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with Applications”

Nonlinear analysis has wide and significant applications in many areas of mathematics,

including functional analysis, variational analysis, nonlinear optimization, convex analysis, nonlinear

ordinary and partial differential equations, dynamical system theory, mathematical economics, game

theory, signal processing, control theory, data mining, and so forth. Optimization problems have been

intensively investigated, and various feasible methods in analyzing convergence of algorithms have

been developed over the last half century.

This book focuses on the connection between nonlinear analysis and optimization as well as

their applications to integrate basic science into the real world. It consists of eleven papers covering

a number of new ideas, concepts, methods, applications and current research problems. The Guest

Editors would like to sincerely thank all the authors for their valuable contributions. There are still

many fundamental and important questions that remain unanswered, promising a great future for

these fields. We are sure that these extremely valuable papers in this book will interest readers

and will stimulate new research work, and open new perspectives over some specific problems

and applications.

Finally, we would like to express our hearty thanks to the editors of the journal Axioms,

particularly Assistant Editor Luna Shen, for their great support throughout the editing process of

the Special Issue for Axioms and its present MDPI Reprint Book.
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Abstract: In this paper, by applying the abstract maximal element principle of Lin and Du, we
present some new existence theorems related with critical point theorem, maximal element theorem,
generalized Ekeland’s variational principle and common (fuzzy) fixed point theorem for essential
distances.
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1. Introduction

Maximal element principle (MEP, for short) is a fascinating theory that has a wide
range of applications in many fields of mathematics. Various generalizations in different
directions of maximal element principle have been investigated by several authors, see
[1–8] and references therein. Lin and Du [3,4,7] introduced the concepts of the sizing-up
function and μ-bounded quasi-ordered set to define sufficient conditions for a nondecreas-
ing sequence on a quasi-ordered set to have an upper bound and used them to establish an
abstract MEP.

Definition 1 (see [3,4,7]). Let E be a nonempty set. A function μ : 2E → [0,+∞] defined on the
power set 2E of E is called sizing-up if it satisfies the following properties

(μ1) μ(∅) = 0;
(μ2) μ(C) ≤ μ(D) if C ⊆ D.

Definition 2 (see [3,4,7]). Let E be a nonempty set and μ : 2E → [0,+∞] a sizing-up function.
A multivalued map T : E → 2E with nonempty values is said to be of type (μ) if for each x ∈ E
and ε > 0, there exists a y = y(x, ε) ∈ T(x) such that μ(T(y)) ≤ ε.

Definition 3 (see [3,4,7]). A quasi-ordered set (E,�) with a sizing-up function μ : 2E →
[0,+∞], in short (E,�, μ), is said to be μ-bounded if every �-nondecreasing sequence z1 � z2 �
· · · � zn � zn+1 � · · · in E satisfying

lim
n→+∞

μ({zn, zn+1, · · · }) = 0

has an upper bound.

The following abstract maximal element principle of Lin and Du is established
in [3,4,7].

Axioms 2021, 10, 11. https://doi.org/10.3390/axioms10010011 https://www.mdpi.com/journal/axioms
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Theorem 1. Let (E,�, μ) be a μ-bounded quasi-ordered set with a sizing-up function μ : 2E →
[0,+∞]. For each x ∈ E, let S : E → 2E be defined by S(x) = {y ∈ E : x � y}. If S is of type
(μ), then for each z0 ∈ E, there exists a nondecreasing sequence z0 � z1 � z2 � · · · in E and
v ∈ E such that

(i) v is an upper bound of {zn}∞
n=0;

(ii) S(v) ⊆ ⋂+∞
n=1 S(zn);

(iii) μ(
⋂+∞

n=1 S(zn)) = μ(S(v)) = 0.

Ekeland’s variational principle [9,10] is a very important tool for the study of approxi-
mate solutions approximate solutions of nonconvex minimization problems.

Theorem 2. (Ekeland’s variational principle) Let (M, d) be a complete metric space and f : M →
(−∞,+∞] be a proper lower semicontinuous and bounded below function. Let ε > 0 and u ∈ M
with f (u) < +∞. Then there exists v ∈ M such that

(a) f (v) + εd(u, v) ≤ f (u);
(b) f (z) + εd(v, z) > f (v) for all z ∈ M with z �= v.

In 1976, Caristi [11] established the following famous fixed point theorem:

Theorem 3. (Caristi’s fixed point theorem) Let (M, d) be a complete metric space and f : M →
(−∞,+∞] be a proper lower semicontinuous and bounded below function. Suppose that T : M →
M is selfmapping, satisfying

f (Tz) + d(z, Tz) ≤ f (z)

for each z ∈ M. Then there exists w ∈ M such that Tw = w.

In 1991, Takahashi [12] proved the following nonconvex minimization theorem:

Theorem 4. (Takahashi’s nonconvex minimization theorem) Let (M, d) be a complete metric space
and f : M → (−∞,+∞] be a proper lower semicontinuous and bounded below function. Suppose
that for any x ∈ M with f (x) > infz∈M f (z), there exists yx ∈ M with yx �= x such that

f (yx) + d(x, yx) ≤ f (x).

Then there exists w ∈ M such that f (w) = infz∈M f (z).

It is well known that Caristi’s fixed point theorem, Takahashi’s nonconvex minimiza-
tion theorem and Ekeland’s variational principle are logically equivalent; for detail, one
can refer to [3,6–8,13–24]. Many authors have devoted their attention to investigating gen-
eralizations and applications in various different directions of the well-known fixed point
theorems (see, e.g., [3–8,12–31] and references therein). By using Theorem 1, Du proved
several versions of generalized Ekeland’s variational principle and maximal element prin-
ciple and established their equivalent formulations in complete metric spaces, for detail,
see [3,4].

In this paper, we present some new existence theorems related with critical point
theorem, generalized Ekeland’s variational principle, maximal element principle, and
common (fuzzy) fixed point theorem for essential distances by applying Theorem 1.

2. Preliminaries

Let E be a nonempty set. A fuzzy set in E is a function of E into [0, 1]. Let F (E) be the
family of all fuzzy sets in E. A fuzzy mapping on E is a mapping from E into F (E). This
enables us to regard each fuzzy map as a two variable function of E× E into [0, 1]. Let F be
a fuzzy mapping on E. An element a of E is said to be a fuzzy fixed point of F if F(a, a) = 1
(see, e.g., [4]). Let Γ : E → 2E be a multivalued mapping. A point x ∈ E is called to be a
critical point (or stationary point or strict fixed point) [4] of Γ if Γ(v) = {v}.
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Let E be a nonempty set and “�” a quasi-order (preorder or pseudo-order; that is, a
reflexive and transitive relation) on E. Then (E,�) is called a quasi-ordered set. An element
v in E is called a maximal element of E if there is no element x of E, different from v, such
that v � x; that is, v � w for some w ∈ E implies that v = w. Let (E,�) be a quasi-ordered
set. A sequence {xn}n∈N is called �-nondecreasing (resp. �-nonincreasing) if xn � xn+1
(resp. xn+1 � xn) for each n ∈ N.

Let (X, d) be a metric space. A real valued function ϕ : X → R is lower semicontinuous
(in short l.s.c) (resp. upper semicontinuous, in short u.s.c) if {x ∈ X : ϕ(x) ≤ r} (resp.
{x ∈ X : ϕ(x) ≥ r}) is closed for each r ∈ R. A real-valued function f : X → (−∞,+∞]
is said to be proper if f �≡ +∞. Recall that a function p : X × X → [0,+∞) is called a
w-distance [17,23], if the following are satisfied

(w1) p(x, z) ≤ p(x, y) + p(y, z) for any x, y, z ∈ X;
(w2) For any x ∈ X, p(x, ·) : X → [0,+∞) is l.s.c.;
(w3) For any ε > 0, there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ imply

d(x, y) ≤ ε.

The concept of τ-function was introduced and studied by Lin and Du as follows.
A function p : X×X → [0, ∞) is said to be a τ-function [4,13,15,20,22,24,25], if the following
conditions hold

(τ1) p(x, z) ≤ p(x, y) + p(y, z) for all x, y, z ∈ X;
(τ2) If x ∈ X and {yn} in X with limn→∞ yn = y such that p(x, yn) ≤ c for some c =

c(x) > 0, then p(x, y) ≤ c;
(τ3) For any sequence {xn} in X with limn→∞ sup{p(xn, xm) : m > n} = 0, if there exists

a sequence {yn} in X such that limn→+∞ p(xn, yn) = 0, then limn→+∞ d(xn, yn) = 0;
(τ4) For x, y, z ∈ X, p(x, y) = 0 and p(x, z) = 0 imply y = z.

It is worth mentioning that a τ-function is nonsymmetric in general. It is known that
any metric d is a w-distance and any w-distance is a τ-function, but the converse is not true,
see [24] for more detail.

Lemma 1 (see [15,16,26]). If condition (τ4) is weakened to the following condition (τ4)′:

(τ4)′ for any x ∈ X with p(x, x) = 0, if p(x, y) = 0 and p(x, z) = 0, then y = z,

then (τ3) implies (τ4)′.

The concept of essential distance was introduced by Du [15] in 2016.

Definition 4 (see [15]). Let (X, d) be a metric space. A function p : X× X → [0,+∞) is called
an essential distance if conditions (τ1), (τ2), and (τ3) hold.

Remark 1. It is obvious that any τ-function is an essential distance. By Lemma 1, we know that if
p is an essential distance, then condition (τ4)′ holds.

The following known result is very crucial in our proofs.

Lemma 2 (see [4]). Let (X, d) be a metric space and p : X×X → [0,+∞) be a function. Assume
that p satisfies the condition (τ3). If a sequence {xn} in X with limn→∞ sup{p(xn, xm) : m >
n} = 0, then {xn} is a Cauchy sequence in X.

3. Main Results

Lemma 3. Let (M, d) be a metric space and p : M × M → [0,+∞) be a function satisfying
p(x, x) = 0 for all x ∈ M and p(x, z) ≤ p(x, y) + p(y, z) for any x, y, z ∈ M. Suppose that the
extended real-valued function L : M× M → (−∞,+∞] satisfies the following assumptions

(i) L(x, x) ≤ 0 for all x ∈ M;
(ii) L(x, z) ≤ L(x, y) + L(y, z) for all x, y, z ∈ M;

3
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(iii) For each x ∈ M, y → L(x, y) is l.s.c.;
(iv) {x ∈ X : infy∈M L(x, y) > −∞} �= ∅.

Define a binary relation � on M by

x � y ⇐⇒ L(x, y) + p(x, y) ≤ 0.

Then � is a quasi-order.

Proof. Clearly, x � x for all x ∈ M. If x � y and y � z, then

L(x, y) + p(x, y) ≤ 0

and
L(y, z) + p(y, z) ≤ 0.

By (ii), we get

L(x, z) + p(x, z) ≤ L(x, y) + L(y, z) + p(x, y) + p(y, z) ≤ 0,

which shows that x � z. Hence � is a quasi-order.

Lemma 4. Let (M, d), p, L, and � be the same as in Lemma 3. Assume that for each x ∈ M,
the function y → p(x, y) is l.s.c. Define G : M → 2M by

G(x) = {y ∈ M : x � y} for x ∈ M.

Then the following hold

(a) G(x) is nonempty and closed for each x ∈ M;
(b) G(y) ⊆ G(x) for each y ∈ G(x).

Proof. Obviously, the conclusion (a) holds. To see (b), let y ∈ G(x). Then x � y. We claim
that G(y) ⊆ G(x). Given z ∈ G(y). Thus y � z. By the transitive relation, we get x � z
which means z ∈ G(x). Hence G(y) ⊆ G(x).

The following theorem is one of the main results of this paper.

Theorem 5. Let (M, d) be a metric space and p be an essential distance on M with p(x, ·) is
l.s.c. for each x ∈ M and p(a, a) = 0 for all a ∈ M. Suppose that L, � and G be the same as in
Lemmas 3 and 4. If,

p(y, x) ≤ p(x, y) for all y ∈ G(x),

then the following hold:

(a) G is of type (μp) where μp(D) := sup{p(x, y) : x, y ∈ D} for D ⊆ M;
(b) If M is �-complete, then (M,�, μp) is a μp-bounded quasi-ordered set.

Proof. We first show that G is of type (μp). Let x ∈ M and ε > 0 be given. Then there exists
n0 = n0(ε) ∈ N, such that 2−n0 < ε

2 . Define a function κ : M → [−∞,+∞] by

κ(x) = inf
y∈G(x)

L(x, y).

Let y ∈ G(x). If κ(x) = −∞, then 0 ≤ p(x, y) < −κ(x). Otherwise, if κ(x) > −∞, then

p(x, y) ≤ −L(x, y) ≤ −κ(x).

Hence we conclude

0 ≤ p(x, y) ≤ −κ(x) for all y ∈ G(x). (1)

4
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Set x1 := x ∈ M. Thus one can choose x2 ∈ G(x1) ⊆ M, such that

L(x1, x2) ≤ κ(x1) +
1
2

.

Let k ∈ N and assume that xk ∈ M is already known. Then, one can choose
xk+1 ∈ G(xk) such that

L(xk, xk+1) ≤ κ(xk) +
1
2k .

Hence, by induction, we obtain a nondecreasing sequence x1 � x2 � · · · in M such
that xn+1 ∈ G(xn) and

L(xn, xn+1) ≤ κ(xn) +
1
2n for all n ∈ N. (2)

By Lemma 4, we have G(xn+1) ⊆ G(xn) for all n ∈ N. So it follows that

κ(xn+1) = inf
y∈G(xn+1)

L(xn+1, y)

≥ inf
y∈G(xn)

L(xn+1, y)

≥ inf
y∈G(xn)

[L(xn, y)− L(xn, xn+1)]

= κ(xn)− L(xn, xn+1).

(3)

Combining (2) with (3), we obtain

κ(xn+1) +
1
2n ≥ 0,

and hence
0 ≤ −κ(xn+1) ≤ 1

2n <
ε

2
for all n ≥ n0.

Put w = xn0+1. Thus w ∈ G(x) and

0 ≤ −κ(w) <
ε

2
.

If G(w) is a singleton set, then μp(G(w)) = 0 ≤ ε. Assume that G(w) is not a singleton
set. Let u, v ∈ G(w). By our hypothesis, we have p(u, w) ≤ p(w, u). So, by (1), we obtain

p(u, v) ≤ p(u, w) + p(w, v)

≤ −2κ(w)

< ε

which implies
μp(G(w)) = sup{p(u, v) : u, v ∈ G(w)} ≤ ε.

Therefore G is of type (μp). Finally, we prove (b). Let α1 � α2 � · · · be a �-
nondecreasing sequence in M satisfying lim

n→+∞
μp({αn, αn+1, · · · }) = 0. Since

0 = lim
n→+∞

μp({αn, αn+1, · · · })
= lim

n→+∞
sup{p(u, v) : u, v ∈ {αn, αn+1, · · · }},

we get
lim

n→+∞
sup{p(αn, αm) : m > n} = 0.

5
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So, by applying Lemma 2, we show that {αn} is a nondecreasing Cauchy sequence
in M. By the �-completeness of M, there exists β ∈ M such that αn → β as n → +∞.
We claim that β is an upper bound of {αn}+∞

n=1. For each n ∈ N, since αm ∈ G(αn) for all
m ≥ n and αn → β, by the closedness of G(αn), we have β ∈ G(αn) or αn � β for all n ∈ N.
Therefore β is an upper bound of {αn} and hence (M,�, μp) is a μp-bounded quasi-ordered
set. The proof is completed.

The following result is immediate from Theorem 5 and Lemmas 3 and 4.

Corollary 1. Let (M, d) be a metric space and p be an essential distance on M with p(x, ·) a
l.s.c. for each x ∈ M and p(a, a) = 0 for all a ∈ M. Suppose that the extended real-valued function
f : M → (−∞,+∞] is proper, l.s.c. and bounded below. Let ε > 0. Define a binary relation
�(ε, f ,p) on M by

x �(ε, f ,p) y ⇐⇒ εp(x, y) ≤ f (x)− f (y).

Let Γ : M → 2M be defined by

Γ(x) = {y ∈ M : x �(ε, f ,p) y} for x ∈ M.

Then the following hold:

(a) �(ε, f ,p) is a quasi-order;
(b) For each x ∈ M, Γ(x) is closed;
(c) Γ is of type (μp) where μp(D) := sup{p(x, y) : x, y ∈ D} for D ⊂ M;
(d) If M is complete, then (M,�(ε, f ,p), μp) is a μp-bounded quasi-ordered set.

Proof. Define L : M×M → (−∞, ∞] by

L(x, y) =
1
ε
( f (y)− f (x)).

Then the following hold

• x �(ε, f ,p) y ⇐⇒ L(x, y) + p(x, y) ≤ 0;
• L(x, x) = 0 for all x ∈ M;
• L(x, z) = L(x, y) + L(y, z) for all x, y, z ∈ M;
• For each x ∈ M, y → L(x, y) is l.s.c.;
• {x ∈ X : infy∈M L(x, y) > −∞} �= ∅.

Therefore, applying Theorem 5 and Lemmas 3 and 4, we show the desired conclusions.

By applying Theorem 5, we obtain a new result related to common fuzzy fixed point
theorem, critical point theorem, maximal element principle and generalized Ekeland’s
variational principle for essential distances.

Theorem 6. Let (M, d) be a complete metric space. Suppose that p, L, �, and G be the same as in
Theorem 5. Let I be any index set. For each i ∈ I, let Fi be a fuzzy mapping on M. Assume that for
each (i, x) ∈ I × M, there exists y(i,x) ∈ G(x) such that Fi(x, y(i,x)) = 1. Then for every ε > 0
and for every u ∈ M, there exists v ∈ M such that

(a) v is a maximal element of (M,�);
(b) G(v) = {v};
(c) L(u, v) + p(u, v) ≤ 0;
(d) L(v, x) + p(v, x) > 0 for all x ∈ M with x �= v;
(e) Fi(v, v) = 1 for all i ∈ I.

Proof. By applying Theorem 5, G is of type (μp) and (M,�, μp) is a μp-bounded quasi-
ordered set, where

μp(D) := sup{p(x, y) : x, y ∈ D} for D ⊆ M.

6
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Let u ∈ M be given. Put u0 := u. Since G is of type (μp), by Theorem 1, there exists a
�-nondecreasing sequence u0 � u1 � u2 � · · · in M and v ∈ M such that

(i) v is an upper bound of {un}+∞
n=0;

(ii) μp(G(v)) = 0.

From (i), we prove (c). Next, we claim that G(v) = {v}. Let z ∈ G(v). By (μ2) and
(ii), we have

p(v, z) = μp({v, z}) ≤ μp(G(v)) = 0,

which deduces p(v, z) = 0. Since p(v, v) = 0, by Lemma 1, we get z = v. Therefore
G(v) = {v} and, equivalency, (d) holds. For each (i, v) ∈ I × M, due to G(v) = {v} and
our hypothesis, there exists y(i,v) := v ∈ G(v) such that Fi(v, v) = Fi(v, y(i,v)) = 1. So (e) is
true. Finally, we verify (a). If v � w for some w ∈ W, then w ∈ G(v) = {v}, which implies
v = w. Hence v is a maximal element of (M,�). The proof is completed.

Corollary 2. Let (M, d) be a complete metric space and ε > 0. Suppose that f , p, �(ε, f ,p), and
Γ be the same as in Corollary 1. Let I be any index set. For each i ∈ I, let Fi be a fuzzy mapping
on M. Assume that for each (i, x) ∈ I ×M, there exists y(i,x) ∈ Γ(x) such that Fi(x, y(i,x)) = 1.
Then for every u ∈ M, there exists v ∈ M such that

(a) v is a maximal element of (M,�(ε, f ,p));
(b) Γ(v) = {v};
(c) f (v) + εp(u, v) ≤ f (u);
(d) f (z) + εp(v, z) > f (v) for all z ∈ M with z �= v;
(e) Fi(v, v) = 1 for all i ∈ I.

Proof. Define L : M×M → (−∞,+∞] by

L(x, y) =
1
ε
( f (y)− f (x)).

Then,
x �(ε, f ,p) y ⇐⇒ L(x, y) + p(x, y) ≤ 0.

So the desired conclusions follow from Theorem 6 immediately.

Let (M, d) be a metric space and T : M → 2M be a multivalued mapping with nonempty
values. Then we can define a fuzzy mapping K on M by

K(x, y) = χT(x)(y),

where χA is the characteristic function for an arbitrary set A ⊂ M. Note that

K(x, y) = 1 ⇐⇒ y ∈ T(x).

The following new result related to critical point theorem, generalized Ekeland’s
variational principle, maximal element principle, and common fixed point theorem for
essential distances can be established by Theorem 6 immediately.

Theorem 7. Let (M, d) be a complete metric space. Suppose that p, L, �, and G are the same as
in Theorem 5. Let I be any index set. For each i ∈ I, let Ti : M → 2M be a multivalued mapping
with nonempty values such that for each (i, x) ∈ I ×M, there exists y(i,x) ∈ Ti(x)

⋂
G(x). Then

for every ε > 0 and for every u ∈ M, there exists v ∈ M such that

(a) v is a maximal element of (M,�);
(b) G(v) = {v};
(c) L(u, v) + p(u, v) ≤ 0;
(d) L(v, x) + p(vi, xi) > 0 for all x ∈ M with x �= v;

7
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(e) v is a common fixed point for the family {Ti}i∈I .

Corollary 3. Let (M, d) be a complete metric space and ε > 0. Suppose that f , p, �(ε, f ,p),
and Γ be the same as in Corollary 1. Let I be any index set. For each i ∈ I, let Ti : M → 2M

be a multivalued mapping with nonempty values such that for each (i, x) ∈ I × M, there exists
y(i,x) ∈ Ti(x)

⋂
Γ(x). Then for every u ∈ M, there exists v ∈ M such that

(a) v is a maximal element of (M,�(ε, f ,p));
(b) Γ(v) = {v};
(c) f (v) + εp(u, v) ≤ f (u);
(d) f (z) + εp(v, z) > f (v) for all z ∈ M with z �= v;
(e) v is a common fixed point for the family {Ti}i∈I .

Finally, the following simple example is given to illustrate Corollary 3.

Example 1. Let M = [−1, 1] with the metric d(x, y) = |x− y| for x, y ∈ M. Then (M, d) is a
complete metric space. Let T1, T2 : M → 2M be defined by T1x =

{
1
2 x
}

and T2x =
{

1
3 x
}

for
x ∈ M. Clearly, 0 is the unique common fixed point of T1 and T2. Let f : M → R by f (x) = |x|
for x ∈ M. Define a binary relation �(1, f ,d) on M by

x �(1, f ,d) y ⇐⇒ d(x, y) ≤ f (x)− f (y).

Then �(1, f ,d)is a quasi-order and

Γ(x) = {y ∈ M : x �(1, f ,d) y} = {y ∈ M : d(x, y) ≤ f (x)− f (y)} �= ∅.

It is easy to see that for each x ∈ M, we have

d
(

x,
1
2

x
)
= f (x)− f

(
1
2

x
)

and

d
(

x,
1
3

x
)
= f (x)− f

(
1
3

x
)

.

Hence 1
2 x ∈ T1x ∩ Γ(x) and 1

3 x ∈ T2x ∩ Γ(x) for any x ∈ M. Therefore, all the assumptions
of Corollary 3 are satisfied. By applying Corollary 3, for every u ∈ M, we can obtain v ∈ M (in
fact, v = 0) such that

(a) 0 is a common fixed point for T1 and T2;
(b) 0 is a maximal element of (M,�(1, f ,d));
(c) Γ(0) = {0};
(d) f (0) + d(u, 0) ≤ f (u);
(e) f (z) + d(0, z) > f (0) for all z ∈ M with z �= 0.

Remark 2.

(a) Theorems 5–7 and Corollaries 1–3 improve and generalize some of the existence results on the
topic in the literature, see, e.g., [3,4,8,17,23,24] and references therein;

(b) Following the same argument as in the proof of [16], one can establish the equivalence
of Ekeland’s variational principle Caristi’s fixed point theorem and Takahashi’s nonconvex
minimization theorem for essential distances.

4. Conclusions

Maximal element principle is a significant theory and has already been proposed and
investigated its potential applications in several areas of mathematics. In this paper, by
applying the abstract maximal element principle of Lin and Du, we present some new
existence theorems related with common (fuzzy) fixed point theorem, maximal element
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theorem, critical point theorem and generalized Ekeland’s variational principle for essential
distances.

Author Contributions: Writing—original draft, J.Z. and W.-S.D. Both authors have read and agreed
to the published version of the manuscript.

Funding: The first author is partially supported by the Natural Science Foundation of Tianjin city,
China (Grant No. 18JCYBJC16300). The second author is partially supported by Grant No. MOST
109-2115-M-017-002 of the Ministry of Science and Technology of the Republic of China.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors wish to express their deep thanks to the anonymous referees for
their valuable suggestions and comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bishop, E.; Phelps, R.R. The support functionals of a convex set. In Proceedings of Symposia in Pure Mathematics; American
Mathematical Society: Providence, RI, USA, 1963; Volume VII, pp. 27–35.

2. Brézis, H.; Browder, F.E. A general principle on ordered sets in nonlinear functional analysis. Adv. Math. 1976, 21, 355–364.
[CrossRef]

3. Du, W.-S. On some nonlinear problems induced by an abstract maximal element principle. J. Math. Anal. Appl. 2008, 347, 391–399.
[CrossRef]

4. Du, W.-S. Critical point theorems for nonlinear dynamical systems and their applications. Fixed Point Theory Appl. 2010, 2010,
246382. [CrossRef]

5. Granas, A.; Horvath, C.D. On the order-theoretic Cantor theorem. Taiwan. J. Math. 2000, 4, 203–213. [CrossRef]
6. Kang, B.G.; Park, S. On generalized ordering principles in nonlinear analysis. Nonlinear Anal. Theory Methods Appl. 1990, 14,

159–165. [CrossRef]
7. Lin, L.-J.; Du, W.-S. From an abstract maximal element principle to optimization problems, stationary point theorems and common

fixed point theorems. J. Glob. Optim. 2010, 46, 261–271. [CrossRef]
8. Park, S. On generalizations of the Ekeland-type variational principles. Nonlinear Anal. Theory Methods Appl. 2000, 39, 881–889.

[CrossRef]
9. Ekeland, I. Remarques sur les problémes variationnels. CR Acad. Sci. Paris Ser. A-B 1972, 275, 1057–1059.
10. Ekeland, I. Nonconvex minimization problems. Bull. Am. Math. Soc. 1979, 1, 443–474. [CrossRef]
11. Caristi, J. Fixed point theorems for mappings satisfying inwardness conditions. Trans. Am. Math. Soc. 1976, 215, 241–251.

[CrossRef]
12. Takahashi, W. Existence theorems generalizing fixed point theorems for multivalued mappings. In Fixed Point Theory and

Applications, Pitmam Research Notes in Mathematics Series; Théra, M.A., Baillon, J.B., Eds.; Longmam Sci. Tech.: Harlow, UK, 1991;
Volume 252, pp. 397–406.

13. Du, W.-S. On Caristi type maps and generalized distances with applications. Abstr. Appl. Anal. 2013, 2013, 407219. [CrossRef]
14. Du, W.-S. On Caristi-type mappings without lower semicontinuity assumptions. J. Fixed Point Theory Appl. 2015, 17, 733–752.

[CrossRef]
15. Du, W.-S. On generalized Caristi’s fixed point theorem and its equivalence. Nonlinear Anal. Differ. Equ. 2016, 4, 635–644. [CrossRef]
16. Du, W.-S. Some generalizations of fixed point theorems of Caristi type and Mizoguchi-Takahashi type under relaxed conditions.

Bull. Braz. Math. Soc. New Ser. 2019, 50, 603–624. [CrossRef]
17. Kada, O.; Suzuki, T.; Takahashi, W. Nonconvex minimization theorems and fixed point theorems in complete metric spaces. Math.

Japon. 1996, 44, 381–391.
18. Khamsi, M.A.; Kirk, W.A. An introduction to metric spaces and fixed point theory. In Pure and Applied Mathematics; Wiley-

Interscience: New York, NY, USA, 2001.
19. Kirk, W.A.; Shahzad, N. Fixed Point Theory in Distance Spaces; Springer: Cham, Switzerland, 2014.
20. Lin, L.-J.; Du, W.-S. Ekeland’s variational principle, minimax theorems and existence of nonconvex equilibria in complete metric

spaces. J. Math. Anal. Appl. 2006, 323, 360–370. [CrossRef]
21. Lin, L.-J.; Du, W.-S. Some equivalent formulations of generalized Ekeland’s variational principle and their applications. Nonlinear

Anal. 2007, 67, 187–199. [CrossRef]
22. Lin, L.-J.; Du, W.-S. On maximal element theorems, variants of Ekeland’s variational principle and their applications. Nonlinear

Anal. 2008, 68, 1246–1262. [CrossRef]
23. Takahashi, W. Nonlinear Functional Analysis; Yokohama Publishers: Yokohama, Japan, 2000.

9



Axioms 2021, 10, 11

24. Włodarczyk, K.; Plebaniak, R. Maximality principle and general results of Ekeland and Caristi types without lower semicontinuity
assumptions in cone uniform spaces with generalized pseudodistances. Fixed Point Theory Appl. 2010, 2010, 175453. [CrossRef]

25. Du, W.-S. New existence results and generalizations for coincidence points and fixed points without global completeness. Abstr.
Appl. Anal. 2013, 2013, 214230. [CrossRef]

26. Jiang, B.; Huang, H.; Du, W.-S. New generalized Mizoguchi-Takahashi’s fixed point theorems for essential distances and
e0-metrics. Mathematics 2019, 7, 1224. [CrossRef]
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Abstract: In this article, we deal with stabilities of several functional equations in n-Banach spaces.
For a surjective mapping f into a n-Banach space, we prove the generalized Hyers–Ulam stabilities
of the cubic functional equation and the quartic functional equation for f in n-Banach spaces.

Keywords: n-Banach space; cubic mappings; quartic mappings; the generalized Hyers–Ulam stability

1. Introduction

A question of the stability of functional equations concerning group homomorphisms
was first raised by S. M. Ulam in 1940 [1]. In the next year, a partial affirmative answer to
the question of Ulam was given by D. H. Hyers [2] for additive mappings on Banach spaces.
Hyers’ theorem was generalized by T. Aoki [3] for additive mapping. In 1978, Rassias [4]
provided a generalization of the theorem for linear mappings by allowing the Cauchy
differences to be unbounded. Subsequently, the result of Rassias’ theorem was generalized
by P. Găvruta [5], allowing the Cauchy difference controlled by a general unbounded
function which is called the generalized Hyers–Ulam stability. On the other hand, Rassias
and Šemrl found an example of a continuous real-valued function from R for which the
Hyers–Ulam stability does not occur. See [6].

Let X and Y be real vector spaces and f : X → Y a mapping. For a cubic function
f (x) = cx3 (c ∈ R, X = Y = R), f clearly satisfies the following functional equation

f (x + 2y) + 3 f (x) = 3 f (x + y) + f (x− y) + 6 f (y). (1)

For this reason, it is natural that Equation (1) is called a cubic functional equation
and every solution of Equation (1) is also called a cubic function. The general solution for
Equation (1) was solved by J. M. Rassias [7] for a mapping from a real normed space to a
Banach space. Jun et al. [8] proved that the cubic functional Equation (1) is equivalent to
the following functional equation

f (2x + y) + f (2x− y) = 2 f (x + y) + 2 f (x− y) + 12 f (x). (2)

In [9], Chu et al. extended the cubic functional equation to the following generalized
form

f (∑n−1
j=1 xj + 2xn) + f (∑n−1

j=1 xj − 2xn) + ∑n−1
j=1 f (2xj)

= 2 f (∑n−1
j=1 xj) + 4 ∑n−1

j=1 ( f (xj + xn) + f (xj − xn)),

where n ≥ 2 is an integer, and they also proved the generalized Hyers–Ulam stability. The
stability problem for cubic functional equations has been extensively investigated by many
mathematicians (see [10–12].)

Axioms 2021, 10, 2. https://doi.org/10.3390/axioms10010002 https://www.mdpi.com/journal/axioms
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In [13], J. M. Rassias introduced the functional equation as follows:

f (2x + y) + f (2x− y) = 4 f (x + y) + 4 f (x− y) + 24 f (x)− 6 f (y) (3)

It is obvious that f (x) = x4 is a solution of Equation (3), so we call Equation (3) a
quartic functional equation. Chung and Sahoo [14] investigated the general solution of (3)
and A. Najati [15] proved the generalized Hyers–Ulam stability for the quartic functional
Equation (3) using the idea of Găvruta [5]. The stability results of quartic functional
equations can be found in several other papers (see [16–18].) There are a number of
papers and research monographs regarding various generalizations and applications of
the generalized Hyers–Ulam stability of several functional equations. See [19–22]. Park
investigated the generalized Hyers–Ulam stability for additive mappings, Jensen mappings
and quadratic mappings in 2-Banach spaces in [23,24].

Misiak [25,26] introduced the notion of n-normed spaces which is one of the gener-
alizations of normed spaces and 2-normed spaces. For more information of the phase
spaces, we refer to the papers [27–30]. Recently, Chu et al. [31] studied the generalized
Hyers–Ulam stabilities of the Cauchy functional equations, the Jensen functional equations
and the quadratic functional equations on n-Banach spaces. In [32], Brzdȩk and Ciepliński
proved a fixed point theorem for operator acting on a class of functions with values in an
n-Banach space. For study of the Hyers–Ulam stability, the extension to n-Banach spaces is
valuable in terms of development of the field of functional equations.

Motivated by results in [31,32], we focus on the generalized Hyers–Ulam stabilities
of several functional equationss—in detail, the cubic functional equation expressed as
Equation (2) and the quartic functional equation expressed as Equation (3) on n-Banach
spaces. We prove the generalized Hyers–Ulam stabilities of the functional equations on the
spaces.

The contents of paper: In Section 2, we recall definitions and lemma in n-Banach spaces
to investigate the generalized Hyers–Ulam stabilities on the spaces. In Section 3, we inves-
tigate the generalized Hyers–Ulam stability problem in n-Banach spaces. The problems for
the generalized Hyers–Ulam stability related on the cubic functional equation in n-Banach
spaces are studied in Section 3.1. We also deal with applications of the stabilities for the
functional equations on the spaces. In Section 3.2, we focus on the the quartic functional
equation and prove the generalized stability on the n-Banach spaces.

2. Preliminaries

In this section, we recall definitions and lemma in n-Banach spaces as a preliminary
step toward the main theorems.

Definition 1 ([25,26]). Let X be a real linear space with dim X ≥ n and ‖·, · · · , ·‖ : Xn → R be
a function. Then (X, ‖·, · · · , ·‖) is called a linear n-normed space if

(nN1) ‖x1, · · · , xn‖ = 0 ⇔ x1, · · · , xn are linearly dependent;

(nN2) ‖x1, · · · , xn‖ = ‖xj1 , · · · , xjn‖ for every permutation (j1, · · · , jn) of (1, · · · , n);

(nN3) ‖αx1, · · · , xn‖ = |α| ‖x1, · · · , xn‖;

(nN4) ‖x + y, x2, · · · , xn‖ ≤ ‖x, x2, · · · , xn‖+ ‖y, x2, · · · , xn‖
for all α ∈ R and all x, y, x1, · · · , xn ∈ X. The function ‖·, · · · , ·‖ is called an n-norm on X.

Definition 2 ([31]). Let {x�} be a sequence in a linear n-normed space X. The sequence {x�} is
said to be n-convergent in X if there exists an element x ∈ X such that

lim
�→∞

‖x� − x, y2, · · · , yn‖ = 0

for all y2, · · · , yn ∈ X. In this case, we say that a sequence {x�} converges to the limit x, simply
denoted by lim�→∞ x� = x with a slight abuse of notation.
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Definition 3 ([31]). A sequence {x�} in a linear n-normed space X is called an n-Cauchy sequence
if for any ε > 0, there exists N ∈ N such that for all s, t ≥ N, ‖xs − xt, y2, · · · , yn‖ < ε for
all y2, · · · , yn ∈ X. For convenience, we will write lims,t→∞ ‖xs − xt, y2, · · · , yn‖ = 0 for an
n-Cauchy sequence {x�}. An n-Banach space is defined to be a linear n-normed space in which
every n-Cauchy sequence is n-convergent.

The following lemma is a useful toolbox for a linear n-normed space.

Lemma 1 ([31]). Let (X, ‖·, · · · , ·‖) be a linear n-normed space and x ∈ X. Then

(1) If ‖x, x2, · · · , xn‖ = 0 for all x2, · · · , xn ∈ X, then x = 0.

(2) |‖x, x2, · · · , xn‖ − ‖y, x2, · · · , xn‖| ≤ ‖x− y, x2, · · · , xn‖ for all x, y, x2, · · · , xn ∈ X.

(3) if a sequence {xm} is convergent in X, then

lim
m→∞

‖xm, y2, . . . , yn‖ = ‖ lim
m→∞

xm, y2, . . . , yn‖

for all y2, . . . , yn ∈ X.

From now on, let X be a real linear space and let (Z, ‖·, · · · , ·‖) be an n-Banach space
unless otherwise stated.

3. Main Results

In this section, we present the generalized Hyers–Ulam stabilities for the several
functional equations in n-Banach spaces. We solve the problems for the stabilities and
consider applications of the results in n-Banach spaces.

3.1. Stability of the Cubic Functional Equation

We start this subsection by investigating the generalized Hyers–Ulam stability for the
cubic functional Equation (2) in n-Banach spaces. For convenience, we use the the notation
Df (x, y) as follows:

Df (x, y) := f (2x + y) + f (2x− y)− 2 f (x + y)− 2 f (x− y)− 12 f (x)

for all x, y ∈ X. If Df (x, y) = 0, then the function f is a solution of the cubic functional
equation. Thus, Df (x, y) is an approximate remainder of the functional Equation (2) and
acts as a perturbation of the equation. We use this approximate remainder to solve the
generalized Hyers–Ulam stability for the cubic functional equation in n-Banach spaces.

Now, in the following theorem, we present a solution of stability for the cubic funtional
equation in the spaces.

Theorem 1. Let ϕ : Xn+1 → R+ be a function such that

∞

∑
i=0

ϕ(2ix, 0, x2, · · · , xn)

8i < ∞, lim
n→∞

ϕ(2nx, 2ny, x2, . . . , xn)

8n = 0

for all x, y, x2, . . . , xn ∈ X. Suppose that a function f : X → Z be a surjective mapping satisfying

‖Df (x, y), z2, . . . , zn‖ ≤ ϕ(x, y, x2, . . . , xn) (4)

for all x, y, x2, . . . , xn ∈ X, where zi = f (xi) for each i = 2, . . . , n. Then there is a unique cubic
mapping C : X → Z such that

‖ f (x)− C(x), z2, . . . , zn‖ ≤ 1
16

∞

∑
i=0

ϕ(2ix, 0, x2, . . . , xn)

8i (5)
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for all x, x2, . . . , xn ∈ X, where zi = f (xi) for each i = 2, . . . , n.

We call the function f the pseudo-cubic function for the error function ϕ, and the
solution function C is the cubic function induced from the pseudo-cubic function f .

Proof. Let zi = f (xi)(i = 2, 3, ..., n). First, take y = 0 in (4) to have

‖ f (2x)
8

− f (x), z2, . . . , zn‖ ≤ 1
16

ϕ(x, 0, x2, . . . , xn) (6)

for all x, x2, . . . , xn ∈ X. Replacing x by 2x in (6) and dividing by 8, we obtain

‖ f (22x)
82 − f (x), z2, . . . , zn‖ ≤ 1

16
[ϕ(x, 0, x2, · · · , xn) +

ϕ(2x, 0, x2, . . . , xn)

8
] (7)

for all x, x2, . . . , xn ∈ X. Using the induction on n, we get that

‖ f (2nx)
8n − f (x), z2, · · · , zn‖ ≤ 1

16

n−1

∑
i=0

ϕ(2ix, 0, x2, . . . , xn)

8i (8)

for all x, x2, . . . , xn ∈ X. For 0 ≤ m < n, divide inequality (8) by 8m and also replace x by
2mx to find that

‖ f (2n2mx)
8n+m − f (2mx)

8m , z2, . . . , zn‖ =
1

8m ‖
f (2n2mx)

8n − f (2mx), z2, . . . , zn‖

≤ 1
16 · 8m

n−1

∑
i=0

ϕ(2i2mx, 0, x2, . . . , xn)

8i

≤ 1
16

n−1

∑
i=m

ϕ(2ix, 0, x2, . . . , xn)

8i

for all x, x2, . . . , xn ∈ X. We then obtain

lim
m,n→∞

‖ f (2n2mx)
8n+m − f (2mx)

8m , z2, . . . , zn‖ = 0

for all x2, . . . , xn ∈ X. Since f is surjective, by Lemma 1, the sequence { 1
8n f (2nx)} is an

n-Cauchy sequence in Z. Therefore, we may define a mapping C : X → Z by

C(x) := lim
n→∞

1
8n f (2nx)

for all x ∈ X. By letting n → ∞ in (8), we arrive at the formula (5). To show that the
mapping C : X → Z satisfies Equation (2), replace x, y with 2nx, 2ny, respectively, in (4)
and divide by 8n; then it follows that

8−n‖ f (2n(2x + y) + f (2n(2x− y)− 2 f (2n(x + y))− 2 f (2n(x− y)− 12 f (2nx), z2, . . . , zn‖ (9)

≤ 8−n ϕ(2nx, 2ny, x2, . . . , xn)

for all x, x2, . . . , xn ∈ X. Taking the limit as n → ∞ in (9), we immediately obtain that the
mapping C satisfies (2).

Now, let D : X → Z be another cubic mapping satisfying (5). Then we have

‖C(x)− D(x), z2, . . . , zn‖ = 8−n‖C(2nx)− D(2nx), z2, . . . , zn‖
≤ 8−n(‖C(2nx)− f (2nx), z2, . . . , zn‖+ ‖ f (2nx)− D(2nx), z2, . . . , zn‖)
≤ 1

8

∞

∑
i=0

ϕ(2i2nx, 0, x2, . . . , xn)

8n+i

14
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which tends to zero as k → ∞ for all x, z2, . . . , zn ∈ X. By Lemma 1, we conclude that
C(x) = D(x) for all x ∈ X. This completes the proof of the theorem.

As an application of Theorem 1, we obtain a stability of Equation (2) in the following
corollary.

Corollary 1. Assume that (X, ‖ · ‖) is a real normed space and that (Z, ‖·, · · · , ·‖) is a linear
n-normed space. Let θ ∈ [0, ∞), p, q, r ∈ (0, ∞) and p, q < 3 and let f : X → Z be a surjective
mapping satisfying

‖Df (x, y), z2, . . . , zn‖ ≤ θ(‖x‖p + ‖y‖q)‖x2‖r · · · ‖xn‖r

for all x, y, x2, . . . , xn ∈ X, where zi = f (xi) for each i = 2, . . . , n. Then there is a unique cubic
mapping C : X → Z such that

‖ f (x)− C(x), z2, . . . , zn‖ ≤ θ

16− 2p+1 ‖x‖p‖x2‖r · · · ‖xn‖r

for all x, x2, . . . , xn ∈ X, where zi = f (xi) for each i = 2, . . . , n.

Proof. The assertion follows from Theorem 1 by setting

ϕ(x, y, x2, · · · , xn) = θ(‖x‖p + ‖y‖q)‖x2‖r · · · ‖xn‖r

for all x, y, x2, . . . , xn ∈ X.

In the next theorem we also deal with a solution of the cubic functional equation in
n-Banach spaces under different conditions. Next, we investigate the change of conditions
for the pseudo-cubic function f and the error function ϕ, and also obtain a stability of
Equation (2) in the following theorem (compare with Theorem 1).

Theorem 2. Let ϕ : Xn+1 → R+ be a function such that

∞

∑
i=0

8i ϕ(
x

2i+1 , 0, x2, . . . , xn) < ∞, lim
n→∞

8n ϕ(
x
2n ,

y
2n , x2, . . . , xn) = 0

for all x, y, x2, . . . , xn ∈ X, where zi = f (xi) for each i = 2, . . . , n. Suppose that a function
f : X → Z be a surjective mapping satisfying (4). Then there is a unique cubic mapping
C : X → Z such that

‖ f (x)− C(x), z2, . . . , zn‖ ≤ 1
2

∞

∑
i=0

8i ϕ(
x

2i+1 , 0, x2, . . . , xn) (10)

for all x, x2, . . . , xn ∈ X, where zi = f (xi) for each i = 2, . . . , n.

Proof. Let zi = f (xi) for each i = 2, . . . , n. Take x = x
2 in (6) and multiply by eight to have

‖ f (x)− 8 f (
x
2
), z2, . . . , zn‖ ≤ 1

2
ϕ(

x
2

, 0, x2, . . . , xn) (11)

for all x, x2, . . . , xn ∈ X. By replacing x with x
2 in (11) and multiplying by eight, we get

‖ f (x)− 82 f (
x
22 ), z2, . . . , zn‖ ≤ 1

2
ϕ(

x
2

, 0, x2, . . . , xn) + 4ϕ(
x
22 , 0, x2, . . . , xn)

for all x, x2, . . . , xn ∈ X. Then we can find a unique cubic mapping C : X → Z defined by

C(x) := lim
n→∞

8n f (
x
2n )

15



Axioms 2021, 10, 2

for all x ∈ X, as in the proof of Theorem 4. This completes the proof.

Using the above theorem, we immediately get the following corollary.

Corollary 2. Assume that (X, ‖ · ‖) is a real normed space and that (Z, ‖·, · · · , ·‖) is a linear
n-normed space. Let θ ∈ [0, ∞), p, q, r ∈ (0, ∞), and p, q > 3. Let f : X → Z be a surjective
mapping satisfying

‖Df (x, y), z2, . . . , zn‖ ≤ θ(‖x‖p + ‖y‖q)‖x2‖r · · · ‖xn‖r

for all x, y, x2, . . . , xn ∈ X, where zi = f (xi) for each i = 2, . . . , n. Then there is a unique cubic
mapping C : X → Z such that

‖ f (x)− C(x), z2, . . . , zn‖ ≤ θ

2p+1 − 16
‖x‖p‖x2‖r · · · ‖xn‖r

for all x, x2, . . . , xn ∈ X, where zi = f (xi) for each i = 2, . . . , n.

Proof. The proof follows from Theorem 2 with

ϕ(x, y, x2, · · · , xn) = θ(‖x‖p + ‖y‖q)‖x2‖r · · · ‖xn‖r

for all x, y, x2, . . . , xn ∈ X.

3.2. Stability of the Quartic Functional Equation

In this subsection, we discuss the generalized Hyers–Ulam stability of the quartic
functional Equation (3) in n-Banach spaces. For x, y ∈ X, we define Ef (x, y) given by

Ef (x, y) := f (2x + y) + f (2x− y)− 4 f (x + y)− 4 f (x− y)− 24 f (x) + 6 f (y).

The difference Ef (x, y) means an approximate remainder of the functional Equation (3).
Now we provide important consequences for the stability of the quartic functional

equation.

Theorem 3. Let ϕ : Xn+1 → R+ be a function such that

∞

∑
i=0

2−4k ϕ(2ix, 0, x2, . . . , xn) < ∞ and lim
n→∞

2−4n ϕ(2nx, 2ny, x2, . . . , xn) = 0,

for all x, y, x2, . . . , xn ∈ X. Suppose that a function f : X → Z be a surjective mapping satisfying

‖Ef (x, y), z2, . . . , zn‖ ≤ δ + ϕ(x, y, x2, . . . , xn) (12)

for all x, y, x2, . . . , xn ∈ X, where zi = f (xi) for each i = 2, . . . , n, where δ ≥ 0. Then there is a
unique quartic mapping T : X → Z such that

‖ f (x)− T(x), z2, . . . , zn‖ ≤ 1
30

δ +
1
32

∞

∑
i=0

2−4k ϕ(2ix, 0, x2, . . . , xn) +
1
5
‖ f (0), z2, . . . , zn‖ (13)

for all x, x2, . . . , xn ∈ X, where zi = f (xi) for each i = 2, . . . , n.

From now on we call the function f the pseudo-quartic function for ϕ, and the solution
function T is the quartic function induced from the pseudo-quartic function f .

Proof. Let zi = f (xi) for each i = 2, . . . , n. By letting y = 0 in (12), we get

‖2−4 f (2x)− f (x) +
3
16

f (0), z2, . . . , zn‖ ≤ 1
32

δ +
1
32

ϕ(x, 0, x2, . . . , xn), (14)

16
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for all x, x2, . . . , xn ∈ X. If we replace x by 2n−1x in (14) and divide both sides of (14) by
24n−4, we have that

‖2−4n f (2nx)− 24−4n f (2n−1x) + 3 · 2−4n f (0), z2, . . . , zn‖ ≤ δ

24n+1 +
1

24n+1 ϕ(2n−1x, 0, x2, . . . , xn)

for all x, x2, . . . , xn ∈ X and integers n ≥ 1. Therefore, for all integers 0 ≤ m < n, we obtain

‖
n

∑
k=m+1

[2−4k f (2kx)− 24−4k f (2k−1x) + 3 · 2−4k f (0)], z2, . . . , zn‖

≤
n

∑
k=m+1

‖[2−4k f (2kx)− 24−4k f (2k−1x) + 3 · 2−4k f (0)], z2, . . . , zn‖

≤ δ
n

∑
k=m+1

2−4k−1 +
n

∑
k=m+1

2−4k−1 ϕ(2k−1x, 0, x2, . . . , xn)

and so

‖2−4n f (2nx)− 2−4m f (2mx), z2, . . . , zn‖ (15)

≤ 3 · ‖ f (0), z2, . . . , zn‖
n

∑
k=m+1

2−4k + δ
n

∑
k=m+1

2−4k−1 +
n

∑
k=m+1

2−4k−1 ϕ(2k−1x, 0, x2, . . . , xn)

for all x, x2, . . . , xn ∈ X. In a similar way as in the proof of Theorem 1, we can show that
the sequence {2−4n f (2nx)} is an n-Cauchy sequence in Z for all x ∈ X. Define a mapping
T : X → Z by

T(x) := lim
n→∞

2−4n f (2nx)

for all x ∈ X. By (15), we have the inequality (13). It follows from (12) that

‖T(2x + y) + T(2x− y)− 4T(x + y)− 4T(x− y)− 24T(x) + 6T(y), z2, . . . , zn‖
= lim

n→∞
2−4n‖ f (2n(2x + y)) + f (2n(2x− y))− 4 f (2n(x + y))− 4 f (2n(x− y))

−24 f (2nx) + 6 f (2ny), z2, . . . , zn‖
≤ lim

n→∞
2−4n ϕ(2nx, 2ny, x2, · · · , xn) = 0

for all x, y, x2, . . . , xn ∈ X. This implies that T : X → Z is a quartic mapping. Let Q : X → Z
be another quartic mapping satisfying (13). Therefore we have

‖T(x)−Q(x), z2, . . . , zn‖ = lim
n→∞

2−4n‖ f (2nx)−Q(2nx), z2, . . . , zn‖

≤ lim
n→∞

2−4n
(

1
30

δ +
1

32
ϕ̃(2nx) +

1
5
‖ f (0), z2, . . . , zn‖

)
=

1
32

lim
n→∞

∞

∑
k=n

2−4k ϕ(2kx, 0, x2, . . . , xn) = 0

for all x, y, x2, . . . , xn ∈ X. It follows from Lemma 1 that T(x) = Q(x) for all x ∈ X. This
proves the uniqueness of T.

Now we show a simple application of Theorem 3 to obtain a stability of Equation (3).

Corollary 3. Assume that (X, ‖ · ‖) is a real normed space and that (Z, ‖·, · · · , ·‖) is a linear
n-normed space. Let ε, δ, θ,∈ [0, ∞), p, q, r ∈ (0, ∞) and p, q < 4. Let f : X → Z be a surjective
mapping satisfying

‖Ef (x, y), z2, . . . , zn‖ ≤ δ + (ε‖x‖p + θ‖y‖q)‖x2‖r · · · ‖xn‖r

17
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for all x, y, z2, . . . , zn ∈ X, where zi = f (xi) for each i = 2, . . . , n. Then there is a unique quartic
mapping T : X → Z such that

‖ f (x)− T(x), z2, . . . , zn‖ ≤ δ

24
+

ε

32− 2p+1 ‖x‖p‖x2‖r · · · ‖xn‖r

for all x, x2, . . . , xn ∈ X, where zi = f (xi) for each i = 2, . . . , n.

Proof. It is a consequence of Theorem 3 with

ϕ(x, y, x2, . . . , xn) = (ε‖x‖p + θ‖y‖q)‖x2‖r · · · ‖xn‖r

for all x, y, x2, . . . , xn ∈ X.

Next we consider the changes of conditions of the pseudo-quartic function and the
error function, and we find a solution of the quartic functional equation in n-Banach spaces.
We prove the existence of a solution of Equation (3) in n-Banach spaces.

Theorem 4. Let ϕ : Xn+1 → R+ be a function such that

∞

∑
i=0

24i ϕ(
x

2i+1 , 0, x2, · · · , xn) < ∞, lim
n→∞

24n ϕ(
x
2n ,

y
2n , x2, . . . , xn) = 0, (16)

for all x, y, x2, . . . , xn ∈ X. Suppose that a function f : X → Z be a surjective mapping satisfying

‖Ef (x, y), z2, . . . , zn‖ ≤ ϕ(x, y, x2, . . . , xn) (17)

for all x, y, x2, . . . , xn ∈ X, where zi = f (xi) for each i = 2, . . . , n. Then there is a unique quartic
mapping T : X → Z such that

‖ f (x)− T(x), z2, . . . , zn‖ ≤ 1
2

∞

∑
i=0

24i ϕ(
x

2i+1 , 0, x2, . . . , xn) (18)

for all x, x2, . . . , xn ∈ X, where zi = f (xi) for each i = 2, . . . , n.

Proof. It follows from (16) that ϕ(0, 0) = 0. Thus, we have f (0) = 0 from (17). By letting
y = 0 in (17), we get

‖2−4 f (2x)− f (x), z2, . . . , zn‖ ≤ 1
32

ϕ(x, 0, x2, . . . , xn) (19)

for all x, x2, . . . , xn ∈ X, where zi = f (xi) for each i = 2, . . . , n. Through replacing x by x
2 in

(19) and multiplying by 24, we obtain

‖ f (x)− 24 f (
x
2
), z2, . . . , zn‖ ≤ 1

2
ϕ(

x
2

, 0, x2, . . . , xn) (20)

for all x, x2, . . . , xn ∈ X, where zi = f (xi) for each i = 2, . . . , n. By (20), we have

‖ f (x)− 28 f (
x
22 ), z2, . . . , zn‖ ≤ 1

2
ϕ(

x
2

, 0, x2, . . . , xn) + 23 ϕ(
x
22 , 0, x2, . . . , xn)

for all x, x2, . . . , xn ∈ X, where zi = f (xi) for each i = 2, . . . , n. As in the proof of Theorem 3,
we can find a unique quartic mapping T : X → Z defined by

T(x) := lim
n→∞

24n f (
x
2n )

for all x ∈ X. This completes the proof.

18
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As an application of Theorem 1, we obtain a stability of Equation (2) in the following
corollary.

Corollary 4. Assume that (X, ‖ · ‖) is a real normed space and that (Z, ‖·, · · · , ·‖) is a linear
n-normed space. Let ε, θ ∈ [0, ∞), p, q, r ∈ (0, ∞) and p, q > 4. Let f : X → Z be a surjective
mapping satisfying

‖Ef (x, y), z2, . . . , zn‖ ≤ (ε‖x‖p + θ‖y‖q)‖x2‖r · · · ‖xn‖r

for all x, y, x2, . . . , xn ∈ X, where zi = f (xi) for each i = 2, . . . , n. Then there is a unique quartic
mapping T : X → Z such that

‖ f (x)− T(x), z2, . . . , zn‖ ≤ ε

2p+1 − 32
‖x‖p‖x2‖r · · · ‖xn‖r

for all x, x2, . . . , xn ∈ X, where zi = f (xi) for each i = 2, . . . , n.

Proof. It is a direct consequence of Theorem 4 with

ϕ(x, y, x2, . . . , xn) = (ε‖x‖p + θ‖y‖q)‖x2‖r · · · ‖xn‖r

for all x, y, x2, . . . , xn ∈ X.

4. Conclusions

In this paper, we considered the cubic functional equation and quartic functional
equation in n-Banach spaces. We dealt with stabilities of the functional equations in
n-Banach spaces. For a surjective mapping f into an n-Banach space, called a pseudo-
cubic function or a pseudo-quartic function, we solved the stability problem for the cubic
functional equations and the quartic functional equations for f , as we demonstrated the
existence of the solutions of the functional equations. As applications, we got the solutions
of the generalized Hyers–Ulam stabilities under the changes of conditions of the pseudo-
functions and the error functions. Our results about the equations in n-Banach spaces are
a new approach and are key extensions for the study of functional equations, where the
novelty of our results lies.
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Abstract: In this paper, we propose a generalized viscosity iterative algorithm which includes a
sequence of contractions and a self adaptive step size for approximating a common solution of a
multiple-set split feasibility problem and fixed point problem for countable families of k-strictly
pseudononspeading mappings in the framework of real Hilbert spaces. The advantage of the step size
introduced in our algorithm is that it does not require the computation of the Lipschitz constant of
the gradient operator which is very difficult in practice. We also introduce an inertial process version
of the generalize viscosity approximation method with self adaptive step size. We prove strong
convergence results for the sequences generated by the algorithms for solving the aforementioned
problems and present some numerical examples to show the efficiency and accuracy of our algorithm.
The results presented in this paper extends and complements many recent results in the literature.

Keywords: multiple-sets split feasibility problem; strictly pseudocontractive mappings; nonexpan-
sive mappings; viscossity iterative scheme; fixed point problem

1. Introduction

The problem of finding a point in the intersection of closed and convex subsets in
real Hilbert spaces has appeared severally in diverse areas of mathematics and physical
sciences. This problem is commonly referred to as the Convex Feasibility Problem (shortly,
CFP), and finds its applications in various disciplines such as image restoration, computer
tomograph and radiation therapy treatment planning, see [1]. A generalization of the CFP
is the Split Feasibility Problem (SFP) which was introduced by Censor and Elfving [2] and
defined as finding a point in a nonempty closed convex set, whose image under a bounded
operator is in another set. Mathematically, the SFP can be formulated as:

find x∗ ∈ C such that Ax∗ ∈ Q, (1)

where C and Q are nonempty closed convex subsets of RN and RM respectively, and A
is a given matrix of dimension N × M. The SFP also models inverse problems arising
from phase retrieval and intensity modulated radiation therapy [2]. Censor et al. [3]
further introduced another generalization of the CFP and SFP called the Multiple Set Split
Feasibility Problem (MSSFP) which is formulated as

find x∗ ∈ C := ∩k
i=1Ci such that Ax∗ ∈ Q := ∩t

j=1Qj, (2)

where k ≥ 1 and r ≥ 1 are given integers, A is a given M × N real matrix with A∗
its transpose, {Ci}k

i=1 and {Qj}t
j=1 are nonempty closed convex subsets of RN and RM,

Axioms 2021, 10, 1. https://dx.doi.org/10.3390/axioms10010001 https://www.mdpi.com/journal/axioms
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respectively. Observe that when k = r = 1, the MSSFP reduces to SFP (1). In this paper, we
focus on the MSSFP in a unified framework. We denote the set of solutions of (2) by Ω and
assume that Ω is consistent (i.e., nonempty). It is well known that the MSSFP is equivalent
to the following minimization problem:

min
{

1
2
||x− PC(x)||2 + 1

2
||Ax− PQ(Ax)||2

}
, (3)

where PC and PQ are the orthogonal projections onto C and Q respectively. For solving (3),
Censor et al. [3] defined a proximity function p(x) for measuring the distance of a point to
all sets as follows:

p(x) :=
1
2

k

∑
i=1

αi||x− PCi (x)||2 + 1
2

t

∑
j=1

β j||Ax− PQj(Ax)||2 (4)

where αi > 0, β j > 0 ∀i and j respectively, and ∑k
i=1 αi + ∑t

j=1 β j = 1. It is easy to see that

�p(x) :=
k

∑
i=1

αi(x− PCi (x)) +
t

∑
j=1

β j A∗(I − PQ)Ax.

Censor et al. [3] also introduced the following projection method for solving the
MSSFP:

xn+1 = PΩ(xn − s� p(xn)), (5)

where s is a positive scalar. They further proved the weak convergence of (5) under the
condition that the stepsize s satisfies

0 < sL ≤ s ≤ sμ <
2
L

,

where L = ∑k
i=1 αi + ρ(A∗A)∑t

j=1 β j is the Lipschitz constant of �p. A major setback of
(5) is the fact that the algorithm used a fixed stepsize which is restricted by the Lipschitz
constant (this depends on the largest eigenvalue of the matrix A∗A). Computing the largest
eigenvalue of A∗A is usually difficult and its conservation results in slow convergence.
More so, note that the projection onto the sets C and Q are often difficult to calculate when
the sets are not simple. This can also result in the complication of (5). Several efforts
have been made in order to find best appropriate modifications of (5) without the setbacks
in infinite dimensional real Hilbert spaces. For instance, Zhao and Yang [4] introduced
a new projection method such that the stepsize s is selected via an Armijo line search
technique for solving the MSSFP. However, this line search process required extra inner
iteration for obtaining a suitable stepsize. The authors in [5] also introduced a self-adaptive
projection method which requires the computation of the stepsize directly without any inner
iteration. More so, López et al. [6] introduced a relaxed projection method with a fixed
stepsize and proved a weak convergence result for solving the MSSFP. He et al. [7] further
combined a Halpern iterative scheme with the relaxed projection method and proved a
strong convergence result for solving the MSSFP. Recently, Suantai et al. [8] introduced
an inertial relaxed projection method with a self-adaptive stepsize for solving the MSSFP.
Also, Wen et al. [9] introduced a cyclic-simultaneous projection method and proved weak
convergence result for solving the MSSFP.

Constructing iterative schemes with a faster rate of convergence are usually of great
interest. The inertial-type algorithm which originated from the equation for an oscillator
with damping and conservative restoring force has been an important tool employed in
improving the performance of algorithms and has some nice convergence characteristics.
In general, the main feature of the inertial-type algorithms is that we can use the previous
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iterates to construct the next one. Since the introduction of the inertial-like algorithm,
many authors combined the inertial term [θn(xn − xn−1)] together with different kinds of
iterative algorithms, including Mann, Kranoselski, Halpern, Viscosity, to mention a few, to
approximate solutions of fixed point problems and optimization problems. Most authors
were able to prove weak convergence results while few proved strong convergence results.
Polyak [10] was the first author to propose the heavy ball method, Alvarez and Attouch [11]
employed this to the setting of a general maximal monotone operator using the Proximal
Point Algorithm (PPA), which is called the inertial PPA, and is of the form:{

yn = xn + θn(xn − xn−1),
xn+1 = (I + rnB)−1yn, n > 1.

(6)

They proved that if {rn} is non-decreasing and {θn} ⊂ [0, 1) with

+∞

∑
n=1

θn||xn − xn−1||2 < +∞, (7)

then the Algorithm (6) converges weakly to a zero of a maximal monotone operator B.
More precisely, condition (7) is true for θn < 1

3 . Here θn is an extrapolation factor. Other
initial-type algorithms can be found in, for instance [12–17].

Motivated by the works of Wen et al. [9] and López et al. [6], in this paper, we
introduce a general viscosity relaxed projection method with inertial process for solving
the MSSFP with the fixed point of strictly pseudo-nonspreading mappings in real Hilbert
spaces. The stepsize of our algorithm is selected self-adaptively in each iteration and its
convergence does not involve prior estimate of the matrix A∗A. More so, we define some
sublevel sets whose projections can be calculated explicitly using the formula in [18]. The
general viscosity approximation method guarantees strong convergence of the sequences
generated by the algorithm. This improves the weak convergence results proved in [6,9,19].
We further provide some numerical experiments to illustrate the performance and accuracy
of our algorithm. Our results improve and complement the results of [6–9,19–24] and many
other results in this direction.

2. Preliminaries

We state some known and useful results which will be needed in the proof of our
main theorem. In the sequel, we denote strong and weak convergence by “→” and “⇀”,
respectively.

Let C be a nonempty closed convex subset of a real Hilbert space H with inner product
〈., .〉 and norm ||.||. Let S : C → C be a nonlinear mapping and F(S) = {x ∈ C : Sx = x}
be the set of all fixed points of S.

A mapping S : C → C is called

1. nonexpansive, if

||Sx− Sy|| ≤ ||x− y||, ∀ x, y ∈ C;

2. quasi-nonexpansive, if F(S) is nonempty, and

||Sx− p|| ≤ ||x− p||, ∀ p ∈ F(S);

3. nonspreading [25], if

2||Sx− Sy||2 ≤ ||Sx− y||2 + ||Sy− x||2, ∀ x, y ∈ C;
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4. k-strictly pseudo-nonspreading in terms of Browder-Petryshyn [26], if there exists
k ∈ [0, 1) such that

||Sx− y||2 ≤ ||x− y||2 + k||x− Sx− (y− Sy)||2 + 2〈x− Sx, y− Sy〉, ∀ x.y ∈ C.

Remark 1. (a) If S : C → C is a nonspreading mapping with F(S) �= ∅, then S is quasi-
nonexpansive and F(S) is closed and convex.

(b)It is also clear that every nonspreading mapping is k-strictly pseudo-nonspreading with k=0,
but the converse is not true, see example 3 in [27].

Lemma 1. [27] Let T : C → C be a k-strictly pseudo-nonspreading mapping with k ∈ [0, 1).
Denote Tβ := βI + (1− β)T, where β ∈ [k, 1), then

(a) F(T) = F(Tβ),
(b)the following inequality holds:

||Tβx− Tβy||2 ≤ ||x− y||2 + 2
1− β

〈x− Tβx, y− Tβy〉, ∀ x, y ∈ C;

(c) Tβ is a quasi-nonexpansive mapping.

Lemma 2. [28] Let C ⊂ H be nonempty, closed and convex set. Then, ∀x, y ∈ H and z ∈ C

1. 〈x− PCx, z− PCx〉 ≤ 0,
2. ||PCx− PCy||2 ≤ 〈PCx− PCy, x− y〉,
3. ||PCx− z||2 ≤ ||x− z||2 − ||PCx− x||2.

Lemma 3. [29] Let H be a real Hilbert space and {xi}i≥1 be a bounded sequence in H. For
αi ∈ (0, 1) such that ∑∞

i=1 αi = 1, the following identity holds

||
∞

∑
i=1

αixi||2 =
∞

∑
i=1

αi||xi||2 − ∑
1≤i<j<∞

αiαj||xi − xj||2.

More so, from Lemma 3, we get the following result.

Lemma 4. [30] For all x1, x2, . . . , xn ∈ H, the following inequality holds:

||
n

∑
i=1

λixi||2 =
n

∑
i=1

λi||xi||2 − 1
2

n

∑
i,j=1

λiλj||xi − xj||2, n ≥ 2,

where λi ∈ [0, 1], i = 1, 2, . . . , n, ∑n
i=1 λi = 1.

Lemma 5. [27] Let C be a closed convex subset of H, T : C → C be a k-strictly pseudo-
nonspreading mapping with F(T) �= ∅. If {xn} is a sequence in C which converges weakly to p
and {(I− T)xn} converges strongly to q, then (I− T)p = q. In particular, if q = 0, then p = Tp.

Lemma 6. [31] Let {an} be a sequence of nonegative real numbers {γn} be a sequence of real
numbers in (0, 1) with conditions ∑∞

n=1 γn = ∞ and {dn} be a sequence of real numbers. Assume
that

an+1 ≤ (1− γn)an + γndn, n ≥ 1.

If lim supk→∞ dnk ≤ 0 for every subsequence {ank} of {an} satisfying the condition:
lim infk→∞(ank+1 − ank ) ≥ 0, then limn→∞ an = 0.

3. Main Results

In this section, we present our iterative algorithm and its convergence result.
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Let H1 and H2 be real Hilbert spaces, C be a nonempty, closed and convex subset of
a real Hilbert space H and {gn} be a sequence of {σn}-contractive self maps of H with
lim infn→∞ σn ≤ lim supn→∞ σn = σμ < 1. Suppose that {gn(x)} is uniformly convergent
to {g(x)} for any x ∈ D, where D is a bounded subset of C, let Sm : H1 → H1, be a countable
family of km-strictly pseudo-nonspreading mapping with k := supm≥1 km ∈ (0, 1) and
Sm,β := βI + (1− β)Sm, where β ∈ [k, 1), and m ∈ N\{0}.

Before we state our algorithm, we assume that the following conditions hold:

(A1) The set Ci is given by Ci = {x ∈ H1 : ci(x) ≤ 0} where ci : H1 → R (i = 1, 2 . . . , k)
are convex functions. Also, the set Qj is given by Qj = {y ∈ H2 : qj(y) ≤ 0}
(j = 1, 2, . . . , t) are convex functions. In addition, we assume that both ci and qj are
subdifferentiable on H1 and H2 respectively and ∂ci and ∂qj are bounded operators.

(A2) For any x ∈ H1 and y ∈ H2, at least one subgradient ξi ∈ ∂ci(x) and ηj ∈ ∂qj(y) can
be calculated, where ∂ci(x) and ∂qj(y) denote the subdifferentials of ci and qj at x and
y respectively, i.e.,

∂ci(x) = {ξi ∈ H1 : ci(z) ≥ ci(x) + 〈ξi, z− x〉 ∀z ∈ H1},

and
∂qj(y) = {ηj ∈ H2 : qj(u) ≥ qj(y) + 〈ηj, u− y〉 ∀u ∈ H2}.

(A3) We set Cn
i and Qn

j as the half-spaces defined by

Cn
i = {x ∈ H1 : ci(xn) + 〈ξn

i , x− xn〉 ≤ 0},

where ξn
n ∈ ∂ci(xn) (i = 1, 2, . . . , k) and

Qn
j = {y ∈ H2 : qj(Axn) + 〈ηn

j , y− Axn〉 ≤ 0},

where ηn
j ∈ ∂qj(Axn) (j = 1, 2, . . . , t).

(A4) We define the proximity function by

fn(x) =
1
2

t

∑
j=1

λj||Ax− PQn
j
(Ax)||2,

where λj > 0 ∀1 ≤ j ≤ t. Then the gradient of fn(x) is given by

∇ fn(x) =
t

∑
j=1

λj A∗(I − Pn
Q)(Ax).

(A5) The control sequences {αn}, {wi}, {γn,m} and {ρn} are chosen such that

- {αn} ⊂ (0, 1), lim
n→+∞

αn = 0,
+∞
∑

n=1
αn = +∞;

- {γn,m} ⊂ (0, 1), lim inf
n→+∞

γn,0γn,m > 0,
+∞
∑

m=0
γn,m = 1;

- {wi} ⊆ [0, 1] with
+∞
∑

i=1
wi = 1;

- {ρn} ⊂ (0, 4) and lim inf
n→+∞

ρn(4− ρn) > 0.

We now present our algorithm as follows:
First we show that the sequence {xn} generated by Algorithm 1 is bounded.

Lemma 7. Suppose the solution set Γ =
{

Ω ∩ ⋂∞
m=1 F(Sm)

} �= ∅ and {xn} is the sequence
generated by Algorithm 1. Then {xn} is bounded.
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Algorithm 1: GVA

Step 0: Select the initial point x1 ∈ H and the sequences {αn}, {wi}, {γn,m}, {ρn} such that Assumption (A5) is
satisfied. Set n = 1.

Step 1: Given the nth iterate (i.e., xn, n ≥ 0), if ∇ fn(xn) = 0, STOP. Otherwise, compute

yn =
k

∑
i=1

ωiPCn
i
(xn − τn∇ fn(xn)),

where the stepsize τn is defined by

τn =
ρn fn(xn)

||∇ fn(xn)||2 .

Step 2: Compute

xn+1 = αngn(xn) + (1− αn)

(
γn,0yn +

∞

∑
m=1

γn,jSm,βyn

)
.

Step 3: Set n ← n + 1 and return to Step 1.

Proof. Let x∗ ∈ Γ and wn = γn,0yn + ∑∞
m=1 γn,mSm,βyn. By applying the nonexpansivity

property of the projection mapping and Lemma 4, we have

||yn − x∗||2 = ||
k

∑
i=1

ωiPCn
i
(xn − τn∇ fn(xn))− x∗||2

≤ ||xn − τn∇ fn(xn)− x∗||2
= ||xn − x∗||2 − 2τn〈∇ fn(xn), xn − x∗〉+ ||τn∇ fn(xn)||2. (8)

Also from Lemma 2, we obtain

〈∇ fn(xn), xn − x∗〉 = 〈
t

∑
j=1

λj A∗(I − PQn
j
)Axn, xn − x∗〉

=
t

∑
j=1

λj〈(I − PQn
j
)Axn, Axn − PQn

j
(Axn)〉+

t

∑
j=1

λj〈(I − PQn
j
)Axn, PQn

j
(Axn)− Ax∗〉

≥
t

∑
j=1

λj||Axn − PQn
j
(Axn)||2

= 2 fn(xn). (9)

On substituting (9) into (8), we have

||yn − x∗||2 ≤ ||xn − x∗||2 − 4τn fn(xn) + ||τn∇ fn(xn)||2

= ||xn − x∗||2 − ρn(4− ρn)
f 2
n(xn)

||∇ fn(xn)||2
≤ ||xn − x∗||2. (10)
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More so from Lemma 1, we get

||wn − x∗|| = ||γn,0yn +
∞

∑
m=1

γn,mSm,βyn − x∗||

≤ γn,0||yn − x∗||+
∞

∑
m=1

γn,m||Sm,βyn − x∗||

≤ γn,0||yn − x∗||+
∞

∑
m=1

γn,m||yn − x∗||

= ||yn − x∗||. (11)

Therefore from (10) and (11), we have

||xn+1 − x∗|| = ||αngn(xn) + (1− αn)wn − x∗||
≤ αn||gn(xn)− x∗||+ (1− αn)||wn − x∗||
≤ αnσn||xn − x∗||+ (1− αn)||xn − x∗||+ αn||gn(x∗)− x∗||
≤ (1− αn(1− σn))||xn − x∗||+ αn(1− σn)

||gn(x∗)− x∗||
1− σn

...

≤ max
{
||xn − x∗||, ||gn(x∗)− x∗||

1− σn

}
.

Since {gn} is uniformly convergent on D, it follows that {gn(x∗)} is bounded. Thus,
there exists a positive constant M, such that ||gn(x∗)− x∗|| ≤ M. By induction, we obtain

||xn − x∗|| ≤ max
{
||x1 − x∗||, M

1− σμ

}
.

Hence, {xn} is bounded. Consequently {Sm,βxn}, {gn(xn)}, {yn} and {wn} are all
bounded.

We now give our main convergence theorem.

Theorem 1. Suppose that Γ =
{

Ω ∩ ⋂∞
m=1 F(Sm)

} �= ∅ and Assumptions (A1)–(A5) hold.
Then, the sequence {xn} generated by Algorithm 1 converges strongly to point z ∈ PΓ which is a
unique solution of the variational inequality

〈g(z)− z, x∗ − z〉 ≤ 0, ∀ x∗ ∈ PΓ.
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Proof. From Lemma 1 (c), Lemma 3 and (10), we have

||wn − x∗||2 = ||γn,0yn +
∞

∑
m=1

γn,mSm,βyn − x∗||2

= γn,0||yn − x∗||2 +
∞

∑
m=1

γn,m||Sm,βyn − x∗||2 −
∞

∑
m=1

γn,0γn,m||yn − Sm,βyn||

− ∑
1≤m<r<∞

γn,mγn,r||Sm
m,β − Sr

m,β||2

≤ γn,0||yn − x∗||2 +
∞

∑
m=1

γn,m||yn − x∗||2 −
∞

∑
m=1

γn,0γn,m||yn − Sm,βyn||

= ||yn − x∗||2 −
∞

∑
m=1

γn,0γn,m||yn − Sm,βyn||

≤ ||xn − x∗||2 − ρn(4− ρn)
f 2
n(xn)

||∇ fn(xn)||2 −
∞

∑
m=1

γn,0γn,m||yn − Sm,βyn||. (12)

Now, from (10) and (12), we have that

||xn+1 − x∗||2 = ||αngn(xn) + (1− αn)wn − x∗||2
≤ (1− αn)

2||wn − x∗||2 + 2αn〈xn+1 − x∗, gn(xn)− x∗〉

≤ (1− αn)
2||xn − x∗||2 − (1− αn)ρn(4− ρn)

f 2
n(xn)

||∇ fn(xn)||
− (1− αn)

∞

∑
m=1

γn,0γn,m||yn − Sm,βyn||+ 2αn〈xn+1 − x∗, gn(xn)− x∗〉

= (1− αn)
2||xn − x∗||2 + αn

(
2〈xn+1 − x∗, gn(xn)− x∗〉

)
. (13)

Putting dn = 2〈xn+1 − x∗, gn(xn)− x∗〉, in view of Lemma 5, we need to prove that
lim supk→∞ dnk ≤ 0 for every {||xnk − x∗||} of {||xn − x∗||} satisfying the condition

lim inf
k→+∞

{||xnk+1 − x∗|| − ||xnk − x∗||} ≥ 0. (14)

To show this, suppose that {||xnk − x∗||} is a subsequence of {||xn − x∗||} such that
(14) holds. Then

lim inf
k→+∞

(||xnk+1 − x∗||2 − ||xnk − x||2)

= lim inf
k→∞

(
(||xnk+1 − x∗||2 − ||xnk − x∗||2)(||xnk+1 − x∗||+ ||xnk − x∗||)) ≥ 0.

Now, using (12), we have that

lim sup
k→+∞

((1− αnk )
+∞

∑
m=1

γnk ,0γnk ,m||ynk − Sm,βynk ||) ≤ lim sup
k→+∞

((1− αnk )||xnk − x∗||2 − ||xnk+1 − x∗||2

+ 2αnk 〈xnk+1 − x∗, gnk (xnk )− x∗〉)
≤ lim sup

k→+∞
(||xnk − x∗||2 − ||xnk+1 − x∗||2)

+ lim sup
k→+∞

(2αnk 〈xnk+1 − x∗, gnk (xnk )− x∗〉)

= − lim inf
k→+∞

(||xnk+1 − x∗||2 − ||xnk − x∗||2) ≤ 0. (15)
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Hence

lim
k→+∞

||ynk − Sm,βynk || = 0.

Please note that

||Sm,βyn − yn|| = ||βyn + (1− β)Smyn − yn||
= (1− β)||Smyn − yn||.

Then it follows that

||Smyn − yn|| = 1
1− β

||Sm,βyn − yn|| → 0. (16)

Furthermore, using (12) and following the same approach as in (15), we also have that

ρn(4− ρn)
f 2
n(xnk )

|| � f (xnk )||2
≤ ρnk (4− ρnk )

f 2
n(xnk )

|| � f (xnk )||2
→ 0, as k → ∞. (17)

This implies that

+∞

∑
n=0

f 2
n(xnk )

|| � f (xnk )||2
< +∞. (18)

Since∇ fn is Lipschitz continuous and {xn} is bounded, so {∇ fn(xn)} is also bounded.
Hence from (18), we can conclude that

lim
k→+∞

1
2

t

∑
j=1

λj||Axnk − PQn
j
(Axnk )||2 = 0, (19)

which also implies that

lim
k→+∞

||Axnk − PQn
j
(Axnk )|| = 0, for j = 1, 2, . . . , t. (20)

Since ∂qj is bounded on bounded sets, there exists η such that ||ηn
j || ≤ η ∀j. Please

note that PQn
j
Axn ∈ Qn

j , thus we get

q(Axnk ) ≤ 〈ηnk
j , Axnk − PQ

nk
j

Axnk 〉
≤ ||ηnk

j || · ||Axnk − PQ
nk
j

Axnk ||
≤ η||Axnk − PQ

nk
j

Axnk || → 0 as k → +∞.

Since {xn} is bounded and C is closed and convex, we can suppose that the subse-
quence {xnk} of {xn} converges weakly to x̄ ∈ C. We now show that x̄ ∈ Ω. By the weakly
lower semicontinuity of qj and boundedness of A, we have

qj(Ax̄) ≤ lim inf
k→+∞

qj(Axnk ) ≤ 0.

Then Ax̄ ∈ Qj, j = 1, 2, . . . , t. This implies that Ax̄ ∈ ⋂t
j=1 Qj. Next we show that

x̄ ∈ ⋂k
i=1 Ci.
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Let un = xn − τn∇ fn(xn). Since {un}, {wn} and {yn} are bounded, there exist subse-
quences {unk}, {wnk} and {ynk} which all converges to x̄. Using (10), we have that

||un − x∗||2 ≤ ||xn − x∗||2 − ρnk (4− ρnk )
f 2
n(xnk )

|| � f (xnk )||2
. (21)

By applying Lemma 2 (iii), we have that

k

∑
i=1

ωi||PCn
i
(unk )− unk ||2 ≤ ||unk − x∗||2 −

k

∑
i=1

ωi||PCi (unk )− x∗||2

≤ ||xnk − x∗||2 − ||ynk − x∗||2
≤ ||xnk − x∗||2 − ||wnk − x∗||2
= ||xnk − x∗||2 − ||xnk+1 − x∗||2 + ||xnk+1 − x∗||2 − ||wnk − x∗||2
≤ ||xnk − x∗||2 − ||xnk+1 − x∗||2 + αnk ||gnk (xnk )− x∗||2
+ (1− αnk )||wnk − x∗||2 − ||wnk − x∗||2. (22)

By taking lim sup as k → +∞ on both sides of (22) and following the same argument
as in (15), we have that

lim
k→+∞

||PCn
i
(unk )− unk || = 0 = lim

k→∞
||ynk − unk ||. (23)

Also, from the definition of unk = xnk − τnk � f (xnk ), we have from (19) that

lim
k→+∞

||unk − xnk || = 0. (24)

Using (23) and (24), we obtain that

lim
k→+∞

||PCn
i
(unk )− xnk || = 0.

Since ∂ci is bounded on bounded sets, there exists ξ such that ||ξn
i || ≤ ξ ∀i. Thus,

ci(xnk ) ≤ 〈ξnk
i , xnk − Pnk

Ci
(xnk )〉

≤ ξ
(
||xnk − unk ||+ ||unk − PCink

(xnk )
)
→ 0.

By the lower semicontinuity of ci, we have

ci(x̄) ≤ lim inf
k→+∞

ci(xnk ) ≤ 0.

Hence x̄ ∈ Ci for i = 1, 2, . . . , k, which implies that x̄ ∈ ⋂k
i=1 Ci. Hence x̄ ∈ Ω.

Furthermore, we have from (23) and (24) that

lim
k→+∞

||ynk − xnk || = 0. (25)

Then, from the demiclosedness of k-strictly pseudo-nonspreading mappings (Lemma 5),
(16) and (25), we obtain x̄ ∈ ⋂∞

m=1 F(Sm). Therefore, x̄ ∈ Γ.
Next is to prove that {xn} converges strongly to z ∈ Γ. Also, (16), we have

lim
k→+∞

||wnk − ynk || = 0. (26)
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More so, from (25) and (26), we obtain

lim
k→+∞

||wnk − xnk || = 0. (27)

From (27), we obtain

||xnk+1 − xnk || ≤ αnk ||gnk (xnk )− xnk ||+ (1− αnk )||wnk − xnk ||. (28)

Next is to prove that the lim supk→+∞〈xnk+1 − x∗, gn(xn)− x∗〉 ≤ 0.
Indeed, take a subsequence {xnk} of {xn} such that xnk ⇀ z. Hence, we have

lim sup
n→+∞

〈g(x∗)− x∗, xn − x∗〉 = lim
k→+∞

〈g(x∗)− x∗, xnk − x∗〉.

Since gn(x) is uniformly convergent on D, we have that

lim
n→+∞

(gn(x∗)− x∗) = g(x∗)− x∗.

Now, from (28) and Lemma 4 (i), we obtain

lim
k→+∞

〈g(x∗)− x∗, xnk − x∗〉 = 〈g(x∗)− x∗, z− x∗〉 ≤ 0. (29)

Using Schwartz’s inequality, we have

lim sup
k→+∞

〈xnk+1 − x∗, gnk (x∗)− x∗〉 ≤ lim
k→+∞

||xnk+1 − x∗|| ||gnk (x∗)− g(x∗)||+ lim sup
k→+∞

〈xnk+1 − x∗, g(x∗)− x∗〉.

By the boundedness of {xn}, gn(x)→ g(x), then by (28) and (29), we have

lim sup
k→+∞

〈xnk+1 − x∗, gnk (x∗)− x∗〉 ≤ 0. (30)

Applying (30) and Lemma 5 in (13), we obtain that {xn} converges to z. This completes
the proof.

Next, we give a generalized viscosity approximation method with inertial term which
can be regard as a procedure for speeding up the convergence properties of Algorithm 1.
In addition to Assumptions (A1)–(A5), we choose a sequence {εn} ⊂ (0, ε) with ε ∈ [0, 1)
and

lim
n→∞

εn

αn
= 0. (31)

Remark 2. From (31) and Step 1, it is easy to see that limn→∞
θn
αn
||xn − xn−1|| = 0. Indeed, we

have θn||xn − xn−1|| ≤ εn for each n ≥ 1, which together with (31) implies that

lim inf
n→+∞

θn

αn
||xn − xn−1|| = 0 ≤ lim

n→+∞

εn

αn
= 0.

Lemma 8. Suppose the solution set Γ =
{

Ω ∩ ⋂+∞
m=1 F(Sm)

} �= ∅ and {xn} is the sequence
generated by Algorithm 2. Then {xn} is bounded.

Proof. Let x∗ ∈ Γ, using Step 1, we get

||an − x∗|| = ||xn + θn(xn − xn−1)− x∗||
≤ ||xn − x∗||+ θn||xn − xn−1||
= ||xn − x∗||+ αn · θn

αn
||xn − xn1 ||. (32)
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Algorithm 2: IGVA

Step 0: Select the initial points x0, x1 ∈ H and the sequences {αn}, {wi}, {γn,m}, {ρn}, {εn} such that Assumption
(A5) and (31) are satisfied. Set n = 1.

Step 1: Given the (n− 1)th and nth iterates (i.e., xn−1 and xn, n ≥ 1). Choose θn such that 0 ≤ θn ≤ θn, where

θn =

{
min{θ, εn

||xn−xn−1|| }, if xn �= xn−1,

θ, otherwise,

where θ > 0. Compute

an = xn + θn(xn − xn−1),

and

yn =
k

∑
i=1

ωiPCn
i
(an − τn∇ fn(an)),

where the stepsize τn is defined by

τn =
ρn fn(an)

||∇ fn(an)||2 .

Step 2: Compute

xn+1 = αngn(xn) + (1− αn)

(
γn,0yn +

∞

∑
m=1

γn,jSm,βyn

)
.

Step 3: Set n ← n + 1 and return to Step 1.

By the condition θn
αn
||xn − xn−1|| → 0, there exists a constant M1 > 0 such that

θn
αn
||xn − xn−1|| → 0 ≤ M1, ∀ n ≥ 1. Following similar argument as in the prove of (10) in

Algorithm 1, we have

||yn − x∗|| ≤ ||an − x∗||. (33)

Also as in (11), putting wn = γn,0yn + ∑∞
m=1 γn,mSm,βyn, then we get

||wn − x∗|| ≤ ||yn − x∗||. (34)

Then, it follows from (32), (33) and (34) that

||wn − x∗|| = ||xn − x∗||+ αn M1. (35)

Thus, we have

||xn+1 − x∗|| = ||αngn(xn) + (1− αn)wn − x∗||
≤ αn||gn(xn)− x∗||+ (1− αn)||wn − x∗||
≤ αnσn||xn − x∗||+ (1− αn)[||xn − x∗||+ αn M1] + αn||gn(x∗)− x∗||
= (1− αn(1− σn))||xn − x∗||+ αn(1− σn)

||gn(x∗)− x∗||
1− σn

+ αn(1− αn)M1

= (1− αn(1− σn))||xn − x∗||+ αn(1− σn)

[ ||gn(x∗)− x∗||
1− σn

+ (1− αn)
M1

1− σn

]
...

≤ max
{
||xn − x∗||, ||gn(x∗)− x∗||+ M1

1− σn

}
.

32



Axioms 2021, 10, 1

Since {gn} is uniformly convergence on D, it follows that {gn(x∗)} is bounded. Thus,
there exists a positive constant M2 such that ||gn(x∗) − x∗|| ≤ M2. Thus, it follows by
induction that

||xn − x∗|| ≤ max
{
||x1 − x∗||, M1 + M2

1− σμ

}
.

Therefore {xn} is bounded.

Theorem 2. Suppose that Γ =
{

Ω ∩⋂∞
m=1 F(Sm)

} �= ∅ and Assumptions (A1)–(A5) with (31)
hold. Then, the sequence {xn} generated by Algorithm 2 converges strongly to point z ∈ PΓ which
is a unique solution of the variational inequality

〈g(z)− z, x∗ − z〉 ≤ 0, ∀ x∗ ∈ PΓ.

Proof. Let x∗ ∈ Γ, then we have from Step 1 that

||an − x∗||2 = ||xn + θn(xn − xn−1)− x∗||2
= ||(xn − x∗) + θn(xn − xn−1)||2
= ||xn − x∗||2 + 2θn〈xn − x∗, xn − xn−1〉+ θ2

n||xn − xn1 ||2
≤ ||xn − x∗||2 + 2θn||xn − x∗|| ||xn − xn−1||+ θ2

n||xn − xn−1||2
≤ ||xn − x∗||2 + θn||xn − xn−1||

[
2||xn − x∗||+ θn||xn − xn−1||

]
≤ ||xn − x∗||2 + θn||xn − xn−1||M3,

where M3 = supn≥1{2||xn − x∗||+ θn||xn − xn−1||}.
Similarly as in (12), we get

||wn − x∗||2 ≤ ||an − x∗||2
= ||xn − x∗||+ θn||xn − xn−1||M3. (36)

Using Step 1, we have that

||an − xn|| = αn · θn

αn
||xn − xn−1|| → 0, as n → ∞. (37)

Now, from (36), we have that

||xn+1 − x∗|| = ||αngn(xn) + (1− αn)wn − x∗||2

= (1− αn)
2||wn − x∗||2 + 2αn〈xn+1 − x∗, gn(xn)− x∗〉

= (1− αn)
2||xn − x∗||2 + (1− αn)θn||xn − xn−1||M3 + 2αn〈xn+1 − x∗, gn(xn)− x∗〉

= (1− αn)
2||xn − x∗||2 + αn(1− αn)

θn

αn
||xn − xn−1||M3 + 2αn〈xn+1 − x∗, gn(xn)− x∗〉

≤ (1− αn)||xn − x∗||2 + αn

[
(1− αn)

θn

αn
||xn − xn−1||M3 + 2〈xn+1 − x∗, gn(xn)− x∗〉

]
. (38)

Next is to show that the lim supk→+∞〈xnk+1 − x∗, gn(xn)− x∗〉 ≤ 0.
Indeed, take a subsequence {xnk} of {xn} such that xnk ⇀ z. Hence, we have

lim sup
n→+∞

〈g(x∗)− x∗, xn − x∗〉 = lim
k→+∞

〈g(x∗)− x∗, xnk − x∗〉.

Since gn(x) is uniformly convergent on D, we have that

lim
n→+∞

(gn(x∗)− x∗) = g(x∗)− x∗.
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Now, from (28) and Lemma 4 (i), we obtain

lim
k→+∞

〈g(x∗)− x∗, xnk − x∗〉 = 〈g(x∗)− x∗, z− x∗〉 ≤ 0. (39)

By applying Schwartz’s inequality, we get

lim sup
k→+∞

〈xnk+1 − x∗, gnk (x∗)− x∗〉 ≤ lim
k→+∞

||xnk+1 − x∗|| ||gnk (x∗)− g(x∗)||+ lim sup
k→+∞

〈xnk+1 − x∗, g(x∗)− x∗〉.

By the boundedness of {xn}, gn(x)→ g(x), then by (28) and (39), we have

lim sup
k→+∞

〈xnk+1 − x∗, gnk (x∗)− x∗〉 ≤ 0. (40)

On substituting (40) in (38), we obtain that {xn} converges strongly to x∗. This
completes the proof.

4. Numerical Example

In this section, we give some numerical experiments to illustrate the performance of
our algorithms with respect to some other algorithms in the literature. All computation
are carried out using Lenovo PC with the following specification: Intel(R)core i7-600, CPU
2.48GHz, RAM 8.0GB, MATLAB version 9.5 (R2019b).

Example 1. We consider the MSSFP where H1 = RN and H2 = RM, A : RN → RM is given by
A(x) = GM×N(x), where GM×N is a M× N matrix. The closed convex sets Ci (i ∈ {1, . . . , k})
of RN are given by

Ci = {x = (x1, . . . , xN)
T ∈ R

N : ci(x) ≤ 0}
where ci(x) = ‖x − di‖2 − p2

i such that pi = p, where is a positive real number and di =
(x1,i, . . . , xN,i)

T = (0, . . . , 0, i− 1)T ∈ RN for each i = 1, 2, . . . , k. Also, Qj (j ∈ {1, . . . , t}) is
defined by

Qj = {y ∈ R
M : qj(y) ≤ 0},

where qj(y) = 1
2 yT Bjy + bT

j y + cj, j= 1, 2, . . . , k, Bj is a Hessian matrix, bj and cj are vectors
generated randomly. For each i ∈ {1, . . . , k} and j ∈ {1, . . . , t} the subdifferentials are given by

∂ci(xn) =

{{ xn−di
||xn−di ||

}
if xn − di �= 0,

{ai ∈ RN : ||ai|| ≤ 1} otherwise,

and ∂qj(Axn) = {(b1,j, . . . , bM,j)
T}. Please note that the projection

PCn
i
(xn) = argmin{||x− xn|| : x ∈ Cn

i },

where Cn
i = {x ∈ H1 : ci(xn) ≤ 〈ξn

i , xn − x〉} which is equivalent to the following quadratic
programming problem {

minimize 1
2 xTH̄x + B̄T

n x + c̄,
subject to D̄i,n(x) ≤ F̄i,

(41)

where H̄ = 2IM×N , B̄n = −2xn, c̄ = ||xn||2, D̄i,n = ξ̄n
i = [ξ̄n

i,1, . . . , ξ̄n
i,N ], F̄i = p2

i − ||xn −
di||2 + 〈ξ̄n

i , xn〉. The Problem (41) as well as the projection onto Qn
j can effectively be solved using

Optimization Toolbox solver ‘quadprog’ in MATLAB. We defined the mapping Sm : RN → RN by

Smx =

{
(x1, x2, . . . , xi, . . . ) if ∏∞

i=1 xi < 0,
(−2x1,−2x2, . . . ,−2xi, . . . ) if ∏∞

i=1 xi ≥ 0.
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It is easy to see that Sm is 1
3 -strictly pseudo-nonspreading. For each n ∈ N and m ≥ 0, let

{γn,m} be defined by

γn,m =

⎧⎪⎨⎪⎩
1

bm+1

( n
n+1

)
, n ≥ m + 1,

1− n
n+1 ∑n

k=1
1
bk n = m,

0 n < m,

where b > 1. For simplicity, we consider the case for which k = t and compare the performance
of Algorithm 1, Algorithm 2 and Algorithm (42) of Wen et al. [9] using various dimension of N.
We choose b = 5, gn(x) = x

4 , β = 0.2, αn = 1√
n+1

, εn = 1
n+1 , θ = 0.01, ρn = n

n+1 , wi =
1
k .

Similarly, for Algorithm (42) of Wen et al. [9], we take ρn = n
n+1 and wi =

1
k . The initial points

x0, x1 and the matrices GM×N are generated randomly for the following values of N and M:
Case I: N = 4 and M = 10;
Case II: N = 10 and M = 5;
Case III: N = 10 and M = 10;
Case IV: N = 15 and M = 20.
We use En = ||xn+1 − xn|| < 10−4 as stopping criterion and plot the graphs of En against

number of iterations. The numerical results are shown in Table 1 and Figure 1.

Table 1. Computation result for Example 1.

Algorithm 1 Algorithm 2 Wen et al. alg.

Case I No of Iter. 28 13 48
CPU time (s) 0.1731 0.2499 0.4600

Case II No of Iter. 29 14 50
CPU time (s) 0.1693 0.1523 0.4719

Case III No of Iter. 30 14 51
CPU time (s) 0.1702 0.1971 0.4222

Case IV No of Iter. 30 14 53
CPU time (s) 0.1932 0.2240 0.5702

0 10 20 30 40 50
Iteration number (n)

10-5

10-4

10-3

10-2

10-1

100

101

E n 

Algorithm 3.1
Algorithm 3.4
Wen et al. alg.

0 10 20 30 40 50
Iteration number (n)

10-5

10-4

10-3

10-2

10-1

100

101

E n 

Algorithm 3.1
Algorithm 3.4
Wen et al. alg.

0 10 20 30 40 50 60
Iteration number (n)

10-5

10-4

10-3

10-2

10-1

100

101

E n 

Algorithm 3.1
Algorithm 3.4
Wen et al. alg.

0 10 20 30 40 50 60
Iteration number (n)

10-5

10-4

10-3

10-2

10-1

100

101

E n 

Algorithm 3.1
Algorithm 3.4
Wen et al. alg.

Figure 1. Example 1, Case I–Case IV; Top–Bottom.
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Finally, we present an example in infinite dimensional Hilbert spaces.

Example 2. Let H1 = H2 = L2([0, 1]) with norm ||x|| =
(∫ 1

0 |x(t)|2dt
)1/2

and the inner

product 〈x, y〉 = ∫ 1
0 x(t)y(t)dt. We defined the nonempty, closed convex sets C = {x ∈ L2([0, 1]) :

〈x(t), 3t2〉 = 0} and Q = {y ∈ L2([0, 1]) : 〈y, t/3〉 ≥ −1}. We defined the linear operator
A : L2([0, 1])→ L2([0, 1]) by (Ax)(t) = x(t). The projection onto C and Q are given by

PC(x(t)) =

⎧⎨⎩x(t)− 〈x(t),3t2〉
||3t2||2 3t2 if 〈x(t), 3t2〉 �= 0,

x(t), if 〈x(t), 3t2〉 = 0,

and

PQ(y(t)) =

⎧⎨⎩y(t)− 〈y(t),−t
3 〉

||− t
3 ||2

(−t
3 ), if 〈y(t), −t

3 〉 < −1,

y(t) if 〈y(t), −t
3 〉 ≥ −1.

We consider the MSSFP where k = t = 1, Ci = C, Qj = Q, Sm = I (identity mapping) and
m = 4. We compare our Algorithm 2 with the CQ-type algorithm (Algorithm 3.1) of Vinh et al. [20].
For Algorithm 2, we take gn(x) = x

8 , β = 0.5, wi = 1, αn = 1
n+1 , εn = 1

(n+1)2 , and γn,m = 1
5

for m = 0, 1, . . . , 4. Also, for Vinh et al. alg, we take ρn = n
n+1 and βn = 1

n+1 . We use
En = 1

2 ||Axn− PQ(Axn)||2 < 10−4 as stopping criterion and test the algorithms for the following
initial points:

Case I: x0 = exp(−2t), x1 = t3 sin(3t)/3,
Case II: x0 = t2 + 2t− 1, x1 = (cos(2t) + sin(3t))/5,
Case III: x0 = 2t cos(−3t), x1 = 4 sin(2t),
Case IV: x0 = exp(2t)/2, x1 = t3 + 3t− 1.
The numerical results are reported in Table 2 and Figure 2.

Table 2. Computation result for Example 2.

Algorithm 2 Vinh et al. alg.

Case I No of Iter. 4 9
CPU time (s) 0.4563 1.3020

Case II No of Iter. 5 10
CPU time (s) 1.5565 3.1576

Case III No of Iter. 9 13
CPU time (s) 0.8736 2.4094

Case IV No of Iter. 8 12
CPU time (s) 0.7985 1.1278
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Figure 2. Example 2, Case I–Case IV; Top–Bottom.

5. Conclusions

In this paper, we introduce a generalized viscosity approximation method with self-
adaptive stepsize for finding common solution of multiple set split feasibility problem and
fixed point of a countable family of k-strictly pseduononspreading mappings in real Hilbert
spaces. We also introduce a generalized viscosity approximation method with inertial and
self-adaptive stepsize for solving the underlying problem. We prove strong convergence
results for the sequences generated the algorithms under some mild conditions. We also
provide some numerical example to show the performance of the proposed methods with
respect to some other methods in the literature. These results improve and compliment
several other results (e.g., [6–9,20]) in the literature.
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Abstract: In this paper, we present a new self-adaptive inertial projection method for solving
split common null point problems in p-uniformly convex and uniformly smooth Banach spaces.
The algorithm is designed such that its convergence does not require prior estimate of the norm of
the bounded operator and a strong convergence result is proved for the sequence generated by our
algorithm under mild conditions. Moreover, we give some applications of our result to split convex
minimization and split equilibrium problems in real Banach spaces. This result improves and extends
several other results in this direction in the literature.
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1. Introduction

Let H1 and H2 be real Hilbert spaces and C and Q be nonempty, closed and convex subsets of
H1 and H2, respectively. We consider the Split Common Null Point Problem (SCNPP) which was
introduced by Byrne et al. [1] as follows:

Find z ∈ H1 such that z ∈ A−1(0)
⋂

T−1(B−1(0)), (1)

where A : H1 → 2H1 and B : H2 → 2H2 are maximal monotone operators and T : H1 → H2 is
a linear bounded operator. The solution set of SCNPP (1) is denoted by Ω. The SCNPP contains
several important optimization problems such as split feasibility problem, split equilibrium problem,
split variational inequalities, split convex minimization problem, split common fixed point problems,
etc., as special cases (see, e.g., [1–5]). Due to their importance, several researchers have studied
and proposed various iterative methods for finding its solutions (see, e.g., [1,4–9]). In particular,
Byrne et al. [1] introduced the following iterative scheme for solving SCNPP in real Hilbert spaces:{

x0 ∈ H1, λ > 0,

xn+1 = JA
λ (xn + λT∗(JλB)Txn), n ≥ 0,

(2)

Axioms 2020, 9, 140; doi:10.3390/axioms9040140 www.mdpi.com/journal/axioms39
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where JA
λ x = (I + λA)−1x, for all x ∈ H1. They also proved that the sequence {xn} generated by (2)

converges weakly to a solution of SCNPP provided the step size λ satisfies

λ ∈
(

0,
2
L

)
, (3)

where L is the spectral radius of T. Furthermore, Kazmi and Rizvi [10] proposed a viscosity method
which converges strongly to a solution of (1) as follows:⎧⎪⎪⎨⎪⎪⎩

x0 ∈ H1, λ > 0,

un = JA
λ (xn + λT∗(JB

λ − I)Axn),

xn+1 = αn f (xn) + (1− αn)Sun, n ≥ 0,

(4)

where {αn} ⊂ (0, 1) satisfies some certain conditions and S : H1 → H1 is a nonexpansive mapping.
It is important to emphasize that the convergence of (4) is achieved with the aid of condition (3). Other
similar results can be found, for instance, in [11,12] (and references therein). However, it is well known
that the norm of bounded linear operator is very difficult to find (or at least estimate) (see [13–15]).
Hence, it becomes necessary to find iterative methods whose step size selection does not require
prior estimate of the norm of the bounded linear operator. Recently, some authors have provided
breakthrough results in the framework of real Hilbert spaces (see, e.g., [13–15]).

On the other hand, Takahashi [8,16] extends the study of SCNPP (1) to uniformly convex and
smooth Banach spaces as follows: Let E1 and E2 be uniformly convex and uniformly smooth real
Banach spaces with dual E∗1 and E∗2 , respectively, and T : E1 → E2 be a bounded linear operator.
Let A : E1 → 2E∗1 and B : E2 → 2E∗2 be maximal monotone operators such that A−1(0) �= ∅,
B−1(0) �= ∅ and Qμ is a metric resolvent operator with respect to B and parameter μ > 0. Takahashi
and Takahashi [17] introduced the following shrinking projection method for solving SCNPP in
uniformly convex and smooth Banach spaces:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x1 ∈ C, μ1 > 0,

zn = xn − Jλn J−1
E1

T∗ JE2(Txn −Qμn Txn),

Cn+1 = {z ∈ Cn : 〈zn − z, JE1(xn − zn)〉 ≥ 0},

xn+1 = PCn+1 x1, for all n ∈ N,

(5)

where JEi are the normalized duality mapping with respect to Ei for i = 1, 2 (defined in the next
section). They proved a strong convergence result with the condition that the step size satisfies

0 < a ≤ λn‖T‖2 < b < 1 and 0 < c ≤ μn for all n ∈ N.

Furthermore, Suantai et al. [18] introduced a new iterative scheme for solving SCNPP in a real
Hilbert space H and a real Banach space E as follows:⎧⎪⎪⎨⎪⎪⎩

x1 ∈ H,

yn = JA
λn
(xn + λnT∗ JE(Qμn − I)Txn),

xn+1 = αn f (xn) + βnxn + γnyn, n ≥ 1,

(6)

where {αn}, {βn}, {γn} ⊂ (0, 1) such that αn + βn + γn = 1 and f : H → H is a contraction mapping.
They also proved a strong convergence result under the condition that the step size satisfies

0 < λn‖T‖2 < 2.
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Recently, Takahashi [19] introduced a new hybrid method with generalized resolvent operators
for solving the SCNPP in real Banach spaces as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zn = J−1(JExn − rnT∗(JFTxn − JFQμn Txn)),

yn = Jλn zn,

Cn = {z ∈ E : 2〈xn − z, JExn − JEzn〉 ≥ rn ϕF(Txn, Qμn Txn)},

Dn = {z ∈ E : 〈yn − z, JEzn − JEyn〉 ≥ 0},

Qn = {z ∈ E : 〈xn − z, JEx1 − JExn〉 ≥ 0},

xn+1 = ΠCn∩Dn∩Qn x1, for all n ∈ N.

(7)

He also proved that the sequence generated by Algorithm (7) converges strongly to a solution of
SCNPP provided the step sizes satisfy

0 < a ≤ rn ≤ 1
‖T‖2 , and 0 < b ≤ λn, μn for all n ∈ N.

It is evident that the above methods and other similar ones (see, e.g., [6,9,20]) require prior
knowledge of the operator norm, which is very difficult to find. Thus, the following natural
question arises.

Problem 1. Can we provide a new iterative method for solving SCNPP in real Banach spaces such that the step
size does not require prior estimate of the norm of the bounded linear operator?

Let us also mention the inertial extrapolation process which is considered as a means of speeding
up the rate of convergence of iterative methods. This technique was first introduced by Polyak [21] as
a heavy-ball method of a two-order time dynamical system and has been employed by many authors
recently (see, e.g., [22–27]). Moreover, Dong et al. [27] introduced a modified inertial hybrid algorithm
for approximating the fixed points of non-expansive mappings in real Hilbert spaces as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0, x1 ∈ C,

wn = xn + θn(xn − xn−1),

zn = (1− βn)wn + βnTwn,

Cn = {x ∈ C : ‖zn − x‖2 ≤ ‖xn − x‖2},

Qn = {x ∈ C : 〈xn − x, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qn x0,

(8)

where {θn} ⊂ [a1, a2], a1 ∈ (−∞, 0], a2 ∈ [0,+∞), {βn} ⊂ (0, 1) are suitable parameters.
More recently, Cholamjiak et al. [28] introduced an inertial forward-backward algorithm for

finding the zeros of sum of two monotone operators in Hilbert spaces as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0, x1 ∈ H, rn > 0,

yn = xn + θn(xn − xn−1),

zn = αnyn + (1− αn)Tyn,

vn = βnzn + (1− βn)JB
rn(I − rn A)zn,

Cn+1 = {v ∈ Cn : ‖vn − v‖2 ≤ ‖xn − v‖2 + Kn},

xn+1 = PCn+1 x1, n ≥ 1,

(9)
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where Kn = 2θ2
n‖xn − xn−1‖ − 2θn〈xn − z, xn−1 − xn〉, JB

rn = (I + rnB)−1, {θn} ⊂ [0, θ] for some
θ ∈ [0, 1) and {αn}, {βn} are sequences in [0, 1]. The authors proved that the sequence {xn} generated
by (9) converges strongly to a solution x ∈ (A + B)−1(0) under some mild conditions.

Motivated by the above results, in this paper, we aim to provide an affirmative answer to
Problem 1. We introduce a new inertial shrinking projection method for solving SCNPP in p-uniformly
convex and uniformly smooth real Banach spaces. The algorithm is designed such that its step size
is determined by a self-adaptive technique and its convergence does not require prior knowledge
of the norm of the bounded operator. We also prove a strong convergence result and provide some
applications of our main theorem to solving other nonlinear optimization problems. This result
improves and extends the results in [6,8,9,11,12,16,19,20] and many other recent results in the literature.

2. Preliminaries

Let E be a real Banach space with dual E∗ and norm ‖ · ‖. We denote the duality pairing between
f ∈ E and g∗ ∈ E∗ as 〈 f , g∗〉. The weak and strong convergence of {xn} ⊂ E to a ∈ E are denoted by
xn ⇀ a and xn → a, respectively, ∀ by “for all” and⇔ by “if and only if”. The function δE : [0, 2]→
[0, 1] defined by

δE(α) = inf
{

1− ‖ f + g‖
2

: ‖ f ‖ = 1 = ‖g‖, ‖ f − g‖ ≥ α

}
is called the modulus of convexity of E. The Banach space E is said to be uniformly convex if δE(α) > 0.
If there exists a constant Cp > 0 such that δE(α) ≥ Cpαp for any α ∈ (0, 2], then we say E is p-uniformly
convex. In addition, the function ρE(β) : [0, ∞)→ [0,+∞) defined by

ρE(β) =

{‖ f + βg‖+ ‖ f − βg‖
2

− 1 : ‖ f ‖ = ‖g‖ = 1
}

is called the modulus of smoothness of E. The Banach space E is said to be uniformly smooth if
limβ→+∞

ρE(β)
β = 0. If there exists a constant Dq > 0 such that ρE(β) ≤ Dqβq for any β > 0, then E

is called q-uniformly smooth Banach space. Let 1 < q ≤ 2 ≤ p with 1
p + 1

q = 1. We Remark that
a Banach space E is p-uniformly convex if and only if its dual E∗ is q-uniformly smooth. Examples
of q-uniformly smooth Banach spaces include Hilbert spaces, Lq(or lp) spaces, 1 < p < ∞ and the
Sobolev spaces, Wp

m, 1 < p < ∞ (see [29]). Moreover, the Hilbert spaces are uniformly smooth while

Lp(or lp) or Wp
m is

{
p− uniformly smooth if 1 < p ≤ 2

2− uniformly smooth if p ≥ 2.

Let ϕ : R+ → R+ be a continuous strictly increasing function. ϕ is called a gauge function if

ϕ(0) = 0, lim
t→∞

ϕ(t) = +∞.

The duality mapping with respect to ϕ, i.e., Jϕ : E → E∗ is defined by

Jϕ(x) = {j ∈ E∗ : 〈x, j〉 = ‖x‖‖j‖∗, ‖j‖∗ = ϕ(‖x‖)}, x ∈ E.

When ϕ(t) = t, then we call Jϕ = J a normalized duality mapping. In addition, if ϕ(t) = tp−1

where p > 1, then, Jϕ = Jp is called a generalized duality mapping defined by

Jp(u) = { f ∈ E∗ : 〈u, f 〉 = ‖u‖‖ f ‖∗, ‖ f ‖∗ = ‖u‖p−1}, x ∈ E.

In the sequel, C is a nonempty closed convex subset of E and F(T) = {x ∈ C : Tx = x} is the set
of fixed point of T : C → C.
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Definition 1. Ref. [30] Let E be a Banach space, Jϕ : E → E∗ a duality mapping with gauge function ϕ,
and C a nonempty subset of E. A mapping T : C → E is said to be

(i) ϕ-firmly non-expansive if

〈Tu− Tv, Jϕ(Tu)− Jϕ(Tv)〉 ≤ 〈Tu− Tv, Jϕ(u)− Jϕ(v)〉

for all u, v ∈ C.
(ii) ϕ-firmly quasi-non-expansive if F(T) �= ∅ and

〈Tu− z, Jϕ(u)− Jϕ(Tu)〉 ≥ 0

for all u in C and z in F(T).

Definition 2. Given a Gâteaux differentiable and convex function f : E → R, the function

Δ f (u, v) := f (v)− f (u)− 〈 f ′(u), v− u〉, for all u, v ∈ E (10)

is called the Bregman distance of u to v with respect to the function f .

Moreover, since Jp
E is the derivative of the function fp(u) = 1

p‖u‖p, in that case, the Bregman
distance with respect to fp becomes

Δp(u, v) =
1
q
‖u‖p − 〈Jp

Eu, v〉+ 1
p
‖v‖p

=
1
p
(‖v‖p − ‖u‖p) + 〈Jp

Eu, u− v〉

=
1
q
(‖u‖p − ‖v‖p)− 〈Jp

Eu− Jp
Ev, v〉.

Remark 1. It follows from the Definition of Δp that

Δp(u, v) = Δp(u, z) + Δp(z, v) + 〈z− v, Jp
Eu− Jp

Ez〉, for all u, v, z ∈ E, (11)

and

Δp(u, v) + Δp(v, u) = 〈u− v, Jp
Eu− Jp

Ev〉, for all u, v, z ∈ E. (12)

Although the Bregman is not symmetrical, it however has the following relationship with ‖ · ‖ distance:

α‖u− v‖p ≤ Δp(u, v) ≤ 〈u− v, Jp
Eu− Jp

Ev〉, for all u, v ∈ E, α > 0. (13)

This indicates that Bregman distance is non-negative.

Definition 3. The Bregman projection mapping ΠC : E → C is defined by

ΠCu = arg min
v∈C

Δp(u, v), for all u ∈ E. (14)

The Bregman projection can also be characterized by the following inequality

〈Jp
Eu− Jp

EΠCu, z−ΠCu〉 ≤ 0, for all z ∈ C, (15)

43



Axioms 2020, 9, 140

This is equivalent to

Δp(ΠCu, z) ≤ Δp(u, z)− Δp(u, ΠCu), for all z ∈ C. (16)

Lemma 1. Ref. [31] Let E be a q-uniformly smooth Banach space with q-uniformly smoothness constant cq > 0.
For any u, v ∈ E, the following inequality holds:

‖u− v‖q ≤ ‖u‖q − q〈v, Jq
Eu〉+ cq‖v‖q.

Definition 4. A mapping T : C → C is said to be closed or has a closed graph if a sequence {xn} ⊂ C
converges strongly to a point x ∈ C and Txn → y, then Tx = y.

Lemma 2. Ref. [29] It is known that the generalized duality has the following properties:

(I) Jp
E(x) is nonempty bounded closed and convex, for any x ∈ E.

(II) If E is a reflexive Banach space, then Jp
E is a mapping from E onto E∗.

(III) If E is smooth Banach space, then Jp
E single valued.

(IV) If E is a uniformly smooth Banach space, then Jp
E is norm-to-norm uniformly continuous on each bounded

subset of E.

Lemma 3. Ref. [32] For any {xn} ⊂ E, {tn} ⊂ (0, 1) with ∑N
n=1 tn = 1, the following inequality holds:

Δp(Jq
E∗ , (

N

∑
n=1

tn Jp
E(xn)), x) ≤

N

∑
n=1

tnΔp(xn, x) for all x ∈ E.

We now define some important operators which play key role in our convergence analysis.

Definition 5. Let A : E → 2E∗ be a multi-valued mapping. We define the effective domain of A by D(A) =

{x ∈ E : Ax �= 0} and range of A by �(A) =
⋃

x∈D(A) Ax. The operator A is said to be monotone if
〈x − y, u∗ − v∗〉 ≥ 0 for all x, y ∈ D(A), u∗ ∈ Ax and v∗ ∈ Ay. When the graph of A is not properly
contained in the graph of any other monotone operator, then we say that A is maximally monotone.
Let E be a smooth, strictly convex, and reflexive Banach space and A : E → 2E∗ be a maximal monotone operator.
The metric resolvent operator with respect to A is defined by Qϕ

r (u) = (I + rJ−1
ϕ A)−1(u). It is easy to see that

0 ∈ Jϕ(Q
ϕ
r (u)− u) + rAQϕ

r (u), (17)

and F(Qϕ
r ) = A−10 for all r > 0 (see, e.g., [20]). Moreover, by the monotonicity of A, we can show that

〈Qϕ
r (u)−Qϕ

r (v), Jϕ(u−Qϕ
r (u))− Jϕ(v−Qϕ

r (v))〉 ≥ 0 (18)

for all u, v ∈ E. In addition, if A−10 �= ∅, then

〈Qϕ
r (u)− z, Jϕ(u−Qϕ

r (u))〉 ≥ 0 (19)

for all u ∈ E and z ∈ A−10. In the case ϕ(t) = tp−1 with p ∈ (1,+∞), we denote Qϕ
r by Qr = (I + rJ−1

p A)−1

(see, e.g., [33]).

Proposition 1. Ref. [30] Let A : E → 2E∗ be an operator satisfying the following range condition

D(A) ⊂ C ⊂ J−1
ϕ �(Jϕ + λA) for all λ > 0.

Define the ϕ-resolvent operator Rϕ
λ : C → 2E associated with operator A by

Rϕ
λ(x) = {z ∈ X : Jϕ(x) ∈ (Jϕ + λA)z}, x ∈ C.
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Then, for any u ∈ C and λ > 0, we see that

0 ∈ Au ⇔ Jϕ(u) ∈ (Jϕ + λA)u

⇔ u ∈ (Jϕ + λA)−1 Jϕ(u)

⇔ u ∈ F(Rϕ
λ).

Proposition 2. Ref. [30] Let C be a nonempty, closed, and convex subset of a reflexive, strictly convex Banach
space E and let Jϕ : E → E∗ be the duality mapping with gauge ϕ. Let A : E → 2E∗ be a monotone operator
satisfying the condition D ⊂ C ⊂ J−1

ϕ �(Jϕ + λA), where λ > 0. Let Rϕ
λ be a resolvent operator of A; then,

(a) Rϕ
λ is ϕ-firmly non-expansive mapping from C into C.

(b) F(Rϕ
λ) = A−10.

Let E be a uniformly convex and smooth Banach space. Let A be a monotone operator of E into
2E∗ . From Browder [34], we know that A is maximal if and only if, for any r > 0,

�(Jϕ + rA) = E∗.

Remark 2.

(i) The smoothness and strict convexity of E ensures that Rϕ,A
λ is single-valued. In addition, the range

condition ensure that Rϕ
λ single-valued operator from C into D(A). In other words,

Rλ(x)ϕ(x) = (Jϕ + λA)−1 Jϕ(x), for all x ∈ C.

(ii) When A is maximal monotone, the range condition holds for C = D(A).

In the sequel, we denote Rϕ
λ by Rλ = (Jp + λA)−1 Jp for convenience.

Let E and F be real Banach spaces and let T : E → F be a bounded linear. The dual (adjoint)
operator of T, denoted by T∗, is a bounded linear operator defined by T∗ : F∗ → E∗

〈T∗ȳ, x〉 := 〈ȳ, Tx〉, for all x ∈ E, ȳ ∈ F∗

and the equalities ‖T∗‖ = ‖T‖ and ℵ(T∗) = �(T)⊥ are valid, where �(T)⊥ := {x∗ ∈ F∗ : 〈x∗, u〉 =
0, for all u ∈ �(T)} (see [35,36] for more details on bounded linear operators and their duals).

Lemma 4. Ref. [9] Let E and F be uniformly convex and smooth Banach spaces, Let T : E → F be a bounded
linear operator with the adjoint operator T∗. Let Rλ be the resolvent operator associated with a maximal monotone
operator A on E and let Qr be a metric resolvent associated with a maximal monotone operator B on F. Assume
that A−10∩ T−1(B−10) �= ∅. Let λ, μ, r > 0 and z ∈ E. Then, the following are equivalent:

(a) z = Rλ(Jq
E∗(Jp

E(z)− μT∗ Jp
F(Tz−Q− rTz))); and

(b) z ∈ A−0∩ T−1(B−10).

3. Main Results

In this section, we present our algorithm and its convergence analysis. In the sequel, we assume
that the following assumption hold.

(i) E1 and E2 are two p-uniformly convex and uniformly smooth real Banach spaces.
(ii) T : E1 → E2 is a bounded linear operator with T �= 0 with adjoint T∗ : E∗2 → E∗1 .

(iii) A : E1 → 2E∗1 and B : E2 → 2E∗2 are maximal monotone operators.
(iv) Rλ is the resolvent operator associated with A and Qr is the metric resolvent operator associated

with B.
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In addition, we denote by Jp
E1

and Jp
E2

the duality mappings of E1 and E2, respectively, while Jq
E∗1

is the
duality mapping of E∗1 . It is worth mentioning that, when E∗1 and E∗2 are two q-uniformly smooth and
uniformly convex Banach spaces, Jp

E1
= (Jq

E∗1
)−1 where 1 < q ≤ 2 ≤ p < +∞ with 1

p + 1
q = 1.

Algorithm SASPM: Given initial values x0, x1 ∈ C1 = E1, the sequence {xn} generated by the
following iterative algorithm:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wn = Jq
E∗1

[
Jp
E1

xn + θn Jp
E1
(xn − xn−1)

]
,

zn = Jq
E∗1

[
Jp
E1
(wn)− ρn

f p−1(wn)

‖T∗(Jp
E2
(Twn−Qrn Twn))‖p T∗ Jp

E1
(Twn −Qrn Twn)

]
,

yn = Jq
E1

(
αn Jp

E1
zn + (1− αn)Jp

E1
Rλn zn

)
,

Cn+1 = {u ∈ Cn : Δp(yn, u) ≤ Δp(zn, u) ≤ Δp(wn, u)},

xn+1 = ΠCn+1 x0

(20)

where {rn}, {λn} ⊂ (0, ∞), ΠCn+1 is a Bregman projection of E1 onto Cn+1, the sequence of real number
{αn} ⊂ [a, b] ⊂ (0, 1) and {θn} ⊂ [c, d] ⊂ (−∞,+∞), f (wn) := 1

p‖(I − Qrn)Twn‖p, and {ρn} ⊂
(0,+∞) satisfying

lim inf
n→+∞

ρn

(
p− Cq

ρ
q−1
n
q

)
> 0.

To prove the convergence analysis of Algorithm SASPM, we first prove some useful results.

Lemma 5. Let E1 be a p-uniformly convex and uniformly smooth real Banach space, and C1 = E1. Then,
for any sequence {yn}, {zn} and {wn} in E1, the set

Cn+1 = {u ∈ Cn : Δp(yn, u) ≤ Δp(zn, u) ≤ Δp(wn, u)}

is closed and convex for each n ≥ 1.

Proof. First, since C1 = E1, C1 is closed and convex. Then, we assume that Cn is a closed and convex.
For each u ∈ Cn, by the definition of the function Δp, we have

Δp(yn, u) ≤ Δp(zn, u) if and only if 2〈Jp
E1

zn − Jp
E1

yn, u〉 ≤ 1
q
(‖zn‖p − ‖yn‖p),

and
Δp(zn, u) ≤ Δp(wn, u) if and only if 2〈Jp

E1
wn − Jp

E1
zn, u〉 ≤ 1

q
(‖wn‖p − ‖zn‖p).

Hence, we know that Cn+1 is closed. In addition, we easily prove that Cn+1 is convex. The proof is
completed.

Lemma 6. Let E1, E2, T T∗ A, B, and Jp
E1

, Jp
E2

. Jp
E2

, Jq
E∗1

be the same as above such that Conditions (1)–(4) are

satisfied. If Υ = {z : z ∈ A−10∩ T−1(B−10)}, then Υ ⊆ Cn for any n ≥ 1.

Proof. If Υ = ∅, it is obvious that Υ ⊆ Cn. Conversely, for any z ∈ Γ, according to Lemma 3 and using
the fact that the resolvent Rλn is non-expansive, we easily obtain

Δp(yn, z) = Δp(Jq
E∗1
(αn Jp

E1
zn + (1− αn)Jp

E1
Rλn zn), z)

≤ αnΔp(zn, z) + (1− αn)Δp(Rλn zn, z)

≤ Δp(zn, z). (21)
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From (20), let un = Jp
E1
(wn) − ρn

f p−1(wn)
‖g(wn)‖p g(wn) for all n ≥ 1, where g(wn) = T∗ Jp

E1
(Twn −

Qrn Twn). We see from Lemma 1 that

‖un‖q
E∗1

= ‖Jp
E1
(wn)− ρn

f p−1(wn)

‖g(wn)‖p g(wn)‖q
E∗1

≤ ‖wn‖p − qρn
f p−1(wn)

‖g(wn)‖p 〈wn, g(wn)〉+ cqρ
q
n

f (p−1)q(wn)

‖g(wn)‖pq ‖g(wn)‖q

= ‖wn‖p − qρn
f p−1(wn)

‖g(wn)‖p 〈wn, g(wn)〉+ cqρ
q
n

f p(wn)

‖g(wn)‖p . (22)

Then, by (16) and (22), we get

Δp(zn, z) ≤ Δp(Jp
E1
(un), z)

=
‖z‖p

p
+

1
q
‖Jp

E1
(un)‖p − 〈z, u〉

=
‖z‖p

p
+

1
q
‖un‖(q−1)p − 〈z, un〉

=
‖z‖p

p
+

1
q
‖un‖(q−1) q

(q−1) − 〈z, un〉

=
‖z‖p

p
+

1
q
‖un‖q − 〈z, un〉

=
‖z‖p

p
+

1
q
‖un‖q −

〈
z, Jp

E1
(wn)

〉
+ ρn

f p−1(wn)

‖g(wn)‖p 〈z, g(wn)〉

≤ ‖z‖p

p
+

1
q

(
‖wn‖p − qρn

f p−1(wn)

‖g(wn)‖p 〈wn, g(wn)〉+ cqρ
q
n

f p(wn)

‖g(wn)‖p

)
−
〈

z, Jp
E1
(wn)

〉
+ ρn

f p−1(wn)

‖g(wn)‖p 〈z, g(wn)〉

=
‖z‖p

p
+
‖wn‖p

q
−
〈

z, Jp
E1
(wn)

〉
+

cqρ
q
n

q
f p(wn)

‖g(wn)‖p + ρn
f p−1(wn)

‖g(wn)‖p 〈z− wn, g(wn)〉

= Δp(wn, z) +
cqρ

q
n

q
f p(wn)

‖g(wn)‖p + ρn
f p−1(wn)

‖g(wn)‖p 〈z− wn, g(wn)〉 (23)

On the other hand, observe that

〈g(wn), z− wn〉 = 〈T∗ Jp
E2
(I −Qrn Twn), z− wn〉

= 〈Jp
E2
(I −Qrn Twn), Tz− Twn〉

= 〈Jp
E2
(wn)(I −Qrn)Twn, Qrn Twn − Twn〉+ 〈Jp

E2
(I −Qrn)Twn, Tz−Qrn Twn〉

≤ −‖(I −Qrn)Twn‖p = −p f (wn). (24)

By using (23) and (24), we get

Δp(zn, z) ≤ Δp(wn, z) +

(
cqρ

q
n

q
− ρn p

)
f p(wn)

‖g(wn)‖p , (25)

which implies by our assumption that

Δp(zn, z) ≤ Δp(wn, z). (26)

From (21) and (26), we have that z ∈ Cn+1, that is, Υ ⊆ Cn, for all n ≥ 1.
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Theorem 1. Let E1, E2 T, T∗, A, B, and Jp
E1

, Jp
E2

, Jq
E∗1

be the same as above such that Conditions (1)–(4) are

satisfied. If Υ = {z : z ∈ A−10∩ T−1(B−10)} �= ∅, then the sequence generated by Algorithm (20) converges
strongly to a point z = ΠΥx0 ∈ Υ.

Proof. By Lemmas 5 and 6, we know that ΠCn+1 x0 is well defined and Υ ⊂ Cn. According to
Algorithm (20), we know that xn = ΠCn x0 and xn+1 = ΠCn+1 x0 for each n ≥ 1. Using Υ ⊂ Cn

and (16), we have

Δp(x0, xn) = Δp(x0, ΠCn x0) ≤ Δp(x0, z) z ∈ Υ, ∀n ≥ 1. (27)

It implies that {Δp(x0, xn)} is bounded. Reusing (16), we also have

Δp(xn, xn+1) = Δp(ΠCn x0, xn+1) ≤ Δp(x0, xn+1)− Δp(x0, ΠCn x0)

= Δp(x0, xn+1)− Δp(x0, xn). (28)

It follows that {Δp(x0, xn+1)} is nondecreasing. Hence, the limit lim
n→+∞

Δp(x0, xn) exists, and

lim
n→+∞

Δp(xn, xn+1) = 0 (29)

It follows from (13) that

lim
n→+∞

‖xn+1 − xn‖ = 0 (30)

For some positive m, n with m ≥ n, we have xm = ΠCm x1 ⊆ Cn. Using (16), we obtain

Δp(xn, xm) = Δp(ΠCn x0, xm) ≤ Δp(x0, xm)− Δp(x0, ΠCn x0)

= Δp(x0, xm)− Δp(x0, xn). (31)

Since the limit lim
n→+∞

Δp(x0, xn) exists, it follows from (31) that lim
n→+∞

Δp(xn, xm) = 0 and

lim
n→+∞

‖xn − xm‖ = 0. Therefore, {xn} is Cauchy sequence. Further, there exists a point x∗ ∈ C

such that xn → x∗.
From Algorithm (20), Definition 2, and Lemma 1, we have

Δp(wn, z) =
1
q
‖Jp

E∗1
(Jp

E1
xn + θn Jp

E1
(xn − xn−1))‖p +

1
p
‖z‖p

−〈Jp
E1

xn + θn Jp
E1
(xn − xn−1), z〉

=
1
q
‖Jp

E1
xn + θn Jp

E1
(xn − xn−1)‖q +

1
p
‖z‖p

−〈Jp
E1

xn + θn Jp
E1
(xn − xn−1), z〉

≤ 1
q
‖Jp

E1
xn‖q +

1
p
‖z‖p − 〈Jp

E1
xn, x∗〉 − θn〈Jp

E1
(xn − xn−1), z〉

+θn〈Jp
E1
(xn − xn−1), xn〉+ cq(θn)q

q
‖Jp

E1
(xn − xn−1)‖q

=
1
q
‖xn‖q +

1
p
‖z‖p − 〈Jp

E1
xn, x∗〉 − θn〈Jp

E1
(xn − xn−1), z〉

+θn〈Jp
E1
(xn − xn−1), xn〉+ cq(θn)q

q
‖Jp

E1
(xn − xn−1)‖q

= Δp(xn, z) + θn〈Jp
E1
(xn − xn−1), xn − x∗〉+ cq(θn)q

q
‖xn − xn−1‖p. (32)
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By virtue of Remark 1 and the definition of wn, we know

Δp(wn, z) = Δp(wn, xn) + Δp(xn, z) + 〈xn − z, Jp
E1

wn − Jp
E1

xn〉
= Δp(wn, xn) + Δp(xn, z) + θn〈xn − z, Jp

E1
(xn − xn−1)〉. (33)

By (32) and (33), we get Δp(wn, xn) ≤ cq(θn)q

q ‖xn − xn−1‖p. Then, using (13) and (30) and the
boundedness of the sequence {θn}, we can obtain

lim
n→+∞

‖wn − xn‖ = 0. (34)

Using a similar method, we can get

Δp(wn, xn+1) = Δp(wn, xn) + Δp(xn, xn+1) + 〈xn − xn+1, Jp
E1

wn − Jp
E1

xn〉.

By setting n → +∞, we have

lim
n→+∞

‖wn − xn+1‖ = 0. (35)

Since xn+1 = ΠCn+1 x0 ∈ Cn+1 ⊆ Cn, we have

Δp(yn, xn+1) ≤ Δp(zn, xn+1) ≤ Δp(wn, xn+1).

According to (35), we obtain

lim
n→+∞

Δp(yn, xn+1) = 0, lim
n→+∞

Δp(zn, xn+1) = 0, (36)

which implies that lim
n→+∞

‖yn − xn+1‖ = 0, lim
n→+∞

‖zn − xn+1‖ = 0. Hence,

‖xn − zn‖ ≤ ‖xn+1 − xn‖+ ‖xn+1 − zn‖ → 0, as n → +∞, (37)

and

‖yn − zn‖ ≤ ‖xn+1 − yn‖+ ‖xn+1 − zn‖ → 0, as n → +∞. (38)

We also get from (34) and (37) that

‖wn − zn‖ ≤ ‖wn − xn‖+ ‖xn − zn‖ → 0, as n → ∞. (39)

As Jp
E1

is norm to norm uniformly continuous on a bounded subset of E1, we obtain

‖Jp
E1
(wn)− Jp

E1
(zn)‖ → 0, as n → +∞. (40)

Since E1 is a p-uniformly convex and uniformly smooth real Banach space, then Jp
E1

is uniformly
norm-to-norm continuous. Thus, it follows from Algorithm (20) and real number sequence {αn} in
[a, b] ⊂ (0, 1) that

lim
n→+∞

‖Jp
E1

Rλn zn − Jp
E1

zn‖ = 0 = lim
n→+∞

1
1− αn

‖Jp
E1

yn − Jp
E1

zn‖ = 0,
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which also implies that lim
n→+∞

‖Rλn zn − zn‖ = 0. From (25), and z being in Υ, we get

Δp(zn, z) ≤ Δp(wn, z) + ρn

(
cqρ

q−1
n

q
− p

)
f p(wn)

‖g(wn)‖p

= Δp(wn, z)− ρn

(
p− cqρ

q−1
n

q

)
f p(wn)

‖g(wn)‖p .

This implies that

ρn

(
p− cqρ

q−1
n

q

)
f p(wn)

‖g(wn)‖p ≤ Δp(wn, z)− Δp(zn, z)

=
1
q
‖wn‖p − 1

q
‖zn‖p − 〈Jp

E1
wn − Jp

E1
zn, z〉

= Δp(wn, zn) + 〈Jp
E1

wn − Jp
E1

zn, zn − z〉
≤ (‖wn − zn‖+ ‖zn − z‖)‖Jp

E1
wn − Jp

E1
zn‖.

By setting of n → +∞, the right-hand side of the last inequality tends to 0. This implies that

ρn

(
p− cqρ

q−1
n

q

)
f p(wn)

‖g(wn)‖p → 0, n → +∞. (41)

Since lim inf
n→+∞

ρn

(
p− cq

ρ
q−1
n
q

)
> 0, we get

f p(wn)

‖g(wn)‖p → 0, n → +∞

and hence

f (wn)

‖g(wn)‖p → 0, n → +∞ (42)

Furthermore, since {g(wn)} is bounded, we obtain from (42) that

0 ≤ g(wn) = ‖g(wn)‖ f (wn)

‖g(wn)‖
≤ M1

f (wn)

‖g(wn)‖ → 0, n → +∞,

for some M1 > 0. Therefore,
lim

n→+∞
f (wn) = 0.

Hence,
lim

n→+∞
‖(I −Qrn)Twn‖ = 0.

In addition,

‖T∗ Jp
E2
(I −Qrn)Twn‖ ≤ ‖T‖‖(I −Qrn)Twn‖ → 0, n → +∞.

Since ‖xn − wn‖ → 0, as n → +∞, there exists a subsequence {xnj} of {xn} such that xnj ⇀

w ∈ E1, as well as ‖xn − wn‖ → 0, as n → +∞ there exists a subsequence {wnj} of {wn} such that
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wnj ⇀ w ∈ E1. From ‖Twn − Qrn Twn‖ → 0 and by the boundedness and linearity of T, we have
Twnj ⇀ Tw and Qrnj

Twnj ⇀ Tw. Since Qrn is a metric resolvent on B for rn > 0, we have

Jp
E2
(Twn −Qrn Twn)

rn
∈ BQrn Twn

for all n ∈ N, thus we obtain

0 ≤
〈

v−Qrnj
Twnj Twnj , v∗ −

Jp
E2
(Twnj −Qrnj

Twnj)

rnj

〉
for all (v, v∗) ∈ B. It follows that

0 ≤ 〈v− Tw, v∗ − 0〉
for all (v, v∗) ∈ B. Since B is maximal monotone, Tw ∈ B−10 and hence w ∈ T−1(B−10).

Let bn = Rλn zn and kn = Twn −Qrn Twn ∀n ∈ N

bn = Jλn

(
Jq
E∗1

(
Jp
E1
(wn)− λnT∗ Jp

E2
(kn)

))
⇐⇒ bn =

(
Jp
E1

+ λn A
)−1

Jp
E1

(
Jq
E∗1
(Jp

E1
(wn)− λnT∗ Jp

E2
(kn))

)
⇐⇒ bn =

(
Jp
E1

+ λn A
)−1 (

Jp
E1
(wn)− λnT∗ Jp

E2
(kn)

)
⇐⇒ Jp

E1
(wn)− λnT∗ Jp

E2
(kn) ∈ Jp

E1
(bn) + λn Abn

⇐⇒ Jp
E1
(wn)− Jp

E1
(bn)

λn
− T∗ Jp

E2
(kn) ∈ Abn.

Note that

‖Jp
E1
(wn)− Jp

E1
(bn)‖ = ‖Jp

E1
(wn)− Jp

E1
(Rλn zn)‖

≤ ‖Jp
E1
(wn)− Jp

E1
(zn)‖+ ‖Jp

E1
(zn)− Jp

E1
(Rλn zn)‖ → 0, n → +∞. (43)

By the monotonicity of A, it follows that

0 ≤
〈

v− bn, v∗ − Jp
E1
(wn)− Jp

E1
(bn)

λn
+ T∗ Jp

E2
(kn)

〉

for all (v, v∗) ∈ A. Then,

0 ≤
〈

v− bn, v∗ − Jp
E1
(wni )− Jp

E1
(bni )

λni

+ T∗ Jp
E2
(kni )

〉
.

Since bni ⇀ w, (40) and (43), it follows that 0 ≤ 〈v − w, v∗ − 0〉 and hence w ∈ A−10.
This concludes that w ∈ A−10∩ T−1(B−10). Then, from (28) and (20), we have

〈Jp
E1

x0 − Jp
E1

xn, p− xn〉, for all p ∈ Υ. (44)

By setting n → +∞ in (44), we obtain

〈Jp
E1

x0 − Jp
E1

x∗, p− x∗〉 ≤ 0, for all p ∈ Υ. (45)

Again, from (15), we have x∗ = ΠΥx0. Definitely, we obtain that {xn} generated by Algorithm (20)
strongly converges to x∗ = ΠΥx0 ∈ Υ. The proof is completed.
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As a corollary of Theorem 1, when E1 and E2 reduces to Hilbert spaces, the function Δp is equal
to 1

2‖x− y‖2 and the Bregman projection ΠC is equivalent to the metric projection PC. Then, we obtain
the following result.

Theorem 2. Let H1 and H2 be Hilbert spaces, A : H1 → 2H1 and B : H2 → 2H2 be maximal monotone
operators, T : H1 → H2 be a bounded linear operator with T �= 0, and T∗ : H2 → H1 be the adjoint of T. Let
Rλ be the resolvent operator associated with a maximal monotone operator A on H1 and Qr be metric resolvent
associated with a maximal monotone operator B on H2. Suppose that Υ = A−10∩ T−1(B−10) �= ∅. For fixed
x0 ∈ H1, let {xn}+∞

n=0 be iteratively generated by x1 ∈ H1 and⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

wn = xn + θn(xn − xn−1),

zn = wn − ρn
f (wn)

‖T∗(I−Qrn )Twn‖2 [T∗(I −Qrn)Twn]

yn = αnzn + (1− αn)Rλn zn

Cn+1 = {u ∈ Cn : ‖yn − u‖ ≤ ‖zn − u‖ ≤ ‖wn − u‖},

xn+1 = PCn+1 x0,

(46)

where PCn+1 is the metric projection of H1 onto Cn+1, the sequence of real numbers, {αn} ⊂ [a, b] ⊂ (0, 1)
and {θn} ⊂ [c, d] ⊂ (−∞,+∞). f (wn) := 1

2‖(I −Qrn)Twn‖2, and {ρn} ∈ (0, 4). Then, the sequence {xn}
generated by (46) converges strongly to a point z0 = PΥx0 ∈ Υ.

4. Applications

In this section, we provide some applications of our result to solving other nonlinear
optimization problems.

4.1. Application to Minimization Problem

First, we consider an application of our result to convex minimization problem in real Banach
space E. Let ϑ : E → (−∞,+∞] be a proper, convex and lower semicontinuous function. The convex
minimization problem is to find x ∈ E such that

ϑ(x) ≤ ϑ(y), for all y ∈ E.

The set of minimizer of ϑ is denoted by Argmin ϑ. The subdifferential of ∂ϑ of ϑ is defined
as follows

∂ϑ(u) = {w ∈ E∗ : ϑ(u) + 〈v− u, w〉 ≤ ϑ(u), for all v ∈ E},

for all u ∈ E. From Rockafellar [37], it is known that ∂ϑ is a maximal monotone operator. Let C be a
nonempty, closed, and convex subset of E and let iC be the indicator function of C i.e.,

iC(u) =

{
0, u ∈ C

∞, u /∈ C.

Then, iC is a proper, convex, and lower semicontinuous function on E. Thus, the subdifferential
∂iC of iC is a maximal monotone operator. Then, we can define the resolvent Rλ of ∂iC for λ > 0 i.e.,

Rλu = (Jp + λ∂iC )
−1 Jpu
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for all u ∈ E and p ∈ (1,+∞). We have that for any x ∈ E and u ∈ C

u = Rλx if and only if Jpx ∈ Jpu + λ∂iC u

if and only if
1
λ
(Jpx− Jpu) ∈ ∂iC u

if and only if iCy ≥ 〈y− u,
1
λ
(Jpx− Jpu)〉+ iCu for all y ∈ C

if and only if 0 ≥ 〈y− u,
1
λ
(Jpx− J − pu)〉, for all y ∈ C

if and only if 〈y− u, Jpx− Jpu〉 ≤ 0, for all x ∈ C

if and only if u = ΠCx.

Let E1 and E2 be real Banach spaces and ϑ : E1 → (−∞,+∞] and ξ : E2 → (−∞,+∞] be proper,
lower semicontinuous, and convex functions such that Argminϑ �= ∅ and Argminξ �= ∅. Consider the
Split Proximal Feasibility Problem (SPFP) defined by: Find x ∈ E1 such that

x ∈ Argmin ϑ and Ax ∈ Argmin ξ, (47)

where Argmin ϑ := {x̄ ∈ E1 : ϑ(x̄) ≤ ϑ(x), for all x ∈ E1}, and Argmin ξ = {ȳ ∈ E2 : ξ(ȳ) ≤
ξ(y), for all y ∈ E2}. We denote the solution set of (47) by Ω. The PSFP is a generalization of the
split feasibility problem and has been studied extensively by many authors in real Hilbert space (see,
e.g., [38–42]).

By setting A = ∂ϑ and B = ∂ξ, we obtain a strong convergence result for solving (47) in real
Banach spaces.

Theorem 3. Let E1 be a p-uniformly convex and uniformly smooth Banach space and E2 be a uniformly convex
smooth Banach space. Let ϑ and ξ be proper, lower semicontinuous, and convex functions of E1 into (−∞,+∞]

and E2 into (−∞,+∞] such that (∂ϑ)−10 �= ∅ and (∂ξ)−10 �= ∅, respectively. Let T : E1 → E2 be a bounded
linear operator such that T �= 0 and let T∗ be the adjoint operator T. Suppose that Ω �= ∅. For fixed x0 ∈ E1,
let {xn}∞

n=0 be iteratively generated by x1 ∈ E1 and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wn = Jq
E∗1

[
Jp
E1

xn + θn Jp
E1
(xn − xn−1)

]
,

vn = arg miny∈E2{ξ(y) + 1
μn
‖y‖2 − 1

μn
〈y, Jp

E2
Twn〉}

zn = Jq
E∗1

[
Jp
E1
(wn)− ρn

f p−1(wn)

‖T∗(Jp
E2
(Twn−vn)‖p)

T∗ Jp
E1
(Twn − vn)

]
,

un = arg minx∈E1{ϑ(x) + 1
σn
‖x‖2 − 1

σn
〈x, Jp

E2
zn〉}

yn = Jq
E1

(
αn Jp

E1
zn + (1− αn)Jp

E1
un

)
,

Cn+1 = {u ∈ Cn : Δp(yn, u) ≤ Δp(zn, u) ≤ Δp(wn, u)},

xn+1 = ΠCn+1 x0

(48)

where {σn}, {μn} ⊂ (0,+∞), ΠCn+1 is a Bregman projection of E1 onto Cn+1, the sequence of real number {αn} ⊂
[a, b] ⊂ (0, 1) and {θn} ⊂ [c, d] ⊂ (−∞,+∞), f (wn) := 1

p‖Twn − vn‖p, and {ρn} ⊂ (0,+∞) satisfies

lim inf
n→+∞

ρn

(
p− Cq

ρ
q−1
n
q

)
> 0.

where cq is the uniform smoothness coefficient of E1. Then, xn → z0 ∈ (∂ϑ)−10∩ T−1((∂ξ)−10),
where z0 := Π(∂ϑ)−10∩T−1((∂ξ)−10)x0
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Proof. We know from [43] that

vn = arg min
y∈E2

{ξ(y) +
1

2μn
‖y‖2 − 1

μn
}〈y, Jp

E2
Twn〉

is equivalent to

0 ∈ (∂ξ)xn +
1

μn
Jp
E2

xn − 1
μn

Jp
E2

Twn

From this, we have Jp
E2

Twn ∈ Jp
E2

vn + μn(∂ξ)vn i.e., vn = Qrn Twn. Similarly, we have that

un = arg min
x∈E1

{ϑ(x) +
1

2σn
‖x‖2 − 1

σn
〈x, Jp

E1
zn〉}

is equivalent to un = Rλn zn. Using Theorem 1, we get the conclusion.

4.2. Application to Equilibrium Problem

Let C be a nonempty closed and convex subset of a Banach space E and let G : C× C → R be a
bifunction. For solving the equilibrium problem, we assume that G satisfies the following conditions:

(A1) G(x, x) = 0, ∀x ∈ C.
(A2) G is monotone, i.e., G(x, y) + G(y, x) ≤ 0 for any x, y ∈ C.
(A3) G is upper-hemicontinuous, i.e., for each x, y, z ∈ C,

lim sup
t→0+

G(tz + (1− t)x, y) ≤ G(x, y).

(A4) G(x, 0) is convex and lower semicontinuous for each x ∈ C.

The equilibrium problem is to find x∗ ∈ C such that

G(x∗, y) ≥ 0 for all y ∈ C.

The set of solution of this problem is denoted by EP(G).

Lemma 7. [44] Let g : E → (−∞,+∞] be super coercive Legendre function, G be a bifunction of C× C into
R satisfying Conditions (A1)–(A4), and x ∈ E. Define a mapping Sg

G : E → C as follows:

Sg
G(x) = {z ∈ C : G(z, y) + 〈y− z,∇g(z)−∇g(x)〉 ≥ 0 for all y ∈ C}.

Then,

(i) domSg
G = E.

(ii) Sg
G is single-valued.

(iii) Sg
G is a Bregman firmly nonexpansive operator.

(iv) The set of fixed point of S f
G is the solution set of the corresponding equilibrium problem,

i.e., F(Sg
G) = EP(G).

(v) EP(G) is closed and convex.
(vi) For all x ∈ E and for all u ∈ F(Sg

G), we have

Dg(u, Sg
G(x)) + Dg(S

g
G(x), x) ≤ Dg(u, x).
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Proposition 3. [45] Let g : E → (−∞,+∞] be a super coercive Legendre Frécht differentiable and totally
convex function. Let C be a closed and convex subset of E and assume that the bifunction G : C × C → R

satisfies the Conditions (A1)–(A4). Let AG be a set-valued mapping of E into 2E∗ defined by

AG(x) =

{
{z ∈ E∗ : G(x, y) ≥ 〈y− x, z〉 for all y ∈ C}, x ∈ C

∅, x ∈ E− C.

Then, AG is a maximal monotone operator, EP(G) = A−1
G (0) and Sg

G = Rg
AG

.

Let E1 and E2 real Banach spaces and C and Q be nonempty, closed, and convex subsets of E1

and E2, respectively. Let G1 : C× C → R and G2 : Q× Q → R be bifunctions satisfying Conditions
(A1)–(A4) and T : E1 → E2 be a bounded linear operator. We consider the Split Equilibrium Problem
(SEP) defined by: Find x ∈ C such that

x ∈ EP(G1) and Tx ∈ EP(G2). (49)

The SEP was introduced by Moudafi [46] and has been studied by many authors for Hilbert and
Banach spaces (see, e.g., [47–50]). We denote the set of solution of (49) by SEP(G1, G2).

Setting A = AG1 and B = AG2 in Algorithm (20), Lemma 7, and Proposition 3, we obtain a strong
convergence result for solving SEP in real Banach spaces.

Theorem 4. Let E1 be a p-uniformly convex and uniformly smooth Banach space, E2 be a uniformly smooth
Banach space, and C and Q be nonempty closed subsets of E1 and E2, respectively. Let G : C× C → R and
H : Q× Q → R be bifunctions satisfying Conditions (A1)–(A4) and g : E1 → R and h : E2 → R be super
coercive Legendre functions which are bounded, uniformly Frechet differentiable, and totally convex on bounded
subset of E2. Let T : E1 → E2 be a bounded linear operator with T �= 0 and T∗ : E∗2 → E∗1 be the adjoint of T.
Suppose that SEP(G1, G2) �= ∅ for fixed x0 ∈ E1, let {xn}∞

n=0 be iteratively generated by x1 ∈ E1, and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wn = Jq
E∗1

[
Jp
E1

xn + θn Jp
E1
(xn − xn−1)

]
,

zn = Jq
E∗1

[
Jp
E1
(wn)− ρn

f p−1(wn)

‖T∗(Jp
E2
(Twn−Sh

Hn Twn)‖p)
T∗ Jp

E1
(Twn − Sh

Hn
Twn)

]
,

yn = Jq
E1

(
αn Jp

E1
zn + (1− αn)Jp

E1
Sg

Gn
zn

)
,

Cn+1 = {u ∈ Cn : Δp(yn, u) ≤ Δp(zn, u) ≤ Δp(wn, u)},

xn+1 = ΠCn+1 x0

(50)

where {Hn} and {Gn} ⊂ (0,+∞), f (wn) =
1
p‖(I − Sh

Hn
)Tun‖p, ΠCn+1 is a Bregman projection of E1

onto Cn+1, the sequence of real number {αn} ⊂ [a, b] ⊂ (0, 1) and {θn} ⊂ [c, d] ⊂ (−∞,+∞), and
{ρn} ⊂ (0,+∞) satisfies

lim inf
n→+∞

ρn

(
p− Cq

ρ
q−1
n
q

)
> 0.

where cq is the uniform smoothness coefficient of E1. Then, xn → z0 ∈ ΠSEP(G1,G2)
x0.

5. Conclusions

In this paper, we introduce a new inertial shrinking projection method for solving the split
common null point problem in uniformly convex and uniformly smooth real Banach spaces.
The algorithm is designed such that its step size does not require prior knowledge of the norm
of the bounded linear operator. A strong convergence result is also proved under some mild
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conditions. We further provide some applications of our result to other nonlinear optimization
problems. We highlight our contributions in this paper as follow:

1. A significant improvement in this paper is that a self-adaptive technique is introduced for selecting
the step size such that a strong convergence result is proved without prior knowledge of the
norm of the bounded linear operator. This improves the results in [6,8,9,11,12,16,19,20] and other
important results in this direction.

2. The result in this paper extends the results in [4,5,10,11] and several other results on solving split
common null point problem from real Hilbert spaces to real Banach spaces.

3. The strong convergence result in this paper is more desirable in optimization theory (see, e.g., [51]).
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Abstract: We develop nonlinear approximations to critical and relaxation phenomena, complemented
by the optimization procedures. In the first part, we discuss general methods for calculation of critical
indices and amplitudes from the perturbative expansions. Several important examples of the Stokes
flow through 2D channels are brought up. Power series for the permeability derived for small
values of amplitude are employed for calculation of various critical exponents in the regime of large
amplitudes. Special nonlinear approximations valid for arbitrary values of the wave amplitude are
derived from the expansions. In the second part, the technique developed for critical phenomena
is applied to relaxation phenomena. The concept of time-translation invariance is discussed, and
its spontaneous violation and restoration considered. Emerging probabilistic patterns correspond
to a local breakdown of time-translation invariance. Their evolution leads to the time-translation
invariance complete (or partial) restoration. We estimate the typical time extent, amplitude and
direction for such a restorative process. The new technique is based on explicit introduction of origin
in time as an optimization parameter. After some transformations, we arrive at the exponential
and generalized exponential-type solutions (Gompertz approximants), with explicit finite time scale,
which is only implicit in the initial parameterization with polynomial approximation. The concept
of crash as a fast relaxation phenomenon, consisting of time-translation invariance breaking and
restoration, is advanced. Several COVID-related crashes in the time series for Shanghai Composite
and Dow Jones Industrial are discussed as an illustration.

Keywords: critical index; relaxation time; time-translation invariance breaking and restoration;
market crash; COVID-19; Gompertz approximants

1. Introduction

Let the function Φ(x) of a real variable x ∈ [0, ∞) be defined by some rather complicated problem.
The variable x > 0 can represent, e.g., a coupling constant or concentration of particles. Of course,
one should strive to find an exact solution to the problem [1,2]. Among such exact solutions one can
find the solution to the celebrated Kondo problem and its thermodynamics. In a number of cases
important for optical applications, such as Bessel beams and its generalizations [3], one can find an
intriguing physics already within the linear wave equation. In optics, there are a variety of exact
solutions: spatial, temporal, dark optical solitons and breathers all follow from the celebrated nonlinear
Schrödinger equation and its modifications [4]. The so-called spatiotemporal X-waves, another type of
the closed-form solutions are being studied as well (see, e.g., [5]).

What if such a problem does not allow for an explicit solution for the sought function? Let us
assume that some kind of perturbation theory is still possible to develop, so that it generates formal
power series about the point x = x0 = 0, Φ(x) = ∑∞

n=0 cnxn, for the function in question [6]. The
perturbation methods can generate the series (often slowly) convergent for all x smaller than the radius
of convergence, or the series divergent for all x, except x = 0.
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That is, for smooth function Φ(x) [7], we have the asymptotic power series [7,8],

Φ(x) ∼
∞

∑
n=0

cnxn. (1)

Our task is to recast the series (2) into some convergent expressions by means of a nonlinear
analytical constructs, the so-called approximants. When literally all of the terms in divergent series are
known, one can invoke Euler of Borel summation [8]. Even for convergent series there is still a problem
of how to continue the expansion outside of radius of convergence [9], where the approximants could
be useful.

However, in realistic problems, only a few terms on the RHS of (1) can be calculated, and applying
various approximants is the only available analytical option for the truncated series (5) and (A6). The
approximants are conditioned to be asymptotically equivalent to the series (1), truncated at some
finite number k. However, the approximants are able to generate an additional infinite number of
coefficients, approximating unknown exact coefficients. Determination of the best approximant is
grounded solely on the empirical, numerical convergence [9], of the sequences of approximants.

One can always attempt to extrapolate the perturbative results by means of the Padé approximants
PM,N (x) [6,9]. The Padé approximants PM,N can be understood as the ratio of two polynomials PM(x)
and QN(x) of the order M and N, respectively. The diagonal Padé approximant of order N corresponds
to the case of M = N. Conventionally, QN(0) = 1. The coefficients of the polynomials are derived
directly from the asymptotic equivalence with the given power series for the sought function Φ(x).
Sometimes, when there is a need to stress the role of Φ(x), we write PadeApproximant [Φ[x], n, m].

The Padé approximant might possess a pole associated with a finite critical point, but can only
produce an integer critical index. While usually critical indices are not integers. The same concerns
the large-variable behavior where the power of x produced from extrapolation with some form of
Padé approximants is always an integer. Unfortunately, solutions to many problems exhibit irrational
functional behavior. Such a behavior cannot be properly described by the standard rational Padé
approximants. However, it would be highly desirable to modify somehow the familiar technique
of Padé approximants in order to take into account the irrational behavior. Such modification can
be performed by separating the sought modification of the Padé approximants into two factors [10].
The first factor is to be expressed as an iterated root or factor approximant [11,12]. It is specifically
designed to take care of the irrational part of the solution. The second factor is simply a diagonal Padé
approximant, and it is supposed to take care of the rational part of the solution. We arrive thus to the
corrected Padé approximants. They appear to be applicable to a larger class of problems, even when
the standard Padé technique is not applicable [11].

Many examples of application of the Padé approximants as well as their theoretical modifications,
can be found in [13], including some important applications to aerodynamics and boundary layer
problems [14]. The so-called two-point Padé is applied for interpolation, when in addition to the
expansion about x0 = 0, given by (1), additional information is available and contained in the
asymptotic power series expansion about x = ∞, Φ(x) ∼ ∑∞

n=0 bnx−n [8]. The two-point Padé
approximant has the same form as the standard Padé approximant, but with the coefficients expressed
through cn and bn.

The idea of combining information coming from the different limits appear to be fruitful
and can be exploited for different types of approximants and various forms of asymptotic
expansions [11,12,15,16]. Various self-similar approximants also allow extrapolating and interpolating
between the small-variable and large-variable asymptotic expansions, as discussed recently in [16]. The
key to the success is to introduce the so-called control functions to allow “to sew” the two limit-cases
together in the form most natural for each concrete problem [11,12,15–17]. The example of such an
approach is brought up in Appendix B. Although the expansions for small and large couplings are
very bad, the resulting approximants are in a good agreement with the numerical data.
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There are four main technical approaches to the approximants constructions, all aimed to optimize
their performance. The first approach is conventional, also called accuracy-through order. It is based
on progressive improvement of quality of approximants with adding new information through the
higher-order coefficients, with the approximants becoming more and more complex. It is exemplified
in construction of Pad’e and Euler super-exponential approximants [8], factor, root and additive
approximants [11,12,16]. The latter “cluster” of approximations was derived based on the ideas of
self-similar approximation theory, a close relative of the field-theoretic renormalization group [17]. The
property of self-similarity is discussed in Section 3.1.

The second approach leads to corrected approximants. The idea is to ensure the correct form of
the solution already in the starting approximation with some initial parameters. The initial parameters
should be corrected by asymptotically matching with the truncated series/polynomial regressions
in increasing orders. Thus, instead of increasing the order of approximation, one can correct the
parameters of the initial approximation [11,12]. The form of the solution is not getting more complex,
but the parameters take more and more complex form with increasing order.

In the third approach, predominantly adopted in Section 3, we keep the form and order
of approximants the same in all orders, but let the series/regressions evolve into higher orders.
Independent on the order of regression, we construct the same approximant, based on the first-order
terms solely, only with the parameters changing with increasing order of regression. In the framework
of such effective first-order theories, we employ exponential approximants and their extensions.

In the fourth approach, the critical index is treated as a vital part of optimization procedure. The
critical index plays the role of a control parameter, to be determined from the optimization procedure
described in Section 2.2, following Gluzman and Yukalov [18]. Different optimization techniques
based on introduction of control parameters were proposed in [19,20].

The problems arising in approximation theory can vary. Note that, for a recovery problem,
when measurements of the sought function are given for some finite set of points, there is Prony’s
method available, with the sought function represented as sums of polynomial or exponential functions
combined with periodic functions [21]. For approximation of a continuous function on the interval
x ∈ [0, 1], one can use Bernstein polynomials [22]. However, the two methods do not allow for
inclusion of the asymptotic information.

Prony’s and Bernstein methods are numerical and work only for interpolation problems. The
latter method was further adapted to the region x ∈ [0, ∞), and applied in [23]. The technique of
Cioslowski [23] allows for incorporation of the asymptotic information. The technique of self-similar
roots [24] allows us to solve the same problems as in [23], but without resorting to fitting [23,24].

Our methods are analytical, user-friendly and applicable to the most difficult extrapolation
problem [11,12,16], involving explicit calculation of various critical indices and amplitudes, with novel
applications to finding relaxation times. However, our methods remain applicable also for various
interpolation problems [11,12,16,24] (see also Appendix B).

It is likely impossible to find the same approximant to be the best for each and every realistic
problem. Based on the same asymptotic information, such as series coefficients, thresholds, critical
indices, and correction to scaling indices, one can construct not only Padé but quite a few different
approximants, such as corrected Padé, additive, DLog-additive, etc. [12,16]. It is feasible that for each
problem one can find an optimal different approximant. We think that the idea behind the method of
corrected approximants [11,12,16], is the most progressive, since it allows to combine the strength of a
few methods together and proceed, in the space of approximations, with piece-wise construction of
the approximation sequences, as pointed out recently by Gluzman [16].In the following sections, we
present a more expended description of the concept of approximants, applied now both to critical and
relaxation phenomena, extending the earlier work of Chapter 1 of the book [12].
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2. Critical Index and Relaxation Time

The function Φ(x) of a real variable x exhibits critical behavior, with a critical index α, at a finite
critical point xc, when

Φ(x) � A(xc − x)α, as x → xc − 0 . (2)

The definition covers the case of negative index when function can tend to infinity, or the sought
function can tend to zero if the index is positive. Sometimes, the values of critical index and critical
point are known from some sources, and the problem consists in finding the critical amplitude A, as
extensively exemplified in [11].

The case when critical behavior occur at infinity,

Φ(x) � Axα, as x → ∞ , (3)

can be analyzed similarly. It can be understood as the particular case with the critical point positioned
at infinity.

Critical phenomena are ubiquitous [18], ranging from the field theory to hydrodynamics. It is
vital to explain related critical indices theoretically. Regrettably, for realistic physical systems, one can
as a rule learn only its behavior at small variable,

Φ(x) � Φk(x), as x → 0 , (4)

which follows form some perturbation theory. The function Φk(x) is approximated by an expansion

Φk(x) = 1 +
k

∑
n=1

cnxn . (5)

Most often one finds that such expansions give numerically divergent results, valid only for very
small or very large x (see Appendix B). Constructively, the expansion is treated as a polynomial of
the order k. Sometimes, theoretically, one even has a convergent series, resulting in a rather good
numerically convergent, truncated polynomial approximations (A6). However, there is still a problem
of extrapolating outside of the region of numerical convergence, where the critical behavior sets
in. Three examples of such type are given in Appendix A, based on the results of Chapter 7 of the
book [12].

The discussion below traces the basic ideas from Chapter 1 of the book [12]. One can always
express the critical index directly by using its definition, and find it as the limit of explicitly expressed
approximants. For instance, critical index can be estimated from a standard representation as the
following derivative

Ba (x) = ∂x log (Φ(x)) � −α

xc − x
, (6)

as x → xc, thus defining the critical index as the residue in the corresponding single pole. The pole
corresponds to the critical point xc. The critical index corresponds to the residue

α = lim
x→xc

(x− xc)Ba (x).

To the DLog-transformed series Ba (x) one is bound to apply the Padé approximants [6]. Moreover,
the whole table of Padé approximants can be constructed [9], That is, the DLog Padé method does
not lead to a unique algorithm for finding critical indices. procedure. Basically, different values are
produced by different Padé approximants. Then, it is not clear which of these estimates to prefer. The
standard approach consists in applying a diagonal Padé approximants [6].
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When a function, at asymptotically large variable, behaves as in (3), then the critical exponent can
be defined similarly, by means of the DLog transformation. It is represented by the limit

α = lim
x→∞

xBa (x) . (7)

Assume that the small-variable expansion for the function Ba (x) is given. In order for the
critical index to be finite, it is necessary to take only the approximants behaving as x−1 as x → ∞. It
leaves us no choice but to select the non-diagonal Pn,n+1(x) approximants, so that the corresponding
approximation αn is finite. One can also apply, in place of Padé, some different approximants [12,16].
The examples of application of the DLog Padeé methods are given in Appendix A, based on the results
first obtained in Chapter 1 of the book [12].

To simplify and standardize calculations different, and more powerful, approximants, called
self-similar factor approximants, are introduced in [25]. The singular solutions emerging from factor
approximants correspond to critical points and phase transitions [25], including also the case of
singularity located at ∞. When the series is long, one would expect that the accuracy is going to
improve with increasing numbers of terms. Sometimes, an optimum is achieved for some finite number
of terms, reflecting the asymptotic nature of the underlying series. It is very difficult to improve the
quality of results produced by the factor approximants, when the series are short. Some suggestions
on such improvement were advanced by Gluzman [12].

In some simple but rather important cases of ODEs, the factor approximants allow to restore exact
solutions, such a bell soliton, kink soliton, logistic equation solution and instanton-type solution [26].
However, as pointed out in the Introduction, such cases are quite special, and only an approximate
solution could be found in many important cases [26,27]. More information about various methods of
calculating critical index, amplitude and critical point can be found in [11,12,16].

2.1. Relaxation Time

Consider the case of relaxation behavior when a function at asymptotically large variable decays as

Φ(t) � A exp(
t
τ
) (t → ∞) , (8)

with negative τ. Formally, the relaxation time is −τ. It can be found as the limit

1
τ
= lim

t→∞

d
dt

ln Φ(t) . (9)

As in the case of critical behavior considered above, the small-variable expansion for the function
is given by the sum Φk(t). The effective relaxation time can be expressed in terms of the small-variable
expansion as follows,

1
τk(t)

=
d
dt

ln Φk(t) . (10)

It can be expanded in powers of t, leading to

τk(t) =
k

∑
n=0

bntn . (11)

The coefficients bn are easily expressed through cn of the original series (1). Let us apply to the
obtained expansion the self-similar or Padé approximants, That is, we have to derive an approximant
τ∗k (t) whose limit

τ∗k (t)→ const (t → ∞) ,
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gives the relaxation time
τ∗k = lim

t→∞
τ∗k (t) . (12)

In such approach, the amplitude A does not enter the consideration. In practice, one can indeed
construct the approximants with such required behavior. The complete approximant for the sought
function Φ(t) denoted below as E(t, r), can be constructed as well. Even some ad hoc forms satisfying
some general symmetry requirements can be suggested, as in Section 3.

As an illustration, let us find τ∗k (t) in explicit form under some simple assumptions concerning its
asymptotic behaviors. Assume simply that there are two distinct exponential behaviors for short and
long times with two different τ1, τ2, and the transition from short to long time behavior also occurs
at the duration of some third characteristic time τ3 = −β−1

3 . The characteristic times can be found
from the short-time expansion. The simple approximation to the effective relaxation time, expressed in
second order of (12), can be written down in the spirit of Yukalov and Gluzman [28] as follows:

τ2
∗(t)−1 = β2 + (β1 − β2) exp (β3t), (13)

so that for negative β3 we have τ∗2 (0)−1 = β1, τ∗2 (∞)−1 = β2.
In the theory of reliability, the failure (hazard) rate or mortality force [29] is analogous to

the inverse effective relaxation time, and the model of the type of formula (13) is known as the
Gompertz–Makeham law of mortality.

The complete approximant corresponding to (13) is reconstructed after elementary integration

F(t) = A exp
(
(β1 − β2) exp(β3t)

β3
+ β2t

)
, (14)

with all unknown constituents of (13) expressed explicitly, from the asymptotic equivalence with the
power-series,

A = c0 exp
(

(c1
2−2c0c2)

3

4(3c0
2c3−3c0c1c2+c1

3)
2

)
, β1 = c1

c0
, β2 = 6c0

2c1c3−4c0
2c2

2−2c0c1
2c2+c1

4

2c0(3c0
2c3−3c0c1c2+c1

3)
,

β3 =
2(3c0

2c3−3c0c1c2+c1
3)

c0(2c0c2−c1
2)

.
(15)

Most interesting, as β2 = 0 the linear decay (growth) term in the formula for F(t) disappears, we
arrive in different notations to the Gompertz function (54),

G(t) = A exp
(

β1 exp(β3t)
β3

t
)

, (16)

employed in calculations of Gluzman [30]. In this case, we have the effective relaxation time decaying
(growing) exponentially with time.In Section 3, we apply this method of finding the effective relaxation
time for time series.

2.2. Critical Index as Control Parameter. Optimization Technique

The function’s critical behavior follows from extrapolating the asymptotic expansion (1) to finite
or large values of the variable. Such an extrapolation can be accomplished by means of a direct
technique just discussed above. However, its successful application requires knowledge of a large
number of terms in the expansion. However, it is also possible to obtain rather good estimates for the
critical indices from a small number of terms in the asymptotic expansion [12,18]. To this end, we can
employ the self-similar root approximants given by (17). The external power mk is to be determined
here from additional conditions. More detailed explanations and more examples can be found in the
book [12].
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The self-similar root approximant has the following general form [15],

R∗k (x, mk) =
((

(1 + P1x)m1 + P2x2
)m2

+ . . . + Pkxk
)mk

. (17)

In principle, all the parameters may be found from asymptotic equivalence with a given power
series.

The large-variable power α in Equation (3) could be compared with the large-variable behavior of
the root approximant (17),

R∗k (x, mk) � Akxkmk , (18)

where
Ak =

(((Pm1
1 + P2

)m2 + P3

)m3
+ . . . + Pk

)mk
. (19)

This comparison yields the relation kmk = α, defining the external power mk = α
k , when α is

known. This way of defining the external power is used when the root approximants are applied for
interpolation. The root approximants (17) are applied in Appendix B, in the context of interpolation
problem, for construction of accurate formulas valid for all values of x.

Consider an exceptionally difficult situation of an extrapolation problem: the large-variable
behavior of the function is not known and α is not given. In addition, the critical behavior can happen
at a finite value xc of the variable x. The method for calculating the critical index α by employing the
self-similar root approximants was developed by Gluzman and Yukalov [18].

In such approach, we construct several root approximants R∗k (x, mk), and the external power
mk plays the role of a control function. The sequence of approximants is considered as a trajectory
of a dynamical system. The approximation order k plays the role of discrete time. A discrete-time
dynamical system or the approximation cascade consists of the sequence of approximants. The cascade
velocity is defined by Euler discretization formula [31–33]

Vk(x, mk) = R∗k+1(x, mk)−R∗k (x, mk) + (mk+1 −mk)
∂

∂mk
R∗k (x, mk) . (20)

The effective limit of the sequence of approximants corresponds to the fixed point of the cascade.
Based on just a few approximants, the cascade velocity has to decrease. In such a sense, the sequence
appears to be convergent. The control functions mk = mk(x), have to minimize the absolute value of
the cascade velocity

|Vk(x, mk(x))| = min
mk
|Vk(x, mk)| . (21)

A finite critical point xc
k, in the kth approximation, is to be obtained from Equation (17) by

imposing the condition on the critical behavior expressed by (2),

[R∗k (xc
k, mk)]

1/mk = 0 (0 < xc
k < ∞). (22)

Its finite solution is denoted as xc
k = xc

k(mk).
The critical index in the kth approximation is given by the limit

αk = lim
x→xc

k

mk(x).

In the case of the critical behavior at infinity, when xc ∼ ∞, the critical index is

α = k lim
x→∞

mk(x), as xc ∼ ∞ . (23)
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Thus, to find the critical indices, the control functions mk(x) have to be found. The minimization
of the cascade velocity (50) is complicated. Equation (21) contains two control functions, mk+1 and mk.
Nevertheless, the problem can be resolved.

This can be done in two ways. The first constructive approach notices that mk+1 should be close
to mk. Then, we arrive to to the minimal difference condition

min
mk

∣∣R∗k+1(x, mk)−R∗k (x, mk)
∣∣ (k = 1, 2, . . .) . (24)

One should typically find a solution mk = mk(x) of the simpler equation

R∗k+1(x, mk)−R∗k (x, mk) = 0 . (25)

The control functions mk, characterizing the critical behavior of Φ(x), become the numbers mk(xc).
We simply write mk = mk(xc).

In the vicinity of a finite critical point, the functionR∗k behaves as

R∗k (x, mk) �
(

1− x
xc

k

)mk

, as x → xc
k − 0 . (26)

The condition (25) is expressed as follows,

xc
k+1(mk)− xc

k(mk) = 0 (0 < xc
k < ∞) . (27)

For the critical behavior at infinity, it is expedient to introduce the control function

sk = kmk . (28)

The large-variable behavior reads as

R∗k (x, sk) � Ak(sk)xsk , as x → ∞ . (29)

As a result, the minimal difference condition is reduced to the equation

Ak+1(sk)− Ak(sk) = 0, as xc
k ∼ ∞ . (30)

The alternative equation for the control functions also follows from the minimal velocity condition
(21), and is called the minimal derivative condition

min
k

∣∣∣∣ ∂

∂mk
R∗k (x, mk)

∣∣∣∣ (k = 1, 2, . . .) , (31)

In practice, we have to solve the equation

∂

∂mk
R∗k (x, mk) = 0 . (32)

To apply this condition, we have first to extract from the function its non-divergent parts. If the
critical point is finite, one can study the residue of the function ∂ logR∗k /∂mk, expressed as

lim
x→xc

k

(xc
k − x)

∂

∂mk
logR∗k (x, mk) = mk

∂xc
k

∂mk
.
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Thus, from Equation (32), we arrive to the condition

∂xc
k

∂mk
= 0 (0 < xc

k < ∞) . (33)

When the critical behavior occurs at infinity, then we can consider the limiting form of the
amplitude and reduce Equation (32) to the form

∂Ak(sk)

∂sk
= 0, as xc

k ∼ ∞ . (34)

The final estimate for the critical index is given by a simple average of the minimal difference and
minimal derivative results.

The technique reviewed in Section 2.2, following Chapter 1 of the book [12], turned out to be
useful in calculating the critical properties of the classical analog of the graphene-type composites with
varying concentration of vacancies [34].

In the next subsection, we give some examples, first presented in Chapter 1 of the book [12]. More
information and details can also be found in Chapter 7 of the book [12].

2.3. Examples: Permeability in the Two-Dimensional Channels

In the cases considered below, we deal with a unique theoretical opportunity to attack the problem
of critical exponent and criticality in general, directly from the solution of the hydrodynamic Stokes
problem. Let us consider as example the case of the two-dimensional channel bounded by the surfaces
z = ±b (1 + ε cos x) , as explained in Appendix A. Here, ε is termed waviness.

The permeability behaves critically [12], That is, it tends to zero as

K(ε) ∼ (εc − ε)κ , as ε → εc − 0 , (35)

with εc = 1 ,κ = 5
2 . The permeability as a function of the waviness can be derived in the form of

an expansion in powers of ε [35]. In the particular case of b = 0.5, the permeability can be found
explicitly as

K(ε) � 1− 3.14963 ε2 + 4.08109 ε4, as ε → 0 . (36)

By setting εc = 1, and changing the variable y = ε2

1−ε2 , one can move the critical point to infinity.
The critical index is calculated as explained above and in [18]. From the minimal-difference

condition we find κ1 = 2.184, with an error 12.6%. From the minimal derivative condition, we
obtain κ2 = 2.559, with an error 2.37%. The final answer κ∗ is given by the average of two solutions
κ∗ = 2.372± 0.19 .

In another particular case considered in Chapter 1 of the book [12], for b = 0.25, the permeability
expands as follows,

K(ε) � 1− 3.03748 ε2 + 3.54570 ε4, as ε → 0 . (37)

Setting ε = 1, and using the same technique as above the approximations for critical index are
found, so that κ1 = 2.342, and κ2 = 2.743. Finally, κ∗ = 2.543± 0.2.

Let us also consider some examples of the numerical convergence of root approximants in
high-orders, first presented in Chapter 1 of the book [12]. The technique is applied for calculating
critical index κ. It seems instructive to consider the same two cases of permeability K(ε), but with
higher-order terms, up to 16th order inclusively.

The numerical form of the corresponding expansions can be found in Appendix A (see expansions
(A8) and (A14)). Concretely, we construct the iterated root approximants

R∗k (y) =
(((

(1 + P1y)2 + P2y2
)3/2

+ P3y3
)4/3

+ . . . + Pkyk

)α/k

. (38)
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The parameters Pj have to be found from the asymptotic equivalence with the expansions. The
permeability has the required critical asymptotic forms

R∗k (y) � Akyα, as y → ∞ . (39)

The amplitudes Ak = Ak(αk) are found explicitly as

Ak =

((
(P2

1 + P2)
3/2 + P3

)4/3
+ . . . + Pk

)α/k
. (40)

To define the critical index αk, we analyze the differences

Δkn(αk) = Ak(αk)− An(αk) . (41)

From the sequences Δkn = 0, we find the related sequences of approximate values αk for the
critical indices.

Although it is possible to investigate different sequences of the conditions Δkn = 0, the most
natural from is presented by the sequences of Δk,k+1 = 0 and Δk8 = 0, with k = 1, 2, 3, 4, 5, 6, 7.

The results for b = 1
2 are shown in Table 1. We observe good numerical convergence of the

approximations αk ≡ κk, to the value κ = 5
2 .

Similar results, presented in Table 2 (for b = 1
4 ), again demonstrate rather good numerical

convergence of the approximate critical indices to the value κ = 5
2 .

Comparison of the results for different parameters b allows us to think that the critical index does
not depend on parameter b. In both examples considered above, the convergence sets in rather quickly.

The DLog Padé method appears to bring convergent sequences and consistent expressions for
permeability as well. Further details can be found in Appendix A. The results obtained from the
two different methods well agree with each other. A similar comparison was made by Gluzman and
co-authors [34] for the effective conductivity of graphene-type composites.

Table 1. Walls can touch (b = 1/2). The problems described in Appendices A and A.1. Critical indices
for the permeability κk obtained from the optimization conditions (41). There is rather good numerical
convergence to the number 5/2.

κk Δk+1(κk) = 0 Δk8(κk) = 0

κ1 2.18445 2.39678

κ2 2.68311 2.52028

κ3 2.48138 2.49208

κ4 2.49096 2.49692

κ5 2.5012 2.49982

κ6 2.49935 2.499

κ7 2.49861 2.49861
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Table 2. Walls can touch (b = 1/4). The problems described in the Appendices A and A.2. Critical
indices κk are found from the optimization conditions (41). There is a good numerical convergence of
the sequences to the value 5/2.

κk Δk+1(κk) = 0 Δk8(κk) = 0

κ1 2.34165 2.452

κ2 2.52463 2.50542

κ3 2.4976 2.49933

κ4 2.49941 2.50004

κ5 2.50028 2.50033

κ6 2.50032 2.50036

κ7 2.50041 2.50041

Consider a different case of permeability K(ε) (see Appendixes A and A.3). The results were first
obtained in Chapter 1 of the book [12]. For the parallel sinusoidal two-dimensional channel when the
walls would not touch, the permeability remains finite. It is expected to decay as a power-law as the
waviness ε becomes large,

K(ε) ∼ εν, as ε → ∞,

with negative index ν.
In the expansion of K(ε) in small parameter ε2, we retain the same number of terms as in the

previous two examples. The numerical values of the corresponding coefficients can be found in
Appendix A ( see expression (A16)). The results of calculations are presented in Table 3 (for b = 1

2 ).
They show rather good numerical convergence, especially in the last column, to the value −4. The
sequence, based on the DLog Padé method, is convergent as well (see Appendixes A and A.3).

Table 3. Walls can not touch. Case of b = 1/2. Critical indices for the permeability for the problems
in Appendixes A and A.3, obtained from the optimization conditions Δkn(νk) = 0. The sequences
demonstrate reasonably good numerical convergence to the value ν = −4.

νk Δk+1(νk) = 0 Δk8(νk) = 0

ν1 −6 −4.36

ν2 −4.04 −4.1

ν3 n.a. −4.13

ν4 −4.09 −4.05

ν5 −3.97 −4.03

ν6 n.a. −4.08

ν7 −3.94 −3.94

More information on the problems of critical permeability, can be found in Appendix A. The three
problems considered above are studied by applying the DLog Padé method of Section 2 to calculate
the critical index for permeability. The computations complement and confirm the results for critical
index, obtained above from the optimization technique. The optimization technique works better for
short truncated series, converging more quickly, while the DLog Padé method is easier to apply for
very long series. In addition, the DLog Padé method, as well as the Padé method, when its application
is appropriate, allows us to compute the critical amplitudes.
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3. Relaxation Phenomena in Time Series

For the phenomenon to occur, the basic underlying symmetry must be broken. While studying the
phenomenon it is important to distinguish between an explicit symmetry breaking when governing
equations are not invariant under the desired symmetry and spontaneous symmetry breaking, without
presence of any asymmetric cause [36]. When successful, the approach based on broken global
symmetries leads to understanding of the key phenomena of magnetism, superconductivity and
superfluidity. On the other hand, when some global inherent symmetry can be recognized in physical
quantities, we arrive to the gloriously successful theory of critical phenomena and vital extensions of
perturbation results in quantum field theories, jointly called renormalization group (RG) [17,37]. In a
nutshell, we suggest below how to apply symmetry considerations and RG-inspired methods to the
sharp moves which occur in time series, with the most notable examples given by stock market crashes.

Assume that numerical data on the time series variable (e.g., price) s is given for some time t
segment. Typically, one considers N + 1 values s(t0), s(t1) . . . , s(tN), for N + 1 given at equidistant
successive moments in time t = tj, with j = 0, 1, 2 . . . , N [38].

In the study of time series, one is interested in the extrapolated to future value of s. In financial
mathematics, one is particularly interested in the predicted value of log return [38,39],

R(tN + δt) = ln
(

s(tN + δt)
s(tN)

)
. (42)

One can see from the definition that we are really interested in the quantity S = ln(s), to be called
return. Let us place the origin at the very beginning of the time interval, setting also t0 = 0. Naturally,
one is interested in the value of S(tN + δt), allowing to find R(tN + δt) at a later time. Since the
approach developed in [30,38] is invariant with regard to the time unit choice, we consider temporal
points of the dataset as integer, while considering the actual time variable as continuous.

Modern physics when applied to financial theory is concerned with ergodicity violations [40–43].
Ergodicity violations may be understood as a manifestation of a non-stationarity, or violation of
time-invariance of random process. Metastable phases in condensed matter also defy ergodicity over
long observation timescales. In special quantum systems of ultracold atoms, spontaneous breaking of
time-translation symmetry causes the formation of temporal crystalline structures [44]. The concept
of a spontaneously broken time-translation invariance can be useful for time series in application
to market dynamics, as first suggested in [38]. According to Andersen, Gluzman and Sornette [38],
the window of forecasting of time series describing market evolution emerges due to a spontaneous
breaking/restoration of the continuous time-translation invariance, dictated by relative probabilities
of the evolution patterns [45]. In turn, the probabilities are derived from the stability considerations.

The notion of probability introduced in [45] is not based on the same conventional statistical
ensemble probability for a collection of people, but it is closer to the time probability, concerned with
a single person living through time (see Gell-Mann and Peters [42] and Taleb [43]). Probabilistic
trading patterns correspond to local breakdown of time-translation invariance. Their evolution leads
to the time-translation symmetry complete (or partial) restoration. We need to estimate typical time,
amplitude and direction for such a restorative process. Thus, we are not confined to a binary outcome
as in [38] but attempt to estimate also the magnitude of the event.

According to Hayek [46], markets are mechanisms for collecting vast amounts of information
held by individuals and synthesizing it into a useful data point [46,47], e.g., price of the stock market
index dependent on time. Conversely, consolidation of knowledge is done via prices and arbitrageurs
(Taleb on Hayek).

A catastrophic downward acceleration regime in the time series is known as crash [48]. Time
series representing market price dynamics in the vicinity of crisis (crash, melt-up), could be treated
as a self-similar evolution, because of the prevalence of the collective coherent behavior of many
trading, interacting agents [45,49], including humans and machine algorithms. The dominant
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collective slow mode corresponding to such behavior, develops according to some law, formalized
as a time-invariant, self-similar evolution. Away from crisis, there is a superposition of collective
coherent mode (generalized trend) and of a stochastic incoherent behavior of the agents [39,45]. We
do not attempt here to write down a generic evolution equation of behind the time series pertaining
to market dynamics. Instead. we consider, locally in time, some trial functions—approximants—in
the form inspired by the solutions to some well-known evolution equations. The approximants are
designed to respect or violate self-similarity. If in physics the relation of phenomenon and symmetry
violation is understood, in econophysics such connection is far from being clear. However, to realize
the promise of econophysics [50], on a consistent basis and at par with physics achievements, one has
to identify and study the phenomenon from the relevant symmetry viewpoint. Our primary goal here
is not forecasting/timing the crash, but studying the crash as a particular phenomenon created by
spontaneous, time-translation symmetry breaking/restoration.

Since the market dynamics is believed to be formed by a crowd (herd) behavior of many interacting
agents, there are ongoing attempts to create empirical, binary-type prediction markets functioning on
such principle, or mini Wall Streets [47]. Prediction markets often work pretty well, however there
are many cases when they give wrong prediction or do not make any predictions at all. Such special
set-ups are already very useful in reaching understanding that market crowds are correct only if they
express a sufficient diversity of opinion. Otherwise, the market crowd can have a collective breakdown,
i.e., is fallible, as expected by Soros [48]. In our understanding, such breakdowns amount to breaking
of time-translation invariance. Restoration of the time-translation invariance—in theory—may be
attributed to a small proportion of the traders having either superior information or market intellect [47].
Data from a survey conducted with high income and institutional investors show that they “generally
exaggerated assessments of the risk of a stock market crash, and that these assessments are influenced
by the news stories, especially front page stories, that they read” [51]. The division into two (at least)
groups can be seen in the very parallel existence of future and spot markets for the same asset, such
as S&P 500 index, with the futures market working 24 h. It is believed that a lot of the daily crashes,
or melt-up days, start overnight. It is not that arbitrage is not effective, the spot market is just closed
overnight, while the futures market operates in a discovery mode.

3.1. Self-Similarity and Time Translation Invariance

According to Isaac Newton and Murray Gell-Mann, the laws of nature are somehow self-similar.
The laws of Newtonian mechanics are invariant with respect to the Galilean group, expressing Galileo’s
principle of relativity [52]. The group includes time-translation invariance, or else the laws of classical
mechanics are self-similar.

What should be the underlying symmetry for price dynamics? Mind that in normal times the
average price trajectory is exponential, because of the compounding interests, and we enjoy an almost
constant return (or price growth rate) [53]. Indeed, let st0 be an underlying security (index) price at
t = t0. Let FP

t be the fair value of the future requiring a risk associated expected return β [43]. Then
(see, e.g., [43]), expected forward price FP

t = st0 exp(β(t− t0). For example, a share of a stock would
be correctly priced with the expected return calculated as the return of a risk-free money market fund
minus the payout of the asset, being a continuous dividend for a stock [43]. Thus, rather simple and
natural exponential estimates are constantly made for stocks and the alike. The formula for the forward
price is self-similar, or time-translation invariant, as explained below.

However, as noted in [48,53], prices often significantly deviate from such a simple description.
Bubbles can be formed, as well as other presumed patterns of technical analysis. Asset prices strongly
deviate from the fundamental value over significant intervals of time. The fundamental value is not
truly observable, making definition of such intervals somewhat elusive. There are some very real
mechanisms in work, acting to increase and even accelerate the deviation from fundamental value. The
causes of deviation could be “option hedging, portfolio insurance strategies, leveraging and margin
requirements, imitation and herding behavior”, as is the authoritative opinion expressed in [48,53].
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Recall also that meaningful technical analysis starts from recasting the time series data using some
polynomial representation to serve as the expansion [38]. The regression is constructed in standard
fashion by minimizing mean-square deviation, with the effective result that the high-frequency
component of the price is getting average out. Then, one can consider self-similarity in averages [49].
Indeed, the standard polynomial regressions are invariant under time-translation, retaining their form
after arbitrary selection of origin of time with simple redefinition of all parameters. The position of
origin in time can be explicitly introduced into the regression formula and included into the coefficients,
but actual results of calculations with any arbitrary chosen origin will remain the same. Such property
can be expressed as some symmetry.

We put forward the idea that it is the onset of broken time-translation invariance that signifies the
birth of a bubble, or of some other temporal pattern preceding a crash. End of pattern corresponds
to the restoration of time-translation invariance, partially or fully. Our task is to express this idea in
quantitative terms by making explicit transformation from the regression-based technical analysis to
the valuation formula in the exponential form, taking into account strong deviations from the standard
valuation formulae.

Assume that a time series dynamics is predominantly governed by its own internal laws. This
is the same as to write down a self-similar evolution for the marker price s [54], meaning that, for
arbitrary shift τ , one can see that

s(t + τ, a) = s(t, s(τ, a)), (43)

with the initial condition s(0, a) = a [55,56]. The value of the self-similar function s in the moment
t + τ with given initial condition, is the same as in the moment t, with the initial condition shifted to
the value of s in the moment τ.

When t stands for true time, the property of self-similarity means the time-translation invariance.
Formally understood, Equation (43) gives a background for the field-theoretical RG, with addition
of some perturbation expansion for the sought quantity, which should be resummed in accordance
with self-similarity expressed in the form of ODE [55–57]. The time-translation invariance expressed
by (43) means that the law for price evolution exists and remains unchanged with time, with proper
transformation of the initial conditions [52]. The role of perturbation expansion when price dynamics
is concerned, is accomplished by meaningful technical analysis, by recasting data in the form of some
polynomial representation [38]. There is no formal difference in treating polynomials and expansions,
as already mentioned in Section 2.

Consider first the simplest case of technical analysis. The linear function can be formally
considered as the function of time and initial condition a, namely s1(t, a) = a + bt, and s1(0, a) = a.
The linear function (regression) is self-similar, or time-translation invariant, as can be checked directly,
by substitution into (43).

Through some standard procedure, let us obtain the linear regression on the data around the
origin t0 = 0, so that

s0,1(t) = a1 + b1t.

Note that the position of origin is arbitrary, and it can be moved to arbitrary position given by
real number r, so that

sr,1(t) = A1(r) + B1(r)(t− r),

with new and different coefficients. It turns out that the coefficients are related as follows

A1(r) = a1 + b1r, B1(r) = b1,

so that
sr,1(t) ≡ s0,1(t).

By shifting the origin, we create an r-dependent form of the linear regression sr,1, which can be
used constructively. Thus, instead of a single regression we have its r-replicas, equivalent to the original
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form of regression, and all replicas respect time-translation symmetry. In such a sense, one can speak
about replica symmetry. Of course, we would like to avoid such redundancy in data parameterization
and to find the origin(s) by imposing some optimal conditions (see Section 3.2).

The position of origin in time can be explicitly introduced into the regression formula and included
into the coefficients, but actual results of calculations with any arbitrary chosen origin will remain the
same. Such property can be expressed as some symmetry. However, intuitively, one would expect that
the result of extrapolation with chosen predictors should be dependent on the point of origin r. Indeed,
various patterns such as “heads and shoulders”, “cup-with-handle”,“ hockey stick”, etc., considered
by technical analysts do depend on where the point of origin is placed. In physics, the point of origin
(Big Bang) plays a fundamental role. We should find a way to break the replica symmetry.

As discussed above, it is exponential shapes that are natural in pricing. Exponential function

E(t, a) = a exp(βt),

with initial condition a and arbitrary β satisfy functional self-similarity as well as the linear functions.
It can be replicated as

Er(t) = α(r) exp(β(t− r)),
α(r) = a exp(βr).

(44)

Having β dependent on r is going to violate the time-translation and replica symmetry. Instead of
a global time-translation invariance, we have a set of r local “laws” near each point of origin. However,
having r in Formula (44) fixed, by imposing some additional condition, or just being integrated out,
should restore the global time-translation invariance completely as long as the exponential function is
considered. Moreover, stability of the exponential function is measured by the exponential function
with the same symmetry (see Formula (46)). Not only is exponential function time-translation invariant,
but the expected return β has the same property. For exponential functions, the expected (predicted)
value of return per unit time exactly equals β.

Another simple rational function, known as hyperbolic discounting function [58],
H(t, a) = 1

a−1+bt , where a is the initial condition and b is arbitrary, is time-translation invariant.
Note that shifted exponential function Es(t, a) = c + (a − c) exp(bt), with initial condition a and
arbitrary b and c, is invariant under time-translation as well.

Another interesting symmetry is shape invariance [59], meaning

FP
t+τ = mFP

t ,

and an exponential function is shape invariant with m = exp (βτ), leaving the expected return
unchanged. Keep in mind that our task is to calculate β from the time series. In principle, one can think
about breaking/restoration of shape invariance, as a guide for construction of the concrete scheme
for calculations.

A critical phenomenon, an underlying symmetry of the formula for the observable, is scaling

φλt = Λφt,

where Λ = φλ. The class of power laws, φt = tα, with critical index α, is scaling-invariant. The central
task is to calculate c. The statistical renormalization group formulated by Wilson [37] explains well
the critical index in equilibrium statistical systems. When information on the critical index is encoded
in some perturbation expansion, one can use resummation ideas to extract the index, even for short
expansions and for non-equilibrium systems [11,12,18]. Some of the methods are discussed in the
preceding section (see also [12,16]).

Working with power-law functions will not leave the return unchanged. However, one can
envisage the scheme with broken scaling invariance, as an alternative to the former schemes. The
log-periodic solutions extend the simple scaling [60] and are extensively employed in the form of a

73



Axioms 2020, 9, 126

sophisticated seven-parametric fit to long historical dataset [53], as well as of its extensions [61]. The
fit is tuned for prediction of the crossover point to a crash, understood as catastrophic downward
acceleration regime [48]. However, one cannot exclude the possibility of the solutions with different
time symmetries (scaling and time-invariance, for instance) competing to win over, or to coexist, all
measured in terms of their stability characteristics.

Our primary concern is the crash per se, not the regime preceding it. We start analyzing crashes
with the polynomial approximation that respects time-translation symmetry, have the symmetry
broken, and then restored (completely or partially), by means of some optimization. Such sequence
ends with a non-trivial outcome: β becomes renormalized β(r), with r being found using the
optimization procedure(s) defined below. We discuss in Section 2.1 a general technique for correcting
β directly, which accounts for higher order terms in regression, making it time-dependent.

In [38], the framework for technical analysis of time series was developed, based on second-degree
regression and asymptotically equivalent exponential approximants, with some rudimentary, implicit
breaking of the symmetry. We intend to go to higher-degree regressions and develop a consistent
technique for explicit symmetry breaking with its subsequent restoration. According to textbooks,
the fourth order should be considered as “high”. Taleb (see footnote on p. 53 in [43]) also considered
models with five parameters as more than sufficient.

3.2. Optimization, Approximants, Multipliers

Higher-order regressions allow for replica symmetry. For instance, the quadratic regression
s0,2(t) = a2 + b2t + c2t2 can be replicated as follows:

sr,2(t) = A2(r) + B2(r)(t− r) + C2(r)(t− r)2,

with
A2(r) = a2 + b2r + c2r2, B2(r) = b2 + 2c2r, C2(r) = c2.

With such transformed parameters, we find that sr,2(t) ≡ s0,2(t). In fact, one can still formulate
self-similarity analogous to (43), but in vector form with increased number of parameters/initial
conditions in place of a [57]. However, if only the linear part of quadratic regression, or trend, is taken
into account, we return to the conventional functional self-similarity ≡ time-translation invariance,
discussed above extensively.

Such effective linear/trend approach to higher-order regressions allows applying the same idea
at all orders and observe how the exponential structures change with increasing regression order.
Note that, in the course of trading, a common pattern is trend following, which appears to be a
collective, self-reinforcing motion that, intuitively, lends itself to a self-similar description. Indeed,
some participants are waiting for a market confirmation of the trend before acting on it, which in turn
acts as a confirmation for others. Having a universal model explaining this dynamics (if not predicting
it) would be quite useful.

To take into account the dependence on origin, the replica symmetry has to be broken. Breaking
of the symmetry means the dependence on origin of actual extrapolations with non-polynomial
predictors. As the primary predictors, we suggest the simplest exponential approximants considered
as the function of origin r and time,

E∗1 (t, r) = A(r) exp
(

B(r)
A(r)

(t− r)
)

, (45)

independent on the order of polynomial regression. The approximants (45) are constructed by requiring
an asymptotic equivalence with the linear part of chosen polynomial regression. If the extrapolations
E∗1 (tN + δt, r) are made by each of the approximants, they appear to be different for various r, meaning
breaking of the replica symmetry and of the time-translation symmetry. Passage from polynomials to
exponential functions leads to emergence of the continuous spectrum of relaxation (growth) times.
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To compare the approximants quality, one can look at their stability. Stability of the approximants
is characterized by the so-called multipliers defined as the variation derivative of the function with
respect to some initial approximation function [45]. Following Yukalov and Gluzman [62], one can
take the linear regression as zero approximation and find the multiplier

M∗
1(t, r) = exp

(
B(r)
A(r)

(t− r)
)

. (46)

The simple structure of multipliers (46) allows avoiding appearance of spurious zeroes which
often complicate analysis with more complex approximants/multipliers.

Because of the multiplicity of solutions, embodied in their dependence on origin, it is both natural
and expedient to introduce probability for each solution. As explained in [45], one can introduce

Probability ∝ |M∗
1(t, r)|−1 ,

with proper normalization, as shown below in Formula (48). Probability appears to be of a pure
dynamic origin and is expressed only from the time series itself. When the approximants and
multipliers of the first order are applied to the starting terms of the quadratic, third- or fourth-order
regression, we are confined to effective first-order models, with velocity parameter from [38] dependent
also on higher-order coefficients and origin.

To make extrapolation with approximants (45), one has still to know the origin. In other words,
the time-translation symmetry has to be restored completely or partially, so that a specific predictor
with specifically selected origin, or as close as possible to a time-translation invariant form, is devised.
Fixing unique origin also selects unique relaxation (growth) time, during which the price is supposed
to find a time-translation invariant state.

Exponential functions are chosen above because they are invariant under time translation. Any
shift in origins is absorbed by the pre-exponential amplitude and does not influence the return R. A
similar in spirit view that broken symmetries have to be restored in a correct theory was expressed by
Duguet and Sadoudi [63].

In the approach predominantly adopted in this section, we keep the form and order of
approximants the same in all orders, but let the series/regressions evolve into higher orders.
Independent of the order of regression, we construct the same approximant, based only on the
first-order terms, only with parameters changing with increasing order of regression. In the framework
of the effective first-order theories, we employ exponential approximants.

Consider the value of origin as an optimization parameter [30]. To find it and restore the
time-translation symmetry, we have to impose an additional condition directly on the exponential
predictors with known last closing price,

E∗1 (tN , r) = sN . (47)

One has to solve the latter equation to find the particular origin(s) r = r∗. In this case, we
consider a discrete spectrum of origins, consisting of several isolated values. To avoid double-counting
when the last closing price enters both regression and optimization, one can determine the regression
parameters in the segment limited from above by tN−1, sN−1. Alternatively, one can consider the two
ways to define regression parameters and choose the one which leads to more stable solutions. Unless
otherwise stated, we consider that such comparison was performed and the most stable way was
selected.

The extrapolation for the price is simply s(tN + δt) = E∗1 (tN + δt, r∗). The condition
imposed by Equation (47) is natural, because then a first-order approximation to Formula (42),
R ≈ s(tN+δt)−s(tN)

s(tN)
, is recovered (see, e.g., [39]), as one would expect intuitively.
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The procedure embodied in (47), leads to a radical reduction of the set of r-predictors to just a few.
Set of predictors and corresponding to each multiplier, define the probabilistic, poor man’s order book.
Instead of an unknown to us true numbers of buy and sell orders, we calculate a priori probabilities
for the price going up or down and corresponding levels. Target price is estimated through weighted
averaging developed in [45,62], in its concrete form (48) given below.

For the sake of uniqueness, one can simply choose the most stable result among such conditioned
predictors. One can also consider extrapolation with a weighted average of all such selected solutions.
With 1 ≤ M ≤ 6 solutions, their weighted average E1 for the time tN + δt is given as follows,

E1(tN + δt) =
∑M

k=1 E∗1 (tN + δt, r∗k )
∣∣M∗

1(tN + δt, r∗k )
∣∣−1

∑M
k=1

∣∣M∗
1(tN + δt, r∗k )

∣∣−1 . (48)

Within the discrete spectrum, we can find solutions with varying degrees of adherence to the
original data. They can follow data rather closely or be loosely defined by the parameters of regression.
The former could be called “normal” solutions, and tend to be less stable, with multipliers ∼1, but the
latter are “anomalous” solutions, since they cut through the data and typically are the most stable with
small multipliers. Anomalous solutions are crashes (meltdowns) and melt-ups. The typical situation
with the solutions in the discrete spectrum is presented in Figure 1. The novel feature introduced
through (48) is that averaging is performed over all approximants of the same order, compatible with
constraints expressed by (47).

13 14 15 16
t
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Figure 1. All Gompertz approximants corresponding to the discrete spectrum, i.e., solutions to (56)
are shown. The most stable downward and less stable upward solutions are shown with solid lines.
Three additional solutions are shown as well. The solution shown with the dashed line is closest to the
data. The “no-change”, practically flat solution, is shown with a dot-dashed line. Another solution,
corresponding to moderate growth, is shown with a dotted line. The level s16 = 2746.61 is shown with
black line. Several historical data points are shown as well.

One can also integrate out the dependence on origin r, considered as a continuous variable, by
applying an averaging technique of weighted fixed points suggested in [45]. The dependence on origin
enters the integration limit through parameter T. Integration can be performed numerically for the
simplest exponential predictors according to the formula

I(t, T) =

∫ tN+T

t0−T E∗1 (X, t)
∣∣M∗

1(X, t)
∣∣−1 dX∫ tN+T

t0−T

∣∣M∗
1(X, t)

∣∣−1 dX
. (49)

To optimize the integral, we have to impose an additional condition on the weighted
average/integral. It is natural to force it to pass precisely through the last historical point.

I(tN , T) = s(tN), (50)
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and solve the latter equation to find the integration limit T = T∗. The sought extrapolation value
for the price s is simply I(tN + δt, T∗). We prefer to take into account the broadest possible region of
integration. Under such conditions, if and when the solution to (50) exists, it is unique. The value of
sN may enter the consideration twice: in the regression parameters and in the optimization condition
(50). To avoid counting twice the last known value sN , one can slightly different definition

I(t, T) =

∫ tN−1+T

t0−T E∗1 (X, t)
∣∣M∗

1(X, t)
∣∣−1 dX∫ tN−1+T

t0−T

∣∣M∗
1(X, t)

∣∣−1 dX
. (51)

As an additional condition to find origin, one can also consider the minimal difference requirement
on the lowest order predictors, as first suggested in [49]. Such approach is analogous to the technique
discussed in Section 2.2. However, instead of a critical index, we calculate relaxation time. To this end,
one has to construct the second order super-exponential approximant

E∗2 (t, r) = A(r) exp

(
B(r)(t−r) exp

(
C(r)(t−r)τ(r)

B(r)

)
A(r)

)
,

τ(r) = 1− B(r)2

2A(r)C(r) ,

(52)

and minimize its difference with the simplest exponential approximant in the time of interest tN + δt.
Namely, one has to find all roots of the equation

exp
(

C(r)τ(r)(tN + δt− r)
B(r)

)
= 1, (53)

with respect to real variable r. Corresponding multiplier

M∗
2(t, r) =

1
B(r)

∂E∗2 (t, r)
∂t

,

can be found as well.
The discrete spectrum optimization seems to be the most natural and transparent. Our goal is

to find the approximants and probabilistic distributions in the last available historical point of time
series. Crashes are attributed to the stable solutions with large negative r, meaning that the origin
of time has to be moved to the deep past to explain the crash in near future. Preliminary results of
Gluzman [30] suggest that, in the overwhelming majority of cases, a crash is preceded by similar,
asymmetric probability pattern(s), of the type shown in the figures below. As noted in [51], Kahneman
and Tversky explained that people tend to judge current events by their similarity to memories of
representative events.

There are also additional solutions with multipliers of the order of unity, coming from the region
of moderate r, and it is often possible to find some rather stable upward solution for large positive
r. One can think that, for such stable time series as describing population dynamics, only the region
of moderate r gives relevant solutions, while for time series describing price dynamics all types of
solutions may exist simultaneously.

Within our approach to constructing approximants, one can also try to exploit the second order
terms in regression. Instead of exponential approximants, one should try some other, higher-order
approximants, but with time-translation invariance property. Such approximants are presented below.
They are considered ad hoc, because they can be written in closed form only in special, low-order
situations. It is not feasible to extend them systematically into arbitrary high order. Hence, our interest
in special forms with desired symmetry. Sometimes, it is even not possible to find stable solutions with
a single approximant, but it is still possible with corrected approximants.
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Recall that exponential function can be obtained as the solution to simple linear first-order ODE.
In the search for second-order approximants with time-translation invariance, we turned to some
explicit formulas, emerging in the course of solving some first-order ODE with added nonlinear term
with arbitrary positive power, which generalizes ODE for simple exponential growth. It is known
as Bertalanffy–Richards (BR) growth model [64,65]. Among its solutions in the case of second-order
nonlinear term, there is a celebrated logistic function [64],

L(t) =
1

q2 +
(1−q1q2) exp(−q0t)

q1

,

where q1 is the initial condition. The logistic function is widely used to describe population growth
phenomena and is also known to be the solution to the logistic equation of growth. The logistic
function written in the form L(t, q1), dependent on the initial condition L(0, q1) = q1, with arbitrary
q0, q2, is time-translation invariant. One can also introduce the second-order logistic approximant
which generalizes logistic function [30]. In addition to describing situations with saturation at infinity,
the logistic approximant include also the case of so-called finite-time singularity, which makes it
redundant, since such solutions were axiomatically excluded from the price dynamics [38].

Another solution to the BR model in the case when the nonlinear term has power only slightly
differing from unity, is known as Gompertz function [64],

G(t) = g0 exp(g1 exp(g2t)), (54)

used to describe growth (relaxation, decay) phenomena. However, as we demonstrate in Section 2.1, it
is possible to explain G(t) directly from the resummation technique leading to Formula (16), without
resorting to BR. Relaxation (growth) time behaves exponentially with time. The Gompertz function is
log-time-translation invariant.

One can consider the second order Gompertz approximant. It simply generalizes the Gompertz
function. Namely, one can find Gompertz approximant in the following form

G(t, r) = g0(r) exp(g1(r) exp(g2(r)(t− r))),

g0(r) = A(r)e−g1(r), g1(r) =
B(r)

A(r)g2(r)
, g2(r) =

2A(r)C(r)−B(r)2

A(r)B(r) ,
(55)

with the multiplier

MG(t, r) =
g0(r)g1(r)g2(r)e(g1(r)eg2(r)(t−r)+g2(r)(t−r))

B(r)
.

The Gompertz approximant, of course, is not limited to the situations with saturation at infinity,
as it can also describe very fast decay (growth) at infinity.

With r to be found from some optimization procedure, the return R generated by Gompertz
approximant is time-translation invariant and has a compact form

R(δt) = g1(r) exp(g2(r)(tN − r))(exp(g2(r)δt)− 1).

For small δt, it becomes particularly transparent:

R(δt) ≈ g1(r)g2(r) exp(g2(r)(tN − r))× δt ≡ δt
τ(TN , r)

,

with the pre-factor giving the return per unit time. The inverse return per unit time has the physical
meaning of the effective time for growth (relaxation)

β(t, r)−1 ≡ τ(t, r) = (g1(r)g2(r))
−1 exp (g2(r)(r− t)) ,
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considered at the moment t = TN . Here, we employ the the effective relaxation (growth) time (see
Section 2.1),

τ(t) =
(

d
dt

ln G(t)
)−1

,

and replicate it. We find that the return for Gompertz approximant is solely determined by
relaxation time

S(t, r) =
1

τ(t, r)
,

allowing to express the log return in a compact form

R(δt) = S(tN + δt, r)− S(tN , r).

Thus, the return for Gompertz approximant appears as purely dynamic quantity, not involving
any consent about equilibrium, fundamental value, etc. If relaxation time is found from the data to be
very large as it should be close to equilibrium conditions [66], we have no potential for returns, i.e.,
near-equilibrium yields dull, everyday mundane events that are repetitive and lend themselves to
statistical generalizations [48]. If relaxation time is anticipated to be very short, we have potentially
huge returns. The far-from-equilibrium conditions give rise to unique, historic events [48], or to some
very fast relaxation events/crashes. The latter condition makes real markets fragile [67].

Gompertz approximant can go at infinity faster or slower than exponential, and in some important
examples such differences amounting to a few percent, can be detected. The function g0(r), could be
called a gauge function for the price, expressing arbitrariness of choice of the price unit, as it does
not enter the return. The time-translation invariance of return and gauge invariance for the price are
considered very desirable in price model formulation [38], both properties are pertinent to exponential
and Gompertz approximations for the price temporal dynamics.

We are interested in market prices on a daily level, and consider only significant market price
drops/crashes with magnitude more than 5.5%. Such magnitude is selected to be comparable to the
typical yearly return of Dow Jones Industrial Average index. Typically, a 2% daily move is considered
as big, but not at the times of various turmoils.

It is widely accepted in practical finance that asset price moves in response to unexpected
fundamental information. The information can be identified as well as the tone, positive versus
negative. It is found that news arrival is concentrated among days with large return movements,
positive or negative [68]. Spontaneously emerging narratives, a simple story or easily expressed
explanation of events, might be considered as largely exogenous shocks to the aggregate economy [51].
Simply put, one should analyze what people are talking about in the search for the source of economic
fluctuations. Moreover, as in true epidemics governed by evolutionary biology, mutations in narratives
spring up randomly, and if contagious generate unpredictable changes in the economy [51]. As noted
by Harmon et al. [69], panic on the market can be due to external shocks or self-generated nervousness.

It is argued [70] that cause and effect can be cleanly disentangled only in the case of exogenous
shocks, as it is only needed to select some interesting set of shocks to which price is likely to respond.
Effects of positive and negative oil price shocks on the stock price need not be symmetric. In
macroeconomics, it is even accepted that only positive changes in the price of oil have important
effects. Periods dominated by oil price shocks are reasonably easy to identify, and they can indeed be
considered as exogenous as well as, often, strong, although difficult to model. Oil price shocks are the
leading alternative to monetary shocks and may very well have similar effects [70].

Our goal here is not to forecast/timing the crash, but to study the crash as a particular
phenomenon created by spontaneous, time-translation symmetry breaking/restoration. In essence, we
ask the following questions:

1. What probabilistic pattern would an observer see the day before crash,
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2. What would be the market reaction (expressed through the index), if we are aware that a Swan of
some color has already arrived?

In our opinion, in the presence of a Swan, understood as a shock of unspecified strength, the
problem simplifies, because of a reduced set of outcomes, dominated by the most extreme, very
stable downward solution. Consider that, in natural sciences, most efforts are dedicated to creating a
correct experimental setup. Studying reaction to shock is the only current viable substitute for clean
experimental conditions.

3.3. Examples

Consider as example a 7.72% drop in the value of Shanghai Composite index related to the first
COVID-19 crash, which occurred on 3 February 2020. With N = 15, as recommended in [38], the
following data points are available,

s0 = 3085.2, s1 = 3083.79, s2 = 3083.41, s3 = 3104.8, s4 = 3066.89, s5 = 3094.88,

s6 = 3092.29, s7 = 3115.57, s8 = 3106.82, s9 = 3090.04, s10 = 3074.08, s11 = 3075.5,

s12 = 3095.79, s13 = 3052.14, s14 = 3060.75, s15 = 2976.53.

The value of s16 = 2746.61 is to be “predicted”. From the whole set of daily data, we employ
only several values of the closing price. Such coarse-grained description of the time series may be
justified if one is interested in the phenomenon not dependent on the fine details, such as crash. In the
examples presented below, we keep the number of data points per quartic regression parameter in the
range 3–4. Lower order calculations can be found in [30]. Here, we show only the quartic regression

s0,4(t) = a4 + b4t + c4t2 + d4t3 + f4t4,

and based on it optimize approximants and multipliers. It can be replicated as follows:

sr,4(t) = A4(r) + B4(r)(t− r) + C4(r)(t− r)2 + D4(r)(t− r)3 + F4(r)(t− r)4,

with
A4(r) = a4 + b4r + c4r2 + d4r3 + f4r4, B4(r) = b4 + 2c4r + 3d4r2 + 4 f4r3,

C4(r) = c4 + 3d4r + 6 f4r2, D4(r) = d4 + 4 f4r, F4(r) = f4.

With such transformed parameters, we have sr,4(t) ≡ s0,4(t).
Within the data shown in Figure 2, one can discern competing trends. First, let us show the

data compared to the regression. There are two obvious trends, “up” and “down”, as can be seen in
Figure 2.
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Figure 2. COVID-19, Shanghai Composite, 3 February 2020. Fourth-order regression is shown against
data points.
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Our analysis indeed finds highly probable solutions of both types, with the downward trend
developing into fast exponential decay. Let us analyze the typical approximant and multiplier
dependencies on origin, for fixed time t = tN . The inverse multiplier is shown as a function of
the origin r in Figure 3 as well as the first-order approximant.
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Figure 3. Shanghai Composite, 3 February 2020. Calculations with fourth-order regression. The inverse
multiplier is shown as a function of the origin r at t = TN , N = 15. The first-order approximant is
shown in a separate figure. Level s15 is shown as well, with dot-dashed line.

There are two uneven humps in the probabilistic inverse multiplier, suggesting that large
negative and large positive r dominate, with more weight put on the negative region. Such
dependence on r manifests the time-translation invariance violation, which should be lifted by finding
appropriate origin. More details on the example can be found in [30]. Below, we discuss only the
fourth-order calculations.

The results of extrapolation by method expressed by Equation (47) is given as

E∗1 (16) = 2804.32, M∗
1(16) = 0.0113494,

with relative percentage error of 2.1%. There is also a less stable “upward” solution

E∗1 (16) = 3211.95, M∗
1(16) = 0.0363796,

in agreement with intuitive picture based on naive data analysis. There are also two additional
solutions in between with multipliers close to 1. They do not affect averages much, but in real time the
metastable solutions, similar to the metastable phases in condensed matter, may show up under special
conditions. Metastable solutions when realized violate the principle of maximal stability over the
observation timescale, complicating or even negating a unique forecast, based on weighted averages
or the most stable solution.

Calculation of the discrete spectrum can be extended to different approximants. For instance, one
can also construct the second-order Gompertz approximant introduced above, and solve the following
equation on origins:

G(tN , r) = s(tN) . (56)

The most stable Gompertz approximant gives the most accurate estimate

G(16) = 2746.05, MG(16) = 0.001539,

with a very small error of 0.02%. There are altogether five solutions to (56), in the discrete spectrum, as
shown in Figure 1.

Thus, the Gompertz approximant of second order with log-time-translation invariance gives
better results than symmetric exponential approximant E∗1 . Although Taleb’s Black Swan did seem
to materialize, the short-time stock market response was not different than in somewhat comparable
instances of crashes brought up in [30], making it look like a Grey Swan. Indeed, it is plausible that the
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holiday season in China played the role here. It also helped our cause, effectively pinpointing the day
for crash. One can think that all solutions, except the most extreme downward solution, were simply
not considered.

Consider several most spectacular examples of crashes from the tumultuous spring and summer
of 2020, caused by combination of economic causes such as oil anti-shock and COVID-19 related,
enormous disruptions—a rare constellation of Two Swans of Gray coming together! There was a
month long delay until DJ crashed. All three conspicuous crashes from March 2020 can be considered
as an exponentially accelerated decay.

Black Monday I. Drop in DJ Industrial of 7.79% was caused by the shock from coronavirus, to
the value of s19 = 23,851, on 9 March 2020 (Black Monday I), as demonstrated in Figure 4. The data
and the components defining spectrum of scenarios are presented.

Again, there are two asymmetric humps in the probabilistic space, and the region of large negative
r dominates. The extrapolation by the most stable solution results in the following result,

E∗1 (19) = 24257.9, M∗
1(19) = 0.00629791,

of 1.7%. There is also less stable by order of magnitude “upward” solution, as well as four additional
solutions in between with multipliers of the order of unity. Using the same methodology, we obtain
Gompertz approximant, and find that it gives rather good extrapolation

G(19) = 23669.1, MG(19) = 0.000805813,

with a very small multiplier, and shows accuracy of 0.76%. There is also an upward solution, by order
of magnitude less stable. Averaging the two solutions improves the estimate to the error of only 0.52%.

Black Thursday. Drop of 9.99%, to the level of s16 = 21,200.6 on 12 March 2020 (Black Thursday),
is also believed to be caused by the coronavirus-shock. In this case, we use the standard dataset with
N = 15 and the third-order regression to see the typical pattern shown in Figure 5.

There is again a marked asymmetry on the graphs for the components in the probabilistic space,
as the region of large negative r prevails. The extrapolation by the most stable solution gives

E∗1 (16) = 22, 237.1, M∗
1(16) = 0.0371606,

bringing the numerical error 4.89%. There is also a much less stable “upward” solution. Using the
same methodology for finding the discrete spectrum, we obtain Gompertz approximant, and find that
it gives rather good result

G(16) = 21, 800.2, MG(16) = 0.00997846,

with a very small multiplier and an accuracy of 2.83%. There is also an additional solution, even
slightly more stable, leading to a super-fast decay almost to zero. Such scenario, obviously, is absent in
calculations with pure exponential approximants.
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Figure 4. Black Monday I. Pattern in DJ Industrial index preceding 9 March 2020 Non-monotonous
decay pattern reminds of a hockey stick. Fourth-order regression is shown against data points. The
inverse multiplier is shown as a function of the origin r at t = TN , N = 18. The first-order approximant
is shown in separate figures. Level s18 = 25,864.8 is shown with a dot-dashed line.
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Figure 5. Black Thursday. Pattern in DJ Industrial index preceding 12 March 2020. Monotonous decay
pattern. Third-order regression is shown against data points. The inverse multiplier is shown as a
function of the origin r at t = TN , N = 15. The first-order approximant is shown in separate figures.
Level s15 = 23,553.2 is shown with a dot-dashed line.

Black Monday II. Consider also the massive crash of 12.93%, to the value of s16 = 20,188.5 on 16
March 2020 (Black Monday II), caused also by oil anti-shock. Because the USA is the largest producer
of oil, the big drop in oil prices (anti-shock) caused an effect typically attributed to oil shock. In this
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case, we again use the dataset of standard length with N = 15, to see the typical pattern shown in
Figure 6. It demonstrates the data, approximant and multiplier.
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Figure 6. Black Monday II. Pattern in DJ Industrial index preceding 16 March 2020. Non-monotonous
decay pattern. Fourth-order regression is shown against data points. The inverse multiplier is shown as
a function of the origin r at t = TN , N = 15. The first-order approximant is shown in separate figures.
Level s15 = 23,185.6 is shown with a dot-dashed line.

There are two typical asymmetric humps in the probabilistic space, and the region of large
negative r dominates. The extrapolation by the most stable solution gives the following values,

E∗1 (16) = 20, 810.7, M∗
1(16) = 0.00777882,

bringing the numerical error of 3.08%. There is also much less stable “upward” solution,

E∗1 (16) = 27, 387, M∗
1(16) = 0.058839,

as well two additional solutions in between, with multipliers of the order of unity. Using the same
optimization methodology, we obtain Gompertz approximant, and find extrapolations

G(16) = 19, 987.4, MG(16) = 0.00100679,

with accuracy of 0.996%.
Fear of second wave of coronavirus.Bubble configuration corresponds to the price (index) going

up monotonously, with rapid change of direction at some point, during the time scale of order of
the time-series resolution. The growth finally becomes unsustainable. The crash of 11 June 2020 had
started overnight. The index dropped to s17 = 25,128.2, corresponding to a mini-crash of 6.9%. For the
the dataset of length N = 16, we observe almost a perfect bubble, as shown in Figure 7. It demonstrates
the data, approximant and multiplier as functions of origin.
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Figure 7. Temporal bubble in Dow Jones Industrial index, preceding mini-crash of 11 June 2020.
Fourth-order regression is shown against data points. The first-order approximant and multiplier are
shown in separate figures. Level s16 = 26,990 is shown with a dot-dashed line.

There is also a marked asymmetry in the probabilistic space, and the region of large negative r
dominates. In the current case, the pattern appeared before the very day of crash and evolved into the
mini-crash due to the overnight shock.

Extrapolation by the most stable solution results in

E∗1 (17) = 25, 641, M∗
1(17) = 0.0124981,

bringing the error of 2.04%. There is also less stable “upward” solution,

E∗1 (17) = 28, 814.7, M∗
1(17) = 0.0435021,

as well two additional solutions in between with multipliers of the order of unity.
Similar calculations with Gompertz approximant, give better estimate for the crash,

G(17) = 25, 189.9, MG(17) = 0.00169455,

with error of just 0.25%. One can think that fear of a second coronavirus wave leads to self-generated
nervousness, leading to panic [69], having the net result of a shock. Bubbles are quite rare patterns in
DJ index and more typical to Shanghai Composite [30].

3.4. Comments

Many more examples of various notable crashes can be found in [30]. They were selected to
exemplify market reaction to various shocks, including 9/11, Fukushima disaster, US entrance to the
Great War, death of Chinese leader Deng Xiaoping, Friday the 13th, flash crash, etc. and to demonstrate
similarity of early panics with coronavirus recession. Despite their different “geometry”, different
temporal patterns preceding crashes exhibit probabilistic distributions analogous in their main features,
with significant difference only in the region of moderate r, but with analogous structure for large
negative and positive origins. Crashes are attributed to the stable solutions with large negative r,
meaning that the origin of time has to be moved to the deep past to explain the crash in the near future.
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Preliminary results of Gluzman [30] suggest that, in the overwhelming majority of cases, a crash is
preceded by similar, asymmetric probability pattern(s), of the type shown in figures of this section.

Exponential and Gompertz approximants are found to work rather well, despite (or possibly
due to) their simplicity. Unlike all other approximants, they give very clear graphic snapshots of
the probabilistic space. Besides, their application is grounded in the exponential form of any future
contract, with a transparent interpretation to the renormalized trend parameter β(t, r), as expected
return per unit time, equivalent to inverse relaxation (growth) time.

Our theory explains or at least gives a hint why making predictions about the future is so
notoriously difficult. Instead of a unique, ironclad solution to the problem, we advocate finding
all solutions and interpreting them as bounds, as plainly illustrated in Figure 1. Bounds are given
different strengths, a priori determined by multipliers. Reality is not completely confined to reaching
the most stable bound, but various metastable bounds can be realized as well, blurring the picture and
complicating emergent time dynamics.

After applying some arguments concerned with broken/restored time-invariance, we come
to the exponential solution with explicit finite time scale, which was only implicit in initial
parameterization with polynomial regressions. In condensed matter physics and field theory, there is a
key Meissner–Higgs mechanism for generating mass or, equivalently, for creating some typical space
scale from original fields through broken symmetry technique (see, e.g., [71]). Relatively recently, the
concept was confirmed, culminating in the discovery of the Higgs boson. Our approach to market
price evolution is by all means inspired by the Meissner–Higgs effect. However, instead of a mass of
mind-boggling elementary particles, we have a mundane, but highly sought after return per unit time.
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Appendix A. Critical Index Calculations with Padé and DLog Pad’e Techniques

For low Reynolds numbers R, the flow of a viscous fluid through a channel is described by the
well-known Darcy’s law. The Darcy law describes a linear relation between the average pressure
gradient ∇p and the average velocity u along the pressure gradient [72]. It is given as follows,

|∇p| = η

K
u, (A1)

where K stands for the permeability and η is the dynamic viscosity of the fluid. The definition of
permeability simply characterizes the amount of viscous fluid flow through a porous medium per
unit time and unit area when a unit macroscopic pressure gradient is applied to the system [12]. The
classical Poiseuille flow is a classic example, which yields the Darcy’s law. It unfolds in the channel
bounded by two parallel planes separated by a distance 2b, generated by an average pressure gradient
∇p. The flow profile is known to be parabolic when the Reynolds number is small. When the channel
is “wavy”, i.e., not straight and when the Reynolds number is not negligible, additional terms appear
in this relation.

Darcy law holds in the interesting cases of the Stokes flow through a channel with two-dimensional
and three-dimensional wavy walls. The enclosing wavy walls are described by the analytical
expressions, including the amplitude of waviness. The amplitude is proportional to the mean clearance
of the channel and is multiplied by the small dimensionless parameter ε.

We briefly discuss below the main steps of the derivation leading to the expansions for
permeability, as obtained by Mityushev, Malevich and Adler. In Ref. [35], a general asymptotic
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analysis was applied to a Stokes flow in curvilinear three-dimensional channel. It is bounded by walls
of rather general shape described as follows

z = S
+
(x1, x2) ≡ b

(
1 + εT(x1, x2)

)
, (A2)

z = S
−
(x1, x2) ≡ −b

(
1 + εB(x1, x2)

)
. (A3)

The formally small dimensionless parameter ε ≥ 0 is considered. It is introduced in such a way
to allow the general shape to be recast as the geometric perturbation around the straight channel. The
expansion then is accomplished around the straight channel considered as zero-approximation. Such
approach builds on an original work by Pozrikidis [73].

In [12,35], arbitrary profiles S±(x1, x2) were explored. It was assumed only that they satisfy some
natural conditions, such as

|T(x1, x2)| � 1 and |B(x1, x2)| � 1. (A4)

The infinite differentiability is assumed for the functions T(x1, x2) and B(x1, x2). Such assumption
was made in order to calculate velocities and permeability, and to solve an emerging cascade of
boundary value problems for the Stokes equations in a straight channel [35]. Influence of the curvilinear
edges on flow is of significant theoretical interest. It illustrates the mechanism of viscous flow under
different geometrical conditions.

To make our paper self-consistent, we bring below some general information about the
mathematical formulation of the problem and some permeability definitions. Let u = u(x1, x2, x3) be
the velocity vector, and p = p(x1, x2, x3) the pressure. The flow of a viscous fluid through a channel is
considered under condition that the Reynolds number is small and the Stokes flow approximation is
valid. The fluid is governed by the Stokes equations. The solution u of the Stokes equations is sought
within the class of functions periodic with period 2L both in variable x1 and in variable x2.

Let also u be the x-component of u. Let also an overall external gradient pressure ∇p be applied
along the x1-direction. It corresponds to a constant jump 2L∇p along the x1-axis of the periodic cell.
Then, the permeability of the channel in the x1-direction Kx1(ε) is defined as the result of integration,

Kx1(ε) = −
μ

∇p |τ|
L∫

−L

L∫
−L

dx1 dx2

S
+
(x1,x2)∫

S−(x1,x2)

u(x1, x2, x3) dx3 . (A5)

Here, |τ| stands for the volume of the unit cell Q of the channel. The sought Kx1(ε) in (A5) is
expressed explicitly as a function in ε. More precisely, we are interested in the ratio K = K(ε) of the
dimensional permeability for the curvilinear channel and permeability of the Poiseuille flow.

Most important for our methodology, the formulae of Mityushev, Malevich and Adler [35]
determine the coefficients of a Taylor series expansion for the permeability

K(ε) =
∞

∑
n=0

cnεn,

with the normalization with respect to the dimensional permeability for the of the Poiseuille flow.
In practical computations, K(ε) is approximated by means of the truncation, leading to the Taylor
polynomial of the order k

Kk(ε) =
k

∑
n=0

cnεn. (A6)

The domain of application of this formula appears to be restricted. The corresponding Taylor
series are divergent for larger ε.
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Appendix A.1. Symmetric Sinusoidal Two-Dimensional Channel: Walls Can Touch

Mityushev, Malevich and Adler [35] considered the following bounded two-dimensional channel

z = b(1 + ε cos x) , z = −b(1 + ε cos x). (A7)

The expansion for permeability was found up to O(ε32), and for b = 0.5. This example is
popular among the researchers, as is documented in [35]. The following truncated polynomial for the
permeability as the function of “waviness” parameter ε was presented,

K30(ε) =

1− 3.14963ε2 + 4.08109ε4 − 3.48479ε6 + 2.93797ε8 − 2.56771ε10+

2.21983ε12 − 1.93018ε14 + 1.67294ε16 − 1.45302ε18 + 1.26017ε20−
1.09411ε22 + 0.949113ε24 − 0.823912ε26 + 0.714804ε28 − 0.620463ε30

+O(ε32).

(A8)

On the other hand, for larger ε, a lubrication approximation Kl was discussed by Adler [72]. It is
motivated by the solution in the case of two cylinders of different radii that are almost in contact with
one another along a line. As ε → εc = 1, we arrive to the following power-law

Kl � 8
√

2
√

b4(ε− 1)5/2

9π
. (A9)

It has the general critical form, with the critical index for permeability κ = 5/2. The critical
amplitude can be extracted as well, so that A = 8

√
2b2

9π . In the case under consideration, we calculate
A = 0.100035.

The reasons for failure of lubrication approximation are explained in [35,72], as well as in [12]. In
a nutshell, the main assumption of the lubrication approximation is that the velocity has a parabolic
profile. Even for the plane channels [35], the lubrication approximation gives correct results only for
channels in which the mean surface is sufficiently close to a plane and for small value of ε.

In what follows, we completely avoid the lubrication approximation by following the approach
of Gluzman [12] (Chapter 7). The technique of approximants allows approaching the critical region,
when the walls nearly touch, only based on the expansion (A8).

As an input, we have the polynomial approximation (A8) of the function K(ε). We intend to to
calculate the critical index and amplitude(s) of the asymptotically equivalent approximants in the
vicinity of the threshold ε = εc = 1. When such extrapolation problem is solved, one can proceed with
an interpolation problem. In the latter case, assuming that the critical behavior is known in advance,
one can derive the compact formula for all ε (see Chapter 7, [12]).

Let us calculate the index and amplitude for the critical behavior written in general form

K(ε) � A(εc − ε)κ , as ε → εc − 0 , (A10)

with unknown index and amplitude.
Let us first apply the transformation,

z =
ε

1− ε
⇔ ε =

z
z + 1

,

to the series (A8). The transformation makes technical application of the different approximants more
convenient.
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To the transformed series M1(z), let us apply the DLog transformation and obtain the transformed
series M(z). In terms of M(z) one can readily obtain the sequence of Padé approximations κn for the
critical index κ. Namely, we obtain the sequence of values

κn = − lim
z→∞

(zPadeApproximant[M[z], n, n + 1]) , (A11)

as described in Section 2. The approximations for the critical index generated by the sequence of Padé
approximants, converge nicely to the value 5/2, as shown below,

κ1 = 2.57972, κ2 = 2.30995, κ3 = 2.47451, κ4 = 2.49689,

κ5 = 2.4959, κ6 = 2.49791, κ7 = 2.49923, κ8 = 2.50113,

κ9 = 2.50028,κ10 = 2.49783,κ11 = 2.49778,κ12 = 2.49829,κ13 = 2.49836.

This result well agrees with estimates by the optimization technique of Section 2.3.
If Bn(z) = PadeApproximant[M[z], n, n + 1], then one can also find the approximation

for permeability

K∗n(ε) = exp
(∫ ε

εc−ε

0
Bn(z) dz

)
, (A12)

and compute the corresponding amplitude

An = lim
ε→εc

(εc − ε)−κn K∗n(ε). (A13)

The typical value of amplitude could be found as A9 = 3.7758. It appears to be by order of
magnitude larger than the value deduced from the lubrication approximation. Now, let us fix the
critical index to a value of 5/2, obtained from the extrapolation procedure. Now, one can calculate A
using the standard Padé technique, finding the value of 3.77188. The latter result turns out to be very
close to the value just found above from the extrapolation.

It was illustrated by Gluzman [12] (Chapter 7) how the lubrication approximation approximation
breaks down even in a close vicinity of εc. The truncated polynomial is applicable only for small and
moderately large ε, breaking down for larger ε in the vicinity of the critical point. But the final formula
derived by means of factor approximant is qualitatively correct for all ε. Obviously, the standard Padé
approximants are not able to capture the non-trivial power-law in the vicinity of critical point εc.

Appendix A.2. Symmetric Sinusoidal Two-Dimensional Channel: Example 2

Let us again consider the channel bounded by the surfaces (A7), but with different parameter,
b = 0.25. The truncated polynomial K(ε) was obtained by Mityushev, Malevich and Adler [35] as well,

K(ε) =
1− 3.03748ε2 + 3.54570ε4 − 2.33505ε6 + 1.35447ε8 − 0.83303ε10

+0.49762ε12 − 0.30350ε14 + 0.18185ε16 − 0.11083ε18 + 0.06636ε20

−0.04051ε22 + 0.02419ε260.00880ε28 − 0.00544ε30+

O(ε32).

(A14)

Again, as in the previous example, we follow Chapter 7 from the book [12], where the case was
researched in great detail. Using Formula (A11), we found an excellent convergence in the sequence of
estimates for the index,

κ1 = 2.64456, κ2 = 2.41346, κ3 = 2.49488, κ4 = 2.49992,

κ5 = 2.49991, κ6 = 2.50026, κ7 = 2.50068, κ8 = 2.50087,
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κ9 = 2.50086, κ10 = 2.50063, κ11 = 2.50063, κ12 = 2.50086,

κ13 = 2.50087, κ14 = 2.50068, κ15 = 2.50026,

leading to the same value for the index as above, κ = 5/2. This result agrees with estimates by the
optimization technique of Section 2.3. Clearly, the standard Padé technique fails.

The value of amplitude is estimated as well, as A15 = 3.77362. Both amplitude and index appear
to be independent on the parameter b, suggesting a universal regime in the vicinity of εc.

Interpolating with the known critical index, one can calculate the amplitude A, using standard
Padé technique, finding again the very close value of A ≈ 3.77316. As in the previous example, the
lubrication approximation approximation breaks down even in a close vicinity of εc. The truncated
polynomial is applicable only for small and moderately large ε, breaking down for larger ε in the
vicinity of the critical point. However, the final formula derived by means of factor approximant is
qualitatively correct for all ε (for more details, see Chapter 7, [12]).

The critical index, amplitude and overall behavior of permeability in the vicinity of εc, practically
do not depend on the parameter b [12].

Appendix A.3. Parallel Sinusoidal Two-Dimensional Channel. Walls Can Not Touch

Let us proceed with the case principally different from the two cases just studied. Consider the
channel bounded by the surfaces

z = b(1 + ε cos x) , z = −b(1− ε cos x) , (A15)

with b = 0.5 [35]. It is not possible for the walls to touch, and permeability remains finite but
expected to decay as a power-law as ε becomes large. Instead of a critical transition from permeable to
non-permeable phase, we have a non-critical transition, or crossover, as defined in [15]. The crossover
is from high to low permeability and unravels with increasing parameter ε. The crossover can still be
characterized by the power-law, as one can study corresponding critical index at large ε. Eddies are not
expected in such channels even for very large ε [35]. However, for large b, eddies are not excluded [35].

The truncated series expansion for the permeability were calculated up to O(ε32),

K30(ε) =

1− 2.53686×10−1ε2 + 4.28907×10−2ε4 − 5.46188×10−3ε6

+4.54695×10−4ε8 + 9.0656×10−6ε10 − 1.41572×10−5ε12 + 3.76584×10−6ε14

−6.72021×10−7ε16 + 7.58331×10−8ε18 + 2.34495×10−9ε20 − 4.59993×10−9ε22

+1.88446×10−9ε24 − 8.6005×10−11ε26 + 3.34156×10−9ε28 + 1.63748×10−9ε30.

(A16)

In this case, it is well understood that the velocity is analytic in ε in the disk |ε| < ε0. Therefore,
one can deduce that (A16) is valid for ε < ε0, where ε0 is of order 1

bχ , with χ being the maximal wave
number of T(x1, x2) and B(x1, x2). However, to extend K(ε) for ε � ε0, it was suggested to apply the
Padé approximation to the polynomial (A16), which agrees with it up to O(ε32).

The Padé approximant of the order (10, 20), denoted here as K10,20(ε), was first developed by
Mityushev, Malevich and Adler [35]. Its explicit expression can also be found in Chapter 7 of the
book [12]. This approximant gives K10,20(ε) ∼ ε−10, as ε → ∞. One can think then that the permeability
decays as

K(ε) � Bεν,

as ε → ∞, with the critical index ν different from the estimate given by K10,20(ε). Calculation of the
critical index ν was accomplished in Chapter 7 of the book [12].

Assuming that the small-variable expansion for the function is given by the truncated sum K30(ε)

(A16), we can find the corresponding small-variable expression for the effective critical exponent which
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equals ε d
dε log K30(ε). By applying to the obtained series, the method of Padé approximants, as in

two previous examples, the sought approximate expression for the critical exponent

νk = lim
ε→∞

εPk,k+1(ε) , (A17)

can be computed dependent on the approximation order k. Application of the method to the truncated
power series (A16), is straightforward and suggests strongly the value of ν = −4, as can be seen in
Figure A1. This result agrees with estimates by the optimization technique of Section 2.3. Clearly, the
Padé estimate mentioned above fails. The amplitude B, corresponding to k = 14, is equal to 44.5872.

2 4 6 8 10 12 14
k

�4.6

�4.4

�4.2

�4.0

�3.8

Νk

Figure A1. The index ν at infinity, is shown dependent on the approximation number k. The values
found by computing (A17) are shown with black circles. They are compared with the most plausible
value of −4 (shown with gray circles).

Assume now that ν = −4 and construct the sequence of Padé approximants Pn,n+4 for the original
truncated polynomial (A16). There is a convergence in the approximation sequence for the amplitude
B. One can safely assume that it converges to the value of 43.2. The sequence is shown in Figure A2.

2 4 6 8 10 12
k

43.5

44.0

44.5

45.0

45.5

Bk

Figure A2. The amplitude B dependence on approximation number k is shown with black circles. One
can see the convergence to the value of 43.2, shown with squares.
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Appendix B. Example of Interpolation with Root Approximants: One-Dimensional Bose Gas

Lieb and Liniger [74] considered a one-dimensional Bose gas with contact interactions. The
ground-state energy of the gas can be written as a weak-coupling expansion, with respect to the
coupling parameter g [75,76], as

E(g) � g− 4
3π

g3/2 +
1.29
2π2 g2 − 0.017201g5/2 , (A18)

as g → 0, In the strong-coupling limit, as g → ∞, we have the following expression [75,76]

E(g) � π2

3
(1− 4

g
+

12
g2 ) . (A19)

In what follows, E∗3+3(g) assimilates the three coefficients from weak and strong coupling
expansions, while E∗4+3(g) is based on all four terms from the weak-coupling side.

The accuracy of the root approximants (17)

E∗3+3(g) = π2

3 5

√√√√√ 385.383
g5 +

⎛⎝ 388.171
g4 +

(
164.914

g3 +

(
37.3454

g2 +
(

8.12698
g +1

)3/2
)5/4

)7/6
⎞⎠9/8

,
(A20)

and

E∗4+3(g) = π2

3 6

√√√√√√ 1267.86
g6 +

⎛⎜⎝ 1548.85
g5 +

⎛⎝ 811.495
g4 +

(
254.699

g3 +

(
45.6531

g2 +
(

8.8658
g +1

)3/2
)5/4

)7/6
⎞⎠9/8

⎞⎟⎠
11/10

,
(A21)

turns out to be good. The approximants are constructed from “right-to-left”. i.e., we self-similarly
connect a known asymptotic expansion at the right boundary of the interval with a known asymptotic
form at the left boundary.

In Table A1, they are compared to the extensive numerical data obtained by Dunjko and Olshanii
EDO [77]. The Padé-estimates, EP, are also presented. The Padé approximant P3,5(

√
g) reads as follows:

P3,5(
√

g) =
g(0.285957g3/2−0.177533g+0.355474

√
g+1)

0.455734g3/2+0.0869206g5/2−0.0539636g2+0.0881093g+0.779887
√

g+1
(A22)

Table A1. Ground-state energy of Lieb-Liniger model, for the varying dimensionless parameter g, in
different approximations: Root approximants E∗3+3(g), E∗4+3(g), numerical data EDO, and the Padé
approximant EP.

g E3+3 E4+3 EDO EP

0.00509427 0.00494169 0.00494163 0.00494165 0.00494136

0.0250691 0.0234269 0.0234247 0.0234254 0.0234125

0.100428 0.0875959 0.0875605 0.0875748 0.0872792

0.49294 0.361757 0.361368 0.361639 0.35512

1.00361 0.640965 0.640137 0.640920 0.622859

1.98395 1.04466 1.04325 1.04474 1.01247

5.122 1.78912 1.78751 1.78888 1.76111

6.02566 1.92249 1.92102 1.92206 1.89836

10.0214 2.31276 2.31188 2.31229 2.30062

20.0175 2.7248 2.72454 2.72458 2.72169

51.4117 3.04855 3.04853 3.04852 3.04825

277.602 3.24297 3.24297 3.24297 3.24927
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It should become completely clear from observing Figure A3 that the problem of interpolation is
neither simple nor superficial. The asymptotic expressions for small and large couplings have little
in common with each other. Although the expansions (A18) and (A19) appear to work only for very
small and very large coupling constants, the deduced approximants work rather well. More examples
of interpolation with various self-similar approximants can be found in [16].

2 4 6 8
g

1

2

3

4

Energy

Figure A3. The interpolation with root approximant (A20) is shown with solid line, while the Padé
approximant is shown with dotted line. The weak- (dashed) and strong-coupling (dot-dashed)
expansions are shown as well.
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Abstract: Variational inequality theory is an effective tool for engineering, economics, transport and
mathematical optimization. Some of the approaches used to resolve variational inequalities usually
involve iterative techniques. In this article, we introduce a new modified viscosity-type extragradient
method to solve monotone variational inequalities problems in real Hilbert space. The result of
the strong convergence of the method is well established without the information of the operator’s
Lipschitz constant. There are proper mathematical studies relating our newly designed method to
the currently state of the art on several practical test problems.

Keywords: projection methods; strong convergence; extragradient method; monotone mapping;
variational inequalities

1. Introduction

Assume that C is a nonempty, closed and convex subset of a real Hilbert space H, and R and
N are the sets of real numbers and natural numbers, respectively. In this paper, we consider the
classical variational inequalities problems [1,2] (in short, VI(F, C)) and the solution set of variational
inequalities problem represent by SVI(F, C). Assume that F is an operator F : H → H and the
variational inequalities problem for an operator F : H→ H is defined in the following way:

Find u∗ ∈ C such that
〈

F(u∗), y− u∗
〉 ≥ 0, ∀ y ∈ C. (1)

The problem (1) is well defined and equivalent to solve the following fixed point problem:

Find a point u∗ ∈ C such that u∗ = PC [u∗ − ζF(u∗)],

for some 0 < ζ < 1
L where L is the Lipschitz constant of the operator F. We assume that the followings

conditions have been satisfied:

(b1) The solution set is represented by SVI(F, C) and it is nonempty;

Axioms 2020, 9, 118; doi:10.3390/axioms9040118 www.mdpi.com/journal/axioms97
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(b2) An operator F : H→ H is monotone—i.e.,〈
F(u1)− F(u2), u1 − u2

〉 ≥ 0, ∀ u1, u2 ∈ C;

(b3) F is Lipschitz continuous if there exists L > 0, such that

‖F(u1)− F(u2)‖ ≤ L‖u1 − u2‖, ∀ u1, u2 ∈ C.

The variational inequalities theory is a useful technique for investigating a large number of
problems in physics, economics, engineering and optimization theory. It was firstly introduced by
Stampacchia [1] in 1964 and also well established that the problem (1) is an important problem in
nonlinear analysis. It is an advantageous mathematical model that puts together several topics of
applied mathematics, such as the network equilibrium problems, the necessary optimality conditions,
the systems of non-linear equations and the complementarity problems [3–7].

The projection method and its modified version methods are crucial for finding the numerical
solutions of variational inequality problems. Many studies have been suggested and researched
different types of projection methods to solve the variational inequalities problem (see for more
details [8–18]) and others, as in [19–28]. The simplistic methodology is the gradient method for which
only one projection on a feasible set is required. A convergence of the method, however, requires strong
monotonicity on F. To prevent the strong monotonicity hypothesis, Korpelevich [8] and Antipin [29]
introduced the following extragradient method.⎧⎪⎨⎪⎩

un ∈ C,
vn = PC [un − ζF(un)],
un+1 = PC [un − ζF(vn)],

for some 0 < ζ < 1
L . The subgradient extragradient algorithm was recently developed by

Censor et al. [10] to resolve problem (1) in real Hilbert space. Their method has the form of⎧⎪⎨⎪⎩
un ∈ C,
vn = PC [un − ζF(un)],
un+1 = PHn [un − ζF(vn)],

(2)

where 0 < ζ < 1
L and Hn = {z ∈ H : 〈un − ζF(un)− vn, z− vn〉 ≤ 0}.

In this article, motivated by the methods in [10,30,31] and the viscosity method [14] we introduce a
new viscosity subgradient–extragradient algorithm to solve variational inequality problems involving
monotone operators in Hilbert space. It is important to note that, our proposed algorithm operates
more effectively than the existing ones. Particularly in comparison to the results of Yang et al. [30],
our algorithm operates efficiently in most situations. Analogously to the results of Yang et al. [30],
proof of the convergence of Algorithm 1, it is not compulsory to have the information of the Lipschitz
constant of the operator F. The proposed algorithm could be seen as a modification of the methods
that are found in [8,10,30,31]. Under mild conditions, a strong convergence theorem was proven to be
associated with the proposed method. Numerical experimental studies have been shown that the new
method considers being more effective than the current ones in [30].

The rest of the article is arranged in the following way: Section 2 provides a few definitions
and basic results that are used throughout the paper. Section 3 contains the main algorithm and
convergence theorem. Section 4 includes the numerical results that illustrate the algorithmic efficacy of
the introduced method.
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Algorithm 1 An Explicit Method for Monotone Variational Inequality Problems

Step 0: Let u0 ∈ C, μ ∈ (0, 1), ζ0 > 0 and a sequence βn ⊂ (0, 1) with βn → 0 and ∑∞
n βn = +∞.

Step 1: Assume that {un} is given and compute

vn = PC [un − ζnF(un)].

If un = vn; STOP. Else, move to Step 2.
Step 2: Create a half-space

Hn = {z ∈ H : 〈un − ζnF(un)− vn, z− vn〉 ≤ 0}.

Step 3:
un+1 = βn f (un) + (1− βn)zn,

while zn = PHn [un − ζnF(vn)].
Step 4: Compute

ζn+1 =

⎧⎨⎩ min
{

ζn, μ‖un−vn‖2+μ‖zn−vn‖2

2
〈

F(un)−F(vn),zn−vn
〉 } if

〈
F(un)− F(vn), zn − vn

〉
> 0,

ζn otherwise.

Set n := n + 1 and return to Step 1.

2. Background

A metric projection PC(u1) for u1 ∈ H onto a closed and convex subset C of H is defined by

PC(u1) = arg min{‖u2 − u1‖ : u2 ∈ C}.

Lemma 1 ([32]; Page 31). For u, v ∈ H and a ∈ R, then the following relationship holds.

(i). ‖au + (1− a)v‖2 = a‖u‖2 + (1− a)‖v‖2 − a(1− a)‖u− v‖2.

(ii). ‖u + v‖2 ≤ ‖u‖2 + 2〈v, u + v〉.

Lemma 2 ([32,33]). Assume C be a nonempty, closed and convex subset of a real Hilbert space H and let
PC : H→ C be a metric projection from H onto C. Then:

(i). Let u1 ∈ C and u2 ∈ H

‖u1 − PC(u2)‖2 + ‖PC(u2)− u2‖2 ≤ ‖u1 − u2‖2.

(ii). u3 = PC(u1) if and only if
〈u1 − u3, u2 − u3〉 ≤ 0, ∀ u2 ∈ C.

(iii). For u2 ∈ C and u1 ∈ H

‖u1 − PC(u1)‖ ≤ ‖u1 − u2‖.

Lemma 3 ([34]). Assume that {χn} is a sequence of non-negative real numbers such that

χn+1 ≤ (1− αn)χn + αnδn, ∀ n ∈ N,

where {αn} ⊂ (0, 1) and {δn} ⊂ R meet with the following criteria:

lim
n→∞

αn = 0,
∞

∑
n=1

αn = ∞, and lim sup
n→∞

δn ≤ 0.
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Then, limn→∞ χn = 0.

Lemma 4 ([35]). Assume that {χn} is a sequence of real numbers such that there is a subsequence {ni} of {n}
such thatχni < χni+1 for all i ∈ N. Then, there is a non decreasing sequence mk ⊂ N such that mk → ∞ as
k → ∞, and the following conditions are fullfilled by all (sufficiently large) numbers k ∈ N:

χmk ≤ χmk+1 and χk ≤ χmk+1 .

In fact, mk = max{j ≤ k : χj ≤ χj+1}.

Lemma 5 ([36]). Assume that C is a nonempty closed convex set in H and an operator F : C → H is monotone
and continuous. Then, u∗ is a solution of the problem (1) if and only if u∗ is a solution of the following problem:

Find x ∈ C such that 〈F(y), y− x〉 ≥ 0, ∀ y ∈ C.

3. Algorithm and Corresponding Strong Convergence Theorem

We provide a method consisting of two convex minimization problems through a viscosity and
an explicit stepsize formula which are being used to enhance the rate of convergence the iterative
sequence and to make the method independent of the Lipschitz constant L. The detailed method is
given below:

Remark 1. Hn is a half-space and so Hn is a closed and convex set in H.

Lemma 6. The sequence {ζn} is decreasing monotonically with a lower bound min
{ μ

L , ζ0
}

and converges to
ζ > 0.

Proof. From the sequence {ζn}, we see that this sequence is monotone and nonincreasing. It is given
that F is Lipschitz-continuous with L > 0. Let

〈
F(un)− F(vn), zn − vn

〉
> 0, such that

μ(‖un − vn‖2 + ‖zn − vn‖2)

2
〈

F(un)− F(vn), zn − vn
〉 ≥ 2μ‖un − vn‖‖zn − vn‖

2‖F(un)− F(vn)‖‖zn − vn‖

≥ 2μ‖un − vn‖‖zn − vn‖
2‖un − vn‖‖zn − vn‖

≥ μ

L
. (3)

The above discussion implies that the sequence {ζn} has a lower bound min
{ μ

L , ζ0
}

. Moreover,
there exists number ζ > 0, such that limn→∞ ζn = ζ.

Lemma 7. Assume that an operator F : C → H satisfies the conditions (b1)–(b3). For each u∗ ∈ SVI(F, C) �=
∅, we have

‖zn − u∗‖2 ≤ ‖un − u∗‖2 −
(

1− μζn

ζn+1

)
‖un − vn‖2 −

(
1− μζn

ζn+1

)
‖zn − vn‖2.

Proof. Let consider the following∥∥zn − u∗
∥∥2

=
∥∥PHn [un − ζnF(vn)]− u∗

∥∥2

=
∥∥PHn [un − ζnF(vn)] + [un − ζnF(vn)]− [un − ζnF(vn)]− u∗

∥∥2

=
∥∥[un − ζnF(vn)]− u∗

∥∥2
+
∥∥PHn [un − ζnF(vn)]− [un − ζnF(vn)]

∥∥2

+ 2
〈

PHn [un − ζnF(vn)]− [un − ζnF(vn)], [un − ζnF(vn)]− u∗
〉
. (4)

100



Axioms 2020, 9, 118

From the assumption that u∗ ∈ SVI(F, C) ⊂ C ⊂ Hn, we have∥∥PHn [un − ζnF(vn)]− [un − ζnF(vn)]
∥∥2

+
〈

PHn [un − ζnF(vn)]− [un − ζnF(vn)], [un − ζnF(vn)]− u∗
〉

=
〈
[un − ζnF(vn)]− PHn [un − ζnF(vn)], u∗ − PHn [un − ζnF(vn)]

〉 ≤ 0, (5)

implies that 〈
PHn [un − ζnF(vn)]− [un − ζnF(vn)], [un − ζnF(vn)]− u∗

〉
≤ −∥∥PHn [un − ζnF(vn)]− [un − ζnF(vn)]

∥∥2. (6)

Now, using the Equation (4) implies that

‖zn − u∗‖2 ≤ ∥∥un − ζnF(vn)− u∗
∥∥2 − ∥∥PHn [un − ζnF(vn)]− [un − ζnF(vn)]

∥∥2

≤ ‖un − u∗‖2 − ‖un − zn‖2 + 2ζn
〈

F(vn), u∗ − zn
〉
. (7)

Given that u∗ is a solution of VI(F, C), we get

〈F(u∗), y− u∗〉 ≥ 0, ∀ y ∈ C. (8)

Due to the monotonicity of F on C, we can obtain

〈F(vn)− F(u∗), vn − u∗〉 ≥ 0, ∀ y ∈ C. (9)

Since vn ∈ C, it follows that
〈F(vn), vn − u∗〉 ≥ 0. (10)

Thus, we have〈
F(vn), u∗ − zn

〉
=
〈

F(vn), u∗ − vn
〉
+
〈

F(vn), vn − zn
〉 ≤ 〈

F(vn), vn − zn
〉
. (11)

From (7) and (11), we get

‖zn − u∗‖2 ≤ ‖un − u∗‖2 − ‖un − zn‖2 + 2ζn
〈

F(vn), vn − zn
〉

= ‖un − u∗‖2 − ‖un − vn + vn − zn‖2 + 2ζn
〈

F(vn), vn − zn
〉

≤ ‖un − u∗‖2 − ‖un − vn‖2 − ‖vn − zn‖2 + 2
〈
un − ζnF(vn)− vn, zn − vn

〉
. (12)

Note that zn = PHn [un − ζnF(vn)] and by the definition of ζn+1, we have

2
〈
un − ζnF(vn)− vn, zn − vn

〉
= 2

〈
un − ζnF(un)− vn, zn − vn

〉
+ 2ζn

〈
F(un)− F(vn), zn − vn

〉
≤ 2ζn

ζn+1
ζn+1

〈
F(un)− F(vn), zn − vn

〉 ≤ ζn

ζn+1

[
μ‖un − vn‖2 + μ‖zn − vn‖2]. (13)

From expression (12) and (13), we obtain

‖zn − u∗‖2

≤ ‖un − u∗‖2 − ‖un − vn‖2 − ‖vn − zn‖2 +
ζn

ζn+1

[
μ‖un − vn‖2 + μ‖zn − vn‖2]

≤ ‖un − u∗‖2 −
(

1− μζn

ζn+1

)
‖un − vn‖2 −

(
1− μζn

ζn+1

)
‖zn − vn‖2. (14)
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Theorem 1. Assume that an operator F : C → H satisfies the conditions (b1)–(b3) and u∗ belongs to solution
set SVI(F, C). Then, the sequences {un}, {vn} and {zn} generated by Algorithm 1 strongly converge to u∗.

Proof. Claim 1: The sequence {un} is bounded in H.

From Lemma 7, we have

‖zn − u∗‖2 ≤ ‖un − u∗‖2 −
(

1− μζn

ζn+1

)
‖un − vn‖2 −

(
1− μζn

ζn+1

)
‖zn − vn‖2. (15)

Since ζn → ζ, then exits a fixed number ε ∈ (0, 1− μ) such that

lim
n→∞

(
1− μζn

ζn+1

)
= 1− μ > ε > 0.

Thus, there is a finite number N1 ∈ N such that(
1− μζn

ζn+1

)
> ε > 0, ∀ n ≥ N1. (16)

Thus, from (15), we obtain

‖zn − u∗‖2 ≤ ‖un − u∗‖2, ∀ n ≥ N1. (17)

Let u∗ ∈ SVI(F, C). By definition of the sequence {un+1} and due to contraction f with constant
ρ ∈ [0, 1) and n ≥ N1, we obtain∥∥un+1 − u∗

∥∥ =
∥∥βn f (un) + (1− βn)zn − u∗

∥∥
=
∥∥βn[ f (un)− u∗] + (1− βn)[zn − u∗]

∥∥
=
∥∥βn[ f (un) + f (u∗)− f (u∗)− u∗] + (1− βn)[zn − u∗]

∥∥
≤ βn

∥∥ f (un)− f (u∗)
∥∥+ βn

∥∥ f (u∗)− u∗
∥∥+ (1− βn)

∥∥zn − u∗
∥∥

≤ βnρ
∥∥un − u∗

∥∥+ βn
∥∥ f (u∗)− u∗

∥∥+ (1− βn)
∥∥zn − u∗

∥∥. (18)

Consider the expressions (17) and (18) and βn ⊂ (0, 1), we have∥∥un+1 − u∗
∥∥ ≤ βnρ

∥∥un − u∗
∥∥+ βn

∥∥ f (u∗)− u∗
∥∥+ (1− βn)

∥∥un − u∗
∥∥

= [1− βn + ρβn]
∥∥un − u∗

∥∥+ βn(1− ρ)

∥∥ f (u∗)− u∗
∥∥

(1− ρ)

≤ max

{∥∥un − u∗
∥∥,

∥∥ f (u∗)− u∗
∥∥

(1− ρ)

}

≤ max

{∥∥uN1 − u∗
∥∥,

∥∥ f (u∗)− u∗
∥∥

(1− ρ)

}
. (19)

Finally, we deduce that the sequence {un} is bounded.

Claim 2: If limn→∞ ‖un − vn‖ = 0, then, as a subsequence, {unk} of {un} such that {unk} ⇀ u∗ ∈
SVI(F, C) as k → ∞.
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The reflexivity of H and the boundedness of {un} imply that there exists a subsequence {unk}
such that {unk}⇀ u∗ ∈ H as k → ∞. It is sufficient to prove that u∗ ∈ SVI(F, C). Due to limn→∞ ‖un−
vn‖ = 0, we also have {vnk}⇀ u∗ as k → ∞. In addition, the fact that

vnk = PC [unk − ζnk F(unk )],

that is equivalent to
〈unk − ζnk F(unk )− vnk , y− vnk 〉 ≤ 0, ∀ y ∈ C.

That is, we have

〈unk − vnk , y− vnk 〉 ≤ ζnk 〈F(unk ), y− vnk 〉, ∀ y ∈ C. (20)

From the monotonicity condition on F, we have

〈F(unk )− F(y), unk − y〉 ≥ 0, ∀ y ∈ C,

that is
〈F(y), y− unk 〉 ≥ 〈F(unk ), y− unk 〉, ∀ y ∈ C. (21)

Combining expressions (20) and (21), we obtain

0 ≤ 〈vnk − unk , y− vnk 〉+ ζnk 〈F(unk ), y− vnk 〉
= 〈vnk − unk , y− vnk 〉+ ζnk 〈F(unk ), y− unk 〉+ ζnk 〈F(unk ), unk − vnk 〉
≤ 〈vnk − unk , y− vnk 〉+ ζnk 〈F(y), y− unk 〉+ ζnk 〈F(unk ), unk − vnk 〉, (22)

for all y ∈ C, since limk→∞ ζnk = ζ > 0 (see Lemma 6) and the sequence {un} is bounded in H.
As limn→∞ ‖un − vn‖ = 0, and pass the limit in (22) as k → ∞, we obtain

〈F(y), y− u∗〉 ≥ 0, ∀y ∈ C. (23)

Apply the well-known Minty Lemma 5, this is what we infer: u∗ ∈ SVI(F, C).
Claim 3: The sequence {un} is strong convergent in H.

The strong convergence of the sequence {un} is as follows. The continuity and monotonicity
of the operator F and the Minty lemma gives that SVI(F, C) is a closed and convex set (see [37,38]
for more details). As mapping f is a contraction, so is PSVI(F,C) ◦ f . By using the Banach contraction
principle to guarantee that an unique element exists, u∗ ∈ SVI(F, C), such that

u∗ = PSVI(F,C)( f (u∗)).

Hence, we have
〈 f (u∗)− u∗, y− u∗〉 ≥ 0, ∀ y ∈ SVI(F, C). (24)
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Now, considering un+1 = βn f (un) + (1− βn)zn, and using Lemma 1 (i) and Lemma 7, we have∥∥un+1 − u∗
∥∥2

=
∥∥βn f (un) + (1− βn)zn − u∗

∥∥2

=
∥∥βn[ f (un)− u∗] + (1− βn)[zn − u∗]

∥∥2

= βn‖ f (un)− u∗‖2 + (1− βn)‖zn − u∗‖2 − βn(1− βn)‖ f (un)− zn‖2

≤ βn‖ f (un)− u∗‖2 + (1− βn)
[
‖un − u∗‖2 −

(
1− μζn

ζn+1

)
‖un − vn‖2

−
(

1− μζn

ζn+1

)
‖zn − vn‖2

]
− βn(1− βn)‖ f (un)− zn‖2

≤ βn‖ f (un)− u∗‖2 + ‖un − u∗‖2 − (1− βn)
(

1− μζn

ζn+1

)[‖zn − vn‖2 + ‖un − vn‖2]. (25)

The remainder of the proof can be divided into two cases:

Case 1: Assume that there is a fixed number N2 ∈ N (N2 ≥ N1) such that

‖un+1 − u∗‖ ≤ ‖un − u∗‖, ∀ n ≥ N2. (26)

Thus, limn→∞ ‖un − u∗‖ exists and let limn→∞ ‖un − u∗‖ = l. By using expression (25), we have

(1− βn)
(

1− μζn

ζn+1

)[‖zn − vn‖2 + ‖un − vn‖2]
≤ βn‖ f (un)− u∗‖2 + ‖un − u∗‖2 − ‖un+1 − u∗‖2. (27)

Due to the existence of limn→∞ ‖un − u∗‖ = l, and βn → 0, we obtain

lim
n→∞

‖un − vn‖ = lim
n→∞

‖zn − vn‖ = 0. (28)

It follows that

lim
n→∞

‖un − zn‖ ≤ lim
n→∞

‖un − vn‖+ lim
n→∞

‖vn − zn‖ = 0. (29)

Hence, we obtain∥∥un+1 − un
∥∥ =

∥∥βn f (un) + (1− βn)zn − un
∥∥

=
∥∥βn[ f (un)− un] + (1− βn)[zn − un]

∥∥
≤ βn

∥∥ f (un)− un
∥∥+ (1− βn)

∥∥zn − un
∥∥→ 0. (30)

The sequence {un} is bounded and implies that the sequences {vn} and {zn} are also bounded.
Thus, we can take a subsequence {unk} of {un} such that {unk} converges weakly to some û ∈ C and

lim sup
n→∞

〈 f (u∗)− u∗, un − u∗〉

= lim sup
k→∞

〈 f (u∗)− u∗, unk − u∗〉 = 〈 f (u∗)− u∗, û− u∗〉 ≤ 0. (31)

We have limn→∞
∥∥un+1 − un

∥∥ = 0. It means that

lim sup
n→∞

〈 f (u∗)− u∗, un+1 − u∗〉

≤ lim sup
k→∞

〈 f (u∗)− u∗, un+1 − un〉+ lim sup
k→∞

〈 f (u∗)− u∗, un − u∗〉 ≤ 0. (32)
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From Lemma 7 and Lemma 1 (ii) (∀ n ≥ N2), we obtain∥∥un+1 − u∗
∥∥2

=
∥∥βn f (un) + (1− βn)zn − u∗

∥∥2

=
∥∥βn[ f (un)− u∗] + (1− βn)[zn − u∗]

∥∥2

≤ (1− βn)
2∥∥zn − u∗

∥∥2
+ 2βn〈 f (un)− u∗, (1− βn)[zn − u∗] + βn[ f (un)− u∗]〉

= (1− βn)
2∥∥zn − u∗

∥∥2
+ 2βn〈 f (un)− f (u∗) + f (u∗)− u∗, un+1 − u∗〉

= (1− βn)
2∥∥zn − u∗

∥∥2
+ 2βn〈 f (un)− f (u∗), un+1 − u∗〉+ 2βn〈 f (u∗)− u∗, un+1 − u∗〉

≤ (1− βn)
2∥∥zn − u∗

∥∥2
+ 2βnρ

∥∥un − u∗
∥∥∥∥un+1 − u∗

∥∥+ 2βn〈 f (u∗)− u∗, un+1 − u∗〉
≤ (1 + β2

n − 2βn)
∥∥un − u∗

∥∥2
+ 2βnρ

∥∥un − u∗
∥∥2

+ 2βn〈 f (u∗)− u∗, un+1 − u∗〉
= (1− 2βn)

∥∥un − u∗
∥∥2

+ β2
n
∥∥un − u∗

∥∥2
+ 2βnρ

∥∥un − u∗
∥∥2

+ 2βn〈 f (u∗)− u∗, un+1 − u∗〉

=
[
1− 2βn(1− ρ)

]∥∥un − u∗
∥∥2

+ 2βn(1− ρ)

[
βn
∥∥un − u∗

∥∥2

2(1− ρ)
+
〈 f (u∗)− u∗, un+1 − u∗〉

1− ρ

]
. (33)

It follows (32) that

lim sup
n→∞

[
βn
∥∥un − u∗

∥∥2

2(1− ρ)
+
〈 f (u∗)− u∗, un+1 − u∗〉

1− ρ

]
≤ 0. (34)

Choose n ≥ N3 ∈ N (N3 ≥ N2) large enough such that 2βn(1− ρ) < 1. Now, by using expressions
(33) and (34) and applying Lemma 3, conclude that

∥∥un − u∗
∥∥→ 0, as n → ∞.

Case 2: Assume that there is a subsequence {ni} of {n} such that

‖uni − u∗‖ ≤ ‖uni+1 − u∗‖, ∀ i ∈ N.

Thus, by Lemma 4 there is a sequence {mk} ⊂ N as {mk} → ∞, such that

‖umk − u∗‖ ≤ ‖umk+1 − u∗‖ and ‖uk − u∗‖ ≤ ‖umk+1 − u∗‖, ∀ k ∈ N. (35)

Similar to case 1 and from (25), we obtain

(1− βmk )
(

1− μζmk

ζmk+1

)[‖zmk − vmk‖2 + ‖umk − vmk‖2]
≤ βmk‖ f (umk )− u∗‖2 + ‖umk − u∗‖2 − ‖umk+1 − u∗‖2. (36)

Due to βmk → 0, and
(

1− μζmk
ζmk+1

)
→ 1− μ, we deduce the following:

lim
n→∞

‖umk − vmk‖ = lim
k→∞

‖zmk − vmk‖ = 0. (37)

It follows that

lim
k→∞

‖umk − zmk‖ ≤ lim
k→∞

‖umk − vmk‖+ lim
k→∞

‖vmk − zmk‖ = 0. (38)

Similar to case 1, we can easily obtain that

lim
k→∞

‖umk+1 − umk‖ = 0, and lim sup
k→∞

〈 f (u∗)− u∗, umk+1 − u∗〉 ≤ 0. (39)
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By using (35) and the same argument as in (33), we have

∥∥umk+1 − u∗
∥∥2

=
[
1− 2βmk (1− ρ)

]∥∥umk − u∗
∥∥2

+ 2βmk (1− ρ)

[
βmk

∥∥umk − u∗
∥∥2

2(1− ρ)
+
〈 f (u∗)− u∗, umk+1 − u∗〉

1− ρ

]

≤ [
1− 2βmk (1− ρ)

]∥∥umk+1 − u∗
∥∥2

+ 2βmk (1− ρ)

[
βmk

∥∥umk − u∗
∥∥2

2(1− ρ)
+
〈 f (u∗)− u∗, umk+1 − u∗〉

1− ρ

]
. (40)

It follows that

∥∥umk+1 − u∗
∥∥2 ≤ βmk

∥∥umk − u∗
∥∥2

2(1− ρ)
+
〈 f (u∗)− u∗, umk+1 − u∗〉

1− ρ
.

(41)

Due to βmk → 0 as k → ∞, and lim supk→∞〈 f (u∗)− u∗, umk+1 − u∗〉 ≤ 0, we obtain

‖umk+1 − u∗‖2 → 0, as k → ∞. (42)

Finally, the inequality

lim
n→∞

‖uk − u∗‖2 ≤ lim
n→∞

‖umk+1 − u∗‖2 ≤ 0. (43)

Consequently, un → u∗. This completes the proof of the theorem.

4. Numerical Illustrations

The experimental results are discussed in this section to illustrate the efficacy of our proposed
Algorithm 1 (m-EgA3) compared to Algorithm 1 (m-EgA1) in [30] and Algorithm 2 (m-EgA2) in [30].

Example 1. Consider the HpHard problem which is taken from [39] and considered by many authors for
numerical tests (see [40–42]), where F : Rm → Rm is an operator defined by F(u) = Mu + q with q ∈ Rm and

M = NNT + B + D,

where N is an m× m matrix, B is an m× m skew–symmetric matrix and D is an m× m positive definite
diagonal matrix. The feasible set is defined by

C = {u ∈ R
m : Qu ≤ b},

where Q is an 100×m matrix and b is a nonnegative vector in Rm. It is clear that F is monotone and Lipschitz
continuous with L = ‖M‖. For q = 0, the solution set of the corresponding variational inequality is VI(C, F) =
{0}. In this experiment, we take the initial point u0 = (1, 1, · · ·, 1) and Dn = ‖un − vn‖ ≤ TOL = 10−3.
Moreover, the control parameters ζ0 = 0.7

L and μ = 0.9 for Algorithm 1 (m-EgA1) in [30]; ζ0 = 0.7
L , μ = 0.9

and βn = 1
30(k+2) for Algorithm 2 (m-EgA2) in [30]; ζ0 = 0.7

L , μ = 0.9, βn = 1
n+4 and f (u) = u

2 for
Algorithm 1 (m-EgA3). The numerical results of all methods have been reported in Figures 1–8 and Table 1.
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Figure 1. Numerical behaviour of Algorithm 1 compared to Algorithm 1 in [30] and Algorithm 2 in [30]
for Example 1, when m = 5.
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Figure 2. Numerical behaviour of Algorithm 1 compared to Algorithm 1 in [30] and Algorithm 2 in [30]
for Example 1, when m = 5.
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Figure 3. Numerical behaviour of Algorithm 1 compared to Algorithm 1 in [30] and Algorithm 2 in [30]
for Example 1, when m = 10.
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Figure 4. Numerical behaviour of Algorithm 1 compared to Algorithm 1 in [30] and Algorithm 2 in [30]
for Example 1, when m = 10.
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Figure 5. Numerical behaviour of Algorithm 1 compared to Algorithm 1 in [30] and Algorithm 2 in [30]
for Example 1, when m = 20.

0 0.5 1 1.5 2 2.5 3 3.5
Elapsed time [sec]

10-3

10-2

10-1

100

101

Figure 6. Numerical behaviour of Algorithm 1 compared to Algorithm 1 in [30] and Algorithm 2 in [30]
for Example 1, when m = 20.
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Figure 7. Numerical behaviour of Algorithm 1 compared to Algorithm 1 in [30] and Algorithm 2 in [30]
for Example 1, when m = 50.
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Figure 8. Numerical behaviour of Algorithm 1 compared to Algorithm 1 in [30] and Algorithm 2 in [30]
for Example 1, when m = 50.

110



Axioms 2020, 9, 118

Table 1. Numerical results numeric values for Figures 1–8.

m-EgA1 [30] m-EgA2 [30] m-EgA3

m Iter. Time Iter. Time Iter. Time

5 59 1.0641 92 1.8107 34 0.8386
10 126 2.2007 137 1.9408 73 1.0267
20 204 3.2879 231 3.3654 83 11.9559
50 297 5.8990 344 5.6944 73 1.2942

Example 2. Assume that H = L2([0, 1]) is a Hilbert space with an inner product

〈u, v〉 =
∫ 1

0
u(t)v(t)dt, ∀ u, v ∈ H,

and the induced norm is

‖u‖ =
√∫ 1

0
|u(t)|2dt.

Let C := {u ∈ L2([0, 1]) : ‖u‖ ≤ 1} be the unit ball and F : C → H is defined by

F(u)(t) =
∫ 1

0

(
u(t)− H(t, s) f (u(s))

)
ds + g(t),

where

H(t, s) =
2tse(t+s)

e
√

e2 − 1
, f (u) = cos(u), g(t) =

2tet

e
√

e2 − 1
.

We can see in [41], that F is Lipschitz-continuous with Lipschitz constant L = 2 and monotone.
Figures 9–11 and Table 2 show the numerical results by taking different initial values u0 and ε = 10−3.
In this experiment, we take the different initial points u0 and Dn = ‖un − vn‖ ≤ TOL = 10−3. Moreover,
the control parameters ζ0 = 0.6

L and μ = 0.45 for Algorithm 1 (m-EgA1) in [30]; ζ0 = 0.6
L , μ = 0.45

and βn = 1
100(k+2) for Algorithm 2 (m-EgA2) in [30]; ζ0 = 0.6

L , μ = 0.45, βn = 1
n+2 and f (u) = u

3 for
Algorithm 1 (m-EgA3).
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Figure 9. Numerical behaviour of Algorithm 1 compared to Algorithm 1 in [30] and Algorithm 2 in [30]
for Example 1, when u0 = t.
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Figure 10. Numerical behaviour of Algorithm 1 compared to Algorithm 1 in [30] and Algorithm 2
in [30] for Example 1, when u0 = sin(t).
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Figure 11. Numerical behaviour of Algorithm 1 compared to Algorithm 1 in [30] and Algorithm 2
in [30] for Example 1, when u0 = cos(t).

Table 2. Numerical comparison values for Figures 1–8.

m-EgA1 [30] m-EgA2 [30] m-EgA3

u0 Iter. Time Iter. Time Iter. Time

t 44 0.0342 72 0.0609 27 0.0390
sin(t) 44 0.0876 72 0.0569 40 0.0569
cos(t) 45 0.0366 72 0.0358 27 0.0358

Example 3. Let F : R2 → R2 is defined by

F

(
u1

u2

)
=

(
u1 + u2 + sin(u1)

−u1 + u2 + sin(u2)

)
, ∀

(
u1

u2

)
∈ R

2

and C is taken as
C = {u = (u1, u1)

T ∈ R
2 : 0 ≤ ui ≤ 10, i = 1, 2}.

This problem was proposed in [43], where F is L-Lipschitz continuous with Lipschitz constant L =
√

10
and monotone. In this experiment, we take the different initial points u0 and Dn = ‖un − vn‖ ≤ TOL.
Moreover, the control parameters ζ0 = 0.7

L and μ = 0.50 for Algorithm 1 (m-EgA1) in [30]; ζ0 = 0.7
L , μ = 0.50

and βn = 1
100(n+2) for Algorithm 2 (m-EgA2) in [30]; ζ0 = 0.7

L , μ = 0.50, βn = 1
100(n+2) and f (u) = u

4 for
Algorithm 1 (m-EgA3). Table 3 reports the numerical results by using different tolerance and initial points.
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Table 3. Numerical behaviour of Algorithm 1 compared to Algorithm 1 in [30] and Algorithm 2 in [30]
for Example 3 by using different initial points u0.

TOL 0.01 0.001 0.0001 0.00001 0.01 0.001 0.0001 0.00001
u0 Iter. Iter. Iter. Iter. Time Time Time Time

Algorithm 1 in [30]
[10, 20]T 29 41 83 277 0.4668 0.6234 1.5395 3.0415

[−10,−10]T 45 57 117 345 0.9234 1.1440 1.7387 3.4382
[10, 20]T 59 71 143 389 1.0806 1.4264 1.8271 3.9269

Algorithm 2 in [30]
[10, 20]T 31 42 87 290 0.4743 0.5981 1.4921 3.2051

[−10,−10]T 45 61 115 360 0.8976 1.2081 1.5891 3.7891
[10, 20]T 69 73 151 407 1.2711 1.3910 2.0810 4.1981

Algorithm 1
[10, 20]T 19 26 49 119 0.2391 0.3871 0.7716 1.6781

[−10,−10]T 25 39 64 123 0.2991 0.5192 0.9981 1.7021
[10, 20]T 31 45 73 189 0.3018 0.7610 1.1012 2.4071
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Abstract: In some applications, one is interested in reconstructing a function f from its Fourier series
coefficients. The problem is that the Fourier series is slowly convergent if the function is non-periodic,
or is non-smooth. In this paper, we suggest a method for deriving high order approximation to f using
a Padé-like method. Namely, we do this by fitting some Fourier coefficients of the approximant to the
given Fourier coefficients of f . Given the Fourier series coefficients of a function on a rectangular
domain in Rd, assuming the function is piecewise smooth, we approximate the function by piecewise
high order spline functions. First, the singularity structure of the function is identified. For example
in the 2D case, we find high accuracy approximation to the curves separating between smooth
segments of f . Secondly, simultaneously we find the approximations of all the different segments of
f . We start by developing and demonstrating a high accuracy algorithm for the 1D case, and we use
this algorithm to step up to the multidimensional case.

Keywords: fourier data; reconstruction; multivariate approximation; piecewise smooth

1. Introduction

Fourier series expansion is a useful tool for representing and approximating functions,
with applications in many areas of applied mathematics. The quality of the approximation depends on
the smoothness of the approximated function and on whether or not it is periodic. For functions that
are not periodic, the convergence rate is slow near the boundaries and the approximation by partial
sums exhibits the Gibbs phenomenon. Several approaches have been used to improve the convergence
rate, mostly for the one-dimensional case. One approach is to filter out the oscillations, as discussed in
several papers [1,2]. Another useful approach is to transform the Fourier series into an expansion in a
different basis. For the univariate case this approach is shown to be very efficient, as shown in [1] using
Gegenbauer polynomials with suitably chosen parameters. Further improvement of this approach is
presented in [3] using Freud polynomials, achieving very good results for univariate functions with
singularities.

An algebraic approach for reconstructing a piecewise smooth univariate function from its first N
Fourier coefficients has been realized by Eckhoff in a series of papers [4–6]. There, the “jumps” are
determined by a corresponding system of linear equations. A full analysis of this approach is presented
by Betankov [7]. Nersessian and Poghosyan [8] have used a rational Padé type approximation strategy
for approximating univariate non-periodic smooth functions. For multiple Fourier series of smooth
non-periodic functions, a convergence acceleration approach was suggested by Levin and Sidi [9]. More
challenging is the case of multivariate functions with discontinuities, i.e., functions that are piecewise
smooth. Here again, the convergence rate is slow, and near the discontinuities, the approximation
exhibits the Gibbs phenomenon. In this paper, we present a Padé-like approach consisting of finding a
piecewise-defined spline whose Fourier coefficients match the given Fourier coefficients.

The main contribution of this paper is demonstrating that this approach can be successfully
applied to the multivariate case. Namely, we present a strategy for approximating both non-periodic
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and non-smooth multivariate functions. We derive the numerical procedures involved and provide
some interesting numerical results. We start by developing and demonstrating a high accuracy
algorithm for the 1D case, and use this algorithm to step up to the multidimensional case.

2. The 1D Case

In this section, we present the main tools for function approximation using its Fourier series
coefficients. We define the basis functions and describe the fitting strategy and develop the computation
algorithm. After dealing with the smooth case we move on to approximate a piecewise smooth function
with a jump singularity.

2.1. Reconstructing Smooth Non-Periodic Functions

Let f ∈ Cm[0, 1], and assume we know the Fourier series expansion of f

f (x) = ∑
n∈Z

f̂ne2πinx. (1)

The series converge pointwise for any x ∈ [0, 1], however, if f is not periodic, the convergence may
be slow, and if f (1) �= f (0) the convergence is not uniform and the Gibbs phenomenon occurs near 0
and near 1. As discussed in [9,10], one can apply convergence acceleration techniques for improving
the convergence rate of the series. Another convergence acceleration approach was suggested by
Gottlieb and Shu [1] using Gegenbauer polynomials. Yet, in both approaches, the convergence rate is
not much improved near 0 and near 1. We suggest an approach in the spirit of Padé approximation.
A Padé approximant is a rational function whose power series agrees as much as possible with the
given power series of f . Here we look for approximations to f whose Fourier coefficients agree with
a subset of the given Fourier coefficients of f . The approximation space can be any favorable linear
approximation space, such as polynomials or trigonometric functions.

We choose to build the approximation using kth order spline functions, represented in the
B-spline basis:

S[k]
d (x) =

Nd

∑
j=1

ajB
[k]
d (x− jd). (2)

B[k]
d (x) is the B-spline of order k with equidistant knots {−kd, ...,−2d,−d, 0}, and Nd = 1/d + k− 1 is

the number of B-splines whose shifts do not vanish in [0, 1]. The advantage of using spline functions
is threefold:

• The locality of the B-spline basis functions.
• A closed form formula for their Fourier coefficients.
• Their approximation power, i.e., if f ∈ Ck[0, 1], there exists a spline S[k]

d such that ‖ f − S[k]
d ‖∞,[0,1] ≤

Cdk.

The B-splines basis functions used in the 1D case are shown in Figure 1. We denote by S ≡ S[k]
d |[0,1]

the restriction of S[k]
d to the interval [0, 1]. We find the coefficients {ai}Nd

i=1 by least-squares fitting,
matching the first M + 1 Fourier coefficients of S to the corresponding M + 1 Fourier coefficients of f .
That is,

{ai}Nd
i=1 = arg min

M

∑
n=0

| f̂n − Ŝn|2. (3)

Notice that it is enough to consider the Fourier coefficients with non-negative indices.
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Figure 1. The B-splines used in Example 1.

We denote by Bi ≡ B[k]
d (· − id)|[0,1] the restriction of B[k]

d (· − id) to the interval [0, 1], and by {B̂i,n}
its Fourier coefficients. The normal equations for the least squares problem (3) induce the linear system
Aa = b for a = {ai}Nd

i=1, where

Ai,j =
M

∑
n=0

[Re(B̂i,n)Re(B̂j,n) + Im(B̂i,n) Im(B̂j,n)], 1 ≤ i, j ≤ Nd, (4)

and

bi =
M

∑
n=0

[Re(B̂i,n)Re( f̂n) + Im(B̂i,n) Im( f̂n)], 1 ≤ i ≤ Nd. (5)

Numerical Example—The Smooth 1D Case

We consider the test function f (x) = x exp(x) + sin(8x), assuming only its Fourier coefficients
are given. We have used only the 20 Fourier coefficients { f̂n}19

n=0, and computed an approximation
using 12th degree splines with equidistant knots’ distance d = 0.1. For this case, the matrix A is
of size 19× 19, and cond(A) = 5.75× 1020. We have employed an iterative refinement algorithm
described below to obtain a high precision solution. The results are shown in the following two
figures. In Figure 2 we see the test function on the left and the approximation error on the right.
Figure 3 presents the graph of log10( f̂n) in blue and the graph of log10( f̂n − Ŝn), showing eight orders
of magnitude reduction in the Fourier coefficients. Notice the matching in the first Fourier coefficients
reflected in the beginning of the red graph.

Remark 1. The powerful iterative refinement method described in [11,12] is as follows:
For solving a system Ax = b, we use some solver, e.g., the Matlab pinv function. We obtain the solution

x(0) = pinv(A)b. Next we compute the residual r(0) = b− Ax(0). In case cond(A) is very large, the residual
will be large. Now we solve again the system with r(0) at the right hand side, and use the solution to correct x(0),
to obtain

x(1) = x(0) + pinv(A)r(0).

We repeat this correction steps a few times, i.e., r(k) = b− Ax(k), and

x(k+1) = x(k) + pinv(A)r(k),

until the resulting residual r(k) is small enough.
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Figure 2. The test function (left) and the spline approximation error (right).
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Figure 3. log10 of the given Fourier coefficients (blue), and of the Fourier coefficients of the
approximation error (red).

2.2. Reconstructing Non-Smooth Univariate Functions

Let f be a piecewise smooth function on [0, 1], defined by combined two pieces f1 ∈ Cm[0, s∗] and
f2 ∈ Cm(s∗, 1], and assume that f2 can be continuously extended to [s∗, 1].

f (x) =

{
f1(x) x ≥ s∗,
f2(x) x < s∗.

(6)

Here again, we assume that all we know about f is its Fourier series expansion. In particular,
we do not know the position s∗ ∈ [0, 1] of the singularity of f . As in the case of a non-periodic function,
the existence of a singularity in [0, 1] significantly influences the Fourier series coefficients and implies
their slow decay. As we demonstrate below, good matching of the Fourier coefficients requires a
good approximation of the singularity location. The approach we suggest here involves finding
approximations to f1 and f2 simultaneously with a high precision identification of s∗.

Let s be an approximation of the singularity location s∗, and let us follow the algorithm
suggested above for the smooth case. The difference here is that now we look for two separate
spline approximations:

S1 ≡ S[k]
d |[0,s](x) =

Nd

∑
i=1

a1iB
[k]
d (x− id)|[0,s] ∼ f1, (7)
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and

S2 ≡ S[k]
d |(s,1](x) =

Nd

∑
i=1

a2iB
[k]
d (x− id)|(s,1] ∼ f2. (8)

The combination S of S1 and S2 constitutes the approximation to f . Here again we aim at
matching the first M + 1 Fourier coefficients of f and of S. Here S depends on the Nd coefficients
{a1i} of S1, the Nd coefficients {a2i} of S2 and on s. Therefore, the minimization process solves for all
these unknowns: [{a1i}Nd

i=1, {a2i}Nd
i=1, s

]
= arg min

M

∑
n=0

| f̂n − Ŝn|2. (9)

The minimization is non-linear with respect to s, and linear with respect to the other
unknowns. Therefore, the minimization problem is actually a one parameter non-linear minimization
problem, the parameter s. Using the approximation power of kth order splines (k ≤ m), and
considering the value of the objective cost function for s = s∗, we can deduce that the minimal
value of ∑M

n=0 | f̂n − Ŝn|2 is O(d2k). We also observe that an ε deviation from s∗ implies a bounded
deviation of the minimizing Fourier coefficients

max
n∈Z

| f̂n − Ŝn| ≤ c1ε + c2dk. (10)

As shown below, these observations can be used for finding a good approximation to s∗.
We denote by B1i ≡ B[k]

d (· − id)|[0,s] the restriction of B[k]
d (· − id) to the interval [0, s], and by

B2i ≡ B[k]
d (· − id)|(s,1] the restriction of B[k]

d (· − id) to the interval (s, 1]. We concatenate these two

sequences of basis functions, {B1i} and {B2i} into one sequence {Bi}2Nd
i=1 , and denote their Fourier

coefficients by {B̂i,n}n∈Z. For a given s, the normal equations for the least squares problem (9) induce
the linear system Aa = b for the splines’ coefficients a = ({a1i}Nd

i=1, {a2i}Nd
i=1), where:

Ai,j =
M

∑
n=0

[Re(B̂i,n)Re(B̂j,n) + Im(B̂i,n) Im(B̂j,n)], 1 ≤ i, j ≤ 2Nd, (11)

and

bi =
M

∑
n=0

[Re(B̂i,n)Re( f̂n) + Im(B̂i,n) Im( f̂n)], 1 ≤ i ≤ 2Nd. (12)

Remark 2. Due to the locality of the B-splines, some of the basis functions {B1i} and {B2i} may be identical 0.
It thus seems better to use only the non-zero basis functions. From our experience, since we use the generalized
inverse approach for solving the system of equations, using all the basis functions gives the same solution.

The generalized inverse approach computes the least-squares solution to a system of linear equations that
lacks a unique solution. It is also called the Moore–Penrose inverse, and is computed by Matlab pinv function.

The above construction can be carried out to the case of several singular points.

2.2.1. Finding s∗

We present the strategy for finding s∗ together with a specific numerical example. We consider a
test function on [0, 1] with a jump discontinuity at s∗ = 0.5:

f (x) =

⎧⎨⎩ f1(x) = sin(5x) x ≥ s∗,
f2(x) = 1

(x−0.5)2+0.5 x < s∗.
(13)

As expected, the Fourier series of f is slowly convergent, and it exhibits the Gibbs phenomenon
near the ends of [0, 1] and near s∗. In Figure 4, on the left, we present the sum of the first 200 terms of
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the Fourier series, computed at 20,000 points in [0, 1]. This sum is not acceptable as an approximation
to f , and yet we can use it to obtain a good initial approximation to s0 ∼ s∗. On the right graph, we plot
the first differences of the values in the left graph. The maximal difference is achieved at a distance of
order 10−4 from s∗.
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Figure 4. A partial Fourier sum (left) and its first differences (right).

Having a good approximation s0 ∼ s∗ is not enough for achieving a good approximation to
f . However, s0 can be used as a starting point for an iterative method leading to a high precision
approximation to s∗. To support this assertion we present the graph in Figure 5, depicting the maximum
norm of the difference between 1000 of the given Fourier coefficients and the corresponding Fourier
coefficients of the approximation S, as a function of s, near s∗ = 0.5. This function is almost linear on
each side of s∗, and simple quasi-Newton iterations converge very fast to s∗. After obtaining a high
accuracy approximation to s∗, we use it for deriving the piecewise spline approximation to f .
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Figure 5. The graph of the error ‖ f̂ − Ŝ‖ as a function of s near s∗ = 0.5.

In the following, we present the numerical results obtained for the test function defined in (13).
We have used only 20 Fourier coefficients of f , and the two approximating functions S1 and S2 are
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splines of order eight, with knots’ distance d = 0.1. Figure 6 depicts the approximation error, showing
that ‖ f − S‖∞ = 5.3× 10−8, and that the Gibbs phenomenon is completely removed. Figure 7 shows
log10 of the absolute values of the given Fourier coefficients of f (in blue), and the corresponding
values for the Fourier coefficients of f − S (in red). The graph shows a reduction of ∼7 orders of
magnitude. These results clearly demonstrate the high effectiveness of the proposed approach.
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Figure 6. The approximation error for the 1D non-smooth case.
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Figure 7. log10 of the given Fourier coefficients (blue), and of the Fourier coefficients of the approximation
error (red).

2.2.2. The 1D Approximation Procedure

Let us sum up the suggested approximation procedure:

(1) Choose the approximation space Π for approximating f1 and f2.
(2) Define the number of Fourier coefficients to be used for building the approximation such that

M + 1 ≥ 2 dim(Π). (14)
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(3) Find first approximation to s∗: Compute a partial Fourier sum and locate maximal first
order difference.

(4) Calculate the first M + 1 Fourier coefficients of the basis functions of Π, truncated at s∗.
(5) Use the above Fourier coefficients to compute the approximation to f1 and f2 by solving the

system of linear equation defined by (11), (12).
(6) Update the approximation to s∗, by performing quasi-Newton iterations to reduce the objective

function in (9).
(7) Go back to (4) to update the approximation.

3. The 2D Case—Non-Periodic and Non-Smooth

3.1. The Smooth 2D Case

Let f ∈ Cm[0, 1]2, and assume we know its Fourier series expansion

f (x, y) = ∑
m∈Z

∑
n∈Z

f̂mne2πimxe2πiny. (15)

Such series are obtained when solving PDE using spectral methods. However, if the function is not
periodic, or, as in the case of hyperbolic equations, the function has a jump discontinuity along some
curve in [0, 1]2, the convergence of the Fourier series is slow. Furthermore, the approximation of f by its
partial sums suffers from the Gibbs phenomenon near the boundaries and near the singularity curve.

We deal with the case of smooth non-periodic 2D functions in the same manner as we did for the
univariate case. We look for a bivariate spline function S whose Fourier coefficients match the Fourier
coefficients of f . As in the univariate case, it is enough to match the coefficients of low frequency terms
in the Fourier series. The technical difference in the 2D case is that we look for a tensor product spline
approximation, using tensor product kth order B-spline basis functions.

S[k]
d (x, y) =

Nd

∑
i=1

Nd

∑
j=1

aijB
[k]
d (x− id)B[k]

d (y− jd). (16)

The system of equations for the B-spline coefficients is the same as the system defined by (4)
and (5) in the univariate case, only here we reshape the unknowns as a vector of N2

d unknowns.

Numerical Example—The Smooth 2D Case

We consider the test function

f (x, y) =
10

1 + 10(x2 + (y− 1)2)
+ sin(10(x− y)),

assuming only its Fourier coefficients are given. We have used only 160 Fourier coefficients,
and constructed an approximation using 10th degree tensor product splines with equidistant knots’
distance d = 0.1 in each direction. For this case, the matrix A is of size 361× 361, and cond(A) =

6.2× 1030. Again, we have employed the iterative refinement algorithm to obtain a high precision
solution (relative error 10−15). Computation time ∼18 s.

In Figure 8 we plot the test function on [0, 1]2. Note that it has high derivatives near (0, 1).
The approximation error f − S[10]

0.1 is shown in Figure 9. To demonstrate the convergence
acceleration of the Fourier series achieved by subtracting the approximation from f , we present
in Figure 10 log10 of the absolute values of the Fourier coefficients of f (in green) and of the Fourier

coefficients of f − S[10]
0.1 (in blue), for frequencies 0 ≤ m, n ≤ 200. The magnitude of the Fourier

coefficients is reduced by a factor of 105, and even more so for the low frequencies due to the matching
strategy used to derive the spline approximation.

124



Axioms 2020, 9, 88

Figure 8. The test function for the smooth 2D case.

Figure 9. The approximation error f − S[10]
0.1 .

Figure 10. log10 of the Fourier coefficients before (green), and after (blue).
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3.2. The Non-Smooth 2D Case

Let Ω1, Ω2 ⊂ [0, 1]2 be open, simply connected domains with the properties

Ω1 ∩Ω2 = ∅, Ω̄1 ∪ Ω̄2 = [0, 1]2.

Let Γ∗ be the curve separating the two domains,

Γ∗ = Ω̄1 ∩ Ω̄,

and assume Γ∗ is a Cm-smooth curve.
Let f be a piecewise smooth function on [0, 1]2, defined by combined two pieces f1 ∈ Cm[Ω1]

and f2 ∈ Cm[Ω2], and assume that each f j can be continuously extended to a function in Cm(Ω̄j),
j = 1, 2. Here again, we assume that all we know about f is its Fourier expansion. In particular, we do
not know the position of the dividing curve separating Ω1 and Ω2. We denote this curve by Γ∗, and
we assume that it is a Cm-smooth curve. As in the case of a non-periodic function, the existence of
a singularity curve in [0, 1]2 significantly influences the Fourier series coefficients and implies their
slow decay. In case of discontinuity of f across Γ∗, partial sums of the Fourier series exhibit the
Gibbs phenomenon near Γ∗. As demonstrated below, a good matching of the Fourier coefficients
requires a good approximation of the singularity location. As in the univariate non-smooth case,
the computation algorithm involves finding approximations to f1 and f2 simultaneously with a high
precision identification of Γ∗.

Evidently, finding a high precision approximation of the singularity curve Γ∗ is more involved than
finding a high precision approximation to the singularity point s∗ in the univariate case. Let DΓ∗(x, y)
be the signed-distance function corresponding to the curve Γ∗:

DΓ∗(x, y) =

{
dist((x, y), Γ∗) (x, y) ∈ Ω1,

−dist((x, y), Γ∗) (x, y) ∈ Ω2.
(17)

In looking for an approximation to Γ∗, we look for an approximation to DΓ∗ . Here again we are
using a tensor product spline approximants, the same set of spline functions described in the previous
section. Since the curve is Cm, it can be shown that one can construct a spline function D̃ of order
k ≤ m, with knots’ distance h, which approximates DΓ∗ near Γ∗ so that the Hausdorff distance between
the zero level set of D̃ and Γ∗ is O(hk).

Let Db̄ be a spline approximation to DΓ∗ , with spline coefficients b̄ = {bij}Nh
i,j=1:

Db̄(x, y) =
Nh

∑
i=1

Nh

∑
j=1

bijB
[k]
h (x− ih)B[k]

h (y− jh). (18)

For a given Db̄ we define the approximation to f similar to the construction in the univariate case
by Equations (7)–(9). We look here for an approximation S to f which is a combination of two bivariate
splines components:

S(x, y) =
Nd

∑
i=1

Nd

∑
j=1

a1ijB
[k]
d (x− id)B[k]

d (y− jd), Db̄(x, y) ≥ 0, (19)

S(x, y) =
Nd

∑
i=1

Nd

∑
j=1

a2ijB
[k]
d (x− id)B[k]

d (y− jd), Db̄(x, y) < 0, (20)

such that (2M + 1)2 Fourier coefficients of f and S are matched in the least-squares sense:
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[{a1ij}Nd
i,j=1, {a2ij}Nd

i,j=1, {bij}Nd
i,j=1

]
= arg min

( M

∑
m,n=−M

| f̂mn − Ŝmn|2
)
. (21)

We denote by B1ij(x, y) the restriction of B[k]
d (x − id)B[k](y − jd) to the domain defined by

Db̄(x, y) ≥ 0, and by B2ij(x, y) the restriction of B[k]
d (x − id)B[k](y − jd) to the domain defined

by Db̄(x, y) < 0. We concatenate these two sequences of basis functions, {B1ij} and {B2ij}
into one sequence {Bij}Nd ,2Nd

i=1,j=1, denoting their Fourier coefficients by {B̂ij,n}n∈Z, and rearranging

them (for each n) in vectors of length 2N2
d , {B̂i,n}2N2

d
i=1,n∈Z. For a given D̄̂b, the normal equations

for the least squares problem (21) induce the linear system Aa = b for the splines’ coefficients
a = ({a1ij}Nd

i,j=1, {a2ij}Nd
i,j=1), where:

Ai,j =
M

∑
m,n=−M

[Re(B̂i,n)Re(B̂j,n) + Im(B̂i,n) Im(B̂j,n)], 1 ≤ i ≤ 2N2
d , (22)

and

bi =
M

∑
m,n=−M

[Re(B̂i,n)Re( f̂n) + Im(B̂i,n) Im( f̂n)], 1 ≤ i ≤ 2N2
d . (23)

For a given choice of b̄ = {bij}, the coefficients {a1ij}Nd
i,j=1, {a2ij}Nd

i,j=1 are obtained by solving a
linear system of equations, and properly rearranging the solution. However, finding the optimal b̄ is a
non-linear problem that requires an iterative process and is much more expensive.

Remark 3. Representing the singularity curve of the approximation S as the zero level set of the bivariate spline
function Db̄ is the way to achieve a smooth control over the approximation. As a result, the objective function
in (21) varies smoothly with respect to the spline coefficients {bij}.

Remark 4. In principle, the above framework is applicable to cases where f is combined of k functions defined
on k disjoint subdomains of [0, 1]2. The implementation, however, is more involved. The main challenge is to
find a good first approximation to the curves separating the subdomains. In this context, for our case of two
subdomains, we further assume for simplicity that the separating curve Γ∗ is bijective.

Here again we choose to demonstrate the whole approximation procedure alongside a specific
numerical example.

3.2.1. The Approximation Procedure—A Numerical Example

Consider a piecewise smooth function on [0, 1]2 with a jump singularity across the curve Γ∗ which
is the quarter circle defined by x2 + y2 = 0.5. The test function is shown in Figure 11 and is defined as

f (x, y) =

{
(x2 + y2 − 0.5) sin(10(x + y)) x2 + y2 ≥ 0.5,

(x2 + y2 − 0.5) sin(10(x + y)) + 2x x2 + y2 < 0.5.
(24)

In the univariate case, in Section 2.2.1, we use the Gibbs phenomenon in order to find an initial
approximation s0 to the singularity location s∗. The same idea, with some modifications to the 2D case,
is applied here. The truncated Fourier sum

f50(x, y) =
50

∑
m,n=−50

f̂mne2πimxe2πiny. (25)

gives an approximation to f , but the approximation suffers from a Gibbs phenomenon near the
boundaries of the domain and near the singularity curve Γ∗. We evaluated f50 on a 400× 400 mesh
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on [0, 1]2, and enhanced the Gibbs effect by applying first order differences along the x-direction.
The results are depicted in Figure 12. The locations of large x-direction differences and of large
y-direction differences within [0, 1]2 indicate the location of Γ∗.

Figure 11. The test function for the 2D non-smooth case.

Figure 12. First order x-direction differences of a truncated Fourier sum—notice the relatively high
values at the boundary and near the singularity curve.

Building the initial approximation Db̄0

Searching along 50 horizontal lines (x-direction) for maximal x-direction differences, and along
50 vertical lines (y-direction) for maximal y direction differences, we have found 72 such maximum
points, which we denote by P0. We display these points (in red) in Figure 13, on top of the curve Γ∗

(in blue). Now we use these points to construct the spline Db̄0
, whose zero level curve is taken as

the initial approximation to Γ∗. To construct Db̄0
we first overlay on [0, 1]2 a net of 11× 11 points, Q0.

These are the green points displayed in Figure 14.
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Figure 13. The singularity curve Γ∗ (blue) and points of maximal first differences of f50.
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Figure 14. The singularity curve Γ∗ (blue) and points of maximal first differences of f50.

To each point in Q0 we assign the value of its distance from the set P0, with a plus sign for points
which are on the right or above P0, and a minus sign for the other points. To each point in P0 we assign
the value zero. The spline function Db̄0

is now defined by the least-squares approximation to the values
at all the points P0 ∪ Q0. We have used here tensor product splines of order 10, on a uniform mesh
with knots’ distance = 0.1. We denote the level curve zero of the resulting Db̄0

as Γ0, and this curve
is depicted in yellow in Figure 14. It seems that Γ0 is already a good approximation to Γ∗ (in blue),
and thus it is a good starting point for achieving the minimization target (21).

Improving the approximation to Γ∗, and building the two approximants

Starting from Db̄0
we use a quasi-Newton method for iterative improvement of the approximation

to Γ∗. The expensive ingredient in the computation procedure is the need to recompute the Fourier
coefficients of the B-splines for any new set of coefficients b̄ of Db̄. We recall that we need (2M + 1)2 of
these coefficients for each B-spline, and we have 2N2

d B-splines. In the numerical example we have
used M = 40 and Nd = 19. To illustrate the issue we present in Figure 15 one of those B-spline whose
support intersects the singularity curve. When the singularity curve is updated, the Fourier coefficients
of this B-spline are recalculated.
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Remark 5. Calculating Fourier coefficients of the B-splines Calculating the Fourier coefficients of the
B-splines is the most costly step in the approximation procedure. For the univariate case the Fourier coefficients of
the B-splines can be computed analytically. For a smooth d-variate function f : [0, 1]d → R, with no singularity
within the unit cube [0, 1]d, piecewise Gauss quadrature may be used to compute the Fourier coefficients with
high precision. The non-smooth multivariate case is more difficult, and more expensive. However, we noticed
that using low precision approximations for the Fourier coefficients of the B-splines is fine. For example, in the
above example, we have employed a simple numerical quadrature combined with fast Fourier transform, and
we obtained the Fourier coefficients with a relative error ∼10−5. Yet the resulting approximation error is small
‖ f − S‖∞ < 5× 10−6, as seen in Figure 18.

Figure 15. One of the tensor product B-splines used for the approximation of f , chopped off by the
singularity curve.

Using one quasi-Newton step we obtained new spline coefficients b̄1 and an improved
approximation Γ1 to Γ∗ as the zero level set of Db̄1

. Stopping the procedure at this point yields
approximation results as shown in the figures below. Figure 16 shows the approximation error f − S
on [0, 1]2 \U, where U is a small neighborhood of Γ∗. Figure 17 shows, in green, log10 of the magnitude
of the giver Fourier coefficients f̂mn and, in blue, log10 of the Fourier coefficients of the difference f − S.
We observe a reduction of three orders of magnitude between the two.

Figure 16. The approximation error with Db̄1
.
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Figure 17. The magnitude reduction of the Fourier coefficients with Db̄1
.

Applying four quasi-Newton iterations took ∼24 min execution time. The approximation of Γ∗

by the zero level set of Db̄4
is now with an error of 10−9. The consequent approximation error to f is

reduced as shown in Figure 18, and the Fourier coefficients of the error are reduced by 5 orders of
magnitude, as shown in Figure 19.

Figure 18. The approximation error with Db̄4
.

Figure 19. The magnitude reduction of the Fourier coefficients with Db̄4
.
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3.2.2. The 2D Approximation Procedure

Let us sum up the suggested approximation procedure:

(1) Choose the approximation space Π1 for approximating f1 and f2 and the approximation space
Π2 for approximating Γ∗.

(2) Define the number of Fourier coefficients to be used for building the approximation such that

(2M + 1)2 ≥ 2 dim(Π1) + dim(Π2). (26)

(3) Find first approximation to Γ∗:

(a) Compute a partial Fourier sum and locate maximal first order differences along horizontal
and vertical lines to find points P0 near Γ∗, with assigned values 0.

(b) Overlay a net of points Q0 as in Figure 14, with assigned signed-distance values.
(c) Compute the least-squares approximation from Π2 to the values at P0 ∪Q0, denote it Db̄0

.

(4) Calculate the first (2M + 1)2 Fourier coefficients of the basis functions of Π1, truncated with
respect to the zero level curve of Db̄0

.
(5) Use the above Fourier coefficients to compute the approximation to f1 and f2 by solving the

system of linear equation defined by (22), (23).
(6) Update Db to improve the approximation to Γ∗, by performing quasi-Newton iterations to reduce

the objective function in (21).
(7) Go back to (4) to update the approximation.

3.2.3. Lower Order Singularities

Let us assume that f (x, y) is a continuous function, and that fx(x, y) is discontinuous across the
singularity curve Γ∗. In this case we cannot use the Gibbs phenomenon effect to approximate the
singularity curve. However, the Fourier coefficients

ĝmn = im f̂mn,

represent a function g that has discontinuity across Γ∗, and the above procedure for approximating Γ∗

can be applied.

3.3. Error Analysis

We consider the non-smooth bivariate case, where f is a combination of two smooth parts,
f1 on Ω1 and f2 on Ω2, separated by a smooth curve Γ∗. Throughout the paper we approximate f
using spline functions. In this section we consider approximations by general approximation spaces.
Let Π1 be the approximation space for approximating the smooth pieces constituting f , and let Π2

be the approximation space used for approximating the singularity curve. The following assumption
characterize and quantify the assumptions about the function f and its singularity curve Γ∗ in terms
the ability to approximate them using the approximation spaces Π1, Π2.

Assumption 1. We assume that Π1 and Π2 are finite dimensional spaces of dimensions N1 and N2 respectively.

Assumption 2. We assume that f1 and f2 are smoothly extendable to [0, 1]2 and dist[0,1]2( f1, Π1) ≤
ε, dist[0,1]2( f2, Π1) ≤ ε.

Assumption 3. For p ∈ Π2, let us denote by Γ0(p) the zero level curve of p within [0, 1]2. we assume there
exists p ∈ Π2 such that

dH(Γ∗, Γ0(p)) ≤ δ,
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where dH denotes the Hausdorff distance.

We look for an approximation S to f which is a combination of two components, p1 ∈ Π1 in Ω̃1

and p2 ∈ Π1 in Ω̃2, separated by Γ0(p), p ∈ Π2, such that (2M + 1)2 Fourier coefficients of f and S are
matched in the least-squares sense:

F(p1, p2, p) =
M

∑
m,n=−M

| f̂mn − Ŝmn|2 → minimum. (27)

Assumption 4. Consider the above function S constructed by a triple (p1, p2, Γ0(p)), p1, p2 ∈ Π1, p ∈ Π2.
We assume that there is a Lipschitz continuous inverse mapping from the (2M + 1)2 Fourier coefficients of S to
the triple (p1, p2, Γ0(p)):

{Ŝmn}M
m,n=−M → (p1, p2, Γ0(p)). (28)

Remark 6. To enable the above property we choose M so that

(2M + 1)2 > 2N1 + N2. (29)

The topology in the space of triples (p1, p2, Γ0(p)) is in terms of the maximum norm for the first two
components and the Hausdorff distance for the third component.

Proposition 1. Let f1, f2, Γ∗, Π1 and Π2 satisfy Assumptions 1, 2, 3 and 4. Then the triple (p∗1, p∗2, p∗)
minimizing (27) provides the following approximation bounds:

‖ f1 − p∗1‖∞,Ω∗1 ≤ C1Mε + C2Mδ, (30)

‖ f2 − p∗2‖∞,Ω∗2 ≤ C1Mε + C2Mδ, (31)

and
dH(Γ∗, Γ0(p∗)) ≤ C3Mε + C4Mδ, (32)

where Ω∗
1 and Ω∗

2 are separated by Γ0(p∗).

Proof. By Assumptions 2, 3 it follows that there exists an approximation S defined as above by a triple
( p̄1, p̄2, p̄), such that

‖ f1 − p̄1‖∞,[0,1]2 ≤ ε, (33)

‖ f2 − p̄2‖∞,[0,1]2 ≤ ε, (34)

and
dH(Γ∗, Γ0( p̄)) ≤ δ. (35)

Building an approximation S̄ to f as above by a triple ( p̄1, p̄2, p̄), we can estimate its Fourier
coefficients using the above bounds, and it follows that

| f̂mn − ˆ̄Smn| ≤ ε + Lδ, −M ≤ m, n ≤ M. (36)

Therefore,
min{F(p1, p2, p)} ≤ (2M + 1)2(ε + Lδ)2. (37)

Let [
p∗1, p∗2, p∗

]
= arg min

{ M

∑
m,n=−M

| f̂mn − Ŝmn|2
}

. (38)
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The approximation S∗ to f is the combination of the two components, p∗1 in Ω∗
1 and p∗2 in Ω∗

2,
where Ω∗

1 and Ω∗
2 are separated by Γ0(p∗).

Using the bound in (37) it follows that

| f̂mn − Ŝ∗mn| ≤ (2M + 1)(ε + Lδ), −M ≤ m, n ≤ M. (39)

In view of (36) and (39) if follows that

| ˆ̄Smn − Ŝ∗mn| ≤ (2M + 2)(ε + Lδ), −M ≤ m, n ≤ M. (40)

Using Assumption 4, the bound (40) implies

‖p∗1 − p̄1‖∞,Ω∗1 ≤ C(2M + 2)(ε + Lδ), (41)

‖p∗2 − p̄2‖∞,Ω∗2 ≤ C(2M + 2)(ε + Lδ), (42)

and
dH(Γ0(p∗), Γ0( p̄)) ≤ C(2M + 2)(ε + Lδ). (43)

The approximation result now follows by considering the inequalities (41)–(43), together with the
inequalities (33)–(35), and applying the triangle inequality.

Validity of the Approximation Assumptions

Let us check the validity of Assumptions 1, 2, 3 and 4 for the approximation tools suggested in
Section 3.2 and used in the above numerical tests.

We assume that f1, f2 ∈ Cm[0, 1]2, and that Γ∗ is a Cm curve. To construct the approximation to
f1 and f2 we use the space Π1 of kth degree tensor-product splines with equidistant knots’ distance
d in each direction, k ≤ m. The approximation to Γ∗ is obtained using the approximation space
Π2 of �th degree tensor product splines with equidistant knots’ distance h in each direction, � ≤ m.
dim(Π1) = (1/d + k− 1)2 ≡ N2

d , dim(Π2) = (1/h + �− 1)2 ≡ N2
h , and for both spaces we use the

B-spline basis functions. Assumptions 2 and 3 are fulfilled with ε = C1dk and δ = C2h�.
Assumption 4 is more challenging. To define the mapping

{Ŝmn}M
m,n=−M → (p1, p2, Γ0(p)), (44)

we use the same procedure Section 3.2.2 for defining the approximation to f :
We represent p and p1, p2 using the B-spline basis function as in (18), (19) and (20), respectively.

Each triple (p1, p2, p) defines a piecewise spline approximation T(x, y), and we look for the
approximation T(x,y) such that (2M + 1)2 Fourier coefficients of T match the Fourier coefficients
{Ŝmn}M

m,n=−M in the least-squares sense:

[{a1ij}Nd
i,j=1, {a2ij}Nd

i,j=1, {bij}Nh
i,j=1

]
= arg min

( M

∑
m,n=−M

|Ŝmn − T̂mn|2
)
. (45)

Out of all the possible solutions of the above problem we look for the one with minimal coefficients’
norm, i.e., minimizing

Nd

∑
i,j=1

a2
1ij +

Nd

∑
i,j=1

a2
2ij. (46)

Following the procedure of Section 3.2.2, we observe that every step in the procedure is smooth
with respect to its input. Possible non-uniqueness in solving the linear system of equations on step
(5) is resolved by using the generalized inverse. Therefore, the composition of all the steps is also a
smooth function of the input, which implies the validity of Assumption 4.

134



Axioms 2020, 9, 88

4. The 3D Case

Numerical Example—The Smooth 3D Case

We consider the test function

f (x, y, z) = (x2 + y2 + z2 − 0.5) sin(4(x + y− z)),

assuming only its Fourier coefficients are given. We have used only 103 Fourier coefficients and
constructed an approximation using 5th-degree tensor product splines with equidistant knots’ distance
d = 0.1 in each direction. For this case, the matrix A is of size 153 × 153, and cond(A) = 1.2× 1022.
Again, we have employed the iterative refinement algorithm to obtain a high precision solution.
The test function is shown in Figure 20. The error in the resulting approximation is displayed in
Figure 21.

Figure 20. The 3D test function reshaped into 2D.

Figure 21. The approximation error graph, reshaped into 2D.

5. Concluding Remarks

The basic crucial assumption behind the presented Fourier acceleration strategy is that the
underlying function is piecewise ‘nice’. That is, piecewisely, the function can be well approximated
by a suitable finite set of basis functions. The Fourier series of the function may be given to us as a
result of the computational method dictated by the structure of the mathematical problem at hand.
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In itself, the Fourier series may not be the best tool for approximating the desired solution, and yet it
contains all the information about the requested function. Utilizing this information we can derive high
accuracy piecewise approximations to that function. The simple idea is to make the approximation
match the coefficients of the given Fourier series. The suggested method is simple to implement
for the approximation of smooth non-periodic functions in any dimension. The case of non-smooth
functions is more challenging, and a special strategy is suggested and demonstrated for the univariate
and bivariate cases. The paper contains a descriptive graphical presentation of the approximation
procedure, together with a fundamental error analysis.
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Abstract: In this paper, we investigate the existence of best proximity points that belong to the zero
set for the αp-admissible weak (F, ϕ)-proximal contraction in the setting of M-metric spaces. For this
purpose, we establish ϕ-best proximity point results for such mappings in the setting of a complete
M-metric space. Some examples are also presented to support the concepts and results proved
herein. Our results extend, improve and generalize several comparable results on the topic in the
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1. Introduction and Preliminaries

Several real-world problems can be reformulated as a fixed point problem. In other words, the
solution of the real-world problem reduces to the solution of a fixed point problem. In some cases
getting a fixed point for certain mapping is impossible. In this case, instead of exact solution, it is
natural to consider the approximate solution. Roughly speaking, if the equation F(ξ) = 0 has no exact
solution where F(ξ) = T(ξ)− ξ, where T is an opeator defined on a certain distance space. In 1969, Ky
Fan [1] suggested an answer to the question that what happen if a given mapping does not possess a
fixed point. More precisely, he proved that if A is a compact, convex and nonempty subset of a Banach
space S and T is continuous mapping from A to S, then there exists a point ξ∗ ∈ A such that

d(ξ∗, Tξ∗) = d(Tξ∗, A) = inf {d(ξ, Tξ∗), ξ ∈ A} .

This results is known as best approximation theorem. In the above statement, the point ξ∗ ∈ A is
called as approximate fixed point of T or an approximate solution of a fixed point equation Tξ = ξ.
In general, if A, B are nonempty subsets of a Banach space S and T : A → B, then ξ∗ ∈ A is called best
proximity point of T if it satisfies

d(ξ∗, Tξ∗) = d(A, B) = inf {d(a, b) : a ∈ A, b ∈ B} .

Axioms 2020, 9, 19; doi:10.3390/axioms9010019 www.mdpi.com/journal/axioms137
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Note that ξ∗ ∈ A turns to be a fixed point of T, if the sets A, B have non-empty intersection. Indeed, if
A∩ B �= φ or A = B, then d(A, B) = 0 and hence the best proximity point ξ∗ ∈ A becomes the solution
of a fixed point equation Tξ = ξ. Attendantly, best proximity point results are natural generalizations
of metric fixed point results. For further discussion in this direction, we refer to [2–8].

We underline the fact that a best proximity point ξ∗ ∈ A, indeed solves the following
optimization problem:

min
ξ∈A

d(ξ, Tξ).

On the other hand, fixed point theory has been extended in several directions. For instance, metric
space structure has been changed by some new abstract space which is more general than the standard
set-up. One of the significant examples of this trend was given by Matthews [9]. He defined the notion
of partial metric space and characterized the Banach contraction principle in that space. Roughly
speaking, despite the metric space, in partial metric space self-distance may not be zero. This notion
especially provides some simplicity in computer science, in particular, domain theory. A number of
authors have involved in this trend with interesting results, see e.g., [10–18] and related reference
therein. For the sake of completeness, we recall the concept of partial metric space as follows:

Definition 1 ([9]). A distance function p : S× S → [0, ∞) , on a non-empty set S, is called partial metric if
the followings are fulfilled:

(p1) p(ξ, ξ) = p(η, η) = p(ξ, η)⇔ ξ = η,
(p2) p(ξ, ξ) ≤ p(ξ, η),
(p3) p(ξ, η) = p(η, ξ),
(p4) p(ξ, η) ≤ p(ξ, ζ) + p(ζ, η)− p(ζ, ζ)

for all ξ, η, ζ ∈ S. A corresponding pair (S, p) is called a partial metric space.

It is evident that p(ξ, η) = 0, yields ξ = η. The contrary of the statement is false.
Asadi et al. [19] introduced the notion of an M-metric space and obtained fixed point results in

the setup of M-metric spaces. It was indicated that M-metric space is a real generalization of a partial
metric space and they supported their claim by providing some constructive examples. For more
results in this direction see e.g., [20,21].

The following notations are useful in the sequel.

(1) mξη = min {ρ(ξ, ξ), ρ(η, η)} ,
(2) Mξη = max {ρ(ξ, ξ), ρ(η, η)} .

Definition 2 ([19]). A distance function ρ : S× S → [0, ∞), on a non-empty set S, is called M-metric if the
followings are fulfilled:

(m1) ρ(ξ, ξ) = ρ(η, η) = ρ(ξ, η)⇔ ξ = η,
(m2) mξη ≤ ρ(ξ, η)
(m3) ρ(ξ, η) = ρ(η, ξ),
(m4) ρ(ξ, η)−mξη ≤ ρ(ξ, ζ)−mξζ + ρ(ζ, η)−mζη

for all ξ, η, ζ ∈ S. A corresponding pair (S, ρ) is called an M-metric space.

Lemma 1 ([19]). Each partial metric forms an M-metric. The converse is false.

Example 1. Let S = {ξ, η, ζ}. Define

ρ(ξ, ξ) = 1, ρ(η, η) = 9, ρ(ζ, ζ) = 5,

ρ(ξ, η) = ρ(η, ξ) = 10, ρ(ξ, ζ) = ρ(ζ, ξ) = 7,

ρ(ζ, η) = ρ(η, ζ) = 7.
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It is clear that ρ is an M-metric. Notice that ρ does not form a partial metric.

Definition 3 ([19]). Let (S, ρ) be an M-metric space and ξ ∈ S. A sequence {ξn} in S is called:

(1) M−convergent to ξ ∈ S if and only if

lim
n→∞

(ρ(ξn, ξ)−mξn ,ξ) = 0,

(2) M−Cauchy sequence if and only if

lim
n,m→∞

(ρ(ξn, ξm)−mξn ,ξm) and lim
n,m→∞

(Mξn ,ξm −mξn ,ξm),

exist (and are finite).

Definition 4 ([19]). An M-metric space is said to be M−complete if every M−Cauchy sequence {ξn} in S
converges with respect to τm ( topology induced by m ) to a point ξ ∈ S such that

lim
n→∞

(ρ(ξn, ξ)−mξn ,ξ) = 0 and lim
n→∞

(Mξn ,ξ −mξn ,ξ) = 0.

Remark 1 ([19]). Let (S, ρ) be an M-metric space and for every ξ, η ∈ (S, ρ), we have

(r1) 0 ≤ Mξη + mξη = ρ(ξ, ξ) + ρ(η, η),
(r2) 0 ≤ Mξη −mξη = [ρ(ξ, ξ)− ρ(η, η)],
(r3) Mξη −mξη ≤ (Mξζ −mξζ) + (Mζη −mζη).

The set {ξ∗ ∈ A : ϕ(ξ∗) = 0} of all zeros of the function ϕ : A → [0, ∞) is denoted by Zϕ. By
using this notion, Jleli et al. [22] introduced the notion of ϕ-fixed point as follows: If S is a non empty
set, T : S → S and ϕ : S → [0, ∞) is a given function, then ξ∗ ∈ S is said to be ϕ- fixed point of T if and
only if T(ξ∗) = ξ∗ and ϕ(ξ∗) = 0. We denote the set of all ϕ-fixed points of T by ϕF(S), that is,

ϕF(S) = {ξ∗ ∈ S : T(ξ∗) = ξ∗ and ϕ(ξ∗) = 0} .

In [22], the authors also considered the concept of control function F : [0, ∞)3 → [0, ∞) defined as
follows:

(F1) max {s, t} ≤ F(s, t, r), for all s, t, r ∈ [0, ∞),
(F2) F is continuous,
(F3) F(0, 0, 0) = 0.

The set of such control functions is denoted by F . An immediate examples of the control functions
are collected below:

Example 2 ([22]). Let i = {1, 2, 3} . Define Fi : [0, ∞)3 → [0, ∞) as follows:

F1(a, b, c) = a + b + c, F2(a, b, c) = max {a, b}+ c and F3(a, b, c) = a + a2 + b + c,

for all a, b, c ∈ [0, ∞). Note that F1, F2, F3 ∈ F .

In [22], the notion of (F, ϕ)-contraction mapping was defined and the existence of a fixed point
for such mappings were considered.

Definition 5 ([22]). Let (S, d) be a complete metric space and ϕ : S → [0, ∞). A mapping T : S → S is said
to be an (F, ϕ)-contraction mapping if there exist F ∈ F and k ∈ [0, 1) such that

F(d(Tξ, Tη), ϕ(Tξ), ϕ(Tη)) ≤ kF(d(ξ, η), ϕ(ξ), ϕ(η)), for all ξ, η ∈ S.

139



Axioms 2020, 9, 19

Later, this result has been followed by several authors, see e.g., [23–26].
Let Ψ denote the set of nondecreasing functions ψ : [0, ∞) → [0, ∞) such that ∑+∞

n=1 ψn(t) < ∞,
for all t > 0, where ψn is an n−iterate of ψ. A function ψ is called a (c)−comparison function if ψ ∈ Ψ.
Note that if ψ ∈ Ψ, then ψ(0) = 0 and ψ(t) < t, for all t > 0 [27].

Remark 2 ([27]). Note that ∑+∞
n=1 ψn(t) < ∞ implies limn→∞ ψn(t) = 0, for all t ∈ (0, ∞).

In what follows we introduce the notion of "ϕ-best proximity point".

Definition 6. Let (S, ρ) be an M-metric space, A, B are two subsets of S. An element ξ∗ ∈ Zϕ is said
to be a ϕ-best proximity point of the operator T : A → B if and only if ρ(ξ∗, Tξ∗) = ρ(A, B), where
ρ(A, B) = inf {ρ(a, b) : a ∈ A, b ∈ B} and ϕ(ξ∗) = 0.

We denote the set of all ϕ-best proximity points of T by ϕT(A), that is,

ϕT(A) = {ξ∗ ∈ A : ρ(ξ∗, Tξ∗) = ρ(A, B) and ϕ(ξ∗) = 0} .

The following definitions are also needed in the sequel. Before we state the definition, we
underline the following assumption: Throughout the paper, all sets and subsets are supposed
non-empty. We characterize the following sets (that plays a crucial role in best proximity theory)
in the setting of M-metric space.

Definition 7. Let (S, ρ) be an M-metric space, and A, B be two subsets of S. Define

A0 = {ξ ∈ A : ρ(ξ, η) = ρ(A, B), for some η ∈ B} and

B0 = {ξ ∈ B : ρ(ξ, η) = ρ(A, B), for some η ∈ A} .

Definition 8. Let (S, ρ) be an M-metric space, and let A, B be two subsets of S. If α : A× A → [−∞, ∞),
then mapping T : A → B is said to be proximal αp−admissible if

α(ξ, η) ≥ 0
ρ(u, Tξ) = ρ(A, B)
ρ(v, Tη) = ρ(A, B)

⎫⎪⎬⎪⎭ =⇒ α(u, v) ≥ 0,

for all ξ, η, u, v ∈ A.

Definition 9. Let (S, ρ) be an M-metric space, and T : A → B. In addition, let A be a subset of S, and
α : A× A → [−∞, ∞). Then A is said to be α−regular, if {ξn} is a sequence in A such that α(ξn, ξn+1) ≥ 0
and ξn → ξ ∈ A as n → ∞, then α(ξn, ξ) ≥ 0 for all n ∈ N.

In this paper, we introduce the notion of ϕ-best proximity point and prove the ϕ-best proximity
point result in the setting of M-metric space. We also present an example to support our result.

2. Main Results

We start the section by introducing the notion of αp-admissible weak (F, ϕ)-proximal contraction
mappings as follows.
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Definition 10. Let A, B be two subsets of M-metric space (S, ρ) and F ∈ F . An αp-admissible mapping
T : A → B is called an αp-admissible weak (F, ϕ)-proximal contraction, if there exists a lower semi-continuous
function ϕ : A → [0, ∞) such that

α(ξ, η) ≥ 0
ρ(u, Tξ) = ρ(A, B)
ρ(v, Tη) = ρ(A, B)

⎫⎪⎬⎪⎭
=⇒ α(ξ, η) + F(ρ(u, v), ϕ(u), ϕ(v)) ≤ ψ(F(ρ(ξ, η), ϕ(ξ), ϕ(η))),

for all ξ, η, u, v ∈ A and ψ ∈ Ψ.

By taking α(ξ, η) = 0, we shall get the following definition:

Definition 11. Let A, B be two subsets of M-metric space (S, ρ) and F ∈ F . A mapping T : A → B is said to
be a weak (F, ϕ)-proximal contraction, if there exist two functions ϕ : A → [0, ∞) and ψ ∈ Ψ such that

ρ(u, Tξ) = ρ(A, B)
ρ(v, Tη) = ρ(A, B)

}
=⇒ F(ρ(u, v), ϕ(u), ϕ(v)) ≤ ψ(F(ρ(ξ, η), ϕ(ξ), ϕ(η))),

for all ξ, η, u, v ∈ A and ψ ∈ Ψ.

The main result of the article is below.

Theorem 1. Let A, B be two subsets of an M-complete M-metric space (S, ρ) and F ∈ F . Suppose that
a mapping T : A → B is an αp-admissible weak (F, ϕ)-proximal contraction. If T(A0) ⊆ B0 and A0 is
α−regular closed set in S, then there exists a ϕ-best proximity point of T provided that there exist ξ0, ξ1 ∈ A0

such that
ρ(ξ1, Tξ0) = ρ(A, B) and α(ξ0, ξ1) ≥ 0.

Moreover, if α(ξ, η) ≥ 0 for all ξ, η ∈ ϕT(A), then ξ∗ is the unique ϕ-best proximity point of T.

Proof. Let ξ0, ξ1 ∈ A0 be such that ρ(ξ1, Tξ0) = ρ(A, B) and α(ξ0, ξ1) ≥ 0. As Tξ0 ∈ T(A0) ⊆ B0,
there exists ξ2 in A0 such that ρ(ξ2, Tξ1) = ρ(A, B). Since T is proximal αp−admissible, we have
α(ξ1, ξ2) ≥ 0. Similarly, by T(A0) ⊆ B0, we obtain a point ξ3 ∈ A0 such that ρ(ξ3, Tξ2) = ρ(A, B)
which further implies that α(ξ2, ξ3) ≥ 0. Continuing this way, we can obtain a sequence {ξn} in A0

such that

ρ(ξn, Tξn−1) = ρ(A, B),

ρ(ξn+1, Tξn) = ρ(A, B), α(ξn, ξn+1) ≥ 0, for all n ∈ N∪ {0} . (1)

Since T is αp-admissible weak (F, ϕ)-proximal contraction, we have

α(ξn−1, ξn) + F(ρ(ξn, ξn+1), ϕ(ξn), ϕ(ξn+1)) ≤ ψ(F(ρ(ξn−1, ξn), ϕ(ξn−1), ϕ(ξn))).

Since α(ξ, η) ≥ 0 for all ξ, η ∈ A, we obtain that

F(ρ(ξn, ξn+1), ϕ(ξn), ϕ(ξn+1)) ≤ ψ(F(ρ(ξn−1, ξn), ϕ(ξn−1), ϕ(ξn))).

By induction, we get

F(ρ(ξn, ξn+1), ϕ(ξn), ϕ(ξn+1)) ≤ ψn(F(ρ(ξ0, ξ1), ϕ(ξ0), ϕ(ξ1))).
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It follows from the condition (F1) that

max {ρ(ξn, ξn+1), ϕ(ξn)} ≤ ψn(F(ρ(ξ0, ξ1), ϕ(ξ0), ϕ(ξ1))). (2)

By (2), we obtain that
ρ(ξn, ξn+1) ≤ ψn(F(ρ(ξ0, ξ1), ϕ(ξ0), ϕ(ξ1))). (3)

On the other hand, we get
lim

n→∞
ρ(ξn, ξn+1) = 0. (4)

Using (4) and the condition (m2), we have

lim
n→∞

ρ(ξn, ξn) = lim
n→∞

min {ρ(ξn, ξn), ρ(ξn+1, ξn+1)}
= lim

n→∞
mξn ,ξn+1

≤ lim
n→∞

ρ(ξn, ξn+1) = 0.

Since limn→∞ ρ(ξn, ξn) = 0, we have
lim

n,m→∞
mξn ,ξm = 0. (5)

We shall indicate that {ξn} is an M-Cauchy sequence. Consider m, n ∈ N such that m > n. On using
(3) and the condition (m4), we have

ρ(ξn, ξm)−mξn ,ξm ≤ ρ(ξn, ξn+1)−mξn ,ξn+1 + ρ(ξn+1, ξm)−mξn+1,ξm

≤ ρ(ξn, ξn+1)−mξn ,ξn+1 + ρ(ξn+1, ξn+2)−mξn+1,ξn+2 + ρ(ξn+2, ξm)−mξn+2,ξm

≤ ρ(ξn, ξn+1)−mξn ,ξn+1 + ρ(ξn+1, ξn+2)−mξn+1,ξn+2

+ . . . + ρ(ξm−1, ξm)−mξm−1,ξm

≤ ρ(ξn, ξn+1) + ρ(ξn+1, ξn+2) + . . . + ρ(ξm−1, ξm)

≤ ψn(F(ρ(ξ0, ξ1), ϕ(ξ0), ϕ(ξ1))) + ψn+1(F(ρ(ξ0, ξ1), ϕ(ξ0), ϕ(ξ1)))+

. . . + ψm−1(F(ρ(ξ0, ξ1), ϕ(ξ0), ϕ(ξ1)))

≤
m−1

∑
i=1

ψi(F(ρ(ξ0, ξ1), ϕ(ξ0), ϕ(ξ1)))−
n−1

∑
j=1

ψj(F(ρ(ξ0, ξ1), ϕ(ξ0), ϕ(ξ1))).

(6)

It follows from Remark 2 and (6) that ρ(ξn, ξm)−mξn ,ξm → 0 as n → ∞. On the other hand, by (5), we
obtain that

lim
n,m→∞

(Mξn ,ξm −mξn ,ξm) = 0.

Thus {ξn} is an M-Cauchy sequence in A0 ⊆ A ⊂ S. By the completeness of S and closeness of A0,
there exists ξ∗ ∈ A0 such that

lim
n→∞

ρ(ξn, ξ∗)−mξn ,ξ∗ = 0 and lim
n→∞

Mξn ,ξ∗ −mξn ,ξ∗ = 0.

Since limn→∞ ρ(ξn, ξn) = 0, we have

lim
n→∞

ρ(ξn, ξ∗) = 0 and lim
n→∞

Mξn ,ξ∗ = 0. (7)

Thus by Remark 1, we get that

lim
n→∞

ρ(ξ∗, ξ∗) = lim
n→∞

[Mξn ,ξ∗ + mξn ,ξ∗ − ρ(ξn, ξn)] = 0.

This implies that
ρ(ξ∗, ξ∗) = 0.
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Now we need to show that ϕ(ξ∗) = 0. Using (2), we have

ϕ(ξn) ≤ ψn(F(ρ(ξ0, ξ1), ϕ(ξ0), ϕ(ξ1))).

Letting n → ∞ on the inequality above, we obtain

lim
n→∞

ϕ(ξn) = 0. (8)

Since ϕ is lower semi continuous, it follows from (7) and (8) that

0 ≤ ϕ(ξ∗) ≤ lim
n→∞

inf ϕ(ξn) = 0.

Hence ϕ(ξ∗) = 0. Since A0 is α−regular, α(ξn, ξ∗) ≥ 0. As ξ∗ ∈ A0, T(A0) ⊆ B0, Tξ∗ ∈ B0, we may
choose a point z ∈ A0 such that z �= ξ∗ and

ρ(z, Tξ∗) = ρ(A, B). (9)

We shall prove that z = ξ∗. On the contrary suppose that z �= ξ∗. Since T is αp-admissible weak
(F, ϕ)-proximal contraction, by using (1) and (9) we have

ρ(ξn+1, z) ≤ max {ρ(ξn+1, z), ϕ(ξn+1)}
≤ F(ρ(ξn+1, z), ϕ(ξn+1), ϕ(z))

≤ α(ξn, ξ∗) + F(ρ(ξn+1, z), ϕ(ξn+1), ϕ(z))

≤ ψ(F(ρ(ξn, ξ∗), ϕ(ξn), ϕ(ξ∗)))
< F(ρ(ξn, ξ∗), ϕ(ξn), ϕ(ξ∗))
= F(ρ(ξn, ξ∗), ϕ(ξn), 0).

Letting n → ∞ on the inequality above, we have

lim
n→∞

ρ(ξn+1, z) = lim
n→∞

F(ρ(ξn, ξ∗), ϕ(ξn), 0)

= F(0, 0, 0) = 0,

which implies that
lim

n→∞
ρ(ξn+1, z) = 0.

By using the condition (m4), we have

ρ(ξ∗, z)−mξ∗ ,z ≤ ρ(ξ∗, ξn+1)−mξ∗ ,ξn+1 + ρ(ξn+1, z)−mξn+1,z

ρ(ξ∗, z)−mξ∗ ,z ≤ ρ(ξ∗, ξn+1) + ρ(ξn+1, z)

lim
n→∞

ρ(ξ∗, z)−mξ∗ ,z ≤ lim
n→∞

ρ(ξ∗, ξn+1) + lim
n→∞

ρ(ξn+1, z)

lim
n→∞

ρ(ξ∗, z)−mξ∗ ,z ≤ 0.

Since ρ(ξ∗, ξ∗) = 0, ξ∗ = z. This is a contradiction. Attendantly, we have

ρ(ξ∗, Tξ∗) = ρ(A, B).

Uniqueness: Let α(ξ, η) ≥ 0, for all ξ, η ∈ ϕT(A). Suppose that ξ∗ and w are two ϕ-best proximity
points of T with ξ∗ �= w. Hence

ρ(w, Tw) = ρ(A, B),
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and
ϕ(ξ∗) = ϕ(w) = 0.

Since T is αp-admissible weak (F, ϕ)-proximal contraction, we have

F(ρ(ξ∗, w), 0, 0) ≤ α(ξ∗, w) + F(ρ(ξ∗, w), ϕ(ξ∗), ϕ(w))

≤ ψ(F(ρ(ξ∗, w), ϕ(ξ∗), ϕ(w)))

< F(ρ(ξ∗, w), 0, 0),

a contradiction. Consequently, we find that ξ∗ is a unique ϕ-best proximity point of T.

Corollary 1. Let A, B be two subsets of an M-complete M-metric space (S, ρ) and F ∈ F . Suppose that a
mapping T : A → B is a weak (F, ϕ)-proximal contraction. If T(A0) ⊆ B0 and A0 is closed set in S, then there
exist a unique ϕ-best proximity point of T provided that there exist ξ0, ξ1 ∈ A0 such that

ρ(ξ1, Tξ0) = ρ(A, B).

Proof. It is derived from Theorem 1 by choosing α(ξ, η) = 0.

Since an M-metric space is a partial metric space, from the Theorem 1 we deduce immediately the
following result. Note that in the following result we consider the notions in Definitions 10 and 11 in
the setting of partial metric spaces.

Corollary 2. Let A, B be two subsets of a complete partial metric space (S, p) and F ∈ F . Suppose that
a mapping T : A → B is an αp-admissible weak (F, ϕ)-proximal contraction. If T(A0) ⊆ B0 and A0 is
α−regular closed set in S, then there exists a ϕ-best proximity point of T provided that there exist ξ0, ξ1 ∈ A0

such that
p(ξ1, Tξ0) = p(A, B) and α(ξ0, ξ1) ≥ 0,

p(A, B) = inf {p(a, b) : a ∈ A, b ∈ B} . Moreover, if α(ξ, η) ≥ 0 for all ξ, η ∈ ϕT(A), then ξ∗ is the unique
ϕ-best proximity point of T.

Proof. Since an M-metric space is a generalization of partial metric space, from Theorem 1 we deduce
the result.

Corollary 3. Let A, B be two subsets of a complete partial metric space (S, p) and F ∈ F . Suppose that a
mapping T : A → B is a weak (F, ϕ)-proximal contraction. If T(A0) ⊆ B0 and A0 is closed set in S, then there
exist a unique ϕ-best proximity point of T provided that there exist ξ0, ξ1 ∈ A0 such that

p(ξ1, Tξ0) = p(A, B).

Proof. It is deduced from Corollary 2 by choosing α(ξ, η) = 0.

To support Corollary 1, we provide the following example.

Example 3. Let S = [0, 1] and ρ : S× S → [0, ∞) be defined by

ρ(ξ, η) = |ξ − η| ,

otherwise. Then (S, ρ) is an M-metric space. Suppose that A = {0, 0.4, 0.6, 0.9} and B = {0.1, 0.3, 0.7, 1} .
Note that ρ(A, B) = 0.1, A = A0 and B = B0. Define a mapping T : A → B as:

T(0) = 0.1, T(0.4) = 0.1, T(0.6) = 0.1, T(0.9) = 0.3.
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Note that T(A0) ⊆ B0. Define functions ψ : [0, ∞)→ [0, ∞), F : [0, ∞)3 → [0, ∞) and ϕ : A → [0, ∞) by

ψ(t) =
2t
3

,

F(a, b, c) = max {a, b}+ c, for all a, b, c ∈ [0, ∞)

and ϕ(ξ) = ξ, for all ξ ∈ A.

If we take ξ = 0.6, η = 0.9, u = 0 and v = 0.4, then we have

ρ(u, Tξ) = ρ(v, Tη) = 0.1 = ρ(A, B),

which implies that

F(ρ(u, v), ϕ(u), ϕ(v)) = 0.8 ≤ 1 = ψ(F(ρ(ξ, η), ϕ(ξ), ϕ(η))).

Hence T forms a weak (F, ϕ)-proximal contraction. Thus, all the conditions of Corollary 1 are satisfied. Moreover,
ξ∗ = 0 is a unique ϕ-best proximity point.

To support Corollary 3, we provide the following example.

Example 4. Let S = [0, 1] ∪ [2, 3]. Define the mapping p : S× S → [0, ∞) by

p(ξ, η) =

{
max {ξ, η} , {ξ, η} ∩ [2, 3] �= φ,

|ξ − η| , {ξ, η} ⊆ [0, 1].

Then (S, p) is a partial metric space. Suppose that A = {0, 0.4, 0.6, 0.9} and B = {0.1, 0.3, 0.7, 1} . Note that
p(A, B) = 0.1, A = A0 and B = B0. Define a mapping T : A → B as:

T(0) = 0.1, T(0.4) = 0.1, T(0.6) = 0.1, T(0.9) = 0.3.

Note that T(A0) ⊆ B0. Define mappings ψ : [0, ∞)→ [0, ∞), F : [0, ∞)3 → [0, ∞) and ϕ : A → [0, ∞) by

ψ(t) =
t
2

,

F(a, b, c) = a + b + c, for all a, b, c ∈ [0, ∞)

and ϕ(ξ) = ξ, for all ξ ∈ A.

If we take ξ = 0.6, η = 0.9, u = 0 and v = 0.4, then we have

p(u, Tξ) = p(v, Tη) = 0.1 = p(A, B),

which implies that

F(p(u, v), ϕ(u), ϕ(v)) = 0.8 ≤ 0.9 = ψ(F(p(ξ, η), ϕ(ξ), ϕ(η))).

Hence, T forms a weak (F, ϕ)-proximal contraction. Thus all the conditions of Corollary 3 are satisfied. Moreover
ξ∗ = 0 is a unique ϕ-best proximity point.

3. Application to Fixed Point Theory

Let us take A = B = S, and suppose that T is proximal αp−admissible mapping. Obviously

α(ξ, η) ≥ 0,
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and
ρ(u, Tξ) = 0 and ρ(v, Tη) = 0,

implies that
α(Tξ, Tη) = α(u, v) ≥ 0.

Hence T is αp−admissible mapping.

Remark 3. If α : S × S → [−∞, ∞), ϕ : S → [0, ∞) and a selfmapping T on S is αp-admissible weak
(F, ϕ)-contraction, then α(ξ, η) ≥ 0 implies that

α(ξ, η) + F(ρ(Tξ, Tη), ϕ(Tξ), ϕ(Tη)) ≤ ψ(F(ρ(ξ, η), ϕ(ξ), ϕ(η))), (10)

where F ∈ F , and ψ ∈ Ψ, for all ξ, η ∈ S. In other words, we consider the notions in Definitions 10 and 11 in
the setting of standard metric spaces.

Definition 12. A self mapping T : S → S satisfying the above implication is called αp-admissible weak
(F, ϕ)-contraction.

Corollary 4. Let (S, d) be a M−complete M-metric space, F ∈ F , and a self-mapping T be an αp-admissible
weak (F, ϕ)-contraction. If {ξn} is a sequence in S such that α(ξn, ξn+1) ≥ 0 and limn→∞ ξn = ξ ∈ S, then
α(ξn, ξ) ≥ 0, for all n ∈ N. Then there exists a ϕ-fixed point of T provided that there exists ξ0 ∈ S such that
α(ξ0, Tξ0) ≥ 0. Moreover, if α(ξ, η) ≥ 0 for all ξ, η ∈ ϕF(S), then ξ∗ is the unique ϕ-fixed point of T.

Proof. Let us take A = B = S in Theorem 1. We shall show that T is αp-admissible weak
(F, ϕ)-contraction. Suppose that ξ, η, u, v ∈ S satisfies the following

α(ξ, η) ≥ 0,

ρ(u, Tξ) = ρ(A, B),

ρ(v, Tη) = ρ(A, B).

As ρ(A, B) = 0, we have u = Tξ and v = Tη. Since T satisfies the condition (10), so

α(ξ, η) + F(ρ(Tξ, Tη), ϕ(Tξ), ϕ(Tη)) ≤ ψ(F(ρ(ξ, η), ϕ(ξ), ϕ(η))),

that is,
α(ξ, η) + F(ρ(u, v), ϕ(u), ϕ(v)) ≤ ψ(F(ρ(ξ, η), ϕ(ξ), ϕ(η))),

which implies that T is an αp-admissible weak (F, ϕ)-contraction Let ξ0 be an arbitrary point in S.
Define a sequence {ξn} in S by

ξn = Tξn−1, for all n ∈ N.

As T is αp−admissible mapping. So, we have

α(ξ0, ξ1) = α(ξ0, Tξ0) ≥ 0 implies that α(Tξ0, Tξ1) = α(ξ1, ξ2) ≥ 0.

By induction, we get that

α(ξn, ξn+1) = α(ξn, Tξn) ≥ 0, for all n ∈ N. (11)
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Using (11) and the fact that T is (F, M, ϕ, αp, ψ)−contraction, we obtain

F(ρ(ξn, ξn+1), ϕ(ξn), ϕ(ξn+1)) = F(ρ(Tξn−1, Tξn), ϕ(Tξn−1), ϕ(Tξn))

≤ α(ξn−1, ξn) + F(ρ(Tξn−1, Tξn), ϕ(Tξn−1), ϕ(Tξn))

≤ ψ(F(ρ(ξn−1, ξn), ϕ(ξn), ϕ(ξn+1))), for all n ∈ N.

Using the arguments similar to those given in the proof of Theorem 1, we obtain that {ξn}n∈N is a
Cauchy sequence in S. Since (S, ρ) is M-complete M-metric space, there exists ξ∗ ∈ S such that

lim
n→∞

ρ(ξn, ξ∗) = 0 and lim
n→∞

Mξn ,ξ∗ = 0. (12)

We now show that ϕ(ξ∗) = 0. From (2), we conclude that

ϕ(ξn) ≤ ψn(F(ρ(ξ0, ξ1), ϕ(ξ0), ϕ(ξ1))).

Again by using the arguments similar to those given in the proof of Theorem 1, we obtain that
ϕ(ξ∗) = 0. In the view of (11) and (12) we have α(ξn, ξ∗) ≥ 0, for all n ∈ N. By taking ξ = ξn and
η = ξ∗ in the condition (10), we have

ρ(ξn+1, Tξ∗) = ρ(Tξn, Tξ∗)
≤ max {ρ(Tξn, Tξ∗), ϕ(Tξn)}
≤ F(ρ(Tξn, Tξ∗), ϕ(Tξn), ϕ(Tξ∗))
≤ α(ξn, ξ∗) + F(ρ(Tξn, Tξ∗), ϕ(Tξn), ϕ(Tξ∗))
≤ ψ(F(ρ(ξn, ξ∗), ϕ(ξn), ϕ(ξ∗)))
< F(ρ(ξn, ξ∗), ϕ(ξn), ϕ(ξ∗))
= F(ρ(ξn, ξ∗), ϕ(ξn), 0).

On taking limit as n → ∞ on the both sides of the above inequality, we have

lim
n→∞

ρ(ξn+1, Tξ∗) = lim
n→∞

F(ρ(ξn, ξ∗), ϕ(ξn), 0)

= F(0, 0, 0) = 0,

which implies that
lim

n→∞
ρ(ξn+1, Tξ∗) = 0.

By using the condition (m4), we have

ρ(ξ∗, Tξ∗)−mξ∗ ,Tξ∗ ≤ ρ(ξ∗, ξn+1)−mξ∗ ,ξn+1 + ρ(ξn+1, Tξ∗)−mξn+1,Tξ∗

≤ ρ(ξ∗, ξn+1) + ρ(ξn+1, Tξ∗).

Letting n → ∞ in the inequality above, we deduce that

lim
n→∞

ρ(ξ∗, Tξ∗)−mξ∗ ,Tξ∗ ≤ lim
n→∞

ρ(ξ∗, ξn+1) + lim
n→∞

ρ(ξn+1, Tξ∗)

lim
n→∞

ρ(ξ∗, Tξ∗)−mξ∗ ,Tξ∗ ≤ 0.

Since ρ(ξ∗, ξ∗) = 0, hence
ρ(ξ∗, Tξ∗) = 0,

gives that ξ∗ is a ϕ-fixed point of T.
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Uniqueness: Let α(ξ, η) ≥ 0 for all ξ, η ∈ ϕF(S). Suppose that ξ∗ and w are two ϕ−fixed point of
T with ξ∗ �= w. Hence

ρ(w, Tw) = 0,

and
ϕ(ξ∗) = ϕ(w) = 0.

Since T is αp-admissible weak (F, ϕ)-contraction, we have

F(ρ(ξ∗, w), 0, 0) = F(ρ(Tξ∗, Tw), ϕ(Tξ∗), ϕ(Tw))

≤ α(ξ∗, w) + F(ρ(Tξ∗, Tw), ϕ(Tξ∗), ϕ(Tw))

≤ ψ(F(ρ(ξ∗, w), ϕ(ξ∗), ϕ(w)))

< F(ρ(ξ∗, w), 0, 0),

a contradiction. Attendantly, we find that ξ∗ is a unique ϕ-fixed point of T.

4. Application to Graph Theory

Let S be a set and Δ denotes the diagonal of S × S. A graph is a pair (V, E), where the set
V = V(G) of its vertices coincides with S and set E = E(G) of its edges which contains all loops,
that is, Δ ⊆ S× S. Furthermore, we assume that the graph G has no parallel edges. In a graph G,
by reversing the direction of edges we get the graph G−1 whose set of edges and set of vertices are
defined as follows:

E(G−1) = {(ξ, η) ∈ S× S : (η, ξ) ∈ E(G)} and V(G−1) = V(G).

We denote the undirected graph by G̃ obtained from G by ignoring the direction of edges.
Consider the graph G̃ as a directed graph for which the set of its edges is symmetric, under this

convention, we have
E(G̃) = E(G) ∪ E(G−1).

Definition 13 ([28]). 1. A graph’s subgraph is a graph whose vertex set is a subset of V(G) and whose edge
set is a subset of E(G).

2. Let ξ and η be two vertices of a graph G. A path from ξ to η of length n (where n ∈ N ∪ {0}) in a
graph G is a sequence {ξn : n = 0, 1, 2, ..., n} of n + 1 distinct vertices such that ξ0 = ξ, ξn = η and
(ξi, ξi+1) ∈ E(G) for i = 1, 2, . . . , n.

3. A graph G is called connected graph if there exist a path between any two vertices of graph G and if G̃ is
connected then G is said to be weakly connected graph.

4. A path is called elementary if no vertices appear more than once in it.

Throughout this section, we suppose that (S, ρ) is an M-metric space endowed with a directed
graph G and has no parallel edges.

We now introduce a notion of G−proximal graphic contraction.

Definition 14. Let A, B be two subsets of an M-complete M-metric space (S, ρ), ϕ : S → [0, ∞), ψ ∈ Ψ,
F ∈ F and G be a graph without parallel edges such that V(G) = S. A mapping T : A → B is said to be a
G−proximal graphic contraction if for all ξ, η, u, v ∈ A, ξ �= η, with (ξ, η) ∈ E(G) we have

ρ(u, Tξ) = ρ(A, B)
ρ(v, Tη) = ρ(A, B)

}
=⇒ F(ρ(u, v), ϕ(u), ϕ(v)) ≤ ψ(F(ρ(ξ, η), ϕ(ξ), ϕ(η))),

and
(u, v) ∈ E(G).
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Theorem 2. Let ϕ : A → [0, ∞) be a lower semi continuous function and T : A → B a G−proximal graphic
contraction. If T(A0) ⊆ B0, A0 is closed set in S and there exist a path (ηi)N

i=0 ⊆ A0 in G between any two
elements ξ and η. Then there exist a unique ϕ−best proximity point of T provided that there exist ξ0, ξ1 ∈ A0

and an elementary path between them in A0 and

ρ(ξ1, Tξ0) = ρ(A, B).

Proof. Let ξ0, ξ1 ∈ A0 such that ρ(ξ1, Tξ0) = ρ(A, B). A path
{

s0
0, s1

0, s2
0, . . . , sN

0
}

in G is a sequence
containing points of A0. Consequently, s0

0 = ξ0, sN
0 = ξ1 and (si

0, si+1
0 ) ∈ E(G) for all 0 ≤ i ≤ N −

1. Given that s1
0 ∈ A0, by T(A0) ⊆ B0 and the definition of A0, there exist s1

1 ∈ A0 such that ρ(s1
1, Ts1

0) =

ρ(A, B). Similarly, for each i = 2, . . . , N, there exists si
1 ∈ A0 such that ρ(si

1, Tsi
0) = ρ(A, B). As{

s0
0, s1

0, s2
0, . . . , sN

0
}

is a path in G, (s0
0, s1

0) = (ξ0, s1
0) ∈ E(G). From the above argument, we have

ρ(ξ1, Tξ0) = ρ(A, B) and ρ(s1
1, Ts1

0) = ρ(A, B). Since, T is G−proximal graphic contraction, it follows
that (ξ1, s1

1) ∈ E(G). In similar manner, we have the following:

(si−1
1 , si

1) ∈ E(G), for all 1 ≤ i ≤ N.

If ξ2 = sN
1 , then

{
s0

1, s1
1, s2

1, . . . , sN
1
}

is a path from ξ1 = s0
1 to ξ2 = sN

1 . As si
1 ∈ A0 and Tsi

1 ∈ T(A0) ⊆ B0,
or each i = 1, 2, 3, . . . , N, by the definition of B0, there exists si

2 ∈ A0 such that ρ(si
2, Tsi

1) = ρ(A, B). In
addition, we have ρ(ξ2, Tξ1) = ρ(A, B). As mentioned above, we have

(ξ2, s1
2) ∈ E(G) and (si−1

2 , si
2) ∈ E(G), for all 1 ≤ i ≤ N.

Similarly, by T(A0) ⊆ B0, there exists a point ξ3 ∈ A0 where ξ3 = sN
2 . Then (si

2)
N
i=0 is a path from

s0
2 = ξ2 and sN

2 = ξ3. Continuing in this manner for all n ∈ N, we obtain a sequence {ξn}n∈N where
ξn+1 ∈ [ξn]NG and ρ(ξn+1, Tξn) = ρ(A, B) by producing a path

{
s0

n, s1
n, s2

n, . . . , sN
n
}

from ξn = s0
n and

ξn+1 = sN
n in such a way that

ρ(si
n+1, Tsi

n) = ρ(A, B),

for all 1 ≤ i ≤ N, n ∈ N. Thus we have

ρ(si−1
n , Tsi−1

n−1) = ρ(A, B) = ρ(si
n, Tsi

n−1), for all 1 ≤ i ≤ N, n ∈ N. (13)

Now for any positive integer n

ρ(ξn, ξn+1) = ρ(s0
n, sN

n )

≤ ρ(s0
n, s1

n)−ms0
n ,s1

n
+ ρ(s1

n, s2
n)−ms1

n ,s2
n
+ . . . + ρ(sN−1

n , sN
n )−msN−1

n ,sN
n

≤ ρ(s0
n, s1

n) + ρ(s1
n, s2

n) + . . . + ρ(sN−1
n , sN

n )

=
N

∑
i=1

ρ(si−1
n , si

n),

(14)

for all 1 ≤ i ≤ N and n ∈ N. Note that, (si−1
n−1, si

n−1) ∈ E(G), and T is G−proximal graphic contraction.
It follows from (13), that

F(ρ(si−1
n , si

n), ϕ(si−1
n ), ϕ(si

n)) ≤ ψ(F(ρ(si−1
n−1, si

n−1), ϕ(si−1
n−1), ϕ(si

n−1))), for all 1 ≤ i ≤ N, n ∈ N.

Again by using the arguments similar to those given in the proof of Theorem 1, we obtain that

ρ(si−1
n , si

n) ≤ ψn(F(ρ(si−1
0 , si

0), ϕ(si−1
0 ), ϕ(si

0))). (15)

From (14) and (15), we have
ρ(ξn, ξn+1) ≤ ψn M, for all n ∈ N,
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where M =
N

∑
i=1

(F(ρ(si−1
0 , si

1), ϕ(si−1
0 ), ϕ(si

1))). Again by using the arguments similar to those given in

the proof of Theorem 1, we obtain

ϕ(ξ∗) = 0 and ρ(ξ∗, Tξ∗) = ρ(A, B).

Hence ξ∗ is a unique ϕ-best proximity point of T.

5. Conclusions

In this paper, we defined ϕ-best proximity point and αp-admissible weak (F, ϕ)-contraction.
We proved some ϕ-best proximity point results in the setting of M-metric spaces. As an application,
we derived the ϕ-fixed point results for some self mappings. We also introduced the notions of
G−proximal graphic contraction and provided an application to graph theory in the setting of
M-complete M-metric space. Some examples are also presented to illustrate the novelty of the result
proved herein.
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1. Introduction

Metric fixed point theory can be settled in the intersection of two disciplines; (nonlinear) functional
analysis and topology. From the fixed point researchers’ aspect, the first application of the metric
fixed point theory is on the solution of differential equations. However, according to the point of
view of researchers in applied mathematics, metric fixed point theory is a tool in the solution of a
first-order ordinary differential equation with an initial value. Indeed, fixed point theory appears,
firstly, in the paper of Liouville in 1837, and, later, in the paper of Picard in 1890. In the paper of Picard,
the method of the successive approaches was used to investigate the existence of the solution. In 1922,
Banach reported the first metric fixed point result in the setting of complete norm space that would be
called Banach space later. Examined enough and carefully, we realized that Banach’s theorem is the
abstraction of the successive approaches. The characterization of the nominated fixed point theorem of
Banach, in the complete metric space, was reported by Caccioppoli in 1931. This can be accepted as the
first generalization of Banach’s theorem. After this, a huge number of papers, on the generalization
and extension of Banach’s fixed point theorem, has been released.

Extensions and generalizations of Banach’s theorem are based on two elements: by changing the
structure (abstract space) and by changing the conditions on the considered mappings. The immediate
examples of these new structures are partial metric space, quasi-metric space, semi-metric space,
b-metric space, etc. Among all of these, we shall consider the b-metric that is the most interesting and
most general form of the distance. The notion of b-metric has been discovered by several authors, such
as Bourbaki [1], Bakhtin [2], and Czerwik [3], in different periods of time. Roughly speaking, b-metric
space is derived from metric space by relaxing the triangle inequality.
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As it was mentioned before, the theory has been advanced by reporting several new fixed point
results that are obtained by changing the conditions on the given mappings. As a result, in the
literature, there are so many different types of metric fixed point results that cause a disturbance,
conflict, and disorder. For overcoming this problem, it needs to consider new theorems that cover
several different results. One of the successful results in directions was given in [4] where admissible
mappings were introduced to combine different structures. Other interesting results were given in [5]
in which the notion of the simulation function was defined to combine many distinct contractions.
The notion of the hybrid contractions can also be considered as a result of this trend: in two recent
papers [6,7], the authors introduce a new type of contraction, namely admissible hybrid contraction, in
order to unify several linear, nonlinear and interpolative contractions in the set-up of a complete metric
and b-metric spaces.

One of the main aims of this paper is to unify the several existing results in the literature
by combining the interesting notions: admissible mappings, simulation functions, and hybrid
contractions. Besides unifying the results, we express our results in the most generalized form:
in the setting of a complete b-metric space. Next, we shall consider applications for our obtained
results. In particular, we shall consider the well-posedness and the Ulam–Hyers stability of the
fixed point problem. We shall give some consequences and we shall indicate how one can get more
consequences from the main theorem of the paper. In the next section, we shall give some basic notions
and results to provide a self-contained, easily readable paper.

2. Preliminaries

In this section, we shall collect the necessary notations, notions, and results for the sake of the
completeness of the paper. We first express the definition of the b-metric, as follows.

Definition 1 (See, e.g., Bourbaki [1], Bakhtin [2], and Czerwik [3]). Let X be a nonempty set and let s ≥ 1
be a given real number. A functional d : X× X → [0, ∞) is said to be a b-metric with constant s, if

1. d is symmetric, that is, d(x, y) = d(y, x) for all x, y,
2. d is self-distance, that is, d(x, y) = 0 if and only if x = y,
3. d provides s-weighted triangle inequality, that is

d(x, z) ≤ s[d(x, y) + d(y, z)], for all x, y, z ∈ X.

In this case, the triple (X, d, s) is called a b-metric space with constant s.

It is evident that the notions of b-metric and standard metric coincide in case of s = 1. For more
details on b-metric spaces, see, e.g., [8–11] and corresponding references therein.

In what follows, we express the following immediate interesting examples of b-metric space to
indicate the richness of this abstract space.

Example 1. Let S be any set that has more than three elements. Suppose that S1, S2 are the subsets of S such
that S1 ∩ S2 = ∅ and S = S1 ∪ S2 Let s ≥ 1 be arbitrary. Consider the functional d : X × X → [0, ∞),
which is defined by:

d(a, b) :=

⎧⎪⎨⎪⎩
0, a = b,
2s, a, b ∈ S1,
1, otherwise.

It is obvious that (X, d, s) forms a b-metric space.

Another simple, but interesting example is the following:

154



Axioms 2020, 9, 2

Example 2. Let X = R. The function d : R×R→ [0, ∞), defined as

d(x, y) = |x− y|2, (1)

is a b-metric on R with s = 2. Clearly, the first two conditions are satisfied. For the third condition, we have

|x− y|2 = |x− z + z− y|2 = |x− z|2 + 2|x− z||z− y|+ |z− y|2
≤ 2[|x− z|2 + |z− y|2],

since
2|x− z||z− y| ≤ |x− z|2 + |z− y|2.

Thus, (X, d, 2) is a b-metric space.

Example 3. Let X = {a, b, c} and d : X× X → R
+
0 such that

d (a, b) = d (b, a) = d (a, c) = d (c, a) = 1,
d (b, c) = d (c, b) = α ≥ 2,
d (a, a) = d (b, b) = d (c, c) = 0.

Then,
d (x, y) ≤ α

2
[d (x, z) + d (z, y)] , for a, b, c ∈ X.

Then, (X, d, α
2 ) is a b-metric space.

Example 4 ([8]). Let B be a Banach space with the zero vector 0B. Suppose that P be a cone whose interior is
non-empty. Suppose also that  forms a partial order with respect to P.

For a non-empty set S, we consider the functional d : X× X → B that fulfills

(M1) 0B  δ(a, b),
(M2) δ(a, b) = 0 if and only if x = y,
(M3) δ(a, b)  δ(a, c) + δ(c, b),
(M4) δ(a, b) = δ(b, a),

for all a, b, c ∈ S. Then, δ is said to be a cone metric (or, Banach-valued metric). Furthermore, the pair (S, δ) is
called a cone metric space (or Banach-valued metric space).

Let E be a Banach space and P be a normal cone in E with the coefficient of normality denoted by K.
Let D : X × X → [0, ∞) be defined by D(x, y) = ||d(x, y)||, where d : X × X → E is a cone metric space.
Then, (X, D, K) forms a b-metric space.

Example 5 (See, e.g., [1]). Let X = Lp[0, 1] be the collections of all real functions x(t) such that∫ 1
0 |x(t)|pdt < ∞, where t ∈ [0, 1] and 0 < p < 1. For the function d : X× X → R

+
0 defined by

d(x, y) :=
(∫ 1

0
|x(t)− y(t)|pdt

)1/p

, for each x, y ∈ Lp[0, 1],

the ordered triple (X, d, 21/p) forms a b-metric space.

Example 6 (See, e.g., [1]). Let p ∈ (0, 1) and let

X = lp(R) =

{
x = {xn} ⊂ R such that

∞

∑
n=1

|xn|p < ∞

}
.

155



Axioms 2020, 9, 2

Define d(x, y) : X× X → [0, ∞) by

d(x, y) =

(
∞

∑
n=1

|xn − yn|p
)1/p

.

Then, (X, d, 21/p) is a b-metric space.

Definition 2 ([12]). A mapping ϕ : [0, ∞) → [0, ∞) is called a comparison function if it is increasing and
ϕn(t)→ 0, as n → ∞, for any t ∈ [0, ∞).

Example 7. Let γ : [0, ∞)→ [0, ∞) be a function such that

γ(t) = ct for all t ∈ [0, ∞) where c ∈ (0, 1).

Then, γ forms a comparison function.

Example 8. Let β : [0, ∞)→ [0, ∞) be a function such that

β(t) =
t

1 + t
for all t ∈ [0, ∞).

Then, γ forms a comparison function.

Lemma 1 ([10]). If ϕ : [0, ∞)→ [0, ∞) is a comparison function, then:

(1) each iterate ϕk of ϕ, k ≥ 1, is also a comparison function;
(2) ϕ is continuous at 0;
(3) ϕ(t) < t, for any t > 0.

Definition 3 ([12]). A function ϕ : [0, ∞)→ [0, ∞) is said to be a c-comparison function if

(1) ϕ is increasing;

(2) there exists k0 ∈ N, a ∈ (0, 1) and a convergent series of nonnegative terms
∞
∑

k=1
vk such that

ϕk+1(t) ≤ aϕk(t) + vk, for k ≥ k0 and any t ∈ [0, ∞).

Remark 1. Note that γ in Example 7 is also c-comparison function. On the other hand, β in Example 8 is not a
c-comparison function.

It is evident that the c-comparison function is not useful to work in the setting of b-metric space
due to the third axiom, s-weighted triangle inequality. In the setting of b-metric space, we should
involve the b-metric constant “s” in our analysis. That is why the b-comparison function was suggested
by Berinde [10]. Indeed, the idea is so simple. In order to investigate fixed point results in the class of
b-metric spaces, the notion of c-comparison function was extended to the b-comparison function by
involving the b-metric constant “s”.

In what follows, we remind readers about the formal definition of the b-comparison function:

Definition 4 ([10]). Let s ≥ 1 be a real number. A mapping ϕ : [0, ∞) → [0, ∞) is called a b-comparison
function if the following conditions are fulfilled:

(1) ϕ is monotone increasing;

(2) there exist k0 ∈ N, a ∈ (0, 1) and a convergent series of nonnegative terms
∞
∑

k=1
vk such that

sk+1 ϕk+1(t) ≤ ask ϕk(t) + vk, for k ≥ k0 and any t ∈ [0, ∞).
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Example 9. Let s ≥ 1 be a real number and γ : [0, ∞)→ [0, ∞) be a function such that

γ(t) = ct for all t ∈ [0, ∞) where c ∈ (0,
1
s
).

Then, γ forms a comparison function.

The following lemma is very important in the proof of our results.

Lemma 2 ([10]). If ϕ : [0, ∞)→ [0, ∞) is a b−comparison function, then we have the following conclusions:

(1) the series
∞
∑

k=0
sk ϕk(t) converges for any t ∈ [0, ∞);

(2) the function Sb : [0, ∞) → [0, ∞) defined by Sb(t) =
∞
∑

k=0
sk ϕk(t), t ∈ [0, ∞), is increasing and

continuous at 0.

Remark 2. Due to the Lemma 1.2., any b-comparison function is a comparison function.

Let α : X × X → [0, ∞) be a function. We say that a mapping f : X → X is α-orbital
admissible ([13]) if

α(x, f x) ≥ 1 ⇒ α( f x, f 2 (x)) ≥ 1.

An α-orbital admissible mapping f is called triangular α-orbital admissible ([13]) if

α(x, y) ≥ 1 and α(y, f y) ≥ 1 ⇒ α (x, f y) ≥ 1, for every x, y ∈ X.

Lemma 3. Let (X, d) be a b-metric space with constant s ≥ 1, and let f : X → X be triangular α-orbital
admissible mapping having the property that there exists x0 ∈ X such that α(x0, f (x0)) ≥ 1. Then,

α(xn, xm) ≥ 1, for all n, m ∈ N,

where the sequence (xn)n∈N is defined by xn+1 = f (xn), n ∈ N.

Very recently, an interesting auxiliary function, to unify the different type contraction, was defined
by Khojasteh [5] under the name of simulation function.

Definition 5 ([5]). A simulation function is a mapping ζ : [0, ∞)× [0, ∞) → R satisfying the following
conditions:

(ζ1) ζ(t, s) < s− t for all t, s > 0;
(ζ2) if (tn)n∈N , (sn)n∈N are sequences in (0, ∞) such that lim

n→∞
tn = lim

n→∞
sn > 0, then

lim sup
n→∞

ζ(tn, sn) < 0. (2)

In the original definition, given in [5], there was an additional but a superfluous condition
ζ(0, 0) = 0. We underline the observation that a function ζ(t, s) := ks− t, where k ∈ [0, 1) for all
s, t ∈ [0, ∞), is an instantaneous example of a simulation function. For further and more interesting
examples, we refer e.g., [5,14–18] and relate references therein.

A self-mapping f , defined on a metric space (X, d), is called a Z-contraction with respect to
ζ ∈ Z [5], if

ζ(d( f x, f y), d(x, y)) ≥ 0 for all x, y ∈ X. (3)

The following is the main results of [5]:
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Theorem 1. Every Z-contraction on a complete metric space has a unique fixed point.

As it is mentioned above, the immediate example ζ(t, s) := ks− t implies the outstanding Banach
contraction mapping principle.

Definition 6 (cf. [7]). Let (X, d) be a b-metric space with constant s ≥ 1. A self-mapping f is called an
admissible hybrid contraction, if there exist ϕ : [0, ∞) → [0, ∞) a b-comparison function and α : X × X →
[0, ∞) such that

α(x, y)d( f x, f y) ≤ ϕ
(
Rq

f (x, y)
)

, (4)

where q ≥ 0 and λi ≥ 0, i = 1, 2, 3, 4, 5 such that ∑5
i=1 λi = 1 and

Rq
f d(x, y) =

{
[N(x, y)]1/q , for q > 0, x, y ∈ X,

P(x, y), for q = 0, x, y ∈ X.
(5)

where
N(x, y) := λ1dq(x, y) + λ2dq(x, f x) + λ3dq(y, f y)

+λ4

(
d(y, f y)(1+d(x, f x))

1+d(x,y)

)q
+ λ5

(
d(y, f x)(1+d(x, f y))

1+d(x,y)

)q
,

and
P(x, y) := dλ1(x, y) · dλ2(x, f x) · dλ3(y, f y)

·
(

d(y, f y)(1+d(x, f x))
1+d(x,y)

)λ4 ·
(

d(x, f y)+d(y, f x)
2s

)λ5
.

Definition 7. Let (X, d) be a b-metric space with constant s ≥ 1. A mapping f : X → X is called admissible
hybrid Z-contraction mapping if there is ϕ : [0, ∞) → [0, ∞) a b-comparison function, α : X × X → [0, ∞)

and ζ ∈ Z such that

ζ
(

α(x, y)d( f x, f y), ϕ
(
Rq

f (x, y)
))
≥ 0, for all x, y ∈ X, (6)

whereRq
f (x, y) is as above.

3. Existence and Uniqueness Results

Theorem 2. Let (X, d) be a complete b-metric space with constant s ≥ 1 and let f : X → X be an admissible
hybrid Z-contraction. Suppose also that:

(i) f is triangular α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, f (x0)) ≥ 1;
(iii) either, f is continuous or
(iv) f 2 is continuous and α( f x, x) ≥ 1 for any x ∈ Fix f 2(X).

Then, f has a fixed point.

Proof. Let x0 ∈ X be an arbitrary point. Starting from here, we recursively construct the sequence
(xn)n∈N, as xn = f n (x0) for all n ∈ N. Supposing that there exists some m ∈ N such that f xm =

xm+1 = xm, we find that xm is a fixed point of f and the proof is finished. Thus, we can presume,
from now on, that xn �= xn−1 for any n ∈ N. Under the assumption (i), f is an admissible hybrid
Z-contraction, if we consider in (6) x = xn−1 and y = xn, we get

0 ≤ ζ(α(xn−1, xn)d( f (xn−1) , f (xn)), ϕ(Rq
f (xn−1, xn)))

< ϕ(Rq
f (xn−1, xn))− α(xn−1, xn)d( f (xn−1) , f (xn)),
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which is equivalent to

α(xn−1, xn)d( f (xn−1) , f (xn)) ≤ ϕ(Rq
f (xn−1, xn)). (7)

Taking into account that f is triangular α-orbital admissible, from (ii) and Lemma 1.3., we have
α(xn−1, xn) ≥ 1. In this way, the above inequality becomes

d(xn, xn+1) ≤ α(xn−1, xn)d( f (xn−1) , f (xn)) < ϕ(Rq
f (xn−1, xn)). (8)

Case 1. For the case q > 0, we have

Rq
f (xn−1, xn) = [λ1dq(xn−1, xn) + λ2dq(xn−1, f (xn−1)) + λ3dq(xn, f (xn))+

+λ4

(
d(xn , f (xn))(1+d(xn−1, f (xn−1))

1+d(xn−1,xn)

)q
+ λ5

(
d(xn , f (xn−1))(1+d(xn−1, f (xn))

1+d(xn−1,xn)

)q] 1
q

= [λ1dq(xn−1, xn) + λ2dq(xn−1, xn) + λ3dq(xn, xn+1)+

+λ4

(
d(xn ,xn+1)(1+d(xn−1,xn))

1+d(xn−1,xn)

)q
+ λ5

(
d(xn ,xn)(1+d(xn−1,xn+1))

1+d(xn−1,xn)

)q] 1
q

=
[
λ1dq(xn−1, xn) + λ2dq(xn−1, xn) + λ3dq(xn, xn+1) + λ4 (d(xn, xn+1))

q] 1
q

= [(λ1 + λ2)dq(xn−1, xn) + (λ3 + λ4)dq(xn, xn+1)]
1/q,

and from (8) we get

d(xn, xn+1) ≤ α(xn−1, xn)d( f (xn−1) , f (xn)) < ϕ(Rq
f (xn−1, xn))

= ϕ([(λ1 + λ2)dq(xn−1, xn) + (λ3 + λ4)dq(xn, xn+1)]
1/q).

(9)

Suppose that d(xn−1, xn) ≤ d(xn, xn+1). Since ϕ is a nondecreasing function, Equation (9) can be
estimated as follows:

d(xn, xn+1) ≤ α(xn−1, xn)d( f (xn−1) , f (xn))

≤ ϕ([(λ1 + λ2)dq(xn−1, xn) + (λ3 + λ4)dq(xn, xn+1)]
1/q)

due to assumption d(xn−1, xn) ≤ d(xn, xn+1) we get

≤ ϕ([λ1 + λ2 + λ3 + λ4)dq(xn, xn+1)]
1/q)

when we rearrange it, we get

= ϕ((λ1 + λ2 + λ3 + λ4)
1/qd(xn, xn+1))

on account of the fact that ϕ(t) < t, we find

< (λ1 + λ2 + λ3 + λ4)
1/qd(xn, xn+1)

since λ1 + λ2 + λ3 + λ4 ≤ 1, we obtain

≤ d(xn, xn+1),

which is a contradiction. Therefore, for every n ∈ N, we have

d(xn, xn+1) < d(xn−1, xn),
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in which case the inequality (8) yields

d(xn, xn+1) ≤ ϕ([(λ1 + λ2)dq(xn−1, xn) + (λ3 + λ4)dq(xn, xn+1)]
1/q)

< ϕ
(
(λ1 + λ2 + λ3 + λ4)

1/qd(xn−1, xn)
)

≤ ϕ (d(xn−1, xn)) ≤ ϕ2 (d(xn−2, xn−1)) ≤ ... ≤ ϕn (d(x0, x1)) .

(10)

Now let m, p ∈ N such that p > m. Using the triangle inequality and (10), we have

d(xm, xp) ≤ sd(xm, xm+1) + s2d(xm+1, xm+2) + . . . + sp−m · d(xp−1, xp)

≤ sϕm((d(x0, x1)) + s2 ϕm+1(d(x0, x1)) + . . . + sp−m+1 ϕp(d(x0, x1))

= 1
sm−1

(
sm ϕm((d(x0, x1)) + sm+1 ϕm+1(d(x0, x1)) + . . . + sp ϕp(d(x0, x1))

)
= 1

sm−1

p
∑

j=m
sj ϕj((d(x0, x1)).

Since ϕ is a b-comparison function, the series
∞
∑

j=0
ϕj(d(x0, x1)) is convergent. Denoting by Sn =

n
∑

j=0
ϕj(d(x0, x1)), the above inequality becomes

d(xm, xp) ≤ 1
sm−1

(Sp−1 − Sm−1
)

,

and as m, p → ∞ we get
d(xm, xp)→ 0, (11)

which tells us that (xn)n∈N is a Cauchy sequence on a complete b-metric space, so there exists x∗ ∈ X
such that

lim
n→∞

d(xnx∗) = 0. (12)

We shall prove that x∗ is a fixed point of f . If f is continuous, (due to assumption (iii))

d (x∗, f (x∗)) = lim
n→∞

d (xn, f (xn)) = lim
n→∞

d(xn, xn+1) = 0,

so we get that f (x∗) = x∗, that is, x∗ is a fixed point of f .
Suppose now that f 2 is continuous. It follows that f 2 (x∗) = lim

n→∞
f 2 (xn) = x∗. We shall prove

that f (x∗) = x∗. Supposing that, on the contrary, f (x∗) �= x∗, we have from (6)

0 ≤ ζ(α( f (x∗) , x∗)d( f 2 (x∗) , f (x∗)), ϕ(Rq
f ( f (x∗) , x∗)))

= ϕ(Rq
f ( f (x∗) , x∗))− α( f (x∗) , x∗)d( f 2 (x∗) , f (x∗)),
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which implies

d(x∗, f (x∗)) = d( f 2 (x∗) , f (x∗)) ≤ α( f (x∗) , x∗)d( f (x∗) , x∗)

since ϕ(t) < t, we get

≤ ϕ(Rq
f ( f (x∗) , x∗)) < Rq

f ( f (x∗) , x∗); due to (5), we have

=
[
λ1dq( f (x∗) , x∗) + λ2dq(x∗, f (x∗)) + λ3dq( f (x∗) , f 2 (x∗))+

λ4

(
d(x∗ , f (x∗))(1+d( f (x∗), f 2(x∗))

1+d(x∗ , f (x∗))

)q
+ λ5

(
d( f (x∗), f (x∗))(1+d(x∗ , f 2(x∗))

1+d(x∗ , f (x∗))

)q
] 1

q

= [λ1dq( f (x∗) , x∗) + λ2dq(x∗, f (x∗)) + λ3dq( f (x∗) , x∗)+

+λ4

(
d(x∗ , f (x∗))(1+d( f (x∗),x∗))

1+d(x∗ , f (x∗))

)q
+ λ5

(
d( f (x∗), f (x∗))(1+d(x∗ ,x∗))

1+d(x∗ , f (x∗))

)q] 1
q

= [(λ1 + λ2 + λ3 + λ4)dq(x∗, f (x∗))]
1
q

= [(λ1 + λ2 + λ3 + λ4)]
1
q d(x∗, f (x∗))

≤ d(x∗, f (x∗)).

This is a contradiction, so that f (x∗) = x∗.
Case 2. For the case q = 0, if we consider x = xn−1 and y = xn, we have

Rq
f (xn−1, xn) = dλ1(xn−1, xn) · dλ2(xn−1, f (xn−1)) · dλ3(xn, f (xn))·

·
[

d(xn , f (xn))(1+d(xn−1, f xn−1))
1+d(xn−1,xn)

]λ4 ·
[

d(xn−1, f (xn))+d(xn , f xn−1))
2s

]λ5

= dλ1(xn−1, xn) · dλ2(xn−1, xn) · dλ3(xn, xn+1)·

·
[

d(xn ,xn+1)(1+d(xn−1,xn))
1+d(xn−1,xn)

]λ4 ·
[

d(xn−1,xn+1)+d(xn ,xn))
2s

]λ5

= dλ1(xn−1, xn) · dλ2(xn−1, xn) · dλ3(xn, xn+1) · dλ4(xn, xn+1) ·
[

d(xn−1,xn+1)
2s

]λ5
.

Employing the triangle inequality, we have

Rq
f (xn−1, xn) ≤ dλ1(xn−1, xn) · dλ2(xn−1, xn) · dλ3(xn, xn+1) · dλ4(xn, xn+1)

·
[

d(xn−1,xn)+d(xn ,xn+1)
2

]λ5
.

(13)

Using the following inequality(
a + b

2

)k
≤ ak + bk

2
, for all a, b, k > 0,

(13) becomes
Rq

f (xn−1, xn) ≤ dλ1(xn−1, xn) · dλ2(xn−1, xn) · dλ3(xn, xn+1)

·dλ4(xn, xn+1) · dλ5 (xn−1,xn)+dλ5 (xn ,xn+1)
2 ,

and, from (6),
0 ≤ ζ(α(xn−1, xn)d( f (xn−1) , f (xn)), ϕ(Rq

f (xn−1, xn)))

< ϕ(Rq
f (xn−1, xn))− α(xn−1, xn)d( f (xn−1) , f (xn)),

which yields that

d(xn, xn+1) ≤ α(xn−1, xn)d( f (xn−1) , f (xn)) ≤ ϕ(Rq
f (xn−1, xn)). (14)
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Supposing that d(xn−1, xn) ≤ d(xn, xn+1), since ϕ is a nondecreasing function, we have

d(xn, xn+1) < dλ1+λ2+λ3+λ4+λ5(xn, xn+1) = d(xn, xn+1),

which is a contradiction. Then, from (14), inductively, we obtain

d(xn, xn+1) ≤ ϕ(Rq
f (xn−1, xn)) < ϕn(d(x0, x1)). (15)

By using the same arguments as the case q > 0, we shall easily obtain that (xn)n∈N is a Cauchy
sequence in a complete metric space and thus there exists x∗ such that lim

n→∞
xn = x∗.

We claim that x∗ is a fixed point of f .
Under the assumption that f is continuous, we have

d (x∗, f (x∗)) = lim
n→∞

d (xn, f (xn)) = lim
n→∞

d(xn, xn+1) = 0,

and together with the uniqueness of limit, f (x∗) = x∗. In addition, if f 2 is continuous, as in case 1, we
have that f 2 (x∗) = x∗ and suppose that f (x∗) �= x∗. Then, we get

0 ≤ ζ(α( f (x∗) , x∗)d( f 2 (x∗) , f (x∗)), ϕ(Rq
f ( f 2 (x∗) , f (x∗)))

= ϕ(Rq
f ( f 2 (x∗) , f (x∗)))− α( f (x∗) , x∗)d( f 2 (x∗) , f (x∗)),

which implies
d(x∗, f (x∗)) = d( f 2 (x∗) , f (x∗))

≤ α( f (x∗) , x∗)d( f 2 (x∗) , f (x∗))

≤ ϕ(Rq
f ( f 2 (x∗) , f (x∗)) = ϕ(Rq

f (x∗, f (x∗)),

where

Rq
f (x∗, f (x∗)) = dλ1+λ2+λ3(x∗, f (x∗)) ·

[
d(x∗ , f (x∗))(1+d(x∗ , f (x∗))

1+d(x∗ , f (x∗))

]λ4 ·
[

d(x∗ ,x∗)+d( f (x∗), f (x∗))
2s

]λ5

= dλ1+λ2+λ3+λ4(x∗, f (x∗)) < d(x∗, f (x∗)).

Hence, we have

d(x∗, f (x∗)) ≤ ϕ(Rq
f (x∗, f (x∗)) < ϕ(d(x∗, f (x∗)) < d(x∗, f (x∗)),

which is a contradiction.

Theorem 3. In the hypothesis of Theorem 2, if we assume supplementary that

α(x∗, y∗) ≥ 1,

for any x∗, y∗ ∈ Fix f (X), then the fixed point of f is unique.

Proof. Let y∗ ∈ X be another fixed point of f . Suppose that x∗ �= y∗. In the case that q > 0, using (6),
we have:

0 ≤ ζ(α (x∗, y∗) d( f (x∗) , f (y∗)), ϕ(Rq
f (x∗, y∗)))

< ϕ(Rq
f (x∗, y∗))− α (x∗, y∗) d( f (x∗) , f (y∗)),
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which yields that

d(x∗, y∗) ≤ α (x∗, y∗) d( f (x∗) , f (y∗)) ≤ ϕ(Rq
f (x∗, y∗)) < Rq

f (x∗, y∗)

=
[
λ1d(x∗, y∗) + λ2dq(x∗, f (x∗)) + λ3dq(y∗, f (y∗)) + λ4

(
d(y∗ , f (y∗))(1+d(x∗ , f (x∗))

1+d(x∗ ,y∗)

)q
+

λ5

(
d(y∗ , f (x∗))(1+d(x∗ , f (y∗))

1+d(x∗ ,y∗)

)q] 1
q

= (λ1 + λ5)
1
q d(x∗, y∗) < d(x∗, y∗),

which is a contradiction.
In the case that q = 0, if we suppose that x∗ �= y∗, then we obtain that 0 < d(x∗, y∗) < 0, which is

a contradiction.
Thus, x∗ = y∗, so that f possesses exactly one fixed point.

Example 10. Let X = [0, 2], d : X × X → [0, ∞) , d(x, y) = |x− y|2 for all x, y ∈ X. Consider

that the mapping f : X → X is defined by f (x) =

{
1/2, i f x ∈ [0, 1]

x/2, i f x ∈ (1, 2]
and the function α(x, y) =⎧⎪⎪⎨⎪⎪⎩

2, i f x, y ∈ [0, 1],

1, i f x = 0, y = 2

0, otherwise.

and the b-comparison function ϕ : [0, ∞)→ [0, ∞), ϕ(t) = t
2 , ζ (t, s) = 1

2 s− t,

We can easily observe that:

1. (X, d) is a complete b-metric space with the constant s = 2;
2. f triangular α-orbital admissible;
3. for x0 ∈ [0, 1], f (x0) =

1
2 ∈ [0, 1] and hence α (x0, f (x0)) = 2 > 1;

4. f is continuous;
5. f 2 (x) = 1

2 is continuous. Moreover, for x = 1
2 ∈ Fix f 2 (X), we have α

(
f
(

1
2

)
. 1
2

)
= α

(
1
2 , 1

2

)
= 2 > 1;

6. ζ
(

α(x, y)d( f x, f y), ϕ
(
Rq

f (x, y)
))
≥ 0.

If x, y ∈ [0, 1], then f x = f y = 1
2 and hence d ( f x, f y) = 0. We have

ζ
(

0, ϕ
(
Rq

f (x, y)
))

=
1
2

ϕ
(
Rq

f (x, y)
)
≥ 0, for all x, y ∈ [0, 1],

and hence
ζ
(

α(x, y)d( f x, f y), ϕ
(
Rq

f (x, y)
))
≥ 0, for all x, y ∈ [0, 1].

If x = 0 and y = 2, then if we consider q = 2, λ1 = λ2 = λ3 = λ4 = λ5 = 1
5 , then we have

ζ
(

α(0, 2)d( f (0) , f (2)), ϕ
(
Rq

f (0, 2)
))

= 1
2 ϕ

(
Rq

f (0, 2)
)
− α(0, 2)d( f (0) , f (2)) =<=

= 1
4

[
1
5 d2(0, 2) + 1

5 d2(0, f (0)) + 1
5 d2(2, f (2))+

+ 1
5

(
d(2, f (2))(1+d(0, f (0)))

1+d(0,2)

)2
+ 1

5

(
d(2, f (0))(1+d(0, f (2)))

1+d(0,2)

)2
] 1

2

−α(0, 2)d
(

1
2 , 1

)
= 1

4

[
1
5

(
16 + 1

16 + 1 + 1
16 + 81

100

)] 1
2

= 1
4
( 3587

1000
) 1

2 − 1
4 ≥ 0.

Hence,
ζ
(

α(0, 2)d( f (0) , f (2)), ϕ
(
Rq

f (0, 2)
))
≥ 0.
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In all other cases, α(x, y) = 0 and

ζ
(

0, ϕ
(
Rq

f (x, y)
))

=
1
2

ϕ
(
Rq

f (x, y)
)
≥ 0.

Thus, we obtain that f is an admissible hybrid Z-contraction which satisfies the assumptions of Theorem 2
and then x = 1

2 is the fixed point of f .

Remark 3. If, in the above example, we consider f (x) =

{
1/3, if x ∈ [0, 1]

x/2, if x ∈ (1, 2]
, then f is not continuous,

but f 2 (x) = 1
3 and for x = 1

3 ∈ Fix f 2 (X), we have α
(

f
(

1
3

)
. 1
3

)
= α

(
1
3 , 1

3

)
= 2 > 1.

Let Φ be the collection of all auxiliary functions φ : [0, ∞)→[0, ∞) which are continuous and
φ(t) = 0 if and only if t = 0.

Theorem 4. Let (X, d) be a complete b-metric space with constant s ≥ 1, f : X → X and α : X×X → [0, ∞).
Suppose that there exist two functions φ1, φ2 ∈ Φ, with φ1(t) < t ≤ φ2(t), for all t > 0, such that

φ2 (α(x, y)d( f x, f y)) ≤ φ1

(
Rq

f (x, y)
)

. (16)

Furthermore, we suppose that:

(i) f is triangular α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, f (x0)) ≥ 1;
(iii) either, f is continuous or
(iv) f 2 is continuous and α( f x, x) ≥ 1 for any x ∈ Fix f 2(X).
(v) if x∗, y∗ ∈ Fix f (X), then α(x∗, y∗) ≥ 1.

Then, f has a unique fixed point.

Proof. Let ζ (t, s) = φ1 (s)− φ2 (t) . According to Example 10, if φ1, φ2 ∈ Φ have the property φ1(t) <
t ≤ φ2(t) for all t > 0, then ζ ∈ Z . Thus, the desired results follow from Theorems 2 and 3.

Theorem 5. Let (X, d) be a complete b-metric space with constant s ≥ 1 , f : X → X and α : X×X → [0, ∞).
Suppose that there exists a function φ ∈ Φ, such that

α(x, y)d( f x, f y) ≤ Rq
f (x, y)− φ

(
Rq

f (x, y)
)

. (17)

Furthermore, we suppose that

(i) f is triangular α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, f (x0)) ≥ 1;
(iii) either, f is continuous or
(iv) f 2 is continuous and α( f x, x) ≥ 1 for any x ∈ Fix f 2(X).

(v) if x∗, y∗ ∈ Fix f (X), then α(x∗, y∗) ≥ 1.

Then, f has a unique fixed point.

Proof. Let ζ (t, s) = s− φ (s))− t. According to Example 10, ζ ∈ Z . Thus, the desired results follow
from Theorems 2 and 3.
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Theorem 6. Let (X, d) be a complete b-metric space with constant s ≥ 1 , f : X → X and α : X×X → [0, ∞).
Suppose that there exists a function μ : [0, ∞)→ [0, ∞) such that

∫ ε
0 μ(u)du exists and

∫ ε
0 μ(u)du > ε, for each

ε > 0, with the property that

α(x, y)d( f x, f y) ≤
∫ Rq

f (x,y)

0
μ(u)du. (18)

Furthermore, we suppose that

(i) f is triangular α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, f (x0)) ≥ 1;
(iii) either, f is continuous or
(iv) f 2 is continuous and α( f x, x) ≥ 1 for any x ∈ Fix f 2(X).
(v) if x∗, y∗ ∈ Fix f (X), then α(x∗, y∗) ≥ 1.

Then, f has a unique fixed point.

Proof. Let ζ (t, s) = s− ∫ t
0 μ(u)du. According to Example 10, ζ ∈ Z . Thus, the desired results follow

from Theorems 2 and 3.

Let Φ be the class of auxiliary functions φ : [0, ∞) → [0, ∞) that are continuous functions and
μ(t) = 0 if and only if, t = 0.

The following example is derived from [5,14,15].

Example 11. (See, e.g., [5,14,15]) Let φi ∈ Φ for i = 1, 2, 3 and σj : R+
0 ×R

+
0 → R for j = 1, 2, 3, 4, 5, 6.

Each of the functions defined below is an example of simulation functions:

(E1) σ2(t, s) = s− φ3(s)− t for all t, s ≥ 0.
(E2) σ4(t, s) = f (s) − t for all t, s ≥ 0, t, s ≥ 0, where the function f : [0, ∞) → [0, ∞) is upper

semi-continuous and such that f (t) < t for all t > 0 and f (0) = 0.

(E3) σ5(t, s) = s− g(t, s)
h(t, s)

for all t, s ≥ 0, where g, h : [0, ∞)2 → (0, ∞) are two continuous functions with

respect to each variable such that g(t, s) > h(t, s) for all t, s > 0.

(E4) σ6(t, s) = s η(s) − t for all t, s ≥ 0, where η : [0, ∞) → [0, 1) is a function with the property
lim supt→r+ η(t) < 1 for all r > 0

Remark 4. By using the examples above, we may derive more consequences of our results.

4. Well Posedness and Ulam–Hyers Stability

Considered as a type of data dependence, the notion of Ulam stability was started by Ulam [19,20]
and developed by Hyers [21], Rassias [22], etc. In this section, we investigate the general Ulam type
stability in sense of a fixed point problem as well the well posedness of the fixed point problem.

Suppose that f : X → X is a self-mapping on a b-metric space (X, d) with the constant s > 1 and
let us consider the following fixed point problem:

x = f (x). (19)

Definition 8. The fixed point problem (19) is well-posed if

(i) Fix f (X) = {x∗} ;
(ii) If (xn)n∈N is a sequence such that d (xn, f (xn))→ 0, as n → ∞, then xn → x∗, as n → ∞.
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Theorem 7. Let (X, d) be a complete b-metric space with constant s > 1. Suppose that all the hypotheses of
Theorem 3 hold, and q > 0. Additionally, we suppose that for any sequence (xn)n∈N, with d (xn, f (xn))→ 0,
as n → ∞, we have α (xn, x∗) ≥ 1, for all n ∈ N, where x∗ ∈ Fix f (X) . If λ1 + λ5 < 1

γ2(q) , where

γ(q) = max
{

1, 2q−1sq}, then the fixed point problem (19) is well-posed.

Proof. Taking into account the supplementary condition, since Fix f (X) = x∗, u sin g (6), we have

0 ≤ ζ(α (xn, x∗) d( f (xn) , f (x∗)), ϕ(Rq
f (xn, x∗)))

< ϕ(Rq
f (xn, x∗))− α (xn, x∗) d( f (xn) , f (x∗)).

We have

d(xn, x∗) ≤ sd(xn, f (xn)) + sd( f (xn) , f (x∗)) ≤ sd(xn, f (xn)) + sα(xn, x∗)d( f (xn) , f (x∗))

≤ sd(xn, f (xn)) + sϕ(Rq
f (xn, x∗)) < sd(xn, f (xn)) + sRq

f (xn, x∗)

≤ s
[
λ1dq(xn, x∗) + λ2dq(xn, f (xn)) + λ3dq(x∗, f (x∗)) + λ4

(
d(x∗ , f (x∗))(1+d(xn , f (xn)))

1+d(xn ,x∗)

)q
+

+λ5

(
d(x∗ , f (xn))(1+d(xn , f (x∗)))

1+d(xn ,x∗)

)q] 1
q
+ sd(xn, f (xn))

= s [λ1dq(xn, x∗) + λ2dq(xn, f (xn)) + λ5dq(x∗, f (xn)]
1
q + sd(xn, f (xn))

≤ s
[
λ1dq(xn, x∗) + λ2dq(xn, f (xn)) + sqλ5 (d (x∗, xn) + d(xn, f (xn))

q] 1
q + sd(xn, f (xn))

≤ s
[
λ1dq(xn, x∗) + λ2dq(xn, f (xn)) + 2q−1sqλ5dq (x∗, xn) + 2q−1sqλ5dq(xn, f (xn)

] 1
q +

+sd(xn, f (xn)).

In this way, we obtain

dq(xn, x∗) ≤ 2q−1sqλ1dq(xn, x∗) + 2q−1sqλ2dq(xn, f (xn)) + 22q−2s2qλ5dq (x∗, xn) +

+22q−2s2qλ5dq(xn, f (xn)) + 2q−1sqdq(xn, f (xn))

or (
1− 2q−1sqλ1 − 22q−2s2qλ5

)
dq(xn, x∗) ≤ 2q−1sq

(
1 + λ2 + 2q−1sqλ5

)q
dq(xn, f (xn)).

From here, we obtain

dq(xn, x∗) ≤ (1 + λ2 + γ(q)λ5)γ(q)
1− γ(q)λ1 − γ2(q)λ5

dq(xn, f (xn)).

Letting n → ∞ in the above inequality and keeping in mind that lim
n→∞

d(xn, f (xn)) = 0, we obtain

lim
n→∞

d(xn, x∗) = 0,

that is, the fixed point Equation (19) is well-posed.

Definition 9. The fixed point problem (19) is called generalized Ulam–Hyers stable if and only if there exists
ρ : [0, ∞)→ [0, ∞) is increasing, continuous in 0 and ρ(0) = 0, such that for each ε > 0 and for each y∗ ∈ X,
which satisfy the inequality

d(y, f (y)) ≤ ε, (20)

there exists a solution x∗ of the fixed point problem (19) such that

d(y∗, x∗) ≤ ρ(ε).
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If there exists c > 0 such that ρ(t) := c · t, for each t ∈ R+, then the fixed point problem (19) is said to be
Ulam–Hyers stable.

Before stating our theorem, we underline that Ulam–Hyers stability can be potentially applicable
to the study of switched dynamics, see e.g., [23], and the related references therein.

Theorem 8. Let (X, d) be a complete b-metric space with constant s > 1. Suppose that all the hypotheses
of Theorem 3 hold, and q > 0. Additionally, we suppose that α (y∗, x∗) ≥ 1, for all y∗ ∈ X verifying (20)
and x∗ ∈ Fix f (X) . If λ1 + λ5 < 1

γ2(q) , where γ(q) = max
{

1, 2q−1sq}, then the fixed point problem (19) is
Ulam–Hyers stable.

Proof. Using (6),
0 ≤ ζ(α (y∗, x∗) d( f (y∗) , f (x∗)), ϕ(Rq

f (y
∗, x∗)))

< ϕ(Rq
f (y

∗, x∗))− α (y∗, x∗) d( f (y∗) , f (x∗))

d(y∗, x∗) = d(y∗, f (x∗)) ≤ sd( f (y∗) , f (x∗)) + sd(y∗, f (y∗))

≤ sα(y∗, x∗)d( f (y∗) , f (x∗)) + sd(y∗, f (y∗))
≤ sϕ(Rq

f (y
∗, x∗)) + sε < sRq

f (y
∗, x∗)) + sε

≤ s [λ1dq(y∗, x∗) + λ2dq(y∗, f (y∗)) + λ3dq(x∗, f (x∗)) +

λ4

(
d(x∗ , f (x∗))(1+d(x∗ , f (x∗))

1+d(y∗ ,x∗)

)q
+ λ5

(
d(x∗ , f (y∗))(1+d(y∗ , f (x∗)))

1+d(y∗ ,x∗)

)q] 1
q
+ sε

= s [λ1dq(y∗, x∗) + λ2εq + λ5dq(x∗, f (y∗)]
1
q + sε

≤ s
[
λ1dq(y∗, x∗) + λ2εq + sqλ5 (d (y∗, x∗) + d(y∗, f (y∗))q] 1

q + sε

≤ s
[
λ1dq(y∗, x∗) + λ2εq + 2q−1sqλ5dq (y∗, x∗) + 2q−1sqλ5dq (y∗, f (y∗))

] 1
q + sε

≤ s
[
λ1dq(y∗, x∗) + λ2εq + 2q−1sqλ5dq (y∗, x∗) + 2q−1sqλ5εq] 1

q + sε.

In this way, we obtain

dq(y∗, x∗) ≤ 2q−1sqλ1dq(y∗, x∗) + 2q−1sqλ2εq + 22q−2s2qλ5dq (y∗, x∗) +
+22q−2s2qλ5εq + 2q−1sqεq

or (
1− 2q−1sqλ1 − 22q−2s2qλ5

)
dq(y∗, x∗) ≤ 2q−1sq

(
1 + λ2 + 2q−1sqλ5

)q
εq.

From here, we obtain

dq(y∗, x∗) ≤ (1 + λ2 + γ(q)λ5)γ(q)
1− γ(q)λ1 − γ2(q)λ5

εq.

Hence,
dq(y∗, x∗) ≤ cεq,

where c = (1+λ2+γ(q)λ5)γ(q)
1−γ(q)λ1−γ2(q)λ5

, for any q > 0 and λ1, λ5 ∈ [0, 1) such that λ1 + λ5 < 1
γ2(q) .

5. Conclusions

In this paper, we unify, extend, and improve several existing fixed point theorems by introducing
the notion of admissible hybrid Z-contraction in the setting of complete b-metric spaces. Consequently,
all presented results valid in the setting of complete metric space by letting s = 1. On the other hand,
unifying several existing results in the literature, we have used admissible mappings, simulation
functions, and hybrid contractions. We need to underline the fact that, by setting admissible
function α in a proper way, one can get several new consequences of the existence results in the
setting of (i) standard metric space, (ii) metric space endowed a partial order on it, and (iii) cyclic
contraction. One can easily get these consequences by using the techniques in [4]. Furthermore, for the
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different examples of simulation functions (as we showed in Theorems 5 and 6), one can get more new
corollaries. Lastly, by regarding hybrid contraction approaches, one can get several more consequences,
by following the techniques in [21,24–26].

Besides expressing a more generalized result in the setting of a complete b-metric space, we also
present some applications for our obtained results. In particular, we shall consider the well-posedness
and the Ulam–Hyers stability of the fixed point problem. We note that the word ‘hybrid’ has been
used in different ways, in particular, in applicable nonlinear fields, see, e.g., [27,28].
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Abstract: In this paper, we investigate the Wick-type stochastic (3+1)-dimensional modified
Benjamin–Bona–Mahony (BBM) equations. We present a generalised version of the modified
tanh–coth method. Using the generalised, modified tanh–coth method, white noise theory, and
Hermite transform, we produce a new set of exact travelling wave solutions for the (3+1)-dimensional
modified BBM equations. This set includes solutions of exponential, hyperbolic, and trigonometric
types. With the help of inverse Hermite transform, we obtained stochastic travelling wave solutions
for the Wick-type stochastic (3+1)-dimensional modified BBM equations. Eventually, by application
example, we show how the stochastic solutions can be given as white noise functional solutions.

Keywords: modified BBM equations; (3+1)-dimensional equations; white noise; Brownian motion;
travelling wave solutions; wick-type stochastic

MSC: 60H15; 60H35; 35C07; 60H40

1. Introduction

In this paper, with the help of white noise theory, Hermite transform and a generalised, modified
tanh–coth method, we deduce stochastic travelling wave solutions for the Wick-type stochastic
(3+1)-dimensional modified BBM equations as the forms:

Ut + R1(t) !Uz + R2(t) !U!2 !Ux + R3(t) !Uxyt = 0, (1)

Vt + R4(t) !Vx + R5(t) !V!2 !Vy + R6(t) !Vxzt = 0, (2)

and
Wt + R7(t) !Wy + R8(t) !W!2 !Wz + R9(t) !Wxxt = 0, (3)

Axioms 2019, 8, 134; doi:10.3390/axioms8040134 www.mdpi.com/journal/axioms171
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where (x, y, z, t) ∈ R3 × R+, Ri(i = 1, 2, ...9) are non-zero integrable functions from R+ to the
Kondrative distribution space (S)−1, which was defined by Holden et al. in [1] as a Banach algebra
with the Wick-product!Equations (1)–(3) are the perturbations of the (3+1)-dimensional modified BBM
equations with variable coefficients:

ut + r1(t)uz + r2(t)u2ux + r3(t)uxyt = 0, (4)

vt + r4(t)vx + r5(t)v2vy + r6(t)vxzt = 0, (5)

and
wt + r7(t)wy + r8(t)w2wz + r9(t)wxxt = 0, (6)

where ri(i = 1, 2, ...9) are non-zero integrable functions o nR+. The modified BBM equation:

ut + k(t)ux + l(t)u2ux + m(t)uxxx = 0. (7)

which describes the surface long waves in nonlinear dispersive media. It is also used as a character
to acoustic-gravity waves in compressible fluids, hydromagnetic waves in cold plasma, and acoustic
waves in anharmonic crystals [2]. The study of (3+1)-dimensional nonlinear equations is promising
because these equations model the real features in a wide assortment of science, technology, fluid
mechanics, wave propagations, electrodynamics, and engineering fields [3–6]. For this reason,
Hereman [4,5] proposed the (3+1)-dimensional nonlinear modified KdV equation. Analogously,
and by the same sense, Wazwaz [7] introduced Equations (4)–(6). Moreover, if Equations (4)–(6) are
considered in a random environment, we have random (3+1)-dimensional modified BBM equations.
In order to obtain the exact solutions of random (3+1)-dimensional modified BBM equations, we
only consider them in a white noise environment; that is, we will discuss the Wick-type, stochastic,
(3+1)-dimensional modified BBM Equations (1)–(3).

Recently, the study of solutions to nonlinear partial differential equations (PDEs) is prospering [8–10].
Many authors have researched the subject of the random travelling wave, which is a significant subject
of stochastic partial differential equations (SPDEs). Wadati [11] first proposed and discussed the
stochastic KdV equation and gave the propagation of soliton of the KdV equation under the effect of
Gaussian noise. Furthermore, Ghany and Hyder [12–15], Ghany, Hyder and Zakarya [16,17], Chen
and Xie [18–20], Hyder and Zakarya [21,22], Hyder [23,24], and Agarwal, Hyder and Zakarya [25]
investigated a wide class of Wick-type stochastic evolution equations by using different extension
methods and white noise analysis.

There are many methods to obtain travelling wave solutions to nonlinear PDEs, such as the
inverse scattering method [26], the Newton’s method [27], the tanh method [28], the Sinc–Galerkin
method [29], the residual power series method [30], the semi-inverse variational principle and the first
integral method [31], and the Daftardar-Gejji and Jafari method [32]. The tanh method, established
by Malfliet [33], pursues a specially straightforward and effective algorithm to obtain exact solutions
for a wide class of nonlinear PDEs. Moreover, a variety of research papers have focused on the
different applications and extensions of the tanh method. Fan [34] has introduced an extended
tanh method and gave new travelling wave solutions that cannot be obtained by the tanh method.
Also, Wazwaz extended the tanh method and named it the tanh–coth method [35]. Furthermore,
El-Wakil [36] and Soliman [37] modified the tanh–coth method and presented new, exact solutions for
some nonlinear PDEs.

Our aim in this work was to obtain new stochastic travelling wave solutions for the Wick-type
stochastic (3+1)-dimensional modified BBM equations. Firstly, we give a generalised version of
the modified tanh–coth method to make it convenient for the nonlinear (3+1)-dimensional and
multi dimensional PDEs. Secondly, we use the generalised, modified tanh–coth method, white
noise theory, and Hermite transform to produce a new set of exact travelling wave solutions for the
(3+1)-dimensional modified BBM equations, this set includes solutions of exponential, hyperbolic, and
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trigonometric types. Finally, we use the inverse Hermite transform to obtain stochastic travelling wave
solutions for the Wick-type stochastic (3+1)-dimensional modified BBM equations. Moreover, by an
application example, we show how the stochastic solutions can be given as white noise functional
solutions. In our work, the modified BBM equation describes the surface long waves in nonlinear
dispersive media. It is also used as a character of acoustic gravity waves in compressible fluids,
hydromagnetic waves in cold plasma, and acoustic waves in harmonic crystals [2]. The study of
(3+1)-dimensional nonlinear equations is prospering because these equations model the real features
in a wide assortment of science, technology, fluid mechanics, wave propagations, electrodynamics,
and engineering fields [3–6]. The origin and references of Equation (1) are given in Holden [1].
Ghany and Fathallah studied white-noise functional solutions for wick-type stochastic time-fractional
Benjamin–Bona–Mahony (BBM) equation in [38]. Recently, Sahoo and Saha Ray studied by other
methods the stochastic solutions of wick-type stochastic time-fractional BBM equation for modeling
long surface gravity waves of small amplitude, in [39]. The PDE of Benjamin et al. [2] is now often
called the BBM equation, although it is also known as the regularised long wave (RLW) equation.
Morrison et al proposed the one-dimensional PDE, as an equally valid and accurate model for the same
wave phenomena simulated by the KdV and RLW equations [40]. Random waves are an important
subject of random PDEs. In essence, to investigate the exact solutions of random BBM equation, we
restricted our attention to consider this problem in white noise environment [38].

This paper is organized as follows: In Section 2, we recall some requisites from Gaussian white
noise analysis. In Section 3, we give a generalisation to the modified tanh–coth method to make it
convenient for the nonlinear (3+1)-dimensional equations. In Section 4, we employ the generalised,
modified tanh–coth method, white noise theory, and Hermite transform to obtain a new set of exact
travelling wave solutions for the (3+1)-dimensional modified BBM equations. In Section 5, we apply the
inverse Hermite transform to explore stochastic travelling wave solutions for the Wick-type stochastic
(3+1)-dimensional modified BBM equations. In Section 5, we give some examples to show that the
stochastic solutions can be given as Brownian motion functional solutions and white noise functional
solutions. In Section 6, we give a summary and discussion.

2. Requisites from Gaussian White Noise Analysis

The Gaussian white noise analysis starts with the rigging S(Rd) ⊂ L2(Rd) ⊂ S∗(Rd), where
S(Rd) is the Schwartz space of rapidly decreasing, infinite differentiable functions on Rd, and
S∗(Rd) is the space of tempered distributions. From the Bochner–Minlos theorem [1], we have
a unique white noise measure μ, on

(
S∗(Rd), β

(
S∗(Rd)

))
. Assume that ξn(x) = π−1/4((n −

1)!)−1/2e−x2/2hn−1(
√

2x), n ∈ N are the Hermite functions, where hn(x) denotes the Hermite
polynomials. It is well known that the collection (ξn)n∈N forms an orthonormal basis for L2(R).
Let α = (α1, ..., αd) be a d-dimensional multi-indices with α1, ..., αd ∈ N; then, the family of tensor
products ξα := ξ(α1,...,αd)

= ξα1 ⊗ ...⊗ ξαd , α ∈ Nd constitutes an orthonormal basis for L2(Rd). Now,
introduce an ordering in Nd by

i < j ⇒
d

∑
k=1

α
(i)
k ≤

d

∑
k=1

α
(j)
k , where α(i) =

(
α
(i)
k

)d

k=1
, α(j) =

(
α
(j)
k

)d

k=1
∈ N

d . (8)

Using this ordering, we define ηi := ξα(i) = ξ
α
(i)
1
⊗ ...⊗ ξ

α
(i)
d

, i ∈ N. Let J =
(
NN

0
)

c be the set of all

sequences α = (αi)i∈N with αi ∈ N0 and with compact support. For α ∈ J, we define

Hα(ω) =
∞

∏
i=1

hαi (〈ω, ηi〉), ω ∈ S∗(Rd) . (9)

173



Axioms 2019, 8, 134

Let n ∈ N, the Kondrative space of stochastic test functions (S)n
1 is defined by:

(S)n
1 =

{
f = ∑

α

cαHα ∈
n⊕

k=1

L2(μ) : cα ∈ R
n and ‖ f ‖2

1,k := ∑
α

c2
α(α!)2(2N)kα < ∞ ∀k ∈ N

}
, (10)

and the Kondrative space of stochastic distributions (S)n
−1 is defined by:

(S)n
−1 =

{
F = ∑

α

bαHα : bα ∈ R
n and ‖F‖2

−1,k := ∑
α

b2
α(2N)

−qα < ∞ for some q ∈ N

}
. (11)

The family of seminorms ‖ f ‖1,k, k ∈ N produces a topology on (S)n
1 and (S)n

−1 can be represented
as the dual of (S)n

1 under the action 〈F, f 〉 = ∑α(bα, cα)α!, where F = ∑α bα Hα ∈ (S)n
−1, f = ∑α cαHα ∈

(S)n
1 and (bα, cα) is the usual scalar product on Rn.

The Wick product of two distributions F = ∑α aαHα, G = ∑β bβHβ ∈ (S)n
−1 with aα, bβ ∈ Rn is

defined by:
F ! G = ∑

α,β
(aα, bβ)Hα+β . (12)

Let F = ∑α aαHα ∈ (S)n
−1 with aα ∈ Rn. The Hermite transform of F is defined by:

HF(w) = F̃(w) = ∑
α

aαwα ∈ C
n (when convergent) , (13)

where w = (w1, w2, ...) ∈ CN and wα = Π∞
i=1wαi

i , with α = (α1, α2, ...) ∈ J and w0
i = 1.

For F, G ∈ (S)n
−1, by the definition of Hermite transform, we get:

F̃ ! G(w) = F̃(w)G̃(w) , (14)

for all w such that F̃(w) and G̃(w) exist. The multiplication on the right hand side of the above equality
is the complex bilinear multiplication in Cn which is defined by (w1

1, ...w1
n)(w2

1, ..., w2
n) = ∑n

i=1 w1
i w2

i ,
where wk

i ∈ C. Hence, The Hermite transform converts the Wick product into the usual product and
convergence in (S)n

−1 into pointwise and bounded convergence in a specific neighbourhood of zero in
Cn. For more details about stochastic Kondrative spaces, Wick product, and Hermite transform we
refer the reader to [1].

3. Generalization of the Modified Tanh–Coth Method

Consider a multi dimensional, nonlinear PDE of wave propagation:

P
(

u, ut, uxi , uxixj , uxixjxk , ...
)
= 0 , (15)

where u is the dependent variable and t = x0, x1, x2, ..., xm are the independent variables. Introduce
the wave transformation:

u = u(ξ), ξ =
m

∑
i=0

aixi , (16)

where ai(i = 0, 1, 2, ..., m) are unknown constants. Therefore, Equation (15) can be transformed into a
nonlinear ordinary differential equation (NODE):

Q(u, u′, u′′, u′′′, ...) = 0. (17)
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For simplicity, we integrate the NODE (17), provided that all terms include derivatives, and set
the integration constants to be zero. Subsequently, the transformed Equation (17) can be solved by
expanding its general solution in finite series as follows:

u(ξ) =
N

∑
k=0

AkΦk(ξ) +
N

∑
k=1

BkΦ−k(ξ), (18)

where Φ solves the first order Riccati equation [41]:

Φ′(ξ) = α0 + α1Φ(ξ) + α2Φ2(ξ), (19)

where α0,α1, and α2 are constants to be determined. The positive constant N can be specified by
balancing the linear and nonlinear terms of highest order in Equation (17). Inserting Equations (18)
and (19) into Equation (17), yields an algebraic equation in Φ and its powers. Equating the coefficients
of Φk to zero, gives an algebraic system of equations in Ak and Bk. With the help of the computer
symbolic system Mathematica, we can obtain Ak and Bk. The Riccati Equation (19) has the following
particular solutions [42]:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Φ(ξ) = eξ − 1, α0 = 1, α1 = 1, α2 = 0,

Φ(ξ) = coth(ξ)± (ξ), tanh(ξ)± i (ξ), α0 = 1
2 , α1 = 0, α2 = − 1

2 ,

Φ(ξ) = tan(ξ), − cot(ξ), α0 = 1, α1 = 0, α2 = 1,

Φ(ξ) = 1
2 cot(2ξ), 1

2 tan(2ξ), α0 = 1, α1 = 0, α2 = 4.

(20)

4. The Wick-Type, Stochastic, (3+1)-Dimensional Modified BBM Equations

We first investigate the model (1) of the Wick-Type, stochastic, (3+1)-dimensional modified BBM
equations. Applying Hermite transform to Equation (1), gets the deterministic equation:

Ũt(x, y, z, t, w) + R̃1(t, w)Ũz(x, y, z, t, w) + R̃2(t, w)Ũ2(x, y, z, t, w)Ux(x, y, z, t, w)+

+ R̃3(t, w)Ũxyt(x, y, z, t, w) = 0 , (21)

where w = (w1, w2, ...) ∈ (
CN

)
c. To obtain travelling wave solutions to Equation (21), we introduce

the transformations R̃1(t, w) = r1(t, w),R̃2(t, w) = r2(t, w),R̃3(t, w) = r3(t, w), and Ũ(x, y, z, t, w) =

u(x, y, z, t, w) = u(ξ(x, y, z, t, w)) with

ξ(x, y, z, t, w) = a1x + a2y + a3z + b
∫ t

0
χ(τ, w)dτ, (22)

where ai (i = 1, 2, 3), b, and c are arbitrary constants satisfying aib �= 0 and χ is a non-zero function to
be determined. Hence, Equation (21) can be converted to the following NODE:

(bχ + a3r1)u +
1
3

a1r2u3 + a1a2bχr2u′′ = 0. (23)

Balancing u3 with u′′, gives N = 1. Therefore, we put the solution of Equation (21) in the form:

u(x, y, z, t, w) = A0(t, w) + A1(t, w)Φ(ξ) +
B1(t, w)

Φ(ξ)
, (24)

where Φ is the solution of Equation (19). Substituting Equations (24) and (19) into Equation (23),
collecting the coefficients of Φk (k = −3,−2,−1, 0, 1, 2, 3), and equating them to zero, gives the
following system of seven algebraic equations in A0, A1, B1, and χ.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(bχ + a3r1)A0 +
1
3 a1r2 I0 + a1a2bχr3E0 = 0,

(bχ + a3r1)A1 +
1
3 a1r2 I1 + a1a2bχr3E1 = 0,

(bχ + a3r1)B1 +
1
3 a1r2 J1 + a1a2bχr3F1 = 0,

1
3 a1r2 I2 + a1a2bχr3E2 = 0,
1
3 a1r2 I3 + a1a2bχr3E3 = 0,
1
3 a1r2 J2 + a1a2bχr3F2 = 0,
1
3 a1r2 J3 + a1a2bχr3F3 = 0.

(25)

where I0 = A0G0 + A1H1 + B1G1, I1 = A0G1 + A1G0 + B1G2, I2 = A0G2 + A1G1, I3 = A1G2,

J1 = A0H1 + A1H2 + B1G0, J2 = A0H2 + B1H1, J3 = B1H2, G0 = A2
0 + 2A1B1, G1 = 2A0 A1,

G2 = A2
1, H1 = 2A0B1, H2 = B2

1, E0 = α0C1 − α2D1, E1 = α1C1 + 2α0C2, E2 = α2C1 + 2α1C2,

E3 = 2α2C2, F1 = −α1D1 − 2α2D2, F2 = −α0D1 − 2α1D2, F3 = −2α0D2, C0 = α0 A1 − α2B1,

C1 = α1 A1, C2 = α2 A1, D1 = −α1B1, D2 = −α0B1.

Now, we solve the system (25) for some cases relating to the Riccati equation (19).

4.1. Case I

We reduce the system (25) by using α0 = α1 = 1 and α2 = 0. By using Mathematica, we can find a
set of solutions for the reduced system as follows:

A0 = ±i

√
3a3r1

a1r2
, A1 = 0, B1 = ±

√
3a2a3r1

a1a2r2r3 − 2
, χ =

2a3r1

b(a1a2r3 − 2)
. (26)

Substituting the values (26) in Equation (24) and using (20), yields a travelling wave solution of
Equation (21) of exponential type:

u1(x, y, z, t, w) =

=
±i
√

3a3r1(t, w)(a1a2r2(t, w)r3(t, w)− 2)(exp(ξ1(x, y, z, t, w))− 1)±√
3a1a2a3r1(t, w)r2(t, w)√

a1r2(t, w)(a1a2r2(t, w)r3(t, w)− 2)(exp(ξ1(x, y, z, t, w))− 1)
,

(27)

where

ξ1(x, y, z, t, w) = a1x + a2y + a3z + 2a3

∫ t

0

r1(τ, w)

a1a2r3(τ, w)− 2
dτ . (28)

4.2. Case II

We reduce the system (25) by using α0 = 1
2 , α1 = 0, and α2 = − 1

2 . By using Mathematica, we can
find a set of solutions for the reduced system as follows:

A0 = 0, A1 = ±
√

3a2a3r1r3

r2(2− a1a2r3)
, B1 = ±i

√
3a1a2r1

2r2r3
, χ = − 4a3r1

b(4 + a1a2r3)
. (29)
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Substituting the values (29) in Equation (24) and using (20), yields travelling wave solutions of
Equation (21) of hyperbolic type:

u2(x, y, z, t, w) = ±
√

3a2a3r1(t, w)r3(t, w)

r2(t, w)(2− a1a2r3(t, w))
(coth(ξ2(x, y, z, t, w))± (ξ2(x, y, z, t, w)))

± i
√

3ba2r1(t, w)√
2r2(t, w)r3(t, w) (coth(ξ2(x, y, z, t, w))± (ξ2(x, y, z, t, w)))

, (30)

u3(x, y, z, t, w) = ±
√

3a2a3r1(t, w)r3(t, w)

r2(t, w)(2− a1a2r3(t, w))
(tanh(ξ2(x, y, z, t, w))± i (ξ2(x, y, z, t, w)))

± i
√

3ba2r1(t, w)√
2r2(t, w)r3(t, w) (tanh(ξ2(x, y, z, t, w))± i (ξ2(x, y, z, t, w)))

, (31)

where

ξ2(x, y, z, t, w) = a1x + a2y + a3z− 4a3

∫ t

0

r1(τ, w)

4 + a1a2r3(τ, w)
dτ . (32)

4.3. Case III

We reduce the system (25) by putting α0 = α2 = 1 and α1 = 0. By using Mathematica, we can find
a set of solutions for the reduced system as follows:

A0 = ±
√

3a2a3r1

1− a1a2r2r3
, A1 = B1 = ±

√
6a2a3r1r3

1 + 2a1a2r2r3
, χ =

−a3r1

b(1 + 2a1a2r3)
. (33)

Substituting the values (33) in Equation (24) and using (20), yields travelling wave solutions of
Equation (21) of trigonometric type:

u4(x, y, z, t, w) = u5(x, y, z, t, w) =

= ±
√

3a2a3r1(t,w)
1−a1a2r2(t,w)r3(t,w)

±
√

6a2a3r1(t,w)r3(t,w)
1+2a1a2r2(t,w)r3(t,w) (sec(ξ3(x, y, z, t, w)) csc(ξ3(x, y, z, t, w))) ,

(34)

where

ξ3(x, y, z, t, w) = a1x + a2y + a3z− a3

∫ t

0

r1(τ, w)

1 + 2a1a2r3(τ, w)
dτ . (35)

4.4. Case IV

We reduce the system (25) by putting α0 = 1, α1 = 0 and α2 = 4. By using Mathematica, we can
find a set of solutions for the reduced system as follows:

A0 = ±3
√

3a2a3r1
9a1a2r2r3−2 , A1 = ±8

√
3a2a3r1r3

2+15a1a2r2r3
, B1 = ±i

√
3a3r1
a1r2r3

, χ = − 2a3r1
b(9a1a2r2r3−2) . (36)

Substituting the values (36) in Equation (24) and using (20), yields travelling wave solutions of
Equation (21) of trigonometric type:

u6(x, y, z, t, w) = ±3

√
3a2a3r1(t, w)

9a1a2r2(t, w)r3(t, w)− 2
± 4

√
3a2a3r1(t, w)r3(t, w)

2 + 15a1a2r2(t, w)r3(t, w)
(cot(2ξ4(x, y, z, t, w))

±i
√

3a3r1(t, w)

2
√

a1r2(t, w)r3(t, w)(cot(2ξ4(x, y, z, t, w)))
, (37)
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u7(x, y, z, t, w) = ±3

√
3a2a3r1(t, w)

9a1a2r2(t, w)r3(t, w)− 2
± 4

√
3a2a3r1(t, w)r3(t, w)

2 + 15a1a2r2(t, w)r3(t, w)
(tan(2ξ4(x, y, z, t, w))

±i
√

3a3r1(t, w)

2
√

a1r2(t, w)r3(t, w)(tan(2ξ4(x, y, z, t, w)))
, (38)

where

ξ4(x, y, z, t, w) = a1x + a2y + a3z + 2a3

∫ t

0

r1(τ, w)

9a1a2r3(τ, w)− 2
dτ . (39)

Obviously, there are several particular solutions for the system (25) with the Riccati equation (19),
coming from many different cases. In the above cases we just clarified how far our technique is
applicable.

Now, for q < ∞, r > 0, consider the infinite dimensional neighbourhoods Kq(r) = {(w1, w2, ...) ∈
CN : ∑α �=0 |wα|2(2N)qα < r2} of zero in CN [1]. The properties of exponential, hyperbolic, and
trigonometric functions yield that there exists a bounded open set D ⊂ R3×R+, q < ∞, r > 0, such that
the solution u(x, y, z, t, w) of Equation (21) and all its derivatives which are involved in Equation (21)
are uniformly bounded for (x, y, z, t, w) ∈ D× Kq(r), continuous with respect to (x, y, z, t) ∈ D for all
w ∈ Kq(r) and analytic with respect to w ∈ Kq(r), for all (x, y, z, t) ∈ D. From Theorem 4.1.1 in [1], there
exists U(x, y, z, t) ∈ (S)−1 such that u(x, y, z, t, w) = Ũ(x, y, z)(w) for all (x, y, z, t, w) ∈ D × Kq(r)
and U(x, y, z, t) solves Equation (1) in (S)−1. Hence, by applying the inverse Hermite transform to
Equations (27), (30), (31), (34), (37), and (38), we obtain the solutions of Equation (1) as follows:

(I) Stochastic Travelling Wave Solution of Exponential Type:

U1(x, y, z, t) =

±i
√

3a3R1(t) ! (a1a2R2(t) ! R3(t)− 2) ! (exp!(Ξ1(x, y, z, t))− 1)±√
3a1a2a3R1(t) ! R2(t)√

a1R2(t) ! (a1a2R2(t) ! R3(t)− 2)(exp!(Ξ1(x, y, z, t))− 1)
, (40)

with

Ξ1(x, y, z, t) = a1x + a2y + a3z + 2a3

∫ t

0

R1(τ)

a1a2R3(τ)− 2
dτ . (41)

(II) Stochastic Travelling Wave Solutions of Hyperbolic Type:

U2(x, y, z, t) = ±
√

3a2a3R1(t) ! R3(t)
R2(t) ! (2− a1a2R3(t))

! (coth!(Ξ2(x, y, z, t))±! (Ξ2(x, y, z, t)))

± i
√

3ba2R1(t)√
2R2(t) ! R3(t) ! (coth!(Ξ2(x, y, z, t))±! (Ξ2(x, y, z, t)))

, (42)

U3(x, y, z, t) = ±
√

3a2a3R1(t) ! R3(t)
R2(t) ! (2− a1a2R3(t))

! (tanh!(Ξ2(x, y, z, t))± i !(Ξ2(x, y, z, t)))

± i
√

3ba2R1(t)√
2R2(t) ! R3(t) ! (tanh!(Ξ2(x, y, z, t))± i !(Ξ2(x, y, z, t)))

, (43)

with

Ξ2(x, y, z, t) = a1x + a2y + a3z− 4a3

∫ t

0

R1(τ)

4 + a1a2R3(τ)
dτ . (44)
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(III) Stochastic Travelling Wave Solutions of Trigonometric Type:

U4(x, y, z, t) = U5(x, y, z, t) = ±
√

3a2a3R1(t)
1− a1a2R2(t) ! R3(t)

±
√

6a2a3R1(t) ! R3(t)
1 + 2a1a2R2(t) ! R3(t)

! (sec!(Ξ3(x, y, z, t)) ! csc!(Ξ3(x, y, z, t))) , (45)

with

Ξ3(x, y, z, t) = a1x + a2y + a3z− a3

∫ t

0

R1(τ)

1 + 2a1a2R3(τ)
dτ . (46)

U6(x, y, z, t) = ± 3

√
3a2a3R1(t)

9a1a2R2(t) ! R3(t)− 2
± 4

√
3a2a3R1(t) ! R3(t)

2 + 15a1a2R2(t) ! R3(t)
! (cot!(2Ξ4(x, y, z, t))

± i
√

3a3R1(t)
2
√

a1R2(t) ! R3(t) ! (cot!(2Ξ4(x, y, z, t))
, (47)

U7(x, y, z, t) = ± 3

√
3a2a3R1(t)

9a1a2R2(t) ! R3(t)− 2
± 4

√
3a2a3R1(t) ! R3(t)

2 + 15a1a2R2(t) ! R3(t)
! (tan!(2Ξ4(x, y, z, t)))

± i
√

3a3R1(t)
2
√

a1R2(t) ! R3(t) ! (tan!(2Ξ4(x, y, z, t)))
, (48)

with

Ξ4(x, y, z, t) = a1x + a2y + a3z + 2a3

∫ t

0

R1(τ)

9a1a2R3(τ)− 2
dτ . (49)

For the other two forms of the Wick-type, stochastic, (3+1)-dimensional modified BBM
equations (2) and (3), we can follow the same technique as presented for the first form (1). Therefore,
we just list the stochastic travelling wave solutions for each form. For Equation (2) one obtains the
following stochastic travelling wave solution:

(I) Stochastic Travelling Wave Solution of Exponential Type:

V1(x, y, z, t) =
±i
√

3b3R4(t)!(b1b2R5(t)!R6(t)−2)!(exp!(Λ1(x,y,z,t))−1)±
√

3b1b2b3R4(t)!R5(t)√
b1R5(t)!(b1b2R5(t)!R6(t)−2)(exp!(Λ1(x,y,z,t))−1)

,
(50)

with

Λ1(x, y, z, t) = b1x + b2y + b3z + 2b3

∫ t

0

R4(τ)

b1b2R6(τ)− 2
dτ . (51)

(II) Stochastic Travelling Wave Solutions of Hyperbolic Type:

V2(x, y, z, t) = ±
√

3b2b3R4(t) ! R6(t)
R5(t) ! (2− b1b2R6(t))

! (coth!(Λ2(x, y, z, t))±! (Λ2(x, y, z, t)))

± i
√

3b∗b2R4(t)√
2R5(t) ! R6(t) ! (coth!(Λ2(x, y, z, t))±! (Λ2(x, y, z, t)))

, (52)

V3(x, y, z, t) = ±
√

3b2b3R4(t) ! R6(t)
R5(t) ! (2− b1b2R6(t))

! (tanh!(Λ2(x, y, z, t))± i !(Λ2(x, y, z, t)))

± i
√

3b∗b2R4(t)√
2R5(t) ! R6(t) ! (tanh!(Λ2(x, y, z, t))± i !(Λ2(x, y, z, t)))

, (53)
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with

Λ2(x, y, z, t) = b1x + b2y + b3z− 4b3

∫ t

0

R4(τ)

4 + b1b2R6(τ)
dτ . (54)

(III) Stochastic Travelling Wave Solutions of Trigonometric Type:

V4(x, y, z, t) = V5(x, y, z, t) = ±
√

3b2b3R4(t)
1− b1b2R5(t) ! R6(t)

±
√

6b2b3R4(t) ! R6(t)
1 + 2b1b2R5(t) ! R6(t)

! (sec!(Λ3(x, y, z, t)) ! csc!(Λ3(x, y, z, t))) , (55)

with

Λ3(x, y, z, t) = b1x + b2y + a3z− b3

∫ t

0

R4(τ)

1 + 2b1b2R6(τ)
dτ . (56)

V6(x, y, z, t) = ± 3

√
3b2b3R4(t)

9b1b2R5(t) ! R6(t)− 2
± 4

√
3b2b3R4(t) ! R6(t)

2 + 15b1b2R5(t) ! R6(t)
! (cot!(2Λ4(x, y, z, t))

± i
√

3b3R4(t)
2
√

b1R5(t) ! R6(t) ! (cot!(2Λ4(x, y, z, t)))
, (57)

V7(x, y, z, t) = ± 3

√
3b2b3R4(t)

9b1b2R5(t) ! R6(t)− 2
± 4

√
3b2b3R4(t) ! R6(t)

2 + 15b1b2R5(t) ! R6(t)
! (tan!(2Λ4(x, y, z, t))

± i
√

3b3R4(t)
2
√

b1R5(t) ! R6(t) ! (tan!(2Λ4(x, y, z, t)))
, (58)

with

Λ4(x, y, z, t) = b1x + b2y + b3z + 2b3

∫ t

0

R4(τ)

9b1b2R6(τ)− 2
dτ , (59)

where bi (i = 1, 2, 3) and b∗ are arbitrary constants satisfying bib �= 0.
For Equation (3) one obtains the following stochastic travelling wave solution:

(I) Stochastic Travelling Wave Solution of Exponential Type:

W1(x, y, z, t) =

±i
√

3c1R7(t)!(c1c2R8(t) diamondR9(t)−2)!(exp!(Δ1(x,y,z,t))−1)±
√

3c2
1c2R7(t)!R8(t)√

c1R8(t)!(c1c2R8(t)!R9(t)−2)(exp!(Δ1(x,y,z,t))−1)
,

(60)

with

Δ1(x, y, z, t) = c1x + c2y + c3z + 2c1

∫ t

0

R7(τ)

c1c2R9(τ)− 2
dτ . (61)

(II) Stochastic Travelling Wave Solutions of Hyperbolic Type:

W2(x, y, z, t) = ±
√

3c1c2R7(t) ! R9(t)
R8(t) ! (2− c1c2R9(t))

! (coth!(Δ2(x, y, z, t))±! (Δ2(x, y, z, t)))

± i
√

3b∗∗c2R7(t)√
2R8(t) ! R9(t) ! (coth!(Δ2(x, y, z, t))±! (Δ2(x, y, z, t)))

, (62)
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W3(x, y, z, t) = ±
√

3c1c2R7(t) ! R9(t)
R8(t) ! (2− c1c2R9(t))

! (tanh!(Δ2(x, y, z, t))± i !(Δ2(x, y, z, t)))

± i
√

3b∗∗c2R7(t)√
2R8(t) ! R9(t) ! (tanh!(Δ2(x, y, z, t))± i !(Δ2(x, y, z, t)))

, (63)

with

Δ2(x, y, z, t) = c1x + c2y + c3z− 4c1

∫ t

0

R7(τ)

4 + c1c2R9(τ)
dτ . (64)

(III) Stochastic Travelling Wave Solutions of Trigonometric Type:

W4(x, y, z, t) = W5(x, y, z, t) = ±
√

3c1c2R7(t)
1− c1c2R8(t) ! R9(t)

±
√

6c1c2R7(t) ! R9(t)
1 + 2c1c2R8(t) ! R9(t)

! (sec!(Δ3(x, y, z, t)) ! csc!(Δ3(x, y, z, t))) , (65)

with

Δ3(x, y, z, t) = c1x + c2y + c3z− c1

∫ t

0

R7(τ)

1 + 2c1c2R9(τ)
dτ . (66)

W6(x, y, z, t) = ± 3

√
3c1c2R7(t)

9c1c2R8(t) ! R9(t)− 2
± 4

√
3c1c2R7(t) ! R9(t)

2 + 15c1c2R8(t) ! R9(t)
! (cot!(2Δ4(x, y, z, t))

± i
√

3c1R7(t)
2
√

c1R8(t) ! R9(t) ! (cot!(2Δ4(x, y, z, t)))
, (67)

W7(x, y, z, t) = ± 3

√
3c1c2R7(t)

9c1c2R8(t) ! R9(t)− 2
± 4

√
3c1c2R7(t) ! R9(t)

2 + 15c1c2R8(t) ! R9(t)
! (tan!(2Δ4(x, y, z, t))

± i
√

3c1R7(t)
2
√

c1R8(t) ! R9(t) ! (tan!(2Δ4(x, y, z, t)))
, (68)

with

Δ4(x, y, z, t) = c1x + c2y + c3z + 2c1

∫ t

0

R7(τ)

9c1c2R9(τ)− 2
dτ , (69)

where ci (i = 1, 2, 3) and b∗∗ are arbitrary constants satisfying cib �= 0.

5. Example

In this section, we provide a specific application example to demonstrate the effectiveness of our
results and to justify the real contribution of these results. We focus our attention on Equation (1).
Concerning the other two equations, Equations (2) and (3), the procedure is similar. We observe that
the solutions of Equation (1) are strongly depend on the shape of the given functions R1(t) and R2(t).
So, for dissimilar forms of R1(t) and R2(t), we can find dissimilar solutions of Equation (1) which
come from Equations (70)–(78). We illustrate this by giving the following example.

Assume that R2(t) = δ1R1(t), R3(t) = δ2R1(t) and R1(t) = f (t) + δ3Wt, where δ1,δ2, and δ3

are arbitrary constants, f (t) is a bounded measurable function on R+, and Wt is the Gaussian
white noise, which is the time derivative (in the strong sense in (S)−1) of the Brownian motion
Bt. The Hermite transform of Wt is given by W̃t(w) = ∑∞

i=1 wi
∫ t

0 ηi(τ)dτ [1]. Using the definition of
W̃t(w), Equations (70)–(78) yield the white noise functional solution of Equation (1) as follows:
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UW1(x, y, z, t) =

±i
√

3a3(a1a2δ1δ2( f (t) + δ3Wt)2 − 2)(exp(Ω1(x, y, z, t))− 1)±√3a1a2a3δ1( f (t) + δ3Wt)√
a1δ1(a1a2δ1δ2( f (t) + δ3Wt)2 − 2)(exp(Ω1(x, y, z, t))− 1)

, (70)

with

Ω1(x, y, z, t) = a1x + a2y + a3z + 2a3

∫ t

0

f (τ) + δ3Wτ

a1a2δ2( f (τ) + δ3Wτ)− 2
dτ , (71)

UW2(x, y, z, t) = ±
√

3a2a3δ2( f (t) + δ3Wt)

δ1(2− a1a2δ2( f (t) + δ3Wt))
(coth(Ω2(x, y, z, t))± (Ω2(x, y, z, t)))

± i
√

3ba2√
2δ1δ2( f (t) + δ3Wt) (coth(Ω2(x, y, z, t))± (Ω2(x, y, z, t)))

, (72)

UW3(x, y, z, t) = ±
√

3a2a3δ2( f (t) + δ3Wt)

δ1(2− a1a2δ2( f (t) + δ3Wt))
(tanh(Ω2(x, y, z, t))± i (Ω2(x, y, z, t)))

± i
√

3ba2√
2δ1δ2( f (t) + δ3Wt) (tanh(Ω2(x, y, z, t))± i (Ω2(x, y, z, t)))

, (73)

with

Ω2(x, y, z, t) = a1x + a2y + a3z− 4a3

∫ t

0

f (τ) + δ3Wτ

4 + a1a2δ2( f (τ) + δ3Wτ)
dτ , (74)

UW4(x, y, z, t) = UW5(x, y, z, t) = ±
√

3a2a3( f (t) + δ3Wt)

1− a1a2δ1δ2( f (t) + δ3Wt)2 ± ( f (t) + δ3Wt)

×
√

6a2a3δ2

1 + 2a1a2δ1δ2( f (t) + δ3Wt)2 (sec(Ω3(x, y, z, t)) csc(Ω3(x, y, z, t))) , (75)

with

Ω3(x, y, z, t) = a1x + a2y + a3z− a3

∫ t

0

f (τ) + δ3Wτ

1 + 2a1a2δ2( f (τ) + δ3Wτ)
dτ , (76)

UW6(x, y, z, t) = ± 3

√
3a2a3( f (t) + δ3Wt)

9a1a2δ1δ2( f (t) + δ3Wt)2 − 2
± 4( f (t) + δ3Wt)

×
√

3a2a3δ2

2 + 15a1a2δ1δ2( f (t) + δ3Wt)2 (cot(2Ω4(x, y, z, t)))

± i
√

3a3

2
√

a1δ1δ2(cot(2Ω4(x, y, z, t)))
, (77)

UW6(x, y, z, t) = ± 3

√
3a2a3( f (t) + δ3Wt)

9a1a2δ1δ2( f (t) + δ3Wt)2 − 2
± 4( f (t) + δ3Wt)

×
√

3a2a3δ2

2 + 15a1a2δ1δ2( f (t) + δ3Wt)2 (tan(2Ω4(x, y, z, t)))

± i
√

3a3

2
√

a1δ1δ2(tan(2Ω4(x, y, z, t)))
, (78)

182



Axioms 2019, 8, 134

with

Ω4(x, y, z, t) = a1x + a2y + a3z + 2a3

∫ t

0

f (τ) + δ3Wτ

9a1a2δ2( f (τ) + δ3Wτ)− 2
dτ . (79)

6. Conclusions

Due to the fact that the stochastic models are more realistic than the deterministic models, we
concentrated our study in this paper on the Wick-type, stochastic, (3+1)-dimensional modified BBM
equations. Besides that, we investigated and solve the deterministic, (3+1)-dimensional modified
BBM equations. In this paper, we set up a new and general version of the modified tanh–coth
method to deal with the nonlinear multi dimensional PDEs. By using this generalisation of the
modified tanh–coth method, Hermite transform, and white noise theory, we produced a new set of
exact travelling wave solutions for the variable coefficients and (3+1)-dimensional modified BBM
equations. This set includes solutions of exponential, hyperbolic, and trigonometric types. In [7],
Wazwaz has solved the deterministic, (3+1)-dimensional modified BBM equations with constant
coefficients, So, our results for this model are more general than the results obtained by him. With the
aid of inverse Hermite transform, we obtained stochastic travelling wave solutions for the Wick-type,
stochastic, (3+1)-dimensional modified BBM equations. Furthermore, we showed by an example
how the stochastic solutions can be given as white noise functional solutions. Note that, the schema
proposed in this paper can be used for solving several nonlinear evolution equations in mathematical
physics, both Wick-type stochastic and deterministic. Moreover, the Riccati equation (19) has different
solutions if we chose different values of α0, α1, and α2. Therefore, we can find many other solutions of
the Wick-type stochastic and deterministic (3+1)-dimensional modified BBM equations.

The PDE of Benjamin et al. [2] is now often called the BBM equation, although it is also known
as the regularised long wave (RLW) equation. Morrison et al. proposed the one-dimensional PDE,
as an equally valid and accurate model for the same wave phenomena simulated by the KdV and RLW
equations [40]. Random waves are an important subject of random PDEs. In essence, to investigate the
exact solutions of random Benjamin–Bona–Mahony equation, we restricted our attention to consider
this problem in a white noise environment [38]. The propagation of nonlinear wave in systems with
polarity symmetry can be described by the (3+1)-dimensional modified Benjamin–Bona–Mahony
Equation (7). If the problem is considered in a non-Gaussian stochastic environment, we can get
non-Gaussian, stochastic, (2+1)-dimensional coupled KdV equation. Obviously, the planner which
we have proposed in this paper can be also applied to other non-linear PDEs in mathematical
physics such as KdV-Burgers, modified KdV-Burgers, Zhiber- Shabat and Benjamin–Bona–Mahony
equations. We observe that the F-expansion method we used has many other particular solutions;
this in turn gives many other exact solutions for the considered stochastic, (3+1)-dimensional
modified Benjamin–Bona–Mahony equations. Additionally, in this work, we discussed the solutions
of SPDEs driven by non-Gaussian white noise; this discussion is less detailed than the Gaussian
discussion but more general, because it deals with the dual pairing generated by integration with
respect to a non-Gaussian measure. Furthermore, in future work, we will discuss the solutions of
SPDEs driven by non-Gaussian white noise to get exact stochastic solutions of the non-Gaussian,
stochastic, (3+1)-dimensional modified Benjamin–Bona–Mahony equations; we only considered this
problem in a non-Gaussian white noise environment; that is, we investigated the variable coefficients
of stochastic, (3+1)-dimensional modified Benjamin–Bona–Mahony equations. For this aim, we
developed a non-Gaussian Wick calculus based on the theory of hyper-complex systems to get exact
travelling wave solutions of (3+1)-dimensional modified Benjamin–Bona–Mahony equations and
non-Gaussian white noise functional solutions of Wick-type stochastic (3+1)-dimensional modified
Benjamin–Bona–Mahony equations.
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Abstract: In this paper, we give sufficient conditions to ensure the existence of the best proximity
point of monotone relatively nonexpansive mappings defined on partially ordered Banach spaces.
An example is given to illustrate our results.
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1. Introduction

Let X be a Banach space and (A, B) a pair of nonempty subsets of X. A cyclic mapping on A ∪ B
is a mapping T : A ∪ B → A ∪ B such that T(A) ⊆ B and T(B) ⊆ A. In case A ∩ B = ∅, T does
not possess a fixed point, that is, a solution to the equation Tx = x. Therefore, one can consider the
following minimization problem:

(P) :

{
find (x, y) ∈ A× B such that

‖x− Tx‖ = ‖y− Ty‖ = dist(A, B).

A point x ∈ A ∪ B is a best proximity point of T if x is a solution of the minimization problem (P).
The best proximity point notion can be seen as a generalization of fixed point notion since most fixed
point theorems can be derived as corollaries of best proximity point theorems.

The first significant result of best proximity points was studied in [1], using the proximal normal
structure, the authors proved that every cyclic relatively nonexpansive mapping from A ∪ B to itself
has a best proximity point provided that A and B are weakly compact and convex. Furthermore,
we find in [2] a similar result without invoking Zorn’s lemma, i.e., without proximal normal structure.
Recently, Chaira and Lazaiz [3] gave an extension of this last result in modular spaces. For a recent
account of the theory we refer the reader to [4–6]. We can also find in ([7], pp. 27–31) an application of
a best proximity point theorem to a system of differential equations.

On the other hand, the combination of metric fixed point theory and order theory allows
Ran and Reurings in [8] to give a Banach Contraction Principle in partially ordered metric spaces.
As consequence, they solved a matrix equation. Nieto and Rodríguez-López [9], extended the
Ran–Reurings theorem in order to obtain a periodic solution for a first-order ordinary differential
equation with periodic boundary conditions.

Recently, many authors studied the existence of fixed points of monotone nonexpansive mappings
defined on partially ordered Banach spaces (see for example [10–15]). Recall that a self mapping T
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on X is said to be monotone nonexpansive if T is monotone and ‖Tx − Ty‖ ≤ ‖x − y‖, for every
comparable elements x and y. We should mention that monotone nonexpansive mappings may not be
continuous. The interested reader can consult the book of Carl and Heikkilä [16] for many applications
of fixed point results of monotone mappings.

In this work, motivated by the recent study of a fixed point for monotone mappings, we investigate
the existence of the best proximity point of monotone relatively nonexpansive mappings in partially
ordered Banach spaces.

2. Preliminaries and Basic Results

Let (X, ‖.‖) be a Banach space endowed with a partial order  . Throughout, we assume that the
order intervals are closed and convex. Recall that an order interval is any of the subsets

[a,→) = {x ∈ X; a  x} , (←, a] = {x ∈ X; x  a}

for any a ∈ X. As a direct consequence of this, the subset

[a, b] = {x ∈ X; a  x  b} = [a,→) ∩ (←, b]

is also closed and convex for any a, b ∈ X.
We will say that x, y ∈ X are comparable whenever x  y or y  x. The linear structure of X is

assumed to be compatible with the order structure in the following sense:

(i) x  y implies x + z  y + z for all x, y, z ∈ X;
(ii) x  y implies αx  αy for all x, y ∈ X and α ∈ R+.

Let us recall the definition of a uniformly convex Banach space.

Definition 1. Let (X, ‖.‖) be a Banach space. We say that X is uniformly convex (in short, UC) if for every
ε > 0 we have δ(ε) > 0 such that

δ(ε) = in f
{

1−
∥∥∥∥ x + y

2

∥∥∥∥ ; ‖x‖ ≤ 1; ‖y‖ ≤ 1; ‖x− y‖ ≥ ε

}
.

The function δ is known as the modulus of uniform convexity of X. Note that any UC Banach space is reflexive.

A sequence {xn}n∈N in a partially ordered set (X, ) is said to be

(i) monotone increasing if xn  xn+1, for all n ∈ N;
(ii) monotone decreasing if xn+1  xn, for all n ∈ N;
(iii) monotone sequence if it is either monotone increasing or decreasing.

The following technical lemmas will be useful to establish the main results.

Lemma 1. Let X be a Banach space endowed with a partial order  . Assume that {xn} and {yn} are two
sequences on X which are weakly convergent to x̄ and ȳ respectively and xn  yn for any n ∈ N, then

x̄  ȳ.

Proof. Note that the positive sequence {yn − xn}n converges weakly to ȳ− x̄. Since closed convex
subsets are also weakly closed, the positive cone is weakly closed and so we conclude that ȳ − x̄
is positive.

Lemma 2. [17] Let {xn} be a bounded monotone sequence in X, and assume that X is reflexive. Then {xn} is
weakly convergent.
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Lemma 3. [18] Let C be a nonempty closed convex subset of a UC Banach space (X, ‖.‖). Let τ : C → [0, ∞)

be a type function, i.e., there exists a bounded sequence {xn} ∈ X such that

τ (x) = lim sup
n→∞

‖xn − x‖ ,

for every x ∈ C. Then τ has a unique minimum point z ∈ C such that

τ (z) = inf {τ (x) ; x ∈ C} = τ0.

Moreover, if {zn} is a minimizing sequence in C, i.e., lim
n→∞

τ(zn) = τ0, then {zn} converges strongly to z.

The norm ‖.‖ of X is said to be monotone if

u  v  w implies max {‖w− v‖ , ‖v− u‖} ≤ ‖w− u‖ ,

for any u, v, w ∈ X. If the norm is monotone and {xn} is monotone increasing (respectively, decreasing),
then the sequence {‖xn − y‖} is decreasing for any y such that xn  y (respectively, y  xn ), for any
n ∈ N. In this case,

lim inf
n→∞

‖xn − y‖ = lim
n→∞

‖xn − y‖ = inf
n∈N

‖xn − y‖ .

Recall that a mapping T : X → X is said to be

(i) monotone increasing if x  y implies T(x)  T(y), for all x, y ∈ X;
(ii) monotone decreasing if x  y implies T(y)  T(x), for all x, y ∈ X.

We conclude this section by extending the concept of relatively cyclic nonexpansive mapping to
monotone relatively cyclic nonexpansive mapping as follows:

Definition 2. Let (X, ‖.‖, ) be a Banach space endowed with a partially order and (A, B) a pair of nonempty
subset of X. The mapping T : A ∪ B → A ∪ B is said to be monotone increasing (respectively decreasing)
relatively cyclic nonexpansive if

1. T(A) ⊆ B and T(B) ⊆ A,
2. T is monotone increasing (respectively decreasing),
3. ‖Tx− Ty‖ ≤ ‖x− y‖, whenever x ∈ A and y ∈ B are comparables.

3. Main Result

Throughout we assumed that (X, ‖.‖, ) is a Banach space endowed with a partial order for
which order intervals are convex and closed and the linear structure of X is assumed to be compatible
with the order structure.

The following result gives sufficient conditions to obtain a fixed point theorem for a monotone
increasing relatively cyclic nonexpansive mapping.

Theorem 1. Let (A, B) be a nonempty bounded closed convex pair in a partially ordered Banach space (X, ‖.‖, 
). Assume that (X, ‖.‖) is UC. Let T : A∪ B → A∪ B be a monotone increasing relatively cyclic nonexpansive
mapping such that x0  Tx0 for some x0 ∈ A, then A ∩ B �= ∅ and there exists a∗ ∈ A ∩ B such that
Ta∗ = a∗.

Proof. We assume that x0  Tx0 and we define the sequence {xn} by xn+1 = Txn for all n ≥ 0.
By using the monotonicity of T we get

x0  x1  · · ·  xn  xn+1  · · · .
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Since A and B are bounded and closed, the sequence {xn} is bounded increasing in the reflexive
space X. By Lemma 2,

x2n
w
⇀ x̄1 ∈ A and x2n+1

w
⇀ x̄2 ∈ B.

By uniqueness of the weak limit, x̄ = x̄1 = x̄2. We claim that A ∩ B �= ∅.
Let K = {x ∈ A ∩ B, xn  x for all n ∈ N}. It is clear that K is nonempty, closed and convex

set. Since {xn} is a bounded sequence in X, we can define the type function as follows

τ (x) = lim sup
n→∞

‖xn − x‖,

for any x ∈ K. From Lemma 3, it follows that there exists a unique a∗ ∈ K such that

τ (a∗) = inf
x∈K

τ (x) .

We have
τ (Ta∗) = lim sup

n→∞
‖xn − Ta∗‖ = lim sup

n→∞
‖Txn−1 − Ta∗‖.

Since xn−1  a∗ and T is monotone relatively cyclic nonexpansive mapping,

τ (Ta∗) ≤ lim sup
n→∞

‖xn−1 − a∗‖ = τ (a∗) .

Hence, τ (Ta∗) = τ (a∗). Thus Ta∗ = a∗, which completes the proof.

If B = A, we get the next result for a monotone nonexpansive mapping.

Corollary 1. Let A be a nonempty bounded closed convex set in a partially ordered Banach space (X, ‖.‖, ).
Let T : A → A be a monotone increasing nonexpansive mapping. Assume that (X, ‖.‖) is UC and there exists
x0 ∈ A such that x0  Tx0, then there exists a∗ ∈ A such that Ta∗ = a∗.

Now let (A 0 ,B 0 ) denotes the pair obtained from (A, B) upon setting

A 0 = {x ∈ A; ‖x− y‖ = dist (A, B) for some y ∈ B ∩ [x,→)}
B 0 = {y ∈ B; ‖y− x‖ = dist (A, B) for some x ∈ A ∩ (←, y]} .

Lemma 4. Let (A, B) be a nonempty bounded closed convex pair in a partially ordered reflexive Banach space
(X, ‖.‖, ). Then,

(i) A 0 �= ∅ if and only if B 0 �= ∅;
(ii) dist

(
A 0 ,B 0

)
= dist (A, B);

(iii)
(
A 0 ,B 0

)
is a closed pair;

(iv)
(
A 0 ,B 0

)
is a convex pair.

Proof. Using the definitions of A 0 and B 0 , we can easily derive (i) and (ii).

(iii) Let {xn} ⊂ A 0 be a sequence which converges to some x̄ in A. Then there exists a sequence
{yn} ⊂ B such that

‖xn − yn‖ = dist(A, B) and xn  yn.

Since B is closed and bounded in a reflexive Banach space, there exists a subsequence {yϕ(n)} of

{yn} such that yϕ(n)
w
⇀ ȳ ∈ B. From Lemma 1, it follows that x̄  ȳ. On the other hand,

‖x̄− ȳ‖ ≤ lim inf
n→∞

‖xϕ(n) − yϕ(n)‖ = dist(A, B).
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Therefore, we have x̄ ∈ A 0 , and hence, A 0 is closed. By the same arguments we get that B 0 is
also closed.

(iv) Let x and x′ in A 0 . Then there exist y and y′ in B such that

{ ‖x− y‖ = dist(A, B) and x  y,
‖x′ − y′‖ = dist(A, B) and x′  y′.

By using the fact that the linear structure of X is compatible with the order structure, we get for
any t ∈ [0, 1]

‖tx + (1− t)x′ − ty− (1− t)y′‖ = ‖t(x− y) + (1− t)(x′ − y′)‖
≤ t‖x− y‖+ (1− t)‖x′ − y′‖
= dist(A, B).

This implies that tx + (1− t)x′ ∈ A 0 . It follows that A 0 is convex, as claimed. Similarly we
prove that B 0 is also convex.

Remark 1. Note that if T is a monotone decreasing relatively cyclic nonexpansive mapping, we have T
(
A 0

)
⊂

B 0 and T
(
B 0

)
⊂ A 0 . Indeed, let x ∈ A 0 then there exists y ∈ B such that

‖x− y‖ = dist(A, B) and x  y.

Thus,
‖Tx− Ty‖ ≤ ‖x− y‖ = dist(A, B) and Ty  Tx.

This implies Tx ∈ B 0 . Consequently T
(
A 0

)
⊂ B 0 .

For the sake of simplicity, we use the following notation

AT =
{
(x0, x

′
0) ∈ A× A; x0  Tx

′
0; ‖x0 − Tx

′
0‖ = dist (A, B)

}
.

The next lemma gives sufficient conditions such that AT is nonempty.

Lemma 5. Let (A, B) be a nonempty bounded closed convex pair in a partially ordered Banach space (X, ‖.‖, )
such that A 0 is nonempty. Let T : A ∪ B → A ∪ B be a monotone relatively cyclic nonexpansive mapping.
Then AT is nonempty.

Proof. Suppose that T is a monotone decreasing relatively cyclic nonexpansive mapping. Since A 0 �=
∅, we can find a x

′
0 in A 0 such that there exists an y ∈ B ∩

[
x
′
0,→

)
satisfying ‖x

′
0 − y‖ = dist (A, B).

Since x
′
0  y and T is monotone decreasing relatively cyclic nonexpansive mapping, Ty  Tx

′
0

and ‖Tx
′
0 − Ty‖ ≤ ‖x

′
0 − y‖ = dist (A, B), give that Tx

′
0 ∈ B 0 .

Next, for Tx
′
0 there exists an element x0 ∈ A 0 such that

x0  Tx
′
0 and ‖x0 − Tx

′
0‖ = dist (A, B) .

Now, suppose that T is a monotone increasing relatively cyclic nonexpansive mapping.
Since A 0 �= ∅, we can find a x in A 0 such that there exists an y ∈ B 0 satisfying x  y and
‖x− y‖ = dist (A, B).
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Since T is monotone increasing, Tx  Ty and

‖T2x− T2y‖ ≤ ‖Tx− Ty‖ ≤ ‖x− y‖ = dist (A, B) .

Take x0 = T2x ∈ A and x
′
0 = Ty ∈ A. We have clearly,

x0  Tx
′
0 and ‖x0 − Tx

′
0‖ = dist (A, B) .

Thus AT �= ∅.

In the following, we give a best proximity result for monotone increasing relatively cyclic
nonexpansive mapping.

Theorem 2. Let (X, ‖.‖ , ) be a partially ordered Banach space. Assume that (X, ‖.‖) is UC. Let (A, B) be
a nonempty bounded closed convex pair in X. Let T : A ∪ B → A ∪ B be a monotone increasing relatively
cyclic nonexpansive mapping. Assume that T is weakly sequentially continuous, the norm ‖.‖ of X is monotone
and there exists

(
x0, x

′
0

)
∈ AT such that x0  x

′
0  T2x0 then there exist x̄ ∈ A and ȳ ∈ B such that

‖x̄− Tx̄‖ = ‖ȳ− Tȳ‖ = dist (A, B).

Proof. Suppose that there exists
(

x0, x
′
0

)
∈ A× A such that

∥∥∥x0 − Tx
′
0

∥∥∥ = dist (A, B) and x0  x
′
0  T2x0.

Let {xn} and {yn} be two sequences defined as follows:

{ xn = T2nx0

yn = T2n+1x
′
0

for all n ∈ N.

Note that, since x0  Tx
′
0 we get T2nx0  T2n+1x

′
0 for all n ≥ 0, that is, xn  yn for all n ≥ 0.

Since T is monotone increasing relatively cyclic nonexpansive mapping, we get

‖xn − yn‖ =
∥∥∥T2nx0 − T2n+1x

′
0

∥∥∥ ≤ ∥∥∥x0 − Tx
′
0

∥∥∥ = dist (A, B) ,

that is, ‖xn − yn‖ = dist (A, B) , for all n ∈ N.
Since x0  T2x0, x1 = T2x0  T4x0 = x2 and by induction on n, we can get

xn  xn+1 for all n ∈ N.

In the same manner, we get

yn  yn+1 for all n ∈ N.

Since {xn} and {yn} are bounded increasing sequences in reflexive space, we get from Lemma 2,
xn

w
⇀ x̄ and yn

w
⇀ ȳ.

Note that x̄ = sup {xn; n ∈ N} and ȳ = sup {yn; n ∈ N}.
Let K = {y ∈ B; yn  y, for any n ∈ N} and define the type function τ : K → [0, ∞) generated

by the sequence {xn}, that is,
τ (y) = lim sup

n→∞
‖xn − y‖ ,

for y ∈ K. Using the fact that τ is increasing function, we get

τ (ȳ) = inf
y∈K

τ (y) . (1)
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Indeed, let z1, z2 ∈ K such that z1  z2 then for all n ∈ N we have

xn  yn  z1  z2.

Using the fact that the norm ‖.‖ is monotone, we get

‖xn − z1‖ ≤ ‖xn − z2‖ ,

hence,
τ(z1) ≤ τ(z2).

From Lemma 3, it follows that there exists a unique b∗ ∈ K such that :

τ (b∗) = inf
y∈K

τ (y) . (2)

Since ȳ = sup {yn; n ∈ N} and b∗ ∈ K, ȳ  b∗, that is, τ(ȳ)  τ(b∗).
Thus, τ(ȳ) = τ(b∗), i.e., ȳ = b∗.

We have also

τ
(

T2ȳ
)

= lim sup
n→∞

∥∥∥xn − T2ȳ
∥∥∥

= lim sup
n→∞

∥∥∥T2xn−1 − T2ȳ
∥∥∥

≤ lim sup
n→∞

‖xn−1 − ȳ‖
= τ (ȳ) ,

hence, T2ȳ = ȳ.
Furthermore, T is weakly sequentially continuous then Txn

w
⇀ Tx̄ and Tyn

w
⇀ Tȳ. By the lower semi

continuity of the norm, we get

‖x̄− ȳ‖ ≤ lim inf
n→∞

‖xn − yn‖ = dist (A, B) .

Let {x
′
n} be a sequence defined by x

′
n = T2nx

′
0, for all n ∈ N. We have

yn = T2n+1x
′
0 = T(T2nx

′
0) = Tx

′
n.

Since x
′
0  T2x

′
0, T2nx

′
0  T2n+2x

′
0, that is, x

′
n  x

′
n+1, for all n ∈ N. Since {x

′
n} is bounded increasing

sequence in reflexive space, we get by using Lemma 2 x
′
n

w
⇀ x̄′ . Since T is weakly sequentially

continuous, yn = Tx
′
n

w
⇀ Tx̄′ . By the uniqueness of the limit, Tx̄′ = ȳ, that is,∥∥∥x̄− Tx̄′

∥∥∥ = dist (A, B) . (3)

Note that x0  x
′
0  T2x0  T2x

′
0, that is, x0  x

′
0  x1  x

′
1. Then, by induction on n, we can get

xn  x
′
n  xn+1  x

′
n+1.

Define the sequence {zn} as follows

zn =
{ xn if n is even,

x
′
n−1 if n is odd.
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Since {zn} is bounded increasing sequence in reflexive space, by using Lemma 2, we get zn
w
⇀ z̄.

In particular, the subsequences {z2n} and {z2n+1} also converge to z̄, that is, z̄ = x̄ = x̄
′
. Thus, by using

(3) we get ‖x̄− Tx̄‖ = dist (A, B).

In the following, we give a best proximity result for monotone decreasing relatively cyclic
nonexpansive mapping without assuming the monotonicity of the norm ‖.‖.

Theorem 3. Let (A, B) be a nonempty bounded closed convex pair in a partially ordered Banach space
(X, ‖.‖, ). Let T : A ∪ B → A ∪ B be a monotone decreasing relatively cyclic nonexpansive mapping.
Assume that (X, ‖.‖) is UC, T is weakly sequentially continuous and there exists

(
x0, x

′
0

)
∈ AT such that

x
′
0  x0  T2x

′
0, then there exists (x̄, ȳ) ∈ A× B such that

‖x̄− Tx̄‖ = ‖ȳ− Tȳ‖ = dist (A, B) .

Proof. Let
(

x0, x
′
0

)
∈ AT such that

x
′
0  x0  T2x

′
0.

If A ∩ B �= ∅ then x0 = Tx
′
0 by Lemma 5. Since x

′
0  x0  T2x

′
0 and T is decreasing, we get

x0  Tx0 and Tx0  Tx
′
0 = x0. Thus, Tx0 = x0.

If A ∩ B = ∅, then we consider the sequences {xn} and {zn} ⊂ A defined by

{ z0 = x
′
0

xn = T2nx0

zn = T2nx
′
0

for all n ∈ N
∗.

Since x
′
0  x0  T2x

′
0 = z1 and T2 is a monotone increasing mapping, by induction on n, we get

T2nx
′
0  T2nx0  T2n+2x

′
0, which implies

zn  xn  zn+1, (4)

for all n ≥ 0. Also, since x0  Tx
′
0 = Tz0 and T2 is a monotone increasing mapping, by induction on n,

we get T2nx0  T(T2nx
′
0), which implies

xn  Tzn, (5)

for all n ≥ 0. The sequences {xn} and {zn} are increasing. Indeed, x0  T2x
′
0  T2x0 implies by

induction on n that T2nx0  T2n+2x0. Thus,

xn  xn+1,

for all n ∈ N. Since {xn} and {zn} are bounded increasing sequences in a reflexive space, we get by
Lemma 2, xn

w
⇀ x̄ and zn

w
⇀ z̄. Using the fact that T is weakly sequentially continuous we conclude

that Tzn
w
⇀ Tz̄.

Since T is relatively cyclic nonexpansive mapping, we get

‖xn − Tzn‖ = ‖T2xn−1 − T3zn−1‖
≤ ‖Txn−1 − T2zn−1‖
≤ ‖xn−1 − Tzn−1‖,

for all n in N∗. By induction on n, we prove that

‖xn − Tzn‖ ≤ ‖x0 − Tx
′
0‖ = dist (A, B) ,
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for all n ∈ N. By the lower semi continuity of the norm, we get

‖x̄− Tz̄‖ ≤ lim inf
n→∞

‖xn − Tzn‖ = dist (A, B) . (6)

It follows from the Lemma 1 and the inequality (4) that z̄  x̄  z̄, and hence, z̄ = x̄.
Finally, by Equation (6) it follows that

‖x̄− Tx̄‖ = dist (A, B) .

Let ȳ = Tx̄, then by inequality (5) and Lemma 1 we have x̄  ȳ and

‖ȳ− Tȳ‖ = ‖Tx̄− Tȳ‖ ≤ ‖x̄− ȳ‖ = dist (A, B) .

So the proof is complete.
We claim that T2 x̄ = x̄ and T2ȳ = ȳ. Indeed, since xn+1 = T2xn

w
⇀ x̄ and xn+1 = T2xn

w
⇀ T2 x̄,

the uniqueness of the weak limit implies that T2 x̄ = x̄. Furthermore, Tx̄ = ȳ then

T2 x̄ = x̄ =⇒ T(T2 x̄) = Tx̄ =⇒ T2(Tx̄) = ȳ =⇒ T2ȳ = ȳ.

The following example illustrates Theorem 3.

Example 1. Consider X = R2 with usual norm and the partially order defined by:

(a, b)  (c, d) iff (a ≤ c and b ≤ d),

for any (a, b), (c, d) in R2. Suppose that

A =
{
(x, 0) ∈ R

2 ; x ∈ [0, 2]
}

and

B =
{
(x, 1) ∈ R

2 ; x ∈ [2, 4]
}

,

we can show that dist(A, B) = 1, A 0 = {(2, 0)} and B 0 = {(2, 1)}. Suppose that a mapping T : A ∪ B →
A ∪ B is defined as follows

{ T(x, 0) = (2, 1); for all (x, 0) ∈ A
T(x, 1) = (4− x, 0); for all (x, 1) ∈ B.

We have T(A) ⊂ B, T(B) ⊂ A and T is a decreasing mapping. Also, for any
(
(x, 0), (x

′
, 1)

)
∈ A× B

we have (x, 0)  (x
′
, 1) and⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

‖T(x, 0)− T(x
′
, 1)‖ = ‖(2, 1)− (4− x

′
, 0)‖

=
√
(x′ − 2)2 + 1

‖(x, 0)− (x
′
, 1)‖ = ‖(x

′ − x, 1)‖
=

√
(x′ − x)2 + 1,
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thus, ‖T(x, 0) − T(x
′
, 1)‖ ≤ ‖(x, 0) − (x

′
, 1)‖. Then T is a monotone decreasing relatively cyclic

nonexpansive mapping.
If we choose x

′
0 = (0, 0) and x0 = (2, 0) in A we get

x0  Tx
′
0, ‖x0 − Tx

′
0‖ = dist (A, B) and x

′
0  x0  T2x

′
0.

Then there exist x̄ = (2, 0) ∈ A and ȳ = (2, 1) ∈ B such that T2 x̄ = x̄, T2ȳ = ȳ and

‖x̄− Tx̄‖ = ‖ȳ− Tȳ‖ = dist (A, B) .
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