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Demetrio Antonio Zema

Comparison of Satellite and Drone-Based Images at Two Spatial Scales to Evaluate Vegetation 
Regeneration after Post-Fire Treatments in a Mediterranean Forest
Reprinted from: Appl. Sci. 2021, 11, 5423, doi:10.3390/app11125423 . . . . . . . . . . . . . . . . . 57

Subhashree Subudhi, Ramnarayan Patro, Pradyut Kumar Biswal and Fabio Dell’ Acqua

Superpixel-Based Singular Spectrum Analysis for Effective Spatial-Spectral Feature Extraction
Reprinted from: Appl. Sci. 2021, 11, 10876, doi:10.3390/app112210876 . . . . . . . . . . . . . . . . 77

Maria Danese and Dario Gioia

Spatial Analysis for Landscape Changes: A Bibliometric Review
Reprinted from: Appl. Sci. 2021, 11, 10078, doi:10.3390/app112110078 . . . . . . . . . . . . . . . . 99

v





About the Editors

Dario Gioia was born in Lagonegro (Potenza, Italy) the 20th July, 1979 and earned his first

degree in Geological Sciences at the University of Basilicata, with a thesis in morphotectonics.

He received a PhD in 2009 at the University of Basilicata, with a dissertation dealing with the

morphotectonic evolution of the Auletta basin (southern Apennines, Italy). At present, he is a

researcher at the Istituto di Scienze del Patrimonio Culturale of the Italian National Council of

Research (ISPC-CNR), and his research activity is mainly focused on studies of geomorphological

hazard due to slope, fluvial and costal geomorphological processes, and its relationship with cultural

and monumental heritage. He is the coordinator of several national projects of the ISPC-CNR,

dealing with the analysis of geomorphological processes in areas of high cultural and archaeological

value. From 2005, he has been involved as a member in many research projects dealing with issues

of geomorphology and Quaternary geology. Moreover, his research activity includes participation

as a member of several project programs, such as the National Relevant Research Projects (PRIN)

program of the Italian Ministry for the University and Research (MIUR), LIFE and European Fund for

Regional Development (EFRD) of the EU. In the March 2017, he qualifies as an Associate Professor of

Physical Geography and Geomorphology. Dario Gioia works in the fields of tectonic geomorphology,

geomorphological hazard geoarchaeology, landslide mapping and monitoring, the morphometry of

drainage networks, and the stratigraphical and structural evolution of tectonic basins. His activity

is also focused on the topics of quantitative and theoretical geomorphology such as the application

of the Landscape Evolution Model (LEM) to investigate the recent evolution of fluvial and coastal

environments and the development of geomorphic indexes to solve issues of landscape/landform

classification. His research methodological approaches include geomorphological and geological

surveys and photo-aerial interpretation, DEM-supported morphometric studies of landscape and

river network evolution, and satellite- and field-based monitoring of landslide activity. He is the

co-author of more than 90 papers, 50 of which are published in ISI journals with an impact factor. He

is usually the referee of relevant international journals such as Earth Surface Processes and Landforms,

Geomorphology and Journal of the Geological Society and has recently been a guest editor for high-impact

journals’ Special Issues on quantitative geomorphology.

Maria Danese was born in Potenza (Italy) and received her first degree in Engineering, Planning

and Territorial Management at the University of Basilicata, with a thesis on spatial analysis and

urban planning. She achieved a PhD at the University of Pisa, with a dissertation dealing with

spatial autocorrelation and its application in urban planning, seismic risk, archaeology and material

pattern decay. At present, she is a researcher at the Institute of Heritage Science of the Italian

National Council of Research (ISPC-CNR), and her research activity is mainly focused on Geographic

Information Science applied to cultural heritage, from archaeological predictive models, to integrated

risk analysis, to remote sensing; from the management of heritage data to support for diagnostics and

analysis of the architectural and artistic heritage. She is the co-author of more than 100 papers, many

of which are published in ISI journals with an impact factor. She is usually the referee of relevant

international journals.

vii





applied  
sciences

Editorial

Spatial Analysis for Landscape Changes

Dario Gioia * and Maria Danese *

Citation: Gioia, D.; Danese, M.

Spatial Analysis for Landscape

Changes. Appl. Sci. 2021, 11, 11924.

https://doi.org/10.3390/

app112411924

Received: 6 December 2021

Accepted: 13 December 2021

Published: 15 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

ISPC-CNR, C.da S. Loja, Tito Scalo, I-85050 Potenza, Italy
* Correspondence: dario.gioia@cnr.it (D.G.); maria.danese@cnr.it (M.D.)

Landscape is the backcloth over which environmental and anthropic events occur, and
recent increasing trends of natural and anthropic processes, such as urbanization, land-use
changes, and extreme climate events, have a strong impact on landscape modification.
Indeed, day by day, landscape changes are becoming more drastic and faster and there is a
growing need for the implementation of effective instruments, tools, and approaches to
understand and manage them. A great improvement in the availability of high-resolution
DEMs, GIS tools, and algorithms of automatic extraction of landform features and change
detections has favored an increase in the analysis of landscape changes, which became
an essential instrument for the quantitative evaluation of landscape changes in many
research fields. This special issue collects six papers that highlight the usefulness of the
quantitative analyses of satellite images and DEMs to solve multidisciplinary issues of
landscape changes.

Rui et al. (2020) [1] introduce an analysis of the erosion factors controlling the evolution
of a badland area of the National Geological Park of Qian, China. The influence of geological
features, climate, groundwater, and soil on the geomorphological evolution of the study
area has been discussed, in order to reconstruct a synoptic scheme of the main stages of
morpho-evolution.

Yan et al. (2020) [2] describe an interesting approach of the semi-automatic extrac-
tion of subaqueous landforms using multibeam bathymetric data. The comparison of
three different methods of landform classification (i.e., Wood’s criteria, SOM, and geomor-
phons) highlights that the geomorphon method has the highest degree of accuracy for the
automatic extraction of the bedforms of a delta system in China.

Gioia and Schiattarella (2020) [3] investigated the scenarios of sediment flux variation
and topographic changes due to dam removal in a small catchment of the southern Italian
Apennines. The application of a landscape evolution model (i.e., the Caesar Lisflood LEM)
provides a detailed reconstruction of the abrupt geomorphological change induced by base-
level fall due to dam removal, which can be roughly summarized in the significant increase
in the erosion ability of the main channels and a strong incision of the reservoir infill.

Martinez et al. (2021) [4] integrate satellite images and drone surveys to investigate
the post-fire vegetation regeneration in a forest in Central-Eastern Spain. The spatial
analysis of the topographic and image attributes and the application of vegetation indexes
indicate that a similar analysis can be useful to evaluate the effect of post-fire vegetation
restoration strategies.

Subudhi et al. (2021) [5] propose a new method of image segmentation of hyper-
spectral satellite images (i.e., the Superpixel-based SSA, SP-SSA), which can provide an
improvement to the capturing of object-specific spatio-spectral information. The perfor-
mance of the method is evaluated using an SVM classifier, suggesting that the proposed
approach overperforms the standard SSA technique and various common spatio-spectral
classification methods, in terms of classification accuracy.

Finally, Danese and Gioia (2021) present a review paper aimed at the bibliometric
analysis of the research trends in the topic of the special issue, “Spatial Analysis for
Landscape Changes”. Such an analysis covers the last twenty years and investigates topics,
trends, and methods that are connected to the research line through the statistical analysis

Appl. Sci. 2021, 11, 11924. https://doi.org/10.3390/app112411924 https://www.mdpi.com/journal/applsci
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of different metrics, such as the number of citations, co-authorship networks, and keyword
occurrences. The results of the bibliometric analysis highlight that the topic has received
increasing attention in the last years, and research methods are moving toward computer-
based automation or the unsupervised detection of landscape patterns and changes.
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Abstract: The research on geological landscape has received more and more attention worldwide.
The National Geological Park of Qian-an mud forest, located in Qian-an Country, Songyuan City
(Jilin Province, China) is a rare natural geological landscape formed by erosion. Mud forest landscape
has undergone long-term geological processes, and it is still in continuous evolution due to subsurface
erosion. In the process of the mud forest landscape formation and evolution, distinct stages have been
recognized. The subsurface erosion factors of the mud forest area were identified by groundwater
and soil samples characterization, and the mechanism of the formation of the mud forest is studied.
Results show that the occurrence of subsurface erosion is controlled by four factors: (1) The head
difference of terrace increases due to geological structure, (2) The dry and cold paleoclimate increases
the accumulation of soluble salts. Concentrated precipitation in the short term also promotes
subsurface erosion. (3) The high content of sodium ions in groundwater promotes the dispersion of
soil, and (4) Loess-like soil is characterized by high porosity, low plasticity, and dispersibility.

Keywords: mud forest; erosion; subsurface erosion; landscape formation; landscape evolution;
loess-like soil

1. Introduction

Soil erosion is a global problem and poses major issues in many countries [1,2]. Soil erosion
can increase run-off by changing soil properties and particularly by destroying topsoil structure
and reducing water holding capacity [3,4]. Soil erosion is not only a land degradation process,
but also a geomorphological appearance [5]. When the rate of soil erosion exceeds the rate of soil
formation, the process of land degradation helps shaping the natural geological landscape [6]. In other
words, while soil erosion causes land degradation, it also forms some typical landscapes (Table 1).
Kuhn, et al. [7] studied the effect of rainfall on the Zin Valley badlands in Israel. “Calanchi” and
“biancane” are two typical badland landscapes in Italy. Ciccacci, et al. [8] analyzed the evolution of
“biancane” landforms, whereas Pulice, et al. [9] investigated how topography and rainfall may affect
runoff and slope processes in “calanchi” landforms. Most of the soil erosion landscapes studied above
are gully shaped or round enveloped landscapes formed by surface erosion. The research object of this
paper is a columnar geological landscape formed by both surface and subsurface erosion. As seen in
Table 1, the studied landscapes are mainly composed of earth pillars, arranged together looking like a
forest, hence it was named “mud forest” [10,11].

Appl. Sci. 2020, 10, 7427; doi:10.3390/app10217427 www.mdpi.com/journal/applsci3
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Table 1. Several typical geological landscapes formed by soil erosion. [7–9,12,13].

Name State Picture

Zin Valley badlands Israel

Badland landscape Spain

“Calanchi” badland landform Italy

“Biancane” badland landform Italy

Yuanmou Dry-hot Valley China

Mud forest landscape China

The process of erosion is caused by both surface and subsurface processes. Over the last
decades, most studies on soil erosion have focused on surface processes, such as sheet, rill and
gully erosion [5,14]. Although subsurface erosion has been reported to be a significant and widespread
process, the disproportion in the number of studies on surface erosion compared to those on subsurface
erosion is striking [5,15]. Subsurface erosion generally refers to various forms of erosion caused
by groundwater below the surface [16]. This process and its effects have been described under a
variety of names: subterranean erosion [17], subcutaneous erosion [18], sinking of the ground [19–21],
sink-hole erosion [22,23], tunnel erosion [24], pothole gullying [25], tunnel-gully erosion [26,27],
tunneling erosion [28], piping [29], soil piping [30], pothole erosion [31], and suffusion [32–34].
While degradation occurs in all kinds of landscapes over the world, the drivers of degradation vary
from region to region [35]. Due to the complexity of subsurface erosion, no single factor can be
held responsible for subsurface erosion development [5]. Vannoppen, et al. [36] pointed out that the
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occurrence of subsurface erosion is controlled by soil and climate features [37–41]. The occurrence of
subsurface erosion is also closely related to topography [42–45].

In 2009, the Qian-an mud forest landscape was officially approved as a national geological park in
China. Due to its unique landform caused by erosion, this landscape has become the only protected
“mud forest” site in China with these geological features, giving the area a high aesthetic and scientific
investigation value [46]. However, mud forest is a very fragile geological landscape and suffers from
serious soil erosion. In order to maintain mud forest stable for a long time, it is necessary to understand
the causes of such landscape degradation. Previous researches on mud forest landscape have been
carried out, including the formation mechanism, development and utilization, slope failure. Zhu and
Liang [47] preliminarily analyzed the formation mechanism of the mud forest landscape. Zhou, Wang,
Ren, Cai and Zhang [10] believed that the formation of the mud forest landscape was related to
landform and wind force. On the basis of previous studies, Chi, Wang and Yang [11] proposed that the
formation and development of mud forests were not only related to external factors, but also related
to soil composition. Zhang et al. [48] concluded that the frost weathering is an important factor in
the damage in the region. However, the formation mechanism of the mud forest has not been clearly
analyzed since the influence of interflow was ignored in previous studies. In order for this landscape
to remain stable for a long time, it is necessary to understand the causes of landscape evolution.

Therefore, this study focused on the role of subsurface erosion in the formation and evolution of
the mud forest landscape, by using different evolution stages to describe such landscape development
more intuitively. At the same time, the factors affecting the subsurface erosion in mud forest area were
analyzed in details in order to provide theoretical basis for landscape protection.

2. Materials and Methods

2.1. Study Area

The National Geological Park of Qian-an mud forest is located in the southwest of Qian-an
Country, Songyuan City, Jilin Province (Figure 1). It is 40 km away from Qian-an Country, across Suozi
Town and Dabusu Town. The coordinates are longitude 123◦36′–123◦42′ and latitude 44◦45′–44◦50′,
with a total area of 110 km2. Mud forest scenic spot is located in the Dabusu nature reserve, and the
area of the mud forest landscape is 7.5 km2.

Figure 1. Location of the National Geological Park of Qian-an mud forest and mud forest landscape.

The study area has a continental arid and semi-arid monsoon climate in the north temperate
zone. This climate zone presents the distinctive climate characteristics of dry and windy springs,
warm and rainy summers, cool and short autumns, and long and cold winters. The perennial average
temperature in the area is 4.7 ◦C. January records the lowest low temperature at −14.8 ◦C, while in
July the temperature is 24.9 ◦C. Average annual precipitation is about 400–500 mm and two-thirds of
this amount occurs in June, July, and August. The average sunshine duration reaches 2900 h within
a year. The frost-free days are 145 per year. The vegetation in the study area is characterized by
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meadow grassland. In the park there are 274 species of plants in 51 families, including huangying,
sedge, hornwort, and achnatherum splendens.

The study area is distributed in the western alluvial plain of the Songnen Plain. The terrain
is sloped from east to west and from south to north due to neotectonic movement. The elevation
is 150–170 m in the east and 140–155 m in the west. This results in no transit rivers in the Qian-an
area. However, a series of lake depressions closely related to the ancient channel are left, forming
a relatively independent closed-stream area. In the west of the Songnen Plain, there are many
lakes and marshes. Preliminary statistics shows that nearly 700 lakes exist within an area of over
6 km2. Dabusu Lake is a large inland lake among these lakes [10]. Because of the hot weather in
summer, the evaporation is much larger than precipitation, which causes a large accumulation of saline
and alkaline substances near Dabusu Lake. Dabusu Lake has a low altitude and it is the center of
groundwater gathering. Dabusu Lake receives the joint replenishment of atmospheric precipitation,
surface runoff and subsurface current. The catchment area is nearly 230 km2, and the lake basin area
is about 81 km2. As shown in Figure 2, there are 10 gullies in the west and 4 gullies in the east of
Dabusu Lake.

Figure 2. Dabusu Lake area plan.

The Songnen Plain, where the Dabusu Lake is located, is a basin type plain that has been
continuously settled since Mesozoic and Cenozoic era and accumulated huge thickness of Mesozoic
sediments. The basement of Songnen Plain is the metamorphic rock series of the pre-Jurassic
period, and the caprock is the meso-Cenozoic deposit with a thickness of 4000–5000 m. According to
relevant data, the stratigraphic lithology of Qian-an area is shown in Table 2 [10]. Dabusu mud forest
geomorphologic landscape was produced in Guxiangtun formation (upper Pleistocene), consisting
in silt, silty clay and clay. The mud forest area is located in the secondary terrace on the east side
of Dabusu Lake (Figure 2). This area is located in the middle of the central sag of the secondary
structure of the Songliao giant subsidence zone. Soils in the study area are characterized by poor
profile differentiation and the area is classified as Cambisols according to the World Reference Base for
Soil Resources (WRB) [49].
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Table 2. Stratigraphic lithology of Qian-an area [10].

Geologic
Symbols

Chronolithologic
Unit

Lithostratigraphic
Unit

Burial Depth
(m)

Formation
Thickness (m)

Lithology

Q4 Quaternary
Holocene - 0–1 0–1 Cultivated soil

Q3g Quaternary upper
Pleistocene system

Guxiangtun
formation

1–18
15–34

Loess-like soil

18–34 Fine sand

The mud landscape geomorphologic group is mainly distributed in the leading edge of terraces,
and the earth pillar height is 10–15 m. Figure 3 shows the geological evolution diagram of the mud
forest landscape area. On the basis of the formation process of Mesozoic, early Pleistocene and middle
Pleistocene, the area experienced the late Pleistocene lake paleogeographic depositional environment.
The formation in this area is characterized by loess-like soil in the upper part and fine sand in the lower
part. After the early late Pleistocene deposition, the crust in this area underwent the process of uplift
in the east and depression in the west and inclination in the northwest in Neoid period. In the middle
of late Pleistocene, due to the uplift of the crust in the Neoid period, erosion and subsurface erosion are
intensified, thus forming the characteristic geological and geomorphic landscape of the mud forest.
As subsurface erosion continues, the landscape of the mud forest is still changing.

Figure 3. A schematic geological evolution diagram of the mud forest landscape area.

2.2. Field Survey and Laboratory Test

A detailed field survey was conducted in the study area in order to assess different evolution
stages of the mud forest landscapes. In order to study the influence of soil on the subsurface erosion in
mud forest area, three soil samples were collected between soil pillars at a depth of 10 cm, namely
C1, C2, and C3. Three groundwater samples were also collected for experimental study, namely
N1, N2, and N3 (Figure 2). The main ions content of groundwater and soluble salt in soil samples
were measured. The test methods are shown in Table 3. The groundwater chemistry was analyzed
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by piper diagrams and categorized by the Gibbs’ model. In the piper diagrams in Figure 4a: (i) In
region 1, alkali earth metal ions are greater than alkali metal ions. (ii) In region 2, alkali metal ions
are greater than alkali earth metal ions. (iii) In region 3, weak acid root ions are greater than strong
acid root ions. (iv) In region 4, strong acid root ions are greater than weak acid root ions. (v) In region
5, the carbonate hardness is greater than 50%. (vi) In region 6, the noncarbonate hardness is greater
than 50%. (vii) In region 7, noncarbonate bases are greater than 50%. (viii) In region 8, carbonate base
is greater than 50%. (ix) In region 9, no pairs of cation-anion were greater than 50%. Based on the
analysis of water in the world’s rivers, lakes and major oceans, Gibbs [50] believes that the controlling
factors of ion origin can be divided into rock weathering type, atmospheric precipitation control type
and evaporation-concentration type. Figure 4b shows the distribution principle of the Gibbs model.

Table 3. Test method for chemical composition of groundwater and soluble salt in soil samples.

Test Item Method

HCO−3 Double indicator neutralization
Cl− Silver nitrate titration

SO4
2− Mass method

Ca2+, Mg2+ EDTA coordination titration
Na+, K+ Flame photometry

pH pHS-3C tester

Figure 4. Methods used in the experimental analysis: (a) Piper diagrams. (b) Gibbs model.
(c) Sherard diagram.

Grain size distribution was measured by a combination of sieving and hydrostatic sedimentation
methods. The natural density was measured by cutting ring method. Natural moisture content was
measured by means of drying. Liquid limit and plastic limit were determined by the combined
determination of liquid limit and plastic limit. Porosity was measured by mercury injection.
Major chemical elements were determined via X-ray fluorescence spectrometry following the analytical
procedure of Franzini et al. [51] and Leoni and Saitta [52]. This method uses powder pellets and is based
on the full matrix correction method. Total volatile components (H2O and CO2) were determined as loss
on ignition (LOI) at 950 ◦C on powders dried at 105 ◦C [53–55]. Considering the high ion content of the
soil sample, the double hydrometer method was not suitable, so the dispersibility of the soil sample was
determined by Sherard diagram [56]. Several parameters are necessary to determine whether the soil has
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dispersibility [57,58], among them: the “sodium adsorption ratio”, SAR = Na+/[(Ca2+ +Mg2+)/2]1/2;
the “percentage sodium”, PS = [Na+/(Na+ + K+ + Ca2+ +Mg2+)] × 100; the “total dissolved salts”,
TDS = Na++ K++ Ca2++Mg2+. Sherard, Dunnigan and Decker [56] correlated TDS, SAR, PS and clay
dispersibility (Figure 4c), according to these authors, the clays of zone A have a high tendency for
spontaneous dispersion, the sediments of zone C may be dispersive or nondispersive and the materials
of zone B are ordinary erosion-resistant clays [55].

3. Results and Discussion

3.1. Mud Forest Landscape Fetaures and Evolution Stage

According to the field investigation, it was found that the mud forest landscape in the study
area is characterized by distinct stages, named infant stage, juvenile stage, youth stage and old stage.
These four stages reflect to the germination, formation, development and extinction stages of the mud
forest landscape (Figure 5).

Figure 5. Geomorphologic evolution and different periods of the mud forest landscapes: (a) the infant
stage; (b) the juvenile stage; (c) the youth stage; and (d) the old stage.

In the infant stage, because of surface erosion, small patches of cultivated soil are destroyed and
the vegetation cannot grow. This exposed the loess-like soil directly (Figure 6a). First, the lack of
cultivated soil layer makes terrain concave. Precipitation tends to accumulate there. Second, due to
the lack of vegetation protection, the exposed loess-like soil is more conducive to rainfall infiltration.
Precipitation penetrates along pores and vertical joints (Figure 5a). The eluviation makes the joints and
fissures of loess-like soil enlarge. During long years of erosion, small cracks expand to form caves.
Due to the special physical and chemical properties of loess-like soil, it is easy to disintegrate and
dissolve when meeting water. This causes the soil layer to be vulnerable to subsurface erosion, thus
expanding the cave range. Under the action of gravity, the top layer of soil collapses, creating holes
(Figure 6b). With the continuation of the subsurface erosion, the sinkholes and the horizontal suffusion
caves are developed. Some vertical sinkholes have also been formed (Figure 6c).
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Figure 6. Geomorphologic features of the infant stage of mud forest evolution. (a) The lack of vegetation
on a small area of the earth’s surface leaves the loess-like soil exposed; (b) Many holes are shaped by
subsurface erosion; (c) Vertical sinkhole are formed by subsurface erosion.

In the next juvenile stage, a large number of holes were formed. With the passage of time and the
continuous occurrence of erosion, these holes expanded leading to a destruction of terraces integrity.
Gradually, gullies of different sizes and shapes formed, showing accordingly the form of “island”
(Figure 5b).

With further development of dissolution and subsurface erosion, the ornamental value of the mud
forest reaches its peak in the youth stage of landscape development. The solitary peaks are irregular
and varied in shape. Some look like conical and humped forms (Figure 5c).

After reaching the peak of mud forest landscape development, subsurface erosion continues
to occur. However, continued subsurface erosion will begin to destroy the mud forest landscape.
The mud forest landscape gradually loses its charm and looks like a series of small raised planes from
a distance (Figure 5d). Although its form is unique, its ornamental value is far less than the youth
stage of the mud forest landscape. This is the old stage of the mud forest landscape, it is also a stage of
landscape degradation. At present, most of the mud forest landscape is in this stage.

3.2. Groundwater Analyses

The milligram equivalent percentage of each ion was calculated according to the content of
each component of the groundwater (Table 4). It is easy to see that sodium ions account for
the largest milligram equivalent percentage of cations, at 55.31%. Calcium ions were the second,
accounting for 35.91%. Among the anions, chlorine ions accounted for 55.22%, which was the largest
proportion of anions. The bicarbonate ions accounted for 37.92%. Water sample was analyzed by Piper
diagrams [57,58]. The sample plots fall under zone 2, 4, and 7 (Figure 7). According to the Shukalev
classification method, the groundwater chemistry in the study area is of type HCO3 + Cl-Na + Ca.
The calculated Na+/(Na+ + Ca2+) value is greater than 0.6 and Cl−/(Cl− + HCO−3) value is close to 0.5.
The groundwater test data was plotted in the Gibbs model. The water sample plots the slightly upper
right side of the model center (Figure 8). This reflects that the water characteristics in this region are
controlled by evaporation and crystallization.
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Table 4. Physical and chemical properties and main ion content of groundwater.

Test Item Value (mg/L) Test Item Value (meq/L)
Milligram Equivalent

Percentage (%)

Visible substances White and turbid SO4
2− 2.065 6.86

Water temperature 15 (◦C) Cl− 16.617 55.22
pH 7.01 HCO− 11.411 37.92

ORP 127.1 Na+ 20.955 55.31
Water hardness 842.8 K+ 0.018 0.047

Total dissolved solids 2184 Ca2+ 13.605 35.91
Water alkalinity 571.1 Mg2+ 3.307 8.73

Figure 7. Piper diagrams of major ions in groundwater sample in the mud forest area.

Figure 8. Plot of the major ions within the Gibbs model for groundwater in study area.
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3.3. Soil Features

The development of subsurface erosion landform is closely related to soil properties. The soil
that forms mud forest landform is a kind of loess-like soil (Figure 9). The results show that (a) all
particles are smaller than 0.5 mm, (b) fine particle fraction (clay and silt) is more than three quarters,
(c) a silt fraction (0.005–0.075 mm) accounts for the largest proportion, more than half. The soil was
then classified as lean clay (CL) based on the Unified Soil Classification System (USCS) [57,58].

Figure 9. Grain size distribution of loess-like soil.

Table 5 shows the physical properties of loess-like soil sample, including particle size composition,
plasticity index, liquid index, porosity, etc. Silt content accounts for 52%, which is the highest proportion.
The plasticity index value of soil sample is low, and the liquid index is less than 0. The porosity of the
soil sample is 57.46%.

Table 5. List of physical properties of loess-like soil sample.

Item Value

Clay content (%) 24.42
Silt content (%) 52.75

Sand content (%) 22.83
Natural density (g/cm3) 1.44

Natural moisture content (%) 13.23
Liquid limit (%) 26.78
Plastic limit (%) 18.26
Liquidity index −0.59
Plasticity index 8.52

Soil classification CL
Porosity (%) 57.46

Chemical composition of loess-like soil can be seen in Table 6. From the oxide composition,
the content of silicon dioxide is the highest, followed by alumina. This is similar to the composition
of loess. Due to the high content of calcium oxide, magnesium oxide and potassium oxide, it proves
that the soil formation environment is relatively dry and cold. The calculated silicic acid coefficient
(Ki = SiO2/Al2O3) of the sample is 7.93. The larger Ki value indicated that the loess-like soil was formed
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when the climate was relatively arid. Therefore, the soil was formed in a dry and cold environment by
the analysis of the oxide content of the sample.

Table 6. Chemical composition of loess-like soil (major element, in wt.%).

SiO2 Al2O3 Fe2O3 FeO CaO MgO K2O Na2O TiO2 P2O5 MnO LOI

77.38 9.76 1.26 0.54 4.29 1.16 2.96 2.24 0.58 0.07 0.07 4.74

Clay dispersibility is a good indicator of the dispersion vulnerability of soil and, therefore, of the
associated risks of soil erosion [57]. The soluble salt composition of soil sample investigated in the
present study is given in Table 7, together with the calculated SAR, PS and TDS. The salt composition
affects the properties of loess-like soil, especially dispersibility. Plotting of values presented in Table 7
in Sherard diagram clearly shows the zone of soil samples. All samples plot zone A (Figure 10).
This indicates that the soil in mud forest area is dispersive.

Table 7. Soluble salt content (meq/L) and related parameters controlling clay dispersibility.

Na+ K+ Ca2+ Mg2+ SO4
2− Cl− HCO− TDS PS SAR

C1 7.844 0.014 1.896 0.301 1.623 4.011 4.865 10.055 78.011 7.484
C2 7.452 0.011 1.513 0.228 1.733 5.255 3.586 9.204 80.965 7.987
C3 8.041 0.010 1.577 0.285 1.137 5.550 4.254 9.913 81.116 8.334

Figure 10. Relationships between clay dispersibility (susceptibility to colloidal dispersion) and salt
composition (expressed through the PS, TDS and SAR parameters defined in Table 7).

3.4. Influence of Environmental Factors on Subsurface Erosion

Songnen Plain, a basin-like concave plain, provides a site for the formation of the mud forest
landforms. Since the terrain is slightly concave, groundwater and precipitation tend to accumulate
there. This, to some extent, aggravates the occurrence of subsurface erosion. During the Neoid
period, gullies formed along the cutting of the earth’s crust provided the possibility of erosion and
subsurface erosion. Moreover, the uplift caused the inclined rise to the northwest, accompanied by
new fault activities, which led to the asymmetry of landform between the east and west sides of the
Dabusu Lake (Figure 11). Therefore, erosion and subsurface erosion on the east bank are more intense.
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The asymmetry of the lake banks is not only the reason why the mud forest landscape began to occur,
but also an important geological factor in the subsurface erosion that the mud forest is still experiencing.

Figure 11. Profile of Dabusu Lake and its banks.

Due to the control and influence of neotectonic movement, the uplift of Xuezijing was active.
In the late Pleistocene (about ten thousand years ago), there was a local uplift in Xuezijing, and the
front edge of the second terrace formed a steep ridge more than 20 m high. The leading edge of the
terrace floor was raised, showing an abnormal phenomenon that the front edge of the terrace slopes
towards the back edge. The height difference between front edge and back edge was nearly 1 m.
The terrace floor shows a north-south extension, with high in the middle, low on both sides. As the
climate was dry and the ground rose again, the lake level dropped. Long-term, intense erosion and
subsurface erosion occurred in lakeshore gullies.

Zhu and Liang [47] took sporopollen samples from the late Pleistocene lacustrine deposits and
analyzed them. The results showed that the main sporopollen of woody plants were pinaceae and
betulaceae, and the main sporopollen of herbaceous plants were artemisia and chenopodiaceae,
ephedra and other drought-tolerant plant sporopollen also could be seen. This indicated that the Late
Pleistocene climate was a dry and cold climate. This climate period corresponds to the Dali ice age in
China. Fossils of fauna that lived in cold climates, such as mammoths and woolly rhinoceros, have
been found, confirming a dry and cold climate. In this dry and cold environment, the lake water
evaporates and condenses, increasing the salinity of the lake. The lake water with high salt content
is deposited in direct contact with the sediments. This exacerbates the dissolution of soluble salts in
loess-like soil. Thus, it is more prone to occur subsurface erosion.

Affected by the temperate monsoon climate, the study area is hot and rainy in summer and cold and
dry in winter. Southwest winds prevail in the study area, with strong spring winds. The average annual
wind speed is 4.1 m/s and the average annual maximum wind speed is 28.2 m/s [59]. Large amounts
of clay and salt are blown toward the lakeshore. During the summer, some of the material is carried
back into the lake by the wind. This ongoing wind cycle has a profound impact on molding the
shape and physical structure of the lake basin. At present, the mud forest geological and geomorphic
landscape is exposed to the wind, so the cutting and shaping of the lake basin and mud forest by wind
force factors cannot be ignored. In addition, precipitation in summer is also a feature of this climate
type. Annual precipitation is 400–500 mm [59]. In June, July and August, the precipitation reaches
two-thirds of the annual precipitation. The average annual precipitation in summer is 359.9 mm [60].
Concentrated rainfall in a short period causes the exposed loess-like soil to be eroded. With the
occurrence of rainfall infiltration and subsurface erosion, the geomorphology of mud forest changes
and promotes the evolution and degradation of the mud forest landscape.

The formation and development of the mud forest geomorphic landscape is also closely related to
the occurrence and movement of groundwater around it. Dabusu Lake and its surrounding areas are
not only the center of precipitation and surface water collection in the Songnen alluvial plain, but also
the center of groundwater collection. In addition, it is a confined water basin with multiple aquifers,
which is rich in groundwater. Due to the uplift of the crust during the uplift period and the new
faulting activities, the shallow groundwater was exposed. The Quaternary confined water may also
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be exposed. So, the gully where the mud forest geological and geomorphic landscape is located is
almost always filled with water. This provides a long-term underground water-rich environment for
the formation of subsurface erosion geomorphology.

The buried groundwater level in the study area is shallow (Figure 11). The average groundwater
level is 15.2 m. So the hydraulic gradient near the lakeshore is high. This leads to serious seepage
damage of the soil. The subsoil of loess-like soil is a fine sand layer with good permeability. The water in
the river is complementary through this highly permeable layer. Moreover, due to the high permeability
of soil layer, groundwater has a higher velocity, and the decomposed soil particles can be carried away
in time. As shown in Figure 12, infiltration of the precipitation converges with groundwater flow,
continuously eroding loess-like soil, and over time, the mud forest landform landscape is formed.
The content of sodium ion in water is higher, and it has the ability to disperse colloidal substance.
At the same time, as this type of water circulates through the soil, it can increase the soluble salt content
in the soil. While this is also an important reason for the degradation and destruction of the mud
forest landscape.

Figure 12. Groundwater flow and precipitation infiltration in mud forest area.

The results of the soil particle analysis tests showed that the soil sample contained the largest
proportion of fine particles. While fine and very fine sand fractions were most important in controlling
soil erosion [61], the high content of fine grained soil and weak hydrophilicity of the silt promoted the
development of subsurface erosion in mud forest areas. Soil has no plasticity, more prone to subsurface
erosion damage. Larger porosity of loess-like soil in mud forest area can promote the occurrence and
development of subsurface erosion. Because the pores provide channels for the erosion products,
accelerating the subsurface erosion process. The soil in mud forest area is dispersive (Figure 10).
Thus, loess-like soil has a great propensity to produce a colloidal dispersion when groundwater flows
through. After colloidal dispersed, small particles are carried along the pores by the water flow,
forming cracks. Dispersive clays develop large pipes and erosion tunnels through rapid enlargement
of small cracks and fissures as a consequence of the spontaneous dispersion of clays lining the fissure
walls when these come in contact with water. This promotes subsurface erosion, thereby exacerbating
the degradation of the mud forest landscape.
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4. Conclusions

Mud forest landscape is a rare erosion landscape protected by the state because of its unique
environmental features. In recent years, mud forest geological landscape began to degrade. In this
paper, the evolution of the mud forest landscape was described, and the mechanisms for such evolution
were analyzed.

After geological survey and analysis, mud forest landscape is the product of long-term geological
processes. It is found that the mud forest landscape is in a dynamic evolution process. Therefore, it is
named the dynamic evolution of the mud forest landscape into four stages in chronological order as
infant stage, juvenile stage, youth stage and old stage, reflecting the evolution process of its formation
to its extinction.

Therefore, it is discussed the factors that promote the subsurface erosion process in mud forest
area and analyzed the influence of geological features, climate, groundwater and soil. It includes
that: (1) The east and west banks are asymmetric, and the erosion of the east bank is more intense.
Local uplift and lower lake levels lead to greater head differences; (2) The dry and cold paleoclimatic
provides the environmental factor for the subsurface erosion, and the present arid-semiarid climate
also facilitates the subsurface erosion; (3) There is abundant groundwater in the mud forest area,
which provides a water-rich environment for the subsurface erosion. The groundwater is controlled by
evaporation and concentration type, it provided abundant soluble salt for the soil in the cycle and
promoted the occurrence of subsurface erosion; and (4) Loess-like soil has high content of silty grains,
poor hydrophilicity, poor soil plasticity, and high porosity. It also has dispersibility, which makes it
prone to subsurface erosion in contact with water. This is the root cause of subsurface erosion in mud
forest areas.
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Featured Application: This work has application in separating subaqueous dune areas

from the flat bed and assessing the scouring risk associated with the pit distribution.

It verifies the feasibility of applying landscape analysis methods to characterize subaqueous

micro-topography.

Abstract: Riverbed micro-topographical features, such as crest and trough, flat bed, and scour pit,
indicate the evolution of fluvial geomorphology, and have an influence on the stability of underwater
structures and overall scour pits. Previous studies on bedform feature extraction have focused
mainly on the rhythmic bed surface morphology and have extracted crest and trough, while flat
bed and scour pit have been ignored. In this study, to extend the feature description of riverbeds,
geomorphic elements mapping was used by employing three geomorphic element classification
methods: Wood’s criteria, a self-organization map (SOM) technique, and geomorphons. The results
showed that geomorphic element mapping can be controlled by adjusting the slope tolerance and
curvature tolerance of Wood’s criteria, using the map unit number and combination of the SOM
technique and the flatness of geomorphons. Relatively flat bed can be presented using “plane”,
“flat planar”, and “flat” elements, while scour pit can be presented using a “pit” element. A comparison
of the difference between parameter settings for landforms and bedforms showed that SOM using 8 or
10 map units is applicable for land and underwater surface and is thus preferentially recommended for
use. Furthermore, the use of geomorphons is recommended as the optimal method for characterizing
bedform features because it provides a simple element map in the absence of area loss.

Keywords: multibeam; flat bed; scour pit; Wood’s criteria; self-organization map; geomorphons

1. Introduction

Bedforms in river flows have an effect on bed roughness, flow conditions, and sediment
transportation [1]. From an engineering perspective, they often present major navigation problems
as they can reduce the local water depth. A large number of navigation channel regulations have
been implemented and associated work has been conducted, which has changed the morphology
and hydrodynamic behavior of rivers such as the Yangtze River. As bedforms are not static, it is
also important to analyze them prior to laying pipelines and cables. In this respect, a multibeam
echosounding system provides high-resolution bathymetric data that show the terrain of bedforms,
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and extracting the features of bedforms from bathymetric data has thus been the focus of intensive
research in recent years.

Many studies have focused on extracting the crest and trough of bedforms because height,
wavelength, and asymmetry of bedforms provide an indication of the flow velocity and direction [2,3].
In this respect, a bedform tracking tool was developed to automatically detect the locations of crests
and troughs from the curves of profiles [4–6]. In addition, Van Dijk et al. [7] used a geostatistical
filter to generate crest and trough lines as a set of points from the filtered bathymetric surface, and
Debese et al. [8] used geodesic morphology to extract the salient crest and trough lines of sand
structures in three dimensions. However, for a flow with an increasing strength, many typical
bedforms can be formed, such as ripples, dunes, anti-dunes, lower flat beds, and upper flat beds [9–11].
Flat beds are also identified as plane beds in some studies [12–14]. A flat bed is a widely spreading
bedform in a river’s subaqueous environment, and it may not contain many crest and trough features.
The complicated development and spatial distribution of the bedform cannot be comprehensively
identified using only crest and trough. In addition, scour pits can be contained in troughs with varying
elevations with manual inspection, as indicated in many studies [15–18]. Therefore, a greater detailed
geomorphic element layer is required to describe the texture or roughness information of features such
as flat and plane beds, and scour pits. Particularly, scour pits have an influence on the stability of
underwater structures.

Studies that previous classified terrestrial landform elements were used as a reference in this
study, as the elements of flat, plane, and pit can be detected via variations in the terrain using these
classification methods or techniques. Wood [19] developed criteria for dividing the land’s surface
into six elements (plane, pit, peak, ridge, valley, and pass) based on four morphometric parameters
(slope, cross-sectional curvature, maximum curvature, and minimum curvature). Ehsani and Quiel
considered the aforementioned four factors as the input vectors for the self-organization map (SOM) to
classify terrain surface by training [20]. In the SOM technique, 10 elements are defined (including flat
planar, gentle slope ridge, and gentle slope channel). Jasiewicz et al. used geomorphons instead of
geomorphometric variables to divide the surface into flat, pit, valley, ridge, peak, shoulder, footslope,
hollow, and spur elements based on the visual angle [21]. A fuzzy method [22] and an object-based
method [23] have also been used to classify elements; however, they are relatively complicated to use.
A few attempts have been made to apply Wood’s criteria and geomorphons in the sea environment.
For example, Stefano and Mayer [24] found that the use of geomorphons was superior to Wood’s
criteria for describing submarine sand waves, and Cui et al. [25] modified geomorphons to detect
seafloor hill, depression, ridge, valley, shoulder, and foot-slope. However, these methods have not
been used in the subaqueous environment of rivers, and the approach and features with respect to
using these methods to characterize river bedforms are currently unclear.

This study aimed to conduct an experiment on extending the extraction of the following bedform
features: the crest and trough of dunes, flat beds, and scour pits. Three methods, including Wood’s
criteria, the SOM technique, and geomorphons, were selected to map the geomorphic elements and to
describe the bedforms of the river system, as it is relatively simple to implement all these methods.
Although there is no pit-related element, the SOM technique was used to characterize bedforms as it
contains the description of flat, ridge, and valley.

2. Materials and Methods

2.1. Study Area and Data

The geomorphic system from the lower reaches of the Yangtze River to the estuarine delta has
undergone varying degrees of adaptive adjustment in recent years. The lower reaches of Datong
(located in Chizhou City) are affected by the tide of the East China Sea, and they thus belong to the
tidal reach area [26]. Numerous engineering construction projects have been implemented in the
Yangtze River Estuary, and these have caused extension of the fluctuating section of the tidal zone [27].
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The rise in relative sea level will ultimately lead to a rise in the tide level and changes in the dynamic
conditions of the Yangtze River Estuary area. In addition, aggravation of river channel erosion in the
mouth of the Yangtze River has seriously impacted the evolution of the river channel in the middle
and lower reaches of the Yangtze River [28,29]. Therefore, in the past decade, many underwater micro
geomorphology surveys and researches using multi-beam sounding systems have been conducted in
the tidal reach area [16–18,30,31]. With respect to the importance of studying this area, the tidal reach
region is also the focus of this study (see Figure 1a).

 

(a) 

  

(b) (c) 

  

(d) (e) 

Figure 1. (a) Location of the two bathymetric survey areas in Yangtze River, (b) geomorphologic
environment surrounding Chizhou Reach, and (c) that of the Yangtze Estuary. (d) Sample data for
Chizhou Reach and (e) Yangtze Estuary. Six cross-sections were set in the sample zones and used to
compare the water depth profiles with the distribution of mapped geomorphic elements.
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Two bathymetric datasets were collected from the end and start of the tidal reach respectively, and
were used as study cases (Figure 1a). The measurements of the first set were collected in Chizhou Reach
within the Yangtze River (Figure 1b) where two flows converge in one direction, and the channel width
ranges from 1 to 2 km (approximately), and those for the second set were collected in the North Port
Channel of the Yangtze Estuary (Figure 1c) where the flow diverges in two directions and the channel
width ranges from 4 to 10 km (approximately). Bathymetric point cloud data were acquired using a
SeaBat 7125 multibeam system operating at a frequency of 400/200 kHz and DGPS (Differential Global
Position System) -positioned. Data were input into PDS2000 software (Version 4.2.16, Teledyne RESON,
Rotterdam, The Netherlands) to generate a grid model with a resolution of 1 × 1 m. Two sample zones
(Figure 1d,e), both with an area of 450 × 360 m2, were cut from the grid model and used to compare
the feasibility of the three geomorphic element mapping methods. The two aforementioned zones
were representative of dune and relatively flat areas. Interpretation by manual inspection separated
dune areas and relatively flat areas, as shown in Figure 1d,e.

The water depth for the sample data of Chizhou Reach ranges from 6.155 to 15.761 m (Figure 1d),
and the depth of the Yangtze Estuary ranges from 8.607 to 19.007 m (Figure 1e). Both sample zones
contained blank areas with NODATA value that is always represented by −9999 in files in ASCII
format. The actual areas excluding NODATA value were 131,041 and 138,623 m2, respectively.

2.2. Wood’s Criteria

Wood [19] used morphometric parameters, including slope and three curvatures, to classify
geomorphic features relating to plane, pit, ridge, channel, peak, and pass. The aforementioned four
parameters were calculated based on the study of Evans [32]. Wood [19] defined a set of criteria for
defining geomorphic elements by comparing the aforementioned four parameters with slope tolerance
and curvature tolerance (Table 1). Slope tolerance separates flat surfaces from slopes, and curvature
tolerance separates planar surfaces from ridges and channels.

Table 1. Wood’s criteria for the classification of geomorphic elements.

Slope
Cross-Sectional

Curvature
Maximum Curvature Minimum Curvature Class Output

>Slope tolerance >Curvature tolerance - - Ridge
(Sloping surface) < – Curvature tolerance - - Channel

<Curvature tolerance
> – Curvature tolerance - - Plane

<Slope tolerance - >Curvature tolerance >Curvature tolerance Peak
(Horizontal surface) - >Curvature tolerance < – Curvature tolerance Pass

- < – Curvature tolerance < – Curvature tolerance Pit
- > – Curvature tolerance < – Curvature tolerance Channel
- <Curvature tolerance > – Curvature tolerance Plane

- >Curvature tolerance <Curvature tolerance
> – Curvature tolerance Ridge

The GRASS GIS version 7.6.1 (GRASS Development Team, Beaverton, OR, USA) provides a tool,
r.param.scale, that directly implements Wood’s criteria by adjusting the value of slope tolerance and
curvature tolerance. The use of different slope and curvature tolerance settings enables the drawing of
distinct geomorphic elements maps. This study aimed to determine suitable tolerance settings to be
applied in extracting bedforms’ features.

2.3. SOM Technique

The SOM technique also calculates the four parameters referred to in Wood’s criteria; however,
it combines the four parameters into an input vector to train the SOM. The SOM is a realistic model
based on the function of the biological brain [33]. Formally, the SOM commonly arranges output map
units in the form of one, two, or three dimensions and connects them to input vectors via weights.
Close input vectors within the space are clustered into units that are also close [34,35]. This means that
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surface points can be considered to be the same geomorphic element if their input vectors are very
close compared to others.

In this study, the SOM technique was used in MATLAB 2019b (The MathWorks, Natick, MA,
USA) via the command “newsom.” Prior to learning, four input parameters were normalized to
the range of 0–1, as indicated in previous researches [20,36]. The number of iterations affects the
amount of computation required; therefore, to reduce the mapping time, it is necessary to control
the iterations. The iteration values of rough tuning and fine tuning were thus set as 100 and 100,
respectively. The number and combination of output map units was preset, as it is impossible to
determine which number will provide a meaningful classification. Following the learning phase,
the trained SOM was used to classify the geomorphic elements based on the input vectors for each
cell, and the optimal number and the corresponding output were selected after analysis. One of the
aims of this study was to determine a suitable map unit combination that enabled the identification of
bedforms’ features.

2.4. Geomorphons

Jasiewicz and Stepinski [21] identified local geomorphic elements using local ternary patterns [37].
In this respect, a ternary pattern depicts the terrain type in the adjacent domain of the central cell
through quantifying the local surface using the line-of-sight principle [38].

Using this principle, eight elevation profiles beginning in the central cell and extending to the
“lookup distance” along eight principal compass directions can be drawn from the digital elevation
model (DEM) to calculate the zenith and nadir angles in the central cell. Using a comparison between
zenith (φD

L ) and nadir angles (ψD
L ), Equation (1) can thus be employed to calculate a slot denoted by

the symbol, ΔD
L , where D is the direction and L is the lookup distance,

ΔD
L =

⎧
⎪⎪⎪⎨
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1 i f φD
L −ψD

L < −t
0 i f

∣
∣
∣φD

L −ψD
L

∣
∣
∣ ≤ t

−1 i f φD
L −ψD

L > t
. (1)

As each elevation profile has one slot, 8 slots can be calculated for a ternary pattern. Based on
the numbers of (−1) and (+1) in the slots, a lookup table established by Jasiewicz and Stepinski [21]
can then be used to define 10 geomorphic elements: flat, pit, ridge, valley, peak, shoulder, spur, slope,
hollow, and foot-slope.

The GRASS GIS version 7.6.1 provides a tool “r.geomorphon” for implementing geomorphons.
The author wrote that the geomorphons in MATLAB 2019b extend the flatness to 0◦, which cannot be
used as a flatness value in GRASS GIS. The flatness threshold, t, is a kernel parameter which influences
the mapping results. Therefore, another aim of this study was to find the suitable flatness setting for
bedforms’ features.

3. Results

3.1. Wood’s Criteria-Based Geomorphic Elements Mapping for Describing Subaqueous Bedforms

The local range of the surface used to calculate the morphologic parameters is limited to the size
of the window. If the size is too small, such as 3 × 3 m, the output will be substantially influenced by
meaningless roughness relating to errors; however, if the size is too large, NODATA values will be
attributed to more cells near the boundary. Therefore, a reasonable size of traversing window was set
as 7 × 7 m in this study. Slope tolerance and curvature tolerance are two key parameters controlling
classification. As shown in Figure 2, a larger area is regrouped into plane when the curvature tolerance
is larger, while more ridge, pit, and pass can be defined when the slope tolerance is larger. Curvature
tolerance should be set within 0.005–0.05, as this can provide an output that is close to eye-based
recognition of the relatively flat area.
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(a) (b) 

Figure 2. Wood’s criteria-based distribution of geomorphic elements with different slope tolerance in
rows and curvature tolerances in columns for the sample data of (a) Chizhou Reach of the Yangtze
River and (b) the Yangtze Estuary.

Six cross-sections were set (as shown in Figure 1) to draw the depth profile, and these were overlaid
with identified elements, as shown in Figure 3. Cross-section 1 in the figure shows a longitudinal profile
of large dunes (with a length of 19 m and height of 2 m) according to the classification of bedforms
in Reference [39]. Cross-section 4 also shows the longitudinal profile of dunes on a similar scale.
Cross-sections 2 and 5 show transverse profiles along the trough of dunes, respectively. Cross-section
3 shows a longitudinal profile of relatively flat bedforms (with a length of approximately 20 m and
a height between 0.1 and 0.3 m), and Cross-section 6 shows a longitudinal profile of bedforms: it is
basically flat and is considered to be a flat bed in this study.

p y y

 
(a) 

Figure 3. Cont.
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(b) 

Figure 3. Water depth profiles overlaid by Wood’s criteria-based elements for (a) Cross-sections
1, 2, 4, and 5 under various slope tolerances, and for (b) Cross-sections 3 and 6 under various
curvature tolerances.

Trough and crest are the main features in dune areas [15–18]. Using Wood’s criteria, the crest and
trough were mainly represented by ridge and valley elements, as shown in Figure 3a. The widths of the
ridges and valleys were determined by the curvature tolerance set: large values induced narrow ridges
and valley, as shown in Figure 2. Many studies have ascertained that scour pits can be contained in the
troughs of bedforms with varying elevations [15–18], and bedforms contain scour pits with diverse
sizes. In the case of Wood’s criteria, the size of the pit element was determined by the curvature and
slope tolerance set, as indicated in Table 1. Large slope tolerance with smaller curvature caused larger
areas to be defined as scour pits, as shown in Figure 3a, where the scale of pit element was enlarged in
both the longitudinal and transverse profiles with a decrease in curvature tolerance. Many studies have
identified flat bed as being a typical bedform [9–11]. With Wood’s criteria, the element plane was used
to indicate a relatively flat, smooth, inclined area, as shown in Figure 3b, and the value of the curvature
tolerance determined the distribution of the plane elements. Using Wood’s criteria, a curvature
tolerance of 0.01 can be used to filter relatively flat bedforms using plane elements. As evident from
Figure 3b, a relatively smaller curvature tolerance should be used to define plane elements on a flat bed.

3.2. SOM Technique-Based Geomorphic Elements Mapping for Describing Subaqueous Bedforms

The morphometric parameters calculated under a window size of 7× 7 m when employing Wood’s
criteria were also combined into the input vector to train the SOM. When using the SOM technique,
the number of output map units corresponds to the number of geomorphic elements, and the spatial
arrangement form of the units can be one-, two-, or three-dimensional. Although the most reasonable
number of map units is unknown, Yan et al. [36] found that two and three dimensions offer a more
meaningful classification. As a result, arrangement forms including (3 2), (4 2), (2 2 2), (3 3), and (5 2)
were considered for arranging the output map units (Figure 4). The mean slope and cross-section
curvature for each map unit were calculated as coordinates to plot the units within the feature space.
According to a previous study [20], the units should be concentrated in three lines that correspond to
three main groups (channel, planar, and ridge) to ensure that the units are well-defined as geomorphic
elements. The units can then be sub-defined by slope (such as flat, gentle slope, moderate slope,
steep slope, and very steep slope).
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(a) 

 
(b) 

Figure 4. Distribution of map units in the feature space with different numbers and arrangement map
units using the self-organization map (SOM) technique for the sample data of (a) Chizhou Reach and
(b) the Yangtze Estuary.

For Chizhou Reach, the suitable number of output map units was found to be 8, and the units
were arranged in the form of (2 2 2), as shown in Figure 4a. Table 2 lists the suitable definitions and
areas associated with each map unit. Map units 3 and 6 were given the same definition (moderate
slopes, planar) because they host relatively smaller areas and are situated very close within the feature
space. For the Yangtze Estuary, (5 2) was selected as the suitable arrangement of map units (Figure 4b),
and map units 7 and 8 were given the same definition (moderate slopes, planar).

Table 2. Statistical results for geomorphic elements under Wood’s criteria, the SOM technique,
and geomorphons.

Method

The Sample Data of Chizhou Reach The Sample Data of Yangtze Estuary

(Map Unit)
Element

Area (m2)
Percentage

(%)
(Map Unit)

Element
Area (m2)

Percentage
(%)

Wood’s
criteria

Plane 36,586 32.05 Plane 35,455 29.54
Pit 3668 3.21 Pit 4089 3.41

Valley 30,124 26.39 Valley 29,972 24.97
Pass 12,188 10.67 Pass 12,754 10.62

Ridge 28,573 25.03 Ridge 33,267 27.71
Peak 3029 2.65 Peak 4496 3.75
Total 114,168 100.00 Total 120,033 100.00

SOM
technique

(1) Flat, planar 28,645 25.09 (1) Flat, planar 21,239 17.69
(2) Gentle slopes,

channel 16,624 14.56 (2) Gentle slopes,
ridge 13,209 11.00

(3) Moderate
slopes, planar 8960 7.85 (3) Moderate slopes,

ridge 14,528 12.10

(4) Moderate
slopes, channel 12,308 10.78 (4) Steep slopes,

ridge 9517 7.93

(5) Gentle slopes,
ridge 17,859 15.64 (5) Very steep

slopes, planar 7255 6.04

(6) Moderate
slopes, planar 3232 2.83 (6) Gentle slopes,

channel 12,141 10.11

(7) Steep slopes,
ridge 13,414 11.75 (7) Moderate slopes,

planar 8927 7.44

(8) Steep slopes,
channel 13,126 11.50 (8) Moderate slopes,

planar 11,827 9.85

(9) Steep slopes,
channel 11,310 9.42

(10) Very steep
slopes, channel 10,080 8.40

Total 114,168 100.00 Total 120,033 100.00
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Table 2. Cont.

Method

The Sample Data of Chizhou Reach The Sample Data of Yangtze Estuary

(Map Unit)
Element

Area (m2)
Percentage

(%)
(Map Unit)

Element
Area (m2)

Percentage
(%)

Geomorphons

Ridge 16,184 12.35 Ridge 24,891 17.96
Shoulder 17,360 13.25 Shoulder 15,918 11.48

Spur 7361 5.62 Spur 11,827 8.53
Slope 28,809 21.98 Slope 29,986 21.63

Hollow 7238 5.52 Hollow 10,283 7.42
Foot-slope 17,119 13.06 Foot-slope 7054 5.09

Valley 11,779 8.99 Valley 13,816 9.97
Pit 2029 1.55 Pit 2843 2.05
Flat 21,858 16.68 Flat 20,679 14.92
Peak 1304 1.00 Peak 1326 0.96
Total 131,041 100.00 Total 138,623 100.00

The SOM technique not only divided the surface into channel and ridge but also further divided
these two features based on their slopes, as shown in Figure 5. Gentle slope ridges are narrow and
are located on the crest of dunes, and steep slope ridges are located on the lateral side of gentle slope
ridges (Figure 6a). In addition, the gentle slope channel is narrow and located on the trough of dunes,
whereas the steep slope channels are located on the lateral side of the gentle slope channel (Figure 6b).
Therefore, gentle slope ridges and channels tend to be linear along crests and troughs. However, a pit
element could not be identified using this technique, as shown in Figure 5 and Table 2. The SOM
technique indicates relatively flat bedforms with flat, planar elements that correspond to the middle
curvature and lowest slope while the middle curvature and relatively large slope are related to the
relatively steep planar. However, it is difficult to precisely distinguish flat beds using this technique.
Moreover, when the crest and trough are very wide, the lower slope planar can be generated in the
crest and trough of bedforms.

  
(a) (b) 

Figure 5. SOM technique-based distribution of geomorphic elements for the sample data of (a) Chizhou
Reach and (b) the Yangtze Estuary.

  
(a) (b) 

Figure 6. Water depth profile overlaid by SOM technique-based elements for (a) Cross-section 1 and
(b) Cross-section 4.
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3.3. Geomorphons-Based Geomorphic Elements Mapping for Describing Subaqueous Bedforms

Geomorphons requires that the lookup distance has a relatively large size. Jasiewicz and
Stepinski [21] suggested using 50 cells, as a larger distance provided no added benefits in their study.
We also used a lookup distance containing 50 cells (equal to 50 m) in this study. The function of flatness
is more important, and the slot is denoted by 0 for basically horizontal surface with the difference
between the nadir and zenith angle smaller than flatness. When the area of flatness is large, a greater
number of slots are denoted by 0, which means that a larger area is then defined as being a flat element,
as shown in Figure 7. The figures show that the flat element area is too large when flatness is greater
than 4◦.

 

(a) 

 
(b) 

Figure 7. Geomorphons-based distribution of geomorphic elements with different flatness degrees for
the sample data of (a) Chizhou Reach of the Yangtze River and (b) the Yangtze Estuary.

In the case of geomorphons, ridge and valley elements were also used to represent crest and
trough bedforms: their scales were determined by flatness, and they increased in accordance with
decrements in flatness (Figure 8). Similarly, the size of the pit element was determined by flatness,
and smaller degrees of flatness created a greater surface with low roughness into a pit element within
troughs of bedforms, as indicated in Figure 8, where the scale of the pit element is enlarged in both the
longitudinal and transverse profiles and the decrements in flatness relate to those in cross-sections
1, 2, 4, and 5. Geomorphons use flat element to indicate relatively flat areas under suitable flatness
degrees, and a flatness degree of 2◦ can be used to filter relatively flat bedforms using flat elements.
Cross-section 6 in Figure 8 shows that when flatness was 0◦, the flat bed could be redefined as a slope
element without a ridge and a valley, and Cross-section 3 shows that relatively flat bedforms were
redefined as slope elements coupled with a ridge and a valley (Figure 8). It thus seems feasible to use
geomorphons to distinguish flat beds from relatively flat bedforms by combining geomorphons-based
element maps when flatness is equal to zero and relatively smaller.
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Figure 8. Water depth profile overlaid by geomorphons-based elements for Cross-sections 1–6 under
various flatness degrees.

3.4. Comparison of the Three Methods

The number and combination of map units control the mapping result when using the SOM
technique, while thresholds determine the results when using Wood’s criteria and geomorphons.
Table 2 lists the statistical results of elements for the three methods under suitable parameter settings.
In this respect, a curvature tolerance of 0.01 and a slope tolerance of 5◦ is considered to be a suitable
combination for separating relatively flat areas from subaqueous dunes areas when using the plane
element in Wood’s criteria. In this study, 2◦ was set as the optimal flatness to match flat elements
with relatively flat areas. For Chizhou Reach, the total area of all the geomorphic elements defined
by Wood’s criteria and the SOM technique was 114,168 m2, and an area of 16,873 m2 provided a
NODATA value or caused data loss. For the Yangtze Estuary, the total area was 120,033 m2 and an area
of 18,590 m2 provided a NODATA value or caused data loss (Table 2). These morphometric parameters
were calculated in a window of 7 × 7 m. A geomorphic element was defined as NODATA when the
window contained a NODATA value (a cell of blank area). In contrast, geomorphons provided a
superior result, and the area between output and input was equal.

For the description of flat bed, Wood’s criteria uses the plane element to indicate relatively flat
areas, and curvature tolerance determines the distribution of the plane element, which can host a
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relatively larger slope angle. The SOM technique indicates a relatively flat area with flat, planar element
corresponding to middle curvature and lowest slope. Middle curvature and relatively large slope
relate to relatively steep, planar areas. Geomorphons uses flat elements to indicate relatively flat areas,
and the definition of flat is related to a basically horizontal surface. As a result, the percentage of flat
elements (in geomorphons) is the lowest, while that of plane (in Wood’s criteria) is the largest (Table 2).
For the description of scour pit, the size of the pit element is determined by the set of curvature
and slope tolerance in Wood’s criteria, and by the assignment of the flatness value in geomorphons;
however, it cannot be defined using the SOM technique. To describe trough and crest, the SOM
technique not only divides surface into channel and ridge but also further divides them based on their
slope. Gentle-sloping ridge and channel tend to be the linear crest and trough of bedforms. For Wood’s
criteria and geomorphons, the crest and trough are present in an areal form, and their sizes change in
accordance with slope tolerance and flatness. In comparison to the SOM technique, Wood’s criteria
and geomorphons provide a relatively simple element map matching with bedforms’ features.

4. Discussion

4.1. Comparison with Terrestrial Landform Element Mapping

These three methods have different critical values for subaqueous bedforms in river systems and
terrestrial landforms. Using Wood’s criteria, the DEM (Digital Elevation Model) size employed in a
geomorphologically diverse region of Central Mexico was 90 × 90 m, and the suitable tolerances of
slope and curvature were set as 6◦ and 0.0001, respectively [40]. In addition, a 90 × 90 m DEM was
used for morphologic element mapping and 1◦ and 0.0005 were employed as the suitable tolerances of
slope and curvature respectively, at the border of Poland, Slovakia, and Ukraine [20]. Furthermore,
a DEM of 50 × 50 m was utilized for landform delineation in South Tyrol with slope and curvature set
as 14◦ and 0.002, respectively [41]. In this article, these critical values were set as 5◦ and 0.01 when
data in the resolution of 1 × 1 m were obtained via measurements in two areas of the Yangtze River.
Although the slope tolerance is similar to that of other studies, the curvature tolerance is considerably
larger than that used for terrestrial landforms. For geomorphons, the reported flatness in the literature
varies with the area of focus; however, it essentially ranges from 0◦ to 3◦ [21,42–45], which is close to
the 2◦ used in this study.

For the SOM technique, the optimal classification was obtained when a suitable number and
combination of map units were set. The optimal number of map units changed with the four input
morphometric parameters, which was also mentioned in a previous study [36]. All studies have
analyzed different terrain, which means that a variety of vectors have been input to the SOM. In a
previous study, a suitable number of 10 map units was determined at the boundary between Poland,
Slovakia, and the Ukraine [20], and 8 was suggested for use in a loess area [36]. In this research, 8 and
10 map units were used for the two samples, respectively. It thus appears that the common number of
map units used is 8 or 10, although the optimal number of map units changes.

A digital terrain model obtained via remote sensing basically contains no missing data for
entire regions. However, bathymetric data always contain blank areas in a general situation.
The SOM technique and Wood’s criteria do not operate effectively in the presence of blank data,
because their use is based on the calculation of slope, cross-sectional curvature, maximum curvature,
and minimum curvature.

4.2. Limitations and Prospects

Figure 9 presents a strategy for using geomorphic elements to characterize river bedform features.
In this respect, the crest, trough, flat bed, and scour pit are considered. Many of the geomorphic
elements shown in Figure 9 are indicative of special geographic units in other subaqueous environments;
for example, peak and pit can be used to map seafloor hills and depressions [25]. Further studies are
required to determine the indicative functions of the geomorphic elements for subaqueous objects;
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for example, for erosional holes, erosional flutes, sand mining holes, and sinking boats, which relate
to the anthropogenic drivers of subaqueous topographical changes [18], and for bank scarps, toes,
and failure, which relate to bank slope stability.

 
Figure 9. Strategy for describing subaqueous bedforms features using geomorphic elements in a
river system.

The spatial scales of ripples in a bedform generally have lengths in the order of 0.05–0.50 m [46]
and cannot be detected when using a cell size of 1 m. The bathymetric data used in this study were
at a resolution of 1 × 1 m, which means that the ripples between subaqueous dunes and the flat bed
were inevitably ignored. Geomorphic elements mapping using higher resolution bathymetric data are
required in further studies to ameliorate this limitation. In addition, dunes often show superimposed
relationships under various bedform scales [3,47], because of the effect of complex flow dynamics on
different temporal and spatial scales. The bathymetric data cell size may thus need to be adjusted to
identify superimposed regions on different scales.

Height, length, and direction of bedforms are important parameters relating to the dynamic
features of flow [2]. Although the geomorphic elements map is not suitable for use in calculating these
parameters, it provides the potential to narrow the analysis range by separating the dunes area from
the relatively flat bedforms. Previous studies have inferred that subaqueous geomorphic elements
have statistical relationships with the category of landforms [40,42]. Some studies have found that
the spatial distribution of geomorphic elements presents a certain pattern that represents the type
of landform [48,49]. As in the relationship between landform elements and landscape, all of the
geomorphic elements listed in Figure 9 are meaningful for comprehensively depicting the pattern of
elements and regionalizing the bedform areas; however, the development of a more detailed method
remains the subject of further research. In addition, the generation of a geomorphic elements map
has the great potential to be used in auto-tracking the movement of bedforms, which is significant for
assessing bedform instability [50,51].

5. Conclusions

This study analyzed the use of geomorphic element mapping methods for depicting subaqueous
bedforms in the Yangtze River. The main conclusions are presented as follows.

The plane element in Wood’s criteria, the flat, planar element in the SOM technique, and the flat
element in geomorphons can be used to indicate the existence of relatively flat bedforms. A curvature
tolerance of 0.01 in Wood’s criteria, and flatness of 2◦ in geomorphons, are considered to be optimal
thresholds for automatically filtering relatively flat bedforms from subaqueous dunes. In addition,
for the description of scour pit, the value of slope tolerance and flatness can be used to adjust the size
of a pit element, which increases with a decrease in the threshold, while the SOM technique cannot
extract pit. We recommend geomorphons as the optimal method for characterizing bedforms’ features,
because it provides a simple element map without any loss of area.
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Slope tolerance and flatness are close to the landform element classification, while curvature
tolerance is far larger. The optimal number and combination of map units appears to change for
different areas but is generally 8 or 10, irrespective of the bedform or landform analyzed. Therefore,
with the SOM, 8 and 10 map units should be recommended in future studies.

Using the three methods, many other elements (such as spur, hollow, peak, and pass) can be
extracted to reflect the detailed roughness of bedforms or other subaqueous objects (bank scarp,
erosional hole, and sinking boat), and this remains the subject of future studies. The spatial distribution
of geomorphic elements presents a certain pattern of elements that represents the type of bedform,
and it can be used to narrow the range of morphology and dynamic analysis of bedforms.
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Abstract: Simulation scenarios of sediment flux variation and topographic changes due to dam
removal have been investigated in a reservoir catchment of the axial zone of southern Italy through
the application of a landscape evolution model (i.e.,: the Caesar–Lisflood landscape evolution models,
LEM). LEM simulation highlights that the abrupt change in base level due to dam removal induces a
significant increase in erosion ability of main channels and a strong incision of the reservoir infill.
Analysis of the sediment dynamics resulting from the dam removal highlights a significant increase of
the total eroded volumes in the post dam scenario of a factor higher than 4. Model results also predict
a strong modification of the longitudinal profile of main channels, which promoted fluvial incision
upstream and downstream of the former reservoir area. Such a geomorphic response is in agreement
with previous analysis of the fluvial system short-term response induced by base-level lowering,
thus demonstrating the reliability of LEM-based analysis for solving open problems in applied
geomorphology such as perturbations and short-term landscape modification natural processes or
human impact.

Keywords: landscape evolution; soil erosion; DEM analysis; applied geomorphology; dam removal;
base-level lowering; southern Italy

1. Introduction

Base-level variation has a significant impact on a geomorphological system with severe changes
in channel incision rate, sediment flux, and spatial distribution of geomorphological processes [1–3].
A fast transition from endorheic (i.e.: centripetal drainage or closed basin) to exorheic drainage is
one of the most relevant cases of disequilibrium of a landscape, because it promotes a non-linear
response of the fluvial systems and a complex spatial and temporal response of river incision and
sediment flux (see for example [4]). Several works have investigated the long-term response of
the drainage network to a transition from endorheic to exorheic conditions due to complex climate-
or tectonic-driven processes such as sediment overfilling, headward stream erosion, and threshold
incision or fluvial capture [5–8]. This kind of analysis is largely based on morphotectonic studies
and related qualitative reconstruction of past stages of landscape evolution [9–11]. Dam construction
and/or removal is one of the human-induced perturbations of the fluvial net with a stronger impact
on the geomorphic system [12–14]. Many works have been focused on the analysis of the effects of
this kind of disturbance on the fluvial network and sediment flux, highlighting a typical response
that is strongly controlled by the post-dam river longitudinal profile. In fact, upstream knickpoint
retreat generally promoted incision of both upland areas and reservoir infill, but several works have
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demonstrated that local factors such as rates of knickpoint migration [15,16], bedrock erodibility [17,18],
grain-size and texture of reservoir sediment [19] and width of the reservoir [17,19] can drive a
complex response of river processes and promote a high spatial and temporal variability of erosion
and deposition. Most of these studies are based on field and remote sensing data at limited spatial
and temporal scales [17,19,20] or on the application of 1-D models [21,22]. For example, extensive
geomorphic analyses of dam removal scenarios have been conducted in the USA through: (i) the
direct measurements of the post-dam modification of morpho-sedimentary features supported by
one-dimensional hydrodynamic modeling [17]; or (ii) the application of channel evolution models
such as CONCEPTS and DREAM [21,22]. Such models have a significant limitation that they are not
able to fully capture the spatial (i.e., lateral) distribution of river processes, channel modification, and
sediment flux.

In the last years, landscape evolution models (LEMs) have been extensively used to simulate
short- and long-term geomorphic scenarios of sediment flux and topographic modification in different
natural environments [23–27]. These studies have demonstrated that LEMs represent a powerful tool
to predict morpho-sedimentary adjustments related to changes in land use, climate setting, and base
levels [24,28–31]. Recently, the Caesar–Lisflood LEM was used to investigate the short-term (i.e., at a
decadal scale) pattern and rates of geomorphic changes and associated sediment flux induced by
removal of multiple dams in the middle reach of Kaja River, Austria [32]. The authors demonstrated
the usefulness of the LEM to predict the 2-D geomorphological and sedimentary effect of the abrupt
base-level fall related to dam removal. This kind of investigation overcomes the clear limitation of 1-D
or empirical models and can provide a significant opportunity to modify different controlling factors
such as climate setting, land use, vegetation growth, and sediment features. The main limitation of the
application of such models is that a reliable calibration of a LEM is really complicated and several
well-known reasons such as the difficulty of both the selection of model parameters and the absence
of extensive validation of the prediction ability of the model results in natural environments could
represent a significant limitation in its application in complex natural landscapes [25,33]. Thus, a test
area where a LEM is already calibrated can provide a reliable opportunity to simulate the impact
of dam removal on the morpho-sedimentary processes and rates. In this paper, we exploited this
opportunity and investigated the geomorphic changes induced by dam removal in a small artificial
reservoir of southern Italy (Figure 1), where the prediction ability of the Caesar–Lisflood LEM has
been already tested [34]. More specifically, the calibration of the model has been recently carried out
through the comparison between the simulation results and a direct estimation of sedimentation rates
in the reservoir, demonstrating a good prediction ability of the model [34]. Application of the dam
removal scenario in the catchment allowed us to investigate the short-term (i.e., at a decadal scale)
response of the geomorphic system to the abrupt change in base level as well as the role of several
local factors (i.e., infill thickness and geometry, the sediment and bedrock features) on the changes in
sediment flux and channel pattern.

2. Study Area

The study area is located in an upland area of the Ofanto basin, a Pliocene-Quaternary tectonic
depression of the southern Apennines, Italy (Figure 1). It includes the catchment of the Ficocchia
Torrente stream, a dextral tributary of low hierarchical order of the Ofanto River. The Ficocchia
stream is dammed in its lower reach by an earth dam (i.e., the Saetta dam), which was constructed by
EIPLI (Agency for the Development of the Irrigation and Agricultural Transformation, Ministry of
Agricultural, Food and Forestry Policies) between 1988 and 1989.

The Ofanto River cuts a large E-W-trending intermontane tectonic depression, Pliocene to
Quaternary in age. The infill of the basin is intensively deformed by Pliocene-Pleistocene folding and
faulting related to the younger stages of evolution of the southern Apennines chain [35] and covers a
wide (i.e., about 350 kmq) and elongated area along the Ofanto River valley [36,37]. Pliocene-Pleistocene
deposits of the Ofanto basin are composed of clay, sandstones and conglomerates, which unconformably
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overlay poly-deformed units of limestone, shale and sandstone that belong to the Irpinian and Lagonegro
tectonic units of Cretaceous to Miocene ages [36].

Figure 1. Geological map of the study area (modified from [36]). Legend: (1) Clay of lacustrine
environment (lac, Holocene) (2) Landslide deposits (lan, Holocene) (3) Holistolits made by decametric
blocks of limestone (pa, Upper Miocene); (4) Silt and marly clay (CVT2, Upper Miocene); (5) Coarse- to
medium-grained sandstone with rare intercalation of lens of polygenic conglomerate (CVT1, Upper
Miocene); (6) Calcareous breccia and grey shale (FYRa, Lower Cretaceous-Oligocene); (7) Alternance of
chert, marly clay, calcarenites and calcareous breccia (FYR1, Lower Cretaceous-Oligocene); (8) Light-grey
and greenish shale with intercalation of marls and limestone (FYG, Lower Cretaceous); (9) Alternance
of calcarenite, calcilutite and varicoloured clay (FMS, Upper Cretaceous-Eocene); (10) Varicoloured clay
(AVF, Lower Cretaceous); (11) High-angle fault (dashed if uncertain); (12) Thrust (dashed if uncertain);
(13) Stratigraphic contact. (A) Geographical location of the study area.

The reservoir catchment is carved in a Cretaceous to Miocene bedrock made by tectonic domains
belonging to Lagonegro units, Sicilide calcareous-clay succession and flysch deposits of Miocene
syntectonic basins (Figure 1, see also [36]). The study area also features widespread outcroppings of
upper Miocene deposits belonging to Castelvetere Formation. These deposits are composed of light
brown sandstone with intercalation of conglomerate (CVT1, Figure 1) passing upward to silt and marly
clay (CVT2, Figure 1) containing large blocks of olistoliths (pa, Figure 1). These deposits mainly crop
out in the south-western sector of the study area and unconformably overlies the Lagonegro tectonic
units, which form an elongated belt in the north-eastern sectors of the study area. The outcropping
deposits of the Lagonegro units are mainly constituted by lower–middle Cretaceous marls and grey
shales with calcarenites and calcirudites and calcareous breccia (Flysch Rosso Formation, FYRa and
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FYR1 in Figure 1). Lower Cretaceous varicoloured clay (AVF) with thin intercalations of calcirudites
and calcarenites (FMS) crops out in the northern sector of the studied area (Figure 1).

Heterogeneous landslide deposits and fine-grained reservoir sediments are the youngest
lithological units of the study area.

The geomorphological pattern of the study area is strongly influenced by the Pliocene-Quaternary
tectonic evolution and relief growth of this sector of the chain, which have also controlled the lithological
features and spatial distribution of deposits. The landscape is located at an altitude ranging from 942
to 1242 m a.s.l. and is dominated by E–W trending ridges and thrust sheets, which are mainly carved
in Cretaceous-to-Miocene pelagic deposits. These structural landforms are deeply cut by the drainage
network of the Ficocchia stream (Figure 2).

Figure 2. (A) DEM of the pre-dam removal landscape and drainage network of the study area.
Hierarchization follows the Strahler’s scheme. Numbering of the catchments is shown in the frame to
the left. (B) Land-use map. Legend: (1) Anthropic surfaces and roads; (2) Arable lands; (3) Sclerophyllous
vegetation; (4) Broad-leaved and mixed forests; (5) Natural grasslands; (6) Water courses and water
bodies. (C) Isopachs of soil thickness derived by a GIS-based interpolation of the results of a field-survey
analysis. Modified after [34].

The drainage basin of the artificial reservoir is formed by three small catchments of low hierarchical
order showing a well-organized drainage network with a sub-dendritic pattern. The watershed of the
southern sector of the reservoir catchment is featured by a sub-circular shape and runs on low-relief
erosional land-surfaces [34,37]. In this sector, headwater channels exhibit a higher gradient than the

40



Appl. Sci. 2020, 10, 7697

channels located in lower reaches (Figure 2). The main geomorphological processes of the study
area are channel incision and fluvial erosion, which also represent the main influence factor of the
sediment yield and flux. Slope processes and landsliding phenomena related to minor shallow mass
movement processes and small earth-flows are located in the eastern sector of the studied catchment,
where clay-rich deposits crop out.

Regional climate data of the study area was derived from the statistical analysis of a weather
station located about 20 km to the west of the study area (daily rainfall record of the Pescopagano
weather station, period: 1951–2015, [38]). Mean annual rainfall of the study area in the last half-century
is slightly higher than 1000 mm year−1. The climate setting is featured by dry summers and cold
winters with a maximum of rainfall in autumn. In the last decades, a general trend of decrease in total
annual rainfall was observed. This trend is associated with a decrease in rainy days and an increase of
multi-day extreme rainfall events, mainly in autumn and spring. Shorter-term rainfall record (period:
1994–2016) of the hydro-meteorological station of the study area highlights a similar climate trend:
mean annual precipitation is about 900 mm and rainfall peaks are mainly observed in the autumn and
winter seasons, with rainfall maxima of 150–160 mm [34].

According to the classification of the III level of the Corine Land Cover project [39], a land-use
map of the catchment was prepared from a revision of literature data and original investigation based
on photointerpretation of aerial and satellite images. The landscape is dominated by semi-natural
areas with natural grasslands and sclerophyllous vegetation that cover about 85% of the total area.
Other sectors of the study area are classified as agricultural and urban areas.

3. Materials and Methods

3.1. Caesar–Lisflood LEM: Model Description and Calibration

Caesar–Lisflood is a second-generation LEM that can be used to model short- and long-term
topographic changes and sediment flux of complex natural landscapes. In the last decade, the model
was extensively used for the analysis at different temporal and spatial scales of issues of applied
geomorphology and hydrology. As a matter of fact, there are at least 60 published papers dealing with
model applications [40]. A rigorous and complete description is beyond the scope of this paper and is
reported in [41].

The Caesar–Lisflood LEM uses a hydrological model to generate spatially distributed runoff,
which is generated on a DEM to estimate flow depths and velocities [41]. Such data are used to model
topographic changes and to assess topographic modification (i.e., erosion and deposition) within an
active layer with a pre-defined grain-size of deposits. The modified DEM becomes the starting point
for the next time step of the simulation. The user can select a catchment mode with no internal influxes
other than rainfall or a reach mode, where the flow enters through the main river. Input data of the
model are: DEM, grain-size features, rainfall, depth of bedrock and Manning coefficient values [24,41].

Rainfall precipitation represents the input to derivate catchment runoff, which in turn drives
topographic changes (i.e., erosion and deposition) and controls fluvial and slope processes for the
modeled time step [28]. Depths and velocities of the flow are estimated from flow discharges between
raster cells using the Manning’s equation and are then used to model both the sediment transport
and erosion/deposition processes. Caesar–Lisflood estimates sediment transport in relation to nine
grain-size fractions, which are selected by use. Sediment can be transported as bed load or as suspended
load. Soil creep and landslide processes can be also included in the simulation [41,42] using a critical
slope angle threshold. This condition allows the re-distribution of landslide and soil creep deposits
from slopes to the fluvial system. Elevations and grain size features of the cells are updated according
to the estimation of erosion/deposition and slope process. Model outputs are: (i) elevation changes;
(ii) flow discharges; (iii) sediment fluxes at the outlet over time [24,28,41–43]. The model is able to
reconstruct topographic changes at a sub-metric scale. Input data and model parameters represent the
key to derive a robust predictive model, although a recent work by [44] demonstrated that results of
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the Caesar–Lisflood LEM are influenced only by a limited number of parameters. More specifically,
the authors suggest that spatial distribution of Manning coefficient and the selection of the sediment
transport formula are the main sensitive parameters of the model results. For this reason, we have
carefully selected these parameters: for example, Einstein’s sediment transport formula [45] was
reconstructed using laboratory tests on (predominantly) sand-based channels and we have here chosen
this equation according to the prevalent grain-size deposits of the study area. A 5-m DEM was used
for the simulation. Moreover, the other input parameters were accurately derived from lithological,
climate, and land-use features of the study area. To introduce a representative framework of the study
area, we have preliminarily reconstructed the bedrock depth through a field-based analysis of the
lithological units. To this aim, a detailed lithological map has been drawn by review of previous works
and new geological surveys. Moreover, field surveys of the soil depth have been performed for the
different lithological units of the study area (Figure 2, [34]). This approach allowed us to infer the soil
thickness and bedrock depth for each lithological. This kind of information was summarized in a map
showing the isopachs of the mean soil thickness (Figure 2c). The map has been converted in a raster
grid and was introduced in the model in order to set the depth of bedrock and grain-size distribution
within the active layer where erosion and deposition processes are estimated by LEM. The layer of
the bedrock has been derived in a GIS environment using a map algebra tool based on a subtraction
between the soil thickness map and the DEM.

Hourly rainfall dataset was derived from a weather station located near the catchment outlet.
Rainfall record covers a time interval of about 22 years, and it was used also for the dam-
removal scenario.

Input data and model parameters are summarized in Table 1 (see also [34]). It is worthy of note
that the estimation of the sedimentary budget base on the LEM simulation was already tested through
a comparison between the total amount of eroded sediment volumes coming from the model results
and direct measurement of the short-term (i.e., about 20 years) sediment storage within the artificial
reservoir. The good accordance between the model results and direct measurements [34] suggests that
the model can be used to simulate the dam removal scenario in a consistent way.

Table 1. Model parameters.

Number Caesar–Lisflood Parameter Value

1 Grain-size features (m) 0.0005, 0.001, 0.002, 0.004, 0.008, 0.016, 0.032, 0.064, 0.128
2 Grain-size distribution (total 1) 0.20, 0.18, 0.12, 0.06, 0.03, 0.03, 0.1, 0.25
3 Type of rainfall record Hourly
4 Sediment transport equation Einstein
5 Max erode limit (m) 0.01
6 Active layer thickness (m) 0.1
7 Lateral edge smoothing passes 40
8 Manning coefficient 0.015–0.1 (derived by land-use map)
9 Soil creep/diffusion value 0.0025
10 Slope failure threshold 40
11 Vegetation critical stress 100

Manning coefficient values were assigned (Table 2) according to a revision of the values proposed
in previous works (see for example [46,47]) whereas the spatial distribution of the Manning coefficient
follows the boundaries of the land use map of the study area (Figure 2b).
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Table 2. Values of the Manning coefficient.

Number Land-Use Cover Manning Coefficient

1 Building and road 0.015
2 Agricultural areas 0.035
3 Sclerophyllous vegetation 0.05
4 Broad-leaved and mixed forests 0.1
5 Natural grasslands 0.03
6 Streams and water bodies 0.04

3.2. Dam-Removal Scenario

Two different scenarios were simulated in the study area (Table 3): the first one is the pre-dam
removal scenario, where the modification of the initial topography (PreDR-T0, Table 3) has been
simulated over a time interval of 20 years (Pre-DR-T20, Table 3). Such a scenario represents the
present-day landscape and the simulation provided a reconstruction of the sediment flux in the
reservoir and the short-term topographic changes of the fluvial and slope systems. Input parameters
and boundary conditions are summarized in Table 1.

Table 3. Description of the simulation scenarios: the first scenario refers to the present-day
geomorphological setting whereas scenario 2 infers the geomorphic changes induced by the
dam removal.

Scenario Period Initial DEM Final DEM Description

1—Pre-dam removal 0–20 yr Pre-DR-T0 Pre-Dr-T20
Present-day landscape, analysis of
erosion and sedimentation in the

closed drainage system

2—Post-dam removal 0–20 yr Post-DR-T0 Post-Dr-T20 Removal of dam and related
geomorphic response to base-level fall

The post-dam removal scenario has been developed removing the dam body to the initial DEM.
More specifically, the DEM was created by subtracting to the original topography the dam height
(PostDR-T0, Table 3). Post-dam removal simulation was run for a period of 20 years (PostDR-T20)
using the same hourly rainfall data and input parameters of the Pre-DR scenario.

Output DEMs and raster of the topographic changes were analysed in a GIS environment to
assess the pattern and rates of sediment flux and channel profile adjustments. Spatial distribution of
the erosion/deposition processes, multi-temporal analysis of river longitudinal profiles, and valley
topographic changes represent the key data to infer the geomorphic response of the study area to the
simulated fall of the base-level.

4. Results

4.1. Scenario 1, Pre-Dam Removal

Outputs of the Caesar–Lisflood LEM are analysed in a GIS environment in order to investigate the
geomorphic changes of the fluvial system and the spatial and temporal distribution of sediment erosion
and deposition and their relationships with lithology, land use, and geomorphological processes.
Figure 3 shows the hillshades representing the initial DEMs used for the modeling of the two
simulation scenarios. Dam removal promoted an increase of the catchment area of about 0.6 kmq.
The post-dam removal catchment includes the steeper reach of the Ficocchia stream, which flows in a
deep V-shape valley.

As already described in the previous section, a recent work provided a comparison between
LEM-based estimation of sediment flux of the Ficocchia catchment and direct measurements of reservoir
sedimentation volumes [34]. This estimation covers a period (i.e., 18 years) similar to the simulation
period of this work and highlights good accordance between model results and field-based data.
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More specifically, LEM-based erosion volumes tend to underestimate the reservoir sedimentation of
about 20%.

Figure 3. Hillshades representing the initial DEMs used for the modeling of the different simulation
scenarios: (A) pre-dam removal, initial topography (PreDR-T0); (B) post-dam removal, simulation
period: 1 year (PostDR-T0).
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Simulation results of the pre-dam removal scenario are summarized in a DEM of difference
(Figure 4), which shows the topographic changes at a sub-metric scale and sediment flux in the study
area after 20 years. Visual inspection of the map allowed us to infer the short-term morpho-sedimentary
evolution of mountain catchments and the influence of fluvial and hillslope processes on the
geomorphological evolution and sediment delivery. The map highlights that erosion processes
occurred along the main channels of the fluvial net whereas deposition is located in the artificial
reservoir as a result of the flattening of longitudinal profiles in the lower reaches of the channels
(Figure 4).

Figure 4. (A) Elevation difference map for the pre-dam removal scenario (simulation period: 20 years);
(B) Numbering of the three sub-basins of the study area.

Model results seem to suggest a minor impact of slope processes on the sediment yield of the
studied catchment, although landslide processes and high levels of the reservoir water table have
been invoked as possible factors of slight differences between LEM-based erosion volumes and direct
estimation of reservoir sedimentation [34]. In any case, modelling results fit well with the spatial
distribution of landforms and deposits deriving by field-based geomorphological analysis. In fact,
several geomorphological evidences such as V-shape valleys of the main channels and the absence of
slope and alluvial deposits along the thalwegs is in accordance with the LEM results and suggest that
channel incision upstream of the artificial reservoir is the main geomorphological processes controlling
the morpho-sedimentary evolution of the Ficocchia catchment. As a matter of fact, sediment delivery
ratio of the artificial reservoir is slightly higher than 0.9, testifying a high level of sediment connectivity
of the study area.

Histogram of Figure 5 shows the results of the elevation changes caused by erosion and deposition
after a time interval of 20 years. The total amount of erosion deriving by Caesar–Lisflood LEM
simulation for the entire period is 84,070 m3, which corresponds to a mean annual erosion volume of
4203 m3/year (Figure 5). Stable areas represent 97.7% of the total area whereas the most representative
erosion class has a value ranging from 0.1 to 0.5 m (Figure 5). Analysis of the contribution of each
sub-basin to the sediment yield highlights that about 83% of the total amount of erosion volumes
comes from catchment n.2 and n.4 (Figure 5).
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Figure 5. Erosion/deposition classes in the catchment deriving from the analysis of the altitude
difference map of Figure 4. In the frame: distribution of the eroded volumes from the three sub-basins
of the study area (numbering is shown in Figure 4).

4.2. Scenario 2–Dam Removal

Post-dam removal scenario (Post-DR, Table 3) was carried out over a 20-year period to perform
a direct comparison with the sediment budget related to Scenario 1. Decadal-scale modelling of the
geomorphic response to dam-removal predicts a strong modification of the fluvial system, with a
general increase of topographic changes than the pre-dam removal scenario (Cfr. Figures 4 and 6).
Altitude difference map (Figure 6) clearly highlights a significant increase of erosion processes in
both the headwaters and mid sectors of the drainage net, which are mainly related to the higher
incision ability of the main channels. In fact, a comparison between the results of the two simulations
shows that lateral migration of channels appears to be limited (cf. Figures 4 and 6). LEM predicts the
development of a wide floodplain in the flat area of the reservoir with a well-defined incision of the
infill by the three main channels of the study area. In addition, analysis of the spatial pattern of erosion
and deposition shows the occurrence of small sedimentation areas upstream to the reservoir infill
(Figure 6), which contributed to a slight decrease of the sediment connectivity of the entire catchment.
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Figure 6. (A) Landscape evolution models (LEM)-based elevation difference map for the post-dam
removal scenario (simulation period: 20 years). (B) Numbering of the post-dam removal catchments.

The frequency distribution of the altitude difference map (Figure 7) illustrates a higher erosional
ability of the geomorphic system after the lowering of the base level.

Figure 7. Statistical distribution of the altitude difference map of Figure 6 (Post-dam removal scenario).
In the frame: distribution of the eroded volumes from the three sub-basins of the study area (numbering
is shown in Figure 6).
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In fact, the model predicts an increase of the total eroded volumes by a factor of 4.4 for the
post-dam removal scenario whereas the mean annual erosion volumes increase from 4203 m3/year
to 18465 (Figure 7). Caesar–Lisflood simulation infers topographic modifications for a percentage
of the total area of about 7.1% (corresponding to an area of 0.74 kmq). In this scenario, erosion
classes with a value ranging from 0.1 to 0.5 m represent the maximum of the altitude difference map
but the comparison with Scenario 1 shows a relative increase of the erosion classes with a higher
value. Analysis of the spatial pattern of erosion for the different sectors of the study area shows that
sub-basin 4 and 3 contribute to 45.7% and 18.7% of the total amount of eroded volumes yielded in the
upland sectors.

Then, approximately 81.3% of the total amount of sediment eroded comes from sub-basin n.3 and
n.4 (i.e., the easternmost and the central one), highlighting a higher erosion ability of these catchments
for the dam removal scenario.

4.3. River Profile Analysis and Channel/Valley Modifications

Multitemporal analysis of longitudinal river profiles has been performed using the elevation
data derived from the output DEMs for each scenario. The perturbation induced by the dam removal
promoted a significant modification of the river profiles (Figure 8), with a complex spatial and temporal
pattern of geomorphic adjustments. Moreover, our simulation also highlights the occurrence of 2-D
channel modifications, which are mainly related to a lateral shift of the main channels in the higher
altitude sectors surrounding the reservoir infill (Figure 8).

After the dam removal, the longitudinal profile evolution is mainly featured by a pronounced
channel incision, which mainly occurred upward the flat area of the reservoir (Figure 8). In fact, the fast
response of main channels to the base-level lowering is a lengthening of the longitudinal profiles,
which promoted incision upstream of the former reservoir area (Figure 8, see the yellow curves and the
black ones). Channel 2 adjusts its longitudinal profiles forming a major convex knickzone downstream
of the removed dam, which retreats of about 180–200 m during the 20-year simulation period. A minor
knickpoint can be observed in the three channels at an altitude of about 955–960 m, showing a lower
rate of retreat (i.e., about 1 m/yr).

Cross profiles of Figure 9 furnished additional information about the landscape modification
resulting from our simulation. Spatial and temporal evolution of valley/channel modification is
complex, with alternating stages of incision and aggradation. Profiles located in the higher altitude
sectors of the catchment are featured by meter-scale incision (see for example profile a-a’, d-d’ and
e-e’); in this sector, the highest amount of deepening (i.e., about 3 m) can be observed at profile a-a’.
Topographic profiles crossing the reservoir deposits shows a more complex response to dam removal
due to a general tendency of channels to cut the infill in the southernmost sectors (Figure 9, see profile
b-b’ and f-f’) and the occurrence of aggradation upward the removed dam (see for example the profile
g-g’, Figure 9). Pronounced incision phenomena occurred downstream of the dam, with a progressive
deepening of the main channels of about 3 m over the 20-year simulation period (Figure 9, profile i-i’
and l-l’).
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Figure 8. Map showing the planimetric changes of the main channels from the present-day landscape
(initial DEM, Pre-DR-T0 in Table 3) to the final stage of the post-dam removal scenario. To the bottom:
comparison of longitudinal river profiles of the three main channels (channel 1, 2 and 3 in the map)
deriving from the simulation scenarios. River profile analysis highlights the amount of incision related
to the base-level fall as well as the development of pronounced knickpoints in the upper and lower
reaches of the main channels. Higher rates of knickpoint retreat are associated with the lower reach of
the channel 2.
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Figure 9. Topographic profiles for the different simulation scenarios (location of the profile is reported
in the map) showing the landscape modification resulting from the simulation. Higher rates of fluvial
incision occurred in the upper and lower reaches of the catchment (about 3 m over the 20-year simulation
period, see for example profile a-a’ and i-i’). A deep incision of the reservoir top can be also observed.

5. Discussion

LEM-based simulation of the geomorphic response of an upland catchment of southern Italian
Apennine to dam removal suggests a complex spatial and temporal modification of channels and
sediment flux. Model calibration and selection of the appropriate input parameters and boundary
conditions are a critical issue for the LEM application in complex landscapes. (Skinner et al., 2018) [44]
provided a detailed sensitivity analysis of the Caesar–Lisflood LEM, demonstrating that only some
parameters such as sediment transport formula, Manning coefficient, and sediment grain sizes have a
significant influence on model results.

Our approach based on a calibration of the model using direct measurements of sedimentation
volumes in the artificial reservoir overcomes the issue of the complex selection of an excessive number
of input and model parameters of the Caesar–Lisflood LEM, which are frequently ascribed as the main
factor of its rare application [33,34,44].
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In the study area, these parameters have been here derived by detailed field measurements and
calibrated by the evaluation of an independent dataset. The preliminary validation of the short-term
prediction ability of the Caesar–Lisflood LEM deriving from a direct comparison between model
results and direct measurements of reservoir sedimentation volumes is a strong point of the proposed
approach, which suggests the robustness of the model settings and parameterization. In fact, the limited
difference between source-sink data confirms the robustness of the model and allowed us to consider
our simulation as a robust estimation of topographic changes, geomorphological processes, and
sediment flux at a short-term scale (i.e., 20 years) induced by base-level lowering. Such an approach
can be effectively integrated with short-term analysis of geomorphic processes based on multitemporal
comparison of high-resolution DEMs [48,49] and/or quantitative geomorphological analyses [8,50–52].

Our investigation demonstrated that Caesar–Lisflood LEM has a high potential to explore scenarios
of morpho-sedimentary changes in response to different perturbing factors such as base-level fall or
climate/land-use changes. The main advantage of the use of the LEM is its ability to reconstruct 2-D
topographic modification and sediment flux, which can be investigated through advanced GIS-tools of
map algebra and spatial statistics.

The geomorphic response to dam-removal scenario of the Ficocchia catchment mainly consists of
a higher erosion ability of the channels in the upper reaches of the fluvial systems and a deep incision
in the lowermost sectors of the post-dam removal catchment. As a matter of fact, quantitative analysis
of the sediment dynamics resulting from the dam-removal scenario highlights a significant increase
of the total eroded volumes in the post dam scenario of a factor higher than four. This significant
increase of sediment yield is a common response of the fluvial system to base-level lowering, although
our predicted erosion rates of the study area after the dam removal are significantly higher than the
estimation coming from previous works (see for example [32]). For example, a recent analysis of the
impact of multiple dam removal using Caesar–Lisflood LEM [32] reported a lower amount of sediment
delivery induced by such a dam removal scenario.

This kind of response of the fluvial system to base-level lowering is in accordance with
reconstruction made by other studies since it is mainly represented by upstream widespread incision
associated to knickpoint retreat [17,19,21,32].

Predicted rates of knickpoint retreat reached values lower than those predicted by other
researchers [32,53]. For example, a recent LEM-based analysis of multiple removals of narrow
dams in Austria predicted annual knickpoint retreat rates ranging from 150 to 300 m [32], which is
an order of magnitude higher than our results. As a matter of fact, our analysis highlights a peak of
knickpoint retreat for the main channels of about 10 m/yr, see Figure 9).

The presence of a wide flat landscape coinciding with the former reservoir could represent the
external factor that drives the complex and peculiar response of the study area. This sector can promote
the dysconnectivity between the two steeper segments of the longitudinal profiles located upward and
downward the removed dam, which could inhibit a faster retreat of the major knickpoint related to
dam removal and promoted the formation of a wide floodplain in the mid sectors of the catchment.
This observation confirms the relevant role of local parameters and physiographic setting (i.e., geometry
and sedimentary features of the reservoir infill, bedrock and sediment erodibility, channel profile
slope, etc.) in controlling the spatial distribution of erosion/deposition processes and the response of
the fluvial system to severe perturbations induced by a fast base-level lowering, thus emphasizing
the crucial role of landscape evolution models in the reconstruction of complex spatial and temporal
changes of erosion and deposition induced by human disturbances.

6. Concluding Remarks

Simulation scenarios of sediment flux variation and topographic changes due to dam removal
have been investigated in a reservoir catchment of southern Italy through the application of a landscape
evolution model (i.e.: the Caesar–Lisflood LEM). LEM simulation highlights that the abrupt change
in base-level due to dam removal induces a significant increase in erosion ability of main channels
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and a strong incision of the reservoir infill. Analysis of the sediment dynamics resulting from the
dam-removal highlights a significant increase of the total eroded volumes in the post dam scenario of a
factor higher than four. Model results also predict a strong modification of the longitudinal profile of
main channels induced by dam removal, which promoted deep fluvial incision in their upper and
lower reaches.

Results are in agreement with previous analysis of the short-term response of the fluvial system,
thus demonstrating the reliability of LEM-based analysis for solving open problems of short-term
topographic changes and sedimentary budget induced by natural or human perturbations. The general
good accordance between the model results and independent analysis based on field data ([34], see also
paragraph 4.1) demonstrated both the general usefulness of the approach for the investigation of
human-induced geomorphic disturbance of a landscape and the usefulness of the proposed approach
than the application of 1-D simplified models. The main advantage of the use of the Caesar–Lisflood
LEM in reconstructing the 2-D spatial and temporal pattern of topographic changes and related
geomorphological processes is that the simulation scenarios can be easily compared with field data
and historical maps, which can be also useful to explore the source of uncertainties, simplifications,
and assumptions of the model.
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Abstract: The evaluation of vegetation cover after post-fire treatments of burned lands is important
for forest managers to restore soil quality and plant biodiversity in burned ecosystems. Unfortunately,
this evaluation may be time consuming and expensive, requiring much fieldwork for surveys. The
use of remote sensing, which makes these evaluation activities quicker and easier, have rarely been
carried out in the Mediterranean forests, subjected to wildfire and post-fire stabilization techniques.
To fill this gap, this study evaluates the feasibility of satellite (using LANDSAT8 images) and drone
surveys to evaluate changes in vegetation cover and composition after wildfire and two hillslope
stabilization treatments (log erosion barriers, LEBs, and contour-felled log debris, CFDs) in a forest of
Central Eastern Spain. Surveys by drone were able to detect the variability of vegetation cover among
burned and unburned areas through the Visible Atmospherically Resistant Index (VARI), but gave
unrealistic results when the effectiveness of a post-fire treatment must be evaluated. LANDSAT8
images may be instead misleading to evaluate the changes in land cover after wildfire and post-fire
treatments, due to the lack of correlation between VARI and vegetation cover. The spatial analysis
has shown that: (i) the post-fire restoration strategy of landscape managers that have prioritized
steeper slopes for treatments was successful; (ii) vegetation growth, at least in the experimental
conditions, played a limited influence on soil surface conditions, since no significant increases in
terrain roughness were detected in treated areas.

Keywords: VARI; log erosion barrier; contour-felled log debris; land restoration; vegetation cover

1. Introduction

Wildfires can negatively affect soil fertility, biodiversity, land resources, global warm-
ing, and human assets; however, positive environmental effects are also recognized, such
as increased forest regeneration and nutrient recycling [1]. The Mediterranean ecosystems
are adapted to fire disturbance, but the increasing recurrence and high severity of wildfires
generate high soil loss and reduce the ability of vegetation to recover [2].

In the Mediterranean Basin, wildfires burn large forest areas not only during summer,
but also in mid seasons, when heavy rainstorms may occur [3,4]. For instance, in Spain,
even though the number of wildfires has followed a decreasing trend in the last decades [5],
wildland is still severely affected by forest wildfires in summer. In the last 10 years, more
than 3000 km2 of forests have burned. Only in 2018, over 7000 wildfires burned about
300 km2 of forests [5].

Appl. Sci. 2021, 11, 5423. https://doi.org/10.3390/app11125423 https://www.mdpi.com/journal/applsci

57



Appl. Sci. 2021, 11, 5423

The hydrological and ecological effects of large wildfires (floods, landslides and
mudslides, erosion, loss of biodiversity, destruction of fauna, etc.) can be devastating [6].
Among these effects, soil erosion is presumably the most severe consequence of forest
fires, since it threatens water resources, infrastructures, and populations inside and out
of burned areas [7]. For burned soils, erosion after wildfire is much higher compared to
unburned, since fire changes several physical and chemical properties of soil [1,7]. For
instance, erosion in burned forest areas increases by even 30 times compared to the natural
values recorder in unburned zones [8]. To reduce, under tolerable limits, soil erosion, urgent
restoration actions are implemented immediately after the wildfire to prevent secondary
post-fire damage, whereas long-term restoration can be used for regenerating plants and
promoting the evolution of forest structure [9].

Management actions in fire-affected forests have typically focused on soil structure
and plant recovery. The increase in vegetal cover through plant regeneration has been iden-
tified by some studies in Mediterranean regions as the main driver in post-fire management
of forests [10]. Among the post-fire restoration actions, log erosion barriers (hereinafter
indicated as “LEB”) or contour-felled log debris (CFD) are widespread measures to control
the erosive processes (mainly due to runoff and sediment flows) in forest ecosystems [11].
More specifically, LEBs are built by felling burned trees, while CFDs consist of branch
and small-felling burned trees, and both are laid on the ground along the slope contour.
Many studies have assessed the effectiveness of hillslope stabilization treatments on soil
hydrological response (namely runoff and erosion) (e.g., [12–15] as well as reductions in
CO2 emissions and carbon sequestration [16]. In some cases, the impact of these actions
in reducing runoff and trapping sediments is limited to the less intense rainfall events
(e.g., [11]). In other cases, their effects are scarce or negligible, due to inadequate construc-
tions or deficient design [13]. Some studies have even shown a negative impact, in terms of
a higher percentage of bare and stony soil, especially in sunny areas subjected to different
forest treatments, with subsequent increase in soil erosion [17]. It is evident that the effects
of post-fire hillslope treatments are still uncertain, and the most suitable technique has not
been completely identified [18].

A monitoring activity of post-fire management actions in burned forests in the Mediter-
ranean environment may give forest managers and landscape planners insight about their
effectiveness in reducing soil loss and accelerating the vegetation recovery. This activity
is essential, since public administrations make large efforts and spend many resources in
restoration actions that usually include economic, cultural and even landscape compo-
nents [19,20]. However, the techniques of field monitoring are generally expensive and
time-consuming [21]. The remote sensing techniques (using satellites and drones) are new
tools to make land surveys quicker and cheaper [22]. Remote sensing is usually applied
in fire-affected areas for fire risk and fuel mapping, active fire detection, burned area
estimates, burn severity assessment, and post-fire monitoring vegetation recovery [23]. The
remote sensing techniques using satellite images are able to evaluate post-fire regeneration
with increasingly improved spatial, temporal and radiometric resolutions [24]. In the
last decade, the appearance of unmanned aerial vehicles has increased the use of remote
sensing application to agro-forestry [25,26]. UAV technology is promising for monitoring
vegetation regrowth, since the spatial resolution and temporal intervals of surveys are
not dependent on satellite orbits [23]. Despite their versatility and low cost, UAVs are not
widely used to survey wide areas due to legal and technical limitations (e.g., autonomy,
payload capacity) [27]. The assessment of wildfire effects and post-fire regeneration using
remote sensing has been done through the calculation of spectral vegetation indices [28].
These indices are calculated using the electromagnetic wave reflectance data of vegetation
using passive sensors [29]. Several studies have successfully developed and applied vegeta-
tion indices (e.g., the Normalized Difference Vegetation Index, NDVI; the Composite Burn
Index, CBI; the Differenced Normalized Burn Ratio, DNBR, and the Visible Atmospheri-
cally Resistant Index, VARI [24]. In this regard, Gitas et al. [25] published a comprehensive
review about remote sensing of post-fire vegetation recovery and highlighted the impor-
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tant role of remote sensing in the future as well as the need to perform more studies in
Mediterranean areas. Bhagat et al. [26] reported that UAVs provide data at fine resolu-
tion with the desired temporal resolution, which make them cost-effective and efficient
data collectors. Regarding satellite images, Sirin et al. [29] was able to compare different
multispectral satellite data to assess vegetation cover in abandoned lands and rewetted
peatlands. Bright et al. [30] analyzed post-wildfire recovery in different coniferous forest
types in North America using the Normalized Burn Ratio (NBR) derived from LandTrendr
images. The same index was used in the same environment by Lentile et al. [31] to monitor
post-fire burn severity and vegetation response following eight large wildfires. In the
Mediterranean Basin, post-fire vegetation recovery was assessed by Bastos et al. [32] in
Portugal (using the VEGETATION sensor), Lasaponara et al. [33] in Italy (using satellite
MODIS data), and Polycronaki et al. [34] in Greece (using optical and SAR data [35].

Regarding VARI, several applications have been carried out in different research
fields. For example, Schneider et al. [36] showed that VARI outperforms other indexes in
distinguishing historical wildfire data in southern California. In the same environment,
Stow et al. [37] demonstrated better performances of VARI compared to another normalized
index (Normalized Difference Water Index, NDWI) in monitoring chaparral moisture
content. Munoz et al. [38] found that VARI was more effective in estimating the fraction
of vegetation cover and recognizing the different land use compared to NDVI index,
observing a standard error lower than 8%. From these studies, the feasibility of VARI to
estimate variable levels of land cover emerges. However, applications of this index for
evaluation of vegetation regeneration in fire-affected areas are very scarce. Only Larrinaga
and Brotons [39] calculated four greenness indices (among them VARI) to analyze post-fire
regeneration of Mediterranean forests. Christakopoulos et al. [40] proposed a comparative
evaluation of restoration practices using remote sensing and GIS in naturally-regenerating
and reforested areas of Greece. No research is available about the estimation of vegetation
recovery after hillslope stabilization techniques using VARI applied to satellite or UAV
surveys. This leaves the usability of these methods in post-fire management of forests not
well understood, to date.

To fill this gap, the current study evaluates the ability of VARI, estimated by both
satellite and UAV images, to quantify the vegetation recovery after post-fire treatments
(LEBs and CFDs) in a Mediterranean forest of Central Eastern Spain. Possible correlations
between the vegetation cover measured in field plots and VARI values estimated from
satellite (LANDSAT8) or UAV images, are identified. Processing of this information at two
spatial scales (catchment and hillslope) allows validation of one or both methods.

2. Materials and Methods

2.1. Study Area

The investigation was carried out in the Sierra de los Donceles (municipality of Hellín,
Castilla-La Mancha region, southeast Spain) (Figure 1a,b). This mountain forest lies in the
most northeastern part of the Penibetic system with a southeast-northwest aspect. The
landscape is patchy with steep slopes (sometimes over 25–30%), predominantly exposed
to south-southeast, and ranges between 304 and 808 m above sea level with an average
altitude of 506 m.

In this forest, one catchment (hereinafter “catchment area” or “catchment scale”) and
one hillslope (“hillslope area” or “hillslope scale”) were selected, both subject to burning
and post-fire restoration actions (Figure 1c,d). In these areas, plots for survey of vegetation
were installed, as detailed in Section 2.2, and remote sensing-based analysis (using satellite
or drone for the catchment and hillslope scale, respectively).
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Figure 1. Location (a) and aerial map (b) of the study area, catchment area (c) and hillslope area (d)
in Sierra de los Donceles forest (Castilla La Mancha, Spain).

The climate of the region is semi-arid Mediterranean. The study area is located in
the Mesomediterranean bioclimatic belt [41], which is characterized by a dry climate with
scarce rainfalls and a large variability of temperature. The mean annual precipitation is
321 mm and the mean temperature is 16.6 ◦C (minimum and maximum mean temperatures
of −2 and 40 ◦C, respectively, in February and July (Spanish Agency for Meteorology,
AEMET, period of 1981–2010) [42]. According to the Spanish soil map [43], soils belong to
the Aridisol order and Calcic suborder, according to the classification established by the
Soil Taxonomy System [44].

A large part of the study area is covered by a sclerophyllous vegetation dominated
by Pinus halepensis Mill forests and with understory mainly consisting of Quercus coccifera,
Rhamnus lycioides, Halimium hatriplicifolium, Rosmarinus officinalis, Cistus clusii, Rhamnus
alaternis, Phamnus alaternis, Genista spartioides subsp. Retamoid; south-facing areas are
dominated by Stipa spartans and natural therophytic grasslands. Before the wildfire, tree
height and density of Pinus halepensis M. were 5 to 12 m and 450 to 775 individuals per
hectare, respectively [45]. The wildfire occurred on July 2012, and burned a total area of
6500 ha of forest. The fire propagation was very fast, and most of the land was affected
by moderate to high fire severity. After the fire, the Forest Service of Castilla-La Mancha
region carried out post-fire restoration works, stabilization treatments on hillslopes (both
log erosion barriers and contour-felled log debris) in autumn 2012, and checked dams in
the catchment reaches in 2013 (Figure 2b,d and Figure 3).
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Figure 2. Plot location and distribution of soil conditions in the catchment (a,b) and hillslope (c,d) areas in Sierra de los
Donceles forest (Castilla La Mancha, Spain). Log erosion barriers (“LEB”), contour-felled log debris (“CFD”), burned and no
action (“BNA”), unburned (“UB”).

Figure 3. Photos of the construction of contour-felled log debris (a) and log erosion barriers (b) in Sierra de los Donceles
forest (Castilla La Mancha, Spain).

2.2. Experimental Design

The catchment selected in the studied area was subject to a wildfire and treated with
the two hillslope stabilization treatments, consisting of log erosion barriers (“LEB”) and
contour-felled log debris (“CFD”) (Figure 3). LEBs were built by felling burned trees that
are laid on the ground along the slope contour [46]. Each log was anchored in-place and
the space between the log and soil surface was filled with soil to create a storage basin
upstream of the LEB, where the water and sediment flows are trapped. Earthen berms
were sometimes installed to reduce the share of water circumventing the log sides. In the
studied catchment, the stabilization treatment was operated at a mean density of 30 LEBs
per hectare with a mean length of 10 m (for a linear density of 300 m of logs per ha). These
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densities were limited by the scarce availability of wood material, due to the unsuitable
type of vegetation in the area (small-diameter and low-density trees). The CFD treatment
consisted of branch and small-felling burned trees, which were laid on the ground along
the slope contour, as for LEB. In this case, logs were not anchored. The mean treatment
density was 17 CFD per ha with a mean length of 50 m (corresponding to 850 m per ha),
given the lower compaction and concentration of the material for building the CFD.

Moreover, a burned area was left without any treatment (henceforth “burned and no
action”, BNA) (Figure 2). Another area that was located very close to the burned forest and
not affected by fire was considered (“unburned”, UB); the vegetation and soil of this area
was extremely similar as those of the burned zone and it was therefore representative of
the actual pre-fire conditions. Table 1 reports the vegetation cover in the plots under four
land conditions at the two spatial scales.

Table 1. Pre-fire forest cover in plots under four land conditions before the wildfire of 2012 in Sierra
de los Donceles forest (Castilla-La Mancha, Spain).

Plot Scale Land Condition Forest Cover (%)

Hillslope

LEB 78–84
CFD 77–81
BNA 69–75
UB 77–91

Catchment

LEB 73–84
CFD 71–79
BNA 81–87
UB 78–83

Notes: UB = unburned; BNA = burned and no action; CFD = contour-felled log debris; LEB = log erosion barriers;
data source: surveys of the Forest Service of Castilla-La Mancha region.

The vegetation cover was characterized in all plots under the four soil conditions.
More specifically, in the UB plots, the vegetation cover is mainly characterized by woody
and herbaceous species (specifically, Pinus halepensis, Rosmarinus officinalis, Brachypodium
retusum and Cistus albidus). Pinus halepensis, Cistus albidus and Rosmarinus officinalis can
largely be disseminated; their seeds, after fire, are stimulated to germinate. Conversely,
Brachypodium retusum is a herbaceous species (hemicryptophyte), which is a facultative
disseminator, with the ability to reproduce both from sprouts and seed and to adapt to
frequent fires. In the BNA plots, Brachypodium retusum, Cistus albidus, Halimium halimi-
folium, Quercus coccifera, Klasea flavescens subsp cichoracea flubensces ssp. leucanta and Pinus
halepensis are the main species identified after the wildfire. Quercus coccifera is a woody
phanerophytic species with vegetative propagation. Most of the area in the CFD plots
was covered after the wildfire by species with different strategies of fire response, mainly
seeding trees (Cistus albidus, Fumana ericoides, Pinus halepensis), but also sprouting (Rhamnus
lycioides, Pistacia lentiscus) and facultative sprouting (Anthillys cytisoides) trees as well as
facultative sprouting herbaceous species (Brachypodium retusum). Finally, also in LEB plots,
we surveyed, after the wildfire, a variety of species with different response strategies to
the fire. Woody seeding species prevail (Fumana helicoide, Cistus albidus, Rosmariuns offici-
nalis, Pinus halepensis, Atriplex halimus), but also woody sprouting trees (Rhamnus lycioides,
Juniperus oxycedrus), woody facultative sprouting (Retama sphaerocarpa), herbaceous faculta-
tive sprouting (Brachypodium retusum, Macrochloa tenacissima (L.) Kunth), and herbaceous
seeding (Asphodelus fistulosus) species.

2.3. Data Collection and Processing
2.3.1. Field Survey of Vegetation Cover

Four years after the fire (in the summer of 2016), fifty 30 m × 30 m plots were
established in the catchment area (Figure 2a,b) and installed in each of the four land
conditions (7 plots in LEB, 7 in CFD, 25 in BNA, and 11 in UB). An additional twelve
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10 m × 10 m plots were installed in the hillslope area (Figure 2c,d) for the same land
conditions (3 plots in LEB, 3 in CFD, 3 in BNA, and 3 in UB), totaling 62 sample plots
(Figure 2c,d). All the plots were separated 100 m from each other, to be considered as
independent; moreover, the burned plots were exposed to similar fire severity. In each plot,
three strips were selected (10 m long and 0.5 m wide for the 10 m × 10 m plots, and 30 m
long and 0.5 m wide for the 30 m × 30 m plots), where the vegetation cover was measured
in percentage. Along each strip, we identified the different species, and calculated the
percent canopy cover by the line intercept method [46] as the sum of canopy distances by
the strip length. The data were averaged in plot as the mean of the three strips [47,48].

2.3.2. Remote Sensing Surveys of Vegetation Cover

On the plots at the hillslope scale, in 2016, a scheduled drone flight was carried out.
The UAV used was a quadcopter md4-1000 (Microdrones Inc., Kreuztal, Germany) with
a RGB SONY ILCE-5100 digital camera (Sony Corporation, Tokyo, Japan) on board. The
sensor of the SONY ILCE-5100 camera was a complementary metal oxide semiconductor
(CMOS) Exmor® type APS-C (23.5 × 15.6 mm) with pixel size of 4 × 4 μm. The image
size was 6000 × 4000 (columns and rows) and its focal length was 20 mm. Flight planning
was performed for a flight altitude of 120 m obtaining a ground sample distance (GSD) of
0.015 m (Figure 4). LANDSAT8 images of the same date were collected over the plots at
the catchment scale (Figure 4). VARI values were calculated using UAV and LANDSAT8
images, both from 2016. LANDSAT image was subjected to atmospheric correction and
radiometric calibration [49] without using LEDAPS approach. VARI was calculated for
each pixel, which identifies the vegetation in the part of the visible spectrum (ideal for RGB
images). VARI is calculated as follows [24]:

VARI =
Green − Red

Green + Red − Blue
(1)

Once calculated, VARI was then classified, splitting the entire range of data into five
classes, to which a “rank” was given for both image sources (satellite and UAV) (Table 2).
Then, possible correlations between the VARI values and the vegetation cover measured in
the plots in 2016 at the two spatial scales were found. Using the VARI values, the effects of
the land restoration measures on the vegetation cover in comparison with the burned and
not treated, as well as to the unburned land, were evaluated.
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Figure 4. Examples of satellite (a) and drone (b) images caught in Serra de Los Donceles forest (Castilla-La Mancha, Spain).

Table 2. Calculation of the class width for the VARI classification in ranks in Sierra de Los Donceles
forest (Castilla-La Mancha, Spain) (Source: our processing).

VARI LANDSAT8 UAV

Minimum −0.215 −0.599
Maximum 0.058 0.173

Range 0.273 0.771
Class width (range/5) 0.055 0.154

2.4. Spatial Analysis

Using QGIS software applied to a digital terrain model (DTM) prepared by the Spanish
Center of Geographic Information in 2016 (resolution of 5 × 5 m), a spatial analysis was
carried out to calculate the values of land slope and terrain roughness at the hillslope scale.
As exposed by Wu et al. [50], terrain roughness is defined as the unevenness of the terrain
surface (including rocks and low vegetation) at scales of several meters. This analysis
was targeted to identify possible relationships between vegetation regeneration and land
characteristics (that is, land slope and terrain roughness) for the different soil conditions.
In order to analyze VARI index and its relationships with land slope and terrain roughness
at the hillslope scale, a total of 100 plots were randomly selected on the DTM prepared by
the Spanish Center of Geographic Information in 2016 (40 plots in LEB, 20 in CFD, 20 in
BNA, 20 in UB.
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2.5. Statistical Analysis

For both field measurements and remote sensing estimations, General Linear Models
(GLM, using treatment as fixed factor and plot as random factor) was applied to evaluate
the statistical significance of the differences in the vegetation cover or VARI among the
treatments and the control areas. This statistical approach allows us to deal with pseudo-
replication [51]. The homogeneity of the variance and the normality of the samples were
checked using the Levene and Kolmogorov-Smirnov tests, respectively. All plots were
considered spatially independent. The independent Fisher’s least significant difference
(LSD) test was used for post hoc comparisons. An α-level <0.05 was adopted. Finally,
linear correlations were calculated between VARI and vegetation cover measured in field
surveys on one side, as well as land slope and terrain roughness on the other side.

3. Results and Discussion

3.1. Field Measurements of Vegetation Cover in Different Land Conditions

All surveyed plant species of this study were typical of post-fire vegetation succession
in the Mediterranean forest. These species are commonly found in open areas receiving
high solar radiation and adapted to fire through different vegetative and reproductive
mechanisms. In more detail, the floristic composition of the shrub and herbal layer in the
surveyed area was not significantly altered by fire. In fact, the species that have repopulated
the forest areas after fire belonged to the pre-existing populations. The number of species
did not change, since after the fire, the species progressively regenerates, thanks to the
adaption to new conditions of light, water and nutrients.

The vegetation cover measured in the plots under the four land conditions was more
extensive in the areas treated with LEB (vegetal cover of 84.5 ± 4.5%) compared to CFD
plots (76.9 ± 5.6%). As expected, the extreme values were surveyed in UB (100%) and BNA
(65.5 ± 4.2%) (Figure 5). These differences were significant after one-way ANOVA (p < 0.05),
except for LEB treatment (not significantly different from UB and CFD). According to
fieldwork and forest regional managers, this change is mainly due to shrub regeneration
and growth. The Mediterranean vegetation is highly adapted to wildfires and these
ecosystems are able to respond to fire using resprout or seeding mechanisms. That change
is attributed to the higher biomass of the scrub and herbal layer. As recently stated by Keeley
and Pausas [52], fire does not threaten ecosystem health, since it is a necessary process and
a natural disturbance that is beneficial for the functionality of a fire-adapted ecosystem
in Mediterranean forests. As demonstrated by our results, following fire disturbance,
Mediterranean forests can regenerate from seed banks stored in soils and basal resprouts.

65



Appl. Sci. 2021, 11, 5423

Figure 5. Vegetation cover (mean ± standard deviation of 62 plots) in plots under four land conditions
(UB = unburned; BNA = burned and no action; CFD = contour-felled log debris; LEB = log erosion
barriers) after the wildfire of 2012 in Sierra de Los Donceles forest (Castilla-La Mancha, Spain). Mean
values that do not share a lower case letter (top of graph) are significantly different from each other
(HSD, p < 0.05).

This means that, four years after the wildfire, the vegetation regeneration is far from
covering the entire area, such as in the unburned zone. The implementation of post-fire
treatments allows for a significantly faster recovery process, and LEBs are particularly
effective. This higher regeneration compared to CFD-treated areas is somewhat expected,
since the dead and burned material of which CFDs consist of is degrading, as well as incor-
porated more easily compared to the burned wood of LEBs [53]. Both post-fire management
techniques are recognized to reduce runoff and erosion (by slowing flows of water and
sediments) [14] and improve the physico-chemical properties of soils (increasing infiltration
and water retention, and organic matter and nutrients), thus enhancing establishment and
development of vegetation [12]. Some LEBs can trap up to 40% of sediments; moreover, this
treatment is cheaper compared to other hillslope stabilization techniques [54]. CFDs are
effective to reduce water and sediment flows in burned forest subject to machinery salvage
logging [55]. Moreover, according to Badía et al. [13], hillslope stabilization after wildfire
is a physical barrier that avoids losses or reductions in soil organic matter and nutrients.
At the same time, logs of CFDs and canopy residues of LEBs can change the microclimate
and land conditions, as well as represent organic matter source after decomposition. This
enhances the biological activity of soils [18]. Moreover, decreased evaporation, higher soil
moisture, and soil organic matter accumulation upslope of LEB and CFD might lead to
an increase in soil respiration and microbial activity, also enhancing nutrient availability
after a burn at 5 years from the wildfire). Regarding other studies evaluating post-fire
regeneration of vegetation, Christakopoulos et al. [40] found that reforestation was, in
some cases, comparable, and in other areas, higher, compared to natural regeneration of
pines in burned forests of Greece.

3.2. Correlations of VARI with Vegetation Cover Using Remote Sensing Techniques

Figure 6a,b reports the maps of VARI distribution in the experimental areas at both
catchment and hillslope scales. In particular, Figure 6b highlights that VARI is higher in
the areas subjected to post-fire treatments and lower in burned and untreated land.
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Figure 6. Spatial distribution of VARI surveyed by satellite (a) and UAV (b) images of 2016 among
four land conditions after the wildfire of 2012 in Sierra de Los Donceles forest (Castilla-La Mancha,
Spain). Legend: Fajinas = log erosion barriers; cordones = contour-felled log debris; sin tratamiento =
burned and no Action; sin fuego = unburned.

A low and not significant R2 (0.03, p > 0.05) was found regressing the LANDSAT8-
derived VARI with the vegetation cover measured in field (Figure 7a, catchment scale),
while the regression of UAV-derived VARI versus vegetation cover was significant (R2 = 0.84,
p < 0.05) (Figure 7b, hillslope scale). This difference is clearly due to the lower spatial
resolution of satellite data compared to surveys by UAV.
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Figure 7. Correlations between VARI and vegetation cover at catchment (a), and hillslope (b) scales surveyed by LANDSAT8
and UAV images (2016) in Sierra de Los Donceles forest (Castilla-La Mancha, Spain).

The regression equations for the correlation VARI versus vegetal cover (VC) measured
in field was the following:

VC = 16.90 VARI + 9.15 (2)

The vegetation cover distribution in classes according to the VARI classification by
UAV is reported in Table 2 and confirms the spatial differences among the land condi-
tions. By visually comparing the vegetation cover distribution according to the two VARI
classifications (satellite and UAV, Table 2), no overlay among the same class was detected.
This lack of correspondence further confirms the higher reliability of VARI estimated from
UAVs to reproduce land cover compared to estimations by satellite, due to unsuitability of
image resolution.

The use of VARI to evaluate vegetation regeneration from UAVs has been widely
studied in literature. To cite the most recent studies, VARI was used to analyze vegetation
on different land uses (e.g., [36–39,56]), monitoring vegetation into water bodies (e.g., [57],
and preparation of the Digital Elevation Model (DEM) [58]). This index shows significant
correlation with crop height and yield [59,60]. In burned lands, Larrinaga and Brotons [39]
calculated VARI for analysis of post fire regeneration of Mediterranean forests. However,
these authors reported that this index underperformed compared to other greenness
indexes, such as the Excess green index (ExGI) and green chromatic coordinate (GCC)
index, and the same was found for the green red vegetation index (GRVI). Despite this,
these authors have demonstrated that low-cost UAVs may improve forest monitoring after
disturbance, even in those habitats and situations where resource limitation is an issue. In
general, VARI shows a minimal sensitivity to atmospheric effects [26,61,62].

3.3. Evaluation of the Vegetation Regeneration in Fire-Affected and Treated Areas Using VARI

The comparison of the mean VARI values under the four studied land conditions
between the two remote images shows that, at the catchment scale, VARI was higher
(0.009 ± 0.046) under CFDs and lower (−0.034 ± 0.035) in UB areas. This appears again
unrealistic, further confirming the misleading meaning of land cover images captured
by UAV. Moreover, the differences among the four land conditions were not significant
(p = 0.724) (Figure 8a).
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Figure 8. Mean values of VARI surveyed by LANDSAT8 (a) and UAV (b) images (2016) among four land conditions after
the wildfire of 2012 in Sierra de Los Donceles forest (Castilla-La Mancha, Spain).

In contrast, when analyzing the images by UAV, the highest VARI (4.578 ± 0.230) was
found in the UB areas (indicating the most extensive vegetation cover), while the lowest
value was detected in the areas burned but not treated (VARI of 3.024 ± 0.853). However,
in contrast with field surveys, vegetation regeneration was higher in the land treated
with CFDs (mean VARI of 4.270 ± 0.350) compared to the areas with LEBs (3.889 ± 0.416)
(Figure 8b). As for field surveys, the differences in VARI were significant (p < 0.05) at this
smaller scale using the UAV. Lack of correspondence between the post-fire land treatments
suggests that UAV is a viable technique in detecting the variability of vegetation cover only
when the difference in VARI mean values is noticeable (e.g., between burned and unburned
areas); conversely, the contrasts between areas with similar VARIs may be quite misleading,
for instance, when the effectiveness of a treatment has to be evaluated. This result is in
close accordance with the indications by Corona et al. [63], who suggested the use of aerial
and satellite imagery characterized by high or, better, very high spatial resolution for an
effective support to post-fire management (burned area mapping, fire severity assessment,
post-fire vegetation monitoring).

Comparisons to other published data about evaluations of post-fire vegetation recov-
ery using remote sensing and greenness indices reveal that SAR images perform better
compared to optical images in estimating forest regeneration, particularly when object-
based classification procedure is applied (nearly 90% of accuracy) [34]. Moreover, Las-
aponara et al. [33] found a better reliability of NDVI (Normalized Difference Vegetation
Index) in capturing the diverse vegetation regeneration in both natural and managed areas
as well as before and after fire occurrence compared to NBR index, thanks to the data
processing using detrended fluctuation analysis (DFA). LANDSAT time series analysis
with NBR application was a useful means of describing and analyzing post-fire vegetation
recovery across mixed-severity wildfire extents [30], while, in contrast, Lentile et al. [31]
reported that dNBR is an imperfect indicator of post-fire effects on vegetation and soil,
when the burned areas are affected by different burn severities and are of a highly variable
patch size. Regarding the use of drone images, Fernández-Guisuraga et al. [64] highlighted
the more detailed spatial information provided by the drone orthomosaic compared to
WorldView-2 satellite imagery in vegetation regeneration of heterogeneous burned areas.

Overall, the use of UAV systems for vegetation recovery monitoring is still under
development, since these systems have a great potential not yet fully valorized; however,
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this use is still limited by some constraints, such as battery life and availability of cameras
with suitable spectral range, as well as cost [22].

3.4. Spatial Distribution of Land Slope and Roughness, and Correlations with VARI

The spatial analysis carried out in the experimental areas showed that the slope of
land subjected to post-fire treatments was significantly different (32.2 ± 5.26% for LEB and
36.2 ± 2.61% for CFD) compared to the BNA (23.1 ± 6.22%), but similar to the UB land
(36.6 ± 3.71%) (Table 3 and Figure 9a). This may be due to the fact that landscape managers
prioritized steeper areas when post-fire treatments were planned, since the zones with
higher slopes are more prone to erosion and hydrogeological risks compared to flat areas.

Table 3. Values (mean ± standard deviation) of land slope and terrain roughness in the small-scale
areas under four land conditions in Sierra de los Donceles forest (Castilla-La Mancha, Spain).

Treatment
Land Slope

(%)
Terrain Roughness

(μm)

LEB 32.2 ± 5.26 a 0.08 ± 0.03 a
CFD 36.2 ± 2.61 a 0.09 ± 0.01 a
BNA 23.1 ± 6.22 b 0.06 ± 0.03 a
UB 36.6 ± 3.71 a 0.28 ± 0.21 b

Notes: UB = unburned; BNA = burned and no action; CFD = contour-felled log debris; LEB = log erosion barriers;
different lower case letters indicate significant differences (HSD, p < 0.05).

Figure 9. Cont.
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Figure 9. Spatial distribution of land slope (a) and terrain roughness (b) surveyed by UAV images of
2016 among four land conditions after the wildfire of 2012 in Sierra de Los Donceles forest (Castilla-La
Mancha, Spain). Legend: Fajinas = log erosion barriers; cordones = contour-felled log debris; sin
tratamiento = burned and no action; sin fuego = unburned.

According to the land map of Figure 9b prepared using spatial analysis, the ter-
rain roughness of the burned areas was significantly different (0.08 ± 0.03 μm for LEB,
0.09 ± 0.01 μm for CFD, and 0.06 ± 0.03 μm for BNA) compared to UB zone (0.28 ± 0.21 μm)
(Table 2). This means that the vegetation growing in the burned and treated zone do not
have a significant effect on the terrain roughness compared to the area without treat-
ment, and that these values are well below the roughness of the unburned soil. A high
terrain roughness is beneficial to reduce surface runoff and thus, sediment transport down-
stream [65–67]. Soil preparation (e.g., by tillage, conditioning, and terracing) after wildfire
may be suggested, in order to enhance vegetation growth and improve the soil’s resistance
to erosion [68–71].

A fair and significant linear correlation was found regressing VARI on land slope
under all soil conditions (r2 = 0.52, p < 0.05) (Figure 10a), while the linear regression
between VARI and terrain roughness was much lower (r2 = 0.15) and not significant
(p = 0.49) (Figure 10b). This correlation becomes significant (p < 0.05) although, again, low
(r2 = 0.35 to 0.38), adopting exponential or logarithmic equations, whose physical meaning
is, however, difficult to be justified (data not shown).
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Figure 10. Scatterplots of vegetation regeneration (measured by VARI by UAV images of 2016) versus land slope (a) and
terrain roughness (b) among four land conditions after the wildfire of 2012 in Sierra de Los Donceles forest (Castilla-La
Mancha, Spain).

The first correlation suggests that the effectiveness of post-fire treatments on vegeta-
tion regeneration (measured using VARI) increased with slope, and thus, the strategy of
landscape managers that have prioritized steeper slopes for treatments was successful. By
contrast, the lower, or absence of, significance of correlations between VARI and terrain
roughness implies that vegetation growth, at least in the experimental conditions, played a
limited influence on soil surface conditions. However, vegetation regeneration remains a
key factor to reduce soil exposure to erosion in wildfire-affected areas.

4. Conclusions

The surveys of vegetation cover using fieldwork and remote sensing in lands burned
by wildfire in a Mediterranean forest showed that:

- Post-fire treatments improve the vegetation regeneration compared to the burned and
not treated areas (by about 20% for CFDs and 30% for LEBs); in this sense, the post-fire
treatment using LEBs appears to be more promising compared to the CFD technique;

- Surveys by UAV are useful to detect the variability of vegetation cover among burned
and unburned areas through VARI, but may be unrealistic when the effectiveness of a
post-fire treatment must be evaluated;

- LANDSAT8 images are less reliable to evaluate the land cover post-fire treatments,
due to the lack of correlation between VARI and vegetation cover, and may be because
of the resolution that is not suitable for small plants.

The spatial analysis of distribution of VARI and land characteristics at the hillslope
scale proved that:

- The post-fire restoration strategy of landscape managers that have prioritized steeper
slopes for treatments was successful;

- Vegetation growth, at least in the experimental conditions, played a limited influence
on soil surface conditions, since no significant increases in terrain roughness were
detected in treated areas.

However, the validity of these preliminary results must be confirmed in other experi-
mental conditions, such as in areas with different climate and soil conditions, as well as in
soils subjected to other post-fire management techniques. The effects of patch vegetation
should be also explored, since a high spatial variability of vegetation may not be fully cap-
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tured by aerial or satellite images. Additionally, the implementation of UAV-based surveys
throughout the different stages of vegetation regeneration after wildfire can be suggested,
in order to develop a viable tool for monitoring the effectiveness of post-fire techniques
over time. A wider validation activity should ensure a practical use of UAV images to
support the activity of land managers in planning and implementing efficient measures
to restore wildfire-affected areas using vegetation cover. The research question about the
viability of higher-resolution satellite images to detect contrasts in vegetation cover among
different land conditions remains open. Presumably, the integration of several techniques,
combining advantages and limiting constraints, can be suggested for estimation of post-fire
vegetation recovery in forest ecosystems with dynamically variable characteristics.
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Abstract: In the processing of remotely sensed data, classification may be preceded by feature
extraction, which helps in making the most informative parts of the data emerge. Effective feature
extraction may boost the efficiency and accuracy of the following classification, and hence various
methods have been proposed to perform it. Recently, Singular Spectrum Analysis (SSA) and its
2-D variation (2D-SSA) have emerged as popular, cutting-edge technologies for effective feature
extraction in Hyperspectral Images (HSI). Using 2D-SSA, each band image of an HSI is initially
decomposed into various components, and then the image is reconstructed using the most significant
eigen-tuples relative to their eigen-values, which represent strong spatial features for the classification
task. However, instead of performing reconstruction on the whole image, it may be more effective to
apply reconstruction to object-specific spatial regions, which is the proposed objective of this research.
As an HSI may cover a large area, multiple objects are generally present within a single scene.
Hence, spatial information can be highlighted accurately by specializing the reconstruction based
on the local context. The local context may be defined by the so-called superpixels, i.e., finite sets
of pixels that constitute a homogeneous set. Each superpixel may undergo tailored reconstruction,
with a process expected to perform better than non-spatially-adaptive approaches. In this paper,
a Superpixel-based SSA (SP-SSA) method is proposed where the image is first segmented into
multiple regions using a superpixel segmentation approach. Next, each segment is individually
reconstructed using 2D-SSA. In doing so, the spatial contextual information is preserved, leading
to better classifier performance. The performance of the reconstructed features is evaluated using
an SVM classifier. Experiments on four popular benchmark datasets reveal that, in terms of the
classification accuracy, the proposed approach overperforms the standard SSA technique and various
common spatio-spectral classification methods.

Keywords: hyperspectral image; superpixel segmentation; evaluation; 2D-singular spectrum analysis
(2D-SSA); feature extraction

1. Introduction

Recent advancements in hyperspectral sensors resulted in the increased availability
of Hyperspectral Images (HSI) and a boost in their circulation among the remote sensing
community. HSI data enables the discrimination of objects even with minor differences
as it contains several contiguous spectral bands acquired from the visible to the infrared
region [1] so that every small spectral difference can, in principle, be captured. The
information is available in the form of a 3-D structure that contains a 2-D spatial scene
along with a 1-D spectral signature. These unique characteristics of HSI have made them
popular in several application areas, such as agriculture [2], mineralogy [3], land cover
classification [4], target detection [5], and others. However, effective classification of HSI is
still an open challenge.
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Several classification techniques, such as K-nearest neighbor (KNN) [6], support vector
machine (SVM) [7], multinomial logistic regression (MLR) [8], Extreme Learning Machine
(ELM) [9], and Sparse Representation Classifier (SRC) [10] have been proposed in the past
decades. The richness in spectral information attracted research efforts on pixel-based
processing and classification. SVM is the most popular and widespread classifier due to its
lower generalization error rate that makes it capable of identifying even minor changes
in spectral signatures. Due to the high spectral dimensionality compared to a generally
limited number of class-specific training samples, it is quite difficult to properly estimate
the model parameters. Hence, there is a need to adopt effective spatial-spectral feature
extraction approaches to overcome the aforementioned challenges.

To deal with the issue of higher spectral dimensionality, several linear (e.g., Principal
Component Analysis (PCA) [11], Independent Component Analysis (ICA) [12], and Linear
Discriminant Analysis (LDA) [13]) and non-linear (manifold learning [14]) dimensionality
reduction (DR) methods have been introduced. Band selection approaches may also be
utilized to select the most informative bands out of several available bands [15,16]. Spectral
features alone, however, may not be sufficient to score very high accuracy values. To
improve performance, it is necessary to incorporate spatio-spectral features that help
increasing the separability of classes.

Recently, various spatial feature extraction techniques have been proposed. Math-
ematical Morphology is one of the most popular approaches that is extensively utilized
by researchers. The concept of Extended Morphological Profiles (EMP) for FE in HSI
was first proposed by Benediktsson et al. [17]. This technique utilizes morphological
opening and closing transformations to extract spatial geometrical information. Later,
Dalla Mura et al. [18] proposed Morphological Attribute Filters (MAP) for the spatial
FE. From that point onwards, several variations of Attribute Profiles (AP) were created.
Ghamisi et al. [19] conducted a comprehensive survey on the evolution in Attribute Profiles.

Texture Descriptors, including Wavelet transform [20], Gray-Level Co-occurrence
Matrix (GLCM) [21], Local Binary Patterns (LBP) [22], and Gabor filters [23], have also been
used in the literature for spatial FE. Filtering, i.e., moving-window-based processing, is
another approach to extract spatial-spectral features. Various edge-preserving filters, such
as Bilateral Filters [24], Trilateral Filters [25], Guidance filters [26], and Domain Transform
Recursive Filters [27] have been introduced for spatial FE in the literature. The texture and
noise variations are minimized by performing smoothing operations; however, important
details, such as edges and lines, are well preserved by these filters [28].

In addition to these techniques, 2D-SSA is another interesting approach for spatial
feature extraction. Using this approach, each band image of HSI is initially decomposed
into varying trends, oscillations, and noise. Later, HSI is reconstructed using the selected
oscillations and trends [29,30]. In 2D-SSA, the spatial structural information is extracted by
utilizing the characteristics of the surrounding pixels in a specific embedding window. It
can withstand high levels of noise and generally achieves good data classification results.

2D-SSA suffers, however, from several limitations, such as reduced utilization of the
abundant spectral information available in data, and over-smoothing or under-smoothing
of classification results because of the fixed embedding window size. To overcome the
challenge of selecting the optimal embedding window size, recently, multi-scale 2D-SSA
has been proposed for the effective extraction of discriminative spatial features under
different noise conditions [31,32].

Superpixel segmentation techniques have gained popularity in recent years due to
their capability of exploiting spatial structural information adaptively in an image. In [33],
a survey on superpixel segmentation as a preprocessing step in HSI analysis was presented.
A superpixel-based classification via multiple kernels (SCMK) approach was proposed
in [34]. In [35], a region-based relaxed multiple kernel (R2MK) method was proposed
that combines the multiscale spectral and spatial features using a kernel collaborative
representation classification technique.
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To obtain superior classification performance and solve the problem of optimal su-
perpixel number selection, an adjacent superpixel-based multiscale spatial-spectral kernel
(ASMGSSK) was proposed in [36]. In [37], a multiscale segmentation-based SuperPCA
model (MSuperPCA) was developed, which can effectively integrate multiscale spatial
information to obtain the optimal classification result by decision fusion.

Recently, deep learning techniques have become quite popular in the classification
of HSI data due to their ability to extract discriminant and abstract features by using a
series of hierarchical layers. The initial layers usually extract texture and edge information,
whereas deeper layers highlight more complicated features. Some of the most popular
deep learning frameworks include stacked autoencoders (SAE) [38], Deep Belief Net-
works (DBN) [39], Convolution Neural Networks (CNN) [40], Recurrent Neural Networks
(RNN) [41], Generative Adversarial Networks (GAN) [42], etc.

Although deep learning approaches have several advantages, they also pose signif-
icant challenges in HSI applications. First of all, to achieve better classification result,
often deep learning techniques demand large volumes of training samples. Moreover, a
large number of hyper-parameters (like the kernel sizes, learning rate, etc.) are involved
in training complex deep learning networks mainly designed for feature extraction and
classification. Hence, the process becomes computationally expensive.

The disadvantages of combining SSA with structured approaches to incorporating
spatial information may be overcome by using more flexible ways to spatially partition
the dataset. In line with this consideration, in this work, a superpixel-based SSA (SP-
SSA) algorithm was proposed as a means to increase the classifier performance. Instead
of performing direct reconstruction, an object-specific reconstruction is performed to
accurately preserve the local contextual information. Superpixel segmentation is first
applied on the input HSI to generate a segmented HSI where each sub-region carries
similar characteristic features, and its shape and size is adjusted according to the local
image structure information. Next, 2D-SSA is individually applied on each segmented
region to produce the reconstructed HSI. Lastly, the final classification map is generated
by using the popular SVM classifier. The major novel contributions of this work are
highlighted in the following list:

1. Direct reconstruction is usually performed in standard 2D-SSA algorithms, where the
full image is reconstructed. In HSIs, however, object-specific reconstruction is always
better than direct reconstruction, as, in this way, local contextual information can be
captured accurately. In this work, a novel SP-SSA approach is proposed that performs
object-specific reconstruction.

2. Superpixel segmentation and 2D-SSA are combined together for the first time for
accurate spatial-spectral feature extraction. Using SP-SSA, each superpixel, i.e., object-
specific spatial region is reconstructed.

3. Superior classifier performance is achieved with the proposed method in comparison
to other state-of-the-art methods, even with a comparatively small number of training
samples.

The remainder of this paper is organized as follows. A detailed description of the
proposed method is presented in Section 2. The experimental setup, results, and analysis
are described in Section 3. Finally, some conclusions and future work are discussed in
Section 4.

2. The Proposed Methodology

The proposed SP-SSA method includes three stages as described in Figure 1. In
stage 1, superpixel segmentation is applied on the input HSI to obtain the segmented HSI.
In stage 2, each segmented region is reconstructed using 2D-SSA to obtain the reconstructed
HSI. In the final stage, an SVM classifier is applied on the reconstructed HSI to build the
final classification map. A detailed description of each of these stages is presented in the
subsections below.
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Input HSI
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Segmentation
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Figure 1. Flowchart of the proposed method.

2.1. Superpixel Segmentation

Superpixel segmentation approaches have gained popularity in recent years as these
approaches have several benefits. Using superpixels, the computational complexity can be
drastically reduced by computing features on more meaningful regions rather than acting
on each individual pixel in HSI [43]. Simple Linear Iterative Clustering (SLIC) [44] is one
of the most popular gradient-ascent-based superpixel segmentation approaches, where an
initially defined tentative set of cluster points are iteratively refined using a gradient-ascent
method until some convergence criteria are met. This algorithm has lower computational
complexity as it applies the k-means method locally. The algorithm includes four key steps
that can be summarized as follows.

The first step is cluster center initialization. Let the input HSI be denoted as Hb ≡
{hb

1, hb
2, . . . , hb

N} with N pixels, where {hb
i } represents the value at the ith pixel for the bth

spectral band and i = 1, 2, . . . N; b = 1, 2, . . . B. B is the total number of spectral bands. Each
pixel can be labeled as Ai = [hi, ri, ui], where hT

i = [h1, h2, . . . , hB]
T is the spectral vector

and [ri, ui]
T is the position vector. The K number of initial cluster centers Cj = [hj, rj, uj]

T

are sampled on a regular Q × Q (Q =
√

N
K ) grid and are, thus, equally spaced apart [45].

The next step is the cluster assignment step, where each pixel is assigned to the nearby
cluster center based on the computed distance measure D. Distance is computed within a
2Q × 2Q window around the cluster center. The distance between the cluster center Cj and
pixel Ai is calculated as follows (Equation (1)):

D = Dspectral +
w
Q

Dspatial (1)

where w is the weighting factor between spectral and spatial features. The spectral and
spatial distance between pixel i and j are represented as in Equations (2) and (3) below.

Dspectral =

√√√√ B

∑
b=1

(
hb

i − hb
j

)2
(2)

where Dspectral is the measure of homogeneity within the superpixels.

Dspatial =
√
(ri − rj)2 + (ui − uj)2 (3)

where (ri, ui) denotes the location of pixel i in the superpixels. The spatial distance Dspatial
ensures regularity and compactness in the generated superpixels.

In the third step, the cluster centers are updated with the mean value of all pixels
belonging to the same cluster. The second and third steps are iteratively repeated until
convergence is achieved.

In the final step, post-processing is performed to enforce connectivity by reassigning
disjoint pixels to nearby superpixels.

2.2. 2D-SSA

SSA is capable of decomposing a series into multiple independent components or
subseries, where each extracted eigenvalue represents an individual component of the
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original series. The SSA can be applied to the respective spectral bands of the hypercube,
thereby, decomposing the 2-D scene, and then reconstructing it using the respective main
components while removing the noise contribution. As a data cube is decomposed in this
way, the local structure and main spatial trends are typically found in the first component.
Hence, when all images within the hyperspectral cube are decomposed and only the first
components are selected to individually reconstruct each of them, a resulting cube with
minimum noise is generated. The SSA can be implemented using the following four steps:

2.2.1. Embedding

Imagine a HSI dataset H, with a size of Nx × Ny × B, where Nx, Ny indicates the band
image size and B represents the total number of available bands. Each band image Hb

(b ∈ B) can be expressed as follows:

Hb =

⎡
⎢⎢⎢⎢⎢⎣

Hb
1,1 Hb

1,2 · · · Hb
1,Ny

Hb
2,1 Hb

2,2 · · · Hb
2,Ny· · · ·· · · ·· · · ·

Hb
Nx ,1 Hb

Nx ,2 · · · Hb
Nx ,Ny

⎤
⎥⎥⎥⎥⎥⎦

Nx×Ny

(4)

Next, a 2D window Qb is defined, whose dimensions are Mx × My.

Qb =

⎡
⎢⎢⎢⎢⎣

Hb
i,j Hb

i,j+1 · · · Hb
i,j+My−1

Hb
i+1,j Hb

i+1,j+1 · · · Hb
i+1,j+My−1· · · ·· · · ·· · · ·

Hb
i+Mx−1,j Hb

i+Mx−1,j+1 · · ·Hb
i+Mx−1,j+My−1

⎤
⎥⎥⎥⎥⎦

Mx×My

(5)

where 1 ≤ Mx ≤ Nx, 1 ≤ My ≤ Ny, and 1 < Mx My < Nx Ny. Each pixel is spatially
positioned by (i, j) within the image Hb. The pixels in a window Qb can be rearranged into
a column vector Cb

i,j ∈ R
Mx My according to the reference position (i, j) as follows:

Cb
i,j = [Hb

i,j, Hb
i,j+1, . . . , Hb

i,j+My−1, Hb
i+1,j, Hb

i+1,j+1, . . . , Hb
i+Mx−1,j+My−1]

T (6)

To scan the whole image Hb, this 2-D window is slid across it from top left to bottom
right until it has visited every position on the entire image (see also Figure 2 for a graphical
explanation).

Hb
i,j

1
Ny

Nx

My

Mx
i

j1

Qb

[MxMy x 1]

Cb
i,j

(a) (b) (c)

SVD

(d)

Figure 2. Moving window across the image Hb to create the trajectory matrix Zb.

As a result, the trajectory matrix Zb of all feasible 2-D windows of image Hb of size
Mx My × (Nx − Mx + 1)(Ny − My + 1) can be obtained as follows:

Zb =

[
(Cb

1,1)
T , (Cb

1,2)
T , . . . , (Cb

1,Ny−My+1)
T , (Cb

2,1)
T , . . . , (Cb

Nx−Mx+1,Ny−My+1)
T
]

Mx My×(Nx−Mx+1)(Ny−My+1)
(7)
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Note that the trajectory matrix Zb has a structure of Hankel–block–Hankel (HbH). Zb

can be expressed as follows:

Zb =

⎡
⎢⎢⎢⎢⎣

Pb
1 Pb

2 · · · Pb
Nx−Mx+1

Pb
2 Pb

3 · · · Pb
Nx−Mx+2· · · ·· · · ·· · · ·

Pb
Mx

Pb
Mx+1 · · · Pb

Nx

⎤
⎥⎥⎥⎥⎦

Mx×(Nx−Mx+1)

(8)

Each of the submatrices Pb
i corresponds to a Hankel structure as follows:

Pb
i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Hb
i,1 Hb

i,2 · · · Hb
i,Ny−My+1

Hb
i,2 Hb

i,3 · · · Hb
i,Ny−My+1

· · · ·
· · · ·
· · · ·

Hb
i,My

Hb
i,My+1 · · · Hb

i,Ny

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

My×(Ny−My+1)

(9)

2.2.2. Singular Value Decomposition (SVD)

After obtaining the trajectory matrix Zb, SVD is applied to determine the eigenvalues(
λ1 ≥ λ2 ≥ · · · ≥ λMx My

)
, and the corresponding eigenvectors

(
U1, U2, · · ·, UMx My

)
of(

Zb
(
Zb

)T
)

. It is possible to rewrite Zb as follows:

Zb = Zb
1 + Zb

2 + · · ·+ Zb
Mx My

(10)

where the ith elementary matrix is Zb
i =

√
λiUiVT

i and its Principal Components (PCs) are

defined as Vi =
(Zb)TUi√

λi

2.2.3. Grouping

A subsequent operation is eigenvalue grouping, during which the total set of Mx My
individual components in (10) are divided into m subsets, designated as S = [S1, S2, . . . , Sm].
By selecting one or more elementary matrices Zb

i from each subset, it is possible to derive
the main information contained in an image without being disturbed by high noise levels.
As a result, the trajectory matrix Zb can be represented as follows:

Zb = Zb
S1
+ Zb

S2
+ · · ·+ Zb

Sm
(11)

The reconstruction of a single band scene of HSI using various numbers of components
(Zb

i ) is compared in Figure 3. In general, the component with the highest eigenvalue is the
most informative one, containing key features with the lowest noise contribution. With
the inclusion of additional components, the reconstructed scene begins to resemble the
actual scene. The reconstructed image obtained by grouping the 1st–5th components and
1st–10th components are very similar with marginal differences (Figure 3c,d). Hence, a
small number of key components are sufficient to reconstruct the scene satisfactorily.
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(a)                                         (b)

(c)                                         (d)

Figure 3. Implementation of 2D-SSA on a HSI scene (a) Original scene at 667 nm. (b) 1st component
grouping. (c) 1–5th component grouping. (d) 1–10th component grouping, where Mx = 5, and My = 5.

2.2.4. Diagonal Averaging

Zb, in this case, does not necessarily belong to the HbH matrix type. It is projected into
a 2D-signal by applying the Hankelization process in two steps; first inside every block (9)
and next block-to-block (8) by averaging the anti-diagonal elements in the matrix. Thus,
it is possible to obtain a reconstructed image that contains the distinctive spatial features
based on the local contextual information present in a 2D window defined by the user.

2.3. Novelty of the Proposed SP-SSA Method

The proposed approach integrates SSA and superpixel segmentation for the first
time to extract improved the spatio-spectral features from HSI. Reconstruction of object-
specific spatial sections, rather than the entire image, may be more effective. Hence, in
the proposed work, 2D-SSA is applied individually to each superpixel segmented region
to extract the local contextual information accurately. The pseudo-code for the proposed
SP-SSA algorithm is outlined in Algorithm 1.

Algorithm 1: Proposed SP-SSA algorithm for HSI classification.

Input: HS image, H ∈ R
n×b

Ground Truth GT
number of superpixels: K
Embedding Window Size:Mx × My
Eigen Value Grouping: EV

Output: Classification Map clsmap generated by SVM.
1: for b = 1 to B do
2: Perform SLIC superpixel segmentation to obtain segmentation map L from hb

containing K superpixel segments
L = SLIC (hb,K) (as outlined in Section 2.1)

3: for k = 1 to K do

4: hb
′

k = reconstruct2DSSA(L,Mx,My,EV) (as outlined in Section 2.2)
5: end for
6: end for
7: Obtained Reconstructed HSI H

′ ∈ R
n×b

8: clsmap = SVM (H
′
, GT)

For each superpixel, the reconstruction (reconstruct2DSSA (Algorithm 1)) is applied
to the rectangular Region of Interest (ROI) surrounding the superpixel (Figure 4). The
ROI is created based on the location information of the pixels available in that particular
segment. Only the reconstructed pixels specific to those pixels in the selected superpixel are
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stored as spatial features, while the remaining reconstructed pixels in the ROI are discarded
as they do not belong to the superpixel under test. The same procedure is applied to all
other superpixels, and the HS image is reconstructed using the proposed SP-SSA approach.
This procedure collects local object-specific superpixel-based spatial features for each band
in the image.

(rmin, umax) (rmax, umax)

(rmax, umin)(rmin, umin)

Figure 4. Possible Region of Interest (ROI) around the superpixel segment. (r, u) denotes the location
of pixel i in superpixels. rmin, rmax represents the minimum and maximum row index, and umin, umax

are the corresponding min and max column indices.

2.4. Classification

The selection of an appropriate classifier is critical in assessing the performance of the
above-mentioned features, especially in hyperspectral images with a limited number of
training samples. SVM is the most widely used supervised statistical learning framework
among pixel-wise classifiers. With the help of a kernel function, data can be mapped to
a higher-dimensional space via a nonlinear transformation, aiming to determine the best
hyperplane for separating samples belonging to different classes. The performance of SVM
in HSI classification is outstanding despite the variation of the data dimensions [46,47].
Hence, in this work, the SVM classifier is utilized to evaluate the performance of the
reconstructed features.

3. Results and Discussion

This section reports the outcome of testing the proposed approach on some of the
most popular benchmark datasets and compares it with other, state-of-art classification
approaches.

3.1. Dataset Description

In this subsection, the datasets used for testing the proposed approach are presented
and described.

3.1.1. Indian Pines

The first dataset, named “Indian Pines” (IP), was collected over Northwestern Indiana,
USA, with the airborne AVIRIS sensor; it includes a total of 220 bands covering wavelengths
from 0.4 to 2.5 μm. About 70% of the imaged area is agricultural land, while the remaining
portions are forests. Due to the comparatively low spatial resolution (20 m/pixel) of the
sensor, this dataset is challenging as it contains highly mixed pixels. The number of samples
obtained per class is also unbalanced, which further complicates classification. The size of
the scene is 145 × 145 pixels, and its Ground Truth (GT) data defines 16 different classes.
The pseudo-color image, the GT map, and the class names for the dataset are all included
in Figure 5.
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Figure 5. (a) False Color Composite Image, (b) Ground Truth Image and (c) Class names for the
Indian Pines Dataset.

3.1.2. Pavia University

The ROSIS sensor was instrumental to the collection of this dataset over the University
of Pavia, Italy. The dataset is called “Pavia University” (PU). It has a spatial resolution
of 1.3 m and originally comprises 115 spectral bands covering wavelength ranges from
0.43 to 0.86 μm. In the final analysis, 103 bands are used after the elimination of noisy
channels. The image has a size of 610 × 340 pixels, and it has nine challenging classes
with nearly similar spectral reflectances. Detailed information about the false-color image,
Ground Truth, and class names is displayed in Figure 6.

Asphalt

Meadows

Gravel

Trees

Painted metal sheets

Bare Soil

Bitumen

Self-Blocking Bricks

(c)

Shadows

(b)(a)

Figure 6. (a) False Color Composite Image, (b) Ground Truth Image and (c) Class names for the Pavia
University Dataset.

3.1.3. Salinas Dataset

The “Salinas” (SAL) dataset was captured over the Salinas Valley, California, USA,
using the AVIRIS Sensor. The sensor has 224 channels with spectral range varying from
0.43 μm to 2.5 μm. This scene has a size of 512 ×217 pixels and spatial resolution of 3.7 m
per pixel. The number of bands reduces to 204 after discarding 20 water absorption bands:
[108–112], [154–167], 224. The scene is mainly an agricultural area, with 16 classes in its
Ground Truth. A false color representation, the Ground Truth, and the class names for the
Salinas dataset are shown in Figure 7.
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Brocoli_green_weeds_1

Brocoli_green_weeds_2
Fallow

Fallow_rough_plow

Fallow_smooth

Stubble

Celery

Grapes_untrained

Soil_vinyard_develop

Corn_senesced_green_weeds

Lettuce_romaine_4wk

Lettuce_romaine_5wk

Lettuce_romaine_6wk

Lettuce_romaine_7wk

Vinyard_untrained

Vinyard_vertical_trellis

(a) (b) (c)

Figure 7. (a) False Color Composite Image, (b) Ground Truth Image, and (c) Class names for the
Salinas Dataset.

3.1.4. Houston 2018

The 2018 IEEE GRSS Data Fusion Contest (DFC) triggered public dissemination of
this rich dataset, which was included in our tests to increase their statistical significance.
The image of the Houston campus and its surrounding area was captured by the IRTES
CASI-1500 sensor at a GSD of 1 m over Houston, Texas, USA. It has 601 × 2384 pixels
and 50 spectral bands with wavelengths ranging from 380 to 1050 nm sampled at 10 nm
intervals. The scene contains 20 urban landcover classes. The false-color composite image,
ground truth image, and class names for the Houston 2018 dataset are provided in Figure 8.

Figure 8. (a) False-Color Composite Image, (b) Ground Truth Image, and (c) Class names for the Houston-2018 Dataset.

3.2. Experimental Setup

Our proposed approach was evaluated by comparing its performance with eight
state-of-the-art approaches for HSI feature extraction (Algorithm 2, see Section 3.4.5). These
include SVM [7], Edge Preserving Filter (EPF) [26], superpixel-based classification via
multiple kernels (SCMK) [34], region-based relaxed multiple kernel (R2MK) [35], adjacent
superpixel-based multiscale generalized spatial-spectral kernel (ASMGSSK) [36], Multiscale
superpixel-based PCA (MsuperPCA) [37], 2D Singular Spectrum Analysis (2D-SSA) [29],
and 2D Multiscale Singular Spectrum Analysis (2D-MSSA) [31]. A common way to measure
the efficiency of feature extraction is through the accuracy of the classifier scored by the
experiments. As a result, the classification setup must be appropriate with the current
state-of-the-art. In light of this, SVMs have demonstrated themselves to be robust and
efficient in multi-class classification applications.

The LIBSVM toolbox [48] is used to implement SVM as the default classifier for all
of the involved methods. A Gaussian RBF kernel is utilized for SVM implementation,
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and a grid search is applied to tune both key parameters of RBF-SVM; the penalty c and
the gamma γ. The SVM parameters are kept constant across all competitive experiments
for a fair comparison. To avoid systematic errors and reduce random discrepancies, all
experiments were independently carried out ten times each with different training and
testing subsets, with no overlap between each training and the corresponding testing
subset. This was intended to ensure good statistical significance for our experiments.

Stratified sampling was used to randomly obtain the training and testing subsets.
For training, 3%, 2%, 1%, and 0.2% samples per class were selected for the IP, PU, SAL,
and Houston 2018 datasets, respectively. Additionally, four objective quality indices are
utilized to evaluate image classification results: namely the OA, the average accuracy (AA),
the kappa coefficient, and class-by-class accuracy. All experiments were conducted using
MATLAB R2018b software, installed on a personal computer with an Intel core i5-6200
CPU clocked at 2.30 GHz, and 16 GB RAM.

3.3. Parameter Sensitivity Analysis

Table 1 displays the best parameter settings for the competing algorithms, found
by experimentation. For the proposed SP-SSA algorithm, the size of the 2-D embedding
window was set to 5 × 5 pixels for the IP and Salinas dataset; whereas, for the PU and
Houston 2018 dataset, the window size was set at 3 × 3 pixels. For the IP and SAL datasets,
superpixels were set at 100. However, the amount of superpixels in the PU and Houston
2018 datasets were set to 150 and 500, respectively. The effect of window size variation
for different number of superpixels on the classification performance for the experimental
datasets is provided in Figure 9.

As each superpixel is reconstructed individually, smaller window sizes are preferred
since they lead to better image reconstructions. Using a large window may smooth the
results too much and result in mixing errors. A 2D-SSA algorithm was presented in [29] for
feature extraction in HSI, where various window sizes, such as 5 × 5, 10 × 10, 20 × 20, 40 ×
40, and 60 × 60, were examined. The IP and SAL datasets produced the best classification
accuracy when the window size was set at 10 × 10. When analyzing the PU and Houston
dataset, the window sizes of 5 × 5 showed the best classification results. Since the optimal
window size may vary depending on the dataset, ref. [31] adopts a multiscale strategy to
improve the generalization ability.
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Figure 9. Effect of window size variation for different number of superpixels on the classification performance for the
(a) Indian Pines (b) Pavia University, and (c) Salinas, and (d) Houston 2018 datasets.
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Table 1. Parameter settings for different algorithms in the Indian Pines, Pavia University, Salinas, and Houston 2018 Datasets.

Method Indian Pines, Salinas Pavia University Houston 2018

SVM NA NA NA

EPF δs = 3, δr = 0.2, r = 3, and ε = 0.01 δs = 3, δr = 0.2, r = 3, and ε = 0.01 δs = 5, δr = 0.1, r = 3, and ε = 0.02

SCMK σ = 2−6; spnum = 600; μ1 = 0.2, μ2 = 0.2 σ = 2−4; spnum = 900; μ1 = 0.2, μ2 = 0.4 σ = 2−5; spnum = 1600; μ1 = 0.1, μ2 = 0.3

R2MK σ = 2−6; spnum = [20,50,100,200,400,800]; μ = 0.2 σ = 2−5; spnum = [50,100,200,400,800,1600]; μ = 0.3 σ = 2−4; spnum = [50,100,200,400,800,1600,3200]; μ = 0.1

ASMGSSK r0 = 0.1; σ = 2−7; spnum = [100,200,400,800,1600,3200] r0 = 0.1; σ = 2−5; spnum = [200,400,800,1600,3200,6400] r0=0.2; σ = 2−4; spnum = [200,400,800,1600,3200,6400]

MsuperPCA Fundamental spnum = 100; scale no = 4 Fundamental spnum = 20; scale no = 6 Fundamental spnum = 100; scale no = 8

2DSSA Window Size: 10 × 10; EVG = 1st Window Size: 5 × 5; EVG = 1 − 2nd Window Size: 5 × 5; EVG = 1 − 2nd

2DMSSA Window Size: 5 × 5, 10 × 10, 20 × 20, 40 × 40, 60 × 60 Window Size: 5 × 5, 10 × 10, 20 × 20, 40 × 40, 60 × 60 Window Size: 5 × 5, 10 × 10, 20 × 20, 40 × 40, 60 × 60

SP-SSA spnum: 100; Window Size: 5 × 5; EVG = 1 spnum: 150; Window Size: 3 × 3; EVG = 1 − 2nd spnum: 500; Window Size: 3 × 3; EVG = 1 − 2nd

3.4. Experimental Result and Analysis

In this section, the four HSI data sets outlined in Section 3.1 are utilized, and several ex-
periments are performed to examine the efficacy of the proposed SP-SSA method. Figure 10
compares the classification results obtained with varying numbers of training samples on
four datasets. It can be noted that better classification performance is evident when larger
numbers of labeled samples are utilized for training; after passing the percentages used in
this work; however, the accuracy level mostly plateaus, and no further significant improve-
ment is observed. Our proposed approach attains the best classification accuracy in almost
all cases, regardless of the number of samples, proving its robustness. Classification results
from all four data sets are provided in Tables 2–5 and quantitatively support the dominance
of the proposed method. Individual classification maps generated by the proposed SP-SSA
method and all the compared approaches are displayed in Figures 11–14.
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Figure 10. Effect of training sample variation on the classification performance for the (a) Indian Pines (b) Pavia University,
(c) Salinas, and (d) Houston 2018 datasets.

3.4.1. Results from the Indian Pines Dataset

Based on the results shown in Table 2, the proposed method achieves the best values
across three metrics, and its accuracy exceeded 89% on almost all classes. In the tables, the
best results in each row are highlighted in bold font. When comparing SP-SSA with raw
HSI data, the OA improved substantially from 76.42% to 98.15%. In addition, comparisons
between SVM and other methods indicated that the incorporation of spatial features can
enhance the classification performance compared to considering spectral features alone.
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Superpixel-based methods, such as SCMK, R2MK, ASMGSSK, and MsuperPCA tech-
niques, yield higher classification accuracy as compared to non-superpixel based techniques
(EPF, 2D-SSA, and 2D-MSSA); by grouping spectrally identical regions, superpixels offer
a powerful way to exploiting spatial/contextual information. It can also be noted that
methods considering multi-scale windows (ASMGSSK, MsuperPCA, and 2D-MSSA) per-
form better with respect to fixed-window methods. Due to the different window sizes,
unique local spatial features can be exploited, which allows better covering of different
sizes of land cover classes and different scales of spatial features. On the downside, the use
of multiscale approaches involves heavier processing burdens. As the proposed method
reconstructs each superpixel individually, better classification results are obtained.

Table 2. Classification results for the Indian Pines Dataset with 3% training for SVM, EPF, SCMK, R2MK, ASMGSSK,
MsuperPCA, 2D-SSA, 2D-MSSA, and SP-SSA algorithms.

Class Samples SVM EPF SCMK R2MK ASMGSSK MsuperPCA 2DSSA 2DMSSA SP-SSA

Alfalfa 46 12.65 22.22 62.79 92.86 95 87.8 54.55 87.8 92.11
Corn-notill 1428 75.18 92.85 92.55 94.06 94.85 97.09 91.81 95.25 98.25

Corn-mintill 830 82.46 83.44 90 93.32 97.37 90.11 88.96 96.65 97.99
Corn 237 47.86 79.39 85.59 95.41 96.14 99.53 80.89 89.2 96.98

Grass-pasture 483 69.25 68.04 89.67 97.3 99.05 95.81 90.61 92.41 97.04
Grass-trees 730 80.19 96.72 99.56 98.36 99.21 98.61 93.23 99.54 99.51

Grass-pasture-mowed 28 88.89 88.46 69.23 80 100 96 92.59 92 100
Hay-windrowed 478 93.46 100 98 98.18 98.32 95.07 98.46 99.54 99

Oats 20 36.12 47.37 100 52.63 47.06 94.12 42.11 83.33 100
Soybean-notill 972 76.74 82.96 88.29 90.16 96.57 95.27 87.12 96.91 93.63

Soybean-mintill 2455 79.51 97.03 95.54 97.48 98.5 96.66 93.1 97.19 99.03
Soybean-clean 593 50 86.99 93.18 95.79 97.29 95.27 90.96 96.07 98.6

Wheat 205 99.01 96.94 92.23 100 97.21 98.9 99.48 98.91 100
Woods 1265 88.74 99.26 98.91 99.48 99.27 99.02 96.42 99.82 99.62

Buildings-Grass-Trees-Drives 386 65.18 87.87 99.45 94.37 96.73 88.95 90.16 94.24 98.46
Stone-Steel-Towers 93 41.32 97.75 72.73 92.94 97.5 93.9 97.75 98.81 89.74

OA:: 76.42 91.25 93.82 95.98 97.54 96.04 91.95 96.83 98.15
AA:: 67.91 82.96 89.23 92.02 94.38 95.13 86.76 94.86 97.5
K:: 73.05 89.98 92.95 95.32 97.2 95.49 90.82 96.39 97.89

Figure 11 displays the classification maps produced by various approaches for the
Indian Pines dataset. For the SVM approach, the classification map appears very noisy if
spatial features are not considered. Through the use of neighborhood spatial information,
the EPF and 2D-SSA techniques can suppress spot-wise misclassification to a large extent,
but these methods do not preserve the detailed structures of the HSI well enough.

However, by adopting superpixel-based approaches, the generated classification
map becomes much smoother, and more accurate estimates are obtained in the detailed
region. With the utilization of multi-scale approaches (like ASMGSSK, MSuperPCA, and
2D-MSSA), the amount of misclassification is further reduced. Still, even with multi-scale
approaches, landcover boundaries are frequently misplaced. As can be observed from
Figure 11, the proposed approach effectively solved the above-mentioned problems due to
its considerate utilization of spectral and spatial features.
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Figure 11. (a) Ground Truth Image, Classification Maps of (b) SVM (c) EPF (d) SCMK (e) R2MK
(f) ASMGSSK (g) MsuperPCA (h) 2D-SSA (i) 2D-MSSA (j) SP-SSA for Indian Pines dataset.

3.4.2. Results from the Pavia University Dataset

Quantitative results are presented in Table 3. The proposed SP-SSA method still
achieved higher classification accuracy and ranked first among all the compared methods,
closely followed by the ASMGSSK algorithm. Also, in comparison to EPF, SCMK, R2MK,
2D-SSA, MSuperPCA, and 2D-MSSA techniques, the average improvement of the proposed
approach is over 4.41%, 3.64%, 2.09%, 2.37%, 1.3%, and 1.48%, respectively. For comparison,
the top results in the tables are boldfaced. In Figure 12, different classification maps are
shown, based on various testing methods applied to the PU dataset.

According to Figure 12, the classification map for SVM still continues to remain noisy.
Both EPF and 2D-SSA can generate a relatively smooth result; however, some significant
regions remain undetected (e.g., the detailed areas). The superpixel-based methods (SCMK,
R2MK, ASMGSSK, and MSuperPCA) and SSA-based approach (2D-SSA and 2D-MSSA)
offer significantly improved performance, but the proposed 2D-SSA method remains the
most promising approach as it outperforms all the compared algorithms.

Table 3. Classification results for the Pavia University Dataset with 2% training for SVM, EPF, SCMK, R2MK, ASMGSSK,
MsuperPCA, 2D-SSA, 2D-MSSA, and SP-SSA algorithms.

Class Samples SVM EPF SCMK R2MK ASMGSSK MsuperPCA 2DSSA 2DMSSA SP-SSA

Asphalt 6631 90.79 96.33 94.01 95.43 99.23 97.19 97.12 97.61 98.94
Meadows 18,649 99.54 98.06 99.14 99.78 99.76 99.83 99.52 99.45 99.85

Gravel 2099 53.12 80.86 83.69 90.81 91.85 89.73 89.35 90.53 94.17
Trees 3064 81.9 83.81 87.34 93.8 98.22 95.53 96.24 95.76 99

Painted metal sheets 1345 93.04 100 99.17 100 99.17 100 99.47 99.46 100
Bare Soil 5029 89.64 94.15 96.46 96.81 99.6 98.01 95.76 98.52 99.74
Bitumen 1330 55.48 89.74 86.86 91.71 99.42 94.54 85.97 97.21 98.85

Self-Blocking Bricks 3682 87.92 91.47 90.97 90.97 94.69 93.05 89.11 92.64 95.62
Shadows 947 90.75 90.19 97.12 98.17 98.59 98.89 95.69 88.67 98.76

OA:: 90.71 94.53 95.3 96.85 98.67 97.64 96.57 97.46 98.94
AA:: 82.47 91.62 92.75 95.28 97.84 96.31 94.25 95.54 98.33
K:: 87.57 92.73 93.76 95.82 98.23 96.87 95.44 96.63 98.6
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Figure 12. (a) Ground Truth Image, Classification Maps of (b) SVM (c) EPF (d) SCMK (e) R2MK
(f) ASMGSSK (g) MsuperPCA (h) 2D-SSA (i) 2D-MSSA (j) SP-SSA for the Indian Pines dataset.

3.4.3. Results from the Salinas Dataset

The visual classification maps and quantitative results obtained by various classifiers
on the Salinas dataset are shown in Figure 13 and Table 4, respectively. In the table, the
best results are shown in bold. Based on the visual quality as well as objective metrics,
it can be observed that the proposed SP-SSA method outperformed other competing
approaches. In addition, compared with the 2D-SSA method that globally reconstructs
the image using fixed-size embedded windows, the SP-SSA method considers the local
spatial information by reconstructing each superpixel individually, which helps in further
reducing the disturbances and improving the class assignment.

Table 4. Classification Results for the Salinas Dataset with 1% training for SVM, EPF, SCMK, R2MK, ASMGSSK, MsuperPCA,
2D-SSA, 2D-MSSA, and SP-SSA algorithms

Class Samples SVM EPF SCMK R2MK ASMGSSK MsuperPCA 2DSSA 2DMSSA SP-SSA

Brocoli-green-weeds-1 2009 99.74 98.43 99.44 99.85 99.36 99.39 98.83 100 99.64
Brocoli-green-weeds-2 3726 100 99.92 100 98.62 100 99.82 100 100 99.96

Fallow 1976 93.34 99.31 99.9 100 99.71 99.89 99.64 99.64 100
Fallow-rough-plow 1394 96.37 97.28 98.52 98 98.26 98.56 97.38 97.54 98.67

Fallow-smooth 2678 91.19 99.06 97.77 99.42 98.72 99.75 98.42 99.25 99.63
Stubble 3959 100 99.92 98.54 99.92 100 100 100 100 100
Celery 3579 99.18 99.65 99.14 99.54 99.8 99.78 100 99.88 99.96

Grapes-untrained 11,271 91.38 92.49 94.6 95.2 96.77 95.76 95 96.31 97.91
Soil-vinyard-develop 6203 97.34 99.88 99.65 99.98 99.82 99.96 99.66 99.95 100

Corn-senesced-green-weeds 3278 93.96 97.37 98.96 97.42 98.47 98.24 96.73 98.3 98.82
Lettuce-romaine-4wk 1068 81.66 96.55 96.81 97.78 97.99 97.92 97.24 97.86 99.87
Lettuce-romaine-5wk 1927 98.03 100 100 100 100 100 100 100 100
Lettuce-romaine-6wk 916 98.85 97.01 97.41 99.55 99.69 99.76 99.74 99.69 99.69
Lettuce-romaine-7wk 1070 92.92 98.23 99.13 98.17 99.07 98.86 99.78 99.47 99.73

Vinyard-untrained 7268 82.69 90.41 91.32 92.28 95.89 92.98 94.21 95.58 97.7
Vinyard-vertical-trellis 1807 95.63 99.13 90.3 99.83 99.6 99.82 98.57 99.29 99.92

OA:: 93.64 96.56 96.82 97.5 98.43 97.89 97.63 98.33 99.1
AA:: 94.52 97.79 97.59 98.47 98.95 98.78 98.45 98.92 99.47
K:: 92.91 96.17 96.46 97.21 98.25 97.65 97.36 98.14 99
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Figure 13. (a) Ground Truth Image, Classification Maps of (b) SVM (c) EPF (d) SCMK (e) R2MK
(f) ASMGSSK (g) MsuperPCA (h) 2D-SSA (i) 2D-MSSA (j) SP-SSA for Salinas dataset.

3.4.4. Results from the Houston 2018 Dataset

The quantitative results for the Houston 2018 dataset with 0.2% training samples
from each class are presented in Table 5. The corresponding classification map is shown
in Figure 14. The best results from the tables are displayed in bold font for comparison.
As observed from Table 5, the proposed methods are robust and achieve good classifica-
tion results even for challenging scenes. The proposed approach improves accuracy from
68.19% to 83.57% for the SVM method. In this case also, the superpixel-based approaches
(SCMK, R2MK) display superior performance as compared to non-superpixel based meth-
ods (EPF, 2DSSA). Here also, multi-scale window approaches (ASMGSSK, MsuperPCA,
and 2D-MSSA) outperform fixed-window based methods as different scales of spatial
features are incorporated into the analysis. Figure 14 also highlights the superiority of the
proposed method. The salt and pepper noise is reduced by a greater extent, and a smoother
classification map is produced with the proposed method.

Table 5. Classification results for the Houston Dataset with 0.2% training for SVM, EPF, SCMK, R2MK, ASMGSSK,
MsuperPCA, 2D-SSA, 2D-MSSA, and SP-SSA algorithms.

Class Samples SVM EPF SCMK R2MK ASMGSSK MsuperPCA 2DSSA 2DMSSA SP-SSA

Healthy grass 9799 62.84 65.71 73 74.49 81.46 76.44 76.64 84.51 79.28
Stressed grass 32,502 84.4 85.08 83.83 86.42 89.88 88.67 83.7 90.99 91.33
Artificial turf 684 100 98.83 100 99.41 100 100 100 100 100

Evergreen trees 13,588 83.72 73.99 80.15 84.76 87.77 82.43 80.43 91.13 87.37
Deciduous trees 5048 43.98 36.75 50.54 51.74 63.82 55.89 46.38 58.26 73.94

Bare earth 4516 79.32 82.67 86.28 88.46 94.01 91.1 80.64 89.04 96.21
Water 266 66.42 67.8 61.89 68.06 83.08 68.18 74.62 66.92 85.71

Residential buildings 39,762 68.26 77.29 77.52 79.2 84.37 82 74.76 78.07 87.39
Non-residential buildings 223,684 82.57 85.51 87.3 88.31 91.64 89.18 86.05 90.63 92.73

Roads 45,810 40.41 43.7 46.79 47.33 58.86 51.39 42.75 53.25 63.89
Sidewalks 34,002 31.36 35.3 37.58 37.51 43.74 39.25 33.65 51.35 49.71

Crosswalks 1516 4.96 9.02 8.63 9.12 13.66 9.26 7.62 5.2 14.21
Major thoroughfares 46,358 50.97 55.91 59.41 63.04 72.53 65.1 58.17 60.83 75.48

Highways 9849 49.7 60.35 61.19 63.93 73.83 70.78 59.55 68.92 78.56
Railways 6937 79.92 85.83 92 89.52 95.29 88.07 80.22 95.84 97.29
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Table 5. Cont.

Class Samples SVM EPF SCMK R2MK ASMGSSK MsuperPCA 2DSSA 2DMSSA SP-SSA

Paved parking lots 11,475 54.91 63.2 74.02 69.99 84.58 74.63 64.9 74.18 84.33
Unpaved parking lots 149 58.78 83.11 83.67 77.03 81.63 85.71 81.08 81.76 93.06

Cars 6578 43.99 47 49.33 59.66 65.09 53.78 54.51 62.85 70.22
Trains 5365 40.83 40.54 58.92 51.3 77.4 61.14 52.66 79.19 79.96

Stadium seats 6824 86.42 93.25 87.78 93.86 96.62 94.18 83.53 98.71 98.43

OA:: 68.19 71.64 74.1 75.48 81.32 77.2 72.11 79.08 83.57
AA:: 60.69 64.54 67.99 69.16 76.96 71.36 66.09 74.08 79.95
K:: 59.13 63.41 66.52 68.28 75.82 70.55 63.94 72.61 78.73

(a)                 (b)                 (c)                 (d)                 (e)

(f)                 (g)                 (h)                  (i)                  (j)

Figure 14. (a) Ground Truth Image, Classification Maps of (b) SVM (c) EPF (d) SCMK (e) R2MK
(f) ASMGSSK (g) MsuperPCA (h) 2D-SSA (i) 2D-MSSA (j) SP-SSA for Houston 2018 dataset.

3.4.5. Statistical Evaluation

The effectiveness of the proposed method was statistically evaluated using McNemar’s
test. The classification results for all the test cases were compared using this test. The
McNemar’s test is defined as in Equation (12), where it is assumed that two generic
algorithms, named Algorithm 1 and Algorithm 2 are compared.

Z =
f12 − f21√

f12 + f21
(12)

In the equation above, f12 indicates the number of samples correctly classified by Algorithm 1
and incorrectly classified by Algorithm 2, and f12 indicates the number of samples for the
opposite case. The performance of Algorithm 1 is better than Algorithm 2 if Z > 0. The
differences between Algorithm 1 and Algorithm 2 are statistically significant if |Z| > 1.96.
In our case, Algorithm 1 is the algorithm proposed in our manuscript, and Algorithm 2 is
—sequentially— each one from the list of standard algorithms: SVM, EPF, SCMK, R2MK,
ASMGSSK, MsuperPCA, 2DSSA, 2DMSSA.

McNemar’s test between the proposed SP-SSA algorithm and the algorithms listed
above for the Indian Pines, Pavia University, Salinas, and Houston 2018 datasets are
provided in Table 6. The test result clearly reveals that the classification results for the
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proposed method were significantly better—in a McNemar’s statistical sense—compared
with other approaches.

Table 6. Statistics of the McNemar Test for the Indian Pines, Pavia University, Salinas, and Houston
2018 datasets.

Z
Indian Pines Pavia University Salinas Houston 2018

Proposed Method (SP-SSA)

SVM 42.534 56.342 37.215 61.512
EPF 39.152 48.186 25.113 57.084

SCMK 27.467 37.428 21.421 43.115
R2MK 23.615 28.521 18.472 39.721

ASMGSSK 10.624 16.832 8.351 18.521
MsuperPCA 21.524 19.441 11.486 35.431

2DSSA 34.321 31.084 15.321 51.322
2DMSSA 16.819 23.217 9.091 27.634

3.5. Advantage of Proposed Method over 2D-SSA
3.5.1. Applying SP-SSA on General Images

In the proposed approach, 2D-SSA is applied on each and every superpixel segmented
region. Hence, it can be considered as a local 2D-SSA approach that can extract accurate
spatial information on each single object. In the case of global 2D-SSA, features are over-
smoothed, and features are not prominent for specific classes. In local 2D-SSA instead,
object-specific texture information can be highlighted. In Figure 15, the popular cameraman
image and an artificial test image are used to demonstrate the effectiveness of the proposed
approach over the 2D-SSA approach.

When the cameraman image is reconstructed using the 2D-SSA method, the Mean
Square Error (MSE) comes out to 115.8865; however, when the same image is reconstructed
using the proposed SP-SSA approach, the MSE reduces to 93.0468. A similar behavior is
also observed with the test image. With the proposed SP-SSA method, the MSE reduces
to 237.1038 from 287.5323. This signifies that the proposed method can reconstruct an
image with minimum error and can effectively integrate local information during the
reconstruction process.

(a)                                         (b)                                          (c)

(d)                                         (e)                                          (f)

Figure 15. (a) Cameraman image (b) 2D-SSA Reconstructed image [MSE = 115.8865] (c) SP-SSA
reconstructed image [MSE = 93.0468] (d) Test image (e) 2D-SSA Reconstructed image [MSE = 287.5323]
(f) SP-SSA reconstructed image [MSE = 237.1038].

3.5.2. Applying SP-SSA on HSI

The HSI is composed of a stack of 2D images carrying valuable information about
each spectral band. To demonstrate the effectiveness of the proposed method, a randomly
selected spectral band at 667 nm was considered for our analysis. Figure 16b,c contains the
scene as reconstructed by 2D-SSA and SP-SSA, respectively. Since the HSI was acquired
over a large area, it includes multiple objects with different textural information. This is a
typical case where object-specific reconstruction works better than direct reconstruction.
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Textural information can be highlighted accurately by using local reconstruction as opposed
to global reconstruction. The error in SP-SSA-based reconstruction is indeed lower as
compared to 2D-SSA-based reconstruction. The same conclusion can also be drawn from
Figure 16.

In the case of 2D-SSA-based reconstruction, the Mean Square Error (MSE) is 612.4349,
while, in the case of SP-SSA-based reconstruction, the MSE is 504.5685. Figure 16d,e
contains the difference image for 2D-SSA-based reconstruction and SP-SSA-based methods.
It can be clearly observed that edge information is preserved with the proposed method.
The SP-SSA-based reconstruction is applied to all spectral bands and generates a modified
hypercube with preserved local structure information and minimum noise level. These
latter features generally lead to better classification performance.

(a) (b) (c)

(d) (e)

Figure 16. (a) Original scene at band 667 nm (b) Reconstructed scene by 2D-SSA (c) Reconstructed
scene by SP-SSA (d) Difference image for the 2D-SSA reconstructed scene (e) Difference image for
the SP-SSA reconstructed scene.

4. Conclusions and Future Scope

Feature extraction is one of the most crucial steps in HSI classification. It is essential
to capture comprehensive spatial and spectral information for accurate feature extraction.
For image reconstruction, the conventional 2D-SSA algorithm usually extracts spatial
features directly by applying the embedding window to the entire image. However, HSI
scenes frequently encompass a broader area and contain several items. As a result, spatial
information pertaining to local objects must be recovered. To solve this problem, in the
proposed method, a superpixel-based SSA technique was presented, which can capture the
object specific spatio-spectral information accurately.

In this work, the original HSI was first divided into various semantic sub-regions by
the superpixel segmentation algorithm. Next, each segment was reconstructed individually
by applying 2D-SSA. The generated reconstructed HSI was then classified using the SVM
classifier, and the final classification map was produced. Local characteristics may be
collected effectively in the suggested method since 2D-SSA is applied at the superpixel
level. However, two parameters must be adjusted: the amount of superpixels and the
embedding window size. Future developments will aim at finding the optimal criteria to
determine the parameters of the procedure and to investigate relationships between the
characteristics of the HSI and quality of the results.
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Abstract: The main aim of this study is to analyze from a bibliometric point of view the research
trend in spatial analysis for landscape changes using the records published in the Web of Science
database in the last twenty years. Several parameters such as documents published per year, sources
of documents, number of citations as well as VOSviewer software and GIS are used for the analysis of
different metrics such as the number of citations, co-authorship network, and keyword occurrences.
Analysis of the number of papers, their keywords, and authorships countries shows the research trend
in the specific topics of the spatial analysis for landscape changes and consequently can constitute a
benchmark for researchers who approach this research topic.

Keywords: spatial analysis; landscape changes; bibliometric mapping; Web of Science

1. Introduction

Spatial analysis saw a big improvement in the last few decades thanks to the parallel
growth of Information Computer Technologies (ICT), both from the hardware and from
the software development point of view. Since then, many research fields have been taking
advantage of the spatial analysis discipline. Between these, there are all the studies directly
concerned with human- and natural-induced landscape changes. Bibliometric analysis
of “hot” research topics is a growing tool for the investigation of emerging disciplines,
cooperations, publication impact, and new research trends [1]. In recent years, such an
approach has been adopted by several authors to quantitatively delineate the global trend
of different research topics or wider disciplines [2–6], highlighting the usefulness of the
method to study the past and future direction of research patterns. Moreover, the recent
availability of wider databases and innovative software of bibliometric analysis provides
new tools for the deeper visual and statistical analysis of temporal and geographic global
distribution in research trends [1]. In this work, we carry out a bibliometric analysis of
the emerging research topic of the spatial analysis of landscape changes with the aim to
investigate the topic’s research pattern in the last two decades and to guide researchers to
understand future trends.

Landscape changes are very important for the past, present, and future of the Earth
and consequently for human life; consequently, as it is shown in this paper, the study
of landscape changes through the help of spatial analysis has grown in recent decades
and become a hot topic. For this reason, there are many articles belonging to the Ecology,
Territorial Planning and Earth Science sectors. Just some examples of the themes afforded
in these areas are papers that use spatial analysis for understanding how landscape changes
impact species distribution over space and their interaction with environments [7,8], the
quantification of natural resources, such as water [9], forests [10–12], and, more in general,
of ecosystem services [13,14], and multi-temporal analysis of satellite images and maps as
a tool to reconstruct land-use changes and rates of geomorphological processes [15–17].
One of the most effective approaches to investigate natural landscape changes is the geo-
morphological one, which benefits from recent advances in the development of software
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and algorithms of digital elevation model (DEM) comparison [18,19], image change detec-
tion [20,21], and landscape evolution models [22–25]. Moreover, sustainability is a big topic
connected with this research line and there are many articles concerning it [26–28], together
with analysis connected to climate change [29–31] and pollution quantification [32–34].
However, there are other disciplines such as Archaeology or Historical studies [35–37], or
fire analysis [38–40], that are strictly connected to the wider topic of landscape changes.

From what has been said, it is now clear that to consider “spatial analysis for landscape
changes” (from here s.a.l.c.) implies covering a very broad area because there are many
topics and, at the same time, there are many types of spatial analysis that could be used
to investigate these changes, from more traditional methods [41] to more intelligent data
analysis [42].

Consequently, the main aim of this paper is to clarify topics, trends, and methods
that are connected to the research line of s.a.l.c. through a comprehensive and accurate
bibliometric analysis during the last twenty years.

2. Methodology

2.1. Bibliometric Search Engine, Tools, and Software Used for S.A.L.C. Analysis

To retrieve the scientific literature for this paper, we used the Web of Science database
(WoS). Among the most popular bibliographic databases of research papers such as Scopus,
WoS, and Google Scholar, we chose WoS because it represents the best compromise among
database completeness and cataloguing of higher rank journals [43].

This research was conducted by using the combination of s.a.l.c. keywords, written
between the quotation marks, in order to include at the same time all the four keywords
and by looking for them inside the title, abstract, and keywords of the scientific paper. Then,
the analysis excluded from the research all the WoS categories including the life science
disciplines, such as biotechnology, applied microbiology, immunology, oncology, etc.

Regarding the time of publication, two temporal ranges were considered.
The first range considers years from 2001 to 2020, in order to study the general

characteristics of scientific literature in the highlighted topic.
The second range considers the same period, from 2001 to 2020, but is divided into

four five-year intervals, in order to investigate the long-term literature trends.
To achieve this goal, the following tools were used: first, some tools present inside

WoS were used to extract some statistics and graphs; second, an open-source Geographic
Information System, QGIS (open source software, downloadable at the site https://www.
qgis.org/it/site/, accessed on 10 October 2021), was used to analyze the geographic
distribution of selected works; third, for more specific diagrams, the VOSviewer software
was used. It is a free software [44] based on text-mining and it is useful to construct
bibliometric maps.

The bibliometric mapping discipline, also called science mapping, recently appeared
in order to look for relationships between documents, keywords, or authors [45,46], and
with the main aim to investigate the structure and the dynamics of a topic [1,47].

In the literature, other software programs exist for bibliometric mapping, such as
SCImat [48] or CiteSpace [49]. Some software reviews are present in [50,51]. We chose
VOSviewer for its simplicity, flexibility, and clearness of the results.

2.2. VOSviewver Diagrams

Concerning the use of VOSviewer, it offers many useful tools for bibliographic analysis.
In this paper, the following diagrams were used:

• The keyword co-occurrence map. It is a distance graph showing the connection
between the keywords included in the selected bibliography. If the terms co-occur
inside the same phrases, a higher relevance score is assigned to them. Consequently,
terms that are linked and near each other in the map are more related. With the
co-occurrence map, it is then possible to analyze the main keywords that characterize
the state of the art in a domain field. With this type of analysis, VOSviewer returns the
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graph showing links between key terms, which are also divided into clusters; these
clusters are in turn built up on the basis of the co-occurrences of terms inside the paper
titles. Moreover, the number of occurrences and the total link strength are associated
with each term.

• The co-authorship cluster map. In this diagram, the countries where the authors
belong are represented as nodes. A bigger node consequently means that more
authors come from that country. Lines instead represent the relationship between
co-authors coming from different countries.

• The overlay map between keyword co-occurrences and the year when the papers of
the studied bibliography were mostly cited. As in the previous maps, nodes and their
sizes still represent the number of keyword occurrences, and the lines still represent
the strength of co-occurrences between terms, but in this case, the colors represent the
citation year.

• Density visualization of the co-occurrences map. This type of graphic facilitates the
reading of hot-spots and cold-spots of the keyword with a higher or lower density of
co-occurrences [44].

3. Results

3.1. General Quantitative Results

The first result, obtained from the research in Web of Science, is the quantification of
the citations and publications existing in the research field s.a.l.c. A total of 8409 records
were found, with a minimum of 86 in 2001 and a maximum of 862 in 2020. Figure 1
shows a consistent increase both in the publication and in the citation number, except for
two light drops between years 2002–2003 and 2016–2017. There was also a little decrease in
2020. However, we have to remember that 2020 was an exceptional year because of the
COVID-19 pandemic, and this could influence the number and the topic of the worldwide
research papers.

Figure 1. Diagram representing the number of citations and publications reported by Web of Science
from 2000 to 2020.

3.2. Result Heterogeneity

In the results obtained by Web of Science, the first aspect that emerges, as expected
and explained in the introduction, is the heterogeneity of categories. This aspect is clearly
highlighted in Figure 2, where the composition of the first ten categories is visualized in
a tree map. Visual inspection of the map highlights that the main categories working in
these sectors are environmental disciplines such as Environmental Sciences (in 1st place
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with 2349 documents, corresponding to 27.6% of the total data), Ecology (2nd place, 2337,
27.4%), Multidisciplinary Geosciences (3rd place, 1323, 15.5%), and Physical Geography
(4th place, 1236, 14.5%). Moreover, it is possible to discover a first trend, not directly asked
with the query conducted in the Web of Science database. In fact, categories such as Remote
Sensing (873, 10.2%) and the Imaging Science Photographic Technology categories (528,
6.2%) are, respectively, classified in 5th and 9th place, suggesting the first delineation of the
main techniques and approaches related to the s.a.l.c.

Figure 2. Tree map of the first twenty Web of Science categories where the works about spatial analysis for landscape
archaeology are published.

3.3. Spatial Distribution of S.A.L.C.

S.a.l.c. literature authorship is spatially distributed all around the world, even if a
preliminary analysis of the results indicates a relevant prevalence of European-related
papers coming from 129 different countries. Figure 3 shows the frequency of documents
found for each country and classified in deciles. The first five countries interested in the
research area are the United States of America (with 2765 documents, 32.9%), China (1205,
14.3%), Germany (888, 10.0%), the United Kingdom (836, 10.0%), and Canada (628, 7.5%). It
is worth noting that the countries that seem not involved in the research topics and present
zero articles or very few articles (1 or 2) are prevalently located in the African continent.

It is also interesting to look at the co-authorship map between countries (Figure 4),
and the four main geographical clusters found that are those with the following rank: (1st)
the USA, (2nd) China, (3rd) Germany, and (4th) the Netherlands.

3.4. Co-Occurrence Map of Keywords of the Whole Period

Concerning the co-occurrence map calculated in the period between 2016 and 2020,
four main clusters were found. The prevailing keywords of these clusters are the following
(the number of the cluster is just nominal, not ordinal):

• Cluster 1 (Figure 5a, red cluster, a total of 40 items): the keyword with the most
occurrences is climate change (1323). Here, secondary terms, besides the word climate
(349), express the different aspects of landscape connected to climate change, from
vegetation (573) to soil (146) and its erosion (97).

• Cluster 2 (Figure 5a, green cluster, a total of 69 items): the “head” or main terms are
biodiversity (769 occurrences), pattern (896), and conservation (778), while minor
terms are diversity (428), ecology (330), fragmentation (367), landscape ecology (152),
habitat (231), connectivity (190), and landscape connectivity (86). It is interesting
to note that the keyword “spatial autocorrelation” (94) was inserted in this cluster
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instead of the “method” cluster (the Cluster 3), even if, of course, the link with it
remains through keywords GIS, land-use change, remote sensing, and, most of all,
urbanization, which is strictly linked with topics such as the protection or conservation
of biodiversity.

• Cluster 3 (Figure 5a, blue cluster, a total of 62 items): here it is possible to highlight
two sub-clusters. The first one is prevalently a methodological one, with the main
terms GIS (502) and remote sensing (427). The second one is more related to the urban
and planning application fields, represented by the main words land-use change (666)
and urbanization (431). Terms linked to both are representative of the types of analysis
conducted and the instrument used, such as classification (359), the different names
of remote sensors, change detection (104), spatial metrics (44), and simulation (165).
Moreover, other secondary terms explain where these methods are applied: for urban
growth studies (117) and urban expansion (79).

• Cluster 4 (Figure 5a, light green cluster, a total of 40 items): the main word is landscape
(1172), while secondary terms are management (560), impact (629), ecosystem services
(362), indicators (170), and vulnerability (112). As it is also possible to see from the
other minor terms, it is a cluster more oriented to the evaluation of landscape resources,
sustainability, and resilience.

 
Figure 3. Spatial distribution of the countries of article authorship (a) in the World and (b) in
Europe. World background taken from @ naturalearthdata.com. The graph was extracted using
QGIS software.
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Figure 4. Co-authorship cluster map. Graph obtained by VOSviewer software.

 
(a) 

Figure 5. Cont.
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(b) 

Figure 5. (a) Co-occurrence map (period: 2001–2020); (b) overlay visualization between key terms and their citation year.
Graphs made with VOSviewer software.

By “main word”, we meant words with the major frequencies clustered by the software.
Together with the co-occurrence map, we extracted a map where the overlay between

terms and the citation year is shown (Figure 5b): it shows the most cited keywords over the
years. In the legend, in particular, the years between 2012 and 2016 are highlighted because
this is the temporal range with the largest number of citations. In particular, the most
recently cited keywords since 2016 are climate change and ecosystem service, while “older”
ones (and actually, they are still consolidated in the literature) are GIS and remote sensing.

3.5. Density Map for Interval of 5 Years

In order to investigate the trend in s.a.l.c. research topics on a shorter-term period,
we extracted the density map of keywords for four different intervals of 5 years. The
interpretation of the maps (Figure 6) could become clearer with the help of data and
histograms reported in Figure 7, where occurrence frequencies of the keywords are reported
and schematized. Visual inspection of the maps suggests that the two common keywords
in the top five list are “landscape” and “pattern”. These two words are clearly connected
to the main topic of this research. Instead, we can see, for the first two temporal blocks
(2001–2005 and 2006–2010), that the other keywords are “model” and “GIS”, which are
related to the methodological aspects of the research. These two terms, in particular, have a
great increase in the second time block (i.e., from 2006 to 2010). Here, the keyword “climate
change” also appears. The latter becomes more significant in the third block (2011–2015)
and also increases in the 2016–2020 interval. The keyword “climate change” is further
reinforced by the last keyword of the top five list, respectively, in 2011–2015, with the
terms “biodiversity” and “conservation”, and in 2016–2020, with the terms “impact” and,
again, “conservation”.

Finally, Figure 7 shows the number of occurrences and the related histograms of the
keywords already cited in Section 3.4, which considers the most important terms for each
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cluster found in the total period between 2001 and 2020. This is performed to observe the
trend of main keywords (in bold, Figure 7) and some of the secondary keywords.

 

Figure 6. Density map. Obtained with VOSviewer.

Figure 7. Occurrences and related histograms for the main keywords observed in the 2001–2020
period in order to observe their trend in the four periods.
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3.6. Types of Spatial Analysis

Although spatial analysis is a relatively broad term adopted for different and wide
research disciplines, an analysis of keywords can be useful to extract information about
the main methods and approaches used in s.a.l.c research. To this aim, data were cleaned
manually and only keywords concerning methods were left in the analysis. Moreover, key-
words with a broader meaning such as “spatial analysis”, “remote sensing”, or “geospatial
analysis” were excluded.

A synoptic scheme of such an analysis is reported in Figure 8, where one can observe
the overlay between the co-occurrences map and its overlay with the publication year.
Table 1 shows the first 50 keywords, in order of importance for their occurrences: the two
top keywords represent, respectively, the traditional method used to analyze a landscape
and one of the more innovative methods. In fact, the keyword “classification” (359 occ.)
can be correlated to the results of the landscape analysis, whereas the second one (i.e.,
“simulation”, 205 occ.) has a strong connection with the approaches adopted for the valida-
tion of the results or landscape modeling. Other relevant keywords are the tools used by
spatial analysis, such as “indicators” (170 occ.) and “metrics” (156 occ.), or more innovative
and specific methods such as “cellular automaton” (113 occ.), “change detection” (104
occ.), “spatial autocorrelation” (103 occ.), “gradient analysis” (84 occ.), “species distribu-
tion model” (82 occ.), and “regression” (80 occ.). Among them, “cellular automation” is
maybe the most innovative, since has been recently introduced and represents a spatially
distributed evolution of artificial intelligence algorithms. Finally, in 10th place, we find
the term “(DEM, 72 occ.)”, which represents the basic elements of most of the landscape
analysis approaches. Additional information about research trends in the s.a.l.c. topic
can be inferred from the temporal variation of the keyword occurrences: for example, the
prevalence of keywords such as DEM, statistical analysis, data analysis, or regression in
the 2012–2013 period (blue tones in Figure 8) seems to suggest research approaches mainly
based on visual inspection and basic statistical analysis, while the appearance of peculiar
terms in 2016 such as random forest, Markov chain, machine learning, or cellular automata
clearly indicates a transition toward the automatic or semi-automatic classification of
landscape changes.

Figure 8. Overlay map for the types of spatial analysis more occurrent in s.a.l.c. research topic. Made
with VOSviewer.
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Table 1. First 100 keywords with the highest number of occurrences.

Keyword Occ.1 Keyword Occ.

01 classification 359 26 agent-based modeling 34
02 simulation 205 27 statistical analysis 34
03 indicators 170 28 autocorrelation 33

04 metrics 156 29 aerial photography 32
05 cellular automata 113 30 pattern analysis 32
06 change detection 104 31 tool 32

07 spatial autocorrelation 103 32 hot spot analysis 31
08 gradient analysis 84 33 leaf index 31

09 species distribution model 82 34 geographically weighted
regression 30

10 regression 80 35 machine learning 29
11 DEM 72 36 segmentation 29
12 map 71 37 network analysis 28

13 density 70 38 inference 27
14 logistic regression 67 39 cluster analysis 26

15 random forest 65 40 distribution model 26
16 sensitivity analysis 62 41 intensity 25
17 vegetation index 60 42 fractal 24

18 geostatistics 51 43 neural network 23
19 image analysis 45 44 r-package 23

20 spectral mixture analysis 44 45 spatial statistical analysis 23
21 land cover classification 40 46 fragstats 22

22 graph theory 37 47 photogrammetry 22
23 Markov chain 36 48 spatial prediction 22

24 object-based classification 36 49 time series analysis 22
25 pca 35 50 swat 21

1 Occurrences.

4. Discussion and Concluding Remarks

In this paper, a detailed bibliometric investigation of the research trend in spatial
analysis for landscape changes using the records published in the Web of Science database
in the last twenty years was carried out. Such an approach has been widely used to drive
scientists that need to understand the hot topic of a research field or territory (see, for
example, [2–4,52–54]).

Our analysis was conducted with the help of three different software packages: the
analysis utility offered by WoS, a GIS software (QGIS), and a specific software for biblio-
metric mapping, VOSviewer. The results highlight that the topic has received increasing
attention in the last two decades. As a matter of fact, we observed a constant and expo-
nential increase in the number of papers and citations since 2000. Such an increase can be
partly ascribed to: (i) the growing availability of high-resolution DEMs and remote sensing
images; (ii) automatic tools or algorithms of landscape classification and the analysis of
land-use changes.

Our results also suggest that the research topic is multidisciplinary, ranging from
different disciplines such as Environmental Sciences, Earth Sciences, and Ecology, and it is
mainly conducted by Chinese, European, and North American research groups. Moreover,
on the basis of the statistical analysis of keyword occurrences, it is possible to reconstruct
the following main research patterns:

• The literature concerning climate change and the different aspects connected to it,
such as the changes in vegetation and soil, grows in particular in the second decade.
In spite of this, in the twenty years considered here, we observe the largest pattern in
keywords and the highest number of citations;

• The more representative disciplinary areas are urban and territorial planning and
ecology. There are two bigger keyword clusters, respectively, headed by land-use
changes and biodiversity, conservation and patterns. Additionally, this area shows an
increase in occurrences in all the analyzed periods;
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• A third interesting research pattern shows that the two previously cited fields (i.e.,
urban and territorial planning and ecology) are not considered only as two separated
sectors, but there is a correct trial to integrate them with management, impact estima-
tion, and, most of all, with the diffusion of ecosystem services. Such a trend can be
mainly observed in recent years;

• Analysis of the frequency distribution of keywords and their temporal trend seems to
reveal a modification in the research focus: in particular, the prevalence of keywords
such as “Remote Sensing”, GIS, and “Land Use” in the early 20th century suggests
a methodological approach mainly based on visual inspection or basic GIS analysis
of DEMs and satellite images. The spreading of terms such as “classification” or
“simulation” and the appearance of keywords such as “cellular automation”, “artificial
neural network”, or “random forest” indicate a clear modification of the research
methods, which evolve toward computer-based automation or unsupervised detection
of landscape patterns and changes;

• Considering the availability of algorithms and tools useful for fast and accurate
analysis of landscape changes in larger areas, we argue that the disciplines/research
fields such as geomorphology and the digital reconstruction of historical landscapes
could have a relevant growth in the next few years. For example, similar topics can
benefit from the growing availability of landscape evolution models [25,55,56] and
tools for the visual analysis and reconstruction of historical landscapes [57,58].

To achieve a deeper understanding of the research trend, each map in a wide research
field such as s.a.l.c. would request a widening of the analysis and the reading of results in
the different clusters and thematic areas identified. This would provide enough material
for many other future studies in order to identify an internal state of the art and trends of
those subsectors.
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