and allow ligand binding. In addition, NDBs bind
and hydrolyze ATP to trigger substrate transport [10]. MRP4 is codified by the ABCC4 gen,
located on chromosome 13g32.1 [11]. Alternative splicing leads to four isoforms, of which
isoform 1 has been the most studied [1]. MRP4 is a highly polymorphic gene [12]; however,
limited data are available on the function of MRP4 variants. Recent studies have been
focused on the relationship between ABCC4 nsSNPs and drug disposition. In most cases,
nsNSPs have little or no effect on the protein structure or function, but sometimes nsSNPs
promotes non-functional or highly functional proteins [13]. The nsSNPs that occur in
protein coding regions always alter the encoded amino acid, and the effect on the structure
or function of the protein depends on the mutated site [14].

Nada-Abla and coworkers in 2008 reported that the MRP4 variants G187W and
G487E show a significantly reduced function of azidothymidine and adefovir transport
compared to wild-type MRP4 (WI-MRP4). G187W is a non-synonymous ABCC4 variant
and the mutation is located at the cytosolic loop 1 in the TMD (Figure 1); it has undergone
the greatest structural change in terms of composition, polarity, and molecular volume.
G187W also has a 50% reduction in function, and this could be clinically relevant [15].
On the other hand, Y556C is another non-synonymous ABCC4 variant and is located at
NBD1 (Figure 1). Mayukh-Banerjee and coworkers in 2016 reported that the Y556C variant
exhibited a 1.8-fold increase in dimethylarsinic acid effectiveness relative to WT-MRP4.
Experiments on MRP4 transfection into the HEK cell line showed that the Y556C variant
had 50% less expression than WT-MRP4. Both G487E and Y556C had appropriate cellular
membrane localization [16].

C956S
__r.“{}nm ________ ~— _ out

1
L 'membrane
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Figure 1. MRP4 structure of the cell membrane and localization of MRP4 variants (adapted from
Banerjee at al., 2016) [16].

The crystallographic structure of MRP4 is not available; thus, a protein threading
model can be built based on the homology of the template and the construction of loops.
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Protein threading by I-TASSER relies in the identification of structural templates from
the Protein Data Bank (PDB) using a local meta-threading server, a method for template-
based protein structure prediction. Three-dimensional models are generated for a given
sequence by collecting high-scoring structural templates from locally installed threading
programs [17,18]. After model building, it can be refined by molecular mechanics calcula-
tions, such as energy minimization and molecular dynamics simulations. Protein threading
models are considered working tools that can be used to generate hypotheses related to
protein structure, protein function, and protein-ligand interactions. The molecular docking
of drug molecules into their binding sites allows us to identify relevant amino acids for
ligand—protein interactions in order to select such amino acids for further site-directed
mutagenesis studies [9]. In the present study, three different MRP4 structures (WT and its
variants, G187W and Y556C) were built through protein threading to study, by molecular
docking, the interactions between endogen substrates, drug substrates, and inhibitors, with
MRP4-WT, G187W, and Y556C, allowed to observe changes in the pattern of intermolecular
interactions, adapted from Russel and coworkers in 2008, where they report the ICs5q of
several molecules, in vitro, over the MRP4 protein [8], and to calculate the binding energy
(AG) between FA and cAMP and MRP4 structures.

2. Results and Discussion
2.1. WT-MRP4, G187W, and Y556C Model Building and CG-MD Simulations

MRP4 plays a critical role in the distribution of different xenobiotics and endogen
substrates, which can lead to different effects in the organism. Differences in the MRP4
activity depend, among other factors, on the expression or mutational changes of the
ABCC4 gene, leading to significantly higher or lower transport activity [4]. The WT-
MRP4 and its variants Y556C and G187W were built by protein threading in the I-TASSER
server [19]. Protein threading and homology modeling are based on the principle that
similar primary sequences will lead to similar 3D protein structures. According to the
BLAST server, the template structure MRP1 from Bos taurus and human MRP4 had a 36.56%
identity sequence similarity. When the primary sequence of a protein has 30% of identity
as referred to a template (crystallographic structure), the protein threading and homology
models are considered functional because the root mean standard deviation (RMSD) of the
positions of their atoms is 2.0 A or less with regard to the template structure [20-22].

The best model by the I-TASSER of each MRP4 structure was selected for further
analysis with coarse-grained molecular dynamics simulations (CG-MDS) of 1 us. Figure 2
shows the three MRP4 models and the most representative structures (cluster 1) obtained
in I-TASSER and by CG-MDS at timesteps 630.40 ns for WT-MRP4, 564.90 ns for G187W,
and 674.90 ns for Y556C. The conformations of WT-MRP4 and variants were in an “inward-
facing conformation” [23], while, in CG-MDS, the three MRP4 structures were in a closed
state. All the loops that connect the alpha helixes of the three MRP4 structures have
different conformations and distributions over the protein.

In this work, RMSD values higher than 2.0 A were considered significant, hence the
protein conformations were considered different. Figure 3 shows the different MRP4 sites
studied and each region is illustrated with a different color, where the green color represents
WT-MRP4; those sites are the nucleotide-binding domains (NBD), the transmembrane
domains (TMD), and the residues relevant to substrate interaction (r85-236 and r715-866).

The WT-MRP4, G187W, and Y556C conformations during the first 100 ns of CG-
MDS changed significantly, according to the RMSD values (Figure 4a), which indicates
a large movement of the protein to further stabilization from 250 to 1000 ns. The RMSD
of WI-MRP4 was higher than those of its variants, considering the complete structure.
In addition, different regions of the MRP4 structure were studied focusing on the ligand
binding sites, nsSNPs, and ATP pocket binding. Figure 4b shows the RMSD values for
TMDs of the WT-MRP4 and its variants. According to the RMSD plot, the changes in the
TMDs’ conformations are quite similar among the three MRP4 structures.
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Figure 2. MRP4 models built by homology modeling in I-TASSER and cluster 1 from CG-MDS.
Green, (A) WT-MRP4. Cyan, (B) G187W. Magenta, (C) Y556C. (D-F) represent cluster 1 obtained
from GC-MDS for WT-MRP4, G187W, and Y556C, respectively. The arrows indicate the location
of mutations.

Figure 3. Representation of different sites of the MRP4 protein in the complete structure. (A) Blue
represents NBD1. (B) Red represents TMDs. (C) Magenta represents NBD2. (D) Orange represents
r85-236. (E) Gray represents 1715-866.
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Figure 4. plot for the complete WT-MRP4 structures and their variants (A) and the TMDs (B)
throughout 1000 ns of MDS.

In contrast to the complete structure, the TMDs do not obtain stabilization according
to the RMSD values, which increase and decrease over 1000 ns. Moreover, the RMSD
values for G187W remain increasing from 750 to 1000 ns, and such behavior could be due
to the mutation is in the cytosolic loop 1 that connects the transmembrane helix (TMH)
1 and TMH2. The NBD1 conformation in WT-MRP4 remained unstable and the RMSD
values kept increasing throughout the 1000 ns of CG-MDS, while the NBD1 conformation
in G187W and Y556C was stable with an RMSD value around 6.0 A (Figure 5). The RMSD
values for NBD2 of the WI-MRP4 and its variants were similar even though there was no
stabilization through the simulation. In addition, the RMSD values of G187W and Y556C
tended to increase while the RMSD values of WI-MRP4 tended to decrease at the end of
the simulation.
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Figure 5. RMSD plot for NBD1 and NBD2 of WI-MRP4 and its variants throughout the 1000 ns
of MDS.

According to the RMSD plot in Figure 6, the conformation in residues (r) 85 to 236
(r85-236 site corresponding to TMH1-TMH4) of WI-MRP4 remained stable from 250 to 1000 ns
while in G187W it stabilized at the last 250 ns. r85-236 site in Y556C did not stabilize
throughout the 1000 ns. In the same Figure 6, the RMSD plot indicates that the conforma-
tion in the r715-866 site (TMH7-TMH10) in WT-MRP4 and Y556C kept constant, with a
tendency toward increasing motion in Y556C and decreasing motion in WT-MRP4. Be-
sides this, the conformation in r715-866 site in G187W did not stabilize and the RMSD
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values suggest high motion throughout the 1000 ns of simulation. In the case of ATP
sites 1 and 2 (Figure 7), the conformation remained unstable, suggesting that it is a site
with high motion, with exception of ATP site 2 of WT-MRP4, which kept stable through
the simulation. Regarding the three different MRP4 structures, alignments on the NBDs,
TMDs, and TMH1-TMH4 and TMH7-TMH10 sites were performed to determine differ-
ences among the structures. In all the alignments (Supplementary Material S1), it was
observed that all the sites studied presented significant structural differences, according to
the RMSD values, comparing WI-MRP4 vs. its variants and G187W vs. Y566C. Moreover,
the TMHs are responsible for the specificity for the substrate, and the r-85-236 and r715-866
sites in WT-MRP4 were significantly different with respect to G187W and Y556C, which
could lead to differences in the ligand affinity, the ligand binding site, and the motion of
the protein [23,24].
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Figure 6. RMSD plot for r85-236 and r715-866 of WI-MRP4 and its variants. r86-236 represents
TMH1-TMH4 and r715-866 represents TMH7-TMH10.
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Figure 7. RMSD plot for ATP binding site 1 (ATP site 1) and ATP binding site 2 (ATP site 2) of
WT-MRP4 and its variants.

2.2. Molecular Docking in MRP4 and Variants

By using cluster 1 from CG-MDS for each structure of MRP4, molecular docking was
performed to explore the effect of the MRP4 variants on the affinity of three different groups
of molecules, previously reported as substrates or inhibitors in vitro. Table 1 presents the
docking score (DS), expressed as kcal/mol, related to the interaction between endogenous
substrates and WT-MRP4, Y556C, and G187W. In this work, significant differences between
docking poses were considered when a difference greater than 1 kcal/mol in DS was
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present. According to the DS, most endogen substrates significantly changed their DS in
G187W and Y556C with respect to WI-MRP4. The Y556C mutation is located at NBD1
and leads to a different conformation with respect to WI-MRP4, which causes the most
substantial change in the ligand binding site of all the molecules studied, even more than
those molecules with significant changes in DS compared to WT-MRP4.

Table 1. Endogen substrate DS (kcal/mol) in the WT-MRP4 and MRP4 variants.

Endogen Substrate WT-MRP4 G187W Y556C
cAMP —5.88 —6.35 —5.82
Cholic acid —10.55 —7.2%* —851*%
Folic acid —8.56 —1.51* —2.39*
Glycolic acid —-7.35 —9.09 * —542*
Leukotriene B4 —8.19 —7.82 —6.07 %
PGE1 -8.21 -7.31 —7.48

PGE2 —7.36 —-7.31 —7.00
Prasterone sulphate —10.65 —9.24* —9.57 %
Taurocholic acid —4.61 —9.9* —6.07 *
Uric acid —4.77 —5.13 —5.06

cAMP: cyclic adenosine monophosphate. * Represents more than 1 kcal/mol of difference in the DS compared
with WT.

Since cAMP is considered to be the main molecule transported by MRP4 [25], it was
used as a control to compare the effect of nsSNPs and ATP binding. The cAMP DS was
not considered significantly different in WIT-MRP4 with respect to Y556C and G187W.
Cholic acid DS was significantly different, with more than 3 kcal/mol when comparing
WT-MRP4 with respect to G187W, while cholic acid DS in WT-MRP4 with respect to Y556C
was significantly different at over 2 kcal/mol. The taurocholic acid DS was significantly
different, with more than 4 kcal/mol when comparing WT-MRP4 with respect to G187W.
Folic acid (FA) was the molecule with the highest variation in DS when comparing WT-
MRP4 to G187W and Y556C, with 7.05 and 6.17 kcal/mol differences.

Table 2 presents the DSs of drug substrates. Cefazoline and olmesartan DSs were
significantly different in WT-MRP4 with respect to G187W, while cefazoline, furosemide,
leucovorin, methotrexate, tenofovir, and topotecan DSs were significantly different in
WT-MRP4 with respect to Y556C. According to DS, most drug substrates could present
more affinity for Y556C than for WIT-MRP4.

Table 2. Drug substrate DS (kcal/mol) in the WT-MRP4 and MRP4 variants.

Drug Substrate WT-MRP4 G187W Y556C
6-Mercaptopurine —4.34 -5.06 —4.81
Adefovir —3.54 —2.88 —4.42
Cefazoline —-8.71 —5.65* —10.12 *
Cefotaxime —7.04 —6.08 —6.88
Ceftizoxime -7.02 -7.16 —6.59
Furosemide —5.77 —5.52 —-7.00 *
Hydrochlorothiazide —6.70 —6.39 —6.73
Leucovorin —6.46 —6.60 —3.78*%
Methotrexate —6.98 —-7.22 —-3.76 *
Olmesartan —7.30 —8.75* —74
Tenofovir —2.76 -3.15 —4.58 *
Topotecan —6.09 —6.39 —8.26*%

* Represents more than 1 kcal/mol difference in the DS compared against WT.

The DS of inhibitors is presented in Table 3. Glafenine DS was significantly different
in WI-MRP4 with respect to both G187W and Y556C. Ceefourin-1, indomethacin, and
sildenafil DSs were significantly different in WT-MRP4 with respect to G187W, while
losartan DS was significantly different between WT-MRP4 and Y556C. Endogen substrates
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were the group of molecules with more variation in the DS, and thus such mutations
on the ABCC4 gene could lead to changes in cell metabolism related to changes in the
distribution of endogen substrates across cell membranes. Several mutational studies on
MRP1 have demonstrated that amino acids in several TMDs are involved in substrate
binding and nsSNPs can modify the ligand binding site or the affinity of ligands in a
selective manner [11]. Yet, the DS values are not totally related to function. Regarding drug
substrates and inhibitors, a small number of molecules changed their DS significantly to
G187W and Y556C as related to WT-MRP4, which could modify the pattern of transport
of cefazoline, ceftizoxime, olmesartan, topotecan, and ceefourin-1, which could, possibly,
mean that they act as substrates or inhibitors depending on the MRP4 variant.

Table 3. Drug inhibitor DS (kcal/mol) in the WT-MRP4 and MRP4 variants.

Inhibitors WT-MRP4 G187W Y556C
ABSF -5.41 -5.85 -5.97
Artesunate -6.02 -5.42 -6.59
Ceefourinl -7.52 -6.19 * -7.22
Celecoxib -7.57 -8.16 -7.98
Dipyridamole -3.86 —4.78 —4.23
Glafenine -8.27 -5.48 * -6.32 %
Indomethacin -8.42 -7.07 * -8.43
Losartan -8.82 -8.91 —6.55 *
MK-571 -8.86 -9.65 -8.87
Parthenolide -7.88 -6.92 -7.67
Prazosin -6.71 -6.98 -7.25
Probenecid -6.59 -5.89 -6.34
Quercetin -6.16 -6.2 -6.63
Sildenafil -7.67 -8.43* -8.25
Sulindac -8.41 -7.82 -8.41
Tyrphostin -7.74 -7.32 -8.11

* Represents more than 1 kcal/mol difference in the DS compared against WT.

2.3. Differences in the Interaction Pattern in MRP4 Structures

Ligand interaction diagrams (LIDs) represent the pattern of intermolecular interac-
tions of molecules with MRP4 amino acids. Those molecules with a >2 kcal/mol difference
in the three different MRP4 structures appear in LIDs in Supplementary Material 52-55
and the LIDs for FA appear in Figures 8-10. The interaction sites in the three different
MRP4 structures were different, mainly in Y556C, for all the molecules exhibited in the
LIDs. Cholic acid interacts mainly with hydrophobic residues on WT-MRP4 and Y556C,
while on G187W it interacts with hydrophobic and polar residues. H-bonds are only
exerted through hydrophobic residues, except on Y556C, where arginine exerts an H-bond
with cholic acid. In addition, cholic acid interacts with positively charged amino acids
in the three MRP4 structures, lysine on G187W and WT-MRP4, and arginine on Y556C
(Supplementary Material S2). The taurocholic acid binding site was different in WT-MRP4
with respect to G187W and was totally different with respect to Y556C. The intermolecular
interactions in Y556C and G187W were H-bonds, polar, hydrophobic, interactions with
positively and negatively charged amino acids, while interactions in WI-MRP4 were hy-
drophobic and polar but did not interact with negatively charged amino acids and did
not exert H-bonds (Supplementary Material S3). The cefazoline binding site was quite
different on the three different MRP4 structures. Hydrophobic and polar residues on WT-
MRP4, Y556C, and G187W interact with cefazoline, but only on G187W do H-bonds with
arginine occur. WT-MRP4 and Y556C interact with cefazoline through negatively charged
amino acids (glutamate), while the G187W interacts through positively charged amino
acids (arginine) (Supplementary Material S4). Ceefourin-1 interacts with hydrophobic,
polar, negative, and positively charged residues on WI-MRP4 and Y556C, even though
the binding site is different in each MRP4 structure, which leads to only one difference;
ceefourin-1 interacts via H-bonds in Y556C. Additionally, ceefourin-1 interacts in G187W
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with hydrophobic, polar, and positively charged residues, and via H-bonds and 7-7 stack-
ing (Supplementary Material S5). The Y556C mutation led to a substantial change in the
binding site of most of the molecules analyzed, while G187W mutation did not substan-
tially change the binding site with respect to WI-MRP4. Although the molecule’s binding
site was different among the MRP4, the pattern of intermolecular interactions could be
similar to that observed in the LIDs. The molecules presented in the LIDs had a substantial
modification to their binding site and intermolecular interactions in Y556C, which could be
related to changes in the transport-rate, IC50, entrance to the inner cavity, and effect on the
Y556C conformational movement.
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Figure 8. FA binding interaction diagram in WT-MRP4 at TO (A) and 16.20 ns (B) in AA-MDS. The
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Figure 10. FA binding interaction diagrams in Y556C at TO (A) and 15.0 ns (B) in AA-MDS.
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Table 4 shows the most important residues required for the interactions of endogen
substrates, drug substrates, and inhibitors in each MRP4 structure. It is worth noting
that in the inhibitor group, only Lys 329 and Arg 951 appear in both endogen and drug
substrates, suggesting that such residues may play an important role in the binding site. In
the endogen and drug substrate groups, at least two residues are repeated—Arg 946 and
Lys 702.

Table 4. Residues considered as important for ligand—MRP4 interactions.

WT-MRP4 G187W Y556C
Glu 1002, Lys 702, Thr 839, Arg 946, Arg 998. Gly 991, Arg 951, Trp 947, Glu 7,
Endogen substrates Lys 106, Lys 329, Glu 374, Lvs 702, Are 946 Gln 6. Vald
Gln 251, Phe 698 ys 7S e o va
Arg 946, Arg 998, Lys 702, Ser 945, Lys 329, Leu 987,
Drug substrates arg 946, Thr 994, arg 312, Arg 946, Arg 951, Arg 956’ ?l?;spPizl 9P3};e 329,
Lys 329, Phe 698 Arg 312, Ser 306 Y8 2%
Inhibitors Phe 23' gg;’ ST% ‘;‘gg 1, Phe 325, Lys 329, Thr 364, Phe 993, Pro 867,
& 20% / Glu 102, Glu 103, Trp 995 Arg 951, Trp 947

GIn 251, Leu 247

2.4. All-Atom Molecular Dinaymics (AA-MD) Simulations and Umbrella Sampling Studies

FA was the molecule with the highest DS variation in G187W and Y556C related
to WT-MRP4 in molecular docking studies, considering that ATP was not bound; hence,
to study the effect of the presence of ATP and the mutations, changes in the pattern of
intermolecular interactions and affinity to MRP4 structures, 25 ns AA-MDS, and 10 ns of
Umbrella sampling simulations were carried out on the MRP4-FA complexes and compared
with cAMP as a control molecule. The C1 in AA-MDS was at 16.2 ns in WT-MRP4, 8.0 ns
in G187W, and 15.0 ns in Y556C. Figure 8 shows the FA LID in WI-MRP4 at TO and
16.2 ns. In this simulation, the differences in the FA binding site and the pattern of
intermolecular interaction can be observed according to the WT-MRP4 conformation at
a given time. The FA binding site was the same at TO and 16.2 ns, suggesting that the
protein can be in an inward-facing conformation for 25 ns or even more. Moreover, the
pattern of intermolecular interactions between FA and WT-MRP4 is quite similar, consisting
of H-bonds; m-7 stacking; and interactions with polar, hydrophobic, and negatively and
positively charged residues. The differences in the pattern of intermolecular interactions
rely on the H-bonds, with 4 H-bonds at TO with Phe698 and Leu835, Glu1002 and Thr839.
Meanwhile, at 16.2 ns the interactions were mainly hydrophobic (-7t stacking) and there
was one H-bond with Glu1002. Therefore, it seems that FA from 0 to 16.2 ns interacts with
MRP4 to achieve its optimal bonding only. A longer simulation will help to determine all the
FA binding sites across the WT-MRP4. Besides this, the AA-MDS studies were performed
on each MRP4-FA complex to determine differences in the patterns of interactions and
conformations in frames from 0 to 25 ns every 5 ns referred to TO (Supplementary Material
S56-523). As mentioned above, FA did not change its conformation significantly in WT-
MRP4 from 0 to 25 ns, while in G187W the conformation was significantly different at
20 and 25 ns, as the carboxyl group was responsible for the FA conformational changes and
multiple intermolecular interactions, such as H-bonds, nt-7t, and n-cation. FA in G187W
did not change its binding site throughout all the AA-MD simulation, but it kept moving
throughout 25 ns to obtain a DS greater than that of the most stable conformation at 8 ns
(Supplementary Material S12-517). The G187W mutation is located at cytosolic loop 1, close
to the entrance of the inner cavity [26], and leads to changes in the MRP4 conformation
which could block or interfere with ligand binding or the entrance to its binding site.
Notwithstanding this, it is not possible to determine with this study whether there is a
relevant effect on the FA transport by G187W. Figure 9 shows the FA LID in G187W at TO
and 8.0 ns in AA-MDS. The FA binding site was slightly different, with intermolecular
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interactions by an H-bond and m-cation at TO, while at 8.0 no intermolecular interactions
were observed, but the pocket binding was composed of hydrophobic amino acids in both
time steps.

Figure 10 shows the FA LID in Y556C at T0 and 15.00 ns in AA-MDS. In this case, the
FA binding site was the same, but the intermolecular interactions by H-bonds at 15.00 ns
were higher than at T0, which seems to confer to FA a stronger binding over time. Y556C
promoted the greatest change in the FA binding site with respect to WI-MRP4 and G187W,
but throughout the 25 ns in AA-MDS the binding site did not change. On the contrary, the
pattern of intermolecular interactions as well as the FA conformation was different across
the AA-MDS (Supplementary Material S18-523).

The AA-MDS studies were conducted in cAMP as a substrate control to determine if
the nsSNPs affect the pattern of intermolecular interactions in the same manner as FA. First,
AA-MDS were performed on the wild type and variants for MRP4-cAMP complex to obtain
the C1 conformations. Further, ATP and Mg?* were added into the MRP4 structures to
obtain a more complete system, and further AA-MDS were performed to determine a new
C1. This procedure was applied in the MRP4-FA complexes as well. Both C1 conformations
before ATP and after ATP were used for umbrella sampling studies to obtain the free
binding energy (AG) of each ligand. Since two ATP molecules bind to MRP4, we referred
to them as ATP1 and ATP2 for the NBD1 and NBD2, respectively. In all the MRP4-FA and
MRP4-cAMP complexes with ATP bonds, the binding site and the ligand conformation
were slightly different concerning the MRP4-FA and MRP4-cAMP complexes without ATP.
The presence or the absence of ATP modifies the pattern of intermolecular interactions
as well. The H-bonds, m-7t stacking, and m-cation interactions are present together or
individually in all the complexes, except in G187W-FA without ATP. Given the fact that
the ATP influences the ligand conformation, it modifies the intermolecular interactions as
well. Figures 11 and 12 show the ATP binding site in NBD1 and NBD2 from the WT-MRP4,
G187W, and Y556C structures.

Figure 11. Representation of the ATP binding site 1 in the complete MRP4 structure and an amplifica-
tion of such site. Color pink in the complete MRP4 structure represents the ATP site 1. Color red and
represent the residues interacting with ATP, and rainbow colors represent ATP. The yellow dotted
lines indicate polar interactions.
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Figure 12. Representation of the ATP binding site 2 in the complete MRP4 structure and an amplifi-
cation of such site. Color cyan in the complete MRP4 structure represents the ATP site 2. Color red
represent the residues interacting with ATP, and rainbow colors represent ATP. The yellow dotted
lines indicate polar interactions.

Figures 13-15 show the FA binding sites in WI-MRP4, G187W, and Y556C, respectively.
All the afore mentioned figures contain the full MRP4 structure and a close-up of the ligand
binding site. As observed in Figures 13 and 14, the FA binding site is almost the same and it
is surrounded by the TMH1-TMH3; meanwhile, Figure 15 shows that the FA binding site in
Y556C is surrounded by TMH2-TMHY deep in the inner cavity. This finding is interesting,
due to the fact that the Y556C mutation could promote the greater affinity of FA for the
Y556C variant by switching into a “high affinity inward-facing orientation”, making the
binding of FA easier [27]. Nevertheless, this does not mean that the FA can be transported
properly, since MRP4 has an altered conformation within the NBD2, which blocks the ATP
hydrolysis but not ATP binding. However, MRP4 can function with the energy provided by
one ATP hydrolysis, but the Y556C mutation could interfere with such ATP hydrolysis [28].

Figure 16 shows that the cAMP binding site in Y556C is quite different compared to
WT-MRP4 and G187W. The cAMP is located out of the normal binding site out of the TMDs
and it may not be transported at a proper rate or efficacy. It seems that Y556C is in the
“low-affinity outward-facing orientation”, where the main characteristic in this stage is that
the affinity of the transported entity switches from high affinity (low chemical potential of
the substrate) to low affinity (high chemical potential). Such change in affinity is due to the
gate to the inside is closed, and the gate to the outside of the membrane is opened [23]. The
global effect will depend on the cell type. Focusing on leukemia cells, could be harmful
to them, because the intracellular cAMP levels would be increased and thus, leading to
apoptosis [25]. On the other hand, the cAMP binding site in Y556C could represent the
initial interaction only and further re-location such as the WI-MTP4. Longer AA-MDS are
required to test this hypothesis.

To contrast the effect of nsSNPs in MRP4, AA-MDS and umbrella sampling studies
were performed in ceefourin-1, which is possesses a high selectivity over MRP4 inhibition.
It has been suggested that ceefourin-1 may act as a competitive inhibitor in MRP4 [7], which
is consistent to the AA-MDS where the binding site for ;cAMP and ceefourin-1 is similar
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in WT-MRP4, G187W and Y556C with ATP in the complex (Figures 17-19). Interestingly;,
ceefourin-1 binds at the same abnormal binding site as cAMP in Y556C-ATP. Moreover,
Y556C seems to be in the same “low-affinity outward-facing orientation” where the low
affinity (high chemical potential) of the ligand leads to switch in the binding site [23]. As
mentioned before, such abnormal binding site could be the initial binding site but longer
AA-MDS is required to demonstrate it.

Figure 13. FA binding site in WT-MRP4 and amplification of such site. Rainbow colors in both the
complete MRP4 structure and amplification of the binding site represent the FA structure while the
yellow spheres and stick represent the ATP. The yellow dotted lines indicate polar interactions. The
LID of WI-MRP4-FA is presented at the bottom.

8

Figure 14. FA binding site in G187W and amplification of such site. Rainbow colors in both the
complete WT-MRP4 and amplification of the binding site represent the FA structure while the yellow
spheres and stick represent the ATP. The yellow dotted lines indicate polar interactions. The LID of
G187W-FA is presented at the bottom.
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Figure 15. FA binding site in Y556C and amplification of such a site. Rainbow colors in both the
complete G187W and amplification of the binding site represent the FA structure while yellow
spheres represent the ATP. The yellow dotted lines indicate polar interactions. The LID of Y556C-FA

is presented at the bottom.

Figure 16. cAMP binding site in Y556C and amplification of such site. Rainbow colors in both the
complete Y556C and amplification of the binding site represent the cAMP structure while yellow
spheres represent the ATP. The yellow dotted lines indicate polar interactions. The LID of Y556C-

cAMP is presented at the bottom.
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Figure 17. Ceefourin-1 binding site in WT-MRP4 and amplification of such site. Rainbow colors in
both the complete WT-MRP4 and amplification of the binding site represent the ceefourin-1 structure
while yellow spheres represent the ATP. The yellow dotted lines indicate polar and non-polar
interactions. The LID of WT-MRP4-ceefourin-1 is presented at the bottom.

Figure 18. Ceefourin-1 binding site in G187W and the amplification of such a site. Rainbow colors in
both the complete G187W and amplification of the binding site represent the ceefourin-1 structure,
while yellow spheres represent the ATP. The yellow dotted lines indicate polar and non-polar
interactions. The LID of G187W-ceefourin-1 is presented at the bottom.
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Figure 19. Ceefourin-1 binding site in Y556C and the amplification of such a site. Rainbow colors in
both the complete Y556C and amplification of the binding site represent the ceefourin-1 structure,
while yellow spheres represent the ATP. The yellow dotted lines indicate polar and non-polar
interactions. The LID of Y556C-ceefourin-1 is presented at the bottom.

The cAMP and ceefourin-1 abnormal binding site in Y556C was one of the most
remarkable findings in this work and showed the importance of studying the global effect
of Y556C in different cell lines.

Umbrella sampling simulations were performed to determine the theoretical affin-
ity, expressed as the free energy of binding (AG), of an event related to protein-ligand
interactions along a reaction coordinate. Table 5 shows the AG obtained by Umbrella
sampling through 10 ns of simulation on each complex. According to Umbrella sampling
results, the Y556C-FA complex is the most stable with or without ATP bound to MRP4.
Interestingly, AG for WI-FA and Y556C-FA complexes were lower in those MRP4 without
ATP. In addition, AGs for G187W-cAMP and Y556C-cAMP complexes were higher without
ATP, suggesting that the ATP bound is required for both FA and cAMP binding stabiliza-
tion. AG for WI-MRP4-cAMP with or without ATP was the same. This represents an
interesting finding because in WI-MRP4, the binding of ATP may promote the stabilization
and conformational changes on MRP4 protein to promote an adequate interaction with
FA to be properly transported out of the cell. Regarding the information provided by the
LIDs, it is not possible to link the intermolecular interactions to AG because of the lack of a
pattern in all the complexes. The intermolecular interactions do not define the increase or
decrease of AG in this case. To confirm these observations, experimentally testing the FA
efflux on cells expressing equal levels of WT-MRP4, G187W, and Y556C, as well as MRP4
inhibition by ceefourin-1 to measure the transport rate would afford further information of
the differences among mutants and wild-type MRP4, experiments that are currently being
carried out and will be reported in future articles.

The AG for the WT-MRP4-ATP1 complex was lower than that for FA and cAMP,
which is reasonable considering its role in MRP4 functioning and needs to be bound
to NBDs for longer time than ligands. In the case of ATP1/2 complexes with MRP4
variants, the most remarkable finding was that the Y556C-ATP1 complex was the least
stable, theoretically demonstrated through the Umbrella sampling results, and it may be
related to the mutation in the NBD1. The mechanism for the MRP4 function requires the
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transmission of the molecular motion from the NBDs to the TMDs. At this point, the
ATP-binding can be considered as the power stroke in which the chemical potential of
the transported entity changed, and ATP hydrolysis leads to the formation of an extra
negative charge, thus opening the closed nucleotide sandwich structure and the opening
of the nucleotide sandwich structure facilitates Pi release and ADP dissociation, which
in turn allows the TMDs and access gates to reset to the high-affinity orientation on the
original side of the membrane to continue the transport cycle [23,29]. If the Y556C mutation
promotes a decreased affinity of ATP1 for its binding site and, in turn, a blockade of ATP1
hydrolysis, the Y556C variant activity could be diminished or truncated, also considering
that WT-MTP4 and its variants lack the ability to hydrolyze ATP2 in NBD2; thus, the lack
of Y556C efficacy in the transport substrates. Additionally, ATP2 had the highest affinity
for Y556C, and it would be interesting to test if high affinity could reestablish the ATP2
hydrolysis in NBD2.

Table 5. Binding free energies (AGs) obtained by umbrella sampling.

AG (kcal/mol)

Ligand WT-MRP4 G187W Y556C

FA —25.340 —23.288 —46.4898
FA-ATP —16.490 —23.429 —38.9452
FA-ATP1 —46.010 —29.343 —18.7461
FA-ATP2 —37.226 —18.690 —61.100
cAMP —17.700 -31.014 —12.5676
cAMP-ATP —17.721 —39.300 —31.560
cAMP-ATP1 —43.966 —33.690 —49.7395
cAMP-ATP2 —23.860 —47.230 —38.5368
Ceefourin-1 —25.9938 —33.8589 —18.8326
Ceefourin-1-ATP —22.9107 —19.7664 —22.5503
Ceefourin-1-ATP1 —40.9182 —43.1199 —43.1179
Ceefourin-1-ATP2 —37.2706 —52.9313 —53.6592

FA-ATP, cAMP-ATP, and ceefourin-1-ATP: the AG is referred to FA, cAMP or ceefourin-1 in complex with ATP.
FA-ATP1, FA-ATP2, cAMP-ATP1, cAMP-ATP2, ceefourin-1-ATP1, and ceefourin-1-ATP2: AG calculation is
focused on ATP1 or ATP2

The abnormal cAMP and ceefourin-1 binding in Y556C (Figures 16 and 19) is consistent
with the AG for Y556C-cAMP and Y556-ceefourin-1, which had the lowest affinity with
respect to the complexes with WT-MRP4 and G187W, and it indicates a low affinity at
that binding site, suggesting two possibilities: (a) it is an initial CAMP or ceefourin-1
binding site to further binding at the inner cavity, or (b) possible deficiency in cAMP and
ceefourin-1 transport. The latter is the most feasible due to cAMP interacts to G187W and
WT-MRP4 in its normal binding site, but Y556C seems to be in the “low affinity outward-
facing orientation” as mentioned before. To predict the effect of nsSNPs on the efficacy of
chemotherapeutics, it is important to determine in a further study, the relation between
AG in silico and the transport rate in vitro of several substrates. This suggests that AGs
higher than that for the WT-cAMP-ATP complex may be related to a low rate of cAMP
transport. The AGs for ceefourin-1 in all the complexes with MRP4 and its variants had the
best affinity compared to those complexes of cAMP, supporting the idea that ceefourin-1
may act as a competitive inhibitor at least with cAMP. However, the presence of ATP
in WI-MRP4 and its variants promotes a better affinity to cAMP than ceefourin-1 in the
complexes with G187W and Y556C. A competitive assay in vitro is required to determine
if ceefourin-1 had the best affinity to WT-MRP4 and its variants. The Figures 20 and 21
represent the LIDs for FA and cAMP, respectively. In both figures, the intermolecular
interactions of ligands with the absence of ATP are presented in the upper panel while the
intermolecular interactions of ligands with the presence of ATP are shown in the bottom
panel. The FA binding site is almost the same with or without ATP, but the number and
the type of intermolecular interactions is different. It seems that ATP promotes a greater
number of H-bonds between FA and all WT-MRP4 and its variants. Regarding the cAMP
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binding site, the ATP binding did not modify it; thus, the effect of ATP seems to be related
with changes in the intermolecular interactions and affinity that, according to Umbrella
sampling results, the ATP decreases the AG in the G187W-cAMP-ATP and Y556C-cAMP-
ATP complexes. Figure 22 presents the LIDs for ceefourin-1. The binding site is different in
all the complexes; interestingly, such a binding site does not change in the presence of ATP.
The main difference induced for ATP is the intermolecular interaction pattern, which led to
great amount of 7-7t stacking and H-bonds.

Figure 20. LIDs for FA with the different MRP4 structures with or without ATP. (A) WT-MRP4-FA
complex. (B) G187W-FA complex. (C) Y556C-FA complex. (D) WT-MRP4-FA-ATP complex. (E)
G187W-FA-ATP complex. (F) Y556C-FA-ATP complex.

Figure 21. LIDs for cAMP with the different MRP4 structures with or without ATP. (A) WT-MRP4-
cAMP complex. (B) G187W-cAMP complex. (C) Y556C-cAMP complex. (D) WI-MRP4-cAMP-ATP
complex. (E) G187W-cAMP-ATP complex. (F) Y556C-cAMP-ATP complex.
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Figure 22. LIDs for ceefourin-1 with the different MRP4 structures with or without ATP. (A) WT-
MRP4-ceefourin-1 complex. (B) G187W-ceefourin-1 complex. (C) Y556C-ceefourin-1 complex. (D)
WT-MRP4-ceefourin-1-ATP complex. (E) G187W-ceefourin-1-ATP complex. (F) Y556C-ceefourin-1-
ATP complex.

The MRP4 variants may predispose the population to a given disease regarding the
site of the MRP4 that was affected by the mutation and the change in the affinity of a given
substrate. The clinical implications of MRP4 variants have been studied over the past years
and it is crucial to describe the relation of the MRP4 variants with diseases [30].

3. Materials and Methods
3.1. Protein Threading for WI-MRP4 and Its Variants G187W and Y556C

Structure prediction by protein threading for MRP4 was performed using its primary
sequence (code: 015439) from the UniProt database [31,32]. MRP4 mutant models were
made by the substitution of amino acids, G187W, or Y556C into the WT-MRP4 primary
sequence. Each primary sequence was uploaded into the I-TASSER [17,18] server for the
calculations of the models. The crystallography of MRP1 (PDBD code: 5U]9) from Bos
taurus was used as a template in all cases [33,34].

3.2. Coarse-Grained Molecular Dynamics (CG-MD) Simulations

All the systems (WT, G187W, and Y556C) for the simulations were built in the Martini
Maker module [35] from CHARMM-GUI [36,37] using the Martini2.2p force field and
adding a phosphatidylcholine (POPC) lipid bilayer membrane in an isothermal-isobaric
ensemble (NPT) at 310.15 K. The simulations of 1 us CG-MD were carried out in the
Gromacs 2018.7 program [38,39], after of the minimizations and equilibrium protocols
suggested by CHARM-GUI server. The module “cluster” of Gromacs 2018.7 was used to
find the relevant conformations of the simulation using the “gromos” algorithm and the
backbone for alignment. The most representative structure of the largest conformation
cluster of the three simulations was converted into all atoms in the Martini Maker/All-
Atom converter from CHARMM-GUI for the following calculations.
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All the CG-MD simulations were performed in the ADA cluster of the National
Laboratory of Advanced Scientific Visualization at Campus Juriquilla of the National
Autonomous University of Mexico (LAVIS-UNAM).

3.3. Molecular Docking on WI-MRP4, G187W and Y556C

The 3D structures of the selected ligand groups, substrate drugs, endogenous sub-
strates, and inhibitors were obtained from the PubChem public database [40]. Molecular
docking was performed with AutoDock 4.2.6 optimized for graphical-processing units
using a total of 50 runs and 25,000,000 evaluations; a grid box of 22.5 x 22.5 x 22.5 A3
centering on the relevant amino acids reported by Ravna 2008 and 2009, El-Sheink 2008, and
Chen 2018 [9,41-43]; in a Lamarckian genetic algorithm and Solis-Wets local search [44].

3.4. All-Atom Molecular Dynamics (AA-MD) Simulations

For molecular dynamic studies with FA as a ligand, the protein-ligand complexes
WT-MRP4-FA, G187W-FA, or Y556C-FA, obtained from the molecular docking, were used,
and AA-MD simulations were performed in Desmond 3.6 as an application of the Maestro
software [45,46] as graphical interface. The AA-MDS systems were built using the System
Setup module with an OPLS force-field (Optimized Potentials for Liquid Simulations),
adding a POPC lipid membrane and simple point charge (SPC) water model in an NPT
assembly at 310.15 K. Once the system was built, the standard relaxation protocol for
system relaxation with increasing temperatures and decreasing restraints was used and an
MD production simulation of 25 ns (100 frames) was performed in the Molecular Dynamics
module. Clustering was performed in the Desmond Trajectory Clustering module to
obtain the most representative conformation of the largest cluster (clusterl, C1). Trajectory
analyses were performed in the Simulation Event Analysis module in Maestro.

3.5. Umbrella Sampling

Using the C1 of the 25 ns AA-MD trajectory, the system was built under the previously
mentioned conditions. Once the system was obtained and relaxed using the AA-MD relax-
ation protocol, a 10 ns (100 frames) MD simulation was performed in the Metadynamics
module of Desmond using the protein and ligand center-of-mass distance as the collective
variable, with 0.3 kcal/mol height and 0.1 kcal/mol width as the Gaussian parameters
for the umbrella protocol, on an NPT ensemble at 310.15 K and 1.01325 bar. Finally, the
analysis was performed in the Metadynamics Analysis module of Desmond.

3.6. Manipulation of the Complexes and Figures

All the protein figures and alignments presented in this work were made in PyMOL
software (The PyMOL Molecular Graphics System, Version 1.2r3pre, Schrodinger) [47]. The
manipulation of the WI-MRP4, G187W, and Y556C structures was performed in Maestro
(Schrodinger Release 2019-3: Maestro, Schrodinger, LLC, New York, NY, USA) [48].

4. Conclusions

To obtain the 3D structure of MRP4 and its variants, which are not resolved by NMR
or X-ray, protein threading was performed in this study and relaxing the structures was
performed by CG-MDS to carry out the molecular docking, while MDS and umbrella
sampling studies were performed to yield relevant information regarding the residues
involved in the binding of the studied molecules groups and changes in the AG of FA and
cAMP in the presence or the absence of ATP, which also allowed us to observe the relevance
of the mutations in the binding and movement of MRP4 and its variants. According to
our results, the nsSNPs G187W and Y556C led to changes in the ligand binding site, DS,
and binding energy (AG). In addition, the ATP binding to MRP4 significantly modifies the
intermolecular interactions (at least, for FA and cAMP) and the binding energy compared
to the complexes where ATP was not bound to MRP4. The effect of the abnormal binding
site of cAMP in Y556C is consistent with the highly selective MRP4 inhibitor ceefourin-1,
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which makes it interesting to study such mutations in vitro. The affinity of ceefourin-1 for
WT-MRP4 and its variants is higher than the affinity of cAMP. Cofactors such as ATP and
Mg?* should be included in the in silico analyses related to MRP4. It is well known that non-
synonymous mutations usually affect the protein function or activity and its conformation,
but this is the first report that suggests that most endogen substrates change their affinity
and binding site in G187W and Y556C, which could modify the cell metabolism. We will
report in further works the measure of substrate efflux and the relation between G187W or
Y556C expression, location, and cell viability to determine the overall effect of the nsSNPs
G187W and Y556C in vitro.
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Abstract: The Food and Drug Administration (FDA) approved a new class of anti-diabetic medication
(a sodium-—glucose co-transporter 2 (SGLT2) inhibitor) in 2013. However, SGLT2 inhibitor drugs are
under evaluation due to their associative side effects, such as urinary tract and genital infection, urinary
discomfort, diabetic ketosis, and kidney problems. Even clinicians have difficulty in recommending it
to diabetic patients due to the increased probability of urinary tract infection. In our study, we selected
natural SGLT2 inhibitors, namely acerogenin B, formononetin, (—)-kurarinone, (+)-pteryxin, and
quinidine, to explore their potential against an emerging uropathogenic bacterial therapeutic target,
i.e., FimH. FimH plays a critical role in the colonization of uropathogenic bacteria on the urinary tract
surface. Thus, FimH antagonists show promising effects against uropathogenic bacterial strains via
their targeting of FimH’s adherence mechanism with less chance of resistance. The molecular docking
results showed that, among natural SGLT2 inhibitors, formononetin, (+)-pteryxin, and quinidine
have a strong interaction with FimH proteins, with binding energy (AG) and inhibition constant (ki)
values of —5.65 kcal/mol and 71.95 uM, —5.50 kcal/mol and 92.97 uM, and —5.70 kcal/mol and
66.40 uM, respectively. These interactions were better than those of the positive control heptyl «-D-
mannopyranoside and far better than those of the SGLT2 inhibitor drug canagliflozin. Furthermore,
a 50 ns molecular dynamics simulation was conducted to optimize the interaction, and the resulting
complexes were found to be stable. Physicochemical property assessments predicted little toxicity
and good drug-likeness properties for these three compounds. Therefore, formononetin, (+)-pteryxin,
and quinidine can be proposed as promising SGLT?2 inhibitors drugs, with add-on FimH inhibition
potential that might reduce the probability of uropathogenic side effects.
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1. Introduction

Globally, diabetes mellitus is one of the most prevalent metabolic diseases and is
estimated to increase to 552 million cases by 2030 [1]. Diabetes has been considered to
enhance vulnerability to infectious diseases and has also been linked with an enhanced
risk of death from infectious illness in some [2,3], but not all [4], investigations.

Sodium-—glucose cotransporter-2 (SGLT2) inhibitors are a novel group of drugs used
to treat patients with type 2 diabetes mellitus (T2DM). These drugs exert their effects by
preventing glucose reabsorption at the proximal renal tubule and enhancing the excretion
of urinary glucose [5]. Owing to the elevated urine glucose levels, SGLT2 inhibitors
enhance the risk of urinary tract infections (UTIs) [6]. In addition, pharmacologically-
induced urine glucose levels with SGLT2 inhibitors in diabetic patients might further
sustain bacterial growth [7]. By themselves, SGLT2 inhibitors can possibly enhance the
risk of UTIs and susceptibility to genital infections when used to manage patients [8].
SGLT2 inhibitors might cause serious UTIs, as the FDA warned in December 2015 [9].
Empagliflozin and canagliflozin are the preferred drugs suggested for T2DM patients with
established cardiovascular disease [10,11]. The United States-based public safety advisory
reported 19 cases of fatal renal or blood infection from March 2013 to October 2014. The
origin of these cases was traced to a UTI induced by SGLT2 inhibitor intake [9].

Bacterial pili are proteinaceous projections extending from the bacterial cell surface
and are used for attachment and cell motility [12]. Gram-negative bacteria use Type 1 pili
to adhere to the host tissue and, therefore, Type 1 pili have been established as an important
virulence factor in UTIs. Type 1 pili are made up of repeated subunits of FimA protein.
These subunits are arranged to form a helical wound cylinder that composes a thick pilus
rod. The distal flexible tip of the pilus rod is comprised of a single copy of proteins—FimF
and FimG—while the tip adhesin bears FimH. The distinct binding of FimH (terminal
adhesin) to mannosylated host glycoproteins mediates the adhesion of bacterial pathogens
to the host tissue. UTI pathogenesis is caused by the FimH and, therefore, is a promising
curative target [13].

Acerogenin B is a cyclic diarylheptanoid obtained from the bark of Acer nikoense, and
it has been found to inhibit both SGLT1 and SGLT2 [14]. Kurarinone and formononetin are
flavonoids isolated from the dried root of Sophora flavescens. Kurarinone has demonstrated
inhibitory activity against both SGLT1 and SGLT2; however, formononetin was reported
to inhibit only SGLT2 and not SGLT1 [15]. Quinidine is isolated from the bark of the
cinchona tree and (+)-pteryxin is extracted from the plant Peucedanum spp. Recently,
both of these natural compounds have been found to inhibit both SGLT1 and SGLT2 [16].
Heptyl «-D-mannopyranoside is a FimH antagonist [17] and, in this study, it was used as a
reference compound.

In the present study, we explored natural SGLT2 inhibitors (acerogenin B, kurarinone,
formononetin, quinidine, and (+)-pteryxin) that might have less severe uropathogenic side
effects than does the approved SGLT2 inhibitor canagliflozin, also known as gliflozins. We
speculated that formononetin, (+)-pteryxin, and quinidine would be promising SGLT2
inhibitors with less severe uropathogenic side effects.

2. Methodology
2.1. SGLT?2 Inhibitors and Target Protein Structure Retrieval

The 3-dimensional structure of FimH was taken from the protein data bank (PDB ID:
4AV5), while the 3-dimensional structure of SGLT2 was made by employing the SWISS-
MODEL Workspace after retrieving its amino acid sequence from Uniprot (P31639). The
PDB structure 2XQ2 was used as a template and the generated model was validated
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using various in silico tools, viz., SAVES v6.0 and VADAR (Volume, Area, Dihedral Angle
Reporter). The PDB structure of the compounds canagliflozin (CID: 24812758), acerogenin
B (CID: 10913542), formononetin (CID: 5280378), (—)-kurarinone (CID: 10812923), (+)-
pteryxin (CID: 511787), quinidine (CID: 441074), and the FimH antagonist heptyl o-D-
mannopyranoside (CID: 11300413) were retrieved from the PubChem database.

2.2. Physicochemical Properties and Toxicity Potential Prediction

The physicochemical properties and toxicity potential of SGLT2 inhibitors and FimH
antagonists were calculated by applying the Orisis Datawarrior property explorer tool
(http:/ /www.openmolecules.org/datawarrior /download.html). At first, molecular weight,
the number of rotatable bonds, the number of hydrogen bond acceptors and donors, cLogP
value, topological polar surface area (TPSA), and the Lipinski’s rule violation [18] were
estimated to check physicochemical parameters. Later, the method outlined by Zhao
et al. [19] was applied to calculate percentage of absorption; here, the following formula
was used: absorption % = 109 — (0.345 x TPSA). Toxicity was also predicted for SGLT2
inhibitors and FimH antagonists by using toxicity features such as irritability, reproductive
effects, tumorigenicity, and mutagenicity. Orisis Datawarrior property explorer tool toxicity
predictions are based on comparative analysis of our tested compounds with the pre-
estimated set of known structural molecules.

2.3. Molecular Docking

The ligands were docked to the SGLT2 and FimH proteins using “AutoDock 4.2” by
following the protocol described by Rizvi et al. [20]. To minimize the energy usage of the
ligand molecules, a Merck molecular force field (MMFF94) was employed. The ligand
atoms were added with Gasteiger partial charges. Docking calculations were done on the
target proteins. Essential hydrogen atoms, Kollman united atom type charges and solvation
parameters were added by using AutoDock tools. Consequently, the binding pocket was
added with conserved water molecules to mimic the in vivo environment. An auto grid
program was used to generate the affinity (grid) maps sized at 60 x 60 x 60°, the aim of
which was to target the grid coordinates in the catalytic site of the target protein (SGLT2
and FimH). The x, y, and z coordinate values for the FimH protein targeting the catalytic
site were taken as 3.305, —16.68, and —13.57, respectively. Docking simulations were done
using the Lamarckian genetic algorithm and the Solis and Wets local search method. The
initial position, orientation, and torsions of the ligands were set randomly. Each docking
experiment was derived from 100 different runs that were set to terminate after a maximum
of 2,500,000 energy evaluations. The population size was set to 150. The Discovery Studio
Visualizer 2.5 (Accelrys, San Diego, CA, USA) was used to generate the final figures.

2.4. LIGPLOT+ ANALYSIS

After the completion of all docking experiments, the best combination of ligand-FimH
and ligand-SGLT2 was selected and analyzed using LIGPLOT+ Version v.2.1 (EMBL-EBI,
Cambridgeshire, UK). The hydrogen and hydrophobic interactions between the important
amino acid residues of FimH/SGLT2 with each ligand were analyzed by LIGPLOT. For
each interaction, the 3-D structures generated were converted into 2-D figures by applying
the LIGPLOT algorithm.

2.5. Molecular Dynamics Simulation

System building: GROMACS 4.6.7 packages [21,22] were used to prepare the system
and perform molecular dynamics (MD) simulations using the gromos53a6 force field [23].
The protein solute was solvated by explicit SPC216 water [24] in a dodecahedral box with
a margin of 10 A between the solute and the box walls. Systems were brought to neutrality
by the addition of sodium counter ions.

Simulation detail: A 10 A cut-off distance was taken under the particle-mesh Ewald
method [25] to calculate long-range electrostatic interactions, and a 10 A cut-off distance
was also considered to evaluate van der Waals interactions. The LINCS algorithm of fourth-

71



Molecules 2021, 26, 582

order expansion was used to constrain bond lengths [26]. The steepest descent algorithm
was applied to optimize the removal of steric clashes between atoms for 10,000 steps. The
system was equilibrated for 1 ns with position restraints on all heavy atoms. Berendsen
weak coupling schemes were used to maintain the system at 300 K and 1 atom, using
separate baths for the system. Initial velocities were generated randomly using a Maxwell-
Boltzmann distribution corresponding to 300 K. Finally, the production run was performed
for 20 ns. Furthermore, xmgrace (http://plasma-gate.weizmann.ac.il) was used for prepar-
ing graphs. Ligand topology preparation was implemented by using the PRODRG server,
using the option specifying no chirality, full charge, and no energy minimization [27].
Trajectory analysis: The g_rms tool of the GROMACS package was used to calculate
the root-mean-square deviation (RMSD) of each trajectory. The covariance matrix and
eigenvectors of the trajectories were calculated through g_covar and g_anaeig programs.

3. Results and Discussion
3.1. Physicochemical Properties and Molecular Docking

Many varieties of plant-based natural compounds have been reported, which have
significant anti-diabetic effects. In streptozotocin-stimulated diabetic mice, bakuchiol
(a polyphenol compound) decreases glucose levels and enhances serum insulin levels [28].
Caffeine (an alkaloid) lowers glucose, induces insulin secretion in vitro, and improves
glucose absorption in skeletal muscle [29]. Vanillic acid isolated from Fagara tessmannii
Engl. (Family: Rutaceae) exhibits x-glucosidase inhibitory actions in vitro [30]. Christinin-
A is a triterpenoidal saponin glycoside that exhibits an anti-hyperglycemic effect in both
type 1 and type 2 diabetic rats [31].

Molecular docking has an important role in drug discovery, assisting in digging out the
active or lead compounds from a library of natural compounds [32]. It is one of the most
widely used virtual screening tools, particularly when the three-dimensional structure of
the target protein is available. Docking enables the prediction of both ligand-target binding
affinity and the structure of the protein-ligand complex, which are useful for optimizing the
lead [33,34].

Prior to the molecular docking study, we checked the physicochemical properties and
toxicity potential of SGLT2 inhibitors and FimH antagonists (Tables 1 and 2). The selected
SGLT?2 inhibitors were known drug canagliflozin and natural SGLT2 inhibitors, namely,
acerogenin B, formononetin, (—)-kurarinone, (+)-pteryxin, and quinidine, while heptyl «-D-
mannopyranoside was selected as an FimH antagonist. During physicochemical property
assessment, we found that out of all the compounds tested, (—)-kurarinone showed one
violation of the Lipinski rule [18], i.e., a cLogP value (Logarithm of compound partition
coefficient between n-octanol) higher than 5 (Table 1). On the other hand, all the tested
compounds showed no toxicity except (+)-pteryxin. (+)-pteryxin was predicted to have a
high irritant effect with no mutagenic, tumorigenic, or reproductive toxicity (Table 2).

Table 1. Physicochemical properties of natural sodium-glucose co-transporter 2 (SGLT2) inhibitors and control compounds.

Physiochemical Parameters

o .
Mo CompoundName - ot Topolegal yoeutar cogr  Mirogen Hydrogen  Numbersl gt
** Area (A)? 8 Donors Acceptors Bonds 1ofation
Rule - - <500 <5 <5 <10 <10 <1
1. Acerogenin B 91.85 49.69 298.38 4.50 2 3 0 0
2. Formononetin 89.76 55.76 268.26 2.24 1 4 2 0
3. (—)-kurarinone 75.80 96.22 438.51 6.11 3 6 7 1
4. (+)-pteryxin 78.59 88.13 386.39 3.34 0 7 5 0
5. Quinidine 93.27 45.59 324.42 2.61 1 4 4 0
6. Canagliflozin * 68.15 118.39 444.52 3.27 4 5 5 0
7. Heptyl a-D-mannopyranoside * 74.71 99.38 278.34 0.485 4 6 8 0

* Control drugs/compounds; ** Percentage of Absorption (% of Absorption) was calculated by the following equation: % of Absorption =
109 — (0.345 x Topological Polar Surface Area); *** Logarithm of the compound partition coefficient between n-octanol and water.
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Table 2. Toxicity potential of natural SGLT2 inhibitors and control compounds.

Toxicity Risks
S.No. Compound Name
Mutagenic Tumorigenic Reproductive Effect Irritant
1. Acerogenin B None None None None
2. Formononetin None None None None
3. (—)-kurarinone None None None None
4. (+)-pteryxin None None None High
5. Quinidine None None None None
6. Canagliflozin * None None None None
7. Heptyl «-D-mannopyranoside * None None None None

* Control drugs/compounds.

The predicted model of SGLT2 revealed that 81.25 percent of the residues had an
average 3D-1D score of >0.2, resulting in a “pass” in SAVES v6.0.0 by the VERIFY3D
tool. In addition, the Ramachandran plot (showing 93% of the residues in the allowed
region), fractional accessible surface area, stereo/packing quality index, fractional residue
volume, and 3-D profile quality index (produced by the VADAR 1.8 server) showed that
the predicted 3-D model was within an appropriate range (Figure 1).
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Figure 1. Validation of the predicted 3-D structure of SGLT2.

The inhibition of SGLT2 has been considered a novel pharmacotherapy for T2DM
treatment [35]. Accordingly, molecular docking studies have revealed that the natural
SGLT2 inhibitors formononetin, (+)-pteryxin, and quinidine were efficiently bound with
SGLT2. Formononetin was found to interact with the F98, E99, A102, 1149, K152, T153,
V286, 5287, Y290, W291, 1456, Q457, and S460 binding pocket residues of SGLT2 (Figure 2a);
while the S74, G79, H80, K154, 1155, V157, D158, S161, S393, 1397, and 1456 residues of
SGLT2 were observed to bind with (+)-pteryxin (Figure 2b). Furthermore, quinidine was
found to interact with the 574, N75, H80, L84, F98, E99, V286, 5287, Y290, W291, F453, 1456,
and Q457 residues of SGLT2 (Figure 2c). Consistent with this, the amino acid residues
H80, F98, T153, K154, V157, D158, V290, 1397, F453, 1456, Q457, and S460 were shown to be
important for the inhibition of SGLT2 [36]. Amino acid residues H80, V286, Y290, W291,
and 1456 are the main hydrophobic residues of SGLT2, interacting with the dock inhibitors
formononetin, (+)-pteryxin and quinidine (Figure 3a—c). This concurs with a previous
report wherein the amino acid residues H80, Y290, and 1456 of SGLT2 have also been
reported have a hydrophobic interaction with the inhibitor [36,37]. The binding energy (BE)
for the catalytic domain interactions of formononetin—-SGLT2, (+)-pteryxin-SGLT2, and
quinidine-SGLT2 were found to be —7.63 kcal/mol, —9.01 kcal/mol, and —8.77 kcal/mol,
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respectively, while their inhibition constants (Ki) were 2.57 uM, 0.245 uM, and 0.371 uM,
respectively (Table 3).
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Figure 2. The amino acid residue of SGLT2 interacting with formononetin (a), (+)-pteryxin (b), quinidine (c), and
canagliflozin (d). The ligands (formononetin, (+)-pteryxin, quinidine, and canagliflozin) are represented as green stick forms
and hydrogen bonds are indicated as green dashed lines.

Table 3. The docking results of the molecular interactions of SGLT2 and FimH with natural SGLT2 inhibitors and control

compounds.
SGLT2 FimH
Compounds Binding Energy = Inhibition Constant Binding Energy Inhibition Constant

(kcal/mol) (uM) (kcal/mol) (uM)

Canagliflozin * —7.23 5.04 —3.56 2450
Acerogenin B —6.30 24.25 —4.40 598.52
Formononetin —7.63 2.57 —5.65 71.95
(—)-kurarinone —7.23 5.03 —-3.93 1310
(+)-pteryxin —9.01 0.248 —5.50 92.97
Quinidine —8.77 0.371 —5.70 66.40
Heptyl a-D-mannopyranoside ** - - —4.46 109.49

* Control compound for SGLT2; ** Control compound for FimH.

The FDA approved canagliflozin, an SGLT?2 inhibitor, for use in T2DM treatment in
2013 [38]. In the present study, canagliflozin was used as a positive control against SGLT2.
Canagliflozin was observed to bound with G79, H80, Y150, K154, D158, W289, Y290, D294,
5393, 1397, 5460, and 1456 residues of SGLT2 (Figures 2d and 3d). Interestingly, these amino
acids of SGLT2 have also been found to interact with SGLT2 inhibitors (formononetin,
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(+)-pteryxin, and quinidine). 1456 was one of the most reactive common hydrophobic
residues of SGLT2, interacting with formononetin, (+)-pteryxin, and quinidine, as well
as canagliflozin (Figure 3a—d). The Y290 residue of SGLT2 was found to make H-bonds
with quinidine, while the same residue was observed to hydrophobically interact with
formononetin and canagliflozin (Figure 3a,c,d). In addition, G79, H80, and 1397 were the
common hydrophobic interacting residues of SGLT2 with (+)-pteryxin and canagliflozin
(Figure 3b,d).
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The function of human SGLT1 protein is dramatically affected by amino acid at
position 457. It has been shown that residue 457 (i.e., Q457) in human SGLT1 directly
interacts with sugar for its reabsorption [39,40]. The amino acid sequences of SGLT1 and
SGLT2 revealed that both of these proteins have glutamine at the residue 457 position,
and glucose-galactose malabsorption occurs due to mutation in the glutamine residue
(Q457) [41]. Consistent with this, in the present study, formononetin and quinidine were
observed to interact with the Q457 residue that is suggested to impair SGLT2 function.

Since the discovery of the first natural SGLT2 inhibitor (i.e., phlorizin), several other
synthetic glucoside analogs have been developed [42]. Tofogliflozin is a selective SGLT2 in-
hibitor that enhances urinary glucose excretion in a dose-dependent manner [43]. Luseoglifl-
ozin is an orally active second-generation SGLT2 inhibitor that has protective effects on
pancreatic beta-cell mass and function [44]. Furthermore, efforts have been made to find new
active natural ingredients from S. Flavescents [15], alkaloids from A. macrophylla [45], and
Schisandrae Chinensis Fructus for the development of SGLT2 inhibition [46]. A 4-O-methyl
derivative of sergliflozin-A has been reported to exhibit SGLT2 inhibition activity [47].
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SGLT?2 inhibitors are some of the most promising anti-diabetic agents introduced into
clinical practice over the last decade. The therapeutic benefits of SGLT2 inhibitors include
weight loss, a reduction in blood pressure, and an enhancement in high-density lipoprotein
level [48,49]. However, the SGLT2 inhibitors dapagliflozin, canagliflozin, and empagliflozin
have been found to cause UTIs and genital infections in diabetic patients [50-52]. Addition-
ally, the FDA has issued warnings about the possible UTI-inducing side effects of SGLT2
inhibitors in December 2015 [9].

UTIs pose a severe medical issue worldwide, with more than 85% of UTIs caused by
uropathogenic Escherichia coli [53]. FimH is a bacterial adhesin that facilitates the coloniza-
tion of uropathogenic E. coli on the cell surface of the human and murine bladder and leads
to the formation of biofilm [54]. Therefore, this adhesin has been considered a virulence
factor and a promising therapeutic target for the treatment of UTIs [55]. Interestingly,
the docking results indicate that the SGLT2 inhibitors formononetin, (+)-pteryxin, and
quinidine show strong binding with FimH. FimH was found to interact with formononetin
through 11 amino acid residues, namely F1, N46, D47, Y48, 152, D54, Q133, N135, Y137,
N138, and D140 (Figure 4a), while (+)-pteryxin was found to interact with 6 amino acid
residues, namely Y48, T51, 152, Y137, N138, and D140 (Figure 4b). Similarly, 10 amino acid
residues, namely the F1, I13, Y48, 152, D54, Q133, N135, Y137, N138, and D140 residues of
FimH, were found to interact with quinidine (Figure 4c). The BE for formononetin-FimH,
(+)-pteryxin—-FimH, and quinidine-FimH interactions were found to be —5.65 kcal/mol,
—5.50 kcal/mol, and —5.70 kcal/mol, respectively. The corresponding estimated inhibi-
tion constants (Ki) for the above-mentioned complexes were determined to be 71.95 uM,
92.97 uM, and 66.40 puM, respectively (Table 3).

J ,
Y48 N\ \\ ] D47 / "7,"}"/‘51 o ’/7 - 'u
‘ . - Ws2 o
~
)
c. 4 1/‘/\, .
. | Y137
D54 ®
Y137 /] X —e -
A3 N135 \ i
yise ] G130 _N138

D140

I \

Figure 4. The amino acid residue of FimH’s interaction with formononetin (a), (+)-pteryxin (b), quinidine (c), and heptyl

a-D-mannopyranoside (d). The ligands (formononetin, (+)-pteryxin, quinidine, and heptyl a-D-mannopyranoside) are

represented as green stick forms and hydrogen bonds are represented as green dashed lines.
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The FimH protein has two domains, the C-terminal pilin domain and the N-terminal
lectin domain. The FimH lectin domain has a mannose-binding pocket (N46, D47, D54,
Q133, N135, N138, and D140), in which sugar contributes to the formation of various
hydrogen bonds with FimH. Hydrophobic regions are present in the surrounding region
of the mannose-binding pocket and consist of hydrophobic support (F1, I13, and F142),
the tyrosine gate (Y48, 152, and Y137), and the residue T51 [56]. Consistent with this,
in the present study, the D47, D54, and N138 of the FimH protein were involved in
hydrogen binding with formononetin (Figure 5a), while Y48, 152, Y137, and D140 were the
common hydrophobic amino acid residues interacting with formononetin, (+)-pteryxin

and quinidine (Figure 5a—).
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Figure 5. Ligplot analysis of the interactions of formononetin (a), (+)-pteryxin (b), quinidine (c), and heptyl «-D-

mannopyranoside (d) with SGLT2. The amino acid residues forming hydrophobic interactions are shown as red arcs
while the hydrogen bonds are shown as green dashed lines with indicated bond lengths.

In the present study, heptyl a-D-mannopyranoside (a FimH antagonist) was used as a
positive control against the FimH protein. Molecular docking analysis revealed that amino
acid residues, namely the F1, 113, Y48, T51, Q133, N135, N138, D140, and I52 residues
of the FimH protein, have a vital role in binding with heptyl a-D-mannopyranoside
(Figures 4d and 5d). The main FimH binding pocket amino acid residues are F1, N46, D47,
D54, E133, N135, D140, and F142, and mutation in these individual main residues leads to
them affecting FimH function and reducing its virulence [57,58]. Interestingly, we found
that these amino acid residues of FimH were also determined to interact with natural
SGLT?2 inhibitors (formononetin, (+)-pteryxin, and quinidine).

O- and C-linked alpha-D-mannosides with hydrophobic and aryl substituents are
effective FimH antagonists. The substitution of biphenyl derivatives may provide ad-
ditional advantages for the FimH antagonist molecule. The addition of 1,10-biphenyl
pharmacophore and various aglycone atoms enhanced the alpha-D-mannose derivatives’
suitability as FimH inhibitors [59,60]. Further, glycomimetics based on mannose scaffolding
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has also been synthesized and widely studied for their aptitude as FimH antagonists [61,62].
Besides synthetic compounds, natural substances, like cranberry and its derivatives (such
as myricetin, proanthocyanidin (PAC)-standardized cranberry extract, and polyphenol
metabolites extracted from PAC), have anti-adhesive effects on uropathogenic E. coli [63].

In docking experiments, it is usually crucial to look for a ligand that can bind efficiently
with the receptor, using Gibbs free energy as a parameter of better binding [64,65]. The
strength of an interaction between a ligand and a receptor is measured in terms of the free
energy of binding. The lowest BE is the output of the efficient binding of the drug/ligand
to the active site of the receptor [66]. A higher (negative) BE is a sign of efficient interaction
between the ligand and the receptor [67]. Accordingly, in the present study, formononetin,
(+)-pteryxin, and quinidine exhibited strong interaction with the FimH protein, with a high
BE relative to that of the positive control heptyl x-D-mannopyranoside, suggesting that
these compounds could be promising SGLT2 inhibitors with less severe uropathogenic
side effects.

Diabetic ketoacidosis and its associated events have been reported at a low frequency
in T2DM patients treated with canagliflozin [68]. Interestingly, in the present study, the BE
of canagliflozin with FimH relative to the other SGLT2 inhibitor indicates that canagliflozin
has less potency in inhibiting the FimH protein, thereby having a high susceptibility to
causing diabetic ketosis and UTIs.

3.2. Root Mean Square Deviation

Root mean square deviation (RMSD) is the most significant dynamic to explore in
terms of conformational changes by means of stability in the structure and dynamic
behavior of the receptor [69]. The complexes of formononetin, quinidine, and (+)-pteryxin
with FimH obtained in molecular docking that interacted the best were further probed
by MD simulation. The binding of ligands to their receptor protein can result in large
conformational deviations in the resulting complex, specifically at the binding site. In this
study, values of RMSD were increased at the beginning, with respect to the native structure
of the RMSD. Figure 6A reports the RMSD of the backbone atoms of FimH protein as they
interacted with each ligand molecule, where formononetin—FimH, quinidine-FimH and
(+)-pteryxin—-FimH interactions are represented with a black, red, and green color code,
respectively. RMSD changes in all systems were initiated at the same point (~0.125 nm);
however, in the formononetin—-FimH complex, the conformational changes took place
throughout the stabilization process. The change in the RMSD values in the formononetin-
FimH complex indicated a small fluctuation until ~30 ns, and, afterwards, RMSD was
found to be stable, remaining at around 0.35 nm in value. Due to the initial ups and downs
in the RMSD values of the formononetin-FimH complex, the topologies of the structures
were observed to significantly change during simulation. The observed initial RMSD
change predicted the large conformational changes in regions near the binding pocket.
Although the simulation lasted for 50 ns, the discrepancy from the initial structure within
the first 30 ns was sufficient to point out the protein structures that were substantially
denatured at binding sites and adjacent areas. While the RMSD values of the quinidine—
FimH complex showed little turbulence until ~20 ns, the values reached a plateau later on.
The value observed was greater than 0.3 nm initially; however, after 35 ns it went steady at
0.37 nm. In general, overall RMSD values fluctuated within 0.5 nm £ 0.05 nm throughout
the simulation.

Like the above complexes, RMSD values showed frequent conformational changes
and binding residue incorporation during the simulation analysis of the pteryxin-FimH
complex. Conformational changes were observed at a functional domain near the binding
site of the complex, and a considerable movement of the pteryxin ligand was also predicted
at that site. Moreover, the RMSDs of all three ligand candidates were calculated to evaluate
the behavior of the ligands within the binding site of the protein. Figure 6B shows the
plot representation of RMSD for each ligand. Ligands (formononetin and quinidine) have
generally shown high stability within the close contact residues of protein, whereas, in the
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case of pteryxin, this ligand demonstrated several fluctuations within the binding site. Due
to the movement of the pteryxin ligand, an initial sudden elevation (~0.13 nm) followed
by fluctuations until 0.15 ns was observed during the simulation. Although the RMSDs
maintained a plateau later on, an average value of 0.21 nm was calculated throughout the
simulation. Moreover, the difference in RMSDs due to the movement of pteryxin from the
initial to the final frame at the binding site was observed as 0.15 nm, which revealed that
pteryxin shows considerably weaker binding with interacting amino acid residues during
the simulation. On the other hand, it was observed that formononetin and quinidine stably
interacted during simulation, and the pattern of contact between the binding residues
and both ligands (formononetin and quinidine) predicted regulation of the activity of the
FimH protein.
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Figure 6. Representation of an RMSD plot of each complex in terms of their relationship between RMSD values and

simulation time, shown in three different color codes. Panel (A) shows an RMSD plot of the backbone atoms of FimH

protein receptor interacting with three ligand candidates, while panel (B) represents the RMSD plots of ligand candidates
during simulation, which are color coded black (Formononetin), red (Quinidine), and green (Pteryxin). FimH protein
complexes with Formononetin and Quinidine possessed high stability during simulation, while the third complex with

Pteryxin demonstrated comparatively less stability.

Consequently, the RMSDs of the formononetin-FimH and quinidine-FimH complexes
were found to have comparatively more stable trajectories than the (+)-pteryxin—-FimH
complex during simulation analysis (Figure 6).

3.3. Principle Component Analysis

To identify the overall patterns of motion in the complexes during simulation, we uti-
lized principal components analysis (PCA) for the three complexes. The covariance matrices
of the simulations were calculated to produce the eigenvectors, and then a screening of
the trajectories was performed around each of the diverse eigenvectors. Furthermore, the
dominant motions during a four-vector RMSD for each complex were observed (Figure 7).
A large portion of the overall variations in the receptor protein can be explained by a few
reduced amplitude eigenvectors with large eigenvalues. The analysis illustrated that the
fourth eigenvector accounts for the depletion of the RMSD value, although the rest of the
three vectors showed elevation at the initial time of the simulation. It was shown that after
~8 ns the RMSD values reached a plateau and maintained their value until the end of the
simulation (Figure 7).

To know the movement of the backbone atoms of the receptor protein, 100 frames of
the first principal component were collectively loaded into VMD, which show the motility
of the residues (Figure 8), although there might be differences between each complex
with respect to the motions sampled. The width of the band is proportional to amplitude;
a narrow band signifies those segments that hardly moved, while wide bands signify the
sections most affected by the transitions. The middle domain of the protein showed less
movement than the adjacent domains that predicted the stability of the middle domain.
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Vectors

The rest of the protein exhibited comparatively wider bands, which might be due to an
increase in functionality.
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Figure 7. Each panel (A-C) reports the calculation of projection of particular trajectory on eigenvectors for each three
complexes. The RMSDs for every four eigenvectors are depicted as four subplots in each panel. Plot shows the projections
of each vector are fitted to the structure in the eigenvector.
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Figure 8. The motion of the backbone atoms of the protein receptor during simulation of the trajectory
as calculated by principal component analysis. The width of the bands is proportional to amplitude.

It is worth mentioning that the binding energy values and MD simulations obtained
can only demonstrate the binding efficacy and stability of inhibitors with the target protein.
Further benchwork experiments are required to optimize these compounds (formononetin,
(+)-pteryxin, and quinidine) as promising SGLT2 inhibitors with add-on FimH inhibition
potential that might reduce the probability of uropathogenic side effects.

4. Conclusions

SGLT2 inhibitors are a newer class of drugs that have enormous anti-diabetic potential.
Unfortunately, the side effects, specifically those that contribute to the development of UTIs,
have impeded their success rate. Several clinicians, as well as diabetic patients, are still in a
dilemma over the use of this class of anti-diabetic medication. In contrast, FimH is blooming
as a potential alternative target for UTI treatment, and FimH inhibitors are currently under
development. These inhibitors act against the uropathogenic bacterial strains adherence
to the mucosal surface of the urinary tract, resulting in a lower chance of encountering
resistance. In the present study, we docked natural SGLT2 inhibitors with FimH target
proteins to predict their FimH interaction potential. To the best of our knowledge, this
is the first time that SGLT2 inhibitors have been explored in terms of their use against
FimH. Our findings suggest that among all SGLT2 inhibitors examined, formononetin,
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(+)-pteryxin, and quinidine exhibited strong interactions with the FimH protein with high
binding energy, in comparison to the positive control heptyl «-D-mannopyranoside. On the
other hand, the FDA-approved SGLT2 inhibitor canagliflozin indicated lower interaction
with FimH. Thus, we hypothesize that if explored further, natural SGLT2 inhibitors might
reduce the probability of UTIs when used against FimH. The authors anticipate researchers
to duly use the findings of this study to design more versatile and potent dual inhibitors
against SGLT2 and FimH to cope with the uropathogenic side effects of SGLT2 inhibitor
class anti-diabetic medications.
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Abstract: Doxorubicin (DOX), a recognized anticancer drug, forms stable associations with carbon
nanotubes (CNTs). CNTs when properly functionalized have the ability to anchor directly in cancer-
ous tumors where the release of the drug occurs thanks to the tumor slightly acidic pH. Herein, we
study the armchair and zigzag CNTs with Stone-Wales (SW) defects to rank their ability to encapsu-
late DOX by determining the DOX-CNT binding free energies using the MM /PBSA and MM/GBSA
methods implemented in AMBER16. We investigate also the chiral CNTs with haeckelite defects.
Each haeckelite defect consists of a pair of square and octagonal rings. The armchair and zigzag CNT
with SW defects and chiral nanotubes with haeckelite defects predict DOX-CNT interactions that
depend on the length of the nanotube, the number of present defects and nitrogen doping. Chiral
nanotubes having two haeckelite defects reveal a clear dependence on the nitrogen content with
DOX-CNT interaction forces decreasing in the order ON > 4N > 8N. These results contribute to a
further understanding of drug-nanotube interactions and to the design of new drug delivery systems
based on CNTs.

Keywords: carbon nanotubes; Stone-Wales defects; haeckelite defects; doxorubicin encapsulation;
drug delivery system; binding free energies; noncovalent interactions; molecular dynamics

1. Introduction

Doxorubicin (DOX), an antineoplasic drug, approved for medical use by the FDA [1,2],
has been used for more than 40 years to combat various types of cancers despite the
cardiological risks associated with its use. Researchers at the Mayo Clinic [3] have reviewed
its mechanism of action and, mainly thanks to the work of Denard et al. and Zhang
et al. [4,5], have proposed two alternatives that explain its function. In one of them, DOX
would stabilize a complex formed by double-stranded DNA and topoisomerase, which
later it would cut both strands of DNA. The alternative is the production of a larger
quantity of ceramides which would produce the translocation of a CREB3L-1 protein from
the endoplasmic reticulum to the Golgii apparatus. There, some proteases would break the
CREB3L-1 protein in such a way that its N-terminal fragment would be translocated to the
nucleus where it would direct the DNA transduction, to finally express p21 proteins, which
would be those that inhibit tumor growth. Other mechanisms of action of DOX reviewed
by Ferreira et al. consider the intercalation of DOX in nuclear DNA and mitochondrial
DNA, inhibition of topoisomerase-IIf3, and epigenetic factors that involve methylation and
deacetylation reactions [6].

In order to increase drug bioavailability and avoid its adverse effects, several types
of drug carriers have been used, among which carbon nanotubes (CNTs) have shown
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to form stable associations with DOX [7]. However, CNTs also exhibit some toxicity
problems [8-11]. Fortunately, CNTs can be functionalized with fragments to increase their
water solubility, which prevents them from being deposited as agglomerates in the body:.
Under certain conditions of concentration and purity CNTs are non-toxic [12]. Additionally,
the functionalization of the CNTs facilitates the anchoring of the nanotubes right in the
tumor to be attacked. The physicochemical and conductive properties of CNTs give them a
versatility of applications in various fields such as electronics, photonics, catalysts, drug
carriers, biotechnology, bone tissue engineering and others [13-15].

In the current work we are interested in the ability of CNTs to adsorb drugs and
transport them to the target site. It is important to determine the structural parameters
that facilitate the DOX-CNT association and to allow the development of strong DOX-CNT
intermolecular interaction forces, which help to inhibit the drug from being released before
reaching its target. Once there, the acidic pH of the tumor environment causes the release
of the drug. Indeed, several studies show experimentally that DOX release is favored at
pH of 5 or less [16-19], which is also demonstrated at a theoretical level [20].

Another technologically important characteristic of CNTs is their chirality which sig-
nificantly modify their conductive properties. For example, armchair (n, n) nanotubes
are conductive while zigzag (n, 0) and chiral (n, m) nanotubes are semiconductors ex-
cept when the value of the difference (n — m) is a multiple of 3, since nanotubes become
conductive [21-24]. The diameter of the nanotube has also been shown to be an impor-
tant structural point since, depending on the diameter, the degree of curvature of the
nanotube can be controlled, which seems to be a decisive factor in the stability of the
DOX-CNT associations.

As can be deduced, the chirality and the diameter of the nanotubes are properties
that determine their behavior and also the presence of structural defects which can change
the chirality [25]. The carbon rings of the nanotube that differ from the hexagons are
called defects, and depending on their ordering and distribution in the nanotube they
confer different properties. For example, the five- and seven-membered rings, when
distributed around the perimeter of the nanotube, constitute defects called bumpy. If they
are distributed axially in the nanotube they are called zipper defects [26]. Other four-
membered rings, along with eight-membered rings, are called haeckelite defects [22,27].
These defects are formed by the addition of two carbon atoms or ad-dimers. However, there
are other defects that are formed by rearrangement of their bonds, such as the Stone-Wales
defects formed by a pair of rings of five and eight members [28].

The presence of some of these defects has significant technological importance. For
example, zigzag nanotubes in the presence of ad-dimers can induce plastic transformations
in a material that would otherwise be brittle [29]. Chiral nanotubes stand out, which in
the presence of bumpy defects considerably increase their conductivity over armchair and
zigzag nanotubes according to DFT studies considering dispersion-corrected B3LYP-D3
functional [30]. Zigzag nanotubes that contain bumpy defects show greater conductive
ability and capacity to be reduced [30]; nitrogen doping increases the conductive ability
of armchair nanotubes [30]. In addition, armchair nanotubes with bumpy defects notably
increase their ability to adsorb hydrogen with very convenient hydrogen adsorption energy
values, for their use in the management of clean energy [30].

CNTs form stable associations with doxorubicin [7]. Various theoretical and molecular
dynamics studies predict a high capacity of CNTs as carriers [20,31-36] and several molec-
ular dynamics studies of functionalized DOX-CNT systems with various organic groups
have contributed to the study of DOX loading and release [37-43]. Although there are
several works on the adsorption of DOX in CNT, there are no studies that report on the op-
timal structure that a nanotube should have to behave as a DOX nanocarrier. The situation
is complicated because there are also no experimental data available on the formation and
characterization of DOX-CNT complexes and the determination of their DOX-CNT binding
energies. For non-functionalized nanotubes, Wang and Xu [20], systematically studied
the adsorption and encapsulation of DOX in armchair nanotubes of different diameters,
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using the theoretical methods PM6-DH2 and M06-2X in the ONIOM scheme and found
that the diameter of the nanotube at which the best DOX encapsulation occurred was 14
A and corresponded to (10,10) armchair nanotubes. This same behavior was confirmed
through a study of molecular dynamics for armchair, zigzag and chiral nanotubes, finding
that the strongest DOX-CNT interactions were produced for 14 A in diameter nanotubes,
regardless of chirality [32]. A different situation occurs in the presence of defects in the
nanotube. In the case of bumpy defects, a dependence on chirality is observed, since
armchair nanotubes with bumpy defects present weaker DOX-CNT interactions than arm-
chair nanotubes without defects. In contrast, bumpy defects in chiral nanotubes favor the
DOX-CNT interaction [32].

Several methods of synthesis of CNTs have been reviewed [44]. However, there is
a lack of comparative systematic experimental antecedents on this issue, which makes it
possible to pose as a valid hypothesis for a theoretical study that the presence of defects in
the nanotube, the type and number of defects and their position, also modify the DOX-CNT
association properties, along with the chirality and size of the nanotube.

The previous antecedents also lead us to investigate if there is a general trend for
some type of nanotube, for example, with chirality or type of defect that accounts for the
degree of DOX-CNT association. Our research questions include: (i) how does structural
or nitrogen doping defects affect the ability of CNTs as drug carriers, in this case, DOX. (ii)
Is the effect produced by the defects the same, regardless of the chirality and the size of the
nanotube? (iii) Is there any type of defect that has better characteristics than the others?
(iv) How does it affect the number of defects present?

In this work DOX-CNT binding energies are determined for chiral nanotubes with
haeckelite defects (with rings of 4 and 8 carbon atoms) and for armchair and zigzag
nanotubes with Stone-Wales defects (SW), by means of the MM /PBSA and MM /GBSA
methods implemented in the AMBER program of molecular dynamics.

2. Results

Below are the results obtained by molecular dynamics (MD) simulation for DOX
encapsulation systems in chiral CNTs with haeckelite (Hk) defects and also in armchair
and zigzag CNTs with Stone-Wales (SW) defects. The Hk defects consist of a pair of rings
of 4 and 8 members each, while the SW defects are made up of a pair of rings of 5 and 7
members each, as shown in Figure 1.

a b

1.409

1.393

1.395 1.395

1.408

Figure 1. Representation of carbon nanotube structural defects and their C-C bond distances in A.
(a) haeckelite defect; (b) Stone—Wales defect.

2.1. Chiral Nanotubes with Hk Defects

Chiral nanotubes Ch(13,08) with one Hk defect (named Hk1) and two Hk defects
(named Hk2) having ON, 4N and 8N were studied considering different initial positions of
the DOX: in the region of the defect (D), in the regular region of the nanotube (R) (there
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are no defects in that area) with the DOX NH, group pointing towards the center of the
nanotube (v1 orientation) or to the inverse direction (v2 orientation) as shown in Figure 2
for Hk2 chiral nanotubes. Other additional DOX orientations refer to Hk1 nanotubes:
when the DOX NH; group is oriented in a direction proximal to the defect (p) or is in the
direction opposite to the defect (0) as shown in Figure 3.

a b

Figure 2. DOX orientation when encapsulated in a chiral nanotube having two haeckelite defects.
(a) v1 orientation; (b) v2 orientation. Lateral views.

a b

\%}. e

Figure 3. The encapsulated DOX orientations into a chiral nanotube having one haeckelite de-
fect. (a) Hk1-DoxDIn.v1p; the DOX NH, group is oriented in a direction proximal to the defect;
(b) Hk1-DoxDIn.v1o; the DOX NH, group is oriented in an opposite direction. Lateral and frontal
views shown.

2.1.1. Chiral Nanotubes with HK1 Defects

For chiral nanotubes with Hk1 defects (Hk1 chiral nanotubes), the results predict a
similar behavior for both undoped, ON, and nitrogen doped nanotubes having 4N and
8N. In all three cases, the DOX-CNT interaction is favored when the DOX is located in the
defect area with the NH; group pointing towards the center of the nanotube (v1 orientation)
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in the proximal direction close to the defect as shown in Table 1 (runs 2, 10 and 18 for
ON, 4N and 8N, respectively) with Poisson-Boltzman (PB) binding energies of —102, —99
and —102 kcal/mol, respectively. Coherently, most of these systems exhibit equilibrium
distances with values between 3.2 and 3.6 A evidencing stronger DOX-CNT interactions
which are favored by the orientation of the DOX that facilitates the NH-7t interaction. In
Figure 4 the initial conformation of the Ch(13,08)8N-Hk1-DoxDIn.v1p complex is shown
together with the final conformations after 2 ns of MD simulation and after 100 ns. It is
observed that DOX does not move towards the regular part of the nanotube but interacts
with the defect and as a result, in that area, there is a significant deformation of the nanotube.
These results obtained for chiral nanotubes show the same behavior as was reported for
armchair nanotubes with more favorable DOX-CNT interactions for systems in which
DOX is located in the defect region and when it is oriented with its nitrogen atom directed
towards the center of the nanotube. However, armchair nanotubes having one haeckelite
defect exhibit DOX-CNT binding energies that are more exothermic suggesting stronger
DOX-CNT interactions [33].

Table 1. DOX-CNT Poisson-Boltzman (PB) and generalized bond (GB) binding energies (in kcal/mol)
for the nitrogen doped and undoped chiral nanotubes (34 A length) having one haeckelite defect,
HK1, considering encapsulated system. d,.nt are the distances from the DOX anthraquinonic plane
to the nanotube wall; dny.N is the distance from the DOX nitrogen atom to the nanotube wall. All
distances are expressed in A.

Run Type ! PB GB dpNT dnoNT
1 Ch(13,08)0N-HK1-DoxDIn.v1o —-78 —77 3.7 3.7
2 Ch(13,08)0N-HK1-DoxDIn.v1p —102 —104 3.6 35
3 Ch(13,08)0N-HK1-DoxDIn.v20 —79 —80 3.6 3.9
4 Ch(13,08)0N-HK1-DoxDIn.v2p -85 —87 3.8 3.6
5 Ch(13,08)0N-HK1-DoxRIn.v1o —78 —77 3.4 3.1
6 Ch(13,08)0N-HK1-DoxRIn.v1p —80 —80 3.4 3.6
7 Ch(13,08)0N-HK1-DoxRIn.v20 -79 —-78 3.8 49
8 Ch(13,08)0N-HK1-DoxRIn.v2p —80 —80 35 3.2
9 Ch(13,08)4N-HK1-DoxDIn.v1o —77 —76 35 34
10 Ch(13,08)4N-HK1-DoxDIn.v1lp —99 —102 3.4 33
11 Ch(13,08)4N-HK1-DoxDIn.v20 —78 —80 3.8 3.9
12 Ch(13,08)4N-HK1-DoxDIn.v2p —79 —80 3.4 3.0
13 Ch(13,08)4N-HK1-DoxRIn.v1o —77 —77 3.6 4.0
14 Ch(13,08)4N-HK1-DoxRIn.v1p —79 —81 3.6 35
15 Ch(13,08)4N-HK1-DoxRIn.v20 —-78 —79 42 4.6
16 Ch(13,08)4N-HK1-DoxRIn.v2p -79 —80 35 32
17 Ch(13,08)8N-HK1-DoxDIn.v1o —78 —79 3.6 35
18 Ch(13,08)8N-HK1-DoxDIn.v1p —102 —104 3.4 3.2
19 Ch(13,08)8N-HK1-DoxDIn.v20 78 —79 3.8 3.6
20 Ch(13,08)8N-HK1-DoxDIn.v2p —78 —79 3.4 3.4
21 Ch(13,08)8N-HK1-DoxRIn.v1o —79 —80 3.4 34
22 Ch(13,08)8N-HK1-DoxRIn.v1p —81 —81 3.6 34
23 Ch(13,08)8N-HK1-DoxRIn.v20 —-73 —-76 35 3.2
24 Ch(13,08)8N-HK1-DoxRIn.v2p —81 —82 35 3.1

1 DoxD means DOX position is in the defect zone; DoxR is for the DOX in the regular part of the nanotube; v1
means the nitrogen atom of the DOX is oriented towards the center of the tube; v2 indicates the inverse orientation;
v1p indicates that the DOX nitrogen atom is located in a proximal space regarding the defect meanwhile vlo is
used to indicate that the DOX nitrogen atom is located in an opposite space regarding the defect as shown in
Figure 3.

DOX-CNT systems, doped with 4N and containing Hk1 defect exhibit quite similar
DOX-CNT PB binding energy values between —79 and —77 kcal/mol, probably accounting
for an electronic distribution that interacts with the drug in a similar way regardless of DOX
position and orientation. This could be due to the arrangement of nitrogen atoms which
are part of two pyrimidine rings placed opposite each other on the walls of the nanotube.
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Figure 4. Representation of encapsulated DOX-CNT complex for nitrogen-doped chiral nanotube
with one haeckelite defect, Ch(13,08)8N-Hk1-DoxDIn.v1p, at different simulation times. (a) 0 ns;
(b) 2 ns; () 100 ns. Two laterals and one frontal view are shown.

2.1.2. Chiral Nanotubes with Hk2 Defects

Carbon nanotube diameter effect. The nitrogen doped and undoped Hk2 chiral (13,08)
CNTs of 14 A diameter and 19 A length showed better DOX-CNT PB and GB binding
energies than the corresponding Hk2 chiral (13,10) CNTs of 16 A diameter (calculated with
RESP charges for DOX) as shown in Figure 5. This was an expected result considering
PM6-DH2 and M06-2X theoretical calculations in the scheme of ONIOM for the DOX
encapsulation in armchair CNTs without defects [20], and also molecular dynamics studies
on armchair, zigzag and chiral nanotubes with reported values of 14 A as an optimal
value of the nanotube diameter for encapsulating the DOX [32]. A diameter of 14 A
allows the proper curvature of the nanotube for the formation of different attractive and
complementary non-covalent interactions between the nanotube and the DOX that stabilize
the entire system which is also fulfilled in this case of nanotubes containing two haeckelite
defects in their structure.

HK?2 chiral nanotubes of diameter 14 A exhibit less favorable DOX-CNT PB binding
energies for nitrogen doped nanotubes in the order ON > 4N > 8N with values of —101,
—97 and —74 kcal/mol, respectively (see Figure 5), which predicts stronger DOX-CNT
interactions for undoped Hk2 chiral (13,08) nanotubes. These values were calculated using
RESP charges for DOX. RESP (restrained electrostatic potential) approach to derive partial
charges has been reported as having a lower average error than MM3 and CHARMm in a
study considering 55 molecules [45]. Mean SD for the PB binding energy values between
2.6 and 3.2 kcal/mol and between 2.6 and 3.1 kcal/mol for the GB binding energy values
were observed, being in all cases less than 4.2%.
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Figure 5. DOX-CNT binding energies for nitrogen-doped and undoped chiral nanotubes of 19 A
length with different diameter, having Hk2 defects and calculated with RESP charges for DOX. (a) PB
binding energies; (b) GB binding energies. Blue is for 14 A diameter and red is for 16 A diameter.

Carbon nanotube length and DOX pose effects. Longer Hk2 chiral nanotubes (34 A
length) exhibit more exothermic DOX-CNT PB binding energy values than Hk2 chiral
nanotubes of 19 A length, for both nitrogen doped and undoped nanotubes. For the
undoped nanotubes (ON) and those doped with 4N, a clear preference of the DOX for the
nanotube defect zone is shown with DOX-CNT PB binding energy values of —109 and
—104 kcal/mol, respectively (runs 1 and 5, Table 2). When the DOX is in the regular zone of
the nanotube, no significant differences are observed between the v1 or v2 orientations of
the DOX. However, in cases where the DOX is initially located in the defect zone, stronger
interactions are predicted for vl DOX orientation for both undoped and 4N doped systems
as shown in Table 2 (runs 1 vs. 2 and 5 vs. 6).

93



Molecules 2021, 26, 1586

Table 2. Poisson-Boltzman (PB) and generalized bond (GB) binding energies (in kcal /mol) for the
nitrogen doped and undoped chiral nanotubes (34 A length) having two haeckelite defects, Hk2,
considering encapsulated system. dp-NT are the distances from the DOX anthraquinonic plane to the
nanotube wall; dn.Nr is the distance from the DOX nitrogen atom to the nanotube wall. All distances
are expressed in A.

Run Type 1 PB GB dp-NT dn.NT
1 Ch(13,08)0N-HK2-DoxDin.v1 —109 —112 34 34
2 Ch(13,08)0N-HK2-DoxDin.v2 —82 —83 3.7 3.4
3 Ch(13,08)0N-HK2-DoxRin.v1 —80 —-79 3.3 3.4
4 Ch(13,08)0N-HK2-DoxRin.v2 —-79 —-79 3.2 4.8
5 Ch(13,08)4N-HK2-DoxDin.v1 —104 —108 3.5 4.3
6 Ch(13,08)4N-HK2-DoxDin.v2 —82 —83 3.8 35
7 Ch(13,08)4N-HK2-DoxRin.v1 —-79 —78 4.1 34
8 Ch(13,08)4N-HK2-DoxRin.v2 —80 —80 3.3 35
9 Ch(13,08)8N-HK2-DoxDin.v1 —80 —78 3.4 3.3
10 Ch(13,08)8N-HK2-DoxDin.v2 —87 —89 3.6 3.2
11 Ch(13,08)8N-HK2-DoxRin.v1 —80 —80 3.6 3.3
12 Ch(13,08)8N-HK2-DoxRin.v2 —80 —-79 3.8 3.7

1 DoxD means DOX position is in the defect zone; DoxR is for the DOX in the regular part of the nanotube; v1
means the nitrogen atom of the DOX is pointing towards the center of the tube; v2 indicates the inverse orientation.

The best system for DOX encapsulation in Hk2 chiral nanotubes is therefore Ch(13,08)0N-
HK2-DoxDIn.v1 (run 1, Table 2) with the DOX in the defect region and v1 orientation
(with the nitrogen pointing towards the center of the nanotube). In this conformation,
the formation of the non-covalent DOX-CNT interactions is facilitated, which are mainly
constituted by n—m stacking interactions complemented by NH-n, CH-7t, C=O-7 and van
der Waals interactions [20,31,46]. Figure 6 shows the non-covalent interactions for the most
favorable case with the DOX in the area of the nanotube defect (a large green surface is
observed) and as a comparison, the same nanotube with the DOX encapsulated in the
regular area (less green regions and more red regions are observed), with PB DOX-CNT
binding energy values of —109 and —80 kcal/mol, respectively (runs 1 and 3, Table 2). A
program specially developed for the visualization of non-covalent interactions (NCI) was
used [47].

Under similar MD simulation conditions but considering RESP charges for DOX, Hk2
chiral (13,08) nanotubes (—101 kcal/mol, Figure 5) predict stronger DOX-CNT interactions
than reported Hk2 armchair (10,10) nanotube (—83.4 kcal /mol) with the encapsulated DOX
located in the defect zone in v1 orientation [33]. Hk2 chiral nanotubes predict stronger
DOX-CNT interactions than reported Hk2 zigzag (18,0) nanotubes which exhibit values of
DOX-CNT PB binding energies of —78.7 kcal /mol for undoped nanotubes [33]. The three
types of CNTs in comparison have diameters of 14 A. In this way, in terms of chirality and
according to the indicated results, Hk2 nanotubes exhibit the following order of ability
to encapsulate the DOX: chiral > armchair > zigzag, despite chiral nanotubes are shorter
than zigzag and armchair nanotubes (19 vs. 34 A length). The enhanced ability of chiral
nanotubes with respect to other nanotubes to encapsulate DOX was reported also for
perfect CNTs through MD simulation studies considering RESP charges for DOX [32].
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Figure 6. Representation of non-covalent interactions (NCI) for DOX encapsulation inside chiral
carbon nanotubes having two haeckelite defects. (a) DOX D position; (b) DOX R position. Cutplot
0.01 0.1. Blue surfaces indicate strong interactions; green means weak interactions; red means
repulsion [47]. Different comparative lateral and frontal views shown.

2.2. Nanotubes with Stone-Wales Defects

The encapsulation of the DOX was studied in armchair and zigzag nanotubes that
have one and two Stone-Wales defects (SW1 and SW2, respectively) as shown in Figure 7.

G @

Figure 7. Representation of carbon nanotubes having one and two Stone-Wales defects. (a) SW1
armchair; (b) SW2 armchair; (c¢) SW1 zigzag; (d) SW2 zigzag. Side and front views shown.

2.2.1. SW1 and SW2 Armchair Nanotubes

Armchair (10,10) nanotubes of 20 A and 34 A in length having Stone-Wales defects
were studied, which showed different behaviors in DOX encapsulation. The shorter
nanotubes (20 A length) exhibit a significant stronger interaction with the DOX in two
situations: (i) when they are of the SW2 type (with two defects, doped and undoped)
in comparison with SW1 nanotubes and (ii) when they are doped with 4N (SW1 and
SW2) as is clearly depicted in Figure 8a. Nitrogen doped SW1 and SW2 armchair (10,10)
nanotubes of 20 A length predict stronger interactions with the DOX than corresponding
longer SW1 and SW2 nanotubes of 34 A in length as shown in Figure 8 particularly for 4N
doped nanotubes.
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Figure 8. DOX-CNT PB binding energies for nitrogen-doped and undoped armchair (10,10) nan-
otubes of different length having one and two Stone-Wales defects. (a) 20 A length; (b) 34 A length.

In contrast, longer SW1 armchair nanotubes predict somewhat stronger interactions
than longer SW2 armchair nanotubes the difference being more significant for the un-
doped SW1 and SW2 nanotubes with PB DOX-CNT binding energy values of —105 and
—80 kcal/mol for, respectively, with DOX v1 orientation, and for DOX v2 orientation —92
vs. —81 kcal/mol, respectively, as shown in Figure 8b.

The most exothermic PB DOX-CNT binding energy with a value of —110 kcal/mol
correspond to the shorter 4N-doped SW2 armchair nanotube which predicts the stronger
DOX-CNT interactions. In the shorter SW2 armchair nanotubes the DOX is symmetrically
located and can interact with both of the two defects which favors DOX-CNT interactions.
Meanwhile for shorter SW1 armchair nanotubes the DOX interacts with just one defect
only. In contrast, the less exothermic PB DOX-CNT binding energies correspond to longer
SW1 and SW2 armchair nanotubes with values between —92 and —80 kcal/mol. The only
exception is the longer SW1 armchair nanotube where the DOX is in the v1 orientation
showing a PB binding energy of —105 kcal/mol. Figure S1 (Supplementary Materials)
clearly shows the differences in relative DOX-CNT binding energies. For short nanotubes
(20 A long), SW2 exhibits more exothermic DOX-CNT binding energies than SW1, with 4N
doping predicting the strongest DOX-CNT interactions. Within the long nanotubes (34 A
long) the most exothermic DOX-CNT binding energies correspond to the undoped SW1
nanotubes with v1 orientation. In Figure 9 its initial structure is shown and also at 2 ns
and 74 ns of simulation where a probable double -7 interaction of the DOX with the two
opposite walls of the nanotube is appreciated which generates a significant deformation
of the nanotube in addition to its NH-7 interaction with the DOX amino group that helps
stabilize the system. In the longer nanotubes, the DOX interacts with the regular part of
the nanotube also. Apparently the interactions DOX-Stone-Wales defects are stronger than
the interactions DOX-regular CNTs.
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Figure 9. Representation of encapsulated DOX-CNT complex for undoped armchair nanotube with
one Stone-Wales defect, A(10,10)0N-SW1-DoxDIn.v1 at different molecular dynamics simulation
times. (a) 0 ns; (b) 2 ns; (c) 74 ns. Two lateral and frontal views shown.

2.2.2. SW1 and SW2 Zigzag Nanotubes

Zigzag (18,0) nanotubes of 20 A in length and 14 A diameter having one and two Stone—
Wales defects were studied. In Figure 10 the PB and GB DOX-CNT binding energies are
shown for undoped nanotubes and for nanotubes doped with 4 and 8 nitrogen atoms.
It is observed that both types of binding energies show the same tendency (as was also
observed in Figure 5 for chiral nanotubes) and that undoped zigzag nanotubes predict
stronger DOX-CNT interactions than doped ones, both with one or two SW defects.

Zigzag nanotubes having one SW defect (SW1) exhibit stronger DOX-CNT inter-
acti